
QoS-aware and Semantic-based
Service Coordination for

Multi-Cloud Environments

Amir Vahid Dastjerdi

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

March 2013

Department of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

Copyright c© 2013 Amir Vahid Dastjerdi

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.

QoS-aware and Semantic-based Service Coordination for

Multi-Cloud Environments
Amir Vahid Dastjerdi

Supervisor: Prof. Rajkumar Buyya

Abstract

The advantages of Cloud computing, such as cost effectiveness and ease of management,

encourage companies to adapt its services. However, In a Multi-Cloud environment, the

wide range of Cloud services and user specific requirements make it difficult to select

the best composition of services. An automated approach is required to deal with all

phases of service coordination including discovery, negotiation, selection, composition,

and monitoring. To simplify the process of Cloud migration, this thesis proposes an ef-

fective architecture to provide automated QoS-aware deployment of virtual appliances

on Cloud service providers. The architecture takes advantage of ontology-based discov-

ery to semantically match user requirements to Cloud services. Then, it applies a set of

negotiation, selection, and optimization strategies to pick up the best available services

from the list of discovered services. Finally, this thesis shows how monitoring services

have to be described, deployed (discovered and ranked), and executed to enforce accu-

rate penalties. The key contributions of this thesis are:

1. An ontology-based Cloud service discovery is proposed that works based on mod-

eling virtual units into Semantic Web services. This helps users to deploy their ap-

pliances on the fittest providers when providers and users are not using the same

notation to describe their services and requirements.

2. A scalable methodology to create an aggregated repository of services in Web Ser-

vice Modeling Ontology (WSMO) from service advertisements available in XML.

3. A negotiation strategy that acquires user preferences and provider’s resource uti-

lization status and utilizes time-dependent tactic along with statistical methods to

maximize the profit of Cloud providers while adhering to deadline constraints of

users and verifying reliability of providers’ offers. The proposed negotiation strat-

iii

egy is tested to show how our approach helps Cloud providers to increase their

profits.

4. A QoS criteria model for selection of virtual appliances and units in Cloud comput-

ing. In addition, two different selection approaches, genetic-based and Forward-

checking-based backtracking (FCBB), are proposed to help users deploying net-

work of appliances on Clouds based on their preferences.

5. A ranking system for Cloud service composition that let users express their prefer-

ences conveniently using high-level linguistic terms. The system utilizes evolution-

ary multi-objective optimization, and a fuzzy inference system to precisely capture

the preferences for the ranking purpose.

6. An approach to help non-expert users with limited or no knowledge on legal and

virtual appliance image format compatibility to deploy their services flawlessly. For

this purpose , Cloud services are enriched with experts knowledge (from lawyers,

software engineers, system administrators, etc). The knowledgebase then is used

in a scalable algorithm for reasoning that identifies whether a set of Cloud service

consisting of virtual appliance and units are compatible or not.

7. A semantic SLA template that can be used as a goal for discovery of necessary

monitoring services. In addition, SLA dependencies are modeled using WSMO

to build a knowledgebase that is exploited to eliminate the effects of SLA failure

cascading on violation detection.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Amir Vahid Dastjerdi, March 2013

v

Acknowledgements

Throughout my PhD study, I received support from amazing people whom I wish to

acknowledge here. First and foremost, I would like to express my sincere gratitude to my

supervisor Professor Rajkumar Buyya for the continuous support, advice, and guidance

throughout my candidature. He has built and directed an environment that granted me

an opportunity to learn and practice research skills, meet and collaborate with brilliant

researchers, and transfer the long journey of PhD to a great and lovely experience.

I wish to extend my gratitude to the members of PhD committee: Prof. Christopher

Andrew Leckie and Dr. Rodrigo N. Calheiros for their encouragement and insightful

comments on my research. In particular, it has been all the time helpful to discuss initial

research ideas with Rodrigo. He has generously helped both in building the testbed for

my experiments and proof-reading of the thesis.

I would also like to thank all past and current members of the CLOUDS Laboratory, at

the University of Melbourne. In particular, I would like to express my gratitude towards

Dr. Saurabh Kumar Garg, Adel Nadjaran Toosi, and Yoganathan Sivaram who closely

collaborated with me. I would like to thank Nikolay Grozev for proof-reading of this

thesis and for his extensive comments. My thanks to fellow members: Mohsen Amini,

Anton Beloglazov, Atefe Khosravi, Sare Fotouhi, Deepak Poola, Linlin Wu, Mohammed

Alrokayan, Yaser Mansouri, Dr. Marco Netto, Dr. Mustafi zur Rahman, Dr. Mukaddim

Pathan, Dr. Suraj Pandey, Dr. Rajiv Ranjan, Dr. Christian Vecchiola, and Dr. Marcos Dias

de Assuncao for their friendship and supports.

A special thanks to Professor Omer F. Rana and Dr. Sayed Gholam Hassan Tabatabaei.

It has been such a pleasure and a privilege to work with you all.

I wish to acknowledge Australian Federal Government, the University of Melbourne,

vii

the School of Engineering, Australian Research Council (ARC), IEEE Victoria, Google,

and CLOUDS laboratory for granting scholarships and travel supports which enable me

to pursue doctoral study and attend international conferences.

I would like to give thanks to my parents, my brothers and sister for their endless

help, supports, and love. Specially my father who is no longer with us, but his words,

memories, and hard working attitude always inspired and encouraged me in all stages

of life.

Finally, I would like to extend my heartfelt thanks to my wife Elahe for her encour-

agements during rough times. Her patience and assistance to deal with challenges we

faced during last 4 years has been always impressive and extraordinary.

Amir Vahid

Melbourne, Australia

March, 2013

viii

This thesis is dedicated to the memory of my father,

Iraj Vahid,

whose passion for science and learning was inspiring and contagious

ix

Contents

1 Introduction 1
1.1 Motivation and Scope . 4
1.2 Research Problems and Objectives . 5

1.2.1 Objectives . 7
1.3 Contribution . 8
1.4 Thesis Organization . 10

2 Taxonomy and Survey of Cloud Service Coordination Methodologies 15
2.1 Background . 15
2.2 Discovery . 18

2.2.1 Non-logic Based Discovery . 18
2.2.2 Semantic-based . 19
2.2.3 Building Semantic-based Service Repository 21
2.2.4 Hybrid Matchmaking . 22
2.2.5 Decentralized P2P Discovery . 22

2.3 Service Selection Taxonomy . 24
2.3.1 QoS Management . 24
2.3.2 Process of Service Selection . 26
2.3.3 Service Selection Context . 26
2.3.4 Service QoS Modeling Taxonomy . 31
2.3.5 Taxonomy of Web Service Selection Approach 39

2.4 Service Level Agreement Management . 45
2.4.1 SLA Negotiation Techniques . 45
2.4.2 Negotiation for Multiple Services . 49
2.4.3 SLA Monitoring . 51
2.4.4 SLA Language . 51

2.5 Analysis and Positioning . 52
2.5.1 Requirement Analysis . 52
2.5.2 An Investigation of Existing Work 54
2.5.3 Scope and Positioning of This Thesis 58

2.6 Conclusions . 62

3 An Architecture for Automated Cloud Service Coordination 65
3.1 Introduction . 65
3.2 Architecture . 66

xi

3.3 Matchmaker Architecture . 70
3.3.1 Automoted Construction of Semantic-based Cloud Services and Their

Quality of Services . 73
3.3.2 Matchmaking Algorithm . 76

3.4 Case Study . 77
3.5 Performance of the Translation Approach 80
3.6 Related Work . 81
3.7 Conclusions . 82

4 Migrating Multi-tier Applications to Multi-Cloud 83
4.1 Introduction . 83
4.2 Motivation Scenario . 85
4.3 QoS Criteria . 86
4.4 Deployment Problem Formulation . 87

4.4.1 Provider Model . 87
4.4.2 User Request Model . 88
4.4.3 Deployment Optimization Objectives 89

4.5 Deployment Optimization Algorithms . 90
4.5.1 Forward-Checking-Based-Backtracking (FCBB) 90
4.5.2 Genetic-Based Virtual Unit and Appliance Provider Selection . . . 91

4.6 Experimental Testbed Modeling . 94
4.6.1 Generation of Requests for Experiments 94

4.7 Experimental Results . 96
4.7.1 Comparison with Exhaustive Search (ES) 97
4.7.2 Results of Variation in Request Types on Algorithms Performance

and Execution Time . 98
4.7.3 Effects of Variation in Request Types and Latency Constraints on

Distribution Factor . 101
4.7.4 Consequence of Variation of Reliability Constraints on Deployment

Cost . 102
4.7.5 Varying Iteration Number and Population Size 102

4.8 Conclusions . 103

5 Cloud Service Composition Under Fuzzy Preferences of Users 105
5.1 Introduction . 105

5.1.1 Issues with Current Virtual Appliance Management Systems . . . 107
5.2 Composition Problem . 108

5.2.1 Evaluation of Composition Criteria 109
5.2.2 Overall Objectives . 116

5.3 Composition Optimization Technique . 117
5.4 Performance Evaluation . 121

5.4.1 Request Modeling and Data Collection 122
5.4.2 Results . 122

5.5 Conclusions . 129

xii

6 An Autonomous Negotiation Strategy for Cloud Computing Environments 131
6.1 Introduction . 131
6.2 Motivations . 134

6.2.1 Offers Reliability . 134
6.2.2 Balancing Resource Utilization to Host More Virtual Machines . . 134
6.2.3 Investigating Behavior of the Time-dependent Function in the Cloud

Computing Context . 135
6.3 Negotiation Framework . 135
6.4 Negotiation Strategy . 137

6.4.1 Negotiation Model . 138
6.4.2 Time-dependent Negotiation Tactic 138
6.4.3 Providers Strategy . 139
6.4.4 Cloud Client NS . 142

6.5 Performance Evaluation . 144
6.5.1 Effect of Strategies and Negotiation Parameters on Negotiation Out-

come . 148
6.5.2 Impact of Change in Deadline on the Ratio of Deals Made 148
6.5.3 Performance of the Proposed Negotiation Strategy 149
6.5.4 Effect of Demand to Supply Ratio and Consensus Desirability on

Datacenters Revenue. 150
6.6 Conclusions . 152

7 A Dependency-aware Approach for SLA Management 155
7.1 Introduction . 155
7.2 Cloud Service and Monitoring Layers . 157
7.3 Motivating Scenario . 158
7.4 Monitoring Architecture . 160

7.4.1 Service Level Agreement Contract Repository 160
7.4.2 Monitoring Service Repository . 162
7.4.3 Monitoring Service Manager . 164

7.5 Performance Evaluation . 172
7.5.1 Monitoring Services Discovery for Case Study 172
7.5.2 Deployment Time Measurement . 172

7.6 Conclusions . 175

8 Conclusion and Future Directions 177
8.1 Discussion . 177
8.2 Future Directions . 180

8.2.1 Multi-Cloud Auto-scaling and Failure Recovery Optimization . . . 180
8.2.2 Quality of Service Modeling of Cloud Offerings and Dynamic Context-

aware Service Selection . 181
8.2.3 Service Selection Where Multiple Spot Markets Exist 182
8.2.4 Considering Heterogeneous Negotiation Strategies in Multi-Cloud

Environments . 183

xiii

8.2.5 Combining Fuzzy Similarity and Time-dependent Negotiation Strate-
gies . 183

8.2.6 Measuring the Impact of Applying Dependency-aware SLA Viola-
tions Detection Approach on Decreasing the Number of False Pos-
itives . 183

A Ontologies 207
A.1 Portion of Developed Ontology . 207
A.2 Deployment Descriptor . 211

xiv

List of Figures

1.1 Service coordination in a Multi-Cloud environment. 3
1.2 Complexities of service coordination in Multi-Cloud environments. 5
1.3 Thesis organization. 11

2.1 Cloud service models. 16
2.2 Taxonomy of discovery approaches. 18
2.3 QoS management process. 25
2.4 Selection researches in different contexts. 27
2.5 Web service QoS modeling taxonomy. 32
2.6 Price utility function. 33
2.7 Web service selection approaches. 40
2.8 Process of decision making. 40
2.9 Choosing the fittest provider using AHP. 41
2.10 Service Level Agreement Management (SLAM) taxonomy. 46

3.1 Architecture’s main components that enable cross-Cloud deployment of
user applications. 67

3.2 Requirements ontology. 71
3.3 Cloud service (virtual units) ontology. 72
3.4 The process of translation of the virtual appliances and units descriptions

to WSML. 74
3.5 Case study validation in WSMT environment. 80
3.6 Execution time of translation for different repository sizes. 81

4.1 Performance evaluation for case study. 97
4.2 Change in connectivity for workload a. 99
4.3 Change in connectivity for workload b. 100
4.4 Varying iteration number and population size. 103

5.1 Virtual appliance composition optimization approach. 118
5.2 Fuzzy engine input and output fuzzy sets. 119
5.3 Mapping from QoS criteria values to composition desirability value. . . . 120
5.4 Comparison of algorithms . 125
5.5 Appliance composition optimization results 127
5.6 Execution-time analysis of the compatibility checking algorithm. 129

xv

6.1 Requests and their effects on balancing resource utilization. 135
6.2 The proposed negotiation framework. 136
6.3 Negotiation sequence diagram. 137
6.4 Class diagram of negotiation package for CloudSim. 145
6.5 Impact of initial offer on NSO and negotiation success rate. 146
6.6 Impact of CF on NSO and negotiation success rate. 147
6.7 Impact of deadline on the success rate of negotiation. By “0.05-0.01-E", we

mean that CF, K, and time-dependent functions are set to 0.05, 0.01, and
exponential, respectively. 149

6.8 Impact of request type on the performance of the strategy. Workloads are
built with different Percentage of Unbalanced Requests(PUR). 150

6.9 Impact of request type on the combined utility of the strategy. 151
6.10 Impact of Consensus Desirability (COD) on the data centre profit when

DSR is less than one. 151
6.11 Impact of Consensus Desirability (COD) on the data centre profit when

DSR is greater than one. 152

7.1 Cloud monitoring service layers. 157
7.2 Cloud monitoring service layers. 159
7.3 Monitoring Service Management architecture. 160
7.4 QoS ontology. 161
7.5 SLA contract goal. 162
7.6 SLA contract ontology. 163
7.7 Ontology-based monitoring service modeling. 164
7.8 Ontology-based dependency modeling. 166
7.9 Applying AHP for ranking monitoring services. 171
7.10 Monitoring service discovery algorithm validation for the case study. . . . 173
7.11 Ranking algorithm validation for the case study. 174
7.12 Execution time for monitoring service discovery and rankling. 174

8.1 Future directions. 181

xvi

List of Tables

2.1 Major scales for pairwise comparisons. 42
2.2 Analysis of existing works. 57
2.3 Positioning of this thesis. 61

3.1 Case study Cloud service request. 79
3.2 Cloud services listed for the case study. 79
3.3 Supported operating systems for the case study. 79

4.1 Latency between Clouds and SCL input data. 95
4.2 Request types. 95
4.3 Mean execution time for case study. 97
4.4 Mean exhaustive search(es) costs/algorithms costs. 98
4.5 Mean execution time(s). 101
4.6 Distribution factor. 102
4.7 Effects of the deployment constraints on the cost. 102

5.1 Compatibility reasoning for Cloud service composition. 112
5.2 Virtual appliance composition objectives. 116
5.3 Sample high level rules set by users. 119
5.4 Technologies used for appliance composition tasks. 121
5.5 Application composition for the request model. 123
5.6 Sample appliance directory. 124
5.7 Statistical comparison of algorithms. 126

6.1 Negotiation objectives. 133
6.2 Description of symbols. 140

7.1 Major scale of pair-wise comparisons. 170
7.2 Monitoring services in the repository for the case study. 173

xvii

Chapter 1

Introduction

ENTERPRISES are constantly searching for novel and creative approaches to maxi-

mize their profits and reduce their costs. They need technologies that let them grow

and still do not strain them financially. Among the existing ones, Cloud computing has

emerged as a promising solution providing on-demand access to virtual computing re-

sources, platforms, and applications in a pay-as-you-go manner. Cloud service customers

only use what they require and pay for what they use. As a result, Cloud computing has

raised the delivery of IT services to a new level that brings the comfort of traditional

utilities such as water and electricity to its users. The advantages of Cloud computing,

such as cost effectiveness, scalability, and ease of management, encourage more and more

companies and service providers to adapt it and offer their solutions via Cloud comput-

ing models. According to a recent survey of IT decision makers of large companies, 68%

of the respondents expect that by 2014, more than 50% of their company’s IT services will

be migrated to Cloud platforms [128].

Clouds provide three types of services [122], namely Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS Clouds offer com-

puting resources such as processing power, storage, networks, and other fundamental

computing resources. The underlying Cloud infrastructure is managed by a provider.

However, users have the flexibility to select their virtual machine images and to deploy

these applications. In the PaaS model, providers supply clients with tools and services to

develop software applications. In addition to the IaaS restrictions, PaaS users do not have

the ability to manage or control their virtual machine images and servers. SaaS providers

allow customers to use the applications such as web-based email, calendar or word edi-

1

2 Introduction

tor running on a Cloud infrastructure. Neither the infrastructure nor the application are

controlled by users in this model.

Moreover, Clouds, based on their ownership, exposure, and deployment model can

be classified as either private, community, public, or hybrid Clouds. A Private cloud is

utilized by an organization and is neither shared with other organizations nor with the

general public. In contrast, A public cloud’s services are accessible to the general public

and in the case of community Cloud, the infrastructure is shared by a number of organi-

zations. A Hybrid Cloud offers services deployed on two or more Clouds. Therefore, it

enables data and application portability among participating Clouds. When the under-

ling Cloud infrastructures are restricted to public Clouds (as shown in Figure 1.1) this

model is called Multi-Cloud. Multiple providers are offering different virtual appliances

and computing units with different pricing and Quality of Service (QoS) in the market.

