
1

Design Patterns In Java Bob Tarr

Functors
and the

Command
Pattern

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
22

FunctorsFunctors

l Often when designing general-purpose software, we make use of
callback functions

l A callback function is a function that is made known (registered)
to the system to be called at a later time when certain events occur

l In C and C++ we can use pointers to functions as a callback
mechanism, but this is not available in Java

l In Java we must use an object that serves the role of a pointer to a
function. (We could also use this technique in C++.)

l A functor is a class with usually only one method whose instances
serve the role of a pointer to a function. Functor objects can be
created, passed as parameters and manipulated wherever function
pointers are needed.

l Coplien coined the word functor for this type of class

2

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
33

Functor Example 1Functor Example 1

l Consider a Utilities class with a class method that compares two
Numbers. We would like to be able to specify the method of
comparison at run-time, so we add a Comparator argument to the
class method as follows:

public class Utilities {

 public static int compareNumbers(Number a, Number b,

 Comparator c) {

 return c.compare(a, b);

 }

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
44

Functor Example 1 (Continued)Functor Example 1 (Continued)

l The Comparator object is a functor, since it acts like a pointer to
the compare() function. To support different types of
comparators, we'll use interface inheritance via a Java interface.

l The Comparator interface is:

public interface Comparator {

 public int compare(Number a, Number b);

}

l Many implementations of functors in Java involve the use of Java
interfaces in this fashion

3

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
55

Functor Example 1 (Continued)Functor Example 1 (Continued)

l Here is an Integer comparator:

// Integer comparator

public class IntComparator implements Comparator {

 public int compare(Number a, Number b) {

 int x = a.intValue();

 int y = b.intValue();

 if (x < y)

 return -1;

 else if (x > y)

 return 1;

 else

 return 0;

 }

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
66

Functor Example 1 (Continued)Functor Example 1 (Continued)

l And here is a String comparator:

// String comparator

public class StringComparator implements Comparator {

 public int compare(Number a, Number b) {

 String x = a.toString();

 String y = b.toString();

 if (x.compareTo(y) < 0)

 return -1;

 else if (x.compareTo(y) > 0)

 return 1;

 else

 return 0;

 }

}

4

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
77

Functor Example 1 (Continued)Functor Example 1 (Continued)

l And here is a test program that demonstrates the use of the
different comparators:

public class TestUtilities {

 public static void main(String args[]) {

 // Create an integer Comparator.

 Comparator c1 = new IntComparator();

 // Compare two objects.

 int result = Utilities.compareNumbers(new Float(5.5),

 new Double(12.0), c1);

 System.out.println("\nResult is: " + result);

 // Create a string Comparator.

 Comparator c2 = new StringComparator();

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
88

Functor Example 1 (Continued)Functor Example 1 (Continued)

 // Compare the same two objects.

 result = Utilities.compareNumbers(new Float(5.5),

 new Double(12.0), c2);

 System.out.println("\nResult is: " + result);

 }

}

l Test program output:

Result is: -1

Result is: 1

5

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
99

Functor Example 2Functor Example 2

l Consider a Java Observable object and its Observer objects. Each
Observer implements the Observer interface and provides an
implementation of the update() method. As far as the Observable
is concerned, it essentially has a pointer to an update() method to
callback when Observers should be notified. So, in this case,
each Observer object is acting as a functor.

l Here's an Observer:

public class NameObserver implements Observer {

 public void update(Observable obj, Object arg) {

//Whatever

 }

 …

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1010

Functor Example 2 (Continued)Functor Example 2 (Continued)

l And here's an Observable. The notifyObservers() method makes
the callback to update().

public class ConcreteSubject extends Observable {

 public void setName(String name) {

 this.name = name;

 setChanged();

 notifyObservers(name);

 }

 …

}

6

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1111

Functor Example 3Functor Example 3

l Callbacks are used often in GUIs

l For example, when an AWT button is pressed and released, it
generates an action event which is sent to all registered listeners.
Listeners must implement the ActionListener interface and
implement the actionPerformed() method. The button invokes
(calls back) the actionPerformed() method of the listener object.

l This is really the Observer pattern!

l Simple GUI example:

public class MyApp extends Frame implements ActionListener {

 // GUI attributes.

 private Button goButton = new Button("Go");

 private Button exitButton = new Button("Exit");

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1212

Functor Example 3 (Continued)Functor Example 3 (Continued)

 // MyApp Constructor

 public MyApp() {

 super("My Application");

 setupWindow();

 }

 // Setup GUI.

 private void setupWindow() {

 Panel bottomPanel = new Panel();

 bottomPanel.add(goButton);

 bottomPanel.add(exitButton);

 // Register myself as an action listener for these buttons!

 goButton.addActionListener(this);

 exitButton.addActionListener(this);

 pack();

 }

7

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1313

Functor Example 3 (Continued)Functor Example 3 (Continued)

 // Handle GUI actions.

