
1

Design Patterns In Java Bob Tarr

The
State and Strategy

Patterns

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

22

The State PatternThe State Pattern

l Intent
é Allow an object to alter its behavior when its internal state changes. The

object will appear to change its class.

l Motivation

2

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

33

The State PatternThe State Pattern

l Applicability
Use the State pattern whenever:
é An object's behavior depends on its state, and it must change its behavior at

run-time depending on that state
é Operations have large, multipart conditional statements that depend on the

object's state. The State pattern puts each branch of the conditional in a
separate class.

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

44

The State PatternThe State Pattern

l Structure

3

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

55

The State PatternThe State Pattern

l Consequences
é Benefits

Ý Puts all behavior associated with a state into one object
Ý Allows state transition logic to be be incorporated into a state object rather than

in a monolithic if or switch statement
Ý Helps avoid inconsistent states since state changes occur by rebinding one

variable rather than several

é Liabilities
Ý Increased number of objects

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

66

State Pattern Example 1State Pattern Example 1

l Consider a class that has two methods, push() and pull(), whose
behavior changes depending on the state of the object

l To send the push and pull requests to the object, we'll use the
following GUI with "Push" and "Pull" buttons:

l The state of the object will be indicated by the color of the canvas
in the top part of the GUI

l The states are: black, red, blue and green

4

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

77

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l First, let's do this without the State pattern:

/**
 * Class ContextNoSP has behavior dependent on its state.
 * The push() and pull() methods do different things
 * depending on the state of the object.
 * This class does NOT use the State pattern.
*/
public class ContextNoSP extends Frame implements ActionListener {
 private Color state = null; // State attribute is a color

 // GUI attributes.
 private Button pushButton = new Button("Push Operation");
 private Button pullButton = new Button("Pull Operation");
 private Button exitButton = new Button("Exit");
 private Canvas canvas = new Canvas();

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

88

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 // Creates a new ContextNoSP with the specified state (color).
 public ContextNoSP(Color color) {
 super("State Pattern");
 state = color;
 setupWindow();
 }

 // Creates a new Context with the default state (color red).
 public ContextNoSP() {
 this(Color.red);
 }

 // Returns the state.
 public Color getState() {return state;}

 // Sets the state.
 public void setState(Color state) {this.state = state;}

5

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

99

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 /**
 * The push() method performs different actions depending
 * on the state of the object. Actually, right now
 * the only action is to make a state transition.
 * This state change is visually shown by changing the
 * background color of the canvas.
 */
 public void push() {
 if (state == Color.red) state = Color.blue;
 else if (state == Color.green) state = Color.black;
 else if (state == Color.black) state = Color.red;
 else if (state == Color.blue) state = Color.green;
 canvas.setBackground(state);
 }

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1010

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 /**
 * The pull() method performs different actions depending
 * on the state of the object. Actually, right now
 * the only action is to make a state transition.
 * This state change is visually shown by changing the
 * background color of the canvas.
 */
 public void pull() {
 if (state == Color.red) state = Color.green;
 else if (state == Color.green) state = Color.blue;
 else if (state == Color.black) state = Color.green;
 else if (state == Color.blue) state = Color.red;
 canvas.setBackground(state);
 }

6

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1111

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 // Setup GUI.
 private void setupWindow() {
 Panel topPanel = new Panel();
 add(BorderLayout.NORTH, topPanel);
 Panel bottomPanel = new Panel();
 add(BorderLayout.SOUTH, bottomPanel);
 topPanel.add(canvas);
 canvas.setSize(400, 400);
 canvas.setBackground(state);
 bottomPanel.add(pushButton);
 bottomPanel.add(pullButton);
 bottomPanel.add(exitButton);
 pushButton.addActionListener(this);
 pullButton.addActionListener(this);
 exitButton.addActionListener(this);
 pack();
 }

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1212

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 // Handle GUI actions.
 public void actionPerformed(ActionEvent event) {
 Object src = event.getSource();
 if (src == pushButton) push();
 else if (src == pullButton) pull();
 else if (src == exitButton) System.exit(0);
 }