Therefore, it is important to exploit the benefit of hosting virtual appliances on multiple

providers to not only reduce the cost and provide better QoS but also achieve failure-

resistant deployment.

In order to offer their solutions in the Cloud, service providers can either utilize

Platform-as-a-Service offerings such as Google App Engine 1, or develop their own host-

ing environments by leasing virtual machines from Infrastructure-as-a-Service providers

like Amazon EC2. 2. However, most PaaS services have restrictions on the programming

language, development platform, and databases that can be used to develop applications.

For example, Google App Engine supports applications developed using Java or Python

only. Such restrictions encourage service providers to build their own platforms using

IaaS service offerings. By offerings, we mean virtual machines and virtual appliances,

which are a virtual machine image that have necessary software components to meet a

specific business objective.

Therefore, if we make the assumption that service providers prefer IaaS and Multi-

Cloud, service providers have to go through a process to select the most suitable Cloud

offerings to host their services. This process, which is called Cloud service coordination,

consists of four phases, namely discovery, Service Level Agreement (SLA) negotiation,

1Google App Engine. http://appengine.google.com/
2Amazon EC2. http://aws.amazon.com/ec2/

http://appengine.google.com/
http://aws.amazon.com/ec2/

3

selection, and SLA monitoring as shown in Figure 1.1. In the service discovery phase,

user requirements are used as input for discovering the best suited Cloud services among

various repositories of Cloud providers. For SLA Negotiation, discovered providers and

the user negotiate on the quality of services. An SLA contract will be selected from a set

of made agreements. Then, the acquired service will be continuously monitored in the

SLA monitoring phase. This thesis introduces an architecture for service coordination,

Figure 1.1: Service coordination in a Multi-Cloud environment.

and investigates algorithm and methodologies for each phase to simplify service deploy-

ment in Multi-Cloud environments. The reminder of this chapter details the need for

service coordination and discusses the research problem, objectives, contributions, and

organization of this thesis.

4 Introduction

1.1 Motivation and Scope

Clusters, supercomputers and partially Grids relied on non Service Oriented Architecture

(SOA) application, while Cloud focuses on Web 2.0 and SOA technology [60]. Although

Clouds adopted some common communication protocols such as HTTP and SOAP, the

integration, interoperability, and coordination of all services remain the biggest chal-

lenges. Service deployment and coordination, the process of making a service ready for

use, often include deploying multiple, interrelated software components into heteroge-

neous environments. Different technologies and tools try to satisfy user requirements in

terms of software and hardware and to address these complexities by describing the envi-

ronments, abstracting the dependencies, and automating the process. Nevertheless, most

of previous works [2,24] focused on satisfying user requirements using SOA architecture

and virtualization, neglecting the consideration of Cloud computing environment as a re-

source supplier. In order to satisfy user requirements in terms of software and hardware,

virtual appliances and virtual machines (virtual units) are considered as two fundamen-

tal offerings of IaaS providers. Virtual appliances consist of optimized operating systems

and pre-built, pre-configured, ready-to-run applications. They are emerging as a break-

through technology to solve the complexities of service deployment. Virtual appliances

are proved to provide a more convenient and speedy service deployment mechanism

[158].

Migrating network of connected applications such as web applications to Cloud ser-

vices is a complex task. The main challenges in mapping those applications to Cloud of-

ferings is to select and compose the most appropriate and compatible set of virtual appli-

ances and virtual machine (also called virtual unit throughout the thesis) that satisfies the

QoS requirement of users. The process of mapping, which involves all phases of Cloud

service coordination, has to consider semantic heterogeneity of Cloud service interfaces

and QoS criteria, and complex compatibility and dependency among cloud services that

are not possible to resolve manually. Figure 1.2 shows the complexity of migrating multi-

tier applications to Multi-Cloud. In addition to the service cost and reliability factors, the

provider of choice is obliged to comply with law and regulations of the country where

its datacenter is located. An example is the restriction imposed by United State on ex-

1.2 Research Problems and Objectives 5

Packet

Highly reliable to unreliable

Cost of virtual appliance and machine

Data transfer cost

Legal requirements

Figure 1.2: Complexities of service coordination in Multi-Cloud environments.

porting encryption technology [10], that prevents the export and deployment of such U.S

developed software abroad. Therefore, migration is troublesome unless the aforemen-

tioned complexities are automatically handled by a third party system similar to what

we offer in this thesis. Consequently, we propose an architecture consisting of a num-

ber of components which simplifies the process of service coordination and deployment

in a Multi-Cloud environment where virtual appliance and machines are considered as

offerings of Cloud providers.

1.2 Research Problems and Objectives

On a journey towards automated Cloud service deployment, in each phase of service

coordination in Multi-Cloud environments, following challenges will arise:

• Cloud service discovery challenges

– How to search for services, when in heterogeneous environment like Multi-

6 Introduction

Cloud (as shown in Figure 1.1) applying symmetric attribute-based matching

is not possible?

– How to automatically build an integrated repository of Cloud services so that

their functional and QoS properties are understood by all parties (users, Cloud

service providers, monitoring service providers) to maximize accuracy of Cloud

service discovery?

• Cloud service selection and composition issues

– When migrating a network of applications to the Cloud, what is the best strat-

egy for placing them across Cloud providers? Should they be placed based

on the traffic they exchange, therefore placing those with higher connectivity

closer to each other to decrease latency and data transfer cost?

– If all Cloud services and their related deployment meta-data such as auto-

scaling policies and security configuration are placed on the same provider,

and that provider fails, the access to deployment information would not be

guaranteed. Consequently, the recovery process would be significantly de-

layed. How could we avoid this from happening?

– How to identify which images are compatible with different instance types

of different Clouds? Moreover, some countries like USA impose restrictions,

on the location of imported and exported images, and computing units which

introduce legal constraints that have to be taken into account when services

form different Cloud providers are composed.

– The Priority of end users is avoiding systems which incur complexity in cap-

turing their constraints, objectives, and preferences. How can the system re-

duce the complexity of capturing user preferences for non-expert users to com-

ply with the ease of use promise of Cloud?

• SLA management challenges

– How to resolve conflicting objectives of Cloud providers and users through ne-

gotiation strategies that can achieve consensus while satisfying requirements

1.2 Research Problems and Objectives 7

of both parties?

– How to create a standard model for describing SLAs in different layers of the

Cloud as a major requirement for discover of necessary SLA monitoring ser-

vices?

– How monitoring services have to be described, deployed (discovered and

ranked), and then how they have to be executed to enforce accurate penalties?

1.2.1 Objectives

Driven by the aforementioned challenges, the following objectives have been identified:

• Investigate discovery techniques that give enough flexibility to end users to dis-

cover their required virtual appliances and machines from a range of providers and

dynamically deploy them on different IaaS providers. The objective is to look for an

approach that can work efficiently when the providers and users are not using the

same notation to describe their services and requirements. Moreover, to guarantee

the success of discovery algorithm, we investigate an approach to automatically

build an aggregated repository of Cloud services from advertised offerings.

• Identify the user preferences and QoS criteria of Cloud services in the migration

problem and then search for the right optimization technique that satisfies user

objectives and constraints.

• Look into approaches to model the knowledge of experts on the compatibility of

services (e.g legal and image and virtual machine compatibility) in the system.

Then, identify an approach to query the knowledgebase for filtering the non-compatible

services.

• Investigate approaches that can handle vague preference of users to improve ease

of use and accuracy of selection techniques.

• Build a Cloud agnostic metadata to persist deployment configurations.

8 Introduction

• Examine techniques and languages to build a standard SLA template that makes it

convenient to discover necessary monitoring services that have the required capa-

bilities to monitor service level objectives in SLAs.

• Model SLA dependency knowledge and use the knowledge to enhance the depend-

ability of the monitoring service.

• Investigate SLA negotiation strategies that are capable to automatically and dy-

namically generate offers by considering reliability of providers offers for users and

resource utilization for providers.

1.3 Contribution

The steps taken to tackle challenges in each phases of service coordination are listed as

follows:

1. A taxonomy and survey that provides key background information, comments, and

categorization of existing solutions for service coordination.

2. A semantic-based Cloud service discovery in Multi-Cloud environments.

• An ontology-based and QoS-aware Cloud service discovery is proposed, which

works based on modeling virtual units into one of the most prominent initia-

tives in Semantic Web services, i.e., Web Service Modeling Ontology (WSMO)

[161]. This helps users to deploy their appliances on the fittest IaaS providers

based on their QoS preferences when both sides (the providers and users) are

not using the same notation to describe their services and requirements.

• An approach is presented that builds semantically enriched Cloud services

(along with their non-functional properties). It creates an aggregated repos-

itory of service in WSMO from service advertisements information available

in XML. The performance of translation technique is measured for different

repository size to prove its scalability.

1.3 Contribution 9

• A novel semantic-based deployment descriptor is offered to persist deploy-

ment configurations.

3. A service (virtual appliance and virtual unit) selection and composition approach

for migrating web application to Cloud.

• Relevant QoS criteria, namely latency, cost (data transfer cost, virtual machine,

and appliance cost), and reliability for selection of the best virtual appliances

and units in Cloud computing environments.

• Two different selection approaches -genetic-based and Forward-checking-based

backtracking (FCBB)- have been proposed to help users deploying network of

appliances on multiple Clouds based on their QoS preferences. For that pur-

pose, various types of requests (with different network load between appli-

ances) are generated and data from 12 real Clouds was collected.

• Effects of factors such as latency requirements and data communication on the

cost of appliance placement and the selection of providers are investigated.

• A ranking system is proposed for Cloud service (i.e. virtual appliance and

unit) composition that let users express their preferences conveniently using

high-level linguistic terms. The system then utilizes evolutionary multi-objective

optimization approaches and a fuzzy inference system to precisely capture the

entered preferences for the ranking purpose.

• An approach is presented to help non-expert users with limited or no knowl-

edge on legal and virtual appliance image format compatibility to deploy their

services flawlessly. For this purpose, we first automatically build a repository

of Cloud services using WSMO and then enrich it with expert’s knowledge

(from lawyers, software engineers, system administrators, etc) on the afore-

mentioned constraints. The knowledgebase then is used for reasoning that

identifies whether a set of Cloud services consisting of virtual appliance and

units are compatible or not. Furthermore, execution time of the compatibility

checking approach is measured for different number of appliances in the com-

position and for different number of discovered appliances, which demon-

10 Introduction

strates the scalability of approach.

4. A dependable SLA management system.

• A semantic SLA template is proposed that is understood by all parties includ-

ing providers, users, and monitoring services. The semantic SLA contract is

defined in a way that can be used as a goal for discovery of necessary moni-

toring services.

• SLA dependencies are modeled using Web Service Modeling Ontology (WSMO)

to build a knowledgebase that is exploited to eliminate the effects of SLA fail-

ure cascading on violation detection. The proposed approach was tested in a

case study which proves its effectiveness.

• A negotiation strategy is proposed that acquires user preferences and provider’s

resource utilization status and utilizes time-dependent tactic along with statis-

tical methods to maximize the Cloud providers profit while adhering to dead-

line constraints of users and verifying reliability of providers’ offers. Through

a series of experiments, we investigate the effect of modifying parameters of

the time-dependent tactic, such as initial offer value and deadline, on nego-

tiation outputs including social welfare and success of negotiation in Cloud

environments. In addition, the offered negotiation strategy is tested for multi-

ple workloads and in diverse market conditions to show how time-dependent

tactics settings can dynamically change to help Cloud providers to increase

their profits.

1.4 Thesis Organization

Works presented in this thesis have been to a degree or completely derived from the set

of papers published during the course of the PhD candidature. Figure 1.3 shows the

relationship among the chapters and the category they belong to. The remainder of this

thesis is organized as follows:

1.4 Thesis Organization 11

a

Service Migration , Selection, and Composition

SLA Management

Taxonomy

and Survey

(Chapter 2)

Conclusions

(Chapter 8)

Handling Fuzzy

Preferences and

Filter Incompatible

Services (Chapter 5)

Service Selection for

Migrating Network

of Applications

(Chapter 4)

SLA Monitoring

(Chapter 7)

SLA Negotiation

(Chapter 6)

Coordination

Architecture

(Chapter 3)

Figure 1.3: Thesis organization.

• Chapter 2 presents a taxonomy and survey of Cloud service coordination, require-

ments analysis, scope of this thesis, and its positioning in regards to existing works.

The chapter is partially derived from:

– Amir Vahid Dastjerdi and Rajkumar Buyya, A Taxonomy of QoS Manage-

ment and Service Selection Methodologies for Cloud Computing, Cloud Com-

puting: Methodology, Systems, and Applications, L. Wang, Rajiv Ranjan, Jin-

jun Chen, and Boualem Benatallah (eds), ISBN: 9781439856413, CRC Press,

Boca Raton, FL, USA.

• The proposed architecture used for service coordination in multi-Cloud along with

an ontology-based Cloud service discovery are described in Chapter 3 which is

partially derived from:

– Amir Vahid Dastjerdi, Sayed Gholam Hassan Tabatabaei, Rajkumar Buyya.

An Effective Architecture for Automated Appliance Management System Ap-

plying Ontology-Based Cloud Discovery, The 10th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010), IEEE Com-

puter Society Press, May 17-20, 2010, Melbourne, Australia.

12 Introduction

• Chapter 4 describes a service selection mechanism for migrating network of appli-

cations to Multi-Cloud. This chapter is derived from:

– Amir Vahid Dastjerdi, Saurabh Kumar Garg , Omer F. Rana, and Rajku-

mar Buyya, CloudPick: a Toolkit for QoS-aware Service Deployment Across

Clouds, Journal of Automated Software Engineering, 2012, in review.

– Amir Vahid Dastjerdi, Saurabh Kumar Garg and Rajkumar Buyya, QoS-

aware Deployment of Network of Virtual Appliances across Multiple Clouds,

Proceedings of the 3rd IEEE International Conference on Cloud Computing

Technology and Science (IEEE CloudCom 2011, IEEE CS Press, USA), Athens,

Greece, Nov. 29 - Dec. 1, 2011.

• Cloud service composition challenges, and a mechanism which handles vague pref-

erences of users and filter incompatible services are investigated in Chapter 5. Chap-

ter 5 derives from:

– Amir Vahid Dastjerdi, Yoganathan Sivaram, and Rajkumar Buyya, Multi-

objective and Ontology-based Cloud Service Composition Under Fuzzy Pref-

erences of Users in Clouds, Journal of Future Generation Computer Systems ,

2013, in review.

• Chapter 6 investigates strategies that are capable of automatically and dynamically

conduct SLA negotiation in multi-Clouds and is derived from:

– Amir Vahid Dastjerdi, and Rajkumar Buyya, An Autonomous Time-dependent

Negotiation Strategy for Cloud Computing Environments, IEEE Transactions

on Parallel and Distributed Systems, 2012, in review.

– Amir Vahid Dastjerdi, and Rajkumar Buyya, An Autonomous Reliability-

aware Negotiation Strategy for Cloud Computing Environment, Proceedings

of the 12th IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGrid 2012), Ottawa, Canada, May 13-16, 2012.

• A dependable SLA monitoring approach in a multi-Cloud environment which is

1.4 Thesis Organization 13

capable of monitoring service discovery and handling of SLA dependency is pre-

sented in Chapter 7. This Chapter is derived from:

– Amir Vahid Dastjerdi, Sayed Gholam Hassan Tabatabaei, Rajkumar Buyya.

Dependency-aware Ontology-based Approach for Deploying SLA Monitoring

Services in Cloud, Journal of Software: Practice and Experience, Volume 42,

Issue 4, pp. 501-518.

• This thesis is concluded in Chapter 8 by discussing conclusions and future research

directions.

Chapter 2

Taxonomy and Survey of Cloud
Service Coordination Methodologies

This chapter presents an overview of services coordination concepts and methodologies. Service

coordination has been applied in different computing paradigms namely SOA, and Grid. A number of

approaches with variety of architectures and algorithms have been proposed to tackle the challenges in

service coordination. The aim of this chapter is to create a comprehensive taxonomy to categorize theses

approaches and present them in such a way that identifies gaps in this area of research. Furthermore,

this chapter indicates how the approaches in SOA and Grid can share their contributions to deal with

service coordination challenges in Cloud.

2.1 Background

CLOUD [18] is a type of parallel and distributed system consisting of a collection

of virtualized computing resources that are provisioned on-demand and offered

as one or more unified service(s) based on service-level agreements established through

negotiation between the Cloud provider and users. Clouds can be classified according to

their service types and deployment models. There are three types of services as shown

in Figure 2.1:

1. Infrastructure as a Service (IaaS): It provides resources that have been virtualized

(virtual units) such as virtual computer, database system, or even a virtual clus-

ter. Among IaaS providers, Amazon Elastic Compute Cloud (Amazon EC2) has

attracted considerable attention. Amazon EC21 provides the flexibility to choose

1Amazon EC2. http://aws.amazon.com/ec2/

15

http://aws.amazon.com/ec2/

16 Taxonomy and Survey of Cloud Service Coordination Methodologies

Cloud services

Infrastructure as a Service
(IaaS)

Virtual
machine

Virtual
appliance

Platform as
a Service
(PaaS)

Development
environment

Software as
a Service
(SaaS)

Web-based
email

Figure 2.1: Cloud service models.

from a number of different virtual machine (instance) types to meet various com-

puting needs. Each instance provides a predictable amount of dedicated compute

capacity and is charged per instance-hour consumed.

