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Abstract

Cloud computing provides users with highly reliable, scalable and flexible comput-
ing and storage resources in a pay-as-you-go manner. Data storage services are gaining
increasing popularity and many organizations are considering moving data out of their
in-house data centers to the so-called Cloud Storage Providers (CSPs).

However, reliance on a single CSP introduces challenges in terms of service unavail-
ability, vendor lock-in, high network latency to the end users, and a non-affordable mon-
etary cost to application providers. These factors are vital for the data-intensive applica-
tions which experience a time-varying workload, and the providers of these applications
require to offer users storage services at an affordable monetary cost within the required
Quality of Service (QoS). The utilization of multiple CSPs is a promising solution and
provides the increment in availability, the enhancement in mobility, the decline in net-
work latency, and the reduction in monetary cost by data dispersion across CSPs offering
several storage classes with different prices and performance metrics. The selection of
these storage classes is a non-trivial problem.

This thesis presents a set of algorithms to address such problem and facilitates ap-
plication providers with an appropriate selection of storage services so that the data
management cost of data-intensive applications is minimized while the specified QoS by
users is met. The thesis advances this field by making the following key contributions:

1. Data placement algorithms that select storage services for replication non-stripped
and stripped objects respectively, with the given availability to minimize storage
cost and with the given budget to maximize availability.

2. A dual cloud-based storage architecture for data placement, which optimizes data
management cost (i.e, storage, read, write, and potential migration costs) and con-
siders user-perceived latency for reading and writing data as a monetary cost.

3. The optimal offline algorithm and two online algorithms with provable perfor-
mance guarantees for data placement, which exploit pricing differences across
storage classes owned by different CSPs to optimize data management cost for a
given number of replicas of the object while respecting the user-perceived latency.

4. A lightweight object placement algorithm that utilizes Geo-distributed storage
classes to optimize data management cost for a number of replicas of the object
that is dynamically determined.

5. Design and implementation of a prototype system for empirical studies in la-
tency evaluation in the context of a data placement framework across two cloud
providers services (Amazon S3 and Microsoft Azure).

iii





Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Yaser Mansouri, 2 March 2017

v





Preface

This thesis research has been carried out in the Cloud Computing and Distributed Sys-

tems (CLOUDS) Laboratory, School of Computing and Information Systems, The Uni-

versity of Melbourne. The main contributions of the thesis are discussed in Chapters 2- 6

and are based on the following publications:

• Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Data Storage Man-

agement in Cloud Environments: Taxonomy and Survey,” ACM Computing Sur-

veys, ACM Press, New York, USA, 2016 (under minor review).

• Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Brokering Algo-

rithms for Optimizing the Availability and Cost of Cloud Storage Services,” Pro-

ceedings of the 5th IEEE International Conference on Cloud Computing Technology and

Science (IEEE CloudCom 2013, IEEE CS Press, USA), Bristol, UK, Dec. 2-5, 2013.

• Yaser Mansouri and Rajkumar Buyya, “To Move or Not to Move: Cost Optimiza-

tion in a Dual Cloud-based Storage Architecture,” Journal of Network and Computer

Applications (JNCA), Volume 75, Pages: 223-235, ISSN: 1084-8045, Elsevier, Amster-

dam, The Netherlands, November 2016.

• Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Cost Optimization

for Dynamic Replication and Migration of Data in Cloud Data Centers,” IEEE

Transactions on Cloud Computing (TCC), DOI:10.1109/TCC.2017.2659728, 2017.

• Yaser Mansouri and Rajkumar Buyya, “Dynamic Replication and Migration for

Data Objects with Hot-spot and Cold-spot Statuses across Geo-distributed storage

Data centers,” Journal of Parallel and Distributed Computing, ElSEVIER, 2017 (under

review).

vii





Acknowledgements

I cherish the opportunity of pursuing my doctoral study under the supervision of Profes-
sor Rajkumar Buyya. I would like to express my sincere gratitude to him for continuous
mentoring, monitoring, guidance, and technical advices during my PhD.

I would also like to thank the members of PhD committee: A/Prof. Egemen Tanin
and Prof. Rao Kotagiri, for their constructive comments and suggestions on my work. I
am also thankful to post-docs in the CLOUDS Laboratory: Dr. Rodrigo Calheiros and Dr.
Amir Vahid Dastjerdi for their insightful discussion and guidance on the technical side.

I am fortunate to have collaboration with Dr. Adel Nadjaran Toosi who was always
generous with his time to answer my questions for improving my work. I will never
forget his kind and friendly attitude and his characters will continue to inspire me.

I would like to thank all members of the CLOUDS Laboratory. Special thanks to Dr.
Deepak Poola, Dr. Chenhao Qu, and Safiollah Heidari for their sincere friendships and
for the wonderful moments we shared in the tea time. To my friends, Dr. Sareh Fotuhi
and Dr. Maria Rodriguez for their inputs on technical writing and presentations of my
work. My thanks to fellow members: Dr. Mohsen Amini Salehi, Dr. Anton Beloglazov,
Dr. Linlin Wu, Dr. William Voorsluys, Dr. Nikolay Grozev, Atefeh Khosravi, Jungmin Jay
Son, Bowen Zhou, Farzad Khodadadi, Liu Xunyun, Caesar Wu, Minxian Xu, Sara Kar-
dani Moghaddam, Muhammad H. Hilman, Redowan Mahmud, Muhammed Tawfiqul,
Yali Zhao, and to visitors of the lab, Deborah Magalhaes, Tiago Justino, and Guilherme
Rodrigues for their friendship and support.

I acknowledge the University of Melbourne and Australian Federal Government for
providing me with scholarships to pursue my doctoral study. I am also thankful to Mi-
crosoft Azure for providing credits to use its resources for our experiments.

I would like to express my sincerest thanks to Reza Moini, Amir Salehi, and their
family, who shared their time with me in Melbourne to forget the toughness of being far
from home and family. Also I thank Dr. Mehran Garmehi for the fun moments and for
preparing foods without salt when he visited CLOUDS laboratory.

My deepest gratitude goes to my mother, father, brothers, and sisters who deserve
the credit for whatever success that I have attained in my life. I thank them for their
continuous support, dedication, and guidance.

Yaser Mansouri
Melbourne, Australia
March 2017

ix





Contents

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Problems and Objectives . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Survey and Taxonomy of Data Storage Management in Cloud-based Data
Stores 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 A Comparison of Data-intensive Networks . . . . . . . . . . . . . . 17
2.2.2 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 characteristic Data-intensive applications . . . . . . . . . . . . . . . 20
2.2.4 Architecture, Goals, and Challenges of Intra-cloud Storage . . . . . 21
2.2.5 Architecture, Motivations, and Challenges of Inter-Cloud Storage . 26

2.3 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Data abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Data access model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Data Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Data replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Erasure coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Hybrid scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Data Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Consistency level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 Consistency metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.3 Consistency model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.4 Eventual consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.5 Causal and Causal+ consistency . . . . . . . . . . . . . . . . . . . . 55
2.5.6 Ordering, Strong, and Adaptive-level consistency . . . . . . . . . . 57

2.6 Data Management Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1 Pricing plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.2 Overview of storage classes . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.3 Cost optimization based on a single QoS metric . . . . . . . . . . . 63
2.6.4 Cost optimization based on multi-QoS metric . . . . . . . . . . . . 64

xi



2.6.5 Cost trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Thesis Scope and Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7.1 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.2 Thesis Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 QoS-aware Brokering Algorithms for Data Replication across Data Stores 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Minimizing cost with given expected availability . . . . . . . . . . . . . . . 82
3.3 Maximum Expected Availability with Given Budget . . . . . . . . . . . . . 86

3.3.1 Optimal Chunks Placement (OCP) Algorithm . . . . . . . . . . . . 89
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.2 Algorithm 3.1: Minimum Cost Fixed Expected Availability . . . . 93
3.4.3 Algorithm 3.2: Maximum Expected Availability with a Given Budget 95

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Cost Optimization in a Dual Cloud-based Storage Architecture 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 System and Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Data Management Cost Optimization . . . . . . . . . . . . . . . . . . . . . 105
4.3.1 Optimal Object Placement (OOP) Algorithm . . . . . . . . . . . . . 105
4.3.2 Near-Optimal Object Placement (NOOP) Algorithm . . . . . . . . . 107

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Cost Optimization across Cloud Storage Providers: Offline and Online Algo-
rithms 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 System Model and Problem Definition . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Challenges and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Optimal Offline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4 Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 The Deterministic Online Algorithm . . . . . . . . . . . . . . . . . . 139
5.4.2 The Randomized Online Algorithm . . . . . . . . . . . . . . . . . . 142

5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.5.2 Benchmark Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xii



6 Cost Optimization across Cloud Storage Providers: A Lightweight Algorithm 159
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2 System Model, Cost Model, and Cost Optimization Problem . . . . . . . . 162

6.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.2 Cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.3 Cost Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Cost Optimization Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.1 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.2 Heuristic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.4.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Empirical Studies in Latency Evaluation . . . . . . . . . . . . . . . . . . . . 182
6.5.1 Data Access Management Modules . . . . . . . . . . . . . . . . . . 182
6.5.2 Measurement of Data Migration Time . . . . . . . . . . . . . . . . . 186

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7 Conclusions and Future Directions 191
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.1 Trade-off between Availability and Monetary Cost . . . . . . . . . . 194
7.2.2 The Selection of Home DC . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2.3 Cost Optimization of Data Management in Quorum-based Systems 195
7.2.4 Cost Optimization across Multiple Storage Classes . . . . . . . . . 196
7.2.5 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.2.6 Cost Optimization of Using Database Instance Classes . . . . . . . 196

xiii





List of Figures

1.1 A simple system model used in the thesis . . . . . . . . . . . . . . . . . . . 4
1.2 The methodology used in the thesis . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Data elements in cloud storage . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Relational schema and NoSQL schema with a sample . . . . . . . . . . . . 19
2.3 NewSQL Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Inter-cloud storage architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Data model taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Data replication taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Erasure coding taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8 Data consistency taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 Mapping data stores to each

pair of properties in CAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10 PACELC classification and mapping several data stores to the classification 50
2.11 Weak consistency taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Cloud Storage Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Minimum cost of replication versus expected availability of objects . . . . 93
3.3 Minimum cost of replication versus expected availability for three types of

QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4 Expected availability versus TN for three types of QoS . . . . . . . . . . . . 94
3.5 Expected failure (EFQ) versus Expected Availability for three types of QoS 95
3.6 Expected availability versus Budget . . . . . . . . . . . . . . . . . . . . . . 96
3.7 Expected failure versus Budget . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.8 Expected availability for three types of QoS Versus Budget . . . . . . . . . 97

4.1 A scenario of the dual cloud-based storage architecture in the European
and Asia-Pacific regions. Parenthesis close to each DC’s name shows the
storage price (per GB per month) for standard storage, backup storage,
and network price (per GB), respectively. . . . . . . . . . . . . . . . . . . . 102

4.2 Allocated users to DCs (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Total data size in data centers. . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4 Cost saving of OOP and NOOP algorithms for two Azure DCs: AZ-USS

and AZ-USC as home DCs with data size factor 0.2 and 1. . . . . . . . . . . 113
4.5 Cost saving of OOP and NOOP algorithms for two Google DCs: GO-USC

and GO-USE as home DCs with data size factor 0.2 and 1. . . . . . . . . . . 115

xv



4.6 Cost saving of OOP and NOOP algorithms for three Amazon data centers:
AM-USW(O), AM-USE, and AM-USW(C) as home data centers with data
size factor 0.2 and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Cost saving of OOP and NOOP algorithms for the home DC of Azure,
Google and Amazon when the data size factor is varied. The first (resp.
last) two legends indicate DC with maximum (resp. minimum) cost saving
when they are paired with the home DC. . . . . . . . . . . . . . . . . . . . 118

4.8 Cost saving of OOP and NOOP algorithms for the home DC of Azure,
Google and Amazon when the latency cost weight is varied. The first (resp.
last) two legends indicate DC with the maximum (resp. minimum) cost
saving when they are paired with the home DC. . . . . . . . . . . . . . . . 120

4.9 Cost saving of OOP and NOOP algorithms for the home DC of Azure,
Google and Amazon when the write to read ratio is varied. The first (resp.
last) two legends indicate DC with the maximum (resp. minimum) cost
saving when they are paired with the home DC. . . . . . . . . . . . . . . . 121

5.1 Object updating in Europe region and the object migration in Asia-pacific
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Overview of systems’s inputs and output. . . . . . . . . . . . . . . . . . . . 135
5.3 The description of P(~α(t)) calculation in Equ. (5.7 . . . . . . . . . . . . . . 137
5.4 The description of Deterministic online algorithm. The residential cost of

the object as if the requests on the object in slot v = t are served by (a) the
determined DCs in time slot v− 1 and (b) the determined DCs in time slot
v. (c) The migration cost of the object between the determined DC in time
slot v = tm−1 and tm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 Illustration of Fixed Reduced Horizontal Control . . . . . . . . . . . . . . . 144
5.6 Cost performance of algorithms under tight and loose latency for objects

with a replica. All costs are normalized to the local residential algorithm.
The values in boxes show the CR of DOA and ROA in the worst case. . . . 149

5.7 Cost performance of algorithms under tight and loose latency for objects
with two replicas. All costs are normalized to the local residential algo-
rithm. The values in boxes show the CR of DOA and ROA in the worst
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.8 Normalized cost of algorithms when the latency is varied. Legend indi-
cates object size in KB for different algorithms. All costs are normalized to
the local residential algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.9 Normalized cost vs. read to write ratio under tight and loose latency for
objects with one and two replicas. Legend indicates object size in KB for
different algorithms. All costs are normalized to the local residential algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.10 Normalized cost of the Randomized algorithm when the window size is
varied. All costs are normalized to the local residential algorithm. Legend
indicates replicas number and objects size in KB. . . . . . . . . . . . . . . . 154

5.11 CDF of cost savings for objects due to their migration under tight and loose
latency. All costs are normalized to the non-migration algorithm. Legend
indicates replicas number and objects size in KB. . . . . . . . . . . . . . . . 157

xvi



6.1 Replica creation via (a) home DC and (b)potential DCs D1, D2, and D3. . . 164
6.2 Put propagation policy. (a) Client DC first updates the server DC that serve

it and the home DC. DCs hosting a replica are updated via (b) the client
DC, (c) the home DC, and (d) the server DC that serve the client DC (i.e.,
DC D1). (e)The relayed propagation via DC D2 which is updated by the
home DC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 An example of illustrating the replica migration between two consecutive
time slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4 Cost saving of closest-, network-, and storage-based polices under tight
(100 ms) and loose latency (250 ms). . . . . . . . . . . . . . . . . . . . . . . 179

6.5 Cost saving of closest-based
policy vs. quantile volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.6 Cost saving of closest-based policy vs. latency . . . . . . . . . . . . . . . . 181
6.7 Cost saving of closest-based policy vs. read to write ratio . . . . . . . . . . 182
6.8 An overview of prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.9 Web services components used in the prototype . . . . . . . . . . . . . . . 187
6.10 CDF of data migration time (a) from Azure DC in Japan west to Amazon

DC US west and from Azure DC in Europe north to Amazon US east, and
(b) Amazon DC in US west (California) to Amazon DC in US west and
Azure DC in US center south to Amazon US east. . . . . . . . . . . . . . . 187

xvii





List of Tables

2.1 Comparison between data-intensive networks in charachteristics and ob-
jectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Intra-Cloud storage goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Intra-Cloud storage challenges . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Inter-Cloud storage motivation. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Inter-Cloud storage challenges . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Comparison between different storage abstractions. . . . . . . . . . . . . . 34
2.7 Comparison between different databases. . . . . . . . . . . . . . . . . . . . 35
2.8 Comparison between replication models. . . . . . . . . . . . . . . . . . . . 36
2.9 Comparison between full and partial replications. . . . . . . . . . . . . . . 38
2.10 Consistency-latency tradeoff of different replication techniques. . . . . . . 41
2.11 Comparison between Replication and Erasure Coding schemes. . . . . . . 47
2.12 Comparison between the state-of-the-art projects using diferent redundancy

schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.13 The characteristics of different storage classes for the well-known Cloud

providers: Amazon Web Service (AWS), Azure(AZ), and Google(GO) . . . 62
2.14 The Scope of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.15 Summary of Projects with Monetary Cost Optimization . . . . . . . . . . . 73

3.1 objective and constraint of the proposed algorithms . . . . . . . . . . . . . 92
3.2 Data centers parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Summary of Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Evaluation Settings for Figures and Tables. . . . . . . . . . . . . . . . . . . 113
4.3 Cost saving of OOP and NOOP (shown in bracket), and the potential DCs

pairing with four home DCs when the acess patterns on the objects are
Normal and Random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 Cloud storage pricing as of June 2015 in different DCs. . . . . . . . . . . . 127
5.2 Symbols definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Average cost performance (Normalized to the local residential algorithm) 151
5.4 Running time of algorithms on 23 DCs (in Second) . . . . . . . . . . . . . . 157

6.1 Summary of key notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 The time complexity of Algorithms 6.1 - ch6:alg:CVRP. . . . . . . . . . . . 176
6.3 Summary of Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 178
6.4 Average cost performance normalized to the benchmark algorithm cost . 180
6.5 The modules used for data access management in AWS. . . . . . . . . . . . 184

xix



6.6 The input parameters used in Modules of AWS. . . . . . . . . . . . . . . . 184
6.7 The modules used for data access management in Microsoft Azure. . . . . 185
6.8 The input parameters used in Modules of Microsoft Azure. . . . . . . . . . 186

xx



Chapter 1

Introduction

CLOUD computing has gained significant attention form the academic and industry

communities in recent years. It provides the vision that encompasses the move-

ment of computing elements, storage and software delivery away from personal com-

puter and local servers into the next generation computing infrastructure hosted by large

companies such as Amazon Web Service (AWS), Microsoft Azure, and Google. Cloud

computing has three distinct characteristics that differentiate it from its traditional coun-

terparts: pay-as-you-go model, on-demand provisioning of infinite resources, and elas-

ticity [31].

Cloud computing offers three types of resources delivery models to users [120]: (i)

Infrastructure as a Service (IaaS) which offers computing, network, and storage resources,

(ii) Platform as a Service (PaaS) which provides users tools that facilitate the deployment

of cloud applications, and (iii) Software as a Service (SaaS) which enables users to run the

provider’s software on the cloud infrastructure.

One of the main components of IaaS offering by cloud computing is Storage as Ser-

vices (StaaS). StaaS provides an elastic, scalable, highly available, and pay-as-you-go

model, which renders it attractive for data outsourcing, both for the users to manipu-

late data independent of the location and time and for firms to avoid expensive upfront

investments of infrastructures. The well-known Cloud Storage Providers (CSPs)–AWS,

Microsoft Azure, and Google– offer StaaS for several storage classes which differ in price

and performance metrics such as availability, durability, the latency required to retrieve

the first byte of data, the minimum time needed to store data in the storage, etc.

The data generated by online social networks, e-commerce, and other data sources

is doubling every two years and is expected to augment to a 10-fold increase between

1
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2013 and 2020-from 4.4 ZB to 44 ZB.1 The network traffic, generated from these data,

from data centers (DCs) to users and between DCs was 0.7 ZB in 2013 and is predicated

to reach 3.48 ZB by 2020.2 The management of such data in the size of several exabytes

or zettabytes requires capital-intensive investment; the deployment of cloud-based data

stores (data stores for short) is a promising solution.

Moving the data generated by data-intensive applications into the data stores guaran-

tees users the required performance Service Level Agreement (SLA) to some extent, but it

causes concern for monetary cost spent in the storage services. Several factors contribute

substantially to the monetary cost. First, the monetary cost depends on the size of the

data volume that is stored, retrieved, updated, and potentially migrated from one storage

class to another one in the same/different data stores. Second, it is subject to the required

performance SLA (e.g., availability,3 durability, the latency needed to retrieve the first

byte of data) as the main distinguishing feature of storage classes. As the performance

guarantee is higher, the price of storage classes is more. Third, the monetary cost can be

affected by the need of data stores to be in a specific geographical location in order to de-

liver data to users within their specified latency. To alleviate this concern (i.e., monetary

cost spending on storage services) from the perspective of application providers/users,

it is required to design algorithms for appropriate selection of storage classes offered by

different CSPs during the lifetime of the object regarding to the above-mentioned factors.

The use of multiple CSPs offering several storage classes with different prices and per-

formance metrics brings a substantial benefit to users who seek the reduction of monetary

cost in storage services, while respecting their QoS in terms of availability and network

latency. In spite of some efforts in this direction, designing algorithms that take advan-

tage of price differences across CSPs with several storage classes to reduce monetary cost

on storage services for time-varying workloads remains as an open challenge. This thesis

deals with this challenge and investigates how much the monetary cost can be saved with

the help of multiple CSPs while respecting the QoS determined by users. The remaining

parts of this chapter discuss motivation, research problem, evaluation methodology, the-

1International Data Corporation (IDC). https://www.emc.com/leadership/digital-universe/
2014iview/index.htm.

2The Zettabyte EraTrends and analysis. http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html.

3Availability and durability are described in terms of nines.

https://www.emc.com/leadership/digital-universe/2014iview/index.htm
https://www.emc.com/leadership/digital-universe/2014iview/index.htm
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
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sis contribution, and thesis organization.

1.1 Motivations

Migrating data into a single data store facilitates users performance SLA/QoS to some

extent, but faces them with several limitations. Data store unavailability can confront

users with inaccessible data if the data is stored in a single data store. This is counted as

one of the top ten obstacles for cloud adoption [70]. Reliance on a single data store makes

it difficult to migrate data from a data store to another in the face of price increment by the

cloud provider, the emergence of a new data store with lower price, the mobility of users,

and changes in workload that demands data migration. This is recognized as data lock-in

and is listed as another main obstacle in regard to cloud services. Storing data in a single

data store faces the fact that the read (Get) and write (Put4) requests are not served with

adequate responsiveness. This is because the requests are issued by users who are located

worldwide and, consequently users experience more network latency to retrieve/store

data from/into a data store. Furthermore, the use of a single data store deprives users

from the opportunity to exploit the pricing differences across CSPs. Therefore, storing

data within a single data store can be inefficient in both performance SLA and monetary

cost.

These factors make inevitable the use of multiple CPSs which improve availability,

durability, and data mobility. The deployment of multiple CSPs also brings another ben-

efits to users. (i) If the outage of a data store happens then the requests issued by users

are directed to another data store. (ii) Users can have a wider selection of data stores,

which results in reducing user-perceived latency as experimentally confirmed [178]. (iii)

This deployment also allows application providers to select storage classes across CSPs

based on the workload on data and the Quality of Service (QoS) specified by users to

reduce monetary cost of storage and network resources.

The workload on data can be a determining factor for the selection of a storage class.

Some data-intensive applications generate a time-varying workload in which as the time

passes the rate of read and write requests on the data changes. In fact, there is a strong

4Read and Write are respectively interchangeable with Get and Put in this thesis.
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Figure 1.1: A simple system model used in the thesis

correlation between the age of data stored in a data store and data workload. For exam-

ple, in Online Social Network (OSN) data initially receive many read and write requests

and gradually these requests reduce [122]. Based on this change of requests rate, we de-

fine two statuses for data: hot-spot and cold-spot. Hot-spot data receive many read and

write requests, while cold-spot data receive a few.

This demands for a suitable selection of storage classes throughout the lifetime of an

object. Each storage class provided by the well-known CSPs can be suited for data with

specific requirements. For instance, one class may be suitable for data that is frequently

accessed. Another class may be designed to host data that is rarely accessed and required

for a lower availability and durability.

Therefore, CSPs with a variety of storage classes with different prices and perfor-

mance SLAs and data-intensive applications with time-varying workloads give us an

incentive to design novel algorithms to optimize monetary cost. These algorithms work

for any data to which workload transits from hot-spot to cold-spot and vice versa, as ob-

served in OSN applications. Significant studies have been done in the area of cost opti-

mization of OSN applications across CPSs, as conducted in SPANStore [177] and Cosplay

[82]. Neither leverage different storage classes owned by different CSPs nor consider the

object with hot- and cold-spot status, which result in migration of data across different
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data stores or movement of data between storage classes within a data store. This is the

main focus of this thesis.

Fig. 1.1 illustrates a simple data placement across data stores (owned by different

providers) to clarify our motivation. Among all available data stores, application providers,

for example OSNs, select a subset of data stores to replicate data to serve their users. OSN

users are typically assigned to the closest DCs and have a set of friends and followers

who make network connections with them. These connections are between users who

are assigned to the same DC as represented by a graph in rectangles (see Fig. 1.1) or dif-

ferent DCs (e.g., user connections UC1 and UC2). In this model, for example, a user in

user group UG1 puts data in AWS DC named replica R1. To make this data available to

his/her friends and followers, the data is also replicated in Azure DC as replica R2. These

replicas stay in DCs until they receive many read and write requests. As time passes, one

replica probably migrates to another DC or moves between storage classes (e.g., Simple

Service Storage (S3) and Reduced Redundancy Storage (RRS) in AWS) within a DC as

backup data.

1.2 Research Problems and Objectives

This thesis focuses on the cost optimization of data management across CSPs under

QoS constraints. This cost includes the cost of storage and network resources. The

data/objects5 observe hot- and cold-spot statuses during their life-time, and can be owned

by users in an OSN application. In respect to this aim, the following research challenges

are investigated.

• How to link the number of replicas of the object with the availability of the ob-

ject? Since the number of replicas of an object has direct impact on the availability

of the object, it is necessary to define a metric for the availability of the object that

can be used as a QoS constraint for cost optimization as an objective.

• When to migrate objects? Based on the read and write requests on the object, a

decision on the object migration across data stores at appropriate times should be

made. This object migration should be cost-effective and the requests submitted to

5Data and objects are interchangeably used in this thesis.
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the object after its migration should be served within the defined QoS.

• Where to place the objects selected for migration? Make decision on the best

placement of newly created objects by users or the objects selected for migration to

other data stores is another key aspect that influences the cost optimization of the

objects.

• How to design algorithms for dynamic replication and migration of the objects

and which features they should have? The ideal deign is to find optimal place-

ment of objects so that the monetary cost is minimized. Alternatively, a satisfactory

design of algorithms is (i) to be competitive with optimal algorithms in monetary

cost, and (ii) to be light in terms of time complexity since OSN applications host a

huge number of objects.

To tackle the above challenges, the following objectives have been identified:

• Conduct a comprehensive survey and classification of data management in cloud-

based data stores in several aspects; mainly data management cost in cloud storage

to understand the existing gap in this area.

• Define a cost model and link it with the availability unit in the number of nines,

and propose data placement algorithms.

• Propose a dual cloud-based storage architecture to provide insight into the cost

saving derived from different CSPs which support several storage classes with dif-

ferent prices.

• Design optimal offline algorithm and online algorithms and conduct competitive

analysis of online algorithms to understand their performance compared to the

optimal offline algorithm.

• Design a novel lightweight algorithm with low time complexity, which is tailored

for OSN applications hosting a huge number of users.

1.3 Methodology

This thesis endeavors to optimize cost of data placement across CSPs while satisfying the

QoS defined by users. To this end, we use the following approach for each defined cost

optimization problem as shown in Fig. 1.2.
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Figure 1.2: The methodology used in the thesis

1. System and cost model. We define a system model consisting of objects created

by users, read and write requests submitted to the objects, and data stores with

the measured network latency between each pair. Based on the system model, we

mathematically define a cost model that consists of storage and network costs.

2. Problem definition. We formally define the cost optimization problem based on

the cost model in the form of mathematical formula with the required QoS.

3. Algorithms. The algorithms used to solve the optimization problems are a linear

programming, dynamic programming, combination of both, and a lightweight

algorithm. We evaluate and analyse (in terms of time complexity) the proposed

algorithms.

4. Evaluation. We evaluate the proposed algorithms via discrete-event simulation

using the CloudSim simulation toolkit developed to support cloud-based data

stores and the objects created by users [35]. We generate a synthetic workload

based on the characteristics of the Facebook workload [16, 21] and use it in an op-

timization problem in Chapter 5. We also perform the evaluation of algorithms us-

ing a real workload from Twitter [101]. With the help of the Google Maps Geocod-

ing APIs,6 the location of users in the workload is converted to Geo-coordination

in order to assign each user to the closest data stores. The evaluation of the al-

gorithms via simulation (i) makes it easy to conduct repeatable large-scale experi-

ments and investigate the effect of all the parameters that can probably influence

the performance of the algorithms. We also theoretically prove the performance

of some of the algorithms in comparison to the optimal algorithm in terms of cost

6The Google maps geocoding API https://developers.google.com/maps/documentation/
geocoding/intro

https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
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saving.

1.4 Contributions

The contribution of this thesis can be broadly categorized into: (i) A survey and tax-

onomy of the area, (ii) Proposed dynamic algorithms to optimally select data stores for

stripped and non-stripped objects with the guaranteed availability, (iii) A dual cloud-

based storage architecture exploiting the pricing differences of CSPs, (iv) The optimal of-

fline algorithm, online algorithms, and a lightweight algorithm to replicate and migrate

data across CSPs. The key contributions of the thesis are as follows:

1. A survey and taxonomy of data storage management in cloud-based data stores.

2. QoS-aware brokering algorithms for data dispersion across data stores:

• A mathematical model for the DC selection problem in which the objective

function, cost function, and constraints are clearly defined.

• An algorithm to select a subset of given data stores to minimize the storage

cost for objects when the expected availability is given.

• A dynamic algorithm to select data stores optimally for storing objects that

are split into chunks and each chunk is replicated a fixed number of times.

This maximizes the availability of the striped data to the extent the users

budget allows.

3. Cost optimization in a dual cloud-based storage architecture:

• A system model and a formal cost model for data management in data stores.

• The optimal algorithm that optimizes data management cost in the dual cloud-

based architecture when the workload in terms of Gets and Puts on the ob-

jects is known.

• A near-optimal algorithm that achieves competitive cost as compared to that

obtained by the optimal algorithm in the absence of future workload knowl-

edge.

• A simulation-based evaluation and performance analysis of the algorithms

using the real-world traces from Twitter [101].
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4. Cost optimization across cloud storage providers: offline and online algorithms:

• The optimal offline algorithm for data replication and migration across CSPs

where the exact future workload is assumed to be known a priori:

• Deterministic and randomized online algorithms for data replication and mi-

gration across CSPs where the future workload is unavailable or available for

a limited time.

• Competitive analysis and proof of the competitive ratios of online algorithms

for data replication and migration across CSPs.

• An extensive simulation-based evaluation and performance analysis of the

proposed algorithms using the synthesized workload based on Facebook

workload specifications [16][21].

5. Cost optimization across cloud storage providers: a lightweight algorithm:

• A lightweight algorithm based on the set cover problem [48]. It yields a low

time complexity which makes it suitable for the OSN applications hosting a

huge number of users.

• An extensive evaluation through simulation using a real workload from Twit-

ter [101].

• An implementation of a prototype using AWS and Microsoft Azure data

stores to evaluate the duration of objects migration within and across regions.

1.5 Thesis Organization

The core chapters of this thesis are mostly derived from the publications made during

the PhD candidature. Fig. 1.3 shows the structure of the thesis as described below:

• Chapter 2 presents a survey and taxonomy of data management in data stores,

as well as the scope of this thesis and its positioning in the area. This chapter is

partially derived from:

– Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Data Storage

Management in Cloud Environments: Taxonomy and Survey,” ACM Comput-

ing Surveys, ACM Press, New York, USA, 2016 (under minor review).
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• Chapter 3 proposes QoS-aware brokering algorithms for data replication across

data stores. This chapter is derived from:

– Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Brokering Al-

gorithms for Optimizing the Availability and Cost of Cloud Storage Services,”

Proceedings of the 5th IEEE International Conference on Cloud Computing Technol-

ogy and Science (IEEE CloudCom 2013, IEEE CS Press, USA), Bristol, UK, Dec.

2-5, 2013.

• Chapter 4 proposes cost optimization in a dual cloud-based storage architecture.

This chapter is derived from:
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– Yaser Mansouri and Rajkumar Buyya, “To Move or Not to Move: Cost Opti-

mization in a Dual Cloud-based Storage Architecture,” Journal of Network and

Computer Applications (JNCA), Volume 75, Pages: 223-235, ISSN: 1084-8045,

Elsevier, Amsterdam, The Netherlands, November 2016.

• Chapter 5 describes cost optimization across cloud storage providers: offline and

online algorithms. This chapter is derived from:

– Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Cost Optimiza-

tion for Dynamic Replication and Migration of Data in Cloud Data Centers,”

IEEE Transactions on Cloud Computing (TCC), DOI:10.1109/TCC.2017.2659728,

2017.

• Chapter 6 proposes cost optimization across cloud storage providers: a lightweight

algorithm. This chapter also proposes a prototype data placement framework across

Amazon Web Service (AWS) and Microsoft Azure. It is derived from:

– Yaser Mansouri and Rajkumar Buyya, “Dynamic Replication and Migration

for Data Objects with Hot-spot and Cold-spot Statuses across Geo-distributed

storage Data centers,” Journal of Parallel and Distributed Computing, ElSEVIER,

2017 (under review).

• Chapter 7 concludes the thesis with a summary of the key findings and a discussion

of directions for future work.





Chapter 2

A Survey and Taxonomy of Data
Storage Management in Cloud-based

Data Stores

Storage as a Service (StaaS) is a vital component of cloud computing by offering the vision of a vir-

tually infinite pool of storage resources. It supports a variety of cloud-based data store classes in terms

of availability, scalability, ACID (Atomicity, Consistency, Isolation, Durability) properties, data mod-

els, and price options. Application providers deploy these storage classes across different cloud-based

data stores not only to tackle the challenges arising from reliance on a single cloud-based data store but

also to obtain higher availability, lower response time, and more cost efficiency. Hence, in this chapter,

we first discuss the key advantages and challenges of data-intensive applications deployed within and

across cloud-based data stores. Then, we provide a comprehensive taxonomy that covers key aspects of

cloud-based data store: data model, data dispersion, data consistency, and data management cost. We

finally discuss the scope of the thesis and determine the position of thesis in regard to relevant work to

provide a better understanding of the research problems addressed in the remaining chapters.

2.1 Introduction

THE The explosive growth of data traffic driven by social networks, e-commerce,

enterprises, and other data sources has become an important and challenging issue

for IT enterprises. This growing speed is doubling every two years and augments 10-fold

between 2013 and 2020- from 4.4 ZB to 44 ZB.1 The challenges posed by this growth of

data can be overcome with aid of using cloud computing services. Cloud computing

This chapter is derived from: Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Data Manage-
ment in Cloud Environments: Taxonomy and Survey,” ACM Computing Surveys, ACM Press, New York,
USA, 2016 (under minor review).
1International Data Corporation (IDC).https://www.emc.com/leadership/digital-universe/
2014iview/index.htm
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offers the illusion of infinite pool of highly reliable, scalable, and flexible computing,

storage, and network resources in a pay-per-use manner. These resources are typically

categorized as Infrastructure as a Service (IaaS), where Storage as a Service (StaaS) forms

one of its critical components.

StaaS provides a range of cloud-based data stores (data stores for short) that differs in

data model, data consistency semantic, and price model. A popular class of data stores,

called Not only SQL (NoSQL), has emerged to host applications that require high scalabil-

ity and availability without having to support the ACID properties of relational database

(RDB) systems. This class of data stores – such as PNUTS [51] and Dynamo [59] – typi-

cally partitions data to provide scalability and replicates the partitioned data to achieve

high availability. Relational data store, as another class of data stores, provides full-fledged

relational data model to support ACID properties, while it is not as scalable as NoSQL

data store. To strike a balance between these two classes, NewSQL data store was intro-

duced. It captures the advantages of both NoSQL and relational data stores and initially

was exploited in Spanner [52].

To take the benefits of these classes, application providers store their data either in

a single or multiple data stores. A single data store offers the proper availability, dura-

bility, and scalability. But reliance on a single data store has risks like vendor lock-in,

economic failure (e.g., a surge in price), and unavailability as outages occur, and proba-

bly leads to data loss when an environmental catastrophe happens [27]. Geo-replicated

data stores, on the other hand, mitigate these risks and also provide several key bene-

fits. First, the application providers can serve users from the best data store to provide

adequate responsiveness since data is available across data stores. Second, the applica-

tion can distribute requests to different data stores to achieve load balance. Third, data

recovery can be possible when natural disaster and human-induced activities happen.

However, the deployment of a single or multiple data stores causes several challenges

depending on the characteristics of data-intensive applications.

Data-intensive applications are potential candidates for deployment in the cloud.

They are categorized into transactional (ref. as online transaction processing (OLTP)) and

analytical (ref. as online analytical processing (OLAP)) that demand different requirements.

OLTP applications embrace different consistency semantics and are adaptable with row-
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Figure 2.1: Data elements in cloud storage

oriented data model, while OLAP applications require rich query capabilities and com-

pliance with column-oriented data model. These requirements are faced with several

challenges, and they mandate that we investigate the key elements of data management

in data stores as shown in Fig.2.1. The first five key elements are mature topics in the con-

text of distributed systems and require how to apply them to data stores with possible

modifications and adoptions if needed. The last element, data management cost, is a new

feature for cloud storage services and it is important for users to optimize it while their

Service Level Agreements (SLAs) are guaranteed.

The first element is data model that reflects how data is stored in and retrieved from

data stores. The second element is data dispersion with three schemes. Data replication

scheme improves availability and locality by moving data close to the user, but it is costly

due to usually storing three replicas for each object in data stores. Erasure coding scheme

alleviates this overhead, but it requires structural design to reduce the time and cost of

recovery. To make a balance between these benefits and shortcomings, a combination

of both schemes is exploited. We clarify these schemes and identify how they influence

availability, durability, and user-perceived latency.

Other element of data management is data consistency that refers to coordination level

between replicas within and across data stores. Based on CAP theorem [71], it is im-

possible to jointly attain Consistency, Availability, and Partition tolerance (referred to

the failure of a network device) in distributed systems. Thus, initially data stores pro-

vide eventual consistency– all replicas eventually converge to the last updated value– to

achieve two of three these properties: availability and partition tolerance. Eventual con-

sistency is sometime acceptable, but not for some applications (e.g., e-commerce) that

demand strong consistency in which all replicas receive requests in the same order. To

obtain strong consistency, the recent endeavours bring transactional isolation levels in
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NoSQL/NewSQL data stores at the cost of extra resources and higher response time.

The last element is cost optimization of data storage management as the key driver behind

the migration of application providers into the cloud that offers a variety of storage and

network resources with different prices. Thus, application providers have many oppor-

tunities for cost optimization and cost trade-offs such as storage vs. bandwidth, storage vs.

computing, and so on.

The main contributions of this chapter are as follows:

• Comparison between cloud-based data stores and related data-intensive networks,

• Delineation on goals and challenges of intra- and inter-cloud storage services, and

determination of the main solutions for each challenges,

• Discussion on data model taxonomy in terms of data structure, data abstraction, and

data access model; and comparison between different levels/models of each aspect,

• Providing a taxonomy for different schemes of data dispersion, and determining

when (according to the specifications of workload and the diversity of data stores)

and which scheme should be used,

• Elaboration on different levels of consistency and determination on how they are

guaranteed,

• Discussion on the cost optimization of storage management, delineation on the po-

tential cost trade-offs in data stores, and classifying the existing projects to specify

the research venue for future.

This chapter is divided into seven sections. Section 2.2 compares cloud-based data stores

to other distributed data-intensive networks and then discusses the architecture, goals

and challenges of a single and multiple cloud-based data stores deployments. Section 2.3

describes a taxonomic of data model and Section 2.4 discusses different schemes of data

replication. Section 2.5 elaborates on data consistency in terms of level, metric, and model

and Section 2.6 presents the cost optimization of storage management. Section 2.8 finally

concludes the chapter.
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2.2 Overview

This section discusses a comparison between cloud-based data stores and other data-

intensive networks (Section 2.2.1), the terms used throughout this survey (Section 2.2.2),

the characteristics of data-intensive applications deployed in data stores (Section 2.2.3),

and the main goals and challenges of a single and multiple data stores leveraged to man-

age these applications (Section 2.2.4).

2.2.1 A Comparison of Data-intensive Networks

Table 2.1 highlights similarities and differences in characteristics and objectives between

cloud-based data stores and (i) Data Grid in which storage resources are shared between

several industrial/educational organizations as Virtual Organization (VO), (ii) Content

Delivery Network (CDN) in which a group of servers/datacenters are located in several

geographical locations to serve users contents (i.e. application, web, or video) faster, and

(iii) Peer-to Peer (P2P) in which a peer (i.e., server) shares files with other peers.

Cloud-based data stores share more overlaps with Data Grids in the properties listed

in Table 2.1. They deliver more abstract storage resources (due to more reliance on vir-

tualization) for different types of workloads in an accurate economic model. They also

provide more elastic and scalable resources for different demands in size. These oppor-

tunities result in the migration of data-intensive applications to the clouds and cause two

categories of issues. One category is more specific to cloud-based data stores and consists

of issues such as vendor-lock in, multi-tenancy, network congestion, monetary cost opti-

mization, etc.. Another category is common between cloud-based data stores and Data

Grids and includes issues like data consistency and latency management. Some of these

issues require totally new solutions, and some of them have mature solutions and may

be applicable either wholly or with some modifications based on the different properties

in cloud-based data stores.

2.2.2 Terms and Definitions

A data-intensive application system consists of applications that generate, manipulate, and

analyze large amount of data. With the emergence of cloud-based storage services, the
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Table 2.1: Comparison between data-intensive networks in charachteristics and objec-
tives.

Property Cloud-based Data Stores Data Grids
Content Delivery
Network (CDN) Peer to Peer (P2P)

Purpose Pay-as-you-go model, on-
demand provisioning and
elasticity

Analysis, generating,
and collaboration
over data

File sharing and
content distribution

Improving user-
perceived latency

Management
Entity Vendor Virtual Organization Single organization Individual

Organization Tree-based [173]†
Fully optical
Hybrid

Hierarchy
Federation

Hierarchy Unstructured
Structured
Hybrid [172]

Service
Delivery IaaS, PaaS, and SaaS IaaS IaaS IaaS

Access Type Read-intensive
Write-intensive
Equally of both

Read-intensive with
rare writes

Read-only Read- intensive with
frequent writes

Data Type Key-value, Document-
based, Extensible record,
and Relational

Object-based
(Often big chunks)

Object-based (e.g.,
media, software,
script, text)

Object/file-based

Replica
Discovery HTTP requests

Replica Catalogue
Replica Catalog HTTP requests Distributed Hash

Table††
Flooded requests

Replica
Placement See section 2.4.1 Popularity

Primary replicas
A primary copy
Caching

Popularity without pri-
mary replica

Consistency Weak and Strong Weak Strong Weak
Transaction
Support Only in relational data stores

(e.g., Amazon RDS)
None None None

Latency
Manage-
ment

Replication,
caching, streaming

Replication,
caching, streaming

Replication,
caching, stream-
ing

Caching, streaming

Cost
Optimization Pay-as-you-go model (in

granularity of byte per day
for storage and byte for
bandwidth)

Generally available
for not-for-profit
work or project-
oriented

Content owners
pay CDN operators
which, in turn,
pays ISPs to host
contents

Users Pay P2P to re-
ceive sharing files.

† Tree-based organization has a flexible topology, while fully optical (consisting of a “pure” optical switching network) and hybrid
(including switching network of electrical packet and optical circuit) organizations have a fixed topology. Google and Facebook deploy
fat tree topology, a variant of tree topology, in their datacener architecture. †† Distributed hash table is used for structured organization
and flooded requests for unstructured organization.
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Relational Schema:  
Customer (CustomerId, ...),  
Campaign (CampaignId, CustomerId, ...)            
AdGroup(AdGroupId, CampaignId, ...)

NoSQL Schema (key-value) 
Customer (Key, Value1, Value2, …, Valuek) 
Sample:  

NewSQL Schema: 
Customer (CustomerId, ...),  
      Campaign (CampaignId, CustomerId, ...) 

AdGroup(CustomerId,CampaignId, AdGroupId, ...)

