

Graphical User Interface for Software

Defined Network Cloud Simulator

By

Xiaohui Ji

Under the supervision of

Professor Rajkumar Buyya

and

Dr. Amir Vahid Dastjerdi

A minor project thesis submitted in partial

fulfilment of the requirement for the degree of

Master of Information Technology

November 2014

Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

ii

Graphical user interface development for software defined

network simulation in cloud environments

Xiaohui Ji

Supervisors: Prof. Rajkumar Buyya and Dr. Amir Vahid Dastjerdi

ABSTRACT

With the prosperity of cloud computing, various simulation tools, such as CloudSim, are

developed to experiment ever-changing user requirement and system supply before deploying a

system into real-world scenarios. However, there is no existing cloud simulation tool to support

Software Defined Network (SDN), which provides programmable networking paradigm. To

implement SDN into the cloud simulation environment, this project develops a visualised

extension based on the CloudSim framework that supports SDN simulation in cloud

environment and provides graphical user interface for networking topology management.

iii

Declaration

I certify that

 this thesis does not incorporate without acknowledgement any

material previously submitted for a degree or diploma in any

university; and that to the best of my knowledge and belief it does

not contain any material previously published or written by another

person where due reference is not made in the text,

 where necessary I have received clearance for this research from the

University's Ethics Committee and have submitted all required data

to the Department,

 the thesis is less than 6,000 words in length excluding text in images,

table, bibliographies and appendices.

Signature___________________

Date___________________

iv

Acknowledgement

I would like to express my deep gratitude towards my supervisors,

Professor Rajkumar Buyya and Dr. Amir Vahid Dastjerdi. Prof. Buyya provides an

opportunity to work on this project and inspiration and motivation to pursue an

academic career. In addition, Dr. Vahid provides me the full guidance and

encouragement during the work. His committed supervision with helpful

feedbacks, sparkling ideas and technological advices encourages and leads me to

complete this project successfully.

I thank Dr. Rodrigo N. Calheiros, for giving good advice, which inspired

me a lot during software development. I also thank to Mr Jongmin Son, he

patiently and continually explained source code and concepts to me.

In addition, I thank to my partner Dr. Yan Xu, for proofreading of this

thesis with her sharp insight toward the technology.

Finally, I would like to appreciate all my friends and family for their

unconditional support. They always listen to me whenever I suffer from

disappointment and difficulties and encourage me to complete the degree.

Xiaohui Ji

Melbourne, Australia

November 2014

v

Table of Contents

1 INTRODUCTION ... 1

1.1 Motivation.. 1

1.2 Software Target ... 2

2 RELATED WORK ... 3

2.1 Software Defined Network .. 4

2.2 Cloud-based Simulation Tools... 6

2.3 Java Swing ... 7

3 DEVELOPMENT OF GUI .. 8

3.1 GUI Design .. 8

3.1.1 Architecture Design ... 8

3.1.2 Java Graph Visualisation Library Design .. 9

3.1.3 Framework Layer Design ... 10

3.1.4 Business Layer Design ... 11

3.1.5 Interface Layer Design ... 12

3.2 Implementation .. 13

3.2.1 GUI Project IDE and Structure .. 13

3.2.2 The implementation of Graph Visualisation Library ... 14

3.2.3 Implementation of Canvas Mode ... 14

3.2.4 Execution Mode ... 17

4 PERFORMANCE EVALUATION ... 18

4.1 Case study 1 - creating network topology ... 18

4.2 Case study 2 - Executing SDN Simulation .. 21

5 CONCLUSION AND FUTURE DIRECTIONS... 21

REFERENCE LIST ... 23

vi

List of Tables

Table 1. Attributes of physical network topology. .. 18

Table 2. Attributes of virtual network topology.. 19

Table 3. Configuration files. ... 21

vii

List of Figures

Figure 1. SDN architecture. .. 4

Figure 2. Graphical User Interface architecture. .. 9

Figure 3. Class diagram of graph visualisation library. .. 10

Figure 4. Software sequence diagram. .. 12

Figure 5. GUI project structure. .. 13

Figure 6. Canvas and Execution mode. ... 14

Figure 7. GUI toolbar. ... 15

Figure 8. Add Physical Node dialog. .. 15

Figure 9. Add Physical Edge dialog.. 16

Figure 10. Saving and loading network topology. .. 16

Figure 11. Configuration file selection. .. 17

Figure 12. SDN simulation process. ... 18

Figure 13. Creating network topologies. ... 20

Figure 14. Physical network topology file. ... 20

Figure 15. Virtual network topology file. ... 20

Figure 16. The simulation result. .. 21

1

1 INTRODUCTION

Cloud computing is deemed to represent the next-generation computing paradigm in

addition to cluster computing and grid computing. It is treated as 5th utility following after

water, electricity, gas, and telephony [1], which works like commodity, and delivers

computing as service based on pay-as-you-go schema. By using cloud computing, users can

be provided with a variety of services without considering technical issues such as hardware

construction, software installation, system maintenance and management. These services can

be tailored elastically and dynamically at different levels, such as Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), to fulfil varied

requirements. In order to implement cloud computing, virtualization technology is applied to

dynamically partition every single server into multiple isolated virtual machines, resulting in

increased hardware utilization, minimised cost and reduced energy consumption.

