
Page 1 of 28

Melbourne School of Engineering

Final Report
2017

Student Name: Verra Mukty

Student Number: 738024

Supervisor: Professor Rajkumar Buyya

Credit: 25 Points

Type of Project: Software Development Project

Subject Code: COMP90019 – Distributed Computing Project

Project Title: Sleep Apnea analysis, using Pulse Oximeter data,
on Microsoft Azure.

Page 2 of 28

Contents

1. Project Background 3
2. Project Goal 5
3. System Design 7
4. System Performance and Evaluation Analysis 24
5. Future Works 26
6. References 27

Page 3 of 28

1. Project Background

This project is an extension of an internship project that I have done on MNSI (Melbourne

Networked Society Institute) University of Melbourne. The internship project itself was to
develop an Android application that can read data from Pulse Oximeter device, and store the
data on Nectar cloud server. The system architecture from the internship project can be seen
on Image 1 below.

Image 1. Old System Architecture

Pulse oximetry is a technology used to measure the oxygen level in our blood and our heart

rate. A finger pulse oximeter functions by shining light through your finger. The sensors detect
how much oxygen is in our blood based on the way the light passes through our finger as
illustrated on Image 2 below [1].

Image 2. Pulse Oximetry Technology [12]

The Pulse Oximeter device being used in the project is Nonin 3230 as can be seen on Image
3 below.

Image 3. Nonin 3230 Pulse Oximeter [13]

Page 4 of 28

Pulse Oximeter is communicating with Android application through Bluetooth connection.

The Android application is providing a listener method that will be called every time pulse
oximeter data is changed as can be seen on Image 4 below. When this listener is called, Android
application will show the updated data on application screen by calling setOximeterData
method.

@Override
public void onCharacteristicChanged(BluetoothGatt gatt, BluetoothGattCharacteristic
characteristic) {
 setOximeterData(characteristic);
}

Image 4. Pulse Oximeter data listener on Android Application

Backend application is implemented using Java RESTful Web Services. Android
application communicates with the Backend application by calling web services URL using
POST method. Backend application respond the request using JSON message format. During
user registration, user’s sensitive data such as token key is protected using Asymmetric
encryption (RSA). After the token key is sent securely, the next message exchanging between
Android application and Backend application is encrypted using Symmetric encryption (AES)
that incorporate a combination of token key and salt. The Backend application store user profile
information and pulse oximeter data (oxygen level and heart rate) on a Database system Maria
DB.

Page 5 of 28

2. Project Goal

This distributed computing project is intended to utilise the extracted pulse oximeter data

for health analysis. One of the health analysis that can be done is Sleep Apnea analysis. Another
goal in this project is to create a scalable backend system that can handle growing number of
request from users.

2.1. Sleep Apnea Analysis

Sleep Apnea is a disorder where someone have one or more pauses in breathing or

shallow breaths while they sleep. The common symptoms are snoring, waking unrefreshed,
daytime tiredness, and waking during the night choking or gasping for air. Untreated Sleep
Apnea can increase the risk of high blood pressure, heart attack, stroke, obesity, and diabetes
[2].

The current state of the art method to diagnose Sleep Apnea is by conducting sleep
studies. The most common sleep study for diagnosing Sleep Apnea is Polysomnogram
(PSG) as can be seen on Image 5. This study records brain activity, eye movements, heart
rate, and blood pressure. It also records the amount of oxygen in patient’s blood, air
movement through nose while they breathe, snoring, and chest movements. The chest
movements show whether patient making an effort to breathe [3].

Image 5. Polysomnogram sleep study [14]

Page 6 of 28

PSGs often are done at sleep centers or sleep labs. Patient will have sensors attached to
patient’s scalp, face, chest, limbs, and a finger. The staff at the sleep center will use the
sensors to check on patient throughout the night. A sleep specialist will review the results
of PSG to see whether patient have sleep apnea and how severe it is. Doctor will use the
results to plan patient’s treatment.

While PSG is the most widely accepted diagnostic test for the sleep apnea, the
expensive and time-consuming nature of PSG prompts many sleep centres to perform an
initial screening test in order to reduce the number of PSGs needed. One of the method that
has been explored to do the initial test is by using Pulse Oximeter data.

