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The State PatternThe State Pattern

l Intent
é Allow an object to alter its behavior when its internal state changes.  The

object will appear to change its class.

l Motivation
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The State PatternThe State Pattern

l Applicability
Use the State pattern whenever:
é An object's behavior depends on its state, and it must change its behavior at

run-time depending on that state
é Operations have large, multipart conditional statements that depend on the

object's state. The State pattern puts each branch of the conditional in a
separate class.
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The State PatternThe State Pattern

l Structure
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The State PatternThe State Pattern

l Consequences
é Benefits

Ý Puts all behavior associated with a state into one object
Ý Allows state transition logic to be be incorporated into a state object rather than

in a monolithic if or switch statement
Ý Helps avoid inconsistent states since state changes occur by rebinding one

variable rather than several

é Liabilities
Ý Increased number of objects
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State Pattern Example 1State Pattern Example 1

l Consider a class that has two methods, push() and pull(), whose
behavior changes depending on the state of the object

l To send the push and pull requests to the object, we'll use the
following GUI with "Push" and "Pull" buttons:

l The state of the object will be indicated by the color of the canvas
in the top part of the GUI

l The states are: black, red, blue and green
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l First, let's do this without the State pattern:

/**
  * Class ContextNoSP has behavior dependent on its state.
  * The push() and pull() methods do different things
  *   depending on the state of the object.
  * This class does NOT use the State pattern.
*/
public class ContextNoSP extends Frame implements ActionListener  {
  private Color state = null;  // State attribute is a color

  // GUI attributes.
  private Button pushButton = new Button("Push Operation");
  private Button pullButton = new Button("Pull Operation");
  private Button exitButton = new Button("Exit");
  private Canvas canvas = new Canvas();
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

   // Creates a new ContextNoSP with the specified state (color).
  public ContextNoSP(Color color)  {
    super("State Pattern");
    state = color;
    setupWindow();
  }

  // Creates a new Context with the default state (color red).
  public ContextNoSP() {
    this(Color.red);
  }

  // Returns the state.
  public Color getState()  {return state;}

  // Sets the state.
  public void setState(Color state)  {this.state = state;}
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

    /**
    * The push() method performs different actions depending
    *   on the state of the object.  Actually, right now
    *   the only action is to make a state transition.
    * This state change is visually shown by changing the
    *   background color of the canvas.
  */
  public void push() {
    if (state == Color.red) state = Color.blue;
    else if (state == Color.green) state = Color.black;
    else if (state == Color.black) state = Color.red;
    else if (state == Color.blue) state = Color.green;
    canvas.setBackground(state);
  }
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

  /**
    * The pull() method performs different actions depending
    *   on the state of the object.  Actually, right now
    *   the only action is to make a state transition.
    * This state change is visually shown by changing the
    *   background color of the canvas.
  */
  public void pull() {
    if (state == Color.red) state = Color.green;
    else if (state == Color.green) state = Color.blue;
    else if (state == Color.black) state = Color.green;
    else if (state == Color.blue) state = Color.red;
    canvas.setBackground(state);
  }
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

   // Setup GUI.
  private void setupWindow() {
    Panel topPanel = new Panel();
    add(BorderLayout.NORTH, topPanel);
    Panel bottomPanel = new Panel();
    add(BorderLayout.SOUTH, bottomPanel);
    topPanel.add(canvas);
    canvas.setSize(400, 400);
    canvas.setBackground(state);
    bottomPanel.add(pushButton);
    bottomPanel.add(pullButton);
    bottomPanel.add(exitButton);
    pushButton.addActionListener(this);
    pullButton.addActionListener(this);
    exitButton.addActionListener(this);
    pack();
  }
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

  // Handle GUI actions.
  public void actionPerformed(ActionEvent event) {
    Object src = event.getSource();
    if (src == pushButton) push();
    else if (src == pullButton) pull();
    else if (src == exitButton) System.exit(0);
  }

  // Main method.
  public static void main(String[] argv) {
    ContextNoSP context = new ContextNoSP(Color.blue);
    context.setVisible(true);
  }

