
1

Graphical User Interface (GUI)
Applications

Abstract Windowing Toolkit (AWT)
Events Handling

Applets

2

Introduction

� Java began as a language to be integrated with
browsers.

� But it as evolved as a powerful language for
developing stand-alone graphical applications
and also server-side applications.

� Today, Java has large and powerful libraries to
deal with 2D and 3D graphics and imaging, as
well as the ability to build complex client-side
interactive systems.

� Our focus: Simple GUI apps and Applets and
Graphics. More on graphics in your 3rd year
subject on “Interactive Computing”.

3

AWT - Abstract Windowing
Toolkit

� Single Windowing Interface on Multiple
Platforms

� Supports functions common to all window
systems

� Uses Underlying Native Window system
� AWT provides

� GUI widgets
� Event Handling
� Containers for widgets
� Layout managers
� Graphic operations

4

AWT - Abstract Window Toolkit

� Portable GUI - preserves native look and
feel

� Standard GUI Components (buttons…)
� Containers - Panels, Frames, Dialogs
� Graphics class for custom drawing
� Layouts responsible for actual positioning

of components:
� BorderLayout, GridLayout, FlowLayout, Null

layout

5

Adding Components via Layouts

6

Building Graphical User Interfaces

� import java.awt.* ;
� Assemble the GUI

� use GUI components,
� basic components (e.g., Button, TextField)
� containers (Frame, Panel)

� set the positioning of the components
� use Layout Managers

� Attach events

7

A sample GUI program

import java.awt.* ;
public class MyGui
{

public static void main(String args[])
{

Frame f = new Frame ("My Frame");
Button b = new Button("OK");
TextField tf = new TextField("Programming in Java", 20);
f.setLayout(new FlowLayout());
f.add(b);
f.add(tf);
f.setSize(300, 300);
f.setVisible(true);

}
}

8

outputOutput

9

Events

� Each GUI component (e.g., a Button) that wishes to
respond to an event type (e.g., click), must register an
event handler, called a Listener.

� The listener is an object of a "Listener" interface.
� A Listener class can be created by subclassing (through

"implements") one of Listener interfaces (all listener
inrefaces are in the java.awt.event package = > must
import java.awt.event.* ;)

� The registration of the listener is done by a call to a
method such as addActionListener(<Listener Object>).
Each GUI component class has one or more such
add…() methods, where applicable.

10

Events

b.addActionListener();

method to add a listener listener objectButton

f.addWindowListener();

Frame

11

Listener Interfaces in java.awt.event.*

� [1] ActionListener
� [2] I temListener
� [3] MouseMotionListener
� [4] MouseListener
� [5] KeyListener
� [6] FocusListener
� [7] AdjustmentListener
� [8] ComponentListener
� [9] WindowListener
� [10] ContainerListener
� [11] TextListener

12

Listener Interfaces

� Each listener interface has methods that need to be
implemented for handling different kinds of events.

� For example 1, the ActionListener interface has a
method actionPerformed() button component is
operated.

� For example2, the MouseMotionListener interface has
two methods:

� 1) mouseDragged(MouseEvent) - Invoked when a mouse
button is pressed on a component and then dragged.

� 2) mouseMoved(MouseEvent) - Invoked when the mouse
button has been moved on a component (with no buttons
down).

13

Implementing the ActionListener Interface and
attaching an event handler to a button

import java.awt.* ;
import java.awt.event.* ;
public class MyGui1
{

public static void main(String args[])
{

Frame f = new Frame ("My Frame");
MyGuiAction ga = new MyGuiAction(f);

}
}
class MyGuiAction implements ActionListener
{

static int count = 0;
Button b;
TextField tf;
MyGuiAction(Frame f)
{

b = new Button("OK");
b.addActionListener(this);
tf = new TextField("Hello Java", 20);
f.setLayout(new FlowLayout());
f.add(b);
f.add(tf);
f.setSize(300, 300);
f.setVisible(true);

}
public void actionPerformed(ActionEvent e)
{

if(e.getSource() = = b)
{

count+ + ;
System.out.println("Button is Pressed");
tf.setText("Hello Java Click "+ count);

}
}

} 14

Output and Clicks on “OK” Button

Exec started 1st click on OK button 2nd click on OK button

15

BorderLayout Example

import java.awt.* ;
public class MyGui2
{

public static void main(String args[])
{

Frame f = new Frame ("My Frame");
f.setLayout(new BorderLayout());
/ / Add text field to top
f.add("North",new TextField());
/ / Create the panel with buttons at the bottom...
Panel p = new Panel(); / / FlowLayout
p.add(new Button("OK"));
p.add(new Button("Cancel"));
f.add("South",p);
f.add("Center", new TextField("Center region"));
f.setSize(300, 300);
f.setVisible(true);

}
}

16

Output