In this project, we utilise an existing open source code that created by researcher in this
area. The research was titled “Combined index of heart rate variability and oximetry in
screening for the sleep apnoea/hypopnoea syndrome” by Ben Raymond, R. M Cayton, M.
J. Chappell (2003) [4]. In this research, they compared the accuracy of pulse oximeter data
to diagnose Sleep Apnea with other method such as using electroencephalogram (EEG), and
PSG.

2.2. Scalable Backend System

To implement a scalable backend system, we utilise both the Horizontal Scaling (Scale

Out) and Vertical Scaling (Scale Up) method. To Scale Out means to add more nodes to a
system, such as adding a new computer to a distributed software application. Meanwhile,
to scale up means to add resources to a single node in a system, typically involving the
addition of CPUs or memory to a single computer. [5]. In this project Scale Out method
will be applied on Backend application server, and Scale Up will be applied on Database
server.

Page 7 of 28

3. System Design

To achieve the project goals, we construct a system architecture that can be seen on Image

6 below. The system consists of 5 components, those are:
1. Stress Test application
2. Android application
3. Backend application (Java REST Web Service)
4. Database system
5. Sleep Apnea application

The Load Balancer is part of Backend application VM scale set resource group. It is
automatically created when we create the scale set. The Load Balancer will distribute request
to VM scale set using Round-robin algorithm. VM scale set will be explained in more detail
on section 3.1.3. Azure Scale Set.

Backend application, Database system, and Sleep Apnea application are deployed on Azure
Cloud servers. The detail about Azure and each system components will be discussed in
a subsequent subsection.

Image 6. System Architecture

Page 8 of 28

3.1. Azure Cloud

Microsoft Azure is a cloud computing service created by Microsoft for building,
deploying, and managing applications and services through a global network of Microsoft-
managed data centers. It provides software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS). It also supports many different programming
languages, tools and frameworks, including both Microsoft-specific and third-party
software and systems [6]. The feature offered by Azure for each cloud service model can
be seen on Image 7 below.

Image 7. Azure Cloud Service Model Features [15]

This project is using the PaaS service model. In Azure we could choose Ubuntu VM
with various pre-installed software such JBoss, Apache, various DBMS, etc. The VM
type being used for each system components can be seen on Table 1 below.

System Component Total VM VM Type

Backend application
(Java REST Web Service)

1
can be scaled out to 3

OS: Ubuntu 14.04

Pre-installed software:
• Java
• JBoss wildfly 9.0.2

Database system 1 OS: Ubuntu 14.04

Pre-installed software:
• Maria DB

Sleep Apnea Analysis
application

1 OS: Ubuntu 14.04

Pre-installed software:
• Java

Table 1. VM Types used on Project

Page 9 of 28

3.1.1. PowerShell Scripting

Microsoft Azure provides an online portal to manage resources such as VM, Disk,

Network Security Group, etc. The user interface itself is following the Windows
operating system style as can be seen on Image 8 below.

Image 8. Azure Portal

The Azure portal provides most of functionality that user needs to manage their

cloud resources. However, during the development of this project, there are some
functionality that still disabled on the portal such as creating inbound rule on scale set,
or required manual Linux command such as creating VM image.

Another drawback of Azure portal is, user need to do quite a lot of steps to create
resource. This is not the most effective way to manage resource because user have to
manually do those steps. The solution for this problem is to use automation script.
Currently the recommended automation script by Microsoft are:

• PowerShell
• CLI
• Visual Studio Code

In this project, we use PowerShell script. CLI is targeted for cross-platform

command line interface so it can be used from anywhere such as Linux or Mac [7].
However, Microsoft only quite recently support it compared to PowerShell. CLI was
announced on September 2016 [8], while PowerShell has been supported from the
beginning of Azure. Thus, there is a possibility that there are some functionalities that’s
still not available on CLI while its available on PowerShell. As for the Visual Studio
Code, this is a recommended tool that is cross platform, has great integration with
source control, and fast. However, we only found about it after spend a lot of effort
creating PowerShell script so we don’t use it for this project.

