The
Adapter
Pattern

Design Patternsn Java Bob Tarr

The Adapter Pattern

e Intent
= Convert the interface of a classinto another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.
e Also Known As
= Wrapper

e Motivation

= Sometimes atoolkit or class library can not be used because its interfaceis
incompatible with the interface required by an application

= We can not change the library interface, since we may not have its source
code

= Even if we did have the source code, we probably should not change the
library for each domain-specific application

The Adapter Pattern
2

Design Patterns In Java Bob Tarr

The Adapter Pattern

e Motivation
= Example:

DrawingEditor

Shape

BoundingBox{)
CraateManipulator()

A

TextView

GetExtent()

Line

TextShape

BoundingBox()
CrealeManipulator(}

BoundingBox()

CrealeManipulator() &

o

retum texi-=GetExtant()

Design Patterns In Java

refum new TexiManipulator

The Adapter Pattern

3

Bob Tarr

e Structure

The Adapter Pattern

= A class adapter uses multiple inheritance to adapt one interface to another:

Client

Design Patterns In Java

Target

Adaptee

Request()

SpecificHequest(}

)

)

‘ ‘ {implementation)

Adapter

Aequest() -

SpecificRequest()

The Adapter Pattern

4

Bob Tarr

The Adapter Pattern

e Structure
= An object adapter relies on object composition:

Client ™ Target ™ Adaptee
Request() SpecificRequest)
adaplee
Adapter
Request() 4-p-------=--+ adaptes-=SpacificRaquast)

The Adapter Pattern
5

Design Patterns In Java Bob Tarr

The Adapter Pattern

o Applicability
Use the Adapter pattern when

= You want to use an existing class, and its interface does not match the one
you need

= You want to create areusable class that cooperates with unrelated classes
with incompatible interfaces

e Consequences

= A class adapter:

- |f Adapteeisaclass and not a Javainterface, then we can not adapt to a class
and al its subclasses, since the Adapter class is a specific concrete subclass of
Adaptee

= An object adapter:

- Letsasingle Adapter work with the Adaptee classitself and all of its
subclasses, if any

The Adapter Pattern
6

Design Patterns In Java Bob Tarr

The Adapter Pattern

e Implementation Issues
= How much adapting should be done?

- Simple interface conversion that just changes operation names and order of
arguments

- Totally different set of operations
= Does the adapter provide two-way transparency?

- A two-way adapter supports both the Target and the Adaptee interface. It
allows an adapted object (Adapter) to appear as an Adaptee object or a Target
object

The Adapter Pattern
7

Design Patterns In Java Bob Tarr

Adapter Pattern Example 1

e Theclassic round pegs and square pegs!
e Here'sthe SquarePeg class:

/**
* The SquarePeg cl ass.
* This is the Target class.
*/
public class SquarePeg {
public void insert(String str) {
System out. println("SquarePeg insert(): " + str);
}
}

The Adapter Pattern
8

Design Patterns In Java Bob Tarr

Adapter Pattern Example 1 (Continued)

¢ And the RoundPeg class:

/**
* The RoundPeg cl ass.
* This is the Adaptee class.
*/
public class RoundPeg {
public void insertlntoHol e(String nmsg) ({
System out. println("RoundPeg insertlntoHole(): " + nvQ);
}
}

o If aclient only understands the SquarePeg interface for inserting
pegs using the insert() method, how can it insert round pegs? A
peg adapter!

The Adapter Pattern
9

Design Patterns In Java Bob Tarr

Adapter Pattern Example 1 (Continued)

e Hereisthe PegAdapter class:

/**

* The PegAdapter class.

* This is the Adapter class.

* |t adapts a RoundPeg to a SquarePeg.

* Its interface is that of a SquarePeg.

*/

public class PegAdapter extends SquarePeg {
private RoundPeg roundPeg;

publ i ¢ PegAdapt er (RoundPeg peg) {this.roundPeg = peg;}

public void insert(String str) {roundPeg.insertlntoHole(str);}

The Adapter Pattern
10

Design Patterns In Java Bob Tarr

Adapter Pattern Example 1 (Continued)

e Typical client program:

/] Test program for Pegs.

publ

ic class TestPegs {

public static void main(String args[]) {

/] Create sone pegs.
RoundPeg roundPeg = new RoundPeg();
Squar ePeg squar ePeg = new Squar ePeg();

/1 Do an insert using the square peg.
squar ePeg.insert("Inserting square peg...");

