
1

Arrays, Strings and Collections
[1]

Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory

Dept. of Computer Science and Software Engineering
University of Melbourne, Australia

http:/ /www.buyya.com

2

Arrays - Introduction

� An array is a group of contiguous or related data items
that share a common name.

� Used when programs have to handle large amount of
data

� Each value is stored at a specific position
� Position is called a index or superscript. Base index = 0
� The ability to use a single name to represent a

collection of items and refer to an item by specifying
the item number enables us to develop concise and
efficient programs. For example, a loop with index as
the control variable can be used to read the entire
array, perform calculations, and print out the results.

3

Arrays - Introduction

69

61

70

89

23

10

9

0

1

2

3

4

5

6

index

values

4

� Like any other variables, arrays must declared and created before
they can be used. Creation of arrays involve three steps:

� Declare the array
� Create storage area in primary memory.
� Put values into the array (i.e., Memory location)

� Declaration of Arrays:
� Form 1:

Type arrayname[]
� Form 2:

� Type [] arrayname;

� Examples:
int[] students;
int students[];

� Note: we don’t specify the size of arrays in the declaration.

Declaration of Arrays

5

Creation of Arrays

� After declaring arrays, we need to allocate
memory for storage array items.

� In Java, this is carried out by using “new”
operator, as follows:

� Arrayname = new type[size] ;
� Examples:

� students = new int[7] ;

6

Initialisation of Arrays

� Once arrays are created, they need to be initialised with
some values before access their content. A general
form of initialisation is:

� Arrayname [index/subscript] = value;
� Example:

� students[0] = 50;
� students[1] = 40;

� Like C, Java creates arrays starting with subscript 0 and
ends with value one less than the size specified.

� Unlike C, Java protects arrays from overruns and under
runs. Trying to access an array beyond its boundaries
will generate an error message.

7

� Arrays are fixed length
� Length is specified at create time
� In java, all arrays store the allocated size

in a variable named “length”.
� We can access the length of arrays as

arrayName.length:
e.g. int x = students.length; // x = 7

� Accessed using the index
e.g. int x = students [1]; // x = 40

Arrays – Length

8

Arrays – Example

/ / StudentArray.java: store integers in arrays and access
public class StudentArray{

public static void main(String[] args) {
int[] students;

students = new int[7] ;

System.out.println("Array Length = " + students.length);

for (int i= 0; i < students.length; i+ +)

students[i] = 2* i;
System.out.println("Values Stored in Array:");

for (int i= 0; i < students.length; i+ +)

System.out.println(students[i]);
}

}
:w

9

� Arrays can also be initialised like standard
variables at the time of their declaration.

� Type arrayname[] = { list of values} ;
� Example:

int[] students = {55, 69, 70, 30, 80};
� Creates and initializes the array of integers of

length 5.
� In this case it is not necessary to use the

new operator.

Arrays – Initializing at Declaration

10

Arrays – Example

/ / StudentArray.java: store integers in arrays and access

public class StudentArray{
public static void main(String[] args) {

int[] students = {55, 69, 70, 30, 80};

System.out.println("Array Length = " + students.length);

System.out.println("Values Stored in Array:");

for (int i= 0; i < students.length; i+ +)
System.out.println(students[i]);

}

}

11

Two Dimensional Arrays

	 Two dimensional
arrays allows us to
store data that are
recorded in table. For
example:

	 Table contains 12
items, we can think
of this as a matrix
consisting of 4 rows
and 3 columns.

132200Salesgirl # 3

420010Salesgirl # 4

333014Salesgirl # 2

301510Salesgirl # 1

I tem3I tem2I tem1
Sold

Person

12

2D arrays manipulations

	 Declaration:

 int myArray [] [] ;

	 Creation:

 myArray = new int[4] [3] ; / / OR

 int myArray [] [] = new int[4][3] ;

	 Initialisation:

 Single Value;

� myArray[0] [0] = 10;

 Multiple values:

� int tableA[2] [3] = { { 10, 15, 30} , { 14, 30, 33} } ;
� int tableA[] [] = { { 10, 15, 30} , { 14, 30, 33} } ;

13

Variable Size Arrays

� Java treats multidimensional arrays as
“arrays of arrays”. I t is possible to declare
a 2D arrays as follows:

� int a[] [] = new int [3] [] ;
� a[0]= new int [3] ;
� a[1]= new int [2] ;
� a[2]= new int [4] ;

14

Try: Write a program to Add to Matrix

� Define 2 dimensional matrix variables:
� Say: int a[] [] , b[] [] ;

� Define their size to be 2x3
� Initialise like some values
� Create a matrix c to storage sum value

� c[0] [0] = a[0][0] + b[0][0]
� Print the contents of result matrix.

