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Abstract

Jobs submitted into a cluster have varying requirements
depending on user-specific needs and expectations. There-
fore, in utility-driven cluster computing, cluster Resource
Management Systems (RMSs) need to be aware of these re-
quirements in order to allocate resources effectively. Ser-
vice Level Agreements (SLAs) can be used to differentiate
different value of jobs as they define service conditions that
the cluster RMS agrees to provide for each different job.
The SLA acts as a contract between a user and the cluster
whereby the user is entitled to compensation whenever the
cluster RMS fails to deliver the required service. In this pa-
per, we present a proportional share allocation technique
called LibraSLA that takes into account the utility of ac-
cepting new jobs into the cluster based on their SLA. We
study how LibraSLA performs with respect to several SLA
requirements that include: (i) deadline type whether the job
can be delayed, (ii) deadline when the job needs to be fin-
ished, (iii) budget to be spent for finishing the job, and (iv)
penalty rate for compensating the user for failure to meet
the deadline.

1 Introduction

Clusters [15] have been rapidly utilized for an expand-
ing range of applications that demand high-performance,
high-throughput and high-availability computing services.
They are not only used for computation-intensive applica-
tions, but also as replicated storage and backup facilities
that provide essential fault tolerance and reliability.

The advent ofservice-oriented Grid computing[10]
where geographically distributed resources such as clusters
can be shared across various organizations, reinforces the
importance forutility-driven cluster computing. Commer-

cial vendors are now progressing aggressively towards pro-
viding a service market that provides dynamic service de-
livery where users only pay for what they use and thus save
from investing heavily on computing facilities. Some exam-
ples include IBM’s E-Business On Demand [2], HP’s Adap-
tive Enterprise [1] and Sun Microsystem’s pay-as-you-go
[3].

Grid service brokers [22] and workflow engines [25]
submit and monitor jobs with their service requirements
via the local cluster RMS. To support utility-driven cluster
computing, clusters need to differentiate utility or values for
different service requests.Service level agreements(SLA)
with preciseQuality of Service(QoS) parameters need to be
supported and enforced by the cluster RMS so as to fulfill
the contractual obligations negotiated and agreed upon by
both the cluster and users. In other words, the cluster RMS
has to balance competing service requests, while ensuring
that agreed levels of service performance are achieved.

However, existing cluster RMSs still adopt system-
centric resource allocation approaches that maximize over-
all job performance and system usage, and thus are not
ready to provide service-on-demand computing. On the
other hand, market-based approaches [23] can support
utility-driven computing where theutility or value is the
monetary payment paid by the users for accessing the com-
puting services. Using computational economy to support
utility-driven resource allocation within clusters can regu-
late supply and demand of limited cluster resources at mar-
ket equilibrium and differentiate service requests based on
their utility.

Although market-based approaches have long been pro-
posed, there are yet any actual implemented market-based
RMSs that can demonstrate they work in practice due to
the lack of enabling technologies. But, with numerous re-
cent technological advances that can aid actual deployments
of market-based RMSs [18], it is now timely to examine



how market-based solutions can be applied effectively even
though there still remains some key challenges [18] that
need to be overcome first.

This paper focuses on a proportional share resource allo-
cation technique called LibraSLA that applies market econ-
omy to achieve utility-driven cluster computing. The key
contributions of this paper are:

• Defining a simple SLA with four basic QoS parame-
ters: (i) deadline type whether the job can be delayed,
(ii) deadline when the job needs to be finished, (iii)
budget to be spent for finishing the job, and (iv) penalty
rate for compensating the user for failure to meet the
deadline. The penalty rate is represented by a linear
penalty function that reduces the budget of the job over
time after the lapse of its deadline.

• Developing an admission control and resource allo-
cation mechanism that determines whether accepting
a new job will enhance the aggregate utility of the
cluster: The admission control examines how the new
job will affect the SLA conditions of other accepted
jobs, in particular how penalties incurred will decrease
their utility. For resource allocation, LibraSLA al-
locates processing resources proportionally to job re-
quests based on their deadline SLA property. In ad-
dition, LibraSLA allocates additional processing re-
sources if available to the job with the highest return
so as to achieve its utility faster.

• Analyzing the performance of LibraSLA based on
varying SLA properties: (i) deadline type, (ii) dead-
line, (iii) budget, and (iv) penalty rate.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 outlines a simple SLA
supporting four QoS parameters. Section 4 describes how
LibraSLA examines and enforces SLA. Section 5 discusses
performance evaluation results and Section 6 concludes this
paper.

