
1

Design Patterns In Java Bob Tarr

The
Singleton
Pattern

 Bob TarrDesign Patterns In Java The Singleton Pattern
22

The Singleton PatternThe Singleton Pattern

l Intent
é Ensure a class only has one instance, and provide a global point of access

to it

l Motivation
é Sometimes we want just a single instance of a class to exist in the system

é For example, we want just one window manager. Or just one factory for a
family of products.

é We need to have that one instance easily accessible

é And we want to ensure that additional instances of the class can not be
created

2

 Bob TarrDesign Patterns In Java The Singleton Pattern
33

The Singleton PatternThe Singleton Pattern

l Structure

l Consequences
é Benefits

Ý Controlled access to sole instance

Ý Permits a variable number of instances

 Bob TarrDesign Patterns In Java The Singleton Pattern
44

Singleton With No SubclassingSingleton With No Subclassing

l First, let's look at the case where we are not concerned with
subclassing the Singleton class

l We'll use a static method to allow clients to get a reference to the
single instance

/**

 * Class Singleton is an implementation of a class that

 * only allows one instantiation.

 */

public class Singleton {

 // The private reference to the one and only instance.

 private static Singleton uniqueInstance = null;

 // An instance attribute.

 private int data = 0;

3

 Bob TarrDesign Patterns In Java The Singleton Pattern
55

Singleton With No SubclassingSingleton With No Subclassing

 /**

 * Returns a reference to the single instance.

 * Creates the instance if it does not yet exist.

 * (This is called lazy instantiation.)

 */

 public static Singleton instance() {

 if(uniqueInstance == null) uniqueInstance = new Singleton();

 return uniqueInstance;

 }

 /**

 * The Singleton Constructor.

 * Note that it is private!

 * No client can instantiate a Singleton object!

 */

 private Singleton() {}

 // Accessors and mutators here!

}

 Bob TarrDesign Patterns In Java The Singleton Pattern
66

Singleton With No SubclassingSingleton With No Subclassing

l Here's a test program:

public class TestSingleton {

 public static void main(String args[]) {

 // Get a reference to the single instance of Singleton.

 Singleton s = Singleton.instance();

 // Set the data value.

 s.setData(34);

 System.out.println("First reference: " + s);

 System.out.println("Singleton data value is: " + s.getData());

4

 Bob TarrDesign Patterns In Java The Singleton Pattern
77

Singleton With No SubclassingSingleton With No Subclassing

 // Get another reference to the Singleton.

 // Is it the same object?

 s = null;

 s = Singleton.instance();

 System.out.println("\nSecond reference: " + s);

 System.out.println("Singleton data value is: " + s.getData());

 }

}

l And the test program output:

First reference: Singleton@1cc810

Singleton data value is: 34

Second reference: Singleton@1cc810

Singleton data value is: 34

 Bob TarrDesign Patterns In Java The Singleton Pattern
88

Singleton With SubclassingSingleton With Subclassing

l What if we want to be able to subclass Singleton and have the
single instance be a subclass instance?

l For example, suppose MazeFactory had subclasses
EnchantedMazeFactory and AgentMazeFactory. We want to
instantiate just one factory, either an EnchantedMazeFactory or
an AgentMazeFactory.

l How could we do this? Several methods:
é Have the static instance() method of MazeFactory determine the particular

subclass instance to instantiate. This could be done via an argument or
environment variable. The constructors of the subclasses can not be
private in this case, and thus clients could instantiate other instances of the
subclasses.

é Have each subclass provide a static instance() method. Now the subclass
constructors can be private.

5

 Bob TarrDesign Patterns In Java The Singleton Pattern
99

Singleton With Subclassing Method 1Singleton With Subclassing Method 1

l Method 1: Have the MazeFactory instance() method determine
the subclass to instantiate

/**

 * Class MazeFactory is an implementation of a class that

 * only allows one instantiation of a subclass.

