
Thesis for the Degree of

Doctor of Philosophy

Group-based Adaptive Scheduling
Mechanism in Desktop Grid

by

SungJin Choi

Department of

Computer Science and Engineering

Graduate School

Korea University

June 2007

Abstract

Desktop Grid has recently been an attractive computing paradigm for

high throughput applications. However, Desktop Grid computing is

complicated by heterogeneous capabilities, failures, volatility, and lack

of trust because it is based on desktop computers at the edge of the In-

ternet. In a Desktop Grid computing environment, volunteers (that is,

resource providers) have heterogeneous properties such as CPU, mem-

ory, network, etc. They are exposed to failures such as crash and link

failures. In addition, volunteers can freely participate in the computa-

tions and dynamically leave them in the middle of execution. Moreover,

some malicious volunteers may tamper with the computation and return

corrupted results. These distinct features make it difficult for a Desktop

Grid scheduler to allocate tasks to volunteers. Therefore, it is necessary

to develop scheduling mechanisms that adapt to such a dynamic com-

puting environment.

To explore the solution space, the thesis first provides comprehen-

sive taxonomy and survey of Desktop Grid. In addition, it presents

comprehensive taxonomy and survey of scheduling for Desktop Grid in

i

order to better design and develop a new scheduling mechanism.

As the result of the taxonomy and survey, existing scheduling mech-

anisms did not adapt to a dynamic computing environment. Partic-

ularly, they did not consider volunteer’s properties such as volatility,

availability, and credibility that strongly affect reliability and perfor-

mance. Moreover, they did not provide scheduling mechanisms on a

per group basis. In other words, they did not apply different schedul-

ing algorithms to each group according to volunteer’s properties. As a

result, they deteriorate the reliability of computation as well as perfor-

mance.

To solve these problems, the thesis proposes a new group-based

adaptive scheduling mechanism, which adapts to a dynamic Desktop

Grid computing environment. The group-based adaptive scheduling

mechanism classifies and constructs groups according to volunteer’s

properties such as dedication, volatility, availability, and credibility.

Then it applies different scheduling, replication, result certification, and

fault tolerance algorithms to each group. Consequently, it improves re-

liability and performance. The simulation results show that how it can

outperform existing scheduling mechanisms.

ii

Contents

1 Introduction 1

1.1 Desktop Grid Computing 1

1.2 Motivation . 3

1.2.1 Why Group-based Adaptive Scheduling? 4

1.3 Contribution . 9

1.4 Thesis Organization . 10

2 Desktop Grid: Overview and Taxonomy 12

2.1 Overview . 13

2.2 Desktop Grid vs. Grid 15

2.3 Taxonomy of Desktop Grid 17

2.3.1 Organization . 18

2.3.2 Platform . 23

2.3.3 Scale . 24

2.3.4 Resource Provider 24

2.4 Taxonomy of Desktop Grid Scheduling 25

2.4.1 Application’s Perspective Considerations 25

2.4.2 Resource’s Perspective Considerations 27

iii

2.4.3 Scheduler’s Perspective Considerations 31

2.5 Survey of Desktop Grid Systems 41

2.5.1 BOINC . 42

2.5.2 XtremWeb . 50

2.5.3 Entropia . 51

2.5.4 Bayanihan . 52

2.5.5 Javelin . 54

2.5.6 CPM . 55

2.5.7 Charlotte . 57

2.5.8 POPCORN . 57

2.5.9 WebCom . 58

2.5.10 CCOF . 59

2.5.11 Organic Grid . 61

2.5.12 Messor . 62

2.5.13 Paradropper . 63

2.5.14 Condor . 64

2.5.15 Kondo et al. 65

2.6 Discussion . 66

2.6.1 Challenging Issues for Desktop Grid 66

2.6.2 A Direction for Desktop Grid Scheduling 69

2.7 Related Work . 73

2.7.1 Taxonomy and Survey of Grid and Desktop Grid 73

2.7.2 Taxonomy and Survey of Scheduling 73

iv

3 System Model 76

3.1 Execution Model . 76

3.2 Failure Model . 78

4 Group-based Adaptive Scheduling Mechanism 83

4.1 Resource Grouping Method 83

4.1.1 Criteria for Resource Grouping 84

4.1.2 Constructing and Characterizing Volunteer Groups 89

4.1.3 Maintaining Volunteer Groups 96

4.2 Agent-based Group Scheduling 97

4.2.1 Why Agent? . 97

4.2.2 Agent based Desktop Grid Computing Model . . 99

4.2.3 Allocating Scheduling Agents to Scheduling Groups102

4.2.4 Distributing Task Agents to Group Members . . . 104

4.3 Group Scheduling for Replication 106

4.3.1 How to Calculate the Number of Redundancy . . 107

4.3.2 How to Select Replicas 111

4.3.3 How to Distribute Tasks to Replicas 112

4.4 Group Scheduling for Result Certification 115

4.4.1 Applying Result Certification to Volunteer Group 115

4.4.2 Scheduling Algorithm for Result Certification . . 116

4.5 Fault Tolerant Algorithm 119

4.5.1 Handling Failure of Scheduling Agent 121

4.5.2 Handling Failure of Task Agent 123

v

4.6 Related Work . 127

4.6.1 Scheduling and Fault tolerance 127

4.6.2 Scheduling for Replication 131

4.6.3 Scheduling for Result Certification 133

5 Performance Evaluation 135

5.1 Group-based Adaptive Scheduling 135

5.2 Group Scheduling for Replication 147

5.3 Group Scheduling for Result Certification 151

6 Conclusion 158

6.1 Contributions . 158

6.2 Future Work . 161

Bibliography 163

Acknowledgements 181

vi

List of Figures

2.1 Desktop Grid computing environment 14

2.2 A taxonomy of Desktop Grid 17

2.3 Execution model of centralized Desktop Grid 19

2.4 Execution model of distributed Desktop Grid 22

2.5 Application’s perspective considerations 26

2.6 Resource’s perspective considerations 28

2.7 Scheduler’s perspective considerations 32

2.8 Scheduler’s perspective considerations (continued) . . . 33

3.1 New execution model of Desktop Grid 77

4.1 Criteria for resource grouping 85

4.2 Volunteer groups according to αv and Θ 91

4.3 Algorithm of volunteer group construction according to

αv and Θ . 92

4.4 Volunteer groups according to αv, Θ, and Cv 94

4.5 Algorithm of volunteer group construction according to

αv, Θ, and Cv . 95

4.6 Agent based Desktop Grid computing model 100

vii

4.7 Algorithm of deputy volunteer selection 104

4.8 Algorithm for calculating the number of redundancy . . . 110

4.9 Parallel and sequential distribution 113

4.10 Fault tolerant algorithm in the presence of failures of S-MA122

4.11 Fault tolerant algorithm in the presence of failures of T-

MA (1) . 124

4.12 Fault tolerant algorithm in the presence of failures of T-

MA (2) . 125

4.13 Fault tolerant algorithm in the presence of failures of T-

MA (3) . 126

5.1 The average number of completed tasks 139

5.2 The average number of completed tasks in the case of

replication in Case 2 . 141

5.3 The average number of redundancy in Case 2 142

5.4 The average number of completed tasks in case of repli-

cation (reliability threshold = 0.8) 144

5.5 The average number of redundancy 145

5.6 The average number of redundancy (Continued) 146

5.7 The average number of redundancy with majority voting 150

5.8 The number of completed tasks with majority voting . . 151

5.9 Total number of task without result certification 154

5.10 Total number of task with result certification 155

5.11 Result certification: majority voting 156

viii

5.12 Result certification: spot-checking 157

ix

List of Tables

2.1 A comparison of Grid and Desktop Grid 16

2.2 A Survey of Desktop Grid 42

2.3 Survey of Desktop Grid systems focusing on scheduling . 43

2.4 Survey of Desktop Grid systems focusing on scheduling

(Continued) . 44

2.5 Survey of Desktop Grid systems focusing on scheduling

(Continued) . 45

2.6 Survey of Desktop Grid systems focusing on scheduling

(Continued) . 46

2.7 Survey of Desktop Grid systems focusing on scheduling

(Continued) . 47

2.8 Survey of Desktop Grid systems focusing on scheduling

(Continued) . 48

3.1 Notations for volunteer autonomy failures 80

4.1 The combination of volunteer groups 103

5.1 Simulation environment 138

x

5.2 Simulation environment for replication 148

5.3 Simulation environment for result certification 152

xi

Chapter 1

Introduction

1.1 Desktop Grid Computing

Grid has recently emerged as a promising paradigm for high perfor-

mance or high throughput computing because of the vast development

of powerful computers and high-speed network technologies as well as

low cost [1, 2, 3, 4, 5]. Grid aims to aggregate heterogeneous, large-scale,

and multiple-institutional resources, and to provide the transparent, se-

cure, and coordinated access to various computing resources (supercom-

puter, cluster, scientific instruments, database, storage, etc.) owned by

multiple institutions by making virtual organization [1, 2, 3, 4, 5]. On

the other hand, Desktop Grid1 aims to harvest a number of idle desk-

top computers owned by individuals at the edge of Internet [5, 13, 17,

21, 24, 50, 53]. Desktop Grid has recently received the rapidly growing

1Desktop Grid computing is also called volunteer computing [13, 24], global com-

puting [18, 26, 43, 47], Peer-to-Peer Grid computing [36, 54], public-resource com-

puting [14], and Peer-to-Peer cycle sharing systems [37].

1

interest and attraction because of the success of the most popular ex-

amples such as GIMPS [10], distributed.net [11], and SETI@Home [12].

Some studies have been made on Desktop Grid systems which provide

an underlying platform: BOINC [13, 14, 16], XtremWeb [17, 18, 19],

Entropia [20, 21], Bayanihan [22, 23, 24], Javelin [25, 26, 27], Computer

Power Market (CPM) [28, 29], Charlotte [30], POPCORN [31], Web-

Com [32, 33], Cluster Computing On the Fly(CCOF) [34, 35], Organic

Grid [38, 39], Messor [40, 41], Paradropper [42, 43], Condor [44, 45, 46],

Korea@Home [52], and so on.

A Desktop Grid computing environment mainly consists of client,

volunteer, and server. A client is a parallel job submitter. A volunteer

is a resource provider that donates its computing resources when idle. A

server is a central manager that controls submitted jobs and volunteers.

A client submits a parallel job to a server. A job is divided into sub-jobs

that have their own specific input data. The sub-job is called a task. The

server allocates tasks to volunteers using scheduling mechanisms. Each

volunteer executes its task when idle, while continuously requesting data

from its server. When each volunteer subsequently finishes its task, it

returns the result of the task to the server. Finally, when the server

collects all results of tasks from volunteers, it returns the final result of

the job back to the client.

2

1.2 Motivation

Desktop Grid is a kind of Grid, but there are distinct several differences

between them in terms of the types and characteristics of resources,

and the types of sharing (see Table 2.1 in Chapter 2). In particular,

Desktop Grid computing is complicated by heterogeneous capabilities,

failures, volatility (that is, intermittent presence), and lack of trust [6,

7, 8, 9, 13, 14, 15, 18, 20, 23, 36, 37, 47, 48, 53, 54] because it is based

on desktop computers (or volunteers) at the edge of the Internet.

Volunteers have heterogeneous capabilities (that is, CPU, memory,

network bandwidth, and latency), and are exposed to link and crash

failures. In particular, they are voluntary participants that do not re-

ceive any reward for donating their resources. As a result, they are free

to join and leave in the middle of execution without any constraints.

Accordingly, they have heterogeneous volunteering times (that is, the

time of donation), and public execution (that is, the execution of a task

as a volunteer) can be stopped arbitrarily on account of unexpected

leave. Moreover, public execution is temporarily suspended by private

execution (that is, the execution of a private job as a personal user) be-

cause volunteers are not totally dedicated to public executions. In this

thesis, these unstable situations are regarded as volunteer autonomy

failures because they lead to the delay and blocking of the execution

of tasks and include situations resulting in the partial or entire loss of

the executions. Volunteers have different occurrence rates for volunteer

3

autonomy failures according to their execution behavior. In addition,

some malicious volunteers may tamper with the computation and return

corrupt results. A variety of hardware and software lead to deviation

from the result of a task. These distinct features make it difficult for

a server to schedule tasks and manage allocated tasks and volunteers.

Therefore, it is necessary to develop scheduling mechanisms that adapt

to such a dynamic computing environment.

1.2.1 Why Group-based Adaptive Scheduling?

Scheduling is fundamentally important to develop a Grid system. Schedul-

ing is the process of assigning tasks to the most suitable resource providers

(that is, where to execute tasks) and ordering tasks (that is, when to

execute a task) [60, 61, 62, 66, 67, 73]. In order to decide where to

execute a task in Grid, information gathering about the resources, re-

source discovery that looks for available and potential resources, re-

source selection, and monitoring of task execution are involved because

of the heterogeneous and dynamic nature of Grid resources. Ordering

tasks means placing priority on tasks to be executed at a specific node

or site. Grid generally performs scheduling in a hierarchical manner

[69, 72, 75]. In order words, Grid scheduler consists of meta scheduler

(or super scheduler) and local scheduler. Generally, a meta scheduler

is responsible for where to execute tasks among multiple sites, whereas

a local scheduler is responsible for assigning and ordering tasks within

one site [60, 69, 72, 75]. LoadLeveler, LSF, or PBS can be used as a

4

local scheduler [60, 69, 72, 75].

Scheduling of Desktop Grid is different from that of Grid because

Desktop Grid is different from Grid in terms of the type of resource, ded-

ication, trust, failure, application, and so on [5, 14, 21, 24, 48, 53, 54]

(see Table 2.1, Chapter 2). First, Desktop Grid scheduling is mainly the

process of assigning tasks to the most suitable resources (that is, to de-

cide where to execute tasks) [16, 19, 21, 24, 27, 30, 36, 38, 41, 49, 50, 54].

It is performed in a centralized way or in a fully distributed way. Sec-

ond, most Desktop Grid systems do not need a local scheduler like Grid

in the sense that a scheduling target is a single desktop computer, not

a site like Grid (that is, multiple processors or computers in supercom-

puter or cluster). Third, Desktop Grid scheduling is complicated by

heterogeneous, volatile, faulty, and malicious resources. Desktop Grid

scheduler focuses more on volatility (non-dedication), lack of trust, and

heterogeneous properties than Grid scheduler [23, 36, 37, 47, 49, 53, 54,

55, 56, 57, 58, 80]. Finally, Desktop Grid scheduling is opportunistic.

Desktop Grid respects the autonomy of volunteers (that is, volunteers

can freely participate in public execution). Thus, Desktop Grid schedul-

ing should use resources as quickly as possible when they are available

or idle [45]. Therefore, it is necessary to develop a new Desktop Grid

scheduler.

In order to consider these distinct features, a Desktop Grid scheduler

needs a resource grouping method, which ensures that volunteers with

5

similar properties (such as capability, performance, availability, work-

load, reputation/trust, volatility, etc.) are grouped together. It needs to

apply scheduling algorithms to each group depending on group’s char-

acteristics. Coupling a resource grouping method with scheduling helps

schedule and manage tasks efficiently. It is very important how to group

volunteers depending on what properties, because scheduling and re-

source management are performed on the basis of characteristics of the

groups. There are benefits by coupling a resource grouping method with

scheduling as follows.

1) The coupling method enables a scheduler to apply var-

ious replication, result certification, and fault tolerant algo-

rithms to each homogeneous group. Resource grouping makes it

possible to form homogeneous groups according to availability, volatil-

ity, and trust. A scheduler can apply various replication, result certi-

fication, and fault tolerant algorithms to each homogeneous group. In

other words, the coupling method makes it possible that a scheduler

selects and applies replication, result certification, and fault tolerant al-

gorithms suitable for the characteristics of each group. For example, a

scheduler can take many replicas for high-volatile groups. A scheduler

can frequently check result correctness for distrusted groups. However,

in existing Desktop Grid systems, resource grouping is not tightly re-

lated with scheduling (especially, result certification, replication, and

reassignment). As a result, there are a lot of overhead and performance

6

degradation.

2) The coupling method easily enables reputation-based or

incentive-based scheduling. In Desktop Grid, resources can be ea-

ger, volatile, selfish, or malicious. In other words, resources have vari-

ous volunteering time, volatility, credibility, and availability according to

their behavior. In order to score and rank the resources, and then reward

or punish them, a reputation system is necessary. Reputation-based

scheduling couples scheduling with a reputation system. As a result,

reputation-based scheduling can choose more high-quality resources, so

that it can improve the reliability and performance. Incentive-based

scheduling focuses on punishing (for example, exclusion) volatile, self-

ish, or malicious resources. Consequently, repuation/intensive-based

scheduling encourages volunteers to donate their resources eagerly and

reliably. Resource grouping makes it easier that a scheduler applies

reputation or incentive to each group, in the sense that each group has

distinct properties and characteristics (such as eager, reliable, malicious,

volatile, and selfish).

3) The coupling method improves reliability and perfor-

mance. Volunteer groups can be formed according to volatility, vol-

unteering time, credibility, and reputation/trust. Thus, the coupling

method directly affects reliability, completion time, and result correct-

ness. In addition, the coupling method reduces the overhead and latency

by applying replication, result certification suitable for each group’s

properties. For example, a scheduler can take the large number of repli-

7

cas for unreliable group to improves reliability. It can take the small

number of replicas for low-volatile groups to improves performance. It

also can apply the small frequency of result certification for highly-

reliable groups while satisfying correctness threshold. As a result, it

improves reliability of computation and performance.

Although the coupling method has a lot of advantages, existing

scheduling mechanisms, however, did not consider volunteer’s proper-

ties such as volatility, availability, and credibility that strongly affect

reliability, performance, and result correctness. Moreover, they did not

provide scheduling mechanisms on a per group basis. In other words,

they can not apply different scheduling algorithms to each group accord-

ing to volunteer’s properties. As a result, they deteriorate the reliability

of computation as well as performance.

To solve these problems, the thesis proposes a new group-based

adaptive scheduling mechanism, which adapts to a dynamic Desktop

Grid computing environment. The group-based adaptive scheduling

mechanism classifies and constructs groups according to volunteer’s

properties such as dedication, volatility, availability, and credibility.

Then it applies different scheduling, replication, result certification, and

fault tolerance algorithms to each group. Consequently, it improves re-

liability and performance. The simulation results show that how much

it can outperform existing scheduling mechanisms.

8

1.3 Contribution

This thesis has several novel contributions towards improving the under-

standing of Desktop Grid and towards advancing the area of scheduling

in Desktop Grid. The contributions of this thesis are as follows:

1. Taxonomy and Survey of Desktop Grid

This thesis discusses the key concepts and characteristics about

Desktop Grid. It defines architecture and execution model of

Desktop Grid and classifies volunteer properties. Particularly, it

classifies and defines volunteer autonomy failures conceptually. It

also provides a new comprehensive taxonomy and survey of Desk-

top Grid. The taxonomy and survey help understand the defini-

tion, architecture, model, and applications of Desktop Grid.

2. Taxonomy and survey of Desktop Grid Scheduling

This thesis presents the key functionalities that Desktop Grid

scheduling must support. It provides comprehensive taxonomy

and survey of Desktop Grid scheduling. The taxonomy and sur-

vey help model and develop a new scheduling mechanism.

3. Resource Grouping Method

This thesis proposes a resource grouping method, which classifies

and constructs groups according to volunteer’s properties such as

volatility, dedication, availability, and credibility.

9

4. Group-based Adaptive Scheduling Mechanism

This thesis proposes a new group-based dynamic scheduling mech-

anism, which adapts to a dynamic Desktop Grid computing envi-

ronment. The new scheduling mechanism couples resource group-

ing with scheduling. It applies various replication, result certifi-

cation, and fault tolerant algorithms to each homogeneous group.

This thesis presents agent-based scheduling, group-based schedul-

ing for replication, group-based scheduling for result certification,

and fault tolerant scheduling. It also provides the simulation re-

sults showing that how the group-based dynamic scheduling mech-

anism can outperform existing scheduling mechanisms.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents an overview and taxonomy of Desktop Grid.

We classify and characterize Desktop Grid and scheduling. The

proposed taxonomy is mapped to various Desktop Grid systems.

From the taxonomy and survey, we extract the issues and chal-

lenges of Desktop Grid scheduling. Furthermore, we present a

direction for Desktop Grid scheduling.

• Chapter 3 presents a system model defined in this thesis. We

newly define a execution model of Desktop Grid, and volunteer

10

autonomy failures that describe volatility and dedication of vol-

unteers.

• Chapter 4 proposes a new group-based adaptive scheduling mech-

anism. It describes a resource grouping method. It also explains

agent-based scheduling, group scheduling for replication, group

scheduling for result certification, and fault tolerant scheduling

algorithms.

• Chapter 5 shows the performance evaluation. We evaluate the

group-based adaptive scheduling mechanism in terms of the num-

ber of the competed tasks, the number of redundancy, spot-checking

rate, and error rate.

• Chapter 6 summarizes the results and impacts of this thesis and

discusses various avenues of future work.

11

Chapter 2

Desktop Grid: Overview and

Taxonomy

Desktop Grid has been recently studied, but there is no general tax-

onomy and survey for it. Therefore, it is difficult to understand the

definition, architecture, model, and applications of Desktop Grid, as

well as to design and develop Desktop Grid systems. Therefore, we

propose a new comprehensive taxonomy and survey of Desktop Grid in

order to characterize and categorize Desktop Grid.

In particular, scheduling of Desktop Grid is different from that of

Grid because Desktop Grid is different from Grid in terms of the type

of resource, dedication, trust, failure, application, and so on (see Table

2.1). Desktop Grid scheduling is considerably challenging because of

unreliable, heterogeneous, volatile, and insecure environment. However,

there is no taxonomy and survey of Desktop Grid scheduling. As a

result, it is difficult to design and develop a new scheduling mechanism.

12

In this chapter, we characterize Desktop Grid. We also propose

a new comprehensive taxonomy and survey of scheduling for Desktop

Grid in order to help model and develop a new scheduling mechanisms.

Then, we discuss a direction of Desktop Grid scheduling.

2.1 Overview

Desktop Grid aims to harvest a number of idle desktop computers owned

by individuals at the edge of Internet [5, 13, 17, 21, 24, 50, 53]. Desktop

Grid systems usually support embarrassingly parallel applications which

consist of a lot of instances of the same computation with each own data

[1, 2, 14, 18, 20, 22, 25, 30, 52]. The applications are usually involved

with scientific problems which need large amounts of processing capacity

over long periods of time.

A Desktop Grid computing environment mainly consists of client,

volunteer, and server, as shown in Figure 2.1. A client is a parallel job

submitter. A volunteer is a resource provider that donates its comput-

ing resources when idle. A server is a central manager that controls

submitted jobs and volunteers. A client submits a parallel job to a

server. The job is divided into sub-jobs that have their own specific

input data. The sub-job is called a task. The server distributes tasks

to volunteers using scheduling mechanisms. Each volunteer executes its

task when idle. When each volunteer subsequently finishes its task, it

returns the result of the task to the server. Finally, the server returns

13

V
0

V
1

V
2

V
3

V
n

-
4

V
n

-
3

V
n

-
2

V
n

-
1

In
te

rn
e
t

In
te

rn
e
t

•
•

•

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

P
a
ra

ll
e
l

c
o

d
e

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

D
a

ta
1

D
a

ta
m

-
1

D
a

ta
0

M
a

n
a

g
em

e
n

t
o

f
p

a
ra

ll
el

 t
a

sk
s

a
n

d
 v

o
lu

n
te

er
s

R
es

u
lt

s
o
f

ea
ch

 v
o
lu

n
te

er

F
il

e
S

er
v

er
S

er
v

er

(1
)

(1
)

(1
)

(1
)

(1
)

(1
)

(1
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(3
)

(1
)

P
a

ra
ll

el
 c

o
d

e
a

n
d

 d
a

ta

d
is

tr
ib

u
ti

o
n

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(1
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(1
)

R
eg

is
tr

a
ti

o
n

(2
)

J
o

b
 s

u
b

m
is

si
o

n

(3
)

T
a

sk
 a

ll
o

ca
ti

o
n

C
li

en
ts

(2
)

(6
)

A
p

p
li

ca
ti

o
n

s

(4
)

T
a

sk
 e

x
ec

u
ti

o
n

(5
)

T
a

sk
 r

es
u

lt
 r

et
u

rn

(6
)

J
o

b
 r

es
u

lt
 r

et
u

rn

V
o

lu
n

te
er

s

F
ig

u
re

2.
1:

D
es

k
to

p
G

ri
d

co
m

p
u
ti

n
g

en
v
ir

on
m

en
t

14

the final result of the job back to the client.

Desktop Grid has recently received the rapidly growing interest and

attraction because of the success of the most popular examples such as

GIMPS [10], distributed.net [11], and SETI@Home [12]. Some studies

have been made on Desktop Grid systems which provide an underlying

platform: BOINC [13, 14, 16], XtremWeb [17, 18, 19], Entropia [20, 21],

Bayanihan [22, 23, 24], Javelin [25, 26, 27], Computer Power Market

(CPM) [28, 29], Charlotte [30], POPCORN [31], WebCom [32, 33],

Cluster Computing On the Fly(CCOF) [34, 35], Organic Grid [38, 39],

Messor [40, 41], Paradropper [42, 43], Condor [44, 45, 46], Korea@Home

[52, 53, 54, 55, 56, 57, 58], and so on.

2.2 Desktop Grid vs. Grid

Desktop Grid has recently received the strong attraction for executing

high throughput applications as CPU, storage and network capacities

improve and become cheaper. Desktop Grid is different from Grid in

terms of the types and characteristics of resources, and the types of

sharing [1, 2, 5, 6, 7, 9, 14, 21, 24, 53, 54] (see Table 2.1). The re-

sources of Desktop Grid mainly are personal computers (that is, desk-

top), whereas Grid resources include supercomputer, cluster, scientific

instruments, database, storage, etc. Desktop Grid resources are highly-

volatile, non-dedicated, and highly-heterogeneous, differently from Grid

resources. They also are more malicious, unreliable, and faulty than

15

T
ab

le
2.

1:
A

co
m

p
ar

is
on

of
G

ri
d

an
d

D
es

k
to

p
G

ri
d

D
es

k
to

p
 G

ri
d
 (

D
G

)
It

em
s

G
ri

d

R
es

o
u

rc
e

C
o

n
n

ec
ti

o
n

H
et

er
o

g
en

ei
ty

H
ig

h
 h

et
er

o
g

en
eo

u
s

In
te

rm
ed

ia
te

 h
et

er
o

g
en

eo
u

s

*
 L

es
s

h
et

er
o

g
en

eo
u

s
th

an
 v

o
lu

n
te

er

D
G

L
o

w
 h

et
er

o
g

en
eo

u
s

D
ed

ic
at

io
n

T
ru

st
M

al
ic

io
u

s
v

o
lu

n
te

er

*
 N

ee
d

 r
es

u
lt

 c
er

ti
fi

ca
ti

o
n

L
o

w
 t

ru
st

w
o

rt
h

y
 r

es
o

u
rc

e
p

ro
v

id
er

H
ig

h
 t

ru
st

w
o

rt
h

y
 r

es
o

u
rc

e
p

ro
v

id
er

F
ai

lu
re

U
n

re
li

ab
le

 (
fa

u
lt

y
)

U
n

re
li

ab
le

*
 M

o
re

 r
el

ia
b

le
 t

h
an

 v
o

lu
n

te
er

 D
G

M
o

re
 r

el
ia

b
le

 t
h

an
 d

es
k

to
p

 g
ri

d

M
an

ag
ea

b
il

it
y

In
d

iv
id

u
al

-b
as

ed
 a

d
m

in
is

tr
at

io
n

*
 T

o
ta

ll
y

 d
is

tr
ib

u
te

d
 t

o
 i

n
d

iv
id

u
al

*
 D

if
fi

cu
lt

 t
o

 m
an

ag
e

In
d

iv
id

u
al

-b
as

ed
 a

d
m

in
is

tr
at

io
n

*
 M

o
re

 c
o

n
tr

o
ll

ab
le

 t
h

an
 v

o
lu

n
te

er

D
G

-D
o

m
ai

n
-b

as
ed

 a
d

m
in

is
tr

at
io

n

*
 P

ro
fe

ss
io

n
al

 a
d

m
in

is
tr

at
o

r

A
p

p
li

ca
ti

o
n

(j
o

b
)

-I
n

d
ep

en
d

en
t

(m
ai

n
ly

)

-C
o

m
p

u
ta

ti
o

n
-i

n
te

n
si

v
e

(m
ai

n
ly

)

-H
ig

h
-t

h
ro

u
g

h
p

u
t

(m
ai

n
ly

)

-I
n

d
ep

en
d

en
t

(m
ai

n
ly

)

-C
o

m
p

u
ta

ti
o

n
-i

n
te

n
si

v
e

(m
ai

n
ly

)

*
 D

at
a-

in
te

n
si

v
e

(p
o

ss
ib

le
)

-H
ig

h
 t

h
ro

u
g

h
p

u
t

(m
ai

n
ly

)

-I
n

d
ep

en
d

en
t

o
r

d
ep

en
d

en
t

-C
o

m
p

u
ta

ti
o

n
 o

r
d

at
a-

in
te

n
si

v
e

-H
ig

h
 p

er
fo

rm
an

ce
 (

m
ai

n
ly

)

In
te

rn
et

-b
as

ed
 (

V
o

lu
n

te
er

 D
G

)
L

A
N

-b
as

ed
 (

E
n

te
rp

ri
se

 D
G

)

D
es

k
to

p

*
 A

n
o

n
y

m
o

u
s

v
o

lu
n

te
er

D
es

k
to

p

*
 w

it
h

in
 a

 c
o
rp

o
ra

ti
o

n
,

u
n

iv
er

si
ty

,

in
st

it
u

te
,

et
c.

