Functors
and the
Command
Pattern

Design Patternsn Java Bob Tarr

Functors

o Often when designing general-purpose software, we make use of
callback functions

¢ A callback function is afunction that is made known (registered)
to the system to be called at a later time when certain events occur

¢ InC and C++ we can use pointers to functions as a callback
mechanism, but thisis not available in Java

¢ InJavawe must use an object that servestherole of a pointer to a
function. (We could also use this technique in C++.)

e A functor isaclasswith usualy only one method whose instances
serve therole of apointer to afunction. Functor objects can be
created, passed as parameters and manipulated wherever function
pointers are needed.

e Coplien coined the word functor for this type of class

Design Patterns n Java Functors And The Command Pattern Bob Tarr

2

Functor Example 1

e Consider a Utilities class with a class method that compares two
Numbers. We would like to be able to specify the method of
comparison at run-time, so we add a Comparator argument to the
class method as follows:

public class UWilities {
public static int conmpareNunbers(Nunber a, Nunber b,
Conparator c) {
return c.conpare(a, b);
}
}

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

3

Functor Example 1 (Continued)

e The Comparator object isafunctor, sinceit acts like a pointer to
the compare() function. To support different types of
comparators, we'll use interface inheritance via a Java interface.

e The Comparator interfaceis:

public interface Conparator {
public int conpare(Nunber a, Nunmber b);

}

o Many implementations of functorsin Javainvolve the use of Java
interfacesin this fashion

Design Patterns n Java Functors And The Command Pattern Bob Tarr

4

Functor Example 1 (Continued)

e Hereisan Integer comparator:

/1 I nteger conparator
public class |ntConparator inplenents Conparator {
public int conpare(Nunber a, Number b) {
int x = a.intValue();
int y = b.intValue();
if (x <vy)
return -1;
else if (x >vy)
return 1;
el se
return O;

Functors And The Command Pattern

Design Patterns In Java 5 Bob Tarr
Functor Example 1 (Continued)
e And hereisa String comparator:
/1 String conparator
public class StringConparator inplenments Conparator {
public int conpare(Nunber a, Number b) ({
String x = a.toString();
String y = b.toString();
if (x.compareTo(y) < 0)
return -1;
else if (x.conmpareTo(y) > 0)
return 1;
el se
return O;
}
}
Functors And The Command Pattern Bob Tarr

Design Patterns In Java 5

Functor Example 1 (Continued)

e And hereisatest program that demonstrates the use of the
different comparators.

public class TestUtilities {
public static void main(String args[]) {
/Il Create an integer Conparator.
Conmparator cl = new | nt Conparator();

/] Conpare two objects.
int result = Wilities.conmpareNunbers(new Fl oat (5.5),

new Doubl e(12.0), c1);
Systemout.printIn("\nResult is: " + result);

/]l Create a string Conparator.
Conparator c2 = new StringConparator();

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

7

Functor Example 1 (Continued)

/] Conpare the sane two objects.
result = Utilities.conpareNunbers(new Float(5.5),

new Doubl e(12.0), c2);
Systemout.printIn("\nResult is: " + result);

e Test program output:

Result is: -1
Result is: 1

Design Patterns n Java Functors And The Command Pattern Bob Tarr

8

Functor Example 2

e Consider a Java Observable object and its Observer objects. Each
Observer implements the Observer interface and provides an
implementation of the update() method. Asfar asthe Observable
is concerned, it essentially has a pointer to an update() method to
callback when Observers should be notified. So, in this case,
each Observer object is acting as a functor.

e Here'san Observer:

public class NaneGObserver inplenments Observer {
public void update(Cbservable obj, Object arg) {
/[\What ever

}

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

9

Functor Example 2 (Continued)

e And here's an Observable. The notifyObservers() method makes
the callback to update().

public class ConcreteSubject extends Observable {
public void setName(String name) {
this. nane = nane;
set Changed() ;
noti fyObserver s(nane);

}

Design Patterns n Java Functors And The Command Pattern Bob Tarr

10

Functor Example 3

o Callbacks are used often in GUIs

o For example, when an AWT button is pressed and released, it
generates an action event which is sent to all registered listeners.
Listeners must implement the ActionListener interface and
implement the actionPerformed() method. The button invokes
(calls back) the actionPerformed() method of the listener object.

