
The University of Melbourne
Department of Computer Science and Software Engineering

433-254 Software Design
Semester 2, 2003

Answers for Tutorial 7

Week 8

1. What are exceptions and how are they handled in Java? Give an example.

Sample Answer:

If a Java program attempts to carry out an illegal operation at runtime, it does not
necessarily halt its processing at that point. In most cases, the Java Virtual
Machine provides the possibility of catching the problem and recovering from it.
To emphasize that such problems are not fatal, the term exception is used rather
than error.

Java exception handling provides a systematic way for the user to respond to
runtime errors and to decide on an appropriate response rather than simply
letting the program come to a halt.

Without having an exception handling system built-in to the language, you would
have to write your own routines to validate data and handle all the other possible
runtime situations before they cause a halt in your program.

For example, in the following code we create a special method to test if a
St r i ng holds a valid integer value before the string goes to the par seI nt
method.

St r i ng st r = get Par amet er (" dat ") ;
 i f (t est I f I nt (s t r))
 I nt eger . par seI nt (st r) ;
 el se
 {
 Er r or Fl ag = MY_ERROR_BAD_FORMAT;
 r et ur n - 1;
 }
 bool ean t est I f I nt (St r i ng st r)
 {
 . . . code t o t est char act er s f or number s . .
 }
 . . .

Fortunately, we can instead use the Java t r y{ } cat ch(Except i on e) { }
operation to handle exceptions. In the following code segment, for example, we
surround the par seI nt method invocation with a t r y- cat ch pair.

t r y
 {
 i nt dat a =
 I nt eger . par seI nt (get Par amet er (" dat ") , 10) ;

 aFunct i onSet up(dat a) ;
 } cat ch (Number For mat Except i on e)
 {
 dat a = - 1;
 }

Thus, if the string passed to par sI nt does not represent a valid integer
number, par seI nt throws an instance of the class
Number For mat Except i on, which will cause the program execution to
jump to the first line in the cat ch block.

The par seI nt method in class I nt eger is written something like the
following:

 publ i c st at i c i nt par seI nt (St r i ng s, i nt r adi x)
 t hr ows Number For mat Except i on
 {
 . . .
 . . . code t o check i f t he st r i ng i s a number and i f
 . . . i t i sn' t t hen:
 t hr ow new Number For mat Except i on(s) ;
 . . .
 }

The t hr ows Number For mat Except i on phrase in the method
signature indicates that the method includes a t hr ow statement for this
exception.

We see that t hr ow statement actually creates an instance of the
exception and causes the routine to return with the exception thrown. The
constructors for an exception may include arguments with which you can
pass useful information about the circumstances of the exception. The
catch code can then examine this info using methods for the particular
type of exception.

Java divides exceptions into two categories:

1. General exceptions
2. Run-time exceptions

The general exceptions must be handled, i.e. a t r y- cat ch must either
be nested around the call to the method that throws the exception or the
method must explicitly indicate with t hr ows that it can generate this
exception. (Then other methods that invoke this method must catch the
exception.) The compiler will throw an error message if it detects an
uncaught exception and will not compile the file.

The run-time exceptions do not have to be caught. This avoids requiring
that a t r y- cat ch be place around, for example, every integer divide

operation to catch a divide by zero or around every array variable to
watch for indices going out of bounds.

However, you should handle possible run-time exceptions if you think
there is a reasonable chance of one occurring.

You can use multiple catch clauses to catch the different kinds of
exceptions that code can throw as shown in this snippet:

You can use multiple catch clauses to catch the different kinds of
exceptions that code can throw as shown in this snippet:

t r y
 {
 . . . some code. . .
 } cat ch (Number For mat Except i on e)
 {
 . . .
 } cat ch (I OExcept i on e)
 {
 . . .
 } cat ch (Except i on e)
 {
 . . .
 } f i nal l y / / opt i onal
 {
 . . . t hi s code al ways execut ed even i f
 no except i ons. . .
 }

Here there are two cat ch statements for Except i on subclasses and
one for any other Except i on instance. Regardless of whether the code
generates an exception or not, the f i nal l y code block will be executed.

Exception handling is thus based on t r y- cat ch operation, the t hr ows
and t hr ows keywords, and the Except i on class and its subclasses.

2. While reading a file, how would you check whether you reached the end of the
file?

Sample Answer:

Some methods simply return -1 (e.g. r ead() in class Dat aI nput St r eam or
class Fi l eReader) if there are no more data because the end of stream has
been reached.

Some other methods throw EOFException (e.g. r eadFul l y(byt e[] b) in
class Dat aI nput St r eam), if they reach end of file before completing their read.

3. How do we design, create, and access a package? Discuss with suitable

example.

Sample Answer:

A package is the Java version of a library. A package refers simply to a group of
related class files in the same directory. Each class file, however, includes a
package directive with that directory name at the top of the file.

For example, say that we put the files Test A. j ava and Test B. j ava into the
directory myPack , which is a sub-directory of myApps . So on a Windows
platform the file path looks like

 c: \ myApps\ myPack\ Test A. j ava

and

 c: \ myApps\ myPack\ Test B. j ava.

At the top of each file we put the statement

package myPack;

as shown in the following code:

myApps/myPack/TestA.java myApps/myPack/TestB.java

package myPack;

publ i c c l ass Test A
{
 publ i c i nt a;
 publ i c Test A(i nt ar g1)
 {
 a = ar g1;
 }
}

package myPack;

publ i c cl ass Test B
{
 publ i c doubl e x;
 publ i c Test B(doubl e y)
 {
 x = y;
 }
}

The i mpor t directive tells the compiler where to look for the class definitions
when it comes upon a class that it cannot find in the default j ava. l ang
package. A class that wants to potentially use any of the classes from myPack
package (i.e. TestA and TestB classes) may use an i mpor t statement like:

i mpor t myPack. * ;

But, if the class which is trying to call our TestA and/or TestB classes is not in
myApps directory then we need to tell the compiler were to look for myPack
package by including its absolute path into CLASSPATH environment variable:

set CLASSPATH=c:\myApps;$CLASSPATH

4. Discuss the various levels of access protection for packages and their
implications?

Sample Answer:

Basically, access control levels for packages follows the general access control
rules in Java, which are summerised in the following table:

Specifier class subclass package world

pr i vat e X

pr ot ect ed X X* X

publ i c X X X X

package X X

The first column indicates whether the class itself has access to the member
defined by the access specifier. As you can see, a class always has access to its
own members. The second column indicates whether subclasses of the class
(regardless of which package they are in) have access to the member. The third
column indicates whether classes in the same package as the class (regardless
of their parentage) have access to the member. The fourth column indicates
whether all classes have access to the member.

For more detailed discussion of access control levels and rules, please refer to:
http://java.sun.com/docs/books/tutorial/java/javaOO/accesscontrol.html