Page 10 of 28

Azure PowerShell list of instructions can be accessed on its online documentation

that’s available at URL:
https://docs.microsoft.com/en-us/powershell/module/azurerm.profile/add-

azurermaccount?view=azurermps-4.0.0

The user interface itself is following the Javadoc model where we could see each

method parameters, parameter description, output, and instruction usage example. The
sample of PowerShell instruction documentation can be seen on Image 9 below.

Image 9. PowerShell Online Documentation

The list of PowerShell scripts created to configure the Azure cloud can be seen

on Table 2 below.

Script Name Description
/mariadb/deploy.ps1 Deploy database system VM

/mariadb/configure.ps1 Configure database system:

- Create inbound rule to enable access port
3306 from remote server

- Create myhealthrecord DB and its tables
- Create user to access the myhealthrecord

DB from remote server

/wildfly/deploy.ps1 Deploy JBoss wildfly VM

/wildfly/configure.ps1 Configure Backend application:
- Create inbound rule to enable access port

8080 from public address
- Upload database driver
- Upload backend application war file
- Configure database connection

Page 11 of 28

/scaleset/prepare_repository.ps1 Create repository resource group to store required
files to create scale set such as:

- Custom VM image
- vmss.json to accommodate scale set

deployment using custom VM image
- lb.json to accommodate creating inbound

rule to enable access port 8080 from
public

/scaleset/create_wildfly_image.ps1 Automate the process of capturing image of
wildfly VM such as:

- Deprovsion VM
- Stop and generalized VM
- Capture VM image
- Remove old wildfly resource group

Notes:
The purpose of VM deprovision is to remove
sensitive information, so the VM image is
suitable for redistribution. It will remove
information such as provisioned user account on
the VM.

The VM generalization process is to prepare
system before image capturing. It will clean the
VM Operating System from machine and user’s
specific settings such as machine name, SID,
administrator password, etc. This process is
irreversible, which means once it is done, the VM
cannot be used or functioning again.

/scaleset/deploy.ps1 Deploy VM scale set using wildfly custom

image, and define the scale out rules. The rules
are:

- If CPU load > 75% for 5 minutes, add 1
VM instance.

- If CPU load < 25% for 5 minutes, remove
1 VM instance.

- The maximum total VM instance is 3

/other/upgrade_machine.ps1 Scale up DB VM from using 1 core CPU and 0.75
GB memory into 2 cores CPU and 14 GB
memory.

/analysis/deploy.ps1 Deploy analysis application VM

/analysis/configure.ps1 Configure analysis application VM:
- Upload MATLAB runtime compiler to

server
- Unzip the installer the uploaded installer

Page 12 of 28

- Install MATLAB runtime compiler on
server

- Open access for log folder so the Apnea
Analysis application can write its log file

- Upload Apnea Analysis application jar
and its library to /usr/local

- Upload apnea_analysis.sh to home dir

Table 2. PowerShell Script List

3.1.2. Azure Resource Group

To deploy VM, currently Azure provides 2 different deployment model, the

classical deployment model, and resource manager. Azure originally provided only the
classic deployment model. In this model, each resource existed independently and we
cannot group related resources together. We have to manually track which resources
made up a solution or application, and remember to manage them in a coordinated
approach. To deploy a solution, we had to either create each resource individually
through the classic portal or create a script that deployed all the resources in the correct
order. To delete a solution, we had to delete each resource individually [9].

In 2014, Azure introduced Resource Manager, which added the concept of a
resource group. Currently Azure portal only support the resource group deployment
model. In resource group, we can deploy, manage, and monitor all the services in a
solution as a group, rather than handling these services individually. Some of the
benefits of this resource group model are:

• We can apply access control to all resources in a resource group, and those
policies are automatically applied when new resources are added to the
resource group.

• We can repeatedly deploy a solution throughout its lifecycle and have
confidence that resources are deployed in a consistent state.

• We can use JSON to define the infrastructure solution. The JSON file is
known as a Resource Manager template.

• We can define the dependencies between resources so they are deployed in
the correct order.

There are 4 resource groups created in this project. The resource group name and

its description can be seen on Table 3 below.

Resource Group Name Description

mariadbrg To deploy Database System

scalesetrg To deploy Backend application
(Java REST Web Service)

analysisrg To deploy Sleep Apnea Analysis application

repositoryrg To store Backend application VM image and scaleset
vmss & load balancer configuration.