2. Platform as a Service (PaaS): It provides developers with an environment that sup-

ports all phases of software development from coding to deployment. Therefore,

developers can concentrate on their main duty of creating efficient software instead

of building an environment for running their software. For example, Google App

Engine2 makes it easy to build an application that runs reliably, even under heavy

load.

3. Software as a Service (SaaS): SaaS is the closest layer of Cloud Computing to the

end users and offers software in utility-based model. A SaaS user is not aware

of underlying infrastructure. The main advantage of adopting SaaS for users is

saving on upfront license or infrastructure costs. A distinguished example for SaaS

is Salesforce3 which can keep track of a business customers and manage its budget

at the same time.

Furthermore, Clouds can be classified based on their deployment models as:

1. Public Cloud: It offers Cloud services on the Internet to clients or other service

providers. In addition, public Cloud services are not restricted and are available to

general public.

2Google App Engine. http://appengine.google.com/
3 Salesforce. www.salesforce.com/au

http://appengine.google.com/
 www.salesforce.com/au

2.1 Background 17

2. Private Cloud: In contrast to public Clouds, Private Cloud services can be accessed

and managed exclusively by people of an organization.

3. Hybrid Cloud: It offers services which are deployed on two or more Clouds. There-

fore, it enables data and application portability among participating Clouds.

4. Multi-Cloud: Similar to Hybrid Cloud, it offers services deployed on two or more

Clouds. However, the underling Cloud infrastructures are restricted to public Clouds.

As it has been mentioned in Chapter 1, this thesis investigates service deployment in

Multi-Cloud environments. We mainly focus on IaaS services such as virtual machines

and virtual appliances to satisfy user requirements as shown in Figure 2.1. Service de-

ployment in Multi-Cloud (the process of making a service ready for use) often includes

deployment of multiple interrelated software components into heterogeneous environ-

ments. Service deployment in Cloud consists of multiple phases which mainly focus on

discovering application required by users, and deploying them on the appropriate IaaS

Providers. These phases altogether called Service coordination [98], which effectively and

consistently provides discovery, selection, and SLA management solutions for a given

context. In Service Discovery, user requirements are used as an input for discovery of

the best suited Cloud services among various service repositories of providers. For SLA

Negotiation, the user and the discovered providers negotiate on the quality of services.

In the selection phase, an SLA contract will be selected from a set of made agreements.

Further, the acquired service will be continuously monitored in the Monitoring phase.

We provide the key background information and categorize and comment on existing

solutions for all service coordination phases. While a number of approaches with vari-

ety of architectures and algorithms have been proposed for service coordination in Grid

and SOA contexts, Cloud service coordination is in its infancy and there are many open

problems. Therefore, we investigate new challenges in service coordination specially in

the context of Cloud computing. Next, we identify what can be extracted from previous

works in the context of Grid and SOA to tackle those challenges. In addition, survey

and taxonomy are presented in a way that identifies gaps in this area of research, and

helps up to position this thesis. We start the classification by reviewing service discovery

18 Taxonomy and Survey of Cloud Service Coordination Methodologies

techniques.

2.2 Discovery

Service discovery is a procedure of searching for required services which their functional

and non-functional semantics satisfy a users goal. In the SOA context, the typical archi-

tecture of a web services includes three roles, namely service user, service broker and

service provider. Once the user sends a service request to the broker, matching service

providers should be sent back by the broker. If the broker finds a set of services, which all

satisfy the functional requirements of a user, the crucial issue is how to select the fittest

service based on the user preferences. Current approaches to service discovery can be

divided into categorizes as depicted in Figure 2.2. In following, we survey existing ap-

proaches for service discovery based on the presented classification in Figure 2.2.

Service
Discovery

Context

Grid

SOA

Cloud

Language

Semantic-
based

OWL

WSML

XML-based

Matching method

Semantic-based

Non-logic-based

Hybrid

Architecture

Centralized Decentralized

Unstructured
and agent-

based

Structured and
DHT-based

Repository
building method

Manual

Automatic

Figure 2.2: Taxonomy of discovery approaches.

2.2.1 Non-logic Based Discovery

Approaches in this category of service discovery apply symmetric attribute-based match-

ing between requirements and a request. For example, IBM smart Cloud provides syntac-

tic matching discovery system to choose the appropriate Cloud provider, instance type,

and asset catalog for the deployment. A similar discovery strategy is offered by Amazon

EC2, GoGrid and Rackspace. For Globus [151] the resource discovery service is part of

2.2 Discovery 19

the so called Monitoring and Discovery Service (MDS). MDS makes use of WSRF (Web

Services Resource Framework) standards and has a centralized information indexing ser-

vice similar to UDDI [169], which cannot support complex queries. Similarly, Condor

[111, 142], Gridbus broker [17], and Inter-Cloud [19] apply a centralized attribute-based

matchmaker to match requests to resources.

2.2.2 Semantic-based

Non-logic based discovery systems in grid and Cloud (IBM Smart Cloud Catalog search,

Amazon EC2 image search) require exact match between a client’s goal and a provider’s

service description. In a heterogeneous environment such as Cloud, it is difficult to en-

force syntax and semantics of QoS descriptions of services and user requirements. There-

fore, applying symmetric attribute-based matching between requirements and a request

is impossible. Building semantics of Cloud services, user requirements, and data would

provide an inter-Cloud language which helps providers and users share common under-

standing regarding the Cloud service functionalities, QoS criteria, and their measurement

units. A semantic service is a result of a procedure in which logic-based languages over

well-defined ontologies are used to describe functional and non-functional properties of a

service. Discovery approaches can be further categorized based on logic-based languages

they support as following:

WSMO-based Matchmaking

Web Service Modeling Ontology (WSMO) [145] defines a model to describe Semantic web

services, based on the conceptual design set up in the Web Service Modeling Framework

(WSMF) [54]. WSMO identifies four top-level elements as the main concepts [55]:

• Ontologies, provide the (domain specific) terminologies used and are the key el-

ements for the success of Semantic Web services. Furthermore, they use formal

semantics to connect machine and human terminologies.

• Web services, are computational entities that provide some value in a certain do-

main. The WSMO Web service element is defined as follows:

20 Taxonomy and Survey of Cloud Service Coordination Methodologies

– Capability: This element describes the functionality offered by a given service.

– Interface: This element describes how the capability of a service can be sat-

isfied. The Web service interface principally describes the behavior of Web

services.

• Goals, describe aspects related to user desires with respect to the requested func-

tionality, i.e. they specify the objectives of a client when consulting a web service.

• Mediators, describe elements that handle interoperability problems between differ-

ent elements, for example two different ontologies or services. Mediators can be

used to resolve incompatibilities appearing between different terminologies (data

level), to communicate between services (protocol level), and to combine Web ser-

vices and goals (process level).

Besides these main elements, non-functional properties such as cost, deployment time,

security, scalability, and, reliability are used in the definition of WSMO elements. Fur-

thermore, there is a formal language to describe ontologies and Semantic Web services

called WSML (Web Service Modeling Language) which contains all aspects of Web ser-

vice descriptions identified by WSMO. In addition, WSMX (Web Service Modeling eX-

ecution environment) is the reference implementation of WSMO, which is an execution

environment for business application integration [74].

In addition, WSMX provides centralized semantic-based service discovery [92] which

uses WSMO descriptions of goals and web services. The discovery engine in WSMX en-

ables set-based discovery, and further enhances the discovery by adding a caching mech-

anism [157] and two-phase discovery technique to improve the discovery performance.

The two-phase discovery technique advances the previous approach by differentiating

two types of goals. First a generic objective and preference description is created at de-

sign time which is called goal template. Next, at runtime the goal template is instantiated

with clients input values. Therefore, matched services for goal templates are identified

and stored at the design time and stored services are additionally filtered based on user

inputs at runtime. By reducing number of reasoning and matchmaking operations, this

2.2 Discovery 21

approach improves the performance compared to the previous WSMX discovery tech-

nique.

OWL-S based Matchmaking

Enabling automatic web service discovery was one of objectives of creating OWL-S [118].

To achieve this, a software agent needs a computer-interpretable description of the ser-

vice. Therefore, OWL-S offers a semantic web markup language which establishes a

framework within which these descriptions are made and shared. OWLSM [83] and sim-

ilar other efforts [130] proposed discovery (Input Output matching) for services which

are described in OWL-S. OWLSM [83] was among the first efforts to offer ranking results

based on different matching degrees instead of retuning only success or fail.

Claiming that previous OWLS-based matchmakers fail to fully capture the function-

ality of semantic services, Averbakh et al. [6] proposed a method that further improves

the discovery results by incorporating users’ feedbacks. The method is capable of deal-

ing with limited amount of feedbacks by acquiring required information from similar

requests. Once experimentally evaluated and compared with OWLS-MX using a stan-

dard semantic service collection, results confirm that utilizing users’ feedbacks improves

the matchmaking quality.

2.2.3 Building Semantic-based Service Repository

XML Schemas are used to describe the data model of WSDL services, however the data

model for semantic services is described using the conceptual model provided by on-

tologies. Thus, in order to build semantic service repository we require mapping be-

tween XML data and its corresponding representation in ontology. The mapping can be

achieved manually, which is time consuming and error-prone or automatically, which

is called data Grounding. Data Grounding has been investigated intensively [77, 95],

however we only mention two fundamental technologies which were implemented and

their efficiencies were verified. Ferdinand et al. [56] proposed a Grounding approach

with two kinds of data transformations that maps XML Schemas to OWL ontologies and

22 Taxonomy and Survey of Cloud Service Coordination Methodologies

XML documents into RDF graphs. Likewise, WSMO Grounding [100] applies a similar

method but with only one single set of mappings between XML Schema elements and

WSMO ontology meta-model.

2.2.4 Hybrid Matchmaking

Computational expensive nature of logic-based reasoning required for semantic-based

discovery has motivated researchers to build hybrid matchmakers. Hybrid matchmakers

are claimed to enhance the quality of service discovery by incorporating both syntactic

and semantic matching. WSMO-MX [97] and OWLS-MX [96] are examples of hybrid

matchmaker.

WSMO-MX is a hybrid and IOPE (input, output, precondition, and effect) match-

maker built for services described in WSML. WSMO-MX applies varieties of logic-based

and non-logic based techniques to search for services which are semantically close to a

given goal. Services in WSMO-MX are described in WSML-MX which is an extension of

WSML. The objective of WSML-MX is to enrich WSML-RULE with additional language

elements that allow users to impose relaxation constraints and set preferences for match-

making. The performance of the hybrid matchmaker is measured based on precision,

recall, and computation time. Experimental results show that the hybrid approach out-

performs both logic-based and syntactic-based approaches. It decreases the computation

time and at the same time performs similar to the logic-based approach with regards to

precision and recall.

2.2.5 Decentralized P2P Discovery

When service descriptions are distributed over repositories located in different locations,

this class of discovery approaches are helpful.

Structured and DHT based

Distributed Hash Table (DHT) operates on a group of services descriptions which are

distributed among repositories in a network. It controls content distributions for efficient

2.2 Discovery 23

routing queries. DHT provides a distributed and key-based lookup protocol which is

similar to hash tables.

An approach for logic-based and QoS-aware discovery of semantic services, which

are advertised in P2P-based repositories, is proposed by Vu et al. The objective of the

work is to map semantic services to repositories in such a way that finding the reposito-

ries with the best matching services is much quicker. The idea is to group services that are

operating on specific set of concepts (services which their inputs and outputs concepts

are similar) in to a same repository and thus giving them a same hash key. Distributed

hash table is used by them to search for the repository which corresponds to a particular

key. The proposed discovery approach is scalable in terms of the number of registries,

users, and service properties.

Basic DHT is efficient for single-dimensional queries. However, as a Cloud service

is characterized by several functional and non-functional properties a search query is al-

ways multidimensional. These search dimensions or attributes can include service type,

processor speed, architecture, installed operating system, available memory, and net-

work bandwidth. Therefore, Ranjan et al. [144] proposed a Cloud service discovery by

extending the DHTs for indexing complex Cloud service provisioning information.

Unstructured and agent-based

This family of discovery techniques have built a unique decentralized discovery ap-

proach by combining agent and semantic technology. This gives the discovery approach

the flexibility of allowing resources (which are represented by agents) to interact seman-

tically and form a composition which is capable of completing a given task. In the ap-

proach offered by Han et al. [75], to form the composition, the first resource agent is cho-

sen randomly and all the other consecutive agents are selected by calculating semantic

similarity. The experimental results show that success probability of the discovery algo-

rithm increases with the lower similarity threshold, higher task load, and larger resource

network scale.

Service discovery on its own cannot map user requirements to a specific Cloud ser-

vice. This is because a result of discovery phase can be a set of candidates which all satisfy

24 Taxonomy and Survey of Cloud Service Coordination Methodologies

the functional requirements of users. Therefore, a service selection and ranking method-

ology is desirable to find and select the most prominent service based on user preferences

on non-functional properties. Next section presents and classifies major service selection

approaches in the literature.

2.3 Service Selection Taxonomy

Service selection has been applied in different computing paradigms, namely SOA, and

Grid. This is because a resource can be represented by web services and web service se-

lection approaches help to assign each request in the queue to the most proper resource

in a fair manner. In addition, recently Cloud Computing has emerged as a promising

paradigm in which the platform and even the infrastructure are represented as service,

therefore Cloud selection plays a significant role and will attract lots of attention. Con-

sidering the popularity of Cloud computing, it is highly possible to conduct redundant

researches in this area. A sizable body of literature exists in the context of SOA and

Grid that can share their contributions to tackle selection problems in the Cloud. Conse-

quently, the aim of the taxonomy presented in this section is to identify state-of-the-art

challenges in web service selection and extract a general model for service selection. In

addition, it aims at classifying works based on how they model QoS attributes and how

they approach selection.

In the next sections, a general model for service selection is presented. The model

consists of two parts. The first part describes steps that have to be considered for QoS

management and the second part deals with the process of web service selection based

on the QoS preferences and service descriptions provided.

2.3.1 QoS Management

As depicted in Figure 2.3, several steps have to be taken into account for QoS manage-

ment. In general, a QoS management approach for QoS-aware Web service selection

includes the following phases:

2.3 Service Selection Taxonomy 25

Identifying roles

• Finding all roles in the

system and defining

objectives of selection

problem.

QoS modelling

• Model for non-

functional properties

• Organise properties

into hierarchy

• Capture preferences

for each role including

importance of each

criteria

Dealing with

fuzzy perception

• Refining incomplete

and imprecise

perceptions

Acquire QoS

information of

services

• Collect and acquire

QoS information from

providers, users, and

third parties

Service

evaluation

• Service evaluation for

all roles

• Converting semantic-

based QoS to input for

optimization problem

• Aggregating the

evaluation results into

a comparable unit

Figure 2.3: QoS management process.

1. Identifying Roles: Provider and client (requester) are the two basic roles in all

service selection problems. The objective of selection is determined based on the

defined roles in the problem. Selection solutions usually try to maximize profit of

providers, requesters, or both.

2. QoS Modeling: QoS can be described in user preferences to express their expec-

tations. It also can be included in a service advertisement when there are different

service providers that present diverse versions of services to answer varying re-

quirements of their customers. User preferences and service offerings have both

functional and complex non-functional aspects, which need to be matched against

each other [182]. Moreover, the model should give the user the ability to express

which QoS criteria are more important for them and provides a way to define the re-

lations between QoS criteria. For example, one user may prefer a service with better

response time compared to a service with a lower price and the other may prefer

the less costly service. In addition, it increases the transparency if we place QoS

properties into hierarchical structure. For example, in the hierarchical structure,

throughput and response time are performance aspects while security and privacy

are safety aspects. commonly ontology is used to build the hierarchy [164, 165].

3. Taking Care of Users Fuzzy Perceptions: Dealing with fuzzy perceptions of users

is another important task in QoS management. The reason is that ranking system

are used by non-experts who find it difficult to express their preference through

utility functions precisely[172].

26 Taxonomy and Survey of Cloud Service Coordination Methodologies

4. Collecting QoS Information: In this phase, a proper approach to collect and ac-

quire QoS information is needed. Even though, some works [161] believe users

are responsible for development of QoS information, others [170, 174] assume that

service providers are supposed to offer QoS information along with their service

descriptions.

5. Aggregating the Evaluation Results into a Comparable Unit: This phase includes

transferring semantically described QoS to an input for an optimization algorithm

[62]. It is essential to aggregate QoS criteria and sub-criteria scores to gain a final

score for the service. In this step, a suitable aggregation method needs to be selected

[182].

2.3.2 Process of Service Selection

After QoS values are acquired, they are used as an input for the selection approach which

finds the most preferable services. Following selection phases are commonly considered:

• In the first phase, formulating and modeling of the problem is accomplished. This

includes finding constraints and objectives for the selection problem. For example,

in a work done by D. Tsesmetzis et al. [165] the bandwidth has been considered as

a constraint and the objective is to minimize the cost.

• Next, the selection problem is tackled by a proper optimization or decision making

technique which suits the modeled problem.

2.3.3 Service Selection Context

Service selection has been investigated in different computing paradigms and most im-

portantly for Grid, and SOA. This section shows how characteristics of the problem in

each realm differ from the others. The objectives of studies in each context are summa-

rized and illustrated in Figure 2.4.

2.3 Service Selection Taxonomy 27

Selection Context

Grid

Load balancing

Queuing theory

Market driven
strategy

Fair distribution of
resources

Optimizations techniques

SOA

QoS
management

Modeling of selection as an
optimization or decision

making problem

 Integration of semantic and
optimization

Cloud

Dynamic
changes of

services

Reliability and
security

Inter-Cloud
language

Figure 2.4: Selection researches in different contexts.

