
MemoriaNova: Optimizing Memory-Aware Model Inference

for Edge Computing

RENJUN ZHANG, Shanghai Jiao Tong University, Shanghai, China

TIANMING ZHANG, Shanghai Jiao Tong University, Shanghai, China

ZINUO CAI, Shanghai Jiao Tong University, Shanghai, China

DONGMEI LI, Beijing Institute of Microelectronics Technology, Shanghai, China

RUHUI MA, Computer Science, Shanghai Jiao Tong University, Shanghai, China

BUYYA RAJKUMAR, The University of Melbourne, Melbourne, Australia

In recent years, deploying deep learning models on edge devices has become pervasive, driven by the

increasing demand for intelligent edge computing solutions across various industries. From industrial

automation to intelligent surveillance and healthcare, edge devices are being leveraged for real-time

analytics and decision-making. Existing methods face two challenges when deploying machine learning

models on edge devices. The first challenge is handling the execution order of operators with a simple

strategy, which can lead to a potential waste of memory resources when dealing with directed acyclic graph

structure models. The second challenge is that they usually process operators of a model one by one to

optimize the inference latency, which may lead to the optimization problem getting trapped in local optima.

We present MemoriaNova, comprising BTSearch and GenEFlow, to solve these two problems. BTSearch

is a graph state backtracking algorithm with efficient pruning and hashing strategies designed to minimize

memory overhead during inference and enlarge latency optimization search space. GenEFlow, based on

genetic algorithms (GA), integrates latency modeling, and memory constraints to optimize distributed

inference latency. This innovative approach considers a comprehensive search space for model partitioning,

ensuring robust and adaptable solutions. We implement BTSearch and GenEFlow and test them on 11

deep-learning models with different structures and scales. The results show that BTSearch can reach

12% memory optimization compared with the widely used random execution strategy. At the same time,

GenEFlow reduces inference latency by 33.9% in distributed systems with four-edge devices.

CCS Concepts: • Hardware → Emerging tools and methodologies; • Computing methodologies →

Distributed computing methodologies; Machine learning; Optimization algorithms;

Additional Key Words and Phrases: Deep learning, edge computing, memory optimization, distributed system,

inference latency optimization

This work was supported by Shanghai Key Laboratory of Scalable Computing and Systems, and National Key Laboratory

of Ship Structural Safety.
Authors’ Contact Information: Renjun Zhang, Shanghai Jiao Tong University, Shanghai, China; e-mail: renjun_zhang@sjtu.

edu.cn; Tianming Zhang, Shanghai Jiao Tong University, Shanghai, China; e-mail: zhang_tianming@sjtu.edu.cn; Zinuo

Cai, Shanghai Jiao Tong University, Shanghai, China; e-mail: kingczn1314@sjtu.edu.cn; Dongmei Li, Beijing Institute of

Microelectronics Technology, Shanghai, China; e-mail: lidm772@163.com; Ruhui Ma (Corresponding author), Computer

Science, Shanghai Jiao Tong University, Shanghai, China; e-mail: ruhuima@sjtu.edu.cn; Buyya Rajkumar, The University

of Melbourne, Melbourne, Victoria, Australia; e-mail: rbuyya@unimelb.edu.au.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).

ACM 1544-3973/2025/03-ART3

https://doi.org/10.1145/3701997

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

HTTPS://ORCID.ORG/0009-0002-3022-5174
HTTPS://ORCID.ORG/0009-0001-9530-8344
HTTPS://ORCID.ORG/0000-0001-9373-8474
HTTPS://ORCID.ORG/0000-0002-5462-5773
HTTPS://ORCID.ORG/0000-0001-9592-8490
HTTPS://ORCID.ORG/0000-0001-9754-6496
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3701997
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701997&domain=pdf&date_stamp=2025-03-19

3:2 R. Zhang et al.

ACM Reference Format:

Renjun Zhang, Tianming Zhang, Zinuo Cai, Dongmei Li, Ruhui Ma, and Buyya Rajkumar. 2025. Memori-

aNova: Optimizing Memory-Aware Model Inference for Edge Computing. ACM Trans. Arch. Code Optim. 22,

1, Article 3 (March 2025), 25 pages. https://doi.org/10.1145/3701997

1 Introduction

The artificial intelligence paradigm has experienced significant advancement and widespread
applications across various domains. Deep learning (DL) methods [45] have achieved state-
of-the-art results in many machine learning applications [38], such as object detection, image
classification, and face recognition [22]. Traditionally, the inference task [33] of DL models occurs
on high-performance cloud servers, necessitating large data transfers and incurring substantial
time overhead. To address this challenge, deploying models on edge devices near data sources
becomes common [10]. Consequently, researchers explore distributed inference mechanisms that
distribute inference workloads across multiple edge devices to mitigate latency [34]. Beyond
reducing network transmission load, deploying DL models at the edge confers additional benefits
[39]. These include reduced latency, enhanced privacy and security, improved reliability, and
offline capability. These advantages make edge deployment an attractive option for various
applications requiring real-time or near-real-time processing and decision-making capabilities.

However, inference tasks are often computationally intensive, and the limited resources of
edge devices can exacerbate overall latency. For example, in a smart home, the camera processes
real-time video data and recognizes visitors. Subsequently, the camera sends the visitor informa-
tion to the smart speaker, which provides voice announcements based on the recognition results
and performs corresponding actions as instructed by the homeowner, such as opening the door
or sending an alert. Meanwhile, environmental sensors continuously monitor indoor air quality,
temperature, and humidity, adjusting the operation of air conditioners or humidifiers based on
the analysis results to ensure a comfortable and healthy home environment. These devices require
complex deep learning models for inference, which exceeds the capabilities of a single device.

Although distributed inference [28] has attracted much attention, several challenges remain to
be solved. The first challenge is addressing the memory constraint of edge devices during model
distribution. Edge devices [44] such as intelligent surveillance cameras [5], intelligent door locks
[11], smart TVs [9], and smart speakers [30] typically have limited memory. In contrast, several
sources of memory overhead exist when conducting distributed inference. A DL model can be
abstracted as a directed acyclic graph (DAG), which means there may be more than one reason-
able operator execution order of the model. According to Reference [40], operator execution order
influences the lifetime of intermediate tensors of the model, leading to variable memory overhead.
Besides, partitioning a model involves operator partition while an operator’s type and partition
number cause additional memory overhead. Existing methods like in References [48] and [46]
only consider latency optimization, not memory constraints. HMCOS [40] reduces the memory
footprint of inference tasks by adjusting operator execution order but only on a single GPU. More-
over, traversing the topological sorting of directed acyclic graphs is a P-Complete (PC) problem
mathematically [2]. Efficiently conducting this search remains a challenging problem.

The second challenge lies in determining a suitable model partition configuration to minimize
inference latency. Common distributed strategies for model partitioning encompass horizontal,
vertical, and hybrid partitioning. We delve into addressing model partitioning issues under the
hybrid partitioning strategy, which considers both horizontal and vertical partitioning, along
with the interdependence among operators. This process involves considerations of dimension,
partition number, and proportions. The partitioning of operators impacts both computing and

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

https://doi.org/10.1145/3701997

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:3

communication time, thereby influencing overall inference latency. Moreover, the decision on
operator partitioning affects the following adjacent operators. Thus, partitioning a model for
reduced inference latency presents a complex optimization problem. Unfortunately, existing
solutions often provide coarse-grained approximations. For instance, References [46] and [16]
address the operator partition problem individually, which may not guarantee optimal results.
These methods typically focus on a single operator partition dimension. Additionally, Reference
[16] employs an approximation method to transform the optimization problem into a linear
program, which introduces errors and diminishes effectiveness.

To address the challenges mentioned above during the optimization of inference latency of DL
models on memory-constrained distributed edge devices, we conduct a memory-time cost analysis
of operator partitioning in model parallelism and propose two optimization methods, namely
BTSearch and GenEFlow. BTSearch graph state backtracking algorithm traverses all topological
sorting in a DAG structure model. It guarantees to find the optimal operator execution order of a
DL model. The result execution order has minimal overall memory overhead without considering
operator partition, which enlarges the search space for operator partition optimization. We apply
an efficient pruning strategy on BTSearch. The strategy prunes the branches with no potential for
better results according to the state of the computation graph. GenEFlow is a GA-based method
aiming to optimize the inference latency while satisfying the memory constraints of the edge
devices. We model the partition decision of the whole model as a chromosome and consider
different operator partition dimensions, thus constructing a more comprehensive search space.
GenEFlow can search for the optimal solution from a global perspective through these designs.
Moreover, we use constraint violation parameters to guarantee memory constraints.

