
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; (in press) (DOI: 10.1002/spe.488)

Grids and Grid technologies for
wide-area distributed computing

Mark Baker1, Rajkumar Buyya2,∗,† and Domenico Laforenza3

1School of Computer Science, University of Portsmouth, Mercantile House, Portsmouth, U.K.
2Grid Computing and Distributed Systems Laboratory, Department of Computer Science
and Software Engineering, The University of Melbourne, Melbourne, Australia
3Centro Nazionale Universitario di Calcolo Elettronico (CNUCE),
Instituto del Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca CNR, Pisa, Italy

SUMMARY

The last decade has seen a substantial increase in commodity computer and network performance, mainly
as a result of faster hardware and more sophisticated software. Nevertheless, there are still problems, in
the fields of science, engineering, and business, which cannot be effectively dealt with using the current
generation of supercomputers. In fact, due to their size and complexity, these problems are often very
numerically and/or data intensive and consequently require a variety of heterogeneous resources that
are not available on a single machine. A number of teams have conducted experimental studies on the
cooperative use of geographically distributed resources unified to act as a single powerful computer.
This new approach is known by several names, such as metacomputing, scalable computing, global
computing, Internet computing, and more recently peer-to-peer or Grid computing. The early efforts in
Grid computing started as a project to link supercomputing sites, but have now grown far beyond their
original intent. In fact, many applications can benefit from the Grid infrastructure, including collaborative
engineering, data exploration, high-throughput computing, and of course distributed supercomputing.
Moreover, due to the rapid growth of the Internet and Web, there has been a rising interest in Web-based
distributed computing, and many projects have been started and aim to exploit the Web as an infrastructure
for running coarse-grained distributed and parallel applications. In this context, the Web has the capability
to be a platform for parallel and collaborative work as well as a key technology to create a pervasive and
ubiquitous Grid-based infrastructure. This paper aims to present the state-of-the-art of Grid computing
and attempts to survey the major international efforts in developing this emerging technology. Copyright 
2002 John Wiley & Sons, Ltd.

KEY WORDS: grid computing; middleware; resource management; scheduling; distributed applications

∗Correspondence to: Rajkumar Buyya, Grid Computing and Distributed Systems Laboratory, Department of Computer Science
and Software Engineering, The University of Melbourne, SEECS Building, 221 Boulevard St., Carlton, Melbourne, Australia.
†E-mail: raj@cs.mu.oz.au

Copyright  2002 John Wiley & Sons, Ltd.
Received 4 October 2001

Revised 1 August 2002
Accepted 1 August 2002



M. BAKER, R. BUYYA AND D. LAFORENZA

Figure 1. Towards Grid computing: a conceptual view.

1. INTRODUCTION

The popularity of the Internet as well as the availability of powerful computers and high-speed
network technologies as low-cost commodity components is changing the way we use computers
today. These technology opportunities have led to the possibility of using distributed computers as
a single, unified computing resource, leading to what is popularly known as Grid computing [1].
The term Grid is chosen as an analogy to a power Grid that provides consistent, pervasive, dependable,
transparent access to electricity irrespective of its source. A detailed analysis of this analogy can
be found in [2]. This new approach to network computing is known by several names, such as
metacomputing, scalable computing, global computing, Internet computing, and more recently peer-
to-peer (P2P) computing [3].

Grids enable the sharing, selection, and aggregation of a wide variety of resources including
supercomputers, storage systems, data sources, and specialized devices (see Figure 1) that are
geographically distributed and owned by different organizations for solving large-scale computational
and data intensive problems in science, engineering, and commerce. Thus creating virtual
organizations [4] and enterprises [5] as envisioned in [6]—as a temporary alliance of enterprises or
organizations that come together to share resources and skills, core competencies, or resources in order
to better respond to business opportunities or large-scale application processing requirements, and
whose cooperation is supported by computer networks.

The concept of Grid computing started as a project to link geographically dispersed supercomputers,
but now it has grown far beyond its original intent. The Grid infrastructure can benefit many
applications, including collaborative engineering, data exploration, high-throughput computing, and
distributed supercomputing.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

Grid Resource roker

Resource roker

Application

Grid Information Service

Grid Resource roker

databasedatabaseR2
R3

RN

R1

R4

R5

R6

Grid Information Service

Figure 2. A high-level view of the Grid and interaction between its entities.

A Grid can be viewed as a seamless, integrated computational and collaborative environment (see
Figure 1) and a high-level view of activities within the Grid is shown in Figure 2. The users interact with
the Grid resource broker to solve problems, which in turn performs resource discovery, scheduling, and
the processing of application jobs on the distributed Grid resources. From the end-user point of view,
Grids can be used to provide the following types of services.

• Computational services. These are concerned with providing secure services for executing
application jobs on distributed computational resources individually or collectively. Resources
brokers provide the services for collective use of distributed resources. A Grid providing
computational services is often called a computational Grid. Some examples of computational
Grids are: NASA IPG [7], the World Wide Grid [8], and the NSF TeraGrid [9].

• Data services. These are concerned with proving secure access to distributed datasets and their
management. To provide a scalable storage and access to the data sets, they may be replicated,
catalogued, and even different datasets stored in different locations to create an illusion of mass
storage. The processing of datasets is carried out using computational Grid services and such
a combination is commonly called data Grids. Sample applications that need such services
for management, sharing, and processing of large datasets are high-energy physics [10] and
accessing distributed chemical databases for drug design [11].

• Application services. These are concerned with application management and providing access
to remote software and libraries transparently. The emerging technologies such as Web
services [12] are expected to play a leading role in defining application services. They build
on computational and data services provided by the Grid. An example system that can be used
to develop such services is NetSolve [13].

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

• Information services. These are concerned with the extraction and presentation of data with
meaning by using the services of computational, data, and/or application services. The low-level
details handled by this are the way that information is represented, stored, accessed, shared, and
maintained. Given its key role in many scientific endeavors, the Web is the obvious point of
departure for this level.

• Knowledge services. These are concerned with the way that knowledge is acquired, used,
retrieved, published, and maintained to assist users in achieving their particular goals and
objectives. Knowledge is understood as information applied to achieve a goal, solve a problem,
or execute a decision. An example of this is data mining for automatically building a new
knowledge.

To build a Grid, the development and deployment of a number of services is required. These include
security, information, directory, resource allocation, and payment mechanisms in an open environment
[1,14,15]; and high-level services for application development, execution management, resource
aggregation, and scheduling.

Grid applications (typically multidisciplinary and large-scale processing applications) often couple
resources that cannot be replicated at a single site, or which may be globally located for other practical
reasons. These are some of the driving forces behind the foundation of global Grids. In this light, the
Grid allows users to solve larger or new problems by pooling together resources that could not be
easily coupled before. Hence, the Grid is not only a computing infrastructure, for large applications,
it is a technology that can bond and unify remote and diverse distributed resources ranging from
meteorological sensors to data vaults, and from parallel supercomputers to personal digital organizers.
As such, it will provide pervasive services to all users that need them.

This paper aims to present the state-of-the-art of Grid computing and attempts to survey the major
international efforts in this area. A set of general principles and design criteria that can be followed
in the Grid construction are given in Section 2. Some of the current Grid technologies, selected as
representative of those currently available, are presented in Section 3. In Section 4, we note a few
scientific applications of Grids. We conclude and then discuss future trends in Section 5.

2. GRID CONSTRUCTION: GENERAL PRINCIPLES

This section briefly highlights some of the general principles that underlie the construction of the Grid.
In particular, the idealized design features that are required by a Grid to provide users with a seamless
computing environment are discussed. Four main aspects characterize a Grid.

• Multiple administrative domains and autonomy. Grid resources are geographically distributed
across multiple administrative domains and owned by different organizations. The autonomy of
resource owners needs to be honored along with their local resource management and usage
policies.

• Heterogeneity. A Grid involves a multiplicity of resources that are heterogeneous in nature and
will encompass a vast range of technologies.

• Scalability. A Grid might grow from a few integrated resources to millions. This raises the
problem of potential performance degradation as the size of Grids increases. Consequently,

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

applications that require a large number of geographically located resources must be designed to
be latency and bandwidth tolerant.

• Dynamicity or adaptability. In a Grid, resource failure is the rule rather than the exception.
In fact, with so many resources in a Grid, the probability of some resource failing is high.
Resource managers or applications must tailor their behavior dynamically and use the available
resources and services efficiently and effectively.

The steps necessary to realize a Grid include:

• the integration of individual software and hardware components into a combined networked
resource (e.g. a single system image cluster);

• the deployment of:

– low-level middleware to provide a secure and transparent access to resources;
– user-level middleware and tools for application development and the aggregation of

distributed resources;

• the development and optimization of distributed applications to take advantage of the available
resources and infrastructure.

The components that are necessary to form a Grid (shown in Figure 3) are as follows.

• Grid fabric. This consists of all the globally distributed resources that are accessible from
anywhere on the Internet. These resources could be computers (such as PCs or Symmetric Multi-
Processors) running a variety of operating systems (such as UNIX or Windows), storage devices,
databases, and special scientific instruments such as a radio telescope or particular heat sensor.