The Adapter Pattern

Design Patterns In Java Bob Tarr
11
Adapter Pattern Example 1 (Continued)
/1 Now we'd like to do an insert using the round peg.
/1 But this client only understands the insert()
/1 method of pegs, not a insertlntoHol e() nethod.
/1 The solution: create an adapter that adapts
/1 a square peg to a round peg!
PegAdapt er adapter = new PegAdapt er (r oundPeg) ;
adapter.insert("Inserting round peg...");
}
}
o Client program outpuit:
Squar ePeg insert(): Inserting square peg...
RoundPeg insertlntoHol e(): Inserting round peg...
Design Patterns In Java TheAdapter Pattern Bob Tarr

12

Adapter Pattern Example 2

¢ Noticein Example 1 that the PegAdapter adapts a RoundPeg to a
SquarePeg. Theinterface for PegAdapter isthat of a SquarePeg.

o What if we want to have an adapter that acts as a SquarePeg or a

RoundPeg? Such an adapter is called atwo-way adapter.
¢ Oneway to implement two-way adaptersisto use multiple

inheritance, but we can't do thisin Java

e But we can have our adapter class implement two different Java

interfaces!

The Adapter Pattern

Design Patterns In Java
13

Bob Tarr

Adapter Pattern Example 2 (Continued)

e Herearetheinterfaces for round and square pegs.

/**
*The | RoundPeg i nterface.
*/
public interface | RoundPeg {
public void insertlntoHol e(String nsg);

}

/**
*The | Squar ePeg i nterface.

*/

public interface |SquarePeg {
public void insert(String str);

}

The Adapter Pattern

Design Patterns In Java
14

Bob Tarr

Adapter Pattern Example 2 (Continued)

e Here are the new RoundPeg and SquarePeg classes. These are
essentially the same as before except they now implement the
appropriate interface.

/1 The RoundPeg cl ass.
public class RoundPeg inpl ements | RoundPeg {
public void insertlntoHol e(String nmsg) ({
System out. println("RoundPeg insertlntoHole(): " + nvQ);

/1 The SquarePeg cl ass.
public class SquarePeg inpl enents | SquarePeg {
public void insert(String str) {
System out. println("SquarePeg insert(): " + str);
}
}

Design Patterns In Java

The Adapter Pattern
15

Bob Tarr

Adapter Pattern Example 2 (Continued)

e And hereisthe new PegAdapter:

/**

* The PegAdapter class.

* This is the two-way adapter class.

*/

public class PegAdapter inplenments |SquarePeg, | RoundPeg {
private RoundPeg roundPeg;
private SquarePeg squar ePeg;

publ i ¢ PegAdapt er (RoundPeg peg) {this.roundPeg = peg;}
publ i ¢ PegAdapt er (Squar ePeg peg) {this.squarePeg = peg;}
public void insert(String str) {roundPeg.insertlntoHol e(str);}

public void insertlntoHol e(String nsg){squarePeg.insert(nsg);}

} The Adapter Pattern

Design Patterns In Java 16 Bob Tarr

Adapter Pattern Example 2 (Continued)

e A client that uses the two-way adapter:

/] Test program for Pegs.
public class TestPegs {
public static void main(String args[]) {
/] Create sone pegs.
RoundPeg roundPeg = new RoundPeg();
Squar ePeg squar ePeg = new Squar ePeg();

/1 Do an insert using the square peg.
squar ePeg.insert("Inserting square peg...");

/Il Create a two-way adapter and do an insert with it.

| Squar ePeg roundToSquare = new PegAdapt er (r oundPeg) ;
roundToSquare.insert("lnserting round peg...");

The Adapter Pattern

Design Patterns In Java
17

Bob Tarr

Adapter Pattern Example 2 (Continued)

/1 Do an insert using the round peg.
roundPeg. i nsertlntoHol e("I nserting round peg...");

/]l Create a two-way adapter and do an insert with it.

| RoundPeg squar eToRound = new PegAdapt er (squar ePeg) ;

squar eToRound. i nsert I ntoHol e("I nserting square peg..."

}
o Client program outpult:

Squar ePeg insert(): Inserting square peg...
RoundPeg insertlntoHol e(): Inserting round peg...
RoundPeg insertlntoHol e(): Inserting round peg...
Squar ePeg insert(): Inserting square peg...

The Adapter Pattern

Design Patterns In Java
18

Bob Tarr

Adapter Pattern Example 3

e Thisexample comes from Roger Whitney, San Diego State
University

e Situation: A Javaclass library exists for creating CGl web server
programs. Oneclassin thelibrary isthe CGlVariables class
which stores all CGI environment variables in a hash table and
allows access to them via a get(String evName) method. Many
Java CGI programs have been written using thislibrary. The
latest version of the web server supports servlets, which provide
functionality similar to CGI programs, but are considerably more
efficient. The servlet library has an HttpServletRequest class
which has a getX() method for each CGI environment variable.
We want to use servlets. Should we rewrite al of our existing
Java CGI programs??

