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Abstract

Interest in Grid computing has grown significantly over the
past five years. Management of distributed cluster resources
is a key issue in Grid computing. Central to management of
resources is the effectiveness of resource allocation, as it de-
termines the overall utility of the system. In this paper, we pro-
pose a new Grid system that consists of Grid Federation Agents
which couple together distributed cluster resources to enable
a cooperative environment. The agents use a computational
economy methodology, that facilitates QoS scheduling, with
a cost-time scheduling heuristic based on a scalable, shared
federation directory. We show by simulation, while some users
that are local to popular resources can experience higher cost
and/or longer delays, the overall users’ QoS demands across
the federation are better met. Also, the federation’s average
case message passing complexity is seen to be scalable, though
some jobs in the system may lead to large numbers of messages
before being scheduled.

1 Introduction

Clusters of computers have emerged as main-
stream parallel and distributed platforms for high-
performance, high-throughput and high-availability
computing. Grid [13] computing extends the cluster
computing idea to wide-area networks. A Grid consists
of cluster resources that are usually distributed over mul-
tiple administrative domains, managed and owned by
different organizations having different resource man-
agement policies. With the large scale growth of net-
works and their connectivity, it is possible to couple
these cluster resources as a part of one large Grid sys-
tem. Such large scale resource coupling and application
management is a complex undertaking, as it introduces a
number of challenges in the domain of security, resource
and policy heterogeneity, resource discovery, fault toler-
ance, dynamic resource availability and underlying net-
work conditions.

Existing approaches to resource allocation in a Grid
environment are non-coordinated. In a non-coordinated

system, application schedulers (e.g. a Resource Bro-
kering System [2]) perform scheduling related activi-
ties independent of the other schedulers in the system.
They directly submit their applications to the underly-
ing resources without taking into account the current
load, priorities, utilization scenarios of other application
level schedulers. Clearly, this can lead to over-utilization
or bottleneck of some valuable resources while leaving
others largely underutilized. Furthermore, these broker-
ing systems do not have a co-ordination (or cooperative)
mechanism and this exacerbates the load sharing and uti-
lization problems of distributed resources because sub-
optimal schedules are likely to occur.

The resources on a Grid (e.g. clusters, supercomput-
ers) are managed by local resource management systems
(LRMSes) such as Condor [18] and PBS [5]. These
resources can also be loosely coupled to form campus
Grids using multi-clustering systems such as SGE [14]
that allow sharing of clusters owned by the same organi-
zation. In other words, these systems do not allow their
combination in the same way that autonomous system
support to create an environment for cooperative feder-
ation of clusters, which we refer as Grid-Federation in
rest of the paper.

Furthermore, end-users or their application-level
schedulers submit jobs to the LRMS without having
the knowledge about response time or service utility.
Sometimes these jobs are queued for relatively excessive
times before being actually processed, leading to de-
graded QoS. To mitigate such long processing delay and
enhance the value of computation, a scheduling strategy
can use priorities from competing user jobs that indicate
varying levels of importance. This is a widely studied
scheduling technique (e.g. using priority queues) [4]. To
be effective, the schedulers require knowledge of how
users value their computations in terms of QoS require-
ments, which usually varies from job to job. LRMS
schedulers can provide a feedback signal that prevents
the user from submitting unbounded amounts of work.

Currently, system-centric approaches such as Le-
gion [10, 23], Condor, NetSolve [9], Punch [17], PBS
and SGE provide limited support for QoS driven re-
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source sharing. These system-centric schedulers, allo-
cate resources based on parameters that enhance system
utilization or throughput. The scheduler either focuses
on minimizing the response time (sum of queue time and
actual execution time) or maximizing overall resource
utilization of the system and these are not specifically
applied on a per-user basis (user oblivious). They treat
all resources with the same scale, as if they are worth the
same and the results of different applications have the
same value; while in reality the resource provider may
value his resources differently and has a different ob-
jective function. Similarly, the resource consumer may
value various resources differently and may want to ne-
gotiate a particular price for using a resource. Users are
unable to express their valuation of resources and QoS
parameters. Furthermore, the system-centric schedulers
do not provide any mechanism for resource owners to
define what is shared, who is given the access and the
conditions under which sharing occurs.