• Core Grid middleware. This offers core services such as remote process management,
co-allocation of resources, storage access, information registration and discovery, security, and
aspects of Quality of Service (QoS) such as resource reservation and trading.

• User-level Grid middleware. This includes application development environments, programming
tools, and resource brokers for managing resources and scheduling application tasks for
execution on global resources.

• Grid applications and portals. Grid applications are typically developed using Grid-enabled
languages and utilities such as HPC++ or MPI. An example application, such as parameter
simulation or a grand-challenge problem, would require computational power, access to remote
data sets, and may need to interact with scientific instruments. Grid portals offer Web-enabled
application services, where users can submit and collect results for their jobs on remote resources
through the Web.

In attempting to facilitate the collaboration of multiple organizations running diverse autonomous
heterogeneous resources, a number of basic principles should be followed so that the Grid environment:

• does not interfere with the existing site administration or autonomy;
• does not compromise existing security of users or remote sites;
• does not need to replace existing operating systems, network protocols, or services;
• allows remote sites to join or leave the environment whenever they choose;
• does not mandate the programming paradigms, languages, tools, or libraries that a user wants;

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Networked Resources across Organizations

Computers Networks Data Sources Scientific InstrumentsStorage Systems

Local Resource Managers

Operating Systems Queuing Systems Internet ProtocolsLibraries & App Kernels

Distributed Resources Coupling Services

Information QoSProcess

Development Environments and Tools

Languages/Compilers Libraries Debuggers Web tools

Resource Management, Selection, and Aggregation (BROKERS)

Applications and Portals

Prob. Solving Env.Scientific CollaborationEngineering Web enabled Apps

Trading

FA RIC

APPLICATIONS

SECURITY LAYER

Security Data

CORE
MIDDLEWARE

USER LE EL
MIDDLEWARE

Monitors

Networked Resources across Organizations

Computers Networks Data Sources Scientific InstrumentsStorage Systems

Local Resource Managers

Operating Systems Queuing Systems Internet ProtocolsLibraries & App Kernels

Distributed Resources Coupling Services

Information QoSProcess

Development Environments and Tools

Languages/Compilers Libraries Debuggers Web tools

Resource Management, Selection, and Aggregation (BROKERS)

Applications and Portals

Prob. Solving Env.Scientific CollaborationEngineering Web enabled Apps

Trading

FA RIC

APPLICATIONS

SECURITY LAYER

Security Data

CORE
MIDDLEWARE

USER LE EL
MIDDLEWARE

Monitors

Figure 3. A layered Grid architecture and components.

• provides a reliable and fault tolerant infrastructure with no single point of failure;
• provides support for heterogeneous components;
• uses standards, and existing technologies, and is able to interact with legacy applications;
• provides appropriate synchronization and component program linkage.

As one would expect, a Grid environment must be able to interoperate with a whole spectrum of
current and emerging hardware and software technologies. An obvious analogy is the Web. Users of
the Web do not care if the server they are accessing is on a UNIX or Windows platform. From the

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

client browser’s point of view, they ‘just’ want their requests to Web services handled quickly and
efficiently. In the same way, a user of a Grid does not want to be bothered with details of its underlying
hardware and software infrastructure. A user is really only interested in submitting their application to
the appropriate resources and getting correct results back in a timely fashion.

An ideal Grid environment will therefore provide access to the available resources in a seamless
manner such that physical discontinuities, such as the differences between platforms, network
protocols, and administrative boundaries become completely transparent. In essence, the Grid
middleware turns a radically heterogeneous environment into a virtual homogeneous one.

The following are the main design features required by a Grid environment.

• Administrative hierarchy. An administrative hierarchy is the way that each Grid environment
divides itself up to cope with a potentially global extent. The administrative hierarchy determines
how administrative information flows through the Grid.

• Communication services. The communication needs of applications using a Grid environment
are diverse, ranging from reliable point-to-point to unreliable multicast communications.
The communications infrastructure needs to support protocols that are used for bulk-data
transport, streaming data, group communications, and those used by distributed objects.
The network services used also provide the Grid with important QoS parameters such as latency,
bandwidth, reliability, fault-tolerance, and jitter control.

• Information services. A Grid is a dynamic environment where the location and types of services
available are constantly changing. A major goal is to make all resources accessible to any
process in the system, without regard to the relative location of the resource user. It is necessary
to provide mechanisms to enable a rich environment in which information is readily obtained
by requesting services. The Grid information (registration and directory) services components
provide the mechanisms for registering and obtaining information about the Grid structure,
resources, services, and status.

• Naming services. In a Grid, like in any distributed system, names are used to refer to a wide
variety of objects such as computers, services, or data objects. The naming service provides
a uniform name space across the complete Grid environment. Typical naming services are
provided by the international X.500 naming scheme or DNS, the Internet’s scheme.

• Distributed file systems and caching. Distributed applications, more often than not, require
access to files distributed among many servers. A distributed file system is therefore a key
component in a distributed system. From an applications point of view it is important that a
distributed file system can provide a uniform global namespace, support a range of file I/O
protocols, require little or no program modification, and provide means that enable performance
optimizations to be implemented, such as the usage of caches.

• Security and authorization. Any distributed system involves all four aspects of security:
confidentiality, integrity, authentication, and accountability. Security within a Grid environment
is a complex issue requiring diverse resources autonomously administered to interact in a manner
that does not impact the usability of the resources or introduces security holes/lapses in individual
systems or the environments as a whole. A security infrastructure is the key to the success or
failure of a Grid environment.

• System status and fault tolerance. To provide a reliable and robust environment it is important
that a means of monitoring resources and applications is provided. To accomplish this task, tools
that monitor resources and application need to be deployed.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

• Resource management and scheduling. The management of processor time, memory, network,
storage, and other components in a Grid is clearly very important. The overall aim is to efficiently
and effectively schedule the applications that need to utilize the available resources in the Grid
computing environment. From a user’s point of view, resource management and scheduling
should be transparent; their interaction with it being confined to a manipulating mechanism for
submitting their application. It is important in a Grid that a resource management and scheduling
service can interact with those that may be installed locally.

• Computational economy and resource trading. As a Grid is constructed by coupling resources
distributed across various organizations and administrative domains that may be owned by
different organizations, it is essential to support mechanisms and policies that help in regulate
resource supply and demand [16,17]. An economic approach is one means of managing resources
in a complex and decentralized manner. This approach provides incentives for resource owners,
and users to be part of the Grid and develop and using strategies that help maximize their
objectives.

• Programming tools and paradigms. Grid applications (multi-disciplinary applications) couple
resources that cannot be replicated at a single site even or may be globally located for other
practical reasons. A Grid should include interfaces, APIs, utilities, and tools to provide a
rich development environment. Common scientific languages such as C, C++, and Fortran
should be available, as should application-level interfaces such as MPI and PVM. A variety of
programming paradigms should be supported, such as message passing or distributed shared
memory. In addition, a suite of numerical and other commonly used libraries should be
available.

• User and administrative GUI. The interfaces to the services and resources available should be
intuitive and easy to use. In addition, they should work on a range of different platforms and
operating systems. They also need to take advantage of Web technologies to offer a view of portal
supercomputing. The Web-centric approach to access supercomputing resources should enable
users to access any resource from anywhere over any platform at any time. That means, the
users should be allowed to submit their jobs to computational resources through a Web interface
from any of the accessible platforms such as PCs, laptops, or Personal Digital Assistant, thus
supporting the ubiquitous access to the Grid. The provision of access to scientific applications
through the Web (e.g. RWCPs parallel protein information analysis system [18]) leads to the
creation of science portals.

3. GRID COMPUTING PROJECTS

There are many international Grid projects worldwide, which are hierarchically categorized as
integrated Grid systems, core middleware, user-level middleware, and applications/application driven
efforts (see Table I). Selected ones are further grouped into country/continents wise as listed in
Tables II–V. A listing of majority of projects in Grid computing worldwide along with pointers to
their Web sites can be found in [19–21]. A description of two community driven forums, Global Grid
Forum (GGF) and Peer-to-Peer (P2P) Working Group promoting wide-area distributed computing
technologies, applications, and standards is given in Table VI. This section discusses some of the
current Grid projects representative of the Grid technology approaches.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

Table I. Hierarchical organization of major Grid efforts.

Category Project Organization Remarks

Integrated Grid NetSolve University of Tennessee A programming and runtime system for
systems accessing high-performance libraries

and resources transparently
Ninf Tokyo Institute of Functionality is similar to NetSolve

Technology
ST-ORM UPC, Barcelona A scheduler for distributed batch systems
SILVER PPNL and A scheduler for distributed batch systems

University of Utah
Albatross Vrije University An object-oriented programming system
PUNCH Purdue University A portal computing environment and

service for applications
Javelin UCSB A Java-based programming and runtime

system
XtremWeb Paris-Sud University A global computing environment
MILAN Arizona and NY Aims to provide end-to-end services for

transparent utilization and management
of networked resources

DISCWorld University of Adelaide A distributed information-processing
environment

Unicore Germany A Java-based environment for accessing
remote supercomputers

Core Cosm Mithral A toolkit building P2P applications
middleware Globus ANL and ISI Provides uniform and secure environment

for accessing remote computational and
storage resources

Gridbus University of Melbourne Provides technologies that support
end-to-end computational economy-driven
resource sharing, management, and scheduling

GridSim Monash University A toolkit for Grid simulation
JXTA Sun Microsystems A Java-based framework and infrastructure

for P2P computing
Legion University of Virginia A Grid operating system providing

transparent access to distributed resources
P2P Intel A basic infrastructure for creating P2P
Accelerator applications for the .NET platform

User-level AppLeS UCSD An application specific scheduler
middleware: Condor-G University of Wisconsin A wide-area job processing system
Schedulers Nimrod-G Monash University An economic-based Grid resource broker

for parameter sweep/task farming applications

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Table I. Continued.