}
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l Now let's use the State pattern!
l Here's the class diagram:

RedState BlueState

GreenStateBlackState

StateContext state
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l First, we'll define the abstract State class:

/**
  * Abstract class which defines the interface for the
  *   behavior of a particular state of the Context.
*/
abstract public class State {
  public abstract void handlePush(Context c);
  public abstract void handlePull(Context c);
  public abstract Color getColor();
}

l Next, we'll write concrete State classes for all the different states:
RedState, BlackState, BlueState and GreenState
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l For example, here's the BlackState class:

public class BlackState extends State {
  // Next state for the Black state:
  //   On a push(), go to "red"
  //   On a pull(), go to "green"

  public void handlePush(Context c) {
    c.setState(new RedState());
  }

  public void handlePull(Context c) {
    c.setState(new GreenState());
  }

  public Color getColor() {return (Color.black);}
}
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

l And, here's the new Context class that uses the State pattern and
the State classes:

/**
  * Class Context has behavior dependent on its state.
  * This class uses the State pattern.
  * Now when we get a pull() or push() request, we
  *   delegate the behavior to our contained state object!
*/
public class Context extends Frame implements ActionListener  {
  private State state = null;  // State attribute

  // GUI attributes.
  private Button pushButton = new Button("Push Operation");
  private Button pullButton = new Button("Pull Operation");
  private Button exitButton = new Button("Exit");
  private Canvas canvas = new Canvas();
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

   // Creates a new Context with the specified state.
  public Context(State state) {
    super("State Pattern");
    this.state = state;
    setupWindow();
  }

  // Creates a new Context with the default state.
  public Context() {
    this(new RedState());
  }

  // Returns the state.
  public State getState() {return state;}

  // Sets the state.
  public void setState(State state) {this.state = state;}
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State Pattern Example 1 (Continued)State Pattern Example 1 (Continued)

  // setupWindow() and actionPerformed() methods the same as before.

  /**
    * The push() method performs different actions depending
    *   on the state of the object.  Using the State pattern,
    *   we delegate this behavior to our contained state object.
    * Any state change is visually shown by changing the
    *   background color of the canvas.
  */
  public void push() {
    state.handlePush(this);
    canvas.setBackground(state.getColor());
  }
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  /**
    * The pull() method performs different actions depending
    *  on the state of the object.  Using the State pattern,
    *  we delegate this behavior to our contained state object.
    * Any state change is visually shown by changing the
    *   background color of the canvas.
  */
  public void pull() {
    state.handlePull(this);
    canvas.setBackground(state.getColor());
  }

  // Main method.
  public static void main(String[] argv) {
    Context context = new Context(new BlueState());
    context.setVisible(true);
  }
}
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The State PatternThe State Pattern

l Implementation Issues
é Who defines the state transitions?

Ý The Context class => ok for simple situations
Ý The ConcreteState classes => generally more flexible, but causes

implementation dependencies between the ConcreteState classes
Ý Example 1 has the ConcreteState classes define the state transitions

é When are the ConcreteState objects created?
Ý Create ConcreteState objects as needed
Ý Create all ConcreteState objects once and have the Context object keep

references to them
Ý Example 1 creates them as needed

é Can't we just use a state-transition table for all this?
Ý Harder to understand
Ý Difficult to add other actions and behavior
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State Pattern Example 2State Pattern Example 2

l Situation: A bank account can change from an open account to a
closed account and back to an open account again.  The behavior
of the two types of accounts is different.

l Solution: Use the State pattern!

ClosedStateOpenState

AccountStateAccount state
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State Pattern Example 3 - SPOPState Pattern Example 3 - SPOP

l This example comes from Roger Whitney, San Diego State
University

l Consider a simplified version of the Post Office Protocol used to
download e-mail from a mail server

l Simple POP (SPOP) supports the following command:
é USER username

Ý The USER command with a username must be the first command issued
é PASS password

Ý The PASS command with a password or the QUIT command must come after
USER.  If the username and password are valid, then the user can use other
commands.