2 Related Work

Existing cluster RMSs such as Condor [21], LoadLeveler
[11], Load Sharing Facility (LSF) [16], Portable Batch Sys-
tem (PBS) [5], and Sun Grid Engine (SGE) [19] still adopt
system-centric approaches that optimize overall cluster per-
formance. Cluster performance is often aimed at maximiz-
ing processor throughput and utilization for the cluster, and
minimizing average waiting and response time for the jobs.
They are thus not suitable for utility-driven cluster comput-
ing since they do not differentiate and thus neglect varying
levels of utility or value that different cluster users have for

each job request. Maui [20] is an advanced cluster sched-
uler that is designed to be highly configurable and exten-
sible. It can be extended to build customized user-level
schedulers that incorporate fine-grained policies and exam-
ine numerous resource allocation parameters such as QoS
and advanced reservation. Currently, no market-based ap-
proaches have been designed for Maui to improve utility for
either the cluster or users.

Numerous market-based approaches [23] have been pro-
posed for resource management in parallel and distributed
computing. REXEC [8] is a remote execution environment
for a cluster of workstations that adopts market-based re-
source allocation. It assigns resources proportionally to jobs
based on their users’ bid (valuation) for each job. Tycoon
[14] also adopts the same bid-based proportional share tech-
nique as REXEC, but extends it with continuous bids for
allocating resources in a Grid of distributed clusters. In
contrast, our LibraSLA prioritizes each job based on its
SLA parameters that address two additional perspectives:
(i) deadline when a job has to be finished and (ii) penalty
rate to compensate the user if the deadline is not met. In ad-
dition, we aim to improve the aggregate utility of the clus-
ter thru the consideration of penalties defined for respective
SLA of different jobs.

Cluster-On-Demand [12] adopts distributed market-
based task services to create a service market where penal-
ties are incurred if jobs finish later than their required run
times. It demonstrates the importance of balancing the re-
ward against the risk of accepting and executing jobs, es-
pecially in the case of unbounded penalty. It also uses a
discount rate based on present value to reduce future gains
of a job in order to differentiate between delays in job ex-
ecution. Similarly, our LibraSLA also consider penalties
incurred on already accepted jobs by accepting a new job.
But in our case, a job is penalized after the lapse of its dead-
line, instead of immediately after its run time. In addition,
we also determine which job has higher return so that the
job with the highest return is assigned additional resources
if available to realize its utility faster. LibraSLA also studies
resource allocation at a more fine-grained level as compared
to Cluster-On-Demand. LibraSLA determines acceptance
at the node level depending on available nodes within the
cluster to execute a job. On the other hand, Cluster-On-
Demand decides at the cluster level whether to accept a job
into the cluster.

QoPS [13] is a QoS based scheduling technique for par-
allel jobs. It uses an admission control to guarantee the
deadline of every accepted job by accepting a new job only
if its deadline can be guaranteed without violating the dead-
lines of already accepted jobs. QoPS uses a slack factor
for each job to represent the maximum delay that can be
accommodated after its deadline. This allows earlier jobs
with slack to be delayed if necessary so that future more



urgent jobs can be accepted. On the other hand, our ser-
vice model defines two types of deadlines: (i) hard deadline
where the job has to be finished before the deadline and
(ii) soft deadline where the job can finish anytime after the
deadline. Instead of a slack factor, LibraSLA incorporates a
SLA parameter called penalty rate to denote the user’s flex-
ibility with delays for soft deadlines through compensation.
For the same job, a higher penalty rate means less flexibil-
ity than a lower penalty rate. Thus, LibraSLA attempts to
minimize penalty to improve the cluster’s aggregate utility.
Another difference is that QoPS employs a kill-and-restart
mechanism where a running job can be terminated to allow
another job to be started so that a different schedule enables
a new job to be accepted, while LibraSLA uses proportional
share to vary the amount of resources for each job depend-
ing on their QoS needs.