Our main contributions are as follows: (1) We analyze the memory-time cost of operator parti-
tioning and operator execution order in model parallelism. Specifically, we examine the available
partitioning methods for each operator and their memory overhead, calculating the memory con-
sumption for different partitioning methods to determine the optimal partitioning method for each
operator. Additionally, we analyze the impact of operator execution order on memory, finding that
adjusting the execution order under memory constraints reduces the maximum memory overhead
and increases the available memory space per device. (2) We propose the BTSearch, which employs
efficient pruning strategies to optimize the execution order of operators in DL models with DAG
structures. BTSearch reduces the overall memory overhead and provides a more extensive search
space for optimizing inference latency. (3) We introduce the GenEFlow method, which optimizes in-
ference latency for distributed edge devices without altering the model computation results. GenE-
Flow models the model partition decision as a chromosome and employs GAs for optimization.
GenEFlow considers two dimensions of operator partitioning and covers a more extensive search
space, offering a more comprehensive search space and robust solution than traditional methods.
(4) We merge BTSearch and GenEFlow into MemoriaNova and validate it on 11 deep-learning
models. Our results demonstrate significant improvements in memory optimization and inference
latency reduction. Specifically, BTSearch achieves up to 12% overall memory optimization, while
GenEFlow reduces model inference latency by 33.9% in our distributed edge device system.

2 Background and Motivation

2.1 Operator Partition Methods and Memory Overhead Analysis

2.1.1 Operator Partition Optimization. Operator partition optimization [41] is vital for efficient
model inference [4] on edge devices. It breaks down complex tasks into smaller distributable
operators across multiple devices, reducing inference latency and maximizing resource utilization.
Determining the correspondence among the input data, operator parameters, and output data
becomes necessary to accomplish this objective. The convolution operator’s partitioning along

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:4 R. Zhang et al.

Fig. 1. Convolution operator partition along two dimensions.

the feature map’s high dimension is illustrated in Figure 1(a), with no processing done on the
channel dimension, remaining consistent with the original operator.

After partitioning, the output tensors are executed on different devices, each storing a copy of
the operator parameters (Kernel). The input tensor is partitioned according to the convolution
computation rules, resulting in a small amount of duplicate data, as shown in the gray area in
Figure 1(a). Following this partitioning process, the subsequent equation provides the calculation
formula for the input data range when partitioning the feature map’s high dimension for the con-
volution operator. If the output tensor’s high dimension range is [xs ,xe), then the corresponding
input tensor range is given by the following:

[xs × S − P , (xe − 1) × S + Kh − P], (1)

where S represents the Stride, P represents the Padding, and Kh represents the height of the
convolution kernel.

2.1.2 Analysis of Memory Overhead in Operator Partitioning. Partitioning operators [27]
impact computation time and memory. Concurrently, parallel execution [20] reduces computation
time but may raise memory overhead. Additionally, partitioning strategy [29] and device setup
determine the balance between time and memory. While parallel execution reduces the computa-
tion time by distributing the workload, it may introduce additional memory overhead due to data
duplication and synchronization requirements across devices. The choice of partitioning strategy
and device configuration plays a crucial role in determining the tradeoff between computation
time and memory overhead. Figure 1(b) shows convolutional output channel partitioning, where
kernels partition without redundant data. Each device retains a copy of the input tensor. Various
partitioning methods result in different memory overheads due to input tensor and kernel
memory footprints.

To determine the optimal partitioning method, we perform memory calculations for the
obtained operator execution order. We consider different partitioning optimization methods from
a memory perspective. The partitioning optimization methods for various types of operators
and the resulting memory overhead are shown in Table 1. In the table, “cout” denotes “Channel
out,” and “fmh” denotes “Feature map height.” “len” represents the length of the vector. The
operators listed in Table 1 are the leading operators for the slicing operation. The activation

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:5

Table 1. Operator Partition Method and Memory Consumption

Operator Partition Method Sources of Memory Overhead

Convolution
fmh Convolution kernel

cout Input tensor

Pool fmh None

Element-wise addition (Add) fmh None

Matrix multiplication (Gemm) len None

layer is merged into the convolution operator. Due to the direct transfer of the corresponding
data to the connected device before the start of the calculation for each operator and the absence
of tensor reshaping operations, operators that reorder tensor data have their execution process
combined into the data communication phase. The lack of a symbol in Table 1 indicates that
partitioning the operator will not incur additional memory overhead. The memory analysis and
the handling of the partitioning overhead for convolutional operators are particularly beneficial,
given that convolutional operators typically have a large parameter size in DL models.

Taking the convolution operator as an example, we introduce the method for determining its
partitioning. Assuming there are n devices in the distributed system, each device has an available
memory limit:

M = [m1,m2, . . . ,mn]. (2)

The total available memory limit for each device is as follows:

Mf ull =

n∑
i=1

mi . (3)

For the current convolution operationConv , memory allocation includesMin for input,Mout for
output, Mkernel for parameters, and Mothers for intermediate tensors. The operator is partitioned
into k1 partitions along the output channel dimension, respecting device memory limits. We have
the following:

Mothers + k1 ∗Min +Mkernel +Mout ≤ Mf ull . (4)

The current convolution operator is partitioned along the height dimension of the output tensor
feature map, with the number of partitions being k2. Similarly,

Mothers +Min + k2 ∗Mkernel +Mout ≤ Mf ull . (5)

Based on the current operator parameters and the current state of the computation graph, we
can calculate the values of k1 and k2 and then round them down to yield the final results. When
k1 < k2, we adopt output channel (cout) partitioning for the current convolution. Otherwise, we
assume feature map height (fmh) partitioning.

2.2 Analysis of Operator Execution Order on Memory Overhead

In DL model inference, the operator arrangement in computational graphs impacts memory
usage. Sequential execution causes fluctuating memory footprints, especially in models with
multi-branch structures. Variability arises from memory allocation for tensors, parameters, and
results. Memory remains constant for simpler models with one input/output tensor. However,
complex models with multi-branch structures introduce memory management challenges.
Different operator execution orders impact memory overhead, emphasizing the need for efficient
topology sorting. Optimization can reduce memory overhead, leading to smoother inference
processes. The following example illustrates this process.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:6 R. Zhang et al.

Fig. 2. Example of the impact of operator execution order on memory footprint.

Fig. 3. Three different execution orders of the example model.

Table 2. Memory Footprint Analysis of Different Operator Execution Orders (Metric: KB)

Execution
Sequence Mi1 Me1 Mi2 Me2 Mi3 Me3 Mi4 Me4 Mi5 Memory

Order1 588 13,139 13,132 19,692 6,860 13,146 12,544 12,544 6,272 19,692

Order2 588 13,139 13,132 19,418 18,816 25,376 12,544 12,544 6,272 25,376

Order3 588 7,329 6,860 19,411 18,816 25,376 12,544 12,544 6,272 25,376

The model in Figure 2 demonstrates a single-input, single-output model with four operators and
two branching dataflows. There are three valid execution sequences that conform to topological
sorting: Order1 = [Conv1, Conv2, Conv3, Sum]; Order2 = [Conv1, Conv3, Conv2, Sum]; Order3 =
[Conv3, Conv1, Conv2, Sum]. Operator execution orders are shown in Figure 3 as (a), (b), and (c).

For a float32 data type, the memory space for tensor T0 is calculated as follows: Mem(T0) =
1 × 3 × 224 × 224 × 4/1, 024 = 588KB. Similarly, the memory space occupied by tensors T1 to T4

is 12,544, 6,272, 6,272, and 6,272 KB, respectively. Based on the earlier analysis of memory over-
head during the operator execution process, we divide the entire inference process into several
execution stages and interval stages. The execution stage represents the process where an opera-
tor is actively performing computations. In contrast, the interval stage corresponds to the period
when one operator has completed execution, and the execution of the next operator has not yet
commenced. Memory overhead during execution and interval stages is denoted as Me and Mi , re-
spectively. The memory overhead analysis for all valid operator execution orders of the example
model in Figure 2 is provided in Table 2. The values in the table round to the nearest whole integer.

Taking Order1 as an example, the inference process proceeds as follows: (1) Before the ex-
ecution of the first operator, only the input tensor T0 is present in memory, with a memory
overhead of Mi1 = M(T0) = 588 KB; (2) during Conv1’s execution, memory usage is Me1 =

M(T0) + M(T1) + M(Conv1kernel) = 13, 139 KB; (3) before the execution of the second operator

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:7

Conv2, the intermediate result tensors to be stored in memory are T0 and T1, with a memory
overhead of Mi2 = T0 + T1 = 588 + 12, 544 = 13, 132 KB; (4) during the execution of the sec-
ond operator Conv2, in addition to the memory space required for Conv2 computation, tensor T0

needs to be additionally saved. The memory overhead is calculated as Me2 = M(T1) + M(T2) +
M(Conv2kernel) + M(T0) = 12, 544 + 6, 272 + 641, 283 ∗ 3/256 + 588 = 19, 692 KB; (5) before the
execution of the third operator Conv3, the intermediate result tensors to be stored in memory
are T0 and T2, with a memory overhead of Mi3 = M(T0) + M(T2) = 588 + 6, 272 = 6, 860 KB; (6)
during the execution of the third operator Conv3, in addition to the memory space required for
Conv3 computation, tensorT2 needs to be additionally saved. The memory overhead is calculated
as Me3 = M(T0)+M(T3)+M(Conv3kernel)+T2 = 588+6, 272+31, 283∗3/256+6, 272 = 13, 146 KB;
(7) before the execution of the fourth operator Sum, the intermediate result tensors to be stored in
memory areT2 andT3, with a memory overhead of Mi4 = M(T2)+M(T3) = 6, 272+6, 272 = 12, 544
KB; (8) during the execution of the fourth operator Sum, assuming an in-place addition method
where the input and output tensors share the same memory space, the memory overhead is calcu-
lated as Me4 = T2 +T3 = 6, 272 + 6, 272 = 12, 544 KB; and (9) after the completion of all operators’
computations, the output tensor T4 needs to be stored in memory, with a memory overhead of
Mi5 = T4 = 6, 272 KB.