To overcome these shortcomings of non-coordinated,
system-centric scheduling systems, we propose a new
distributed resource management model, called Grid-
Federation. Our Grid-Federation system is defined as a
large scale resource sharing system that consists of a co-
operative federation (the term is also used in the Legion
system and should not be confused with our definition),
of distributed clusters based on policies defined by their
owners (shown in Fig.1). Fig.1 shows an abstract model
of our grid-federation over a shared federation directory.
To enable policy based transparent resource sharing be-
tween these clusters, we define and model a new RMS
system, which we call Grid Federation Agent (GFA).
Currently, we assume that the directory information is
shared using some efficient protocol (e.g. a peer-to-peer
protocol [19, 15]). In this case the P2P system provides
a decentralized database with efficient updates and range
query capabilities. Systems like Condor Flock [12] are
based on manually configured static resource informa-
tion and this is a significant disadvantage when building
large grid systems. Individual GFAs access the directory
information using the interface shown in Fig.1, i.e. sub-
scribe, quote, unsubscribe, query. In this paper, we are
not concerned with the specifics of the interface (which
can be found in [20]) although we do consider the im-
plications of the required message-passing, i.e. the mes-
sages sent between GFAs to undertake the scheduling
work.

Our approach considers the emerging computational
economy metaphor [2, 21, 22] for Grid-Federation. In
this case resource owners: can clearly define what is
shared in the Grid-Federation while maintaining a com-
plete autonomy, can dictate who is given access and
get incentives for leasing their resources to federation
users. We adopt the market based economic model
from [2] for resource allocation in our proposed frame-
work. Other user-centric models are described in [11]
and are targeted at clusters. Some of the commonly
used economic models [6] in resource allocation in-
cludes the commodity market model, the posted price

model, the bargaining model, the tendering/contract-net
model, the auction model, the bid-based proportional re-
source sharing model, the community/coalition model
and the monopoly model. We mainly focus on the com-
modity market model [24]. In this model every resource
has a price, which is based on the demand, supply and
value in the Grid-Federation. Economy model driven re-
source allocation methodology focuses on: (i) optimiz-
ing resource provider’s objective functions, (ii) increas-
ing end-user’s perceived QoS value based on QoS level
indicators [20] and QoS constraints.

The key contribution of the paper includes our pro-
posed new distributed resource management model,
called Grid-Federation, which provides: (i) decentral-
ization via a shared federation directory that gives site
autonomy and scalability; (ii) ability to co-ordinate re-
source management; (iii) incentives for resources own-
ers to share their resources as part of federation; (iv) ac-
cess to a larger pool of resources for all users. In this
paper we demonstrate, by simulation, the feasibility and
effectiveness of our proposed Grid-Federation.

The rest of the paper is organized as follows. In
Section 2 we summarize our Grid-Federation and Sec-
tion 3 deals with various experiments that we conducted
to demonstrate the utility of our work. We end the pa-
per with some concluding remarks and future work in
section 4.

2 Grid-Federation models

This section provides comprehensive details about
our proposed Grid-Federation, including models used
for budget and deadline calculations in the simulations
of the next section.

2.1 General Grid-Federation scheduling tech-
nique

We define our Grid-Federation (shown in Fig.1) as
an architectural framework that enables logical cou-
pling of cluster resources. The Grid-Federation sup-
ports policy based transparent sharing of resources and
QoS [16] based application scheduling. We also pro-
pose a new computational economy metaphor for the
Grid-Federation. Computational economy [2, 21, 22]
enables the regulation of supply and demand of re-
sources, offers incentive to the resource owners for leas-
ing, and promotes QoS based resource allocation. This
framework consists of cluster owners as the resource
providers and the end-users as the resource consumers.
The End-users are also likely to be topologically dis-
tributed, having different performance goals, objectives,
strategies and demand patterns. We focus on optimiz-
ing the resource provider’s objective and resource con-
sumer’s utility functions by using a quoting mechanism.