Libra [17] is an earlier work done that successfully
demonstrates that a market-based cluster scheduler is able
to deliver more utility to users based on their QoS needs
compared to traditional system-centric scheduling policies.
Its market model is based on a commodity market [23]
where Libra computes the price that users have to pay for
their jobs be completed according to their QoS constraints.
An enhanced pricing function [24] that is flexible, fair, dy-
namic and adaptive has also been proposed to improve the
pricing scheme of the cluster so that the quoted price varies
according to the workload of the cluster and prevents the
cluster from overloading. LibraSLA incorporates a penalty
function (thru the penalty rate parameter in the SLA) where
the utility or value of the user will decrease over time after
the deadline of the job has lapsed. Libra assumes that all
jobs have hard deadlines and guarantees that accepted jobs
will be finished within their hard deadlines. In contrast, Li-
braSLA allows jobs with soft deadlines to be delayed and
compensated to accommodate jobs with hard deadlines. Fi-
nally, Libra only accepts jobs based on the workload of the
cluster, whereas LibraSLA also examines the return of ac-
cepting each new job with respect to the current aggregate
utility and workload of the cluster.

3 Service Level Agreement (SLA) for Utility-
driven Cluster Computing

In utility-driven cluster computing, clusters provide
computing services to users who perceive varying utility or
value for completion of jobs. Clusters need to have knowl-
edge of the types of service demanded by different users for
each job in order to prioritize jobs according to user’s needs.

Clusters should thus support SLA that provides a means
for users and the cluster to agree upon the service quality
to be offered. In other words, SLA acts as a contract that
outlines obligations that both users and the cluster have to
enforce and fulfill. For example, users have to pay for the
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Figure 1. Impact of penalty function on utility.

service provided, while the cluster needs to be penalized to
compensate users for failing to offer the required service.
This also means that users can negotiate with the cluster
about the service quality to be provided before accepting
the SLA.

We define a simple SLA for each jobi that consists of
four QoS parameters:

1. deadline typedeadline typei: A deadline can behard
or soft. A hard deadline denotes that the user wants
the job to be finished before the deadline, whereas a
soft deadline means that the user can accommodate
delay. However, for soft deadline, the delay can be
unbounded depending on the penalty rate of the job.
Therefore, the user can give an appropriate penalty rate
value to possibly limit the maximium delay.

2. deadlinedeadlinei: The time period in which the job
needs to be finished.

3. budgetbudgeti: The maximum amount of currency
that the user is willing to pay for the job to be com-
pleted.

4. penalty ratepenalty ratei: The penalty rate penal-
izes the cluster to compensate the user for failure to
meet the deadline of the job. It also reflects the user’s
flexibility with delayed deadline of the job. A higher
penalty rate limits the delay to be shorter than that of a
lower penalty rate.

The key aspect of our SLA is that it incorporates a
penaltyfunction (thru the penalty rate QoS parameter). This
is realistic as users need to have assurance that their required
services will be maintained by the cluster. The penalty func-
tion not only penalizes the cluster for its service failure, but
compensates the users for tolerating the service failure. For
simplicity, we model the penalty function as linear, as in



other previous works [9][12]. Our penalty function reduces
the budget of the job over time after the lapse of its dead-
line, rather than after its run time in [12]. Figure 1 shows
the impact of the penalty function on utility.

For each jobi, the cluster achieves a utilityutilityi de-
pending on its penalty ratepenalty ratei and delaydelayi:

utilityi = budgeti − (delayi ∗ penalty ratei) (1)

Jobi has delaydelayi if it takes longer to complete than
its given deadlinedeadlinei:

delayi = (finish timei − submit timei)− deadlinei

(2)
wheresubmit timei is the time when jobi is submitted
into the cluster andfinish timei is the time when jobi
is completed. So, Jobi has no delay (ie.delayi ≤ 0) if
it completes before the deadline, with the cluster achieving
the full budgetbudgeti as utilityutilityi. If there is a delay
(ie. delayi > 0), utilityi drops linearly till it becomes neg-
ative and transform into a penalty (ie.utilityi < 0) after it
exceedsbudgeti.

Since penalties are unbounded depending on the penalty
rate and delay of each job, the cluster needs to be careful
about accepting new jobs into the cluster. Failure to de-
liver the required service due to accepting too many jobs
may result in heavily penalized jobs that can dramatically
erode previously achieved utility. Therefore, we develop a
SLA based proportional share technique called LibraSLA
(described in section 4) that considers the risk of penalties
to improve aggregate utility for the cluster.

In addition to the SLA requirements, LibraSLA consid-
ers the following job details:

1. run timeruntimei: The run time for jobi is the time
period required to complete jobi on a computation
node provided that it is allocated the node’s full pro-
portion of processing power. Thus, the run time varies
on nodes of different hardware and software architec-
ture and does not include any waiting time and com-
munication latency. The run time may also be ex-
pressed in terms of the job length in million instruc-
tions (MI).

