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The Composite PatternThe Composite Pattern

l Intent
é Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects
uniformly.  This is called recursive composition.

l Motivation
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The Composite PatternThe Composite Pattern

l Motivation

l Applicability
Use the Composite pattern when
é You want to represent part-whole hierarchies of objects
é You want clients to be able to ignore the difference between compositions

of objects and individual objects.  Clients will treat all objects in the
composite structure uniformly.
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The Composite PatternThe Composite Pattern

l Structure
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The Composite PatternThe Composite Pattern

l Consequences
é Benefits

Ý It makes it easy to add new kinds of components
Ý It makes clients simpler, since they do not have to know if they are dealing

with a leaf or a composite component

é Liabilities
Ý It makes it harder to restrict the type of components of a composite
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The Composite PatternThe Composite Pattern

l Implementation Issues
é A composite object knows its contained components, that is, its children.

Should components maintain a reference to their parent component?
Ý Depends on application, but having these references supports the Chain of

Responsibility pattern

é Where should the child management methods (add(), remove(), getChild())
be declared?

Ý In the Component class: Gives transparency, since all components can be
treated the same.  But it's not safe, since clients can try to do meaningless
things to leaf components at run-time.

Ý In the Composite class:  Give safety, since any attempt to perform a child
operation on a leaf component will be caught at compile-time.  But we lose
transparency, since now leaf and composite components have different
interfaces.
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l Transparent vs. Safe

Leaf Composite
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The Composite PatternThe Composite Pattern

l Implementation Issues
é Should Component maintain the list of components that will be used by a

composite object?  That is, should this list be an instance variable of
Component rather than Composite?

Ý Better to keep this part of Composite and avoid wasting the space in every leaf
object

é Is child ordering important?
Ý Depends on application

é Who should delete components?
Ý Not a problem in Java!  The garbage collector will come to the rescue!

é What's the best data structure to store components?
Ý Depends on application
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Composite Pattern Example 1Composite Pattern Example 1

l Situation: A GUI system has window objects which can contain
various GUI components (widgets) such as, buttons and text
areas.  A window can also contain widget container objects which
can hold other widgets.

l Solution 1: What if we designed all the widgets with different
interfaces for "updating" the screen?  We would then have to
write a Window update() method as follows:

public class Window {

  Button[] buttons;
  Menu[] menus;
  TextArea[] textAreas;
  WidgetContainer[] containers;
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Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

  public void update() {
    if (buttons != null)
      for (int k = 0; k < buttons.length; k++)
        buttons[k].draw();
    if (menus != null)
      for (int k = 0; k < menus.length; k++)
        menus[k].refresh();
    // Other widgets handled similarly.
    if (containers != null)
      for (int k = 0; k < containers.length; k++ )
        containers[k].updateWidgets();
  }
  ...
}

l Well, that looks particularly bad.  It violates the Open-Closed
Principle.  If we want to add a new kind of widget, we have to
modify the update() method of Window to handle it.
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Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

l Solution 2: We should always try to program to an interface,
right?  So, let's make all widgets support the Widget interface,
either by being subclasses of a Widget class or implementing a
Java Widget interface.  Now our update() method becomes:

public class Window {
  Widget[] widgets;
  WidgetContainer[] containers;
  public void update() {
    if (widgets != null)
      for (int k = 0; k < widgets.length; k++)
        widgets[k].update();
    if (containers != null)
      for (int k = 0; k < containers.length; k++ )
        containers[k].updateWidgets();
  }
}
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Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

l That looks better, but we are still distinguishing between widgets
and widget containers

l Solution 3: The Composite Pattern!

Button WidgetContainer

componentsComponent

Menu
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Composite Pattern Example 1 (Continued)Composite Pattern Example 1 (Continued)

l Now the update method looks like:

public class Window {
  Component[] components;

  public void update() {
    if (components != null)
      for (int k = 0; k < components.length; k++)
        components[k].update();
  }

}
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Composite Pattern Example 2 - The Java AWTComposite Pattern Example 2 - The Java AWT
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Composite Pattern Example 3Composite Pattern Example 3

l Situation: Many types of manufactured systems, such as computer
systems and stereo systems, are composed of individual
components and sub-systems that contain components.  For
example, a computer system can have various chassis that contain
components (hard-drive chassis, power-supply chassis) and
busses that contain cards.  The entire system is composed of
individual components (floppy drives, cd-rom drives), busses and
chassis.
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Composite Pattern Example 3 (Continued)Composite Pattern Example 3 (Continued)

l Solution: Use the Composite pattern!

FloppyDisk EquipmentComposite

equipmentEquipment

Card

Bus Chassis