The distributed information sharing in the Grid-
Federation is facilitated through a federation directory.
We assume that the the directory information is shared
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Figure 1. Grid-Federation

using some efficient protocol (e.g. a peer-to-peer proto-
col [19, 15]). The federation directory maintains quotes
or advertised costs from each GFA in the federation.
Each quote consists of a resource description Ri, for
cluster i, and a cost for using that resource ci, config-
ured by respective cluster owners. Using Ri and ci, a
GFA can determine the cost of executing a job in clus-
ter i and the time taken, assuming that cluster i has no
load. The actual load of the cluster needs to be deter-
mined dynamically and the load can lead to changes in
time taken (for job completion). In this paper, we as-
sume that ci remains static throughout the simulations.
Each GFA can query the federation directory to find the
k-th fastest cluster or the k-th cheapest cluster. We as-
sume the query process is optimal, i.e. that it takes
O(logn) messages [8] to query the directory, when there
are n GFAs in the system. In this paper, we consider
the number of additional messages that are used to sat-
isfy our Grid-Federation scheduling process. We also
model Grid Bank [3] as an entity that provides services
for credit management in the Grid-Federation.

In Fig.1 a user who is local to GFA 3 is submitting
a job. If the user’s job QoS can’t be satisfied locally
then GFA 3 queries the federation directory to obtain
the quote of the 1-st fastest or 1-st cheapest cluster. In
this case, the federation directory returns the quote ad-
vertised by GFA 2. Following this, GFA 3 sends a nego-
tiate message (enquiry about QoS guarantee in terms of
response time) to GFA 2. If GFA has too much load and
cannot complete the job within the deadline then GFA
3 queries the federation directory for the 2-nd cheap-
est/fastest GFA and so on. The query-negotiate process

is repeated until GFA 3 finds a GFA that can schedule
the job (in this example the job is finally scheduled on
cluster 4).

Every federation user has to express how much he is
willing to pay, called a budget, and required response
time, called a deadline, for his job number j. In this
work, we say that a job’s QoS has been satisfied if the
job is completed within budget and deadline, otherwise
it is not satisfied. Every cluster in the federation has
its own resource set Ri which contains the definition of
all resources owned by the cluster and ready to be of-
fered. Ri can include information about the CPU ar-
chitecture, number o f processors, RAM size, secondary
storage size, operating system type, etc. In this work,
Ri = (pi, µi, γi) which includes the number of proces-
sors, pi, their speed, µi and underlying interconnect net-
work bandwidth, γi. We assume that there is always
enough RAM and correct operating system conditions,
etc. The cluster owner charges ci per unit time or per
unit of million instructions (MI) executed, e.g. per 1000
MI.

A job consists of the number of processors required,
pi,j,k, the job length, li,j,k (in terms of instructions), the
budget, bi,j,k , the deadline or maximum delay, di,j,k and
the communication overhead, αi,j,k . We write Ji,j,k to
represent the i-th job from the j-th user of the k-th re-
source.

To capture the nature of parallel execution with mes-
sage passing overhead involved in the real application,
we considered a part of total execution time as the com-
munication overhead and remaining as the computa-
tional time. In this work, we consider the network com-
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munication overhead αi,j,k for a parallel job Ji,j,k to
be randomly distributed over the processes. In other
words, we don’t consider the case e.g. when a paral-
lel program written for a hypercube is mapped to a mesh
architecture. We assume that the communication over-
head parameter αi,j,k would scale the same way over
all the clusters depending on γi. The total data transfer
involved during a parallel job execution is given by

Γ(Ji,j,k, Rk) = αi,j,k × γk (1)

The time for job Ji,j,k =
(pi,j,k, li,j,k, bi,j,k, di,j,k, αi,j,k) to execute on re-
source Rm is

D(Ji,j,k, Rm) =
li,j,k

µm pi,j,k
+

Γ(Ji,j,k, Rk)

γm
(2)

and the associated cost is

B(Ji,j,k, Rm) = cm
li,j,k

µm pi,j,k
. (3)

If si,j,k is the time that Ji,j,k is submitted to the sys-
tem then the job must be completed by time si,j,k +
di,j,k .

2.2 QoS driven resource allocation algorithm
for Grid-Federation

We consider a deadline and budget constrained
(DBC) scheduling algorithm, or cost-time optimization
scheduling. The federation user can specify any one of
the following optimization strategies for their jobs:

• optimization for time (OFT) – give minimum pos-
sible response time within the budget limit;

• optimization for cost (OFC) – give minimum pos-
sible cost within the deadline.

For each job that arrives at a GFA, called the local
GFA, the following is done:

1. Set r = 1.

2. If OFT is required for the job then query the feder-
ation directory for the r-th fastest GFA; otherwise
OFC is required and the query is made for the r-th
cheapest GFA. Refer to the result of the query as
the remote GFA.

