
1

Design Patterns In Java Bob Tarr

The
Composite

Pattern

 Bob TarrDesign Patterns In Java
The Composite Pattern

22

The Composite PatternThe Composite Pattern

l Intent
é Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects
uniformly. This is called recursive composition.

l Motivation

2

 Bob TarrDesign Patterns In Java
The Composite Pattern

33

The Composite PatternThe Composite Pattern

l Motivation

l Applicability
Use the Composite pattern when
é You want to represent part-whole hierarchies of objects
é You want clients to be able to ignore the difference between compositions

of objects and individual objects. Clients will treat all objects in the
composite structure uniformly.

 Bob TarrDesign Patterns In Java
The Composite Pattern

44

The Composite PatternThe Composite Pattern

l Structure

3

 Bob TarrDesign Patterns In Java
The Composite Pattern

55

The Composite PatternThe Composite Pattern

l Consequences
é Benefits

Ý It makes it easy to add new kinds of components
Ý It makes clients simpler, since they do not have to know if they are dealing

with a leaf or a composite component

é Liabilities
Ý It makes it harder to restrict the type of components of a composite

 Bob TarrDesign Patterns In Java
The Composite Pattern

66

The Composite PatternThe Composite Pattern

l Implementation Issues
é A composite object knows its contained components, that is, its children.

Should components maintain a reference to their parent component?
Ý Depends on application, but having these references supports the Chain of

Responsibility pattern

é Where should the child management methods (add(), remove(), getChild())
be declared?

Ý In the Component class: Gives transparency, since all components can be
treated the same. But it's not safe, since clients can try to do meaningless
things to leaf components at run-time.

Ý In the Composite class: Give safety, since any attempt to perform a child
operation on a leaf component will be caught at compile-time. But we lose
transparency, since now leaf and composite components have different
interfaces.

4

 Bob TarrDesign Patterns In Java
The Composite Pattern

77

The Composite PatternThe Composite Pattern

l Transparent vs. Safe

Leaf Composite

children

Component

operation()
add()
remove()
getChild()

TRANSPARENT

Leaf

Composite

add()
remove()
getChild(

childrenComponent

operation()

SAFE

 Bob TarrDesign Patterns In Java
The Composite Pattern

88

The Composite PatternThe Composite Pattern

l Implementation Issues
é Should Component maintain the list of components that will be used by a

composite object? That is, should this list be an instance variable of
Component rather than Composite?

Ý Better to keep this part of Composite and avoid wasting the space in every leaf
object

é Is child ordering important?
Ý Depends on application

é Who should delete components?
Ý Not a problem in Java! The garbage collector will come to the rescue!

é What's the best data structure to store components?
Ý Depends on application

5

 Bob TarrDesign Patterns In Java
The Composite Pattern

99

Composite Pattern Example 1Composite Pattern Example 1

l Situation: A GUI system has window objects which can contain
various GUI components (widgets) such as, buttons and text
areas. A window can also contain widget container objects which
can hold other widgets.

l Solution 1: What if we designed all the widgets with different
interfaces for "updating" the screen? We would then have to
write a Window update() method as follows:

public class Window {

 Button[] buttons;
 Menu[] menus;
 TextArea[] textAreas;
 WidgetContainer[] containers;

 Bob TarrDesign Patterns In Java
The Composite Pattern

1010

Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

 public void update() {
 if (buttons != null)
 for (int k = 0; k < buttons.length; k++)
 buttons[k].draw();
 if (menus != null)
 for (int k = 0; k < menus.length; k++)
 menus[k].refresh();
 // Other widgets handled similarly.
 if (containers != null)
 for (int k = 0; k < containers.length; k++)
 containers[k].updateWidgets();
 }
 ...
}

l Well, that looks particularly bad. It violates the Open-Closed
Principle. If we want to add a new kind of widget, we have to
modify the update() method of Window to handle it.

6

 Bob TarrDesign Patterns In Java
The Composite Pattern

1111

Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

l Solution 2: We should always try to program to an interface,
right? So, let's make all widgets support the Widget interface,
either by being subclasses of a Widget class or implementing a
Java Widget interface. Now our update() method becomes:

public class Window {
 Widget[] widgets;
 WidgetContainer[] containers;
 public void update() {
 if (widgets != null)
 for (int k = 0; k < widgets.length; k++)
 widgets[k].update();
 if (containers != null)
 for (int k = 0; k < containers.length; k++)
 containers[k].updateWidgets();
 }
}

 Bob TarrDesign Patterns In Java
The Composite Pattern

1212

Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

l That looks better, but we are still distinguishing between widgets
and widget containers

l Solution 3: The Composite Pattern!

Button WidgetContainer

componentsComponent

Menu

7

 Bob TarrDesign Patterns In Java
The Composite Pattern

1313

Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

l Now the update method looks like:

public class Window {
 Component[] components;

 public void update() {
 if (components != null)
 for (int k = 0; k < components.length; k++)
 components[k].update();
 }

}

 Bob TarrDesign Patterns In Java
The Composite Pattern

1414

Composite Pattern Example 2 - The Java AWTComposite Pattern Example 2 - The Java AWT

8

 Bob TarrDesign Patterns In Java
The Composite Pattern

1515

Composite Pattern Example 3Composite Pattern Example 3

l Situation: Many types of manufactured systems, such as computer
systems and stereo systems, are composed of individual
components and sub-systems that contain components. For
example, a computer system can have various chassis that contain
components (hard-drive chassis, power-supply chassis) and
busses that contain cards. The entire system is composed of
individual components (floppy drives, cd-rom drives), busses and
chassis.

 Bob TarrDesign Patterns In Java
The Composite Pattern

1616

Composite Pattern Example 3 (Continued)Composite Pattern Example 3 (Continued)

l Solution: Use the Composite pattern!

FloppyDisk EquipmentComposite

equipmentEquipment

Card

Bus Chassis