e Thisisreally the Observer pattern!
e Simple GUI example:

public class MyApp extends Frame inplenments ActionListener {

/1 QU attributes.
private Button goButton = new Button("Go");
private Button exitButton = new Button("Exit");

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

11

Functor Example 3 (Continued)

/1 MyApp Constructor
public MyApp() {
super ("My Application");
set upW ndow() ;

}
/1 Setup GU .
private void setupW ndow() {
Panel bottonPanel = new Panel ();

bot t onPanel . add(goBut t on) ;

bot t onPanel . add(exi t Button);

/'l Register nyself as an action listener for these buttons!
goBut t on. addAct i onLi st ener (this);

exi t Button. addActi onLi st ener (t his);

pack();

Design Patterns n Java Functors And The Command Pattern Bob Tarr

12

Functor Example 3 (Continued)

/1 Handl e GU actions.

/1 This is the callback function!

public void actionPerformed(Acti onEvent event) {
Ohj ect src = event. get Source();

if (src == goButton)
go();
else if (src == exitButton)

System exit(0);
}

/1 Main nethod.
public static void main(String[] argv) {
M/App app = new MyApp();
app. set Visi bl e(true);
}
}

Functors And The Command Pattern

Design Patterns In Java
13

Bob Tarr

Functor Example 3 (Continued)

e There are acouple of uncomfortable things about the last

example:

= The object that handles the callback does alot more than just handle the
callback! The MyApp class may have many other methods, doing many

other things, besides providing the actionPerformed() method as the
callback function for the buttons. We have a sense that we should be

designing classes that provide alimited, focused functionality. Asfar as
the button is concerned, it just sees the actionPerformed() method of the

callback object, but we have afeeling that we have not encapsulated

functionality properly here. Perhaps, we should have a separate classjust to

handl e the callback!

Functors And The Command Pattern

Design Patterns In Java
14

Bob Tarr

Functor Example 3 (Continued)

= Also, the actionPerformed() method itself is bothersome. MyApp could be
registered as alistener for many buttons (in this case, it is registered with
just two buttons), and the actionPerformed() method must handle action
events from all of these buttons. So we have a potentially large conditional
in actionPerformed(). Again, it seems better to have a different callback
object for each button.

= But separate objects probably will need access to the methods and
attributes of the MyApp class

e Javal.l hasaneat answer to our concerns: inner classes!

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

15

Functor Example 3 (Continued)

o Here'sthe setupWindow() method in the MyApp class using
anonymous inner classesin Java 1.1:

/1 Setup GUI.
private void setupW ndow() {
Panel bottonPanel = new Panel ();

bot t onPanel . add(goBut t on) ;
bot t onPanel . add(exi t Button);

/'l Use instances of anonynous inner classes
/'l as the callback objects for the button events!
goBut t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent event) {
go();
}
IF

Design Patterns n Java Functors And The Command Pattern Bob Tarr

16

Functor Example 3 (Continued)

exi t Button. addActi onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent event) {
System exit(0);
}
IF
pack();
}

e Theseinstances of an anonymous inner class are functors. They
are objects acting as pointers to functions.

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

17

The Command Pattern

e Intent

= Encapsulate requests for service from an object inside other objects,
thereby letting you manipul ate the requests in various ways

e Motivation

Application 8l Meni =8 Menultem F——M Command
command
Add{Document) AddiMenultam) Cllcked{) @ Execule()
1
’ ‘_“ A
Document sommand->Exacute() T i T
I
Opent}
Close()
Cutl)
Copyl)
Pastef)

Design Patterns n Java Functors And The Command Pattern Bob Tarr

18

The Command Pattern

e Motivation

Exprutey)

dacamend

PasteCommand

Doowmant
i) s s
Clasal)

il

o Applicability

Use the Command pattern when

= You want to implement a callback function capability

Pastall Ewsstaref] o—-—--—--

————————| sl - Pasal

= You want to specify, queue, and execute requests at different times

= You need to support undo and change log operations

Functors And The Command Pattern

Design Patterns In Java Bob Tarr
19
The Command Pattern
e Structure
Client Invoker fo————m Command
: Execute(
1
|
|
: = Feceiver
| 3
i Agiion() CEEE ConcreteCommand
|
I
I Executaf) 0-------- fecalver-=Action);
|
|
"""""""""""""""""" ™ slate
Design Patterns n Java Functors And The Command Pattern Bob Tarr

20

10

The Command Pattern

e Collaborations

aReceiver aClient aCommand aninvoker

i
new Commandiafeceivar) !