Table 3. Resource Groups

Page 13 of 28

The decision to create those resource groups is for the convenience during
development process. For example, during the research and trial of scale set
deployment, we could freely drop, deploy, and configure the scale set resource group.
At the same time, other resource group that host different part of system such as
database and analysis application will remain unaffected and guaranteed to be
functioning well.

3.1.3. Azure Scale Set

To create a scalable backend application, we need to deploy it in a VM scale set.

VM scale set is an Azure resource that can be used to deploy and manage a set of
identical VMs. With all VMs configured the same, scale sets are designed to support
autoscale, and no pre-provisioning of VMs is required [10].

To implement an autoscale system, we need to define the scaling rules. For
example, when system is boot initially, there’s only one VM instance run. When CPU
load is higher than 75 percent for 5 minutes, then add one VM instance to share the
workload. When CPU load is less than 25 percent for 5 minutes, then remove one VM
instance because the system workload has been decreasing. We could also configure
the number of VM that should be added and removed every time system is scaled out
or scaled in. For example, we could choose to add 2 instances rather than 1 to quickly
scale out the system.

When a new VM is being added to the scale out, we need to make sure that it has
all the components to function properly such as application war is deployed on JBoss
deployment folder, database driver and connection setting are properly set up, etc.
Azure provide 2 different ways to implement it, those are:

• Use off the shelf VM that available on the Azure Marketplace and use VM

extension script to configure the VM. VM extension script is automatically
executed when a new VM is created during scale out.

• Use custom image that has been configured and ready to be used as a backend
application server.

In this project, we use the second option. The implementation script for this

process is explained on Table 2 row “create_wildfly_image.ps1”. This solution is
chosen because we consider that configuring VM will take some time. If every time a
new VM added to scale set needs to be configured first, it will make the VM creation
process takes longer times, and slow down the scale out process compared to if use the
pre-configured custom image.

3.1.4. Azure Scale Up

Azure scale up is applied to Database system. If we are using traditional DB

server (not deployed in Cloud), to migrate DB into bigger machine requires us to do
these steps:

1. Back up the DB
2. Stop the entire system from the outer layer (Backend application), propagate to

the inner layer (DB system).
3. Run query to get the DB modification between the time DB backup is started and

the entire system is shut down.

Page 14 of 28

4. Store the DB backup on new machine
5. Store DB Modification on new machine
6. Start the system from the inner layer to the outer layer.

When we are using scale up feature on Azure, we could simplify those steps into:

1. Stop the entire system from the outer layer (Backend application), propagate to
the inner layer (DB system).

2. Run scale up script
3. Start the system from the inner layer to the outer layer.

The scale up feature makes the system migration a lot simpler compared to doing

the migration manually.

Page 15 of 28

3.2. Stress Test Application

To simulate the situation of high load system, we need to generate a lot of requests to

backend application. The stress test application being used in this project is JMeter. The
Apache JMeter™ application is a java open source software that can be used as a load
testing tool for analysing and measuring the performance of a variety of services, with a
focus on web applications [11].

JMeter can be run in 2 modes, GUI mode and console mode. GUI mode is usually
used to create and validate test plan. Once the test plan is confirmed to be run correctly,
we use console mode the execute load testing. GUI mode is not recommended to be used
for load testing as it can cause resource exhaustion on the computer that executing it (PC
is hang). The screenshot of JMeter GUI interface can be seen on Image 10 below.

Image 10. JMeter GUI interface

As we can see on the above image, the test plan for this project consists of 1 thread

group that consist 2 HTTP requests. The HTTP requests is executed based on its order on
the test plan. The first request is to generate user’s registration process, and the second
request is to generate user’s pulse oximeter data upload. The second HTTP request is put
inside a loop with setting loop 100.

The second HTTP request depends on the result of the first HTTP request because to
upload pulse oximeter data, we need userId information which is given after registration
run successfully. To pass the userId information from registration to upload pulse oximeter
data, we create userId data extractor. This data extractor could read the response message
from registration, and get the userId information using regex matching. The extracted
userId can be accessed using variable like “${user_id}”.