Grid Computing

Grid Computing aims to enable resource sharing and coordinated problem solving in

dynamic, multi-institutional virtual organizations [59, 61]. The goal of such a paradigm

is to enable federated resource sharing in dynamic and distributed environments. QoS

management and selection works in this context mainly focus on load balancing [16] and

fair distribution of resources among service requests. Besides that, there are cases where

a service on its own can not satisfy user requirements, and a composition of services is

required. The problem of finding a composition which satisfies user requirements have

been also studied extensively in this context.

Load Balancing As Xiaoling et al. [174] quoted that because web services are highly dy-

namic and distributed, it is likely that loads on service providers are not distributed

symmetrically. Consequently, the work approaches the problem by applying the

queuing theory to assign requests to service providers that have the least load.

Hence, the system obtains all providers which can serve the request and choose

28 Taxonomy and Survey of Cloud Service Coordination Methodologies

the one which has the minimal expected waiting time. The Expected Waiting Time

(EWT) is calculated based on Equation 2.1.

EWT = E(w) =
1
µ

(
ρ

1− ρ

)
=

λ

µ(µ− λ)
(2.1)

where λ is the arrival rate, which specifies the number of requests the provider

served in the time unit. This can be calculated by Equation 2.2.

λ =
NUM

elapstime
(2.2)

In the Equation elapstime is calculated from the point when the web service provider

is started, and NUM is number of requests that satisfied during elapstime. Perfor-

mance evaluation for the approach shows the selection strategy reduces total wait-

ing time in general and works better than random selection when the provider’s

capacity is limited and low.

Wancheng et al. [170] uses the price-demand rule in commodity-market to im-

prove load balancing. They discuss that using best-effort strategy to serve users

leads to an unbalanced system because of greedy competition for the best services.

In their approach, users and providers are considered as buyers and sellers in a

commodity-market to adjust the supply and demand [16]. In addition, the selection

strategy offers "enough" QoS as a substitute for "best QoS". The evaluation model

for web service selection introduces the relationship between price of services and

value of their attributes. The service selection problem is modeled as a 0-1 multi-

dimensional knapsack problem. The demands of web services are determined by

their invocation rate. Therefore, it increases the price when the invocation rate is

high and vice versa to obtain a balanced system.

Fair Distribution of Resources Guha et al. [73] proposed an algorithm, which enables

optimal selection while considering fair distribution of resources among users. First,

they analyzed traditional matchmaking algorithms [114]. The algorithms take the

first request and then map it to the service with the highest score. Then, they se-

2.3 Service Selection Taxonomy 29

lect the second best for the second request in the list. The major drawback of this

kind of algorithm is that requests placed later in the queue are mapped to services

with poor match scores. One way to tackle this problem is applying a constraint-

satisfaction-based matchmaking algorithm (CS-MM). The algorithm’s effectiveness

appears when several requests are assigned to a single service which can only

serve one request at a time. Therefore, the algorithm selects the service for a re-

quest, which has the lower second highest match score.However, to achieve better

results when Grids process a large number of concurrent requests for particular ser-

vices the Multiple Objective based Particle Swarm Optimization Algorithm using

Crowding Distance (MOPSO-CD) is adopted. The algorithm is swarm based arti-

ficial intelligence algorithm [33, 79, 133] and was inspired from the nature of bird

flocking. The experimental results in the paper show that, although the MOPSO-

CD takes considerably more time to be executed, it produces a far more accurate

solution than CS-MM.

With the aim of fair distribution of Grid resources (services) among requests, Lud-

wig et al. [114] presented a service selection approach for Grid computing based on

a Genetic Algorithm (GA) and compared its performance with traditional match-

making methods. They are five quality of service criteria: execution duration, price,

reputation, reliability, and availability. First, the paper proposed a scenario in which

many service requests coming into the system are to be served at the same time.

Next, it compares matchmaking and genetic algorithm approaches. The match-

making algorithm uses a weighting approach for selection and chooses the service

with the highest score for each request. The main weakness of this method is that

requests which are placed later in the list are likely to be mapped to services with

poor match scores. To tackle this problem the paper applies the NSGA-II genetic al-

gorithm. The genetic algorithm was tested for several populations and the average

matching score was compared with the matchmaking algorithm. Results show that

if a proper population size is chosen for NSGA-II, it can deliver better performance

compared to traditional matchmaking algorithms. The work solved the fairness

problem, however introduced a new problem of finding a proper population size

30 Taxonomy and Survey of Cloud Service Coordination Methodologies

for the GA.

Service Oriented Architecture

In this paradigm, the sizable body of literature has focused on describing QoS for services

and user preferences, building QoS ontology, and proposing optimization approaches for

multi-criteria web service selection. For QoS description, the semantic web service has

been applied [62] in SOA to increase expressiveness, flexibility, and accuracy. Seman-

tically described QoS information then has to be converted to comparable units to be

proper inputs for optimization techniques[62] for selection.

Quality of Service Description Toma et al. [161] discuss various approaches and their

advantages and disadvantages for modeling QoS. Initially, the work starts with

discussing three main approaches to process QoS in SOA, namely: combined bro-

ker, separate QoS-broker, and direct negotiation. The combined broker approach

[152] is an extended version of UDDI in which a broker is extended to process QoS

information. In the second method [119, 171] the devoted broker is responsible

for processing QoS. And the third one requires provider and user to negotiate and

agree on service level agreement [113,163]. Subsequently, the paper talks about cur-

rent supports of QoS in WSMO with the help of non-functional properties. WSMO

proposes a number of non-functional properties for each element in a service de-

scription. The description of QoS is based on the Dublin Core Metadata Initiative

[175]. Finally, the article offers three techniques to extend WSMO/WSML support

for QoS. The first method specifies each QoS property through the use of relations

in WSML. Therefore, there is no need to add separate vocabulary for QoS. The sec-

ond technique is to define a new concept for QoS. And through the appropriate

property, we can include relationship between non-functional properties. The third

approach is to model them like capabilities in WSML. The main disadvantage of

this approach is the need for extending WSML syntax. Among the three, the third

approach seems to be the most suitable one, as it can provide the full support of

QoS. However, this approach has to be developed from scratch to deliver clear syn-

tax and proper ontology for reasoning.

2.3 Service Selection Taxonomy 31

Integration of Semantic and Optimization In addition, with the emergence of seman-

tic web services, some of the works in this context concentrate on filling the gap

between semantic-based solutions and optimization solutions [62]. Furthermore,

some efforts [3,112,170] describe the selection problem as a part of the service com-

position problem.

J. Garcia et al. [62,63] present a framework to transform the user preferences which

are in the form of ontologies to an optimization problem’s inputs. The authors

argue that semantic web services define ontologies that help web services to be

discovered and composed automatically. As they use description logic for those

purposes, they are infertile in dealing with QoS-based selection. The reason is that

QoS-based selection approaches require optimization that cannot be accomplished

by applying description logic. The authors build their selection approach on their

previous efforts [64], which apply semantically described utility functions to define

user requirements. They propose a selection approach that transforms user pref-

erences into an optimization problem. That optimization problem can be tackled

using various techniques, such as constraint programming or dynamic program-

ming. The selection approach consists of the following phases. In the first phase,

QoS values are retrieved from the semantic description of web services. Proceed-

ing to the next stage, the previous phase results are linked to the user preferences,

which express utility functions for related QoS criteria. In the last stage, an XSL

transformation has been applied to the utility function to acquire the specification of

the desired optimization problem. The optimization problem chosen for the work

is the Constraint Satisfaction Optimization Problem (CSOP) [146]. However, other

optimization techniques can be supported by designing a proper XSL style sheet.

2.3.4 Service QoS Modeling Taxonomy

Currently there are two ways to define QoS attributes for web services namely, extended

Universal Discovery, Description, and Integration (UDDI), and semantic web services.

However, UDDI and Web Services Description Language (WSDL) [103] do not support

modeling of QoS properties of web services. Therefore, works [12, 143] such as UDDIe

32 Taxonomy and Survey of Cloud Service Coordination Methodologies

Criteria relation
modeling

Tendency

Utility
function

Weighting

User preferences
and service
attributes

Dynamic
modelling

Static
modelling

Semantic based

• OWL-Q

• WSMO-QoS

• DAML-QoS

Syntactic
based

• Extended
UDDI

Fuzzy

Precise

QoS source

Provider

User

Third
party(monitoring

services)

Figure 2.5: Web service QoS modeling taxonomy.

[152] and web service level agreement [113] were proposed to enrich web services with

QoS properties. In the following subsections classifications for QoS management are

presented and their summary is illustrated in Figure 2.5.

User Preferences and QoS Criteria Relation and Tendency Modeling

When users express their expectations from services, they identify functional and non-

functional (QoS) characteristics of the required services. In addition, they have to identify

which of the QoS criteria are more important than the others. A simple way to perform

this is to ask users to give assign to each criterion. Using weights to achieve a decision

matrix is one of the primary ways of modeling importance of criteria in user preferences.

This approach has been applied in many works [54, 118, 173] as it is simple and com-

putationally efficient. However, the major drawback concerning this approach is the

complexity of finding proper weight coefficients in real world applications. In addition

to the importance of criteria, [173] it has to be identified whether a parameter value is

more desirable for a particular user when it is smaller or greater. There can be some other

tendencies assigned to QoX properties like "exact" and "close" [164].

2.3 Service Selection Taxonomy 33

Moreover, modeling of relations between QoS criteria have been also investigated.

For example, Tsesmetzis et al. [165] discussed the importance of QoS consideration

for service providers and users to help providers attract more customers. As the first

step, the work creates a QoS vocabulary ontology in OWL [152] with the maximum

height of two to reduce the complexity. The QoS vocabulary covers a wide range of

non-functional properties from performance to security and reliability. Then, it applies a

standard generic model [131] for defining an association between QoS attributes and the

approach for measuring them. A comprehensive work on the relation modeling is done

0

0.2

0.4

0.6

0.8

1

1.2

0 60 120 180 240 300 360 420

U
ti

li
ty

Price ($)

Figure 2.6: Price utility function.

by Qing [181]. In the work, a mechanism for ranking web services using logic scoring

preferences (LSP) [46] and ordered weighted averaging (OWA) [22, 57] is proposed. The

authors pointed out that current ranking algorithms ignored relations between individ-

ual criteria and the simple arithmetic metric is incapable of representing relations such as

simultaneity and replaceability. Authors claim that those drawbacks can be addressed by

adapting LSP and OWA. The work makes use of LSP, which was originally developed for

solving hardware selection, and considers the relation between criteria of selection such

as replaceability, simultaneity, and mandatory-ness. However, since the work is based on

LSP, it cannot deal with selection problem with many QoS criteria.

Utility function recently has been used [63, 104, 106, 146] and it is said [63] to be the

most appropriate way to expressively model user preferences. Therefore, works in Cloud

computing environments can adopt it for service selection. Utility function is a normal-

ized function and shows which values of QoS criteria are preferable. For the selection

of the best alternative, all of the utility functions have to be aggregated to compute the

34 Taxonomy and Survey of Cloud Service Coordination Methodologies

global utility value. J. Garcia et al. [63] proposed a new approach of ranking based on

the description of user preferences in the form of a utility function. Authors presented a

hybrid architecture for service ranking by adding support for Web Service Modeling On-

tology (WSMO) [40, 145] to describe QoS. For dealing with several non-functional prop-

erties, each utility function was associated with a relative weight. Therefore, to solve a

multi-criteria ranking problem, the user preferences were calculated as a weighted com-

position of the associated utility functions. It is worth to mention that, user preferences

definitions are inserted as part of a goal in the form of WSML. Figure 2.6 shows a sample

of utility function extracted from their work. As depicted in Figure 2.6, the highest utility

value is returned by the function if the price is lower than 120 and the returned value

drops when the price increases.

In addition to those methods, Tran et al. [164] adopted Analytic Hierarchy Process

(AHP) [148] for QoS criteria relation modeling and service selection. AHP consists of

three main phases, problem breakdown, comparative evaluation, and priority composi-

tion. In the first phase, each problem is decomposed to three elements, the overall goal,

its criteria and sub-criteria. Next, pairwise comparisons for all criteria and sub-criteria

will be done to obtain their relative importance for decision making. Subsequently, all

solutions are ranked locally applying those sub-criteria. In the final stage, all relative lo-

cal ranks of solutions are combined to obtain the overall rank for the solution. Since the

method uses pairwise ranking, its performance decreases when the selection problem

consists of large number of criteria. Moreover, the authors enhance flexibility of ranking

algorithm by allowing two options of mandatory and optional QoS constraints. It offers

more options (exact and close) for tendency characteristics of QoS criteria in addition to

negative and positive options considered by other studies [63, 162]. The "exact" option

shows that the property value should be equal to the defined value for the request. And

the "close" option says that a value close to the requested value is more desirable.

Furthermore, Wang et al. [172] presents a novel resolution process for determining

the linguistic weight of QoS criteria. First, it creates the framework for evaluation QoS

criteria, which summarizes QoS requirements of web services from opinions of decision

makers and market surveys. Next, it determines the importance of criteria by aggregating

2.3 Service Selection Taxonomy 35

all opinions of participants. The approach is a complement to other previous studies

[39, 159], which help to select web services in market places based on QoS.

QoS Source: Provider, User, or Third Party

The majority of studies assume that QoS information is supplied by providers along with

services description. However, some believe [172] that not all providers are willing to

supply the related QoS information for comparison, or that they are likely to advertise

their services exaggeratedly. That is why considering consumers feedback on their ex-

perience of using web services determine QoS values more accurately. In addition, there

are values that cannot be determined by users or providers, such as network related QoS

information, reliability, and trust, which is usually evaluated by a third party (monitor-

ing services). To collect QoS information, Zhenyu et al. [112] built an approach based

on distributed agents. The main contribution of the work is building a procedure for

processing the quality of web service from multiple locations. It presents a distributed

approach to acquire the QoS data from users in different locations with the help of agents

scattered in the network.

Context-Aware

There are cases where QoS information of web services vary based on the users’ contexts.

The context-aware QoS information allows service providers or third parties to publish

QoS values for web service based on the user context. Qing et al.[181] adopts the in-

Context project4 for providing dynamic context information. This information includes

location, budget of users, and availability of services. Therefore, the selection is based on

reasoning on the context data. In addition, a selection approach offered by Lamparter

et al. [106] is context sensitive as it adopts utility function policies to model context

dependent user preferences. For example, there might be a case where a web service

selected as the best service in the list is not available in a particular location. Therefore,

selecting it for the user in that context is not acceptable.

4inContext project.http://www.in-context.eu

http://www.in-context.eu

36 Taxonomy and Survey of Cloud Service Coordination Methodologies

Context information plays an important role In Multi-cloud service selection. This

is because, context information of users helps the service coordinator to improve user’s

quality of experience. For example, service coordinator can use a client’s location in-

formation to determine which Cloud is the closest and thus provides service with less

latency and higher throughput. Apart form that, there are some restrictions applied by

law for deploying on Clouds in specific geographic locations. For example, according

to Data Protection Act (DPA), there are cases where transferring data to Clouds located

outside the European Union are unlawful for European located companies.

As Papakos et al. [132] discussed, another important QoS information (for service

selection in Cloud) to be considered is the user’s device. As they have mentioned, re-

quirements of a client with a mobile device can change because of changes in the con-

text of the device. These status changes encompass hardware resources, environmental

variables, or user preferences. Binding to a random service offering may lead to excess

consumption of mobile resources such as battery life. Therefore, the authors propose

VOLARE the middleware that dynamically provision Cloud service based on the context

of a user.

Dynamic Versus Static Modeling of User Preferences and Web Service QoS Attributes

The value of QoS properties for a web service can remain constant and therefore iden-

tified once, or it can be updated regularly. In addition, user preferences also can be

specified once or change during interactions with the system. For example, the service

response time is heavily dependent on network traffic. Therefore, it can have a short re-

sponse time at a moment in a day and then increase dynamically to a certain level when

it is not available.

Lamparter et al. [106] pointed out shortcomings of current works like the WS-Agreement

[1] in modeling dynamic preferences of users. Moreover, it shows how they can be tack-

led by a mechanism using utility [93, 107] which are presented in the form of OWL on-

tology. In addition, authors concluded that the performance of their modeling depends

on how expressive services and requests are described. Consequently, if service selection

happens in runtime, one way to increase the performance is limiting the expressiveness

2.3 Service Selection Taxonomy 37

of the biding language.

Andrzej et al.[185] have taken the advantage of state-full web services to deal with dy-

namic changes of Cloud services. They proposed a higher layer of abstraction which pro-

vides selection based on QoS criteria values that describe dynamically the state and char-

acteristics of Cloud Services (cluster as a service). In addition, they have implemented

their proposed solution to prove its feasibility.

Semantic-Based Versus Syntactic-Based Service Description

There are two ways to describe entities of a web service, namely semantic-based and

syntactic-based (extended UDDI). The syntactic-based approach uses numerical and key

word values for web service QoS properties. Although an extended version of UDDI can

encompass the QoS information of web services, it is not machine understandable, hence

not suitable for automatic selection. The automatic selection enables service providers

and users to be decoupled, which means they do not have to be aware of each other

before execution phase. In addition, different service providers and users can apply a va-

riety of models for describing QoS attributes, and then it is essential to acquire a solution

to understand different QoS representations. That solution, which covers the mentioned

drawbacks, is semantic web service that increases expressiveness, flexibility, and accu-

racy by applying ontology for representing QoS properties. A number of QoS ontologies

were proposed for web service, which are based on three semantic languages, namely

OWL-Q [104, 149], WSMO-QoS [120, 161, 173], and DAML-QoS [188].