S
u

p
er

co
m

p
u

te
r,

 c
lu

st
er

,
sc

ie
n

ti
fi

c
in

st
ru

m
en

ts
,

d
at

ab
as

e,
 s

to
ra

g
e

*
 V

ir
tu

al
 o

rg
an

iz
at

io
n

 (
V

O
)

-N
o

n
 d

ed
ic

at
ed

 p
o

o
r

b
an

d
w

id
th

-I
m

m
ed

ia
te

 p
re

se
n

ce
 (

co
n

n
ec

ti
v

it
y

)

-C
o

n
si

d
er

 f
ir

ew
al

l,
 N

A
T

,
D

y
n

am
ic

ad
d

re
ss

-N
o

n
 d

ed
ic

at
ed

 i
n

te
rm

ed
ia

te

b
an

d
w

id
th

-M
o

re
 c

o
n

st
an

t
co

n
n

ec
ti

v
it

y
 t

h
an

v
o

lu
n

te
er

 D
G

D
ed

ic
at

ed
 h

ig
h

 s
p

ee
d

,
b

an
d

w
id

th

-N
o

n
-d

ed
ic

at
ed

-H
ig

h
 v

o
la

ti
le

*
 N

ee
d

 a
n

 i
n
ce

n
ti

v
e

m
ec

h
an

is
m

-N
o

n
-d

ed
ic

at
ed

-L
o

w
 v

o
la

ti
le

 (
n

o
n

-b
u

si
n

es
s

h
o

u
rs

)

*
 N

ee
d

 a
n

 i
n
ce

n
ti

v
e

m
ec

h
an

is
m

D
ed

ic
at

ed

*
 B

e
ab

le
 t

o
 u

se
 r

es
er

v
at

io
n

16

Grid resources. Desktop Grid resources are administrated by individual

users, whereas Grid resources are managed by professional administra-

tor. The applications of Desktop Grid have no dependency between

tasks. However, Grid includes dependent applications as well. Desktop

Grid tries to achieve high throughput (that is, the amount of work that

desktop computers can do within a given time period), whereas Grid

mainly focuses on high performance (that is, the speed that a set of

tasks run).

2.3 Taxonomy of Desktop Grid

Desktop Grid is categorized according to organization, platform, scale,

and resource properties (see Figure 2.2).

Centralized

Distributed

� Organization

Internet

LAN (a corporation, university, institution, etc.)

� Scale

Web-based (Java applet-based)

Middleware-based

� Platform

Volunteer (Voluntary participation)

Enterprise (Non-voluntary participation)

� Resource provider

Figure 2.2: A taxonomy of Desktop Grid

17

2.3.1 Organization

Desktop Grid is categorized into centralized and distributed ones ac-

cording to organization of components.

Centralized Desktop Grid

Centralized Desktop Grid (DG) consists of client, volunteer, and server.

The execution model of centralized DG consists of seven phases: reg-

istration, job submission, task allocation, task execution, task result

return, result certification, and job result return phase as shown in the

Figure 2.3.

• Registration phase : Volunteers register their information to a

server.

• Job submission phase : A client submits a job to a server.

• Task allocation phase : A server distributes tasks to the regis-

tered volunteers by means of a scheduling mechanism.

• Task execution phase : Each volunteer executes its task.

• Task result return phase : Each volunteer returns the result of

its task to the server.

• Result certification phase : The server checks the correctness

of the returned results in order to tolerate malicious volunteers

18

C
li

en
t

C
en

tr
a
l

S
er

v
er

R
es

o
u

rc
e

P
ro

v
id

er
s

(v
o

lu
n

te
er

s)

V
1

V
2

V
n

-1
V

n

1

 (
T

a
sk

)

2

n
-1

n

…

…

…

R
1

 (
T

a
sk

 R
es

u
lt

)

R
2

R
n

R
n

-1

R

J
o

b
 s

u
b

m
is

si
o

n
 p

h
a

se T
a

sk

a
ll

o
ca

ti
o

n
p

h
a

se

T
a

sk
 r

es
u

lt

re
tu

rn

p

h
a

se

T
a

sk

ex
ec

u
ti

o
n

p
h

a
se

J
o

b
 r

es
u

lt
 r

et
u

rn
 p

h
a

se
T

im
e

…

1
(V

o
lu

n
te

e
r

In
fo

rm
a

ti
o

n
)

2

n

n
-1

R
eg

is
tr

a
ti

o
n

p

h
a

se

R
es

u
lt

ce

rt
if

ic
a

ti
o

n
p

h
a

se

…

F
ig

u
re

2.
3:

E
x
ec

u
ti

on
m

o
d
el

of
ce

n
tr

al
iz

ed
D

es
k
to

p
G

ri
d

19

[23, 56, 98], or to deal with variations in numerical processing due

to a variety of hardware and software [15].

• Job result return phase : The server returns the final result of

the job to the client.

Typical examples are BOINC [13, 14, 16], XtremWeb [17, 18, 19],

Entropia [20, 21], Bayanihan [22, 23, 24], Korea@Home [52], and so on.

Distributed Desktop Grid

Distributed Desktop Grid1 (DG) consists of client and volunteer. In

contrast to centralized DG, there is no server, so volunteers have the

partial information of other volunteers. Volunteers are responsible for

constructing computational overlay network (CON) [6, 7, 8, 9]. The

CON2 is a set of volunteers for the execution of tasks. Scheduling is

performed at each volunteer in a distributed way, depending on CON.

That is, volunteers distributes tasks to other volunteers differently ac-

cording to a characteristic or topology of CON (for example, tree, graph,

or DHT(Distributed Hash Table)).

1Distributed Desktop Grid can be also called Peer-to-Peer (P2P) Desktop Grid in

the sense that it constructs computational overlay network and performs scheduling

by using Peer-to-Peer communication [6, 7, 8, 9]. Centralized Desktop Grid also

can be called a P2P Grid if it uses peer to peer technologies to perform scheduling,

resource management, or resource grouping [54, 55, 56, 57].

2CON construction is similar to resource grouping except that CON construction

is mainly performed at a broker or a volunteer in a distributed manner. Resource

grouping is mainly performed at a server in a centralized way.

20

The execution model of distributed DG consists of seven phases:

registration, job submission, CON construction, task allocation, task

execution, task result return, and job result return phase as shown in

the Figure 2.4.

Typical examples are Javelin [25, 26, 27], Computer Power Market

(CPM) [28, 29], CCOF [34, 35], Organic Grid [38, 39], Messor [40, 41],

Paradropper [42, 43].

• Registration phase : Volunteers exchange their information be-

tween other volunteers.3

• Job submission phase : A client consigns a job to its neighbor

volunteers.

• CON construction phase4: Volunteers self-organize their CON

according to capability, registration time, timezone, or randomly

in a distributed way.5

• Task allocation phase : Volunteers distribute tasks to the neigh-

bors or appropriate volunteers by using a distributed scheduling

mechanism.

3Volunteers can register their information to brokers [25, 28].

4A CON can be constructed on-the-fly or before-scheduling. In the case of on-the-

fly, CON construction and scheduling are performed at the same time [38, 41, 42].

In the case of before-scheduling, CON construction is performed before scheduling

[25]. Scheduling is performed on the basis of the structure of CON.

5A broker can be responsible for construction of CON (that is, tree) [25].

21

C
li

en
t

R
es

o
u

rc
e

p
ro

v
id

er
s

(v
o

lu
n

te
er

s)

V
1

V
m

-1
V

m

R

J
o

b
 s

u
b

m
is

si
o

n
 p

h
a

se

T
im

e

V
m

+
2

V
n

-1
V

n

T
a

sk
s

ex

ec
u

ti
o

n
p

h
a

se

T
a

sk
s

a
ll

o
ca

ti
o

n
p

h
a

se

T
a

sk
 r

es
u

lt

re
tu

rn
p

h
a

se

T
a

sk
 r

es
u

lt

re
tu

rn
p

h
a

se

…
…

R
eg

is
tr

a
ti

o
n

p

h
a

se

V
0

V
m

+
1

C
O

N
 c

o
n

st
ru

ct
io

n
 p

h
a

se
C

O
N

 c
o

n
st

ru
ct

io
n

 p
h

a
se

T
a

sk
s

ex

ec
u

ti
o

n
p

h
a

se

T
a

sk
s

a
ll

o
ca

ti
o

n
p

h
a

se

J
o

b
 r

es
u

lt
 r

et
u

rn
 p

h
a

se

F
ig

u
re

2.
4:

E
x
ec

u
ti

on
m

o
d
el

of
d
is

tr
ib

u
te

d
D

es
k
to

p
G

ri
d

22

• Task execution phase : Each volunteer executes its task.

• Task result return phase : Each volunteer returns the result of

its task to its parent volunteer.

• Job result return phase : The parent volunteers return the final

results of the jobs to the client.

2.3.2 Platform

Desktop Grid is categorized into web-based (Java applet-based) DG and

middleware-based DG according to platform running on volunteers.

In the web-based DG, clients write their parallel applications in Java

and post them as Applet on the Web. Then, volunteers only join the

web page with their browsers. The Applet is downloaded automatically

and runs on the volunteer’s machine. Typical examples are Charlotte

[30], Bayanihan [22, 23, 24], Javelin [25, 26, 27], and so on.

In the middleware-based DG, volunteers need to install and run a

specific middleware (software that provides the services and functionali-

ties to execute parallel applications) on their machine. The middleware

automatically fetches tasks from a server and executes them, when CPU

is idle. Typical examples are BOINC [13, 14, 16], XtremWeb [17, 18, 19],

Entropia [20, 21], Bayanihan [22, 23, 24], Korea@Home [52], and so on.

23

2.3.3 Scale

Desktop Grid is categorized into Internet-based DG and LAN-based DG

according to scale. Internet-based DG is based on anonymous volunteers

(see Table 2.1). It should consider firewall, NAT, dynamic address,

poor bandwidth, and unreliable connection. On the other hand, LAN-

based DG is based on volunteers within a corporation, university, and

institution. It has more constant connectivity than Internet-based DG.

2.3.4 Resource Provider

Desktop Grid is categorized into volunteer DG and enterprise DG ac-

cording to properties of resource provider (see Table 2.1). Volunteer

DG is mainly based on voluntary participants. Enterprise DG is mainly

based on nonvoluntary participants usually within a corporation and

university. Mostly, volunteer DG can be Internet-based DG, and en-

terprise DG can be LAN-based DG. Volunteer DG is more volatile,

malicious, and faulty than enterprise DG. Enterprise DG is more con-

trollable than volunteer DG because volunteers are located in the same

administrative domain. Typical examples of volunteer DG are BOINC

[7, 8, 9], XtremWeb [10, 11], Bayanihan [14, 15, 16], Javelin [17, 18],

Korea@Home [38], and so on. Enterprise DG can be Entropia [13] and

Condor [32, 33].

24

2.4 Taxonomy of Desktop Grid Schedul-

ing

The taxonomy of scheduling for Desktop Grid is defined by three as-

pects: application, resource, and scheduler’s perspective.

2.4.1 Application’s Perspective Considerations

A Desktop Grid scheduler should consider the following aspects on the

application’s perspective when designing and developing scheduling al-

gorithm (See Figure 2.5).

• Dependency : Is there dependency between tasks? In the case

of dependent tasks, the relationship between tasks are mainly de-

signed as a graph (for example, Directed Acyclic Graph (DAG))

[70, 86]. The scheduler for DAG considers machine’s capability,

communication cost, data and task dependency (synchronization

requirement) simultaneously in order to minimize the overall ex-

ecution time of the graph [70, 85]. In the case of independent

tasks, a scheduler focuses on allocation of independent tasks to

machines according to resource’s availability, capability, and prop-

erties [14, 25, 36, 49, 54, 67, 68].

• Type : Is an application computation-intensive or data-intensive?

In the case of data-intensive, a scheduler should consider location

of data or replica, the cost of transfer, or replication policy, and so

25

Independent

Dependent

� Dependency

Computation-intensive

Data-intensive

� Type

Fixed

Moldable (divisible)

� Divisibility

Deterministic

Non-deterministic

� Submission pattern

� QoS

- Deadline - Security

- Restriction or preference conditions

Workflow scheduling

Dynamic scheduling

to scheduler
Static scheduling

(Specific resource requirements, reservation, etc.)

- Priority Preemptive scheduling

Strict (real-time)

Soft

No-deadline

- Result correctness

Result certification

- Budget (price)

Figure 2.5: Application’s perspective considerations

on [59]. In the case of computation-intensive, a scheduler focuses

on resource’s capability and availability.

• Divisibility : Is a job divided into multiple subjob (task) flexibly?

In case of divisible or moldable job, a scheduler focuses on how

much a task are assigned to a resource [64]. The size of task

depends on resource’s capability, availability, deadline, etc.

26

• Submission pattern to scheduler : Does a client submit an

application to scheduler before scheduling? Or does a client non-

deterministically submit an application to scheduler during schedul-

ing?

• QoS : Some applications may request QoS to a scheduler. For ex-

ample, a certain application needs to be finished before the dead-

line. Assume that an application with highest priority wants to

process more immediately and quickly than other applications. In

this case, a high-priority application can preempt a low-priority

application. A certain application does not want to be assigned to

specific nodes or domain. A certain application needs to guarantee

result correctness.

2.4.2 Resource’s Perspective Considerations

A Desktop Grid scheduler should consider the following aspects on the

resource’s perspective when designing and developing scheduling algo-

rithm (See Figure 2.6).

• Dedication to public execution (or volatility): Are resources

allowed to freely join and leave in the middle of the public exe-

cutions (that is, the execution of a task as a volunteer) without

any constraints? If resources are volatile and non-dedicated, pub-

lic execution can be suspended or stopped by a private execution

(that is, the execution of a private job as a personal user). In

27

Dedicated

Non-dedicated (volatile)

• Dedication to public execution

LAN (small-scale)

Internet (large-scale)

• Scale

Static

Dynamic

• State change

Trustworthy

Malicious

• Trust

• QoS

- Load sharing or balancing (Resource utilization or fairness)

Reliable

Faulty

• Failure

Homogeneous

Heterogeneous

• Heterogeneity

Deterministic

Non-deterministic

• Registration pattern

Adaptive scheduling

Result certification

Fault tolerant scheduling

Dynamic scheduling

Dynamic scheduling

Static scheduling

Static scheduling

to scheduler

Pull mode

Opportunistic scheduling

(or Volatility)

Reputation/Incentive scheduling

Figure 2.6: Resource’s perspective considerations

this case, it is appreciate that a scheduler is opportunistic in the

sense that a resource is not always available. A scheduler can be

coupled with reputation or incentive mechanism in order to select

eager resources or exclude selfish resources [54, 80, 81].

28

• Scale : Are resources located in the scope of LAN or Internet?

As shown in Table 2.1, the characteristics of environment (such as

connection, the degree of heterogeneity and trust, dedication pat-

tern, failure, manageability, etc.) are different between Internet-

based DG and LAN-based DG. If resources are connected to Inter-

net, it is proper that scheduling event is initiated by a resource’s

request in the sense that some resources are behind network-

address translator (NAT) or firewall and they are not always avail-

able [13, 14, 52]. In other words, a resources pulls a task from its

scheduler (that is, pull mode).

• State change : Is the properties of resources (such as availability,

volatility, trust, failure, load, bandwidth, etc.) changing during

the public execution? In a Desktop Grid environment, resources

are controlled by individual owners. Resources are more heteroge-

neous, dynamic and unreliable, when compared to Grid. A Desk-

top Grid scheduler should be dynamic and adaptive. In other

words, a scheduler should be able to change the scheduling policy,

adapting to such a changing environment.

• Trust : Are resources trustworthy or malicious? If they are mali-

cious, a scheduler needs result certification in order to ensure the

correctness of results. A scheduler can be coupled with reputation

or incentive mechanism in order to select trustworthy resources or

exclude malicious resources [56, 80, 81, 82].

29

• Failure : Are resources reliable or faulty? If they are faulty, a

scheduler needs fault tolerant scheduling (that is, checkpoint &

restart, reassignment, replication, etc.). Particularly, a scheduler

in Desktop Grid should take volatility into account because volatil-

ity leads to the delay and blocking of the executions of tasks and

even partial or entire loss of the executions. A scheduler can be

coupled with reputation or incentive mechanism in order to select

reliable resources or exclude faulty resources.

• Heterogeneity : Resource heterogeneity refers to capability het-

erogeneity (that is, CPU, memory, bandwidth, OS type, etc.) as

well as execution heterogeneity (that is, availability, credibility,

volunteering time, the number of the completed tasks, etc.). Par-

ticularly, the execution heterogeneity makes scheduling more diffi-

cult in Desktop Grid. It is proper that a scheduler is coupled with

resource grouping by which resources with similar properties are

grouped together, in the sense that a scheduler can apply schedul-

ing, fault tolerance, and result certification algorithms suitable for

each group [54, 55, 56, 57].

• Registration pattern to scheduler : Do resources participate

in public executions deterministically or arbitrarily? If the in-

formation about resources is assumed to be unavailable before

scheduling decision, or if resources freely join or leave the public

execution, a dynamic scheduling approach is used [54, 61, 62, 63,

30

67].

• QoS : Load sharing and balancing are necessary for resource uti-

lization and fairness as well as performance. Load sharing aims

to avoid having idle resources as much as possible by distribut-

ing the workload, whereas load balancing attempts to equalize

workload among resources [76, 77, 78]. Work stealing and load re-

distribution (that is, transferring tasks from heavily-loaded node

to lightly-loaded node) improve resource utilization, fairness, and

performance.

2.4.3 Scheduler’s Perspective Considerations

A Desktop Grid scheduler should consider the following aspects on the

scheduler’s perspective when designing and developing scheduling algo-

rithm (See Figure 2.7 and 2.8).

• Organization : A scheduler organization is classified into three

categories: centralized, distributed, and hierarchical according to

where and how scheduling decision is made [69, 72]. In the cen-

tralized approach, there is a central server that is responsible

for scheduling decision. A central server maintains all informa-

tion of resources and task execution status. In the distributed

approach, scheduling decision is distributed to every node. Each

node has the partial information about the resources and task exe-

cution status. In the hierarchical approach, the scheduling de-

31

C
en

tr
al

iz
ed

D
is

tr
ib

u
te

d

•
O

rg
an

iz
at

io
n S
im

p
le

 (
F

C
F

S
,
R

an
d

o
m

)

H
eu

ri
st

ic
s-

b
as

ed

•
P

o
li

cy

H
ie

ra
rc

h
ic

al

M
o
d
el

-b
as

ed
D

et
er

m
in

is
ti

c
m

o
d

el
 (

q
u

eu
e,

 s
ta

ck
,

tr
ee

,
ri

n
g

)

P
ro

b
ab

il
is

ti
c

m
o
d
el

P
er

fo
rm

an
ce

 (
co

m
p

le
ti

o
n

 t
im

e)
 o

r
th

ro
u

g
h

p
u

t

W
ei

g
h

t
(c

o
m

m
u

n
ic

at
io

n
 o

r
co

m
p

u
ta

ti
o

n
)

P
re

ce
d

en
ce

 (
d

ep
en

d
en

cy
)

W
o

rk
lo

ad

A
v
ai

la
b
il

it
y

R
ep

u
ta

ti
o

n
 o

r
tr

u
st

R
an

k
in

g

E
x

cl
u

si
o

n

P
u

ll
 (

re
so

u
rc

e
p

ro
v

id
er

-i
n

it
ia

te
d

)

P
u

sh
 (

sc
h

ed
u

le
r-

in
it

ia
te

d
)

•
M

o
d

e

G
ro

u
p

-b
as

ed
•

G
ro

u
p
in

g

In
d
iv

id
u
al

-b
as

ed

A
p
p
li

ca
ti

o
n
-o

ri
en

te
d

R
es

o
u

rc
e-

o
ri

en
te

d

In
d

ep
en

d
en

t
jo

b
 g

ro
u

p
in

g

D
ep

en
d
en

t
jo

b
 g

ro
u
p
in

g

S
im

p
le

 g
ro

u
p

T
o

p
o

lo
g

y
-b

as
ed

 (
tr

ee
,

G
ra

p
h

,
D

H
T

,
et

c.
)

(a
 s

et
 o

f
jo

b
s)

(C
o

m
p

u
ta

ti
o

n
al

 O
v

er
la

y

N
et

w
o

rk
 (

C
O

N
))

E
co

n
o
m

y
 m

o
d
el

M
at

ch
in

g

C
ri

te
ri

a
:

ca
p

ab
il

it
y

,
p

er
fo

rm
an

ce
,

w
ei

g
h

t,
 a

v
ai

la
b

il
it

y
,

w
o

rk
lo

ad
,

ti
m

ez
o

n
e,

 r
ep

u
ta

ti
o

n
/t

ru
st

,
lo

ca
ti

o
n

,
v

o
lu

n
te

er
in

g
 t

im
e,

 p
ri

ce
,

et
c.

C
ri

te
ri

a
:

 p
re

fe
re

n
ce

 (
d

ep
en

d
en

cy
),

 w
ei

g
h

t,
 e

tc
.

L
o

ca
ti

o
n

 o
r

ti
m

ez
o

n
e

C
ap

ab
il

it
y

 (
C

P
U

,
m

em
o

ry
,

b
an

d
w

id
th

,
et

c.
)

F
ig

u
re

2.
7:

S
ch

ed
u
le

r’
s

p
er

sp
ec

ti
ve

co
n
si

d
er

at
io

n
s

32

A
p

p
li

ca
ti

o
n

-o
ri

en
te

d

R
es

o
u

rc
e-

o
ri

en
te

d

•
O

b
je

ct
Jo

b
 s

el
ec

ti
o

n
 (

m
o

st
ly

 d
ep

en
d

en
t

jo
b

 (
D

A
G

))

Jo
b
 p

ar
ti

ti
o
n
 (

m
o
st

ly
 m

o
ld

ab
le

 j
o
b
)

Jo
b

 g
ro

u
p

in
g

 (
m

o
st

ly
 d

ep
en

d
en

t
jo

b
)

R
es

o
u

rc
e

se
le

ct
io

n

R
es

o
u

rc
e

g
ro

u
p

in
g

S
ta

ti
c

sc
h

ed
u

li
n

g
•

D
y
n
am

is
m

O
n
li

n
e

P
er

io
d
ic

•
S

ch
ed

u
li

n
g
 g

o
al

-
T

h
ro

u
g

h
p

u
t

-
D

ea
d

li
n

e
-

L
o

ad
 b

al
an

ce
-

F
au

lt
 t

o
le

ra
n

ce
 o

r
re

li
ab

il
it

y
-

C
o

m
m

u
n

ic
at

io
n

 c
o

st

-
T

u
rn

ar
o

u
n

d
 t

im
e

P
re

em
p

ti
v

e
sc

h
ed

u
li

n
g

•

P
re

em
p
ti

o
n

N
o

n
-p

re
em

p
ti

v
e

sc
h

ed
u

li
n

g

In
d

ep
en

d
en

t
jo

b
 s

ch
ed

u
li

n
g

•
D

ep
en

d
en

cy

D
ep

en
d

en
t

jo
b

 s
ch

ed
u

li
n

g
(W

o
rk

fl
o

w
 s

ch
ed

u
li

n
g

)

H
ar

d
 d

ea
d

li
n

e
sc

h
ed

u
li

n
g

•
D

ea
d
li

n
e

S
o

ft
 d

ea
d

li
n

e
sc

h
ed

u
li

n
g

M
ig

ra
ti

o
n

•
A

d
ap

ti
v
e

R
ed

u
n

d
an

t
re

as
si

g
n

m
en

t

C
h

an
g

e
p

o
li

cy
 o

r
g

ro
u

p
in

g

C
h
ec

k
p
o
in

t
&

 r
es

ta
rt

•
F

au
lt

 t
o
le

ra
n
t

R
ea

ss
ig

n
m

en
t

R
ep

li
ca

ti
o

n

R
es

u
lt

 c
er

ti
fi

ca
ti

o
n

sc
h

ed
u

li
n

g

sc
h

ed
u

li
n

g

W
o
rk

 s
te

al
in

g
 (

p
u
ll

)
•

L
o
ad

 s
h
ar

in
g

R
ed

is
tr

ib
u

ti
o

n
 (

p
u

sh
)

C
o
m

p
u
te

-i
n
te

n
si

v
e

sc
h
ed

u
li

n
g

•
A

p
p
 t

y
p
e

D
at

a-
in

te
n

si
v

e
sc

h
ed

u
li

n
g

W
it

h
 a

p
p
li

ca
ti

o
n
 p

er
sp

ec
ti

v
e

W
it

h
 r

es
o

u
rc

e
p

er
sp

ec
ti

v
e

(s
lo

w
 r

es
o

u
rc

e)

(f
au

lt
y

 r
es

o
u

rc
e)

(i
d

le
-i

n
it

ia
te

d
 o

r

(h
ea

v
y

 l
o

ad
ed

-i
n

it
ia

te
d

)

-
P

ri
ce

o
r

b
al

an
ci

n
g

li
g
h
t

lo
ad

ed
-i

n
it

ia
te

d
)

•
O

p
p
o
rt

u
n
is

ti
c

sc
h
ed

u
li

n
g

•
R

ep
u

ta
ti

o
n

/I
n

ce
n

ti
v

e-
b

as
ed

 s
ch

ed
u

li
n

g

D
y

n
am

ic
 s

ch
ed

u
li

n
g

F
ig

u
re

2.
8:

S
ch

ed
u
le

r’
s

p
er

sp
ec

ti
ve

co
n
si

d
er

at
io

n
s

(c
on

ti
n
u
ed

)

33

cision is performed in a hierarchical way (for example, meta sched-

uler (high-level scheduler) and local scheduler (low-level sched-

uler)). High-lever scheduler allocates tasks to low-level schedulers,

whereas low-lever scheduler directly allocates tasks to machines

within its site.

• Mode : Where is a scheduling event initiated? In the pull mode,

a scheduling event is initiated resource [19, 21, 74]. In other words,

when a resource is idle or highly-loaded, it requests (or pulls) tasks

from its server. In the push mode, a scheduler collects resource

information, and then pushes tasks to resources [74]. Generally,

the pull mode is useful if resources may be behind NAT(network-

address translators) or firewall, or if they are not dedicated or

volatile [14, 21, 54, 74].

• Policy : Scheduling policy is used to match tasks with resources

[61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 79, 84]. It determines how to

select appropriate tasks or resources. It is classified into three cat-

egories: simple, model-based, and heuristics-based. In the simple

approach, tasks or resources are selected by using FCFS (First

Come First Served) or randomly. The model-based approach is

categorized into deterministic, economy, and probabilistic models.

The deterministic model is based on structure or topology such

as queue, stack, tree, or ring. Tasks or resources are deterministi-

cally selected according to the properties of structure or topology.

34

For example, in a tree topology, tasks are allocated from parent

nodes to child nodes. In the economy model, scheduling decision

is based on market economy (that is, price and budget). In the

probabilistic model, resources are selected in probabilistic man-

ners (such as Macov, machine learning, or genetic algorithms). In

the heuristics-based approach, tasks or resources are selected

by ranking, matching, and exclusion methods on the basis of per-

formance, capability, weight, precedence, workload, availability,

location, reputation/turst, etc. The ranking method ranks the re-

sources or tasks according to criteria and then chooses the most

or the worst one. The matching method chooses the most suit-

able tasks and resources in accordance to evaluation functions (for

example, min-min, max-min, sufferage, etc. [67, 68, 84]). The ex-

clusion method excludes resources according to criteria, and then

chooses the most appropriate one among the survivors. Ranking,

matching, and exclusion methods can be used together or sepa-

rately. In the case of criteria, precedence is used only for tasks.

Workload, availability, location/timezone, and reputation/turst

are used for resources. Performance, capability, and weight are

used for both resources and tasks.

• Grouping : Grouping is used to form resources or tasks into a

group. In the application-oriented grouping approach, a set

of jobs are grouped logically [70, 86]. Particularly, dependent tasks

35

are grouped together on the basis of dependency or weight (com-

munication or computation) in DAG in order to reduce commu-

nication cost or improve performance [70, 86]. In addition, tasks

are grouped together so that a set of tasks that uses the same

data is allocated to one node [59, 86]. The resource-oriented

grouping approach ensures that resources with similar prop-

erties are logically grouped together. Resource-oriented group-

ing approach constructs CON (Computational Overlay Network).

The characteristics and topology of CON affect scheduling algo-

rithm, resource management, and information management. As

a result, the reliability, result correctness, and performance de-

pend on how the CON is constructed. Performance and reliability

can improve by applying suitable scheduling, fault tolerance, and

result certification algorithms to each group. A CON is catego-

rized into simple group and topology-based. In the simple group

approach, resources are grouped together according to capabil-

ity, performance, weight, availability, workload, reputation/trust,

volatility, and so on. In the topology-based approach, resources

are grouped together while forming topologies such as tree, graph,

or DHT (Distributed Hash Table).

• Object : Scheduling decision is made in an application-oriented or

resource-oriented way according to the target of scheduling. The

application-oriented approach focuses on job selection, parti-

36

tion, and grouping. On the other hand, resource-oriented ap-

proach emphasizes resource selection and grouping. A dependent

job (or DAG) is mainly related with application-oriented approach

(that is, which task is first processed, or how tasks are grouped

or divided for a resource) [70, 86], whereas an independent job is

mainly related with resource-oriented approach (that is, to decide

which resource is appropriate for a task) [67, 68, 86].

• Dynamism : Scheduling is categorized into static and dynamic

according to whether the information of jobs and resources is

known or available, and when scheduling decision is made [61,

62, 65, 66, 67]. In the case of static scheduling, the prior in-

formation is assumed to be available [61, 62, 65, 66, 67]. Static

scheduling considers the entire tasks during decision making. In

the case of dynamic scheduling, little a prior knowledge is avail-

able [61, 62, 65, 66, 67]. It is unknown in what environment tasks

will execute. In addition, some nodes may go off-line and new

nodes may come on-line. That is, the environment state is chang-

ing over time. Dynamic scheduling obtains dynamically chang-

ing state and then takes the environment inputs into account

when making decisions. Dynamic scheduling can involve adap-

tive scheduling, fault-tolerant scheduling, and load sharing and

balancing. Dynamic scheduling is classified into online and peri-

odic according to the time at which scheduling event occurs [67].