Category Project Organization Remarks

User-level MPICH-G Northern Illinois MPI implementation on Globus
middleware: University
Programming Nimrod Monash University A declarative language parametric
environments parameter programming

programming
tools
MetaMPI HLRS, Stuttgart An MPI programming and runtime

environment
Cactus Max Planck Institute A framework for writing parallel

for Gravitational Physics applications. It was developed using
MPICH-G and Globus

GrADS Rice University Grid application development tools
GridPort SDSC Tools for creating computing portals

Applications European DataGrid CERN High-energy physics, earth
and observation, biology
application- GriPhyN UCF and ANL High-energy physics
driven Grid PPDG Caltech and ANL High-energy physics
efforts Virtual Laboratory Monash University Molecular modeling for drug design

and WEHI
HEPGrid Melbourne University High-energy physics
NEESGrid NCSA Earthquake engineering
Geodise Southampton University Aerospace design optimization
Fusion Grid Princeton/ANL Magnetic fusion
IPG NASA Aerospace
ActiveSheets Monash, QUT, Spread sheet processing

and DSTC
Earth System Grid LLNL, ANL, and NCAR Climate modeling
Virtual Instruments UCSD Neuroscience
National Virtual Johns Hopkins University Access to distributed astronomical
Observatory and Caltech databases and processing
Brain Activity Osaka University and the Analysis of human brain’s activity
analysis University of Melbourne data gathered through

magneto-encephalography (MEG)
sensors to identify symptoms of
diseases

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

Table II. Some Australian Grid efforts.

Project Focus and technologies developed Category

ActiveSheets ActiveSheets enables the transparent processing of spreadsheet Application
applications modeled in the Microsoft Excel package on distributed portal
computers using Nimrod-G task processing and scheduling
services—www.dstc.edu.au/Research/activesheets-ov.html

Compute Power CPM aims to develop market-based resource management and Middleware
Market scheduling tools and technologies for P2P style computing—

www.computepower.com
DISCWorld DISCWorld is an infrastructure for service-based metacomputing Integrated

across LANs and WANs. DISCWorld allows remote users to login application
over the Web and request access to data, and invoke services or and
operations on the available data— middleware
dhpc.adelaide.edu.au/Projects/DISCWorld/ system

Gridbus A Grid toolkit for enabling Grid computing and Business for service- Middleware
oriented computing. The key objective of the Gridbus project is to
develop fundamental, next-generation cluster and grid technologies
that support true utility-driven service-oriented computing

GridSim GridSim is Java-based toolkit for modelling and simulation of Grid
computational resources for design and evaluation of schedulers and simulation
scheduling algorithms for network based high-performance cluster and toolkit
Grid computing—www.buyya.com/gridsim/

Nimrod/G and Nimrod/G & Grace are brokers for resource management and Grid
GRACE scheduling of parameter sweep (coarse-grained, data parallel) scheduler

applications using computational economy and QoS constraints. and resource
The brokers dynamically lease Grid resources/services at runtime trader
depending on their capability, cost, and availability to meet user
objectives—www.buyya.com/ecogrid

Virtual Laboratory VL provides an application development and execution environment Application
for solving large-scale data intensive applications such as molecular modeling and
modeling for drug design—www.buyya.com/vlab execution

World Wide Grid WWG is a large-scale testbed for Grid computing. It has environment
(WWG) heterogeneous computational resources distributed across multiple Grid testbed

organization in five continents—www.buyya.com/ecogrid/wwg

3.1. Globus

Globus [23] provides a software infrastructure that enables applications to handle distributed
heterogeneous computing resources as a single virtual machine. The Globus project is a U.S.
multi-institutional research effort that seeks to enable the construction of computational Grids.
A computational Grid, in this context, is a hardware and software infrastructure that provides
dependable, consistent, and pervasive access to high-end computational capabilities, despite the
geographical distribution of both resources and users. Globus provides basic services and capabilities
that are required to construct a computational Grid. The toolkit consists of a set of components

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Table III. Some European Grid efforts.

Project Focus and technologies developed Category

UNICORE The UNiform Interface to Computer Resources aims to deliver software A portal and
that allows users to submit jobs to remote high-performance computing middleware
resources—www.unicore.org

MOL Metacomputer OnLine is a toolbox for the coordinated use of WAN/LAN User level
connected systems. MOL aims at utilizing multiple WAN-connected middleware
high-performance systems for solving large-scale problems that are
intractable on a single supercomputer—
www.uni-paderborn.de/pc2/projects/mol

Cactus The Cactus toolkit is a set of arrangements providing a general Application
computational infrastructure for many different applications. development
It contains modules (called thorns) that can be plugged into a toolkit
core code (called the flesh) that contains the APIs and
infrastructure to glue the thorns together. Applications need to
create thorns for solving problems—www.cactuscode.org

Globe Globe is a research project aiming to study and implement a powerful Object-based
unifying paradigm for the construction of large-scale wide-area operating
distributed systems: distributed shared objects— environment/
www.cs.vu.nl/∼steen/globe middleware

system
DataGrid This project aims to develop middleware and tools necessary for the DataGrid

data-intensive applications of high-energy physics—www.eu-dataGrid.org/ middleware
and
applications

MetaMPI MetaMPI supports the coupling of heterogeneous MPI systems, thus Programming
allowing parallel applications developed using MPI to be run on Grids environment
without alteration—http://www.hlrs.de/organization/pds/projects/metodis/

U.K. eScience The thrust of the U.K. eScience programme is to develop tools applications
and applications that enable scientists and engineers to transparently
access remote computational machines and instruments—www.nesc.ac.uk

XtremWeb XtremWeb is a Java-based toolkit for developing a cycle stealing Middleware
infrastructure for solving large-scale applications—www.xtremweb.net environment

that implement basic services, such as security, resource location, resource management, and
communications.

It is necessary for computational Grids to support a wide variety of applications and programming
paradigms. Consequently, rather than providing a uniform programming model, such as the object-
oriented model, the Globus provides a bag of services which developers of specific tools or applications
can use to meet their own particular needs. This methodology is only possible when the services are
distinct and have well-defined interfaces (APIs) that can be incorporated into applications or tools in
an incremental fashion.

Globus is constructed as a layered architecture in which high-level global services are built upon
essential low-level core local services. The Globus toolkit is modular, and an application can exploit

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

Table IV. Some Japanese Grid efforts.

Project Focus and technologies developed Category

Ninf Ninf allows users to access computational resources including hardware, Development and
software and scientific data distributed across a wide-area network execution
with an easy-to-use interface—http://ninf.apgrid.org/ environment

Bricks Bricks is a performance evaluation system that allows analysis and Simulation/
comparison of various scheduling schemes in a typical high-performance performance
global computing setting—ninf.is.titech.ac.jp/bricks/ evaluation system

Grid Grid Datafarm focuses on developing large distributed data Middleware
Datafarm storage management and processing technologies for peta-scale data

intensive computing [22]—datafarm.apGrid.org/

Globus features, such as resource management or information infrastructure, without using the Globus
communication libraries. The Globus toolkit supports the following:

• Grid Security Infrastructure (GSI);
• GridFTP;
• Globus Resource Allocation Manager (GRAM);
• Metacomputing Directory Service (MDS-2);
• Global Access to Secondary Storage (GASS);
• data catalogue and replica management;
• Advanced Resource Reservation and Allocation (GARA);

Globus can be viewed as a Grid computing framework based on a set of APIs to the underlying
services. Globus provides application developers with a pragmatic means of implementing a range of
services to provide a wide-area application execution environment.

3.2. Legion

Legion [24] is an object-based metasystem developed at the University of Virginia. Legion
provides the software infrastructure so that a system of heterogeneous, geographically distributed,
high-performance machines can interact seamlessly. Legion attempts to provide users, at their
workstations, with a single, coherent, virtual machine. In the Legion system the following apply.

• Everything is an object. Objects represent all hardware and software components. Each object
is an active process that responds to method invocations from other objects within the
system. Legion defines an API for object interaction, but not the programming language or
communication protocol.

• Classes manage their instances. Every Legion object is defined and managed by its own active
class object. Class objects are given system-level capabilities; they can create new instances,
schedule them for execution, activate or deactivate an object, as well as provide state information
to client objects.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Table V. Some U.S. Grid efforts.