OWL-Q is built on top of the OWL-S [118] language and has the strength of not only

modeling and measuring static QoS attributes but also dynamic properties. Nonetheless,

it does not provide a way of defining importance of QoS criteria and whether they are

mandatory or optional. Tran et al. [164] developed a comprehensive OWL-based QoS

ontology and an AHP-based ranking algorithm to dynamically rank services.

WSMO-QoS is another promising approach for QoS modeling. It specifies an upper

level ontology that describes each attribute of a web service in detail. Moreover, a new

category of properties with the name of "non-functional" was added to Goal and semantic

service descriptions. The category provides attributes for describing QoS type, metric,

38 Taxonomy and Survey of Cloud Service Coordination Methodologies

dynamicity level, tendency, and importance.

Finally, DAML-QoS was developed as a complement to DAML-S to be capable of

specifying QoS ontology. More specifically, the ontology consists of three layers of QoS

profile, QoS property, and QoS metric. The QoS-profile layer is developed mainly to

describe services and request ontology for providers and users. The QoS property deals

with name, domain, and range of QoS attributes that can be defined in DAML-QoS. And

finally, the QoS metric layer is used for identifying how to measure QoS.

Fuzzy Versus Precise Preferences

Commonly, non-expert users have vague preference because of the complex nature of

QoS properties [172]. Therefore, Wang et al. [172] proposed new selection algorithms

based on MaX-Min-Max composition of intuitionistic fuzzy sets (IFS) under the vague

information. The work expects fuzzy perception of users and providers. Therefore, au-

thors suggest a fuzzy multi-criteria decision making solution with following aspects:

• Capable of handling imprecise preferences of users;

• A clear weighting strategy for QoS criteria;

• A QoS-aware service ranking ability.

They use the QoS criteria presented by the W3C working group in 2003. In addition, they

mention the fact that not all providers are willing to provide the related QoS information

for comparison. That is why they have to consider feedbacks of users on their experience

of using web services. As mentioned earlier, the web service selection approach in this

work is based on IFS. IFS was introduced in 1989 by Atanassov [5] and can be considered

as a generalization of the concept of fuzzy set that is effective in dealing with vagueness.

In addition to IFS, this type of problem can be tackled by Fuzzy multi-objective and multi-

level optimization [189].

2.3 Service Selection Taxonomy 39

Identifying Roles in the Problem

It is important to determine the objective of the selection algorithm. The selection might

aim at maximizing provider profit or satisfying user’s objectives. Furthermore, the selec-

tion approach [164] can be flexible enough to act for both parties. In details, it can give

weight to objectives of users and providers in the utility function. Therefore, by adjusting

the weight in the utility function, it can work in favor of either of two parties.

2.3.5 Taxonomy of Web Service Selection Approach

As it is illustrated by Figure 2.7, research on service selection are based on two types of

approaches, namely optimization and decision making. Decision-making can be defined

as the process of identifying and choosing alternatives based on values and goals of de-

cision makers. Therefore, the assumption is that there are many candidates to be chosen

and the aim is to select the one that best fits our goal, desires, and constraints. This pro-

cess is depicted in Figure 2.8. When there is one single criterion, the selection can be made

by identifying the alternatives with the best value for that criterion. However, when there

are several criteria as it is depicted in Figure 2.9, it is necessary to define which criteria

have higher priorities to users. And this is where the decision making techniques offer

approaches such as AHP to help users assign the comparative importance to those cri-

teria. In the case of multiple criteria and a sufficiently small number of explicitly given

alternatives, when there is no existing scale of measurement for the criteria, the prob-

lem can be solved using decision making approaches such as the Analytical Hierarchy

Process (AHP) and the Multi-Attribute Utility Theory (MAUT).

However, if there are large number of alternatives, multiple criteria optimization tech-

niques can be applied. These techniques can be categorized into evolutionary-based and

non-evolutionary based techniques. Evolutionary-based techniques (for multi-objective

problems) are based on the Pareto solution, which is an economic concept and applied

for the condition when a better value for an attribute can only happen once the value

of at least one other attribute gets worse. AI solutions, such as the Non-dominated Sort-

ing Genetic Algorithm-II (NSGA-II), Strength Pareto Evolutionary Approach II (SPEA-II),

40 Taxonomy and Survey of Cloud Service Coordination Methodologies

Selection
approach

Optimization
approach

Non-Evolutionary
based

Greedy

Bottom-up
approach

Pattern-Based

Discard subsets

Evolutionary
based

Non-Pareto
techniques

Pareto-based
techniques

SPEA-II

PSO

NSGA-II

Decision making
approach

MAUT

AHP

Outranking
approach

ELECTRE

PROMETHEE

Figure 2.7: Web service selection approaches.

and particle swarm optimization (PSO) are among the most used techniques in this area.

In the following sections, each of these selection approaches (from decision making to

optimization) will be discussed in detail.

Problem definition Constraint definition Goal definition Attribute definition

Alternative discovery
Select a decision
making approach

Ranking based on
attribute values ,

constraints, and goal

Figure 2.8: Process of decision making.

Decision Making Formulation and Analytical Hierarchy Process (AHP)

The problem of multi-criteria decision making (MCDM) can be considered in the fol-

lowing form: C1...Cm are the criteria, A1...An are the alternatives, W1..Wm are weights

assigned to criteria, a is a matrix whose aij element shows the score of alternative Aj

2.3 Service Selection Taxonomy 41

against the criteria Ci, and Xi...Xn are aggregative scores of the alternative Ai. MCDM

approaches can be classified into two main categories, namely Multi-Attribute Utility

Theory (MAUT) and outranking approach. MAUT is benefited from applying a utility

function that has to be maximized. Moreover, it allows the complete payoff between

criteria that can show relative importance of each attribute in alternative evaluations.

From other work in this category, the distance-minimizing approach [67] can be named.

However, the Analytical Hierarchy process (AHP) is one of the most applied methods in

the MAUT category, therefore in this section we will investigate it in detail. The AHP

method was suggested by Satty in 1998 and is based on a pairwise comparison of criteria

to determine their weights in utility function.

The major contribution of AHP is to convert subjective assessments of the relative

importance to numerical values or weights. The methodology of AHP is based on pair-

wise comparisons of the criteria by asking the question of "how important is criterion Ci

compared to criterion Cj ?". The answer to this question determines the weight for each

criterion. Figure 2.9 depicts the process of choosing the best service provider when there

are four criteria (cost , reliability, security, and trust) to be considered. The answers to the

question can be one of the responses listed in Table 2.1.

Security

(.270)

Reliability

(.127)

Trust

(.056)

Cost

(.547)

Choose

Provider

Provider 1

(.358)

Provider 2

(.493)

Provider 3

(.149)

Goal

Criteria

Alternatives

Figure 2.9: Choosing the fittest provider using AHP.

After the pairwise comparison as it is shown in Figure 2.9, relative importance is

given to each criterion. In the next step, similar questions have to be asked to evaluate

42 Taxonomy and Survey of Cloud Service Coordination Methodologies

Table 2.1: Major scales for pairwise comparisons.

Scores Response to the question

1 Equal importance or preference.

3 Moderate importance or preference of one over another.

5 Strong or essential importance or preference.

7 Very strong or demonstrated importance or preference.

9 Extreme importance or preference.

the scores for alternatives on the subjective criteria. Then, based on the results of this

phase, alternatives are ranked and the best provider is selected.

The next category in decision making approaches is named Outranking, which was

introduced by Roy in 1968. In this approach, all alternatives are compared in a way that

alternative Ai outranks Aj if on the majority of criteria Ai performs as well as Aj, and at

the same time it achieves sufficiently acceptable scores in other criteria. ELECTRE [70]

and PROMETHEE [15] are among the most famous approaches in this category.

Optimization Methods

Optimization methods search for the most suitable service, which is usually the one that

maximizes or minimizes one or several criteria, such as cost and deployment time. The

optimization problem can be complicated when more than one criterion are considered

and there are constraints imposed by users. By considering constraints in the selection,

the definition of optimization can be rewritten as "finding the most suitable services for

the clients or providers, which maximizes or minimizes one or several criteria and still

adheres to the constraints". For example, assume that the best service is the one with

minimum cost, highest availability, and least deployment time when there is a limitation

for providers to serve the users [165,170] due to bandwidth constraint. Then, the problem

of selection can be formulated as the "Selective Multiple Choice Knapsack Problem" (SM-

CKP) which is an NP-hard problem. Studies in the area of selection faced the problem

in different ways, some trying to find the optimal solution [137], others aiming at find-

ing the semi-optimal solution by using heuristics [3, 114, 124, 172]. Dominant approaches

2.3 Service Selection Taxonomy 43

in this area can be classified in two main categories, non-evolutionary and evolutionary

optimization methods, which will be investigated next .

Non-Evolutionary Optimization Method Four classes of selection approaches in this

category are: pattern based, selection using discarding subset results, bottom-up

selection, and greedy algorithms. This classification is done by Jaeger et al. [82]

to solve the problem of multi-criteria selection. It compares several algorithms for

selecting the best web service candidates. They considered four QoS categories in-

troduced by Zeng et al. and Menasce [123, 184]. The categories are: execution time,

cost, reputation, and availability. After that, an approach for aggregating QoS [85]

of individual web services was applied. At the comparison stage, the work ap-

plied the Simple Additive Weighting (SAW) approach, which was extracted from

the context of Multiple Criteria Decision making (MCDM) [81]. They have com-

pared algorithms’ performances, and the results are reported as follows:

• A greedy selection is not able to handle constraints. Instead, it can find the

candidate that scored the highest among all the other candidates.

• A Bottom-up approach [84] relies on the fact that the selection problem for

composition (selection in composition) of web services shows similarities to

Resource Constrained Project Scheduling Problem (RCPSP). In RCSP, a project

is divided into individual tasks and each task has to be assigned to an avail-

able worker to complete the project in a way that meets the constraints, such

as deadline. Bottom-up selection results in the second worse QoS and its com-

putation effort is negligible.

• Pattern-Based selection [71] considers each composition pattern separately and

then tries to find the best assignment. This approach offers the best achieved

QoS compared to all heuristic approaches. The computational effort of this

selection is reasonable, and depends on the composition structure.

• The selection by discarding subsets is a kind of backtracking-based algorithm

that uses a search tree consisting of nodes, each representing a possible pair

of a candidate and task. It results in the best QoS possible and also meets the

44 Taxonomy and Survey of Cloud Service Coordination Methodologies

constraints.

Evolutionary Multi-objective Optimization Methods Evolutionary Multi-objective Op-

timization methods are based on the principle of natural selection, which is called

survival of the fittest and originally characterized by Charles Darwin [38]. Since

evolutionary approaches have shown desirable potential for solving optimization

problem, this class of search strategy has been utilized for multi-objective optimiza-

tion from mid-1980s. Evolutionary multi-objective optimization is in fact a combi-

nation of the evolutionary computation and traditional multiple criteria decision

making. Evolutionary approaches follow two major concepts. The first concept is

the competition for reproduction, which is called selection. And second one mimics

the ability of producing new generation by mutation, which is called variation.

A considerable number of evolutionary multi-objective optimization (EMOO) tech-

niques have been developed in recent years [31, 166]. Two of the most applied

methods in the selection literature, NSGA-II and SPEA-II are briefly explained be-

low.

NSGA Non-dominated Sorting Genetic Algorithm (NSGA) [156] was proposed by Srini-

vas and Deb. The algorithm modifies the ranking procedure originally proposed by

Goldberg [69] based on several layers of classifications of the individuals. NSGA

was highly computational intensive and had several other drawbacks which led to

the rise of NSGA-II [41]. In the first step, NSGA-II constructs a space of solutions,

then performs sorting based on non-domination level, and applies the crowded-

comparison operator to create a new pool of offspring. It applies a fast non-dominated

sorting approach which has O(MN2) computational complexity, where M is the

number of objectives and N the population size. The algorithm is capable of out-

performing many other genetic optimization algorithms [41].

SPEA The Strength Pareto Evolutionary Algorithm (SPEA) is presented by Zitzler and

Thiele [190]. The method is a result of integrating different EMOO techniques. It

has the unique feature of archiving non-dominated solutions already found in or-

der to not to lose certain portions of the current non-dominated front due to ran-

2.4 Service Level Agreement Management 45

dom effects. For ranking (calculating the strength) of non-dominated solution an

approach similar to MOGA is used. In addition, fitness of individuals is calculated

based on strengths of all non-dominated solutions in archive which can dominate

it. Moreover, for maintaining diversity a method called "average linkage method"

[126] is used. Numerous studies [137, 190] applied SPEA to solve the 0/1 knapsack

problems.

2.4 Service Level Agreement Management

As shown in Figure 2.10, research in this area has mainly focused on three aspects of SLA,

namely SLA language specification, SLA negotiation techniques [192], and SLA monitor-

ing approaches [49]. An example is the research conducted by Kotsokalis et al. [102] that

proposed a generic architecture, and tries to address all phases of the SLA management

lifecycle, from negotiation and establishment to termination, with respect to the exis-

tence of SLA interdependencies. The goal is to ensure that operations of existing services

would not be affected. Emeakaroha et al. [49] proposed a framework called "LoM2HiS"

to provide a mapping from low-level resource metrics to high-level SLA parameters. The

proposed framework aimed to develop an infrastructure for autonomic SLA manage-

ment and enforcement. Moreover, it is capable of detecting a potential SLA violation

based on predefined threat thresholds. Although multi-level SLA issues have been dis-

cussed in the work, no solution for modeling dependency knowledge was proposed.

Theilmann et al. [160] discusses the need for multi-level SLA management approaches

in order to fuel the next step towards a service-oriented economy. The authors proposed

a conceptual architecture, which consistently bridges and mediates the various views of

stakeholders and business/IT layers. However, no implementation is provided to verify

the applicability of the proposed architecture.

2.4.1 SLA Negotiation Techniques

Negotiation techniques define how a party generates offers and counteroffers during the

negotiation. The following families are the most commonly used negotiation techniques

46 Taxonomy and Survey of Cloud Service Coordination Methodologies

SLAM

Context

Grid SOA

Single
service

Composition

Cloud

SLA
monitoring

SLA
language

Semantic-
based

OWL

WSML

XML-
based

Negotiation
techniques

Time-
dependent

Trade-off
based

Policy-
based

Resource-
dependent

Behaviour-
dependent

Prediction-
based

Competition
-aware

Negotiation
issues

Single-
issue

Multi-
issue

Reservation
values

Fixed

Relaxed

Figure 2.10: Service Level Agreement Management (SLAM) taxonomy.

in the literature.

Time-Dependent

If parties have deadline in the negotiation, these techniques are the appropriate choice.

This category of techniques concedes faster as the deadline approaches. Faratin et al.

[52] have extensively studied the behavior of this family by considering different time-

dependent functions and investigating the effect of modifying their parameters such as

the initial offer value and the deadline on negotiation outputs that include ratio of deals

made. Based on the work, time-dependent functions later have been adopted for prob-

lems in different contexts such as Grid [110] and Cloud computing.

Resource-Dependent

This family of negotiation strategies are particularly helpful to reach a consensus, when

resource constraints such as the remaining bandwidth (for providers) and the budget (for

2.4 Service Level Agreement Management 47

users) are imposed on the negotiation problem. This family generates offers and counter-

offers based on the availability of resources. For example, they concede faster when re-

sources such as the bandwidth is tighter and vice-versa. In addition to the work of Faratin

et al. [52], similar studies [108, 154, 177] have applied the pure resource-dependent tech-

niques or its combination with other techniques for negotiation problems in the Grid

computing context.

Policy-Based

They aim at defining required protocols and languages to capture user preferences in

the form of polices, and then proposing transformation approaches to map high-level

policies to low-level offer values. Common Open Policy Service for Service Level Speci-

fication (COPS-SLS) [129] provided a service level negotiation protocol that helps estab-

lishing a contract in the context of policy-based networks [180]. The work uses the COPS

(Common Open Policy Service) [47] protocol to enable negotiation message exchange be-

tween clients and service providers for intra-, inter domain, and end-to-end service level

negotiation. COPS offers a query and a response protocol that are used for exchanging

the policy information between a Policy Decision Point (PDP) and its clients. A policy-

based negotiation broker middleware framework is presented by Zulkernine et al.[191].

In their work, the WS-Policy specification is used to capture high-level business goals

and preferences. The captured preferences form inputs for a mathematical model that

converts them to low-level negotiation function parameters.

An SLA management framework for Cloud computing environments is offered by

Chhetri et al.[25], that uses a policy-based model to support the automated establish-

ment of SLA. The approach uses WS-policy [9] to create a set of rules that can be later

queried by Cloud users and providers to automatically choose the most appropriate in-

teraction protocol in a given context. This work lacks any negotiation strategy, but it can

be adopted by Cloud providers and users to enable an SLA negotiation.

48 Taxonomy and Survey of Cloud Service Coordination Methodologies

Behavior-Dependent

When there is no deadline in a negotiation, agents can adopt this class of techniques. This

way they can imitate behaviors of opponents to perform at least as well as other parties

in the negotiation. Techniques in this category are different in the degree of imitation

which could vary from proportional to absolute. Both Axelrod et al. [7] and Faratin et al.

[52] have studied this category. Axelrod et al. [7] found this class of negation technique

particularity effective when it is applied to cooperative problem-solving negotiation. In

addition, Faratin et al. investigated its performance extensively and in comparison to

other negotiation techniques under different negotiation scenarios.