15

� Arrays can be used to store objects

Circle[] circleArray;
circleArray = new Circle[25];

� The above statement creates an array
that can store references to 25 Circle
objects.

� Circle objects are not created.

Arrays of Objects

16

 Create the Circle objects and stores
them in the array.

� //declare an array for Circle

Circle circleArray[] = new Circle[25];

int r = 0;

// create circle objects and store in array

for (r=0; r <25; r++)

circleArray[r] = new Circle(r);

Arrays of Objects

17

String Operations in Java

18

Introduction

� String manipulation is the most common operation performed in Java
programs. The easiest way to represent a String (a sequence of
characters) is by using an array of characters.

� Example:
� char place[] = new char[4];
� place[0] = ‘J’;
� place[1] = ‘a’;
� place[2] = ‘v’;
� place[3] = ‘a’;

� Although character arrays have the advantage of being able to query their
length, they themselves are too primitive and don’t support a range of
common string operations. For example, copying a string, searching for
specific pattern etc.

� Recognising the importance and common usage of String manipulation in
large software projects, Java supports String as one of the fundamental
data type at the language level. Strings related book keeping operations
(e.g., end of string) are handled automatically.

19

String Operations in Java

 Following are some useful classes
that Java provides for String
operations.

� String Class
� StringBuffer Class
� StringTokenizer Class

20

String Class

� String class provides many operations for
manipulating strings.

� Constructors
� Utility
� Comparisons
� Conversions

� String objects are read-only (immutable)

21

Strings Basics

� Declaration and Creation:
� String stringName;
� stringName = new String (“string value”);
� Example:

� String city;
� city = new String (“Bangalore”);

� Length of string can be accessed by invoking
length() method defined in String class:

� int len = city.length();

22

String operations and Arrays

� Java Strings can be concatenated using the +
operator.

� String city = “New” + “York”;
� String city1 = “Delhi”;
� String city2 = “New “+ city1;

� Strings Arrays
� String city[] = new String[5] ;
� city[0] = new String(“Melbourne”);
� city[1] = new String(“Sydney”);
� …
� String megacities[] = { “Brisbane”, “Sydney”,

“Melbourne”, “Adelaide”, “Perth”} ;

23

String class - Constructors

Constructs a new string
copying the specified string.

Public String(String value)

Constructs an empty String.public String()

24

String – Some useful operations

Compare the Strings.public int compareTo(String
anotherString)
public int
compareToIgnoreCase(String
anotherString)

Returns the character at the
specified location (index)

public charAt(int index)

Compares a region of the
Strings with the specified
start.

reigonMatch(int start, String
other, int ostart, int count)

Returns the length of the
string.

public int length()

25

String – Some useful operations

Changes as specified.public String toLowerCase()
public String toUpperCase()

Trims leading and trailing
white spaces.

public trim()

Returns a new string with all
instances of the oldChar
replaced with newChar.

public String replace(char
oldChar, char newChar)

26

String Class - example

/ / StringDemo.java: some operations on strings
class StringDemo {

public static void main(String[] args)
{

String s = new String("Have a nice Day");

/ / String Length = 15
System.out.println("String Length = " + s.length());

/ / Modified String = Have a Good Day
System.out.println("Modified String = " + s.replace(’n’, ’N’));

/ / Converted to Uppercse = HAVE A NICE DAY"
System.out.println("Converted to Uppercase = " + s.toUpperCase());

/ / Converted to Lowercase = have a nice day"
System.out.println("Converted to Lowercase = " + s.toLowerCase());

}
}

27

StringDemo Output

� [raj@mundroo] Arrays [1:130] java StringDemo

String Length = 15
Modified String = Have a Nice Day
Converted to Uppercase = HAVE A NICE DAY
Converted to Lowercase = have a nice day

� [raj@mundroo] Arrays [1:131]

28

Summary

� Arrays allows grouping of sequence of related
items.

� Java supports powerful features for declaring,
creating, and manipulating arrays in efficient
ways.

� Each items of arrays of arrays can have same
or variable size.

� Java provides enhanced support for
manipulating strings and manipulating them
appears similar to manipulating standard data
type variables.