Initiative Focus and technologies developed Category

Globus The Globus project is developing a basic software infrastructure for Core
computations that integrate geographically distributed computational middleware
and information resources—www.globus.org and toolkit

Legion Legion is an object-based metasystem. Legion supports transparent Core
scheduling, data management, fault tolerance, site autonomy, and a middleware
wide range of security options—legion.virginia.edu and toolkit

Javelin Javelin provides Internet-based parallel computing using Java— Middleware
www.cs.ucsb.edu/research/javelin/ system

AppLeS This is an application-specific approach to scheduling individual Grid scheduler
parallel applications on production heterogeneous systems
—apples.ucsd.edu

NASA IPG The Information Power Grid (IPG) is a testbed that provides access Application
to a Grid—a widely distributed network of high-performance computers, testbed
stored data, instruments, and collaboration environments—
www.ipg.nasa.gov

Condor The Condor project is developing and deploying, and evaluating Middleware and
mechanisms and policies that support high-throughput computing scheduling
on large collections of distributed resources—www.cs.wisc.edu/condor/ system

Harness Harness builds on the concept of the virtual machine and explores Programming
dynamic capabilities beyond what PVM can supply. It focuses on parallel environment
plug-ins, P2P distributed control, and multiple virtual machines— and runtime
www.epm.ornl.gov/harness/ system

NetSolve NetSolve is an Remote Procedure Call-based client/agent/server Programming
system that allows one to remotely access both hardware and environment and
software components—www.cs.utk.edu/netsolve/ runtime system

Gateway Gateway offers a programming paradigm implemented over a virtual Web portal
Web of accessible resources
www.npac.syr.edu/users/haupt/WebFlow/demo.html

WebFlow WebFlow is an extension of the Web model that can act as a framework Application
for wide-area distributed computing runtime system

GridPort The Grid Portal Toolkit (GridPort) is a collection of technologies Portal
designed to aid in the development of science portals on computational development
Grids: user portals, applications interfaces, and education portals— environment
gridport.npaci.edu

GrADS The Grid Application Development Software (GrADS) is an adaptive User level
programming and runtime environment—hipersoft.cs.rice.edu/grads/ middleware

JXTA JXTA from Sun provides core infrastructure that are essential for Core
creating P2P computing services and applications—www.jxta.org middleware

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

Table VI. Grid related community forums.

Initiative Focus and technologies developed

Global Grid Forum This is a community-initiated forum of individual researchers and practitioners
working on distributed computing, or ‘Grid’ technologies. This forum focuses on the
promotion and development of Grid technologies and applications via the development
and documentation of ‘best practices’, implementation guidelines, and standards
with an emphasis on rough consensus and running code—www.gridforum.org

Peer-to-Peer The P2PWG is organized to facilitate and accelerate the advance of best practices for a
Working Group P2P computing infrastructure. The group promotes best practice based on P2P
(P2PWG) computing. As computers become ubiquitous, ideas for implementation and use of P2P

computing are developing rapidly and gaining prominence—www.p2pwg.org

• Users can define their own classes. As in other object-oriented systems users can override or
redefine the functionality of a class. This feature allows functionality to be added or removed to
meet a user’s needs.

Legion core objects support the basic services needed by the metasystem. The Legion system
supports the following set of core object types.

• Classes and metaclasses. Classes can be considered managers and policy makers. Metaclasses
are classes of classes.

• Host objects. Host objects are abstractions of processing resources, they may represent a single
processor or multiple hosts and processors.

• Vault objects. Vault objects represents persistent storage, but only for the purpose of maintaining
the state of Object Persistent Representation (OPR).

• Implementation objects and caches. Implementation objects hide the storage details of
object implementations and can be thought of as equivalent to executable files in UNIX.
Implementation cache objects provide objects with a cache of frequently used data.

• Binding agents. A binding agent maps object IDs to physical addresses. Binding agents can
cache bindings and organize themselves into hierarchies and software combining trees.

• Context objects and context spaces. Context objects map context names to Legion object IDs,
allowing users to name objects with arbitrary-length string names. Context spaces consist of
directed graphs of context objects that name and organize information.

Legion objects are independent, active, and capable of communicating with each other via
unordered non-blocking calls. Like other object-oriented systems, the set of methods of an object
describes its interface. The Legion interfaces are described in an Interface Definition Language (IDL).
The Legion system uses an object-oriented approach, which potentially makes it ideal for designing
and implementing complex distributed computing environments. However, using an object-oriented
methodology does not come without a raft of problems, many of these being tied-up with the need for
Legion to interact with legacy applications and services.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Grid Info
servers

Resource
Discovery

Queuing
System

Process
server

Resource
allocation

(local)

User
process

File accessFile accessI/O
server

I/O
server

Gatekeeper node

Nimrod
Agent

Computational node

Dispatcher

Root node

Scheduler

Farming
Engine

Grid Trade 
Server

Do this in 30min. for 10

Figure 4. Nimrod-G Grid resource broker architecture.

The software developed under the Legion project has been commercialized by a spin-off company
call Avaki Corporation [25]. Avaki has enhanced and developed Legion to take advantage of the
emerging Grid and P2P technologies [26].

3.3. Nimrod-G and GRACE

Nimrod-G is a Grid resource broker that performs resource management and scheduling of parameter
sweep, task-farming applications on worldwide Grid resources [27,28]. It consists of four key
components: a task-farming engine, a scheduler, a dispatcher, and agents (see Figure 4 for the
Nimrod-G broker architecture). A Nimrod-G persistent and programmable task-farming engine
(TFE) enables ‘plugging’ of user-defined schedulers and customized applications or problem-solving
environments (e.g. ActiveSheets [29]) in place of default components. The dispatcher uses the Globus
services to deploy Nimrod-G agents on remote resources in order to manage the execution of assigned
jobs. The local resource management system (e.g. queuing system or forking service) starts the
execution of the Nimrod-G agent that interacts with the I/O server running on the user home/root-node
to fetch a task script assigned to it (by the Nimrod-G scheduler) and executes the Nimrod commands
specified in the script. The Nimrod-G scheduler has the ability to lease Grid resources and services
depending on their capability, cost, and availability driven by user QoS requirements. It supports
resource discovery, selection, scheduling, and transparent execution of user jobs on remote resources.
The users can set the deadline by which the results are needed; the Nimrod/G broker then tries to find
the cheapest computational resources available on the Grid and use them so that the user deadline is
met and the cost of computation is kept to a minimum.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

Table VII. Nimrod-G deadline and budget constrained scheduling algorithms.

Execution time Execution cost
Algorithm/strategy (deadline, D) (budget, B)

Cost optimization Limited by D Minimize
Cost–time optimization Minimize when possible Minimize
Time optimization Minimize Limited by B
Conservative-time Minimize Limited by B, but all
optimization unprocessed jobs have

guaranteed minimum budget

Specifically, Nimrod-G supports user-defined deadline and budget constraints for schedule
optimizations and manages the supply and demand of resources in the Grid using a set of
distributed computational economy and resource trading services called GRACE (Grid Architecture
for Computational Economy) [16]. The deadline and budget constrained (DBC) scheduling algorithms
with four different optimization strategies [30,31]—cost optimization, cost-time optimization, time
optimization, and conservative-time optimization—supported by the Nimrod-G resource broker for
scheduling applications on the worldwide distributed resources are shown in Table VII. The cost
optimization scheduling algorithm uses the cheapest resources to ensure that the deadline can
be meet and the computational cost is minimized. The time optimization scheduling algorithm
uses all the affordable resources to process jobs in parallel as early as possible. The cost-time
optimization scheduling is similar to cost optimization, but if there are multiple resources with the
same cost, it applies the time optimization strategy while scheduling jobs on them. The conservative
time optimization scheduling strategy is similar to the time-optimization scheduling strategy, but it
guarantees that each unprocessed job has a minimum budget-per-job. The Nimrod-G broker with
these scheduling strategies has been used to solve large-scale data-intensive computing applications
such as the simulation of ionization chamber calibration [27] and the molecular modeling for drug
design [11].

3.4. GridSim

GridSim [32] is a toolkit for modeling and simulation of Grid resources and application scheduling.
It provides a comprehensive facility for the simulation of different classes of heterogeneous resources,
users, applications, resource brokers, and schedulers. It has facilities for the modeling and simulation
of resources and network connectivity with different capabilities, configurations, and domains.
It supports primitives for application composition, information services for resource discovery, and
interfaces for assigning application tasks to resources and managing their execution. These features
can be used to simulate resource brokers or Grid schedulers to evaluate performance of scheduling
algorithms or heuristics. The GridSim toolkit has been used to create a resource broker that
simulates Nimrod-G for design and evaluation of DBC scheduling algorithms with cost and time
optimizations [31].

The GridSim toolkit resource modeling facilities are used to simulate the worldwide Grid resources
managed as time- or space-shared scheduling policies. In GridSim-based simulations, the broker

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

and user entities extend the GridSim class to inherit the ability to communicate with other entities.
In GridSim, application tasks/jobs are modeled as Gridlet objects that contain all the information
related to the job and the execution management details, such as job length in MI (million instructions),
disk I/O operations, input and output file sizes, and the job originator. The broker uses GridSim’s
job management protocols and services to map a Gridlet to a resource and manage it throughout its
lifecycle.