2. number of processorsnumproci: The number of pro-
cessors requested by jobi. A sequential job will
need only a single processor (ie.numproci = 1),
while a parallel job will request multiple processors
(ie. numproci > 1).

4 SLA Based Proportional Share with Utility
Consideration

We consider utility-driven resource management and al-
location in a cluster with the following assumptions:

• Users express utility as the budget or amount of real
money (as in the human world) they are willing to pay
for the service. Real money is a well-defined currency
[18] that will promote resource owner and user par-
ticipation in distributed system environments. A user’s
budget is limited by the amount of currency that he has
which may be distributed and administered through
monetary authorities such as GridBank [6]. Since our
focus is on resource allocation (which job to accept and
which nodes to execute the accepted job), we do not
venture further into other market concepts such as user
bidding strategies and auction pricing mechanisms.

• Users only gain utility and thus pay for the service
(based on QoS parameters in SLA) upon the comple-
tion of their jobs. For simplicity, the user pays the full
budget for a job to the cluster if its deadline is fulfilled.
But, if a job is delayed, the cluster will achieve a re-
duced utility or incur a penalty depending on length of
the delay.

• The estimated run time of each job provided during
job submission is accurate. Estimated run times can
be predicted in advance based on means such as past
execution history.

• The deadline given by a user for the job must be more
than its run time; otherwise it is not accepted into the
cluster.

• The SLA of a job does not change after job acceptance.
This means that the QoS parameters specified by the
user during job submission do not change after the job
is accepted.

• Users can only submit jobs into the cluster through the
cluster RMS. This means that the cluster RMS has full
knowledge of allocated workload currently in execu-
tion and remaining available resources on each com-
putation node.

• The computation nodes can be homogeneous (have the
same hardware architectures) or heterogeneous (have
different hardware architectures). In the case of het-
erogeneous computation nodes, the estimated run time
needs to be converted to its equivalent on the allocated
computation node.

• The operating system at each computation node uses
time-shared scheduling support where multiple pro-
cessor time partitions can be assigned to different jobs.

Bid-based proportional share [8][14] allocates propor-
tions of a resource such as processor time to users based on
their bids (budget QoS parameter in SLA) for each job. In
other words, the resource share assigned to a job is propor-
tional to the user’s bid value in comparison to other users’



bids. However, this approach does not take into considera-
tion the characteristics of the job and its other essential SLA
properties such as deadline and penalty rate.

To address this for SLA support, LibraSLA adopts the
proportional share approach in Libra [17] that allocates pro-
cessor time shareshareij to job i on nodej based on
its remaining run timeremain runtimeij and remaining
deadline QoSremain deadlineij , rather than users’ bids
budgeti:

shareij =
remain runtimeij

remain deadlineij
(3)

where initially, remain runtimeij = runtimei and
remain deadlineij = deadlinei. shareij also denotes
the minimum share that is required by jobi in order to en-
force its deadlinedeadlinei. Proportional share based on
deadline not only allows more jobs to be accepted (since the
allocated processor time shares are spread across the dead-
lines), but also ensures that their deadlines are met.

Therefore, the total processor time sharetotal sharej

required to meet all deadlines ofnj jobs allocated to nodej
is:

total sharej =
nj∑
i=1

shareij (4)

Delays occur whentotal sharej exceeds the maximum
processor time that nodej can offer.

4.1 Computing Return for Jobs and Nodes

In order to improve aggregate utility for the cluster, Li-
braSLA needs to consider the utility of each job to deter-
mine which job has a higher return. The returnreturnij of
a jobi allocated to run on nodej is computed as:

returnij = utilityij/runtimei/deadlinei (5)

Recall that it is possible for a jobi allocated to nodej
to have negative utility (ie.utilityij < 0), also known as a
penalty as defined in (1). Thus, in this case, jobi will also
have negative return (ie.returnij < 0).

LibraSLA regards jobs that have shorter deadlines for an
expected utility per unit of run time (utilityij/runtimei)
to have a higher return. Jobs with shorter deadlines re-
quire a shorter commitment period as compared to those
with longer deadlines. Thus, it increases the flexibility of
accepting later arriving but possibly jobs with higher return
as a full schedule of jobs with long deadlines may result in
these future jobs being blocked by the admission control.