3. The local GFA sends a message to the remote GFA,
requesting a guarantee on the time to complete the
job.

4. If the remote GFA confirms the guarantee then the
job is sent, otherwise r := r + 1 and the process
iterates through step 2.

Recall that we assume each query takes O(logn)
messages and hence in this work we use simulation to
study how many times the iteration is undertaken, on a
per job basis and on a per GFA basis. The remote GFA
makes a decision immediately upon receiving a request
as to whether it can accept the job or not. If the job’s
QoS parameters cannot be satisfied (after iterating up to
the greatest r such that GFA could feasibly complete the
job) then the job is dropped.

Effectively, for job Ji,j,k that requires OFC
then GFA m with Rm is chosen such that
B(Ji,j,k, Rm) = min1<m′≤n{B(Ji,j,k, Rm′)},
and D(Ji,j,k, Rm) ≤ si,j,k + di,j,k. Simi-
larly, for OFT then GFA m is chosen such that
D(Ji,j,k, Rm) = min1<m′≤n{D(Ji,j,k, Rm′)}, and
B(Ji,j,k, Rm) ≤ bi,j,k.

2.3 User budget and deadline

While our simulations in the next section use trace
data for job characteristics, the trace data does not in-
clude user specified budgets and deadlines on a per job
basis. In this case we are forced to fabricate these quan-
tities and we include the models here.

For a user, j, we allow each job from that user to be
given a budget (using Eq. 3),

bi,j,k = 2×B(Ji,j,k, Rk). (4)

In other words, the total budget of a user over simu-
lation is unbounded and we are interested in computing
the budget that is required to schedule all of the jobs.

Also, we let the deadline for job i (using Eq. 2) be

di,j,k = 2×D(Ji,j,k, Rk). (5)

In other words, we assign two times the value of to-
tal budget and deadline for the given job, as compared
to the expected budget spent and response time on the
originating resource.

3 Experiments and analysis

3.1 Workload and resource methodology

We used trace based simulation to evaluate the effec-
tiveness of the proposed system and the QoS provided
by the resource allocation algorithm. The workload
trace data was obtained from [1]. The trace contained
real time workload of various resources/supercomputers
that are deployed at the Cornell Theory Center (CTC
SP2), Swedish Royal Institute of Technology (KTH
SP2), Los Alamos National Lab (LANL CM5), LANL
Origin 2000 Cluster (Nirvana) (LANL Origin), NASA
Ames (NASA iPSC) and San-Diego Supercomputer
Center (SDSC Par96, SDSC Blue, SDSC SP2) (See Ta-
ble 1). The workload trace is a record usage data about
collection of parallel jobs that were submitted to vari-
ous resource facilities. Every job arrives, is allocated
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Table 1. Workload and Resource Configuration
Index Resource /

Cluster Name
Trace Date Processors MIPS

(rat-
ing)

Jobs Quote(Price) Network
Bandwidth
(Gb/Sec)

1 CTC SP2 June96-May97 512 850 79,302 4.84 2
2 KTH SP2 Sep96-Aug97 100 900 28,490 5.12 1.6
3 LANL CM5 Oct94-Sep96 1024 700 201,387 3.98 1
4 LANL Origin Nov99-Apr2000 2048 630 121,989 3.59 1.6
5 NASA iPSC Oct93-Dec93 128 930 42,264 5.3 4
6 SDSC Par96 Dec95-Dec96 416 710 38,719 4.04 1
7 SDSC Blue Apr2000-Jan2003 1152 730 250,440 4.16 2
8 SDSC SP2 Apr98-Apr2000 128 920 73,496 5.24 4

one or more processors for a period of time, and then
leaves the system. Further, every job in the workload
has associated arrival time, indicating when it was sub-
mitted to the scheduler for consideration. As the exper-
imental trace data [1] does not include details about the
network communication overhead involved for differ-
ent jobs, we artificially introduced the communication
overhead element as 10% of the total parallel job execu-
tion time. The simulator was implemented using Grid-
Sim [7] toolkit that allows modeling and simulation of
distributed system entities for evaluation of scheduling
algorithms. To enable parallel workload simulation with
GridSim, we extended existing GridSim’s Alloc Policy
and Space Shared entities.