Directory 1 Directory 2 

Cluster 

Customer(1,....) 
Campaign(1,3,...) 
AdGroup(1,3,6,...) 
AdGroup(1,3,7,...) 
Campaign(1,4,...) 
AdGroup(1,4,8,...) 

Customer(2,....) 
Campaign(2,5,...) 
AdGroup(2,5,9,...
)

Customer (CId1, CName1, CDegrea1, CAddress1)    
Customer (CId2, CName2, CAddress2)    
Customer (Cid3, CName3, CAddress3, CBalance3)  

Figure 2.2: Relational schema and
NoSQL schema with a sample

 
 
NewSQL Schema: 
Customer (CustomerId, ...),  
      Campaign (CampaignId, CustomerId, ...) 
              AdGroup(CustomerId,CampaignId, AdGroupId, ...)                                                    
Sample 
 
 

 

 

 

 

Directory 1 Directory 2 

Cluster 

Customer(1,....) 
Campaign(1,3,...) 
AdGroup(1,3,6,...) 
AdGroup(1,3,7,...) 
Campaign(1,4,...) 
AdGroup(1,4,8,...) 
 

Customer(2,....) 
Campaign(2,5,...) 
AdGroup(2,5,9,...
) 

Figure 2.3: NewSQL Schema
[155]

data generated from these applications are typically stored in single data store or Geo-

replicated data stores (several data stores in different worldwide locations). The data is or-

ganized as dataset which is created and accessed across data centers (DCs) by users/application

providers. Metadata describe the dataset with respect to the several attributes such as

name, creation time, owner, replicas location, etc.

A dataset consists of a set of objects or records that are modeled in relational databases

(RDBs) or NoSQL databases. The data store that manages RDBs and NoSQL databases

are respectively called as relational data store and NoSQL data store. As shown in Fig.

2.2, RDBs have fixed and predefined fields for each object whereas NoSQL databases do

not. NoSQL data stores use key-value data model (or its variations such as graph and

document) in which each object is associated with a pair of key and value. Key is unique

and is used to store and retrieve the associated value of an object. NewSQL data stores

follow a hierarchical data model, which introduces a child-parent relation between each pair

of table where the child table (Campaign in Fig. 2.3) borrows the primary key of its

parent (e.g., Customer) as a prefix for its primary key. In fact, this data model has a

directory table (e.g., Customer in Fig. 2.3) in the top of hierarchical structure and each

row of directory table together with all rows in the descendant tables (e.g., Campaign

and AdGroup) constructs a directory.

A complete or partial replica of the dataset is stored in a single data store or differ-

ent data stores across Geo-distributed DCs based on the required QoS (response time,

availability, durability, monetary cost). An operation to update an object can be initially

submitted to a predefined replica (called single master) or to any replicas (multi-master)

based on predefined strategy (e.g., the closest). Replicas are consistent when they have
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the same value for an object. Replicas are in weak/strong consistency status if replicas

return (probably) different/same values for a read operation. A transaction is a set of reads

and writes, and it is committed if all reads and writes are conducted (on all replicas of

data); otherwise it is aborted.

2.2.3 characteristic Data-intensive applications

In respect to the cloud characteristics, two types of data-intensive applications can be

nominated for the cloud deployment [2].

Online transaction processing (OLTP) applications must guarantee ACID properties and

provide an “all-or-nothing” proposition that implies each set of operations in a transac-

tion must complete or no operation should be completed. Deploying OLTP applications

across data stores is not straightforward because achieving the ACID properties requires

acquiring distributed locks, executing complex commit protocols and transferring data

over network, which in turn causes network congestion across data stores and introduces

network latency. Thus, OLTP should be adapted to ACID properties at the expense of

high latency to serve reads and writes across data stores. Online Analytical Processing

(OLAP) applications usually use read-only databases and often need to handle complex

queries to retrieve the desired data for data warehouse. The updates in OLAP are con-

ducted on regular basis (e.g., per day or per weak), and their rate is lower than that of

OLTP. Hence, the OLAP applications do not need to acquire distributed locks and can

avoid complex commit protocols.

Both OLTP and OLAP should handle a tremendous volume of data at incredible rates

of growth. This volume of data is referred to as big data which has challenges in five

aspects: volume refers to the amount of data; variety refers to the different types of gener-

ated data; velocity refers to the rate of data generation and the requirement of accelerat-

ing analysis; veracity refers to the certainty of data; and value refers to the determination

of hidden values from datasets. Schema-less NoSQL databases easily cope with two of

these aspects via providing an infinite pool of storage (i.e., volume) in different types of

data (i.e., variety). For other aspects, NoSQL data stores are controversial for OLTP and

OLAP. From the velocity aspect, NoSQL data stores like BigTable [39], PNUTS [51], Dy-

namo [59], and Cassandra [95] facilitate OLTP with reads and writes in low latency and
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high availability at the expense of weak consistency. This is a part of the current chapter

to be discussed. From velocity, veracity and value aspects (the last two aspects are more

relevant to OLAP), OLAP requires frameworks like Hadoop,2 Hive [166] and Pig3 as well

as algorithms in big data mining to analysis and optimize the complex queries in NoSQL

data stores. It is worth to mention these frameworks lack rich query processing on the

cloud and change into the data model is a feasible solution.

2.2.4 Architecture, Goals, and Challenges of Intra-cloud Storage

This section describes a layered architecture of data store and discusses the key goals and

challenges of deploying a single data store to manage data-intensive applications.

Architecture of Intra-Cloud Storage

Cloud storage architecture shares a storage pool through either a dedicated Storage Area

Network (SAN) or Network Attached Storage (NAS).4 It is composed of a distributed file

system, Service Level Agreement (SLA), and interface services. The architecture divides

the components by physical and logical functions boundaries and relationships to pro-

vide more capabilities [192]. In the layered architecture, each layer is constructed based

on the services offered by its underneath layer.

(1) Hardware layer consists of distributed storage servers in a cluster that consists of

several racks, and each of which has disk-heavy storage nodes. (2) Storage management

provides services for managing data in the storage media. It consists of the fine-grained

services like data replication and erasure coding management, replica recovery, load bal-

ancing, consistency, and transaction management. (3) Metadata management classifies the

metadata of stored data in a global domain (e.g., storage cluster) and collaborates with

different domains to locate data when it is stored or retrieved. For example, Object Table in

Window Azure Storage [34] has a primary key containing three properties: AccountName,

PartitionName, and ObjectName that determine the owner, location, and name of the table

2Apache Hadoop. http://wiki.apache.org/hadoop
3Apache Pig. http://hadoop.apache.org/pig/
4A NAS is a single storage device that operates on file system and makes TCP/IP and Ethernet connections.
In contrast, a SAN is a local network of multiple devices that operates on disk blocks and uses fiber channel
interconnections.

http://wiki.apache.org/hadoop
http://hadoop.apache.org/pig/
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respectively. (4) Storage overlay is responsible for storage virtualization that provides data

accessibility and is independent of physical address of data. It converts a logical disk

address to the physical address by using metadata. (5) User interface provides users with

primitive operations and allows cloud providers to publish their capabilities, constraints,

and service prices in order to help subscribers to discover the appropriate services based

on their requirements.

Table 2.2: Intra-Cloud storage goals.

Goals Techniques (Examples) Section(s)

Performance and cost saving Combination of different storage services 2.6
Fault tolerance and availability Replication (Random replication, Copyset, MRR)

Erasure coding
2.4.1
2.4.2

Multi-tenancy Shared table (saleforce.com [112])
Shared process (Pisces [154], ElasTras [57])
Shared machine (live VM migration techniques [108])

—

Elasticity and load balancing Storage-load-aware data balancing (Dynamo, BigTable)
Access-aware data balancing ([42])

—

Goals of Intra-Cloud Storage

Table 2.2 introduces the five main goals of data-intensive applications deployment in a

single data store. These goals are as follows:

• Performance and cost saving. Efficient utilization of resources has direct influence on

cost saving since different data stores offer the pay-as-you-go model. To achieve

both these goals, a combination of storage services varying in price and perfor-

mance yields the desired performance with lower cost as compared to relying on

one type of storage service. To make an effective combination, the decision on when

and which type of storage services to use should be made based on hot- and cold-

spot statuses of data and the required QoS. Note that hot-spot data/nodes receive

many read and write requests, while clod-spot data/nodes receive a few.

• Fault tolerance and availability. Failures arise from faulty hardware and software in

two models. Byzantine model presents arbitrary behaviour and can be survived via

2 f + 1 replicas ( f is number of failures) along with non-cryptographic hashes or

cryptographic primitives. Crash-stop model silently stops the execution of nodes

and can be tolerated via data replication and erasure coding in multiple servers lo-

cated in different racks, which in turn, are in different domains. This failure model
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has two types: correlate and independent. The random placement of replicas used

in current data stores only tackles independent failures. Copyset [50] replicates an

object on a set of storage nodes to tolerate correlated failures, and multi-failure re-

silient replication (MRR) [109] places replicas of a single chunk in a group of nodes

(partitioning into different sets across DCs) to cope with both types of failure.

• Multi-tenancy. This allows users to run applications on shared hardware and soft-

ware infrastructure so that their isolated performance is guaranteed. It causes vari-

able and unpredictable performance, and multi-tenant interference and unfairness [154]

which happen to different multi-tenancy models (from the weakest to the strongest):

shared table model in which applications share the database tables, shared process

model in which applications share the database process, and shared machine model

in which applications only share the physical hardware, but they have indepen-

dent database process and VM. These models have implication on the system’s

performance for which the shared process outperforms other models [57].

• Elasticity and load balancing. Elasticity refers to expansion and consolidation of

servers during load changes in a dynamic system. It is orthogonal with load balanc-

ing in which workloads are dynamically moved from one server to another under

skewed query distribution so that all servers handle workloads almost equally . A

prevalent approach for load balancing is storage-load-aware which uses key range and

consistent hash-algorithm techniques to distribute data across storage nodes. This

approach, used by all existing cloud storage services, is not effective when data-

intensive applications experience hot- and cold-spot statuses. These applications

thus require the access-load-aware approach for load balancing [42]. Both these ap-

proaches use stop and copy migration technique (used in most key-value data store)

and live migration technique which is better in availability and response time [65]

Challenges of Intra-Cloud Storage

Table 2.3 introduces what challenges application providers confront with the deployment

of their applications within a data store. These challenges are as below:

• Unavailability of services and data lock-in. Data replication across storage nodes in

an efficient way (instead of random replica placement widely used by current data
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Table 2.3: Intra-Cloud storage challenges

Challenges Solutions Section(s)/References

Unavailability of services
and data lock-in

(i) Data replication
(ii) Erasure coding

2.4.1
2.4.2

Data transfer bottleneck (i) Workload-aware partitioning (for OLTP)
(ii) Partitioning of social graph, co-locating the
data of a user and his friends along with the topol-
ogy of DC (for social networks)
(iii) Scheduling and monitoring of data flows

[93][85]
[163][41][198]
[7][55][152]

Performance
unpredictability

(i) Data replication and redundant requests
(ii) Static and dynamic reservation of bandwidth
(iii) Centralized and distributed bandwidth
guarantee
(iv) Bandwidth guarantee based on network topol-
ogy and application communications

[158]
[154]
[20][182]
[80][20][129][73]
[97]

Data security (i) Technical solutions (encryption algorithms, au-
dit third party (ATP), digital signature)
(ii) Managerial solutions
(iii) A combination of solutions (i) and (ii)

[153]

stores) and erasure coding are used for high availability of data. Using these schemes

across data stores also mitigates data lock-in in the face of appearance of new data

store with lower price, mobility of users, and change in workload that demands

data migration.

• Data transfer bottleneck. This challenge arises when data-intensive applications are

deployed within a single data store. It reflects the optimality of data placement that

should be conducted based on the characteristics of the application as listed for

OLTP and social networks in Table 2.3. To reduce more network congestion, data

flows should be monitored in the switches, and they should be then scheduled (i)

based on the data flow prediction [55], (ii) when data congestion occurs [7], and

(iii) for integrated data flows [152] rather than individual data flow. In addition,

data aggregation [54], novel network typologies [173], and optical circuit switching

deployment [43] are other approaches to drop network congestion.

• Performance unpredictability. Shared storage services face the challenges due to multi

tenancy, like unpredictable performance and multi-tenant unfairness, which results in

degrading the response time of requests. In Table 2.3, the first two solutions solve

challenge with respect to storage, where replicas placement and selection should be

considered. The last two solutions cope the challenges related to network aspect,

where fairness in allocated network bandwidth to cloud applications and maximiz-



2.2 Overview 25

ing of network bandwidth utilization should be taken into consideration. These so-

lutions are: (i) static and dynamic reservation of bandwidth where the static ap-

proach cannot efficiently utilize bandwidth, (ii) centralized and distributed band-

width guarantee where the distributed approach is more scalable, and (iii) band-

width guarantee based on the network topology, and application communications

which is more efficient [97]. Such solutions suffer from data delivery within dead-

line, and they thus are suitable for batch applications, but not for OLTP applications

which require the completion of data flows within deadline [170].

• Data security. This is one of the strongest barriers in the adoption of public clouds to

store users’ data. It is a combination of (i) data integrity, protecting data from any

unauthorized operations; (ii) data confidentiality, keeping data secret in the storage

(iii) data availability, using data at any time and place; (iv) data privacy, allowing

data owner to selectively reveal their data; (v) data transition, detecting data leak-

age and lost during data transfer into the storage; and (vi) data location, specifying

who has jurisdiction and legislation over data in a transparent way. Many solutions

were proposed in recent decades to deal with concerns over different security as-

pects except data location where data is probably stored out of users’ control. These

solutions are not generally applicable since unlike the traditional systems with two

parties, the cloud environment includes 3 parties: users, storage services, and ven-

dors. The last party is a potential threat to the security of data since it can provide

a secondary usage for itself (e.g., advertisement purposes) or for governments.

Solutions to relieve concerns over data security in the cloud context can be tech-

nical, managerial, or both. In addition to technical solutions as listed in Table 2.3,

managerial solutions should be considered to relieve security concerns relating to

the geographical location of data. A combination of both type of solutions can be:

(i) designing location-aware algorithms for data placement as data are replicated

to reduce latency and monetary cost, (ii) providing location-proof mechanisms for

user to know the precise location of data (e.g., measuring communication latency

and determining distance), and (iii) specifying privacy acts and legislation over

data in a transparent way for users. Since these acts, legislation, and security and

privacy requirements of users are a fuzzy concept, it would be relevant to design
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a fuzzy framework in conjunction of location-aware algorithms. This helps users

to find storage services which are more secure in respect to rules applied by the

location of data.

2.2.5 Architecture, Motivations, and Challenges of Inter-Cloud Storage

To overcome the above challenges in intra-cloud storage, application providers take the

advantages of Inter-Cloud Storage deployment. This section describes the layered archi-

tecture of Inter-Cloud storage deployment along with its key benefits and challenges.

Architecture of Inter-Cloud Storage

The architecture of inter-cloud storage does not follow standard protocols. So far, several

studies exploit multiple data stores diversity for different purposes with a light focus

on the architecture of Inter-cloud storage (e.g., RACS [3] and ICStore [33] ). Spillner et

al. [157] focused more on the Inter-cloud storage architecture that allows user to select a

data store based on service cost or minimal downtime. Inspired by this architecture, we

pictorially clarify and discuss a layered inter-cloud architecture as shown in Fig. 2.4.

• Transport layer represents a simple data transport abstraction for each data store in

its underneath layer and transfers data to data store specified in the upper layer

by using its transport module. This layer implements a file system (e.g., the Linux

Filesystem in Userspace5) to provide protocol adaptor for the data store.

• Data management layer provides services for managing data across data stores and

consists of services such as load balance, replication, transaction, encryption, and

decryption. Load balance service monitors the submitted requests to each data

store and reports to replication service in order to store a new replica or write/read

the object in/from data store with the lowest load. Replication and transaction

services can be configured in the layered architecture and collaborate with each

other to provide the desired consistency. Encryption and decryption services can be

deployed to make data more secure and reduce the storage and network overheads.

• Integration layer allows user to access and manipulate the data through client library

5Filesystem in Userspace. https://en.wikipedia.org/wiki/Filesystem_in_Userspace

https://en.wikipedia.org/wiki/Filesystem_in_Userspace
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Figure 2.4: Inter-cloud storage architecture

(API), which is exploited by the client application to issue operations to data stores

(often the closest one).

• Metadata component plays as an essential component in the architecture and col-

laborates with data management layer for writing (resp. reading) objects in (resp.

from) data stores. It contains object metadata (e.g., in the form of XML) to determine

the location of object replicas and is stored by all DCs in which the application is

deployed.

As an example in Fig. 2.4, an issued Get (read) request from client library is usually

directed to the closest DC (e.g., DC1), and the requested object is searched in metadata

stored at DC. If the object exists, then the application code in VM retrieves the object from

the local data store and returns it to the client. Otherwise, the DC sends the request to DC

which hosts the object according to the metadata. For a Put (write) request, after finding

the location of replicas, first the object is written in VM’s application and the metadata

in VM is changed, and then the VM library invokes the Put in client library to store the

object in local data store via transport layer. Finally, the Put is propagated to other replicas

to guarantee eventual consistency (Put in DC2) or, in a simple way, all replicas are locked

and the Put is synchronously propagated to them to provide strong consistency (Put in

DC1).
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Motivations of Inter-Cloud Storage

Table 2.4 lists the key motivations of leveraging Geo-replicated data stores. These are as

follows:

• High availability, durability, and data lock-in avoidance. These are achievable via data

replication scheme across data stores owned by different cloud providers. A 3-

way data replication provides availability of 7 nines [116] which is adequate for

most applications. This is inadequate for protecting data against correlated failures,

while two replicas are sufficient for guarding data against independent failures [49].

Erasure coding is another way to attain higher durability even though it degrades

data availability in comparison to data replication.

• Cost benefit. Due to pricing differences across data stores and time-varying workloads,

application providers can diversify their infrastructure in terms of vendors and

locations to optimize cost. The cost optimization should be integrated with the de-

manding QoS level like availability, response time, consistency level, etc. This can

be led to a trade-off between the cost of two resources (e.g., storage vs. computing)

or the total cost optimization based on a single-/multi-QoS metrics.

• Lowe user-perceived latency. Application providers achieve lower latency through

deploying applications across multiple cloud services rather than within a single

cloud services. Applications can further decrease latency via techniques listed in

Table 2.4. In spite of these efforts, users may still observe the latency variation

which can be improved through caching data in memory [124]), issuing redundant

reads/writes to replicas [179]), and using feedback from servers and users to pre-

vent requests redirection to saturated servers [161]).6

• High data confidentiality, integrity, and auditability. Using Cryptographic protocols with

erasure coding and RAID techniques on top of multiple data stores improves security

in some aspects as deployed in HAIL [28] and DepSky [25]. In such techniques,

several concerns are important: scalability, cost of computation and storage for en-

coding data, and the decision on where the data is encoded and the keys used for

data encryption are maintained. A combination of private and public data stores

6It is worth to mention that the latency can be reduced via optimization in terms of viirtualization architec-
ture design, VM introspection, and inter-domain communication between virtual machines [45].
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Table 2.4: Inter-Cloud storage motivation.

Goals Techniques/Schemes Section(s)

High availability, durability,
and data lock-in avoidance

(i) Data replication
(ii) Erasure coding

2.4.1
2.4.2

Cost benefit (i) Exploitation of pricing differences across data stores
and time-varying workloads

2.6

Low user-perceived latency (i) Placing replicas close to users
(ii) Co-locating the data accessed by the same transactions
(iii) Determining the location and roles of replicas (master
and slave) in a quorum-based configuration [150]

—

High data confidentiality,
integrity, and auditability

(i) Cryptographic protocols with erasure coding and
RAID techniques

—

and applying these techniques across public data stores improve data protection

against both insider and outsider attackers, especially for insider ones who require

access to data in different data stores. Data placement in multiple data stores, on

the other hand, brings a side effect since different replicas are probably stored un-

der different privacy rules. Selection of data stores with similar privacy acts and

legislation rules would be relevant to alleviate this side effect.

Challenges of Inter-Cloud Storage

The deployment of data-intensive applications across data stores is faced with the key

challenges as listed in Table 2.5. These are discussed as below:

• Cloud interoperability and portability. Cloud interoperability refers to the ability of

different cloud providers to communicate with each other and agree on the data

types, SLAs, etc. Cloud portability means the ability to migrate application com-

ponents and data across cloud providers regardless of APIs, data types, and data

models. Table 2.5 lists solutions for this challenge.

• Network congestion. Operating across Geo-DCs causes network congestion which can

be time-sensitive or non time-sensitive. The former, like interactive traffic, is sensitive

to delay, while the latter, like transferring big data and backing up data, is not

so strict to delay and can be handled within deadline [193] or without deadline

[79]. The first solution for this challenge, listed in Table 2.5, is expensive, while the

second solution increases the utilization of network. The last solution is Software-

Defined Networking (SDN) [92]. SDN separates control plane that decides how to

handle network traffic, and data paths that forwards traffic based on the decision
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Table 2.5: Inter-Cloud storage challenges

Challenges Solutions Example Section(s)

Cloud interoperabiliy
and portability

Standard protocols for IaaS
Abstraction storage layer
Open API

n/a†
CASL[75]
JCloud

—

Network congestion Dedicating redundant links across DCs
Store and forward approach
Software-Defined Networking (SDN)

n/a
Postcard [66], [175]
B4 [79], [175]

—

Strong consistency and
transaction guarantee

Heavy-weight coordination protocols
Contemporary techniques

— 2.5

†n/a: not applicable,

made from control plane. All these solutions answer a part of this fundamental

question: how to schedule the data transfer so that it is completed within a deadline and

budget subject to the guaranteed network fairness and throughput for jobs that processes

the data.

• Strong consistency and transaction guarantee. Due to high communication latency be-

tween DCs, coordination across replicas to guarantee strong consistency can drive

users away. To avoid high communication latency, some data stores compromise

strong consistency at the expense of application semantics violations and stale data

observations. Others, on the other hand, provide strong consistency in the cost of

low availability. To achieve strong consistency without compromising with avail-

ability and scalability, coordination across replicas should be reduced or even elim-

inated.

Challenges of Inter-Cloud Storage

The deployment of data-intensive applications across data stores is faced with the key

challenges as listed in Table 2.5. These are discussed as below:

• Cloud interoperabiliy and portability. Cloud interoperabiliy refers to the ability of

different cloud providers to communicate with each other and agree on the data

types, SLAs, and etc. Cloud portability means the ability to migrate application

components and data across cloud providers regardless of APIs, data types, and

data models. A well-solution for cloud portability is standard protocols which

are proposed more for IaaS, not for XaaS (X: Platform, Software, and Database).

Therefore, there is a need of (i) an abstraction storage layer (e.g., CSAL [75] ) or
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open API (e.g., JCloud7 ) to make applications portable across data clouds, and (ii)

a framework (e.g., CDPort [10]) to ease data portability via a transparent layer on

top of various query interfaces, non-unified data types, and data models provided by

different data stores.

• Network congestion. Operating across Geo-DCs causes network congestion, which can

be time-sensitive or non time-sensitive. The former is sensitive to delay. Interactive

traffic, as an example of the time-sensitive traffic, can be happened in the case of

guaranteeing strong consistency across replicas. The latter traffic is not so strict

to delay, and it can be handled within deadline (e.g., Amoeba [193]) or without

deadline (B4 [79]). Transferring big data and moving backup data across DCs fall

in this category of traffic. A trivial solution for dealing with network congestion is

dedicating redundant links across DCs, but it is expensive and wasteful. A better

approach is conservatively using network bandwidth across DCs so that network

utilization increases, while the cost and time of data transferring decrease. Store and

forward is an example of such approach in which the data is split into chunks that

are scheduled during long periods, over multiple paths and multiple intermediate

DCs within a path. By deploying this approach, NetStitcher [96] increases network

utilization, Postcard [66] minimizes the cost of data transferring, and Wu. et al.

[175] maximize the network utilization while the transfer of data is guaranteed

within the deadline.

To make more effective reduction of network congestion and improvement of data

transmission across DCs, traffic engineering techniques recently deployed Software-

Defined Networking (SDN) [92]. SDN separates control plane that decides how to

handle network traffic, and data paths that forwards traffic based on the decision

made from control plane. For example, B4 [79] deployed by Google’s Inter-DC

WAN and the architecture studied the transfer of Big data across DCs [175], work

based on SDN to improve the utilization of Inter-DCs WAN. These studies try to

answer a part of this fundamental question: how to schedule the data transfer so

that it is completed within a deadline and budget subject to the guaranteed net-

work performance (e.g., fairness and throughput) for users or jobs that processes

7JCloud project. https://jclouds.apache.org/

https://jclouds.apache.org/
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the data.

• Strong consistency and transaction guarantee. Due to considerably high communica-

tion latency between DCs, coordination across replicas to guarantee strong consis-

tency can drive users away. To avoid such coordination, one class of data stores

compromises strong consistency in the expense of application semantics violations

and stale data observations. In contrast, another class of data stores provides strong

consistency in the cost of low availability and scalability which are in conflict with

the key objective of data stores. To achieve strong consistency without scarifying

the objective of data stores (i.e., high availability and scalability), the need to coor-

dination across replicas should be reduced or even eliminated (See Section 2.5).

2.3 Data model

Data model reflects that how data is logically organized, stored, retrieved, and updated

in data stores. We thus study it from different aspects and map data stores to the provided

data model taxonomy in Fig. 2.5.

2.3.1 Data structure

Data structure affects the speed of assimilation and information retrieving. It has three

categories. (i) Structured data refers to data that defines the relation between the fields
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specified with a name and value, e.g., RDBs. It supports a comprehensive query and

transaction processing facilities. (ii) Semi-structured is associated with the special form of

structured data with a specific schema known for its application and database deploy-

ments (e.g., document and extensible DBs). It supports simple query (e.g., primitive op-

erations) and transaction facilities as compared to structured data. (iii) Unstructured data

refers to data that have neither pre-defined data model nor organized in a pre-defined

way (e.g., video, audio, and heavy-text files). It takes the simplest data access model, i.e.,

key-value, that delivers high scalability and performance at the cost of sacrificing data

consistency semantic and transaction support.

In these logical data structures, data is internally organized row-by-row, column-by-

column closely related to database normalization, or combination of both schemes- called

hybrid – within a block. Structured data can be organized in all schemes, semi-structured

in row-by-row and hybrid schemes, and Unstructured data in a row-by-row scheme.

2.3.2 Data abstraction

This refers to different levels of storage abstraction in data stores. These levels are as

below:

1. Block-level provides the fastest access to data for virtual machine (VM). It is clas-

sified into (i) directed-attached storage coming with a VM that provides highly se-

quential I/O performance with a low cost, and (ii) block storage that pairs with a

VM as a local disk.

2. File-level is the most common form of data abstraction due to its ease of manage-

ment via simple API. It is provided in the forms of (i) object storage that enables

users to store large binary objects anywhere and anytime, and (ii) online drive stor-

age that provides users with folders on the Internet as storage.

3. Database mode offers storage in the forms of relational data store and semi-structured

data storage which respectively provide users with RDB and NoSQL/NewSQL

databases. RDB exploiting the SQL standard does not scale easily to serve large

web applications but guarantees strong consistency. In contrast, NoSQL provides

horizontal scalability by means of shared nothing, replicating, and partitioning

data over many servers for simple operations. In fact, it preserves BASE (Basically
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Available, Soft state, Eventually consistent) properties instead of ACID ones in or-

der to achieve higher performance and scalability. NewSQL– as a combination of

RDB and NoSQL– targets delivering the scalability similar to NoSQL, meanwhile

maintaining ACID properties.

Table 2.6: Comparison between different storage abstractions.

Ease of use† Scalability Performance†† Cost [Applicability]

File-level File-level Block-level Block-level [OLAP applications]
Database mode Block-level Database mode Database mode [OLTP with low latency queries]
Block-level Database-mode File-level File-level [Backup data and web content static]

† The levels of storage abstract are listed from high to low for each aspect listed in each column. †† Performance is
defined in terms of accessibility.

Table 2.6 compares different levels of storage abstractions in several aspects as well as

their applicability. This comparison indicates that as the storage abstraction (ease of use)

level increases, the cost and performance of storage reduce.

2.3.3 Data access model

This reflects storing and accessing model of data that affect on consistency and transac-

tion management. It has four categories as below:

1. Key-value database stores keys and values which are indexed by keys. It supports

primitive operations and high scalability via keys distribution over servers. Data

can be retrieved from the data store based on more than one attribute if additional

key-value indexes are maintained.

2. Document database stores all kinds of documents indexed in the traditional sense

and provides primitive operations without ACID guarantee. It thus supports even-

tual consistency and achieves scalability via asynchronous replication, shard (i.e., hor-

izontal partition of data in the database), or both.

3. Extensible record database is analogous to table in which columns are grouped, and

rows are split and distributed on storage nodes [37] based on the primary key

range as a tablet representing the unit of distribution and load balancing. Each

cell of the table contains multiple versions of the same data that are indexed in

decreasing timestamps order, thereby the most recent version can always read

first [142]. This scheme is called NewSQL which is equivalent with entity group
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in Megastore, shard in Spanner, and directory in F1 [155].

4. Relational database (RDB) has a comprehensive pre-defined scheme and provides

manipulation of data through SQL interface that supports ACID properties. Ex-

cept for small-scope transactions, RDB cannot scale the same as NoSQL.

Table 2.7: Comparison between different databases.

Database Simplicity Flexibility Scalability Properties Data Structure Application [Query] type
key-value High High High – Unstructured OLAP [Simple]
Document High Moderate Moderate BASE Semi-structured OLAP [Moderate]
Extensible record High High High ACID Structured OLTP [Moderate, repetitive]
Relational Low Low Low ACID Structured OLTP [Complex]

Table 2.7 compares NoSQL (i.e., the first three databases) and relational databases

in several aspects and indicates which type of application and query can deploy these

databases. NoSQL databases offer horizontal scalability and high availability compared

to the relational databases by scarifying consistency semantic and query processing which

respectively make them unsuitable for the deployment of OLTP and OLAP applications.

To simultaneously achieve strong consistency and scalability for OLTP applications, it is

vital to carefully partition data within and especially across data stores and to use the

mechanisms that exempt or minimize the coordination across transactions. The rarely

use of these databases has also several limitations relating to big data for OLAP appli-

cations. All these disk-based data stores cannot suitably facilitate OLAP applications in

the concept of velocity and thus most commercial vendors combine them with in-memory

NoSQL/relational data stores (e.g., Memcached8, Redis9 and RAMCloud [139]) to further

improve performance. In terms of variety, OLAP applications receive data with different

formats which require a platform to translate them into a canonical format. OLAP appli-

cations can combat the remaining limitations (i.e., veracity and value) in the face of large

data volumes via designing indexes to retrieve data from data stores. It would be efficient

to design such indexes with low time and space complexity using hash- and tree-based

methods.

8Memcached project. https://memcached.org/
9Redis project. https://redis.io/

https://memcached.org/
https://redis.io/
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Table 2.8: Comparison between replication models.

Replication Models Advantages Disadvantages

State machine replication† Failure transparency
Abort-free

Low throughput for RW transactions
Low scalability for RW transactions

Deferred-update
replication†† High throughput and scal-

ability for RO transactions.
Stale data
Replica divergence

† It is also called active replication.
†† Sate machine replication and deferred-update replication provide linearizability and non-linearizability consis-
tency semantic.

2.4 Data Dispersion

This section discusses data dispersion schemes as shown in Fig. 2.1.

2.4.1 Data replication

Data replication improves availability, performance (via serving requests by different

replicas), and user-perceived latency (by assigning requests to the closest replica) at the

cost of replicas coordination and storage overheads. This is affected by facets of data

replication based on the taxonomy in Fig. 2.6.
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Data replication model

There are two replication models for fault tolerant data stores [128]: The model is state

machine replication (SMR) in which all replicas receive and process all operations in a de-

terministic way (in the same order) using atomic broadcast in which all replicas receive the

same set of updates in the same order. This implies SMR is abort-free and failure trans-

parency which means if a replica fails to process some operations those are still processed

in other replicas. However, SMR has low throughput and scalability for read and write

(RW) transactions since all servers process each transaction. Thus, the scalability and

throughput are confined by the processing power of a server. Scalable-SMR (S-SMR) [26]

solves this issue across data stores via (i) partitioning database and replicating each par-

tition, and (ii) using cache techniques to reduce communication between partitions with-

out compromising consistency. SMR and S-SMR are suitable for contention-intensive and

irrevocable transactions that require abort-free execution.

The second model is Deferred-update replication (DUR). It resembles single-/multi

master replication and scales better than SMR due to locally executing RW transactions

on a server and then propagating updates to other servers. Thus, in DUR, the RW trans-

actions do not scale with the number of replicas in comparison to the read-only (RO)

transactions executed only on a server without communication across servers by using

a multiversion technique. Scalable-DUR (S-DUR) [145] and Parallel-DUR (P-DUR) [126]

allow update transactions to scale with the number of servers and the number of cores

available for a replica respectively. In respect to pros and cons summarized in Table 2.8,

the scalability and throughput of transactions can be improved through borrowing the

parallelism in DUR and abort-free feature in SMR [89].

Data replication degree

Data replication can be either partial or full. In partial (resp. full) replication each node

hosts a portion (resp. all) of data items. For example, in the context of Geo-DCs, partial

(resp. full) replication means that certain (resp. all) DCs contain a replica of certain (resp.

all) data items.

Table 2.9 shows that partial replication outperforms full replication in storage services
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Table 2.9: Comparison between full and partial replications.

Properties Comparison Reason/Description

Scalability Partial > Full Due to access to a subset of DCs not all DCs
Complexity Partial > Full Due to the requirement for the exact knowledge where data reside
Storage Cost Partial < Full Due to data replication in a subset of data stores

Applicability Partial > Full If read requests come a specific DCs, or when objects are write-intensive
Partial < Full If read requests come from all DCs, or when transactions are global

cost due to access to a subset of data stores deployed across DCs. It is also better than

full replication in scalability because full replication is restricted by the capacity of each

replica that certifies and processes transactions. These advantages demand more com-

plex mechanisms for consistency and transaction support in partial replication, which

potentially degrades response time. Many partial replication protocols provide such

mechanisms at the expense of communication cost same as full replication [15]. This

is due to unpredictable overlapping transactions in which the start time of transaction Ti

is less than the commit time of transaction Tj and the intersection of write set Ti and Tj

is not empty. The deployment of genuine partial replication solves such issue and enforces

a transaction to involve only the subset of servers/DCs containing the desired replicas

for coordination. In terms of applicability, partial and full replication is more suitable for

write-intensive objects (due to submitting each request to a subset of DCs [151]) and for

execution of global (multi-shard) transactions respectively.

Therefore, the characteristics of workload and the number of DCs are main factors

in making a decision on what data replication degree should be selected. If the number of

DCs is small, full replication is preferable; otherwise, if global transactions access few

DCs, partial replication is a better choice.

Data replication granularity

This defines the level of data unit that is replicated, manipulated, and synchronized in

data stores. Replication granularity has two types: single row and multi-row/shard. The

former naturally provides horizontal data partitioning, thereby allowing high availability

and scalability in data store like Bigtable, PNUTS, and Dynamo. The latter is the first step

beyond single row granularity for new generation web-applications that require to attain

both high scalability of NoSQL and ACID properties of RDBs (i.e., NewSQL features).
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This type of granularity has an essential effect on the scalability of transactions.

Update propagation

This reflects when updates take place and is either eager/synchronous or lazy/asynchronous.

In eager propagation, the committed data is simultaneously conducted on all replicas,

while in lazy propagation the changes are first applied on master replica and then on

slave replicas. Eager propagation is applicable on a single data store like SQL Azure

[36] and Amazon RDS, but it is hardly feasible across data stores due to response time

degradation and network bottleneck. In contrast, lazy propagation is widely used across

data stores (e.g., Cassandra) to improve response time.

Update initiation

This refers to where updates are executed in the first place. Three approaches for update

initiation are discussed as below:

Single master approach deploys a replica at the closest distance to the user or a replica

receiving the most updates as master replica. All updates are first submitted to the master

replica and then are propagated either eagerly or lazily to other replicas. In single master

with lazy propagation, replicas receive the updates in the same order accepted in the

master and might miss the latest versions of updates until the next re-propagation by the

master. Single master approach has advantages and disadvantages as listed in Table 2.10.

These issues can be mitigated somehow by multi-master approach in which every replica

can accept update operations for processing and in turn propagates the updated data

to other replicas either eagerly or lazily. Thus, this approach increases the throughput

of read and write transactions at the cost of stale data, while replicas might receive the

updates in the different order which results in replicas divergence and thus the need for

conflict resolution.

Quorum approach provides a protocol for availability vs. consistency in which writes

are sent to a write set/quorum of replicas and reads are submitted to a read quorum

of replicas. The set of read quorum and write quorum can be different and both sets

share a replica as coordinator/leader. The reads and writes are submitted to a coordinator
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replica which is a single master or multi-master. This protocol suffers from the disadvan-

tages in determining the coordinator location and the quorum of write and read replicas

as addressed when workload changes [150]. Though this classical approach guarantees

strong consistency, many Geo-replicated data stores like Cassandra, Dynamo, Riak10, and

Voldemort11 achieve higher availability at a cost of weaker consistency via its adaptable

version in which a read/write is sent to all replicas and is considered successful if the

acknowledgements are received from a quorum (i.e., majority) of replicas. This adapted

protocol is configured with write (W) and read quorum (R) in synchronous writes and

reads. The configuration is determined in (i) strict quorum in which any two quorums

have non-empty intersection (i.e., W + R > N, where N is the number of replicas) to pro-

vide strong consistency, and (ii) partial quorum in which at least two quorums should not

overlap (i.e., W + R < N) to support weak consistency. Generally speaking, (i) a raise

in W
R improves the consistency, and (ii) a raise in W reduces availability and increases

durability.

Replica placement

This is related to the mechanism of replica placement in data store and is composed of

four categories. (1) Hash mechanism is intuitively understood as a random placement and

determines the placement of objects based on the hashing outcome (e.g., Cassandra). It

effectively balances the load in the system, however it is not effective for a transactional

data store that requires co-located multiple data items. (2) Closest mechanism replicates

a data item in the node which receives the most requests for this data item. Although

closest mechanism decreases the traffic in the system, it is not efficient for a transactional

data store because the related data accessed by a transaction might be placed in different

locations. (3) Multiget [124] seeks to place the associated data in the same location without

considering the localized data serving. (4) Associated data placement (ADP) [188] makes the

strike between closest and Multiget mechanisms.

As discussed above, using each strategy differed on various aspects of replication can

affect the response time, complexity of consistency and transaction, and monetary cost.

10Riak NoSQL Database. http://docs.basho.com/riak/kv/2.1.4/learn/why-riak-kv/
11Voldemort project. http://www.project-voldemort.com/voldemort/

http://docs.basho.com/riak/kv/2.1.4/learn/why-riak-kv/
http://www.project-voldemort.com/voldemort/
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Among these, the key challenge is the coordination between replicas without compromis-

ing response time (i.e., consistency-latency trade-off), which depends on update initiation

and propagation, as discussed in Table 2.10.

Table 2.10: Consistency-latency tradeoff of different replication techniques.

Technique Synchronous propagation Asynchronous propagation

Single master Case 1:
• Latency is high especially across DCs
and is constrained by the slowest DC.
• Strong consistency is guaranteed, no
matter reads are performed on which
replica.
• Latency source is the latency within (is
very small) and across DCs.
• This trades response time for consis-
tency.

Case 2:
• Latency is lower than that in Case 1.
• If reads are submitted to the master
replica, then consistency is guaranteed
and latency increases. Otherwise, the
trend for consistency and latency is re-
verse.
• Latency source are: (i) routing reads to
master replica, and (ii) waiting time in
queue for serving reads and recovery time
for probable failed master replica.
• Both aspects of consistency-latency
trade-off are achievable.

Multi master Case 3:
• It incurs latency the same as that in syn-
chronous single master strategy, though
to roughly lesser degrees.
• Strong consistency is guaranteed, no
matter where reads are submitted.
• Latency source is the same as in Case
1 plus conflict detection and resolution
time.
• This trades consistency for latency.

Case 4:
• Latency is less than that in Case 3, and
roughly in Case 2.
• The trade between consistency and la-
tency is similar to that in Case 2.
• Latency source is the same as that in
Case 2.

Quorum-based Case 5:
• If reads are submitted to synchronous
updated replica precipitated in quorum,
then consistency is guaranteed but la-
tency is high.
• Latency source is similar to that in Case
2.
• This trades consistency for latency.

Case 6:
• If reads are submitted to asynchronous
updated replica precipitated in quorum,
then consistency is not guaranteed.
• Latency source is the same as that in
Case 2.

2.4.2 Erasure coding

Cloud file system uses erasure coding to reduce storage cost and to improve availability

as compared to data replication. A (k, m)-erasure coding divides an object into k equally

sized chunks that hold original data along with m extra chunks that contain data coding

(parity). All these chunks are stored into n = k + m disks which increases the storage
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overhead by a factor of 1/r = k/n < 1 and tolerates m faults, as opposed to m− 1 faults

for m−way data replication with a factor of m− 1 storage overhead. For example, a (3,2)-

erasure coding tolerates 2 failed replicas with a 2/3(=66%) storage overhead as compared

to 3-way replication with the same fault tolerance and a 200% storage overhead. To use

erasure coding as an alternative to data replication, we need to investigate it in the fol-

lowing aspects as shown in Fig. 2.7.

Model

Erasure coding has two models. Systematic model consists of (original) data and parity

chunks which are separately stored in n−m and m storage nodes. Non-systematic model

includes the coded data (not original data) which are stored in n nodes. Systematic and

non-systematic codes are respectively relevant for archival and data-intensive applica-

tions due to respectively low and high rate of reads. Systematic codes seem more suitable

for data stores because they decode data when a portion of data is unavailable. Compar-

atively, non-systematic codes decode data whenever data are retrieved due to storing the

coded data not the original data. This may degrade the response time.

Structural class

This represents the reconstruct-ability of code that is largely reliant on erasure coding rate

(i.e., r), including two classes. The first class is (k,m)-maximum distance separable (MDS)

code in which the data is equally divided into k chunks which are stored in n = k + m
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storage nodes. A (k,m)-MDS code tolerates any m of n failed nodes and rebuilds the

unavailable data from any k surviving nodes, known as MDS-property. A MDS code is

optimal in terms of reliability vs. storage overhead while it incurs significant recovery

overheads to repair failed nodes. The second class is non-MDS code. Any code that is

not MDS code is called non-MDS code. This code tolerates less than m failed nodes and

typically rebuilds the failed nodes from less than k surviving nodes. Thus, compared

to MDS codes, non-MDS codes are (i) more economical in network cost to rebuild the

failed nodes, which makes them more suitable for deploying across data stores and (ii)

less efficient in the storage cost and fault-tolerance.

Performance metrics

Erasure coding is evaluated based on the following performance metrics that have re-

ceived significant attention in the context of cloud.

(1) Recovery refers to the amount of data retrieving from disk to rebuild a failed data

chunk. Recovery is important in the below aspects.

• Recovery model in which a failed storage node is recovered through survivor nodes

has three models [160]. The first is exact-repair in which the failed nodes are exactly

recovered, thus lost parity with their exact original data are restored. The second

is partial exact-repair in which the data nodes are fixed exactly and parity nodes

are repaired in a functional manner by using random-network-coding framework

[62]. This framework allows to repair a node via retrieving functions of stored

data instead of subset of stored data so that the code property (e.g., MDS-property)

is maintained. The third is functional repair in which the recovered nodes contain

different data from that of the failed nodes while the recovered system preserves

the MDS-code property. Workload characteristics and the deployed code model

determine which recovery model satisfies the application requirements. Exact- and

partial exact-repair are appropriate for archival applications while functional repair

is suitable for non-secure sensitive applications because it requires the dynamics of

repairing and decoding rules that results in information leakage.

• Recovery cost is the total number of required chunks to rebuild a failed data chunk.

It consists of disk traffic and network traffic affected by network topology and repli-
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cation policy [197]. Recently, the trade-off between recovery cost and storage cost

takes considerable attention in the context of cloud as discussed below.

