
1

Introduction to Object Oriented
Design

2

Overview

� Understand Classes and Objects.

� Understand some of the key
concepts/ features in the Object Oriented
paradigm.

� Benefits of Object Oriented Design
paradigm.

3

OOP: model, map, reuse, extend

� Model the real world
problem to user’s
perceive;

� Use similar metaphor
in computational env.

� Construct reusable
components;

� Create new
components from
existing ones.

4

Examples of Objects

Figure 1.9: Examples of objects

CAR

VDU

BOY GIRL

TREEBOOK

CLOCK

TRIANGLE

5

Classes: Objects with the same
attributes and behavior
Person Objects

Vehicle Objects

Polygon Objects

Abstract Person Class
Attributes:
Operations:

Name, Age, Sex
Speak(), Listen(), Walk()

Into

Abstract Vehicle Class
Attributes:
Operations:

Name, Model, Color
Start(), Stop(), Accelerate()

Into

Abstract
Polygon Class
Attributes:

Operations: Draw(), Erase(), Move()

Vertices, Border,
Color, FillColorInto

Figure 1.12: Objects and classes 6

Object Oriented Paradigm: Features

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

7

Java’s OO Features

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Java

8

Encapsulation

� I t associates the code
and the data it
manipulates into a
single unit; and
keeps them safe from
external interference
and misuse.

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Data

Functions

9

Data Abstraction

� The technique of
creating new data types
that are well suited to an
application.

� I t allows the creation of
user defined data types,
having the properties of
built data types and a set
of permitted operators.

� In Java, partial support.
� In C+ + , fully supported

(e.g., operator
overloading).

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

10

Abstract Data Type (ADT)

� A structure that contains both data
and the actions to be performed on
that data.

� Class is an implementation of an
Abstract Data Type.

11

Class- Example

class Account {
private String accountName;
private double accountBalance;

public withdraw();
public deposit();
public determineBalance();

} / / Class Account

12

Class

� Class is a set of attributes and operations
that are performed on the attributes.

Account

accountName
accountBalance

withdraw()
deposit()
determineBalance()

Student

name
age
studentId

getName()
getId()

Circle

centre
radius

area()
circumference()

13

Objects

� An Object Oriented system is a
collection of interacting Objects.

� Object is an instance of a class.

14

Classes/Objects

Student
:John

:Jill

John and Jill are
objects of class

Student

Circle
:circleA

:circleB

circleA and circleB
are

objects of class
Circle

15

Class

� A class represents a template for several
objects that have common properties.

� A class defines all the properties common
to the object - attributes and methods.

� A class is sometimes called the object’s
type.

16

Object

� Objects have state and classes don’t.
John is an object (instance) of class Student.

name = “John”, age = 20, studentId = 1236

Jill is an object (instance) of class Student.
name = “Jill”, age = 22, studentId = 2345

circleA is an object (instance) of class Circle.
centre = (20,10), radius = 25

circleB is an object (instance) of class Circle.
centre = (0,0), radius = 10

17

Encapsulation

� All information (attributes and methods) in an
object oriented system are stored within the
object/class.

� Information can be manipulated through
operations performed on the object/class –
interface to the class. Implementation is hidden
from the user.

� Object support Information Hiding – Some
attributes and methods can be hidden from the
user.

18

Encapsulation - Example

class Account {
private String accountName;
private double accountBalance;

public withdraw();
public deposit();
public determineBalance();

} / / Class Account

Deposit
Withdraw

Determine Balance

Account
balance

messag
e

message

message

19

Data Abstraction

� The technique of creating new data types
that are well suited to an application.

� I t allows the creation of user defined data
types, having the properties of built in
data types and more.

20

Abstraction - Example

class Account {
private String accountName;
private double accountBalance;

public withdraw();
public deposit();
public determineBalance();

} / / Class Account

Creates a data
type Account

Account acctX;

21

Inheritance

� New data types (classes) can be defined
as extensions to previously defined types.

� Parent Class (Super Class) – Child Class
(Sub Class)

� Subclass inherits
properties from the
parent class.

Parent

Child

Inherited
capability

22

Inheritance - Example

� Example
� Define Person to be a class

� A Person has attributes, such as age, height, gender
� Assign values to attributes when describing object

� Define student to be a subclass of Person
� A student has all attributes of Person, plus attributes of

his/her own (student no, course_enrolled)
� A student has all attributes of Person, plus attributes of

his/her own (student no, course_enrolled)
� A student inherits all attributes of Person

� Define lecturer to be a subclass of Person
� Lecturer has all attributes of Person, plus attributes of

his/her own (staff_id, subjectID1, subjectID2)

23

Inheritance - Example

� Circle Class can be a subclass (inherited
from) of a parent class - Shape

Shape

Circle Rectangle

24

Inheritance - Example

� Inheritance can also have multiple levels.

Shape

Circle Rectangle

GraphicCircle

25

Uses of Inheritance - Reuse

� I f multiple classes have common
attributes/methods, these methods can be
moved to a common class - parent class.

� This allows reuse since the implementation is
not repeated.

Example : Rectangle and Circle method have a
common method move(), which requires changing
the centre coordinate.

26

move(newCentre){
centre = newCentre;

}

Uses of Inheritance - Reuse

Circle

centre
radius
area()

circumference()
move(newCentre)

Rectangle

centre
height
width
area()

circumference()
move(newCentre)

move(newCentre){
centre = newCentre;

}

27

Uses of Inheritance - Reuse

Shape

centre

area()
circumference()
move(newCentre)

Rectangle

height
width

area()
circumference()

Circle

radius

area()
circumference()

move(newCentre){
centre = newCentre

}

28

Uses of Inheritance - Specialization

� Specialized behavior can be added to the
child class.