StoreCommand{aCommand)}
T Actiare()

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

21

The Command Pattern

e Consequences

= Command decouples the object that invokes the operation from the one that
knows how to perform it

= Commands are first-class objects. They can be manipulated and extended
like any other object.

= Commands can be made into a composite command

Covrvmand

Exacute)

— |

MacroCommand

commands

Execute(

tor ali ¢ in commands -
C—=Execirte()

Design Patterns n Java Functors And The Command Pattern Bob Tarr

22

11

The Command Pattern

e Implementation Issues
= How intelligent should a command object be?
- Dumb: Delegates the required action to a receiver object

- Smart: Implements everything itself without delegating to areceiver object at
al

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

23

The Command Pattern And Functors

e A functor object usually implements the desired behavior itself
without delegation to another object. A Command object
frequently delegates the desired behavior to another receiver
object.

e Functor:
Class X Class Y
y.foo() ------ > foo()

e Command Pattern:

Class X Concr et eCommand C Class Y
c.execute() ---> execute ()
y.foo() ---> foo()

Design Patterns n Java Functors And The Command Pattern Bob Tarr

24

12

The Command Pattern And Functors

¢ If the ConcreteCommand provides the behavior itself, thenitis
acting like a simple functor

o Admittedly, this distinction is somewhat weak. It could be that
the functor method foo() in Class Y delegates the desired
behavior to another object already!

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

25

Command Pattern Example 1

e Situation: A GUI system has severa buttons that perform various
actions. We want to have menu items that perform the same
action as its corresponding button.

e Solution 1: Have one action listener for all buttons and menu
items. As seen earlier, thisis not a good solution as the resulting
actionPerformed() method violates the Open-Closed Principle.

¢ Solution 2: Have an action listener for each paired button and
menu item. Keep the required actions in the actionPerformed()
method of this one action listener. Thissolution is essentially the
Command pattern with simple ConcreteCommand classes that
perform the actions themselves, acting like functors

e InJava?2, Swing Action objects are used for this purpose

Design Patterns n Java Functors And The Command Pattern Bob Tarr

26

13

Command Pattern Example 1 (Continued)

Button

Command (ActionListener

Menunemo/ actionPerformed()

TakeCommand

DropCommand

SleepCommand

Functors And The Command Pattern

Design Patterns In Java
27

Bob Tarr

Swing Actions

e A Swing Action object isreally just an ActionListener object that
not only provides the ActionEvent handling, but also centralized
handling of the text, icon, and enabled state of toolbar buttons or

menu items

e The same Action object can easily be associated with a toolbar

button and a menu item

e The Action object a'so maintains the enabled state of the function
associated with the toolbar button or menu item and allows
listeners to be notified when this functionality is enabled or

disabled

Functors And The Command Pattern

Design Patterns In Java
28

Bob Tarr

14

Swing Actions

¢ Inaddition to the actionPerformed method defined by the
ActionListener interface, objects that implement the Action
interface provide methods that allow the specification of
= One or moretext strings that describe the function of the button or menu
item
= One or moreiconsthat depict the function
= The enabled/disabled state of the functionality

e By adding an Action to aJToolBar or IMenu, you get:

= A new JButton (for JToolBar) or IMenultem (for IMenu) that is
automatically added to the tool bar or menu. The button or menu item
automatically uses the icon and text specified by the Action.

= A registered action listener (the Action object) for the button or menu item

= Centralized handling of the button's or menu item's enabled state

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

29

Swing Actions Example

/**

* Class Swi ngActions denonstrates the Command Pattern
* using Swi ng Actions.

*/

public class Swi ngActions extends JFrane {

private JTool Bar tb;
private JText Area ta;
private JMenu fil eMenu;
private Action openActi on;
private Action cl oseAction;

public Swi ngActions() {
super (" Swi ngActi ons");
setupCUI ();

}

Design Patterns n Java Functors And The Command Pattern Bob Tarr

30

15

Swing Actions Example (Continued)

private void setupGU () {

/] Create the tool bar and nenu.
tb = new JTool Bar () ;
fileMenu = new JMenu("File");

//Create the text area used for output.
ta = new JText Area(5, 30);
JScrol | Pane scroll Pane = new JScrol | Pane(ta);

// Layout the content pane.