However, due to the diverse criteria of a system and the ever-changing user requirements,

the performance assessment of resource allocation policies and application scheduling

algorithms under cloud environments is often challenging and complicated [2]. In this case,

various simulation tools are developed to conduct performance assessment in a cost effective,

efficient, and elastic way. CloudSim is such simulation platform which provides powerful

and comprehensive components and features to model cloud, virtual machine (VM), and

cloud market [2]. There are many extensions developed on the top of the CloudSim

framework to fulfil diverse simulation tasks. For example, CloudAnalyst is a visualised

extension developed based on CloudSim. It provides graphical user interface (GUI), real time

analysis, and dynamic configuration, which largely simplifies the simulation procedure and

performance evaluation process [3]. CloudAnalyst also enables the users who have no

experience on programming to perform simulation tasks.

1.1 Motivation

Currently, with the best of our knowledge, there is no simulation tool for cloud

infrastructure, which has the functionalities to support Software Defined Networking (SDN).

It is thus desirable to develop a visualized extension based on the CloudSim framework that

supports SDN simulation and provides graphical user interface for networking design. As a

virtualised and programmable network, SDN represents the next generation networking

management paradigm [4]. In traditional network, the forwarding device is tightly coupled

2

with controller by providing limited management interface, which leads to manual, complex

and time-consuming reconfiguration. While SDN separates the software controller from

forwarding devices, which provides unified programmable interface for different types of

network devices such as switches and routers. By using this interface, the network engineer

can develop applications to achieve automatic reconfiguration. SDN has been widely used in

many fields. Especially in cloud computing, SDN provides effective methodology for

scalable, efficient, and virtualised network resource management. By implementing SDN,

virtual machines can automatically conduct management for updating, reconfiguration, and

failure recovery [5]. Particularly, it is helpful for energy conservation by reducing traffic

switches consumption and virtual machine (VM) migration [4].

1.2 Software Target

With the motivation, the following targets come up that make us to begin this project.

 Visualised network topology generator

 Can we tailor a graphical library or framework dedicated to simplify cloud-

based, including SDN, simulation process?

 Can we use graphical graph editor to manage network topology without typing

into text editor directly?

 Can we use unified format to improve reusability of network topology?

 Simple and unified graphical user interface (GUI)

 Can we provide user friendly graphical interface?

 Can we simplify simulation execution by using drag-and-drop mode?

This project aims to develop a visualised extension built on the top of the CloudSim

framework that supports the SDN simulation in cloud environment and provides the graphical

user interface for networking topology design. Particularly, this development makes

following contributions.

 Integrating the visualized SDN features into cloud simulation platform.

 Building a GUI which simplifies and accelerates the process of physical and virtual

network topology design especially for people with no knowledge of programming.

 Provisioning convenient graphical editor to create, modify, save and load network

topology.

 Reducing the learning cost and facilitating the toolkit popularity.

3

2 RELATED WORK

As a promising next-generation computing paradigm, Cloud computing has been widely

accepted by research communities, governments and industries. Many mature cloud

computing products and platforms built including Amazon EC2, Google AppEngine,

Microsoft Azure and Manjrasoft Aneka [6]. It aims to provide cost friendly, elastic, scaling

and pay-on-demand computing resources for fulfilling various types of user requirements.

That is, the computing resources, such as compute, storage, and networking, are to be

delivered and paid on the basis of usage. Although the idea of Cloud computing has been

widely recognized, it is still an evolving technology. One major concern or gap that needs to

be addressed is effective and scalable network resource management [7].

There are several challenging issues existing in the virtual networking management. The

first issue is how to handle the network dynamicity. Typical cloud networking architectures

provide a "one size fit all" paradigm for meeting the diverse requirements of a cloud.

However, there is an increasing requirement of the cloud users to specify their own

bandwidths for improving the user flexibility. Besides, the change of the network

management requirement may also be caused by dynamic network configuration, the design

of network topology, different forwarding protocols, and multiple security policies. To deal

with these changing requirements, the development of a programmable network paradigm is

highly required. The second issue is how to solve the connectivity problem between data

centres. It is necessary when an enterprise user needs to work with multiple cloud providers.

To solve this problem, the network paradigm should orchestrate the coexistence among

several cloud and network providers. The third issue is how to deal with the limitations of the

existing networking protocols. The widely used protocols, including Spanning Tree Protocol

(STP), Shortest-Path Bridging (SPB), Routing Information Protocol (RIP), Border Gateway

Protocol (BGP), Open Shortest Path First (OSPF), and Intermediate System to Intermediate

System (IS-IS) are not scalable enough for dynamic network management and Virtual

Machine (VM) migration among multiple cloud networks. Thus, a network paradigm with

high scalability and programmability is essentially needed.

To address the challenging issues in the virtual networking management, Software

Defined Network (SDN), as an emerging network paradigm and promising solution that

enables networks programmable, easily partitionable, and virtualisable is introduced [8].