In Order1, the maximum memory overhead is 19,692 KB. Order2 and Order3 are similar to Or-
der1, and their maximum memory overhead is 25,376 KB. Hence, optimizing memory usage by
adjusting the order of operator execution is crucial in limited memory scenarios. This minimizes
overhead, increases memory space, and reduces computation time, especially for intensive tasks
like partitioning operators. Efficient topology sorting becomes pivotal in managing memory over-
head and enhancing model performance in constrained environments. Therefore, adjusting execu-
tion order impacts memory overhead, highlighting the importance of efficient topology sorting for
improved performance. Even with similar maximum overhead for Order2 and Order3, differences
in local memory overhead exist. Computation time improvement in inference tasks can involve
sacrificing memory space via operator slicing. Additionally, the number, method, and ratio of sliced
sub-operators cause computation time and additional memory overhead. Adjusting operator ex-
ecution order under limited memory can reduce maximum memory overhead, increase available
memory space, and reduce computation time through operator slicing.

3 Design

3.1 Overview

This section introduces MemoriaNova, a comprehensive approach designed to optimize DL
models for edge devices. Within MemoriaNova, we present two core algorithms: BTSearch and
GenEFlow. BTSearch focuses on exploring the computational graph of the target DL model to
identify the optimal operator execution order, thereby expanding the search space for GenEFlow.
Subsequently, based on hardware specifications and the determined execution order, GenEFlow
utilizes the information acquired from BTSearch to optimize the model’s parallel configuration.
This process aims to minimize inference latency while adhering to the memory constraints of each
device. Figure 4 provides an overview of our methodology, illustrating the seamless integration
of BTSearch and GenEFlow to achieve enhanced DL performance.

3.2 BTSearch: A Backtracking Algorithm for Optimizing Model Operator Topological

Sorting

To reduce the memory overhead from the sequence of operator executions, we bring up BTSearch.
BTSearch is a graph state backtracking algorithm that aims to find an operator execution order that

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:8 R. Zhang et al.

Fig. 4. System overview.

minimizes memory overhead and widens optimization opportunities for operator slicing efficiency
gains.

The computational graph of a DL model can be represented as G = {V,E}, whereV is vertices
and E is edges. An edge ei j ∈ E signifies a connection, implying opi precedes opj during inference.
Sorting all operators ensures no path from opj to opi , termed topological sort. Computing sorts
for a graph is a PC problem, typically requiring exponential time. In the worst-case scenario, it
requires exponential time to traverse all topological sorts of a directed acyclic graph. Fortunately,
multi-branch DL models typically exhibit a concatenated parallel structure, where the topological
structure comprises several small-scale parallel structures. The fact results in a relatively smaller
number of possible topological sorts. For ease of algorithm description, the following definitions
are provided.

Definition 3.1 (Operator State). In the process of an inference task for a DL model, the state of
an operator is defined as a Boolean variable, indicating whether the operator has completed its
computation. For example, bi denotes the state of the operator opi .

Definition 3.2 (Computational Graph State). In the process of an inference task for a DL model,
the states of all operators in the computational graph constitute the current state of the graph,
denoted as StateG = b1,b2, . . . ,bN (where N is the number of operators in the computational
graph).

We aim to optimize operator execution to maximize available memory during model inference,
expanding efficiency optimization opportunities. The evaluation metric Metric(Orderi) sums the

memory overhead of each operator in a topological order: Metric(Orderi) =
∑N

j=1(Memf ull −

Mem
opj

e). Smaller metric values signify better performance.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:9

ALGORITHM 1: BTSearch

Data: DL model computation graph.

Result: Optimal order of operator execution for memory optimization.

1 Function Main():

// Initialize the graph state and current local order. Initialize the state

marking dictionary and the parsing function dictionary.

2 GraphState← InitialState , CurrentOrder← [], StateMark← {}, ParseMark← {};

3 MemMetric← 0, BestMemMetric← 0;

4 Recursive(GraphState, CurrentOrder);

5 return BestExecuteOrder ;

6 Function Recursive(GraphState, CurrentOrder, MemMetric):

7 if All element in GraphState is true and MemMetric > BestMemMetric then

8 Update BestMemMetric and ExecutionOrder;

9 end

// Pruning.

10 if GraphState in StateMark and MemMetric ≤ StateMark[GraphState] then

11 return;

12 else

13 Update StateMark;

14 end

15 Executable, CurrentMem← ParseState(GraphState);

16 foreach operator in Executable do

17 Update GraphState and CurrentOrder;

18 Recursive(GraphState, CurrentOrder, MemMetric + CurrentMem);

19 Downgrade GraphState and CurrentOrder;

20 end

The pseudocode for BTSearch is shown in Algorithm 1. BTSearch’s input is the computation
graph of a DL model, and its output is the optimal topological order under a certain metric condi-
tion. BTSearch perform a backtracking iteration on the graph that has not yet started computing.
Based on the current state of the graph, all legal next states are derived and recursively processed
in sequence. As the main steps, BTSearch initializes the graph state and the current local order
first. And then, it calls the backtracking algorithm to obtain the optimal order.

BTSearch’s backtracking recursive function first determines the recursion exit. If all operators
have been executed, i.e., StateG = true, true, . . . , true , then it is necessary to check whether the
metric value of the currently found topological order is better. If so, then update the current best
result. Then, the function returns. Parse the current graph state. Based on the current graph state,
the status of each operator, the list of currently executable operators, and the tensor information
stored in memory can be parsed. Loop through the current list of executable operators. For each
operator in the list, assume the operator is chosen as the next to be executed, add it to the cur-
rent local order list, and update the graph state. Recursively call the backtracking function with
the parameters updated in the previous step. Finally, the regional order list and graph state were
restored to the state before the last operator was chosen.

The graph state parsing function calculates the list of currently executable operators and the
memory overhead based on the current graph state for all operators in the graph that still need
to be executed loop through. Identify all directed edges that have the operator as the endpoint;
for each such edge, increment the in-degree of that operator by one. Finally, Check the in-degree
of all operators, adding operators with an in-degree of zero to the list of executable operators.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:10 R. Zhang et al.

Additionally, the input tensors of all operators with an in-degree of zero are set as intermediate
result tensors, and the memory overhead of all intermediate result tensors is calculated based on
the current graph state.

3.2.1 Pruning Optimization Based on State Marking. During backtracking, repeated state transi-
tions may lead to the same graph state. As the backtracking is depth-first, if a certain state recurs,
then all subsequent iterations from that point have been processed, indicating subsequent local
optimal solutions. The graph state updates with each recursive call, enabling the following opti-
mization: Maintain a state marking dictionary outside the function to record encountered graph
states and their local metric values. Before the loop, check if the state is recorded in the state-
marking dictionary. If the state is recorded, then prune if the current metric exceeds the recorded
value; otherwise, continue execution as usual. Finally, update the dictionary after the loop.

3.2.2 Hash Optimization for the Parsing Function. Even with previous optimization, redundant
computations may occur during backtracking. Hash optimization eliminates redundant computa-
tions by recording graph states and parsing results in a dictionary. Check if parsing results exist
in the dictionary; if found, return them; otherwise, compute and register the results.

3.2.3 Time Complexity Analysis. The algorithm has an exponential time complexity of O(2n)
for general directed acyclic graphs. In practice, most deep learning models exhibit a topology char-
acterized by a series-parallel graph. In such a graph, it is assumed that the structure consists of
N parallel graphs concatenated, with each parallel graph containing M branches and each branch
comprising K nodes. After pruning, each serial subgraph is processed only once. Best-case time
complexity per subgraph is O(M ∗ K), while the worst-case is O(KM), and overall complexity is
O(N ∗M ∗ K) ∼ O(N ∗ KM). In practice, with limited branches and operators in serial subgraphs,
the algorithm’s execution time is acceptable.

3.3 GenEFlow: GA-based Model Parallel Scheduling Optimization Method

To decrease the inference latency of the target model by optimizing the model parallel schedule, we
devise GenEFlow, a GA-based method, to optimize model parallel schedules to reduce inference la-
tency. GenEFlow operates in a router-edge devices setup, considering broadcast and point-to-point
communication. It abstracts model operator partition optimization as a chromosome configuration.
Furthermore, GenEFlow constructs a search space, defines an objective function, and iteratively
refines configurations using GAs. It ensures legal configurations and employs a GA Solution to
minimize model inference latency in distributed systems.