37

In the online approach, scheduling event occurs as soon as a task

or a resource arrives. In the periodic approach, scheduling event

occurs periodically (that is, every predefined interval or time).

• Application type : Compute-intensive scheduling focuses on how

tasks are assigned to resources according to resources’ properties.

Data-intensive scheduling focuses on data such as data size and

location, the cost of transfer, replication policy, or data depen-

dency.

• Dependency : Dependent job scheduling (that is, workflow schedul-

ing) focuses on task and data dependency and synchronization

between tasks in order to minimize the overall execution time of

DAG [70, 85]. Independent job scheduling focuses on distribu-

tion of independent tasks to each machine according to machine’s

availability and capability, in order to complete as many tasks as

possible, concurrently.

• Deadline : Deadline scheduling distributes tasks to resources only

if the resources are able to (that is, hard deadline) or are likely to

(that is, soft deadline) complete the task by its deadline.

• Preemption : Preemptive scheduling considers task’s priority. It

allows a high-priority task to preempt a low-priority task running

on a machine. In non-preemptive scheduling, a machine is allowed

to execute another task only after finishing a task.

38

• Opportunistic scheduling : Opportunistic scheduling is to use

resources as quickly as possible, when they are idle or available

[30, 45, 54]. It can be easily cooperated with the pull mode.

• Reputation/incentive-based scheduling : Reputation/incentive-

based scheduling evaluates resources in order to select more-qualified

resources [56, 80, 81, 82]. If resources are selfish (non-dedicated),

distrusted, volatile, or faulty, a reputation-based or an incentive-

based scheduling is needed to exclude these resources or to encour-

age resource’s owners to provide their resources reliably, eagerly,

and trustworthily.

• Adaptive scheduling : Adaptive scheduling takes environmen-

tal stimuli into account to adapt to dynamically changing environ-

ment [61, 62, 78]. The environmental change leads to modifying

the scheduling policy. Adaptive scheduling is classified into mi-

gration, redundant reassignment, and change-policy or topology.

In the migration approach, a task is moved from one node

to another node. In the redundant reassignment approach,

the task that a slow resource does not complete within timeout

is reassigned to other resources. This leads to replication. In

the change-policy or topology approach, scheduling policy

or topology is switched in accordance with environmental change.

For example, in a tree topology, fast nodes move towards a root

node. Or, in the SA (Switching Algorithm), MCT (Minimum

39

Completion time) heuristic is switched to MET (Minimum Exe-

cution Time) depending on the load distribution threshold across

the nodes [67].

• Fault tolerant scheduling : Fault tolerant scheduling tolerates

failure as well as volatility. It is classified into checkpoint &

restart, reassignment, replication, and result certification. In the

checkpoint & restart approach, if a scheduler detects failure

of resource, it restarts the failed task at another resources from

the checkpoint. In the reassignment approach, if a scheduler

detects failure of resources, it reassigns the failed task to another

node. In the replication approach, a scheduler replicates the

same task to multiple nodes. Even though one of them fails, the

others mask the failure. Result certification approach tol-

erates malicious resources or a variety of hardware and software

malfunctions [15, 23, 56, 98]. As a result, it guarantees the cor-

rectness of results.

• Load sharing or balancing : Load sharing or balancing is cate-

gorized into work stealing and redistribution. In the work steal-

ing approach, a lightly-loaded node or idle node steals (or pulls)

tasks from a heavily-loaded node. On the contrary, in the redis-

tribution approach, a heavily-loaded node transfers (or pushes)

tasks to a lightly-loaded node or idle node.

40

• Scheduling goals : A scheduler tries to achieve its own schedul-

ing goals. It chooses appropriate scheduling policies and algo-

rithms according to its goals such as turnaround time, throughput,

deadline, price, load balance, and reliability.

2.5 Survey of Desktop Grid Systems

A mapping of the taxonomy to existing Desktop Grid systems or projects

is illustrated in this section. Table 2.2 shows the survey of existing Desk-

top Grid systems according to the taxonomy of Desktop Grid shown in

Figure 2.2. Tables 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 show the survey of existing

Desktop Grid systems focusing on scheduling according to the taxonomy

of scheduling shown in Figures 2.7 and 2.8.

We survey existing Desktop Grid systems, projects, and papers:

BOINC [13, 14, 15, 16], XtremWeb [17, 18, 19], Entropia [20, 21],

Bayanihan [22, 23, 24], Javelin [25, 26, 27], Computer Power Market

(CPM) [28, 29], Charlotte [30], POPCORN [31], WebCom [32, 33], Clus-

ter Computing On the Fly(CCOF) [34, 35, 36, 37], Organic Grid [38, 39],

Messor [40, 41], Paradropper [42, 43], and Condor [44, 45, 46].

41

Table 2.2: A Survey of Desktop Grid

System Organization Platform Scale
Resource
provider

BOINC Centralized Middleware-based Internet

Internet

LAN or

Internet

Internet

Internet

Internet

Internet

Internet

Internet

Internet

Internet

Internet

Internet

LAN

Volunteer

Or Enterprise

XtremWeb Centralized Middleware-based Volunteer

Entropia Centralized Middleware-based Enterprise or
Volunteer

Bayanihan Centralized Web-based or

Middleware-based

Volunteer

Javelin Distributed Web-based or

Middleware-based

Volunteer

CPM Distributed Middleware-based Volunteer

Charlotte Centralized Web-based Volunteer

Popcorn Centralized Web-based Volunteer

WebCom Centralized Web-based Volunteer

CCOF Distributed Middleware-based Volunteer

Organic Grid Distributed Middleware-based Volunteer

Messor (Anthill) Distributed Middleware-based Volunteer

Paradropper Distributed Middleware-based Volunteer

Condor Centralized Middleware-based Enterprise

2.5.1 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [13,

14, 15, 16] is a well-known middleware system for volunteer comput-

ing (or public-resource computing). BOINC makes it easy for scientists

to create and operate public-resource computing projects. There are

a lot of BOINC-based projects: SETI@Home, Predictor@Home, Fold-

ing@Home, Climatepredication.net, Climate@Home, LHC@Home, Ein-

stein@Home, BBC Climate Change, and so on [13, 14, 15, 16].

42

T
ab

le
2.

3:
S
u
rv

ey
of

D
es

k
to

p
G

ri
d

sy
st

em
s

fo
cu

si
n
g

on
sc

h
ed

u
li
n
g

S
y
st

em
O

rg
a

n
iz

a
ti

o
n

M
o
d

e
P

o
li

cy
G

ro
u

p
in

g

B
O

IN
C

C
en

tr
al

iz
ed

P
u

ll
F

C
F

S
In

d
iv

id
u

al
-b

as
ed

(N
o

t
su

p
p

o
rt

ed
)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
se

le
ct

io
n

D
y
n
am

ic

-S
E

T
I@

H
o
m

e,

E
in

st
ei

n
@

H
o

m
e,

C
li

m
at

ep
re

d
ic

t.
n

et

X
tr

em
W

eb
C

en
tr

al
iz

ed
P

u
ll

F
C

F
S

In
d

iv
id

u
al

-b
as

ed
R

es
o

u
rc

e
o

ri
en

te
d

 :

se
le

ct
io

n

D
y

n
am

ic

Ja
v

a
b

as
ed

 D
G

E
n

tr
o

p
ia

C
en

tr
al

iz
ed

P
u

ll
-M

o
d

el
-b

as
ed

:

Q
u

eu
e

(j
o

b
 s

el
ec

ti
o

n
)

-C
ap

ab
il

it
y

 :
m

at
ch

in
g

(r
es

o
u

rc
e

se
le

ct
io

n
,

g
ro

u
p

in
g

)

R
es

o
u

rc
e-

o
ri

en
te

d
 :

S
im

p
le

 g
ro

u
p

in
g

(c

ap
ab

il
it

y
)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
se

le
ct

io
n

,
g

ro
u

p
in

g

D
y

n
am

ic

-V
o

lu
n

te
er

 D
G

(E
N

T
R

O
P

IA
 2

0
0
0
)

-E
n

te
rp

ri
se

 D
G

(D
C

G
R

ID
T

M
)

C
h

ar
lo

tt
e

C
en

tr
al

iz
ed

P
u

ll

F
C

F
S

In
d

iv
id

u
al

-b
as

ed
R

es
o

u
rc

e
o

ri
en

te
d

:
re

so
u

rc
e

se
le

ct
io

n

D
y

n
am

ic

E
ag

er
 s

ch
ed

u
li

n
g

P
o

p
co

rn
C

en
tr

al
iz

ed
P

u
ll

E
co

n
o

m
y

-m
o

d
el

In
d

iv
id

u
al

-b
as

ed
R

es
o

u
rc

e
o

ri
en

te
d

:
re

so
u

rc
e

se
le

ct
io

n

D
y

n
a
m

ic

O
n

li
n

e
m

ar
k

et
 b

as
ed

sc

h
ed

u
li

n
g

B
ay

an
ih

an
C

en
tr

al
iz

ed
P

u
ll

-F
C

F
S

-R
ep

u
ta

ti
o

n
/t

ru
st

:
ex

cl
u

si
o

n
 (

C
re

d
ib

il
it

y
)

In
d

iv
id

u
al

-b
as

ed
R

es
o

u
rc

e
o

ri
en

te
d

:
re

so
u

rc
e

se
le

ct
io

n

D
y

n
am

ic

-C
re

d
ib

il
it

y
 b

as
ed

ea
g

er
 s

ch
ed

u
li

n
g

-J
av

a
b

as
ed

 v
o

lu
n

te
er

co

m
p

u
ti

n
g

Ja
v

el
in

D
is

tr
ib

u
te

d
P

u
ll

-R
an

d
o

m

-D
et

er
m

in
is

ti
c

m
o

d
el

:

tr
ee

 (
v

o
lu

n
te

er
)

R
es

o
u

rc
e-

o
ri

en
te

d
 :

C

O
N

 (
tr

ee
)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
se

le
ct

io
n

,
g

ro
u

p
in

g

D
y

n
am

ic

-T
re

e
b

as
ed

ad

v
an

ce
d

 e
ag

er

sc
h

ed
u

li
n

g

-J
av

a-
b

as
ed

In
d

iv
id

u
al

-b
as

ed
E

co
n

o
m

y
 m

o
d

el
P

u
ll

D
is

tr
ib

u
te

d
C

P
M

O
b

je
ct

D
y
n

a
m

is
m

E
tc

.

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
se

le
ct

io
n

D
y

n
am

ic

M
ar

k
et

-o
ri

en
te

d

43

T
ab

le
2.

4:
S
u
rv

ey
of

D
es

k
to

p
G

ri
d

sy
st

em
s

fo
cu

si
n
g

on
sc

h
ed

u
li
n
g

(C
on

ti
n
u
ed

)

S
y
st

em
A

p
p

.
T

y
p

e
D

ep
en

d
en

cy
D

ea
d

li
n

e
P

re
em

p
ti

o
n

B
O

IN
C

C
o

m
p

u
te

-i
n

te
n

si
v

e
In

d
ep

en
d

en
t

S
o
ft

 d
ea

d
li

n
e

P
re

em
p

t
(i

f
a

v
o

lu
n

te
er

p

ar
ti

ci
p

at
es

 i
n

 m
u

lt
ip

le
 p

ro
je

ct
s)

X
tr

em
W

eb
C

o
m

p
u

te
-I

n
te

n
si

v
e

In
d

ep
en

d
en

t
N

o
t

m
en

ti
o

n
ed

N
o

t
su

p
p

o
rt

E
n

tr
o

p
ia

C
o

m
p

u
te

-I
n

te
n

si
v

e
In

d
ep

en
d

en
t

S
o

ft
 d

ea
d

li
n

e
N

o
t

su
p

p
o

rt

C
h

ar
lo

tt
e

C
o

m
p

u
te

-i
n

te
n

si
v

e
In

d
ep

en
d

en
t

N
o

t
m

en
ti

o
n

ed
N

o
t

su
p

p
o

rt

P
o

p
co

rn
C

o
m

p
u

te
-i

n
te

n
si

v
e

In
d

ep
en

d
en

t
N

o
t

m
en

ti
o

n
ed

N
o

t
su

p
p

o
rt

B
ay

an
ih

an
C

o
m

p
u

te
-i

n
te

n
si

v
e

-I
n

d
ep

en
d

en
t

-D
ep

en
d

en
t

(B
S

P
)

N
o

t
m

en
ti

o
n

ed
N

o
t

su
p

p
o

rt

Ja
v

el
in

C
o

m
p

u
te

-i
n

te
n

si
v

e
In

d
ep

en
d

en
t

N
o

t
m

en
ti

o
n

ed
N

o
t

su
p

p
o

rt

N
o

t
su

p
p

o
rt

S
o

ft
 d

ea
d

li
n

e
In

d
ep

en
d

en
t

C
o

m
p

u
te

-i
n

te
n

si
v

e
C

P
M

44

T
ab

le
2.

5:
S
u
rv

ey
of

D
es

k
to

p
G

ri
d

sy
st

em
s

fo
cu

si
n
g

on
sc

h
ed

u
li
n
g

(C
on

ti
n
u
ed

)

S
y
st

em
O

p
p

o
rt

u
n

is
m

R
ep

u
ta

ti
o
n

/
In

ce
n

ti
v

e

B
O

IN
C

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g
N

o
t

su
p

p
o

rt

R
ea

ss
ig

n
m

en
t

-C
h

ec
k

p
o

in
t/

re
st

ar
t

-R
es

u
lt

 c
er

ti
fi

ca
ti

o
n

(h
o

m
o

g
en

eo
u

s
re

d
u

n
d

an
cy

)

-R
ed

u
n

d
an

t
co

m
p

u
ti

n
g

N
o

-F
au

lt
 t

o
le

ra
n

ce

-R
el

ia
b

il
it

y

X
tr

em
W

eb
O

p
p

o
rt

u
n

is
ti

c
sc

h
ed

u
li

n
g

N
o

t
su

p
p

o
rt

R
ea

ss
ig

n
m

en
t

R
ea

ss
ig

n
m

en
t

N
o

N
o

t
sp

ec
if

ie
d

E
n

tr
o

p
ia

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g
N

o
t

su
p

p
o

rt
R

ea
ss

ig
n

m
en

t
R

ea
ss

ig
n

m
en

t
N

o
N

o
t

sp
ec

if
ie

d

C
h

ar
lo

tt
e

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g
N

o
t

su
p

p
o

rt
R

e
as

si
g

n
m

e
n
t

R
e
as

si
g

n
m

en
t

N
o

-F
au

lt
 t

o
le

ra
n

ce

P
o

p
co

rn
N

o
t

m
en

ti
o

n
ed

N
o

t
su

p
p

o
rt

N
o

-R
ea

ss
ig

n
m

en
t

-R
es

u
lt

 C
er

ti
fi

ca
ti

o
n

N
o

P
ri

ce

B
ay

an
ih

an
O

p
p

o
rt

u
n

is
ti

c
sc

h
ed

u
li

n
g

C
re

d
ib

il
it

y
-

b
as

ed
 e

ag
er

sc

h
ed

u
li

n
g

R
ea

ss
ig

n
m

en
t

-R
ea

ss
ig

n
m

en
t

-R
es

u
lt

 c
er

ti
fi

ca
ti

o
n

(m
aj

o
ri

ty
 v

o
ti

n
g

,
sp

o
t-

ch
ec

k
in

g
)

N
o

F
au

lt
 t

o
le

ra
n

ce

(s
ab

o
ta

g
e

to
le

ra
n

ce
)

Ja
v

el
in

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g
N

o
t

su
p

p
o

rt
R

ea
ss

ig
n

m
en

t
R

ea
ss

ig
n

m
en

t
W

o
rk

 s
te

al
in

g

(P
u

ll
)

-F
au

lt
 t

o
le

ra
n

ce

-L
o

ad
 b

al
an

ce

N
o

t
su

p
p

o
rt

C
o

n
tr

ac
t-

b
as

ed
(p

ri
ce

,
d

ea
d

li
n

e)
C

P
M

A
d

a
p

ti
v
en

es
s

F
a

u
lt

 t
o

le
ra

n
ce

L
o
a
d

b
a

la
n

ci
n

g
G

o
a

l

N
o

R
ea

ss
ig

n
m

en
t

N
o

-P
ri

ce

-D
ea

d
li

n
e

45

T
ab

le
2.

6:
S
u
rv

ey
of

D
es

k
to

p
G

ri
d

sy
st

em
s

fo
cu

si
n
g

on
sc

h
ed

u
li
n
g

(C
on

ti
n
u
ed

)

S
y
st

em
O

rg
a

n
iz

a
ti

o
n

M
o
d

e
P

o
li

cy
G

ro
u

p
in

g

W
eb

C
o

m
H

ie
ra

rc
h

ic
al

P
u

ll
-D

et
er

m
in

is
ti

c
:

q

u
eu

e
(r

o
u

n
d

-r
o

b
in

)

-C
ap

ab
il

it
y

 (
n

et
w

o
rk

la
te

n
cy

):
 m

at
ch

in
g

-P
er

fo
rm

an
ce

:
m

at
ch

in
g

R
es

o
u

rc
e-

o
ri

en
te

d
:

C
O

N
 (

tr
ee

):
 l

at
en

cy
R

es
o

u
rc

e
o

ri
en

te
d

:
re

so
u

rc
e

se
le

ct
io

n

D
y

n
am

ic

C
o

n
d

en
se

d
 g

ra
p

h

C
C

O
F

D
is

tr
ib

u
te

d
P

u
sh

-T
im

ez
o

n
e:

 m
at

ch
in

g

-R
ep

u
ta

ti
o

n
/t

ru
st

:
ra

n
k

in
g

,
ex

cl
u

si
o

n

R
es

o
u

rc
e-

o
ri

en
te

d
:

C
O

N
 (

T
im

e
zo

n
e

b
as

ed
 D

H
T

)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
g

ro
u

p
in

g
,

se
le

ct
io

n

D
y

n
am

ic

W
av

e
sc

h
ed

u
li

n
g

(n
ig

h
t

ti
m

e
zo

n
e

b
as

ed

sc
h

ed
u

li
n

g
)

O
rg

an
ic

 G
ri

d
D

is
tr

ib
u

te
d

P
u

ll
D

et
er

m
in

is
ti

c
m

o
d

el

(t
re

e)
R

es
o

u
rc

e-
O

ri
en

te
d

:

C
O

N
 (

P
er

fo
rm

an
ce

-
b

as
ed

 t
re

e)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
g

ro
u

p
in

g
,

se
le

ct
io

n

D
y

n
am

ic

-S
el

f-
o

rg
an

iz
in

g

sc
h

ed
u

li
n

g

-M
o

b
il

e
ag

en
t-

b
as

ed

M
es

so
r

D
is

tr
ib

u
te

d
P

u
sh

P
u

ll

-R
an

d
o

m

-W
o

rk
lo

ad
:

m
at

ch
in

g

R
es

o
u

rc
e-

o
ri

en
te

d
:

C
O

N
 (

W
o

rk
lo

ad
-

b
as

ed
 R

an
d

o
m

g

ra
p

h
)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
se

le
ct

io
n

D
y

n
a
m

ic

-A
n

t
(m

o
b

il
e

ag
en

t)
 b

as
ed

lo

ad
 b

al
an

ci
n

g

P
ar

ad
ro

p
p

er
D

is
tr

ib
u

te
d

P
u

sh
-W

o
rk

lo
ad

:
ra

n
k

in
g

R
es

o
u

rc
e-

o
ri

en
te

d
:

C
O

N
 (

sm
al

l
w

o
rl

d

g
ra

p
h

)

R
es

o
u

rc
e

o
ri

en
te

d
:

re
so

u
rc

e
g

ro
u

p
in

g
,

se
le

ct
io

n

D
y

n
am

ic

S
m

al
l

w
o

rl
d

 g
ra

p
h

C
o
n
d
o
r

C
en

tr
al

iz
ed

P
u

sh
,

P
u

ll
C

ap
ab

il
it

y
,

lo
ca

ti
o

n
,

w
o

rk
lo

ad
:

m
at

ch
in

g
,

ra
n

k
in

g

In
d

iv
id

u
al

-b
as

ed
R

es
o

u
rc

e
o

ri
en

te
d

:

se
le

ct
io

n

D
y

n
am

ic

H
ig

h
 t

h
ro

u
g

h
p

u
t

co
m

p
u

ti
n

g

K
o

n
d

o
 e

t
al

.
C

en
tr

al
iz

ed
P

u
ll

,

P
u

sh

-C
ap

ab
il

it
y

 (
C

P
U

):

ra
n

k
in

g
,

ex
cl

u
si

o
n

-P
er

fo
rm

an
ce

 :

ex
cl

u
si

o
n

-T
h

ro
u

g
h

p
u

t:
 r

an
k

in
g

In
d

iv
id

u
al

-b
as

ed
R

es
o

u
rc

e
o

ri
en

te
d

:
re

so
u

rc
e

se
le

ct
io

n

D
y

n
am

ic

-E
n

te
rp

ri
se

 D
G

-A
v

ai
la

b
il

it
y

m
ea

su
re

m
en

t

O
b

je
ct

D
y
n

a
m

is
m

E
tc

.

46

T
ab

le
2.

7:
S
u
rv

ey
of

D
es

k
to

p
G

ri
d

sy
st

em
s

fo
cu

si
n
g

on
sc

h
ed

u
li
n
g

(C
on

ti
n
u
ed

)

S
y
st

em
A

p
p

.
T

y
p

e
D

ep
en

d
en

cy
D

ea
d

li
n

e
P

re
em

p
ti

o
n

W
eb

C
o

m
C

o
m

p
u

te
-i

n
te

n
si

v
e

D
ep

en
d

en
t

(C
o

n
d

en
se

d
 g

ra
p

h
)

N
o

t
m

en
ti

o
n

ed
N

o

C
C

O
F

C
o

m
p

u
te

-I
n

te
n

si
v

e
In

d
ep

en
d

en
t

S
o

ft
 d

ea
d

li
n

e
N

o

O
rg

an
ic

 G
ri

d
C

o
m

p
u

te
-I

n
te

n
si

v
e

In
d

ep
en

d
en

t
N

o
t

m
en

ti
o

n
ed

N
o

M
es

so
r

C
o

m
p

u
te

-I
n

te
n

si
v

e
In

d
ep

en
d

en
t

N
o

t
m

en
ti

o
n

ed
N

o

P
ar

ad
ro

p
p

er
C

o
m

p
u

te
-i

n
te

n
si

v
e

In
d

ep
en

d
en

t
N

o
t

m
en

ti
o

n
ed

N
o

C
o

n
d

o
r

C
o

m
p

u
te

-i
n

te
n

si
v

e,

D
at

a-
in

te
n

si
v

e

In
d

ep
en

d
en

t,

D
ep

en
d

en
t

S
o

ft
 d

ea
d

li
n

e
P

re
em

p
t

(i
n

 d
ed

ic
at

ed
 c

lu
st

er
)

K
o

n
d

o
 e

t
al

.
C

o
m

p
u

te
-i

n
te

n
si

v
e

In
d

ep
en

d
en

t
S

o
ft

 d
ea

d
li

n
e

N
o

47

T
ab

le
2.

8:
S
u
rv

ey
of

D
es

k
to

p
G

ri
d

sy
st

em
s

fo
cu

si
n
g

on
sc

h
ed

u
li
n
g

(C
on

ti
n
u
ed

)

S
y
st

em
O

p
p

o
rt

u
n

is
m

R
ep

u
ta

ti
o
n

/
In

ce
n

ti
v

e

W
eb

C
o

m
N

o
t

m
en

ti
o

n
ed

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g

O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g

-M
at

ch
m

ak
in

g

-O
p

p
o

rt
u

n
is

ti
c

sc
h

ed
u

li
n

g

N
o

t
m

en
ti

o
n

ed

C
h

an
g

e
to

p
o

lo
g

y

(t
re

e)

:
lo

ad
,

la
te

n
cy

R
ea

ss
ig

n
m

en
t

N
o

F
au

lt
-t

o
le

ra
n

ce
N

o
t

su
p

p
o

rt

T
ru

st
-b

as
ed

sc
h

ed
u

li
n

g

N
o

t
su

p
p

o
rt

N
o

t
su

p
p

o
rt

N
o

t
su

p
p

o
rt

N
o

t
su

p
p

o
rt

C
C

O
F

M
ig

ra
ti

o
n

(t
im

ez
o

n
e)

-R
es

u
lt

ce
rt

if
ic

at
io

n
 (

q
u

iz

an
d

 r
ep

li
ca

ti
o

n
 i

n

co
ll

is
io

n
)

N
o

-T
u

rn
ar

o
u

n
d

 t
im

e

-F
au

lt
 t

o
le

ra
n

ce

o
r

re
li

ab
il

it
y

O
rg

an
ic

 G
ri

d
C

h
an

g
e

 t
o

p
o

lo
g

y

(p
er

fo
rm

an
ce

-
b

as
ed

)

R
ea

ss
ig

n
m

en
t

N
o

-T
u

rn
ar

o
u

n
d

 t
im

e

M
es

so
r

C
h

an
g

e
p

o
li

cy

*
P

u
sh

 :
 o

v
er

lo
ad

ed

*
P

u
ll

 :
 l

ig
h

t
lo

ad
ed

N
o

-W
o

rk
 s

te
al

in
g

(p

u
ll

)

-L
o

ad
 r

ed
is

tr
ib

u
ti

o
n

(p

u
sh

)

-L
o

ad
 b

al
an

ce

P
ar

ad
ro

p
p

er
N

o
N

o
L

o
ad

 r
ed

is
tr

ib
u

ti
o

n

(p
u
sh

)
-L

o
ad

 b
al

an
ce

N
o

t
su

p
p

o
rt

C
o

n
d

o
r

M
ig

ra
ti

o
n

C
h

ec
k

p
o

in
t/

re
st

ar
t

N
o

-T
h

ro
u

g
h

p
u

t

-F
au

lt
 t

o
le

ra
n

ce

K
o

n
d

o
 e

t
al

.
R

e
as

si
g

n
m

en
t

R
ep

li
c
at

io
n

N
o

-T
u

rn
ar

o
u

n
d

 t
im

e

A
d

a
p

ti
v
en

es
s

F
a

u
lt

 t
o

le
ra

n
ce

L
o
a
d

 b
a
la

n
ci

n
g

G
o

a
l

48

BOINC consists of server and client (volunteer in this thesis). A

server has a task server that dispatches tasks and processes the results

of tasks, a data server that handles file transfer, a database that stores

descriptions of applications, volunteers, scheduling, etc., and web in-

terfaces for account management, message boards, etc. A client (that

is, volunteer) runs projects’ applications. It can participate in several

projects and specify preferences for the projects. BOINC is mainly

based on voluntary participants connected through Internet6.

BOINC server is responsible for scheduling. A client sends a request

to a task server (that is, pull mode). The server allocates a list of new

tasks to the client. Additionally, BOINC supports locality scheduling.

In addition, a client performs local scheduling on its computer7, which

decides which task to run among multiple projects’ applications, when

to ask a server for more works, which project to ask, and how much work

to ask for [13]. BOINC clients can join and leave freely, so scheduling

should be dynamic.

BOINC is used for applications in physics, molecular biology, medicine,

chemistry, astronomy, climate, mathematics, etc. The applications are

mainly compute-intensive and independent. BOINC scheduler distributes

a task to a volunteer only if the volunteer is likely to complete the task

6Recently, BOINC can be used as Enterprise DG computing platform, although

it was originally designed for volunteer DG (volunteer computing) [13].

7Local scheduling of BOINC is different from local scheduling of Grid. The local

scheduler in Grid decides how to distribute or order tasks to multiple computers

(that is, cluster) or processors in supercomputer

49

by its deadline. If an task’s deadline passes or if a task fails, a server

marks it as time-out and redistributes a new instance of the task. With

the local scheduling, BOINC client may preempt applications either

by suspending them or by instructing them to quit if it participates

in multiple projects [13]. That is, one task is preempted by another

task. BOINC provides checkpoint API for applications, that is, when

to checkpoint and when a checkpoint has been done.

BOINC supports redundant computing to identify and reject erro-

neous results. It also provides homogeneous redundancy for the numer-

ical applications that may produce different results depending on the

machine architecture, operating systems, compiler, and compiler flags

[15]. In this case, the redundant tasks are dispatched to numerically

identical computers.

2.5.2 XtremWeb

XtremWeb [17, 18, 19] is a Java-based middleware system for global

computing (large scale distributed system) experiments. XtremWeb

extends the principle of cycle stealing to personal computers connected

to Internet.

XtremWeb is composed of client, server (or coordinator), and worker

(volunteer in this thesis). A client performs tasks submission and results

retrieval. A coordinator is composed of a repository that advertises or

publishes applications, a scheduler, a result server that collects results,

and database. All the communications are initiated by a worker. A

50

worker contacts its server to get tasks. That is, the scheduler uses pull

mode to allocate tasks. The scheduler distributes tasks to workers in a

FIFO (First In First Out) way.

The applications are mainly compute-intensive and independent. A

worker periodically sends an alive signal to its server. If the server has

not received the message during a predefined time (that is, timeout), it

reschedules the task to another worker.

2.5.3 Entropia

Entropia [20, 21] is a middleware system for commercial Desktop Grid.

Entropia provides two solutions: enterprise Desktop Grid (Entropia DC-

Grid) and Internet Grid (Entropia 2000). The applications are mainly

compute-intensive and independent.

Entropia consists of server and client (volunteer in this thesis). The

server in Internet Desktop Grid consists of three main components:

tasks server, file server, and app server. A task server is responsible

for registration, scheduling and resource management. It maintains a

database and forms an application pool (that is, a list of clients, the

number of assigned jobs, and the number of completed jobs, and the

pool priority). The clients within a pool have similar capabilities such

as disk space or operating system type. The App server decomposes an

job into subjobs and assigns them to clients. The task server performs

scheduling in a pull mode.