Our simulation environment models the following
basic entities in addition to existing entities in GridSim:

• local user population – models the workload ob-
tained from trace data;

• GFA – generalized RMS system;

• GFA queue – placeholder for incoming jobs from
local user population and the federation;

• GFA shared federation directory – simulates an ef-
ficient distributed query process such as peer-to-
peer.

For evaluating the QoS driven resource allocation
algorithm, we assigned synthetic QoS specification to
each resource including the Quote value (Price that clus-
ter owner charges for service), having varying MIPS rat-
ing and underlying network communication bandwidth.
The simulation experiments were conducted by utiliz-
ing workload trace data over the total period of two days
(in simulation units) at all the resources. We consider
following resource sharing environment for our experi-
ments:

• independent resource – Experiment 1;

• federation without economy – Experiment 2;

• federation with economy – Experiments 3, 4 and 5.

3.2 Experiment 1 – independent resources

In this experiment the resources were modeled as an
independent entity (without federation). All the work-
load submitted to a resource is processed and executed
locally (if possible). In Experiment 1 and 2 we consider,
if the user request can not be served within requested
deadline, then it is rejected otherwise it is accepted. Dur-
ing Experiment 1 and 2, we evaluate the performance
of a resource in terms of average resource utilization
(amount of real work that resource does over the sim-
ulation period excluding the queue processing and idle
time), job acceptance rate (total percentage of job ac-
cepted) and conversely the job rejection rate (total per-
centage of job rejected). The result of this experiment
can be found in Table 2.

3.3 Experiment 2 – with federation

In this experiment, we analyzed the workload pro-
cessing statistics of various resources when they are
part of the Grid-Federation but do not use an economic
model. In this case the workload assigned to a resource
can be processed locally. In case a local resource is not
available then online scheduling is performed that con-
siders the resources in the federation in decreasing order
of their computational speed. We also quantify the jobs
depending on whether they are processed locally or mi-
grated to the federation. Table 3 describes the result of
this experiment.

3.4 Experiment 3 – with federation and econ-
omy

In this experiment, we study the computational econ-
omy metaphor in the Grid-Federation. In order to study
economy based resource allocation mechanism, it was
necessary to fabricate user budgets and job deadlines.
As the trace data does not indicate these QoS parame-
ters, so we assigned them using Eqs. 4,5 to all the jobs
across the resources. We performed the experiment un-
der three scenarios:

• all users seek OFC;

• 50% seek OFC 50% seek OFT;
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Table 2. Workload Processing Statistics (Without Federation)
Index Resource /

Cluster Name
Average
Resource
Utilization
(%)

Total Job Total Job Ac-
cepted(%)

Total Job Re-
jected(%)

1 CTC SP2 53.492 417 96.642 3.357
2 KTH SP2 50.06438 163 93.865 6.134
3 LANL CM5 47.103 215 83.72 16.27
4 LANL Origin 44.55013 817 93.757 6.24
5 NASA iPSC 62.347 535 100 0
6 SDSC Par96 48.17991 189 98.941 1.058
7 SDSC Blue 82.08857 215 57.67 42.3255
8 SDSC SP2 79.49243 111 50.45 49.54

• all users seek OFT.

Fig.3 and 4 describes the result of this experiment.

3.5 Experiment 4 – message complexity with
respect to jobs

In this experiment, we consider total incoming and
outgoing messages at all GFA’s. The various message
type includes negotiate, reply, job-submission (mes-
sages containing actual job) and job-completion (mes-
sage containing job output). We quantify the number
of local messages (sent from a GFA to undertake a lo-
cal job scheduling) and remote messages (received at a
GFA to schedule a job belonging to a remote GFA in the
federation). The experiment was conducted for the same
user populations as explained in experiment 3. Fig.5 de-
scribes the result of this experiment.

3.6 Experiment 5 – message complexity with
with respect to system size

This experiment measures the system’s performance
in terms of the total message complexity involved as
the system size grows from 10 to 50. In this case, we
consider the average, max and min number of messages
(sent/recv) per Job basis. Note that, in case n messages
are undertaken to schedule a job then it involves travers-
ing (if n > 2 then (n−2)/2, else n/2) entries of the GFA
list. To accomplish larger system size, we replicated our
existing resources accordingly (shown in Table 1). The
experiment was conducted for the same user populations
as explained in experiment-3. Fig.6 and 7 describes the
result of this experiment. The Java based simulation tool
prohibited us from scaling the system further.