 // This is the callback function!

 public void actionPerformed(ActionEvent event) {

 Object src = event.getSource();

 if (src == goButton)

 go();

 else if (src == exitButton)

 System.exit(0);

 }

 // Main method.

 public static void main(String[] argv) {

 MyApp app = new MyApp();

 app.setVisible(true);

 }

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1414

Functor Example 3 (Continued)Functor Example 3 (Continued)

l There are a couple of uncomfortable things about the last
example:

é The object that handles the callback does a lot more than just handle the
callback! The MyApp class may have many other methods, doing many
other things, besides providing the actionPerformed() method as the
callback function for the buttons. We have a sense that we should be
designing classes that provide a limited, focused functionality. As far as
the button is concerned, it just sees the actionPerformed() method of the
callback object, but we have a feeling that we have not encapsulated
functionality properly here. Perhaps, we should have a separate class just to
handle the callback!

8

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1515

Functor Example 3 (Continued)Functor Example 3 (Continued)

é Also, the actionPerformed() method itself is bothersome. MyApp could be
registered as a listener for many buttons (in this case, it is registered with
just two buttons), and the actionPerformed() method must handle action
events from all of these buttons. So we have a potentially large conditional
in actionPerformed(). Again, it seems better to have a different callback
object for each button.

é But separate objects probably will need access to the methods and
attributes of the MyApp class

l Java 1.1 has a neat answer to our concerns: inner classes!

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1616

Functor Example 3 (Continued)Functor Example 3 (Continued)

l Here's the setupWindow() method in the MyApp class using
anonymous inner classes in Java 1.1:

 // Setup GUI.

 private void setupWindow() {

 Panel bottomPanel = new Panel();

 bottomPanel.add(goButton);

 bottomPanel.add(exitButton);

 // Use instances of anonymous inner classes

 // as the callback objects for the button events!

 goButton.addActionListener(new ActionListener () {

 public void actionPerformed(ActionEvent event) {

 go();

 }

 });

9

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1717

Functor Example 3 (Continued)Functor Example 3 (Continued)

 exitButton.addActionListener(new ActionListener () {

 public void actionPerformed(ActionEvent event) {

 System.exit(0);

 }

 });

 pack();

 }

l These instances of an anonymous inner class are functors. They
are objects acting as pointers to functions.

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1818

The Command PatternThe Command Pattern

l Intent
é Encapsulate requests for service from an object inside other objects,

thereby letting you manipulate the requests in various ways

l Motivation

10

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
1919

The Command PatternThe Command Pattern

l Motivation

l Applicability
Use the Command pattern when

é You want to implement a callback function capability

é You want to specify, queue, and execute requests at different times

é You need to support undo and change log operations

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2020

The Command PatternThe Command Pattern

l Structure

11

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2121

The Command PatternThe Command Pattern

l Collaborations

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2222

The Command PatternThe Command Pattern

l Consequences
é Command decouples the object that invokes the operation from the one that

knows how to perform it

é Commands are first-class objects. They can be manipulated and extended
like any other object.

é Commands can be made into a composite command

12

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2323

The Command PatternThe Command Pattern

l Implementation Issues
é How intelligent should a command object be?

Ý Dumb: Delegates the required action to a receiver object

Ý Smart: Implements everything itself without delegating to a receiver object at
all

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2424

The Command Pattern And FunctorsThe Command Pattern And Functors

l A functor object usually implements the desired behavior itself
without delegation to another object. A Command object
frequently delegates the desired behavior to another receiver
object.

l Functor:

 Class X Class Y

 y.foo() ------> foo()

l Command Pattern:

Class X ConcreteCommand C Class Y

c.execute() ---> execute ()

 y.foo() ---> foo()

13

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2525

The Command Pattern And FunctorsThe Command Pattern And Functors

l If the ConcreteCommand provides the behavior itself, then it is
acting like a simple functor

l Admittedly, this distinction is somewhat weak. It could be that
the functor method foo() in Class Y delegates the desired
behavior to another object already!