A (k,m)-Reed-Solomon (RS) code contains k data chunks and m parity chunks,

where each parity chunk is computed from k chunks. When a data chunk is un-

available, there is always a need of any subset of k chunks form m + k chunks,

as recovery cost, to rebuild the data chunk. This code is used in Google Colos-

susFS [69] and Facebook HDFS [122] within a DC (a XOR-based code–using pure

XOR operation during coding computation– across DCs). In spite of the RS code

optimality in reliability vs. storage overhead, it is still unprofitable due to high

bandwidth requirements within and across data stores. Hitchhiker [136] mitigates

this issue without compromise on storage cost and fault tolerance throughout the

adapted RS code in which a single strip RS code is divided into two correlated

sub-stripes.

Similar to MDS-code, regenerating and non-MDS codes [176] alleviate the network

and disk traffics. Regenerating codes aim at the optimal trade-off between storage

and recovery cost and come with two optimal options [135]. The first is the min-

imum storage regenerating (MSR) codes which minimize the recovery cost keeping

the storage overheads the same as that in MDS codes. NCCloud [44] uses functional

MSR, as a non-systematic code, and maintains the same fault tolerance and storage

overhead as in RAID-6. It also lowers recovery cost when data migrations happen

across data stores due to either transition or permanent failures. The second is the

minimum bandwidth regenerating (MBR) codes that further minimize the recovery

cost since they allow each node to store more data.

A (k, l, r)− Local Reconstruction Code (LRC) [77] divides k data blocks into l local

groups and creates a local parity for each local group and r = k
l global parities. The

number of failure it can tolerate is between r + 1 and r + l. HDFS-Xorbas [144]

exploits LRC to make a reduction of 2x in the recovery cost at the expense of 14%

more storage cost. HACFS [180] code also uses LRC to provide a fast code with low

recovery cost for hot data and exploits Product Code (PC) [137]) to offer a compact

code with low storage cost for cold data. Table 2.11 compares RS-code and LRC,

used in current data stores, with data replication in the main performance metrics.
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• Recovery time refers to the amount of time to read data from disk and transfer it

within and across data stores during recovery. As recovery time increases, response

time grows, resulting in notorious effect on the data availability. Erasure codes can

improve recovery time trough two approaches. First, erasure codes should reduce

network and disk traffics to which RS codes are inefficient as they read all data

blocks for recovery. However, rotated RS [87] codes are effective due to reading the

requested data only. LRC and XOR-base [136] codes are also viable solutions to

decrease recovery time. Second, erasure codes should avoid retrieving data from

hot nodes for recovery by replicating hot nodes’ data to cold nodes or caching those

data in dynamic RAM or solid-state drive.

(2) Response time indicates the delay of reading (resp. writing) data from (resp. in)

data store and can be improved through the following methods. (i) Redundant requests

simultaneously read (resp. write) n coded chunks to retrieve (resp. store) k parity chunks

[147]. (ii) Adaptive batching of requests makes a trade-off between delay and throughput,

as exploited by S3 (Simple Storage Service) and WAS [118]. (iii) Deploying erasure codes

across multiple data stores improves availability and reduces latency. Fast Cloud [103] and

TOFEC [104] use the first two methods to make a trade-off between throughput and

delay in key-value data stores as workload changes dynamically. Response time met-

ric is orthogonal to data monetary cost optimization and is dependent on three factors:

scheduling read/write requests, the location of chunks, and parameters that determine

the number of data chunks. Xiang et al. [181] considered these factors and investigated a

trade-off between latency and storage cost within a data store.

(3) Reliability indicates the mean time to data loss (MTTDL). It is estimated by standard

Markov model and is influenced by the speed of block recovery [144] and the number

of failed blocks that can be handled before data loss. LRCs are better in reliability than

RS codes, which in turn, are more reliable than replication [77] with the same failure

tolerance. As already discussed, failures in data stores can be independent or correlated. To

relieve the later failure, the parity chunks should be placed in different racks located in

different domains.
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Data access type

There are two approaches to access chunks of the coded data: unique key and shared key

[104], in which a key is allocated to a chunk of coded data and the whole coded data

respectively. These approaches can be compared in three aspects. (1) Storage cost: both

approaches are almost the same in the storage cost for writing into a file. In contrast, for

reading chunks, shared key is more cost-effective than unique key. (2) Diversity in delay:

with unique key, each chunk, treated as an individual object, can be replicated in different

storage units (i.e., server, rack, and DC). With shared key, chunks are combined into an

object and very likely stored in the same storage unit. Thus, in unique (resp. shared) key,

there is low (resp. high) correlation in the access delay for different chunks. (3) Universal

support: unique key is supported by all data stores, while shared key requires advanced

APIs with the capability of partial reads and writes (e.g., S3).

2.4.3 Hybrid scheme

Hybrid scheme is a combination of data replication and erasure coding schemes to retain

the advantages of these schemes while avoiding their disadvantages for data redundancy

within and across data stores. Table 2.11 compares two common schemes in performance

metrics to which three factors contribute into when and which scheme should be de-

ployed: Access rate (AR) to objects, object size (OS), price (Pr) and performance (Pe) of

data stores.

These factors have a significant effect on the storage overhead, recovery cost, and read/write

latency. As indicated in Table 2.11, replication incurs storage overhead more than erasure

coding especially for large objects, while it requires less recovery cost due to retriev-

ing the replica from a single server/data store instead of fragmented objects from mul-

tiple servers/data stores. Erasure coding is more profitable in read/write latency (i) for

cold-spot objects since update operations require re-coding the whole object, and (ii) for

large objects because the fragmented objects can be accessed in parallel from multiple

server/data stores. For the same reasons, replication is more efficient for hot-spot objects

with small size like metadata objects. Thus, cold-spot objects with large size should be

distributed across cost-effective data stores in the form of erasure coding, and hot-spot
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objects with small size across performance-efficient data stores in the form of replication.

We classify the hybrid scheme into two categories. (i) Simple hybrid stores an object in

the form of either replication or erasure coding (ROC) or replication and erasure coding

(RAC) during its lifetime. (ii) Replicated erasure coding contains replicas of each chunk

of coded objects and its common form is double coding which stores two replicas of each

coded chunk of object. Compared to ROC, double coding and RAC increase storage

cost two times, but they are better in availability and bandwidth cost due to retrieving

the lost chunk of the object from the server which has a redundant copy. Table 2.12

summarizes projects using common redundancy or hybrid schemes. Neither workload

characteristics nor data stores diversity (in performance and cost) are fully deployed in

these projects using hybrid scheme. It is an open question to investigate the effect of these

characteristics and diversities on the two categories of hybrid scheme.

Table 2.11: Comparison between Replication and Erasure Coding schemes.

Schemes Availability Durability Recovery
Storage
Overhead

Repair
Traffic Read/Write latency

Replication High Low Easy >1X =1X Low for hot-spot ob-
jects with small size

Erasure Coding Low High Hard <1X >1X Low for cold-spot ob-
jects with large size

Table 2.12: Comparison between the state-of-the-art projects using diferent redundancy
schemes.

Projects
Redundancy
Scheme

Contributing
Factors Objective(s)

DepSky [25] Replication AR†, Pr High availability, integrity, and confidentiality
Spanner [177] Replication OS, AR, Pr Cost optimization and guaranteed availability
CosTLO [179] Replication OS, AR, Pe Optimization of variance latency
SafeStore [90] Erasure coding AR, Pr Cost optimization
RACS [3] Erasure Coding AR Cost optimization and vendor-lock in
HAIL [28] RAID technique n/a High availability and integrity
NCCloud [44]) Network Codes n/a Recovery cost optimization of lost data
CDStore [100] Reed-Solomon n/a Cost optimization, security and reliability
CAROM [114] Hybrid (RAC) AR Cost optimization
CHARM [195] Hybrid (ROC) AR, Pr Cost optimization and guaranteed availability
HyRD [117] Hybrid (ROC) OS, Pr, Pe Cost and latency optimization

† n/a: (not applicable), OS: (object size), AR: (access rate), Pr: (price), and Pe (performance).
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Figure 2.8: Data consistency taxonomy

2.5 Data Consistency

Data consistency means that data values remain the same for all replicas of a data item

after an update operation. It is investigated in three main aspects, level, metric, and model,

as shown in Fig. 2.8. This section first describes different consistency levels and their

pros and cons (Section 2.5.1). Then it defines the consistency metrics to determine how

much a consistency semantic/model is stronger than another (Section 2.5.2). Finally, it

discusses consistency models from the user-perspective (Section 2.5.3) and from the data

store perspectives– weak consistency (Sections 2.5.4 and 2.5.5 ) and adaptive consistency

(Section 2.5.6).

2.5.1 Consistency level

Distributed data stores rely on different levels of data consistency [11], as shown in Fig.

2.8.

I/O-level consistency allows a clear separation between low-level storage and appli-

cation logic. It simplifies the development of the application and the complexity of dis-

tributed programming. However, I/O-level consistency requires conservative assump-

tions like concurrent write-write and read-write on the same data, resulting in ineffi-

ciency. It should also execute writes and reads in a serial order due to its unawareness of



2.5 Data Consistency 49

the application semantics. We focus on this level of consistency in this chapter.

application-level consistency exploits the semantics of the application to ensure the con-

creteness of invariants12 without incurring the cost of coordination among operations.

Thus, it imposes a burden on the developers and sacrifices the generality/reusability of

the application code.

Object-level consistency makes a trade-off between efficiency and reusability respec-

tively degraded by I/O- and application-level consistency. It provides the convergence

of replicas to the same value without any need of synchronization across replicas via

Conflicted-free Replicated Data Types (CRDTs) [149] in which the value of objects can

change in an associative, commutative, and idempotent fashion. Though object-level con-

sistency removes concerns of the reusability of application-level consistency, it requires

mapping the properties of the application to invariants over objects by developers.

Flow-level consistency is an extension of object-level consistency and requires a model

to obtain both the semantic properties of dataflow component and the dependency between

interacting components.13 Some components are insensitive to message order delivery as

a semantic property,14 and they are confluent and produce the same set of outputs under

all ordering of their inputs [12]. Flow-level consistency demands manual definition for

confluent components, resulting in error-prone. But it is more powerful than object-level

consistency and it has more applicability than object- and language-level consistency.

Indigo [19] exploits flow-level consistency based on confluent components which contain

the application-specific correctness rules that should be met.

Finally, language-level consistency integrates the semantics and dependencies of the

application and maintains a long history of invariants to avoid distributed coordination

across replicas. The CALM principle [13] shows a strong connection between the need

of distributed coordination across replicas and logical monotonicity. Bloom language [13]

deploys this principle and translates logical monotonicity into a practical program that is

expressible via selection, projection, join, and recursion operations. This class of program,

12The term invariant refers to a property that is never violated (e.g., primary key, foreign key, a defined
constraint for the application- e.g., an account balance x ≥ 0).

13A component is a logical unit of computing and storage and receives streams of inputs and produces
streams of outputs. The output of a component is the input for other components, and these streams of
inputs and outputs implement the flow of data between different services in an application.

14The semantic property is defined by application developers. For example, developers determine confluent
and non-confluent path between components based on analysis of a component’s input/output behaviour.
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called monotonic program,15 provides output as it receives input elements, and thus guar-

antees eventual consistency under any order of inputs set. Unlike Bloom, QUELEA lan-

guage [156] maps operations to a fine-grained consistency levels such as eventual, causal,

and ordering and transaction isolation levels like read committed (RC), repeatable read (RR)

[22], and monotonic atomic view (MAV) [17].

2.5.2 Consistency metric

This determines how much a consistency model is stronger than another and is catego-

rized into discrete and continuous from data store perspective (i.e., data-centric) and user

perspective (i.e., client-centric).

Discrete metrics are measured with the maximum number of time unit (termed by t-

metric) and data version (termed by v-metric). As shown in Fig. 2.8, they are classified into

three metrics [14]: (i) Safeness mandates that if a read is not concurrent with any writes,

then the most recent written value is retrieved. Otherwise, the read returns any value.

(ii) Regularity enforces that a read concurrent with some writes returns either the value

of the most recent write or concurrent write. It also holds safeness property. (iii) Atomicity

ensures the value of the most recent write for every concurrent or non-concurrent read

with write.

Continuous metrics, shown in Fig. 2.8, are defined based on staleness and ordering. The

former metric is expressed in either t-visibility or k-staleness with the unit of probabil-

ity distribution of time and version lag respectively. The latter one is measured as (i) the

number of violations per time unit from data-centric perspective and (ii) the probability dis-

15Non-monotonic program contains aggregation and negation queries, and this type of program is imple-
mentable via block algorithms that generate output when they receive the entire inputs set.
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tribution of violations in the forms of MR-, MW-, RYW-, WFR-violation from client-centric

perspective as discussed later.

2.5.3 Consistency model

This is classified into two categories: user- and data-centric which respectively are vital to

application and system developers [162].

User-centric consistency model is classified into four categories as shown in Fig. 2.8.

Monotonic Read (MR) guarantees that a user observing a particular value for the object

will never read any previous value of that object afterwards [189]. Monotonic Write (MW)

enforces that updates issued by a user are performed on the data based on the arrival

time of updates to the data store. Read Your Write (RYW) mandates that the effects of all

writes issued by users are visible to their subsequent readers. Write Follows Read (WFR)

guarantees that whenever users have recently read the updated data with version n, then

the following updates are applied only on replicas with a version≥ n. Pipelined Random

Access Memory (PRAM) is the combination of MR-, MW-, and RYW-consistency and

guarantees the serialization in both of reads and writes within a session. Brantner et al.

[29] designed a framework to provide these client-centric consistency models and the

atomic transaction on Amazon S3. Also, Bermbach et al. [23] proposed a middle-ware on

eventually consistent data stores to provide MR- and RYW-consistency.

Data-centric consistency aims at coordinating all replicas from the internal state of data

store perspective. It is classified into three models. Weak consistency offers low latency

and high availability in the presence of network partitions and guarantees safeness and

regularity. But it causes a complicated burden on the application developers and caters

the user with the updated data with a delay time called inconsistency window (ICW). In

contrast, strong consistency guarantees simple semantics for the developer and atomicity.

But it suffers from long latency which is eight times more than that of weak consistency,

and consequently its performance in reads and writes diverges by more than two orders

of magnitude [164]. Adaptive consistency is switching between a range of weak and strong

consistency models based on the application requirements/constraints like availability,

partition tolerance, and consistency.

The consistency (C) model has a determining effect on achieving availability (A) and
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Figure 2.11: Weak consistency taxonomy

partition tolerance (P). Based on the CAP theorem [71], data stores provide only two of

these three properties. In fact, data stores offer only CA, CP, or AP properties, where CA

in CAP is a better choice within a data store due to rare network partition, and AP in

CAP is a preferred choice across data stores (see Fig. 2.9). Recently, Abadi [1] redefined

CAP as PACELC in order to include latency (L) that has a direct influence on monetary

profit and response time, especially across data stores, where the latency between DCs

might be high. The term PACELC means that if there is a network partition (P) then there

is a choice between A and C for designers, else (E) the choice is between L and C (see Fig.

2.10).

2.5.4 Eventual consistency

In this section, we first define the eventual consistency model (Section2.5.4). Then, we

discuss how this model is implemented and describe how the conflicts that arise from

this model are solved (Section2.5.4).

Definition

Eventual consistency is defined as all replicas eventually converge to the last update

value. It purely supports liveness which enforces that all replicas eventually converge

based on the operations order, while lacking safety which determines the correct effects

of operations] and leads to incorrect intermediate results. The safety property is assessed

in terms t-visibility and k-staleness as inconsistency window (ICW) which is affected by the
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communication latency, system load, and replicas number. Probabilistically Bounded Stale-

ness (PSB) predicts the expected ICW to measure how far data store’s behaviour deviates

from that of strongly consistent data store [18]. Based on PSB, eventual consistency under

partial quorum replication is “good enough” in data freshness while providing a consid-

erable reduction in latency; as confirmed for S3 [24] and Cassandra [134].

Implementation

Eventual consistency-based data stores employ optimistic/lazy replication in which (i)

the operation is typically submitted to the closest replica and logged/remembered for

the propagation to other replicas later, and (ii) replicas exchange the operation or the

effect of operation among each other via epidemic/gossip protocol [61] in the background

[141]. Operations are partially ordered by deploying vector clocks. This leads to data

conflicts which happen as operations are simultaneously submitted to the same data in

multi-master systems.

There are four approaches to deal with conflicts. (i) Conflict detection approaches

strengthen the application semantic and avoid the problems arising from ignoring con-

flicts. These approaches are classified into syntactic and semantic [141]. The syntactic

approach relies on logical or physical clock, whereas the semantic approach works based

on the semantic knowledge of operations such as invariants, commuting updates (i.e.,

CRDTs), and pre-defined procedure. (ii) Conflicts prohibition is attainable via blocking or

aborting operations and using a single master replica, which comes at the expense of low

availability. (iii) Conflicts ignorance and reduction are achievable by the following conflict

resolution techniques (Fig. 2.11) to guarantee safety.

(1) Last Write Win (LWW) [165] ignores conflicts, and the update with the highest

timestamp is accepted (e.g., Riak (by default), SimpleDB, S3, and Azure Table16). It causes

lost updates (i.e., updates with less timestamp as compared with winner update) and the

violation of expected semantics.

(2) Pre-defined procedure merges two versions of a data item to a new one according

to application-specific semantic as used in Dynamo. The merges must be associative and

commutative for guaranteeing eventual/causal consistency. Albeit the pre-defined pro-

16Azure Table storage. https://azure.microsoft.com/en-us/services/storage/

https://azure.microsoft.com/en-us/services/storage/
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cedure solves conflicts without the need of the total order, it is error-prone and lacks

generality. Some data stores use application-specific precondition (i.e., a condition or predi-

cate that must always be true just prior to the execution of other conditions) to determine

happened-before dependencies among requests when the causal consistency model comes as

a need.

(3) Conflict-free replicated data types (CRDTs) avoid the shortcomings of the above ap-

proaches and provide eventual consistency in the presence of node failure and network

partition without cross replicas coordination. CRDTs enforce the convergence to the same

value after all updates are executed on replicas, and they are either operation-based or state-

based [149].

In state-based CRDT, the local replica is first updated and then the modified data is

transmitted across replicas. State-based CRDT pursues a partial order ≤v (e.g., integer

order) with least upper bound (LUB) tv (e.g., maximum or minimum operation between

integer numbers) that guarantees associative (i.e., (a1 tv a2) tv a3 = a1 tv (a2 tv a3)), com-

mutative (i.e., a1 tv a2 = a2 tv a1), and idempotent (i.e., a1 tv a1 = a1) properties, for each

value of object a1, a2, a3 (e.g., integer numbers). Such CRDT is called Convergent Replicated

Data Type (CvRDT) and is used in Dynamo and Riak. CvRDT can tolerate out-of order,

repeatable, and lost messages as long as replicas reach the same value. Thus, CvRDT

achieves eventual consistency without any coordination across replicas, but it comes at

the expense of monetary cost and communication bottleneck for transferring large objects

particularly across data stores. Almeida et al. [8] addressed this issue by propagating the

effect of recent update operations on replicas instead of the whole state; meanwhile all

properties of CvRDT are maintained. As an example of CvRDT, consider Grow-only set

(G-set) that supports only union operations. Assume a partial order ≤v on two replicas

of G-set S1 and S2 is defined as S1 ≤v S2 ⇐⇒ S1 ⊆ S2 and union is performed as S1 ∪ S2.

Since the union operation preserves the mentioned three properties, G-set is a CvRDT.

In operation-based CRDT, first the update is applied to the local replica, and then is

asynchronously propagated to the other replicas. Operation-based CRDT demands a re-

liable communication network to submit all updates to every replica in a delivery order

≤v (specified by data type) with commutative property [149], as utilized in Cassandra. If

all concurrent operations are commutative, then any order of operations execution con-
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verges to an identical value. Such data type is called Commutative Replicated Data Type

(CmRDT) and is more useful than CvRDT in terms of data transferring for applications

that span write-intensive replicas across data stores. This is because CmRDT demands

less bandwidth to transfer operation across replicas, as compared to CvRDT that transfers

the effect of operation. For instance, G-set is also CmRDT because union is commutative.

Similar to CvRDT, CmRDT allows the execution of updates anywhere, anytime, and any

order, but they have a key shortcoming in guaranteeing integrity constraints and invari-

ants across replicas.

2.5.5 Causal and Causal+ consistency

We first introduce a formal definition of causal and causal+ consistency models (Section

2.5.5), followed by a description of the source and type of dependencies found in this

model (Section 2.5.5).

Causal consistency definition

Causal consistency maintains the merits of eventual consistency, while respecting to the

causality order among requests applied to replicas. It is stronger and more expensive

than eventual consistency due to tracking and checking dependencies. It defines Lam-

port’s “happens-before” relation [72] between operations o1 and o2 as o1  o2. Potential

causality o1  o2 maintains the following rules [4]. Execution thread: If o1 and o2 are two

operations in the same thread of execution, then o1  o2 if o1 happens before o2. Read

from: If o1 is a write, and o2 is a read and returns the value written by o1, then o1  o2.

Transitivity: if o1  o2 and o2  o3, then o1  o3. Causal consistency does not sup-

port concurrent operations (i.e., a 6 b and b 6 a). According to this definition, the

write operation happens if all write operations having causal dependency with the given

write have occurred before. In other words, if o1  o2, then o1 must be written before

o2. Causal+ is the combination of causal and convergent conflict resolution to ensure live-

ness property. This consistency model allows users locally receive the response of read

operations without accessing remote data store, meanwhile the application semantics

are preserved due to enforcing causality on operations. However, it degrades scalability
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across data stores for write operations because each DC should check whether the de-

pendencies of these operations have been satisfied or not before their local commitment.

This introduces a trade-off between throughput and visibility. Visibility is the amount of

time that a DC should wait for checking the required dependencies among the write op-

erations in the remote DC, and can be influenced by network latency and DC capacity for

checking dependencies.

Dependency source and type

Dependencies between operations are represented by a graph in which each vertex rep-

resents an operation on variables and each edge shows the causality of a dependency

between two operations. The source of dependencies can be internal or external [64]. The

former refers to causal dependencies between each update and previous updates in the

same session, while the latter relates to causal dependency between each update and up-

dates created by other sessions whose values are read in the same session. COPS [110],

Eiger [111], and Orbe [63] track both dependency sources. Dependency types can be ei-

ther potential or explicit for an operation (as in Eiger and ChainReaction [9]) or for a value

(as in COPS and Orbe). Potential dependencies capture all possible influences between

data dependencies, while explicit dependencies represent the semantic causality of the

application level between operations. The implementation of potential dependencies in

modern applications (e.g., social networks) can produce large metadata in size and im-

pede scalability due to generating large dependencies graph in the degree and depth. The

deployment of explicit dependencies, as used in Indigo [19], alleviates these drawbacks

to some extent, but it is an ad-hoc approach and cannot achieve the desired scalabil-

ity in some cases (e.g., in social applications). This deployment is made more effective

with the help of garbage collection, as used in COPS and Eiger, in which the committed

dependencies are eliminated and only the nearest dependencies for each operation are

maintained.
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2.5.6 Ordering, Strong, and Adaptive-level consistency

We first define ordering consistency model and how it is provided. We then discuss

projects that enable application providers to switch between a range of consistency mod-

els based on their requirements. As discussed earlier, eventual consistency applies the

updates in different orders at different replicas and causal consistency enforces partial or-

dering across replicas. In contrast, ordering consistency–also called sequential consistency–

provides a global ordering of the updates submitted to replicas by using a logical clock to

guarantee monotonic reads and writes. In fact, ordering consistency mandates a read op-

eration from a location to return the value of the last write operation to that location. For

example, PNUTS provides ordering consistency per key by deploying a master replica

which is responsible for ordering writes to an object and then propagating the updates to

slave replicas. Another way to provide ordering consistency is deploying chain replication

[171].

Strong consistency guarantees that all read and write operations receive a global time-

stamp using a synchronized clock within and across data stores. This ensures that every

read operation on the data d returns the value corresponding to the most recent write

request on the data d.

Adaptive-level consistency switches between weak and strong consistency models based

on the requirements of application to reduce response time and monetary cost. This is be-

cause strong consistency is expensive in terms of monetary cost and performance, while

weak consistency places a high burden on the developers in respect to the maintenance

of application semantics.

2.6 Data Management Cost

This section first presents a background on the pricing plans and different storage ser-

vices offered by the well-known cloud providers- AWS, Microsoft Azure, and Google.

Then it discusses the optimization of data management cost with satisfaction of a single-

QoS/multi-QoS metric and the cost trade-offs.
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2.6.1 Pricing plans

Price is a new and important feature of data stores as compared to traditional distributed

systems like cluster and grid computing. Data stores offer a variety of pricing plans

for different storage services with a set of performance metrics. Pricing plans offered

by data stores are typically divided in two categories [123]: bundling price (also called

quantity discount) and block rate pricing. The first is observed in most data stores (e.g.,

Google Drive) and is recognized as a non-liner pricing, where unit price changes with

quantity to follow fixed cost and per-unit charge. The second category divides the range

of consumption into sub-ranges and in each sub-range unit price is constant as observed

in Amazon. This category is a special form of the multi-part tariffs scheme in which the

fixed price is zero. Note that the standard form of multi-part tariffs consists of a fixed

cost plus multi-ranges of costs with constant cost in each range. One common form of

this scheme is two-part tariffs that are utilized in data stores with a fixed fee for a long

term (currently 1 or 3 years) plus a per-unit charge. This model is known a reserved

pricing model (e.g., as offered by Amazon RDS and Dynamo) as opposed to an on-demand

pricing model in which there is no fixed fee and its per-unit charge is more than that in

the reserved pricing model. All pricing plans offered by the well-known cloud providers

follow concavity property that implies as the more resources the application providers buy

the cheaper the unit price is. The unit price for storage, network, and VM respectively

are often GB/month, GB, and instance per unit time.

A cloud provider offers different services with the same functionality while perfor-

mance is directly proportional to price. For example, Amazon offers S3 and RRS as online

storage services but RRS compromises redundancy for lower cost. Moreover, the price of

same resources across cloud providers is different. Thus, given these differences, many

cost-based decisions can be made. These decisions will become complicated especially

for applications with time-varying workloads and different QoS requirements such as

availability, durability, response time, and consistency level. To do so, a joint optimiza-

tion problem of resources cost and the required QoS should be characterized. Resources

cost consists of: (i) storage cost calculated based on the duration and size of storage the

application provider uses, (ii) network cost computed according to the size of data the

application provider transfers out (reads) and in (writes) to data stores (typically data
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transfer into data stores is free), and (iii) computing cost calculated according to duration

of renting a VM by application providers. In the rest of section, we discuss the cost op-

timization of data management based on a single QoS or multi-QoS metrics, and cost

trade-offs.

2.6.2 Overview of storage classes

Well-known cloud providers such as AWS, Azure, and Google offer resources as Infras-

tructure as a Service (IaaS), where Storage as a Service (StaaS) is one of its main com-

ponents. StaaS supports several classes of storage, which are differentiated in price and

performance metrics.17 These metrics are (i) durability, (ii) availability SLA, (iii) mini-

mum object size: an object smaller than s kilobytes in size is charged for s kilobytes of

storage, (iv) minimum storage duration: an object deleted less than d days after storing

in storage incurs a minimum d−day charge, (v) retrieval first byte latency: the time taken

to retrieve the first byte of an object. The storage classes supported by AWS, Azure, and

Google are as follows.

AWS provides four classes of storage18: (i) Simple Storage Service (S3) is a highly

reliable, available, and secure storage service for data frequently accessed; (ii) Reduced

Redundancy Storage (RRS) offers users storage resources with lower cost at the expense

of lower levels of redundancy as compared to S3. RSS is suitable for data which require

less durability as compared to those stored in S3; (iii) Standard-Infrequent Access (S-IA)

is optimized for data accessed less frequently, but needs a low retrieval time (e.g., backup

data); (iv) Glacier storage is the cheapest AWS storage which is suited to data with very

low access rates and without the need for rapid access.

Microsoft Azure supports four classes of storage services,19 which are mainly distin-

guished based on the number of replicas of an object that are stored in a single or multiple

DCs. These classes are: (i) Locally Redundant Storage (LRS) stores 3 synchronous repli-

cas within a single DC; (ii) Zone Redundant Storage (ZRS) stores 3 asynchronous replicas

across multiple DCs within or across regions; (iii) Geographical Redundant Storage (GRS)

17Key features of storage classes. https://aws.amazon.com/s3/storage-classes/.
18AWS storage classes. https://aws.amazon.com/s3/storage-classes/
19Microsoft Azure storage classes. https://azure.microsoft.com/en-us/pricing/details/
storage/blobs/

https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
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is the same as LRS, in addition to storing 3 asynchronous replicas in a secondary DC that

is far away from the primary DC; (iv) Read-access GRS (RA-GRS) is the same as GRS with

the added functionality of allowing users to access data in the secondary DC. All classes

of Azure storage support five types of storage: Blob, Table, Queue, File, and Disk. Each

type of storage is used for a specific purpose. Blob storage is specialized for unstruc-

tured object data, Table storage for structured data, Queue storage for reliable messaging

between different components of cloud services, File storage for sharing data across the

components of an application, and Disk (premium) storage for supporting data-intensive

workload running on Azure virtual machines (VMs). Besides these classes and types of

storage, Azure also provides Blob storage with two access tiers. These are hot and cold

access tiers which are supported in three classes of storage: LRS, GRS, and RA-GRS. Hot

(resp. cold) access tier is used for data that are frequently (resp. rarely) accessed. Hot tier

access is more expensive than the cold one, and this allows users to save cost when they

switch between these access tiers based on a change in the usage pattern of the object.

This switch incurs additional charges, and thus users are required to select each access

tier in the appropriate time during the lifetime of the object.

Google supports five storage classes20: (i) Multi-regional storage is appropriate for

frequently accessed data. This class is Geo-redundant storage service that maintains an

object in at least two regions; (ii) Regional storage enables users to store data within a

single region. This class is suitable for Google Compute Engine (GCE) instances; (iii)

Durable Reduced Availability (DRA) has a lower availability SLA with the same cost

(apart from the cost of operations) compared to Regional storage; (iv) Nearline storage is

suitable for data that are accessed on average once a month or less. Thus, this class is a

good choice for data backup, archival storage, and disaster recovery; (v) Coldline storage

is the cheapest Google storage, and it is a suitable option for data accessed at most once

a year.

Based on the offered storage classes, we classify them into five tiers. (i) Very hot tier

provides the highest levels of redundancy across multiple regions and allows users to

access the data in the secondary DC as the primary DC faces faults. (ii) Hot tier stores data

in multiple regions, but the redundancy level is lower than the first tier. (iii) Warm tier is

20Google storage classes. https://cloud.google.com/storage/

https://cloud.google.com/storage/
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the same as hot tier in redundancy level, but less durable. (iv) Cold tier provides lower

availability and durability as compared to the first three tiers and imposes restriction

on metrics like minimum object size and minimum storage duration. (v) Very cold tier

has the same durability and availability levels compared to the cold tier, but it has more

minimum storage duration. The last two tiers impose retrieval cost and they are more

expensive than the first three tiers (i.e., very hot, hot, and warm) in operations cost. Table

2.13 summarizes the characteristics of the storage tiers offered storage services by AWS,

Azure, and Google based on the discussed tiers.

Although these tiers are the same in functionality, their performance is directly pro-

portional to price. For example, AWS offers S3 (belongs to hot tier) and RRS (belongs to

warm tier) as online storage services, but RRS compromises redundancy for lower cost.

Moreover, the price of storage resources across cloud providers is different. Thus, given

these differences, many cost-based decisions can be made. These decisions will become

complicated especially for applications with time-varying workloads and different QoS

requirements such as availability, durability, response time, and consistency level. To

make satisfactory decisions for application providers, a joint optimization problem of re-

sources cost and the required QoS should be characterized. Resources cost consists of: (i)

storage cost calculated based on the duration and size of storage the application provider

uses, (ii) network cost computed according to the size of data the application provider

transfers out (reads) and in (writes) to data stores (typically data transfer into data stores

is free), and (iii) computing cost calculated according to duration of renting a VM by the

application provider. The first two costs relate to the cost of data storage management. In

the following section we discuss the optimization problems in regard to the cost of data

storage management.
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2.6.3 Cost optimization based on a single QoS metric

Application providers are interested into the selection of data stores based on a single

QoS metric so that the cost is optimized or does not go beyond the budget constraint.

This is referred to as a cost optimization problem based on a single QoS metric and is

discussed as below.

(1) Cost-based availability and durability optimization. Availability and durability are

measured in the number of nines and achieved by means of usually triplicate replication

in data stores. Chang et al. [38] proposed an algorithm to replicate objects across data

stores so that users obtain the specified availability subject to budget constraint. Man-

souri et al. [116] proposed two dynamic algorithms to select data stores for replicating

non-partitioned and partitioned objects, respectively, with the given availability and bud-

get. In respect to durability, PRCR [99] uses the duplicate scheme to reduce replication

cost while achieving the same durability as in triplicate replication. CIR [102] also dy-

namically increases the number of replicas based on the demanding reliability with the

aim of saving storage cost.

(2) Cost-based consistency optimization. While most of the studies explored consistency-

performance trade-off (2.5), several other studies focused on lowering cost with adap-

tive consistency model instead of a particular consistency model. The consistency ra-

tioning approach [91] divides data into three categories with different consistency levels

assigned and dynamically switches between them in run time to reduce the resource and

the penalty cost paid for the inconsistency of data which is measured based on the per-

centages of incorrect operations due to using lower consistency level. Bismar [46] defines

the consistency level on operations rather than data to reduce the cost of the required re-

sources at run time. It demonstrates the direct proportion between the consistency level

and cost. C3 [67] dynamically adjusts the level of consistency for each transaction so that

the cost of consistency and inconsistency is minimized.

(3) Cost-based latency optimization. User-perceived latency is defined as (i) a constant

in the unit of RTT, distance, and network hops, or (ii) latency cost that is jointly opti-

mized with monetary cost of other resources. Latency cost allows the latency metric to

be changed from a discrete value to continuous one, thereby achieving an accurate QoS

in terms of latency constraint and easily making a trade-off between latency and other
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monetary costs. OLTP (resp. OLAP) applications satisfy the latency constraint by op-

timization of data placement (resp. data and task placement). This placement has an

essential effect on optimizing latency cost or satisfying it as a constraint as well as in

reducing resources cost.

2.6.4 Cost optimization based on multi-QoS metric

Application providers employ Geo-replicated data stores to reduce the cost spent on stor-

age, network, and computing under multi-QoS metrics. In addition, they may incur data

migration cost as a function of the data size transferring out from data store and its cor-

responding network cost. Data migration happens due to application requirements, the

change of data store parameters (e.g., price), and data access patterns. The last factor

is the main trigger for data migration as data transits from hot-spot to cold-spot status

(defined in 2.2) or the location of users changes as studied in “Nomad” [169]. In No-

mad, the changes in users’ location are recognized based on simple policies that monitor

the location of users when they access an object. Depending on the requirements of the

applications, cost elements and QoS metrics are determined and integrated in the classi-

cal cost optimization problems as linear/dynamic programming [53], k-center/k-median

[78], ski-rental [146], etc. In the following, these features and requirements are discussed.

(1) For a file system deployment, a key decision is to store a data item either in cache

or storage at an appropriate time while guaranteeing access latency. Puttaswamy et al.

[131] leveraged EBS and S3 to optimize the cost of file system and they abstracted the

cost optimization via a ski-rental problem. (2) For data-intensive applications spanning

across DCs, the key decision is which data stores should be selected so that the incurred

cost is optimized while QoS metrics are met. The QoS metrics for each data-intensive

application can be different; for example, online social applications suffice causal consis-

tency, while a collaborative document editing web service demands strong consistency.

(3) For online social network (OSN), the key factor is replica placement and reads/writes

redirection, while “social locality” (i.e., co-locating the user’s data and her friends’ data)

making reduction in access latency is guaranteed. In OSN, different policies to optimize

cost are leveraged: (i) minimizing the number of slave replicas while guaranteeing so-

cial locality for each user [130], (ii) maximizing the number of users whose locality can
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be preserved with a given number of replicas for each user [168], (iii) graph partition-

ing based on the relations between users in OSN (e.g., cosplay [82]), and (iv) selective

replication of data across DCs to reduce the cost of reads and writes [107]. (4) The emer-

gence of content cloud platforms (e.g., AWS Cloud-Front21 and Azure CDN22) help to

build a cost-effective cloud-based content delivery network (CDN). In CDN, the main

factors contributing into the cost optimization are replicas placement and reads/writes

redirection to appropriate replicas [40].

2.6.5 Cost trade-offs

Due to several storage classes with different prices and various characteristics of work-

loads, application providers are facing with several cost trade-offs as below.

Storage-computation trade-off. This is important in scientific application workloads in

which there is a need for the decision on either storing data or recomputing data based

on the size and access patterns. Similar decision happens to the privacy preservation

context that requires a trade-off between encryption and decryption of data (i.e., compu-

tation cost) and storing data [196]. The trade-off can be also seen in video-on-demand

service in which video transcoding23 is a computation-intensive operation, and storing

a video with a variety of formats is storage-intensive. Incoming workload on the video

and the performance requirement of users determine whether the video is transcoded

on-demand or stored with different formats.

Storage-cache trade-off. Cloud providers offer different tiers of storage with different

prices and performance metrics. A tier, like S3, provides low storage cost but charges

more for I/O, and another tier, like EBS and Azure drive, provides storage at higher

cost but I/O at lower cost [47]. Thus, as an example, if a file system frequently issues

reads and writes for an object, it is cost-efficient to save the object in EBS as a cache, or

in S3 otherwise. This trade-off can be exploited by data-intensive applications in which

the generated intermediate/pre-computed data can be stored in caches such as EBS or

memory attached to VM instances.

Storage-network trade-off. Due to significant differences in storage and network costs across

21AWS CloudFront. https://aws.amazon.com/cloudfront/.
22Azure CDN. https://azure.microsoft.com/en-us/services/cdn/.
23Video transacoding is the process of converting a compressed digital video format to another.

https://aws.amazon.com/cloudfront/.
https://azure.microsoft.com/en-us/services/cdn/.
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Table 2.14: The Scope of Thesis.

Characteristics Thesis scope
Data model Key-value
Application Online Social Networks (OSNs)
System resources Storage and network
Target system The well-known Cloud Storage Providers (CSPs)
Goal Cost optimization of data storage management
Workload Twitter and Facebook

data stores and time-varying workload on an object during its lifetime, acquiring the cheap-

est network and storage resources at the appropriate time of the object lifetime plays a

vital role in the cost optimization. Simply placing objects in a data store with either the

cheapest network or storage for their whole lifetime can be inefficient. Thus, storage-

network trade-off requires a strategy to determine the placement of objects during their

lifetime, as studied in a dual cloud-based storage architecture [115]. This trade-off also

comes as a matter in the recovery cost in erasure coding context, where regenerating and

non-MDS codes are designed for this purpose.

Reserved-on demand storage trade-off. Amazon RDS and Dynamo data stores offer on-

demand and reserved database (DB) instances and confront the application providers with

the fact that how to combine these two types of instances so that the cost is minimized.

Although this trade-off received attention in the context of computing resources [174], it

is worthwhile to investigate the trade-off in regard to data-intensive applications since (i)

the workload of these two is different in characteristics, and (ii) the combination of on-

demand DB instances and different classes of reserved DB instances with various reser-

vation periods can be more cost-effective.

2.7 Thesis Scope and Positioning

This section first describes the scope of this thesis in terms of data model, application

type, system resources, target system, goal, and the used workload. Then the relevant

studies focusing on the cost optimization of data management are discussed in detail.
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2.7.1 Thesis Scope

This thesis investigates the cost optimization of data storage management across different

CSPs so that the QoS specified by users/application providers is met. The main incentive

for this investigation is that (i) CSPs offer several storage classes with different prices for

different purposes, and (ii) applications generate time-varying workloads.

This work focuses on the well-known CSPs –AWS, Azure, and Google– which pro-

vide storage classes as summarized in Table 2.13. It considers these classes for key-value

applications that generate time-varying workloads in the form of long-tail on the objects

[21]. An instance of these applications is Online Social Network (OSN) [122] in which

an object often receives many read and write requests during its initial lifetime, and then

these requests reduce as time passes . In other words, the object is in a hot-spot status as

frequently accessed and then it transits to a cold-spot status as rarely accessed.

To optimize the cost of data management for such applications, it is important to

exploit the price differences of storage resources across CSPs facilitated different storage

classes. According to the defined two statuses for objects, two storage classes are used:

one for hot-spot status and one for cold-spot status. Hence, the main problem is to make

a two-fold decision: which storage class of a CSP and in what time during the lifetime of

object should be selected to optimize monetary cost while the required QoS is guaranteed.

In addition to the cost optimization and the specified QoS by users, data consistency

is another factor that is important for users. Since this work focuses on OSN applications,

eventual consistency is sufficient for users. To provide the strong consistency model

for applications, we consider a single-master multi-slave data management environment

which supplies users with the most updated data as their requests are submitted to the

master replica. In summary, the scope of this thesis is summarized in Table 2.14.

2.7.2 Thesis Positioning

This section discusses some relevant studies that are close to the research direction in this

thesis. These studies are different in one or more aspects as outlined below.

In Chapter 3, we first propose algorithms which trade-off availability against cost in

distributing data across CPSs. Our algorithms help the user to select DCs with the min-



68 A Survey and Taxonomy of Data Storage Management in Cloud-based Data Stores

imal cost, honoring constraints such as data availability. Additionally, we aim to maxi-

mize the availability of the striped data to the extent the users budget allows. The closest

work to this contribution was conducted by Chang et al. [38]. They proposed an algo-

rithm to replicate objects across data stores so that users obtain the specified availability

subject to budget constraint. Also a few studies improve availability within cloud-based

data stores through data replication. Ford et al. [52] investigated object availability in

Google’s storage infrastructure, and analyzed availability of components, e.g., machines,

racks and multiple racks in tens of Google storage clusters. In their analytical measure-

ments, they predict object availability based on Markov chain modelling in a DC. Cidon

et al. [50] proposed Copysets in which data is replicated across storage nodes within

a data store in an efficient way instead of using random replica placement widely em-

ployed by current data stores. In contrast, our work focuses to improve availability across

DCs.

In chapter 4, we propose a dual cloud-based architecture to save cost for a time-

varying workload. This architecture mimics a hierarchical storage management (HSM)24

when data automatically are moved between low- and high-cost storage media. FCFS

[131] deployed a generalized form of HSM to reduce the cost of operating a file system

in a single cloud storage. Unlike our work, they neither require to consider migration

cost nor need to deal with the latency across DCs. Our approach is different from their

proposed solutions as we consider the object migration cost between DCs.

In Chapters 5 and 6, we extend this architecture for Geo-replicated data stores to

optimize the cost of data management across CSPs. To accurately determine the position

of the work in Chapters 5 and 6, we are required to investigate existing work in the

following main categories.

Using multiple cloud services. Clearly, reliance on a single cloud provider results

in three-folds obstacles of: availability of services, data lock-in, and non-economical use [167].

To alleviate these obstacles, one might use multiple cloud providers that offer comput-

ing, persistent storage and network services with different features such as price and

performance [98]. Being inspired by these various features, automatic selection of cloud

providers based on their capabilities and user’s specified requirements are proposed to

24Hierarchical storage management (HSM). https://en.wikipedia.org/wiki/Hierarchical_
storage_management

https://en.wikipedia.org/wiki/Hierarchical_storage_management
https://en.wikipedia.org/wiki/Hierarchical_storage_management
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determine which cloud providers are suitable in the trade-offs such as cost vs. latency

and cost vs. performance [138].

Several previous studies attempted to effectively leverage multiple CSPs to store data

across them. RACS [3] utilized erasure coding to minimize migration cost if either eco-

nomic failure, outages, or CSP switching happens. Hadji [74] proposed various replica

placement algorithms to enhance availability and scalability for encrypted data chunks

while optimizing the storage and communication cost. SPANStore [177] optimized cost

by using pricing differences among CSPs while the required latency for the applica-

tion is guaranteed. It used a storage class across CSPs for all objects without respect to

their read/write requests, and consequently it did not require to migrate object between

storage classes. SPANStore also leveraged algorithms relying on workload prediction.