3.7 Results and observations

During experiment 1 we observed that 5 out of 8 re-
sources remained underutilized (less than 60%). During
experiment 2, we observed that overall resource utiliza-
tion of most of the resources increased as compared to
experiment 1 (when they were not part of the federa-
tion), for instance resource utilization of CTC SP2 in-
creased from 53.49% to 87.15%. The same trends can

(a) Average resource utilization (%) vs. resource name

(b) No. of jobs vs. resource name

Figure 2. Resource utilization and job mi-
gration plot
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Table 3. Workload Processing Statistics (With Federation)
Index Resource /

Cluster Name
Average
Resource
Utilization
(%)

Total
Job

Total Job
Accepted(%)

Total
Job Re-
jected(%)

No. of
Jobs
Processed
Locally

No. of
Jobs Mi-
grated to
Federa-
tion

No. of
Remote
jobs
processed

1 CTC SP2 87.15 417 100 0 324 93 72
2 KTH SP2 68.69 163 99.38 0.61 110 52 35
3 LANL CM5 67.20 215 90.69 9.30 145 50 70
4 LANL Origin 77.62 817 98.89 1.10 733 75 81
5 NASA iPSC 78.73 535 99.81 0.18 428 106 129
6 SDSC Par96 79.17 189 100 0 143 46 30
7 SDSC Blue 90.009 215 98.60 1.39 105 107 77
8 SDSC SP2 87.285 111 97.29 2.70 54 54 89

be observed for other resources too (refer to Fig.2(a)).
There was an interesting observation regarding migra-
tion of the jobs between the resources in the federation
(load-sharing). This characteristic was evident at all the
resources including CTC SP2, KTH SP2, NASA iPSC
etc. At CTC, which had total 417 jobs to schedule, we
observed that 324 (refer to Table 3 or Fig.2(b)) of them
were executed locally while the remaining 93 jobs mi-
grated and executed at some remote resource in the fed-
eration. Further, CTC executed 72 remote jobs, which
migrated from other resources in the federation.

The federation based load-sharing also lead to a de-
crease in the total job rejection rate, this can be observed
in case of resource SDSC Blue where the job rejection
rate decreased from 42.32% to 1.39%. Note that, the av-
erage job acceptance rate, over all resources in the fed-
eration, increased from 90.30% (without federation) to
98.61% (with federation). Thus, for the given job trace,
it is preferable to make use of more resources, i.e. to
migrate jobs. In other words, the job trace shows the po-
tential for resource sharing to increase utilization of the
system.

In experiment 3, we measured the computational
economy related behavior of the system in terms of
its supply-demand pattern, resource owner’s incentive
(earnings) and end-user’s QoS constraint satisfaction
(average response time and average budget spent) with
varying user population distribution profiles. We study
the relationship between resource owner’s total incen-
tive and end-user’s population profile. The total incen-
tive earned by different resource owners with varying
user population profile can be seen in Fig.3(b). The re-
sult shows as expected that the owners (across all the
resources) got more incentive when users sought OFT
(Total Incentive 2.31×109 Grid Dollars) (scenario-3) as
compared to OFC (Total Incentive 2.12× 109 Grid Dol-
lars) (scenario-1). During OFT, we observed that there
was a uniform distribution of the jobs across all the re-
sources (refer to Fig.3(a)) and every resource owner got
some incentive. While during OFC, we observed a non-
uniform distribution of the jobs in the federation (refer
to Fig.3(a)). We observed that the resources including
CTC SP2, LANL CM5, LANL Origin, SDSC par96 and
SDSC Blue earned significant incentives. This can also

(a) Average resource utilization (%) vs. resource name

(b) Total incentive (grid dollars) vs. resource name

Figure 3. Supply and demand pattern plot
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be observed in their resource utilization statistics (refer
to Fig.3(a)). However, the faster resources (e.g. KTH
SP2, NASA iPSC and SDSC SP2) remained largely un-
derutilized and did not get significant incentives. This is
the worst case scenario in terms of the resource owner’s
incentive across all the resources.