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2626

Command Pattern Example 1Command Pattern Example 1

l Situation: A GUI system has several buttons that perform various
actions. We want to have menu items that perform the same
action as its corresponding button.

l Solution 1: Have one action listener for all buttons and menu
items. As seen earlier, this is not a good solution as the resulting
actionPerformed() method violates the Open-Closed Principle.

l Solution 2: Have an action listener for each paired button and
menu item. Keep the required actions in the actionPerformed()
method of this one action listener. This solution is essentially the
Command pattern with simple ConcreteCommand classes that
perform the actions themselves, acting like functors

l In Java 2, Swing Action objects are used for this purpose

14

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2727

Command Pattern Example 1 (Continued)Command Pattern Example 1 (Continued)

SleepCommand

DropCommandTakeCommand

Button Command (ActionListener)

actionPerformed()MenuItem

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2828

Swing ActionsSwing Actions

l A Swing Action object is really just an ActionListener object that
not only provides the ActionEvent handling, but also centralized
handling of the text, icon, and enabled state of toolbar buttons or
menu items

l The same Action object can easily be associated with a toolbar
button and a menu item

l The Action object also maintains the enabled state of the function
associated with the toolbar button or menu item and allows
listeners to be notified when this functionality is enabled or
disabled

15

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
2929

Swing ActionsSwing Actions

l In addition to the actionPerformed method defined by the
ActionListener interface, objects that implement the Action
interface provide methods that allow the specification of:

é One or more text strings that describe the function of the button or menu
item

é One or more icons that depict the function

é The enabled/disabled state of the functionality

l By adding an Action to a JToolBar or JMenu, you get:
é A new JButton (for JToolBar) or JMenuItem (for JMenu) that is

automatically added to the tool bar or menu. The button or menu item
automatically uses the icon and text specified by the Action.

é A registered action listener (the Action object) for the button or menu item

é Centralized handling of the button's or menu item's enabled state

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3030

Swing Actions ExampleSwing Actions Example

/**

 * Class SwingActions demonstrates the Command Pattern

 * using Swing Actions.

 */

public class SwingActions extends JFrame {

 private JToolBar tb;

 private JTextArea ta;

 private JMenu fileMenu;

 private Action openAction;

 private Action closeAction;

 public SwingActions() {

 super("SwingActions");

 setupGUI();

 }

16

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3131

Swing Actions Example (Continued)Swing Actions Example (Continued)

 private void setupGUI() {

 //Create the toolbar and menu.

 tb = new JToolBar();

 fileMenu = new JMenu("File");

 //Create the text area used for output.

 ta = new JTextArea(5, 30);

 JScrollPane scrollPane = new JScrollPane(ta);

 //Layout the content pane.

 JPanel contentPane = new JPanel();

 contentPane.setLayout(new BorderLayout());

 contentPane.setPreferredSize(new Dimension(400, 150));

 contentPane.add(tb, BorderLayout.NORTH);

 contentPane.add(scrollPane, BorderLayout.CENTER);

 setContentPane(contentPane);

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3232

Swing Actions Example (Continued)Swing Actions Example (Continued)

 //Set up the menu bar.

 JMenuBar mb = new JMenuBar();

 mb.add(fileMenu);

 setJMenuBar(mb);

 // Create an action for "Open".

 ImageIcon openIcon = new ImageIcon("open.gif");

 openAction = new AbstractAction("Open", openIcon) {

 public void actionPerformed(ActionEvent e) {

 ta.append("Open action from " + e.getActionCommand() +"\n");

 }

 };

 // Use the action to add a button to the toolbar.

 JButton openButton = tb.add(openAction);

 openButton.setText("");

 openButton.setActionCommand("Open Button");

 openButton.setToolTipText("This is the open button");

17

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3333

Swing Actions Example (Continued)Swing Actions Example (Continued)

 // Use the action to add a menu item to the file menu.

 JMenuItem openMenuItem = fileMenu.add(openAction);

 openMenuItem.setIcon(null);

 openMenuItem.setActionCommand("Open Menu Item");

 // Create an action for "Close" and use the action to add

 // a button to the toolbar and a menu item to the menu.

 // Code NOT shown - similar to "open" code above.

 }

 public static void main(String[] args) {

 SwingActions frame = new SwingActions();

 frame.pack();

 frame.setVisible(true);

 }

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3434

Command Pattern Example 2Command Pattern Example 2

l Scenario: We want to write a class that can periodically execute
one or more methods of various objects. For example, we want
to run a backup operation every hour and a disk status operation
every ten minutes. But we do not want the class to know the
details of these operations or the objects that provide them. We
want to decouple the class that schedules the execution of these
methods with the classes that actually provide the behavior we
want to execute.