Jobs with shorter deadlines are also penalized more
heavily than those with longer deadlines. This discourages
accepting more jobs that can delay other accepted urgent
jobs and jeopardize the cluster’s aggregate utility.

LibraSLA can thus compute the returnreturnj of node
j to determine whether nodej is improving the aggregate
utility of the cluster or not:

returnj =
nj∑
i=1

returnij (6)

returnj also gives an indication of whether nodej is
overloaded with too many jobs and failing to satisfy their
SLA. returnj will be lower when the workload on nodej
is higher since insufficient resources will result in jobs being
delayed and thus having lower utility.

4.2 Admission Control and Resource Allocation

Algorithm 1 : Pseudo-code for admission control and resource
allocation of LibraSLA.

for j ← 0 to m− 1 do1
add jobnew temporarily intoListJobsj ;2
new returnj ← compute new return3
(ListJobsj );
remove jobnew from ListJobsj ;4
if new returnj ≥ returnj then5

if deadline typenew is SOFTthen6
place nodej in7
ListHigherReturnNodesnew ;

else ifdeadline typenew is HARDand8
delaynew ≤ 0 then

place nodej in9
ListHigherReturnNodesnew ;

endif10

endif11

endfor12
if ListHigherReturnNodesnew size ≥ numprocnew13
then

sortListHigherReturnNodesnew by new returnj14
in descending order;
for j ← 0 to numprocnew − 1 do15

allocate jobi to nodej of16
ListHigherReturnNodesnew ;

endfor17

else18
reject jobnew;19

endif20

Since the SLA of each job incorporates a penalty func-
tion (as described in section 3), LibraSLA implements an
admission control to ensure that more utility is achieved,
instead of less utility due to accepting too many jobs and
failing to meet their deadlines. The admission control de-
termines whether a new jobnew should be accepted into
the cluster depending on:

• numprocnew: A new job is not accepted if there are
not enough available processors to run it. This often
happens to parallel jobs as they require more proces-
sors.



• deadline typenew: If the new job requires hard dead-
line and there are no nodes that can fulfill its deadline,
then it is not accepted.

• returnj : This denotes whether each nodej will in-
crease or decrease the aggregate utility if it is allocated
this new job. Therefore, a new job can be accepted into
the cluster depending on the return of each individual
node.

Algorithm 1 shows how LibraSLA decides whether to
accept a new job based on nodes with the highest return.
Assuming that the cluster hasm nodes, LibraSLA first de-
termines the return of each node (using computenew return
function in Algorithm 2) for accepting the new jobnew
(line 2–4). A node is suitable if it has higher return after
accepting the new job and can satisfy its hard deadline if re-
quired (line 5–11). The new job is then accepted if there are
enough suitable nodes as requested (line 13) and allocated
to the node with the highest return (line 14–17).

Algorithm 2 : Pseudo-code for computenew return(
ListJobsj ) function.

new returnj ← 0;1
total sharej ← 0;2
set first job inListJobsj to be job with the highest return;3
for i← 0 to ListJobsj size −1 do4

total sharej ← total sharej + shareij ;5
returnij ← budgeti/runtimei/deadlinei;6
if job i has higher returnthen7

set jobi to be job with the highest return;8

endif9

endfor10
if total sharej ≥ maximum processor time of nodej then11

increase share of job with the highest return by remaining12
unallocated processor time;
for i← 0 to ListJobsj size −1 do13

new returnj ←14
new returnj + budgeti/runtimei/deadlinei;

endfor15

else16
for i← 0 to ListJobsj size −1 do17

if job i is job with the highest returnor job i has18
HARD deadlinethen

new returnj ← new returnj +19
budgeti/runtimei/deadlinei;

else20
decrease share of jobi by shortfall proportion of21
processor time;
computedelayi;22
computeutilityij ;23
new returnj ← new returnj +24
utilityi/runtimei/deadlinei;

endif25

endfor26

endif27
returnnew returnj ;28

Algorithm 2 computes the new return of a node for ac-
cepting a new job. It first determines total processor time

share required to fulfill the deadlines of its allocated jobs
plus the new job (line 5). It also identifies the job with the
highest return based on the budget (line 6–9). If there is
any remaining unallocated processor time, the job with the
highest return is given this additional remaining share to re-
alize its utility faster (line 11–12). In this case, the return
of the node is computed with the utility of each job same
as its budget (line 13–15). If there is insufficient proces-
sor time, only the job with the highest return and jobs with
hard deadlines are not delayed (line 18–19), while the other
jobs with soft deadlines shares the shortfall processor time
proportionally (line 21). The return of these delayed jobs is
then computed accordingly (line 22–24).