3.5. Gridbus

The Gridbus (GRID computing and BUSiness) toolkit project is engaged in the design and development
of cluster and grid middleware technologies for service-oriented computing [33]. It provides end-to-
end services to aggregate or lease services of distributed resources depending on their availability,
capability, performance, cost, and users’ QoS requirements. The key objective of the Gridbus project is
to develop fundamental, next-generation cluster and grid technologies that support utility computing.
The following initiatives are being carried out as part of the Gridbus project.

• At grid-level, the project extends our previous work on grid economy and scheduling to
support: (a) different application models; (b) different economy models; (c) data models; and
(d) architecture models—both grids and P2P networks.

• At resource level, the project supports a QoS-driven resource scheduler (e.g. economy-driven
cluster scheduler [34]); it helps the user to negotiate and establish service-level agreement (SLA)
with the resource scheduler in advance.

• A GridBank (GB) mechanism supports a secure Grid-wide accounting and payment handling to
enable both cooperative and competitive economy models for resource sharing.

• The GridSim simulator is being extended to support simulation of these concepts for
performance evaluation.

• GUI tools are being developed to enable distributed processing of legacy applications.
• The technologies are being applied to various application domains (high-energy physics,

brain activity analysis, drug discovery, data mining, GridEmail, automated management of
e-commerce).

3.6. UNICORE

UNICORE (UNiform Interface to COmputer REsources) [35] is a project funded by the German
Ministry of Education and Research. It provides a uniform interface for job preparation, and seamless
and secure access to supercomputer resources. It hides the system and site-specific idiosyncrasies
from the users to ease the development of distributed applications. Distributed applications within
UNICORE are defined as multipart applications where the different parts may run on different
computer systems asynchronously or they can be sequentially synchronized. A UNICORE job contains
a multipart application augmented by the information about the destination systems, the resource
requirements, and the dependencies between the different parts. From a structural viewpoint a
UNICORE job is a recursive object containing job groups and tasks. Job groups themselves consist
of other job groups and tasks. UNICORE jobs and job groups carry the information of the destination
system for the included tasks. A task is the unit, which boils down to a batch job for the destination
system.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

The design goals for UNICORE include a uniform and easy to use GUI, an open architecture
based on the concept of an abstract job, a consistent security architecture, minimal interference
with local administrative procedures, exploitation of existing and emerging technologies, a zero-
administration user interface through a standard Web browser and Java applets, and a production
ready prototype within two years. UNICORE is designed to support batch jobs, it does not allow for
interactive processes. At the application level asynchronous metacomputing is supported, allowing for
independent and dependent parts of a UNICORE job to be executed on a set of distributed systems.
The user is provided with a unique UNICORE user-ID for uniform access to all UNICORE sites.

3.7. Information Power Grid

The NAS Systems Division is leading the effort to build and test NASA’s IPG [7], a network of high-
performance computers, data storage devices, scientific instruments, and advanced user interfaces.
The overall mission of the IPG is to provide NASA’s scientific and engineering communities with
a substantial increase in their ability to solve problems that depend on the use of large-scale and/or
distributed resources. The project team is focused on creating an infrastructure and services to locate,
combine, integrate, and manage resources from across the NASA centers. An important goal of the
IPG is to produce a common view of these resources, and at the same time provide for distributed
management and local control. The IPG team at NAS is working to develop:

• independent but consistent tools and services that support a range of programming environments
used to build applications in widely distributed systems;

• tools, services, and infrastructure for managing and aggregating dynamic collections of
resources: processors, data storage/information systems, communications systems, real-time
data sources and instruments, as well as human collaborators;

• facilities for constructing collaborative, application-oriented workbenches and problem-solving
environments across NASA, based on the IPG infrastructure and applications;

• a common resource management approach that addresses areas such as:

– systems management;
– user identification;
– resource allocations;
– accounting;
– security;

• an operational Grid environment that incorporates major computing and data resources at
multiple NASA sites in order to provide an infrastructure capable of routinely addressing larger
scale, more diverse, and more transient problems than is currently possible.

3.8. WebFlow

WebFlow [36] is a computational extension of the Web model that can act as a framework for the
wide-area distributed computing. The main goal of the WebFlow design was to build a seamless
framework for publishing and reusing computational modules on the Web so that end-users, via a
Web browser, can engage in composing distributed applications using WebFlow modules as visual
components and editors as visual authoring tools. WebFlow has a three-tier Java-based architecture that

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

can be considered a visual dataflow system. The front-end uses applets for authoring, visualization, and
control of the environment. WebFlow uses servlet-based middleware layer to manage and interact with
back-end modules such as legacy codes for databases or high-performance simulations. WebFlow is
analogous to the Web. Web pages can be compared to WebFlow modules and hyperlinks that connect
Web pages to inter-modular dataflow channels. WebFlow content developers build and publish modules
by attaching them to Web servers. Application integrators use visual tools to link outputs of the
source modules with inputs of the destination modules, thereby forming distributed computational
graphs (or compute-Webs) and publishing them as composite WebFlow modules. A user activates
these compute-Webs by clicking suitable hyperlinks, or customizing the computation either in terms
of available parameters or by employing some high-level commodity tools for visual graph authoring.
The high-performance back-end tier is implemented using the Globus toolkit:

• MDS is used to map and identify resources;
• GRAM is used to allocate resources;
• GASS is used for a high-performance data transfer.

With WebFlow, new applications can be composed dynamically from reusable components just
by clicking on visual module icons, dragging them into the active WebFlow editor area, and linking
them by drawing the required connection lines. The modules are executed using Globus components
combined with the pervasive commodity services where native high-performance versions are not
available. The prototype WebFlow system is based on a mesh of Java-enhanced Web servers (Apache),
running servlets that manage and coordinate distributed computation. This management infrastructure
is implemented by three servlets: Session Manager, Module Manager, and Connection Manager.
These servlets use URL addresses and can offer dynamic information about their services and current
state. Each management servlet can communicate with others via sockets. The servlets are persistent
and application-independent. Future implementations of WebFlow will use emerging standards for
distributed objects and take advantage of commercial technologies, such as the CORBA [37] as the
base distributed object model. WebFlow takes a different approach to both Globus and Legion. It is
implemented in a hybrid manner using a three-tier architecture that encompasses both the Web and
third-party back-end services. This approach has a number of advantages, including the ability to ‘plug-
in’ to a diverse set of back-end services. For example, many of these services are currently supplied
by the Globus toolkit, but they could be replaced with components from CORBA or Legion. WebFlow
also has the advantage that it is more portable and can be installed anywhere a Web server supporting
servlets is capable of running.

3.9. NetSolve

NetSolve [13] is a client/server application designed to solve computational science problems in a
distributed environment. The Netsolve system is based around loosely coupled distributed systems,
connected via a LAN or WAN. Netsolve clients can be written in C and Fortran, and use Matlab or the
Web to interact with the server. A Netsolve server can use any scientific package to provide its compu-
tational software. Communications within Netsolve is via sockets. Good performance is ensured by a
load-balancing policy that enables NetSolve to use the computational resources available as efficiently
as possible. NetSolve offers the ability to search for computational resources on a network, choose the
best one available, solve a problem (with retry for fault-tolerance), and return the answer to the user.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

3.10. Ninf

The Ninf [38] is a client/server-based system for global computing. It allows access to multiple remote
computational and database servers. Ninf clients can semitransparently access remote computational
resources from languages such as C and Fortran. Global computing applications can be built easily by
using the Ninf remote libraries as it hides the complexities of the underlying system.

3.11. Gateway—desktop access to high-performance computational resources

The Gateway system offers a programming paradigm implemented over a virtual Web of accessible
resources [39]. A Gateway application is based around a computational graph visually edited by end-
users, using Java applets. A module developer, a person who has only limited knowledge of the system
on which the modules will run, writes modules. They need not concern themselves with issues such as:
allocating resources, how to run the modules on various machines, creating inter-module connections,
sending and receiving data between modules, or how to run several modules concurrently on a single
machine. This is handled by WebFlow [36]. The Gateway system hides the configuration, management,
and coordination mechanisms from the developers, allowing them to concentrate on developing their
modules.

The goals of the Gateway system are:

• to provide a problem-oriented interface (a Web portal) to more effectively utilize high-
performance computing resources from the desktop via a Web browser;

• this ‘point & click’ view hides the underlying complexities and details of the resources, and
creates a seamless interface between the user’s problem description on their desktop system and
the heterogeneous resources;

• the high-performance computing resources include computational resources such as
supercomputers or workstation clusters, storage, such as disks, databases, and backing store,
collaborative tools, and visualization servers.

Gateway is implemented as a three-tier system, as shown in Figure 5. Tier 1 is a high-level front-
end for visual programming, steering, runtime data analysis and visualization, as well as collaboration.
This tier is built on top of the Web and object-oriented commodity standards. Tier 2 is middleware
and is based on distributed, object-based, scalable, and reusable Web servers and object brokers. Tier 3
consists of back-end services, such as those shown in Figure 5. The middle tier of the architecture
is based on a network of Gateway servers. The user accesses the Gateway system via a portal Web
page emanating from the secure gatekeeper Web server. The portal implements the first component of
the Gateway security, user authentication and generation of the user credentials that is used to grant
access to resources. The Web server creates a session for each authorized user and gives permission to
download the front-end applet that is used to create, restore, run, and control user applications.