Page 16 of 28

For each HTTP request, we need to define Web Server address (IP and Port), and the
request parameters. The screenshot of HTTP request configuration can be seen on Image
11 below.

Image 11. JMeter HTTP request parameters setting

The purpose of this test plan design is to create many parallel user registration process,

and after the user is registered, generate pulse oximeter data upload repeatedly. To evaluate
the backend application performance, we use the response time that recorded from JMeter.
The response time is recorded on a target csv file that we define during load testing
command execution.

Page 17 of 28

3.3. Android Application

The Android application in this project is developed based on the Android application

from internship project. The features enhancement of new Android application can be seen
on Table 4 below.

Existing Android App Features Enhancement Android App Features

Registration Use as is

Login Use as is

Logout Use as is

Scan Oximeter page Use as is

View Oximeter Data page Changed

* not available on existing Android app View Pulse Oximeter Record page

* not available on existing Android app View Analysis Result page

Table 4. Android Application Feature Enhancement

3.3.1. View Oximeter Data Page

The original view oximeter data page and its new page comparison can be seen

on Image 12 below. This page is the landing page shown to user after successfully login.
On the original page, user could upload pulse oximeter data by clicking “Upload”
button. The data itself is only a single SPO2 and Pulse data that being read when user
click the button. This approach is obviously not the best way to record a pulse oximeter
data for health analysis because it cannot monitor the fluctuation of pulse oximeter data
for certain period. However, this lack of functional quality was done on purpose,
because the internship project was only intended to get data transported from Android
application to server.

Image 12. Left: Original View Oximeter Data Page, Right: New Page

Page 18 of 28

The new View Oximeter Data page replace the “Upload” button with “Start
Recording” button. When user click “Start Recording”, the button will be changed into
“Stop Recording”. During this time, application is recording the pulse oximeter data
for every 1 second, and store the data on Android SQLite DB until user click the “Stop
Recording” button. The period between user click the “Start Recording” and click the
“Stop Recording” button is considered as 1 Pulse Oximeter record.

The idea behind this design is, when user is going to sleep, they click the “Start
Recording” button, and when they wake up, they click the “Stop Recording” button. As
a result, they will 1 pulse oximeter record for 1 sleep period that ready to be uploaded
to server and being analysed.

The 1 second recording interval is required because the Apnea Analysis
application required the SPO2 data to be recorded on that interval. The 1 second
recording interval is achieved by adding Thread.sleep(1000) inside a while loop.

Another modification that being done on this page is adding 4 image buttons on
top of the page that act as navigation button. The functionality of those buttons can be
seen on Table 5 below.

Buttons Function

Navigate to View Oximeter Data page

Navigate to View Pulse Oximeter Record
page

Navigate to View Analysis Result page

Logout

Table 5. Navigation Image Buttons

Those image buttons are implemented in one Android Fragment that can be

included on many pages. By using Android Fragment, we don’t need to duplicate the
codes each time we need to put those buttons on the screen.

3.3.2. View Pulse Oximeter Record Page

All Pulse Oximeter record that has been created by user can be accessed from this

page. In this page, user can select which records that they wanted to be uploaded to
server by ticking the Record ID checkboxes and click “Upload” button. After record is
successfully uploaded, it will be deleted from Android SQLite DB to reduce application
storage usage. The record will also disappear from this screen. The screenshot of this
page can be seen on Image 13.

Page 19 of 28

Image 13. View Pulse Oximeter Record page

3.3.3. View Analysis Result Page

Pulse oximeter record that has been analysed on the server can be accessed from

this page. This page retrieve the analysis result data by calling Web Servicce API and
show the result. It doesn’t keep the analysis data on Android SQLite DB. The result
analysis is the 2% dip index value. The interpretation of this value will be discussed on
section 3.6. Sleep Apnea Analysis Appliation. The screenshot of this page can be seen
on Image 14 below.

Image 14. View Analysis Result page

Page 20 of 28

3.4. Backend Application

The Backend application in this project is developed based on the Backend application
from internship project. The features enhancement of new Backend application can be seen
on Table 6 below.