5 Performance Evaluation

In this section, we discuss and evaluate the performance
of LibraSLA. We first explain our experimental method-
ology, followed by detailed performance analysis of Li-
braSLA with respect to varying SLA properties: (i) dead-
line type, (ii) deadline, (iii) budget, and (iv) penalty rate.

5.1 Experimental Methodology

We use GridSim [7] to simulate a cluster RMS environ-
ment that utilizes LibraSLA for resource allocation. Our
experiments employ real workload trace from Feitelson’s
Parallel Workload Archive [4]. The selected subset of the
last 1000 jobs in the SDSC SP2 trace from April 1998 to
April 2000 has the following properties:

• Average inter arrival time: 2276 seconds (37.93 min-
utes)

• Average run time: 10610 seconds (2.94 hours)

• Average number of allocated processors: 18

The 128-node IBM SP2 located at San Diego Supercom-
puter Center (SDSC) has the following characteristics:

• SPEC rating of each node: 168

• Number of computation nodes: 128

• Processor type on each computation node: RISC Sys-
tem/6000

• Operating System: AIX

The real workload trace does not contain any information
about users’ SLA parameters including deadline type, dead-
line, budget, and penalty rate. But, results are dependent on
distributions of these four QoS parameters as they deter-
mine how LibraSLA allocate resources to jobs. Therefore,
we follow a similar experimental methodology in Cluster-
On-Demand [12] to represent SLA properties for the work-
load:



• 20% of the jobs belongs to ahigh urgencyjob class
with a hard deadline of lowdeadlinei/runtimei,
a high budgeti/f(runtimei) and a high
penalty ratei/g(runtimei), where f(runtimei)
and g(runtimei) are functions to represent the
minimum budget and penalty rate that the user will
quote with respect toruntimei.

• 80% of the jobs belongs to alow urgencyjob class
with a soft deadline of highdeadlinei/runtimei,
a low budgeti/f(runtimei) and a low
penalty ratei/g(runtimei).

• The deadline high:low ratiorefers to the ratio of
the means for highdeadlinei/runtimei and low
deadlinei/runtimei, likewise for budget high:low
ratio andpenalty rate high:low ratio. For the exper-
iments, the jobs have adeadline high:low ratioof 7, a
budget high:low ratioof 7, and apenalty rate high:low
ratio of 4.

• Values are normally distributed within each high and
low deadlinei/runtimei, budgeti/f(runtimei) and
penalty ratei/g(runtimei) respectively.

• The high urgency and low urgency job classes are ran-
domly distributed in arrival sequence.

Our performance evaluation examines the relative per-
formance of LibraSLA with respect to Libra under varying
cluster workload for the following SLA properties: (i) dead-
line type (section 5.3), (ii) deadline (section 5.4), (iii) bud-
get (section 5.5), and (iv) penalty rate (section 5.6). Libra
does not differentiate between hard and soft deadlines, thus
accepting a new job only if there are sufficient nodes as re-
quested to fulfill its deadline. Another key difference is that
Libra selects nodes based on the best fit strategy. In other
words, nodes that have the least available processor time af-
ter accepted the new job will be selected first. This ensures
that nodes are saturated to their maximum so that more later
arriving jobs may be accepted.

To demonstrate the effectiveness of resource allocation,
we need to model a heavy workload scenario where the de-
mand for cluster resources exceeds the supply. We usear-
rival delay factorwith the inter arrival time of jobs (avail-
able from the trace) to model the cluster workload. For ex-
ample, an arrival delay factor of 0.01 means that a job with
400 seconds of inter arrival time from the trace now has a
simulated inter arrival time of 4 seconds. Thus, an increas-
ing arrival delay factor represents decreasing workload.

We use a mean factor to denote the mean value for the
normal distribution of deadline, budget and penalty rate
SLA parameters. A mean factor of 2 represents having
mean value double than that of 1 (ie. higher).

5.2 Overview of Performance Results

Generally, the improvement of LibraSLA over Libra de-
creases as the arrival delay factor increases. This is because
Libra can also complete more jobs and achieve more utility
when the workload is not heavy (higher arrival delay factor).
Thus, we are able to demonstrate that LibraSLA is effective
in differentiating jobs with higher utility in heavy workload
situations.