JPanel content Pane = new JPanel ();

cont ent Pane. set Layout (new Bor der Layout ());

cont ent Pane. set Pref erredSi ze(new Di mensi on(400, 150));
cont ent Pane. add(tb, BorderLayout. NORTH);

cont ent Pane. add(scrol | Pane, BorderLayout. CENTER);

set Cont ent Pane(cont ent Pane) ;

Functors And The Command Pattern

Design Patterns In Java Bob Tarr

31

Swing Actions Example (Continued)

//Set up the menu bar.
JMenuBar nmb = new JMenuBar () ;
nb. add(fil eMenu);

set JIMenuBar (mb) ;

/Il Create an action for "Open".
| magel con openl con = new | magel con("open.gif");
openAction = new Abstract Acti on("Open", openlcon) {
public void actionPerformed(Acti onEvent e) {
ta. append(" Open action from" + e.getActi onCommand() +"\n");
}
s

/1 Use the action to add a button to the tool bar.
JButton openButton = tb.add(openAction);

openBut ton. set Text ("");

openBut t on. set Acti onCommand(" Open Button");

openBut t on. set Tool Ti pText ("This is the open button");
Functors And The Command Pattern

Design Patterns In Java Bob Tarr

32

16

Swing Actions Example (Continued)

/1 Use the action to add a menu itemto the file menu.
JMenul t em openMenul tem = fil eMenu. add(openActi on);
openMenul tem setl con(nul l);

openMenul t em set Acti onCommand(" Open Menu Itent);

/1 Create an action for "Close" and use the action to add
// a button to the toolbar and a nenu itemto the nmenu.
/1 Code NOT shown - simlar to "open" code above.

}

public static void main(String[] args) {
Swi ngActions franme = new Swi ngActions();
frame. pack();
frame. setVisible(true);

}

Functors And The Command Pattern B
ob Tarr

Design Patterns In Java
33

Command Pattern Example 2

e Scenario: We want to write a class that can periodically execute
one or more methods of various objects. For example, we want
to run a backup operation every hour and a disk status operation
every ten minutes. But we do not want the class to know the
details of these operations or the objects that provide them. We
want to decouple the class that schedules the execution of these
methods with the classes that actually provide the behavior we
want to execute.

Functors And The Command Pattern B
ob Tarr

Design Patterns In Java
34

17

Command Pattern Example 2 (Continued)

e Solution: The Command Pattern!

TaskMinder 'LaskEntry Task
: taskList |tas task
taskList —— repeatinterval
addTask() timeLastDone performTask()
BackupTask DiskStatusTask

e Here' sthe Task interface:
public interface Task {

public void perfornrlask();
}
Design Patterns|n Java Functors And The Command Pattern Bob Tarr

35

Command Pattern Example 2 (Continued)

o Instead of a BackupTask or DiskStatusClass, hereisasimple
Fortune Teller Task which cycles through alist of fortune

sayings.

public class FortuneTask inplenments Task {
int nextFortune = 0;
String[] fortunes = {"She who studies hard, gets A",
"Seeth the pattern and knoweth the truth",
"He who | eaves state the day after final, graduates not" };

public FortuneTask() {}

public void perfornrlask() {
System out.printIn("Your fortune is: " + fortunes[nextFortune]);
next Fortune = (nextFortune + 1) % fortunes.|ength;

}
public String toString() {return ("Fortune Telling Task");}

Design Patterns n Java Functors And The Command Pattern Bob Tarr

36

18

Command Pattern Example 2 (Continued)

e And hereisaFibonacci Sequence Task which generates a
sequence of Fibonacci numbers:

public class Fibonacci Task inplements Task {

int n1 = 1;
int n2 = 0;
int num

publ i c Fi bonacci Task() {}
public void perfornrask() {
num = nl + n2;

System out. println("Next Fibonacci number is: " + num;
nl = n2;
n2 = num

}

public String toString() {return ("Fibonacci Sequence Task");}

}

Functors And The Command Pattern

Design Patterns In Java Bob Tarr
37
Command Pattern Example 2 (Continued)
e Hereisthe TaskEntry class:
public class TaskEntry {
private Task task /1 The task to be done
/1 1t's a Command obj ect!
private |long repeatlnterval; /1 How often task should be
/'l execut ed
private |long tineLastDone; /1 Time task was |ast done
public TaskEntry(Task task, |ong repeatinterval) {
this.task = task;
this.repeatlnterval = repeatlnterval;
this.tinmelLastDone = SystemcurrentTimeM I 1is();
}
public Task get Task() {return task;}
Design Patterns n Java Functors And The Command Pattern Bob Tarr

