The
Composite
Pattern

Design Patternsin Java Bob Tarr

The Composite Pattern

e Intent

= Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly. Thisis called recursive composition.

e Motivation

Graphic

Drvany}

Ackif Tt
Rernove|draone;
TR i)

A

T | l | 1 graphiscs
Lirw Factamngle Taxl Fictaira fe———

Loy Diraaill Dyl torad & in graphics
g-Dirassll

: "‘I k] g ko el of graphice 1:"l

The Composite Pattern Bob Tarr

Design Patterns|n Java 2

The Composite Pattern

o Motivation

-:' \\'\-\.
¥ b
Al Iuita] |I’ umﬂﬂdmmj

)
~ N
[amm r([aLina] [sRectangte |

o Applicability
Use the Composite pattern when
< You want to represent part-whole hierarchies of objects

= You want clients to be able to ignore the difference between compositions
of objects and individual objects. Clientswill treat all objectsin the
composite structure uniformly.

Design Patterns|n Java The Compc;site Pattern Bob Tarr
The Composite Pattern
e Structure
| Clinnt I—.. -
Fwen o oenpaoeant)
ZnChiciing)
[]
Lank O oS TtE
Cperntcn|) Gpmmiden)) = ----- e oo
Ak Compnnsi)
P | Lo mysciaeri|
CimdC bk
pComponibe
o . ——
[_anl f_aLnl F'S““M*i“j Al :|
- S
& T
(oont) (Totemt] [otent |
Design Patterns|n Java The Composite Pattern Bob Tarr

4

The Composite Pattern

o Consequences
= Benefits
- |t makesit easy to add new kinds of components

- It makes clients simpler, since they do not have to know if they are dealing
with aleaf or acomposite component

< Liabilities
- It makesit harder to restrict the type of components of a composite

The Composite Pattern
5

Design Patterns|n Java Bob Tarr

The Composite Pattern

e Implementation Issues

= A composite object knows its contained components, that is, its children.
Should components maintain a reference to their parent component?

- Depends on application, but having these references supports the Chain of

Responsibility pattern
= Where should the child management methods (add(), remove(), getChild())
be declared?

- In the Component class: Gives transparency, since all components can be
treated the same. But it's not safe, since clients can try to do meaningless
thingsto leaf components at run-time.

- Inthe Composite class: Give safety, since any attempt to perform achild
operation on aleaf component will be caught at compile-time. But we lose
transparency, since now leaf and composite components have different
interfaces.

The Composite Pattern
6

Design Patterns|n Java Bob Tarr

The Composite Pattern

e Transparent vs. Safe

Component

operation() children

add()
remove()
getChild()

Leaf Composite

TRANSPARENT

Component children

operation()

s/

Composite

— —

1 remove()
getChild(

SAFE

The Composite Pattern
7

Design Patterns|n Java Bob Tarr

The Composite Pattern

e Implementation Issues
= Should Component maintain the list of components that will be used by a
composite object? That is, should thislist be an instance variable of
Component rather than Composite?
- Better to keep this part of Composite and avoid wasting the space in every leaf
object
= |schild ordering important?
- Depends on application
= Who should delete components?
- Not aproblemin Javal The garbage collector will come to the rescue!
= What's the best data structure to store components?
- Depends on application

The Composite Pattern
8

Design Patterns|n Java Bob Tarr

Composite Pattern Example 1

e Situation: A GUI system has window objects which can contain
various GUI components (widgets) such as, buttons and text
areas. A window can also contain widget container objects which
can hold other widgets.

e Solution 1: What if we designed all the widgets with different
interfaces for "updating” the screen? We would then have to
write a Window update() method as follows:

public class Wndow {

Button[] buttons;

Menu[] menus;

Text Area[] textAreas;

W dget Cont ai ner[] contai ners;

The Composite Pattern
9

Design Patterns|n Java Bob Tarr

Composite Pattern Example 1 (Continued)

public void update() {
if (buttons !'= null)
for (int k = 0; k < buttons.length; k++)
buttons[k].draw);
if (menus !'= null)
for (int k =0; k < nenus.length; k++)
menus[k] . refresh();
/1 Gther wdgets handled simlarly.
if (containers != null)
for (int k = 0; k < containers.length; k++)
cont ai ners[k] . updat eW dget s();

}

o Well, that looks particularly bad. It violates the Open-Closed
Principle. If we want to add a new kind of widget, we have to
modify the update() method of Window to handleit.

The Composite Pattern
10

Design Patterns|n Java Bob Tarr

Composite Pattern Example 1 (Continued)

e Solution 2: We should always try to program to an interface,
right? So, let's make all widgets support the Widget interface,
either by being subclasses of a Widget class or implementing a
Java Widget interface. Now our update() method becomes:

public class W ndow {
Wdget[] widgets;
W dget Cont ai ner[] contai ners;
public void update() {
if (widgets !'= null)
for (int k = 0; k < widgets.|ength; k++)
wi dget s[k] . updat e() ;
if (containers != null)
for (int k = 0; k < containers.length; k++)
cont ai ners[k] . updat eW dget s();

}
}

Design Patterns|n Java The Composte Pattern Bob Tarr

11

Composite Pattern Example 1 (Continued)

e That looks better, but we are still distinguishing between widgets
and widget containers

e Solution 3: The Composite Pattern!

Component components
Button Menu WidgetContainer
g <>
The Composite Pattern Bob Tarr

Design Patterns|n Java
12

Composite Pattern Example 1 (Continued)

¢ Now the update method looks like:

public class Wndow {
Conponent [] conponent s;

public void update() {
if (conponents != null)
for (int k = 0; k < components.|ength; k++)
conmponent s[k] . updat e();

Design Patterns|n Java The Compg;ite Pattern Bob Tarr
Composite Pattern Example 2 - The Java AWT
TRAenu Fo java. awt
[S MESIEREEET o
—
—
.)
-
—
(
—
—
—
EET) J
e
= }
(I
J o DA ; ;5
Design Patterns|n Java The Composite Pattern Bob Tarr

14

Composite Pattern Example 3

¢ Situation: Many types of manufactured systems, such as computer
systems and stereo systems, are composed of individual
components and sub-systems that contain components. For
example, acomputer system can have various chassis that contain
components (hard-drive chassis, power-supply chassis) and
busses that contain cards. The entire system is composed of
individual components (floppy drives, cd-rom drives), busses and
chassis.

The Composite Pattern

Design Patterns|n Java
15

Bob Tarr

Composite Pattern Example 3 (Continued)

o Solution: Use the Composite pattern!

Equipment equipment
FloppyDisk Card EquipmentComposite ~
Bus Chassis

The Composite Pattern

Design Patterns|n Java
16

Bob Tarr