Cosplay [82] optimized the cost of data management across DCs– belonging to a single

cloud– through swapping the roles (i.e., master and slave) of data replicas owned by

users in the online social network. None of these systems explore minimizing cost by ex-

ploiting pricing differences across different cloud providers with several storage classes

when dynamic migration of objects across CSPs is a choice.

Online algorithms and cost trade-offs. A number of online algorithms have been

studied to figure out different issues such as dynamic provisioning in DCs [113], energy-

aware dynamic server provisioning [105] and load balancing among Geo-distributed DCs

[106]. All these online algorithms are derived from ski-rental framework in order to de-

termine when a server must be turned off/on to reduce energy consumption, while we

focus on data management cost optimization which comes with different contributing

factors such as data size and read/write rates. In FCFS [131], the same framework is

used to optimize data management cost in a single data store that offers cache and stor-

age with different prices. Different from this work, we utilize price differences among

CSPs in a Geo-replicated system, and therefore its deployment strategy must account

for inter-DCs latencies, data migration among DCs, and writing strategy with the mini-

mum cost in the eventual (considered in Chapter 5) or strong–if data is read from master

(home) DC– (considered in Chapter 6) consistency setting.

More importantly, the ski-rental deployed in the above studies is not applicable in

our model because it makes a decision on time (e.g., when a server is turned off/on or



70 A Survey and Taxonomy of Data Storage Management in Cloud-based Data Stores

when data are moved from storage to cache), while we need to make a two-fold deci-

sion (time and place) to determine when data should be migrated and to which storage

class(es) owned by a CSP. To make this decision, we propose a deterministic online algo-

rithm (Algorithm 5.2) that uses Integer Linear Programming (ILP) to optimize cost. Also,

a randomized online algorithm (Algorithm 5.3) is proposed based on Fixed Receding

Horizon Control (FRHC) [105, 194] technique to conduct dynamic migration of objects.

In [194], the authors proposed online and offline algorithms to optimize the routing and

placement of big data into the cloud for a MapReduce-like processing, so that the cost of

processing, storage, bandwidth, and delay is minimized. They also considered migration

cost of data based on required historical data that should be processed together with new

data generated by a global astronomical telescope application. Instead, our work focuses

on optimizing replicas placement of objects being transited from hot-spot to cold-spot.

Our optimization problem takes different settings as compared to [194]. These settings

are (i) replicas number, (ii) latency Service Level Objectives (SLO) for reads and writes,

and (iii) variable workload (reads and writes) on different objects. These objects demand

a dynamic decision on when replicas are migrated between two DCs, when they are

moved between two classes of storage in a DC, or both. These differences in settings

make our optimization problem different in the cost model (storage, read, write, and

migration) and problem definition as well.

Some literature focused on trade-offs between different resources cost. The first is

compute vs. storage trade-off that determines when data should be stored or recom-

puted, and can be applicable in video-on-demand services. Kathpal et al. [86] deter-

mined when a transcoding on-the-fly solution can be cost-effective by using ski-rental

framework. They focused neither on Geo-replicated systems nor theoretical analysis on

the performance in terms of competitive ratio (CR) computed for Algorithms in Chap-

ter 5. The second trade-off is cache vs. storage as deployed in MetaStorage [23] that

made a balance between latency and consistency. This study has a different goal, and

furthermore it did not propose a solution for the cases in which the workload is un-

known. FCFS [131] also made this trade-off as already discussed. The third trade-off can

be bandwidth vs. cache as somehow simulated in DeepDive [125] that efficiently and

quickly identifies which VM should be migrated to which server as workload changes.
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This study is different in objective, contributing parameters, and even in the scope.

Computation and data migration. Virtualization partitions the resources of a sin-

gle compute server into multiple isolated environments which are called virtual machines

(VMs). A VM can be migrated from one host to another in order to provide fault toler-

ance, load balancing, system scalability, and energy saving. VM migration can be either

live or non-live. The former migration approach ensures almost zero downtime for ser-

vice provisioning to the hosted applications during migration, whereas the latter one

suspends the execution of applications before transferring a memory image to the des-

tination host. There has been a spate of work on VM migration approaches. Interested

readers are referred to survey papers [5, 119] for detailed discussion on VM migration

techniques.

Similarly, data migration is classified into two approaches. The first approach is live

data migration [169]. This approach allows that while data migration is in progress, the

data is accessible to users for reads and writes. Although live data migration approach

minimizes performance degradation, it demands precise coordination when users per-

form read and write operations during the migration process. Recently, live data mi-

gration approaches have been exploited for transactional databases in the context of

cloud [58, 65].

The second approach is non-live data migration [169]. This approach is classified into

stop and copy and log-based migration techniques. In both techniques, while the data mi-

gration is in progress, the data is accessible to users for reads. But, these techniques differ

in their capability to handle writes. In stop and copy technique, the writes are stopped

during data migration, while in log-based technique the writes are served through a log

which incurs a monetary cost. Thus, stop and copy and log-based migration techniques

are respectively efficient in monetary cost and performance criteria. Non-live data mi-

gration approach is often used in non-transantional data stores that does not guarantee

ACID properties, e.g., HBase25 and ElasTraS [56].

There are several factors affecting data migration: the changes to cloud storage pa-

rameter (e.g., price), optimization requirements, and data access patters. In response to

these changes and requirements, a few existing studies discuss data migration from pri-

25Apache HBase. https://hbase.apache.org/book.html

https://hbase.apache.org/book.html
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vate to public cloud [132], and some study object migration across public cloud providers

[121, 179]. In [179], authors focused on predicting access rate to video objects and based

on this observation, dynamically migrate video objects (read-only objects). In contrast,

our study in Chapters 5 and 6 attempts to use pricing differences and dynamic migration

to minimize cost with or without any knowledge of the future workload for objects with

read and write requests. Write requests on an object raise cost of consistency as a mater.

Mseddi et al. [121] designed a scheme to create/migrate replicas across data stores with

the aim of avoiding network congestion, ensuring availability, and minimizing the time

of data migration. While we designed several algorithms to minimize cost across data

stores with different classes of storage.

Deploying cloud-based storage services in CDN. With the advent of cloud-based

storage services, some literature has been devoted to utilize cloud storage in a Content

Delivery Network (CDN) in order to improve performance and reduce monetary cost.

Broberg et al. [30] proposed MetaCDN that exploits cloud storage to enhance through-

put and response time while ignoring the cost optimization. Chen et al. [40] investigated

the problem of placing replicas and distributing requests (issued by users) in order to op-

timize cost while meeting QoS requirement in CDN utilizing cloud storage. Papagianni

et al. [127] went one step further by optimizing replica placement problem and requests

redirection, while satisfying QoS for users and considering capacity constraints on disks

and network. In [143], there is another model that minimizes monetary cost and QoS vi-

olation, while guaranteeing SLA in a cloud-based CDN. In contrast to these works which

proposed greedy algorithms for read-only workload, our work in Chapter 5 exploits the

pricing differences among CSPs for time varying writable workload and proposes offline

and online algorithms with a theoretical analysis on the CR. These algorithms determine

the location of the object with a limited and fixed replicas. This makes them inappropri-

ate for the object that demand a variable and high number of replicas during its lifetime.

The reason behind of this demand is that the object receives time-varying workloads

from a large set of DCs across the globe. Unlike algorithms in Chapter 5, we propose

a lightweight heuristic algorithm in Chapter 6 to dynamically determine the number of

replicas for any object based on its variable workload receiving from different DCs. These

algorithms also demand low time complexity, thereby making them suitable for applica-
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tions which host a large number of objects.

Table 2.15 summarizes the discussed studies in this section and Section 2.6.3. This

table describes each work in four aspects: (i) Project specification (top to down: project

name/authors, data store platform, data application type), (ii) cost elements, (iii) QoS

metrics/constraints, (iv) Features (in order: solution techniques, cost optimization type,

and key feature).

Table 2.15: Summary of Projects with Monetary Cost Optimization

Project specification Cost elements QoS metrics/constraints Features
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Chang et al. [38]
MDC
Data-intensive

X X (i) Dynamic programming.
(ii) Cost-based availability op-
timization. (iii) Maximizing
availability under the budget
constraint for non-partitioned
objects.

PRCR [99]
SDC
Scientific workflows

X X (i) Proactive replica checking.
(ii) Cost-based durability opti-
mization. (iii) Reducing 1

3 to 2
3

storage cost as compared tripli-
cate storage cost.

CIR [102]
SDC
Scientific workflows

X X (i) an incremental replication ap-
proach. (ii) Cost-based durabil-
ity optimization. (iii) Incurring
cost the same as that for tripli-
cate replicas in long-term stor-
age deployment.

Copysets [50]
SDC
Data-intensive

X X (i) Near optimal solution. (ii)
Cost-based durability optimiza-
tion. (iii) Achieving higher
durability than widely used ran-
dom replication.

Consistency rationing
[91]
SDC
OLTP

X X (i) A general policy based on
a conflict probability (ii) Cost-
based consistency optimization.
(iii) Providing serializability, ses-
sion, and adaptive consistency be-
tween these two consistency
models.

C3 [67]
SDC
Data-intensive

X X X X X (i) A selective solution based on
defined rules. (ii) Cost-based
consistency optimization. (iii)
Providing serializability, snapshot
isolation, and eventual consis-
tency.
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Table 2.4: Summary of Projects with Monetary Cost Optimization

Project specification Cost elements QoS metrics/constraints Features
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Shankaranarayanan et
al. [148]
MDC
OSN

X X X X X (i) Linear programming (ii)
Cost-based latency optimiza-
tion. (iii) Minimizing latency in
quorum-based data stores and
optimizing monetary cost under
the latency constraint.

CosTLO [179]
MDC
Data-intensive

X X X X X X (i) A comprehensive measure-
ment study on S3 and Azure.
(ii) Cost-based latency optimiza-
tion. (iii) Reduction in la-
tency variation via augmenting
read/write requests with a 15%
increase in cost.

FCFS [131]
SDC
File system

X X X (i) Ski-rental problem. (ii)
Storage-cache trade-off. (iii) De-
ploying EBS and S3 to reduce
monetary cost for a file system.

Khanafer et al. [88]
SDC
File system

X X X (i) A variant of ski-rental prob-
lem. (ii) Storage-cache trade-
off. (iii) Reducing the deploy-
ing cost of file system across S3
and EBS as assumed the average
and variance of arrival time of
reads/writes are known.

Jiao et al. [81]
MDC
OSN

X X X X (i) Using graph cut techniques
to determine master and slave
replicas. (ii) Cost optimization
based on single QoS metric. (iii)
Optimizing the mentioned costs
plus carbon footprint cost.

Cosplay [82]
MDC
OSN

X X X X Eventual (i) A selective solution (greedy).
(ii) Cost optimization based
on multi-QoS metric. (iii)
Achieving cost reduction via
role-swaps between master
and slave replicas in a greedy
approach.

Hu et al. [76]
MDC
CDN

X X X X (i) Lynapunov optimization
technique. (ii) Cost optimiza-
tion based on single QoS metric.
(iii) Seeking the optimal solution
without the future knowledge
in regard to workload.

Chen et al. [40]
MDC
CDN

X X X X (i) A selective solution (greedy).
(ii) Cost optimization based on
single QoS metric. (iii) Achiev-
ing cost reduction via greedy al-
gorithms in the case of offline
and online (Dynamic and Static)
replication.
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Table 2.4: Summary of Projects with Monetary Cost Optimization

Project specification Cost elements QoS metrics/constraints Features
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Papagianni et al.
[127]
MDC
CDN

X X X X X X (i) Linear programming and
graph partitioning heuristic al-
gorithms. (ii) Cost optimiza-
tion based on multi-QoS metric.
(iii) Reducing cost by consider-
ing the optimized replica place-
ment and distribution path con-
struction.

COMIC [187]
MDC
CDN

X X (i) Mixed integer linear pro-
gramming. (ii) Cost optimiza-
tion based on Multi-QoS metric.
(iii) Optimizing electricity cost
for DCs and usage CDN cost
(read cost) under the process-
ing capacity of DCs and CDN as
constraints.

Wu et al. [175]
MDC
social media
streaming

X X X X X X (i) An integer programming and
an online algorithm based on
prediction. (ii) Cost optimiza-
tion based on multi-QoS metric.
(iii) Reducing cost per video as
workload changes across DCs.

Qiu et al. [132]
MDC (public and
private)
social media
streaming

X X X X X X (i) Lynapunov optimization
technique. (ii) Cost optimiza-
tion based on multi-QoS metric.
(iii) Reducing cost (migration
cost is only between private and
public DC) for video files while
ensuring bandwidth constraint
for the private DC.

Ruiz-Alvarez and
Humphrey [138]
MDC (Private and
AWS)
Data-intensive

X X X X X X (i) Integer linear programming.
(ii) Cost optimization based
on multi-QoS metric. (iii)
Determining either private or
AWS cloud to run application
based on the budget and job
turnaround time constraints.

SPANStore [177]
MDC
Data-intensive

X X X X X X Eventual
Strong

(i) Linear programming. (ii)
Cost optimization based on
multi-QoS metric. (iii) VM cost
optimization only for writes
propagation.

Chiu and Agrawal
[47]
SDC
Data-intensive

X X X X (i) A comprehensive scenario
conducted on S3, EBS and EC2
instances. (ii) Storage-cache
trade-off. (iii) A reduction cost
via using S3 vs. EBS and cache
owning by different EC2 in-
stance.
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Table 2.4: Summary of Projects with Monetary Cost Optimization

Project specification Cost elements QoS metrics/constraints Features
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Yuan et al. [190,191]
SDC
Scientific work-
flows

X X (i) Using intermediate data
dependency graph or Cost
Transitive Tournament Shortest
Path (CTT-SP)-based to decide
whether to store data or re-
compute later in run time. (ii)
Storage-computation trade-off.
(iii) Significant reduction in cost
by using AWS cost model.

Jokhio et al. [84]
SDC
Video Transcoding

X X (i) A selective solution utilizing
estimation of storage and com-
putation costs and the popular-
ity of transcoded video. (ii)
Storage-computation trade-off.
(iii) Significant reduction in cost
by using AWS cost model.

Byholm et al. [32]
SDC
Video Transcoding

X X (i) Using utility-based model
which determines when and for
how long each transcoded video
should be stored. (ii) Storage-
computation trade-off. (iii) De-
cision of model is based on the
storage duration t, the average
of arrival request during t, and
the popularity distribution of
video.

Deelman et al. [60]
SDC
data-intensive

X X X X (i) Just measuring the incurred
cost for data-intensive applica-
tion. (ii) Storage-computation
trade-off. (iii) storing data for
long term is more cost-effective
than recomputing it later (about
next two years- for this specific
application).

Triones [159]
MDC
data-intensive

X X X X (i) Non-linear programming and
geometric space. (ii) Storage-
computation trade-off. (iii) Im-
proving fault-tolerance (2 times)
and reducing access latency and
vendor lock-in at the expense of
more monetary cost.
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2.8 Conclusions

This chapter discussed the key advantages and disadvantages of data-intensive appli-

cation deployed within and across cloud-based data stores. In addition, the chapter in-

vestigated the key aspects of cloud-based data stores: data model, data dispersion, data

consistency, and data cost optimization as the research direction of the thesis. The chap-

ter finally discussed the related work in greater details to identify the gaps in regard to

cost optimization of data management across cloud-based data stores. This helps us to

gain a deeper understanding of research problems solved in the remaining chapters.





Chapter 3

QoS-aware Brokering Algorithms for
Data Replication across Data Stores

Using multi-cloud broker is a plausible solution to remove single point of failure and to achieve

very high availability. Since highly reliable cloud storage services impose enormous cost to the user,

and also as the size of data objects in the cloud storage reaches magnitude of exabyte, optimal selection

among a set of cloud storage providers is a crucial decision for users. To solve this problem, we propose

an algorithm that determines the minimum replication cost of objects such that the expected avail-

ability for users is guaranteed. We also propose an algorithm to optimally select data centers (DCs)

for striped objects such that the expected availability under a given budget is maximized. Simulation

experiments are conducted to evaluate our algorithms, using failure probability and storage cost taken

from real cloud storage providers.

3.1 Introduction

CLOUD storage is a novel paradigm for storing user objects1 on a remote location

in large scale. During recent years, some of the cloud storage companies, such

as Amazon, Rackspace, Google, etc. have provided on-line mass storage to cloud users.

Since every storage service belongs to a different company, they offer services in different

performance Service Level Agreements (SLAs) and costs.

A typical performance SLA articulates precise levels of the services such as availabil-

ity of the services which are in operation. In the context of intense economic competition,

different cloud storage providers supply a variety of services with different SLAs, which

This chapter is derived from: item Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Brokering
Algorithms for Optimizing the Availability and Cost of Cloud Storage Services,” Proceedings of the 5th IEEE
International Conference on Cloud Computing Technology and Science (IEEE CloudCom 2013, IEEE CS Press, USA),
Bristol, UK, Dec. 2-5, 2013.
1Data and object are used interchangeably in this chapter.
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are proportional to the cost. That is, users interested in more reliable SLA must pay more.

Moreover, as the total size of user objects in the cloud storage reach up to several exabyte

(260 bytes), it can impose enormous cost on users. Therefore, optimal selection of cloud

storage providers in terms of higher availability and lower cost is a crucial decision to

users.

Availability of service as an imperative criterion in the SLA is listed as one of the top ten

obstacles to the growth of cloud computing [70]. Although the most well known cloud

storage providers such as Amazon, Rackspace and Google, etc. warranty availability of

services in high level, software bugs, user errors, administrator errors, malicious insiders,

and natural catastrophes endangering availability are inevitable and unpredictable [90].

This is why some well-known cloud providers have experienced outages in their data

centers (DCs) [70], and the number of vulnerability incidents has doubled from 2009 to

2011 [140]. Availability of services is defined as the ratio of the total time that the storage

services of a cloud provider is accessible during a given interval (e.g., one year) to the

length of the interval. The metric which we use for availability is number of nines [38].

For example, if the availability of the system is 99.9% then we refer it as three nines. The

system with three nines availability is expected to have 8.75 hours downtime per year.

One simple way to get the desired availability is to replicate objects in multiple DCs.

This approach is costly because as the number of replicas increases, the storage cost of the

object raises. Therefore, minimizing cost with the aim of achieving desired availability as

a required Quality of Service (QoS) is a key decision to user, which has not been studied

very well.

Data Lock-in is another main problem among the top ten obstacles in regard to cloud

computing. This is undesirable for users because they are vulnerable to rise in price, to

decrease in availability and even to the cloud provider’s bankruptcy [70]. Users also lose

a chance to migrate from a cloud storage provider to another when new cloud providers

emerge with better services or with lower price in the market. This is because some cloud

storage providers charge the users for download service, which imposes heavy cost on

users especially when one requires a large storage volume of a particular cloud storage

provider. Moreover, transferring large objects from one cloud storage provider to another

through the network is time consuming and most often is impossible.
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Figure 3.1: Cloud Storage Broker

One solution to mitigate the data lock-in and to allow users to migrate quickly from a

cloud provider to another in reaction to any provider changes is placing an object at a fine

granularity rather than a coarse one [3]. That is, the object, for example a database table

or an archival object, is split to chunks, and stored in different cloud storages. Therefore,

we need an algorithm to find the optimal placement of chunks according to the user’s

needs and budget. This algorithm can be used in a cloud storage broker, which provides

transparent object access among several cloud storage providers [3]. The broker, as il-

lustrated in Fig. 3.1, gathers all features of cloud storage providers and assists users in

finding the right cloud storage based on their required QoS.

In this chapter, we propose algorithms that can be embedded in a cloud storage bro-

ker. These algorithms help the user to find a suitable placement of objects according to

the required QoS. The first problem we focus on is to minimize the storage cost of ob-

jects while a given expected availability is met. The second problem is how to select

the optimal placement of each strip of object such that the expected availability under a

given budget is maximized. Due to the growing number of cloud storage providers with

different characteristics and price, both problems are challenging and important.

The main contributions of this chapter are:

• a mathematical model for the DC selection problem in which the objective function,

cost function and constraints are clearly defined,

• an algorithm to select a subset of a given DCs to minimize the storage cost for

objects when the expected availability is given, and
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• a dynamic algorithm to select cloud providers optimally for storing objects that are

split into chunks and each chunk is replicated a fixed number of times, such that

the expected availability under a given budget is maximized.

The rest of this chapter is organized as follows: Section 3.2 describes an algorithm em-

ployed to calculate the minimum storage cost for storing objects subject to a given ex-

pected availability. Section 3.3 presents the dynamic algorithm proposed to determine

optimal DCs for storing striped objects to maximize expected availability with a given

budget. Section 3.4 reports the experimental results of our simulation. Finally, conclu-

sions and future works are stated in section 3.5.

3.2 Minimizing cost with given expected availability

We present an algorithm to find subsets of DCs to store replicas of all objects such that the

replication cost of them is minimized, and expected availability of objects as the user’s

QoS is satisfied. Note that the subset of DCs for each object can be different. From the

user perspective, one type of object may be popular, whilst another type may be seldom

used (e.g., archival objects) and they can tolerate lower expected availability as QoS. So,

it is reasonable to allow popular objects to be stored in more available DCs at higher

cost, and guarantee lower QoS for non-popular objects at lower cost. Our algorithms

guarantee this criterion for objects. That is, the expected availability of objects is met

according to the priority attached to their type. In other words, as the priority of a type

of objects increases, the objects of that type are replicated in DCs with more availability. In

order to introduce our algorithm, we first present the following notations and definitions.

Consider a set of independent DCs represented by D = {d1, d2, ..., dn}, where di ∈ D

(1 ≤ i ≤ n) is an individual DC. Assume that a pair of characteristics for each DC: a

weight s(di) representing the storage cost of an object in the DC di, and f (di) the failure

probability of di. Also, suppose that the replica set denoted by δ is a subset of DCs in D

such that each di hosts a replica of the object. Let M be the number of objects with equal

size, and TN is the total number of nines for M objects. Assume that t is the average

number of nines per object requested by a user as QoS. The value of TN either can be

computed by M × t or can be a arbitrary value (that is the value of TN) which is deter-
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mined by user. We define three types of QoS for objects, in descending order of priority:

Gold (G), Silver (S), and Bronze (B). A priority parameter PQ is assigned to each QoS type

Q such that the sum of priority parameters for three types of QoS is 1. That is, ∑Q PQ = 1,

where Q = {G, S, B} (PG ≥ PS ≥ PB) . Note that the value of PQ is used in a general sense

in our algorithms. It can be interpreted as different priority measures such as the access

probability of objects on average for a type of QoS, or the importance of objects to the

user. Also, let all objects of QoS type Q be denoted by set JQ, and EAQ and EFQ be the

expected availability and expected failure of objects in JQ, respectively.

Definition 3.1. (Objects Placement): Let Φ =
⋃M

j=1{Φj} be a placement of objects, where Φj

indicates a subset of DCs (i.e, Φj ⊆ D) that contains the jth object with r replicas. Therefore, for

all Φj, |Φj| = r and |Φ| = M.

Definition 3.2. (Replication Cost of Objects): Assume that the cost of object j is the sum of the

replication cost of the object in a set of DCs Φj. Thus, the replication cost of Φ, referred to the cost

of replicas for M objects, is defined as:

C(Φ) =
M

∑
j=1

C(Φj), (3.1)

where C(Φj) = ∑dl∈Φj
s(dl) is the cost of storing object j with duplication factor r.

Definition 3.3. (Expected Availability of Objects): Let Xj be a discrete random variable with

numerical values of {0, 1} which shows whether the object j is available under the set Φj (Xj = 1)

or not (Xj = 0). Thus, we have E(Xj) = ∑xj∈{0,1} xjP(Xj = xj) = P(Xj = 1). Since Xj is

referred to the availability of the jth object under Φj, the value of Xj is 0 only when all DCs in

Φj fail. Otherwise, the value of Xj is 1 when at least one of DCs in set Φj containing object j is

available. As a result, E(Φj) = E(Xj) = 1−∏di∈Φj
f (di).

The expected availability for M objects is equal to the sum of the expected availabil-

ity of each object j because the expected availability of the sum of independent random

variables is the sum of the expected availability of these random variables. Thus, we

have:

E(Φ) =
M

∑
j=1

E(Φj) =
M

∑
j=1

(1− ∏
di∈Φj

f (di)). (3.2)
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In this sense, E(Φ) can be viewed as the expected availability of M objects under Φ =

∑M
j=1{Φj}, and expressed as a number of nines.

In the rest of this section, we formally define the object placement problem, and then

a dynamic algorithm to tackle this problem is proposed. Based on the above definitions,

the problem can be defined as follows. Assume that a set of DCs D, M objects with du-

plication factor r, the QoS requirement for user E(Φ), measured in the number of nines,

and each QoS type associated with PQ where Q = {G, S, B} are given. The objective is

to find a subset of DCs Φj ⊆ D for each object j so that E(Φ) is satisfied, the replication

cost of objects C(Φ) is minimized, and the expected availability for each type of objects

is proportional to the priority parameter of that type. This is translated to:

min C(Φ) =
M

∑
j=1

C(Φj), (3.3)

s.t. E(Φ) =
M

∑
j=1

(1− ∏
di∈Φj

f (di)) ≥ TN, (3.4)

∀JQ, E(JQ) ∝ PQ, Q = {G, S, B}, (3.5)

where E(JQ) is the expected availability of objects which belong to QoS type Q.

In order to get a maximization problem, we mathematically redefine (3.3) as follows:

max 1/
M

∑
j=1

C(Φj), (3.6)

while the constraints are (3.4) and (3.5).

Before we propose our algorithm, let us express the feasibility of the problem. The

sum of nines of all DCs di ∈ Φ must not be less than TN, if there exists a feasible solution

for the above problem. That is, E(Φ) ≥ TN.

We propose a dynamic algorithm called Minimum Cost Fixed Expected Availability to

solve the aforementioned objects placement problem. With no loss of generality, and

assuming all objects have equal priority (that is, QoS type for objects is ignored), recursive

equations of the dynamic algorithm can be obtained as explained below.

The first step of the dynamic algorithm is to define a recursive solution for two cases.

Case 1: j > 1. This solution is calculated to MC[j][tn], which means the minimum cost for
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the jth object2 (1 < j ≤ M) with a given number of nines tn (1 ≤ tn ≤ TN). To obtain

the best placement for the jth object, we first find all combinations of r distinct DCs that

can be chosen from D. Assume that each combination is denoted by δ (|δ| = r). Since

the availability of jth object is E(δ), we have the expected availability tn− E(δ) for the

j− 1 objects. It means we should consider all possible cases with tn− E(δ) for the first

j− 1 objects, assuming δ is a set of DCs, which contains the jth object. Therefore, if we

place the jth object in the set δ of DCs, then the minimum cost of replication j objects in

DCs equals to the minimum cost of replication j− 1 objects with the expected availability

tn− E(δ) plus the cost of DCs in the set δ. This mathematically translated into:

MC[j][tn] = 1/(max
δ

(1/MC[j− 1][tn− E(δ)]) + C(δ)). (3.7)

Case 2: j = 1. All the possible subsets δ ⊆ D so that tn = E(δ) are considered, and

then the subset δ with the minimum cost is selected. In other words, Φ1 = δ, where δ

is a subset of DCs with the minimum cost of replication for the first object. Thus, the

recursive function for j = 1 with fixed tn can be obtained as:

MC[1][tn] = max
δ

(
1

C(δ)
, MC[1][tn]). (3.8)

The second step of the algorithm is the termination conditions. First, if tn− E(δ) < 0,

then MC[j][tn] = 0, which means the subset δ ⊆ D should not be considered. Second, if

j = 1 and there is not a subset of DCs such that tn = E(δ), MC[1][tn] also is assigned to

zero. Third, the value of MC should be infinity when j and tn are both zero. According

to the above discussion, the proposed algorithm is outlined in Algorithm 3.1.

In order to consider constraint (3.5), we slightly revise Algorithm 3.1. First, E(JQ) is

computed by btn × PQc where 1 ≤ tn ≤ TN. To guarantee constraint (3.5) accurately,

E(JQ) is sorted decreasingly by difQ where 0 ≤ difQ = tn× PQ − E(JQ) < 1, and then the

first tn−∑Q E(JQ) of E(JQ) is increased by one. Second, having calculated E(JQ) for all

objects j ∈ JQ, it is sufficient to replace TN with E(JQ) in Algorithm 3.1.

2In this section, we henceforth consider each object has r replicas, unless otherwise mentioned.
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Algorithm 3.1: Minimum Cost Fixed Expected Availability
Input : D, M, TN, r, f (di), s(di)
Output: 1

MC[M][TN]

1 for tn← 1 to TN do
2 MC[0][tn]← +∞
3 end
4 for tn← 1 to TN do
5 MC[j][0]← 0
6 for tn← 1 to TN do
7 MC[j][tn]← 0
8 forall combination δ ∈ (D, r) do
9 if ((tn− E(δ)) ≥ 0) then

10 if (j = 1) and (tn = E(δ)) then

11 MC[1][tn]← (
1

C(δ)
, MC[1][tn])

12 end
13 if (j > 1) then
14 if (MC[j− 1][tn− E(δ)] = 0) then
15 MC[j][tn]← 0
16 else
17 C ← 1/MC[j-1][tn-E(δ)] + C(δ)

MC[j][tn]← max( 1
C , MC[j][tn])

18 end
19 end
20 end
21 end
22 end
23 end

3.3 Maximum Expected Availability with Given Budget

One way to prevent object lock-in in the cloud storage is to store the object at a fine

granularity rather than in coarse one [3]. Due to this advantage, in this section, our aim is

to introduce a dynamic algorithm to provide the best placement for chunks of an object

across the cloud providers so that the expected availability is maximized under a given

budget. In the rest of the section, we define some preliminaries and definitions, and then

we present the optimization problem in details.

In addition to notations in the previous section, we assume that each object is split to

m chunks with the same size and replicated with duplication factor r. Since it is assumed

that each replica of chunks of each object is placed in a separate DC, the number of DCs,
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Algorithm 3.2: Maximum Expected Availability with a Given Budget
Input : D, M, m, B, r, f (di), s(di)
Output: E[M][B]

1 for b← 0 to B do
2 E[0][b]← 0
3 end
4 for j← 1 to M do
5 E[j][0]← −∞
6 end
7 for j← 1 to M do
8 for b← 1 to B do
9 E[j][b]← E[j][b− 1]

10 forall combination δ ∈ (D, m× r) do
11 if (b− C(δ)) ≥ 0) then
12 E(δ)← Call OCP(δ, r, m) e← E[j− 1][b− C(δ)] + E(δ)

E[j][b]← max(E[j][b], e)
13 end
14 end
15 end
16 end

n, must be at least m× r (n ≥ m× r). In fact, storing each object requires at least m× r

independent DCs to gain maximum performance of striping [3].

Definition 3.4. (Chunks Placement): Assume that Φj =
⋃m

k=1 {ϕj,k} is a placement set for

chunks of object j, where ϕj,k represents a subset of DCs (i.e, ϕj,k ⊂ D) that containing r replicas

of kth chunk. Therefore, for all ϕj,k and Φj, we have |ϕj,k| = r and |Φj| = m× r, respectively.

Definition 3.5. (Replication Cost of Chunks): Let C(ϕj,k) denote the cost of the kth chunk with

r replicas of object j. Since cost per object in DC di is s(di) and each object consists of m chunks,

C(ϕj,k) = ∑
dl∈ϕj,k

ds(dl)e/m. Therefore, the total replication cost of m chunks with duplication

factor r of object j is given by:

C(Φj) =
m

∑
k=1

C(ϕj,k). (3.9)

The total cost of M objects can be written as:

C(Φ) =
M

∑
j=1

m

∑
k=1

C(ϕj,k). (3.10)

Definition 3.6. (Availability of Chunks): Suppose that Xj is a random variable as defined in
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Definition 3.3. Since object j is split to m chunks, we recalculate E(Xj) as follows. The kth chunk

with r replicas of object j is not available if all DCs dl ∈ ϕj,k fail. Thus, the failure probability

of the kth chunk with r replicas is ∏
dl∈ϕj,k

f (dl). As a result, the kth chunk of object j is available

if at least one replica of that is available, which results in 1− ∏
dl∈ϕj,k

f (dl) as availability of the

kth chunk with r replicas. Obviously, the jth object can be retrieved, if all m chunks are available.

Therefore, the expected availability of object j consisting of m chunks with duplication factor r

under set Φj can be calculated as:

E(Xj) = E(Φj) =
m

∏
k=1

(1− ∏
dl∈ϕj,k

f (dl)). (3.11)

Similar to the previous section, the expected availability of M objects termed by E(Φ)

is the sum of E(Φj). Thus, we have:

E(Φ) =
M

∑
j=1

E(Φj) =
M

∑
j=1

(
m

∏
k=1

(1− ∏
dl∈ϕj,k

f (dl)). (3.12)

Now, we express the optimization problem, which lies in the above definitions and

notations. Assume that a DC set D, M objects consisting m chunks with duplication factor

r and a budget B are given, and also suppose that each QoS type Q is associated with PQ.

The objective is to find a subset Φj ⊆ D for each object j such that E(Φ) is maximized

whilst C(Φ) ≤ B and the expected availability of each type of objects is proportional to

the priority parameter of that type. This is translated into:

max E(Φ) s.t. C(Φ) ≤ B and E(JQ) ∝ PQ. (3.13)

In order to solve Equ. (3.13), we propose a dynamic algorithm called Maximum Ex-

pected Availability with a Given Budget, in which the Optimal Chunks Placement (OCP) al-

gorithm is called to provide optimal placement of chunks of an object. Algorithm 3.2 is

presented without considering the constraint E(JQ) ∝ PQ. That is, all objects have the

same priority from the user perspective, and then this constraint is applied to the pro-

posed algorithm.

In the proposed dynamic algorithm, let E[M][B] be the expected availability for M
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objects with a given budget B. In the first step, we obtain a recursive formulation for

E[j][b], where 1 ≤ j ≤ M and 0 ≤ b ≤ B. In order to store the jth object in the set

D of DCs, all possible δs of D (|δ| = m × r) are checked, and then C(δ) by using (3.9)

and E(δ) based on the OCP algorithm are calculated. Since the replication cost of the jth

object is C(δ), we have the budget b−C(δ) to consider for storing the j− 1 objects. Thus,

considering all possible δs (δ ⊆ D) and all possible cases with budget b− C(δ) for j− 1

objects, E[j][b] is calculated as follows.

E[j][b] = max
δ

((E[j− 1][b− C(δ)]) + E(δ)). (3.14)

In the second step, terminal conditions are considered. clearly, if b− C(δ) < 0 then

the subset δ is ignored and E(δ) is set to negative infinity. Also, if b = 0 and j = 0, E[j][b]

is initialized to zero. The proposed algorithm is outlined in Algorithm 3.2.

3.3.1 Optimal Chunks Placement (OCP) Algorithm

In this section, we discuss the OCP algorithm and its objective. Based on the Defini-

tion 3.4, an object has m chunks and each of them is replicated in r separate DCs. Without

any special policy to select DCs for storing the chunks of an object, it might be some

replicas of a chunk placed in more reliable DCs ( that is DCs with less failure probabil-

ity) whilst other replicas of another chunks are stored in less reliable ones. As a results,

Equ. (3.11) is not maximized. In order to maximize that, we should maximize availability

of each chunk, that is (1− ∏
dl∈ϕj,k

f (dl)), which is between 0 and 1. Therefore, the availabil-

ity of all chunks should be close to each other as much as possible. Ideally, the availability

of all chunks should be equal to each other. If it is feasible, ∀k 6= k′, fck = fck′ , where fck is

the failure of kth chunk with r replicas.

Since n is a small constant [70] and the number of replicas, r, is 2 or 3 at most [68], it is

possible to search all the problem space in order to find the optimal placement of chunks.

Thus, we present the OCP algorithm to find the optimal placement for the replication of

chunks as follows.

The way the OCP algorithm works is by computing two functions, namely CA and

PCA, each with two entries. One entry for the kth chunk and another one for all possible
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Algorithm 3.3: Optimal Chunks Placement
Input : δ, r, m
Output: CA[k][S]

1 S = C(δ, r)
2 Procedure OCP(S, r, m)
3 forall (ϕ ∈ S) do
4 PCA[0][ϕ]← 1
5 end
6 for k← 1 to m do
7 CA[k][S]← 0
8 forall (ϕ ∈ S) do
9 P← ∀ϕ′ ∈ S|∀di, di ∈ ϕ′ ∧ di /∈ ϕ

10 CA[k][ϕ]← A(ϕ)× PCA[k− 1][P]
11 if (k == 1) then
12 PCA[k][P]← max

ϕ′∈P
(CA(ϕ′))

13 end
14 if (k > 1 and kr < mr) then
15 PCA[k][P]← OCP(P, r, k− 1)
16 end
17 CA[k][S]← max(CA[k][ϕ], CA[k][S])
18 end
19 end

combinations of size r from δ, denoted by S (|S| = (|δ|r )), where δ is a qualified set of

DCs which is determined by Algorithm 3.2. ϕ ∈ S refers to any element of S, which is

an r-combination of δ (|ϕ| = r). In more details, CA[k][ϕ] is the maximum availability of

kth chunk with r replicas if its replicas are stored in all di ∈ ϕ. Associated to each ϕ ∈ S,

P is a subset of S including all elements ϕ′ ∈ S, such that ϕ′ does not include any DC

di ∈ ϕ. PCA[k][P] denotes the maximum availability of k chunks with r replicas that are

replicated in P.

We derive a general recursive equation for CA[k][ϕ]. First, we enumerate all possible

ϕ ∈ S that could store the kth chunk with r replicas, as if we were placing the kth chunk.

Second, we consider all possible placement of the first (k − 1) chunks with r replicas,

which are placed into P. Thus, if set ϕ is considered for kth chunks, the availability of

k chunks will be the multiplication of the maximum availability from the first (k − 1)

chunks with r replicas, which are placed into P (i.e., PCA[k− 1][P]), and the availability

of the kth chunk, A(ϕ), when we use ϕ. Thus, we have:
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CA[k][ϕ] = A(ϕ)× PCA[k− 1][P]. (3.15)

The computation for PCA[k][P] is a recursive approach as follows. If (k > 1 and kr <

mr), it is assumed that the first chunk with r replicas placed in ϕ ∈ S, and the remaining

(k− 1) chunks, with duplication factor r should be optimally placed into P. Thus, OCP

algorithm called recursively with appropriate parameters. This means OCP(P, r, k − 1).

Otherwise, if(k = 1), assumed as the terminal condition of the OCP algorithm, PCA[1][P]

is maximum availability of all ϕ′ ∈ P as if the chunk with r replicas is replicated in ϕ′ ∈ P.

Therefore, the recursive equation for PCA can be obtained as follows.

PCA[k][P] =


max
ϕ′∈P

(A(ϕ′)), if k = 1

OCP(P, r, k− 1) if k > 1 and (k× r < m× r)

Thus, from the derived recursive equations for CA and PCA, Algorithm 3.3 gives the

pseudo-code for the OCP problem.

Similar to the previous section, we apply constraint E(JQ) ∝ PQ to Algorithm 3.2.

First, budget B is allocated to each QoS type Q proportional to PQ. That is, b(JQ) = bb×

PQc, where b(JQ) is the budget allocated to QoS type Q. To guarantee constraint E(JQ) ∝

PQ, b(JQ) is sorted decreasingly by di f b(JQ), where 0 ≤ di f b(JQ) = b× PQ − b(JQ) < 1,

and then the first B−∑Q b(JQ) of b(JQ) is increased by one. Second, we substitute B with

b(JQ) in Algorithm 3.2 to hold the constraint.

3.4 Performance Evaluation

3.4.1 Simulation Setting

We performed several experiments to assess the performance of our algorithms. Table 3.1

summarizes the objective and constraint of the proposed algorithms. We first present the

parameters setting of cloud providers used in the performance evaluation. Although the

failure probability of most cloud providers are not disclosed, some of them have revealed

this parameter. For example, Amazon S3 provides two level of storage services: Standard

Storage has eleven nines as durability and four nines as availability whilst the other ser-
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Table 3.1: objective and constraint of the proposed algorithms

Algorithm
Replication Availability Replication Cost

(Expected Availability, EA) (Budget, B)
Algorithm 3.1 Limited by EA Minimize
Algorithm 3.2 Maximize Limited by B

Table 3.2: Data centers parameters

DC# FP CPO DC# FP CPO
d1 0.0001 48 d6 0.004 12
d2 0.0002 36 d7 0.01 6
d3 0.0004 30 d8 0.04 4
d4 0.001 24 d9 0.1 2
d5 0.002 18

vice, Reduced Redundancy Storage (RRS), provides four nines (99.99%) for availability and

durability. Storage cost for both services depends on the region of the cloud provider and

the level of service. In all regions the storage cost of standard storage is more than that of

RRS. Google, another well-known cloud provider, has not disclosed failure probability;

however, researchers [69] have done extensive studies on Google’s main storage infras-

tructure and they have measured failure probability, which is about 0.045(that is, 3 nines)

on average. Rackspace guarantees 3 nines (99.9%) availability within its SLA. The other

providers such as Nirvanix, EMC Atoms, etc. do not disclose failure probability, but they

consider credits to compensate availability violation as noted in the SLA.

According to the above description, we determine a set of DCs with two parame-

ters, Failure Probability (FP) and Cost Per Object (CPO) for our simulation as shown in

Table 3.2. Since we have the failure probability of Amazon S3, Rackspace and Google’s

storage infrastructure, we use them as baseline, and add 6 DCs with the assumption that

as availability of service is increased, the storage cost of object is raised [38]. It is also

assumed that the cost and the failure probability reported in Table 3.2 remains constant

during the simulation.

In our simulation, we set the number of objects to 100, while duplication factor r is

fixed to 2 since the number of replicas is a small constant in practice (e.g., 2 or 3) [68].
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Figure 3.2: Minimum cost of replication versus expected availability of objects

3.4.2 Algorithm 3.1: Minimum Cost Fixed Expected Availability

We have performed experiments to evaluate this algorithm in order to measure the mini-

mum cost of replication whilst the expected availability in the form of number of nines is

satisfied. In the first experiment, we relax the constraint (3.4) and assume that all objects

have the same priority from the user’s perspective.

The result of this experiment are depicted in Fig. 3.2. We can say that if the user wants

to have the expected availability with 4 nines, the minimum cost of replication is imposed

to the user is about 600. Thus, if the user randomly chooses an object among the objects,

he is able to access that object with the probability of 99.99%. Fig. 3.2 also demonstrates

that the minimum cost of replication experiences almost two stages of significant incre-

ment. We observed that the algorithm explores most DCs in the range from d9 to d6 to

provide 4 nines and 5 nines as expected availability. As the value of EA is increased from

5 to 7 nines, the algorithm dynamically switches to the more expensive DCs, where the

first stage of increment in the minimum cost of replication happens. The second stage

of increment incurs when the value of EA is augmented from 7 nines to 9 nines, which

results in three times increment in the minimum cost of replication.

To evaluate Algorithm 3.1 with constraints (3.4) (i.e., the revised Algorithm 3.1), it is

assumed that the user asks to store Gold, Silver and Bronze objects in DCs subject to, for

example, PG = 50%, PS = 30% and PB = 20%. Furthermore, the number of objects in

each type of QoS is set to 100. With the above assumptions, the revised Algorithm 3.1 is

run and its results are illustrated in Fig. 3.3.

This figure demonstrates as the EA value is increased, the minimum cost of replication

of Gold objects significantly grows compared to that of two other types. For example,
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Figure 3.3: Minimum cost of replication versus expected availability for three types of
QoS
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Bronze objects

Figure 3.4: Expected availability versus TN for three types of QoS

with EA=7, the minimum cost of replication for Gold objects is approximately three and

seven times more than that of the required for Silver and Bronze objects, respectively.

This is because the revised Algorithm 3.1 explores more reliable DCs, which in turn are

more expensive ones, to host Gold objects in comparison with two other QoS types.