18

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3535

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l Solution: The Command Pattern!

l Here’s the Task interface:

public interface Task {

 public void performTask();

}

DiskStatusTaskBackupTask

task Task

performTask()

taskList
TaskMinder

taskList

addTask()

TaskEntry

task
repeatInterval
timeLastDone

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3636

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l Instead of a BackupTask or DiskStatusClass, here is a simple
Fortune Teller Task which cycles through a list of fortune
sayings:

public class FortuneTask implements Task {

 int nextFortune = 0;

 String[] fortunes = {"She who studies hard, gets A",

 "Seeth the pattern and knoweth the truth",

 "He who leaves state the day after final, graduates not" };

 public FortuneTask() {}

 public void performTask() {

 System.out.println("Your fortune is: " + fortunes[nextFortune]);

 nextFortune = (nextFortune + 1) % fortunes.length;

 }

 public String toString() {return ("Fortune Telling Task");}

}

19

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3737

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l And here is a Fibonacci Sequence Task which generates a
sequence of Fibonacci numbers:

public class FibonacciTask implements Task {

 int n1 = 1;

 int n2 = 0;

 int num;

 public FibonacciTask() {}

 public void performTask() {

 num = n1 + n2;

 System.out.println("Next Fibonacci number is: " + num);

 n1 = n2;

 n2 = num;

 }

 public String toString() {return ("Fibonacci Sequence Task");}

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3838

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l Here is the TaskEntry class:

public class TaskEntry {

 private Task task // The task to be done

 // It's a Command object!

 private long repeatInterval; // How often task should be

 // executed

 private long timeLastDone; // Time task was last done

 public TaskEntry(Task task, long repeatInterval) {

 this.task = task;

 this.repeatInterval = repeatInterval;

 this.timeLastDone = System.currentTimeMillis();

 }

 public Task getTask() {return task;}

20

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
3939

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

 public void setTask(Task task) {this.task = task;}

 public long getRepeatInterval() {return repeatInterval;}

 public void setRepeatInterval(long ri) {this.repeatInterval = ri;}

 public long getTimeLastDone() {return timeLastDone;}

 public void setTimeLastDone(long t) {this.timeLastDone = t;}

 public String toString() {

 return (task + " to be done every " + repeatInterval +

 " ms; last done " + timeLastDone);

 }

}

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
4040

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l Here is the TaskMinder class:

public class TaskMinder extends Thread {

 private long sleepInterval; // How often the TaskMinder should

 // check for tasks to be run

 private Vector taskList; // The list of tasks

 public TaskMinder(long sleepInterval, int maxTasks) {

 this.sleepInterval = sleepInterval;

 taskList = new Vector(maxTasks);

 start();

 }

 public void addTask(Task task, long repeatInterval) {

 long ri = (repeatInterval > 0) ? repeatInterval : 0;

 TaskEntry te = new TaskEntry(task, ri);

 taskList.addElement(te);

 }

21

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
4141

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

 public Enumeration getTasks() {return taskList.elements();}

 public long getSleepInterval() {return sleepInterval;}

 public void setSleepInterval(long si) {this.sleepInterval = si;}

 public void run() {

 while (true) {

 try {

 sleep(sleepInterval);

 long now = System.currentTimeMillis();

 Enumeration e = taskList.elements();

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
4242

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

 while (e.hasMoreElements()) {

 TaskEntry te = (TaskEntry) e.nextElement();

 if (te.getRepeatInterval() + te.getTimeLastDone() < now) {

 te.getTask().performTask();

 te.setTimeLastDone(now);

 }

 }

 }

 catch (Exception e) {

 System.out.println("Interrupted sleep: " + e);

 }

 }

 }

}

22

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
4343

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l Test program:

public class TestTaskMinder {

 public static void main(String args[]) {

 // Create and start a TaskMinder.

 // This TaskMinder checks for things to do every 500 ms

 // and allows a maximum of 100 tasks.

 TaskMinder tm = new TaskMinder(500, 100);

 // Create a Fortune Teller Task.

 FortuneTask fortuneTask = new FortuneTask();

 // Have the Fortune Teller execute every 3 seconds.

 tm.addTask(fortuneTask, 3000);

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
4444

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

 // Create a Fibonacci Sequence Task.

 FibonacciTask fibonacciTask = new FibonacciTask();

 // Have the Fibonacci Sequence execute every 700 milliseconds.

 tm.addTask(fibonacciTask, 700);

 }

}

23

 Bob TarrDesign Patterns In Java Functors And The Command Pattern
4545

Command Pattern Example 2 (Continued)Command Pattern Example 2 (Continued)

l Test program output:
Next Fibonacci number is: 1

Next Fibonacci number is: 1

Your fortune is: She who studies hard, gets A

Next Fibonacci number is: 2

Next Fibonacci number is: 3

Next Fibonacci number is: 5

Next Fibonacci number is: 8

Your fortune is: Seeth the pattern and knoweth the truth

Next Fibonacci number is: 13

Next Fibonacci number is: 21

Next Fibonacci number is: 34

Your fortune is: He who leaves state the day after final, graduates
not

Next Fibonacci number is: 55

Next Fibonacci number is: 89

Next Fibonacci number is: 144

etc.