 // Main method.
 public static void main(String[] argv) {
 ContextNoSP context = new ContextNoSP(Color.blue);
 context.setVisible(true);
 }

}

7

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1313

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l Now let's use the State pattern!
l Here's the class diagram:

RedState BlueState

GreenStateBlackState

StateContext state

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1414

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l First, we'll define the abstract State class:

/**
 * Abstract class which defines the interface for the
 * behavior of a particular state of the Context.
*/
abstract public class State {
 public abstract void handlePush(Context c);
 public abstract void handlePull(Context c);
 public abstract Color getColor();
}

l Next, we'll write concrete State classes for all the different states:
RedState, BlackState, BlueState and GreenState

8

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1515

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l For example, here's the BlackState class:

public class BlackState extends State {
 // Next state for the Black state:
 // On a push(), go to "red"
 // On a pull(), go to "green"

 public void handlePush(Context c) {
 c.setState(new RedState());
 }

 public void handlePull(Context c) {
 c.setState(new GreenState());
 }

 public Color getColor() {return (Color.black);}
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1616

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l And, here's the new Context class that uses the State pattern and
the State classes:

/**
 * Class Context has behavior dependent on its state.
 * This class uses the State pattern.
 * Now when we get a pull() or push() request, we
 * delegate the behavior to our contained state object!
*/
public class Context extends Frame implements ActionListener {
 private State state = null; // State attribute

 // GUI attributes.
 private Button pushButton = new Button("Push Operation");
 private Button pullButton = new Button("Pull Operation");
 private Button exitButton = new Button("Exit");
 private Canvas canvas = new Canvas();

9

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1717

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 // Creates a new Context with the specified state.
 public Context(State state) {
 super("State Pattern");
 this.state = state;
 setupWindow();
 }

 // Creates a new Context with the default state.
 public Context() {
 this(new RedState());
 }

 // Returns the state.
 public State getState() {return state;}

 // Sets the state.
 public void setState(State state) {this.state = state;}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1818

State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

 // setupWindow() and actionPerformed() methods the same as before.

 /**
 * The push() method performs different actions depending
 * on the state of the object. Using the State pattern,
 * we delegate this behavior to our contained state object.
 * Any state change is visually shown by changing the
 * background color of the canvas.
 */
 public void push() {
 state.handlePush(this);
 canvas.setBackground(state.getColor());
 }

10

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

1919

 /**
 * The pull() method performs different actions depending
 * on the state of the object. Using the State pattern,
 * we delegate this behavior to our contained state object.
 * Any state change is visually shown by changing the
 * background color of the canvas.
 */
 public void pull() {
 state.handlePull(this);
 canvas.setBackground(state.getColor());
 }

 // Main method.
 public static void main(String[] argv) {
 Context context = new Context(new BlueState());
 context.setVisible(true);
 }
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2020

The State PatternThe State Pattern

l Implementation Issues
é Who defines the state transitions?

Ý The Context class => ok for simple situations
Ý The ConcreteState classes => generally more flexible, but causes

implementation dependencies between the ConcreteState classes
Ý Example 1 has the ConcreteState classes define the state transitions

é When are the ConcreteState objects created?
Ý Create ConcreteState objects as needed
Ý Create all ConcreteState objects once and have the Context object keep

references to them
Ý Example 1 creates them as needed

é Can't we just use a state-transition table for all this?
Ý Harder to understand
Ý Difficult to add other actions and behavior

11

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2121

State Pattern Example 2State Pattern Example 2

l Situation: A bank account can change from an open account to a
closed account and back to an open account again. The behavior
of the two types of accounts is different.

l Solution: Use the State pattern!

ClosedStateOpenState

AccountStateAccount state

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2222

State Pattern Example 3 - SPOPState Pattern Example 3 - SPOP

l This example comes from Roger Whitney, San Diego State
University

l Consider a simplified version of the Post Office Protocol used to
download e-mail from a mail server

l Simple POP (SPOP) supports the following command:
é USER username

Ý The USER command with a username must be the first command issued
é PASS password

Ý The PASS command with a password or the QUIT command must come after
USER. If the username and password are valid, then the user can use other
commands.

