
1

Multithreaded Programming
in Java

2

Agenda

� Introduction
� Thread Applications
� Defining Threads
� Java Threads and States
� Examples

3

A single threaded program

class ABC
{
….

public void main(..)
{
…
..
}

}

begin

body

end

4

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/ results

5

Web/Internet Applications:
Serving Many Users Simultaneously

Internet
Server

PC client

Local Area Network

PDA

6

Server
Threads

Server ProcessClient 1 Process

Client 2 Process

Multithreaded Server: For Serving
Multiple Clients Concurrently

� Internet

7

Printing ThreadPrinting Thread

Editing ThreadEditing Thread

Modern Applications need Threads (ex1):
Editing and Printing documents in background.

8

Multithreaded/Parallel File Copy

reader()

{

- - - - - - - - -
-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -
-

}

reader()

{

- - - - - - - - -
-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -
-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]buff[0]

buff[1]buff[1]

Cooperative Parallel Synchronized
Threads

Cooperative Parallel Synchronized
Threads

9

Code-Granularity
Code Item
Large grain
(task level)
Program

Medium grain
(control level)
Function (thread)

Fine grain
(data level)
Loop (Compiler)

Very fine grain
(multiple issue)
With hardware

Code-Granularity
Code Item
Large grain
(task level)
Program

Medium grain
(control level)
Function (thread)

Fine grain
(data level)
Loop (Compiler)

Very fine grain
(multiple issue)
With hardware

Task i-lTask i-l Task iTask i Task i+1Task i+1

func1 ()
{
....
....
}

func1 ()
{
....
....
}

func2 ()
{
....
....
}

func2 ()
{
....
....
}

func3 ()
{
....
....
}

func3 ()
{
....
....
}

a (0) =..
b (0) =..

a (0) =..
b (0) =..

a (1)=..
b (1)=..

a (1)=..
b (1)=..

a (2)=..
b (2)=..

a (2)=..
b (2)=..

++ xx LoadLoad

Sockets/
PVM/MPI

Threads

Compilers

CPU

Levels of Parallelism

10

Single and Multithreaded
Processes

Single-threaded Process

Single instruction stream Multiple instruction stream

Multiplethreaded Process
Threads of
Execution

Common
Address Space

threads are light-weight processes within a process

11

Process Parallelism Process Parallelism Process Parallelism

P1P1

P2P2

P3P3

timetime

No of execution process more the number of CPUsNo of execution process more the number of CPUs

CPU

CPU

CPU

Multithreading - Multiprocessors

12

Multithreading on Uni-processor

� Concurrency Vs Parallelism
�

Process Concurrency
��

Process ConcurrencyProcess Concurrency

Number of Simultaneous execution units > number of CPUsNumber of Simultaneous execution units > number of CPUs

P1P1

P2P2

P3P3

timetime

CPU

13

What are Threads?

� A piece of code that run in concurrent with
other threads.

� Each thread is a statically ordered sequence of
instructions.

� Threads are being extensively used express
concurrency on both single and
multiprocessors machines.

� Programming a task having multiple threads of
control – Multithreading or Multithreaded
Programming.

14

Java Threads

� Java has built in thread support for
Multithreading

� Synchronization
� Thread Scheduling
� Inter-Thread Communication:

� currentThread start setPriority
� yield run getPriority
� sleep stop suspend
� resume

� Java Garbage Collector is a low-priority thread

15

Threading Mechanisms...
� Create a class that extends the Thread class
� Create a class that implements the Runnable

interface

16

1st method: Extending Thread
class

� Threads are implemented as objects that
contains a method called run()
class MyThread extends Thread
{

public void run()
{
// thread body of execution

}
}

� Create a thread:
MyThread thr1 = new MyThread();

� Start Execution of threads:
thr1.start();

17

An example

class MyThread extends Thread { / / the thread
public void run() {

System.out.println(" this thread is running ... ");
}

} / / end class MyThread

class ThreadEx1 { / / a program that utilizes the thread
public static void main(String [] args) {

MyThread t = new MyThread() ;
/ / due to extending the Thread class (above)
/ / I can call start(), and this will call
/ / run(). start() is a method in class Thread.
t .start() ;

} / / end main()
} / / end class ThreadEx1

18

2nd method: Threads by
implementing Runnable interface

class MyThread implements Runnable

{
.....

public void run()
{

// thread body of execution

}
}

� Creating Object:
MyThread myObject = new MyThread();

� Creating Thread Object:
Thread thr1 = new Thread(myObject);

� Start Execution:
thr1.start();

19

An example

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

} / / end class MyThread

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread()) ;
/ / due to implementing the Runnable interface

/ / I can call start(), and this will call run().
t.start() ;

} / / end main()
} / / end class ThreadEx2

20

Life Cycle of Thread

new

runnable non-runnable

dead

wait()
sleep()
suspend()
blocked

notify()
slept
resume()
unblocked

start()

stop()

21

A Program with Three Java Threads

� Write a program that creates 3 threads

22

Three threads example

	 class A extends Thread
	 {
	 public void run()
	 {
	 for(int i= 1;i< = 5;i+ +)
	 {
	 System.out.println("\ t From ThreadA: i= "+ i) ;
	 }

	 System.out.println("Exit from A") ;
	 }

	 }

	 class B extends Thread
	 {
	 public void run()
	 {

	 for(int j= 1;j< = 5;j+ +)
	 {
	 System.out.println("\ t From ThreadB: j= "+ j) ;
	 }