Trade-off-Based

Trade-off based techniques generate a counter offer that keeps the utility value high for

the negotiation agent and improves the utility value of the opponent. Fuzzy similarity

technique was proposed by Faratin et al. [53] for this purpose. It investigates a situation

where an agent is willing to offer more attractive SLA contracts to its opponent, however

it does not intend to decrease its utility function. The work presented an approach that

determines how much (in a scale of 0 to 1) two contracts match. Then, by applying the

hill climbing technique, feasible contracts are searched for a contract that has the highest

similarity with the opponent’s offer and still has the same utility value as the previously

offered contract.

Prediction-Based

This category offers a learning mechanism that predicts of behavior an agent based on

its previous offers. A prediction-based negotiation technique can use regression analy-

sis [78] to predict a negotiation agent’s behavior. The regression technique can increase

the chance of reaching agreements with higher utility function values without any prior

knowledge about the other agents. Zheng et al. [187] applied game theory to 1-to-1

web services negotiation and considered both parties’ preferences. Techniques based

on game theory assume that each agent is aware of all information about the possible

2.4 Service Level Agreement Management 49

strategies and the corresponding outcomes of its opponents. However, this assumption

is not always true for real-world applications which makes this category of techniques

less practical.

Competition-Aware

The amount of relaxation in this class is decided based on the success rate in reaching

the agreement and the demand intensity. The rate of concession is decided based on the

opportunity function [155] that is used when Clouds and users are concurrently negoti-

ating with each other. The opportunity function works out the probability of reaching

an agreement based on the number of alternative negotiation parties and the difference

between its offers and the received counter offers. Consequently, if the aforementioned

probability is high, then a smaller amount of concession will be made in each round.

2.4.2 Negotiation for Multiple Services

In SOA context, an approach to provide support for reaching agreements between the

service consumer and providers is crucial. However, reaching the agreement is even

more challenging in the case of service composition where the consumer negotiates with

multiple providers. Yun et al. [178] tackled this issue by adopting the agent technology

and extending the Foundation for Intelligent Physical Agents (FIPA) protocol [138]. The

work chooses the utility function for developing a decision making model for agents

and uses the concept of fuzzy similarity [53] in its negotiation strategy. The presented

negotiation strategy makes an effort to increase the chance of reaching an agreement

by generating more similarity between offers and counter offers. The language used

for negotiation is WSDL, and the prototype implementation shows the feasibility of the

approach.

Single Versus Multiple Criteria Negotiation

When SLA negotiation consists of multiple issues such as service time and price, ap-

proaches that are purely time-dependent [52] are no longer effective. Coehoorn et al. [30]

50 Taxonomy and Survey of Cloud Service Coordination Methodologies

proposed a multi-issue negotiation approach by gathering information regarding oppo-

nents’ preferences across negotiation issues using kernel density estimation.

Relaxed Versus Fixed Reservation values

Sim et al. [155], in contrast to majority of previous works, proposed a negotiation strat-

egy tactic with relaxed reservation values. In that strategy, the consumers and providers

are allowed to slightly relax their reservation values. As we explained earlier, the amount

of relaxation is decided based on the success rate in reaching the agreement and the de-

mand intensity. In their work, the rate of concession is decided based on the oppor-

tunity function that is used when Clouds and users are concurrently negotiating with

each other. Mansour et al. [117] described a case where a service client negotiates with

multiple providers and for multiple negotiation issues. Their presented negotiation strat-

egy allows flexible reservation values and outperformed strategies with static reservation

values under different negotiation environments.

Cardinality

Cardinality in negotiation indicates the number of concurrent negotiation instances (none,

one, or many) of an entity in relation to another entity. Values for cardinality can be one-

to-one, one-to-many, many-to-one, and many-to-many. For example, if cardinality of

negotiation for Cloud service providers and clients is one-to-many it means that a Cloud

provider concurrently negotiates with many clients.

An architecture for one-to-many negotiation was proposed by Rahwan [139], which

buyer agents coordinates a set of sub-negotiators, each can flexibly have a distinct nego-

tiation strategy. The work identified four coordination strategies for a concurrent nego-

tiation. In the first one, the buyer agent ends negotiations with others once it reaches a

consensus with a seller. In another strategy, the buyer agent holds temporary agreements

with the seller agents during negotiation. Once all negotiations end, the buyer selects

the most prominent agreement. Similarly, a strategy which is called "optimized patient"

holds a temporary agreement, and does not accept a new agreement with less utility.

2.4 Service Level Agreement Management 51

The forth proposed strategy changes the negotiation techniques of its sub-negotiators

dynamically during the bargaining period.

2.4.3 SLA Monitoring

SLA monitoring starts form a fundamental task of identifying proper QoS parameters

in SLA and fine-grained metrics to measure them. Lawrence et al. [109] proposed an

approach for SLA management which is built using WS-Agreement and is a part of the

project called "OPTIMIS" [58]. Their work is designed for environments where SLAM

is needed between service providers and infrastructure providers. They defined several

novel negotiation criteria, but no negotiation tactic that can be utilized in Cloud envi-

ronments. Similarly, Goiri et al. [68] developed a fine-grained QoS metric for CPU per-

formance that can be used in SLA, and avoids fake SLAs violations to help providers

achieve higher resource utilization.

The next step after defining the set of required QoS criteria and metrics is identifying

and modeling the dependency between those criteria. This helps in improving the accu-

racy of the monitoring system by leading it to the root cause of a failure. Winkler et al.

[176] proposed an approach for automated management of SLAs to support composite

services. In that approach, the explicit knowledge about a set of dependencies to auto-

mate the tasks of SLA negotiation, renegotiation, and the handling of SLO violations is

taken into account.

Bodenstaff et al. [13] proposed an approach called "MoDe4SLA" to monitor depen-

dencies between SLA when managing composite services. In this case, different types

of dependencies between services and the impact that services have on each other are

analyzed during the development phase. Therefore, the approach proposed a way to

analyze the monitoring results based on the impact and dependency knowledge.

2.4.4 SLA Language

No standard language is defined for building SLA offers and contracts. However, in the

context of SOA, the Web Service Level Agreement (WSLA) language and the Web Ser-

52 Taxonomy and Survey of Cloud Service Coordination Methodologies

vices Agreement Specification (WS-Agreement) are commonly referred. WS-Agreement

is a web service protocol for building agreements between service providers and users

and uses an XML-based languages as the template for agreements. IBM proposed the

Web Service Level Agreement (WSLA) language and framework in 2001. The language

is based on XML and particularly created for web services that define service interfaces

in the WSDL. Similarly, SLAng proposed an XML-based language [105] to enable QoS-

aware service provisioning.

WS-Negotiation [80] is another language that enables negotiation between web ser-

vices providers and requestors. It consists of three parts namely Negotiation Message,

Negotiation Protocol, and Negotiation Decision Making. While the Negotiation Message

introduces an XML-based format for message exchange, the Negotiation Protocol defines

rules and mechanisms that providers and clients have to follow during the negotiation.

The Negotiation Decision Making describes the negotiation strategy of a party and shows

how the party generate, accepts, or rejects an offer.

The BREIN project [127] uses ontologies and semantic technologies to overcome ob-

stacles to automate the whole SLA lifecycle. The objective is building a commonly under-

stood conceptual model in OWL-S for QoS criteria to deal with the semantic heterogene-

ity. Similarly, Fakhfakh et al. [51] proposed an ontology-based model for establishing

SLAs between parties that automates their monitoring as well.

2.5 Analysis and Positioning

2.5.1 Requirement Analysis

This section presents requirements for service coordination and deployment in a Multi-

Cloud environment.

• Toolkit for service coordination and deployment: In order to simplify cross-Cloud

deployment and coordination, a toolkit that focuses on QoS modeling and deploy-

ment optimization is required. By a service we mean a virtual appliance or a virtual

machine (virtual unit), which are two fundamental offerings of IaaS providers.

2.5 Analysis and Positioning 53

• Semantic interoperability and multi-Cloud service discovery: In a Multi-Cloud

environment, it is difficult to enforce syntax and semantics of service (virtual ma-

chine and appliance) descriptions and user requirements. Therefore, applying sym-

metric attribute-based matching between requirements and request is impossible.

In order to tackle this problem, we require a semantic-based discovery that works

on top of well-defined ontologies and semantic-based service repositories.

• Automatic reliability and infrastructure aware SLA negotiation: We require a ne-

gotiation strategy that assesses the reliability of offers for users and considers in-

frastructure management concerns of providers. In a Cloud computing context,

we need to consider infrastructure management issues (such as resource utilization

balancing) in the bargaining strategy. It means that Cloud providers are willing to

concede on the price of resources that are less utilized, and it has to be reflected in

the negotiation tactics.

• QoS-aware service selection in multi-Cloud environments for network of appli-

cations: Multiple providers are offering different appliances and virtual units with

different pricing in the market, it is important to exploit the benefit of hosting ap-

pliances on multiple providers to reduce the cost and provide better QoS. However,

this could be only possible if high throughput and low latency can be guaranteed

among different selected Clouds. Therefore, the latency constraint between nodes

has to be considered as key QoS criteria in the selection problem. Amazon EC2,

GoGrid, Rackspace, and other Key players in the IaaS market, although they con-

stitute different deployment models using virtual appliances and units (computing

instances), however none of them provide a solution for composing Cloud services

based on users functional and non-functional requirements such as cost, reliability

and latency constraints.

• Cloud service compatibility verification in a composition: A service provider will

require more than one virtual appliance and unit and a composition of them that

can meet all the requirements of users needs to be built. However, the selection of

the best composition is a complex task. The best choices found for individual ap-

54 Taxonomy and Survey of Cloud Service Coordination Methodologies

pliances cannot be simply put together as some appliances will not be compatible

with the hosting environment. For example, if an appliance format is OVF it cannot

currently be deployed on Amazon EC2 as it only accepts appliance with AMI for-

mat. In addition to that, there exists legal constraints imposed by countries such as

USA on importing and exporting appliances from a provider to another. Therefore,

to simplify the process of deployment for non-expert users, and fulfill the great

promise of Cloud which is ease of use, we require an approach to automatically

check the compatibility of services in a composition.

• User preference modeling: Minimizing effort of users in expressing their prefer-

ences is pivotal for the success of the proposed solution for selection of Cloud ser-

vices. Therefore, we require a methodology to let users expressing their needs in

high-level linguistic terms. This brings a great comfort to them compared to sys-

tems that force them to assign exact weight to each preference.

• Reliable SLA monitoring: In Multi-Cloud environments where various providers

are involved in satisfying user requirements, we face a set of difficulties in SLA

monitoring. Firstly, the existence of different SLA offers, counter offers, and con-

tract templates makes it difficult to discover the necessary monitoring services that

have required capabilities to monitor service level objectives in SLAs. Therefore,

creating a standard model for describing SLAs in different layers of the Cloud has

been considered as a major requirement in this area of research. In Cloud com-

puting environments, there are dependencies between different service’s perfor-

mances. It means that if one of the lower-layer services (infrastructure layer) is not

functioning properly, it can affect performance of higher-layer services. Whereas

SLA dependency has been considered by several works [13, 176], no practical ap-

proach has been presented to model the dependencies among services.

2.5.2 An Investigation of Existing Work

In this section, we review recent and major developments in service coordination in the

Cloud computing context. The key works in this area along with their fundamental char-

2.5 Analysis and Positioning 55

acteristics are summarized in Table 2.2.

We start with OPTIMIS [58], whose main contribution lies on optimizing the whole

service life-cycle, from service construction and deployment to operations in Cloud en-

vironments. OPTIMIS consists of a set of tools that provide trust, risk, carbon emission

efficiency, and cost assessment of Cloud services. In addition, it offers tools to create,

deploy, and run services including image construction and licensee management. The

OPTIMIS architecture offers an XML-based extension of OVF to build a service manifest

that describes a request for the Cloud service in detail. The SLA management framework

in OPTIMIS is based on WS-Agreement and the SLA negotiation is carried out manu-

ally. The selection of Cloud providers is accomplished through an adoption of Analytical

Hierarchy Process (AHP).

The mOSAIC project [43] is proposed to enable multi-Cloud application development

and deployment. The project [136] aims at facilitating Cloud portability by providing a

set of open APIs to offer an additional level of freedom that avoids vendor lock-in. To

achieve even higher degree of flexibility, mOSAIC proposes the CloudWare API that uti-

lizes semantic and negotiation technologies to postpone selection of Cloud services to

deployment time. In mOSAIC, Cloud ontology [35–37] plays an essential role, and ex-

presses the application’s needs for Cloud resources in terms of SLAs and QoS require-

ments. It is utilized to offer a common access to Cloud services in Cloud federations.

mOSAIC uses perfCloud [141] and WS-Agreement for management of user authentica-

tion and authorization to a Cloud Provider.

Contrail [21] is another European project that builds a federation that allows users to

utilize resources belonging to different Cloud providers. Contrail’s components tackle

a number of challenges in Cloud computing environments. Contrail PaaS (ConPaaS)

provides Platform as a Service for web and high-performance computing applications. In

addition, Contrail SLA manager component defines SLA in federation level and reuses

monitoring and SLA management features that have been developed for the SLA@SOI

project 5. Other components provide security, virtual private network, and virtualized

execution platform for federated Clouds.

5 SLA@SOI Project. http://sla-at-soi.eu/

http://sla-at-soi.eu/

56 Taxonomy and Survey of Cloud Service Coordination Methodologies

STRATOS [134] is a broker at an early stage of development that tackles the Cross-

cloud deployment problem by mapping it to a multi-criteria optimization problem. The

problem is then solved by utilizing Service Measurement Index (SMI) [66]. SMI intro-

duces a set of QoS criteria and metrics for performance measurement of Cloud services,

and uses AHP to rank them accordingly. In addition, STRATOS proposed an XML-based

Topology Descriptor File (TDF) to describe the specification of the deployment topology

configuration.

CloudGenius [125] is a framework that focuses on migrating single tier Web applica-

tion to the Cloud by selecting the most appealing Cloud services for users. CloudGenius

considers different sets of criteria and dependencies between virtual machine services

and virtual appliances to pick up the most appropriate solution. Like the majority of

the works in the Cloud computing context, it chooses AHP for raking Cloud services.

Since pair-wise comparisons for all Cloud services are computing intensive, the selec-

tion criteria were restricted to numerical criteria. The framework was validated through

experiments, which also studied the time complexity of AHP.

Cloud services usually do not have characteristics like Input,Output, Post conditions,

and Effect (IOPE). Therefore, IOPE-based discovery approaches can not be directly ap-

plied in this context. Instead Cloud services can be described and later discovered based

on their functional (eg. CPU power, Bandwidth, Storage size) and non-functional prop-

erties (e.g price, location). However, only limited literature is available on Cloud service

discovery, which mostly focuses on building ontologies for Cloud services. The proposed

discovery approaches are mostly inspired from OWL-MX [96] and WSML-MX [97]. The

Cloud Service Discovery System (CDCS) [76] claims to be a pioneer in offering agent-

based Cloud service discovery, which uses Cloud ontology to identify similarities among

services. Building Cloud service ontology and reasoning about Cloud service relations

are stated as the main contributions of the system. The discovery mechanisms (e.g. sim-

ilarity reasoning) used in the paper are very similar to what offered by Han et al. [75].

Therefore, the strength of work is mostly in constructing Cloud ontology.

2.5 Analysis and Positioning 57
Ta

bl
e

2.
2:

A
na

ly
si

s
of

ex
is

ti
ng

w
or

ks
.

Pr
oj

ec
t

R
eq

ui
re

m
en

tF
ul

fil
lm

en
ta

nd
M

et
ho

do
lo

gy
O

ut
st

an
di

ng
C

ha
ra

ct
er

is
ti

cs

O
PT

IM
IS

A
rc

hi
te

ct
ur

e
M

an
ag

e
se

rv
ic

e
lif

e
C

yc
le

s
in

C
lo

ud
En

ab
lin

g
se

lf
-m

an
ag

em
en

to
fs

er
vi

ce
s

de
pl

oy
ed

ac
ro

ss
m

ul
ti

pl
e

C
lo

ud
s;

N
ov

el

Q
oS

cr
it

er
ia

(e
.g

.e
co

-e
ffi

ci
en

cy
,s

ec
ur

it
y,

tr
us

t)

Se
le

ct
io

n
A

H
P

Pr
ef

er
en

ce
M

od
el

in
g

Pa
ir

-w
is

e
co

m
pa

ri
so

n

N
eg

ot
ia

ti
on

M
an

ua
l

SL
A

la
ng

ua
ge

W
S-

A
gr

ee
m

en
t

M
os

ai
c

A
rc

hi
te

ct
ur

e
O

ff
er

s
C

lo
ud

po
rt

ab
ili

ty
A

bs
tr

ac
tA

PI
fo

r
co

nn
ec

ti
ng

to
m

ul
ti

pl
e

C
lo

ud
s;

Ex
te

ns
iv

e
O

nt
ol

og
y

de
sc

ri
bi

ng

se
rv

ic
es

,a
ct

or
s,

et
c

Se
m

an
ti

c
In

te
ro

pe
ra

bi
lit

y
O

nt
ol

og
y

cr
ea

te
d

m
an

ua
lly

N
eg

ot
ia

ti
on

M
an

ua
l

SL
A

la
ng

ua
ge

W
S-

A
gr

ee
m

en
t

C
on

tr
ai

l

A
rc

hi
te

ct
ur

e
Fe

de
ra

ti
on

as
a

th
ir

d
pa

rt
y

M
ec

ha
ni

sm
s

fo
r

id
en

ti
ty

m
an

ag
em

en
ti

n

fe
de

ra
te

d
C

lo
ud

s;
A

bs
tr

ac
tA

PI
fo

r

co
nn

ec
ti

ng
to

C
lo

ud
s

SL
A

M
Ex

te
nd

in
g

th
e

SL
A

@
SO

Ip
ro

je
ct

fo
r

SL
A

m
an

ag
em

en
t

N
eg

ot
ia

ti
on

M
an

ua
l

D
ep

lo
ym

en
td

es
cr

ip
to

r
O

V
F

ex
te

ns
io

n

ST
R

A
TO

S

Se
le

ct
io

n
A

H
P

A
no

ve
ld

ep
lo

ym
en

td
es

cr
ip

to
r

Pr
ef

er
en

ce
m

od
el

in
g

Pa
ir

-w
is

e
co

m
pa

ri
so

n

D
ep

lo
ym

en
td

es
cr

ip
to

r
X

M
L-

ba
se

d
m

et
a-

da
ta

C
D

C
S

Se
m

an
ti

c
in

te
ro

pe
ra

bi
lit

y
O

nt
ol

og
y

cr
ea

te
d

m
an

ua
lly

Bu
ild

in
g

C
lo

ud
on

to
lo

gy
D

is
co

ve
ry

O
W

LS
-M

X

C
lo

ud
G

en
iu

s
Se

le
ct

io
n

A
H

P
C

on
si

de
ri

ng
no

ve
ls

et
s

of
cr

it
er

ia
an

d

de
pe

nd
en

ci
es

fo
r

C
lo

ud
se

rv
ic

e
se

le
ct

io
n

Pr
ef

er
en

ce
m

od
el

in
g

Pa
ir

-w
is

e
co

m
pa

ri
so

n

58 Taxonomy and Survey of Cloud Service Coordination Methodologies

Kanagasabai et al. [90] proposed a brokering system that utilizes OWL-S to semanti-

cally match a user’s request to required Cloud services. In addition, their work is bene-

fited from the hybrid discovery approach presented in OWL-MX [96] by enabling service

discovery to handle constrains. Therefore, the contribution of the paper lies in its attempt

to apply the hybrid match making in the Cloud computing context. In addition, they con-

ducted experiments that reveal that adding non-logic based matching dose not impose

a considerable overhead to the system, but rather makes the system adoptable for the

Cloud context. To further improve the performance of the discovery in terms of running

time, investigating alternative semantic databases such as AllegroGraph was considered

as a future work.