4

2.1 Software Defined Network

The concept of Software Defined Network (SDN) has been introduced since 1996. It is

driven by the need to provide user programmable networking management [9]. As defined by

Open Networking Foundation, SDN is "is a networking architecture where the control and

data planes are decoupled, network intelligence and state are logically centralised, and the

underlying network infrastructure is abstracted from the applications" [8]. The SDN

architecture involves a control plane, a data plane, and a networking operating system (NOS),

as shown in Figure 1.

Data plane

Link, switching,

Forwarding, routing

Application

Programming

Interface (API)

OS

Network Device

API

Control plane

Network topology ACLs,

Forwarding and routing

QoS, link management

SDN stack

Application

Figure 1. SDN architecture.

Different from traditional networks, the control plane in SDN is moved out of the

individual network device and into the separate and centralised controller, allowing the

network manager to implement control changes by simply changing the control program [10].

This programmable control plane is the most important aspect of SDN. It improves the

scalability and flexibility of managing the service user requirements, optimises the routing

policies, and enables reactively and proactively control of flow entries.

The main characteristics of SDN include centralisation of the control plane,

programmability of the control plane, and standardisation of application programming

interface (API) [9] [10]. The centralisation of the control plane allows a global view of the

entire network from a single logical point. The control can be dynamically adjusted based on

state changes, which is much faster than a distributed control. The programmability of the

control plane allows the network to be virtually divided into several sub-networks. The sub-

networks share the same hardware infrastructure but implement different policies. The

5

programmability also enables flow-based control, which significantly reduces the traffic

between the control plane and data plane. SDN turns the vendor-specific API into

standardised API to enable common network services. SDN contains three types of APIs,

which are Southbound API, northbound API, and east-west API [11]. Southbound API is the

most important API that communicates between the control plane and data plane. Developed

by Open Networking Foundation, OpenFlow is one of the most popular and widely applied

southbound APIs [8]. It is initially applied into campus network by providing programmable

network protocol in different switches and routers [12]. Northbound API is used to

communicate between the control plane and application layer. East-west API allows

communications between neighbouring control planes.

SDN has shown some advantages in network management, network heterogeneity, and

cost control management [13]. Regarding network management, currently, the number of

networking devices are growing fast and the networking device itself is getting more

complicated by integrating more functionality. SDN greatly simplifies the network design,

operation, and network devices by using centralised control. Unlike traditional networking

management tools such Simple Network Management Protocol (SNMP), SDN applies

policy-based management strategy to manage networking devices in an intelligent, dynamic,

and flexible manner. In terms of network heterogeneity, SDN aims to build a unified and

heterogeneous network strategy, which allows network products from multiple venders to

communicate and co-work with each other. In this case, users or customers will not have to

be tightly bound to only one vender. With regard to the cost control management, SDN can

reduce the development cost and the network operating cost. By using SDN, complicated

control softwares can be extracted from the control plane. Venders will then get free from the

development and maintenance of a huge number of code workings. Since SDN allows

switching services among multiple venders, it also largely reduces the operating cost.

As a widely accepted network paradigm, SDN can be applied into various fields,

including enterprise networks, infrastructure-based wireless access networks, optical

networks, home and small business networks, and especially for data centre [4]. As an

underlying infrastructure for cloud computing, data centre is developing at a high speed.

However, to reconfigure a network in data centre is time-consuming, which poses a

challenging issue at networking management in data centre [13]. The networking

management should have ability to respond quickly to changing requirements, to recovery

from catastrophic events, and to reduce time consumption for VM configuration. SDN is

6

believed having such ability to address this issue by providing programmable, scalable, and

intelligent network management. For large-scale data centres, energy consumption is another

concern. SDN is able to find the minimum power network subset which will meet the

network routing requirements and turns off the unnecessary switches [4].

In order to implement SDN for improving networking management, especially under

cloud environment, it is necessary to set up and to tear down experimental platform quickly.

To achieve this, simulation is one of the best choices.

2.2 Cloud-based Simulation Tools

As aforementioned, the utilisation of simulation tools is a reasonable solution for

conducting large-scale, repetitive, dynamical evolving and expensive experiment [2] [14]. In

regard to cloud computing, experiments conducted on real infrastructure are not only

extremely expensive due to a huge amount of investment has to be made in purchasing

hardware, renting room, building and maintaining data centre, but also time consuming as a

lot of time will be used to configure experimental environment and wait for results. In this

case, it is desirable to have an efficient, productive, easy-to-deploy, and extensible simulation

tool for conducting cloud-based experiments. In this paper, CloudSim, as an outstanding

cloud-based simulation tool is used.

Traditional simulators, such as GridSim, SimGrid, OptorSim and GangSim, have been

used for many years for grid modelling and simulating platforms [14]. However, none of

them fully support cloud computing because cloud is built on the top of virtualisation

technology and pay-as-service, including Software as a Service (SaaS), Platform as a Service

(PaaS) and Infrastructure as a Service (IaaS). Developed for cloud computing simulation,

CloudSim provides an open-source, generalised, and extensible simulation framework [15].

Experiments based on CloudSim will concentrate on model building, algorithm design, and

data analysis rather than deployment and configuration.