� In this case the behaviour will be
implemented in the child class.

� E.g. The implementation of area() method in
the Circle class is different from the
Rectangle class.

� area() method in the child classes
override the method in parent classes().

29

Uses of Inheritance - Specialization

area(){
return height* width;

}

Circle

centre
radius
area()

circumference()
move(newCentre)

Rectangle

centre
height
width
area()

circumference()
move(newCentre)

area(){
return pi* r^ 2;

}

30

Uses of Inheritance - Specialization

Shape

centre

area()
circumference()
move(newCentre)

Rectangle

height
width

area()
circumference()

Circle

radius

area()
circumference()

area(); - Not implemented
And left for the child classes
To implement

area(){
return pi* r^ 2;

}

area(){
return height* width;

}

31

Uses of Inheritance – Common Interface

� All the operations that are supported for
Rectangle and Circle are the same.

� Some methods have common implementation
and others don’t.

� move() operation is common to classes and can be
implemented in parent.

� circumference(), area() operations are significantly
different and have to be implemented in the
respective classes.

� The Shape class provides a common interface
where all 3 operations move(), circumference()
and area().

32

Uses of Inheritance - Extension

� Extend functionality of a class.
� Child class adds new operations to the

parent class but does not change the
inherited behavior.

� E.g. Rectangle class might have a special
operation that may not be meaningful to the
Circle class - rotate90degrees()

33

Uses of Inheritance - Extension

Shape

centre

area()
circumference()
move(newCentre)

Rectangle

height
width

area()
circumference()
rotate90degrees()

Circle

radius

area()
circumference()

34

Uses of Inheritance – Multiple Inheritance

� Inherit properties from more than one
class.

� This is called Multiple Inheritance.

Shape

Circle

Graphics

35

Uses of Multiple Inheritance

� This is required when a class has to
inherit behavior from multiple classes.

� In the example Circle class can inherit
move() operation from the Shape class
and the paint() operation from the
Graphics class.

� Multiple inheritance is not supported in
JAVA but is supported in C+ + .

36

Uses of Inheritance – Multiple Inheritance

Shape

centre

area()
circumference()
move(newCentre)

Circle

radius

area()
circumference()

GraphicCircle

color

paint()

37

Polymorphism

� Polymorphic which means “many forms” has
Greek roots.

� Poly – many
� Morphos - forms.

� In OO paradigm polymorphism has many
forms.

� Allow a single object, method, operator
associated with different meaning depending
on the type of data passed to it.

38

Polymorphism

� An object of type Circle or Rectangle can be
assigned to a Shape object. The behavior of the
object will depend on the object passed.

circleA = new Circle(); Create a new circle object

Shape shape = circleA;
shape.area(); area() method for circle class will be executed

rectangleA = new Rectangle(); Create a new rectangle object
shape= rectangle;
shape.area() area() method for rectangle will be executed.

39

Polymorphism – Method Overloading

� Multiple methods can be defined with the
same name, different input arguments.

Method 1 - initialize(int a)
Method 2 - initialize(int a, int b)

� Appropriate method will be called based
on the input arguments.
initialize(2) Method 1 will be called.
initialize(2,4) Method 2 will be called.

40

Polymorphism – Operator Overloading

� Allows regular operators such as + , -, * , /
to have different meanings based on the
type.

� E.g. + operator for Circle can re-defined
Circle c = c + 2;

� Not supported in JAVA. C+ + supports it.

41

Persistence

� The phenomenon where the object
outlives the program execution.

� Databases support this feature.

� In Java, this can be supported if users
explicitly build object persistency using IO
streams.

42

Why OOP?

� Greater Reliability
� Break complex software projects into small,

self-contained, and modular objects
� Maintainability

� Modular objects make locating bugs easier,
with less impact on the overall project

� Greater Productivity through Reuse!
� Faster Design and Modelling

43

Benefits of OOP..

� Inheritance: Elimination of Redundant
Code and extend the use of existing
classes.

� Build programs from existing working
modules, rather than having to start from
scratch. Æ save development time and
get higher productivity.

� Encapsulation: Helps in building secure
programs.

44

Benefits of OOP..

� Multiple objects to coexist without any
interference.

� Easy to map objects in problem domain
to those objects in the program.

� I t is easy to partition the work in a
project based on objects.

� The Data-Centered Design enables us in
capturing more details of model in an
implementable form.

45

Benefits of OOP..

� Object Oriented Systems can be easily
upgraded from small to large systems.

� Message-Passing technique for
communication between objects make
the interface descriptions with external
systems much simpler.

� Software complexity can be easily
managed.

46

Summary

	 Object Oriented Design, Analysis, and Programming is a
Powerful paradigm

	 Enables Easy Mapping of Real world Objects to Objects
in the Program

	 This is enabled by OO features:

 Encapsulation

 Data Abstraction

 Inheritance

 Polymorphism

 Persistence

	 Standard OO Design (UML) and Programming
Languages (C++ /Java) are readily accessible.

47

Reference

� Chapter 1: “Programming with Java” by
Balagurusamny

� Optional:
� Chapter 1: “Mastering C++ ” by V. Rajuk and

R. Buyya, Tata McGraw Hill, New Delhi,
India.