Enterprise Desktop Grid has three layers: job management layer,

51

subjob management layer, and resource management layer. The re-

source management layer is responsible for registration and resource

management, and maintains resource pools (application pools). The

subjob management layer performs scheduling. The job management

layer’s responsibility includes job decomposition and management. The

subjob management layer maintains queues that have priority and de-

fault values for time to live, max time to run, and min time to run. It

first processes the highest priority queue. Higher priority is assigned to

the retried subjobs than first submitted subjobs. Subjobs are selected

in a FIFO way. Like this, Entropia’s subjob management layer provides

how to select subjobs depending on queue structure. Clients periodically

report their resource status to node manager in the resource manage-

ment layer and the subjob scheduler. The scheduler assigns subjobs to

available clients according to client’s attributes such as memory capac-

ity, OS type, etc. For example, if subjobs need a minimum of 128 MB of

memory, then they are assigned to the clients with at least that amount

of memory. If a client becomes disconnected or unresponsive, or fails

to return a result within the expected time, the scheduler redistributes

the subjob to another client.

2.5.4 Bayanihan

Bayanihan [22, 23, 24] is a web-based volunteer computing system using

Java. Bayanihan system consists of client (volunteer in this thesis)

and server. A client can either be Java applet started from a web

52

browser (that is, web-based), or Java application (that is, middleware-

based). A client has a worker engine for performing computation or

a watcher engine for viewing results and statistics. A server consists

of HTTP server, work manager, watch manager, and data pool. The

HTTP server serves out Java class file. The work manager distributes

tasks and collects result. The watch manager distributes results to

watcher engines in clients.

The work manager in a server is responsible for scheduling. A worker

client (that is, volunteer) makes remote call to the server to get a task.

Bayanihan basically uses eager scheduling, in which a volunteer asks its

server for a new task as soon as it finishes its current task. The more

eager a volunteer works, the more tasks are executed. Additionally, it

provides credibility-based fault tolerance mechanism to tolerate erro-

neous results from malicious volunteers [23]. The credibility-enhanced

eager scheduling estimates the probability of result and worker being

correct by using voting, spot-checking [23, 24]. In a majority voting

approach, the same task is performed at different volunteers as much as

the number of redundancy. Redundancy is used to identify the correct

result against erroneous one if there are sufficiently more good volun-

teers than bad ones. In a spot-checking approach, the special task whose

result is already known is performed at randomly selected volunteers.

If a volunteer returns an erroneous result, it is regarded as malicious

one. In the credibility-enhanced eager scheduling, the more a volunteer

53

passes the spot-checking, the higher its credibility becomes. The more

volunteers within voting group agree on a result, the higher its credi-

bility becomes. Volunteers continue to compute the task and perform

spot-checking until the credibility threshold is satisfied. When the de-

sired credibility threshold is reached, the result is accepted as a final.

The volunteers that produce erroneous results can be blacklisted. If a

worker executes a task slowly or if it fails, the scheduler reassigns the

task to different workers.

The applications are mainly compute-intensive and independent. In

addition, Bayanihan supports applications running in BSP (Bulk Syn-

chronous Parallel) mode [24], which provides familiar message-passing

and remote memory primitives.

2.5.5 Javelin

Javelin [25, 26, 27] is a Java-based infrastructure for parallel Inter-

net computing (or global computing). Applications run as Java applet

(Javeline version) or screen saver (Javelin++ version). Applications are

mainly compute-intensive and independent. Javelin consists of three

entities: broker, client, and host (volunteer in this thesis). A client reg-

isters its tasks to a broker. A host offers computing resources. A broker

coordinates the supply and demand for computing resources. When a

host contacts a broker, the broker adds the host to a logical tree struc-

ture. A broker maintains the organized tree of hosts. Like this, Javelin

simply constructs tree-based CON.

54

A client registers with a broker. If a host requests tasks to the

broker, the broker informs the host of client ID and application infor-

mation. Then the host executes tasks. At this time, work stealing and

advanced eager scheduling are performed [26, 27]. With work stealing,

when a host runs out of work, it request tasks from other hosts in two

ways: deterministic or probabilistic approaches. In a deterministic ap-

proach, a host asks tasks from its children or its parents on the basis

of tree structure. In a probabilistic approach, the host selects the tar-

get randomly from the list of hosts it currently knows. With advanced

eager scheduling, the client selects the next task marked undone and

reissues it to another host. The advanced eager scheduling is invoked

only when work stealing fails. It also provides fault tolerant mechanism,

that is, how to fix tree in the presence of host’s failure. The failed work

is redistributed by eager scheduling, in the sense that eager scheduling

guarantees that the undone works will be rescheduled to different hosts

eventually.

In Javelin, the work stealing is performed at a host, and eager

scheduling is performed at a client. A broker is a simple mediator

between clients and hosts. Thus, Javelin is close to distributed DG,

although a broker collects hosts’ information.

2.5.6 CPM

CPM(Compute Power Market) [28, 29] is a market-based middleware

system for Grid computing on low-end personal computing devices con-

55

nected to Internet. It aims to develop a computational marketplace

for the regulation of resource demand and supply. It applies economic

concept to resource management and scheduling of computations across

Internet-wide volunteer resources.

CPM consists of a market, a resource consumer (client in this the-

sis), and a resource provider (volunteer in this thesis). A market is

a mediator between consumer and provider. It maintains information

about providers and consumers. A resource consumer buys comput-

ing power from the market. It has a market resource broker down-

loaded from the market. The market resource broker finds appropriate

providers depending on the information provided by the market. It se-

lects resources according to deadline or budget, negotiates the cost of

resources, and distributes tasks to them. The application and data files

are fetched when the task is ready to run at the resource provider. A re-

source provider sells computing power through the market. A resource

provider has a market resource agent downloaded from the market. The

market resource agent updates information about its resource provider,

and deploys and executes tasks.

In CPM, resources trade is performed between consumer (that is,

client) and producer (that is, volunteer). Scheduling is performed at a

resource consumer (that is, client). Thus, CPM is close to distributed

DG. Scheduling is also close to distributed one although a consumer

is responsible for scheduling, in the sense that consumers negotiate for

resource’s cost with providers and there is no special server that is re-

56

sponsible for scheduling.

2.5.7 Charlotte

Charlotte [30] is a Java-based infrastructure for metacomputing on the

Web. It consists of manager (server in this thesis) and worker (volunteer

in this thesis). A manager provides a scheduling service and a memory

service for accessing shared data. A worker provides a computing service

implemented as an applet.

Charlotte firstly proposed eager scheduling. At first, participating

workers pickup and execute each task. After then, if a worker finishes

its task, it contacts the eager scheduler. If there are still tasks that have

not been assigned, the scheduler assigns one of them to the worker. If

all tasks have been assigned but some tasks have not yet completed,

the scheduler reassigns one of the unfinished tasks to the worker. This

redundant assignment of a task to multiple workers eventually tolerates

slow workers and failed workers in the sense that if at least one of

multiple workers finishes the task, the task is completed. That is, eager

or fast workers overtake slow or failed workers.

2.5.8 POPCORN

POPCORN [31] is a Java-based infrastructure for globally distributed

computation over the Internet. POPCORN provides a market-based

mechanism for trade of computational resources. POPCORN system

consists of market, seller (volunteer in this thesis), and buyer (client in

57

this thesis). A market matches buyers and sellers according to economic

model. A seller provides its resource to a buyer by using Java-enabled

browser. The applications are mainly compute-intensive and indepen-

dent.

A market uses the popcoin (that is, an abstract currency) and main-

tains a database about it. A seller can earn popcorn or get any other

type of reward such as on-line game or a picture by barter. A buyer

can buy resources with popcoins. The market is responsible for match-

ing buyers and sellers, for transferring tasks and results between them,

and for handling all payments and accounts. It is a well-known meeting

place or matchmaker for buyers and sellers. It uses several market mod-

els (that is, a repeated Vickrey auction, a sealed bid double-auction, and

repeated Clearinghouse double auction) for matching buyers and sellers

[31].

POPCORN deals with the failure and verification. If a task fails,

simply resend the tasks to a different host. POPCORN simply uses

replication, spot-checking, self-testing, etc.8

2.5.9 WebCom

WebCom [32, 33] is a web-based distributed computation platform using

Java. It consists of a master (server in this thesis) and a client (volunteer

in this thesis). A master maintains a set of clients and is responsible

8It does not propose a new mechanism. It just uses existing mechanisms.

58

for scheduling. A client receives a task as the form of a Java applet,

executes it within its browser.

A master generates atomic instruction (that is, a task) or a con-

densed graph (that is, a set of tasks) that represents an acyclic graph of

interacting sequential programs. Execution begins at the master, and

the tasks are distributed to clients when clients become available. A

client can act as a potential master. It can be promoted to be a master

if it receives a condensed graph. The promoted master is assigned a

number of clients according to communication latency. If it needs more

clients, it requests them to the primary master. Conversely, it redirects

its clients to its primary master if they are under-utilized. Like this, the

primary master, promoted masters, and clients form a tree structure.

Scheduling is performed hierarchically at the primary master and the

promoted masters.

A master maintains instruction queues for the atomic or condensed

graph instructions. It distributes instructions to clients in a round robin

fashion. It also performs scheduling according to network latency be-

tween client and master. It allocates tasks to clients on the basis of an

expected execution time and CPU performance (load). If a task fails,

it is rescheduled to another client.

2.5.10 CCOF

CCOF(Cluster Computing On the Fly) [34, 35, 36, 37] is a cycle sharing

peer-to-peer system. It harvests idle cycles from users at the edges of

59

the Internet. It supports a distributed model, in which there is no server

and any peer can be either a donor or a consumer or both.

Hosts (volunteers in this thesis) join a community based overlay

networks (CAN-based DHT overlay) to donate their idle cycles [34, 35].

Clients discover these resources from these overlays, and schedule tasks

according to timezone. If a scheduler fails to find enough resources

at day timezone, it reschedules the tasks at night timezone. If a host

is not able to complete its task, the task migrates to a new host at

night timezone for fast turnaround time9. If the host fails to find a new

host, the original client reschedules the job. The scheduler is called wave

scheduler in that tasks ride a wave of idle cycles (day or night timezone).

Wave scheduling supports deadline-driven tasks. Scheduling is close to

distributed model in the sense that there is no server and migration is

performed at each host, although a client initially schedules the tasks.

CCOF provides result verification schemes (that is, Quiz and repli-

cation) on the assumption that there is collusion among malicious hosts

[37]. The Quiz inserts a quiz task (its result is known to a client) into a

normal task (that is, it is similar to spot-checking). CCOF also proposes

a trust-based scheduling. The trust-based scheduling uses the reputa-

tion system to select trusted hosts [37]. The reputation system evaluates

trust values of hosts according to the result of the result verification.

The malicious hosts can be blacklisted.

9Migration can be applicable to a push model

60

2.5.11 Organic Grid

Organic Grid [38, 39] provides a self-organizing and distributed ap-

proach to the organization of the computation. Hosts (volunteer in this

thesis) keep a list of other hosts called friends list, and build tree-based

overlay network.

A user starts the computation on its host. If the host receives a

request from other hosts, it distributes tasks to them as the form of a

mobile agent. The requesting host becomes a child of the original host.

Like this, tasks are scheduled in a distributed way. Consequently, a tree

topology is constructed on the fly. An agent requests its parent for more

work when it completes its task. If the parent does not have tasks, it

sends a request to its parent. If a host obtains results from children or

finishes its tasks, it sends them to its parent.

The tree overlay network is restructured during the computation

according to the performance, that is, the rate at which a host sends a

result. The hosts with high performance move towards the root of the

tree. This reconstruction minimizes communication delay between the

root and the best host and makes it possible to firstly allocate tasks to

the best hosts.

If the parent of a host fails, the node contacts its parent’s ancestor.

The ancestor becomes the parents of the host and the computation

resumes. Every host keeps track of the unfinished tasks of children in

order to tolerate the failure of tasks. If a child requests additional tasks,

61

unfinished tasks are resent.

2.5.12 Messor

Messor10 [40, 41] aims to support the concurrent execution of highly-

parallel and compute-intensive computations. It can self-organize over-

lay network for the computation by using peer-to-peer technology. Mes-

sor is composed of interconnected nests. A nest is a peer entity sharing

its computational and storage resources. It can generate ants (that is,

autonomous agents) that travel across the nest network. It manages its

resources (that is, CPU cycles and files) and executes tasks.

Every nest can submit tasks to the nest network. The submitted

tasks are scheduled to other nests in a distributed way. An ant wanders

about the nest network until it encounters overloaded nest in Serar-

chMax state. An ant selects the next nest randomly or according to

workload. When it finds the overloaded node, it records the identifier

of this nest and changes its state into SearchMin. From now on, it wan-

ders about the network, looking for a light-loaded nest. When it finds

the light-loaded nest, it requests the local job manager on the nest to

fetch jobs from the overloaded nest, and then changes its state back

to the SearchMax state. Ants continuously perform the process within

its time-to-live. When a task is completed, the result is sent back to

the original nest. Like this, Messor constructs workload-based random

10Messor is built on the basis of Anthill. It is Grid computing application.

62

graph on the fly and achieves load balancing.

2.5.13 Paradropper

Paradropper [42, 43] is a global computing system that supports self-

organizing overlay network by using peer-to-peer technologies. Peers are

organized into an overlay network by using small world characteristics.

A new volunteer send a message to the entry point that is randomly

selected among the list of peers. The entry point in turn introduces the

new peer to it neighbors. A small world graph is constructed in this

manner.

Every peer maintains workload. Whenever a peer accepts a task, its

workload increases by 1. Whenever a peer finishes a task and returns

its result, its workload decreases by 1. A new peer has the workload

0. When the workload gets changed, a peer sends Load Change Report

messages to its neighbors.

Tasks are distributed according to workload in a distributed way.

Each peer selects the target that has the smallest workload in its neigh-

bors. When a peer gets overloaded, it can redistribute its tasks to

the network. The tasks will be accepted by light-loaded peers. Con-

sequently, Paradropper supports load balancing. In addition, powerful

peers have executed more tasks than weaker peers.

63

2.5.14 Condor

Condor [44, 45, 46] is a batching system for high-throughput computing

on large collection of distributed resources. Condor provides a job man-

agement, scheduling, resource monitoring, and resource management,

etc. Particularly, Condor aims at high-throughput computing and op-

portunistic computing [45]. Condor is comprised of a central manager

(server in this thesis) and other resources (volunteer in this thesis). A

central manager is responsible for matchmaking (scheduling) and infor-

mation management about job and resources.

Condor can be used to manage dedicated clusters, or to harness

wasted CPU power from otherwise idle desktop workstations within the

boundaries of an organization11. Condor can be configured to run jobs

only when the keyboard and CPU are idle. If a job is running on a

workstation, when the user returns, the job migrates to a different node

and resumes. In order to tolerate failures, Condor transparently takes

a checkpoint and subsequently resumes the job.

Condor provides ClassAd in order to describe characteristics and

requirements of both jobs and resources [45, 46]. It also provides a

matchmaker for matching an job with an available resource. Condor

performs matchmaking as follows. Agent (client) and resources (vol-

unteer) advertise their ClassAds to its matchmaker. The matchmaker

investigates the ClassAds, and selects job and resource pairs that sat-

11Condor can come under Desktop Grid because of this feature.

64

isfy each other’s constraints and preferences. Finally, they establish a

contract, and then cooperate to execute a job.

ClassAd describes the special attributes: Requirements and Rank

[46]. Requirements attribute indicates a constraint, and Rank attribute

measures the desirability of a match. The matchmaker first selects both

job and resource to satisfy Requirements value. Then it chooses the one

with the highest Rank value among compatible matches. For exam-

ple, Requirements and Rank have values such as architecture, operating

system, memory, disk size, load, location, etc.

Condor provides DAGMan(Directed Acyclic Graph Manager) for

executing dependable jobs [46]. Condor enables preemptive-resume

scheduling on dedicated compute cluster resources. It can preempt a

low-priority task in order to immediately start a high-priority task.

2.5.15 Kondo et al.

Kondo et al. [47, 48, 49, 50, 51] proposes centralized scheduling mecha-

nisms in Desktop Grid. They propose resource selection approaches for

short-lived application: resource prioritization, resource exclusion, and

task replication [49]. Resource prioritization is to sort hosts according to

some criteria such as clock rate. Resource exclusion is to exclude some

hosts according to clock or makespan predication. Task replication is to

replicate tasks to multiples hosts in order to reduce the probability of

tasks failure and completion delay or to schedule tasks to faster hosts.

Kondo et al. [47] propose timeout mechanism. If a server does not

65

receive result from a host within timeout, it redistributes the task to

another host. In addition, they propose a scheduling mechanism by

using a buffer in order to complete applications within deadline [51].

2.6 Discussion

From the taxonomy and survey, we extract the challenging issues for

Desktop Grid and a direction for Desktop Grid scheduling.

2.6.1 Challenging Issues for Desktop Grid

Desktop Grid has some characteristics such as volatility, dynamic envi-

ronment, lack of trust, failure, scalability, and voluntary participation.

• Volatility (non-dedication): Since Desktop Grid is based on

desktop computers, it should respect the autonomy of resource

providers. In other words, volunteers can leave arbitrarily in the

middle of public execution, and they are allowed to execute private

execution at any time while interrupting the public execution. Ac-

cordingly, they have various volunteering time (that is, the time

of donation). In addition, public execution can be stopped ar-

bitrarily on account of unexpected leaves. Moreover, the pub-

lic executions get temporarily suspended by a private execution

because volunteers are not totally dedicated only to public exe-

cutions. Consequently, the various occurrence rate and form of

volatility directly affect the execution of tasks. A scheduler must

66

take volatility into account in order to provide good performance

and reliable computation. A scheduler should use resources as

quickly as possible, when they are idle or available

• Dynamic environment : Resource’s owners can configure its

preference and can control its machine in Desktop Grid. They can

freely join and leave in the middle of the executions without any

constraints. Thus, the state of system (that is, load, availability,

volatility, latency, bandwidth, trust, etc.) is continuously chang-

ing over time during the public execution. A scheduler should

adapt to such a dynamic environment.

• Lack of trust : In Desktop Grid, anonymous nodes can partic-

ipate as a resource provider. Some malicious volunteers tamper

with the computation and then return corrupted results. A sched-

uler should guarantee the correctness of results.

• Failure : In Desktop Grid, volunteers are connected through In-

ternet, so they are exposed to crash and link failures. In addition,

since volunteers are not dedicated to public execution and freely

leave during public execution, the execution is delayed, blocked,

and even lost. A scheduler should tolerate the failures and volatil-

ity.

• Heterogeneity : Desktop Grid is based on desktop computers at

the edge of Internet. Volunteers have heterogeneous properties

67

such as CPU, memory, network bandwidth, latency. In addition,

each volunteer has a various occurrence rate of failures and volatil-

ity, availability, and trust according to its execution behavior. The

heterogeneity delays the overall completion time or makes schedul-

ing decision more difficult.

• Scalability : Centralized scheduling has some drawbacks such as

scalability, single point of failure, etc. Particularly, a central server

suffers from overhead to perform scheduling and to manage vari-

ous volunteers and jobs when the number of volunteers increases.

On the contrary, distributed scheduling provides scalability be-

cause scheduling decision is made at each volunteer. However,

distributed scheduling has some drawbacks such as performance as

compared with centralized scheduling because it conducts schedul-

ing on the basis of local and partial information without a global

view.

• Voluntary participation : In Desktop Grid, resource providers

are mainly voluntary participants without any reward for their

donation of resources. In order to encourage resource providers

to reliably and eagerly donate their resources for a long time, a

scheduler should consider reputation and incentive mechanisms.

68

2.6.2 A Direction for Desktop Grid Scheduling

To overcome the above challenges, Desktop Grid scheduling should deal

with the following considerations.

• Coupling resource grouping with scheduling : In Desktop

Grid, volunteers should be grouped together according to their

properties (such as capability, performance, availability, workload,

reputation/trust, volatility, etc.) in order to execute tasks and

manage volunteers efficiently. The resource grouping method cre-

ates computational overlay network (CON). The CON makes an

effect on relieving resource’s heterogeneity. In addition, a sched-

uler can expand centralized or distributed approaches to hierar-

chical approach by constructing multiple CONs and applying dif-

ferent scheduling algorithms to each CON [54, 55, 56]. Thus, it is

very important how to make the CON depending on volunteer’s

properties, because scheduling, resource management, and infor-

mation management are performed on the basis of characteristics

or topology of CON. However, existing centralized DG systems

[14, 18, 22, 31] do not provide how to construct the CON on the

basis of volunteering time, volatility, reputation/trust, and cred-

ibility. They simply construct a CON depending on resource’s

basic properties (for example, disk space, or OS type). On the

other hand, existing decentralized Desktop Grid systems [25, 34,

38, 41, 42] provide how to construct a CON depending on reg-

69

istration time, timezone, performance, or workload, but they do

not consider volatility, volunteering time, credibility, and reputa-

tion/trust, which directly affect reliability, completion time, and

result correctness. Moreover, resource grouping is not tightly re-

lated with scheduling (especially, result certification, replication,

and reassignment). As a result, uncoupling between resource

grouping and scheduling causes a lot of overhead and degrades

performance. A new scheduler in Desktop Grid should provide

more delicate construction methods of CON and couple resource

grouping with scheduling.

• Reputation or Incentive-based scheduling : In Desktop Grid,

volunteers can be eager, reliable, volatile, selfish, or malicious. In

other words, volunteers have various volunteering time, volatility,

credibility, and availability according to their execution behav-

ior. In order to score and rank the volunteers, and then reward

or punish them according to the assessment, a reputation system

should be coupled with scheduling [80, 81, 82]. A reputation-

based scheduling can choose high qualified resources, so that it

can improve the reliability and performance. An incentive-based

scheduling focuses on punishing (for example, exclusion) volatile,

selfish, or malicious volunteers. Thus, it gives an incentive to eager

and reliable volunteers. A new scheduler of Desktop Grid should

consider reputation and incentive-based scheduling.

70

• Scheduling for Result certification : In Desktop Grid, some

volunteers may behave erratically or maliciously. In other words,

some malicious volunteers may tamper with the computation and

return corrupted results. In addition, a variety of hardware and

software malfunction leads to variations in numerical processing

[15]. Therefore, Desktop Grid needs to detect and tolerate the

erroneous result in order to guarantee a reliable execution in such

a distrusted environment. To this end, Desktop Grid exploits

result certification mechanisms such as majority voting and spot-

checking [15, 23, 37, 56, 98]. Result certification should be tightly

related with scheduling in the sense that both the special task

for spot-checking and the redundant tasks for voting are allocated

to volunteers in a scheduling procedure. However, existing Desk-

top Grid systems simply use eager scheduling, so they have a

lot of problems because the eager scheduling does not consider

the properties of volunteers such as volatility, volunteering time,

and credibility during result certification. As a result, there are

high overhead, performance degradation, and scalability problems.

Desktop Grid should provide a new scheduling mechanism for re-

sult certification considering resource’s properties.

• Dynamic, adaptive, or fault tolerant scheduling : Desktop

Grid is based on desktop computers at the edge of Internet, so

volunteers can freely join and leave in the middle of the public

71

execution without any constraints, and they are exposed to crash

and link failures. Moreover, the resource’s properties (workload,

bandwidth, availability, volatility, etc.) are changing over time.

Desktop Grid should adapt to dynamically changing environment.

In other words, Desktop Grid scheduling should be able to obtain

dynamically changing state and then consider them as environ-

mental inputs or stimuli when making decisions. Particularly, a

Desktop Grid scheduler should be able to deal with volatility and

failures that occur frequently in a dynamic environment, in order

to provide reliability.

• Distributed scheduling : Distributed DG [26, 35, 38, 41, 43]

mainly uses distributed scheduling because there is no central

server. However, existing distributed scheduling mechanisms allo-

cate tasks to volunteers according to workload or performance as

well as randomly. They do not use volatility, volunteering time,

credibility, and reputation/trust, which directly affect reliability,

completion time, and result correctness. Moreover, they do not

provide replication or result certification mechanism, which is nec-

essary in Desktop Grid. A new distributed scheduler should con-

sider these properties and should provide scheduling algorithm

coupled with replication and result certification.

72

2.7 Related Work

2.7.1 Taxonomy and Survey of Grid and Desktop

Grid

There are several taxonomies and survey of Grid. Baker et al. [4] at-

tempted to present the state-of-the-art of Grid computing and survey

emerging Grid computing projects. Krauter et al. [69] proposed the tax-

onomy of Grid focusing on resource management. Venugopal et al. [59]

proposed the taxonomy of Data Grids according to organization, data

transport, data replication, and scheduling. Foster et al. [5] compared

P2P and Grid computing.

Sarmenta [24] classified volunteer computing into application-based

and web-based (java-based). Chien et al. [21] classified Desktop Grid

into Internet Grid and Enterprise Grid. However, they do not provide a

mapping of taxonomy to the existing Desktop Grid systems. Moreover,

the taxonomy we propose in this thesis is more delicate and expanded.

2.7.2 Taxonomy and Survey of Scheduling

There are several proposed taxonomy for scheduling in distributed, het-

erogeneous computing, and Grid computing environment.

Casavant et al. [61] proposed the taxonomy of scheduling in general-

purpose distributed computing systems. They classified scheduling into

local and global scheduling, and then classified global scheduling into

static and dynamic according to the time of decision making. Rotithor

73

[62] proposed the taxonomy of dynamic scheduling in distributed com-

puting systems according to state estimation and decision making.

Braun et al. [63] proposed the taxonomy of heterogeneous com-

puting systems. The taxonomy is defined in three major parts: appli-

cation model, platform model, mapping strategy characterization. Ali

et al. [64] characterized resource allocation heuristics for heterogeneous

computing systems according to workload, platform, and mapping strat-

egy12. Ekmecic et al. [65] modified the taxonomy proposed by Casavant

et al. [61]. Maheswaran et al. [67] proposed various online (MCT, MET,

SA, KPB, OLB) and batch mode heuristics (min-min, max-min, suffer-

age) for dynamic scheduling in a heterogeneous computing environment.

Braun et al. [68] proposed the comparison of static scheduling heuristics

(OLB, MET, MCT, min-min, max-min, duplex, GA, SA, GSA, Tabu,

A*) for heterogeneous distributed computing systems.

Krauter et al. [69] proposed a taxonomy and survey of grid resource

management systems. The taxonomy is defined in four aspects: schedul-

ing organization, state estimation, rescheduling, and scheduling policy.

Yu et al. [70] proposed the taxonomy of scientific workflow scheduling

for Grid computing. The taxonomy is defined in four aspects: archi-

12The three categories of our taxonomy proposed in this thesis (that is, applica-

tion, resource, and scheduler’s perspective) is similar to the three categories of the

taxonomy proposed by Barun et al [63] and Ali et al. [64]. However, our taxonomy

is Desktop Grid-oriented. It also considers the new and delicate items for Desktop

Grid scheduling such as dedication, volatility, resource grouping, result certification,

opportunism, reputation/incentive, etc.

74

tecture, decision making, planning scheme, and scheduling strategies.

Yeo et al. [71] proposed the taxonomy of market-based resource man-

agement system for utility-driven cluster computing. They proposed

a taxonomy of job model (processing type, composition, QoS specifi-

cation, QoS update) and resource allocation model (domain, update,

and QoS support). Venugopal et al. [59] proposed the taxonomy of

scheduling for Data Grid according to application model, scope, data

replication, utility function, and locality. Hamscher et al. [72] proposed

centralized, hierarchical, and decentralized scheduling architectures for

Grid.

There are several taxonomy and survey of scheduling for heteroge-

neous computing and Grid. However, there is no taxonomy and sur-

vey of scheduling for Desktop Grid. Particularly, our taxonomy deals

with volunteer’s key properties (such as volatility, dedication, reputa-

tion/trust, etc.) in a Desktop Grid environment and considers the re-

source grouping (construction of computational overlay network), result

certification, and reputation/incentive scheduling aspects.

75

Chapter 3

System Model

We illustrate a new execution model and a failure model defined in this

thesis.

3.1 Execution Model

This thesis considers centralized DG and volunteer DG computing envi-

ronment. In such an environment, we propose a new execution model.

The execution model consists of eight phases: registration, job sub-

mission, resource grouping, task allocation, task execution, task result

return, result certification, and job result return phase as shown in the

Figure 3.1. We newly add a resource grouping phase to existing exe-

cution model. We also modify the existing execution model as follows.

The rest of the phases are the same as existing centralized DG.

In the registration phase, volunteers register basic properties such as

CPU, memory, OS as well as additional properties such as , volunteer-

ing time, availability, credibility, etc. The additional properties reflect

76

C
li

en
t

C
en

tr
a
l

S
er

v
er

R
es

o
u

rc
e

P
ro

v
id

er
s

(v
o

lu
n

te
er

s)

V
1

V
2

V
n

-1
V

n

1

 (
T

a
sk

)

2

n
-1

n

…

…

…

R
1

 (
T

a
sk

 R
es

u
lt

)

R
2

R
n

R
n

-1

R

J
o

b
 s

u
b

m
is

si
o

n
 p

h
a

se T
a

sk

a
ll

o
ca

ti
o

n
p

h
a

se

T
a

sk
 r

es
u

lt

re
tu

rn
 p

h
a

se

T
a

sk

ex
ec

u
ti

o
n

p
h

a
se

J
o

b
 r

es
u

lt
 r

et
u

rn
 p

h
a

se
T

im
e

…

1
(V

o
lu

n
te

e
r

In
fo

rm
a

ti
o

n
)

2

n

n
-1

R
eg

is
tr

a
ti

o
n

p

h
a

se

R
es

u
lt

ce

rt
if

ic
a

ti
o

n
p

h
a

se

…

R
es

o
u

rc
e

g
ro

u
p

in
g

P
h

a
se

F
ig

u
re

3.
1:

N
ew

ex
ec

u
ti

on
m

o
d
el

of
D

es
k
to

p
G

ri
d

77

dynamical Desktop Grid computing.