Existing Backend App Features Enhancement Backend App Features

Registration Use as is

Upload Pulse Oximeter Record Changed

* not available on existing Android app View Analysis Result Data

Table 6. Backend Application Feature Enhancement

3.4.1. Upload Pulse Oximeter Record

The modification being done in this feature is by implementing multiple pulse

oximeter data upload. The existing system doesn’t have a concept of Record, it’s just
put the uploaded Pulse Oximeter data as unrelated records. To implement the Record
model, the Application flow is implemented as:
• Create Record data on database, and get the created Record ID.
• Iterate the sent pulse oximeter data, and save it to database.
• All those pulse oximeter data are grouped by one Record ID

3.4.2. View Analysis Result Data

This feature search for user’s Record that has been Analysed by Sleep Apnea

Analysis application. The record that has been analysed are marked done on the
Database.

Page 21 of 28

3.5. Database System

The database design in this project can be seen on Image 15 below. The user and token
and table are similar with existing DB system from internship project. Table user is to store
user information, while table token is to store user’s token data. The current design support
user to have multiple tokens. This design could accommodate if application would like to
utilise more than one token to secure message communication between Android app and
Backend application.

The oximeter table is changed, initially it didn’t have record_id column. The major
changed on Database system is the addition of new table record. This table keeps the record
analysis result on dip2_score column. In the status column, when record is just created,
the status is set into1 (new). When Sleep Apnea analysis application start processing the
record, it will set the status into 2 (on process). After analysis application finished the
process, it will set the status into 3 (done). If analysis process is finished successfully, the
status result will be set into 1 (succesful). Meanwhile, if its failed the status result will be
set into 2 (failed). This status and status_result classification is important for system
monitoring so we could find out how many analysis process is successful/failed.

Image 15. Database Design

Page 22 of 28

3.6. Sleep Apnea Analysis Application

The Sleep Apnea Analysis application is created using an open source software that
published by Ben Raymond, R. M Cayton, M. J. Chappell to support their research that
titled “Combined index of heart rate variability and oximetry in screening for the sleep
apnoea/hypopnoea syndrome” [4].

The original code is created using Matlab. Due to technology expertise consideration,
we decided to repackage the original code into java jar library to make it easier to integrate
with the existing Database system, because currently we already have knowledge on how
to integrate Maria DB with java during the Backend application development. The code
repackaging itself is done using Matlab Library Compiler.

The research itself analyse the accuracy of Sleep Apnea analysis using
electroencephalogram (EEG), and Polysomnogram (PSG). The PSG itself is the
benchmark method, as it’s the most accurate method available right now.

The original code combines data from EEG and Pulse Oximeter to do analysis using
the method that called CODI score. However, in this project we only have access to Pulse
Oximeter data, so we cannot directly use the original code. Beside implementing CODI
score method, the researcher provides alternative analysis method by calculating the
number of oxygen level dip per hour. In this project, we use this level dip per hour method
to analyse the Pulse Oximeter data.

3.6.1. Analysis Result Interpretation

Apnea Hypopnea Index (AHI) is the number of Apnea event recorded per hour of

sleep. The Apnea event itself is series of physical reaction that started with a person’s
airway repeatedly becomes blocked despite efforts to breathe. When sufficient air
doesn't get into a person's lungs, the level of oxygen in the blood falls and the level of
carbon dioxide (a waste product of metabolism) rises. After a few minutes of not
breathing, a person may die.

Fortunately, with OSA, after a period of not breathing, the brain wakes up, and
breathing resumes. This period of time can range from a few seconds to over a minute.
When breathing resumes, the size of the airway remains reduced in size. The tissues
surrounding this narrow airway vibrate—what we call snoring. In other words, snoring
is a sign of an obstructed airway, but it does mean that a person is breathing; silence
might indicate that the airway is completely blocked. Because waking up is necessary
to end an episode of apnea or hypopnea, a person with OSA wakes up again and again
throughout sleep. This reduces the duration and quality of sleep [16].