5.3 Impact of Deadline Type

We vary the proportion of jobs belonging to the high ur-
gency job class with hard deadlines at 20%, 50%, and 80%
to examine the impact of deadline type on LibraSLA. Fig-
ure 2 shows that when there are more jobs with hard dead-
line (eg. 80%), the improvement over Libra is lower since
there are less jobs with soft deadline to accommodate the re-
quired delays without risking the aggregate utility achieved.
We can see that on average LibraSLA completes about 20%
more jobs (Figure 2(a)) and achieves 10% more utility (Fig-
ure 2(b)) than Libra when there are 20% jobs with hard
deadline as compared to 80%.

5.4 Impact of Deadline

We study how LibraSLA performs for different dead-
lines using the deadline mean factor of 1, 2, and 3. Fig-
ure 3 shows that LibraSLA has a substantial large improve-
ment over Libra for a deadline mean factor of 1 when the
arrival delay factor is lower (0.005–0.025). This is be-
cause LibraSLA determines utility based on the deadline
of the jobs, and thus can differentiate jobs with high utility
and short deadline when the workload is high. However,
with higher deadline mean factor of 2 and 3, the improve-
ment over Libra is lower over increasing arrival delay factor
since Libra is also able to complete more jobs with longer
deadlines. We can also see that LibraSLA has a more con-
stant improvement over Libra for sufficiently long deadlines
(deadline mean factor of 2 and 3) as opposed to short dead-
lines (deadline mean factor of 1). This highlights that the
deadline QoS has a strong impact on the performance of
LibraSLA.

5.5 Impact of Budget

We investigate the performance of LibraSLA for differ-
ent budgets with budget mean factor of 1, 2, and 3. Fig-
ure 4(a) shows that LibraSLA completes more jobs than Li-
bra for higher budget mean factors. When jobs have higher
budgets, LibraSLA can accommodate more soft deadline
jobs with delays which in turn improves the aggregate util-
ity (Figure 4(b)). However, the utility improvement also
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Figure 2. Impact of deadline type on increasing workload.
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Figure 3. Impact of deadline mean factor on increasing workload.
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Figure 4. Impact of budget mean factor on increasing workload.

diminishes with increasing arrival delay factor (0.03–0.04)
as Libra can also accept more jobs to increase utility.

5.6 Impact of Penalty Rate

We observe how LibraSLA performs with changing
penalty rate mean factor of 1, 2, and 3. Figure 5 shows
that LibraSLA has less improvement over Libra for increas-
ing penalty rate mean factor. With higher penalty rate, Li-
braSLA is limited to accepting fewer jobs in order to pre-
serve the aggregate utility. This explains the lower improve-
ment in utility achieved as well since jobs with soft dead-
lines now has higher penalty rate and can potentially risk
the aggregate utility.

6 Conclusion

This paper has presented an approach to handle penal-
ties incorporated in SLAs in order to enhance the utility of
the cluster. We have also outlined a basic SLA with four
QoS parameters: (i) deadline type, (ii) deadline, (iii) bud-
get, and (iv) penalty rate, before describing a proportional
share technique called LibraSLA that considers these QoS
parameters. Simulation results show that LibraSLA per-
forms better than Libra by accommodating more jobs thru
soft deadlines and minimizing penalties. This work has thus
reinforced the need to employ and consider SLAs in cluster-
level resource allocation in order to support utility-driven
cluster computing for service-oriented Grid computing.

References

[1] HP Grid Computing,
http://www.hp.com/techservers/grid, May 2005.

[2] IBM Grid Computing,
http://www.ibm.com/grid, May 2005.

[3] Sun Microsystems Utility Computing,
http://www.sun.com/service/utility, May 2005.

[4] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload, May 2005.

[5] Altair Grid Technologies.OpenPBS Release 2.3 Adminis-
trator Guide, Aug. 2000.

[6] A. Barmouta and R. Buyya. GridBank: A Grid Account-
ing Services Architecture (GASA) for Distributed Systems
Sharing and Integration. InProceedings of the 3rd Workshop
on Internet Computing and E-Commerce (ICEC 2003), In-
ternational Parallel and Distributed Processing Symposium
(IPDPS 2003), Nice, France, Apr. 2003.

[7] R. Buyya and M. Murshed. GridSim: a toolkit for the mod-
eling and simulation of distributed resource management
and scheduling for Grid computing.Concurrency and Com-
putation: Practice and Experience, 14(13–15):1175–1220,
Nov.–Dec. 2002.