In addition to CloudSim, there are some other existing works should be mentioned,

including Mininet [16], Simulation Program for Elastic Computing Infrastructure (SPECI)

[17] and iCanCloud [18].

Mininet provides a powerful interactive Command Line Interface (CLI) for developing a

virtual network with hosts, links, and switches on a single machine. The single machine can

be VM in cloud environment or native laptop or PC. Mininet is compatible with Linux and

7

convenient to migrate to real hardware. It also supports OpenFlow and SDN, by which we

can implement software defined switches.

SPECI is a cloud-based simulation platform characterised by providing predictive

modelling for large-scale and hierarchical data centre. Cloud services hosted in this type of

data centre are connected by the subscription network. Currently, the newest version of

SPECI is SPECI-2.

iCanCloud is another cloud-based simulation platform based on OMNET and MPI and

written by C++. It supports both graphical modelling and command-line modelling.

iCanCloud is devoted to "predicting the trade-off between cost and performance" of

applications in specific hardware. In this case, users will be given reasonable output which

helps for decision making in purchasing cloud services. By using the global hypervisor

function that provided by iCanCloud, users can customise brokering policies. In addition,

iCanCloud also supports modelling Amazon instances.

With CloudSim, SDN features could be enabled under cloud simulation environment. To

this end, it is essential to integrate SDN into CloudSim by which programmable network

management strategies could be implemented. To facilitate SDN implementation, graphical

user interface (GUI) should be orchestrated for SDN at the same time. GUI not only provides

ability to create and update visualised physical and virtual network topology, but also

establishes general and user friendly operation and execution environment. The main

objective of this project is to orchestrate specific GUI for visualising and accelerating SDN

simulation under cloud environment.

2.3 Java Swing

This project uses Java Swing as the GUI development framework. Swing is part of

Oracle's Java Foundation Classes (JFC), which provides a general GUI for Java programs

[20]. Compared with its predecessor Abstract Window Toolkit (AWT), Swing aims to

provide a more advanced set of GUI components. In addition to common components such as

buttons, check boxes and labels, Swing provides several advanced components such as

tabbed panel, scroll panes, trees, tables, and lists. Another new feature about Swing is its

ability to override the native host operating system (OS)'s GUI controls for displaying itself.

Swing 'paints' its controls using the Java 2D APIs, rather than calling a native user interface

toolkit. More importantly, Swing is a lightweight, platform-independent, and customizable

framework [21]. With this Swing, the developer can customise domain-specific components

8

by overriding the default implementations. Equipped with these advanced features, Swing is

selected to tailor and implement SDN-specific or cloud-specific graphical components in this

project.

3 DEVELOPMENT OF GUI

Based on the concepts of SDN, CloudSim, and Swing, this project develops a GUI for

visualising SDN in order to facilitate the networking topology management and SDN

execution. This Section discusses the architecture of the GUI together with the components

and methods of implementing the GUI.

3.1 GUI Design

GUI design has three aspects, including high-level architecture design, java graph

visualisation library design, and detailed component design.

3.1.1 Architecture Design

Figure 2 shows the GUI architecture developed in this project. The GUI architecture

consists of three layers, which are framework layer, business layer, and interface layer. The

framework layer defines general, fundamental, reusable, and non-business logic components.

It extracts common graphical elements and functions, and encapsulates them into independent

classes. Well designed framework will dramatically improve the reusability of SDN and

CloudSim and reduce redundant codes. The business layer is responsible for defining

software business logic by invoking components from the framework layer. Core software

functionality is implemented at this layer such as executing simulation. The top interface

layer is used to interact with users by defining a user friendly interface and by optimising the

composition of graphical components such as menu, tool bar, and canvas for drawing

network topology. Business logic is invoked by the interface layer. The objective of this

project is to implement five parts of this architecture, including ‘Graph Visualisation Library’,

‘GraphView’, ‘Execution’, ‘File IO’, and ‘Graphical User Interface’. In particular, the ‘Graph

Visualisation Library’ is the key part for drawing network topology.

9

CloudSim

SDN

Java Swing

Graph

Visualisation

Library

Graphical User Interface

GraphView Execution File IO

Interface

Layer

Framework

Layer

Business

Layer

Figure 2. Graphical User Interface architecture.

3.1.2 Java Graph Visualisation Library Design

To develop a reusable graph visualisation library is essential for visualising network

topology of SDN. The most commonly method is to import a thirty-party graph visualisation

library, such as JGraphX [22], JGraphT [23], JUNG [24] and GraphStream [25].

JGraphX is a Swing-based Java graph visualisation library, which originated from JGraph

library. JGraphX facilitates the development of graph applications, including workflow editor,

organisational chart, business process modelling tool, UML tool, and network/telecoms

visualisation. In addition, it supports import, export, and automatically layout [22].

JGraphT provides a free, simple, and type-safe Java graph library. Compared with

JGraphX, JGraphT focuses on providing mathematical graph modelling and graph algorithm.

It supports directed and undirected graph with weight, edge multiplicity, ‘read-only’ graph,

listenable graph, and sub-graph [23].