3.3.1 Search Space Construction. We optimize the model’s slicing configuration using a GA in-
stead of optimizing operators individually. Operators execute synchronously, involving data trans-
fer and computation stages. An operator’s execution time is linearly related to its scale. By uni-
formly partitioning operators, parallel execution time decreases. Memory constraints guide the
maximum splits per operator. Memory calculations inform optimal partitioning methods, detailed
in Table 1. The computation of convolutions, typically large, benefits from efficient partitioning,
reducing memory overhead.

Chromosome Encoding. Based on the current graph state, k1 and k2 are calculated from relevant
parameters. If k1 < k2, then partitioning occurs along output channels (cout). Otherwise, it is along
feature map height (fmh). Chromosome encoding for all operators’ partitioning configurations is
necessary to invoke GAs. For a single operator opi , its partitioning encoding vector is defined as
follows:

�xi = [x0,x1, . . . ,xn]. (6)

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:11

Fig. 5. Illustration of the relation between chromosome encoding and model partition configuration of the

example model.

The encoding vector needs to satisfy the following constraints:

xi ∈ N, i ∈ [0, . . . ,n], (7)

x0 = 0, (8)

xn = lenдth, (9)

x0 ≤ x1 ≤ . . . xn , (10)

where lenдth is the size of the operator along the partitioning dimension, and n is the number of
edge devices in the system. The partitioning encoding vector assigns tasks to devices based on
output tensor indices, which are crucial for constraint calculations. Note that when xi−1 = xi , it
signifies that device di will not be assigned the computation task for the current operator. This
characteristic is used in the subsequent calculation of constraint violation parameters.

From the partitioning vector of a single operator, where each partitioning operator corresponds
to a single gene in the GA’s chromosome representation, the chromosome encoding for the entire
model’s partitioning configuration can be obtained as

�X = [�x1, �x2, . . . , �xN]. (11)

Through chromosome encoding analysis, we form a comprehensive search space. It fulfills dis-
tributed system memory needs and encompasses varied operator partitioning configurations. This
space is denoted as a set as follows:

{ �X } s.t. (7),(8),(9),(10). (12)

In Section 3.2, considering the example model, Figure 5 illustrates the relationship between chro-
mosome encoding and model partitioning configuration. With three devices, operators execute in
Order1: Conv1, Conv2, Conv3, Sum. In the figure, xi, j denotes the partitioning vector elements for
the ith operator. The range [xi, j−1,xi, j) assigns computation to the jth device. If xi, j−1 = xi, j , then
it implies device j is not involved in operator i computation.

3.3.2 Objective Function. The GA adopted in GenEFlow is a single-objective optimization GA,
and the optimization target is the single inference latency. Therefore, for any given valid chromo-
some encoding, it must be mapped to inference latency. This mapping is the optimization objective
function.

Device Modeling Optimization and Communication. In our distributed edge device system, each
of the n edge devices is linked via a router. Two communication methods are employed: point-to-
point and broadcast. Point-to-point involves direct communication between two devices through
the router. Broadcast sends data from one device, transmitting it to multiple devices through the
router. This modeling mirrors real-world scenarios like interconnected smart home devices.

Chromosome Encoding to Inference Time Mapping. The algorithm calculates inference latency
by processing operators sequentially in a deep-learning model. Its execution phase is divided

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:12 R. Zhang et al.

ALGORITHM 2: Optimization Objective Function

Data: DL model operator partitioning configuration vector �X = [x1,x2 . . . ,xN], model computation

graph G, and hardware information for distributed edge devices D.

Result: Execution time of inference tasks under the current configuration

1 FinishTime← 0;

2 foreach �xi ∈ �X do

3 TmpTime← 0;

4 Comm ←GetCommMem(i, �X , G);

5 foreach dk ∈ D do

6 CommTime← 0,CompTime← 0;

7 CommNum← 0;

8 foreach opj ∈ pred(opi) do

9 if Use Broadcast Mode then

10 CommNum += Comm[j][k];

11 break;

12 else

13 CommNum += Comm[j][k];

14 end

15 end

16 CommTime←CommNum / D.Bandwidth;

17 CompTime← Yi (xi,k − xi,k−1,opi);

18 DeviceTime←CommTime + CompTime;

19 if DeviceTime > TmpTime then

20 CommOpTimei = CommTime;

21 end

22 TmpTime = max(TmpTime, DeviceTime);

23 end

24 FinishTime += TmpTime;

25 end

26 return FinishTime;

into data synchronization and computation phases. The predecessor operators of the operator
opi are defined as pred(opi). For any opj ∈ pred(opi), there exists an edge eji in the computation
graph G. Similarly, the successor operators of the operator opi are defined as succ(opi). For any
opj ∈ succ(opi), there exists an edge ei j in the computation graph G. During data synchroniza-
tion, the algorithm determines the distribution of output tensors from predecessor operators to
calculate data transfer amounts. The operator type and its partitioning method have an impact
on communication mode (broadcast or point-to-point). This information is encapsulated in the

chromosome �X for inference latency calculation.
Calculation of Data Transfer Quantity. Algorithm 2 outlines the optimization objective function.

The function GetCommMem(opI D , �X) computes the transfer parameter matrixComm.Comm[i][j]
indicates the data amount transferred from the ith predecessor operator to device dj . The function
initializes Comm with 0s and iterates over predecessor operators and devices, computing data

transfer based on operator types and partitioning vectors �X .
Algorithm 3 computes the communication data volume for a given operator and device pair. For

the predecessor operator opj and device dk of the current operator opi , when type(opi) = Conv ,
there are several cases as follows:

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:13

Fig. 6. Data communication of convolution operator with different partition methods. Outputi−1 is the out-

put tensor of operator i − 1, Inputi is the input of convolution operator i . D1 and D2 are distributed devices.

ALGORITHM 3: GetCommMem: Function for Obtaining Communication Data Volume

Data: Operator ID, vector for partitioning configuration of DL model operators �X = [x1,x2 . . . ,xN],

computation graph of the model G, and hardware information for distributed edge devices D.

Result: Communication Data Volume Matrix Comm
1 foreach opj ∈ pred(opi) do

2 comm← [0] ∗ n;

3 foreach dk ∈ D do

4 Calculate Mneed and Mhold according to the type(opi) and the partition method of opi and opj ;

5 comm[di] += Mneed −Mhold ;

6 end

7 Comm[j] ←comm;

8 end

9 return Comm;

(i) If opi adopts cout partitioning, then data from opj is synchronized to all devices. The total
transferred parameters amount to Mout (opj), incrementing all Comm[j] elements.

(ii) If opi uses fmh and opj cout partitioning, then devices need partial feature map data. Data
transfer is computed based on feature map indices, excluding portions saved on dk . Trans-

ferred data amount: Mout (opj) ×Ccomm/C
j

f ull
× (x j

e − x
j
s).

(iii) If both opi and opj use fmh partitioning, then the data required by opi on dk as input and
currently not held by the current device dk needs to be transferred from other devices to

dk . As for the transferred data, it is calculated as Mout (opj) ×Hcomm/H
j

f ull
, where Hcomm =

max(x j
e − x

j
s ,max(0,x j

e − x
j

k
) +max(0,x j

k−1
− x j

s)).

The communication volume for convolutional operators is depicted in Figure 6. Cases (a) and (b)
represent Case (i), while (c) and (d) correspond to Cases (ii) and (iii). In (c) and (d), the characteristic
of convolution determines that there may be duplicated data in Inputi , marked by shaded areas.
For other scenarios, Mneed in opj ’s output and Mhold on dk are computed. Data to be transferred
are Mneed − Mhold . Broadcast communication is used if data are required by multiple devices,
considering a single transmission’s data volume.

Communication Time and Computation Time. According Algorithm 2, the total data communi-
cation volume for opi transmitted in device k is CommNum+ = Comm[j][k], where opj is the
predecessor operator of opi , and Comm[j][k] indicates the data amount transferred from the ith
predecessor operator to device dj . Then, the total communication time of operator opi is calculated
as CommTime←CommNum / D.Bandwidth.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:14 R. Zhang et al.

We assume that for a specific operator and device, the execution time is linearly related to the
size of the input or output feature map. Therefore, a linear function Yi can be used to calculate
the computation time of operator opi on device dk as CompTime = Yi (xi,k − xi,k−1,opi). Here,
xi,k − xi,k−1 represents the part of the operator split on device di corresponding to the partitioned
dimension.

Therefore, the time expense for this operator opi on device k is DeviceTime = CommTime +
CompTime , and the longest time spent on each device for operator opi is the time costTmpTimei of
this operator. Summing up, all operators’ time yields the total inference latency FinishTime . When
calculating the time cost of each operator opi , the communication time CommOpTimei generated
by this segment is the communication time of that operator. Summing up the communication times
of all operators gives GenEFlow the total communication time.

3.3.3 Constraint Violation Parameters. We utilize the high-performance GA libraryGeatpy [19]
to implement the optimization iteration process. In the iteration process ofGeatpy, The constraint
conditions considered are Legitimacy of chromosome parameters; (ii) Legitimacy of the total mem-
ory in the distributed system; and (iii) Legitimacy of memory on each device in the distributed
system.

