The
Singleton
Pattern

Design Patternsn Java Bob Tarr

The Singleton Pattern

o Intent
= Ensure aclass only has one instance, and provide aglobal point of access
to it
e Motivation

= Sometimes we want just asingle instance of a classto exist in the system

= For example, we want just one window manager. Or just one factory for a
family of products.

= We need to have that one instance easily accessible

= And we want to ensure that additional instances of the class can not be
created

The Singleton Pattern Bob Tarr

Design Patterns In Java 5

The Singleton Pattern

e Structure

Singleton

=]

static Instance(y ©¢-—--4---—-—-——--——4 retumn uniguelnstance
SingletonOperationy)
GetSingletonDatal}

stafic uniquelnstance
singlatonliata

e Consequences
= Benefits
- Controlled access to sole instance
- Permits a variable number of instances

The Singleton Pattern Bob Tarr

Design Patterns In Java 3

Singleton With No Subclassing

e First, let'slook at the case where we are not concerned with
subclassing the Singleton class

o Well use astatic method to allow clientsto get areference to the
single instance

/**

* Class Singleton is an inplenmentation of a class that
* only allows one instantiation.

*/

public class Singleton {

/1 The private reference to the one and only instance.
private static Singleton uniquelnstance = null;

/1 An instance attribute.
private int data = O;

The Singleton Pattern
4

Design Patterns In Java Bob Tarr

Singleton With No Subclassing

/**
* Returns a reference to the single instance.

* Creates the instance if it does not yet exist.
* (This is called lazy instantiation.)

*/
public static Singleton instance() {
i f (uni quel nstance == null) uni quel nstance = new Si ngl eton();
return uni quel nstance;
}
/**

* The Singleton Constructor.

* Note that it is private!

* No client can instantiate a Singleton object!
*/

private Singleton() {}

/1 Accessors and nutators here!

}
Design Patterns In Java TheSmgIeltSon Pattern Bob Tarr
Singleton With No Subclassing
e Here'satest program:
public class TestSingleton {
public static void main(String args[]) {
/1l Get a reference to the single instance of Singleton.
Singleton s = Singleton.instance();
/1 Set the data val ue.
s. set Data(34);
Systemout.printin("First reference: " + s);
Systemout.printIn("Singleton data value is: " + s.getData());
Design Patterns In Java TheSingIeton Pattern Bob Tarr

6

Singleton With No Subclassing

/'l Get another reference to the Singleton
/1 1s it the sane object?

s = null;

s = Singleton.instance();

System out. println("\nSecond reference: " + s);

Systemout.printIn("Singleton data value is: " + s.getData());
}

}
e And the test program output:

First reference: Singleton@cc810
Singl eton data value is: 34

Second reference: Singleton@cc810
Singl eton data value is: 34

The Singleton Pattern

Design Patterns In Java 7

Bob Tarr

Singleton With Subclassing

¢ What if we want to be able to subclass Singleton and have the
single instance be a subclass instance?

e For example, suppose MazeFactory had subclasses
EnchantedM azeFactory and AgentM azeFactory. We want to
instantiate just one factory, either an EnchantedM azeFactory or
an AgentMazeFactory.

e How could we do this? Several methods:

= Have the static instance() method of MazeFactory determine the particular
subclassinstance to instantiate. This could be done via an argument or
environment variable. The constructors of the subclasses can not be
private in this case, and thus clients could instantiate other instances of the
subclasses.

= Have each subclass provide a static instance() method. Now the subclass
constructors can be private.

The Singleton Pattern

Design Patterns In Java 3

Bob Tarr

Singleton With Subclassing Method 1

e Method 1: Have the MazeFactory instance() method determine
the subclass to instantiate

/**

* Class MazeFactory is an inplenentation of a class that
* only allows one instantiation of a subclass.

*/

public abstract class MazeFactory {

/1 The private reference to the one and only instance.
private static MazeFactory uni quel nstance = null;

/1 The MazeFactory constructor.
// Note that it is private!
private MazeFactory() {}

The Singleton Pattern
9

Design Patterns In Java Bob Tarr

Singleton With Subclassing Method 1 (Continued)

/1 Return a reference to the single instance.
/1 1f instance not yet created, create "enchanted" as default.
public static MazeFactory instance() {

if (uniquelnstance == null) return instance("enchanted");

el se return uni quel nst ance;

/] Create the instance using the specified String nane.
public static MazeFactory instance(String nane) {
i f (uni quel nstance == null)
if (name.equal s("enchanted"))
uni quel nstance = new Enchant edMazeFactory();
el se if (nane.equal s("agent"))
uni quel nstance = new Agent MazeFactory();
return uniquel nstance;

}

Design Patterns In Java The Smgleton Pattern

10

Bob Tarr

Singleton With Subclassing Method 1 (Continued)

Client code to create factory the first time:

MazeFactory factory = MazeFactory.instance("enchanted");

Client code to access the factory:

MazeFactory factory = MazeFactory.instance();

¢ Note that to add another subclass requires changing the instance()
method!

¢ Also, note that the constructors of EnchantedM azeFactory and
AgentMazeFactory can not be private, since MazeFactory must
be able to instantiate them. Thus, clients could potentially
instantiate other instances of these subclasses.

The Singleton Pattern
11

Design Patterns In Java Bob Tarr

Singleton With Subclassing Method 1 (Continued)

e We could use Java class names as the argument to the instance()
method, yielding simpler code:

public static MazeFactory instance(String nanme) {
if (uniquelnstance == null)
uni quel nstance = Cl ass. f or Nane(nane). newl nst ance();
return uniquel nstance;

}

The Singleton Pattern
12

Design Patterns In Java Bob Tarr

Singleton With Subclassing Method 2

¢ Method 2: Have each subclass provide a static instance method()

/**

* Class MazeFactory is an inplenentation of a class that

* only allows one instantiation of a subclass. This version
* requires its subclasses to provide an inplenentation of

* a static instance() nethod.

*/

public abstract class MazeFactory {
/1l The protected reference to the one and only instance.
protected static MazeFactory uni quel nstance = null;

/1 The private MazeFactory constructor.
private MazeFactory() {}

/1 Return a reference to the single instance.
public static MazeFactory instance() {return uniquel nstance;}

}

Design Patterns In Java The Smgleton Pattern

13

Bob Tarr

Singleton With Subclassing Method 2 (Continued)

/**

* Cl ass EnchantedMazeFactory is an inplenmentation of a class
* that only allows one instantiation.

*/

public class EnchantedMazeFactory extends MazeFactory {

/1 Return a reference to the single instance.
public static MazeFactory instance() {
i f (uni quel nstance == null)
uni quel nstance = new Enchant edMazeFactory();
return uni quel nstance;

/1 Private subclass constructor!!
private EnchantedMvazeFactory() {}

The Singleton Pattern

Design Patterns In Java
14

Bob Tarr

Singleton With Subclassing Method 2 (Continued)

o Client code to create factory thefirst time:

MazeFactory factory = Enchant edMazeFactory.instance();

e Client code to access the factory:

MazeFactory factory = MazeFactory.instance();

¢ Note that now the constructors of the subclasses are private. Only
one subclass instance can be created!

¢ Also note that the client can get anull referenceiif it invokes
MazeFactory. i nstance() beforethe unique subclass

instance isfirst created
¢ Finally, note that unigquel nstance is now protected!

The Singleton Pattern
15

Design Patterns In Java Bob Tarr