é LIST <message number>
Ý The LIST command returns the size of all messages in the mail box.  If the

optional message number is specified, then it returns the size of that message.
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

é RETR <message number>
Ý The RETR command retrieves all message in the mail box. If the optional

message number is specified, then it retrieves that message.

é QUIT
Ý The QUIT command updates the mail box to reflect transactions taken, then

logs the user out.
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here's a version of an SPop class without using the State pattern:

public class SPop {
  static final int QUIT = 1;
  static final int HAVE_USER_NAME = 2;
  static final int START = 3;
  static final int AUTHORIZED = 4;
  private int state = START;
  String userName;
  String password;
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

  public void user(String userName) {
    switch (state) {
      case START: {
        this.userName = userName;
        state = HAVE_USER_NAME;
        break;
      }
      default: { // Invalid command
        sendErrorMessageOrWhatEver();
        endLastSessionWithoutUpdate();
        userName = null;
        password = null;
        state = START;
      }
    }
  }
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

  public void pass(String userName) {
    switch (state) {
      case HAVE_USER_NAME: {
        this.password = password;
        if (validateUser())
          state = AUTHORIZED;
        else {
          sendErrorMessageOrWhatEver();
          userName = null;
          password = null;
          state = START;
        }
      }
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

      default: {  // Invalid command
        sendErrorMessageOrWhatEver();
        endLastSessionWithoutUpdate();
        state = START;
      }
    }
  }
  ...
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Now let's use the State pattern!
l Here's the class diagram:

HaveUserName Authorized

QuitStart

SPop state SPopState
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l First, we'll define the SPopState class.  Notice that this class is a
concrete class that defines default actions.

public class SPopState {
  public SPopState user(String userName) { default action here }

  public SPopState pass(String password) { default action here }

  public SPopState list(int messageNumber) { default action here }

  public SPopState retr(int messageNumber) { default action here }

  public SPopState quit() { default action here }
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here’s the Start class:

public class Start extends SPopState {

  public SPopState user(String userName) {
    return new HaveUserName(userName);
  }

}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here’s the HaveUserName class:

public class HaveUserName extends SPopState {

  String userName;

  public HaveUserName(String userName) {
    this.userName = userName;
  }

  public SPopState pass(String password) {
    if (validateUser(userName, password)
       return new Authorized(userName);
    else
       return new Start();
  }
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Finally, here is the SPop class that uses these state classes:

public class SPop {
  private SPopState state = new Start();

  public void user(String userName) {
    state = state.user(userName);
  }

  public void pass(String password) {
    state = state.pass(password);
  }

  public void list(int messageNumber) {
    state = state.list(messageNumber);
  }
  ...
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Note, that in this example, the state classes specify the next state
l We could have the SPop class itself determine the state transition

(the state classes now return true of false):

public class SPop {
  private SPopState state = new Start();
  public void user(String userName) {
    state.user(userName);
    state = new HaveUserName(userName);
  }
  public void pass(String password) {
    if (state.pass(password))
      state = new Authorized();
    else
      state = new Start();
  }
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Multiple instances of SPop could share state objects if the state
objects have no required instance variables or the state objects
store their instance variables elsewhere

l Such sharing of objects is an example of the Flyweight Pattern
l How can the state object store its state elsewhere?

é Have the Context store this data and pass it to the state object (a push
model)

é Have the Context store this data and have the state object retrieve it when
needed ( a pull model)
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here's an example of  the Context storing the state and passing it
to the state objects:

public class SPop {
  private SPopState state = new Start();
  String userName;
  String password;

  public void user(String newName) {
    this.userName = newName;
    state.user(newName);
  }

  public void pass(String password) {
    state.pass(userName, password);
  }
  ...
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l Here the Context stores the data and the state objects retrieve it:

public class SPop {
  private SPopState state = new Start();
  String userName;
  String password;

  public String getUserName() {return userName;}

  public String getPassword() {return password;}

  public void user(String newName) {
    this.userName = newName ;
    state.user(this);
  }
  …
}
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State Pattern Example 3 - SPOP (Continued)State Pattern Example 3 - SPOP (Continued)

l And here is how the HaveUserName state object retrieves state in
its user() method:

public class HaveUserName extends SPopState {

  public SPopState user(SPop mailServer) {
    String userName = mailServer.getUserName();
    ...
  }
  ...
}
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The Strategy PatternThe Strategy Pattern

l Intent
é Define a family of algorithms, encapsulate each one, and make them

interchangeable.  Strategy lets the algorithm vary independently from
clients that use it.