Only the chromosomes (model partitioning configurations) that pass all three legitimacy checks
are considered legal. Constraint violation parameters define the degree of violation for a specific
constraint in the optimization problem. For example, assuming a constraint in the optimization
problem is a ≤ b, the constraint violation parameter corresponding to this constraint is a −b. The
larger this value, the higher the degree of constraint violation.

Legitimacy of Chromosome Parameters. For the chromosome �X = [�x1, �x2, . . . , �xN], where �xi =

[xi,0,xi,1, . . . ,xi,n], it corresponds to the partitioning configuration of the ith operator in the ex-
ecution sequence. The parameters in it need to satisfy the constraint conditions given by (7), (8),
(9), and (10). The constraint condition (7) is ensured by specifying that the parameters within the
chromosome are integers when defining the optimization problem, and there is no need to add
it to the constraint violation parameters. Constraint condition (8) corresponds to two constraint
violation parameters,

cv1,i = xi,0, cv2,i = −xi,0. (13)

Similarly, constraint condition (8) corresponds to two constraint violation parameters,

cv3,i = xi,n − lenдth, cv4,i = lenдth − xi,n , (14)

where lenдth is the size of opi in the corresponding partitioning dimension. Constraint condition
(10) corresponds to n constraint violation parameters,

cv5,i j = xi, j−1 − xi, j , j ∈ [1, 2, . . . ,n]. (15)

Legitimacy of the Total Memory in the Distributed System. In Section 3.3.1, we discussed the
impact of the total available memory in the distributed system on the upper limit of the number
of partitions in the model partitioning configuration. Assuming the upper limit of the number of
partitions for opi is kmax , then opi corresponds to a constraint violation parameter,

cv6,i = n −
n∑

j=1

Ij −min(n,kmax), i ∈ [1, 2, . . . ,N], (16)

where

Ij =

{
0 xi, j−1 = xi, j−1

1 xi, j−1 � xi, j−1
. (17)

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:15

Legitimacy of Memory on Each Device in the Distributed System. During inference, each oper-
ator’s execution on devices must adhere to device memory limits. Given the fixed execution or-
der and result tensor storage on devices, memory consumption per operator on each device is

derived from model partitioning configuration �X . Assume device memory limits as Ml imits =

[Ml1,Ml2, . . . ,Mln], where Ml i denotes the ith device’s available memory. For the operator opi , it
has a total of n constraint violation parameters on various devices,

cv7,i j = Me,i j +Mo,i j −Ml j , j ∈ [1, 2, . . .n]. (18)

The memory consumption during operator execution on device dj is denoted as Me,i j , and Mo,i j

represents the memory consumed by other tensors on dj during opi execution. Based on the anal-
ysis in Section 3.2, it can be inferred that the memory overhead of operators during execution is
always greater than or equal to that of the intermediate stages. Therefore, it is only necessary to
ensure that the execution phase complies with the memory constraints.

The vector representing the constraint violation parameters for a single operator is given by

�cvi = [cv1,i , cv2,i , cv3,i , cv4,i , cv5,i1,

. . . , cv5,in , cv6,i , cv7,i1, . . . , cv7,in].
(19)

The vector representing the constraint violation parameters for the entire model is as follows:

�CV = [cv1, cv2, . . . , cvN]. (20)

3.3.4 GA Solving. The model parallel scheduling problem seeks to minimize inference latency
by optimizing partition vectors for each operator in the distributed system. GAs are well suited for
this nonlinear optimization task. However, conventional crossover operations may disrupt supe-
rior chromosomes, affecting overall performance. Therefore, we adopt a single-objective GA with
an elite preservation strategy. This approach initializes a large population and computes fitness
based on latency. A new population is generated through crossover and mutation operators, pre-
serving privileged individuals. The process continues until convergence or a specified generation
limit is reached, resulting in optimized model parallel scheduling.

4 Evaluation

This section mainly presents the experimental results and analysis of the previously mentioned
methods, divided into six parts. In Section 4.1, we introduce the configurations and settings of
both the simulated and real environments. In Section 4.2, we select multiple DNN models and
large language models (LLMs) to evaluate the memory optimization effectiveness of BTSearch
compared to other methods. In Section 4.3, we compare the inference latency optimization of
GenEFlow with other methods under the same configuration. The experiments assess the model
inference efficiency of these methods without considering memory constraints. In Section 4.4, we
set different device memory limitations to validate the minimum memory requirements for model
inference optimization and evaluate the optimization effects of various methods. In Section 4.5,
we evaluate the inference latency of GenEFlow across multiple models by altering the number of
devices and heterogeneous configurations, analyzing how these factors impact model inference
latency. In Section 4.6, we compare the inference latency optimization of GenEFlow with other
methods in a real environment.

4.1 Experimental Setup

Experiment Platforms. The parameters of the experimental platform and simulation configuration
are shown in Table 3. Our experiments are conducted in two distinct environments. The first
scenario is a simulated environment using a local PC (CPU*8 @2.5GHz, 32GB RAM) to mimic

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:16 R. Zhang et al.

Table 3. Hardware Information Used in the Simulation Environment and Simulation Configuration

Simulation Configuration Hardware Information

Parameter Value Hardware Model Information CFLOPS

Number of
Devices

4 PC
CPU*8 @2.5GHz

32GB
0.24

Memory (MB) [50, 50, 50, 50]
Jetson
TX2

GPU*1 @1.12GHz,
CPU*6 @1.4GHz

8GB
0.50

Bandwidth
(Mbps)

2000 RPi4
CPU*4 @1.5GHz

4GB
0.80

CFLOPS [1.0, 1.0, 0.8, 0.8] RPi3
CPU*4 @1.2GHz

1GB
1.00

edge devices with varying performance levels by limiting the number of CPU cores and

floating-point computational performance (CFLOPS). In this setup, four simulated devices
are configured with a communication bandwidth of 2,000 Mbps, each having 50 MB of memory,
with CFLOPS values set to [1.0, 1.0, 0.8, 0.8]. The second scenario is a real environment where
GenEFlow optimization experiments are performed on a platform consisting of one desktop PC,
one Jetson TX2, one Raspberry Pi 3B (RPi3), and one Raspberry Pi 4B (RPi4). An SE109 (2.5 Gbps)
is used for wired connections and configuration, with the communication bandwidth limited to
2000 Mbps.

Experiment Models. We select VGG13 [35], ResNet50 [13], InceptionV3 [37], MobileNetV3
[14], SqueezeNet [18], GoogLeNet [36], and RegNet [31] as the models. The models are pre-
trained models sourced from PyTorch.hub. They are converted to the .onnx format using the
torch.onnx .export() command from PyTorch. Moreover, we also evaluate our framework on three
LLMs, BERT [7], GPT-2 [23], and Qwen2 [24]. For running CNN models, the input data shape is
[1, 3, 224, 224], and for LLMs, the input data shape is [1, 128].

4.2 Memory Optimization Analysis during Inference Process

This experiment aims to validate the memory optimization method proposed in Section 3.2. The
comparison of the method with different baselines is shown in Table 4.

The adopted baselines are as follows: (i) Random, which randomly selects an executable operator
each time; (ii) PEFT [1], a heuristic algorithm optimizing for inference efficiency; and (iii) Greedy
[21], which selects the operator with the largest input tensor to execute each time, aiming to
minimize memory consumption as much as possible.

BTsearch consistently achieves optimal results across all models. All methods yield the same
for VGG13 and GPT-2 with a single valid topological order. Similarly, models like MobileNetV3,
SqueezeNet, and EfficientNet-50, despite having branching structures, result in identical outcomes
due to simplified operators. However, ResNet-50, InceptionV3, GoogLeNet, BERT, and Qwen2
variations occur. PEFT optimizes execution time, favoring larger-scale operators early in the order.
Greedy selects operators based on input tensor size, outperforming PEFT. BTSearch guarantees
optimal results by exploring all legal topological orders. Compared to random selection, BTSearch
achieves up to a 12% improvement. To illustrate BTSearch’s efficacy, we use GoogLeNet to com-
pare memory overheads under Random and BTSearch. As shown in Figure 8, while initial stages
show minimal optimization due to fixed orders, subsequent multi-branch DAG structures benefit
from optimized execution, reducing memory usage and expanding optimization possibilities for
inference latency.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:17

Table 4. Comparison of Cumulative Memory Overhead during the

Execution Process of Each Operator (MB)

Model Random PEFT Greedy BTSearch

VGG13 194.17 194.17 194.17 194.17
ResNet50 395.35 394.97 390.37 390.37

InceptionV3 483.10 471.36 460.07 437.22
MobileNetV3 27.78 27.78 27.78 27.78
SqueezeNet 70.41 70.41 70.41 70.41

EfficientNet-b0 236.88 236.88 236.88 236.88
GoogLeNet 159.58 156.27 151.02 139.71

RegNet 694.39 698.51 695.92 692.86
GPT-2 1000.88 1000.88 1000.88 1000.88
BERT 703.91 701.91 673.03 646.03

Qwen2 20590.18 20481.18 20179.93 19224.75

Table 5. Comparison of Efficiency of Memory Optimization Methods

Model Op Num Random (ms) PEFT (ms) Greedy (ms)
BTSearch

Time (ms) Pruned Searched

ResNet50 71 1.03 2.02 2.03 5.98 20 20
InceptionV3 108 7.01 6.98 7.01 3435.12 1,387,509 1,529
GoogLeNet 71 2.99 2.99 2.99 1530.76 336,654 2,666

RegNet 94 3.00 2.99 3.44 4.99 28 3
GPT-2 159 39.41 39.47 39.37 50.84 0 1
BERT 173 23.48 23.04 22.49 130.57 11,021 46

Qwen2 283 293.99 302.92 302.83 2351.12 496,743,478 225

Next, we analyze the efficiency of the BTSearch algorithm. In models with multiple valid opera-
tor execution orders, compare the execution times of different methods. In addition, a comparison
is made between the pruning frequency of the BTSearch algorithm and the total number of com-
plete topological orderings searched. The comparative data are shown in Table 5.