JUNG is another prevalent Java universal network/graph framework. It supports graph

modelling, analysis, extensibility and visualisation. In addition to support general graph

modelling, such as directed and undirected graphs, multi-modal graphs, graphs with parallel

edges, and hyper graphs, it also supports annotating graphs, nodes, and relations with

metadata, which is beneficial for data analysis [24].

GraphStream is a recommended Java graph visualisation library especially for dynamic

graphs. GraphStream supports dynamical graph evolution in time, such as node addition,

node deletion, edge addition, edge deletion and attribute management. Besides, it also

supports import, export, measure and layout graph elements [25].

10

Although these existing thirty-party libraries are widely used, some of their features are

not suitable for meeting the objective of this project. To develop a lightweight SDN-specific

graphical library for fulfilling SDN features under cloud environment, I develop the graph

visualisation library by Java Swing. The library is extendable and can be customised to

incorporate more functionality.

3.1.3 Framework Layer Design

The framework layer consists of two independent parts which are separated by dotted line,

as shown in Figure 2. The right part is composed of two sub-parts, SDN and CloudSim.

Developed by CLOUD lab, CloudSim is the cloud-based fundamental simulation framework

[15]. Mr. Jongmin Son integrates SDN features into the CloudSim to provide programmable

networking management. The left part aims to encapsulate SDN-specific graphical

components, including types of nodes, edge, graph and coordinates, and the graph

visualisation library built by Java Swing. It aims to implement common graphical

components for visualising SDN.

+setSize()

+getSize() : long

+setPes()

+getPes() : int

+setMips()

+getMips() : long

+setRam()

+getRam() : int

-size : long

-pes : int

-mips : long

-ram : int

VmNode

+setIops()

+getIops() : long

+setUpports()

+getUpports() : int

+setDownports()

+getDownports() : int

+setBw()

+getBw() : long

-iops : long

-upports : int

-downports : int

-bw : long

SwitchNode

+getX() : int

+getY() : int

+setX()

+setY()

-x : int

-y : int

Coordinates

+getName() : string

+setName()

+getType() : string

+setType()

+setCoordinate(in coord : Coordinates)

+getCoordinate() : Coordinates

-name : string

-type : string

-coord : Coordinates

Node

+getNode() : Node

+getBandwidth() : long

+getLatency() : double

+getInfo() : object

-dest : Node

-latency : double

-name : string

-bandwidth : long

Edge

+setPes()

+getPes() : int

+setMips()

+getMips() : long

+setRam()

+getRam() : int

+setStorage()

+getStorage() : long

+setBw()

+getBw() : long

-pes : int

-mips : long

-ram : int

-storage : long

-bw : long

HostNode

+setAdjacencyList()

+getAdjacencyList() : object

+addEdge(in key : Node, in value : Edge)

+addNode(in node : Node)

+removeEdge(in key : Node, in value : Edge)

+removeNode(in key : Node)

-adjacencyList : object

Graph

<<uses>>

<<uses>> <<uses>>

Figure 3. Class diagram of graph visualisation library.

11

To describe the framework layer, UML class diagram is provided as shown in Figure 3.

The class diagram illustrates Java classes and their relationships. Graph class represents the

abstraction of network topology, which stores nodes, edges of this graph and is responsible

for managing nodes and edges. Edge class represents the abstraction of network connection,

which stores attributes and nodes connected with this edge. Node class represents the

abstraction of network node. Three types of sub-node are involved, including HostNode,

VmNode and SwitchNode, representing host, virtual machine, and switch respectively. By

implementing and extending this class diagram, it guarantees the reusability and scalability of

the graph visualisation library.

3.1.4 Business Layer Design

As shown in Figure 2, there are three main functions to be defined in business layer,

which are GraphView, SDN Execution, and File IO. GraphView is the core part of the GUI,

it will draw a visualised network topology by using the graph visualisation library from the

framework layer and to render it into canvas. SDN Execution performs SDN simulation and

visualises its output. With this function, simulation is operated by drag-and-drop rather than

command-line. File IO function supports importing pre-defined files into the GUI, saving

defined network topology into files. It is worth mentioning that the three functions are

defined separately but working collaboratively.

To describe the business layer, UML sequence diagram is developed as shown in Figure 4.

In the sequence diagram, the GUI contains two modes which are "Canvas" and "Execution".

The Canvas Mode is the core function of the GUI. It works as a network topology painter,

which supports adding node and edge, saving graph into appointed JSON file, and importing

outside JSON file into canvas for further processing. The Execution Mode visualises the

simulation process and displays results by clicking rather than typing commands. Without the

GUI, changing network topology or updating workloads have to be done by modifying source

codes. By using the GUI, users can choose files more than once without restarting software,

which significantly facilitates the simulation process.

12

UI

Alt

Select Mode

Graph HostNode SDNRunSwitchNode EdgeVmNode

Show Interface

Add HostNode

Add SwitchNode

Add VmNode

Update Graph

Draw HostNode

Update Graph

Draw SwitchNode

Draw VmNode

Update Graph

Add Edge

Draw Edge

Update Graph

[Mode=
 Canvas]

Save Graph

[Mode=
 Execution]

Run

Execute SDN Simulation

Present Result

Import Physical Topology

Import Virtual Topology

Import Workload background

Import Workload

File IO

Graph Transition

Create JSON

Figure 4. Software sequence diagram.