The main functionality of the Gateway server is to manage user sessions. A session is established
automatically after the authorized user is connected to the system by creating a user context that is
basically an object that stores the user applications. The application consists of one or more Gateway
modules.

The Gateway modules are CORBA objects conforming to the JavaBeans model. The application’s
functionality can be embedded directly into the body of the module or, more typically, the module
serves as a proxy for specific back-end services. The Gateway servers also provide a number of generic

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Figure 5. Three-tier architecture of Gateway.

services, such as access to databases and remote file systems. The most prominent service is the job
service that provides secure access to high-performance computational servers. This service is accessed
through a metacomputing API, such as the Globus toolkit API.

To interoperate with Globus there must be at least one Gateway node capable of executing Globus
commands. To enable this interaction at least one host will need to run a Globus and Gateway server.
This host serves as a ‘bridge’ between two domains. Here, Globus is an optional, high-performance
(and secure) back-end, while Gateway serves as a high-level Web accessible visual interface and a job
broker for Globus.

3.12. GridPort

The Grid Portal Toolkit (GridPort) is a collection of technologies designed to aid in the development of
science portals on computational Grids: user portals, applications interfaces, and education portals [40].
The two key components of GridPort are the Web portal services and the application APIs. The Web
portal module runs on a Web server and provides secure (authenticated) connectivity to the Grid.
The application APIs provide a Web interface that help in developing customized science portals
by end-users (without having the knowledge of the underlying portal infrastructure). The system is
designed to allow execution of portal services and the client applications on separate Web servers.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

The GridPort toolkit modules have been used to develop science portals for the applications areas such
as molecular modeling, cardiac physiology, and tomography.

The GridPort modules are based on commodity Internet and Web technologies as well as existing
Grid services and applications. The technologies used include HTML, JavaScript, Perl, CGI, SSH,
SSL, FTP, GSI, and Globus. As Web technologies are easy to use and pervasive, client portals based
on GridPort are accessible through any Web browser irrespective of location. By using the GridPort
toolkit, application programmers can extend the functionality supported by the HotPage computational
resource portal. A user can also customize Web pages and program portal services with a minimal
knowledge of Web technologies.

3.13. DataGrid

The European DataGrid project, led by CERN, is funded by the European Union with the aim of setting
up a computational and data-intensive Grid of resources for the analysis of data coming from scientific
exploration [10]. The primary driving application of the DataGrid project is the Large Hadron Collider
(LHC), which will operate at CERN from about 2005 to 2015. The LHC represents a leap forward in
particle beam energy, density, and collision frequency. This leap is necessary in order to produce some
examples of previously undiscovered particles, such as the Higgs boson or perhaps super-symmetric
quarks and leptons. The LHC will present a number of challenges in terms of computing.

The main goal of the DataGrid initiative is to develop and test the infrastructure that will enable the
deployment of scientific ‘collaboratories’ where researchers and scientists will perform their activities
regardless of their geographical location. These collaboratories will allow personal interaction as well
as the sharing of data and instruments on a global basis. The project is designing and developing
scalable software solutions and testbeds in order to handle many petabytes of distributed data, tens of
thousands of computing resources (processors, disks, etc.), and thousands of simultaneous users from
multiple research institutions.

The DataGrid project is divided into 12 work packages (WPs) distributed over four working groups:
testbed and infrastructure, applications, computational and DataGrid middleware, management and
dissemination. Figure 6 illustrates the structure of the project and the interactions between the work
packages (source [41]). The work has an emphasis on enabling the distributed processing of data-
intensive applications in the area of high-energy physics, earth observation, and bio-informatics.

The main challenge facing the project is providing the means to share huge amounts of distributed
data over the current network infrastructure. The DataGrid relies upon emerging Grid technologies
that are expected to enable the deployment of a large-scale computational environment consisting of
distributed collections of files, databases, computers, scientific instruments, and devices.

3.14. The Open Grid Services Architecture framework

The Open Grid Services Architecture (OGSA) framework [42], the Globus-IBM vision for the
convergence of Web services and Grid computing was presented at the Global Grid Forum (GGF)
meeting held in Toronto in February 2002. The GGF has set up an Open Grid Services working group
to review and refine the Grid services architecture and documents that form the technical specification.

The OGSA supports the creation, maintenance, and application of ensembles of services maintained
by virtual organizations (VOs). Here a service is defined as a network-enabled entity that provides some
capability, such as computational resources, storage resources, networks, programs, and databases.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

Figure 6. The DataGrid organization.

The Web Services standards used in the OGSA include SOAP, WSDL, and WS-Inspection.

• The Simple Object Access Protocol (SOAP) provides a means of messaging between a service
provider and a service requestor.

• The Web Services Description Language (WSDL) is an XML document for describing Web
services as a set of endpoints operating on messages containing either document-oriented
(messaging) or RPC payloads.

• WS-Inspection comprises a simple XML language and related conventions for locating service
descriptions published by a service provider.

Web services enhance the OGSA in a number of ways. One of the main ones is that Web services
has the ability to support the dynamic discovery and composition of services in heterogeneous
environments. Web Services have mechanisms for registering and discovering interface definitions,
endpoint descriptions, and for dynamically generating service proxies. WDSL provides a standard
mechanism for defining interface definitions separately from their embodiment within a particular
binding (transport protocol and data encoding format). In addition, Web services are being widely
adopted, which means that their adoption will allow a greater level of interoperability and the capability
to exploit new and emerging tools and services such as Microsoft .NET and Apache Axis.

The parts of Globus that are impacted on most by the OGSA are:

• the GRAM protocol;
• the information infrastructure, MDS-2, used for information discovery, registration, data

modeling, and a local registry;
• GSI, which supports single sign-on, restricted delegation, and credential mapping.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

The standard interfaces defined in OGSA are as follows.

• Discovery. Clients require mechanisms for discovering available services and for determining
the characteristics of those services so that they can configure themselves and their requests to
those services appropriately.

• Dynamic service creation. This is a standard interface (factory) and semantics that any service
creation service must provide.

• Lifetime management. In a system that incorporates transient and stateful service instances,
mechanisms must be provided for reclaiming services and state associated with failed operations.

• Notification. A collection of dynamic, distributed services must be able to notify each other
asynchronously of interesting changes to their state.

• Manageability. The operations relevant to the management and monitoring of large numbers of
Grid service instances are provided.

• Simple hosting environment. A simple execution environment is a set of resources located within
a single administrative domain and supporting native facilities for service management: for
example, a J2EE application server, Microsoft .NET system, or Linux cluster.

It is expected that the future implementation of Globus toolkit will be based on the OGSA
architecture. Core services will implement the interfaces and behavior described in the Grid Service
specification. Base services will use the Core services to implement both existing Globus capabilities,
such as resource management, data transfer, and information services, as well as new capabilities such
as resource reservation and monitoring. A range of higher level services will use the Core and Base
services to provide data management, workload management, and diagnostics services.

4. GRID APPLICATIONS

A Grid platform could be used for many different types of applications. In [1], Grid-aware applications
are categorized into five main classes:

• distributed supercomputing (e.g. stellar dynamics);
• high-throughput (e.g. parametric studies);
• on-demand (e.g. smart instruments);
• data intensive (e.g. data mining);
• collaborative (e.g. collaborative design).

A new emerging class of application that can benefit from the Grid is:

• service-oriented computing (e.g. application service provides and the users’ QoS requirements
driven access to remote software and hardware resources [15]).

There are several reasons for programming applications on a Grid, for example:

• to exploit the inherent distributed nature of an application;
• to decrease the turnaround/response time of a huge application;
• to allow the execution of an application which is outside the capabilities of a single (sequential

or parallel) architecture;

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

• to exploit the affinity between an application component and Grid resources with a specific
functionality.

Although wide-area distributed supercomputing has been a popular application of the Grid, a large
number of other applications can benefit from the Grid [43,44]. Applications in these categories come
from science, engineering, commerce, and educational fields.

The existing applications developed using the standard message-passing interface (e.g. MPI) for
clusters, can run on Grids without change, since an MPI implementation for Grid environments is
available. Many of the applications exploiting computational Grids are embarrassingly parallel in
nature. The Internet computing projects, such as SETI@Home [45] and Distributed.Net [46], build
Grids by linking multiple low-end computational resources, such as PCs, across the Internet to detect
extraterrestrial intelligence and crack security algorithms, respectively. The nodes in these Grids
work simultaneously on different parts of the problem and pass results to a central system for post-
processing.

Grid resources can be used to solve grand challenge problems in areas such as biophysics,
chemistry, biology, scientific instrumentation [27], drug design [11,47], tomography [48], high-
energy physics [49], data mining, financial analysis, nuclear simulations, material science, chemical
engineering, environmental studies, climate modeling [50], weather prediction, molecular biology,
neuroscience/brain activity analysis [51], structural analysis, mechanical CAD/CAM, and astrophysics.

In the past, applications were developed as monolithic entities. A monolithic application is typically
the same as a single executable program that does not rely on outside resources and cannot access
or offer services to other applications in a dynamic and cooperative manner. The majority of the
scientific and engineering (S&E) as well as business-critical applications of today are still monolithic.
These applications are typically written using just one programming language. They are generally
computational intensive, batch processed, and their elapsed times are measured in several hours or days.
Good examples of applications in the S&E area are: Gaussian [52], PAM-Crash [53], and Fluent [54].