From the table, Random, PEFT, and Greedy optimize memory quickly, with time complexity
O(N) for N model operators. BTSearch, despite higher time complexity, completes optimization
and reaches the millisecond level of 103 ms, which is acceptable for fixed hardware environments
and single inference tasks. Because the BTSearch method aims to optimize memory consumption,
GenEFlow is provided with a broader search space to support more complex models and computa-
tional tasks. The “Pruned” and “Searched” columns in BTSearch show pruned and total searched
orderings, respectively. BTSearch efficiently prunes orders that do not meet requirements based
on graph states. Pruning reduces the search space significantly, considering fewer complete order-
ings and is especially effective when executed before many DAG operators start. Due to the lack of
complex branching structures in GPT-2, the number of pruned orderings by BTSearch is 0. For the
BERT and Qwen2 models, due to their complexity and the large number of operators, BTSearch
prunes and searches a more significant number of orderings, resulting in better optimization. This
approach ensures BTSearch navigates a manageable number of orderings, enhancing efficiency for
complex models like InceptionV3, GoogLeNet, BERT, and Qwen2.

4.3 Acceleration Optimization Analysis during Inference Process

The experiment evaluates the GenEFlow algorithm for model inference efficiency, excluding mem-
ory constraints. Inter-device bandwidth is limited to 2000 Mbps, and memory limits per device

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:18 R. Zhang et al.

Table 6. GA Search Space Upper Bound Calculation

Model D lд(Kfmh) lд(Kcout) lд(Klen) lд(S)

VGG13 4 142.0 74.9 0.0 216.9

ResNet50 4 351.0 576.0 0.0 927.0

InceptionV3 4 601.0 1100.0 0.0 1701.0

MobileNetV3 4 352.0 394.0 0.0 746.0

SqueezeNet 4 246.0 117.0 0.0 363.0

EfficientNet-b0 4 537.0 728.0 0.0 1270.0

GoogLeNet 4 647.9 409.76 0.0 1057.6

RegNet 4 256.0 647.0 0.0 904.0

GPT-2 4 0.0 0.0 2318.1 2318.1

BERT 4 0.0 0.0 2522.2 2522.2

Qwen2 4 0.0 0.0 4125.9 4125.9

Here Kfmh represents
∏Nfmh

i=1 (kfmhi
+ 1)D−1, Kcout represents

∏Ncout
j=1 (kcoutj + 1)D−1, and

Klen represents
∏Nlen

l=1
(klenl

+ 1)D−1.

are set to 5000 MB, eliminating memory impact. GenEFlow parameters include a single-objective
GA, elite preservation, 250,000 population size, 50 max iterations, 1e-6 convergence threshold, and
10 max convergence generations. These settings aim to optimize model partitioning for efficient
distributed inference.

The GA search space upper bound S , as shown in Table 6, can be expressed as

S =
∏Nfmh

i (kfmhi
+1)D−1×

∏Ncout

j (kcoutj
+1)D−1×

∏Nlen

l
(klenl

+1)D−1, wherekfmhi
represents the out-

put tensor size of the operators split by feature map height (fmh), kcoutj
represents the output chan-

nel size of the operators split by output channels (cout), klenl
represents the tensor size of the oper-

ators split by output length (len), andD represents the number of distributed devices. Additionally,
Nfmh represents the number of operators split by feature map height (fmh), Ncout represents the
number of operators split by output channels (cout), and Nlen represents the number of operators
split by output length (len). The table shows that the GPT-2, BERT, and Qwen2 models have a
large search space due to their higher number of operators (Op Number). Consequently, the upper
bounds of the search space for these models are much higher compared to models like VGG13
and ResNet50.

The comparison in Figure 7 illustrates GenEFlow’s superior inference latency without memory
constraints. It outperforms CoEdge [46] by up to 33.9%. GenEFlow incurs minimal computational
overhead and partitions each layer individually, enhancing its efficiency. In contrast, CoEdge opti-
mizes layers individually, yielding inferior results holistically. Model size strongly correlates with
inference latency. GenEFlow excels in optimizing complex models but produces similar results to
CoEdge for smaller models like SqueezeNet. The slight dip in GenEFlow’s performance for Incep-
tionV3 may stem from longer chromosome encoding and inadequate population size, leading to
local optima. The Efficient-b0 model, with minimal computational overhead, favors DeepThings,
which achieves marginally better results than GenEFlow.

As shown in Figure 9, it compares the data transfer volume in the final operator scheduling
obtained by the EfficientNet-b0 model under the GenEFlow and CoEdge methods. Compared to
CoEdge, GenEFlow notably reduces communication by analyzing data transfer volumes, which
is attributed to its holistic optimization objective encompassing computation and communication
processes. The GA fosters offspring with lower latency, indirectly minimizing data communication
during distributed inference.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:19

Fig. 7. Comparison of inference latency among different models.

Fig. 8. Memory footprint trace of operators. Fig. 9. Comparison of data communication.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:20 R. Zhang et al.

Table 7. Comparison of Time Consumption of the Optimization

Process (s)

Model DeepThings CoEdge GenEFlow

VGG13 1.05 9.95 6371.59

ResNet50 1.28 9.97 20123.58

InceptionV3 2.26 9.97 21380.50

MobileNetV3 1.43 8.55 12351.91

SqueezeNet 1.02 7.65 12442.12

EfficientNet-b0 0.99 7.33 38615.78

GoogLeNet 2.43 10.50 18248.82

RegNet 1.90 9.93 25876.56

BERT 1.05 48.41 108210.81

GPT-2 1.99 50.03 131025.18

Qwen2 5.98 60.02 232352.55

Table 7 compares the optimization time for each method in this experiment. Except for GenE-
Flow, all methods optimize the operators sequentially, resulting in faster optimization speeds at
the second level. In contrast, the GenEFlow algorithm takes significantly longer, ranging from 1.7
to 36.4 hours. This is mainly due to using a genetic algorithm, which involves a lot of computation.
In this experiment, the number of distributed devices is fixed at 4, so the chromosome encoding
length in the GenEFlow algorithm is proportional to the number of model operators. Therefore,
models with a more significant number of operators require more time for population initialization
and individual fitness evaluation within the population.

4.4 Optimization Effect Analysis under Memory Limitation Conditions

We aim to validate the optimization effects of different methods on model inference efficiency while
considering memory constraints. We set various device memory limitations to verify whether the
optimization methods meet the specified memory constraints. If the memory requirements are
met, then the inference acceleration effects of each model under memory constraints are analyzed
as shown in Table 8.

Prioritizing the adjustment of operator partitioning, GenEFlow optimizes inference memory
overhead, facilitating efficient task execution even under stringent memory constraints. Mem-
ory thresholds are directly linked to the scale of model operators. CoEdge and GenEFlow min-
imize computational overhead, significantly reducing memory consumption compared to local
and DeepThings’ deployment methods. Tight memory constraints limit partitioning methods, re-
ducing GenEFlow’s search space and potential acceleration. GenEFlow adapts to varying memory
constraints by considering device memory limits during GA application. Other methods lack mem-
ory consideration and remain fixed at specific thresholds, limiting their applicability and latency
reduction even with increased memory availability.