In the resource grouping phase, a server constructs groups according

to capability, volatility, availability, reputation, and trust of volunteers.

Scheduling is performed, depending on the characteristics of groups.

In the task allocation phase, a server allocates tasks to volunteers

on a group basis. In other words, it applies scheduling, replication,

and result certification algorithms to each group. In the presence of

failures, a server reschedules the failed tasks according to fault tolerant

algorithm.

In the result certification phase, a server checks the correctness of

the returned results on the basis of group.

3.2 Failure Model

In a Desktop Grid computing environment, volunteers are connected

through the Internet, and therefore are exposed to crash and link fail-

ures. In addition, since Desktop Grid computing is based on voluntary

participants, the autonomy of volunteers is respected. In other words,

volunteers can leave arbitrarily in the middle of public execution and are

allowed to interrupt public execution at any time. In a Desktop Grid

computing environment, volunteer autonomy failures occur much more

frequently than crash and link failures. Therefore, volunteer autonomy

failures should specially be dealt with, while they are distinguished from

traditional failures. Moreover, volunteers have various occurrence rates

78

and types of volunteer autonomy failures. Since the heterogeneous oc-

currence rates and types of volunteer autonomy failures affect compu-

tation directly, a scheduling mechanism must take them into account in

order to obtain better performance and guarantee reliable computation.

To this end, volunteer autonomy failures are first defined conceptually

[54, 58].

In order to clarify definition of volunteer autonomy failures, the no-

tations in Table 3.1 are used. First, the join and leave patterns of a

volunteer are categorized. The patterns are categorized into expected

join (EJ), expected leave (EL), unexpected join (UJ), and unexpected

leave (UL).

EJ , (T [Vi
yξi

] = Vi.Υst)

EL , (T [Vi
xξi

] = Vi.Υtt)

UJ , ((T [Vi
yξi

] 6= Vi.Υst)

UL , (T [Vi
yξi

] 6= Vi.Υtt)

UJ is categorized into before-unexpected-join UJ b, middle-unexpected-

join UJm, and after-unexpected-join UJa. In addition, unexpected-

leave UL is categorized into before-unexpected-leave ULb, middle-unexpected-

leave ULm, and after-unexpected-leave ULa.

UJ = {UJ b, UJm, UJa}
UJ b , (T [Vi

yξi
] < Vi.Υst)

UJm , (Vi.Υst < T [Vi
yξi

] < Vi.Υtt)

UJa , (Vi.Υtt < T [Vi
yξi

])

UL = {ULb, ULm, ULa}
ULb , (T [Vi

xξi
] < Vi.Υst)

ULm , (Vi.Υst < T [Vi
xξi

] < Vi.Υtt)

ULa , (Vi.Υtt < T [Vi
xξi

])

79

T
ab

le
3.

1:
N

ot
at

io
n
s

fo
r

vo
lu

n
te

er
au

to
n
om

y
fa

il
u
re

s

V
i

A
V

ol
u
n
te

er
(0
≤

i
≤

n
)

Γ
m

A
ta

sk
ex

ec
u
te

d
b
y

a
vo

lu
n
te

er

ξ i
P

u
b
li
c

ex
ec

u
ti

on
of

a
ta

sk
Γ

m
at

V
i

I ξ
i

T
im

e
in

te
rv

al
of

p
u
b
li
c

ex
ec

u
ti

on
ξ i

Υ
V

ol
u
n
te

er
in

g
ti

m
e

th
at

is
th

e
p
er

io
d

w
h
en

a
vo

lu
n
te

er
is

su
p
p
os

ed
to

p
ro

v
id

e
it

s
re

so
u
rc

es

Υ
st

T
h
e

st
ar

t
ti

m
e

w
h
en

a
vo

lu
n
te

er
V

i
is

su
p
p
os

ed
to

p
ro

v
id

e
it

s
re

so
u
rc

es

Υ
tt

T
h
e

te
rm

in
at

io
n

ti
m

e
w

h
en

a
vo

lu
n
te

er
V

i
is

su
p
p
os

ed
to

p
ro

v
id

e
it

s
re

so
u
rc

es

V
i
y

ξ i
T

h
e

jo
in

ev
en

t,
th

at
is

,
a

vo
lu

n
te

er
V

i
p
ar

ti
ci

p
at

es
in

p
u
b
li
c

ex
ec

u
ti

on
ξ i

V
i
x

ξ i
T

h
e

le
av

e
ev

en
t,

th
at

is
,
a

vo
lu

n
te

er
V

i
le

av
es

p
u
b
li
c

ex
ec

u
ti

on
ξ i

T
[V

i
y

ξ i
]

T
h
e

ti
m

e
w

h
en

V
i
y

ξ i
h
ap

p
en

s

Π
i

A
n

in
d
iv

id
u
al

jo
b

th
at

is
p
er

fo
rm

ed
b
y

a
p
er

so
n
al

u
se

r
at

V
i

π
i

P
ri

va
te

ex
ec

u
ti

on
of

a
in

d
iv

id
u
al

jo
b

Π
i

,
T

h
e

sy
m

b
ol

m
ea

n
s

”o
cc

u
rs

w
h
en

”

80

Volunteer autonomy failures (Λ) are classified into volunteer volatil-

ity failure (Φ) and volunteer interference failure (Ψ).

Λ = {Φ, Ψ}

Definition 1 (Volunteer volatility failure) Volunteer volatility fail-

ure Φ is abortion of public execution that is caused by freely leaving of

the public execution ξi of a task Γi.

Φ , T [Vi
xξi

] ∈ Iξi

The volunteer volatility failure is categorized as follows: unexpected-

before Φb, unexpected-middle Φm, expected Φe, and unexpected-after

Φa.

Φ = {Φb, Φm, Φe, Φa}
Φb , (T [Vi

xξi
] ∈ Iξi

) ∨ (T [Vi
xξi

] < Vi.Υst)

Φm , (T [Vi
xξi

] ∈ Iξi
) ∨ (Vi.Υst < T [Vi

xξi
] < Vi.Υtt)

Φe , (T [Vi
xξi

] ∈ Iξi
) ∨ (T [Vi

xξi
] = Vi.Υst)

Φa , (T [Vi
xξi

] ∈ Iξi
) ∨ (Vi.Υtt < T [Vi

xξi
])

Definition 2 (Volunteer interference failure) Volunteer interference

failure Ψ is temporary suspension of public execution ξi that is caused

by private execution πi of an individual job Πi.

Ψ , (T [πi] ∈ Iξi
)

Volunteer interference failure Ψ is categorized into expected Ψei and

unexpected Ψui. Ψei occurs when private execution interferes with pub-

lic execution regularly (for example, reserved virus checking), but Ψui

occurs when private execution that starts from keyboard or mouse move-

ment interferes with public execution irregularly (for example, tempo-

rary email checking etc.).

81

Φ and Ψ are different from crash failure in that the operating system

is alive in the presence of Φ and Ψ, whereas it shuts down in the presence

of crash failure [58, 99, 100]. Φ is different from crash failure in that

Φ occurs by the will of volunteers [85, 99, 100]. Ψ is different from Φ

in that a Desktop Grid computing system is alive in the presence of Ψ,

whereas it is not operating in the case of Φ.

Φ is related to the completion of public execution. For example,

if a leave event arbitrarily happens in the middle of public execution,

this execution is stopped (or aborted). As a result, the execution is not

completed. That is, Φ hinders the completion of execution. On the other

hand, Ψ is related to the continuity of public execution. For example,

if a personal user frequently performs private execution during public

execution, public execution is temporarily suspended. Consequently,

the public execution cannot proceed continuously. That is, Ψ obstructs

the continuity of execution.

82

Chapter 4

Group-based Adaptive

Scheduling Mechanism

This chapter introduces a resource grouping method, which classifies

and constructs various groups according to volunteer’s properties such

as dedication, volatility, availability, credibility, etc. Then, it proposes

group-based adaptive scheduling mechanisms, which apply scheduling,

replication, result certification, and fault tolerant algorithms to each

group.

4.1 Resource Grouping Method

Resource grouping provides a method of forming volunteer groups. Vol-

unteer group is a set of volunteers that have similar properties such

as dedication, volatility, failure, and trust. In order to apply differ-

ent scheduling mechanisms suitable for the properties of volunteers in

a scheduling procedure, volunteers are required to first be formed into

83

homogeneous groups. First, we classify volunteers according to their

properties. Then, we construct and characterize volunteer groups.

4.1.1 Criteria for Resource Grouping

When volunteers are classified, their CPU, memory, storage, and net-

work capacities are important factors. The most important factors,

however, are location, volunteering time, volunteer autonomy failures,

volunteer availability, and volunteer credibility in the sense that the

completion and continuity of computation, the reliability and correct-

ness of results, and performance are tightly related with dedication,

volatility, failure, and trust (see Figure 4.1). In a Desktop Grid com-

puting environment, the capacities of desktop computers are very het-

erogeneous, and the degree of volatility, dedication, and trust fluctuate

considerably during execution [23, 47, 48, 53, 54].

Volatility and Volunteer Availability.

Volatility means that volunteers can leave in the middle of public execu-

tion. Volunteers also are exposed to crash and link failures because they

are connected through Internet. Volatility and failures lead to the delay

and blocking of the execution of tasks and even partial or entire loss of

the executions. Thus, they are tightly related with reliability of compu-

tation. We newly define volunteer availability to express volatility and

failures as follows:

Definition 3 (Volunteer availability) Volunteer availability (αv) is

84

(Volatility or Failure)

(Trust)

devoted

(eager)

selfish reliable

trustworthy

volatile or

faultymalicious

(Dedication)

Volunteering Service Time

Volunteer Credibility

Volunteer Availability

Figure 4.1: Criteria for resource grouping

the probability that a volunteer will be correctly operational and be able

to perform public execution.

αv =
MTTV AF

MTTV AF + MTTR

Here, the MTTVAF represents ”mean time to volunteer autonomy

failures” and the MTTR represents ”mean time to rejoin”. The MTTVAF

represents the average time before the volunteer autonomy failures hap-

pen, and the MTTR means the mean duration of volunteer autonomy

failures. The αv reflects the degree of volunteer autonomy failures,

whereas the traditional availability in distributed systems is mainly re-

lated with the crash failure [99, 100].

85

MTTVAF and MTTR are recalculated dynamically when a volun-

teer detects Φ and Ψ. Here, MVT represents ”mean volunteering time”.

The symbol ./ represents a combination of the two events. The symbol

] represents the union of time intervals. The parameter µ is a weight

constant. When a volunteer executes a task, the µ is initially set to 1.

The µ increases whenever Φ and Ψ occur. The µ is reset to 1 when the

volunteer finishes its task.

Case 1: UJ b, Φb, or Φa

MTTV AF = MTTV AF + µ× {I(UJb./ EJ)

⊎
I(UJb./ Φb)

⊎
I(EL./ Φa)}

MV T

MTTR = MTTR− µ× {I(UJb./ EJ)

⊎
I(UJb./ Φb)

⊎
I(EL./ Φa)}

MV T

MV T = MV T + µ× {I(UJb./ EJ)

⊎
I(UJb./ Φb)

⊎
I(EL./ Φa)}

MV T

Case 2: UJm or Φm

MTTV AF = MTTV AF − µ× {I(EJ./ UJm)

⊎
I(Φm./EL)}

MV T

MTTR = MTTR + µ× {I(Φm./ UJm)}
MV T

MV T = MV T − µ× {I(EJ./ UJm)

⊎
I(Φm./EL)}

MV T

86

Case 3: Ψei or Ψui

MTTV AF = MTTV AF − µ× {IΨei
] IΨui

}
MV T

MTTR = MTTR + µ× {IΨei
] IΨui

}
MV T

MV T = MV T − µ× {IΨei
] IΨui

}
MV T

Cases 1 and 2 describe how to calculate volunteer availability in the

case of volunteer volatility failure and unexpected-join. Case 3 describes

how to calculate volunteer availability when volunteer interference fail-

ure occurs. The parameter µ is used in order to reflect the rate and

frequency of volunteer autonomy failures into volunteer availability. For

example, if volunteer autonomy failures occur repeatedly and frequently,

volunteer availability drops rapidly. Moreover, the mean volunteering

time affects the volunteer availability. For example, if the mean vol-

unteering time is short, volunteer availability is considerably affected

by volunteer autonomy failures. In Case 1, volunteer availability in-

creases because unexpected volunteering time is additionally provided.

Conversely, in Cases 2 and 3, volunteer availability decreases because

volunteering time decreases due to volunteer autonomy failures.

Dedication and Volunteer Service Time.

Dedication means that how much volunteers participate in public ex-

ecution. Dedication is related with donation (or participation) time.

87

A volunteer can be eager or selfish according to degree of dedication.

We define volunteering time and volunteer service time to express the

degree of dedication as follows:

Definition 4 (Volunteering time) Volunteering time (Υ) is the pe-

riod when a volunteer is supposed to donate its resources.

Υ = ΥR + ΥS

Here, the reserved volunteering time (ΥR) represents the reserved

time when a volunteer provides computing resources. A volunteer mostly

performs public execution during ΥR, rarely performing private execu-

tion. However, the selfish volunteering time (ΥS) represents unexpected

volunteering time. Thus, a volunteer usually performs private execution

during the ΥS, and sometimes performs public execution.

Volunteer service time is defined as follows:

Definition 5 (Volunteering service time) Volunteering service time

(Θ) is the expected service time when a volunteer participates in the pub-

lic execution during Υ.

Θ = Υ× αv

In a scheduling procedure, Θ is more appropriate than Υ because Θ

represents the time when a volunteer actually executes each task in the

presence of volunteer autonomy failures Λ. Therefore, volunteer groups

are constructed according to Θ.

88

Trust and Volunteer Credibility.

Trust means that volunteers execute tasks correctly and return the cor-

rect result. Malicious volunteers may tamper with the overall compu-

tation. We define volunteer credibility to express the trust as follows:

Definition 6 (Volunteer credibility) Volunteer credibility Cv is the

probability that the result produced by a volunteer is correct.

Cv =
CR

ER + CR + IR

Here, ER represents the number of erroneous results, CR represents the

number of correct results, and IR represents the number of incomplete

results. ER + CR + IR means the total number of tasks that a vol-

unteer executes. The IR occurs when a volunteer does not complete

spot-checking or majority voting on account of crash failure and vol-

unteer autonomy failures. If a volunteer passes the spot-checking, the

credibility becomes higher. If volunteers within voting group reach the

agreement for majority voting, their credibility also becomes higher.

4.1.2 Constructing and Characterizing Volunteer

Groups

Classification I according to αv and Θ.

Volunteers are categorized into four classes according to αv and Θ.

Volunteers are first categorized into region volunteers or home vol-

unteers according to their location. Home volunteers are defined as

89

resource donators at home. Region volunteers are a set of resource do-

nators that are generally affiliated with organizations including univer-

sities, institutions, and so on. Region volunteers are connected to LAN

or Intranet, whereas home volunteers are connected to the Internet.

Volunteers are categorized into four classes according to Υ and αv

(see Figure 4.2 (a)). The class A is a set of volunteers that have long Υ

and high αv. The class B is a set of volunteers that have short Υ and

high αv. The class C is a set of volunteers that have long Υ and low

αv. The class D is a set of volunteers that have short Υ and low αv.

A server selects volunteers as volunteer group members according to

the properties of volunteers such as location, volunteer availability, and

volunteering service time.

If volunteer groups are constructed on the basis of location, region

volunteers belong to the same group, and home volunteers are formed

into the same group in order to reduce the communication cost between

members.

When both αv and Θ are considered in grouping the volunteers, the

volunteer groups are categorized into four classes (see Figure 4.2 (b)).

Here, ∆ is the expected computation time of a task.

Volunteers are classified into four classes: A′, B′, C ′, and D′ volun-

teer groups. If volunteers have a high αv and Θ ≥ ∆, they are included

in the class A′. If volunteers have a high αv and Θ < ∆, they are in-

cluded in the class B′. If volunteers have a low αv and Θ ≥ ∆, they are

included in the class C ′. If volunteers have a low αv and Θ < ∆, they

90

v

A

(High quality)

B

(Intermediate
quality)

C

(Intermediate
quality)

D

(Low quality)

(a)

v

A'

(High quality)

B'

(Intermediate
quality)

C'

(Intermediate-
quality)

D'

(Low quality)

(b)

Figure 4.2: Volunteer groups according to αv and Θ

are included in the class D′.

Volunteer groups are constructed using the algorithm of volunteer

group construction (see Figure 4.3).

1) The registered volunteers are classified into home or region volunteers,

depending on their location.

2) The home and region volunteers are classified into A, B, C, and D

classes by volunteering time and volunteer availability, respectively.

3) The volunteer groups are constructed according to volunteering service

91

// To classify the registered volunteers(V) into home or region

volunteers

ClassifyVolunteersByLocation(V);

// To classify the home and region volunteers into A, B, C, D

classes, respectively

ClassifyVolunteers(V);

// To construct volunteer groups

if (Vi.Θ ≥ ∆) then // Vi : one of the classified volunteers

if (Vi ∈ VA||Vi ∈ VB) then // VA : A class, VB: B class

Vi → V GA′ ; // → : assign, V GA′ : A′ volunteer group

else // Vi ∈ VC ||Vi ∈ VD, here, VC : C class, VD: D class

Vi → V GC′ ; // V GC′ : C ′ volunteer group

fi;

else // Vi.Θ < ∆

if (Vi ∈ VA||Vi ∈ VB) then

Vi → V GB′ ; // V GB′ : B′ volunteer group

else

Vi → V GD′ ; // V GD′ : D′ volunteer group

fi;

fi;

Figure 4.3: Algorithm of volunteer group construction according to αv

and Θ

time and volunteer availability.

The volunteer groups have the following properties. The A′ volun-

teer group has a high Θ and high αv sufficient to reliably execute tasks.

It is used as deputy volunteers that host the scheduling mobile agents.

The B′ volunteer group has a high αv, but low Θ. It cannot com-

92

plete their tasks because of lack of computation time. The C ′ volunteer

group has a high Θ, but low αv. It has the time enough to execute

tasks. However, volunteer autonomy failures occur frequently during

execution. Therefore, it requires fault tolerant mechanism to execute

tasks reliably. The D′ volunteer group has a low Θ and low αv. It has

insufficient time to execute tasks. Moreover, volunteer autonomy fail-

ures occur frequently in the middle of execution. Among the volunteer

groups, the A′ and C ′ volunteer groups mainly execute tasks because

of sufficient time. If a task migrates during execution, the B′ volunteer

group can be used as migration places when the A′ and C ′ volunteer

groups suffer from failures. Otherwise, the B′ volunteer group is not

appropriate to distribute tasks because its volunteering service time is

too short to complete a task. In this case, it executes tasks for testing,

that is, to measure its properties. The D′ volunteer group gives rise

to a high management cost due to lack of time as well as low volunteer

availability. The D′ volunteer group also only executes tasks for testing.

If checkpointing is used, the B′ and D′ volunteer groups can be used to

execute non-time-critical applications.

Classification II according to αv, Θ, and Cv.

Volunteers are categorized into four classes according to αv, Θ, and Cv.

First, the registered volunteers are classified into A′, B′, C ′, and D′

classes depending on volunteering service time and volunteer availability

as shown in Figure 4.4 (a). Then, the classified volunteers are classified

93

A'

(High quality)

B'

(Intermediate
quality)

C'

(Intermediate
quality)

D'

(Low quality)

(a)

v

vC

A"

(High quality)

B"

(Intermediate
quality)

C"

(Intermediate-
quality)

D"

(Low quality)

(b)

Figure 4.4: Volunteer groups according to αv, Θ, and Cv

into each volunteer group according to volunteer credibility. Volunteer

groups are categorized into four classes (A′′, B′′, C ′′, and D′′ classes) as

shown in Figure 4.4 (b). Here, ∆ is the expected computation time of

a task. ϑ is the desired credibility threshold.

Volunteer groups are constructed by the algorithm of volunteer group

construction as shown in Figure 4.5.

The A′′ volunteer group has both high Cv, high Θ, and high αv

enough to execute tasks reliably. There is high possibility to produce

94

// VA : A′ class, VB: B′ class, VC : C ′ class, VD: D′ class

// V GA′′ : A′′ class, V GB′′ : B′′ class, V GC′′ : C ′′ class, V GD′′ :

D′′ class

// To classify the registered volunteers into A′, B′, C ′, D′ classes,

respectively

ClassifyVolunteers(V);

// To construct volunteer groups

if (Vi ∈ VA) then // Vi : one of the classified volunteers

if (Vi.Cv ≥ ϑ) then // Vi.Cv : Cv of Vi

Vi → V GA′′ ; // → : assign

else

Vi → V GC′′ ;

fi;

else if (Vi ∈ VB) then

if (Vi.Cv ≥ ϑ) then

Vi → V GB′′ ;

else

Vi → V GD′′ ;

fi;

else if (Vi ∈ VC) then

Vi → V GC′′ ;

else

Vi → V GD′′ ;

fi;

Figure 4.5: Algorithm of volunteer group construction according to αv,

Θ, and Cv

95

correct results in the A′′ volunteer group. The B′′ volunteer group has

high Cv and high αv, but low Θ. It has a high possibility to produce

correct results. However, it cannot complete their tasks because of

lack of the execution time. In addition, volunteer autonomy failures

occur frequently in the middle of execution. The C ′′ volunteer group

has high Θ, but low Cv and low αv. It has time enough to execute

tasks. However, its results might be incorrect. Therefore, in order to

strength the credibility, C ′′ volunteer group must do more spot-checking

or placing more redundancy for voting than A′′ or B′′ volunteer group.

The D′′ volunteer group has low Cv, low Θ, and low αv. It has no time

enough to execute tasks. In addition, there is scarcely any possibility to

produce correct results. Moreover, volunteer autonomy failures occur

frequently in the middle of execution. Therefore, tasks are not allocated

to the D′′ volunteer group, because not only management cost is too

expensive, but also results are incorrect.

4.1.3 Maintaining Volunteer Groups

The volunteer groups are maintained by three mode: task-based, time-

based, and count-based modes. In the task-based mode, whenever a task

is completed, volunteer groups are built. The time-based mode builds

volunteer groups at the regular intervals if the tasks to schedule remain.

The count-based mode constructs volunteers groups when the number of

participating volunteers is larger than or equal to a predefined number

k. The k depends on the size of volunteer groups or the number of

96

redundancy. The size of a volunteer group is mainly related with the

maintenance cost (that is, the scheduling and management cost of task

mobile agents, fault tolerance, replication, etc.). The volunteer groups

are kept until the scheduling agent cannot further distribute tasks to

members. For example, if all members have insufficient time to execute a

task, volunteer groups are dismissed. The members of volunteer groups

are partially replaced by others if a volunteer fails.

4.2 Agent-based Group Scheduling

4.2.1 Why Agent?

In existing Desktop Grid computing system, a server suffers from high

overhead. A server maintains properties of volunteers such as CPU,

memory, OS, location (address), and so on. According to the properties,

the server has responsibility for scheduling in a centralized way. In

addition, the server performs the fault tolerant mechanism if volunteers

fail. Since a scheduling mechanism is performed only by the server,

various scheduling mechanisms are not performed at a time according

to volunteer properties. To solve these problems, we make use of mobile

agent technology.

Mobile agent is a software program that migrates from one node to

another while performing some tasks on behalf of a user [87, 88, 89, 90,

91]. Mobile agent has some benefits as follows [87, 88, 89, 90, 91].

1) A mobile agent can reduce network load and latency by dispatching

97

the agents to a remote node which has the required services or data and

then executing it locally at the host.

2) A mobile agent can solve frequent and intermittent disconnection

since it executes some tasks asynchronously and autonomously. Once

a mobile agent is dispatched to a destination node, it does not require

direct connection with a user any more. Because a mobile agent is

performed asynchronously and autonomously on behalf of a user even

though a user (that is, mobile device) is disconnected from the network.

3) A mobile agent enables dynamic service customization and software

deployment since a mobile agent encapsulates some services or protocols

in mobility entity.

4) A mobile agent can adapt to heterogeneous environment and dynamic

changes because it is computer-independent and transport-independent

and also reacts autonomously according to execution environment.

There are some advantages to make use of mobile agent in Desktop

Grid computing environment.

1) Several scheduling algorithms cab be performed at a time

according to the properties of volunteers. For example, vari-

ous scheduling mechanisms can be implemented as mobile agents. If

there are various volunteer groups, the best appropriate scheduling mo-

bile agent is assigned to the volunteer group according to the property

of volunteer group. Existing Desktop Grid computing system, how-

ever, cannot apply various scheduling mechanisms at a time because

one scheduling mechanism is performed only by a server.

98

2) A mobile agent can decrease the overhead of server by per-

forming scheduling and fault tolerance procedures in a de-

centralized way. The scheduling mobile agents are distributed to

volunteer groups. After that, they perform each scheduling and fault

tolerance procedure in each volunteer group. Therefore, the server does

not undergo the overhead any more.

3) A mobile agent can adapt to a dynamical Desktop Grid

computing environment. In a Desktop Grid computing environ-

ment, volunteers can join and leave at any time. A mobile agent can

tolerate the volunteer autonomy failures by using migration and repli-

cation functionalities which the mobile agent itself provides.

4.2.2 Agent based Desktop Grid Computing Model

A mobile agent can adapt to dynamic environmental changes as well as

various properties of volunteers. In addition, since a mobile agents are

executed in a distributed way, it can decrease the overhead of a server.

The mobile agent based Desktop Grid computing works like the

execution model of existing Desktop Grid computing. Several phases,

however, works differently, as shown in Figure 4.6.

In the registration phase, volunteers register basic properties such as

CPU, memory, OS as well as additional properties such as , volunteering

time, volunteering service time, volunteer availability, volunteer credibil-

ity etc. Since the additional properties reflect dynamical Desktop Grid

computing, they are more important than basic properties.

99

T
-M

A

C
li

en
t

S
er

v
er

V
o

lu
n

te
er

s

D
e
p

u
ty

V
1

V
1

V
n

-1
V

n

…

R

J
o
b

 s
u

b
m

is
si

o
n

 p
h

a
se

T
a

sk
s

a
ll

o
ca

ti
o

n
 p

h
a
se

T
a

sk
 r

e
su

lt

re
tu

rn
p

h
a
se

T
a

sk
s

E
x

ec
u

ti
o

n
 p

h
a
se

J
o
b

 r
es

u
lt

 r
et

u
rn

 p
h

a
se

T
im

e

…

R
eg

is
tr

a
ti

o
n

p

h
a
se

V
1

V
m

-1
V

m

…

T
a

sk
s

E
x

ec
u

ti
o

n
 p

h
a
se

D
e
p

u
ty

V
2

T
a

sk
s

a
ll

o
ca

ti
o

n
 p

h
a
se

T
a

sk
s

a
ll

o
ca

ti
o

n
 p

h
a
se

T
a

sk
 r

e
su

lt

re
tu

rn
p

h
a
se

T
a

sk
 r

e
su

lt

re
tu

rn
p

h
a
se

S
-M

A

S
-M

A

T
-M

A

T
-M

A
T

-M
A

T
-M

A
T

-M
A

V
o

lu
n

te
er

 g
ro

u
p

V
o

lu
n

te
er

 g
ro

u
p

R
es

o
u

rc
e

g
ro

u
p

in
g

P

h
a

se

F
ig

u
re

4.
6:

A
ge

n
t

b
as

ed
D

es
k
to

p
G

ri
d

co
m

p
u
ti

n
g

m
o
d
el

100

In the job submission phase, the submitted job is divided into a

number of tasks. The tasks are implemented as mobile agents (which

are called task mobile agents).

In the resource grouping phase, a server forms volunteer groups ac-

cording to properties such as location, volunteering time, availability,

and credibility.

In the task allocation phase, a server does not perform entire schedul-

ing mechanism any more. Instead, it helps mobile agents to perform

scheduling procedure. Scheduling and fault tolerance algorithms are

implemented as scheduling mobile agents. A server distributes schedul-

ing mobile agents to deputy volunteers according to the properties of

volunteer groups. The scheduling mobile agent distributes task mobile

agents to the members of its volunteer group.

In the task execution phase, the task mobile agents are executed in

cooperation with the scheduling mobile agent while migrating or being

replicated to other volunteers in presence of failures.

In the task result return phase, the task mobile agent returns each

result to its scheduling mobile agent. When all task mobile agents

return their results, the scheduling mobile agent aggregates the results

and then returns the collected results to the server.

In the job result return phase, the server returns a final result to the

client when it receives all the results from the scheduling mobile agents.

101

4.2.3 Allocating Scheduling Agents to Scheduling

Groups

After constructing volunteer groups (that is, A′, B′, C ′ and D′), a server

allocates the scheduling mobile agents (S-MA) to volunteer groups.

However, it is not practical to allocate S-MAs directly to the volun-

teer groups in a scheduling procedure because some volunteer groups

are not perfect for finishing the tasks reliably. Therefore, it is necessary

to build new scheduling groups by combining the volunteer groups with

each other (see Table 4.1).

In Table 4.1, the first two combinations are more appropriate than

the last one in the sense that the tasks are distributed to each schedul-

ing group in the first two combinations, whereas the tasks are mainly

distributed to the A′C ′ scheduling group in the last combination. In

addition, in the last combination, even though the tasks are allocated

to the B′D′ scheduling group, they are not completed due to insufficient

time. When comparing the first two combinations, the first combina-

tion is more appropriate than the second because the B′ volunteer group

is able to compensate for the C ′ volunteer group with regard to avail-

ability in the first combination, whereas the C ′ volunteer group does

not compensate for the D′ volunteer group in the second combination.1

Therefore, this thesis focuses on the first combination in a scheduling

1In the A′D′ or the A′B′ scheduling groups, the A′ volunteer group compen-

sates for the D′ and B′ volunteer groups, because the A′ volunteer group has high

availability and enough Θ.