Today, the situation is rapidly changing and a new style of application development based on
components has become more popular. With component-based applications, programmers do not start
from scratch but build new applications by reusing existing off-the-shelf components and applications.
Furthermore, these components may be distributed across a wide-area network. Components are
defined by the public interfaces that specify the functions as well as the protocols that they may use
to communicate with other components. An application in this model becomes a dynamic network of
communicating objects. This basic distributed object design philosophy is having a profound impact on
all aspects of information processing technology. We are already seeing a shift in the software industry
towards an investment in software components and away from handcrafted, stand-alone applications.
In addition, within the industry, a technology war is being waged over the design of the component
composition architecture [55].

Meanwhile, we are witnessing an impressive transformation of the ways that research is conducted.
Research is becoming increasingly interdisciplinary; there are studies that foresee future research being
conducted in virtual laboratories in which scientists and engineers routinely perform their work without
regard to their physical location. They will be able to interact with colleagues, access instrumentation,
share data and computational resources, and access information in digital libraries. All scientific and
technical journals will be available on-line, allowing readers to download documents and other forms
of information, and manipulate it to interactively explore the published research [56]. This exciting

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

vision has a direct impact on the next generation of computer applications and on the way that they
will be designed and developed. The complexity of future applications will grow rapidly, and the time-
to-market pressure will mean that applications can no longer be built from scratch. Hence, mainly for
cost reasons, it is foreseeable that no single company or organization would be able to, for example,
create by itself complex and diverse software, or hire and train all the necessary expertise necessary to
build an application. This will heighten the movement towards component frameworks, enabling rapid
construction from third-party ready-to-use components.

In general, such applications tend to be multidisciplinary multimodular, written by several
development teams using several programming languages, using multisource heterogeneous data,
which can be mobile and interactive. Their execution will take a few minutes or hours [57].
In particular, future S&E applications, for example, will be multidisciplinary. They will be composed
of several different disciplinary modules coupled into a single modeling system (fluids and structures
in an aeronautics code, e.g. [58,59]), or composed of several different levels of analysis combined
within a single discipline (e.g. linear, Euler, and Navier–Stokes aerodynamics [60,61]. Some of
these components will be characterized by high-performance requirements. Thus, in order to
achieve better performance, the challenge will be to map each component onto the best candidate
computational resource available on the Grid that has the highest degree of affinity with that software
component. There are several examples of such integrated multidisciplinary applications reported
in the literature, in several science and engineering fields including aeronautics (e.g. simulation
of aircraft), geophysics (e.g. environmental and global climate modeling), biological systems, drug
design, and plasma physics. In all these areas, there is a strong interest in developing increasingly
sophisticated applications that couple ever more advanced simulations of very diverse physical systems.
In [62,63] several fields where parallel and distributed simulation technologies have been successfully
applied are reported. In particular, some applications belonging to areas such as the design of
complex systems, education and training, entertainment, military, social and business collaborations,
telecommunications, transportation, etc., are described.

5. CONCLUSIONS AND FUTURE TRENDS

There are currently a large number of projects and a diverse range of new and emerging Grid
developmental approaches being pursued. These systems range from Grid frameworks to application
testbeds, and from collaborative environments to batch submission mechanisms.

It is difficult to predict the future in a field such as information technology where the technological
advances are moving very rapidly. Hence, it is not an easy task to forecast what will become the
‘dominant’ Grid approach. Windows of opportunity for ideas and products seem to open and close in
the ‘blink of an eye’. However, some trends are evident. One of those is growing interest in the use of
Java [64] and Web services [12] for network computing.

The Java programming language successfully addresses several key issues that accelerate the
development of Grid environments, such as heterogeneity and security. It also removes the need to
install programs remotely; the minimum execution environment is a Java-enabled Web browser. Java,
with its related technologies and growing repository of tools and utilities, is having a huge impact on
the growth and development of Grid environments. From a relatively slow start, the developments in
Grid computing are accelerating fast with the advent of these new and emerging technologies. It is very

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

hard to ignore the presence of the Common Object Request Broker Architecture (CORBA) [37] in the
background. We believe that frameworks incorporating CORBA services will be very influential on the
design of future Grid environments.

The two other emerging Java technologies for Grid and P2P computing are Jini [65] and JXTA
[66]. The Jini architecture exemplifies a network-centric service-based approach to computer systems.
Jini replaces the notions of peripherals, devices, and applications with that of network-available
services. Jini helps break down the conventional view of what a computer is, while including new
classes of services that work together in a federated architecture. The ability to move code from the
server to its client is the core difference between the Jini environment and other distributed systems,
such as CORBA and the Distributed Common Object Model (DCOM) [67].

Whatever the technology or computing infrastructure that becomes predominant or most popular,
it can be guaranteed that at some stage in the future its star will wane. Historically, in the field
of computer research and development, this fact can be repeatedly observed. The lesson from this
observation must therefore be drawn that, in the long term, backing only one technology can be an
expensive mistake. The framework that provides a Grid environment must be adaptable, malleable,
and extensible. As technology and fashions change it is crucial that Grid environments evolve with
them.

In [1], Smarr observes that Grid computing has serious social consequences and is going to have as
revolutionary an effect as railroads did in the American midWest in the early 19th century. Instead of a
30–40 year lead-time to see its effects, however, its impact is going to be much faster. Smarr concludes
by noting that the effects of Grids are going to change the world so quickly that mankind will struggle
to react and change in the face of the challenges and issues they present. Therefore, at some stage in
the future, our computing needs will be satisfied in the same pervasive and ubiquitous manner that we
use the electricity power grid. The analogies with the generation and delivery of electricity are hard
to ignore, and the implications are enormous. In fact, the Grid is analogous to the electricity (power)
Grid and the vision is to offer (almost) dependable, consistent, pervasive, and inexpensive access to
resources irrespective of their location for physical existence and their location for access.

ACKNOWLEDGEMENTS

The authors would like to acknowledge all developers of the systems or projects described in this article.
We have had intellectual communication and exchanged views on this upcoming technology with David Abramson
(Monash), Fran Berman (UCSD), David C. DiNucci (Elepar), Jack Dongarra (UTK), Ian Foster (ANL),
Geoffrey Fox (Syracuse), Wolfgang Gentzsch (Sun), Jon Giddy (DSTC), Al Geist (ORNL), and Tom Haupt
(Syracuse). We thank them for sharing their thoughts.

REFERENCES

1. Foster I, Kesselman C (eds.). The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann: San
Francisco, CA, 1999.

2. Chetty M, Buyya R. Weaving computational Grids: How analogous are they with electrical Grids? Journal of Computing
in Science and Engineering (CiSE) 2001; (July–August).

3. Oram A (ed.). Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly Press: U.S.A., 2001.
4. Foster I, Kesselman C, Tuecke S. The anatomy of the Grid: Enabling scalable virtual organizations. International Journal

of Supercomputer Applications 2001. To appear.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



GRIDS AND GRID TECHNOLOGY

5. Buyya R, Stockinger H, Giddy J, Abramson D. Economic models for management of resources in peer-to-peer and Grid
computing. SPIE International Conference on Commercial Applications for High-Performance Computing, Denver, CO,
August 20–24, 2001.

6. Camarinha-Matos L, Afsarmanesh H (eds.). Infrastructure For Virtual Enterprises: Networking Industrial Enterprises.
Kluwer Academic Press: Norwell, MA, 1999.

7. Johnston W, Gannon D, Nitzberg B. Grids as production computing environments: The engineering aspects of NASA’s
information power grid. Eighth IEEE International Symposium on High Performance Distributed Computing, Redondo
Beach, CA, August 1999. IEEE Computer Society Press: Los Alamitos, CA, 1999.

8. Buyya R. The World-Wide Grid. http://www.buyya.com/ecogrid/wwg/.
9. NSF Tera-Grid. http://www.teraGrid.org/.

10. Hoschek W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K. Data management in an international data Grid
project. Proceedings of the 1st IEEE/ACM International Workshop on Grid Computing (Grid’2000), Bangalore, India,
17–20 December 2000. Springer: Berlin, 2000.

11. Buyya R. The Virtual Laboratory Project: Molecular modeling for drug design on Grid. IEEE Distributed Systems Online
2001; 2(5). http://www.buyya.com/vlab/.

12. W3C. Web services activity. http://www.w3.org/2002/ws/.
13. Casanova H, Dongarra J. NetSolve: A network server for solving computational science problems. International Journal

of Supercomputing Applications and High Performance Computing 1997; 11(3).
14. Baker M, Fox G. Metacomputing: Harnessing informal supercomputers. High Performance Cluster Computing:

Architectures and Systems, vol. 1, Buyya R (ed.). Prentice-Hall: Englewood Cliffs, NJ, 1999.
15. Buyya R, Giddy J, Abramson D. A case for economy grid architecture for service-oriented Grid computing. 10th IEEE

International Heterogeneous Computing Workshop (HCW 2001), in Conjunction with IPDPS 2001, San Francisco, CA,
April 2001. IEEE Computer Society Press: Los Alamitos, CA, 2001.