Furthermore, the results indicate an imbalance be-
tween the resource supply and demand pattern. As
the demand was high for the cost-effective resources
compared to the time-effective resources, these time-
effective resources remained largely underutilized. In
this case, the majority of the jobs were scheduled on
the cost-effective computational resources (LANL CM5,
LANL Origin, SDSC Par96 and SDSC Blue). Although,
with even user population distribution (during scenario-
2) all the resource owners across the federation received
incentive (Total Incentive 2.16 × 109 Grid Dollars) and
had better resource utilization (refer to Fig.3(a)). This
scenario shows a balance in the resource supply and de-
mand pattern. Thus, we conclude that resource supply
(number of resource providers) and demand (number of
resource consumers and QoS constraint preference) pat-
tern can determine the resource owner’s overall incen-
tive and his resource usage scenario.

We measured end-users QoS satisfaction in terms of
the average response time and the average budget spent
under OFC and OFT. We observed that the end-users re-
ceived better average response times (excluding rejected
jobs) when they sought OFT (scenario-3) for their jobs
as compared to OFC (scenario-1). At LANL Origin (ex-
cluding rejected jobs) the average response time for the
users was 7.865 × 103 simulation seconds (scenario-1)
which reduced to 6.201 × 103 for OFT. The end-users
spent more budget in the case of OFT as compared OFC
(refer to Fig.4(b)). This shows that users get more utility
for their QoS constraint parameter response time, if they
are ready to spend more budget.

Note that, Fig.4(b) and 4(c) includes the expected
budget spent and response time for the rejected jobs as-
suming they are executed on the originating resource.
Fig.4(a) depicts the number of jobs rejected across var-
ious resources during economy scheduling. During this
experiment, we also consider the average response time
and the average budget spent at the fastest (NASA iPSC)
and the cheapest resource (LANL Origin) when they are
not part of the Grid-Federation (without federation). We
observed that the average response time at NASA iPSC
was 1.268 × 103 (without federation) simulation sec-
onds as compared to 1.553 × 103 simulation seconds
during OFT (as part of federation) (refer to Fig.4(b)).
Accordingly, at LANL Origin the average budget spent
was 4.851 × 105 (without federation) Grid Dollars as
compared to 5.189 × 105 Grid Dollars during OFC (as
part of the federation) (refer to Fig.4(c)). Clearly, this
suggests that although federation-based resource shar-
ing leads to better optimization of objective functions
for the end-users across all the resources in the feder-
ation, sometimes it may be a disadvantage to the users
who belong to the most efficient resources (in terms of

(a) No. of Jobs Rejected vs. resource name

(b) Average response time (simulation units) vs. resource
name

(c) Average budget spent (grid dollars) vs. resource name

Figure 4. Supply and demand pattern plot
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(a) No. of messages (All users seek OFC) vs. resource
name

(b) No. of messages (50% seek OFC and 50% seek OFT)
vs. resource name

(c) No. of messages (All users seek OFT) vs. resource
name

Figure 5. Local and Remote message com-
plexity plot

time or cost).
In experiment 4, we measured the total number of

messages sent and received at various GFA’s in the fed-
eration with varying user population profiles. Fig.5
shows the plot of the local and remote message count at
various GFAs in the federation during economy schedul-
ing. During (Scenario-1) when all users seek OFC,
we observed that resource LANL Origin received maxi-
mum remote messages (6.407× 103 messages) (refer to
Fig.5(a)) followed with LANL CM5 ( the second cheap-
est). LANL Origin offers the least cost, so in this case
every GFA in the federation attempted to migrate their
jobs to LANL Origin, hence leading to increased in-
flow of the remote messages. While during (Scenario-3)
when all users seek OFT, we observed maximum num-
ber of remote messages at the resource NASA iPSC
(refer to Fig.5(c)) followed by SDSC SP2 (the sec-
ond fastest). Since, these resources were time-efficient,
therefore all the GFAs attempted to transfer their jobs
to them. The total messages involved during this case
was 1.964 × 104 as compared to 1.024 × 104 during
OFC. This happened because the resources LANL Ori-
gin and LANL CM5 had 2048 and 1024 computational
nodes and a fewer number of negotiation messages were
undertaken between GFA’s for the job scheduling. Dur-
ing (Scenario-2) when 50% seek OFC and 50% seek
OFT, we observed uniform distribution of local and re-
mote messages across the federation (refer to Fig.5(b)).
Hence, this suggests that the resource supply and de-
mand pattern directly determines the total number of
messages undertaken for the job scheduling in the com-
putational economy based grid-system.