2.5.3 Scope and Positioning of This Thesis

In this thesis, to simplify the process of service deployment and coordination in the

Cloud, we present a novel framework that deals with all challenges involved in Cloud

service coordination and satisfies the mentioned requirements. Table 2.3 describes method-

ologies that have been applied for each requirement. In the rest of this section, for each

requirement, we define the methodology and scope of our thesis and how it is different

from related works.

• This thesis proposes an approach that gives enough flexibility to end users to dis-

cover their needed appliances from a range of providers and dynamically deploy it

on different IaaS providers. Most of related works [2,24] focused on satisfying user

requirements using SOA architecture and virtualization, neglecting the proper con-

sideration of Cloud computing as a resource provider. Our proposed architecture

offers a unified solution that uniquely applies state of the art technologies of seman-

tic services, agent negotiation, and multi-objective and constraints optimization to

satisfy the requirements of whole service deployment life cycle.

• Resource matching is the process of selecting resources based on application re-

quirements. Traditional resource matching, as exemplified by the Condor Match-

maker [142] or Portable Batch System [11] are considered as inflexible and difficult

2.5 Analysis and Positioning 59

to extend to new characteristics or concepts. In this thesis, unlike the traditional

Grid resource selectors that describe resource/request properties based on sym-

metric flat attributes, separate ontologies are created in WSML to declaratively de-

scribe Cloud resources and user requests using an expressive ontology language.

Instead of exact syntax matching, the ontology-based matchmaker performs se-

mantic matching using terms defined in those ontologies. Compared to our work,

mOSAIC [43] and CDCS [76], which also adopted ontology, are not capable of cre-

ating ontologies automatically from Cloud service descriptions provided through

API calls. In addition, the provided semantic-based Cloud service descriptions, in

contrast to ours, do not contain QoS information.

• This thesis addresses the issue of migrating inter-related components such as multi-

tier web applications to Cloud. The problem of selecting the required virtual appli-

ances and infrastructure services in a migration process has been investigated in

two different scenarios. In the first one, the thesis looks into the optimization prob-

lem of selecting Cloud services which adhere to reliability and latency constraints

and minimize the deployment cost. The problem is the multidimensional knapsack

problem and was tackled by a genetic algorithm and a heuristic which is based on

the discarding subset algorithm. In the second scenario, infrastructure services are

allowed to be picked up from one provider. The objective is to minimize the de-

ployment cost, time, and maximize the total reliability together. The selection prob-

lem is solved using multi-objective evolutionary algorithms. As discussed in the

previous section, majority of recent works [58, 125, 134] have utilized AHP for ser-

vice selection. In comparison with our approach for Cloud service selection, those

works can only perform well when the number of given alternatives is small and

the number of objectives is limited. In contrast, our approach can deal efficiently

with a large number of Cloud services in the repository. CloudGenius has consid-

ered Cloud service selection for migrating single tier web applications. However,

it has not considered the complexity of service selection for multi-tier applications,

where we are restricted by constraints such as latency.

• In addition, the thesis proposes an approach to help non-expert users with lim-

60 Taxonomy and Survey of Cloud Service Coordination Methodologies

ited or no knowledge on legal and virtual appliance image format compatibility

issues to deploy their services flawlessly. For this purpose, we automatically build

a repository of Cloud services in WSML and then enrich it with experts’ knowl-

edge (lawyers, software engineers, system administrators, etc) on the aforemen-

tioned compatibilities. The knowledgebase is used for reasoning in an algorithm

that identifies whether a set of Cloud services, consisting of virtual appliances and

units are compatible or not. None of existing approaches [58,125] for Cloud service

selection so far have taken the compatibility factor into account.

• Many existing Cloud service ranking system require users to assign weights to their

objectives [63, 104, 106, 146]. In this case, users have to find a way to prioritize their

preferences and then map them to weights. After that, the ranking system has to

find out how precise users have gone through the process of weight assignment. To

tackle this complexity, a major objective of this thesis is to offer a ranking system

for Cloud service (i.e. virtual appliance and unit) composition that lets users ex-

press their preferences conveniently using high-level linguistic terms. Our system

utilizes evolutionary multi-objective approaches and a fuzzy inference system to

precisely capture the supplied preferences for the ranking purpose.

• Creation of a standard model for describing SLAs in different layers of Cloud has

been considered a major challenge in this area of research. In this thesis, this matter

has been addressed by a form of semantic SLA (created in WSML) which brings a

common language and understanding to all parties involved in service provision-

ing. While SLA dependency has been considered by several works in SLA@SOI

project [102,176], no practical approach has been presented to model the dependen-

cies among services. Consequently, this thesis shows how dependency knowledge

can be modeled using semantic technology, and how that knowledge can be used

in discovery of monitoring services and SLA failure detection. This eliminates the

effects of SLA failure cascading on violation detections.

2.5 Analysis and Positioning 61

Ta
bl

e
2.

3:
Po

si
ti

on
in

g
of

th
is

th
es

is
.

R
eq

ui
re

m
en

t
A

pp
li

ed
M

et
ho

do
lo

gy
U

ni
qu

en
es

s

C
oo

rd
in

at
io

n
To

ol
ki

t
M

ix
in

g
SO

A
an

d
vi

rt
ul

ai
za

ti
on

te
ch

no
lo

gi
es

to

en
ab

le
m

ul
ti

pl
e

C
lo

ud
de

pl
oy

m
en

t

-A
C

lo
ud

ag
no

st
ic

de
pl

oy
m

en
td

es
cr

ip
to

r

-H
an

dl
in

g
th

e
w

ho
le

cy
cl

e
of

th
e

co
or

di
na

ti
on

Se
m

an
ti

c
In

te
ro

pe
ra

bi
lit

y
an

d
D

is
co

ve
ry

-C
en

tr
al

iz
ed

-O
nt

ol
og

y-
ba

se
d

-W
SM

L-
ba

se
d

H
yb

ri
d

C
lo

ud
se

rv
ic

e
di

sc
ov

er
y

A
ut

om
at

ic
cr

ea
ti

on
of

re
qu

ir
ed

on
to

lo
gi

es

Se
rv

ic
e

Se
le

ct
io

n

-
En

ha
nc

e
ve

rs
io

n
of

di
sc

ar
di

ng
su

bs
et

al
go

-

ri
th

m

-M
ul

ti
-O

bj
ec

ti
ve

ev
ol

ut
io

na
ry

ap
pr

oa
ch

es

-M
ig

ra
ti

ng
a

m
ul

ti
pl

e

in
te

r-
re

la
te

d
co

m
po

ne
nt

s
su

ch
as

m
ul

ti
-t

ie
r

w
eb

ap
pl

ic
at

io
ns

to
C

lo
ud

U
se

r
Pr

ef
er

en
ce

M
od

el
in

g
-M

ul
ti

-O
bj

ec
ti

ve
ev

ol
ut

io
na

ry
ap

pr
oa

ch
es

-F
uz

zy
in

fe
re

nc
e

sy
st

em
In

cr
ea

se
th

e
ac

cu
ra

cy
of

th
e

sy
st

em

C
om

pa
ti

bi
lit

y
C

he
ck

in
g

R
ea

so
ni

ng
on

kn
ow

le
dg

eb
as

e
w

hi
ch

is
au

to
m

at
-

ic
al

ly
cr

ea
te

d
Ea

se
of

us
e

fo
r

no
n-

ex
pe

rt
s

SL
A

N
eg

ot
ia

ti
on

Ti
m

e-
de

pe
nd

en
tt

ec
hn

iq
ue

-A
ut

on
om

ou
s

-U
ti

liz
at

io
n

an
d

re
lia

bi
lit

y
aw

ar
e

SL
A

M
an

ag
em

en
t

-D
ep

en
de

nc
y

kn
ow

le
dg

e
w

as
bu

ilt
in

W
SM

L

-
Se

m
an

ti
c-

ba
se

d
m

at
ch

m
ak

in
g

fo
r

m
on

it
or

in
g

se
rv

ic
e

di
sc

ov
er

y

-D
is

co
ve

ry
an

d
ra

nk
in

g
of

m
on

it
or

in
g

Se
rv

ic
es

-E
lim

in
at

in
g

SL
A

fa
ilu

re
ca

sc
ad

in
g

ef
fe

ct
s

62 Taxonomy and Survey of Cloud Service Coordination Methodologies

• With the advances of Cloud technology, operations such as discovery, scaling, mon-

itoring, and decommissioning are accomplished automatically. Therefore, negotia-

tions between Cloud services clients and providers can be a bottleneck if they are

carried out manually. Hence, in contrast with existing works such as OPTIMIS,

mOSAIC, and Contrail, this thesis offers a solution that automates the negotiation

process. Our proposed approach utilizes a time-dependent negotiation strategy

which is capable of assessing the reliability of offers to increase the dependability

of the strategy, and to fill the gap between decision making and bargaining. In ad-

dition, our strategy is more flexible compared to trade-off [186] approaches, as it

does not require any prior knowledge regarding opponent’s utility functions. In

addition, in comparison with recent works in Cloud computing context [25, 186],

for Cloud providers, the strategy uniquely considers utilization of resources when

generates new offers and automatically adjusts the tactic’s parameters to concede

more on the price of less utilized resources.

2.6 Conclusions

This chapter described the concepts, background, and methodologies of service coordi-

nation. We have investigated and classified systems that enable each phase of service

coordination in contexts of Grid and SOA. This helps us to find out what could be in-

herited from other paradigms and what has to be done uniquely for the Multi-Cloud

environment considering its special characteristics. Then, the chapter described the de-

tail of major requirements for each phase of Cloud service coordination and reviewed

how the state-of the-art developments have addressed them.

In addition, we positioned this thesis with regards to existing work and described

how different we address the challenges of Cloud service coordination. As discussed in

this chapter, our approach provides: ease of use for non-experts, semantic interoperabil-

ity, more precise discovery and selection, more reliable SLA monitoring, and automatic

negotiation strategy.

In the next chapter, we describe an architecture that enables effective service coordi-

2.6 Conclusions 63

nation in a Multi-Cloud environment. In addition, next chapter further describes how

the architecture is benefited from semantic-based Cloud discovery.

Chapter 3

An Architecture for Automated Cloud
Service Coordination

This chapter focuses on an automated approach to deploy required virtual appliances on the most

suitable Cloud infrastructure. We propose an effective architecture to simplify and automate service

coordination and deployment in Multi-Cloud environments. The architecture harnesses the ontology-

based discovery to provide QoS-aware deployment of applications on the fittest Cloud service provider.

The approach is tested in a case study and the result shows its efficiency and effectiveness.

3.1 Introduction

AS explained in Chapter 1 and 2, service coordination is considered a major chal-

lenge in Multi-Cloud environments. Different technologies and tools try to satisfy

user requirements in terms of software and hardware. They accomplish this by describ-

ing the environments, abstracting the dependencies, and automating the process. Nev-

ertheless, most of previous works focused on satisfying user requirements using SOA

architecture [2,24] and virtualization [91,168], neglecting the consideration of Cloud com-

puting environment as a resource supplier. In order to simplify cross-Cloud deployment

and coordination, an architecture that focus on QoS modeling and deployment optimiza-

tion is presented in this chapter. By Cloud service, we mean virtual appliances and virtual

machines (virtual unit), which are two fundamental offerings of IaaS providers. The ar-

chitecture is designed to help migrating user applications to Cloud by mapping them to

the fittest compatible Cloud offerings. Apart from the Cloud service discovery compo-

nent, other components for SLA management and Cloud service selection and composi-

tion will be explained in subsequent chapters.

65

66 An Architecture for Automated Cloud Service Coordination

Aside from the architecture, this chapter proposes a flexible approach for performing

ontology-based discovery of Cloud services. This provides clients with enough flexibility

to discover their required appliances from a range of providers and dynamically deploy

them on different IaaS providers. The discovery approach is particularly useful where

providers and users do not use the same notation for describing their services and re-

quirements. To enable the ontology-based discovery, the chapter proposes a translation

and an advertisement approach for IaaS providers based on modeling virtual units into

one of the most prominent initiatives in Semantic Web services, i.e., Web Service Model-

ing Ontology (WSMO) [72].

3.2 Architecture

As mentioned in previous chapters, our proposed architecture offers a unified solution

that uniquely applies state of the art technologies of semantic services, agent negotiation,

and multi-objective and constraints optimization to satisfy the requirements of whole

service deployment life cycle. The main goal of the architecture is to provide: ease of use

for non-experts, semantic interoperability, more precise discovery and selection, more

reliable SLA monitoring, and automatic negotiation strategy. The proposed architecture

is depicted in Figure 3.1 and its main components are described below:

1. User Portal: All services provided by the system are presented via the Web Portal

to service clients. This component provides graphical interfaces to capture users’

requirements such as software, hardware, QoS requirements (including maximum

acceptable latency between tiers, minimum acceptable reliability, budget), firewall,

and scaling settings. Moreover, it contains an account manager, which is respon-

sible for user management. It provides authorization and authentication for users

and keeps the history of all users activities in the system.

2. Translator: Since WSMO is used for service discovery, Cloud services information

are translated to WSML format by the Translator component . This component

takes care of building and maintaining an aggregated repository of Cloud services

and is explained in detail in Section 3.3.1.

3.2 Architecture 67

Appliance
Service

Repository

Virtual Unit
Service

Repository

Software,
QoS Requirements,
Security constraints, and
Deployment pattern

1

Composition Optimizer

Image Packaging DecommissioningFailure

Recovery

PlanningDeployment

Descriptor Manager

Monitoring and

SLA Management

Discovery &SLA Negotiation

Discovery Negotiator

Account
Manager

Appliance
Administration

Service

User Portal

Tr
a

n
sl

a
to

r

Tr
a

n
sl

a
to

r

m Service contracting and deployment management

l Deployment optimization

k Building semantically
rich Cloud service
repository

k Building semantically
rich Cloud service
repository

j Request

Infrastructure as a Service Providers

Figure 3.1: Architecture’s main components that enable cross-Cloud deployment of user
applications.

3. Cloud Service Repositories: They allow IaaS providers to advertise their services.

An advertisement of a virtual unit can contain descriptions of its features, costs, and

the validity time of the advertisement. From standardization perspective, a com-

mon metamodel that describes IaaS provider’s services has to be created. However,

due to the lack of standards, we developed our own metamodel based on previous

works and standards in this area using WSMO.

4. Discovery and Negotiation Service: This component maps user’s requirements

to resources using the ontology-based discovery technique. It acts in user’s inter-

est to satisfy quality of service (QoS) requirements by selecting the set of eligible

IaaS providers. The negotiation service uses a time-dependent negotiation strategy

that captures preferences of users on QoS criteria to maximize their utility func-

tions while only accepting reliable offers. the proposed Negotiation strategies are

described in detail in Chapter 6.

68 An Architecture for Automated Cloud Service Coordination

5. Planning: The planning component determines the order of appliance deployment

on the selected IaaS providers and plans for the deployment in the quickest possible

manner.

6. Image Packaging: The Packaging component builds the discovered virtual appli-

ances and the relevant meta-data into deployable packages, such as Amazon Ma-

chine Image (AMI) or Open Virtualization Format (OVF) [45] packages. Then the

packages are deployed using the deployment component.

7. Deployment Component: It configures and sets up the appliances and virtual units

with necessary configuration such as firewall and scaling settings in the destination.

For example in a web application, specific connection details about the database

server need to be configured.