 Based on the AHI, the severity of Sleep Apnea is classified as follows:

Severity AHI
None/Minimal AHI < 5 per hour
Mild AHI ≥ 5, but < 15 per hour
Moderate AHI ≥ 15, but < 30 per hour
Severe AHI ≥ 30 per hour

Table 7. AHI Score Interpretation

Page 23 of 28

Reductions in blood oxygen levels (desaturation) can be used as an indicator of an
Apnea event. On the research paper, the oxygen level desaturation is referred as oxygen
level dip. Based on the research result, the index of 2% dips (ODI-2) is the best predictor
of the AHI compared to 3% dips (ODI-3) and 4% dips (ODI-4). So, in this project we
use the ODI-2 value, which is called the “2% dip index” on the Android Analysis Result
page. The ODI-2 value is used to classify the severity of Sleep Apnea using the same
threshold classification as in Table 7.

3.6.2. Apanea Analysis Application Management

The Apnea Analysis application is created using Java programming. It is called

Matlab function that has been repackaged into jar to calculate the ODI-2 value. The
application itself run as Linux background process. Below are some of the linux
command that can be used to start, monitor, and stop the process.

Task Linux Command
Start Process

./apnea_analysis.sh

Notes:
This command start the application
as Linux background process.

Monitor Proces

jps | grep "AnalysisController"

Notes:
If the application is running, this
command will show the application
Process ID (PID) and the Process
name

Stop Process

kill -9 PID

Notes:
To get the PID use the Monitor
Process command as mentioned
above.

Monitor the log /var/log/apnea_analysis.log

Notes:
This is the location of application
log file.

Table 8. Apnea Analysis Application Management Task

Page 24 of 28

4. System Performance Evaluation and Analysis

To test the system performance, we generate a test load that consist of 500 concurrent users
(generated through Registration API request), and each user will generate 50 sequential
requests (generated through Upload data APi request). In total, there will be 25000 requests to
the Backend application.

We tried several VM configurations, and evaluate the average response time for each of
them. The detail of VM configuration and its average response time can be seen on Table 9
below.

No Backend Application VM Configuration Average Response Time

(in milliseconds)
1 Scale Set, 3 VM (A0 Machine Type)

1 core CPU
0.75 GB Memory

Scale out rule:
• CPU usage > 75% for 5 minutes, add 1 VM to

scale set
• CPU usage < 25% for 5 minutes, remove 1 VM

from scale set

11198

2 Scale Set, 3 VM (A0 Machine Type)
1 core CPU
0.75 GB Memory

Scale out rule:
• Average number of request > 100 for 5 minutes,

add 1 VM to scale set
• Average number of request < 10 for 5 minutes,

remove 1 VM to scale set

9838

3 No Scale Set, 1 VM (A2 Machine Type)
2 cores CPU
3.5 GB Memory

10071

4 No Scale Set, 1 VM (A3 Machine Type)
4 cores CPU
7 GB Memory

7574

Table 9. VM Configuration Performance

Page 25 of 28

From the observation result on Table 9, below are the conclusions that can be made:
• Configuration 1 doesn’t perform as initially expected. The scale out rule which use

CPU percentage turns out never executed. The CPU usage never reach 75%. The
highest CPU usage observed on Azure monitoring tools is only 28%. This
configuration is deemed to be unsuitable for this project, because the Backend
application turns out doesn’t generate CPU intensive tasks.

• Configuration 3 have slightly bigger memory compared to Configuration 2, but the
number its CPU cores is smaller than Configuration 2. From this mixed system
advantages, turns out Configuration 2 performs better than Configuration 3.

• Configuration 4 have the best performance among others. However, considering that
its machine configuration is superior even compared to the combination of 3 VMs on
scale set, average response time might be not the fairest factor to judge the best
configuration.

To make a better judgement, we created a formula to score each configuration. The

formula is: Score = VM price * Number of VM * Average Response Time.
The formula is created to judge which configuration has the best performance for each of

its additional resource. Configuration that has the lowest score means, the price is low (lower
capacity machine), and the average response time is also low (system has fast response). In
conclusion, system with the lowest score is considered as the best configuration. The machine
cost can be seen on Image 16 below.