é LIST <message number>
Ý The LIST command returns the size of all messages in the mail box. If the

optional message number is specified, then it returns the size of that message.

12

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2323

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

é RETR <message number>
Ý The RETR command retrieves all message in the mail box. If the optional

message number is specified, then it retrieves that message.

é QUIT
Ý The QUIT command updates the mail box to reflect transactions taken, then

logs the user out.

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2424

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here's a version of an SPop class without using the State pattern:

public class SPop {
 static final int QUIT = 1;
 static final int HAVE_USER_NAME = 2;
 static final int START = 3;
 static final int AUTHORIZED = 4;
 private int state = START;
 String userName;
 String password;

13

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2525

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

 public void user(String userName) {
 switch (state) {
 case START: {
 this.userName = userName;
 state = HAVE_USER_NAME;
 break;
 }
 default: { // Invalid command
 sendErrorMessageOrWhatEver();
 endLastSessionWithoutUpdate();
 userName = null;
 password = null;
 state = START;
 }
 }
 }

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2626

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

 public void pass(String userName) {
 switch (state) {
 case HAVE_USER_NAME: {
 this.password = password;
 if (validateUser())
 state = AUTHORIZED;
 else {
 sendErrorMessageOrWhatEver();
 userName = null;
 password = null;
 state = START;
 }
 }

14

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2727

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

 default: { // Invalid command
 sendErrorMessageOrWhatEver();
 endLastSessionWithoutUpdate();
 state = START;
 }
 }
 }
 ...
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2828

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Now let's use the State pattern!
l Here's the class diagram:

HaveUserName Authorized

QuitStart

SPop state SPopState

15

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

2929

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l First, we'll define the SPopState class. Notice that this class is a
concrete class that defines default actions.

public class SPopState {
 public SPopState user(String userName) { default action here }

 public SPopState pass(String password) { default action here }

 public SPopState list(int messageNumber) { default action here }

 public SPopState retr(int messageNumber) { default action here }

 public SPopState quit() { default action here }
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3030

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here’s the Start class:

public class Start extends SPopState {

 public SPopState user(String userName) {
 return new HaveUserName(userName);
 }

}

16

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3131

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here’s the HaveUserName class:

public class HaveUserName extends SPopState {

 String userName;

 public HaveUserName(String userName) {
 this.userName = userName;
 }

 public SPopState pass(String password) {
 if (validateUser(userName, password)
 return new Authorized(userName);
 else
 return new Start();
 }
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3232

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Finally, here is the SPop class that uses these state classes:

public class SPop {
 private SPopState state = new Start();

 public void user(String userName) {
 state = state.user(userName);
 }

 public void pass(String password) {
 state = state.pass(password);
 }

 public void list(int messageNumber) {
 state = state.list(messageNumber);
 }
 ...
}

17

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3333

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Note, that in this example, the state classes specify the next state
l We could have the SPop class itself determine the state transition

(the state classes now return true of false):

public class SPop {
 private SPopState state = new Start();
 public void user(String userName) {
 state.user(userName);
 state = new HaveUserName(userName);
 }
 public void pass(String password) {
 if (state.pass(password))
 state = new Authorized();
 else
 state = new Start();
 }
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3434

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Multiple instances of SPop could share state objects if the state
objects have no required instance variables or the state objects
store their instance variables elsewhere

l Such sharing of objects is an example of the Flyweight Pattern
l How can the state object store its state elsewhere?

é Have the Context store this data and pass it to the state object (a push
model)

é Have the Context store this data and have the state object retrieve it when
needed (a pull model)

18

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3535

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here's an example of the Context storing the state and passing it
to the state objects:

public class SPop {
 private SPopState state = new Start();
 String userName;
 String password;

 public void user(String newName) {
 this.userName = newName;
 state.user(newName);
 }

 public void pass(String password) {
 state.pass(userName, password);
 }
 ...
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3636

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here the Context stores the data and the state objects retrieve it:

public class SPop {
 private SPopState state = new Start();
 String userName;
 String password;

 public String getUserName() {return userName;}

 public String getPassword() {return password;}

 public void user(String newName) {
 this.userName = newName ;
 state.user(this);
 }
 …
}