102

T
ab

le
4.

1:
T

h
e

co
m

b
in

at
io

n
of

vo
lu

n
te

er
gr

ou
p
s

C
om

b
in

at
io

n
T

h
e

n
u
m

b
er

of

al
lo

ca
te

d
ta

sk
s

α
v

co
m

-

p
en

sa
ti

on

Θ
co

m
-

p
en

sa
ti

on
D

es
cr

ip
ti

on

A
′ D

′ &
C
′ B

’
A
′ D

′
'

C
′ B

′
or

A
′ D

′ ≥
C
′ B

′
©

©
T

h
e

ta
sk

s
ar

e
d
is

tr
ib

u
te

d
to

ea
ch

sc
h
ed

u
li
n
g

gr
ou

p
.

A
′
co

m
p
en

sa
te

s
fo

r
D
′ ,

an
d

C
′
co

m
-

p
en

sa
te

s
fo

r
B
′ .

A
′ B

′ &
C
′ D

′
A
′ B

′
'

C
′ D

′
or

A
′ B

′ ≥
C
′ D

′
×

©
T

h
e

ta
sk

s
ar

e
d
is

tr
ib

u
te

d
to

ea
ch

sc
h
ed

u
li
n
g

gr
ou

p
.

B
ot

h
C
′ a

n
d

D
′ h

av
e

lo
w

α
v
,
so

th
ey

d
o

n
ot

co
m

p
en

sa
te

α
v
.

A
′ C

′ &
B
′ D

′ A
′ C

′ À
B
′ D

′
©

×
T
as

k
s

ar
e

m
ai

n
ly

d
is

tr
ib

u
te

d
to

A
′ C

′ .
M

os
t

ta
sk

s
ar

e
co

m
p
le

te
d

in
A
′ C

′ .
B

ot
h

B
′ a

n
d

D
′

d
o

n
ot

co
m

p
en

sa
te

Θ
.

103

// DV S : deputy volunteer set

// CDV S : candidate deputy volunteer set

// TDV S : temporal deputy volunteer set

// CDV S ⊂ V GA′

TDV S = OrderedBy(CDV S.αv);

// HC : harddisk capacity, NB : network bandwidth

DV S = OrderedBy(TDV S.(Θ + CPU + DC + NB));

// Pop the best deputy volunteer from DV S

DV = PopBestDV(DV S)

Figure 4.7: Algorithm of deputy volunteer selection

procedure.

The S-MA is executed at a deputy volunteer. The deputy volunteer

is selected using the algorithm (see Figure 4.7). The deputy volunteers

are ordered by volunteer availability and volunteering service time, and

also by CPU, hard disk capacity (DC), and network bandwidth (NB).

Then, the deputy volunteers for scheduling groups are selected sequen-

tially. Next, each S-MA is transmitted to the selected deputy volunteer.

4.2.4 Distributing Task Agents to Group Members

After the S-MAs are allocated to the scheduling groups, each S-MA

distributes the task mobile agents (T-MA) that consist of parallel code

and data to the members of the scheduling group. The S-MAs perform

different scheduling, fault tolerance, and replication algorithms accord-

ing to the type of volunteer groups, differently from existing Desktop

104

Grid computing systems.

The S-MA of the A′D′ scheduling group performs the scheduling

as follows. 1) Order the A′ volunteer group by αv and then by Θ. 2)

Distribute T-MAs to the arranged members of the A′ volunteer group.

3) If a T-MA fails, replicate the failed task to a new volunteer selected

in the A′ volunteer group by using the replication algorithm, or move

the task to the volunteer selected in the A′ or B′ volunteer groups if task

migration is allowed.

The S-MA of the C ′B′ scheduling group performs the scheduling as

follows. 1) Order the C ′ and B′ volunteer groups by αv and then by Θ.

2) Distribute T-MAs to the arranged members of the C ′ volunteer group.

3) If a T-MA fails, replicate the failed task to a new volunteer selected in

the ordered C ′ volunteer groups, or move the task to a volunteer selected

in the B′ or C ′ volunteer groups.

Tasks are firstly distributed to the A′D′ scheduling group and then

the C ′B′ scheduling group. In addition, the tasks are firstly distributed

to the volunteers that have high αv and long Θ. In the scheduling

algorithm, if checkpointing is not used, tasks are not allocated to the B′

and D′ volunteer groups, because they have insufficient time to finish the

task reliably. In this case, the B′ and D′ volunteer groups execute tasks

for testing, that is, to measure their properties. For example, the tasks

executed in the A′ and C ′ volunteer groups are redistributed to the D′

and B′ volunteer groups, respectively. However, the B′ volunteer group

can be used to assist the main volunteer groups (that is, A′ or C ′) if

105

task migration is permitted. For example, in the C ′B′ scheduling group,

the B′ volunteer group can be used to compensate for the C ′ volunteer

group with regard to volunteer availability. Suppose that a volunteer

in the C ′ volunteer group suffers from volunteer autonomy failures. If

the volunteering time of a volunteer in the B′ volunteer group covers

the range of the duration of volunteer autonomy failures at the failed

volunteer, the suspended task can migrate to the new volunteer in the

B′ volunteer group.

If replication is used, a S-MA calculates the number of redundancy

and then selects replicas (that is, volunteers to execute the replicated

computation). Then, the S-MA distributes the T-MAs to the selected

replicas. In the case of failures, the S-MA replicates or moves the failed

T-MA to a new volunteer. The replication and fault tolerance algo-

rithms are described in detail, later.

4.3 Group Scheduling for Replication

Replication is a well-known technique to improve reliability and perfor-

mance in distributed systems [99, 100]. In a Desktop Grid computing

environment, replication is mainly used for reliability, (that is, to toler-

ate failures), or for result certification, (that is, to detect and tolerate

erroneous results) [14, 15, 22, 55, 56, 93, 94, 95, 96, 97]. This section

focuses on replication to reliably tolerate volunteer autonomy failures.

Our adaptive scheduling mechanism automatically adjusts the number

106

of redundancy, and selects an appropriate replica according to the prop-

erties of each volunteer group.

4.3.1 How to Calculate the Number of Redundancy

Our group-based adaptive replication algorithm calculates the number

of redundancy on the basis of each volunteer group. In addition, it

exploits volunteer autonomy failures and volunteer credibility simulta-

neously when calculating the number of redundancy.

In a Desktop Grid computing environment, volunteer autonomy fail-

ures occur much more frequently than crash and link failures. There-

fore, we must consider volunteer autonomy failures when calculating

the number of redundancy. However, existing methods 2 do not con-

sider volunteer autonomy failures. To reflects the volunteer autonomy

failures, our replication algorithm makes use of volunteer availability

and volunteer autonomy failures as follows.

The number of redundancy r for reliability is calculated by Equation

4.1. Here, τ represents the MTTVAF of a volunteer, and τ ′ represents

the MTTVAF of a volunteer group.

(1− e−∆/τ ′)r ≤ 1− γ (4.1)

2Ranganathan et al. [95] proposed how to calculate the number of redundancy

per files in a large peer-to-peer communities. Li and Mascagni [93] proposed the

number of redundancy in computational grid.

107

The parameter γ is the reliability threshold.

τ ′ = (V1.τ + V2.τ + · · ·+ Vn.τ)/n

Here, n is the total number of volunteers within a volunteer group. The

Vn.τ means τ of a volunteer Vn.

In Equation 4.1, the expression e−
∆
τ ′ 3 represents the reliability of

each volunteer group, which means the probability to complete tasks

within ∆. It reflects volunteer autonomy failures. The (1 − e−
∆
τ ′)r

means the probability that all replicas fail to complete the replicated

tasks.

Each volunteer group has different r. For example, the A′ and C ′

volunteer groups have smaller r than the B′ volunteer group. Similarly,

the A′′ and C ′′ volunteer groups have smaller r than the B′′ volunteer

group.

In a Desktop Grid computing environment, some malicious volun-

teers tamper with the computation and then return corrupted results.

In this case, the Desktop Grid computing systems must detect and toler-

ate the erroneous result, which is called result certification. To this end,

majority voting and spot-checking have been exploited 4. In this sec-

3If the lifetime of a volunteer is exponentially distributed, then the reliability of

the volunteer R(t) is : R(t) = e−λ′t [99, 100, 101]. The parameter λ′ refers to the

rate of volunteer autonomy failures. If the probability that tasks are completed at

time interval ∆ is calculated, then the e−
∆
τ′ is also calculated because 1

λ′ = τ ′.

4Sarmenta [23, 24] proposed how to calculate the number of redundancy for

majority voting. However, he does not consider volunteer credibility and volunteer

108

tion, we focus on majority voting. Especially, we calculate the number

of redundancy for majority voting by using volunteer credibility.

The number of redundancy r for majority voting is dynamically

calculated through Equation 4.2 [102]. Here, r = 2k + 1 5.

2k+1∑

i=k+1

(
2k + 1

i

)
(1− C ′

v)
i(C ′

v)
(2k+1−i) ≤ 1− ϑ (4.2)

The parameter ϑ is the desired credibility threshold that a task achieves.

The parameter C ′
v means the probability that volunteer group generates

correct results.

C ′
v = (V1.Cv + V2.Cv + · · ·+ Vn.Cv)/n

In Equation 4.2, the left expression
∑2k+1

i=k+1

(
2k+1

i

)
(1−C ′

v)
i(C ′

v)
(2k+1−i)

represents the error probability to each volunteer group, which is bounded

by the following equation [102].

[4C ′
v(1− C ′

v)]
k+1

2(2C ′
v − 1)

√
πk

Each volunteer group has the different number of redundancy. For

example, the A′ and B′ volunteer groups have smaller r than C ′ volun-

teer group. Similarly, the A′′ and B′′ volunteer groups have smaller r

than C ′′ volunteer group.

autonomy failures. In addition, he does not provide replication mechanism on a per

group basis

5If k malicious volunteers return the erroneous results (that is, volunteers exhibit

Byzantine failures), a minimum of 2k + 1 volunteers are needed to achieve k fault

tolerance [99, 100].

109

Calculate r by Eq. 1

Calculate r by Eq. 2

r meets Eq.1

If majority voting
is considered?

Yes

No

Yes

No

Decide r to the
volunteer group

Choose a volunteer group

Does volunteer
group exist?

End

Start

Yes

No

Figure 4.8: Algorithm for calculating the number of redundancy

To apply volunteer autonomy failures and volunteer credibility si-

multaneously when calculating the number of redundancy, we propose

the following algorithm as shown in Figure 4.8.

110

4.3.2 How to Select Replicas

After deciding the number of redundancy to each volunteer group, our

group-based adaptive replication algorithm selects replicas (that is, vol-

unteers to execute the replicated task) according to the number of re-

dundancy. Therefore, each volunteer group has many replication groups,

which refer to a set of replicas for a task.

Selection in Classification I.

To make a replication group for a task, volunteers within each volunteer

group are sorted by volunteer availability αv and volunteering service

time Θ. Especially, A′ and C ′ volunteer group is sorted by αv and

then by Θ. B′ volunteer group is sorted by Θ and then by αv. The

Θ is important because of insufficient volunteering service time in B′

volunteer group. After each volunteer group is sorted, the replication

groups are constructed according to r.

Selection in Classification II.

To make a replication group for a task, volunteers within each volun-

teer group are sorted by volunteer availability αv, volunteering service

time Θ, and volunteer credibility Cv. Especially, A′′ volunteer group is

sorted by αv and then by Θ. The Cv does not matter because the value

is beyond the desired credibility ϑ in A′′ volunteer group. B′′ volunteer

group is sorted by Θ and then by αv. The Θ is important because of in-

sufficient volunteering service time in B′′ volunteer group. C ′′ volunteer

111

group is sorted by Cv and the by αv because it has low credibility. After

each volunteer group is sorted, the replication groups are constructed

according to r.

Fault Tolerant Selection in Classification I & II.

When a volunteer suffers from failures, the failed volunteer is replaced

by a new one. In our replication mechanism, the failed volunteers are

replaced by volunteers with higher or equal quality in order to keep the

credibility and availability higher or equal. In the classification I, the

failed volunteers in C ′ volunteer group are replaced by new volunteers in

A′ or C ′ volunteer group. In the classification II, the failed volunteers in

C ′′ volunteer group are replaced by new volunteers in A′′ or C ′′ volunteer

group.

4.3.3 How to Distribute Tasks to Replicas

The method to distribute a task to replication group is categorized

into two approaches: parallel distribution and sequential distribution

as shown in Figure 4.9.

In Figure 4.9, the replication group consists of volunteers, V0, V1,

and V2 (that is, r = 3). With the parallel distribution, the task (Ti) is

distributed to all members at the same time as shown in Figure 4.9 (a),

and then executed simultaneously. On the other hand, with the sequen-

tial distribution, the task (Ti) is distributed and executed sequentially

as shown in Figure 4.9 (b).

112

Tm

Tm

Tm

Tm+1

Tm+1

Tm+1

Tm

Tm+1

Tm+2 Tm

Tm+1

Tm+2 Tm

Tm+1

Tm+2Tm+2

Tm+2

Tm+2

V0 V0

V1 V1

V2 V2

(a) Parallel distribution (b) Sequential distribution

Figure 4.9: Parallel and sequential distribution

Distribution in Classification I.

In the case of A′ volunteer group, sequential distribution is more appro-

priate than parallel one because the former can complete more tasks.

For example, in Figure 4.9 (b), if V0 completes the task Tm, there is

no need to execute it at V1 and V2. A′ volunteer group has high pos-

sibility to execute a task reliably without failures (especially, volunteer

autonomy failures) because of high volunteer availability. However, if

A′ volunteer group performs parallel distribution as shown in Figure 4.9

(a), it exhibits overhead of replication in the sense that the volunteers

execute only the same tasks even though it is able to execute other

tasks. In contrast to A′ volunteer group, in case of C ′ volunteer group,

sequential distribution is more appropriate than parallel one because

C ′ volunteer group frequently suffers from volunteer autonomy failures

owing to low αv.

113

Distribution in Classification II.

In the case of A′′ volunteer group, sequential distribution is more ap-

propriate than parallel one because the former can perform more tasks.

That is, A′′ volunteer group has high possibility to produce correct re-

sults, so it can carry out its task reliably without failures (especially,

volunteer autonomy failures). For example, if V0 completes the task

Ti and its reliability is satisfied in Figure 4.9 (b), there is no need to

execute it at V2. In addition, in the case of majority voting, if the first

two results of Ti+2 generated at V1 and V2 are the same, there is no need

to execute the Ti+2 at V0 as shown by the dotted line in Figure 4.9 (b)

because majority (that is, 2 out of 3) is already achieved. Therefore,

the volunteers can execute other tasks as soon as majority is reached,

instead of the tasks indicated by the solid line in Figure 4.9 (b).

In the case of B′′ volunteer group, sequential distribution is more

appropriate than parallel one, just like with the A′′ volunteer group.

However, B′′ volunteer group has low Θ, so it can not complete their

tasks because of the lack of the computation time. Therefore, the man-

ager of B′′ volunteer group should provide task migration in order to

execute the tasks continuously. During task migration, a former vol-

unteer affects the new volunteer to which a task is migrated. In other

words, if the malicious volunteer is wrongly selected as the new vol-

unteer, it ruins the correct result that was generated by the former

volunteer. Therefore, the new volunteer must be chosen among B′′ or

114

A′′ volunteer group, not C ′′ or D′′ volunteer group.

In the case of C ′′ volunteer group, sequential distribution is more

appropriate than parallel one. C ′′ volunteer group has enough time to

execute tasks. However, it has low credibility, so it has a high proba-

bility that its result is incorrect. Moreover, each volunteer suffers from

volunteer autonomy failures owing to low αv. In the case of majority

voting, the voting procedures are delayed if sequential distribution is

adopted. In other words, it takes a longer time and high overhead to

complete the result certification. In the case of parallel distribution, the

overhead and time are smaller than in sequential distribution relatively

because voting procedure for each task is completed within a step as

shown in Figure 4.9 (a).

4.4 Group Scheduling for Result Certifi-

cation

Result certification approaches are categorized into majority voting and

spot-checking mechanisms [15, 23, 24, 56, 98]. Our group-based schedul-

ing mechanism dynamically applies result certification to volunteer groups.

4.4.1 Applying Result Certification to Volunteer

Group

Result certification is dynamically applied to each volunteer group.

The A′′ volunteer group has high Cv, high Θ, and high αv enough

115

to execute tasks reliably. In the case of majority voting, sequential dis-

tribution is more appropriate than parallel one, as in section 4.3.3. The

A′′ volunteer group performs spot-checking smaller than C ′′ volunteer

group.

The B′′ volunteer group has high Cv and high αv, but low Θ. In

the case of majority voting, sequential voting group is more appropriate

than parallel voting group as with A′′ volunteer group. If migration

occurs, spot-checking is additionally performed at a former volunteer as

well as migrated volunteer to check their correctness.

The C ′′ volunteer group has high Θ, but low Cv and low αv. Thus,

its results might be incorrect. The C ′′ volunteer group should do more

spot-checking in order to strength the credibility. Parallel voting group

is more appropriate than sequential voting group, as in section 4.3.3.

4.4.2 Scheduling Algorithm for Result Certifica-

tion

The tasks are scheduled in the following order, that is, A′′, C ′′ and B′′

volunteer groups sequentially, because A′′ and C ′′ volunteer groups have

enough times to execute tasks.

In the A′′ volunteer group, scheduling algorithm for result certifica-

tion is as follows: 1) Order A′′ volunteer group by αv and then by Θ. 2)

Evaluate the number of redundancy or spot-checking rate. 3) Construct

a sequential voting group, or choose some volunteers for spot-checking

on the basis of Θ. 4) Distribute tasks in a way of sequential voting

116

group, or allocate special tasks for spot-checking. 5) Check the col-

lected results.

In the B′′ volunteer group, scheduling algorithm for result certifica-

tion is as follows: 1) Order A′′ volunteer group by Θ and then by αv.

2) Same to A′′ volunteer group. 3) Construct a sequential voting group,

or choose some volunteers for spot-checking on the basis of Θ. 4)∼5)

are same as A′′ volunteer group. Especially, B′′ volunteer group must

perform additional spot-checking during task migration because of lack

of volunteering service time.

In the C ′′ volunteer group, scheduling algorithm for result certifica-

tion is as follows: 1) Order C ′′ volunteer group by Cv and then αv. 2)

Evaluate the number of redundancy or spot-checking rate. 3) Construct

a parallel voting group, or choose some volunteers for spot-checking on

the basis of Cv. 4)∼5) are the same as A′′ volunteer group. C ′′ volunteer

group should handle the volunteer autonomy failures.

In the above 2) phases, the number of redundancy for majority vot-

ing and the number of spot-checking are differently applied to each vol-

unteer group. In case of redundancy for majority voting, C ′′ volunteer

group has the greater number of redundancy than A′′ and B′′ volunteer

groups because of low credibility. Similarly, C ′′ volunteer group has

the greater number of spot-checking than A′′ and B′′ volunteer groups.

Especially, B′′ volunteer group has the more number of spot-checking

than A′′ volunteer group on account of task migration.

117

The number of redundancy r for majority voting is dynamically

calculated through the following Equation 4.3. Here, r = 2k + 1. The

final error rate of majority voting is evaluated as follows [24, 102].

ε(C ′
v, r) =

2k+1∑

i=k+1

(
2k + 1

i

)
(1− C ′

v)
i(C ′

v)
(2k+1−i) (4.3)

which is bounded by [4C′v(1−C′v)]k+1

2(2C′v−1)
√

πk
.

Here, the parameter C ′
v means the probability that each volunteer

group generates correct results. The C ′
vA,C ′

vB, and C ′
vC is the C ′

v of A′′,

B′′, and C ′′, respectively.

Supposed that a desired credibility threshold is ϑ, our group-based

adaptive result certification algorithm calculates the the redundancy of

each volunteer group rA, rB and rC (that is, the redundancy of A′′, B′′,

and C ′′, respectively) as follows.

If (1 − ϑ) ≥ ε(C ′
vA, rA), we decide rA as the number of redundancy

of A′′ volunteer group. The rB and rC are also calculated in the same

way. So, rA and rB is smaller than rC . Consequently, A′′ or B′′ volunteer

group has the small number of redundancy, so it can reduce the overhead

of majority voting and execute more tasks. In contrast, C ′′ volunteer

group has the large number of redundancy. The large redundancy not

only makes the credibility high, but also compensates for low availability

(that is, tolerates volunteer autonomy failures). Finally, the desired

error rate is satisfied entirely because (1− ϑ) ≥ ε(C ′
vA, rA).

The rate of spot-checking q is also calculated. The final error rate

of spot-checking is evaluated as follows [24].

118

ε(q, n, C ′
v, s) =

sC ′
v(1− qs)n

(1− C ′
v) + C ′

v(1− qs)n
(4.4)

where, n is the saboteur’s share in the total work. s is the sabotage rate

of a saboteur.

Our group-based adaptive result certification algorithm calculates

the spot-checking rate of each volunteer group qA, qB and qC (that is,

A′′, B′′, and C ′′, respectively) as follows.

In a similar way of majority voting, if n and s are given, the spot-

checking rate qA of A′′ volunteer group is calculated by Equation 4.4.

If (1 − ϑ) ≥ ε(qA, n, C ′
vA, s), we decide qA as the spot-checking rate

of A′′ volunteer group. Since C ′
vA and C ′

vB are greater than C ′
vC , the

spot-checking rates of A′′ and B′′ group, qA and qB, are smaller than

the the spot-checking rate of C ′′ group, qC . Therefore, A′′ and B′′

volunteer groups can reduce the overhead and execute more tasks. The

C ′′ volunteer group can increase its credibility.

4.5 Fault Tolerant Algorithm

Volunteer autonomy failures lead to the delay and blocking of the exe-

cution of tasks. They occur much more frequently than crash and link

failures in a Desktop Grid computing environment. Moreover, volun-

teers take various occurrence rates and forms of volunteer autonomy

failures. A Desktop Grid system is required to conduct various fault

tolerance algorithms in scheduling procedures according to the occur-

119

rence rate and form. To achieve this, we apply different fault tolerance

algorithms according to the property of each volunteer group, while also

distinguishing volunteer autonomy failures from the traditional failures.

We describe how the scheduling and task mobile agents work in the

presence of failures in this subsection.

The volunteer autonomy failures Φ are different from crash failure in

that the operating system is alive in spite of volunteer volatility failure

Φ and volunteer interference failure Ψ, whereas it shuts down in the

presence of crash failure [58, 99, 100]. Φ is different from crash failure

in that Φ occurs due to the request of volunteers [58, 99, 100]. Ψ is

different from Φ in that a Desktop Grid computing system is alive in

spite of Ψ, whereas it is not operating in the case of Φ.

A server detects the crash failure of S-MA using a timeout. Similarly,

the S-MA detects the crash failure of T-MA. To achieve this, the S-MA

sends alive messages to its server. Similarly, the T-MA sends alive

messages to the S-MA. The T-MAs in the D′ volunteer group6 do not

send alive messages, in order to reduce the management overhead. A

volunteer can detect volunteer autonomy failures by oneself because its

operating system does not shut down. If T-MA or S-MA detects the

volunteer autonomy failures, it notifies its S-MA or server, respectively.

6D′′ volunteer group in the Classification II.

120

4.5.1 Handling Failure of Scheduling Agent

A S-MA rarely suffers from volunteer autonomy failures because it is

executed at the deputy volunteers that are selected among the A′ vol-

unteer group7. The S-MA stores information such as scheduling group

lists, scheduling table, and task results in a stable storage. If the S-MA

fails, the information is sent to a new deputy volunteer. Figure 4.10

shows the fault tolerant algorithm of S-MA.

If a server detects the crash failure of S-MA, the new deputy volun-

teer is selected by the algorithm of deputy volunteer selection presented

in Figure 4.10. Next, the S-MA and the scheduling information are sent

to the newly selected deputy volunteer.

If a S-MA suffers from the volunteer volatility failure, it sends a

VolatilityFailure message to the server. If the S-MA joins again during

the volunteering time, it sends Rejoin message to its server. If the server

does not receive a Rejoin message within the interval after receiving a

VolatilityFailure message, it sends the S-MA to a new deputy volunteer.

If a S-MA is at the edge of reserved volunteering time, it sends an

InAdvanceVolatilityFailure message to its server. In this case, the server

responds with a candidate deputy volunteer. The S-MA migrates to the

candidate deputy volunteer.

In the case of volunteer interference failure, a S-MA does not take

any action because it can perform scheduling procedures in the sense

7A′′ volunteer group in the Classification II.

121

[If a server detects the crash failure of S-MA]

Vm = SelectDeputyVolunteer(A′);

SendS-MA′(Vm); // send S-MA′(the latest checkpointed S-MA) to Vm

[If Φ occurs]

// At the S-MA side

S-MA′ = Checkpoint(S-MA);

Send VolatilityFailure message to server;

Send S-MA′ to server;

// At the server side

if (Server is informed of the volunteer volatility failure) then

if (Server does not received the Rejoin message within the interval) then

Vm = SelectDeputyVolunteer(A′);

SendS-MA′(Vm);

fi;

fi;

[At the edge of volunteering time]

// At the S-MA side

S-MA′ = Checkpoint(S-MA);

Send InAdvanceVolatilityFailure message to server;

if (S-MA receivs the candidate deputy volunteer Vm) then

MigrateS-MA′(Vm);

fi;

// At the Server side

if (S-MA receives InAdvanceVolatilityFailure message) then

Vm = SelectDeputyVolunteer(A′);

SendCandidateDeputyVolunteer(Vm);

fi;

Figure 4.10: Fault tolerant algorithm in the presence of failures of S-MA

that the Desktop Grid system is alive.

122

4.5.2 Handling Failure of Task Agent

A T-MA suffers from volunteer autonomy failures more frequently than

a S-MA, because the volunteer running a T-MA has relatively low

availability. The T-MA checkpoints the execution state at the rate of

MTTV AF if checkpointing is used. Figures 4.11, 4.12, and 4.13 show

the fault tolerant algorithm of T-MA8.

If a S-MA detects the crash failure of T-MA, it selects a new volun-

teer. If checkpointing is used, the S-MA sends the latest checkpointed

T-MA′ to it. Otherwise, the S-MA redistributes the T-MA to the new

one. Each S-MA redistributes the T-MA within the number of redun-

dancy r.

If a T-MA is at the edge of reserved volunteering time, it sends a

InAdvanceVolatilityFailure message to its S-MA. After receiving a can-

didate volunteer, it migrates to the candidate volunteer or is replicated.

If a T-MA suffers from volunteer volatility failure Φ, it takes a check-

point of the execution of task and then notifies its S-MA of Φ by means

of a VolatilityFailure message. Next, if the S-MA does not receive any

Rejoin message from the failed volunteers within predefined time inter-

val, it reschedules the T-MA. If checkpointing and migration are used,

the S-MA migrates the T-MA′ to a new volunteer. Otherwise, the S-MA

replicates the T-MA by the number of redundancy r.

8In the figures, A′, B′, and C ′ are replaced by A′′, B′′, and C ′′, respectively,

when considering the Classification II.

123

[If S-MA detects the crash failure of T-MA]

Vm = SelectNewVolunteer();

if (checkpointing is used) then

SendT-MA′(Vm); // send T-MA′(the latest checkpointed T-MA) to Vm

else

RedistributeT-MA(Vm); // redistribute T-MA to Vm

fi;

[At the edge of reserved volunteering time]

// At the T-MA side

if (the task is not finished) then

if (T-MA ∈ A′ || T-MA ∈ C′ || T-MA ∈ B′) then

Send InAdvanceVolatilityFailure message to S-MA;

fi;

if (T-MA receives the candidate volunteer Vm) then

if (checkpointing is used) then

MigrateT-MA′(Vm); // migrate T-MA′ to Vm

else

ReplicateT-MA(Vm); // replicate T-MA to Vm

fi;

fi;

fi;

// At the S-MA side

if (S-MA receives InAdvanceVolatilityFailure message) then

Vm = SelectNewVolunteer();

SendCandidateVolunteer(Vm);

fi;

[Function : SelectNewVolunteer()]

if (T-MA ∈ A′ volunteer group) then

Vm = SelectNewVolunteer(A′);
else if (T-MA ∈ C′ volunteer group) then

Vm = SelectNewVolunteer(C′, B′);
else if (T-MA ∈ B′ volunteer group) then

Vm = SelectNewVolunteer(B′);
SendT-MA(Vm);

fi;

Figure 4.11: Fault tolerant algorithm in the presence of failures of T-MA

(1)

124

[If Φ occurs]

// At the T-MA side

T-MA′ = Checkpoint(T-MA);

if (T-MA ∈ A′ || T-MA ∈ C ′ || T-MA ∈ B′) then

Send VolatilityFailure message to S-MA;

Send T-MA′ to S-MA;

fi;

// At the S-MA side

if (S-MA receives VolatilityFailure message) then

if (S-MA does not receive the Rejoin message within the interval)

then

Vm = SelectNewVolunteer();

if (checkpointing is used) then

SendT-MA′(Vm);

else

ReplicateT-MA(Vm);

fi;

fi;

fi;

Figure 4.12: Fault tolerant algorithm in the presence of failures of T-MA

(2)

If a T-MA suffers from volunteer interference failure Ψ, it takes a

checkpoint of the execution. Then, if the execution is not restarted

within the interval, the volunteer sends an InterferenceFailure message

to its S-MA. After receiving a candidate volunteer, the T-MA migrates

to the candidate volunteer or is replicated.