3.1.5 Interface Layer Design

In order to deliver a user friendly GUI, some principles should be followed, including

defining clear entry and exit points, keeping software logic consistent, following widely

accepted conventions, responding with proper feedback, prompting assistance and visualising

software content [26]. Among them, to design the GUI with consistent logic is relatively

more important but not easy to implement. The consistent logic will help user easily identify

software logic pattern and accelerate software learning. In addition, it is also necessary to

visualise text content to perceptual form, which will provide users with a more friendly and

straightforward interface.

13

3.2 Implementation

The GUI is implemented by using Java Swing to produce user friendly, reusable and

SDN-specific functionality. This Section discusses the GUI implementation, including

project integrated development environment (IDE), project structure, Graph Visualisation

Library, Canvas Mode, and Execution Mode.

3.2.1 GUI Project IDE and Structure

Within java application development, Eclipse Integrated Development Environment (IDE)

is the most prevalent Java IDE that provides an open-source, extensible, plug-in based, cross-

platform, multilingual programming workspace [27].

Based on the GUI architecture, the following three packages are added into current

CloudSim, as shown in Figure 5.

org.cloudbus.cloudsim.sdn.graph.core,

org.cloudbus.cloudsim.sdn.graph.dialog, and

org.cloudbus.cloudsim.sdn.graph.example.

Figure 5. GUI project structure.

14

The package 'core' defines the types of components for network topology visualisation,

including Graph, GraphView, Node, Edge, Coordinates, and Bridge. GraphView is extended

from JPanel, which is used to draw network topology. Graph is an abstraction of network

topology which is composed of Node and Edge. Coordinates represents the specific location

for each node which is used to draw node into canvas. Bridge works as a connection between

JSON file and visualised graph, by which the graph entity can be transformed into JSON

format and vice versa. The package 'dialog' defines the GUI project functions, including

adding node, adding edge and executing simulation. The package 'example' defines the GUI

project entry point, by which users can create network topological graph, save graph, load

graph and execute simulation in a visualised way.

3.2.2 The implementation of Graph Visualisation Library

The implementation of Graph Visualisation Library is the core part of this project. It

implements foundation classes for creating network topology, mainly including Graph,

GraphView, Node, Edge, Coordinates and Bridge. GraphView is extended from JPanel,

which is used to draw network topology. Graph is an abstraction of network topology which

is composed of Node and Edge. Three types of nodes are defined, including HostNode,

SwitchNode and VmNode, to represent host, switch and virtual machine respectively.

Coordinates represents specific location for each node which is used to draw node into canvas.

Bridge works as a connection between JSON file and visualised graph, by which graph entity

can be transformed to JSON format and vice versa.

3.2.3 Implementation of Canvas Mode

Based on the design of the business layer presented in Section 3.1.4, the Canvas and

Execution modes are implemented into the CloudSim SDN by Java Swing [27]. As shown in

Figure 6, the two modes can be displayed under the View function.

Figure 6. Canvas and Execution mode.

15

Canvas mode is developed to build network topology, by which user can add node, add

edge, save and load network topology. The node represents SDN components, including

server, virtual machine and switch, and the edge represents network connection. Figure 7

shows the toolbar of GUI under the Canvas mode. The first four buttons (Add Physical Node,

Add Physical Edge, Save, and Load) of the toolbar are used for creating physical network

topology. The next four buttons (Add Virtual Node, Add Virtual Edge, Save, and Load) of

the toolbar are used for creating virtual network topology.

Figure 7. GUI toolbar.

Take creating a physical network topology as an example. The Add Physical Node button

will open a dialog, as shown in Figure 8, by which users can add a new node into the network

topology. The information in terms of the unique node name, bandwidth, input/output

operations per second (IOPS), upports, downports, and node type are required to fill in the

dialog. Specifically, the node type includes host (i.e. server host), edge and core (i.e. switch).

Figure 8. Add Physical Node dialog.

16

By clicking the Add Physical Edge button, a dialog will appear to allow users to add a

new edge in the network topology, as shown in Figure 9. For example, two nodes 'switch2'

and 'host2' is selected from the dropdown lists, and the latency of the edge between the two

nodes is defined as 1.01. An Edge object will be created and saved in the Graph object. If

there is no node, these two dropdown list will show empty.

Figure 9. Add Physical Edge dialog.

Figure 10 shows the saving and loading of network topology by using the Save and Load

buttons. To convert network topology object into JSON object or vice versa, a ‘bridge class’

is defined. The JSON object is then saved as JSON file.

Figure 10. Saving and loading network topology.

17

3.2.4 Execution Mode

Execution mode is developed to visually execute SDN simulation. As SDN simulation is

based on four configuration files, which are physical network topology, virtual network

topology and two workload files. They are imported into GUI by Java chooser, which is

shown in Figure 11. With Java chooser, users can choose configuration files dynamically

instead of putting the files at fixed directory or changing the source code when the files are

changed.

Figure 11. Configuration file selection.