In Fig. 3.4, as expected, the hierarchy between the QoS types is respected, i.e. the

value of EAG is higher than EAS which in turn is higher than EAB. For example, when

TN=600, we have EAG=5 nines and EAS=4 nines whilst about 60% of Bronze objects are

stored in DCs such that EAB=4 nines (which is not plotted in Fig. 3.4b). This is because

that Gold and Silver objects have stricter requirements. Figs. 3.4a and 3.4b also show

that as the TN value rises, the value of EAQ increases according to PQ. Fig. 3.5 plots EA

against EFQ. As it can be see, the higher EA value, the lower EFQ value for three types

of QoS. In addition, the value of EFG is lower than EFS and EFB because the value of PQ

prioritizes Gold, Silver and Bronze objects. For example, when EA=7 nines , EFG ≈1.6
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Figure 3.5: Expected failure (EFQ) versus Expected Availability for three types of QoS

EFS and EFG ≈3 EFB.

3.4.3 Algorithm 3.2: Maximum Expected Availability with a Given Budget

In this algorithm, since n and r are small constants, the value of m is small and varies

between 2 and bn/rc. The value of m can be defined according to a trade-off between

the switching cost and the availability of objects. This is because as m is increased the

switching cost and the availability of objects are decreased. Finding the optimal value of

m based on this trade-off is beyond the scope of this chapter. What it is important for us

is to investigate how Algorithms 3.2 and 3.3 are able to find optimal placement of chunks

for each arbitrary value of m. Therefore, in order to evaluate them, we fix the values of

M, r, and m and vary the value of budget. Fig. 3.6 shows that the value of EA for objects

when the budget is varied from 1000 to 3000. The following observations can be made

from the results. First, with increasing the budget, the value of EA is increased. This

should be attributed to the fact that Algorithm 3.2 explores the more expensive DCs with

lower failure probability to store objects as the budget grows. Second, as the budget is

increased, the rate of increment in the value of EA becomes smaller. Because Algorithm

3.2 chooses a subset of DCs from D as a main set of DCs such that the cost of replication

for all objects gained the maximum expected availability is minimized. As the budget

escalates, the algorithm dynamically changes some DCs in main set, which is termed as

auxiliary subset, until the budget allows the algorithm to find a new main set of DCs.

This new main set increases the value of EA with a smaller rate. This happens because

marginal increment in EA value of using more expensive of DCs in auxiliary subset is
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Figure 3.6: Expected availability versus Budget
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Figure 3.7: Expected failure versus Budget

decreasing. As a result, the expected availability is increased less with the same amount

of additional budget. For example, when the budget increases from 1000 to 1500, the

value of EA increases one nine that is the same as that of from 1500 to 2500. Fig. 3.7

illustrates the EF value for objects versus the budget. As it can be seen, the EF value

is decreased with the increase of budget. Furthermore, the reduction in the value of

EF becomes less when we have an increment in the budget, which confirms the second

observation in Fig. 3.6.

Fig. 3.8 plots the value of EAQ against the budget that is varied between 2000 and 6000.

The higher budget results in the higher value of EAQ for all types of QoS. As expected,

the Gold objects achieve the highest expected availability and Bronze objects achieve the

lowest one, because the revised Algorithm 3 divides the budget among each type of QoS

according to PQ. Fig. 3.8 also depicts that EAB value is constant when the budget is

varied from 2000 and 5000. The reason is since the revised algorithm allocates the lowest

budget to Bronze objects, it is not possible to store all Bronze objects in the DCs. In this

experiment, 60%, 40% and 20% Bronze objects are not placed in DCs when the budget

is 2000, 3000, and 4000, respectively. This figure for Silver objects is about 40% and 20%
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Figure 3.8: Expected availability for three types of QoS Versus Budget

when the budget is 2000 and 3000, respectively. Placing all Silver and Bronze objects

happens when the amount of budget reaches 3000 and 5000, respectively.

3.5 Summary

We addressed two issues related to placing replicas of the objects in multi-cloud environ-

ment. In order to tackle these issues, we propose efficient algorithms. The first algorithm

has been designed to minimize the replication cost and the expected availability of ob-

jects as the user’s QoS is met. The second one is proposed to maximize the expected

availability of objects under a given budget with the assumption that the objects are split

to chunks. We also have conducted extensive simulation experiments to evaluate the ef-

fectiveness of our algorithms. The experiments show that the proposed algorithms are

efficient to determine the optimal location of the replicas for objects with a given con-

straint.





Chapter 4

Cost Optimization in a Dual
Cloud-based Storage Architecture

Due to diversity of pricing options and variety of storage and network resources offered by cloud

providers, enterprises encounter nontrivial choice of what combination of storage options should be

used in order to minimize the monetary cost of managing data in large volumes. prior to investigate

this matter for Geo-replicated data stores, it is important to consider it for a dual cloud-based storage

architecture (i.e., the combination of a temporal and a backup DC) as a fine-grained cloud-based archi-

tecture. For this purpose, we propose two data object placement algorithms, one optimal and another

near optimal, that minimize residential (i.e., storage, data access operations), delay, and potential mi-

gration costs in this architecture. We evaluate our algorithms using real-world traces from Twitter.

Results confirm the importance and effectiveness of the proposed algorithms and highlight the benefits

of leveraging pricing differences and data migration across cloud storage providers (CSPs).

4.1 Introduction

DATA volume is one of the important characteristics of cloud-based application

(e.g., Online Social Network) and has been changed from TB to PB with an in-

evitable move to ZB in current IT enterprises. From statistical perspective, 8 × 105 PB

of data were stored in the world by the year of 2000 and it is expected that this number

will increase to 35 ZB by 2020 [188]. Storing and retrieving such data volume demand a

highly available, scalable, and cost-efficient infrastructure.

Thanks to the cloud infrastructures, management of such large volume data has been

simplified and the need for capital investment has been removed from IT companies.

This chapter is derived from: Yaser Mansouri and Rajkumar Buyya, “To Move or Not to Move: Cost Opti-
mization in a Dual Cloud-based Storage Architecture,” Journal of Network and Computer Applications (JNCA),
Volume 75, Pages: 223-235, ISSN: 1084-8045, Elsevier, Amsterdam, The Netherlands, November 2016.
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However, this creates a major concern for these companies regarding the cost of data

management in the cloud. The cost of data storage management (simply, cost of data

management) is a vital factor from companies’ perspective since it is the essential driver

behind the migration to the cloud. Thus, companies are in favor of optimizing data man-

agement cost in the cloud deployments. In order to optimize data management cost,

choosing a suitable storage option across CSPs in the right time becomes a nontrivial

task. This happens due to the two following reasons.

First, there is an array of pricing options for the variety of storage and network ser-

vices across CSPs (e.g., Amazon, Google and Microsoft Azure). CSPs currently offer at

least two classes of storage service: Standard Storage (SS) and Reduced Redundancy Stor-

age (RRS). RRS enables users to reduce cost at the expenses of lower levels of redundancy

(i.e., less reliability and availability) as compared to SS. These services provide users with

API to Get (read) data from storage and to Put (write) data into it. In mid-2015, Amazon

and Google respectively introduced Infrequent Access Storage (IAS) and Nearline stor-

age services that aimed at hosting objects with infrequent Gets/Puts. Both services charge

lower storage cost in comparison to their corresponding RRS but higher cost for Gets and

Puts.

Furthermore, CSPs charge users with different out-network cost to read data from a

DC to the Internet (typically in-network data transfer is free). They also offer discounts

for data transfer between their DCs. For example, Amazon reduces out-network cost

when data is transferred across its DCs in different regions and Google offers free of

charge data exchange between its DCs in the same region. Thus, taking the advantage of

diversification in price of storage and network (as well as service type) plays an important

factor in residential cost (i.e., Storage and data access operations costs) as a major part

of the data management cost. Note that data access operations are Get and Put in this

chapter.

Second, there is time-varying workload on the object stored in the cloud. Presume

that an object is a tweet/photo and it is posted on the user’s feed (e.g., timeline in Face-

book) by herself or her friends. Gets and Puts are usually high in the early lifetime of

the object and we say that such object is in hot-spot status. As time passes, Gets and Puts

are reduced and we refer that the object is in cold-spot status. Thus, it is cost-efficient
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to store the object in a DC with lower out-network cost (referred as a temporal DC) in

its early lifetime, and then migrate it to the DC with lower cost in storage (referred as a

backup DC). If the object migration happens between a temporal and a backup DC, the

user incurs migration cost. This cost is another part of the data management cost, which

is affected by the number of Gets, Puts, and the object size. It is important to note that the

migration cost might be zero in some cases: (i) if both DCs belong to the same provider

and are in the same region, then transferring objects between DCs is free, as in Google

provider, and (ii) if temporal and backup DCs are the same and the object is just moved

from a storage class to another (i.e., from SS to IAS) within the same DC.

Besides discussed costs, latency for reading from (writing into) the data store is also

a vital performance criterion from the user’s perspective. The latency is defined as the

elapsed time between issuing a Get/Put and receiving the required object. To respect this

criterion, we convert latency into monetary cost, as a latency cost, and integrate it in our

cost model.

In summary, by wisely taking into account the discussed differences in prices across

CSPs and time-varying workload, we can reduce the data management cost (i.e., resi-

dential, latency, and migration costs) as one of the main user’s concern with regard to the

cloud deployment. To address this issue, we make the following contributions:

• we propose the optimal algorithm that optimizes data management cost in the dual

cloud-based architecture when the workload in terms of Gets and Puts on the ob-

jects is known;

• we also propose a near-optimal algorithm that achieves competitive cost as com-

pared to that obtained by the optimal algorithm in the absence of future workload

knowledge; and

• we demonstrate the effectiveness of the proposed algorithms by using the real-

world traces from Twitter in a simulation.

The reminder of this chapter is organized as follows. Section 4.2 presents system and

cost model. In Section 4.3, we describe our object placement algorithms to save cost. Sec-

tion 4.4 presents our simulation experiments and evaluation of the proposed algorithms.

Finally, in Section 4.5, we conclude this chapter with future work issue related to cost

optimization of data management across Geo-replicated cloud-based data stores.
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Figure 4.1: A scenario of the dual cloud-based storage architecture in the European and
Asia-Pacific regions. Parenthesis close to each DC’s name shows the storage price (per
GB per month) for standard storage, backup storage, and network price (per GB), respec-
tively.

4.2 System and Cost Model

We first describe the dual cloud-based architecture, which can lead to reduced monetary

cost for applications. Then, we discuss the cost model and the objective function that

should be minimized considering the objective and specifications of the architecture.

4.2.1 System Model

In our system model, an object is a tweet or photo posted by users on their feed. As stated

earlier, the object is stored in the temporal (resp. backup) DC during its hot-spot (resp.

cold-spot) status to benefit from lower network (resp. storage) cost. A transition between

hot- and cold-spot probably leads to the object migration. Our architecture uses stop

and copy migration technique [65] in which Gets and Puts are respectively served by the

temporal and backup DCs during the object migration. Fig. 4.1 illustrates the scenario of

the architecture in two regions. In the architecture, each user is assigned to the closest DC

among the DCs which are Geo-graphically located across the world. This DC is referred

as the home DC. The determined home DC for each user is then paired with the DC that is

selected by the object owner or application provider1. The paired DCs are considered as

1We pair each home DC with 21 DCs in the experiment to determine which combination of temporal and
backup DCs is cost-efficient.
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the temporal and backup DCs. As an example, in the Asia-Pacific, a user stores the object

in the Victoria Azure DC (ADC) with low network cost, while their friends in Singapore

and New South Wales access the object by issuing their read/write requests from their

home DCs. As time passes, the object is migrated to the Taiwan Google DC (GDC), which

has lower storage cost (i.e., Nearline) in comparison to S3 and ADC in the Asia-Pacific

region.

4.2.2 Cost Model

The system model is represented as a set of independent DCs D where each DC d is

associated with the following cost elements to manage data:

1. Storage cost: S(d) denotes the storage cost per unit size per time,

2. Network cost: O(d) is the cost per byte of out-bound bandwidth transferred from

DC d (in-bound bandwidth is typically free),

3. Transaction cost: tg and tp define transaction cost for a Get and Put request respec-

tively.

Assume that the application hosts a set of objects in time slot t ∈ [1...T]. Each object

is associated with v(t), r(t), and w(t) denoting respectively size in byte, the number of

read and write operations for the object in time slot t. Also suppose l denotes the latency

between the DC that issues a Put/Get for the object and the DC that hosts the required

object. xd(t) represents whether the object exists in DC d in time slot t (xd(t) = 1) or not

(xd(t) = 0).

Residential cost: The residential cost of the object in time slot t is as follows. (i) The

storage cost of the object is equal to its size multiplied by the storage price (S(d)v(t)). (ii)

The read cost of the object is the cost of all Gets (r(t)tg(d)) and the communication cost

(r(t)v(t)O(d)). (iii) The write cost of the object is the cost of all Puts for updating of the

object (w(t)tp(d)). Thus, the residential cost CR is defined as:

CR(xd, t) = ∑
xd

xd(t)[v(t)(S(d) + r(t)O(d)) + r(t)tg(d) + w(t)tp(d)] . (4.1)

Delay cost: Time is cost and user-perceived latency for reading and writing the object

is a vital criterion. For example, Amazon reported that every 100 ms of latency reduces
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1% of its sales. To capture this cost, the incurred latency for Gets and Puts is considered as

a monetary cost [194]. We consider “Get/Put delay” as the time taken from when a user

issues a Get/Put from the DC d′ to when he/she gets a response from the DC d that hosts

the object. In fact, the read and write requests are issued from the application hosted by

the closest DC to the user. The delay cost of read and write requests, CD, can be formally

defined as:

CD(xd, t) = ∑
xd(t)

xd[l(d′, d)v(t)(r(t) + w(t))lw] , ∀d, d′ ∈ D. (4.2)

In Equ. 4.2, l(d′, d) denotes the latency between DC d′ that issues requests and DC d

that hosts the object. l(d′, d) in our formulation and evaluation is based on the round

trip times between d and d′. This is reasonable because for the application, the size of

objects is typically small (e.g., tweets, photos, small text file), and thus data transitions

are dominated by the propagation delays, not by the bandwidth between the two DCs.

For applications with large objects, the measured l(d′, d) values capture the impact of

bandwidth and data size as well. In the above equation, lw denotes the latency cost weight,

which converts latency into a monetary cost. It is set by the application based on the

importance degree of the latency from the user’s perspective. The more importance the

latency, the higher lw will be.

Migration cost: As time passes, the number of Puts and Gets decreases, and it is cost-

effective to migrate the object from a temporal DC to a backup DC with the lower cost in

storage. We use stop and copy migration technique in our model for two reasons. First, the

system performance is not significantly affected by this technique because (i) the transfer

time of a bucket (which is at most 50 MB in size [52]) between temporal and backup DCs is

about few seconds, and (ii) a significantly lower number of Puts and Gets must be served

after the transition to the cold-spot status. Second, this technique imposes a lower cost

as compared to the log-based technique [169]. The object migration cost is the cost of

retrieving the object from the source DC (v(t)O(ds)) and writing it to the destination DC

(tp(dd)). Thus the migration Cost CM(t− 1, t) is defined as:

CM(t− 1, t) = v(t)O(ds) + tp(dd), (4.3)
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where ds and dd are the source and destination DCs respectively.

Cost optimization Problem: Considering the aforementioned cost model, we define

the objective as to determinate the object placement (i.e., xd) in each time slot t so that the

overall cost (i.e., the sum of residential, delay, and potential migration costs) of the object

during [1...T] is minimized. Thus, the objective function can be defined as:

T

∑
t=1

∑
xd(t)

CR(xd(t), t) + CD(xd(t), t) + CM(t− 1, t), xd(t) ∈ {0, 1}. (4.4)

4.3 Data Management Cost Optimization

To solve the aforementioned cost optimization problem, we first propose a dynamic al-

gorithm to minimize the overall cost while the future workload is assumed to be known

a priori. Then, we present a heuristic algorithm to achieve competitive cost as compared

to the cost of dynamic algorithm for unknown objects workload.

4.3.1 Optimal Object Placement (OOP) Algorithm

Let P(d, t) be the minimum cost of the object in DC d in time slot t. In order to compute

P, we drive a general recursive equation for P as Equ. 4.5, where C(d, t) is the summation

of the residential, delay, and potential migration costs of the object in time slot t (Equs.

(4.1 - 4.3)).

We first enumerate all possible DCs that could store the object in time slot t and then

calculate the residential and delay costs. Second, we consider all possible placements of

the object in time slot t − 1 and calculate the migration cost from each DC in time slot

t− 1 to the current DC d in time slot t.

If we store the object at DC d in time slot t, then the overall cost (i.e., P(d, t)) is the

minimum of the overall cost in time slot t− 1 (i.e., P(d, t− 1)) plus the residential, delay,

and potential migration costs of the object in time slot t (i.e., C(d, t)). This recursive equa-

tion is terminated when t is zero and its corresponding P(d, t) value is zero. Therefore,
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Algorithm 4.1: Optimal Object Placement (OOP) Algorithm
Input : DCs and objects specifications
Output: x∗d(t) and the optimized overall cost during t ∈ [1...T]

1 Initialize: ∀ DC d, P(d, 0)← 0 ∧ ∀t ∈ [1...T], xd(t)← 0
2 for t← 1 to T do
3 /* DCs (i.e., d) are a temporal DC and a backup DC.*/
4 forall xd(t) do
5 forall xd(t− 1) do
6 Calculate P(d, t) based on Equ. 4.5.
7 end
8 end
9 end

10 Select min
d

P(d, T) as the optimized overall cost (i.e., Equ. 4.4).

11 Take the optimized overall cost, i.e., min
d

P(d, T), in time T and set its

corresponding xd(T) to 1 (i.e., x∗d(T)). Then, the value of xd(T − 1) is set to 1 if its
corresponding cost value in time slot T − 1 leads to the optimized overall cost in
time slot T. In the same way, find the value of all xd(t)s from T − 2 to 1.

12 All xd(t)s with value of 1 are x∗d(t)s.
13 Return x∗d(t) and the optimized overall cost.

we define the recursive equation for the OOP algorithm as:

P(d, t) =

 min
d

[P(d, t− 1) + C(d, t)], t > 0

0 t = 0
(4.5)

.

Once P(d, t) is calculated for all DCs d during t ∈ [1...T], we calculate min
d

P(d, T) as

the minimum cost of the object. It is easy to find the optimal location of the object in time

slot t (i.e., x∗d(t)) by backtracking from the minimum cost in time slot T. In each time slot

t, if the cost value leads to minimum cost value in time slot t + 1, then the value of xd(t)

is 1; otherwise is 0. Continuing on the backtrack step from T to 1, we find the value of

x∗d(t) for all t ∈ [1...T].

The pseudo code in Algorithm 4.1 shows the discussed OOP. Note that since the value

of x∗d(t) is 1 only for one DC in each time slot t, we can safely initialize xd(t) with 0 for all

DCs d in all time slots t.

The time complexity of the algorithm is dominated by three nested “for” loops in

which the recursive function (Equ. 4.5) is calculated. For each paired DCs (lines 4-8), we
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compute the value of P(d, t) for each time slot t ∈ [1...T]. Thus, this calculation takes

O(2T) since we have two DCs in the dual cloud-based storage architecture. To find the

location of the object in each time slot, we need to backtrack the obtained results (line 12),

which takes O(T). Since this process (lines 2-13) is repeated for all pairs of DCs (i.e.,(n
2),

not shown in the algorithm), the total time complexity of the algorithm yields O(n2T),

where n is the number of DCs.

4.3.2 Near-Optimal Object Placement (NOOP) Algorithm

We propose a novel heuristic algorithm that finds a competitive solution for the cost

optimization problem, as compared to that of OOP. Intuitively, if the object migrations

do not happen at the right time, then besides migrations cost, the residential and delay

costs increase as compared to these costs in OOP. We refer to the difference between these

costs in OOP and NOOP as the overhead cost. This overhead cost should be minimized

by providing a strategy that leads to the object migration in time(s) tm so that it should be

near to the optimal migration time(s) obtained by OOP. To achieve this aim and minimize

the overhead cost, we make a trade-off between the migration cost and the summation

of residential and delay costs (for summary, denoted by CRD) in the absence of the future

workload knowledge. The idea behind this trade-off is that the object is migrated to a

new DC when (i) the object migration leads to save monetary cost at the new DC, and (ii)

the sum of the lost cost savings from the last migration time up to the current time slot

gets more than or equal to the migration cost of the object between DCs. This strategy

avoids migrating the object too early or too late. The “trick” is to move the object “lazily”,

i.e., when sum of overall cost savings that could be done by any earlier migrations from

the last migration time tm is as large as the cost of migration in the current time slot.

Now we formally define the discussed trade-off. Let CM(tm−1, tm) be the migration

cost between two consecutive migration times, where tm is the last time the object is

migrated. For each time slot v ∈ [tm, t), we calculate the summation of the residential

and delay costs of the object (i) in the DC hosting the object in the previous time slot

t − 1, and (ii) in the new DC in the current time slot as if the object is migrated to it.

Now, for each time slot v, we calculate the summation of the difference between two

CRDs in the two previous cases from time v = tm to v = t − 1. This summation is



108 Cost Optimization in a Dual Cloud-based Storage Architecture

equal to ∑t−1
v=tm

[CRD(xd(v− 1), v)−CRD(xd(v), v)]. Note that if the migration of the object

happens in time slot v = t, we assign tm−1 = tm and tm=t in Equs. 4.6 and 4.7. Based on

the summation of the residential and delay costs (i.e., CRD) and the migration cost (i.e.,

CM(tm−1, tm)) in the current time slot, the algorithm decides whether the object should

be migrated or not. As discussed before, to avoid the object being migrated too early or

too late, the object migration happens only if both the following conditions are satisfied:

First, the object has the potential to be migrated to a new DC if

CM(tm−1, tm) ≤
t−1

∑
v=tm

[CRD(xd(v− 1), v)− CRD(xd(v), v)]. (4.6)

Otherwise, the object is kept in the previous DC as determined in time slot t − 1. This

condition prevents the object being migrated too late. Second, to avoid early object mi-

gration, we enforce the following condition.

CM(tm−1, tm) + CRD(xd(t), t) ≤ CRD(xd(t− 1), t). (4.7)

This constraint implies that the overall cost of the object, including residential, delay, and

migration costs, in the new DC should be less or equal to the summation of residential

and delay costs of the object if it stays in the determined DC in time slot t − 1. Algo-

rithm 4.2 represents the pseudo code for NOOP.

The time complexity of the algorithm is as follows. We need to calculate the total

cost (lines 4- 16) for each paired DCs for each time slot t ∈ [1...T]. This calculation takes

O(T)(lines 6-15). Since we repeat this computation for all pairs of DCs (i.e., (n
2), not

shown in the algorithm), the total time complexity of the algorithm is O(n2T), where n is

the number of DCs.

4.4 Performance Evaluation

In this section, we first discuss the experimental settings in terms of workload character-

istics, DCs specifications, and assignment of users to DCs. Then, we study the perfor-

mance of the proposed algorithms in terms of cost saving and investigate the effect of the

various parameters on the cost saving.
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Algorithm 4.2: Near-Optimal Object Placement (NOOP) Algorithm
Input : DCs and objects specifications
Output: x̂d(t) and the overall cost during t ∈ [1...T] as denoted by Cove.

1 Cove ← 0, ∀t ∈ [1...T], xd(t)← 0
2 Cove ← Select either backup or temporal DC so that cost CRD is minimized in time

slot t, and set Corresponding xd(t = 1) to 1.
3 tm ← 1
4 for t← 2 to T do
5 /* DCs (i.e., d) are a temporal DC and a backup DC.*/
6 forall xd(t) do
7 CRD(.)← Determine xd(t) by minimizing CRD(xd, t)
8 Cove ← Cove + CRD(.)
9 end

10 if (Equs. 4.6, 4.7, and xd(t− 1)! = xd(t) ) then
11 tm−1 ← tm, tm ← t, CM ← calculate CM(tm−1, tm)
12 xd(t) = 1, Cove ← Cove + CM

13 else
14 xd(t)← xd(t− 1)
15 end
16 end
17 xds with value of 1 are x̂d(t)s.
18 Return x̂d(t) and Cove.

4.4.1 Experimental settings

We evaluated the performance of algorithms via extensive experiments using a dataset

from Twitter [101]. In the dataset, each user has her own profile, tweets, and a user

friendship graph over a 5-year period. We focus on tweet objects posted by the users and

their friends on the timeline, and obtain the number of tweets (i.e., number of Puts) from

the dataset. Since the dataset does not contain information of accessing the tweets (i.e.,

number of Gets), we set a Get/Put ratio of 30:1, where the pattern of Gets on the tweet

follows Longtail distribution [16]. This pattern mimics the transition status of the object

from hot- to cold-spot status. The size of each tweet varies from 1 KB to 100 KB in the

dataset.

We model 22 DCs in CloudSim Toolkit [35], and among these DCs, 9 are owned by

Microsoft Azure, 4 by Google, and 9 by Amazon. Each DC is referred by a name that

consists of (i) provider name: Microsoft Azure (AZ), Google (GO) and Amazon (AM);

(ii) location: USA (US), Europe (EU), Asia (AS), Australia (AU), Japan (JA), and Brazil

(BR); and (iii) the specific part of the location: south (S), north (N), west (W), east (E),
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Figure 4.3: Total data size in data centers.

and center (C). Since we have two different Amazon DCs in US-West region, i.e., Oregon

and California, we add letter “O” for Oregon and “C” for California. For example, based

on this naming, the DC with name AZ-USS refers to the DC that is part of Microsoft

Azure in the USA South. Every DC offers two classes of storage services: (i) SS, and (ii)

RRS, that is, Locally Redundant Storage (LRS) for Azure, Nearline for Google, and IAS

for Amazon. The latter storage class, i.e., RRS, is used for the object when it transits to

cold-spot status. We set the storage and network prices of each DC as of September 2015.2

We measured inter-DCs latency (22*22 pairs) over several hours using instances de-

ployed on all 22 DCs. We run Ping operation for this purpose, and used the medium

latency values as the input for our experiments. The default value of l (as the latency cost

weight) to convert delay to cost is 10. As a result, delay cost constitutes 7-10% of the total

2Amazon S3 storage and data transfer pricing. https://aws.amazon.com/s3/pricing/
Google storage and data transfer pricing. https://cloud.google.com/storage/pricing
Azure storage pricing. https://azure.microsoft.com/en-us/pricing/details/storage/
Azure data transfer pricing. https://azure.microsoft.com/en-us/pricing/details/
data-transfers/

https://aws.amazon.com/s3/pricing/
https://cloud.google.com/storage/pricing 
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
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cost in the system.

With the help of Google Maps Geocoding API 3, we convert users’ text locations to

geo-coordinates (i.e., latitude and longitude) according to the users’ profiles. Then, ac-

cording to the coordination of users and DCs, we assigned users to the nearest DC based

on their locations. In the case of two (or more) DCs with the same distance from the user,

one of these DCs is randomly selected as the home DC for the user. One-month (Dec.

2010) of Tweeter dataset with more than 46K users, posting tweet on their timeline, is

utilized for our experiments. As shown in Fig. 4.2, around 99.1% of users are assigned to

DCs in the USA while the remaining users are designated to DCs in Europe, Asia, Aus-

tralia and Brazil4. This is because most of the users of the dataset come from the USA

region. Therefore, we focus on the cost saving for DCs in the USA including: two Azure

DCs (AZ-USS and AZ-USC), two Google DCs (GO-USC and GO-USE), and three Ama-

zon DCs (AM-USW(O), AM-USE and AM-USW(C)). The total size of data in each DC, as

depicted in Fig. 4.3, is dependent on the number of users allocated to each DC and the

number of tweets posted by users.

4.4.2 Results

We compare the cost savings gained by the proposed algorithms with the following pol-

icy benchmark. It is important to mention that (1) the obtained results are valid for the

current prices offered by three well-known cloud providers investigated in this chapter,

and these prices may change quickly in the current competitive market, and (2) in this

work, cloud provider selection is only determined based on the monetary cost, while

data placement decision can be made based on other criteria such as availability, dura-

bility, scalability, and even the reputation of the cloud provider from application owner’s

perspective. Thus, with these results, we do not intend to advertise or harm the reputa-

tion of an individual cloud provider.

3The Google maps geocoding API https://developers.google.com/maps/documentation/
geocoding/intro

4We also used the same policy to assign friends of the user to a DC. The user’s friends are derived from the
friendship graph of dataset.

https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
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Benchmark policy

In the benchmark policy, we permanently store the user’s objects in the home DC (i.e.,

closest DC), and thus the object is not allowed to be migrated to another DC. This is

because that application providers often deploy their data in data centers close to their

user base. In all experiments, we normalize the incurred cost of the algorithms to the

cost of the benchmark policy by varying the following parameters: home DCs, data size

factor, latency cost weight, read to write ratio, and access pattern of read/write on the

objects. Each parameter has a default value and a range of values as summarized in Table

4.1. This range is used for studying the impact of the parameter variations on the cost

performance of the proposed algorithms. For clarity, Table 4.2 summarizes the specific

settings in terms of parameters corresponding to each figure. In the following section, we

discuss the cost saving of OOP and NOOP.

Table 4.1: Summary of Simulation Parameters

Data size
factor

Latency cost
weight

Read to write
ratio

Access pattern
on objects

Default 1 10 30 Longtail
Range 0.2-1 1-30 1-30 Normal, Random

Cost Performance

In this section, we study the cost savings of the proposed algorithms for the most popu-

lated DCs (i.e., 6 home DCs) with factor size 0.2 and 1. Note that a DC with “data size

factor x” means that it only stores x percent of the generated total data size, as shown

in Fig. 4.3 for each home DC. A DC stores the total data size when data size factor is 1.

For example, based on Fig. 4.3, AZ-USS with data size factor 0.2 stores 20% of 30 TB. It is

important to note that we report result for each pairing between the home DC and each

of 21 DCs in the experiments when cost can be saved.

Fig. 4.4 shows the cost savings of OOP and NOOP for AZ-USS and AZ-USC when

each of these home DCs are paired with 21 DCs. As expected, the cost cannot be saved

when AZ-USS and AZ-USC are paired with Azure DCs, as Azure DCs have more (or

the same) cost in the network and storage services than these considered home DCs. In
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Table 4.2: Evaluation Settings for Figures and Tables.

Figs./Table Data size
factor

Latency cost
weight

Read to write
ratio

Access pattern
on objects

4.4, 4.5, 4.6 0.2,1 10 30 Longtail
4.7 0.2-1 10 30 Longtail
4.8 1 1-30 30 Longtail
4.9 1 10 1-30 Longtail
Table 4.3 1 10 30 Normal and Random
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Figure 4.4: Cost saving of OOP and NOOP algorithms for two Azure DCs: AZ-USS and
AZ-USC as home DCs with data size factor 0.2 and 1.

contrast, Google DCs are more suitable to pair with aforementioned home DCs compared

to the DCs that belong to Amazon. The reason is that Google DCs have the cheapest cost

in the storage service (i.e., Nearline) for hosting the objects in their cold-spot status. For

pairing home DCs with Google DCs, OOP can save cost about 40% and 70% respectively

when the data size factor is equal to 1 and 0.2. However, NOOP can reduce cost by 40%

(resp. 25-28%) if the home DCs are paired with GO-USC and GO-USE (resp. GO-EUW

and GO-ASE) when the data size factor is equal to 1. For data size factor=0.2, NOOP
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cuts the cost by around 55% (see Fig. 4.4a and 4.4c) when the considered home DCs are

paired with each of Google DCs. For both algorithms, when data size factor=0.2, the

different component costs (i.e., residential, delay, and migration costs) remain constant

for all Google DCs; while for data size factor=1, pairing the home DCs with GO-EUW and

GO-ASE incurs more delay cost compared to the case that these home DCs are paired

with other Google DCs (i.e., GO-USC and GO-USE ). Therefore, the latter pairing set (i.e.,

pairing the home DCs with GO-USC and GO-USE) gains more cost savings.

Fig. 4.4 also suggests that, when AZ-USS and AZ-USC are home DCs, Amazon DCs

can be another suitable set of DCs to pair with, except AM-BRS as this DC is more ex-

pensive than home DCs in both network and storage services. OOP and NOOP gain cost

savings about 32-35% and 18-20% respectively when paired with AM-USW(O), AM-USE,

and AM-EUC for data size factor=1, and likewise 67%-68% and 52%-56% for data size fac-

tor=0.2. In contrast, when home DCs are paired with other Amazon DCs (i.e., AM-JAE,

AM-ASA and AM-AUE), both algorithms attain lower cost savings due to two reasons: (i)

these Amazon DC are more expensive in storage for backup objects and network as com-

pared to the former subset of Amazon DCs (i.e., AM-USW(O), AM-USE, and AM-EUC), and

(ii) they also impose more delay cost owing to their longer distance to home DCs.

Fig. 4.5 depicts the cost savings of OOP and NOOP when home DCs are GO-USC

and GO-USE. The results show that the cost is reduced when these home DCs are paired

with AZ-USS and AZ-USC that offer the same price in the network and storage. This

cost reduction is 65-67% for OOP and 53-55% for NOOP when data size factor=0.2, while

for data size factor=1, both algorithms approach the same cost saving (about 35-37%-see

Figs. 4.5b and 4.5d). The reason behind this result for data size factor=1 is that both

algorithms determine to migrate a low proportion of objects (about 25%) at roughly the

same time. Moreover, the results show that OOP can save more cost by (2-3%) when GO-

USC is paired with AZ-USC rather than AZ-USS (Figs. 4.5a and 4.5b) for both data size

factor values. This implies that users in GO-USC and their friends (in other DCs) incur

less delay cost when their read/write requests are sent to AZ-USC.

Fig. 4.5 also demonstrates that the home DCs can benefit from pairing with three

Amazon DCs, but the benefit is less than pairing with the specified Azure DCs. This

is because of AM-USW(O) and AM-USE are more expensive than Azure DCs in terms of
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Figure 4.5: Cost saving of OOP and NOOP algorithms for two Google DCs: GO-USC and
GO-USE as home DCs with data size factor 0.2 and 1.

network cost, while AM-USW(C) is more expensive in both storage and network costs.

However, the results (Figs. 4.5c and 4.5d) depict an exception in which pairing GO-USE

with AM-USE can save more cost than pairing GO-USE with Azure DCs. This happens

because both GO-USE and AM-USE are in eastern USA, and thus read/write requests

(mainly coming from this region) incur less delay cost.

Fig. 4.6 depicts the obtained cost savings from pairing each DC when home DCs are:

AM-USW(O), AM-USE and AM-USW(C).

Figs. 4.6a-4.6d show that AM-USW(O) and AM-USE can benefit from pairing with

at most three Azure DCs, all Google DCs, and one Amazon DC. Pairing with Google

DCs can bring more cost savings than with Amazon DC 5 which in turn, save more cost

than with Azure DCs (i.e., AZ-USS and AZ-USS) especially for NOOP when data size

factor=1. The reason behind this is: (i) objects tend to migrate to Google DCs with the

5AM-USW(O) as a home DC is paired with AM-USE (Figs. 4.6a and 4.6b), and AM-USE as a home DC is paired
with AM-USW(O) (Figs. 4.6c and 4.6d).
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Figure 4.6: Cost saving of OOP and NOOP algorithms for three Amazon data centers:
AM-USW(O), AM-USE, and AM-USW(C) as home data centers with data size factor 0.2
and 1.

cheapest storage cost for backup objects, and (ii) Amazon DCs offer discount in network

cost if the objects are migrated between two Amazon DCs. For data size factor=1, NOOP

can save around 32-35% cost when AM-USW(O) is paired with AM-USE (Fig. 4.6b) or vice

versa (Fig. 4.6d) by utilizing this discount, and around 20-25% when both home DCs are

paired with AZ-USS and AZ-USC. The difference in cost savings of NOOP between the

two pairing settings (i.e., pairing the home DCs with Amazon DC and with Azure DCs)
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is at most 15% (Fig. 4.6a ) for the data size factor=1, and likewise at most 5% when data

size factor is 0.2 (Fig. 4.6c).

Figs. 4.6e and 4.6f show that AM-USW(C), as a home DC, can be paired with more

DCs to save cost because its storage and network costs are substantially higher than the

cost in storage and network services offered by other DCs. As it can be easily seen in the

figures, the most and least profitable DCs for pairing respectively are Google and Azure

DCs for both algorithms and for both values of the data size factor.

As shown in Fig. 4.6e. for OOP and NOOP, pairing the home DC AM-USW(C) with

three Amazon DCs (i.e., AM-USW(O), AM-USE, and AM-EUN) gains roughly the same cost

savings than when it is paired with Google DCs. For OOP (resp. NOOP), the pairing with

the remaining Amazon DCs (i.e., AM-EUC and AM-ASS) cuts the same cost (resp. more

cost) as it is paired with Azure DCs. In fact, for both algorithms and for both values of

the data size factor, paring with AM-USW(O), AM-USE, and AM-EUN can offer more cost

savings than AM-EUC and AM-ASS.

As depicted in Fig. 4.6f, for both algorithms, pairing the home DC AM-USW(C) with

Google DCs outperforms pairing the home DC with AM-USW(O), AM-USE, and AM-EUN

at most by 10% in cost saving. For two pairing sets, pairing the home DC with AM-EUC

and AM-ASS, and with Azure DCs, OOP gains the same cost saving in both sets, while

NOOP achieves a twice cost savings in the latter pairing set in comparison to the former

pairing set.

The results can be justified as the aforementioned three Amazon DCs (i.e., AM-USW(O),

AM-USE, and AM-EUN) benefit from the discount in network price for moving data across

Amazon DCs. The amount of discount is about 3/4 of the network price for moving

data out to the Internet. AM-EUC takes the advantage of the same amount of discount

but its low profitability happens due to the small difference in the price of both storage

classes (5% less for IAS and 8% more for SS) compared to these prices of the home DC

AM-USW(C). For AM-ASS, the proposed algorithms achieve a lower cost saving because

the amount of discount is about 1/4 of the network price.
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Figure 4.7: Cost saving of OOP and NOOP algorithms for the home DC of Azure, Google
and Amazon when the data size factor is varied. The first (resp. last) two legends indicate
DC with maximum (resp. minimum) cost saving when they are paired with the home
DC.

The impact of data size factor value

We evaluate the effect of the data size factor value by varying it from 0.2 to 1 with the

step size of 0.2. The read and write requests for all data size factor values are fixed based

on the default value as in Table 4.1. This setting implies that as the data size factor value

is smaller, the data is more read- and write-intensive.

For the sake of brevity, from hereafter (excluding subsection 4.4.2), we report the re-

sults only for the most populated Azure DC (AZ-USS), Google DC (GO-USE), and the

two most populated Amazon DCs (AM-USE and AM-USW(C)), as home DCs. We also

consider the pairing of these DCs with two DCs: the ones with maximum and minimum

cost savings, where the value of data size factor is 1. Note that these DCs can be easily

recognized in Figs. 4.4b, 4.5d, 4.6d, and 4.6f. For example, Fig. 4.4b depicts AZ-USS, as
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a home DC, can achieve maximum (resp. minimum) cost saving when it is paired with

GO-USC (resp. AM-ASS).

As shown in Fig 4.7, as the data size factor value increases, the cost saving decreases.

This is because when the data size factor value is small, the network cost dominates the

total cost, and the proposed algorithm exploits more difference between network prices

offered by the paired DCs. On the contrary, as the value of data size factor increases,

the storage cost becomes more important and thus the difference between storage prices

offered by the paired DCs comes into play for optimization. We can also see that both al-

gorithms approach the same cost saving value (referred as convergence point) in the case

of maximum cost savings obtained from pairing DCs. The convergence point for each

home DC is: data size factor=0.6 for GO-USE and AM-USE, and data size factor=0.8 for

AM-USW(C). This implies that both algorithms decide to migrate the objects at roughly

the same time, and consequently they almost achieve the same cost saving.

The impact of latency cost weight

We study the effects of latency cost weight by varying it from 1 to 30 on the cost perfor-

mance of the algorithms on the pairing DCs as already discussed in Section 4.4.2. As

shown in Fig. 4.8, when the value of latency cost weight increases, the cost savings grad-

ually decrease (1-10%) for both algorithms. This is due to the fact that as the latency cost

weight value grows, the delay cost in dual cloud-based storage increases and the impact

of other parts of the total cost (i.e., residential and migration costs) diminishes. In fact,

the growth in the latency cost weight reduces the potential for exploiting the difference

cost between storage and network, which leads in the cost saving reduction. In summary,

for both algorithms, as the latency cost weight value increases, the delay cost comes as a vi-

tal factor in the cost saving, while the impact of difference between storage and network

costs on the cost saving decrease. As a result, a dual cloud-based storage prefers to store

more objects locally.
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Figure 4.8: Cost saving of OOP and NOOP algorithms for the home DC of Azure, Google
and Amazon when the latency cost weight is varied. The first (resp. last) two legends
indicate DC with the maximum (resp. minimum) cost saving when they are paired with
the home DC.

The impact of read to write ratio

We explore the effects of read to write ratio by varying it from 1 to 30 on the cost perfor-

mance of the proposed algorithms on pairing with DCs discussed in the previous section.

Fig. 4.9 depicts that, as the ratio of read to write increases, the cost savings gradually in-

crease at most 3% for OOP and 10% for NOOP. This indicates more exploitation of pricing

differences in the case of network costs between the two paired DCs as the ratio grows.

Also, as it can be seen, for the paired DCs with minimum cost saving, the OOP algo-

rithm gains 3-10% more cost saving than NOOP, except for the home DC GO-USE. On the

contrary, for the paired DCs with maximum cost saving, both algorithms approach the

same cost saving. This is because the total cost is dominated by the storage cost, where

in all paired DCs, Google DCs offer the same storage cost. For the data size factor values
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Figure 4.9: Cost saving of OOP and NOOP algorithms for the home DC of Azure, Google
and Amazon when the write to read ratio is varied. The first (resp. last) two legends
indicate DC with the maximum (resp. minimum) cost saving when they are paired with
the home DC.

between 0.2 and 0.6 in the case of the paired DCs with maximum cost saving (not shown

in results), OOP outperforms NOOP in the cost savings. The reason is that the total cost

is dominated by the network cost and home DCs are paired with different DCs (except

Google DCs) in terms of network cost.

The impact of the access pattern of reads/writes on objects

We finally investigate the cost performance of the proposed algorithms when the access

pattern of reads/writes on the objects follows different distributions, i.e., Normal and

Random (Recall that the access pattern of reads/writes on objects follows a Longtail dis-

tribution [16], as the default). Although Normal and Random access patterns are not

compatible with hot- and cold-spot status definition for objects, we investigate the im-
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Table 4.3: Cost saving of OOP and NOOP (shown in bracket), and the potential DCs pair-
ing with four home DCs when the acess patterns on the objects are Normal and Random.

Home DC Access pattern Azure Google Amazon

AZ-USS
Normal - 2-3%[-(11-18)%] 2-4%[-(3-7)%]
Random - 2-3%[-(1-13)%] 2-3%[-(3-5)%]
- - All DCs USW(O,C),USE

GO-USE
Normal 4%[-(7)%] - 4-5% [(2-4)%]
Random 4%[-(2)%] - 3-4%[(1-2)%]
- USS,USC - USW(O,C),USE

AM-USE
Normal 4%[0%] 4%[1-3%] 4%[2%]
Random 4%[-5%] 3-4%[-(0-4)%] 3%[1%]
- USS,USC All DCs USW(O)

AM-USW(C)
Normal 7-8%[-3%] 4-10%[3-9%] 6-9%[6-7%]
Random 7%[1%] 3-9%[3-6%] 6-8%[5-6%]
- USS,USC All DCs USW(O),USE

pact of these patterns separately to find out whether the algorithms can still cut cost.

And if so, to what extent? We conduct the experiment for four home DCs: AZ-USS, GO-

USE, AM-USE, and AM-USW(C). We use the default value of read to write ratio, latency

cost weight, and data size factor, as shown in Table 4.1. Table 4.3 gives the cost savings

for OOP and NOOP (shown in brackets).

As shown in Table 4.3, OOP can save cost for all home DCs under both access patterns.