The Adapter Pattern
19

Design Patterns In Java Bob Tarr

Adapter Pattern Example 3

e Solution : Well, well have to do some rewriting, but let's attempt
to minimize things. We can design a CGlAdapter class which has
the same interface (a get() method) as the original CGIVariables
class, but which puts awrapper around the HttpServletRequest
class. Our CGI programs must now use this CGlAdapter class
rather than the original CGIVariables class, but the form of the
get() method invocations need not change.

The Adapter Pattern
20

Design Patterns In Java Bob Tarr

10

Adapter Pattern Example 3 (Continued)

e Here'sasnippet of the CGlIAdapter class:

public class CA Adapter {
Hasht abl e Cd Vari abl es = new Hasht abl e(20);

public CA Adapter (H tpServl et Request Cd Environnment) {
Cd Vari abl es. put ("AUTH_TYPE", Cd Environnent. get Aut hType());

Cd Vari abl es. put ("REMOTE_USER"', Cd Environnent . get Renot eUser ());
etc.

}

public Onbject get(Object key) {return Cdvari abl es. get (key);}

}

¢ Note that in this example, the Adapter class (CGIAdapter) itself
constructs the Adaptee class (CGIVariables)

Design Patterns In Java The Adapztfr Pattern Bob Tarr

Adapter Pattern Example 4

e Consider autility class that has a copy() method which can make
acopy of an vector excluding those objects that meet a certain
criteria. To accomplish this the method assumes that all objects
in the vector implement the Copyable interface providing the

isCopyable() method to determineif the object should be copied
or not.

- Copyable Interface
VectorUstilities

isCopyable()

T

BankAccount

Design Patterns In Java The Adapztzer Pattern Bob Tarr

11

Adapter Pattern Example 4 (Continued)

e Here' sthe Copyable interface:

public interface Copyable {
publ i ¢ bool ean i sCopyabl e();
}

¢ And here's the copy() method of the VectorUtilities class:

public static Vector copy(Vector vin) {
Vector vout = new Vector();
Enunmeration e = vin. el enents();
whi l e (e.hasMoreEl enents()) {
Copyabl e ¢ = (Copyabl e) e.nextEl enent();
if (c.isCopyable)
vout . addEl enet (¢) ;
}
return vout;

}

Design Patterns In Java

The Adapter Pattern
23

Bob Tarr

Adapter Pattern Example 4 (Continued)

e But what if we have aclass, say the Document class, that does not
implement the Copyable interface. We want to be able perform a
selective copy of avector of Document objects, but we do not
want to modify the Document class at all. Sounds like ajob for
(TA-DA) an adapter!

e To makethings simple, let’s assume that the Document class has
aniceisvalid() method we can invoke to determine whether or
not it should be copied

The Adapter Pattern
24

Design Patterns In Java Bob Tarr

12

Adapter Pattern Example 4 (Continued)

e Here'sour new class diagram:

Copyable Interface

VectorUtilities
isCopyable()
Z% Document
DocumentAdapter
isValid()

The Adapter Pattern

Design Patterns In Java Bob Tarr
25
Adapter Pattern Example 4 (Continued)
e And hereisour DocumentAdapter class.
public class Docunent Adapter inplenents Copyable {
private Docunent d;
publ i ¢ Docunent Adapt er (Docunent d) {
docurment = d;
}
publ i c bool ean isCopyabl e() {
return d.isValid();
}
}
The Adapter Pattern Bob Tarr

Design Patterns In Java
26

13

Adapter Pattern Example 5

e Do you see any Adapter pattern here?
public class ButtonDenp {

public ButtonDeno() {
Button button = new Button("Press ne");
button. addActi onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent e) {
doOperation();
}
1
}
public void doOperation() { whatever }

The Adapter Pattern
27

Design Patterns In Java Bob Tarr

Adapter Pattern Example 5 (Continued)

¢ Button objects expect to be able to invoke the actionPerformed()
method on their associated ActionListener objects. But the
ButtonDemo class does not have this method! [t really wants the
button to invoke its doOperation() method. The anonymous inner
class we instantiated acts as an adapter object, adapting
ButtonDemo to ActionListener!

o Recall that there are some AWT listener interfaces that have
several methods which must be implemented by an event listener.
For example, the WindowL istener interface has seven such
methods. In many cases, an event listener isreally only interested
in one specific event, such as the Window Closing event.

The Adapter Pattern
28

Design Patterns In Java Bob Tarr

14

Adapter Pattern Example 5 (Continued)

e Javaprovides “adapter” classes as a convenience in this situation.
For example, the WindowA dapter class implements the
WindowL.istener interface, providing “do nothing”
implementation of all seven required methods. An event listener
class can extend WindowAdapter and override only those
methods of interest

e And now we see why they are called adapter classes!

The Adapter Pattern
29

Design Patterns In Java Bob Tarr

15