If the configuration files are chosen correctly, the play button will be activated. If not, it

will keep inactive to protect simulator from unexpected crash. The play button is used to start

up SDN simulation by opening the 'Run Simulation' dialog, as shown in Figure 12. As the

simulation may consume for a long time, a progress bar is applied to show the running

process. Finally, the simulation result will be displayed in a text field, by which users can

review the running details visually and conveniently, and do not need to check it in a console

window.

18

Figure 12. SDN simulation process.

In next section, a case study with real data will be carried out based on this GUI to check

its availability and validity.

4 PERFORMANCE EVALUATION

In order to test the capability of the GUI developed for SDN simulation, an evaluation is

designed with two case studies. The first case study will build network topological graphs,

including physical network topology and virtual network topology by using the GUI. The

results will be saved as independent JSON files. The second case will execute SDN

simulation by using the network topologies that created in the first case.

4.1 Case study 1 - creating network topology

As SDN simulation is conducted based on network topology, the case 1 will first create a

pair of executable physical and virtual network topologies. For physical network topology,

three host nodes and three switch nodes are defined, and their attributes are shown in Table 1.

For the virtual network topology, three virtual machines are defined, and their attributes are

shown in Table 2.

Table 1. Attributes of physical network topology.

NAME TYPE IOPS UPPORTS DOWNPORTS BANDWIDTH

core core 1000000000 0 2 1000000000

19

Nodes

edge1 edge 1000000000 1 4 1000000000

edge2 edge 1000000000 1 4 1000000000

NAME TYPE PES MIPS RAM STORAGE BANDWIDTH

host01 host 1 30000000 10240 10000000 200000000

host02 host 1 30000000 10240 10000000 200000000

host03 host 1 30000000 10240 10000000 200000000

Links

SOURCE DESTINATION LATENCY

core edge1 0.5

core edge2 0.5

edge1 host01 0.5

edge1 host02 0.5

edge2 host03 0.5

Table 2. Attributes of virtual network topology.

Nodes

NAME TYPE SIZE PES MIPS RAM

vm01 vm 1000 1 30000000 512

vm02 vm 1000 1 30000000 512

vm03 vm 1000 1 30000000 512

Links

NAME SOURCE DESTINATION BANDWIDTH

132 vm03 vm02 66000000

121 vm02 vm01 66000000

default vm01 vm02

default vm02 vm01

default vm02 vm03

default vm03 vm02

Based on Tables 2 and 3, the physical network topology (seen as the left part of Figure

13), and virtual network topology (seen as the right part of Figure 13) are created by using the

functions of GUI. Finally, the two topologies are saved as two JSON files, as shown in

Figures 14 and 15.

20

Figure 13. Creating network topologies.

Figure 14. Physical network topology file.

Figure 15. Virtual network topology file.

21

4.2 Case study 2 - Executing SDN Simulation

To start up SDN simulation, four configuration files are loaded as shown in Table 3. The

first two JSON files are defined by the first case. The two CVS files are given by default,

which represent the workloads of this case.

Table 3. Configuration files.

File Name Description Format

physical.json Physical network topology file JSON

virtual.json Deployment file (virtual network topology) JSON

workload_10sec_100.csv Workload background file CVS

workload_10sec_100_default.csv Workload file CVS

The play button will be activated after the configuration files are loaded correctly. The

running time depends on the complexity of the network topology and workloads. If the

simulation completes correctly, the simulation result will be displayed as shown in Figure 16.

Figure 16. The simulation result.

5 CONCLUSION AND FUTURE DIRECTIONS

This project developed a GUI for SDN simulation under cloud environments. The GUI is

based on CloudSim framework with SDN features integrated. It is developed by using Java

22

Swing, and implemented with an SDN-specific graph visualization library. This library

provides foundational components for drawing and managing network topological graph,

including node, edge, bridge, graph and graphview. The GUI provides two modes for

supporting SDN simulation, which are Canvas Mode and Execution Mode. The Canvas Mode

is used to manage network topology and the Execution Mode is used to execute SDN

simulation.

This project addressed two important aspects: GUI design and implementation. For the

GUI design, the high-level structures and style of the GUI is defined as the GUI architecture.

The architecture includes three layers, including framework layer, business layer and

interface layer, are elaborated by using UML class diagram and sequence diagram. For the

GUI implementation, the project presented the main components of GUI, including project

IDE, Graph Visualisation Library, Canvas Mode, and Execution Mode. Instead of importing

a third-party library, a SDN-specific graph visualisation library is developed, which is

extensible for integrating more SDN features. The design and implementation of the GUI

under cloud environment that can visualise SDN simulation contributes to the development of

the CloudSim framework. It will facilitate the integration of the SDN features with the cloud-

based networking management.

For future works, researchers and practitioners may consider address the following

unsolved issues. The first issue is the operability of GUI may be improved by implementing a

toolbox, such as Microsoft Visual Studio IDE. Such a toolbox will simplify the network

topology management significantly by using only the drag and drop functions. Thus the

interface complexity of using dialogs will be largely reduced. Another issue is to visualise the

whole SDN simulation process. In this way, all the changes and movements of components in

CloudSim can be monitored, and more ideally the simulation can also be paused or resumed

at specific state.