 */

public abstract class MazeFactory {

 // The private reference to the one and only instance.

 private static MazeFactory uniqueInstance = null;

 // The MazeFactory constructor.

 // Note that it is private!

 private MazeFactory() {}

 Bob TarrDesign Patterns In Java The Singleton Pattern
1010

Singleton With Subclassing Method 1 (Continued)Singleton With Subclassing Method 1 (Continued)

 // Return a reference to the single instance.

 // If instance not yet created, create "enchanted" as default.

 public static MazeFactory instance() {

 if (uniqueInstance == null) return instance("enchanted");

 else return uniqueInstance;

 }

 // Create the instance using the specified String name.

 public static MazeFactory instance(String name) {

 if(uniqueInstance == null)

 if (name.equals("enchanted"))

 uniqueInstance = new EnchantedMazeFactory();

 else if (name.equals("agent"))

 uniqueInstance = new AgentMazeFactory();

 return uniqueInstance;

 }

}

6

 Bob TarrDesign Patterns In Java The Singleton Pattern
1111

Singleton With Subclassing Method 1 (Continued)Singleton With Subclassing Method 1 (Continued)

l Client code to create factory the first time:

 MazeFactory factory = MazeFactory.instance("enchanted");

l Client code to access the factory:

 MazeFactory factory = MazeFactory.instance();

l Note that to add another subclass requires changing the instance()
method!

l Also, note that the constructors of EnchantedMazeFactory and
AgentMazeFactory can not be private, since MazeFactory must
be able to instantiate them. Thus, clients could potentially
instantiate other instances of these subclasses.

 Bob TarrDesign Patterns In Java The Singleton Pattern
1212

Singleton With Subclassing Method 1 (Continued)Singleton With Subclassing Method 1 (Continued)

l We could use Java class names as the argument to the instance()
method, yielding simpler code:

 public static MazeFactory instance(String name) {

 if (uniqueInstance == null)

 uniqueInstance = Class.forName(name).newInstance();

 return uniqueInstance;

 }

7

 Bob TarrDesign Patterns In Java The Singleton Pattern
1313

Singleton With Subclassing Method 2Singleton With Subclassing Method 2

l Method 2: Have each subclass provide a static instance method()

/**

 * Class MazeFactory is an implementation of a class that

 * only allows one instantiation of a subclass. This version

 * requires its subclasses to provide an implementation of

 * a static instance() method.

 */

public abstract class MazeFactory {

 // The protected reference to the one and only instance.

 protected static MazeFactory uniqueInstance = null;

 // The private MazeFactory constructor.

 private MazeFactory() {}

 // Return a reference to the single instance.

 public static MazeFactory instance() {return uniqueInstance;}

}

 Bob TarrDesign Patterns In Java The Singleton Pattern
1414

Singleton With Subclassing Method 2 (Continued)Singleton With Subclassing Method 2 (Continued)

/**

 * Class EnchantedMazeFactory is an implementation of a class

 * that only allows one instantiation.

 */

public class EnchantedMazeFactory extends MazeFactory {

 // Return a reference to the single instance.

 public static MazeFactory instance() {

 if(uniqueInstance == null)

 uniqueInstance = new EnchantedMazeFactory();

 return uniqueInstance;

 }

 // Private subclass constructor!!

 private EnchantedMazeFactory() {}

}

8

 Bob TarrDesign Patterns In Java The Singleton Pattern
1515

Singleton With Subclassing Method 2 (Continued)Singleton With Subclassing Method 2 (Continued)

l Client code to create factory the first time:

 MazeFactory factory = EnchantedMazeFactory.instance();

l Client code to access the factory:

 MazeFactory factory = MazeFactory.instance();

l Note that now the constructors of the subclasses are private. Only
one subclass instance can be created!

l Also note that the client can get a null reference if it invokes
MazeFactory.instance() before the unique subclass
instance is first created

l Finally, note that uniqueInstance is now protected!