In the algorithm, there is no fault tolerant mechanism for the D′

125

[If Ψ occurs]

// At the T-MA side

T-MA′ = Checkpoint(T-MA);

if (T-MA is not restarted within the interval) then

if (T-MA ∈ A′ || T-MA ∈ C ′ || T-MA ∈ B′) then

Send InterferenceFailure message to S-MA;

fi;

if (T-MA receives the candidate volunteer Vm) then

if (checkpointing is used) then

SendT-MA′(Vm);

else

ReplicateT-MA(Vm);

fi;

fi;

fi;

// At the S-MA side

if (S-MA receives InterferenceFailure message) then

Vm = SelectNewVolunteer();

SendCandidateVolunteer(Vm);

fi;

Figure 4.13: Fault tolerant algorithm in the presence of failures of T-MA

(3)

volunteer group9 in the presence of failures during the execution in order

to reduce management overhead. The D′ volunteer group10 executes the

task for testing, for example, for the purpose of recalculating volunteer

9D′′ volunteer group in the Classification II.

10D′′ volunteer group in the Classification II.

126

autonomy failures, volunteer availability, and volunteering service time.

4.6 Related Work

4.6.1 Scheduling and Fault tolerance

AgentTeamwork [83] proposed a mobile agent based PC Grid middle-

ware. AgentTeamwork makes use of mobile agents for resource search

and job migration in the presence of crash failure. AgentTeamwork is

similar to our system in the sense that it uses mobile agents. How-

ever, our mechanism uses mobile agents for scheduling. The scheduling

mobile agent is permitted to implement different scheduling algorithms

suitable for each volunteer group according to volunteering service time

and volunteer availability.

Kondo et al. [47, 49] classified clients (that is, volunteers in this

thesis) into two classes mainly according to location (that is, home or

workplace) and network: conservative and extreme. Conservative clients

model home PCs. They have relatively slow network bandwidth and are

used sparsely during after-work hours. Extreme clients, however, model

PCs in the workplace. They have relatively fast broadband network

and are used all day. In addition, conservative clients are 90% idle,

whereas extreme clients are 80% idle. Kondo et al. [47, 49] measured

scheduling mechanisms (i.e., timeout and duplication) for five client

groups with various conservative/extreme percentages. Even though

classified clients were used, the classification was used to set up sim-

127

ulation environments. However, our adaptive scheduling mechanism

directly exploits classification to apply various scheduling, fault toler-

ance, and replication strategies to each volunteer group by means of

mobile agents. In addition, our classification and scheduling mecha-

nism focuses on volunteer autonomy failures, volunteering service time,

and volunteer availability at the same time in a scheduling procedure,

whereas the strategies employed by Kondo et al. were mainly based on

CPU capacity, location, and network state in a scheduling procedure.

In the SETI@Home [12] project, the central server has the role of

scheduling and management of volunteers, and therefore has high over-

head. A volunteer takes a checkpoint periodically (every ten minutes).

Each time volunteers are interrupted by the user or a system failure,

the computation will resume from the last saved checkpointing. The

SETI@Home project is based on the BOINC [13] that is middleware

for public resource computing. The BOINC provides redundant com-

puting to deal with erroneous computational results [14, 15]. However,

SETI@Home and BOINC do not provide a scheduling mechanism on a

per group basis.

The XtremWeb [17, 18, 19] proposed a FIFO scheduling scheme.

Bayanihan [22, 23, 24] proposed a sabotage-tolerance mechanism to tol-

erate malicious volunteers. It tolerates erroneous results from malicious

volunteers by using majority voting and spot-checking mechanisms. The

majority voting and spot-checking are based on eager scheduling algo-

rithm. Javelin [25, 26, 27] proposed an advanced eager scheduling algo-

128

rithm based on tree. However, XtremWeb, Bayanihan, and Javelin do

not propose scheduling on the basis of volunteer groups. They also do

not exploit volunteer autonomy failures, volunteering service time, and

volunteer availability in a scheduling phase. In addition, they reduce

the overhead of central server by using the multiple servers, whereas our

adaptive scheduling mechanism makes use of mobile agents.

The CCOF [34, 35, 36] proposed a wave scheduler in which nodes

(that is, volunteers) are classified into night zone and day zone. The

wave scheduler is based on timezone-aware overlay network using CAN.

In the wave scheduler, when morning arrives at a node, it randomly

selects a node in a nightzone for the purpose of migration. However,

CCOF does not consider volunteer groups that are constructed by vol-

unteer autonomy failures and volunteer availability during classification.

In addition, it does not apply different scheduling, fault tolerance, and

replication strategies to each timezone.

Maheswaran et al. [67] proposed dynamic matching and scheduling

heuristics for independent tasks in heterogeneous computing systems

(that is, computational grid). They evaluated on-line mode heuristics

(MCT, MET, SA, and KPB) and batch mode mapping heuristics (Min-

min, Max-min, and sufferage). Casanova et al. [84] modified existing

scheduling heuristics (Min-min, Max-min, and Sufferage) in a grid com-

puting environment. Input and output data transfer time is considered

when computing MCT (Minimum Completion Time), and locality of

files is also taken into account. They also proposed XSufferage in which

129

the sufferage value is computed with cluster-lever MCT. Berman et al.

[85] proposed application level scheduling (AppLeS) for adaptive appli-

cation scheduling in a grid computing environment. The AppLeS uses

agents that are customized for particular applications on potential tar-

get resources by means of the performance model. However, existing

mechanisms are based on the computational grid computing environ-

ment. They do not provide scheduling, fault tolerance, and replication

algorithms on the basis of volunteer groups. They mainly focus on

CPU load and network bandwidth in a scheduling procedure, whereas

our adaptive scheduling mechanism concentrates on volunteer availabil-

ity, volunteering time, and volunteer autonomy failures that occur more

frequently in a Desktop Grid computing environment.

In Condor [44, 45, 46], checkpointing is used for a task to migrate

from a non-idle workstation to an idle workstation (in this case, the

two workstations should be homogeneous). Condor proposed ClassAds

for matchmaking and a priority based scheduling algorithm. However,

Condor is better suited for intra-organizational use, whereas a Desktop

Grid computing system is based on the Internet. In addition, Con-

dor does not apply different scheduling, fault tolerance, and replication

strategies to each volunteer group.

Kondo et al. [48] proposed two kinds of availability: host availability

and CPU availability. Host availability refers to the probability indi-

cating whether a host is reachable and up. CPU availability means the

probability that quantifies the fraction of the CPU that can be used

130

by an application. In addition, they estimated CPU availability experi-

mentally. Bhagwan et al. [92] empirically characterized host availability

in a P2P computing environment. Our volunteer availability is similar

to CPU availability. However, we conceptually classify and define vol-

unteer availability that is derived from volunteer autonomy failures. In

addition, we provide a volunteer group based scheduling mechanism to

directly exploit the availability.

4.6.2 Scheduling for Replication

Replication is a well-known technique to improve reliability and perfor-

mance in distributed systems [99, 100]. Some studies have been made

on replication in a grid computing environment or a P2P computing

environment [23, 49, 55, 93, 94, 95, 96, 97].

Li and Mascagni [93] proposed computational replication to improve

performance in large-scale computational grid. They propose how to

determine the number of task replicas to meet the performance goals

on the basis of node and network failure rates. Kondo et al. [47, 49]

proposed computational replication (i.e., duplication and timeout mech-

anisms) in a desktop grid computing environment. With the duplication

mechanism, each task is replicated by the maximum number of redun-

dancy. With the timeout mechanism, each task is replicated if its result

is not returned within the predefined timeout. Ranganathan and Foster

[94] proposed dynamic replication strategies in a data grid environment.

They provide six different strategies to replicate large amounts of data

131

for the purpose of reducing bandwidth consumption and access latency.

Ranganathan et al. [95] proposed dynamic model-driven replica-

tion to improve data availability in a large peer-to-peer communities.

They provide the methods not only to compute the number of replicas

per file, but also to determine the location for a new replica on the

basis of storage and transfer costs. Cohen and Shenker [96] proposed

replication strategies in unstructured peer-to-peer networks. They pro-

posed uniform, proportional, and square-root replication to minimize

the expected search size. Cuenca-Acuna et al. [97] proposed replication

to increase the availability of shared data in unstructured peer-to-peer

systems. They replicate files using an erasure code.

Sarmenta [23, 24] proposed sabotage-tolerance mechanism for volun-

teer computing systems. The proposed mechanism tolerates erroneous

results from malicious volunteers by using majority voting and spot-

checking mechanisms. Especially, with majority voting, the same task

is replicated at different volunteers as much as the number of redun-

dancy to meet the desired error rate.

Most replication approaches focus on data replication (that is, repli-

cating data or file), whereas Li and Mascagni [93], Kondo et al. [47, 49],

and Sarmenta [23, 24] deal with computational replication (that is, repli-

cating the execution of task). Data replication is mainly used to improve

data availability and access time in a peer-to-peer network or a data grid

computing environment. On the other hand, computational replication

is mainly used for fault tolerance or result certification in a computa-

132

tional grid or a desktop grid computing environment. In particular, Li

and Mascagni [93] and Kondo et al. [47, 49] used replication for fault

tolerance and performance, whereas Sarmenta [23, 24] used replication

for result certification (that is, tolerating malicious volunteers). In ad-

dition, existing replication mechanisms [23, 24, 47, 49, 93] are not on a

per group basis.

4.6.3 Scheduling for Result Certification

In a Desktop Grid computing environment, the result certification ap-

proaches are categorized into majority voting and spot-checking mech-

anisms [15, 23, 24, 56, 98].

In a majority voting approach, the same task is carried out at dif-

ferent volunteers as much as the number of redundancy. Redundancy

is used to identify the correct result against erroneous one if there are

sufficiently more good volunteers than bad ones. In a spot-checking ap-

proach, the special task whose result is already known is performed at

randomly selected volunteers. If a volunteer returns an erroneous result,

it is regarded as malicious one. Majority voting approach is apparently

more costly than spot-checking, because it requires a redundancy of at

least two per task.

In addition, the Desktop Grid computing systems mainly used the

eager scheduling algorithm [22, 25, 27, 29]. In this algorithm, the tasks

are continuously allocated to faster volunteers, so they execute more

tasks than slow volunteers.

133

A few studies have been made on scheduling and result certification

in a Desktop Grid computing environment. Bayanihan [22, 23, 24] pro-

posed majority voting or spot-checking based on eager scheduling algo-

rithm. Especially, it also proposed credibility-enhanced eager schedul-

ing algorithm. In this algorithm, the more a volunteer passes the spot-

checking, the higher its credibility becomes. The more volunteers within

voting group agree on a result, the higher its credibility becomes. Volun-

teers continue to compute the task and perform spot-checking until the

credibility threshold is satisfied. When the desired credibility threshold

is reached, the result is accepted as a final. In these algorithms, the vot-

ing group for majority voting is not built before tasks are distributed to

volunteers. Instead, the voting group is built on the fly. That is, when-

ever a faster volunteer is allocated to a task, it is added to the voting

group for the task. As a result, the members in the voting group have

different credibility. Renaud and Playez [99] proposed a spot-checking

mechanism on the basis of property testing. They attempted to reduce

the sample size for spot checking by using property testing. Taufer

et al. [15] provides homogeneous redundancy for the numerical appli-

cations that may produce different results depending on the machine

architecture, operating systems, compiler, and compiler flags.

134

Chapter 5

Performance Evaluation

We evaluate the performance of our group-based adaptive scheduling

mechanism through simulation. We implemented our group-based adap-

tive scheduling mechanism and configured volunteer’s properties by us-

ing data collected from Korea@Home [52]. In our simulation, 200 vol-

unteers have different volunteering service time, volunteer availability,

and volunteer credibility. They are classified into groups, that is, (A′,

B′, C ′, D′) or (A′′, B′′, C ′′, D′′) by the group construction algorithms

as shown in Figure 4.3, 4.5 in Chapter 4. We measure our group-based

adaptive scheduling, replication, and result certification algorithms in

terms of the number of the competed tasks, the number of redundancy,

spot-checking rate, and error rate.

5.1 Group-based Adaptive Scheduling

We evaluate the group-based adaptive scheduling mechanism with ex-

isting scheduling mechanisms. The evaluation focuses on how much

135

performance improvement is achieved, depending on whether volunteer

groups are considered in a scheduling procedure. To this end, volun-

teer groups were intentionally set up, which have different volunteering

service time Θ and volunteer availability αv. We compare our adap-

tive scheduling mechanism with eager scheduling. In eager schedul-

ing1 [16, 18, 22, 25, 30], a volunteer asks its volunteer server of a new

task as soon as it finishes its current task. As a result, the more ea-

gerly a volunteer works, the more tasks are executed. There are a

lot of scheduling heuristics in grid computing environments, for exam-

ples, MCT, MET, SA, KPB, min-min, max-min, and sufferage heuristics

[67, 68, 84]. In this thesis, we adopt eager scheduling among existing

scheduling heuristics because it is more straightforward and simple than

other heuristics in grid computing. In particular, the eager scheduling

has been used mainly in dynamic Desktop Grid computing environments

[16, 18, 22, 25, 30] because it is more adaptive to dynamic environments

than other heuristics in grid computing.

We make use of a simulation to evaluate the proposed scheduling

mechanism. The simulation was conducted on the basis of Korea@Home

[52]. A task in the application consumes 16 minutes of execution time

on a dedicated Pentium 1.4 GHz. Table 5.1 presents the simulation

environment with different volunteer groups, volunteering service time,

and volunteer availability. For each case in Table 5.1, 200 volunteers

1Eager scheduling is very similar to FCFS(First Come First Served) or FIFO

(Fist In First Out).

136

participated in the simulation during one hour. In Case 1, the A′ vol-

unteer group has more volunteers than the other groups. Case 2 shows

that more volunteers belong to the A′ and C ′ volunteer groups when

compared to the other groups. In Case 3, the A′ and B′ volunteer

groups have more volunteers than the other groups. In Case 4, the D′

volunteer group has more volunteers than the other groups. When an-

alyzing Table 5.1, it can be observed that Case 1 has larger volunteer

availability and volunteering service time than the other cases. Case

4 has smaller volunteer availability and volunteering service time than

the other cases. Based on this simulation environment, the simulation

is conducted 10 times per each case.

As shown in Table 5.1, the 200 volunteers have various volunteer

autonomy failures, volunteer availability, and volunteering service time.

We assume that the range of MTTV AF is 1/0.2 ∼ 1/0.02 minutes and

MTTR is 3 ∼ 10 minutes. The simulation uses the number of com-

pleted tasks and the number of redundancy as the performance metrics.

In addition, we measure the number of completed tasks depending on

whether replication is applied or not. We measure two performance

metrics on the basis of scheduling groups (that is, A′D′ and C ′B′).

Figure 5.1 presents the average number of completed tasks. In Figure

5.1, ES and AS represent existing eager scheduling and our group-based

adaptive scheduling, respectively. In addition, AS(A′D′) and AS(C ′B′)

represent each scheduling group in our group-based adaptive scheduling

137

T
ab

le
5.

1:
S
im

u
la

ti
on

en
v
ir

on
m

en
t

C
as

e
A
′

B
′

C
′

D
′

T
ot

al

#
of

vo
l.

12
7

(6
3%

)
30

(1
5%

)
35

(1
7%

)
9

(5
%

)
20

0

C
as

e1
α

v
0.

95
0.

95
0.

74
0.

77
0.

91

Θ
43

15
31

11
35

m
in

.

#
of

vo
l

95
(4

7%
)

26
(1

3%
)

63
(3

2%
)

16
(8

%
)

20
0

C
as

e2
α

v
0.

9
0.

9
0.

65
0.

65
0.

80

Θ
40

14
28

9
30

m
in

.

#
of

vo
l

78
(3

9%
)

75
(3

7%
)

16
(8

%
)

31
(1

6%
)

20
0

C
as

e3
α

v
0.

95
0.

95
0.

70
0.

61
0.

88

Θ
31

11
25

8
20

m
in

.

#
of

vo
l

52
(2

6%
)

48
(2

4%
)

23
(1

2%
)

77
(3

8%
)

20
0

C
as

e4
α

v
0.

85
0.

85
0.

56
0.

54
0.

70

Θ
28

9
22

7
15

m
in

.

#
of

vo
l.
:

th
e

n
u
m

b
er

of
vo

lu
n
te

er
s

138

Figure 5.1: The average number of completed tasks

(Note that the sum of AS(A′D′) and AS(C ′B′) is equal to AS). As

presented in Figure 5.1, our group-based adaptive scheduling completes

more tasks than the existing eager scheduling.

The obtained results indicate the following factors. First, the A′

volunteer group has an important role in gaining better performance.

When the number of members in the A′ volunteer group decreases grad-

ually (that is, from Case 1 to Case 4), the number of completed tasks

also decreases.

Second, the number of members of the A′ and C ′ volunteer groups

139

is more important than that of the B′ and D′ volunteer groups. For

example, Cases 1 and 2 have more completed tasks than Cases 3 and 4.

Third, volunteer availability is tightly related with performance im-

provement. For instance, Case 1 with the highest volunteer availability

has completed many tasks than the other cases. On the other hand, the

completed tasks of Case 4 with the lowest volunteer availability are less

than those of the other cases.

Finally, as the number of members in the A′ volunteer group grad-

ually decreases and the number of members in the B′ and D′ volun-

teer groups increases, the difference between our group-based adaptive

scheduling and the eager scheduling increases. This result is anticipated

in the sense that, in the eager scheduling, the failed or suspended tasks

in A′, B′, C ′, or D′ volunteer groups can be redistributed to low quality

volunteers interchangeably. On the other hand, since our group-based

adaptive scheduling performs scheduling on a per group basis, the unde-

sired situation does not happen. For example, the failed or suspended

tasks in the C ′ volunteer groups are not distributed to the B′ and D′

volunteer groups. The difference in Case 1 is smaller than other cases

because there are more members of the A′ volunteer group than other

groups. In other words, the undesired situations rarely occur in Case 1.

Figure 5.2 presents the average number of completed tasks when

replication is used to tolerate volunteer autonomy failures for Case 2.

In Figure 5.2, the tick value 1.0 on the x-axis actually represents 0.99

140

Figure 5.2: The average number of completed tasks in the case of repli-

cation in Case 2

(refer to Equation 4.1 in Chapter 4). As shown in the Figure 5.2, as the

reliability threshold increases, the number of completed tasks decreases.

The obtained results indicate that more tasks should be replicated to

support higher reliability.

Figure 5.3 presents the number of redundancy r for Case 2. our

group-based adaptive scheduling has a smaller r than the eager schedul-

ing because the scheduling mobile agent applies the replication algo-

rithm to each volunteer group. That is, it adaptively adjusts the number

141

Figure 5.3: The average number of redundancy in Case 2

of redundancy r according to the rate of volunteer autonomy failures of

volunteer groups. In addition, the A′D′ scheduling group has a smaller

r than the C ′B′ scheduling group because the A′ volunteer group has

higher volunteer availability and volunteering service time than the C ′

volunteer group. Since the C ′ volunteer group suffers from volunteer au-

tonomy failures more frequently than the A′ volunteer group, the former

has a greater r than the latter. Therefore, in the case of the A′ volun-

teer group, the small r satisfies the reliability threshold. In the case of

the C ′ volunteer group, the large r is required to meet the reliability

142

threshold. As a result, the A′ volunteer group can execute more tasks

because it can reduce replication overhead. Finally, as the reliability is

increasingly required, the number of redundancy r increases.

Figure 5.4 presents the average number of completed tasks in the

case of replication. In Figure 5.4, the value of 0.8 is used as the relia-

bility threshold. When compared to Figure 5.1, the difference between

our group-based adaptive scheduling and the eager scheduling is larger.

In our group-based adaptive scheduling, the A′ volunteer group can

complete more tasks, because it has a relatively small r. On the other

hand, the eager scheduling does not consider a homogeneous group, so

the following undesirable situation occurs repeatedly. Suppose that a

volunteer in the C ′ volunteer group suffers from volunteer autonomy

failures. In this case, its failed task should be distributed to a new vol-

unteer. In the eager scheduling, the new volunteer is selected without

considering volunteer groups. If the newly selected volunteer belongs

to the B′ or D′ volunteer groups, it would also fail because of the high

rate of volunteer autonomy failures. If volunteers with low quality are

selected continuously, the task is continuously redistributed to other

volunteers until a high quality volunteer is chosen. Such an undesirable

situation occurs frequently and repeatedly if there are a lot of volunteers

belonging to the B′, C ′, or D′ volunteer groups. Thus, the difference

between our group-based adaptive scheduling and the eager scheduling

in the Cases 3 and 4 is larger than that in Cases 1 and 2.

143

Figure 5.4: The average number of completed tasks in case of replication

(reliability threshold = 0.8)

Figure 5.5 and 5.6 present the number of redundancy r for all cases.

As the number of members in A′ volunteer group decreases, the dif-

ference between our group-based adaptive scheduling and the eager

scheduling increases. For example, Case 1 has the largest A′ volun-

teer group, therefore, the number of redundancy r of our group-based

adaptive scheduling is similar to that of eager scheduling. Since Case 2

has many members of the A′ and C ′ volunteer groups, the gap between

our group-based adaptive scheduling and the eager scheduling is larger

than that shown in Case 1. Similar results are presented in Cases 3

144

Figure 5.5: The average number of redundancy

145

Figure 5.6: The average number of redundancy (Continued)

146

and 4. Compared with the eager scheduling, our group-based adaptive

scheduling has a small r because it calculates the number of redundancy

on the basis of volunteer groups, in contrast to eager scheduling. In our

group-based adaptive scheduling, volunteer groups with a high rate of

volunteer autonomy failures require a large r, and vice versa. Conse-

quently, our group-based adaptive scheduling completes more tasks than

the eager scheduling. A′ volunteer group can complete more tasks be-

cause it has a smaller number of redundancy than the eager scheduling

as presented in Figure 5.5 and 5.6.

5.2 Group Scheduling for Replication

We evaluate our group-based scheduling for replication mechanism with

existing replication mechanisms [23, 47, 93]. The evaluation focuses on

how much performance improvement is achieved, depending on whether

volunteer groups (A′′, B′′, C ′′, D′′) are considered. To achieve this,

volunteer groups are set up, which have different volunteering service

time, volunteer availability, volunteer credibility as described in Table

5.2.

The 200 volunteers have various volunteer availability, volunteer

credibility, and volunteering service time as shown in Table 5.2. Here,

P. (that is, population) represents the number of volunteers. We assume

that the range of MTTV AF is 1/0.2 ∼ 1/0.02 minutes, and MTTR is

3 ∼ 10 minutes. A task consumes 16 minutes of execution time on a

147

T
ab

le
5.

2:
S
im

u
la

ti
on

en
v
ir

on
m

en
t

fo
r

re
p
li
ca

ti
on

C
as

e
A
′′

B
′′

C
′′

D
′′

T
ot

al

P
.

10
3(

51
.5

%
)

18
(9

%
)

64
(3

2%
)

15
(7

.5
%

)
20

0

C
as

e1
α

v
0.

86
0.

87
0.

79
0.

86
0.

84

Θ
42

17
39

17
37

m
in

.

C
v

0.
98

0.
98

0.
87

0.
89

0.
94

P
.

72
(3

6%
)

24
(1

2%
)

74
(3

7%
)

30
(1

5%
)

20
0

C
as

e2
α

v
0.

84
0.

80
0.

78
0.

75
0.

80

Θ
36

16
32

16
29

m
in

.

C
v

0.
98

0.
98

0.
87

0.
80

0.
91

P
.

33
(1

6.
5%

)
47

(2
3.

5%
)

60
(3

0%
)

60
(3

0%
)

20
0

C
as

e3
α

v
0.

83
0.

81
0.

78
0.

74
0.

79

Θ
35

13
36

13
23

m
in

.

C
v

0.
98

0.
98

0.
87

0.
86

0.
91

148

dedicated Pentium 1.4 GHz. In Table 1, the volunteering service time

Θ is decreasing from Case 1 to Case 3. Case 1 is smaller than Case 2

with respect to volunteer availability and volunteer credibility. Case 2 is

different from Case 3 with respect to volunteering service time. Cases 1

and 2 have more A′′ and C ′′ volunteer groups than B′′ and D′′ volunteer

groups. On the other hand, Case 3 have more D′′ volunteer groups than

A′′ and B′′ volunteer groups. Each simulation was repeated 10 times

per case.

Figure 5.7 shows the average number of redundancy r when the

result certification (that is, majority voting) is considered. The r is

calculated by the algorithm as shown in Figure 4.8. We assume that

the credibility threshold ϑ is 0.98 and γ is 0.5. In this case, the r

is affected by volunteer credibility Cv. First of all, our group-based

replication mechanism has lower r than the mechanisms that calculates

r without volunteer group. Second, when comparing Case 1 with Case

2 and Case 3, the r increases because Case 1 has greater than Case 2

and 3 with respect to Cv. Finally, the difference between two bars in

Case 3 is greater than that in Case 2 not only because the population

of A′′ and C ′′ volunteer groups in Case 3 is smaller than that in Case 2,

but also because the Θ in Case 3 is smaller than that in Case 2.

Figure 5.8 shows the number of completed tasks when result certi-

fication is considered. The ϑ and γ are the same as Figure 5.7. Our

adaptive replication mechanism calculates r to each volunteer group,

and then distributes tasks to volunteer groups by using distribution ap-

149

Figure 5.7: The average number of redundancy with majority voting

proaches (that is, parallel distribution and sequential distribution). As

a result, it completes more tasks than the existing mechanisms that do

not consider volunteer groups and distribution approaches. Case 1 has

higher αv, Θ and Cv than Case 2 and Case 3, so it has the larger number

of completed tasks than the latter.

150

Figure 5.8: The number of completed tasks with majority voting

5.3 Group Scheduling for Result Certifi-

cation

We compare our group-based scheduling mechanism with eager schedul-

ing mechanism for evaluating result certification. This simulation fo-

cuses on how much we obtain performance improvement according to

whether the volunteer groups are considered in a scheduling procedure

on the basis of Θ, αv and Cv, or not.

We evaluated the 200 volunteers with respect to 4 cases during 1 hour

as shown in Table 5.3. Case 1 is different from Case 2 with respect to

151

T
ab

le
5.

3:
S
im

u
la

ti
on

en
v
ir

on
m

en
t

fo
r

re
su

lt
ce

rt
ifi

ca
ti

on
C

as
e

A
′′

B
′′

C
′′

D
′′

T
ot

al

P
.

84
(4

2%
)

26
(1

3%
)

70
(3

5%
)

20
(1

0%
)

20
0

C
as

e1
α

v
0.

84
0.

88
0.

81
0.

83
0.

84

Θ
41

17
39

16
35

m
in

.

C
v

0.
98

0.
98

0.
88

0.
86

0.
93

P
.

71
(3

5.
5%

)
31

(1
5.

5%
)

76
(3

8%
)

22
(1

1%
)

20
0

C
as

e2
α

v
0.

87
0.

89
0.

80
0.

82
0.

84

Θ
41

17
39

16
34

m
in

.

C
v

0.
98

0.
98

0.
84

0.
85

0.
91

P
.

76
(3

8%
)

27
(1

3.
5%

)
80

(4
0%

)
17

(8
.5

%
)

20
0

C
as

e3
α

v
0.

86
0.

78
0.

80
0.

71
0.

81

Θ
35

17
33

16
30

m
in

.

C
v

0.
98

0.
98

0.
82

0.
85

0.
91

P
.

42
(2

1%
)

59
(2

9.
5%

)
30

(1
5%

)
69

(3
4.

5%
)

20
0

C
as

e4
α

v
0.

80
0.

70
0.

78
0.

69
0.

73

Θ
28

12
25

13
24

m
in

.

C
v

0.
98

0.
98

0.
89

0.
89

0.
94

152

the volunteer credibility. Case 3 is different from Case 1 with regard to

volunteer availability and volunteer availability. Case 4 is different form

Case 1 with respect to volunteer availability and volunteering service

time. Here, A′′, B′′, C ′′, D′′ represent A′′, B′′, C ′′, D′′ volunteer groups,

respectively. Each simulation experiment was repeated 10 times per

each Case.

The 200 volunteers have various volunteer availability, volunteer

credibility and volunteering service time as shown in Table 5.3. We

assume that the range of MV T is 10 ∼ 60 min., MTTV AF = 1/0.2

∼ 1/0.05 min., MTTR is 3 ∼ 10 min. We assume that the expected

execution time of a task at volunteers is 18 ∼ 20 minutes. Suppose that

s=0.1 and n=10 in spot-checking.

Figures 5.9, 5.10, 5.11, and 5.12 show the simulation results. Here,

ES represents existing eager scheduling mechanism. AS represents our

adaptive scheduling mechanism. AS(A′′), AS(B′′) and AS(C ′′) mean

the results performed in each volunteer group, respectively. As shown

in Figures 5.9 and 5.10, our adaptive scheduling mechanism for result

certification completes more tasks than existing eager scheduling mech-

anism, while satisfying the desired credibility threshold (or desired error

rate) as shown in Figure 5.11(b) and 5.12(b).

In the case of majority voting, our scheduling mechanism obtains

more results of tasks than eager scheduling because it dynamically de-

cides the number of redundancy according to properties of volunteer

groups as shown in Figure 5.11(a). A′′ and B′′ volunteer groups choose

153

Figure 5.9: Total number of task without result certification

less redundancy than C ′′ volunteer group. As a result, A′′ and B′′ vol-

unteer groups are able to reduce the overhead, so they work more. On

the other hand, C ′′ volunteer group can decrease its error rate.

In the case of spot-checking, our scheduling mechanism completes

more tasks than eager scheduling because it dynamically decides spot-

checking rate according to properties of volunteer groups as shown in

Figure 5.12(a). However, if A′′ volunteer group is less than C ′′ volunteer

group like Case 2 and 3, the the number of tasks becomes similar because

spot-checking does not much generates overhead in comparison with

majority voting.

154

(a) Total number of tasks with majority voting

(b) Total number of tasks with spot-checking

Figure 5.10: Total number of task with result certification

155

(a) The number of redundancy in majority voting

(b) Error rate in majority voting

Figure 5.11: Result certification: majority voting

156

(a) Spot-checking rate

(b) Error rate in spot-checking

Figure 5.12: Result certification: spot-checking

157

Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss

various avenues of future work.