38

19

Command Pattern Example 2 (Continued)

public void setTask(Task task) {this.task = task;}

public long getRepeatinterval () {return repeatlnterval;}

public void setRepeatinterval (long ri) {this.repeatinterval =ri;}
public |1 ong getTi neLast Done() {return tineLastDone;}
public void setTi meLast Done(long t) {this.tineLastDone =t;}
public String toString() {
return (task + " to be done every " + repeatlnterval +
ns; |ast done " + tinmelLastDone);
}
}
Design Patterns|n Java FunctorsAnd The39Command Pattern Bob Tarr
Command Pattern Example 2 (Continued)
e Hereisthe TaskMinder class:
public class TaskM nder extends Thread {
private long sleeplnterval; // How often the TaskM nder shoul d
/'l check for tasks to be run
private Vector taskList; /1 The list of tasks
public TaskM nder (1 ong sl eeplnterval, int maxTasks) {
this.sleeplnterval = sleeplnterval;
taskLi st = new Vect or (maxTasks) ;
start();
}
public void addTask(Task task, long repeatlinterval) {
long ri = (repeatlinterval > 0) ? repeatinterval : O;
TaskEntry te = new TaskEntry(task, ri);
t askLi st . addEl ement (te);
Design Patterns|n Java Functors And The Command Pattern Bob Tarr

40

20

Command Pattern Example 2 (Continued)

public Enuneration getTasks() {return taskList.elements();}
public long getSleeplnterval () {return sleeplnterval;}
public void setSleeplnterval (long si) {this.sleeplnterval = si;}

public void run() {
while (true) {
try {
sl eep(sl eeplnterval);
long now = SystemcurrentTineMI1lis();
Enunmeration e = taskList.elements();

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

41

Command Pattern Example 2 (Continued)

whil e (e. hasMoreEl enents()) {
TaskEntry te = (TaskEntry) e.nextEl enent();
if (te.getRepeatinterval () + te.getTi neLastDone() < now) {
te. get Task() . perforniTask();
te. set Ti neLast Done(now) ;

}
}
}
catch (Exception e) {
Systemout.printin("Interrupted sleep: " + e);
}
}
}
}
Design Patterns n Java Functors And The Command Pattern Bob Tarr

42

21

Command Pattern Example 2 (Continued)

e Test program:
public class Test TaskM nder {
public static void main(String args[]) {

/]l Create and start a TaskM nder.

/1 This TaskM nder checks for things to do every 500 ns
11 and all ows a maxi mum of 100 tasks.

TaskM nder tm = new TaskM nder (500, 100);

/Il Create a Fortune Teller Task.
FortuneTask fortuneTask = new FortuneTask();

/1 Have the Fortune Teller execute every 3 seconds.
tm addTask(fortuneTask, 3000);

Design Patterns|n Java Functors And The Command Pattern Bob Tarr

43

Command Pattern Example 2 (Continued)

/] Create a Fibonacci Sequence Task.
Fi bonacci Task fi bonacci Task = new Fi bonacci Task();

/1 Have the Fibonacci Sequence execute every 700 mlliseconds.
t m addTask(fi bonacci Task, 700);

Design Patterns n Java Functors And The Command Pattern Bob Tarr

44

22

Command Pattern Example 2 (Continued)

e Test program output:

Next Fi bonacci nunber is: 1

Next Fi bonacci nunber is: 1

Your fortune is: She who studies hard, gets A

Next Fi bonacci nunber is: 2

Next Fi bonacci nunber is: 3

Next Fi bonacci nunber is: 5

Next Fi bonacci nunber is: 8

Your fortune is: Seeth the pattern and knoweth the truth

Next Fi bonacci nunber is: 13

Next Fi bonacci nunber is: 21

Next Fi bonacci nunber is: 34

Your fortune is: He who | eaves state the day after final,
not

Next Fi bonacci nunber is: 55

Next Fi bonacci nunber is: 89

Next Fi bonacci nunber is: 144

etc.

Design Patterns n Java Functors And The Command Pattern

45

gr aduat es

Bob Tarr

23