23

REFERENCE LIST

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, "Cloud computing and emerging

IT platforms: Vision, hype, and reality for delivering computing as the 5th utility," Future

Generation Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

[2] R. Buyya, R. Ranjan and R. Calheiros, "Modeling and simulation of scalable Cloud computing

environments and the CloudSim toolkit: Challenges and opportunities," in High Performance

Computing & Simulation, 2009. HPCS '09. International Conference on , Leipzig, Germany,

2009.

[3] B. Wickremasinghe, R. Calheiros and R. Buyya, "CloudAnalyst: A CloudSim-Based Visual

Modeller for Analysing Cloud Computing Environments and Applications," in Advanced

Information Networking and Applications (AINA), 2010 24th IEEE International Conference on ,

Perth, WA , 2010.

[4] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka and T. Turletti, "A Survey of software-

defined networking: past, present, and future of programmable networks," Communications

Surveys & Tutorials, IEEE, vol. 16, no. 3, pp. 1617 - 1634 , 2014.

[5] S. Baset, L. Wang, B. Tak, C. Pham and C. Tang, "Toward achieving operational excellence in a

cloud," IBM Journal of Research and Development, vol. 58, no. 2/3, pp. 4:1 - 4:11 , 2014.

[6] R. Buyya, C. Vecchiola and S. Selvi, Mastering Cloud Computing: Foundations and Applications

Programming, Waltham,MA: Morgan Kaufmann, 2013.

[7] S. Azodolmolky, P. Wieder and R. Yahyapour, "SDN-Based Cloud Computing Networking," in

Transparent Optical Networks (ICTON), 2013 15th International Conference on, Cartagena,

2013.

[8] O. N. Foundation, "Software-defined networking: The new norm for networks," 13 4 2012.

[Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf. [Accessed 19 10 2014].

[9] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller

and N. Rao, "Are we ready for SDN? Implementation challenges for software-defined networks,"

Communications Magazine, IEEE, vol. 51, no. 7, pp. 36-43, 2013.

[10] R. Jain and S. Paul, "Network virtualization and software defined networking for cloud

computing: a survey," Communications Magazine, IEEE, vol. 51, no. 11, pp. 24-31, 2013.

[11] M. Jammal, T. Singh, A. Shami, R. Asal and Y. Li, "Software-Defined Networking: State of the

Art and Research Challenges," Computer Networks, vol. 72, pp. 74-98, 2014.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker

24

and J. Turner, "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM

Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[13] P. Goransson and C. Black, Software Defined Networks: A Comprehensive Approach, Waltham,

MA: Morgan Kaufmann, an imprint of Elsevier, 2014.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose and R. Buyya, "CloudSim: a toolkit

for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms," Software—Practice & Experience, ACM, vol. 41, no. 1, pp. 23-50,

2011.

[15] C. L. U. o. Melbourne, "CloudSim: A Framework for Modeling and Simulation of Cloud

Computing Infrastructures and Services," Cloudbus.org, 2014. [Online]. Available:

http://www.cloudbus.org/cloudsim/. [Accessed 18 10 2014].

[16] Mininet, "Mininet: An Instant Virtual Network on your Laptop (or other PC)," [Online].

Available: http://mininet.org/. [Accessed 2014 11 3].

[17] S. Ilango Leonardo and C. Dave, "SPECI-2: An open-source framework for predictive simulation

of cloud-scale data-centres," 2011. arXiv:1106.5465v1.

[18] A. Núñez, J. Vázquez-Polettim, A. Caminero, G. Castañé, J. Carretero and I. Llorente,

"iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator," Grid Computing, vol. 10,

no. 1, pp. 185-209, 2012.

[19] Oracle, "About the JFC and Swing,"" Oracle, 2014. [Online]. Available:

http://docs.oracle.com/javase/tutorial/uiswing/start/about.html. [Accessed 19 10 2014].

[20] P. Conrod and L. Tylee, Learn Java Gui Applications: A Jfc Swing Tutorial, Maple Valley, WA:

Kidware Software; 7th Full Color edition, 2013.

[21] JGraph, "jGraphX," JGraph Ltd, 2014. [Online]. Available: https://github.com/jgraph/jgraphx.

[Accessed 20 10 2014].

[22] B. Naveh, "JGraphT," 2014. [Online]. Available: http://jgrapht.org/. [Accessed 20 10 2014].

[23] J. F. D. Team, "JUNG-Java Universal Network/Graph Framework," 2010. [Online]. Available:

http://jung.sourceforge.net/. [Accessed 20 10 2014].

[24] G. Team, "GraphStream-A Dynamic Graph Library," 2014. [Online]. Available:

http://graphstream-project.org/. [Accessed 20 10 2014].

[25] B.-E. Adream and M. Zender, "User Interface Design Principles for Interaction Design," Design

Issues, vol. 24, no. 3, pp. 85-107, 2008.

[26] Eclipse, "Eclipse desktop & web IDE," Eclipse Foundation, 2014. [Online]. Available:

https://www.eclipse.org/ide/. [Accessed 23 10 2014].

[27] J. Zukowski, The definitive guide to Java Swing, Berkeley, CA: Apress, 2005.

http://arxiv.org/abs/1106.5465v1

25