6.1 Contributions

This thesis focuses on characterizing and categorizing the aspects of

Desktop Grid systems. To this end, we proposed the taxonomy of

Desktop Grid focusing on scheduling. We also presented a mapping

of the taxonomy to the Desktop Grid systems. From the taxonomy and

survey, we extracted the challenging issues for Desktop Grid schedul-

ing such as volatility, dynamic environment, lack of trust, failure, het-

erogeneity, scalability, and voluntary participation. To overcome these

challenges, we proposed a new direction for Desktop Grid scheduling

such as 1) resource grouping, 2) reputation or incentive-based schedul-

ing, 3) scheduling for result certification, 4) dynamic, adaptive, or fault

tolerant scheduling, and 5) distributed scheduling. Among these direc-

158

tions, this thesis focused on the resource grouping, result certification,

replication, adaptive and fault tolerant scheduling.

For the purpose, we proposed a group-based adaptive scheduling

mechanism in a Desktop Grid computing environment. The proposed

scheduling mechanism considers the volatility, credibility, and hetero-

geneous properties of volunteers in a scheduling procedure in the sense

that they are tightly related with the computation completion, reliabil-

ity, and performance. The proposed scheduling mechanism constructs

volunteer groups according to the properties of volunteers such as volun-

teer autonomy failures, volunteer availability, volunteering service time,

and volunteer credibility. It dynamically applies different scheduling,

replication, result certification, fault tolerance algorithms to each vol-

unteer group.

The evaluation results demonstrated that the proposed scheduling

mechanism obtains better performance and reduces the overhead of

computation. Particularly, the proposed scheduling mechanism com-

pletes more tasks than eager scheduling. In the case of replication, the

proposed scheduling mechanism completes more tasks than the eager

scheduling because it dynamically adjusts the number of redundancy,

and selects replicas on the basis of the properties of each volunteer

group. With regard to volunteer groups, the evaluation results demon-

strated that the larger the number of volunteers in the A′ and C ′ volun-

teer groups is, the larger the number of completed tasks becomes. As the

number of volunteers in the B′ and D′ volunteer groups increases, the

159

difference between the proposed scheduling mechanism and the eager

scheduling increases. We found that our group-based scheduling mech-

anism for result certification completes more tasks than existing eager

scheduling mechanism, while satisfying the desired credibility threshold.

Particularly, A′′ and B′′ volunteer groups choose less redundancy and

spot-checking rate than C ′′ volunteer group. Consequently, A′′ and B′′

volunteer groups are able to reduce the overhead, so they work more.

To sum up, this thesis has the following contributions:

1. This thesis discusses the key concepts and characteristics about

Desktop Grid. It also provides a new comprehensive taxonomy

and survey of Desktop Grid.

2. This thesis presents the key functionalities that Desktop Grid

scheduling should support. It provides comprehensive taxonomy

and survey of Desktop Grid scheduling.

3. This thesis proposes a resource grouping method, which classifies

and constructs groups according to volunteer’s properties such as

dedication, volatility, availability, and credibility.

4. This thesis proposes a new group-based adaptive scheduling mech-

anism, which adapts to a dynamic Desktop Grid computing en-

vironment. The proposed scheduling mechanism couples resource

grouping with scheduling. It applies various replication, result

certification, and fault tolerant algorithms to each homogeneous

160

group.

6.2 Future Work

Among the directions for Desktop Grid scheduling, this thesis focused

on resource grouping, result certification, replication, adaptive and fault

tolerant scheduling. Now, we are working on the rest of the directions:

reputation or incentive-based scheduling and distributed scheduling.

In Desktop Grid, resources can be eager, volatile, selfish, or mali-

cious. In order to score and rank the resources, and then reward or

punish them according to the assessment, reputation/incentive-based

scheduling is necessary. Reputation-based scheduling can choose more

high qualified resources, so that it can improve the reliability and per-

formance. An incentive-based scheduling focuses on punishing (for ex-

ample, exclusion) volatile, selfish, or malicious resources. We are de-

veloping a new reputation/incentive-based scheduling, which inspires

volunteers to donate their resources reliably and eagerly.

Distributed Desktop Grid has recently emerged as an alternative of

centralized Desktop Grid because it can solve the overhead and scala-

bility of centralized Desktop Grid. However, distributed Desktop Grid

needs to construct computational overlay network(CON) for efficient

scheduling, and to equip with a distributed scheduling because there is

no central server. Existing decentralized Desktop Grid systems provide

how to construct a CON depending on timezone, performance, or work-

161

load, but they do not consider volatility, volunteering time, credibility,

and reputation/trust, which directly affect reliability, completion time,

and result correctness. They also do not consider these properties dur-

ing scheduling. Particularly, they do not provide replication or result

certification mechanism. We will study and develop a new CON con-

struction method and a new distributed scheduling algorithm, which

are coupled with replication and result certification.

162

Bibliography

[1] F. Berman, G. C. Fox, and A. J. G. Hey, Grid Computing : Making

the Global Infrastructure a Reality, Chapter 1,2,3,6,8, Wiley, 2003.

[2] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new Com-

puting Infrastructure, Chapter 1,2,3,4,11,17,18,28,29, Morgan Kauf-

mann, 2004.

[3] M. Li and M. Baker, The Grid: Core Technologies, Chapter 1,2,6,7,

John Wiley & Sons Ltd, 2004.

[4] M. Baker, R. Buyya, and D. Laforenza, ”Grids and Grid Technolo-

gies for wide-area distributed computing,” Software: Practice and

Experience, Vol. 32, Issue 15, pp. 1437-1466, Dec. 2002.

[5] I. Foster and A. Iamnitchi, ”On Death, Taxes, and the Convergence

of Peer-to-Peer and Grid Computing,” The 2nd International Work-

shop on Peer-to-Peer Systems (IPTPS’03), Feb. 2003.

[6] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,

B. Richard, S. Rollins, and Z. Xu, ”Peer-to-Peer Computing,” HP

Laboratories Palo Alto HPL-2002-57, Mar. 2002.

163

[7] D. Barkai, Peer-to-Peer computing: Technologies for Sharing and

Collaborating on the Net, Intel Press, 2002.

[8] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications,

Chapter 2-8,13,16, Springer, 2005.

[9] R. Subramanian and B. D. Goodman, Peer-to-Peer Computing: The

Evolution of a Disruptive Technology, Chapter 1,11, IDEA group

Publishing, 2005.

[10] The Great Internet Mersenne Prime Search (GIMPS),

”http://www.mersenne.org/”

[11] Distributed.net, ”http://distributed.net”

[12] SETI@home, ”http://setiathome.ssl.berkeley.edu”

[13] BOINC (Berkeley Open Infrastructure for Network Computing),

http://boinc.berkeley.edu/

[14] D. P. Anderson, ”BOINC: A System for Public-Resource Comput-

ing and Storage,” The Fifth IEEE/ACM International Workshop on

Grid Computing (GRID’04), IEEE CS Press, pp. 4-10, Nov. 2004.

[15] M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks III, ”Homo-

geneous Redundancy: a Technique to Ensure Integrity of Molecular

Simulation Results Using Public Computing,” The 19th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS’05),

Heterogeneous Computing Workshop (HCW’05), pp. 119a, Apr. 2005.

164

[16] D. P. Anderson, E. Korpela, and R. Walton, ”High-Performance

Task Distribution for Volunteer Computing,” The First IEEE In-

ternational Conference on e-Science and Grid Technologies (e-

Science2005), pp. 196-203, Dec. 2005.

[17] XtremWeb, http://www.lri.fr/ fedak/XtremWeb/

[18] G. Fedak, C. Germain, V. Neri, and F. Cappello, ”XtremWeb:

A Generic Global Computing System,” The 1st IEEE/ACM Inter-

national Symposium on Cluster Computing and the Grid (CCGRID

2001): Workshop on Global Computing on Personal Devices, pp. 582-

587, May 2001.

[19] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V.

Neri, and O. Lodygensky, ”Computing on large-scale distributed sys-

tems: XtremWeb architecture, programming models, security, tests

and convergence with grid,” Future Generation Computer Systems,

vol. 21, issue 3, pp. 417-437, Mar. 2005

[20] A. Chien, B. Calder, S. Elbert, and K. Bhatia, ”Entropia: architec-

ture and performance of an enterprise desktop grid system,” Journal

of Parallel and Distributed Computing, vol. 63, issue 5, pp. 597-610,

May 2003.

[21] A. A. Chien, S. Marlin, and S. T. Elbert, ”Resource management

in the Entropia System,” Chapter 26 in Grid Resource Management:

Sate of the Art and Future Trends, Kluwer Academic, 2003.

165

[22] L. F. G. Sarmenta and S. Hirano. ”Bayanihan: building and study-

ing web-based volunteer computing systems using Java,” Future Gen-

eration Computer Systems, Special Issue on Metacomputing, vol. 15,

issue 5-6., Oct. 1999.

[23] L. F. G. Sarmenta, ”Sabotage-Tolerance Mechanisms for Volunteer

Computing Systems,” Future Generation Computer Systems, vol. 18,

issue 4, pp. 561-572, Mar. 2002.

[24] L. F. G. Sarmenta, ”Volunteer computing,” Ph.D. Thesis, Depart-

ment of Electrical Engineering and Computer Science, MIT, Jun.

2001.

[25] M. O. Neary, B. O. Christiansen, P. Cappello, and K. Schauser,

”Javelin: Parallel computing on the internet,” Future Generation

Computer Systems, Special Issue on Metacomputing, vol. 15, issue

5-6, pp. 659-674, Oct. 1999.

[26] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello,

”Javelin++: Scalability Issues in Global Computing,” Concurrency:

Parctice and Experience, vol. 12, issue 8, pp. 727-753, Aug. 2000.

[27] M. O. Neary and P. Cappello, ”Advanced eager scheduling for Java-

based adaptive parallel computing,” Concurrency and Computation:

Practice and Experience, vol. 17, issue 7-8, pp. 797-819, Jun. 2005.

166

[28] R. Buyya and S. Vazhkudai, ”Compute Power Market: towards a

market-oriented grid,” The First IEEE/ACM International Sympo-

sium on Cluster Computing and the Grid (CCGrid’01), pp. 574-581,

May 2001.

[29] T. T. Ping, G. C. Sodhy, C. H. Yong, F. Haron, and R. Buyya,

”A Market-based Scheduler for JXTA-based Peer-to-Peer Computing

System,” International Conference on Computational Science and its

Applications (ICCSA 2004), LNCS 3046, pp.147-157, May 2004.

[30] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wijckoff, ”Charlotte:

Metacomputing on the Web,” Future Generation Computer Systems,

Special Issue on Metacomputing, vol. 15, issues 5-6, pp. 559-570, Oct.

1999.

[31] N. Nisan, S. London, O. Regev, and N. Camiel, ”Globally dis-

tributed computation over the Internet-the POPCORN project,” The

18th International Conference on Distributed Computing Systems, pp.

592-601, May 1998.

[32] J. P. Morrison, J. J. Kennedy, and D. A. Power, ”WebCom: A Web

Based Volunteer Computer,” Journal of Supercomputing, vol. 18, no.

1, pp. 47-61, Jan. 2001.

[33] J. P. Morrison, J. J. Kennedy, and D. A. Power, ”Load balanc-

ing and fault tolerance in a condensed graphs based metacomputer,”

167

The Journal of Internet Technologies, Special Issue on Web based

Programming, vol. 3, no. 4 , pp. 221-234, Dec. 2002.

[34] D. Zhou and V. Lo, ”Cluster Computing on the Fly: resource dis-

covery in a cycle sharing peer-to-peer system,” IEEE International

Symposium on Cluster Computing and the Grid (CCGrid’04), pp.

66-73, May 2004.

[35] V. Lo, D. Zhou, D. Zappala, Y. Liu, and S. Zhao, ”Cluster Com-

putingon the Fly: P2P Scheduling of Idle Cycles in the Internet,” The

3rd International Workshop on Peer-to-Peer Systems (IPTPS’04),

LNCS 3279, pp.227-236, Feb. 2004.

[36] D. Zhou and V. Lo, ”Wave Scheduler: Scheduling for Faster

Turnaround Time in Peer-to-peer Desktop Grid Systems,” The

11th Workshop on Job Scheduling Strategies for Parallel Processing

(JSSPP’05), LNCS 3834, pp. 194-218, Jun. 2005.

[37] S. Zhao and V. Lo, ”Result Verification and Trust-based Scheduling

in Open Peer-to-Peer Cycle Sharing Systems,” The Fifth IEEE In-

ternational Conference on Peer-to-Peer Computing (P2P 2005), pp.

31-38, Sept. 2005.

[38] A.J. Chakravarti, G. Baumgartner, and M. Lauria, ”The Organic

Grid: Self-Organizing Computation on a Peer-to-Peer Network,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 35, no.

3, pp. 1-12, May 2005.

168

[39] A.J. Chakravarti, G. Baumgartner, and M. Lauria, ”The Organic

Grid: Self-Organizing Computational Biology on Desktop Grids,”

Chapter 27 in Parallel Computing for Bioinformatics and Compu-

tational Biology: Models, Enabling Technologies, and Case Studies,

Wiley, 2006.

[40] O. Babaoglu, H. Meling, and A. Montresor, ”Anthill: a framework

for the development of agent-based peer-to-peer systems,” The 22nd

International Conference on Distributed Computing Systems, pp. 15-

22, Jul. 2002.

[41] A. Montresor, H. Meling, and O. Babaoglu, ”Messor: Load-

Balancing through a Swarm of Autonomous Agents,” International

Workshop on Agents and Peer-to-Peer Computing (AP2PC 2002),

LNCS 2530, pp. 125-137, Jul. 2003.

[42] L. Zhong, D. Wen, Z. W. Ming, and Z. Peng, ”Paradropper: a

general-purpose global computing environment built on peer-to-peer

overlay network,” The 23rd International Conference on Distributed

Computing Systems (ICDCS 2003), Workshop on New Advances of

Web Server and Proxy Technologies (NAWSPT), pp. 954-957, May

2003.

[43] W. Dou, Y. Jia, H. M. Wang, W. Q. Song, and P. Zou, ”A P2P ap-

proach for global computing,” International Parallel and Distributed

Processing Symposium 2003 (IPDPS 2003), pp. 6-11, Apr. 2003.

169

[44] D. Thain, T. Tannenbaum, and M. Livny, ”Condor and the Grid,”

Chapter 11 in Grid Computing : Making the Global Infrastructure a

Reality, Wiley, 2003.

[45] D. Thain, T. Tannenbaum, and M. Livny, ”Distributed Computing

in Practice : The Condor Experience,” Concurrency and Computa-

tion: Practice and Experience, vol. 17, issue 2-4, pp. 323-356, Feb.

2005.

[46] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, ”Condor-A

Distributed Job Scheduler,” Chapter 15 in Beowulf Cluster Comput-

ing with Linux, The MIT Press, 2002.

[47] D. Kondo, H. Casanova, E. Wing, and F. Berman, ”Models and

scheduling mechanisms for global computing applications,” The 16th

International Parallel and Distributed Processing Symposium (IPDPS

2002), pp.79-86, Apr. 2002.

[48] D. Kondo, M. Taufer, J. Karanicolas, C. L. Brooks, H. Casanova,

and A. Chien, ”Characterizing and Evaluating Desktop Grids: An

Empirical Study,” The 18th International Parallel and Distributed

Processing Symposium (IPDPS 2004), pp. 26-35, Apr. 2004.

[49] D. Kondo, A. A. Chien, and H. Casanova, ”Resource Management

for Rapid Application Turnaround on Enterprise Desktop Grids,”

The ACM/IEEE Conference on Supercomputing (SC2004), pp. 17-

29, Nov. 2004.

170

[50] D. Kondo, ”Scheduling Task Parallel Applications for Rapid

Turnaround on Desktop Grids,” Ph.D. Thesis, Department of com-

puter Science and Engineering, University of California, San Diego,

2005.

[51] D. Kondo, B. Kindarji, G. Fedak, and F. Cappello, ”Towards Soft

Real-Time Applications on Enterprise Desktop Grids,” The Sixth

IEEE International Symposium on Cluster Computing and the Grid

(CCGRID 2006), pp. 65-72, May 2006.

[52] Korea@Home, http://www.koreaathome.org/eng/

[53] S. J. Choi, H. S. Kim, E. J. Byun, M. S. Baik, S. S. Kim, C. Y. Park,

and C. S. Hwang, ”Characterizing and Classifying Desktop Grid,”

IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGRID 2007), Sixth International Workshop on Global and

Peer to Peer Computing (GP2P), pp. 743-748, May 2007.

[54] S. J. Choi, M. S. Baik, J. M. Gil, S. Y. Jung, and C. S. Hwang,

”Adaptive Group Scheduling Mechanim using Mobile Agents in Peer-

to-Peer Grid Computing Environment,” Applied Intelligence, Special

Issue on Agent-based Grid Computing, vol. 25, no. 2, pp. 199-221,

Oct. 2006.

[55] S. J. Choi, M. S. Baik, J. M. Gil, C. Y. Park, S. Y. Jung, and C.

S. Hwang, ”Group-based Dynamic Computational Replication Mech-

anism in Peer-to-Peer Grid Computing,” IEEE/ACM International

171

Symposium on Cluster Computing and the Grid (CCGRID 2006),

Sixth International Workshop on Global and Peer to Peer Computing

(GP2P), May 2006.

[56] S. J. Choi, M. S. Baik, J. M. Gil, C. Y. Park, S. Y. Jung, and C.

S. Hwang, ”Dynamic Scheduling Mechanism for Result Certification

in Peer to Peer Grid Computing,” International Conference on Grid

and Cooperative Computing (GCC 2005), LNCS 3795, pp.811-824,

Dec. 2005.

[57] S. J. Choi, M. S. Baik, C. S. Hwang, J. M. Gil, and H. C. Yu, ”Mo-

bile Agent based Adaptive Scheduling Mechanism in Peer to Peer

Grid Computing,” International Conference on Computational Sci-

ence and its Applications (ICCSA 2005), LNCS 3483, pp. 936-947,

May 2005.

[58] S. J. Choi, M. S. Baik, C. S. Hwang, J. M. Gil, and H. C. Yu, ”Vol-

unteer Availability based Fault Tolerant Scheduling Mechanism in

Desktop Grid Computing Environment,” The 3th IEEE International

Symposium on Network Computing and Applications, Workshop on

Adaptive Grid Computing (NCA-AGC2004), pp.476-483, Aug. 2004.

[59] S. Venugopal, R. Buyya, and K. Ramamohanarao, ”A Taxonomy

of Data Grids for Distributed Data Sharing, Management and Pro-

cessing,” ACM Computing Surveys, vol. 38, no. 1, pp. 1-53, Mar.

2006.

172

[60] M. Roehrig, W. Ziegler, and P. Wieder, ”Grid Scheduling Dictio-

nary of Terms and Keywords,” GFD-I.11, Grid Scheduling Dictionary

WG (SD-WG), Nov. 2002

[61] T. L. Casavant and J. G. Kuhl, ”A taxonomy of scheduling in

general-purpose distributed computing systems,” IEEE Transactions

on Software Engineering, vol. 14, no. 2, pp. 141-154, Feb. 1988.

[62] H. G. Rotithor, ”Taxonomy of dynamic task scheduling schemes

in distributed computing system,” IEE Proceedings Computers and

Digital Techniques, vol. 141, issue 1, pp. 1-10, Jan. 1994.

[63] T. D. Braun, H. J. Siegely, N. Becky, L. Boloniz, M. Maheswarany,

A. I. Reuthery, J. P. Robertsony, M. D. Theysy, and B. Yaoy, ”A Tax-

onomy for Describing Matching and Scheduling Heuristics for Mixed-

Machine Heterogeneous Computing Systems,” The 17th IEEE Sym-

posium on Reliable Distributed Systems (SRDS 1998), pp. 330-335,

Oct. 1998.

[64] S. Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski, N.Beck, L.

Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys,

and B. Yao, ”Characterizing Resource Allocation Heuristics for Het-

erogeneous Computing Systems,” in Advances in Computers: Volume

63: Parallel, Distributed, and Pervasive Computing, vol. 63, pp. 93-

129, Elsevier, Apr. 2005.

173

[65] I. Ekmecic, I. Tartalja and V. Milutinovic, ”A survey of heteroge-

neous computing: concepts and systems,” Proceedings of the IEEE,

vol. 84, issue 8, pp. 1127-1144, Aug. 1996.

[66] S. Ali, T. D. Braun, H. J. Siegel, and A. A. Maciejewski, ”Het-

erogeneous Computing,” Encyclopedia of Distributed Computing, J.

Urbana and P. Dasgupta, eds., Kluwer Academic Publishers, Norwell,

MA, 2002.

[67] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Fre-

und, ”Dynamic Matching and Scheduling of a Class of Independent

Tasks onto Heterogeneous Computing Systems, The 8th Heteroge-

neous Computing Workshop (HCW’99), pp. 30-44, Apr. 1999.

[68] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran,

A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and

R. F. Freund, ”A comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous distributed computing

systems,” Journal of Parallel and Distributed Computing, vol. 61,

issue 6, pp. 810-837, Jun. 2001

[69] K. Krauter, R. Buyya, and M. Maheswaran, ”A taxonomy and sur-

vey of grid resource management systems for distributed computing,”

Software: Practice and Experience, vol. 32, issue 2, pp. 135-164, Feb.

2002.

174

[70] J. Yu and R. Buyya, ”A Taxonomy of Scientific Workflow Systems

for Grid Computing,” Special Issue on Scientific Workflows, SIG-

MOD Record, vol. 34, no. 3, pp. 44-49, Sept. 2005.

[71] C. S. Yeo and R. Buyya, ”A taxonomy of market-based resource

management systems for utility-driven cluster computing,” Software:

Practice and Experience, vol. 36, issue 13, pp. 1381-1419, Nov. 2006.

[72] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour,

”Evaluation of Job-Scheduling Strategies for Grid Computing,” The

First IEEE/ACM International Workshop on Grid Computing (Grid

2000), LNCS 1971, pp. 191-202, Dec. 2000.

[73] J. M. Shopf, ”Ten actions when Grid scheduling,” Chapter 2 in

Grid Resource Management: Sate of the Art and Future Trends,

Kluwer, 2003.

[74] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees, ”DIRAC: a

scalable lightweight architecture for high throughput computing,”

The Fifth IEEE/ACM International Workshop on Grid Computing

(GRID2004), pp. 19-25, Nov. 2004.

[75] B. Jacob, L. Ferreira, N. Bieberstein, C. Gilzean, J. Y. Girard, R.

Strachowski, and S. S. Yu, Enabling Applications for Gird Computing

with Globus, Chapter 1,2,3,4, IBM Redbooks, Jun. 2003.

175

[76] R. Chow and T. Johnson, Distributed Operating Systems & Algo-

rithms, Chapter 5, Addison-Wesley, 1997.

[77] S. Zhou, ”A Trace-Driven Simulation Study of Dynamic Load Bal-

ancing,” IEEE Transactions on Software Engineering, vol. 14, no. 9,

pp.1327-1341, Sept. 1988.

[78] N. G. Shivaratri, P. Krueger, and M. Singhal, ”Load distributing

for locally distributed systems,” IEEE Computer, vol. 25, no. 12, pp.

33-44, Dec. 1992.

[79] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and

P. Wong, ”Theory and Practice in Parallel Job Scheduling,” The

3rd Workshop on Job Scheduling Strategies for Parallel Processing

(JSSPP 1997), LNCS 1291, pp. 1-34, Apr. 1997.

[80] J. Sonnek, M. Nathan, A. Chandra, and J. Weissman, ”Reputation-

Based Scheduling on Unreliable Distributed Infrastructures,” The

26th IEEE International Conference on Distributed Computing Sys-

tems (ICDCS2006), pp. 30-37, Jul. 2006.

[81] Y. Zhu, L. Xiao, Z. Xu, and L. M. Ni, ”Incentive-based scheduling

in Grid computing,” Concurrency and Computation: Practice and

Experience, vol. 18, issue 14, pp. 1729-1746, Dec. 2006.

176

[82] W. Du, J. Jia, M. Mangal, and M. Murugesan, ”Uncheatable Grid

Computing,” The 24th IEEE International Conference on Distributed

Computing Systems (ICDCS 2004), pp. 4-11, Apr. 2004.

[83] M. Fukuda, Y. Tanaka, N. Suzuki, and L. F. Bic, ”A Mobile-Agent-

Based PC Grid,” The 5th International Workshop on Active Middle-

ware Services, pp. 142-150, Jun. 2003.

[84] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, ”Heuris-

tics for scheduling parameter sweep applications in grid environ-

ments,” The 9th Heterogeneous Computing Workshop, pp. 349-363,

May. 2000.

[85] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faer-

man, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S.

Smallen, N. Spring, A. Su, and D. Zagorodnov, ”Adaptive Comput-

ing on the Grid Using AppLeS,” IEEE Transactions on Parallel and

Distributed Systems, Vol. 14, No. 4, pp. 369-382, Apr. 2003.

[86] J. Cao, A. T. Chan, Y. Sun, S.l K. Das, and M. Guo, ”A taxonomy

of application scheduling tools for high performance cluster comput-

ing,” Cluster Computing, vol. 9, issue 3, pp. 355-371, Jul. 2006.

[87] S.J. Choi, M.S. Baik, H.S. Kim, E.J. Byun, and C.S. Hwang, ”Re-

liable Asynchronous Message Delivery for Mobile Agent,” IEEE In-

ternet Computing, vol. 10, issue 6, pp. 16-25, Dec. 2006.

177

[88] S.J. Choi, M.S. Baik, and C.S. Hwang, ”Location Management &

Message Delivery Protocol in Multi-region Mobile Agent Comput-

ing Environment,” The 24th International Conference on Distributed

Computing Systems (ICDCS 2004), pp. 476-483, Mar. 2004.

[89] ODDUGI mobile agent system, http://oddugi.korea.ac.kr/

[90] P. Maes, R. H. Guttman, and A. G. Moukas, ”Agents That Buy

and Sell,” Communications of the ACM, Vol. 42, No. 3, pp. 81-91,

Mar. 1999.

[91] D. Wong, N. Paciorek, and D. Moore, ”Java-based Mobile Agents,”

Communication of the ACM, Vol. 42, No.3, pp.92-102, Mar. 1999.

[92] R. Bhagwan, S. Savage, and G. M. Voelker, ”Understanding Avail-

ability,” The 2nd International Workshop on Peer-to-Peer Systems,

LNCS 2735, pp. 256-267, Feb. 2003.

[93] Y. Li and M. Mascagni, ”Improving Performance via Computa-

tional Replication on a Large-Scale Computational Grid,” The 3rd

IEEE/ACM International Symposium on Cluster Computing and the

Grid, pp. 442-448, May 2003.

[94] K. Ranganathan and I. Foster, ”Identifying Dynamic Replication

Strategies for a High-Performance Data Grid,” The 2nd International

Workshop on Grid Computing, LNCS 2242, pp.75-86, Nov. 2001.

178

[95] K. Ranganathan, A. Iamnitchi, and I. Foster, ”Improving Data

Availability through Dynamic Model-Driven Replication in Large

Peer-to-Peer Communities,” The 2nd IEEE/ACM International Sym-

posium on Cluster Computing and the Grid, pp. 346-351, May 2002.

[96] E. Cohen and S. Shenker, ”Replication Strategies in Unstructured

Peer-to-Peer Networks,” The Annual Conference of the Special Inter-

est Group on Data Communication (SIGCOMM), pp. 177-190, Aug.

2002.

[97] F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen, ”Au-

tonomous Replication for High Availability in Unstructured P2P sys-

tems,” The 22nd International Symposium on Reliable Distributed

Systems, pp. 99-108, Oct. 2003.

[98] C. G. Renaud and N. Playez, ”Result Checking in Global Comput-

ing Systems,” The 17th Annual ACM International Conference on

Supercomputing (ICS’03), pp. 226-233, Jun. 2003.

[99] P. Jalote, Fault Tolerance in Distributed Systems, Prentice-Hall,

1994.

[100] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Princi-

ples and Paradigms, Prentice Hall, 2002.

[101] K. S. Trivedi, Probability and Statistics with Reliability, Queuing

and Computer Science Applications, 2nd Edition, WILEY, 2002.

179

[102] Yu. A. Zuev, ”On the Estimation of Efficiency of Voting Proce-

dures”, Theory of Probability & Its Applications, vol. 42, no. 1, pp.

73-81, 1998.

180

Acknowledgements

I would like to thank many people who helped make this thesis become

a reality. I have received huge support and help throughout this long

journey.

I would like to express my deepest gratitude towards my advisor,

professor ChongSun Hwang, for his invaluable help and advice through-

out my 6 years at Korea University. Especially, he gave me the principle

that guides my life, ”Love yourself, be humble, show consideration for

others, and smile cheerfully”.

I would also like to thank my thesis committee, SangKeun Lee,

Myong-Soon Park, YooHun Won, DukHoon Kwak, and HeonChang Yu

for their valuable time and comment.

I would like to express my gratitude to the members in Distributed

Systems Laboratory (disysers), Korea University. They always helped

me a lot. Especially, I am indebted to MaengSoon Baik for his endless

support and encouragement. He gave me not only invaluable help and

technical advice, but also much friendship, cheer and consideration. I

owe special thanks to the members of the Fault Tolerance Group for

181

providing me with much inspiration and encouragement. I would like

to express my sincere gratitude to JoonMin Gil, HongSoo Kim, and

EunJoung Byun for their help and thoughtfulness. I was very happy

and fortunate to work with them. Their support and encouragement

throughout the ups and downs in graduate school life has been my source

of patience and endurance.

Finally, and most specially, I would like to thank my parents, broth-

ers, sisters, sisters-in-law, brothers-in-law, nephews, and nieces. With-

out their unconditional love, care, and encouragement, I would not be

where I am now. I am grateful for everything they have given me.

All of the work done for this thesis would not have been possible

without all of them. I am what I am thanks to their efforts. Words

cannot express the gratitude I have. This thesis is dedicated to all of

them.

182