4.5 Heterogeneous Device Scalability and Inference Latency Analysis

We evaluate GenEFlow’s inference latency on VGG13, ResNet50, MobileNetV3, and EfficientNet-
b0 models by changing the number of devices and heterogeneous device configurations. The
communication bandwidth is 2000 MB/s, the memory limit for each device is 5000 MB, the
number of distributed devices is four, and the CFLOPS of the devices for each device is set to
0.5. Figure 10 shows that as the number of devices increases, the inference latency of the models

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:21

Table 8. Comparison of Inference Latency of Different Models under Memory Constraints (ms)

Model Memory Local DeepThings CoEdge GenEFlow Model Memory Local DeepThings CoEdge GenEFlow

VGG13

10MB × × 242.48 217.26

ResNet50

5MB × × × 315.54
20MB × × - - 10MB × 370.83 329.04 -
30MB × 277.23 - - 15MB × - - -
40MB 311.80 - - - 20MB 435.98 - - -

InceptionV3

5MB × × × 304.52

MobileNetV3

0.5MB × × 52.52 31.38
7MB × × 296.12 301.60 1MB × × - -
10MB × 361.52 - - 1.5MB × 49.62 - -
15MB 397.52 - - - 2MB 46.10 - - -

SqueezeNet

2.5MB × × 72.08 72.78

EfficientNet-b0

5MB × × 305.96 218.38
5MB × × - 72.37 10MB × × - 214.40

7.5MB × 74.18 - - 15MB × 211.80 - -
10MB 74.23 - - - 20MB 210.18 - - -

GoogLeNet

2MB × × × 105.40

RegNet

10MB × × × 512.33
3MB × × 113.81 103.99 20MB × 565.79 592.79 -
5MB × 136.63 - - 30MB × - - -
7MB 140.03 - - - 40MB 651.06 - - -

BERT

1MB × × × 5.84

GPT-2

5MB × × 30.65 26.23
1.5MB × × × - 10MB × × - -
2MB × 7.33 7.15 - 15MB × 31.79 - -

2.5MB 8.83 - - - 18MB 32.06 - - -

Qwen2

10MB × × × 10.59
20MB × × 12.82 -
30MB × 13.26 - -
40MB 13.59 - - -

The memory limit is applied to each device. × indicates that the inference task cannot be completed under this memory

limit. - indicates that increasing memory will not improve the optimization effect.

Fig. 10. Compare the inference with different

numbers of devices.
Fig. 11. Compare the inference with heterogeneous

configuration.

first increases and then decreases, reaching the lowest latency when the number of distributed
devices grows to four. When the number of distributed devices exceeds four, the inference latency
gradually increases because the increase in communication time between devices outweighs the
reduction in computation time due to distributed inference. We then fixed the number of devices
to four and varied the CFLOPS values of each device to test the inference latency of models under
heterogeneous device configurations. As shown in Figure 11. “Heterogeneous Configuration”
refers to the CFLOPS settings of the four devices. Configurations 1 through 7 correspond to the
following CFLOPS settings: 1 (0.8, 0.8, 0.8, 0.8), 2 (0.8, 0.8, 0.8, 0.5), 3 (0.8, 0.8, 0.5, 0.5), 4 (0.8, 0.5,
0.5, 0.3), 5 (0.5, 0.5, 0.5, 0.3), 6 (0.5, 0.5, 0.3, 0.3), and 7 (0.3, 0.3, 0.3, 0.3). As the CFLOPS values
decrease, the overall inference time of the models tends to decrease, particularly for the VGG13
and ResNet50 models, where the reduction in latency is most significant in Configurations 6 and 7.

4.6 Analysis of Inference Acceleration on Heterogeneous Edge Devices

In a real environment, we compare the inference acceleration effects of different baselines on
the models InceptionV3, ResNet50, Vgg19, SqueezeNet, and MobileNetV3. Each operator of these

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

3:22 R. Zhang et al.

Fig. 12. Comparison of inference acceleration on heterogeneous edge devices.

models can be executed individually in all hardware configurations. The baseline methods include
the following: (1) Local, where inference tasks are performed individually on each core and
the average is taken as the result; (2) DeepThings, as described previously; and (3) CoEdge, as
described previously. Figure 12 shows the inference acceleration effects under different hardware
configurations, with the results normalized to GenEFlow. From the results, it can be seen that
GeneFlow is able to achieve optimal inference latency optimization in most cases. Therefore,
on heterogeneous edge devices, the GeneFlow method can significantly enhance the inference
performance of the models.

5 Related Work

Optimizing DL models for deployment on edge devices. Deploying DL models on edge
devices poses challenges due to limited resources. Lightweight models like MobileNets [15],
Single Shot Detector [26], YOLO [32], and SqueezeNet [18] are designed for edge deploy-
ment, utilizing techniques such as filter decomposition and specialized convolution filters
to reduce computations while maintaining accuracy. Model compression methods, including
parameter quantization, pruning, and knowledge distillation, aim to minimize accuracy loss
in existing models. DeepIoT [43] offer pruning methods for IoT devices, enabling immediate
deployment on edge devices. Knowledge distillation trains smaller models to mimic larger
ones, while Fast Exiting provides approximate classification results by utilizing initial layer
computations. Techniques like AdaDeep [25], and DeepMon [17] combine compression methods
to meet the accuracy and resource constraints. These methods aim to reduce model com-
plexity for efficient inference on distributed edge devices while preserving computational
integrity.

Distributed DL inference optimization. Deploying DL inference tasks across distributed sys-
tems involves optimizing efficiency through various strategies [47]. In the simplest approach, in-
dividual model operators are distributed across devices for sequential execution [3], enhancing
throughput via pipeline formation. Guo et al.[12] adopt hierarchical optimization, employing a
GA to vertically partition models and reduce pipeline latency.

In scenarios where devices execute tasks serially, pipeline design aims to enhance compu-
tational throughput [6]. Alternatively, parallel execution partitions models into sub-models
deployed across devices, leveraging internal parallelism for improved resource utilization and
reduced latency.

DeepThings [48], proposed by Zhao et al., adopt a classic model horizontal partitioning
approach, dividing the model into independent sub-models to fully utilize each device’s
computational resources without inter-device data transmission overhead.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:23

Zeng et al. introduce CoEdge [46], which partitions model operators without overlap to mini-
mize computational overhead. CoEdge employs inter-device communication for overlapping input
data, dividing each operator execution phase into data transfer and execution phases. However,
while efficient, CoEdge’s optimization process may lead to suboptimal solutions due to its greedy
approach. EdgeFlow [16] extends the theoretical analysis for heterogeneous distributed edge de-
vices by considering data transfer and computation phases during operator partitioning. It converts
partitioning problems into linear programming and adopts a greedy approach to achieve local op-
timality. However, EdgeFlow may need to pay more attention to the impact of operator execution
orders on performance, potentially leading to suboptimal solutions.

Optimization utilizing a model’s directed acyclic graph structure. The optimization
method utilizing DAG structures organizes tasks or dependencies into directed acyclic graphs to
streamline computational processes efficiently. IOS [8] allowed parallel execution of operators
within stages, employing a dynamic programming algorithm to find optimal execution schedules.
However, its coarse optimization granularity limits scalability to distributed devices. HMCOS
[40] optimized memory usage by simplifying DAG structures through a hierarchical perspective,
reducing memory overhead during inference. AGO [42] partitioned computation graphs into
subgraphs, optimizing operator execution efficiency for specific convolution operators. While
effective, it is limited to certain convolution types and complex DAG handling. PEFT [1] scheduled
DAG tasks onto heterogeneous devices, considering earliest start times and device completion
times. However, it must address task division possibilities and may not fully optimize memory
usage. Applying PEFT directly to DL models’ DAG structure may underutilize device resources
and provide suboptimal memory optimization results.

6 Conclusion and Future Work

We propose MemoriaNova, a framework that includes two innovative algorithms, BTSearch and
GenEFlow, for optimizing memory and inference latency in distributed deep learning on edge
devices. The BTSearch method optimizes the cumulative memory overhead of models structured
as DAGs. Through meticulous exploration of the operator execution order, BTSearch effectively
minimizes memory usage during model inference. This application significantly enhances memory
efficiency and enlarges the latency optimization search space. Our experimental results demon-
strate that BTSearch achieves up to a remarkable 12% reduction in memory overhead. GenEFlow
targets the optimization of communication latency in distributed inference tasks from a holistic
model perspective. It strategically configures operator placements by leveraging GAs to minimize
communication delays across distributed edge devices and offering a comprehensive search space
for model partitioning. Our empirical evaluations indicate that GenEFlow achieves impressive
results, with a 33.9% reduction in inference latency. With the popularity of large language
models, our future work will consider how to deploy large language models with higher memory
requirements in memory-constrained edge devices and optimize their inference performance.

References

[1] Hamid Arabnejad and Jorge G. Barbosa. 2014. List scheduling algorithm for heterogeneous systems by an optimistic

cost table. IEEE Trans. Parallel Distrib. Syst. 25, 3 (2014), 682–694.

[2] Graham Brightwell and Peter Winkler. 1991. Counting linear extensions. Order 8, 3 (1991), 225–242.

[3] Zinuo Cai, Zebin Chen, Zihan Liu, Quanmin Xie, Ruhui Ma, and Haibing Guan. 2024. RIDIC: Real-time intelligent

transportation system with dispersed computing. IEEE Trans. Intell. Transport. Syst. 25, 1 (2024), 1013–1022. DOI:https:

//doi.org/10.1109/TITS.2023.3303877

[4] Zinuo Cai, Zebin Chen, Ruhui Ma, and Haibing Guan. 2023. SMSS: Stateful model serving in metaverse with serverless

computing and GPU sharing. IEEE J. Select. Areas. Commun. 42, 3 (December 2023), 799–811. DOI:https://doi.org/10.