Image 16. Azure Machine Cost

Based on the score formula and observation data, below is the score for each configuration.
• Configuration 2: 26,26 * 3 * 9838 = 775.038
• Configuration 3: 112.6 * 1 * 10071 = 1.113.995
• Configuration 4: 247.95 * 1 * 7574 = 1.877.973

From the above calculation, Configuration 2 come out as configuration with the best

performance. One of the possible reason why system with superior capacity such as
Configuration 4 cannot deliver best performance for each of its additional resource, is probably
because we send a lot of request to 1 node. The request queue on that node will pile up. As a
result, the response got slower. Meanwhile, if we spread the request into multiple nodes like in
Configuration 2, the request queue on each node is not a big as queue on Configuration 4. From

Page 26 of 28

this result, to achieve a better performance, it might be better to use a lot of small machines
rather than using 1 big machine.

5. Future Works

For future works, there are some possibility for improvement, those are:

- Use JBoss batch framework JBatch rather than regular java application.

JBatch offer some good features that can be helpful to monitor batch application such
as web interface batch process monitoring. However, due time constraint we cannot
utilise this framework in this project.

- Combined Sleep Apnea analysis with data from another health device such as EEG.

Combining data from other health device such as EEG will be able to improve the
accuracy of Sleep Apnea analysis, because we are not just considering one symptom
of Apnea event.

Page 27 of 28

6. References

[1] Nonin. (2017). What is Pulse Oximetry.
Retrieved From: http://www.nonin.com/What-is-Pulse-Oximetry

[2] National Heart, Lung, and Blood Institute. (2017). What is Sleep Apnea.
Retrieved From: https://www.nhlbi.nih.gov/health/health-topics/topics/sleepapnea

[3] National Heart, Lung, and Blood Institute. (2017). Sleep Apnea Diagnosis.
Retrieved From: https://www.nhlbi.nih.gov/health/health-topics/topics/sleepapnea/diagnosis

[4] Ben Raymond, R. M Cayton, M. J. Chappell. (2003, February). Combined index of heart
rate variability and oximetry in screening for the sleep apnoea/hypopnoea syndrome. In
Journal of Sleep Research Volume 12, Issue 1. European Sleep Research Society.

[5] Wikipedia. (2017). Scalability.
Retrieved From: https://en.wikipedia.org/wiki/Scalability

[6] Wikipedia. (2017). Microsoft Azure.
Retrieved From: https://en.wikipedia.org/wiki/Microsoft_Azure

[7] Chris Walden. (2017). Developer and administrator tools for Microsoft Azure.
Retrieved From: https://blogs.technet.microsoft.com/uktechnet/2017/05/24/developer-and-
administrator-tools-for-microsoft-azure/

[8] Microsoft. (2017). CLI 2 Announcement.
Retrieved From: https://azure.microsoft.com/en-gb/blog/announcing-azure-cli-2-preview/

[9] Microsoft. (2017). Azure Resource Manager vs. classic deployment: Understand
deployment models and the state of your resources.
Retrieved From: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-
manager-deployment-model

[10] Microsoft. (2017). What are virtual machine scale sets in Azure?.
Retrieved From: https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-
machine-scale-sets-overview

[11] Wikipedia. (2017). Apache JMeter.
Retrieved From: https://en.wikipedia.org/wiki/Apache_JMeter

[12] Nonin (2017). Pulse Oximeter Illustration [digital image].
Retrieved From:
http://www.nonin.com/Go2Nonin/images/learnmore/PulseOxFingerIllustration.jpg

[13] Proshop (2017). Nonin Pulse Oximeter [digital image].
Retrieved From:
http://www.shop.proactmedical.co.uk/photos/1.445065nonin_3230_op_hand.jpg

[14] ORA® Oral Surgery, Sleep Disorder & Implant (2017). Polysomnography [digital
image].

Page 28 of 28

Retrieved From:
http://nympw3kj6tl1io7m52utiz4g.wpengine.netdna-cdn.com/wp-
content/uploads/2012/01/Polysomnography-a-sleep-study.jpg

[15] Microsoft (2017). PaaS [digital image].
Retrieved From:
https://azurecomcdn.azureedge.net/cvt-
9d9c17002381b078199fcf784d4ed60d6ce505353dc459585b7a0c5afb13ef12/images/page/ov
erview/what-is-paas/what-is-paas.png

[16] Harvard Medical School. (2017). Understanding AHI and Oxygen Desaturation.
Retrieved From:
http://healthysleep.med.harvard.edu/sleep-apnea/diagnosing-osa/understanding-results