[8] B. N. Chun and D. E. Culler. Market-based Proportional
Resource Sharing for Clusters. Technical Report CSD-
1092, Computer Science Division, University of California
at Berkeley, Jan. 2000.

[9] B. N. Chun and D. E. Culler. User-centric Performance
Analysis of Market-based Cluster Batch Schedulers. In
Proceedings of the 2nd International Symposium on Clus-
ter Computing and the Grid (CCGrid 2002), pages 22–30,
Berlin, Germany, May 2002.



 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

Im
pr

ov
em

en
t o

ve
r 

Li
br

a 
(%

)

Arrival Delay Factor

No. of Jobs Completed VS Arrival Delay Factor

penalty rate mean factor = 1
penalty rate mean factor = 2
penalty rate mean factor = 3

(a) No. of Jobs Completed

 0

 10

 20

 30

 40

 50

 60

 70

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

Im
pr

ov
em

en
t o

ve
r 

Li
br

a 
(%

)

Arrival Delay Factor

Utility Achieved VS Arrival Delay Factor

penalty rate mean factor = 1
penalty rate mean factor = 2
penalty rate mean factor = 3

(b) Utility Achieved

Figure 5. Impact of penalty rate mean factor on increasing workload.

[10] I. Foster and C. Kesselman, editors.The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
San Francisco, CA, 2003.

[11] IBM. LoadLeveler for AIX 5L Version 3.2 Using and Ad-
ministering, Oct. 2003.

[12] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing Risk
and Reward in a Market-based Task Service. InProceed-
ings of the 13th International Symposium on High Perfor-
mance Distributed Computing (HPDC13), pages 160–169,
Honolulu, HI, June 2004.

[13] M. Islam, P. Balaji, P. Sadayappan, and D. K. Panda. To-
wards Provision of Quality of Service Guarantees in Job
Scheduling. InProceedings of the 6th International Confer-
ence on Cluster Computing (CLUSTER 2004), pages 245–
254, San Diego, CA, Sept. 2004.

[14] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and
B. A. Huberman. Tycoon: an Implementation of a Dis-
tributed Market-based Resource Allocation System. Techni-
cal Report cs.DC/0412038, HP Labs, Palo Alto, Dec. 2004.

[15] G. F. Pfister.In Search of Clusters. Prentice Hall PTR, Upper
Saddle River, NJ, second edition, 1998.

[16] Platform Computing. LSF Version 4.1 Administrator’s
Guide, 2001.

[17] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Li-
bra: a computational economy-based job scheduling system
for clusters.Software: Practice and Experience, 34(6):573–
590, May 2004.

[18] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C.
Snoeren, A. Vahdat, and B. N. Chun. Why Markets Could
(But Don’t Currently) Solve Resource Allocation Problems
in Systems. InProceedings of the 10th Workshop on Hot
Topics in Operating Systems (HotOS X), Santa FE, NM, June
2005.

[19] Sun Microsystems.Sun ONE Grid Engine, Administration
and User’s Guide, Oct. 2002.

[20] Supercluster Research and Development Group.Maui
Scheduler Version 3.2 Administrator’s Guide, 2004.

[21] University of Wisconsin-Madison.Condor Version 6.7.1
Manual, 2004.

[22] S. Venugopal, R. Buyya, and L. Winton. A Grid Service
Broker for Scheduling Distributed Data-Oriented Applica-
tions on Global Grids. InProceedings of the 2nd Interna-
tional Workshop on Middleware for Grid Computing (MGC
2004), pages 75–80, Toronto, Canada, Oct. 2004.

[23] C. S. Yeo and R. Buyya. A taxonomy of market-based re-
source management systems for utility-driven cluster com-
puting. Technical Report GRIDS-TR-2004-12, Grid Com-
puting and Distributed Systems (GRIDS) Laboratory, Uni-
versity of Melbourne, Melbourne, Australia, Dec. 2004.

[24] C. S. Yeo and R. Buyya. Pricing for Utility-driven Resource
Management and Allocation in Clusters. InProceedings
of the 12th International Conference on Advanced Com-
puting and Communications (ADCOM 2004), pages 32–41,
Ahmedabad, India, Dec. 2004.

[25] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid
Workflow Using Tuple Spaces. InProceedings of the 5th
International Workshop on Grid Computing (GRID 2004),
pages 119–128, Pittsburgh, PA, Nov. 2004.