For AZ-USS, the algorithm saves more cost if it is paired with Amazon DCs rather than

Google DCs under Normal access pattern by incurring less migration cost. For GO-USE,

OOP cuts the cost by 4% if it is paired with Azure DCs and cuts slightly more costs

with Amazon DCs under Normal access pattern. In contrast to the two discussed home

DCs, AM-USE and AM-USW(C), as home DCs, can achieve cost reduction by pairing with

DCs of all cloud providers (i.e., Microsoft Azure, Google and Amazon). The cost saving

obtained from these home DCs with Amazon DCs (i.e., AM-USW(O) and AM-USE, see

rows 3 and 4 under column “Amazon” in Table 4.3) approaches the one achieved through

pairing with Google (i.e., all Google DCs) and Azure DCs (i.e., AZ-USS and AZ-USC ).

This is because home DCs exploit the discount on the network cost when data is moved

across two Amazon DCs.

From the results of the OOP algorithm, we observe that the cost saving obtained from

pairing potential DCs (see their name in rows 3 and 4 of Table 4.3) with home DC AM-

USW(C) is approximately two times more than that achieved by pairing these DCs with
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home DC AM-USE. The reason is that the difference between storage and network prices

offered by AM-USW(C) and its paired DCs is substantially high, while for AM-USE is com-

paratively low. The result for AM-USW(C) shows that the cost savings are still consider-

able under both Normal and Random access patterns when a home DC offers services

with prices that are significantly different from those prices provided by other DCs. We

can find similar DCs (i.e., a significant difference between two DCs in terms of price)

in Asia-Pacific and Brazil regions as well. The companies in these regions can leverage

pairing of their DCs with DCs in other regions to reduce cost not only for objects with

hot- and cold-spot status, but also for objects accessed under Normal and Random access

patterns.

Contrary to OOP, NOOP achieves less cost savings and in some circumstances this

algorithm is not even cost-efficient. Under both access patterns, NOOP is not profitable

when AZ-USS is paired with DCs of Google and Amazon. NOOP triggers more migra-

tions that increase the total cost. Moreover, the results indicate that pairing GO-USE with

Azure DCs is not cost-efficient (-7% for Normal and -2% for Random access pattern),

while pairing of GO-USE with Amazon DCs can still cut cost by 4% for Normal and 2%

for Random access pattern. NOOP brings more cost saving for pairing both of the Ama-

zon home DCs with the other potential DCs, as compared to the pairing of home DCs

such as AZ-USS and GO-USE with the other DCs. For instance, AM-USW(C) achieves

cost savings under all circumstances except pairing with Azure DCs under Normal ac-

cess pattern. As already mentioned, this is because AM-USW(C) offers more expensive

storage and network as compared to its paired DC, and object migration between these

paired DCs under both access patterns is cost-effective.

In summary, according to the experimental results, one can conclude that OOP is

cost efficient under both access patterns. NOOP is not profitable for pairing Azure DCs

with Google and Amazon DCs, while it is cost-effective in other pairing situations, like

Amazon DCs with Azure, Google and Amazon DCs, as well as pairing Google DC with

Amazon DC. We realized that NOOP can be profitable especially when the paired DCs

can exploit the discounted price in the network cost for moving data across DCs belong-

ing to the same provider. This discount is currently offered by Amazon, and it is likely

that Google and Azure would offer their customers the same discount in the near future.
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4.5 Summary

Choosing storage options across CSPs for time-varying workload is critical for optimiz-

ing data management cost. In particular, issues such as when should an object be mi-

grated and in which storage class it should be stored need to be addressed. We consider

a fine-grained architecture and propose two algorithms that determine optimal (resp.

near optimal) placement of the object with (resp. without) the knowledge of the future

workload. Such a fine-grained architecture provides evidence that one can achieve cost

savings in Geo-replicated system where a home DC can be paired with different DCs

during the lifetime of the object. This is investigated in the next two chapters.



Chapter 5

Cost Optimization across Cloud
Storage Providers: Offline and Online

Algorithms

Cloud Storage Providers (CSPs) offer geographically data stores providing several storage classes

with different prices. An important problem facing by cloud users is how to exploit these storage

classes to serve an application with time-varying workloads at minimum cost. This cost consists of

residential cost (i.e., storage, Put and Get costs) and potential migration cost (i.e., network cost). This

chapter addresses this problem and first proposes the optimal offline algorithm that leverages dynamic

and linear programming techniques with the assumption of available knowledge of workload on ob-

jects. Due to the high time complexity of this algorithm and its requirement for a priori knowledge,

it also includes two online algorithms that make a trade-off between residential and migration costs

and dynamically select storage classes across CSPs. The first online algorithm is deterministic with

no need of any knowledge of workload and incurs no more than 2γ− 1 times of the minimum cost ob-

tained by the optimal offline algorithm, where γ is the ratio of the residential cost in the most expensive

data store to the cheapest one in either network or storage cost. The second online algorithm is ran-

domized that exploits available future workload information for w time slots. This algorithm incurs at

most 1 + γ
w times the optimal cost. The effectiveness of the proposed algorithms is demonstrated via

simulations using a workload synthesized based on the Facebook workload.

5.1 Introduction

AMazon S3, Google Cloud Storage (GCS) and Microsoft Azure as leading CSPs

offer different types of storage (i.e., blob, block, file, etc.) with different prices

This chapter is derived from: Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya, “Cost Optimiza-
tion for Dynamic Replication and Migration of Data in Cloud Data Centers,” IEEE Transactions on Cloud
Computing (TCC), DOI:10.1109/TCC.2017.2659728, 2017.
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for at least two classes of storage services: Standard Storage (SS) and Reduced Redun-

dancy Storage (RRS) is an Amazon S3 storage option that enables users to reduce their

cost with lower levels of redundancy compared to SS. Each CSP also provides API com-

mands to retrieve, store and delete data through network services, which imposes in-

and out-network cost on an application. In leading CSPs, in-network cost is free, while

out-network cost (network cost for short) is charged and may be different for providers.

Moreover, data transferring across DCs of a CSP (e.g., Amazon S3) in different regions

may be charged at lower rate (henceforth, it is called reduced out-network cost). Table

5.1 summarizes the prices for network and storage services of three popular CSPs in the

US west region, which shows significant price differences among them. This diversifi-

cation plays a central role in the cost optimization of data storage management in cloud

environments. We aim at optimizing this cost that consists of residential cost (i.e., storage,

Put, and Get costs) and potential migration cost (i.e., network cost).

The cost of data storage management is also affected by the expected workload of an

object. There is a strong correlation between the object workload and the age of object, as

observed in online social networks (OSNs) [122]. The object might be a photo, a tweet, a

small video, or even an integration of these items that share similar read and write access

rate pattern. The object workload is determined by how often it is read (i.e., Get access

rate) and written (i.e., Put access rate). The Get access rate for the object uploaded to

a social network is often very high in the early lifetime of the object and such object is

said to be read intensive and in hot-spot status. In contrast, as time passes, the Get access

rate of the object is reduced and it moves to the cold-spot status where it is considered

as storage intensive. A similar trend happens for the Put workload of the object; that is,

the Put access rate decreases as time progresses. Hence, OSNs utilize more network than

storage in the early lifetime of the object, and as time passes they use the storage more

than network.

Therefore, (i) with the given time-varying workloads on objects, and (ii) storage classes

offered by different CSPs with different prices, acquiring the cheapest network and stor-

age resources in the appropriate time of the object lifetime plays a vital role in the cost

optimization of the data management across CSPs. To tackle this problem, cloud users

are required to answer two questions: (i) which storage class from which CSP should
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Table 5.1: Cloud storage pricing as of June 2015 in different DCs.

CSP Amazon† Amazon‡ Google Azure
SS (GB/Month) 0.0330 0.030 0.026 0.030
RRS (GB/Month) 0.0264 0.024 0.020 0.024
Out-Network 0.09 0.09 0.12 0.087
Reduced Out-Network 0.02 0.02 0.12 0.087
Get (Per 100K requests)? 4.4 4 10 3.6
Put (Per 1K requests) 5.5 5 10 0.036

?The price of Put and Get is multiplicaton of 10−3. All prices are in US
dollar.
† Amazon’s DC in California. ‡ Amazon’s DC in Ireland.

host the object (i.e., placing), and (ii) when the object should probably be migrated from

a storage class to another owned by the similar or different CSPs.

Recently, several studies take advantage of price differences of different resources in

intra- and inter-cloud providers, where cost can be optimized by trading off compute vs.

storage [86], storage vs. cache [23, 131], and cost optimization of data dispersion across

cloud providers [177, 179]. None of these studies investigated the trade off between net-

work and storage cost to optimize cost of replication and migration data across multiple

CSPs. In addition, these approaches heavily rely on workload prediction. It is not always

feasible and may lead to inaccurate results, especially in the following cases: (i) when the

prediction methods are deployed to predict workloads in the future for a long term (e.g.,

a year), (ii) for startup companies that have limited or no history of demand data, and

(iii) when workloads are highly variable and non-stationary.

Our study is motivated by these pioneer studies as none of them can simultaneously

answer the aforementioned questions (i.e., placements and migration times of objects). To

address these questions, we make the following key contributions:

• First, by exploiting dynamic programming, we formulate offline cost optimization

problem in which the optimal cost of storage, Get, Put, and migration is calculated

where the exact future workload is assumed to be known a priori.

• Second, we propose two online algorithms to find near-optimal cost as shown ex-

perimentally. The first algorithm is a deterministic online algorithm with the com-

petitive ratio (CR) of 2γ− 1, where γ is the ratio of the residential cost in the most

expensive DCs to the cheapest ones either in storage or network price. The sec-

ond algorithm is a randomized online algorithm with the CR of 1 + γ
w , where w is the

available look ahead window size for the future workload. We also analyse the
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cost performance of the proposed algorithms in the forms of CR that indicates how

much cost in the worst case the online algorithms incur as compared to the offline

algorithm.

• In addition to the theoretical analysis, an extensive simulation-based evaluation

and performance analysis of our algorithms are provided in the CloudSim simula-

tor [35] using the synthesized workload based on Facebook workload [16].

The rest of the chapter is organized as follows. System characteristics, problem for-

mulation and optimization cost problem are presented in Section 5.2. Section 5.3 charac-

terizes the optimal offline algorithm for optimizing cost via dynamic programming tech-

nique. We discuss two online algorithms and provide performance guarantees in Section

5.4. Section 5.5 presents experimental evaluation results and Section 5.6 concludes the

chapter.

5.2 System Model and Problem Definition

We briefly discuss challenges and objectives of the system, and then based on which we

formulate a data storage management (data management for short) cost model. After-

wards, we define an optimization problem based on the cost formulation and system’s

constraints.

5.2.1 Challenges and Objectives

We assume that the data application includes a set of geographically distributed key-

value objects. An object is an integration of items such as photos or tweets that share a

similar pattern in the Get and Put access rate. In fact an object in our model is analogous

to the bucket abstraction in Spanner [52] and is a set of contiguous keys that show a com-

mon prefix. Based on the users’ needs, the objects are replicated at Geo-distributed DCs

located in different regions. Each DC consists of two types of servers: computing and

storage servers.

A computing server accommodates various types of VM instances for application

users. A storage server provides variety of storage forms (block, key/value, database,

etc.) to users charged at the granularity of megabytes to gigabytes for very short billing

periods (e.g., hours). These servers are connected by high speed switches and network,
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and the data exchange between VMs within DC is free. However, users are charged for

data transfer out from DC on a per-data size unit as well as a nominal charge per a bulk

of Gets and Puts. We consider this charging method followed by most commercial CSPs

in the system model.

The primary objective of the system is to optimize cost using object replication and

migration across CSPs while it strives to serve the Get and Put in the latency constraint

specified by the application. Providing all these objectives introduces the following chal-

lenges. (i) Inconsistency between objectives: for example, if the number of replicas de-

creases, then the Get and Put latency can increase while storage cost reduces, and vice

versa. (ii) Variable workload of objects: when the Get and Put access rate is high in the

early lifetime of an object, the object must be migrated in a DC with a lower network

cost. In contrast, as Get and Put access rate decreases over time, the object must be mi-

grated to a DC with a lower storage cost. (iii) Discrepancy in storage and network prices

across CSPs: this factor complicates the primary objective, and we clarify it in the below

example.

Suppose, according to Table 5.1, an application stores an object in Azure’s DC when

the object is in hot-spot because it has the cheapest out-network cost. Assume that after a

while the object transits to its cold-spot and it must migrate to two new DCs: Amazon’s

DC (Ireland) and Google’s DC. The object migration from Azure’s DC to Amazon’s DC

(Ireland) is roughly 4 times (0.02 per GB vs. 0.0870 per GB ) more expensive than as if

the object was initially stored in Amazon’s DC (California) instead of Azure’s DC. The

object migration from Azure’s DC to Google’s DC is roughly the same in the cost (0.087

per GB vs. 0.09 per GB) as if the object was initially stored in Amazon’s DC (California)

instead of Azure’s DC. This example shows that the application can benefit from the

reduced out-network price if the object migration happens between two Amazon DCs.

In one hand, as long as the object is stored in Azure’s DC, the application benefits from

the cheapest out-network cost, while it is charged more when the object is migrated to

a new DC. On the other hand, if the object is stored in Amazon’s DC (California), the

application saves more cost during migration but incurs more out-network and storage

costs. Thus, in addition to storage and out-network costs, the reduced out-network cost

plays an important factor in the cost optimization for time-varying workloads.
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Table 5.2: Symbols definition

Symbol Meaning

D A set of DCs
K A set of regions
S(d) The storage cost of DC d per unit size per unit time
O(d) Out-network price of DC d per unit size
tg(d) Transaction price for a bulk of Get (Read)
tp(d) Transaction price for a bulk of Put (Write)
T Number of time slots
v(t) The size of the object in time slot t
rk(t) Read requests number for the object from region k in time slot t
wk(t) Write requests number for the object from region k in time slot t
r Number of replicas stored across DCs for each object
ρ The number of DCs in destination set, excluding the intersection of the source and destination

sets
γ The ratio of the residential cost in the most expensive DCs to the cheapest ones in time slot

t ∈ [1...T]
λ The ratio of the reading volume of the objects to the objects size
αd(t) A binary variable indicates whether the object is in DC d in time slot t or not
βk,d(t) A variable indicates the fraction of requests from region k directed to DC d hosting a replica

of an object in time slot t
CR(.) Residential cost
CM(.) Migration cost
L A upper bound of delay on average for Get/Put requests to receive response
Tlp Time complexity of linear programming
α The set of all r-combinations of DCs
w The size of available look-ahead window for the future workload information

5.2.2 Preliminaries

In this section, we give some definitions, which are used throughout the chapter. The

major notations are also summarized in Table 5.2.

Definition 5.1. (DC Specification): The system model is represented as a set of independent DCs

D where each DC d ∈ D is located in region k ∈ K. Each DC d is associated with a tuple of four

cost elements. (i) S(d) denotes the storage cost per unit size per unit time (e.g., bytes per hour) in

DC d. (ii) O(d) defines out-network cost per unit size (e.g., byte) in DC d. (iii) tg(d) and tp(d)

represent transaction cost for a bulk of Get and Put requests (e.g., per number of requests) in DC

d, respectively.

Definition 5.2. (Object Specification): Assume the application contains a set of objects during

each time slot t ∈ [1...T]. Let rk(t) and wk(t), respectively, be the number of Get and Put requests

for the object with size v(t) from region k in time slot t.

The objective is to choose placement of object replicas, and the fraction of rk(t) (not

the fraction of wk(t) since each Put request must be submitted to all replicas ) that should
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be served by each replica so that the application cost including storage, Put, and Get costs

for objects as well as their potential migration cost among DCs is minimized. We thus

define replication variable, requests distribution variable, and application cost as follows.

Definition 5.3. (Replication Variable): αd(t) ∈ {0, 1} indicates whether there is a replica of the

object in DC d in time slot t ( αd(t) = 1 ) or not (αd(t) = 0). Thus, ∑d∈D αd(t) = r. We also

denote~α(t) as a vector of αd(t)s shows whether a DC d hosting a replica or not in the slot time t.

Definition 5.4. (Request Distribution Variable): The fraction of Get requests issued from region k

to DC d hosting the object in time slot t is denoted by βk,d ∈ (0, 1). Thus, ∑
k∈K

∑
d|αd(t)=1

βk,d(t) = 1.

We denote ~β(t) as a matrix of |K| × r represents the fraction of Get requests issued from region

k ∈ K to each replica.

Definition 5.5. (Storage Cost): The storage cost of an object in time slot t is equal to the storage

cost of all its replicas in DCs d in time slot t. Thus, we have

∑
d|αd(t)=1

S(d)× v(t). (5.1)

Definition 5.6. (Get Cost): The Get cost of the object in time slot t is the cost of Get requests

issued from all regions and the network cost for retrieving the object from DCs. Therefore,

∑
k∈K

∑
d|αd(t)=1

βk,d × rk(t)× (tg(d) + v(t)×O(d)). (5.2)

To keep replicas consistent, we use a simple policy that leverages the primary advan-

tages of eventual consistency setting, which is appropriate for OSNs [177]. Thus, first,

to capitalize on the network services cost, we select DC d|αd(t) = 1 with the minimum

network cost O(d) so that the upper bound of delay for Put requests is met1. Then, Put

requests issued for the object are sent to this DC and the application incurs only Put

transaction cost as in-network cost is free (called initial Put cost). Second, the other repli-

cas are kept consistent by either DC d or another DC, hosting the replica, with the lowest

network cost without considering delay constraint. This DC is responsible for data prop-

agation and is called propagator DC, that is, dp = min
d′|αd′ (t)=1

(O(d′)) (called consistency cost).

1From this point onward, whenever the migration or data transfer happens between two Amazon DCs, the
reduced network cost is considered rather than the network cost.
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Note that if any other DC rather than the initial selection (i.e., DC d) is selected as the

propagator DC, then the application incurs one extra cost of out-network between these

two DCs. Thus, in addition to the cost of Put transactions, the application is charged for

the network cost of data from the propagator DC. For example, as illustrated in Fig. 5.1,

assume that the object has been already replicated at four DCs in the European region.

Let the user issue a Put request into Google DC (GDC) (i.e., DC d). Based on the above

strategy, Azure DC (ADC) in the Netherlands is selected as the propagator DC (i.e., DC

dp) because it has the cheapest network cost among these four DCs and is responsible of

updating objects in two other DCs. Based on the discussed policy, we formally define the

Put cost as below

Definition 5.7. (Put Cost): The Put cost of the object in time slot t is the cost of Put requests

issued by all regions and the propagation cost for updating replicas of the object. Thus,

c(d, dp) + ∑
k∈K

[(wk(t)× tp(d)+

∑
d′|αd′ (t)=1\{d,dp}

wk(t)× (tp(d′) + v(t)×O(dp))],
(5.3)

where (i) c(d, dp) is the transfer cost between d and dp and is equal to ∑k wk(t)× (v(t)×

O(d) + tp(dp)), and (ii) d′ is a DC, excluding d and dp, that hosts a replica. Note that if

d = dp, then c(d, dp) = 0. In the above equation, wk(t)× tp(d) is initial Put cost and the

second sigma is the consistency cost.

Definition 5.8. (Residential Cost): The residential cost of the object in time slot t is the summa-

tion of its storage, Get, and Put costs (Equs. 5.1 - 5.3) and is denoted by CR(~α(t),~β(t)).

The best set of DCs to replicate an object can differ in t and t− 1. In other words,~α(t−

1) and~α(t) are different. This happens because the object size, the number of requests,

and the source of requests to conduct Gets or Puts would change in different time slots.

Thus, if the object is in hot-spot, it is more cost-effective to replicate it at a DC with a lower

network cost as long as the object is in this state. In contrast, if the object transits from

hot-spot to cold-spot and grows in size, it is more profitable to migrate the object to DC(s)

with a lower storage cost. Object replication based on the status of the object across DCs
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Figure 5.1: Object updating in Europe region and the object migration in Asia-pacific
region.

imposes a migration cost on the application imposes migration cost. To minimize it, the

object should be migrated from the DC with the lowest network cost. We thus consider

two sets of DCs: one set contains DCs that the object must be migrated from (called source

set), and the other set that the object must be migrated to (called destination set). The

policy, first, finds the DC with the lowest network cost in each set and the first replica

migration happens between these two selected DCs. For other replicas, replication is

carried out from the cheapest of these two.

To clarify this simple method, we describe an example as shown in Fig. 5.1. Assume

the object must be migrated from DCs in the source set to those in the destination set.

Since ADC in Singapore has the cheapest network price among DCs in the source set, it is

responsible to send the object to GDC in Taiwan. This is because this GDC has the lowest

rate in the network price in the destination set. Then, S3 in Japan receives the object

from GDC since it is cheaper than ADC in Singapore. Based on the above discussion, the

migration cost is defined as below.

Definition 5.9. (Migration Cost): If~α(t) 6= ~α(t− 1), the application incurs the migration cost

in time slot t that is the multiplication of the object size and the out-network cost of the DC hosting

the object in time slot t− 1. The migration cost of object denoted by CM(~α(t− 1),~α(t)) includes

the migration cost from the DC ds = min
d|αd(t−1)=1

O(d) to dd = min
d|αd(t)=1

O(d) and the object is then

replicated from the DC dpm = min(O(ds), O(dd)) to all remaining DCs in the destination set if

they are not in the source set. We denote by ρ as the number of DCs in destination set, excluding
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the intersection of the source and destination sets. Thus,

CM(~α(t− 1),~α(t)) = v(t)× (O(ds) + O(dpm)× (ρ− 1)). (5.4)

The discussed policy uses the stop and copy technique in which the application is

served by the source set for Gets and destination set for Puts during migration [65]. This

technique is used by the single cloud system such as HBase2 and ElasTraS [56], and in

Geo-replicated system [169]. As we desire to minimize the monetary cost of migration,

we use this technique in which the amount of data moved is minimal as compared to

other techniques leveraged for live migration at shared process level of abstraction3. We

believe that this technique does not affect our system performance due to (i) the duration

of migration for transferring a bucket (at most 50MB, the same as in Spanner [52]) among

DCs is considerably low (i.e., about a few seconds), and (ii) most of Gets and Puts are

served during the hot-spot status, and consequently the access rate to the object during

the migration, which is happening in the cold-spot status, is considerably low based on

the access pattern. We point out this with more details in Section 5.5 4.

Now, we define the total cost of the object in time slot t based on Equs. 5.1- 5.4 as:

C(~α(t),~β(t)) = CR(.) + CM(.) (5.5)

Besides the cost optimization, satisfying the low latency response to Put/Get requests

is a vital performance measure for the application. Our model respects the latency Service

Level Objective (SLO) for Get/Put requests, and the latency for a Get/Put request is cal-

culated by the delay between the time a request is issued and the time acknowledgement

is received. Since the Get/Put requests time for small size objects is dominated by the net-

work latency, similar to [177] and[175], we estimate latency by the Round Trip Time (RTT)

between the source and destination DCs. Let l(k, d′) denote this latency, and L define the

upper bound of delay for Get/Put requests on average to receive response. We generally

define the latency constraint for Get and Put requests as a constraint l(d, d′) ≤ L, where d

2Apache HBase. https://hbase.apache.org/book.html
3In transactional database in the of cloud, to achieve elastic load balancing, techniques such as stop and
copy, iterative state replication, and flush and migrate in the process level are used. The interested readers are
refereed to [65] and [58].

4Note that our system is not designed to support database transactions, and this technique just inspired from
this area.

https://hbase.apache.org/book.html
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Figure 5.2: Overview of systems’s inputs and output.

stands for the associated DC in the region k. This performance criterion will be integrated

in the cost optimization problem discussed in the following section.

We also make some assumptions in the case of occurring failure and conducting

Put/Get requests in the system. It is assumed that DCs are resistant to individual fail-

ures and communication links between DCs are reliable due to using redundant links

[52]. In our system, the Put/Get is considered as a complete request once the request suc-

cessfully conducted on one of the replicas. For the Put, this assumption suffices due to

durability guarantees offered by the storage services. During migration process, if either

source or destination DC fails, then the system can either postpone data migration for a

limited time or re-execute the algorithms without considering the failed DC(s).

5.2.3 Optimization Problem

Given the system’s input and the above cost model, we define the objective as the de-

termination of the value of~α(t) and ~β(t) in each time slot so that the overall cost for all

objects during t ∈ [1...T] is minimized. We define the overall cost optimization problem

as:

min
~α(t),~β(t)

∑
t

C(~α(t),~β(t)) (5.6)

s.t. (repeated for ∀t ∈ [1...T], ∀d ∈ D and ∀k ∈ K)

(a) ∑d∈D αd(t) = r, αd(t) ∈ {0, 1}

(b) ∑k∈K ∑d|αd(t)=1 βk,d(t) = 1, βk,d(t) ∈ (0, 1)

(c)βk,d(t) ≤ αd(t),

(d) ∑k∈K ∑d∈D αd(t)×rk×l(k,d)
∑k∈K rk ≤ L,

(e) l(k, d′) ≤ L, d′ = min
d|αd(t)=1

O(d) and ∀ Put request.

In the above optimization problem, constraint (a) indicates that only r replicas of the

object exist in each time slot t. Constraint (b) ensures that all requests are served, and
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constraint (c) guarantees that each request for the object is only submitted to the DC

hosting the object. Constraints (d) and (e) enforce the average response time of Get and

Put requests in range of L respectively.

To solve the above optimization problem, in the following, we propose three algo-

rithms as part of our Replica Placement Manager (RPM) system. As shown in Fig. 5.2,

RPM uses these algorithms to optimize cost based on two inputs: DCs and application

requirements.

5.3 Optimal Offline Algorithm

To solve the Cost Optimization Problem, we should find values ~α(t) and ~β(t) so that the

overall cost in Equ. (5.6) is minimized 5. So, we propose a dynamic programming al-

gorithm to find optimal placement of replicas (i.e., ~α∗(t)) and optimal distribution of

requests to replicas (i.e., ~β∗(t)) for all objects during t ∈ [1...T]. Based on the above prob-

lem definition, ~β(t) in time slot t can be simply determined using a linear program once

the value of~α(t) is fixed.

Let~α = {~α1,~α2, ..,~αi, ..,~α(|D|r )} denote all r-combinations of distinct DCs can be chosen

from D (i.e, |~α| = (|D|r )). Suppose that the key function of the dynamic algorithm is

P(~α(t)) that indicates the minimum cost in time slot t if the object is replicated at a set of

DCs that is represented by~α(t).

The corresponding P(~α(t)) to each entry of table in Fig. 5.3 should be calculated for

all t ∈ [1...T] and for all elements of ~α. In the following, we derive a general recursive

equation for P(~α(t)).

As illustrated in Fig. 5.3, to calculate P(~α(t)) we first need to compute residential

cost (i.e., CR(.)) and migration cost (i.e., CM(.) ) between ~α(t − 1) and ~α(t). Second, to

obtain this migration cost, we enumerate over all possible~α(t− 1) containing the object

in time slot t − 1. Thus, the cost P(~α(t)) is the minimum of the summation of the cost

C(~α(t),~β(t)) in Equ. (5.5) and P(~α(t− 1)). The termination condition for the recursive

equation P(~α(t)) is P(~α(t)) = 0 for t = 0, meaning there is no placement for the object.

Combining all above discussions, we obtain the general recursive equation as:

5Note that the constraints (a-e) in Equ. (5.6) is repeated for all cost calculation equations, unless we men-
tioned.



5.3 Optimal Offline Algorithm 137

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Data centers 
Combinations 

. 

. 

. 

T T-1 t 2 1 
𝐓𝐢𝐦𝐞 

.... 

𝛼⃗𝑗(𝑡 − 1)

= 

.... .... 

.... 

.... .... 

𝛼⃗𝑗
1 

𝛼⃗𝑗
4 

𝛼⃗1 

𝑎⃗(𝑡 − 1) 

t-1 

𝛼⃗𝑗
3 

𝛼⃗2 

𝛼⃗𝑖 

𝛼⃗|𝛼⃗⃗| 

𝛼⃗2 

𝛼⃗3 

𝛼⃗4 

𝛼⃗1 

 

 

Figure 5.3: The description of P(~α(t)) calculation in Equ. (5.7
)

P(~α(t)) =


min

∀~α(t−1)∈~α
[P(~α(t− 1)) + C(~α(t),~β(t))], t > 0

0 t = 0
(5.7)

Once P(~α(t)) is calculated for all ~α(t) ∈ ~α during t ∈ [1...T], the minimum cost for

the object is min
~α(t)∈~α

P(~α(t)) in time slot t = T. The optimal placement of replicas for the

object in time slot t ∈ [1...T],~α∗(t), is the corresponding~α(t) on the path leading to the

minimum value of P(~α(t)) in time slot t = T. The request distribution related to~α∗(t) in

time slot t is determined by ~β∗(t) using a linear programming.

We now analyze the time complexity of Algorithm 5.1, which comprises an r−combination

computation and four nested loops. The computation of combinations (line 1) takes

O(|D|2). The first loop repeated T times (line 3). The last two loops run for at most |α|2

times where |~α|=(|D|r ) is a small constant because r is at most 2 or 3 [38] and the number

of DCs in the leading commercial cloud providers is 8, for example Amazon and Google.

Thus, the value of |~α| can be ((3∗8)2 )= 276. In the last loop, we need to solve a linear prob-

lem because we fix~α(t) and find variable ~β(t), which takes Tlp. Since |D| ≤ |~α|, the total

running time of algorithm is O(|D|2 + |~α|2TTlp) = O(|~α|2TTlp). This time complexity in-

creases when the value of α (depending to |D| and r) grows. Note that with a limitation

on |D| and an upper bound of 3 for r [38], this time complexity can be improved.
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Algorithm 5.1: Optimal Offline Algorithm
Input : RPM’s inputs as illustrated in Fig. 5.2
Output:~α∗(t), ~β∗(t), and the optimized overall cost during t ∈ [1...T]

1 ~α← Calculate all r−combinations of distinct DCs from D.
2 Initialize: ∀~α(0) ∈~α, P(~α(0)) = 0
3 for t← 1 to T do
4 forall~α(t) ∈~α do
5 forall~α(t− 1) ∈~α do
6 Calculate P(~α(t)) based on Equ. (5.7).
7 end
8 end
9 end

10 Find a sequence of~α(t) and ~β(t) such that leading to min
~α(t)∈~α

(P(~α(t)) in time slot

t = Tas the optimized overall cost (Equ. 5.6). This sequence of~α(t) and ~β(t) are
~α∗(t) and ~β∗(t).

11 Return~α∗(t), ~β∗(t), and the optimized overall cost.

5.4 Online Algorithms

The optimal offline algorithm as its name implies is optimal and can be solved offline.

That is, with the given workload, we can determine the optimal placement of objects in

each time slot t. However, offline solutions sometimes are not feasible for two main rea-

sons: (i) we probably do not have a priori knowledge of the future workload especially

for start-up firms or those applications whose workloads are highly variable and unpre-

dictable; (ii) the proposed offline solution suffers from high time complexity and is com-

putationally prohibitive. Thus, we present online algorithms to decide which placement

is efficient for object replicas in each time slot t when future workloads are unknown.

Before proposing online algorithms, we formally define the CR that is widely accepted to

measure the performance of the online algorithms.

Definition 5.10. (Competitive Ratio): A deterministic online algorithm DOA is c-competitive

iff ∀I, CDOA(I)/COPT(I) ≤ c, where CDOA(I) is the total cost for input I (i.e., workload in our

work) by DOA, and COPT(I) is the optimal cost to serve input I by optimal offline algorithm OPT.

Similarly, a randomized online algorithm ROA is c-competitive iff ∀I, E[CROA(I)]/COPT(I) ≤

c.
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5.4.1 The Deterministic Online Algorithm

We propose an online algorithm based on the total cost C(~α(t),~β(t)) consisting of two

sub-costs: residential and migration costs. These two sub-costs of the object can potentially

appear as an overhead cost for the application if the migration of the object happens at in-

appropriate time(s). Frequent migration of the object causes the object to be moved much

more than the optimal number of migrations between DCs. As a result, the total cost of

application exceeds its optimal cost. An upper bound of this cost when the optimization

problem is solved in time slot t without a priori knowledge of the future workload and

considering the location of the object in previous time slot t − 1. In contrast, a lower

number of migrations leads to stagnant objects that they might not be migrated even to

a new DC imposing a lower cost to the application. Thus, the residential cost surpasses

the optimal residential cost. The upper bound of the residential cost happens when there

is no migration.

To avoid these issues, the algorithm makes a trade-off between two costs, residential

and migration, in the absence of the future workload knowledge. The intuitive idea

behind this algorithm is that 1) migration only happens when it causes cost saving in the

current time slot and 2) the summation of the lost cost savings opportunities from the last

migration (i.e., tm) is larger or equal to the migration cost. This intuition causes to strike

a balance between frequent and rare migration.

Assume that tm denotes the last time of migration for the object. Let the migra-

tion cost between two consecutive migrations times (i.e., tm−1 and tm) be defined by

CM(~α(tm−1),~α(tm)). For each time slot t, we calculate the residential cost of the object in

v ∈ [tm, t) for two cases: (i) the residential cost of the object as if it is in the DCs that are de-

termined in time slot v− 1 and the requests issued to the object in time slot v are served by

these DCs. This cost is defined by CR(~α(v− 1),~β(v)) (see Fig. 5.4a6), and (ii) the residen-

tial cost of object as if the object is migrated to new DCs that are determined in time slot

v and the requests for the object are served by the chosen new DCs. This cost is termed

by CR(~α(v),~β(v)) (see Fig. 5.4b). Now, for each of the following time slot v, we calculate

the summation of the difference between the above residential costs (i.e., (i) and (ii)) from

time v = tm to v = t− 1, which is ∑t−1
v=tm

[CR(~α(v− 1),~β(v))− CR(~α(v),~β(v))]. Based on

6In this figure, without loss of generality, we consider only one DC that hosts an object (i.e., r = 1).
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the above calculated residential cost and migration cost (i.e., CM(~α(tm−1),~α(tm))- see Fig.

5.4c), in the current time slot t, the algorithm makes a decision whether the object should

be migrated to new DCs or not. The object is migrated to new DCs in time slot t if the

two following conditions are simultaneously met.

1. The object has the potential to be migrated to a new DC if

CM(~α(tm−1),~α(tm)) ≤
t−1

∑
v=tm

[CR(~α(v− 1),~β(v))− CR(~α(v),~β(v))] (5.8)

Otherwise, the object certainly stays in the previous DCs determined in time slot

t− 1.

2. As earlier noted, to avoid migrating the object back and forth between DCs, we

enforce the following condition:

CM(~α(tm),~α(t)) + CR(~α(t),~β(t)) ≤ CR(~α(t− 1),~β(t)) (5.9)

This constraint means that the overall cost of the object in the new DCs in time slot t

including the residential and migration costs should be less than or equal to the cost of

the object if it stays in the chosen DCs in time slot t− 1.

Based on the above discussion, Algorithm 5.2 formulates the details of the determin-
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istic online algorithm. The algorithm first finds all r−combinations of distinct DCs that

can be chosen from D (line 2). Then, for each object in time slot t = 1, the algorithm de-

termines the best placement of replicas of the object and also the proportion of requests

that must be served by these replicas so that CR(~α(t),~β(t)) is minimized (line 3). After

that the migration time tm is set to 1 (line 4). For all t ∈ [2...T] (line 5),~α(t) and ~β(t) are

calculated for all ~α(t) ∈ ~α so that the residential cost CR(~α(t),~β(t)) is minimized (lines

6-9). Based on Equs. (5.8) and (5.9), if the new DC chosen in time slot t is different with

that of time slot t− 1, the object migration happens (lines 10-13). Otherwise, the object

stays in the DC that is selected in time slot t− 1, i.e.,~α(t) =~α(t− 1) (line 15).

We now analyse the performance of the deterministic algorithm in terms of CR. The

key insight behind the algorithm lies in Equs. (5.8) and (5.9) to make trade off between

frequent and infrequent migrations of objects among DCs. According to these equations,

we first calculate the upper bound for the migration cost in [1...t] and then derive the CR

of the algorithm.

Lemma 5.1. The upper bound of the migration cost between two consecutive migration times

(tm−1, tm) during [1, t] is γ times of the minimum residential cost in this time period. γ is the

ratio of the residential cost in the most expensive DCs to the cheapest ones in v ∈ [1...t].

Proof. Based on Equs. (5.8) and (5.9), the migration cost during [1...t] consists of two sub

migration costs in [1...t− 1] and t. Thus, we have ∑t
tm=1 CM(~α(tm−1),~α(tm))

= ∑t
v=tm

(CR(~α(v− 1),~β(v))− CR(~α(v),~β(v)))

≤ ∑t
v=tm

(Cmax
R (~α(v− 1),~β(v))− Cmin

R (~α(v),~β(v))).

Let γ = Cmax
R (~α(v− 1),~β(v))/Cmin

R (~α(v),~β(v)) for all v ∈ [1..t]. Substituting the value

of γ in the above equation, we have,

∑t
tm=1 CM(~α(tm),~α(tm−1)) ≤

(1− 1/γ)∑v∈[1..t] Cmax
R (~α(v),~β(v))

Theorem 5.1. Algorithm 5.2 is (2γ− 1)−competitive. Formally, for any input, CDOA/COPT ≤

2γ− 1.

Proof. The total cost incurred by DOA is the summation of migration and residential costs

in [1...T]. Thus, CDOA = ∑T
t=1 CR(~α(t),~β(t)) + CM(~α(t− 1),~α(t)). Since the upper bound

of the residential cost for DOA is γ times the cost of the offline algorithm, and according
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to the result of Lemma (5.1) we have: CDOA =

(1− 1/γ)∑T
t=1 Cmax

R (~α(t),~β(t)) + ∑T
t=1 CR(~α(t),~β(t)

≤ (1− 1/γ)γCOPT + γCOPT = (γ− 1)COPT + γCOPT

≤ (2γ− 1)COPT

The value of γ is the ratio of the residential cost between the most expensive DC to

the cheapest one in the network cost in hot-spot or storage cost in cold-spot during its

lifetime. Thus, if the object is read intensive (i.e., it is in hot-spot), the value of γ =

max
d 6=d′

O(d)/O(d′). Otherwise, if object is storage intensive (i.e., it is in cold-spot), then

γ = max
d 6=d′

S(d)/S(d′). Generally, if the volume of the object to be read is λ times of the

object size, then γ = max
d 6=d′

(S(d) + λO(d))/(S(d′) + λO(d′)).

To determine the time complexity of Algorithm 5.2, we first need to compute all r-

combinations of distinct DCs that runs in O(|D|2). Second, ~α(t) and ~β(t) should be

calculated for all ~α(t) ∈ ~α by using linear programming, which takes O(|~α|Tlp). This

calculation is done for T time slots. Therefore, the algorithm yields a running time of

O(|D|2 + |~α|TTlp) = O(|~α|TTlp). As it is observed, the time complexity of the algorithm

is less than the time complexity of the optimal offline algorithm since this time complex-

ity is not quadratic in the number of combinations of DCs.

5.4.2 The Randomized Online Algorithm

It is expected that the randomized algorithms typically improve the performance in terms

of CR to their deterministic counterparts. In the following, we design a randomized

online algorithm based on the subclass of Reducing Horizon Control (RHC) algorithms,

which is called Fixed RHC (FRHC) [105]. RHC is a classical control policy that is used

for dynamic capacity provisioning in a DC [113] [105], load balancing on a DC [106], and

moving data into a DC [194].

In our algorithm, the time period T is divided into dT/we frames, where each frame

has a size of w time slots. It is assumed that in the first time slot (i.e., ts) of each frame, the

workload in terms of Get and Put requests, and data size is known for the next ts +w time

slots. Due to available future workload knowledge for the time frame [ts, ts + w], we can

calculate the optimal cost for this time frame. To do so, we re-write the cost optimization
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Algorithm 5.2: Determinstic Online Algorithm (DOA)
Input : RPM’s inputs as illustrated in Fig. 5.2
Output:~α(t), ~β(t), and the overall cost denoted Cove

1 Cove ← 0
2 ~α← Calculate all r−combinations of distinct DCs from D.
3 Cove ← Determine~α(t) and ~β(t) by minimizing CR(~α(t),~β(t)) for all~α(t) ∈~α in

time slot t = 1.
4 tm ← 1
5 for t← 2 to T do
6 forall~α(t) ∈~α do
7 CR(.)← Determine~α(t) and ~β(t) by minimizing CR(~α(t),~β(t))
8 Cove ← Cove + CR(.)
9 end

10 if (Equs. (5.8) and (5.9), and~α(t− 1)! =~α(t) ) then
11 tm ← t
12 CM(.)← calculate CM(~α(tm−1),~α(tm))
13 Cove ← Cove + CM(.)
14 else
15 ~α(t)←~α(t− 1)
16 end
17 end
18 Return~α(t), ~β(t) and Cove.

problem based on Equ. (5.6) for the time frame [ts, ts + w] (i.e., Equ. 5.10) and solve it by

using Algorithm 5.1 to calculate the optimal cost.

min
~α(t),~β(t)

ts+w

∑
t=ts

C(~α(t),~β(t)) (5.10)

The first time slot (i.e., ts) of the first frame can be started from different initial time l ∈

[1, w], which indicates different versions of the FRHC algorithm. For each specific FRHC

algorithm with value l, an adversary can determine an input with a surge in Get and

Put requests and produce a large size of data. These can result in increasing migration

cost and degrading the cost performance of the algorithm. A randomized FRHC defeats

this adversary with determining the first time slot of the first frame by a random integer

1 ≤ l ≤ w.

Thus, the first slot of the first frame falls between 1 and w. The following frames are

considered with the same size of w time slots sequentially. Assuming T is divisible by w,

it is clear that if l 6= 1, then there are dT/we − 1 full frames and two partial frames that
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Figure 5.5: Illustration of Fixed Reduced Horizontal Control

consist of l and w− l time slots. Fig. 5.5 shows partial and full frames when the algorithm

randomly selects the first slot of the first frame with the value of l = 2, where T = 9 and

w = 3 . It also shows different versions of randomized FRHC for values of 1 ≤ l ≤ 3.

Based on the above discussion, we design the randomized algorithm and solve the

optimization problem, i.e., Equ. (5.10) according to Algorithm 5.3 for partial and full

frames. In the randomized algorithm, first, we randomly choose l ∈ [1, w] as ts of the

first frame. If l 6= 1, then we calculate the residential cost over two partial frames with

the size of l and w− l time slots (lines 2-5). For the full frames, we compute overall cost

consisting residential and migration costs for each full frame and migration cost between

consecutive full frames (lines 6-11). Finally the migration cost between the last full frame

and its next partial frame is determined if l 6= 1 (lines 12-15).

We now analyse the performance of the randomized online algorithm in terms of CR

as follows.

Lemma 5.2. The upper bound cost of each frame is the offline optimal cost plus the migration cost

of objects from DCs determined by randomized FRHC to those specified by the offline algorithm.

Proof. Based on Equ. (5.10), the optimal cost of object for each frame by using randomized

FRHC with value l is: C(~αl(t),~βl(t)) = ∑ts+w
t=ts

CR(~αl(t),~βl(t))+∑ts+w
t=ts

CM(~αl(t− 1),~αl(t)),

where αl(t) indicates the location of object based on the randomized FRHC with value l.

The value of C(~αl(t),~βl(t)) is local optimal cost in the time frame [ts, ts + w].

The cost incurred by the randomized FRHC in time frame [ts, ts +w] should be smaller

than (1) the migration cost of the object from DCs chosen by the the randomized FRHC

in time slot t = ts − 1 to those determined by the optimal offline algorithm in time slot ts,

i.e, CM(~αl(ts − 1),~α∗(ts)), and (2) then following the optimal offline algorithm to find op-

timal cost in this time slot, which is ∑ts+w
t=ts+1 CM(~α∗(t− 1),~α∗(t)) + ∑ts+w

t=ts
CR(~α

∗(t),~β∗(t)).

We now find the upper bound of migration cost CM(~αl(ts − 1),~α∗(ts)). This cost is
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upper bounded by the following two sub migration costs. (i) The object is first migrated

from the DCs that are chosen by the randomized FRHC in time slot t = ts − 1 to those

determined by the optimal offline algorithm in time slot ts − 1. This migration cost is:

CM(~αl(ts − 1),~α∗(ts − 1)). (ii) The object is then migrated from these DCs selected by

the optimal offline algorithm in time slot ts − 1 to DCs that are selected in time slot ts.