In experiment 5, we measured the proposed system’s
scalability with increasing numbers of resource con-
sumers and resource providers. The first part of this ex-
periment is concerned with measuring the average num-
ber of messages required to schedule a job in the feder-
ation as the system scales. We observed that at a system
size of 10, OFC scheduling required an average 5.55 (re-
fer to Fig.6(a)) messages as compared to 10.65 for OFT
(refer to Fig.6(c)). As the system scaled to 50 resources,
the average message complexity per job increased to
17.38 for OFC as compared to 41.37 during OFT. This
suggests that OFC job scheduling required less number
of messages than OFT job scheduling, though we need
to do more work to determine whether this is due to other
factors such as budgets/deadlines assigned to jobs.

From figure 6, note that the average message count
grows relatively slowly to an exponential growth in the
system size. Thus, we can expect that the average mes-
sage complexity of the system is scalable to a large sys-
tem size. More analysis is required to understand the
message complexity in this case. However, the maxi-
mum message count suggests the some parts of the sys-
tem are not scalable and we need to do more work to
avoid these worst cases, e.g. by incorporating more in-
telligence into the shared federation directory.

Overall, we averaged the budget spent for all users in
the federation during OFC and without federation (in-

9



(a) No. of messages per job (All users seek OFC) vs. system
size

(b) No. of messages per job (50% seek OFC and 50%
seek OFT) vs. system size

(c) No. of messages per job (All users seek OFT) vs. sys-
tem size

Figure 6. Average message complexity per
job with increasing system size

dependent resources). We observed that during OFC,
average budget spent was 8.874 × 105 grid dollars (we
included the expected budget spent of rejected jobs on
the originating resource) as compared to 9.359 × 105

during without federation. However, at most popular re-
source (LANL Origin) the average budget spent for lo-
cal users during OFC was 5.189 × 105 as compared to
4.851×105 during without federation. Similarly, we av-
eraged the response time for all users in the federation
during OFT and without federation. We observed that
during OFT, average response time was 1.171×104 sim-
ulation units (we included the expected response time
of rejected jobs on the originating resource ) as com-
pared to 1.207 × 104 during without federation. But at
the most popular resource (NASA iPSC) the average re-
sponse time for local users during OFT was 1.553× 103

as compared to 1.268 × 103 during without federation.
Clearly, this suggests that while some users that are lo-
cal to the popular resources can experience higher cost
or longer delays during the federation based resource
sharing but the overall users’ QoS demands across the
federation are better met.

4 Conclusion

We proposed a new computational economy based
distributed cluster resource management system called
Grid-Federation. The federation uses agents that main-
tain and access a shared federation directory of resource
information. A cost-time scheduling algorithm was ap-
plied to simulate the scheduling of jobs using iterative
queries to the federation directory. Our results show
that, while the users from popular (fast/cheap) resources
have increased competition and therefor a harder time to
satisfy their QoS demands, in general the system pro-
vides an increased ability to satisfy QoS demands over
all users. The result of the QoS based resource allo-
cation algorithm indicates that the resource supply and
demand pattern affects resource provider’s overall in-
centive. Clearly, if all users are seeking either time or
cost optimization then the slowest or most expensive re-
source owners will not benefit as much. However if there
is a mix of users, some seeking time and some seeking
cost optimization then all resource providers gain some
benefit from the federation. In our future work we will
study to what extent the user profile can change and how
pricing polices for resources leads to varied utility of the
system. We will also study how the shared federation
directory can be dynamically updated with these pricing
policies which can lead to co-ordinated QoS scheduling.

We analyzed how the resource supply and demand
pattern affects the system scalability/performance in
terms of total message complexity. In general, the cost-
time scheduling heuristic does not lead to excessive mes-
sages, i.e. to excessive directory accesses and we ex-
pect the system to be scalable. However it is clear that
popular resources can become bottlenecks in the system
and so we intend to research ways to avoid such bottle-
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necking behavior, principally by using coordination via
the shared federation directory. Overall, the proposed
Grid-Federation, in conjunction with a scalable, shared,
federation directory, is a favourable model for building
large scale grid systems.
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