l Motivation
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The Strategy PatternThe Strategy Pattern

l Applicability
Use the Strategy pattern whenever:

Ý Many related classes differ only in their behavior
Ý You need different variants of an algorithm
Ý An algorithm uses data that clients shouldn't know about. Use the Strategy

pattern to avoid exposing complex, algorithm-specific data structures.
Ý A class defines many behaviors, and these appear as multiple conditional

statements in its operations. Instead of many conditionals, move related
conditional branches into their own Strategy class.
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The Strategy PatternThe Strategy Pattern

l Structure



21

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4141

The Strategy PatternThe Strategy Pattern

l Consequences
é Benefits

Ý Provides an alternative to subclassing the Context class to get a variety of
algorithms or behaviors

Ý Eliminates large conditional statements
Ý Provides a choice of implementations for the same behavior

é Liabilities
Ý Increases the number of objects
Ý All algorithms must use the same Strategy interface

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4242

Strategy Pattern Example 1Strategy Pattern Example 1

l Situation: A class wants to decide at run-time what algorithm it
should use to sort an array.  Many different sort algorithms are
already available.

l Solution: Encapsulate the different sort algorithms using the
Strategy pattern!

QuickSort

sort( )

BubbleSort

sort( )

SortArray

sort( )

sortStrategy
SortStrategy

sort( )

InsertionSort

sort( )



22

 Bob TarrDesign Patterns In Java
The State and Strategy Patterns

4343

Strategy Pattern Example 2Strategy Pattern Example 2

l Situation: A GUI container object wants to decide at run-time
what strategy it should use to layout the GUI components it
contains.  Many different layout strategies are already available.

l Solution: Encapsulate the different layout strategies using the
Strategy pattern!

l Hey!  This is what the Java AWT does with its LayoutManagers!

BorderLayoutFlowLayout

Container layoutManager LayoutManager

CardLayout
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Strategy Pattern Example 2 (Continued)Strategy Pattern Example 2 (Continued)

l Some client code:

  Frame f = new Frame();
  f.setLayout(new FlowLayout());
  f.add(new Button(“Press”));
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Strategy Pattern Example 3Strategy Pattern Example 3

l Situation: A GUI text component object wants to decide at run-
time what strategy it should use to validate user input.  Many
different validation strategies are possible: numeric fields,
alphanumeric fields, telephone-number fields, etc.

l Solution: Encapsulate the different input validation strategies
using the Strategy pattern!

AlphanumericNumeric

TextComponent validator Validator

TelNumber
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Strategy Pattern Example 3 (Continued)Strategy Pattern Example 3 (Continued)

l This is the technique used by the Java Swing GUI text
components.  Every text component has a reference to a
document model which provides the required user input
validation strategy.
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The Null Object PatternThe Null Object Pattern

l Sometimes the Context may not want to use the strategy provided
by its contained Strategy object.  That is, the Context wants a “do-
nothing” strategy.

l One way to do this is to have the Context assign a null reference
to its contained Strategy object.  In this case, the Context must
always check for this null value:

    if (strategy != null)
      strategy.doOperation();
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The Null Object PatternThe Null Object Pattern

l Another way to accomplish this is to actually have a “do-nothing”
strategy class which implements all the required operations of a
Strategy object, but these operations do nothing.  Now clients do
not have to distinguish between strategy objects which actually do
something useful and those that do nothing.

l Using a “do-nothing” object for this purpose is known as the Null
Object Pattern
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The Strategy PatternThe Strategy Pattern

l Note the similarities between the State and Strategy patterns!  The
difference is one of intent.

é A State object encapsulates a state-dependent behavior (and possibly state
transitions)

é A Strategy object encapsulates an algorithm

l And they are both examples of Composition with Delegation!