This cost is CM(~α∗(ts − 1),~α∗(ts))). We therefore can bound the cost in the time frame as

follows:

C(~αl(t),~βl(t)) ≤ (i) + (ii) + ∑ts+w
t=ts+1 CM(~α∗(t− 1),~α∗(t)) + ∑ts+w

t=ts
CR(~α

∗(t),~β∗(t))

≤ (i) + ∑ts+w
t=ts

CM(~α∗(t− 1),~α∗(t)) + ∑ts+w
t=ts

CR(~α
∗(t),~β∗(t))

≤ (i) + ∑ts+w
t=ts

C(~α∗(t),~β∗(t)).

The right side of the above inequality gives the upper-bound of the cost for each time

frame [ts, ts + w]. Hence the proof of the lemma is concluded.

Theorem 5.2. Algorithm 5.3 is (1 + γ
w )-competitive. Formally, for any input CROA/COPT ≤

(1 + γ
w ).

Proof. By using Lemma (2), the upper bound of the total cost incurred by the randomized

FRHC is

CROA = ∑ts∈dT/we[CM(~αl(ts − 1),~α∗(ts − 1)) + ∑ts+w
t=ts

C(~α∗(t),~β∗(t))]

= ∑
ts∈dT/we

ts+w

∑
t=ts

C(~α∗(t),~β∗(t))︸ ︷︷ ︸
COPT

+∑ts∈dT/we CM(~αl(ts − 1),~α∗(ts − 1))]

The expected cost of Randomized is computed as:

E(CROA) =
1
w
[

w

∑
l=1

(COPT + ∑
ts∈dT/we

CM(~αl(ts − 1),~α∗(t)))]

= COPT +
1
w

w

∑
l=1

∑
ts∈dT/we

CM(~αl(ts − 1),~α∗(ts − 1)).

Thus, the CR of the algorithm is
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Algorithm 5.3: Randomized Online Algorithm (ROA) with prediction window w
Input : RPM’s inputs as illustrated in Fig. 5.2
Output:~α(t), ~β(t), and the overall cost denoted Cove

1 l ← random number within [1, w], Cove ← 0
2 if l 6= 1 then
3 Cove ← solve Equ. (5.10) over widows [1, l] and [T − l]
4 tm = l + 1
5 end
6 for t← l to T − l + 1 do
7 Cove ← Cove+ solve Equ. (5.10) over widows [l, l + w)
8 CM ← solve Equ. (5.4) for (tm−1, tm)
9 Cove ← Cove + CM, tm = l + w + 1

10 t← t + w
11 end
12 if l 6= 1 then
13 CM ← solve Equ. (5.4) for (tm−1, tm)
14 Cove ← Cove + CM

15 end
16 Return~α(t), ~β(t) and Cove

E(CROA)/COPT = 1 +
1
w
(

∑w
l=1 ∑ts∈dT/we CM(~αl(ts − 1),~α∗(ts − 1)))

COPT
)

≤ 1 +
1
w
(

∑w
l=1 ∑ts∈dT/we Cmax

M (~αl(ts − 1),~α∗(ts − 1)))
COPT

).

Based on the definition of γ in Lemma 1, we have:

E(CROA)/COPT ≤ 1+ γ
w (

∑w
l=1 ∑ts∈dT/we Cmin

M (~αl(ts−1),~α∗(ts−1)))
COPT

). Since the coefficient of γ
w is less

or equal to one, we have E(CROA)/COPT ≤ 1 + γ
w .

Based on computed γ in Section 5.5.3, the randomized algorithm leads to a CR of

1 + 1.52
w , depending on the value of w, and achieves to better cost performance compared

with its counterpart.

To calculate the time complexity of the algorithm, it suffices to calculate the time com-

plexity of for loop. Since this algorithm produces the results in each frame, the time com-

plexity of algorithm is O(|D|2 + w|~α|2Tlp) = O(w|~α|2Tlp) for w < T; otherwise it takes

the time complexity the same as the optimal offline algorithm.
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5.5 Performance Evaluation

We evaluate the performance of the algorithms via simulation using the synthesized

workload based on the Facebook workload [16]. Our aims are twofold: (i) we measure the

cost savings achieved by the proposed algorithms relative to the benchmark algorithms,

and (ii) we explore the impact of different values of parameters on the algorithms’ perfor-

mance. To evaluate our work, we implemented the algorithms in the CloudSim discrete

event simulator [35], which has been used by both industry and academia for perfor-

mance evaluation of applications in cloud environments.

5.5.1 Settings

This study uses the following setup for DC specifications, workload on objects, delay

constraints, and experiment parameters setting.

DCs specifications: We span DCs across 11 regions7 in each of which there are DCs from

different CSPs. There are 23 DCs in the experiments. We set the storage and network

prices of each DC as specified in June 2015. Note that we use the price of SS and RRS

during hot-spot and cold-spot status of objects respectively. The object is transited from

hot-spot to cold-spot when about 3/4 of its requests have been served [21]. These many

requests are received within the first 1/8 of the lifetime of the object, which is considered

as the hot-spot status for the object [21].

Workload on objects: It comes from the Facebook workload [16] in three terms: (i) the

ratio of Get/Put requests is assigned to 30, (ii) the average size of each object retrieved

from the bucket (as described in Section 5.2, the bucket is integration of hundreds of

objects) is 1 KB and 100 KB on average8[177], and (iii) the pattern for Get rate to retrieve

items follows long-tail distribution such that 3/4 of those Gets happen during 1/8 of the

initial lifetime of the bucket [21]. We synthetically generate the Get rate of each bucket

based on Weibull distribution that follows the above mentioned pattern. The number of

Get operations for each bucket is randomly assigned with the average of 1250. The low

and high Get rate implies that the bucket contains the objects belonging to users whose

profiles are accessed frequently and rarely respectively (i.e., this category of users has a

7California, Oregon, Virginia, Sao Paulo, Chile, Finland, Ireland, Tokyo, Singapore, Hong Kong and Sydney.
8Henceforth, the object with size 1 KB and 100 KB on average are called small and large object respectively.
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low and high number of friends respectively).

Delay setting: The round trip time delay between each pair of DCs is measured based

on the formula RRT(ms) = 5 + 0.02 × Distance(km) [133]. The latency L– a user can

tolerate to receive a response of Get/Put requests– is 100 ms (i.e., tight latency) and 250

ms (i.e., loose latency). A latency higher than 250 ms deteriorates the user’s experience

on receiving Get/Put response [94].

Experiment parameters setting: In the experiments, we set the following parameters.

The overall size of objects is 1 TB and the size of each bucket is initially 1 MB, which

grows to 50 MB during the experiments. The number of replicas is set to 1 and 2 [38].

The unit of the time slot (as well w) is one day. For the prediction window, we set w = 4

by default, where the randomized algorithm is superior to the deterministic algorithm in

the cost saving, except for large objects with two replicas under loose latency. We vary w

to examine its impact on the cost saving. In all workload settings, we compute cost over

a 60-day period.

5.5.2 Benchmark Algorithms

We propose two benchmark algorithms to evaluate the effectiveness of the proposed al-

gorithms in terms of cost.

Non-migration algorithm: This is shown in Algorithm 5.4 and minimizes the residential

cost CR(.) with all constraints in (5.6) such that objects are not allowed to migrate during

their lifetime. This algorithm, though simple, is the most effective measure to show the

impact of object migration on the cost saving (see Section 5.5.3).

Local residential algorithm: In this algorithm, an object is locally replicated at a DC

located in the region that issues most Get/Put requests for the object and also in the

closest DC(s) to that DC if the need for more replicas arises. All the incurred costs are

normalized to the cost of local residential algorithm, unless otherwise mentioned.

5.5.3 Results

We start by evaluating the performance of algorithms relative to the above benchmark

algorithms.
The cost performance of all algorithms through simulations is presented in Figs. 5.6
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Algorithm 5.4: The Non-migration Algorithm
Input : RPM’s inputs as illustrated in Fig. 5.2
Output:~α(t), ~β(t), and the overall cost

1 ~α← Calculate all r−combinations of distinct DCs from D.
2 Calculate ∑T

t=1 CR(~α(t),~β(t)) with all constraints in Equ. (5.6) for all~α(t) ∈~α, and
then select~α(t) as the location of the object from t = 1 to T so that the above
computed cost is minimized. This cost is the overall cost.

3 Return~α(t), ~β(t), and the overall cost.
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Figure 5.6: Cost performance of algorithms under tight and loose latency for objects with
a replica. All costs are normalized to the local residential algorithm. The values in boxes
show the CR of DOA and ROA in the worst case.

and 5.7, where the CDF of the normalized costs9 are given for small and large objects with

r=1,2 under tight and loose latency. The general observation is that all algorithms witness

significant cost savings compared with the local residential algorithm. As expected, the

9Note that as normalized cost is smaller, we save more monetary cost.
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Figure 5.7: Cost performance of algorithms under tight and loose latency for objects with
two replicas. All costs are normalized to the local residential algorithm. The values in
boxes show the CR of DOA and ROA in the worst case

results, in term of average cost saving (see Table 5.3), show that Optimal outperforms

Randomized, which in turn is better than Deterministic (apart from the above mentioned

exception).

Fig. 5.6a illustrates the results for small objects under tight latency. Optimal saves at

most 20% of the costs for about 71% of the objects, and the online algorithms cut 10% of

the costs for about 60% of the objects. In contrast, the results also show that the applica-

tion incurs at most 10% more cost for about 20% of the objects by using Deterministic, and

likewise at most 20% more cost for about 30% of the objects by using Randomized. Fig.

5.6b depicts the results for large objects under tight latency. We can observe that Optimal

cuts costs for more than 95% of the objects, while this value reduces to about 80% of the

objects in online algorithms. The cost savings for objects in Optimal, Deterministic, and
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Table 5.3: Average cost performance (Normalized to the local residential algorithm)

Latency=100 ms Latency=250 ms

Replicas
Number

Object
Size

Optimal DOA† ROA‡ Optimal DOA ROA

r=1
1 KB 0.9030 0.9694 0.9469 0.8778 0.9075 0.8974

100 KB 0.8561 0.8734 0.8657 0.7758 0.8369 0.7997

r=2
1 KB 0.8879 0.9330 0.9181 0.8787 0.9045 0.8866

100 KB 0.8831 0.9045 0.9127 0.8440 0.8625 0.8636

† Deterministic Online Algorithm
‡ Randomized Online Algorithm

Randomized are respectively 15%, 14% and 13%. Based on comparison between results

in Figs. 5.6a and 5.6b, we realize online algorithms remain highly competitive with the

optimal algorithm in cost savings for large objects. This happens due to the fact that the

migration of large objects in both online and offline algorithms happens roughly at the

same time.

Figs. 5.6c and 5.6d show the results for small and large objects under loose latency.

The algorithms cut the costs for about 78% of the small objects (Fig. 5.6c) and for about

100% large objects (Fig. 5.6d). On the average, from Table 5.3, Optimal, Deterministic,

and Randomized respectively gain cost savings around 13%, 10% and 11% for small ob-

jects, and correspondingly 23%, 17% 21% for large objects. From these results in Figs.

5.6c and 5.6d to those in Figs. 5.6a and 5.6b, we observe that all algorithms are more cost

effective under loose latency in comparison to tight latency. The reason is that: (i) there

is a wider selection of DCs available with lower cost in storage and network resources

under loose latency in comparison to tight latency, and (ii) the application can benefit

from the large objects migration more than the small objects migration).

The results in Fig. 5.7 reveal that the cost performance of algorithms for objects with

two replicas. By using online algorithms, the application witnesses the following cost sav-

ings. As illustrated in Figs. 5.7a and 5.7c, the application can reduce cost for about 90%

and 95% of the small objects under loose and tight latency respectively. For these objects,

Randomized and Deterministic under loose latency (resp., under tight latency) reduce

the cost by 7% and 9% (resp., 10% and 12%) on average (see Table 5.3).

As shown in Figs. 5.7b, 5.7d and Table 5.3, for large objects, the cost saving of two

online algorithms become very close while Deterministic is slightly better than Random-
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ized in average cost savings. Under tight latency, the application receives 10% and 9%

of cost savings by using Deterministic and Randomized, respectively, while under loose

latency, the application saves the cost (around 14% on average) by using each of online

algorithm. This slight superiority of Deterministic over Randomized shows that we need

to choose w > 4 in order to allow Randomized to outperform Deterministic for this set-

ting (i.e., r=2, for large objects under tight latency). By using the optimal offline algorithm,

we observe the following results in Fig. 5.7. The application achieves cost savings for

all objects with two replicas, while it is not the same for all objects with one replica (see

Figs. 5.6a and 5.6c). On average, the application using Optimal reduces cost for small

objects (resp., for large objects) by about 12% and 13% (resp., 12% and 16%) under loose

and tight latency respectively.

Besides the above experimental results, we are interested to evaluate the performance

of online algorithms in terms of CR values already discussed. For this purpose, we com-

pare the value of CR obtained in theory with that of the experimental results in Figs. 5.6

and 5.7. To calculate the theoretical value of CR, we require the value of γ. Under the

storage and network price used in the simulation, the gap between the network prices is

more than that of between the storage prices of the same DCs in this case. The highest

gap is between GCS and ACS with value 0.21 per GB and 0.138 per GB, respectively, in

the Asia- Pacific region, which results in γ= 1.52. Thus, by Theorem 5.1 and the value

of γ, the deterministic algorithm will lead to at most 2.04 times the optimal offline cost.

And, by Theorem 5.2 and the value of γ, the randomized algorithm incurs at most 1.38

(note that the value of w is 4 in all experiments). The corresponding CR for each exper-

imental result in Figs. 5.6 and 5.7 is shown in a box at the bottom of each figure. This

value of the CR is the highest among all objects incurred by the online algorithms. All

CR values obtained from experimental results are lower than those theoretical values as

the object migrations conducted by the proposed algorithms does not necessarily occur

between DCs with the highest and the lowest price in the network. Therefore, the online

algorithms remain highly competitive in comparison to the optimal offline algorithm in

the worst case in all experiments.



5.5 Performance Evaluation 153

25020015010050

1.00

0.95

0.90

0.85

0.80

Latency (ms)

N
o
rm
a
liz
e
d
 C
o
st

(a) Normalized cost vs. latency for one replica

25020015010050

0.950

0.925

0.900

0.875

0.850

Latency (ms)

N
o
rm
a
liz
e
d
 C
o
st

(b) Normalized cost vs. latency for two replicas

Figure 5.8: Normalized cost of algorithms when the latency is varied. Legend indicates
object size in KB for different algorithms. All costs are normalized to the local residential
algorithm.

The Effect of Latency on Cost saving

In this experiment, we evaluate the cost performance of algorithms when the latency is

varied from 50 ms to 250 ms. First, as shown in Figs. 5.8a and 5.8b, the normalized cost

of all algorithms reduces when the latency increases. The reason is that when the latency

is 50 ms, most objects are locally replicated at DCs; as a result normalized cost is high.

As latency increases, algorithms can place objects in remote DCs which are more cost-

effective, and hence the normalized cost declines. For example in Fig. 5.8a, as latency

increases from 50ms to 250ms, the cost saving for Optimal, Deterministic and Random-

ized rises from 3-10%, 6-11% and 10-13%, respectively, for small objects, and likewise 13-

17%, 14-22% and 15-23% for large objects. Second, as we expected, Optimal outperforms

Randomized, which in turn is better than Deterministic in normalized cost excluding the

mentioned exception (see Fig. 5.8b for large objects). This exception implies that we need

to use w > 4 to achieve better performance of Randomized compared to that of Deter-

ministic. Third, as shown in Fig. 5.8b, we observe that the decline in the cost savings for

large objects is more steep than those of small objects when latency increases.
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Figure 5.9: Normalized cost vs. read to write ratio under tight and loose latency for
objects with one and two replicas. Legend indicates object size in KB for different algo-
rithms. All costs are normalized to the local residential algorithm.
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Figure 5.10: Normalized cost of the Randomized algorithm when the window size is
varied. All costs are normalized to the local residential algorithm. Legend indicates
replicas number and objects size in KB.



5.5 Performance Evaluation 155

The Impact of Read to Write Ratio on Cost Saving

We plot the effect of read to write ratio, varying from 1 (read-intensive object) to 30 (write-

intensive object), on the normalized cost for small and large objects under tight and loose

latency in Fig. 5.9. We observe the following results.

(i) There is a hierarchy among algorithms in the normalized cost, where Optimal is

better than Randomized, which in turn, outperforms Deterministic, excepts for large ob-

jects with two replicas. In this exception, Deterministic saves 1% more cost than Ran-

domized with w = 4, while for w > 4 Randomized is better than Deterministic in this

criterion (next section). (ii) For small objects with r = 1, 2 under both latency constraints,

the normalized cost of all algorithms increases slightly as the ratio goes up, excluding

the normalized cost of Randomized for small objects with one replica under tight latency

(see Fig. 5.9a). The reason behind this slight increment is that when the ratio increases,

less volume of data is read and written; hence the application has to leverage from less

difference between storage and network services and objects are prone to stay in local

DC(s). (iii) For large objects with r = 1, 2 under both latency constraints, the normalized

cost of all algorithms reduces as the ratio raises, particularly for r = 1. For example, as

shown in Figs. 5.9b and 5.9d, under loose latency (resp., under tight latency), the normal-

ized cost reduces by 10%, 9% and 6% (resp., 5%, 6% and 9%) for Optimal, Randomized

and Deterministic, respectively when the ratio increases from 1 to 30. The main reason

for the reduction in the normalized cost for large objects is that when large objects are

write-intensive, the objects migrate to the new DC(s) lately and utilize less the difference

between storage and network cost. In contrast, read-intensive large objects can better

leverage the difference between storage and network cost. (iv) Under both latency con-

straints, small objects with two replicas generate more cost savings than the same objects

with one replica, while the situation is reversed for the large objects.

The Impact of Window Size on Cost Saving of the Randomized Algorithm

We investigate the impact of look-ahead window size into the available future workload

on the normalized cost of the randomized algorithm. As shown in Fig. 5.10, we evaluate

this effect when w varies from 2 to 6 units of time. As expected, the larger the w value, the

more reduction in the normalized cost of the algorithm for small and large objects with
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r = 1, 2 under tight and loose latency. As mentioned before, for the prediction window,

we set w = 4 by default and results show that Randomized outperforms Deterministic,

excluding for large objects with two replicas (see Fig. 5.7d). For this setting, Fig. 5.10b

represents the normalized cost of Randomized which is lower than that of Deterministic

for w > 4. This indicates that the more future workload information is available, more

improvement in the cost saving for the algorithm happens.

The Effect of Objects Migration on Cost Saving

We now show how much cost can be saved by migrating objects in the proposed algo-

rithms over Algorithm 4 as a benchmark. Fig. 5.11a shows that when the latency is tight,

for about 11% of small objects, there is a saving of at most 10% and 6% for r = 1 and

r = 2 respectively. For large objects, as expected more improvements are observed in the

cost savings. In particular, the application saves 4-5% of the costs for 88% of the objects

with one replica and for 98% of them with two replicas. This is because that as the object

size increases, the objects are more in favor of migration due to increasing in the imposed

storage cost. Fig. 5.11b shows the effect of migration on cutting the cost when the latency

is loose. For small objects, cost saving is not significant (we did not plot here) because

(i) in their early lifetime, they find DCs that are competitive in the cost of storage and

network; and (ii) the objects do not considerably grow in size requiring to be migrated to

new DCs in the end of their lifetime. Thus, the object is replicated at DCs that are cost-

effective in both resources for its whole lifetime. In contrast, for 90% of the large objects,

the cost saving is around 4.5% and 2.5% when r=1 and r=2 respectively.

The Run Time of Algorithms

We measure the running time of algorithms by conducting experiments on a Quad Core

2300MHz Machine (AMD Opteron 63xx series with 512 KB cache) with 16 GB RAM. Table

5.4 shows the running time for placing each object in 23 DCs per each time slot. As it can

be seen, Deterministic has less running time than Randomized while Optimal is the worst

case especially for r = 2. The algorithms are finished in less than a second when r = 1,

while for r = 2 the running time increases to several seconds. However, Deterministic

stays more efficient because the time complexity of this algorithm is linearly proportional
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Figure 5.11: CDF of cost savings for objects due to their migration under tight and loose
latency. All costs are normalized to the non-migration algorithm. Legend indicates repli-
cas number and objects size in KB.

with the number of DCs.

The running time of the proposed algorithms may be further decreased through (i) us-

ing more efficient linear program solver, for example CPLEX solver, instead of LP solver

used here, and (ii) reducing the number of DCs, as the main factor contributing to the

time complexity, especially when the latency constraint is loose. As the latency constraint

is loose (i.e., is large), the application can access more DCs with the same price or very

close price. Therefore, we can reduce the number of DCs when we have similar choices.

For example, in the European region, we can have only one Amazon DC in Frankfort,

instead of having Amazon DCs of same prices both in Frankfort and Ireland.

Table 5.4: Running time of algorithms on 23 DCs (in Second)
Algorithms r = 1 r = 2
Optimal 0.750 11.35
Deterministic 0.012 2.01
Randomized 0.368 8.45

5.6 Summary

To minimize the cost of data placement for applications with time-varying workloads,

developers must optimally exploit the price difference between storage and network ser-

vices across multiple CSPs. To achieve this goal, we designed algorithms with full and

partial future workload information. We first introduced the optimal offline algorithm

to minimize the cost of storage, Put, Get, and potential migration, while satisfying even-
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tual consistency and latency. Due to the high time complexity of this algorithm coupled

with possibly unavailable full knowledge of the future workload, we proposed two on-

line algorithms with provable performance guarantees. One is deterministic with the

competitive ratio of 2γ − 1, where γ is the ratio of residential cost in the most expen-

sive data center to the cheapest one either in storage or network price. The other one

is randomized with the competitive ratio of 1+ γ
w , where w is the size of available look-

ahead windows of the future workload. Large scale simulations driven by a synthetic

workload based on the Facebook workload indicate that the cost savings can be expected

using the proposed algorithms under the prevailing Amazon’s, Microsoft’s and Google’s

cloud storage services prices.



Chapter 6

Cost Optimization across Cloud
Storage Providers: A Lightweight

Algorithm

The previous chapter has introduced the object placement algorithms that determine the location of

limited and fixed number of object replicas. These algorithms fail to dynamically determine the number

of object replicas that receive time-varying workloads from a wide range of DCs. They also demand

high time complexity to determine the object replicas placement as the number of replicas increase.

This chapter, however, addresses these issues by introducing lightweight heuristic solution inspired

from an approximate algorithm for the Set Covering Problem. It jointly determines object replicas

location, object replicas migration times, and redirection of Get (read) and Put (write) requests to

object replicas so that the cost of data storage and access management is optimized while the user-

perceived latency is satisfied. We evaluate the effectiveness of the algorithm in terms of cost savings

via extensive simulations using CloudSim simulator and traces from Twitter. In addition, we have

built a prototype system running over Amazon Web Service (AWS) and Microsoft Azure to evaluate

the duration of objects migration within and across regions.

6.1 Introduction

WELL known Cloud Storage Providers (CSPs) such as Amazon Web Service (AWS),

Microsoft Azure, and Google offer several storage classes with different prices.

The price of storage classes is different across CSPs, and it is directly proportional to the

performance metrics like availability, durability, etc. For example, Reduced Redundant

Storage (RRS) is an AWS’s storage class that enables users to reduce their cost with lower

levels of redundancy as compared to Simple Storage Service (S3).

CSPs also charge their users/application providers for network resources in differ-

159
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ent prices. They charge users for outgoing data, while the cost for ingoing data is often

free. They may also charge their users at a lower cost when the data are moved across

Datacenters (DCs) operated by the same cloud provider (e.g., AWS provider). This diver-

sification of the storage and network prices plays an essential role in the optimization of

the monetary cost spent in using cloud-based storage resources.

This cost also affected by the expected workload of an object/data. The object might

be a photo, a tweet, or even an integration of these items as a bucket [52] that shares

similar Get (read) and Put(write) access rate pattern. The object is created once, read

many times, and updated/written rarely. The object workload is determined by how

often it is read and updated. There is a strong correlation between the object workload

and the age of object, as observed in online social networks (OSNs) [122]. In other words,

the object uploaded to OSNs receives dominating more Gets and Puts during its early

lifetime, and such object is in hot-spot status and is said to be network-intensive. Then

the object cools over time and receives fewer and fewer Gets and Puts. Such object is in

cold-spot status and is said to be storage-intensive.

Therefore, with the given (i) time-varying workload of object, and (ii) storage classes

offered by different CSPs with different prices, acquiring the cheapest network and stor-

age resources in the appropriate time of the object lifetime plays a vital role in the cost

optimization of the data management across CSPs. This cost consists of replica creation,

storage, Get, Put, and potential migration costs. To optimize these costs, cloud users

are required to answer the following questions: (i) which storage class from which CSP

should host the object (i.e., placing), and (ii) which replica should serve a specific Get (i.e.,

Get requests redirection), and (iii) when the object replica should probably be migrated

from a storage class to another one operated by the similar or different DCs.

We previously investigated some of these questions. In Chapter 4, we proposed a

dual cloud-based storage architecture that optimizes the cost of object across two DCs

with two storage classes. The findings in terms of cost saving obtained from this archi-

tecture motivate us to extend this architecture across multiple data stores, as discussed

in Chapter 5. In Chapter 5, we proposed object placement algorithms that determine

the location of limited and fixed number of object replicas with time-varying workloads.

These algorithms fail to dynamically determine the number of object replicas. Moreover,



6.1 Introduction 161

they suffers from high time complexity when the object receives Gets and Puts from a

wide range of DCs, and consequently demand many replicas to provision Gets and Puts

within the latency constraint specified by users. To tackle these issues and answer the

aforementioned questions, we propose a lightweight algorithm that demands low time

complexity, thereby making them tailored for applications that host a large number of

objects.

The lightweight algorithm to optimize the cost of data storage management make a

three-fold decision: replicas location, replicas migration time from a storage class to an-

other one operated by similar or different data stores, and redirection of Gets to replicas.

In addition to the cost optimization, latency to read data from and write data into the

data store is also a vital performance criterion from the perspective of users. We consider

the latency constraint as a service level objective (SLO) and define it as the elapsed time

between issuing a Get/Put from a data center (DC) and retrieving/writing the required

object from/into the data store.

In summary, by wisely taking into account the pricing differences for storage and

network resources across CSPs and time-varying workloads of objects, we are interested

to reduce the cost of data storage management (i.e., replica creation storage, Get, Put, and

migration costs) so that the user-perceived latency for Gets and Puts is met. To address

this issue, we make the following key contributions:

• We introduce a cost model that includes replica creation, storage, Get, Put, and

potential migration costs. This cost model integrates the user-perceived latency for

reading and writing data from and into data stores.

• We optimize this cost model by exploiting linear and dynamic programming where

the exact future workload is assumed to be known a priori. Due to the requirement

of high time complexity, we propose a lightweight algorithm that makes key de-

cisions on replica placement, Get requests redirection, and replicas migration time

without any knowledge of the future workloads of objects.

• We conduct extensive experiments to show the effectiveness of the proposed so-

lution in terms of cost savings by using real-world traces from Twitter [101] in

CloudSim simulator [35].

• In addition, we have built a prototype system running over AWS and Microsoft
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Azure cloud providers to evaluate the effectiveness of the proposed solution in

terms of the duration of objects migration within a region and across regions.

6.2 System Model, Cost Model, and Cost Optimization Problem

We first discuss our system model and formulate the cost of data storage management,

and then define an optimization cost problem according to the formulated cost model.

6.2.1 System model

Our system model employs different cloud providers that operate Geo-distributed DCs.

DCs from different cloud providers may be co-located, but they offer several storage

classes with different prices and performance metrics. Using each storage class can be

determined by the user’s objective (e.g., monetary cost optimization).

In our system, each user creating the object is assigned to his/her closest DC among

the DCs, which are Geographically dispersed across the world. This DC is referred as a

home DC. The created object can be a tweet or a photo that is posted by the user on his/her

Twitter Feed or Facebook Timeline. The object is replicated in several DCs based on its

workload, the number of the user’s friends/followers, and the required access latency to

serve Gets. These replicas are named slave replicas, as opposed to the master replica stored

in the home DC. The master/slave replica of the object is in hot-spot status if it receives

many Gets and Puts, and in cold-spot status if it receives a few. These statuses of the

object replica probably lead to the replica migration between storage classes. To do this,

our system uses the stop and copy migration technique in which the Gets are served by the

DC that the object must be migrated from (called source DC) and the Puts are handled by

the other DC that the object must be migrated to (called destination DC) [169]. The unit

of data migration is the bucket abstraction which is the same as that in Spanner [52]. The

bucket consists of the objects owned by a specific user.

In the system model, a DC is referred as a client DC if it issues a Get/Put for the object,

and a DC is named as a server DC if it hosts a replica of the object. If a DC stores a replica

of the object in order to serve its Puts and Gets, then this DC is client and server at the

same time for this specific object.
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Table 6.1: Summary of key notations

Symbol Meaning

D A set of DCs
Dx If “x=c”, Dc is the set of client DCs.

If “x=r”, Dr is the set of server DCs.
If “x=p”, Dp is the set of potential DCs to host a replica.

dx If “x=c”, dc is a client DC.
If “x=r”, dr is a server DC.
If “x=p”, dp is a potential DC.
If “x=h”, dh is a home DC.

S(d) The storage cost of DC d per unit size per unit time
O(d) Out-network price of DC d per unit size
T Number of time slots
v(t) The size of the object in time t
rdc (t) Number of read requests from dc in time t
wdc (t) Number of write requests issued from dc in time t
r Number of replicas of the object
tdr
m Migration time of a replica in DC dr

αd(t) A binary variable indicates whether a replica is in DC d in time slot t or not
dc(t)→ dr(t) A binary variable, being 1 if the DC dc is served by DC dr and being 0 otherwise.
Cx(.) If “x=R”, CR(.) is the residential cost.

If “x=M”, CM(.) is the migration cost.
If “x=B”, CB(.) is the benefit-cost that is lost for a replica in a specific DC during
time t.

L An upper bound of delay on average for Gets and Puts to receive response
l(dc, dr) The latency between DC dc and DC dr

6.2.2 Cost model

We assume a time-slotted system in which each slot lasts for t ∈ [1...T]. This system is

represented as a set of independent DCs, D, where each DC d is associated with a tuple

of four cost elements. (i) S(d) denotes the storage cost per unit size per unit time (e.g.,

bytes per hour) in DC d. (ii) O(d) defines out-network cost per unit size (e.g., byte) in

DC d. (iii) tg(d) and tp(d) represent transaction cost for a bulk of Gets and Puts in DC d,

respectively

Assume that the application creates a set of objects in time slot t. Let rdc(t) and wdc(t),

respectively, be the number of Gets and Puts for the object with size v(t) from client DC

dc(t) in time slot t. For Gets, let client dc(t) is served by server DC dr(t) that hosts a

replica of the object in time slot t. This is denoted by dc(t) → dr(t), which is binary,

being 1 if the DC dc(t) is served by DC dr(t) and being 0 otherwise. Note that it is no

need for assignment of DCs dc(t) to dr(t) for Puts since these requests issuing form dc(t)s

must be submitted to all replicas in dr(t)s. The number of replicas, denoted by r, for each

object is variable in each time slot, and depends on the object workload, the required
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Figure 6.1: Replica creation via (a) home DC and (b)potential DCs D1, D2, and D3.

access latency, and the number of client DCs issued Puts and Gets. Table 6.1 summarizes

key notations used in this chapter.

We define an objective function as to choose the placement of the object replicas (i.e.,

server DCs dr(t)) and to determine the assignment of client DCs dc(t) to a server DC dr(t)

so that the replica creation, storage, Get, Put, and potential migration costs for the object

during t ∈ [1...T] are minimized. To find the objective function, we formally define the

following costs.

Replica Creation Cost: Once user creates an object in his/her home DC, the system

may need to replicate this object in the DCs d. To do so, the system first requires to read

the data from either the home DC dh or other DC dr storing the replica of the object, and

then to write it into the DCs d. We refer this cost as a replica creation cost. To minimize

it for r replicas, the system should find the minimum of the following two costs. (i) The

system directly reads the object from the home DC dh and replicates in (r− 1) DC1. This

cost equals to v × (r − 1) ×O(dh) (see Fig. 6.1a). (ii) The system first reads the object

from the home DC dh to the DC d′ as a server DC, and then from this DC to (r− 2) DCs

since a replica is stored in each DC dh and DC d′ (see Fig., 6.1b). In this case, the cost

is v× (O(dh) + (r − 2)× O(d′)). To minimize the cost in this case, the system requires

to calculate the cost for each DC d′ ∈ D − {dh} as a server DC. Therefore, the replicas

creation cost is defined as

mind\dh
[ (r− 1)×O(dh), O(dh) + (r− 2)×mind O(d)]× v. (6.1)

Since in this step, the number (r) and location (dr) of replicas have not been still spec-

ified, the system requires to calculate the lower-bound number of replicas as summarized in

1The object in the home DC is considered as a replica.
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Algorithm 6.1: The lower-bound number of replicas
Input : D: a set of DCs d, Dc: a set of client DCs dc, latency between each pair of

DCs, and latency constraint L
Output: brc

1 Initialize: brc ← 0
2 forall d ∈ D do
3 forall dc ∈ Dc do
4 if l(d, dc) ≤ L then
5 Assign DC dc to DC d
6 end
7 end
8 end
9 Sort DCs d according to their assigned number of dcs in descending order.

10 while Dc 6= ∅ do
11 Select DC d as dr and remove its assigned dcs form Dc as well as from the set of

client DCs assigned to other DCs d which are not still selected a server DCs.
12 brc ← brc+1
13 end

Algorithm 6.1. This algorithm assigns client DCs dc to each DC d if the latency between

DCs dc and d is within the latency constraint (lines 2-8). Then, the algorithm sorts DCs d

according to their number of assigned client DCs dc (line 9), and finally selects the DC d

one after another as a server DC dr until all DCs dc are served by a server DC dr (lines 10

- 13).

Storage Cost. The storage cost of an object in time slot t is equal to the storage cost of

all its replicas in DCs dr. Thus, this cost is equal to

∑
dr

S(dr)× v. (6.2)

Get Cost. The Gets cost of an object in time slot t is the cost of Gets issued from all

DCs dc and the network cost for retrieving the object from DCs dr. Hence, this cost is

given by

∑
dr

∑
dc

(dc → dr)× rdc × [tg(dr) + v×O(dr)]. (6.3)

Put Cost: The Puts cost of the object in time slot t is the cost of Puts issued by all
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Figure 6.2: Put propagation policy. (a) Client DC first updates the server DC that serve
it and the home DC. DCs hosting a replica are updated via (b) the client DC, (c) the
home DC, and (d) the server DC that serve the client DC (i.e., DC D1). (e)The relayed
propagation via DC D2 which is updated by the home DC.

client DCs and the propagation cost to keep slave replicas of the object consistent. For

this purpose, the client DC first updates the server DC that serves it and the home DC that

hosts the master replica (Fig. 6.2a). Then, one DC is selected to propagate data to other

DCs. The criteria for this selection is to minimize the propagation cost. To this end, each

DC should be selected to propagate data. If the selected DC already was updated, then

this DC propagates data to update other DCs. For example, as shown in Figs. 6.2b-6.2d,

the client DC, the server DC D1, or the home DC is selected to updates replicas in DCs

D2, D3, and D4. Otherwise, if the selected DC was not already updated, it requires first to

be updated via one of the updated DC and then it propagates data to the remaining DCs

(i.e., r − 3 DCs). For example, as depicted in Fig. 6.2e, if the selected DC to propagate

data is DC D3, then DC D3 is first updated via the home DC, the server DC D1, or the

client DC (depending to which DC has the minimum cost to transfer data from it to DC3),

and then it propagates data to DCs D2 and D4. Thus, Puts cost is defined as

∑
dc

[(wdc × (

 v(O(dc)) + tp(dh), i f dc ∈ Dr(t)

v(2O(dc)) + tp(dh) + tp(dc → dr), o.w.

+

min
dp

∑
d\dh∧dc→dr


v(O(dp)) + tp(d), i f dp is dc, dh, or dc → dr

min
d′\dc,dh,dc→dr

(vO(d′) + tp(dp)) + v(r− 2)O(dp + tp(d)), o.w.
]

(6.4)
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In the above Equation, the first set bracket calculates the updated cost of the home DC

and the server DC that serves the client DC. The second set bracket calculates the mini-

mum propagation cost to update r− 2 replicas.

Migration Cost: The set of server DCs denoted by Dr for an object can be different in

t− 1 and t. That is, Dr(t− 1) 6= Dr(t). This happens when access pattern on the object

changes, and consequently the object transits from hot-spot status to cold-spot status and

vice versa. It is more cost-effective to replicate the object in a DC with the lower network

cost as long as it is in the hot-spot status. Upon transition of the object to the cold spot

status, it is probably more profitable to migrate it to a DC with the lower storage cost.

This transition of the object across DCs incurs a migration cost. To optimize it, the object

should be migrated from dr ∈ Dr(t− 1) with the minimum network cost to dr ∈ Dr(t).

Thus, the migration cost for each replica of the object in DC dr ∈ Dr(t− 1) is as

Cdr
M(t− 1, t) =


0 i f dr ∈ Dr(t− 1) ∧ Dr(t)

min
dr∈Dr(t−1)

O(dr)× v(t− 1)) o.w.
(6.5)

As seen in Equ. (6.5), if the placement of the replica in t and t− 1 is the same, then

migration cost is zero and the replica does not need to be migrated. Otherwise, users

incur a migration cost when the replica is migrated from DC dr in t− 1 to DC in t. The

benefit-cost obtained from replica migration is very important for users to make a deci-

sion on whether to migrate the replica or not. If this benefit covers the migration cost,

then replica migration can probably be performed. To make a wise decision in this re-

spect, we propose the following strategy as summarized in Algorithm 6.2.

For ease of algorithm explanation, we introduce two notations. Assume that tdr
m de-

notes the last time of migration for the replica object in DC dr. Also suppose Cdr
L (tm, t)

is the summation of benefit-cost that is lost for the replica in DC dr during period [tdr
m , t].

The benefit-cost for each time slot during this period is equal to the difference between

(i) the residential cost of the replica as if it is stored in the DC dr(t− 1), i.e., old location,
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Algorithm 6.2: Optimization of replicas migration
Input : Dr(t− 1), Dr(t), latency between each pair of DCs, and latency constraint

L
Output: D∗r (t): the optimized location of replicas in t

1 Find the intersection set of Dr(t− 1) and Dr(t) sets and remove DCs in the
intersection set from both Dr(t− 1) and Dr(t).

2 forall dr ∈ Dr(t) do
3 C(dr, t)← Calculate residential cost according to Equs. (6.1 - 6.4)and the

migration cost based on Equ. (6.5) .
4 forall d′r ∈ Dr(t− 1) do
5 CR(d′r(t− 1), dc(t) → d′r(t− 1))←Assume as if all dcs assigned to dr are

served by d′r subject to l(dc, d′r) ≤ L and calculate the residential cost based
on Equs. (6.1 - 6.4) .

6 Cdr
B (t)← [CR(d′r(t− 1), dc(t) → d′r(t− 1))− C(dr, t)]

7 /*Migration happens*/
8 if Cdr

L (tm, t− 1) + Cdr
B (t) ≥ Cdr

M(t− 1, t) then
9 D∗r (t)← D∗r (t) ∪ dr

10 Dr(t− 1)← Dr(t− 1)− {d′r}
11 Cdr

L (tm, t)← 0, td′r
m ← t

12 break.
13 end
14 end
15 /*Migration does not happens*/
16 if dr /∈ D∗r (t) then
17 Find mind′r C(d

′
r, t)

18 D∗r (t)← D∗r (t) ∪ d′r
19 Dr(t− 1)← Dr(t− 1)− {d′r}
20 Cdr

L (tm, t)← Cdr
L (tm, t− 1) + [CR(d′r(t− 1), dc(t) → d′r(t− 1))− C(dr, t)]

21 end
22 end

and the client DCs dc ∈ Dc(t) are served by DC dr(t− 1), and (ii) the residential cost of

replica in the DC dr(t), i.e., new location. This benefit-cost is lost when the replica stays

in the old location instead of being migrated to a new one since the benefit-cost, collected

from time tm to t, cannot cover the migration cost of replica from the old location in time

tdr
m to the new location in t.

Algorithm 6.2 excludes the object replicas which have the same location in t− 1 and t

since these replicas do not require migration (line 1). For those replicas having potential

to be migrated, the algorithm first calculates the total of migration cost and residential cost

(i.e., replica creation, storage, Put, and Get costs) of the replica hosted in dr ∈ Dr(t), i.e.,
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Figure 6.3: An example of illustrating the replica migration between two consecutive
time slots.

C(dr, t)– (line 3). Then, the algorithm computes the residential cost of the replica as if

it is stored in each d′r ∈ Dr(t − 1), i.e., CR(.)– (line 5). According to these two values,

C(dr, t) and CR(.), benefit-cost Cd′r
B (t) is calculated for time slot t (line 6). Based on the

summation of benefit-cost that was lost during period [tm, t− 1], the benefit-cost in time

slot t, and migration cost of replica in DC d′r in time slot tm to that in time slot t, either of

the following cases happens. Case 1: if the summation benefit-cost lost during [tm, t] is

greater than the migration cost (i.e. line 8), then it is cost effective to migrate the replica

from its location in t − 1 (i.e., d′r ∈ Dr(t − 1)) to the location in t (i.e., dr ∈ Dr(t))–(line

6). In this case, the DC dr is added to D∗r (t), and the DC d′r is removed from Dr(t − 1)

to avoid comparing it with the next DCs which may host a migrated replica (lines 9-10).

Also, Cdr
L (tm, t) is set to zero and the migration time of replica in DC dr is updated to

the current time t in order to evaluate the next potential migration time for this replica

(line 11). Case 2: Otherwise, if the benefit-cost to bes lost during period [tm, t] cannot

cover the migration cost of replica from DC d′r in time tm to that one in time t, then the

replica migration does not happen (line 16). Thus, the algorithm finds the DC d′r with the

minimum residential cost (i.e., mind′r Cr(d′r, t)), and then it adds the DC d′r to D∗r (t) and

removes it from Dr(t− 1) (lines 17-19). Also, it adds the benefit-cost that is lost in time

slot t to the summation of those during period [tm, t− 1] (line 20).

To show how this algorithm works, we will give a simple example as shown in Fig.
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6.3. In this example, the DCs that host replicas in time t− 1 are D1, D2, D3, D5, and D6.

Assume the potential DCs can store replicas in time t are D1, D4, D7, D8, and D6. Since

DCs D1 (as home DC) and D6 are in both sets, they are excluded from replica migration

process. Thus, Algorithm 6.2 should make a decision on whether to migrate replicas to

new DCs (i.e., D4, D7, and D8) in time t.

To this end, Algorithm 6.2 calculates residential and migration costs as if the replica

is stored in new DCs. As shown in Fig. 6.10b, the algorithm first calculate these costs for

DC D4, as represented in a pair of numbers in parenthesis. Then, it calculates the resi-

dential cost of replica as if it stays in the old DCs (i.e., D2, D3, and D5), as represented in

parenthesis. Since the summation of residential and migration costs of the replica in DC4

(3+2) is less than or equal to the residential cost of replica in DCs D2 (residential cost=7),

DC (5), and D5 (6). Thus, the replica stays in the old DC with the lowest residential cost,

i.e., DC D3 (marked by an asterisk) and DC D4 is excluded for the next decision on the

replica placement. For next decision, as shown in Fig. 6.3c, the residential cost of replica

to be probably stored in DC D7 is calculated for two old DCs: D2 and D5. Since the res-

idential and migration costs of replica in DC D7 (2+2) is less than the residential cost in

DC D2 (6), DC D7 is selected to host another object replica. Thus, DCs D7 and D2 are

excluded for next decision. In the same way, DC D5 is selected to host the last replica of

the object.