1109/JSAC.2023.3345401

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

https://doi.org/10.1109/TITS.2023.3303877
https://doi.org/10.1109/JSAC.2023.3345401

3:24 R. Zhang et al.

[5] Antonio Carlos Cob-Parro, Cristina Losada-Gutiérrez, Marta Marrón-Romera, Alfredo Gardel-Vicente, and Ignacio

Bravo-Muñoz. 2021. Smart video surveillance system based on edge computing. Sensors 21, 9 (2021).

[6] Jacqueline M. Cole. 2020. A design-to-device pipeline for data-driven materials discovery. Accounts Chem. Res. 53, 3

(2020), 599–610.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding. CoRR abs/1810.04805, (2018). Retrieved from https://arxiv.org/abs/1810.

04805

[8] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han. 2021. Ios: Inter-operator scheduler for

cnn acceleration. Proc. Mach. Learn. Syst. 3 (2021), 167–180.

[9] Khasim Vali Dudekula, Hussain Syed, Mohamed Iqbal Mahaboob Basha, Sudhakar Ilango Swamykan, Purna Prakash

Kasaraneni, Yellapragada Venkata Pavan Kumar, Aymen Flah, and Ahmad Taher Azar. 2023. Convolutional neural

network-based personalized program recommendation system for smart television users. Sustainability 15, 3 (2023),

2206.

[10] Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya. 2022. Scheduling IoT applications in edge and

fog computing environments: A taxonomy and future directions. Comput. Surv. 55, 7 (2022), 1–41.

[11] Jalalu Guntur, S. Srinivasulu Raju, T. Niranjan, Sai Kiran Kilaru, Rakesh Dronavalli, and N. Surya Seshu Kumar. 2023.

IoT-Enhanced smart door locking system with security. SN Comput. Sci. 4, 2 (2023), 209.

[12] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. 2023. Hierarchical design space exploration for distributed CNN

inference at the edge. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer

Nature Switzerland, Cham, 545–556.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recognition. CoRR

abs/1512.03385, (2015). Retrieved from http://arxiv.org/abs/1512.03385

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun

Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. 2019. Searching for MobileNetV3. CoRR

abs/1905.02244, (2019). Retrieved from http://arxiv.org/abs/1905.02244

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

and Hartwig Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. CoRR

abs/1704.04861, (2017). Retrieved from http://arxiv.org/abs/1704.04861

[16] Chenghao Hu and Baochun Li. 2022. Distributed inference with deep learning models across heterogeneous edge

devices. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’22). 330–339.

[17] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mobile GPU-based deep learning framework

for continuous vision applications. In Proceedings of the 15th Annual International Conference on Mobile Systems, Ap-

plications, and Services. 82–95.

[18] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. 2016.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. CoRR abs/1602.07360, (2016).

Retrieved from http://arxiv.org/abs/1602.07360

[19] Jazzbin et al. 2020. Geatpy: The genetic and evolutionary algorithm toolbox with high performance in Python.

[20] Amanda Jayanetti, Saman Halgamuge, and Rajkumar Buyya. 2024. Multi-agent deep reinforcement learning frame-

work for renewable energy-aware workflow scheduling on distributed cloud data centers. IEEE Trans. Parallel Distrib.

Syst. (April 2024), 1–12. DOI:https://doi.org/10.1109/TPDS.2024.3360448

[21] Dieter Jungnickel. 2013. The Greedy Algorithm. Springer, Berlin, 135–161.

[22] Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mohamed Atri. 2020. Face recognition systems: A survey. Sensors 20,

2 (2020).

[23] Jieh-Sheng Lee and Jieh Hsiang. 2019. Patent claim generation by fine-tuning OpenAI GPT-2. CoRR abs/1907.02052,

(2019). Retrieved from http://arxiv.org/abs/1907.02052

[24] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. 2023. Towards general text

embeddings with multi-stage contrastive learning. Retrieved from https://arxiv.org/abs/2308.03281

[25] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. 2018. On-demand deep model compres-

sion for mobile devices: A usage-driven model selection framework. In Proceedings of the 16th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys ’18). Association for Computing Machinery, Munich,

Germany, 389–400. DOI:https://doi.org/10.1145/3210240.3210337

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.

2016. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV’16),

Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International, Cham, 21–37.

[27] Yura Malitsky and Matthew K. Tam. 2023. Resolvent splitting for sums of monotone operators with minimal lifting.

Math. Program. 201, 1 (2023), 231–262.

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
https://doi.org/10.1109/TPDS.2024.3360448
http://arxiv.org/abs/1907.02052
https://arxiv.org/abs/2308.03281
https://doi.org/10.1145/3210240.3210337

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing 3:25

[28] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco. 2020. Distributed inference acceleration

with adaptive DNN partitioning and offloading. In Proceedings of the IEEE Conference on Computer Communications

(INFOCOM’20). IEEE, 854–863.

[29] Xiaonan Nie, Xupeng Miao, Zhi Yang, and Bin Cui. 2022. Tsplit: Fine-grained gpu memory management for efficient

dnn training via tensor splitting. In Proceedings of the IEEE 38th International Conference on Data Engineering (ICDE’22).

IEEE, 2615–2628.

[30] Jeongeun Park, Donguk Yang, and Ha Young Kim. 2023. Text mining-based four-step framework for smart speaker

product improvement and sales planning. J. Retail. Consum. Serv. 71 (2023), 103186.

[31] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. 2020. Designing network design

spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20).

[32] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’17).

[33] Wei-Qing Ren, Yu-Ben Qu, Chao Dong, Yu-Qian Jing, Hao Sun, Qi-Hui Wu, and Song Guo. 2023. A survey on collab-

orative DNN inference for edge intelligence. Mach. Intell. Res. 20, 3 (2023), 370–395.

[34] Hongjian Shi, Weichu Zheng, Zifei Liu, Ruhui Ma, and Haibing Guan. 2023. Automatic pipeline parallelism: A par-

allel inference framework for deep learning applications in 6G mobile communication systems. IEEE J. Select. Areas

Commun. 41, 7(2023), 2041–2056. DOI:https://doi.org/10.1109/JSAC.2023.3280970

[35] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

Retrieved from https://arxiv.org/abs/1409.1556

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’15).

[37] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR’16).

[38] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis, and Diego Andina. 2018.

Deep learning for computer vision: A brief review. Intell. Neurosci. (January 2018). DOI:https://doi.org/10.1155/2018/

7068349

[39] Zhiyu Wang, Mohammad Goudarzi, Mingming Gong, and Rajkumar Buyya. 2024. Deep reinforcement learning-based

scheduling for optimizing system load and response time in edge and fog computing environments. Future Gener.

Comput. Syst. 152 (2024), 55–69.

[40] Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, and Lei Qiao. 2022. Hierarchical memory-constrained

operator scheduling of neural architecture search networks. In Proceedings of the 59th ACM/IEEE Design Automation

Conference (DAC’22). Association for Computing Machinery, New York, NY, 493–498.

[41] Yuanjia Xu, Heng Wu, Wenbo Zhang, and Yi Hu. 2022. EOP: Efficient operator partition for deep learning inference

over edge servers. In Proceedings of the 18th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments (VEE’22). Association for Computing Machinery, 45–57.

[42] Zhiying Xu, Hongding Peng, and Wei Wang. 2023. AGO: Boosting mobile AI inference performance by removing

constraints on graph optimization. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’23).

1–10.

[43] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek F. Abdelzaher. 2017. Compressing deep neural network

structures for sensing systems with a compressor-critic framework. CoRR abs/1706.01215, (2017). Retrieved from http:

//arxiv.org/abs/1706.01215

[44] Abbas Yazdinejad, Behrouz Zolfaghari, Ali Dehghantanha, Hadis Karimipour, Gautam Srivastava, and Reza M Parizi.

2023. Accurate threat hunting in industrial internet of things edge devices. Digit. Commun. Netw. 9, 5 (2023),

1123–1130.

[45] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. 2017. A deep learning approach for intrusion detection

using recurrent neural networks. IEEE Access 5 (2017), 21954–21961.

[46] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang. 2021. CoEdge: Cooperative DNN inference with

adaptive workload partitioning over heterogeneous edge devices. IEEE/ACM Trans. Netw. 29, 2 (2021), 595–608.

[47] Rui Zhang, Xuesen Chu, Ruhui Ma, Meng Zhang, Liwei Lin, Honghao Gao, and Haibing Guan. 2022. OSTTD: Offload-

ing of splittable tasks with topological dependence in multi-tier computing networks. IEEE J. Select. Areas Commun.

41, 2 (2022), 555–568.

[48] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018. DeepThings: Distributed adaptive deep

learning inference on resource-constrained IoT edge clusters. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 37, 11

(2018), 2348–2359.

Received 1 March 2024; revised 10 August 2024; accepted 19 September 2024

ACM Trans. Arch. Code Optim., Vol. 22, No. 1, Article 3. Publication date: March 2025.

https://doi.org/10.1109/JSAC.2023.3280970
https://arxiv.org/abs/1409.1556
https://doi.org/10.1155/2018/7068349
http://arxiv.org/abs/1706.01215