16. Buyya R, Abramson D, Giddy J. Economy driven resource management architecture for computational power grids.
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’2000), Las Vegas,
NV, 2000. CSREA Press: Athens, GA, 2000.

17. Buyya R. Economic-based distributed resource management and scheduling for Grid computing. PhD Thesis, Monash
University, Melbourne, Australia, April 2002.

18. PAPIA: Parallel protein information analysis system. http://www.rwcp.or.jp/papia/.
19. Gentzsch W (ed.). Special issue on metacomputing: From workstation clusters to internet computing. Future Generation

Computer Systems 1999; 15.
20. Buyya R (ed.). Grid Computing Info Centre. http://www.Gridcomputing.com/.
21. Baker M (ed.). Grid computing. IEEE DS Online. http://computer.org/dsonline/gc/.
22. Matsuoka S. Grid RPC meets DataGrid: Network enabled services for data farming on the Grid. First IEEE/ACM

International Conference on Cluster Computing and the Grid (CCGrid 2001), Brisbane, Australia, May 2001. IEEE
Computer Society Press: Los Alamitos, CA, 2001.

23. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer
Applications 1997; 11(2):115–128.

24. Grimshaw A, Wulf W. The Legion vision of a worldwide virtual computer. Communications of the ACM 1997; 40(1).
25. Avaki Corporation. http://www.avaki.com/.
26. Avaki Architecture. http://www.avaki.com/papers/AVAKI concepts architecture.pdf.
27. Abramson D, Giddy J, Kotler L. High performance parametric modeling with Nimrod/G: Killer application for the

global Grid? International Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society Press: Los
Alamitos, CA, 2000.

28. Buyya R, Abramson D, Giddy J. Nimrod/G: An architecture for a resource management and scheduling system in a global
computational Grid. The 4th International Conference on High Performance Computing in Asia-Pacific Region (HPC
Asia’2000), Beijing, China, 2000. IEEE Computer Society Press: Los Alamitos, CA, 2000.

29. Abramson D, Roe P, Kotler L, Mather D. ActiveSheets: Super-computing with spreadsheets. 2001 High Performance
Computing Symposium (HPC’01), Advanced Simulation Technologies Conference, April 2001. SCS Press: San Diego, CA,
2001.

30. Buyya R, Giddy J, Abramson D. An evaluation of economy-based resource trading and scheduling on computational power
Grids for parameter sweep applications. The Second Workshop on Active Middleware Services (AMS 2000), in Conjunction
with HPDC 2001, 1 August 2000, Pittsburgh, PA. Kluwer Academic Press, 2000.

31. Buyya R, Murshed M, Abramson D. A deadline and budget constrained cost-time optimization algorithm
for scheduling task farming applications on global Grids. Technical Report, Monash University, March 2002.
http://www.buyya.com/gridsim/.

32. Buyya R, Murshed M. GridSim: A toolkit for the modeling and simulation of distributed resource management and
scheduling for Grid computing. Concurrency and Computation: Practice and Experience 2002; (May). To appear.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)



M. BAKER, R. BUYYA AND D. LAFORENZA

33. Buyya R. The Gridbus Toolkit: Enabling Grid computing and business. http://www.gridbus.org.
34. Sherwani J, Ali N, Lotia N, Hayat Z, Buyya R. Libra: An economy driven job scheduling system for clusters. Technical

Report, The University of Melbourne, July 2002.
35. Almond J, Snelling D. UNICORE: Uniform access to supercomputing as an element of electronic commerce. Future

Generation Computer Systems 1999; 15:539–548.
36. Akarsu E, Fox G, Furmanski W, Haupt T. WebFlow—high-level programming environment and visual authoring

toolkit for high performance distributed computing. SC98: High Performance Networking and Computing, Orlando, FL,
1998.

37. Object Management Group. Common Object Request Broker: Architecture and specification. OMG Document No. 91.12.1,
1991.

38. Sato A, Nakada H, Sekiguchi S, Matsuoka S, Nagashima U, Takagi H. Ninf: A network based information library for a
global world-wide computing infrastructure. High-Performance Computing and Networking (Lecture Notes in Computer
Science, vol. 1225). Springer, 1997.

39. Akarsu E, Fox G, Haupt T, Kalinichenko A, Kim K, Sheethaalnath P, Youn C. Using Gateway system to provide a
desktop access to high performance computational resources. The 8th IEEE International Symposium on High Performance
Distributed Computing (HPDC-8), Redondo Beach, CA, August 1999.

40. Thomas M, Mock S, Boisseau J. Development of Web toolkits for computational science portals: The NPACI HotPage.
The 9th IEEE International Symposium on High Performance Distributed Computing (HPDC 2000), Pittsburgh, PA, 1–4
August, 2000.

41. The DataGrid project. http://eu-datagrid.web.cern.ch/.
42. Foster I, Kesselman C, Nick J, Tuecke S. The physiology of the Grid: An open Grid services architecture for distributed

systems integration. http://www.globus.org/research/papers.html#OGSA [January 2002].
43. Leinberger W, Kumar V. Information Power Grid: The new frontier in parallel computing? IEEE Concurrency 1999; 7(4).
44. Brown MD et al. The International Grid (iGrid): Empowering global research community networking using high

performance international Internet services. http://www.globus.org/research/papers.html [April 1999].
45. SETI@Home. http://setiathome.ssl.berkeley.edu/.
46. Distributed.Net. http://www.distributed.net/.
47. Buyya R, Branson K, Giddy J, Abramson D. The Virtual Laboratory: A toolset to enable distributed molecular modelling

for drug design on the World-Wide Grid. Concurrency and Computation: Practice and Experience 2002.
48. Smallen S et al. Combining workstations and supercomputers to support Grid applications: The parallel tomography

experience. The 9th Heterogenous Computing Workshop (HCW 2000, IPDPS), Cancun, Mexico, April 2000.
49. Holtman K. CMS DataGrid system overview and requirements. The Compact Muon Solenoid (CMS) Experiment Note

2001/037, CERN, Switzerland, 2001.
50. Allcock B, Foster I, Nefedova V, Chervenak A, Deelman E, Kesselman C, Lee J, Sim A, Shoshani A, Drach B, Williams D.

High-performance remote access to climate simulation data: A challenge problem for data Grid technologies. Proceedings
of SC2001 Conference, Denver, CO, November 2001.

51. Date S, Buyya R. Economic and on demand brain activity analysis on the Grid. The 2nd Pacific Rim Application and Grid
Middleware Assembly Workshop, Seoul, Korea, July 2002.

52. Gaussian. http://www.gaussian.com.
53. Pam Crash. http://www.esi-group.com/products/crash/overview.htm.
54. Fluent. http://www.fluent.com.
55. Gannon D. Component architectures for high performance, distributed meta-computing.

http://www.objs.com/workshops/ws9801/papers/paper086.html.
56. PITAC. Information technology: Transforming our society. Information Technology Advisory Committee Interim Report to

the U.S. President, August 1998. http://www.ccic.gov/ac/report/section 1.html.
57. Darema F. Next generation software research directions. http://www.cise.nsf.gov/eia/NGS-slides/sld001.htm.
58. NASA’s Numerical Propulsion System Simulation (NPSS). http://cict.grc.nasa.gov/npssintro.shtml.
59. Perez C, Priol T. JACO3: A Grid environment that supports the execution of coupled numerical simulation.

http://www.ercim.org/publication/Ercim/ News/enw45/priol.html.
60. Fox GC, Williams RD, Messina PC. Parallel Computing Works. Morgan Kaufmann, 1994.
61. Foster I, Zang T. Building multidisciplinary applications. http://www-fp.mcs.anl.gov/hpcc/section2.6.5.html.
62. Fujimoto RM. Parallel and Distributed Simulation Systems. Wiley, 2000; 300.
63. Laforenza D. Programming high performance applications in Grid environments. Invited Talk at EuroPVM/MPI

Conference, Greece, April 2002. http://www.gridforum.org/7 APM/aps.htm.
64. Arnold K, Gosling J. The Java Programming Language. Addison-Wesley–Longman: Reading, MA, 1996.
65. Waldo J. The JINI architecture for network-centric computing. Communications of the ACM 1999; 42(7).
66. Gong L. Project JXTA: A technology overview. Sun Whitepaper, August 2001. http://www.jxta.org/.
67. Rogerson D. Inside COM. Microsoft Press: Washington State, U.S.A., 1997.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; (in press)


	1 INTRODUCTION
	2 GRID CONSTRUCTION: GENERAL PRINCIPLES
	3 GRID COMPUTING PROJECTS
	3.1 Globus
	3.2 Legion
	3.3 Nimrod-G and GRACE
	3.4 GridSim
	3.5 Gridbus
	3.6 UNICORE
	3.7 Information Power Grid
	3.8 WebFlow
	3.9 NetSolve
	3.10 Ninf
	3.11 Gateway---desktop access to high-performance computational resources
	3.12 GridPort
	3.13 DataGrid
	3.14 The Open Grid Services Architecture framework

	4 GRID APPLICATIONS
	5 CONCLUSIONS AND FUTURE TRENDS