	 System.out.println("Exit from B") ;
	 }

	 }

23

 class C extends Thread

 {

 public void run()

 {

 for(int k= 1;k< = 5;k+ +)

 {

 System.out.println("\ t From ThreadC: k= "+ k) ;

 }

 System.out.println("Exit from C") ;

 }

 }

 class ThreadTest

 {

 public static void main(String args[])

 {

 new A() .start() ;

 new B() .start() ;

 new C() .start() ;

 }

 }

24

Run 1

� [raj@mundroo] threads [1:76] java ThreadTest
From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5

Exit from A
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

25

Run2

� [raj@mundroo] threads [1:77] java ThreadTest
From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B
Exit from A

26

Process Parallelism

� int add (int a, int b, int & result)
� / / function stuff
� int sub(int a, int b, int & result)
� / / function stuff

pthread t1, t2;

pthread-create(&t1, add, a,b, & r1);

pthread-create(&t2, sub, c,d, & r2);
pthread-par (2, t1, t2);

pthread t1, t2;

pthread-create(&t1, add, a,b, & r1);

pthread-create(&t2, sub, c,d, & r2);
pthread-par (2, t1, t2);

MISD and MIMD ProcessingMISD and MIMD Processing

a
b
r1
c
d
r2

a
b
r1
c
d
r2

addadd

subsub

Processor

Data

IS1

IS2

Processor

27

do
“
“

dn/2

dn2/+1
“
“
dn

SortSort

Data

IS

Data Parallelism

� sort(int * array, int count)
� / /
� / /

pthread-t, thread1, thread2;
“
“
pthread-create(& thread1, sort, array, N/2);
pthread-create(& thread2, sort, array, N/2);
pthread-par(2, thread1, thread2);

pthread-t, thread1, thread2;
“
“
pthread-create(& thread1, sort, array, N/2);
pthread-create(& thread2, sort, array, N/2);
pthread-par(2, thread1, thread2);

SIMD ProcessingSIMD Processing

SortSort

Processor

Processor

28

Next Class

 Thread Synchronisation
 Thread Priorities

29

Accessing Shared Resources

 Applications Access to Shared Resources
need to be coordinated.

� Printer (two person jobs cannot be printed at
the same time)

� Simultaneous operations on your bank
account

30

Online Bank: Serving Many Customers
and Operations

Internet Bank
Server

PC client

Local Area Network

PDA
Bank

Database

31

Shared Resources

� I f one thread tries to read the data and other
thread tries to update the same date, it leads to
inconsistent state.

� This can be prevented by synchronising access
to data.

� In Java: “Synchronized” method:
� syncronised void update()
� {

� …
� }

32

the driver: 3rd Threads sharing
the same object

class InternetBankingSystem {
public static void main(String [] args) {

Account accountObject = new Account ();
Thread t1 = new Thread(new MyThread(accountObject));
Thread t2 = new Thread(new YourThread(accountObject));
Thread t3 = new Thread(new HerThread(accountObject));
t1.start();
t2.start();
t3.start();

// DO some other operation
} // end main()

}

33

Program with 3 threads
and shared object

class MyThread implements Runnable {
Account account;

public MyThread (Account s) { account = s;}
public void run() { account.deposit(); }

} // end class MyThread

class YourThread implements Runnable {
Account account;

public YourThread (Account s) { account = s;
}

public void run() { account.withdraw(); }
} // end class YourThread

class HerThread implements Runnable {
Account account;

public HerThread (Account s) { account = s; }
public void run() {account.enquire(); }

} // end class HerThread

account

34

Monitor (shared object) example

class Account { / / the ’monitor’
/ / DATA Members

int balance;

/ / if ’synchronized’ is removed, the outcome is unpredictable
public synchronized void deposit() {

/ / METHOD BODY : balance + = deposit_amount;
}

public synchronized void withdraw() {
/ / METHOD BODY: balance -= deposit_amount;

}
public synchronized void enquire() {

/ / METHOD BODY: display balance.
}

}

35

Thread Priority

� In Java, each thread is assigned priority, which
affects the order in which it is scheduled for
running. The threads so far had same default
priority (ORM_PRIORITY) and they are served
using FCFS policy.

� Java allows users to change priority:
� ThreadName.setPriority(intNumber)

� MIN_PRIORITY = 1
� NORM_PRIORITY=5
� MAX_PRIORITY=10

36

Thread Priority Example

class A extends Thread
{

public void run()
{

System.out.println("Thread A started");

for(int i= 1;i< = 4;i++)
{

System.out.println("\ t From ThreadA: i= "+ i);
}

System.out.println("Exit from A");
}

}

class B extends Thread
{

public void run()
{

System.out.println("Thread B started");

for(int j= 1;j< = 4;j+ +)
{

System.out.println("\ t From ThreadB: j= "+ j);
}

System.out.println("Exit from B");
}

}

37

Thread Priority Example

class C extends Thread
{

public void run()
{

System.out.println("Thread C started");

for(int k= 1;k< = 4;k+ +)
{

System.out.println("\ t From ThreadC: k= "+ k);
}
System.out.println("Exit from C");

}
}
class ThreadPriority
{

public static void main(String args[])
{

A threadA= new A();
B threadB= new B();
C threadC= new C();

threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+ 1);
threadA.setPriority(Thread.MIN_PRIORITY);

System.out.println("Started Thread A");
threadA.start();

System.out.println("Started Thread B");
threadB.start();

System.out.println("Started Thread C");
threadC.start();

System.out.println("End of main thread");
}

}