The above discussed strategy uses the stop and copy technique in which the application

is served by the source DCs hosting the replicas in t − 1 for Gets and destination DCs

storing the replica in t for Puts during migration [65]. This technique is used by the single

cloud system such as HBase1 and ElasTraS [56], and in Geo-replicated system [169]. As

we desire to minimize the monetary cost of migration, we use this technique in which

the amount of data moved is minimal as compared to other techniques leveraged for live

migration at shared process level of abstraction2. We believe that this technique does

not affect our system performance due to (i) the duration of migration for transferring a

bucket (at most 50MB, the same as in Spanner [52]) among DCs is considerably low (i.e.,

about a few seconds), and (ii) most of Gets and Puts are served during the hot-spot status,

1 Apache HBase. https://hbase.apache.org/book.html
2In cloud-based transactional database in the context cloud, to achieve elastic load balancing, techniques
such as stop and copy, iterative state replication, and flush and migrate in the process level are used. The
interested readers are referred to [65] and [58].

https://hbase.apache.org/book.html
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and consequently the access rate to the object during the migration, which is happening

in the cold-spot status, is considerably low based on the access pattern3.

Therefore, with the defined residential and migration costs based on Equs. (6.1-6.5),

the total cost of the object replicas in t is defined as:

CR(dr(t), dc(t) → dr(t)) + Cdr(t−1)
M (t− 1, t), (6.6)

where CR(.) is the summation of the replica creation, storage, Put, and Get costs (Equs.

6.1-6.4), and is referred as the residential cost.

Besides the total cost optimization, our system respects the latency Service Level Ob-

jective (SLO) for Gets and Puts. The latency for a Get or Put is considered the time taken

from when a user issues a Get or Put from the DC dc to when he/she gets a response

from the DC dr that hosts the object. The latency between dc and dr is denoted by l(dc, dr)

and is evaluated based on the round trip times (RTT) between these two DCs since the

size of objects is typically small (e.g., tweets, photos, small text file), and thus data tran-

sitions are dominated by the propagation delays, not by the bandwidth between the two

DCs. For applications with large objects, the measured l(dc, dr) values capture the impact

of bandwidth and data size as well. This performance criterion is integrated in the cost

optimization problem discussed in the following subsection.

6.2.3 Cost Optimization Problem

Given the defined system and cost models, we are required to determine the location of

object replicas (dr) and the client DCs (issuing Gets and Puts) redirection to a server DC

(dc(t) → dr(t)) so that the overall cost for the object replicas (Equ. 6.6) during t ∈ [1...T]

is minimized. This is defined as the following cost optimization problem:

3Note that our system is not designed to support database transactions, and this technique is just inspired
by this area.
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min
dr(t)

dc(t)→ dr(t)

∑
t

CR(.) + CM(.) (6.7)

s.t. (repeated for ∀t ∈ [1...T])

(a) ∑dc
dc(t)→ dr(t) = 1, ∀dr ∈ Dr(t)

(b) ∑dr
dc(t) → dr(t) = |Dc(t)|, ∀dc ∈ Dc(t)

(c) ∑dr ∑dc rdc(t)×l(dc(t),dr(t))
∑dc rdc(t)

≤ L, ∀dc ∈ Dc(t), dr ∈ Dr(t)

(d) ∑dr
dc(t) → dr(t) = |Dr(t)|, ∀dc ∈ Dc(t), Puts

(e) l(dc(t), dc(t)→ dr(t)) ≤ L ∀dc ∈ Dc(t), dr ∈ Dr(t).

To optimally solve the above problem, we are required to replace dr(t) with αd(t) that is

associated to DC d. The introduced variable αd(t) is binary, being 1 if the DC d ∈ D hosts

a replica of the object, otherwise 0. Thus, we apply a constraint as below:

(f) ∑d∈D αd(t) ≥ 1, ∀d ∈ D.

In this cost optimization problem, CR(.) + CM(.) is calculated based on Equ. (6.6),

and L is as the upper bound of delay for Gets and Puts on average to receive response.

The value of L is defined by the users as their SLO. To reflect the real-world practicality,

we consider the following constraints. Constraint (a) ensures that a single server DC dr

for every client DC dc. Constraint (b) guarantees all client DCs are served. Constraint (c)

enforces the average response time of Gets in range of L. Constraints (d) and (e) indicate

that the Puts are received by all server DCs in the average response time L. Constraint (f)

ensures at least a replica of the object is stored in DCs at any time.

6.3 Cost Optimization Solution

We first provide a brief demonstration of the optimal solution for the cost optimization

problem, and then propose a heuristic solution to perform well in practice.
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6.3.1 Optimal Solution

To optimally solve the cost optimization problem, we should find the values of αd(t)s and

dc(t)→ dr(t)s, the same as that discussed in Section 5.3. The value of dc(t)→ dr(t)s can

be determined via linear programming once the value of αd(t)s is fixed. To enumerate

value of all αd(t)s, we need to enumerate all r−combinations of a given set of DCs (i.e.,

(|D|r )). Since the value of r can be ranged between 1 and |D|, the number of combination

of αd(t)s is ∑|D|r=1 (
|D|

r ) = 2|D| − 14.

To find the optimal solution, we use a dynamic algorithm the same as one in Section

5.3, which only differs in the number of combinations of αd(t)s (i.e., the combinations of

DCs with r (1 ≤ r ≤ |D|) replicas. Thus, our algorithm calculates the cost for (2|D| − 1)2

combinations of DCs for each time slot t ∈ [1...T]. This calculation takes time complexity

of O ((2|D| − 1)2TTlp), where Tlp is the required time to solve the linear programming

for finding the value of dc(t) → dr(t)s. As the optimal solution is computationally in-

tractable, we seek practical heuristic solution.

6.3.2 Heuristic Solution

We first propose Replica Placement based on Covered Load Volume (RPCLV) Algorithm.

This algorithm makes the iterative decision on the assignment of client DCs to the poten-

tial DCs which are within the latency constraint L of the client DCs. Then, by using this

algorithm as well as Algorithms 6.1 and 6.2, we propose an algorithm which calculates

the optimized cost of the object replicas in each t ∈ [1...T].

Replica Placement based on Covered Load Volume (RPCLV) Algorithm

The RPCLV algorithm is inspired from an approximation algorithm for the Set Covering

Problem [48]. This algorithm stores a replica of the object in the potential DC which has

the minimum proportion of the residential cost (Equ. 6.6) and potential migration cost

(Equ. 6.5) to the volume data (in bytes) read from and written into the potential DC by the

client DCs. Clearly, these client DCs are within the latency constraint L of the potential

4Note that neither Algorithm 6.1 nor Algorithm 6.2 are used in optimal solution since this solution enumer-
ates all values of r as well as all combinations of object migration between dr ∈ Dr(t− 1) and dr ∈ Dr(t)
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Algorithm 6.3: Replica Placemenet based on Covered Load Volume (RPCLV)
Input : Dc, latency between each pair of DCs, and latency constraint L
Output: Dr: the location of replicas in t

1 Initialize: Dr ← ∅
2 /*Assignment feasible client DCs to the potential DCs. */
3 forall d ∈ D do
4 forall dc ∈ Dc do
5 if l(dc, d) ≤ L then
6 Consider the DC d as a potential DC dp that hosts a replica of the object

7 Ddp
c ← assign dc to the DC dp

8 end
9 end

10 Dp ← Dp ∪ dp

11 end
12 /*Assign client DCs to the potential DCs based on the cost-volume metrics until all client

DCs are covered. */
13 while Dc 6= ∅ do
14 forall dp ∈ Dp do

15 PCV(dp) =
∑dc→dp CR(dr ,dc→dp)+Cdr

M (t−1,t)

∑dc→dp (rdc+wdc )×v

16 end
17 Find mindp PCV(dp) and store a replica of the object in dp as dr

18 Dr ← Dr ∪ dr

19 Dc ← Dc − Ddp
c

20 Remove Ddp
c from D

dp′
c and recalculate PCV(dp′) for all dp′ where p′ 6= p.

21 end
22 /*revises the replica creation cost */
23 Adds |(|Dr| − brc)×mindr∈DrO(dr)| to replicas creation cost if (|Dr| > brc) and

subtract it if (|Dr| < brc).

DC, but they are not yet assigned. The algorithm selects this potential DC as a server DC

and finds the next best potential DC to host a replica until all client DCs are assigned to

server DCs. The details of this process is given in Algorithm 6.3.

The RPCLV algorithm first assigns client DCs to each potential DC dp ∈ D if the la-

tency between the client DC dc and the potential DC dp is within the latency constraint

L (lines 3- 10). Then, it calculates PCV(dp) as the proportion of the residential and migra-

tion costs of the replica stored in the DC dp to the total data read and written by the set

of client DCs assigned to dp (i.e., Ddp
c )–lines (14-16). After that, RPCLV (i) selects dp with

the minimum value of PCV and stores a replica in this DC (lines 17-18), and (ii) removes

all client DCs assigned to this dp from the client DCs (i.e., Dc) as well as removes from
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Algorithm 6.4: The Cost Optimization Algorithm
Input : Dr(t− 1), Dr(t), and T.
Output: Cove

1 :The overall cost Initialize: Cove ← 0
2 t← 1
3 Call the RPCLV algorithm and determine Dr(t) as well as Ddr

c for each dr ∈ Dr(t)
4 Cove ← Calculate the residential Cost CR(.) based on Equ. (6.6)
5 for t← 2 to T do
6 Call the RPCLV algorithm and determine Dr(t) as well as Ddr

c for each
dr ∈ Dr(t)

7 /*CR(.) and CM(.) are calculated based on Equ. (6.6)*/
8 if Dr(t− 1) 6= Dr(t) then
9 Call the optimization of replicas migration algorithm (Algorithm 6.2)

10 Cove ← Cove + CR(.) + CM(.)
11 else
12 Cove ← Cove + CR(.)
13 end
14 end

those covered by the DC dp′ for every p′ 6= p and recalculate PCV(dp′) (lines 19-20). Fi-

nally, RPCLV revises the replicas creation cost since in RPCLV the replica creation cost is

calculated based on the lower-bound number of replicas (i.e., brc) specified by Algorithm

1. Thus, RPCLV adds cost |(|Dr| − brc)× mindr∈DrO(dr)| to the replicas creation cost if

|Dr| > brc; Otherwise if |Dr| < brc, it subtracts this value from the replicas creation cost

(line 23). Clearly, if |Dr| = brc there is no need to change the cost.

Cost Optimization Algorithm

Algorithm 6.4 gives the pseudo codes of the proposed heuristic solution which is com-

posed of Algorithms 6.1, 6.2, and 6.3. In Algorithm 6.4 first RPCLV is invoked in order

to determine the location of replicas (i.e., dr(t)) as well as the assigned client DCs to

server DCs (i.e., dc(t) → dr(t)). According to the values of dr(t) and dc(t) → dr(t), first

the residential cost of the replicas (i.e., CR(.)) based on Equ. (6.7) is calculated for time

slot t = 1 (lines 2-4). Then, for each time slot t ∈ [2...T], similarly Algorithm 6.4 finds

the replicas location and the assignment of client DCs to server DCs (line 6) and checks

whether the location of replicas in t − 1 and t are different or not. If they are different

(i.e., Dr(t− 1) 6= Dr(t)), Algorithm 6.2 is called to determine which object replicas of the
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Table 6.2: The time complexity of Algorithms 6.1 -
ch6:alg:CVRP.

Algorithm
Algorithm 6.1 O(|D|2) O(|D|log|D|) O(|D|)

Lines (2-8) Line 9 Lines (10-14)
Algorithm 6.2 O(|D|) O(|D|2)

Line 1 Lines (2-18)
Algorithm 6.3 O(|D|2) O(|D|2) O(|D|)

Lines (3-11) Lines (13-21) Line 23

object can be migrated and then the residential and migration costs are calculated based

on Equ. (6.7) (lines 8-10). Otherwise (i.e., Dr(t − 1) = Dr(t)), the migration of replicas

does not happen and only the residential cost of replicas is calculated (line 12).

To calculate the time complexity of the heuristic solution, we require to compute the

time complexity of Algorithm 6.4 that is composed of Algorithms 6.1, 6.2, and 6.3. Table

6.2 summarizes the time complexity of these algorithms. Algorithm 6.4 invokes Algo-

rithm 6.3 which takes O(|D|2)-line 3. Then, for each time slot t ∈ [2...T], it invokes

RPCLV (Algorithm 6.3) with the time complexity of O(|D|2), and also runs Algorithm 6.2

with the time complexity of O(|D|2) if the replicas migration happens. Thus, the “for”

loop takes O(|D|2T) (lines 5-14). With this analysis, the heuristic solution (Algorithm 6.4)

yields the time complexity of O(|D|2T).

6.4 Performance Evaluation

We evaluate the proposed solution for replicas placement of the objects across Geo-distributed

data stores with two storage classes. Our evaluations explore three key questions:

1. How significant is our solution in the cost saving?

2. How sensitive is our solution to different parameters settings which are likely to

have effect on the cost saving?

3. How much time is required to migrate objects within and across regions?

We explore the first two questions via trace-driven simulations using the CloudSim dis-

crete event simulator [35] and the Twitter workload [101]. Simulation studies enables

us to evaluate our solution on a large scale (thousands of objects). We answer the last

question via the implementation of our proposed solution on the Amazon and Microsoft
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Azure cloud providers. This implementation, discussed in section 6.5, allows us to mea-

sure the latencies that are required for Puts, Gets, and data migration in a real test-bed.

6.4.1 Experimental setting

We use the following setup for DC specifications, objects workload, users location, and

experiment parameters setting.

DCs specifications: We model 18 DCs in CloudSim Toolkit [36], and among these DCs,

nine are modelled according to Amazon and nine according to Microsoft Azure in dif-

ferent regions: 7 in America, 4 Europe, and 7 in Asia Pacific. We use two storage classes

from each cloud providers: S3 and RRS from Amazon and ZRS and LRS from Microsoft

Azure. S3 and ZRS host objects with hot-spot status and the remaining storage classes

store objects with cold-spot status. The price of these storage classes and network services

are set for each DC based on AWS and Microsoft Azure as of November 20165.

Objects workload: We use Twitter traces [101] which includes users profile, a user

friendship graph, and tweet objects sent by users over a 5-year period. We focus on

tweet objects posted by the users and their friends on their timeline, and obtain the num-

ber of tweets (i.e., number of Puts) from the dataset. Since the dataset does not contain

information of accessing the tweets (i.e., number of Gets), we set a Get/Put ratio of 30:1,

where the pattern of Gets on the tweets follows Longtail distribution [21]. This pattern

mimics the transition status of the object from hot- to cold-spot status. The size of each

tweet object varies from 1 KB to 100 KB in the trace.

Users location: We assign each user to a DC as his/her home DC based on the follow-

ing policies. (i) Closest-based policy: with the help of Google Maps Geocoding API6, we

convert the locations of users in their profiles to Geo-coordinates (i.e., latitude and lon-

gitude). Then, according to the coordination of users and DCs, we assigned users to the

nearest DC based on their locations. In the case of two (or more) DCs with the same dis-

tance from the user, one of these DCs is randomly selected as the home DC for the user.

5Amazon S3 storage and data transfer pricing. https://aws.amazon.com/s3/pricing/
Azure storage pricing. https://azure.microsoft.com/en-us/pricing/details/storage/
Azure data transfer pricing. https://azure.microsoft.com/en-us/pricing/details/
data-transfers/

6The Google maps geocoding API. https://developers.google.com/maps/documentation/
geocoding/intro

https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
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(ii) Network-based policy: users are directed to the cheapest DC in the network cost. (iii)

Storage-based policy: users are mapped to the cheapest DC in the storage cost. In the last

two policies, the selected DC must be within the SLO defined by users, and in the case of

two (or more) DCs with the same cost in either network or storage, one of the closest DC

is selected as the same way used in the first policy. We use closest-based policy to assign

friends of the user to a DC. The user’s friends are derived from the friendship graph of

dataset.

Experiment parameters setting: We measured inter-DCs latency (18*18 pairs) over sev-

eral hours using instances deployed on all 18 DCs. We run Ping operation for this pur-

pose, and used the medium latency values as the input for our experiments. We consider

two SLOs for the values of Get and Put latencies: 100 ms and 250 ms. Recall that the Put

latency is the latency between the client DC to the server DC that serves it. The stored

data in the system depends on the size of tweet objects, the number of friends of the users

and the rate of Get (write). To understand the effects of the total stored data size in data

stores on the cost performance, we define “quantile volume” parameter. This parameter

with the value of “x” means that all data stores only store “x” percent of the generated to-

tal data size. We use one-month (Dec. 2010) of Tweeter traces with more than 46K users,

posting tweet on their timeline, for our experiments conducted over a 60-day period.

6.4.2 Results

We compare the cost savings gained by the proposed heuristic solution with the follow-

ing benchmark algorithm. We also investigate the effects of parameters as their values

are changed.

Table 6.3: Summary of Simulation Parameters

Policy Quantile
Volume Latency (ms) Read to Write

Ratio

Default Closest-based 0.2,1 100, 250 1,30
Range Closest-, network-, and Storage-based 0.2-1 50 -250 1-30

Benchmark Algorithm and the Range of Parameters: This algorithm permanently stores

the objects in the home DC. It also replicates a replica of objects in the client DCs, upon

issuing Get requests, via the home DC. The replica is stored in the client DCs until they
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Figure 6.4: Cost saving of closest-, network-, and storage-based polices under tight (100
ms) and loose latency (250 ms).

receive Gets and Puts, and thus the replica is not allowed to migrate to another DC.

This algorithm, though simple, is effective to measure the cost performance of using data

stores with two storage classes offered by different CSPs. In all experiments, we nor-

malize the incurred cost of the heuristic solution to the cost of the benchmark algorithm

by varying the following parameters: policy, quantile volume, SLO latency, and read to

write ratio. Each parameter has a default value and a range of values as summarized in

Table 6.3. This range is used for studying the impact of the parameter variations on the

cost performance of the proposed solution.

Cost performance: We present simulation results in Fig. 6.4, where the CDF of the nor-

malized cost savings is given. These cost savings are grouped by the default value of

quantile (0.2,1) and latency (100 ms and 250 ms). From the results, we observe the fol-

lowing facts. First, there is a hierarchy between policies in the cost savings, where the

network-based policy outperforms the storage-based policy, which in turn outweighs
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Table 6.4: Average cost performance normalized to the benchmark algorithm cost

Latency=100 ms Latency=250 ms

Quantile
volume

Policy R/W=1 R/W=30 R/W=1 R/W=30

0.2
Closest 44.78% 13.61% 49.21% 17.12%
Network-based 50.82% 18.78% 54.31% 22.32%
Storage-based 46.00% 13.98% 50.48% 17.51%

1
Closest 38.00% 22.79% 42.05% 26.80
Network-based 40.11% 25.43% 44.06% 29.89%
Storage-based 39.91% 23.88% 44.08% 27.96%

the closest-policy. This is because that the network-based policy allows users to select

DC which is cheaper than their closest DC. When we go deep into the cost savings ob-

tained from each individual DC, we realized that users in California select cheaper DC

within their specified SLO instead of Amazon’DC in California. Second, all policies pro-

vide cost savings for write-intensive objects (R/W=1) higher than read-intensive objects

(R/W=30). For example, as shown in Figs. 6.4a and 6.4b, all policies cut costs up to

50% for all read-intensive objects, while they save similar costs for half of write-intensive

objects and between 50%-80% for another half. Third, all policies cut costs for almost

all objects, apart from 2-3% of the objects that incur slightly more costs than as if they

were replicated in each client DCs requesting them (i.e., the strategy deployed by the

benchmark algorithm).

Table 6.4 summarizes the average cost saving for each group of default values of

quantile volume, R/W, and latency. We can see that the network-based policy achieves

the highest cost saving, while the closest-based policy obtains the lowest, where the dif-

ference between these two policies is at most 6%. A comparison between the highest cost

saving on average (obtained by the network policy for each group of default parameters)

and the corresponding results in Fig. 6.4, we discover the following fact. As shown in

Fig. 6.4a, all policies cut the costs above the highest average cost saving for at least 45% of

write-intensive objects and for 25% of the read-intensive objects. As the quantile volume

increases from 0.2 to 1, as shown in Fig. 6.4c, policies save costs above the highest aver-

age cost savings for 5o% of read- and write-intensive objects. Likewise, results remain the

same, or even more improvements are experienced, for objects under loose latency (see
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Figs. 6.4b and 6.4d). Thus, we can say that all policies cut costs for most of objects more

than the highest cost saving on the average obtained from the network-based policy.

We now investigate the effect of different parameters on the cost saving. For the sake

of brevity, from hereafter, we report the results only for default values of parameters, as

shown in Table 6.3. We consider “closest” as the default value of the policy since users

often are mapped to the closest DC.

Fig. 6.5 shows the effect of quantile volume by varying it from 0.2 to 1 with the

step size of 0.2 on the cost saving. As the quantile volume increases from 0.2 to 1, cost

savings slightly decrease by about 6% -7% for write-intensive objects under both latency

constraints. The rational is that when quantile volume=0.2, the cost is dominated by

write cost and our solution can optimize more cost. As the quantile volume increases to

1, the effect of this domination reduces. In contrast, cost savings increase by about 9% for

read-intensive objects under both tight (100 ms) and loose (250 ms) latency constraints.

This is because that as the the value of quantile volume increases, the effect of read cost

reduces and storage cost becomes more dominant.

Fig. 6.6 illustrates the effect of latency on the cost savings. As the latency increase

from 50 ms to 250 ms, as expected more improvement is observed in the cost savings for

all default values of quantile volume and read to write ratio. This implies that there is

a wider selection of DCs available with lower cost in storage and network resources for

optimization under loose latency in comparison to tight latency.

Fig. 6.7 plots the effect of read to write ratio, varying from 1 (write-intensive objects)

to 30 (read-intensive objects), on the cost savings. As the value of the ratio increases, the
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Figure 6.7: Cost saving of closest-based policy vs. read to write ratio

cost saving decreases. Under both latency constraints, the results show a 66% reduction

in cost savings for quantile volume=0.2, and correspondingly at most a 42% reduction

for quantile volume=1. This implies that the proposed solution is more cost-effective

for write-intensive objects in comparison to the read-intensive objects due to efficient

utilization of network resources for Puts.

6.5 Empirical Studies in Latency Evaluation

We implemented a prototype system to provide data access management across Ama-

zon Web Service (AWS) and Microsoft Azure cloud providers. For this purpose, we use

JAVA-based AWS S37 and Microsoft Azure8 storage REST APIs. With this prototype, an

individual end-user can (i) manage data across two well-known cloud providers, and

(measure) the perceived latency for operations conducted on the data.

6.5.1 Data Access Management Modules

Our prototype system provides a set of modules that facilities users to store, retrieve,

delete, migrate, list data across AWS and Microsoft Azure data stores. Tables 6.5 - 6.8

show the list of main web services that is used in the prototype system for data access

across AWS and Microsoft Azure clouds. All these services are RESTful web services

that utilize AWS S3 and Microsoft Azure storage APIs in Java. They produce response in

the JavaScript Object Notations (JSON) format in successful cases and error message in

7Amazon S3 REST API http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
8Azure storage REST API https://docs.microsoft.com/en-us/rest/api/storageservices/
fileservices/azure-storage-services-rest-api-reference

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
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the error cases. We use JSON format because it is a lightweight data-interchange format

and easy to understand. In the following we discuss the provided web services in more

details.

Table 6.5 shows the list of main modules that is provided by the prototype system for

data management in AWS data stores. These modules are as follows:

• amazonCreateS3Client: This module provides users to create a client with the

type of AmazonS3client for accessing the Amazon S3 web services. It also allows

user to set a region for the created AmazonS3 client account.

• createBucket: This module creates a bucket in the AmazonS3 client specified by

users. It also allows users to determine the Access Control List (ACL) in terms of

private, publicRead, and PublicReadWrite.

• amazonCreateFolder: This module creates a folder in a bucket and allows users

to determine the storage class of objects stored in a folder.

• amazonUploadObject: This module facilitates users to store objects in the speci-

fied directory which has a scheme like /AmazonS3 client/bucket/folder/.

• amazonDownloadObject: This module allows users to retrieve objects from AWS

data stores in the specified directory with a scheme like /AamzonS3 client/bucket

/folder/.

• amazonDeleteFolder/Objeject: As its name implies, it deletes folders or ob-

jects.

• amazonListObjects: This module lists folders in a bucket as well as the objects

stored in a folder.

• amazonChangeClassStorageFolder: This module changes the storage class

for objects stored in a folder.

• amazonTransferFolder: This module allows users to transfer objects (stored in

a folder) from an AWS data store to another one.

• amazonToAzureTransferFolder: This module facilitates users to migrate ob-

jects from an AWS data store to Azure data store.

Table 6.6 summarizes the type and description of the main input parameters used in

the above modules. It is worth nothing that the storageClass parameter can be one

of the four constant values: STANDARD, REDUCED REDUNDANCY, STANDARD IA (IA for
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Table 6.5: The modules used for data access management in AWS.

Module Name Input Parameters Output
amazonCreateS3Client accesskey,secretkey AmazonS3Client
createBucket client,bucketName Bucket
amazonCreateFolder client,bucketName,folderName,storageClass Folder
amazonUploadObject client,bucketName,folderName,objectname, path,storageClass put Object
amazonDownloadObject client,bucketName,folderName,desPath Get object(s)
amazonDeleteFolder/Objects client,bucketName,folderName Delete folder/objects
amazonListObjects client,bucketName,folderName Objects list
amazonChangeClassStorageFolder client,bucketName,folderName,storageClass Change storage class

amazonTransferFlder
srcClient,srcBucketName,srcFoldername,desClient,

desBucketName
Transfer objects

amazonToAzureTransferFolder
srcClient,bucketName,srcFolderName,desClient,

containerName,desFolderName
Transfer objects

Table 6.6: The input parameters used in Modules of AWS.

Input Parameter Type Description
accessKey String This key is uniquely assigned to the owner of AWS S3 account.
secretKey String This key is the password for the owner of AWS S3 account.
client AmazonS3Client This parameter allows users to invoke the service methods on AWS S3.
bucketName String This refers to the name of the bucket that contains folders.
folderName String This refers to the name of the folder containing objects.
storageClass String This specifies constants that include four storage classes of AWS S3.
objectName String This parameter specifies the name of object generated by users.
srcPath String This represents the path from which the data can be transferred.
desPath String This indicates the path to which the data can be transferred.

infrequent access), and GLACIER. In our prototype, we use the first two storage classes.

For more details on these storage classes, please refer to Section 2.6.2. Some input param-

eters used in the above modules are the same in the type and description while they are

different in the name. We excluded these parameters in Table 6.6 and give their details

here. All (src/des)Client, (src/des)BucketName, and (src/des)FolderNmae

parameters are respectively the same with the client, bucketName, and folderName

parameters in the type and descriptions. The srcClient, srcBucketName, and sr-

cFolderNmae parameters represent that from which client, bucket and folder data are

transferred. The desClient, desBucketName, and desFolderNmae parameters indi-

cate the location to that data are transferred.

Similarly, we provide a set of modules to manage data across Microsoft Azure data

stores. As listed in Table 6.7, these modules are mostly similar to the discussed ones in

the functionality. They are summarized as follow:

• azureCreateCloudBlobClient: This module creates an Azure cloud storage

account in a region to access Azure cloud storage web services.

• createContainer: It creates a container in the the Azure storage account spec-



6.5 Empirical Studies in Latency Evaluation 185

Table 6.7: The modules used for data access management in Microsoft Azure.

Module Name Input Parameter(s) Output
azureCreateCloudBlobClient accessKey CloudBlobClient
createContainer client,containerName Container
azureCreateFolder client,containerName,folderName Folder
azureUploadObject client,containerName,folderName,objectname, path put Object
azureDownloadObject client,containerName,folderName,desPath Get object(s)
azureDeleteFolder/Objects client,containerName,folderName Delete folder/objects
azureListObjects client,containerName Objects list

azureTransferFlder
srcClient,srcContainerName,srcFolderName,desClient,

desContainerName, desFolderName
Transfer object(s)

azureToAmazonTransferFolder
srcClient,srcContainerName,srcFolderName,desClient,

BucketName,desFolderName
Transfer object(s)

ified by users. This module can determine the type of ACL in the forms of Con-

tainer, Blob, and OFF (i.e., no blob neither container). It is worth noting that con-

tainer in Azure data stores and bucket in AWS data stores are the same in the con-

cept.

• azureTransferFolder: It facilitates users to transfer objects (stored in a folder)

from an Azure data store to another one.

• azureToAmazonTrasnferFolder: This allows users to transfer object from Azure

data stores to Amazon data stores.

• azureCreateFolder, azureUploadObject, azureDownloadObject, azure-

DeleteFolder/Objeject, azureListObjects modules respectively allow users

to create folder, store objects, download object, and list objects in Azure data stores.

The modules of Microsoft Azure require input parameters which are similar to those

of AWS data stores to the large extent. Table 6.8 gives a list of those that are only used

in Microsoft Azure Modules. The accessKey parameter is a 512-bit storage access key

which is generated when users create their storage accounts. The client parameter

allows users to create containers in different Azure regions. The containerName pa-

rameter is an instance of the “CloudBlobContainer” class and its name is a string value

used in Microsoft Azure modules. Note that the desClient parameter in the ama-

zonToAzureTransferFolder module is an instance of the “cloudBlobClient” class;

likewise this parameter in the azureToAmazonTransferFolder module is a reference

variable of the “AmazonS3Client” class.
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Table 6.8: The input parameters used in Modules of Microsoft Azure.

Input Parameters Type Description
accessKey String This key is used to authenticate when the storage account is accessed.
client cloudBlobClient This parameter allows users to invoke the service methods on blob storage.
containerName String This refers to the name of the container that contains the folders.
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Figure 6.8: An overview of prototype

6.5.2 Measurement of Data Migration Time

We design a simple prototype as shown in Fig. 6.8. The way in which the deployed

virtual machines (VMs) should serve Puts and Gets for each object is dictated by a central

replica placement and migration (RPM) manager. The RPM manager makes decision

on replica placement and migration across data stores based on the proposed heuristic

solution. The RPM issues Http requests (REST call) to the VMs deployed in cloud sites

and receives Http responses (JSON objects). The VMs process the received requests via

the deployed web services that are implemented based on Spring Model-View-Controller

(MVC) framework [83] as illustrated in Fig. 6.9.

To measure the time spent on data migration across DCs, we utilize the federation

of cloud sites from Microsoft Azure and Amazon in our prototype. We span our proto-

type across 3 Microsoft Azure cloud sites in Japan West, North Europe, and South

Central US regions and 3 Amazon cloud sites in US East (North Virginia), US
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Figure 6.10: CDF of data migration time (a) from Azure DC in Japan west to Amazon DC
US west and from Azure DC in Europe north to Amazon US east, and (b) Amazon DC
in US west (California) to Amazon DC in US west and Azure DC in US center south to
Amazon US east.

West(Oregon), and US West (North California) regions. In each Azure cloud

site, we create a Container and deploy a DS3 V2 Standard VM instance. In each

Amazon cloud site, we create a Bucket and deploy a t2.medium VM instance. All VM

instances used in the prototype run Ubuntu 16.04 LTS as operating system.

After the set-up, we run the heuristic algorithm for 100 users (in the Twitter traces)

who are assigned to the aforementioned cloud sites. According to the replication and

migration policy dictated by the heuristic algorithm, the data are stored in data stores

and are integrated in a folder (analogous to bucket in Spanner [52]) for each user. When

data migration happens we record the time of data transfer from source cloud site to the

destination cloud site.
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Fig. 6.10 shows the CDFs of data migration time observed for 100 buckets (each user

is associated to a bucket), each of which with the size of about 47.35 MB in average. Fig.

6.10a depicts that data migration can be transmitted in several seconds across regions.

About 60% of buckets are transmitted in 2.5 seconds from Azure DC in Japan west (AZ-

JAW) to Amazon DC in US west (AWS-USW) as well as from Azure DC in Europe north

(AZ-EUN) to Amazon DC in US east (AWS-USE). Also, all buckets are transmitted in 3.5

seconds from Asia region to US region and likewise 4.5 seconds from Europe region to

US region. Fig. 6.10b illustrates the data migration time within US region. About 80% of

buckets are migrated from Azure DC in US center south (AZ-USCS) to Amazon US east

(AWS-USE) below 2 seconds. In contrast, bucket migration time between Amazon DC

in US west (North California) (AWS-USW(C)) to another DC in US west (Oregon)

(AWS-USW) is between 40-48 seconds for about 80% of buckets. From the results, we

conclude that the duration of buckets migration is considerably low. In the case of a large

number of buckets, we can transfer data in bulk across DCs with the help of services such

as AWS Snowball9 and Microsoft Migration Accelerator10.

6.6 Conclusions

In this chapter, we studied the problem of optimizing monetary cost spent on the stor-

age services when data-intensive applications with time-varying workloads are deployed

across data stores with several storage classes. We formulated this optimization problem

and proposed the optimal algorithm. Since high time complexity is one of the weak-

ness of this optimal algorithm, we proposed a new heuristic solution formulated as a Set

Covering problem with three polices. This solution takes advantages of pricing differ-

ences across cloud providers as well as the status of objects that changes from hot-spot

to cold-spot (and vice versa) during their lifetime. We evaluated the effectiveness of the

proposed solution in terms of cost saving via trace-driven simulation using CloudSim

simulator and real-world traces from Twitter. We also demonstrated that the duration

of objects migration across Geo-distributed data stores is negligible through implemen-

9AWS Snowball. https://aws.amazon.com/snowball/.
10Microsoft Migration Accelerator. https://azure.microsoft.com/en-au/blog/
introducing-microsoft-migration-accelerator/.

https://aws.amazon.com/snowball/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
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tation of a prototype system running over Amazon Web Service (AWS) and Microsoft

Azure cloud providers.





Chapter 7

Conclusions and Future Directions

This chapter provides a summary of the research work on monetary cost optimization of data man-

agement across cloud-based data stores from the perspective of users/application providers. It also

delineates the key findings in this thesis and discusses further research directions in regard to data

placement across data stores to optimize monetary cost.

7.1 Summary of Contributions

Cloud-based data stores offer the illusion of infinite storage pool to users. They bring

many benefits, including ease-of-use, on-demand resource provisioning, and pay-per-

use business model. However, they raise risks to some extent when users solely depend

on a single data store.

First, users experience vendor lock-in because Cloud Storage Providers (CSPs) hugely

charge the egress bandwidth, and thereby the cost of moving the data out of the cloud is

prohibitively expensive. Therefore, users are hostage to CSP and become more vulnera-

ble to price rise, cloud provider bankruptcy, or may lose the opportunity of moving data

to a new CSP appearing in the market with a better functionality and price.

Second, unavailability of services is considered as a challenge in the context of the

cloud services. Although the well-known CSPs–Amazon, Microsoft Azure, and Google–

are very strict with Service Level Agreement (SLA) commitment and even compensate

users when SLAs1 are violated, they experienced the outage of their data centers (DCs)

due to environmental catastrophes. This causes, in some cases, users to lose their data2.

Third, storing data in data stores owned by a single CSP deprives users from benefits

1SLA for Azure storage. https://azure.microsoft.com/en-us/support/legal/sla/storage/
v1_0/

2Data and object are used interchangeably in this chapter.
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of diverse geographical locations of cloud providers. These benefits reduce the user-

perceived latency by storing data close to users and the avoidance of data transfer bottle-

necks by directing requests to replicas of the object hosted in different data stores across

the globe. More importantly, adhering to a particular CSP also confines users to exploit

pricing differences across CSPs offering various storage classes for different purposes.

With respect to the discussed shortcomings, this thesis investigates a general goal:

how to optimize the monetary cost of data placement across data stores offered at different prices

for several storage classes and network resources? This goal was split into sub optimization

problems outlined in Chapter 1. To solve these optimization problems, we presented a set

of algorithms to place objects based on their workload across data stores with different

storage classes so that the monetary cost of data management is optimized while the

required Quality of Service (QoS) is met.

To address the above research problem, we conducted an in-depth survey on data

management across data stores in several aspects, mainly monetary cost of data manage-

ment discussed in Chapter 2. This chapter classified the existing work on optimization

monetary cost of storage and network resources and revealed the gap, open challenges,

and research problems discussed in this thesis.

Chapter 3 proposed algorithms to replicate data across data stores owned by different

CSPs to enhance the data availability defined by the number of nines. In this chapter, an

algorithm was proposed to minimize the cost of storing object replicas across data stores

under the availability constraint. Moreover, another algorithm was designed to maxi-

mize the availability of the stripped object replicas to the extent the user’s budget allows.

We evaluated both algorithms via extensive simulation experiments in the CloudSim sim-

ulator [35] using real prices of storage services. The results demonstrated two replicas

for non-stripped objects and three replicas for stripped objects are enough to achieve 7

nines as the expected availability. This value of data availability suffices to have a 24/7

data store accessibility.

Chapter 4 proposed a dual cloud-based storage architecture (i.e., a combination of a

temporal data store and a backup data store) to optimize the cost of objects placement.

This cost consists of storage cost, Get (read) cost, Put (write) cost, potential migration

cost of objects from the temporal data store to the backup data store or vice versa, and
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delay cost defined as a lost utility. This utility is the multiplication of (i) the time taken

to conduct a Get/Put on the data store hosted objects, and (ii) a coefficient of delay im-

portance from the user’s perspective to convert delay to a cost monetary. To optimize

the summation of these costs, two data placement algorithms were proposed: optimal

and near optimal. We evaluated these algorithms via extensive simulation experiments

in CloudSim simulator [35] using the real-world traces from Twitter [101]. The results

demonstrated that the cost savings obtained from the optimal and near optimal algo-

rithms are respectively 15-70% and 5-60%. These values depend to the deployed data

stores, the size of the objects, as well as the workload on the objects.

Chapter 5 investigated how much monetary cost can be saved via data replication and

migration across data stores offering several storage classes with different prices. This

was motivated by the cost savings obtained from the proposed architecture in previous

chapter. Similar to this architecture, we considered the same cost elements (i.e., storage,

Get, Put, and potential migration) apart from delay cost. In this chapter, delay was de-

fined as the latency Service Level Objective (SLO) for Get/Put requests. The latency was

estimated based on the Round Trip Time (RTT) between the source and destination data

stores. Given the cost elements and the requested SLA, we proposed three algorithms to

place objects with a limited number of replicas so that the cost saving gained from the

pricing differences among CSPs is maximized. The first algorithm is the optimal offline

algorithm that yields a high time complexity and requires the exact knowledge of work-

load on objects. To tackle this obstacle, we proposed two online algorithms that require

a limited or no knowledge of the future workload on objects. The extensive experiments

using CloudSim simulator and a workload synthesized based on characteristics of Face-

book workload demonstrated 10-21% cost savings gained from the optimal offline algo-

rithm. While online algorithms achieved lower cost savings (10-30%) compared to those

gained from the optimal offline algorithm.

Chapter 6 proposed a lightweight algorithm to minimize the cost of data management

(i.e., storage, Get, Put, migration costs) within the specified access latency. This algorithm

was designed based on the approximate algorithm for the Set Covering problem [48].

Unlike the proposed algorithms in Chapter 5, the heuristic solution dynamically deter-

mines the number of replicas for each object based on the workload on the object and the
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size of object. Moreover, the great merit of this solution is scalability, thereby making it

appropriate for Online Social Networks hosting a large number of objects.

To evaluate the proposed algorithms, we conducted extensive simulation using real-

world traces from Twitter [101] and CloudSim simulator. The results demonstrated the

effectiveness of the algorithms in terms of cost saving. To understand the performance

of the algorithms, we have implemented a prototype system running on Amazon S3 and

Microsoft Azure data stores with the help of their REST APIs.34 This prototype facilitated

application providers to Put, Get, Delete, List, and Migrate data across data stores located

around the world. Moreover, we measured the duration of data migration within and

across regions with the help of this prototype system.

7.2 Future Directions

In spite of contributions of this thesis in regard to cost optimization of data management

across CSPs, there are a number of open research challenges that require to be addressed

to make further advancement in the area. Some of these challenges have been discussed

in Chapter 2; others are identified here.

7.2.1 Trade-off between Availability and Monetary Cost

In Chapter 3, we proposed algorithms that help application providers to find a trade-off

between availability and monetary cost spent on storage. It is important to consider the

cost of Put, Get, and potential migration costs in the cost model and design algorithms

to make more precise trade-off between availability and monetary cost spent on the data

storage management across data stores.

As discussed in Chapter 3, we designed algorithms to maximize the expected avail-

ability for a “given budget”, and to minimize the monetary cost for a “given expected

availability”. It would be relevant to design algorithms that cover all combinations of

constraints (i.e., a given budget or expected availability) and objective functions (i.e.,

maximizing of the expected availability and minimizing the monetary cost) for objects.

3Amazon S3 REST API http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html.
4Azure storage REST API https://docs.microsoft.com/en-us/rest/api/storageservices/
fileservices/azure-storage-services-rest-api-reference.

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
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For example, an algorithm can be proposed to minimize the replication cost with a given

expected availability for the stripped objects.

7.2.2 The Selection of Home DC

In Chapters 5 and 6, we set the closest DC to the user as his/her home DC. This selection

allowed the user to Put/Get data in/from data store within a low latency constraint.

We made the home DC selection based on the assumption that the user was in a fixed

location. However, it would be interesting to investigate the effect of users mobility on

the cost optimization, and to determine when it is necessary to change the home DC of

the user while he/she moves across the globe. We can consider simple policies to make

decision for changing the home DC of the user. For example, if the user issues Get/Put

requests from a specific DC in a certain period of time, then this DC can be selected as

the home DC.

7.2.3 Cost Optimization of Data Management in Quorum-based Systems

In Chapter 6, we optimized the cost of data management for the system which contains

a master replica to guarantee strong consistency for each object. This system provided a

simple way of strong consistency while it can create data transfer bottleneck for the data

store hosting the master replica. One way to tackle this issue while guaranteeing strong

consistency is to use a quorum-based system. Based on the quorum configuration, the

system makes a trade-off between the data consistency and the data availability.

To design such system, we first require to discover the location of replicas and then

to select a set of replica to be participant in the voting. This set is called voting replicas.

Second, we need to select a leader replica among voting replicas. The leader replica is re-

sponsible for sending a message to voting replicas and waiting for a quorum to respond.

Finally, to capture the user-perceived latency for reading and writing the object, it would

be be valuable to consider this latency as a monetary cost and add it to storage, Put, Get,

and potential migration costs; that is, using the same cost model studied in Chapter 4.
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7.2.4 Cost Optimization across Multiple Storage Classes

As studied in Chapters 4, 5, and 6, we considered two statuses for objects based on their

workload: hot- and cold-spot statuses. This can be extended to several status, as defined

in Table 2.13. With respect to this extension of objects statuses, it would be relevant to

design algorithms in order to dynamically migrate data across storage classes so that the

cost of data management (storage, Put, Get, potential migration costs) is optimized. This

optimization problem can be mapped to the multi-shop ski-rental problem [6].

7.2.5 Fault Tolerance

The proposed algorithms in the thesis ignored handling of failures when a replica of the

object is unavailable. Although Geo-replicated data stores may be available despite a

DC failure, the user-perceived latency are probably negatively influenced. Therefore, it

would be important to consider the scenario of DC failure in terms of both storage and

virtual machine infrastructures in the cost model to support failover of DC(s) [186]. This

requires wise techniques to detect soft errors resulted in the failures [185]. However, one

simple solution to tolerate the failure of hardware infrastructures is replication of data

in the case of storage services as discussed in this thesis and replication of hypervisor

executions in the case of virtual machines [183]. This solution affects on monetary cost to

provide hardware infrastructures as well as their electricity [184].

7.2.6 Cost Optimization of Using Database Instance Classes

This thesis focused on using object cloud-based storage services. The proposed algo-

rithms can be used in conjunction with the database (DB) instance classes offered by

Amazon5 and Microsoft Azure6. These instance classes facilitate application providers

to manage relational DBs. The instance classes support several types of instances with

different size in two or three payment options. With given DB instance classes, it would

be worthwhile to investigate that how to combine these instance classes so that the de-

ployment cost is optimized.

5Amazon RDS product. https://aws.amazon.com/rds/details/
6SQL database https://azure.microsoft.com/en-us/services/sql-database/

https://aws.amazon.com/rds/details/
https://azure.microsoft.com/en-us/services/sql-database/
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