19

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3737

State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l And here is how the HaveUserName state object retrieves state in
its user() method:

public class HaveUserName extends SPopState {

 public SPopState user(SPop mailServer) {
 String userName = mailServer.getUserName();
 ...
 }
 ...
}

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3838

The Strategy PatternThe Strategy Pattern

l Intent
é Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

l Motivation

20

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

3939

The Strategy PatternThe Strategy Pattern

l Applicability
Use the Strategy pattern whenever:

Ý Many related classes differ only in their behavior
Ý You need different variants of an algorithm
Ý An algorithm uses data that clients shouldn't know about. Use the Strategy

pattern to avoid exposing complex, algorithm-specific data structures.
Ý A class defines many behaviors, and these appear as multiple conditional

statements in its operations. Instead of many conditionals, move related
conditional branches into their own Strategy class.

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4040

The Strategy PatternThe Strategy Pattern

l Structure

21

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4141

The Strategy PatternThe Strategy Pattern

l Consequences
é Benefits

Ý Provides an alternative to subclassing the Context class to get a variety of
algorithms or behaviors

Ý Eliminates large conditional statements
Ý Provides a choice of implementations for the same behavior

é Liabilities
Ý Increases the number of objects
Ý All algorithms must use the same Strategy interface

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4242

Strategy Pattern Example 1Strategy Pattern Example 1

l Situation: A class wants to decide at run-time what algorithm it
should use to sort an array. Many different sort algorithms are
already available.

l Solution: Encapsulate the different sort algorithms using the
Strategy pattern!

QuickSort

sort()

BubbleSort

sort()

SortArray

sort()

sortStrategy
SortStrategy

sort()

InsertionSort

sort()

22

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4343

Strategy Pattern Example 2Strategy Pattern Example 2

l Situation: A GUI container object wants to decide at run-time
what strategy it should use to layout the GUI components it
contains. Many different layout strategies are already available.

l Solution: Encapsulate the different layout strategies using the
Strategy pattern!

l Hey! This is what the Java AWT does with its LayoutManagers!

BorderLayoutFlowLayout

Container layoutManager LayoutManager

CardLayout

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4444

Strategy Pattern Example 2 (Continued)Strategy Pattern Example 2 (Continued)

l Some client code:

 Frame f = new Frame();
 f.setLayout(new FlowLayout());
 f.add(new Button(“Press”));

23

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4545

Strategy Pattern Example 3Strategy Pattern Example 3

l Situation: A GUI text component object wants to decide at run-
time what strategy it should use to validate user input. Many
different validation strategies are possible: numeric fields,
alphanumeric fields, telephone-number fields, etc.

l Solution: Encapsulate the different input validation strategies
using the Strategy pattern!

AlphanumericNumeric

TextComponent validator Validator

TelNumber

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4646

Strategy Pattern Example 3 (Continued)Strategy Pattern Example 3 (Continued)

l This is the technique used by the Java Swing GUI text
components. Every text component has a reference to a
document model which provides the required user input
validation strategy.

24

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4747

The Null Object PatternThe Null Object Pattern

l Sometimes the Context may not want to use the strategy provided
by its contained Strategy object. That is, the Context wants a “do-
nothing” strategy.

l One way to do this is to have the Context assign a null reference
to its contained Strategy object. In this case, the Context must
always check for this null value:

 if (strategy != null)
 strategy.doOperation();

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4848

The Null Object PatternThe Null Object Pattern

l Another way to accomplish this is to actually have a “do-nothing”
strategy class which implements all the required operations of a
Strategy object, but these operations do nothing. Now clients do
not have to distinguish between strategy objects which actually do
something useful and those that do nothing.

l Using a “do-nothing” object for this purpose is known as the Null
Object Pattern

25

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4949

The Strategy PatternThe Strategy Pattern

l Note the similarities between the State and Strategy patterns! The
difference is one of intent.

é A State object encapsulates a state-dependent behavior (and possibly state
transitions)

é A Strategy object encapsulates an algorithm

l And they are both examples of Composition with Delegation!