8. Deployment Descriptor Manager: This component persists specifications of re-

quired services and their configuration information such as firewall and scaling

settings in a format called Deployment Descriptor. Besides, it includes the map-

ping of user requirements to the instances and appliances provided by the Cloud.

The mapping includes instance description (e.g. name, ID, IP, status), image in-

formation, etc. This meta-data is used by the appliance administration service to

manage the whole stack of services deployed across multiple Clouds. Formally

described using WSML, the Deployment Descriptor is located in our system (as a

third party service coordinator), and in a Cloud-independent format that is used for

discovering and configuring alternative deployments in case of failures. An exam-

ple of a Deployment Descriptor is shown in Appendix A (Section A.2). It identifies

how firewall and scaling configurations have to be set for Web server appliances. In

addition, Deployment Descriptor can help to describe the utility function of users

for provisioning extra Cloud services when scaling is required. This helps to create

scaling policies that utilize the optimization component on the fly to provision ser-

vices that maximizes the user’s utility functions. For example, providers that have

the lowest price, latency, and highest reliability are going to be ranked higher.

9. Appliance Administration Service: After the deployment phase, this component

3.2 Architecture 69

helps end users to manage their appliances (for example starting, stopping, or rede-

ploying them). It uses the Deployment Descriptor to manage the deployed services.

10. Monitoring and SLA Management: This component provides health monitoring

of deployed services and provides required inputs and data for failure recovery and

scaling. A monitoring system is provided by this component for fairly determining

to which extent an SLA is achieved as well as facilitating a procedure taken by a

user to receive compensation when the SLA is violated. The monitoring is based on

the copy of signed SLA which is kept in SLA repository. The component provides

an approach to discover and rank necessary third party monitoring services. Third

party monitoring results can be similar to what the CloudStatus1 service reports.

Hyperic’s CloudStatus is the first service to provide an independent view into the

health and performance of the most popular Cloud services, including Amazon

Web services and Google App Engine. CloudStatus gives users real-time reports

and weekly trends on infrastructure metrics including service availability, response

time, latency, and throughput that affect the availability and performance of Cloud-

hosted applications. More detail on this component is given in Chapter 7.

11. Failure Recovery: It automatically backs up virtual appliance data and redeploys

them in the event of Cloud service failure.

12. Decommissioning: In the decommissioning phase, Cloud resources are cleaned up

and released by this component.

13. IaaS Providers: They are in both fabric and unified resource level [60] and contain

resources that have been virtualized as virtual units. Therefore, they expose their

services as virtual units that can be a virtual computer, database system, or even a

virtual cluster. IaaS provider’s advertisements of virtual units are converted to the

WSML notation using the Translator Component. Among IaaS providers, Ama-

zon Elastic Compute Cloud (Amazon EC2) has attracted considerable attention.

Amazon EC2 [167] provides the flexibility to choose from a number of different

1 Hyperic. http://www.hyperic.com/products/Cloud-monitoring.html

http://www.hyperic.com/products/Cloud-monitoring.html

70 An Architecture for Automated Cloud Service Coordination

instance types to meet various computing needs. Each instance provides a pre-

dictable amount of dedicated compute capacity and is charged per instance-hour

consumed. Figure 3.3 shows how an instance type of Amazon EC2 is modeled as a

Web service in WSML.

In the next section we provide a detailed description of the Discovery Component

along with a case study that proves its effectiveness. Then, we investigate the perfor-

mance of the translation approach.

3.3 Matchmaker Architecture

The matchmaker consists of two components:

1. Ontologies, which provide the domain model and vocabulary for expressing Cloud

service advertisements and service client requirements.

2. Matchmaking algorithm, which determines when an advertised virtual unit matches

a requester requirement description.

In this work two ontologies have been developed using WSML. We use WSMO studio

[44] for editing ontologies. WSMO Studio is an open source Semantic Web service and Se-

mantic Business Process modeling environment for the Web Service Modeling Ontology.

WSMO Studio is available as a set of Eclipse plug-ins. The most useful WSMO Studio fea-

tures include: Ontology editor with integrated WSML Reasoner (for consistency checks

and querying of ontologies Editor for WSMO elements (Web services to advertise vir-

tual units, goals to define user requirements, mediators). Each ontology domain defines

functional and non-functional properties and their elements. These two ontologies are:

• Requirements ontology: The ontology, as depicted in Figure 3.2 captures a re-

quester virtual unit requirements which are defined as functional properties (e.g.,

number of CPU, memory size) and non-functional properties (e.g., budget, loca-

tion) that represent QoS requirements. The majority of our notation uses the Com-

mon Information Model (CIM)2, and in particular OVF, for describing a resource

2CIM standards. http://www.dmtf.org/standards/standard-cim

http://www.dmtf.org/standards/standard-cim

3.3 Matchmaker Architecture 71

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ GOAL
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 goal _ "http://example.org/GetVirtualUnit"
5 nonFunctionalProperties
6 dc#title has Value "Goal of getting a virtual unit"
7 dc #type hasValue _ "http://www.wsmo.org/TR/d2/v1.2/#goals"
8 wsml# vers ion has Value "Revision: 1.1 $"
9 endNonFunctionalProperties

10 importsOntology { _"http://www.example,org/ontologies/OpSys"?
11 _"http://www.example.org/ontologies/VirtualHardware"?
12 _"http://www.wsmo.org/ontologies/location"?
13 _"http://www.wsmo.org/ontologies/cost" }
14

15 capability _ "http://example.org/GetVirtualUnit#capl"
16 sharedVariables { ?dep? ?budget? ?loc }
17 effect havingAVirtualUnit
18 nonFunctionalPropertie
19 VU#DeploymentLatency hasValue ?dep
20 VU#Budget hasValue ?budget
21 VU#Location hasValue ?loc
22 endNonFunctionalProperties
23 definedBy
24 [Info hasValue "Guest Operating System"?
25 Description hasValue "Unix"]
26 memberOf Vu#OperatingSystemSection [hasId hasValue "99"] and
27 [[ElementName hasValue "Virtual Hardware Family"?
28 InstanceID hasValue "0"?
29 VirtualSystemType hasValue "vmx-04"] memberOf VHS#System and
30 [Description hasValue "Number of virtual CPUs"?
31 ElementName hasValue "l virtual Cpu"?
32 ResourceType hasValue "3"?
33 VirtualQuantity hasValue "l"] memberOf VHS#Item and
34 [AllocationUnits hasValue " byte * 2^20"?
35 Description hasValue "Memory Size"?
36 ElementName hasValue "256 MB of memory"?
37 InstanceId hasValue "2"?
38 ResourceType hasValue "4"?
39 VirtualQuantity hasValue "256"] memberOf VHS#Item and
40 [AutomaticAllocation hasValue " true "?
41 Connection hasValue " VM Network"?
42 ElementName hasValue " Ethernet adapter on ’VM Network’ "?
43 InstanceID hasValue "3" ?
44 ResourceType hasValue "10"] memberOf VHS#Item and
45 [Elementname hasValue "SCSI Controller 0 - LSI Logic"?
46 InstanceID hasValue "4" ?
47 ResourceSubType hasValue "LsiLogic"?
48 ResourceType hasValue "6"] memberOf VHS#Item and
49 [ElementName hasValue "Harddisk l"?
50 HostResource hasValue "ovf:/disk/lamp"?
51 InstanceId hasValue "5"?
52 Parent hasValue "4"?
53 ResourceType hasValue "17"] memberOf VHS#Item and
54] memberOf VH#VirtualHardwareSection [hasInfo hasValue
55 "Virtual Hardware Requirements: 256Mb? 1 CPU? 1 disk? 1 NIC"]

Figure 3.2: Requirements ontology.

72 An Architecture for Automated Cloud Service Coordination

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ WEBSERVICE
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 nonFunctionalProperties
5 dc#title hasValue "A virtual unit service"
6 dc#type hasValue _"http://www.wsmo.org/TR/d2/v1.2/#services"
7 wsml# vers ion hasValue "$Revision: 1.1 $"
8 endNonFunctionalProperties
9 importsOntology { _"http://www.example.org/ontologies/opSys"?

10 _"http://www.example.org/ontologies/VirtualHardware"?
11 _"http://www.wsmo.org/ ontologies/location"?
12 _"http://www.wsmo.org/ ontologies/cost" }
13 Capability __"http://example.org/ VirtualUnit#capl"
14 sharedVariables {?dep? ?price? loc }
15 effect
16 nonFunctionalProperties
17 VU#DeploymentLatency hasValue ?dep
18 VU#Budget hasValue ?budget
19 VU#Location hasValue ?loc
20 endNonFunctionalProperties
21 definedBy
22 [Info hasValue " Supported Operating System"?
23 Description hasValue "Red Hat Enterprise Linux"?
24 Description hasValue "Windows Server 2003" ?
25 Description hasValue "Oracle Enterprise Linux"?
26 Description hasValue "OpenSolaris" ?
27 Description hasValue "OpenSUSE Linux"?
28 Description hasValue "Ubuntu Linux"?
29 Description hasValue "Fedora"?
30 Description hasValue "Gentoo Linux"?
31 Description hasValue "Debian"]
32 memberOf VU#OperationgSystemSection and
33 [[ElementName hasValue "Virtual Hardware Family"?
34 InstanceID hasValue "0" ?
35 VirtualSystemType hasValue "Small Unit"] memberOf VHS#ECType and
36 [Description hasValue "Number of virtual CPUs"?
37 ElementName hasValue "1 virtual CPU "] memberOf VHS#Item and
38 [AllocationUnits hasValue "byte * 2 ^ 30"
39 Description hasValue "Memory Size"?
40 ElementName hasValue "1.7 GB of memory "] memberOf VHS#Item and
41 [AutomaticAllocation hasValue "true"?
42 Connection hasValue " VM Network " ?
43 ElementName hasValue "Ethernet adapter on ’VM Network’ "]
44 memberOf VHS#Item and
45 [ElementName hasValue "Storage"?
46 StorageCapacity hasValue " byte * 160 * 2^30 "?
47 HostResource hasValue "ovf:/disk/lamp" memberOf VHS#Item and
48 [ElementName hasValue "Platform"?
49 PlatformType hasValue "bit * 32"] memberof VHS#Item and
50 [ElementName hasValue "I/O"?
51 Performance hasValue "Moderate"] memberOf VHS#Item and
52] memberOf VU#VirtualHardwareSection [hasInfo hasValue
53 "Offering Virtual Hardware: 1.7 GB? 1 CPU? 1 disk? 1 NIC"]
54 Interface _ "http://example.org/VirtualAppliance#capl"
55 Choreography _"http://example.org/tobedone"
56 orchestration _"http://example.org/tobedone"

Figure 3.3: Cloud service (virtual units) ontology.

3.3 Matchmaker Architecture 73

management that is impartial to IaaS providers and implementations.

• Cloud service ontology: The ontology provides an abstract model for describing

virtual appliances and units and their capabilities to enable IaaS providers to ad-

vertise their services. Our initial model concentrates on modeling of computational

Cloud services as depicted in Figure 3.3.

The service description shown in Figure 3.3 has been created manually as an example in

WSMO studio. However, virtual appliances and units meta-data are currently described

in XML format. Therefore, the manual translation of Cloud appliance and virtual unit

offerings’ descriptions is time consuming and not practical. Therefore, next section offers

an approach to semantically enrich Cloud offerings that minimizes human intervention.

3.3.1 Automoted Construction of Semantic-based Cloud Services and Their
Quality of Services

Currently, there is no integrated repository of semantic-based services for virtual appli-

ances and units (virtual machines). The first step towards describing services and their

QoS is to communicate with Clouds and the Cloud monitoring services through their

APIs and gather required meta-data for building the repository. The process of metadata

translation is demonstrated in Figure 3.4. The components involved in this process are:

Integrity Checking

This component first merges output messages of API calls for acquiring Cloud services

description using Extensible Stylesheet Language Transformations (XSLT)3 and then com-

pares them with the previously merged messages using a hash function. If the outputs of

the hash function are not equal, the component triggers the Sync component to update

the semantic repository.

3XSLT. http://www.w3.org/TR/xslt

http://www.w3.org/TR/xslt

74 An Architecture for Automated Cloud Service Coordination

Cloud’s API call to
acquire virtual
appliances and units

information

Translator

Component

Monitoring service’s API
call to acquire QoS
Information of Cloud
services

Repository of

semantically rich

Cloud services

Translator component
automatically lifts
functional and non-
functional properties of
Cloud services to ontology

instances

Sync

Component
Integrity
Check

Figure 3.4: The process of translation of the virtual appliances and units descriptions to
WSML.

Sync Component

The goal of this component is to keep the semantic-based repository consistent with the

latest metadata provided by Cloud providers. As the synchronization is computing in-

tensive, it is avoided unless the integrity checking component detects any inconsistency.

It receives the output message that is required for synchronization and finds the corre-

sponding semantically rich services and updates them with the output of the translator

component.

Translator Component

During the communication of a semantic-level client and a syntactic-level web service,

two directions of data transformations (which is also called grounding) are necessary: the

client semantic data must be written in an XML form that can be sent as a request to the

service, and the response data coming back from the service must be interpreted seman-

tically by the client. We use our customized Grounding technique on WSDL operations

(that are utilized to acquire virtual appliance and unit metadata) output to semantically

enrich them with ontology annotations. WSMO offers a package, which utilizes Seman-

tic Annotations for WSDL (SAWSDL) for grounding [101]. It provides two extensions

3.3 Matchmaker Architecture 75

attribute namely as Lifting Schema Mapping and Lowering Schema Mapping. Lower-

ing Schema Mapping is used to transfer ontology to XML and lifting Schema Mapping

does the opposite. In our translator component, the lifting mapping extension has been

adopted to define how XML instance data coming from Clouds API calls is transformed

to a semantic model.

As the first step in grounding, from output message schema, the necessary ontology

is created for virtual units and appliances. The basic steps to build the ontology from

XML schema using WSMO grounding is explained by Kopecky et al. [101]. In this step

our contribution lies on building the ontology from multiple output message schemas. It

means that the monitoring service output message schema is used to extend the ontology

to encompass the non-functional properties. This can be accomplished by merging two

schemas to construct an output message that not only describes the format of the element

that has functional properties of services but also non-functional properties such as price,

and reliability.

Modelreferences are attributes whose value is a list of URIs that points to correspond-

ing concepts in the constructed ontology in the last step. Having the ontology available,

the next step is adding the necessary modelReferences for all element declarations or type

delimitation for output messages in the Semantic Annotations for WSDL (SAWSDL) for-

mat. Subsequently, we need to add schema mappings that point to the proper data lifting

transformation between XML data and semantic data. For this purpose two attributes,

namely liftingSchemaMapping and loweringSchemaMapping, are offered by SAWSDL.

These aforementioned attributes are then utilized to point from Cloud virtual appliance

meta-data schema to a XSLT, which shows how meta-data is transferred from XML to

WSML. We tested this approach for Cloud service repositories with variety of sizes, and

will present the experimental result in Section 3.5. The ontology listed in Section A.1 of

Appendix A was partially created by the described translator component. For example

it shows how an appliance meta-data with ID of "aki00806369" has been translated to

WSML format.

76 An Architecture for Automated Cloud Service Coordination

3.3.2 Matchmaking Algorithm

In order to consider whether a goal G that represents user requirements and a Web service

W that represents advertised virtual units match on a semantic level, the sets G and W de-

scribing these elements have to be interrelated; precisely speaking, we expect that some

relationship between G and W exists. The service matching in the proposed architecture

is based on Description Logics (DLs) [8], which are a family of knowledge representation

formalisms that are able to represent the structural knowledge of an application domain

through a knowledge base including a terminology and a world description. The basic

formalism of a DL system comprises three components: 1) Constructors, which represent

concepts and rules, 2) Knowledge base (KB), which consists of the TBox (terminology)

and the ABox (world description). The TBox presents the vocabulary of an application

domain, while the ABox includes assertions about named individuals in terms of this

vocabulary, 3) Inferences which are reasoning mechanisms of Tbox and Abox. Before we

proceed to define discovery, we need to introduce the goal and five matching operations

described below:

Definition 3.1 (Goal) Let τ be an acyclic Tbox. A Goal G for τ is defined in the form of

G = (CG , IG , NG), where:

• CG is the set of capabilities of Web services including goal constraints, which the user would

like to have.

• IG is the set of interfaces of Web service, which the user would like to have and interact with.

• NG is the set of Nonfunctional properties, which is similar to that attached to Web services.

Definition 3.2 (Exact matching) Suppose that a requested capability of a Goal CG1 ∈ G1 is

given. Let a capability of a Web service CW1 ∈ W1 and Nonfunctional properties of a Web ser-

vice NW1 ∈ W1. If (NG1 ≡ NW1) u (CG1 ≡ CW1) then G1 can ”exactly” match W1 ,i.e. G1 ≡ W1.

Definition 3.3 (PlugIn matching) Suppose that a requested capability of a Goal CG1 ∈ G1 is

given. Let a capability of a Web service CW1 ∈ W1 and Nonfunctional properties of a Web service

NW1 ∈ W1 . If (NG1 v NW1) u (CG1 v CW1) then G1 v W1. This match is called "PlugIn".

3.4 Case Study 77

Definition 3.4 (Subsumption matching) Suppose that a requested capability of a Goal CG1 ∈ G1

is given. Let a capability of a Web service CW1 ∈ W1 and Nonfunctional properties of a Web service

NW1 ∈ W1. If (NW1 v NG1) u (CW1 v CG1) then W1 v G1. This match is called "Subsumption".

Definition 3.5 (Intersection matching) Suppose that a requested capability of a Goal CG1 ∈ G1

is given. Let a capability of a Web service CW1 ∈ W1 and Nonfunctional properties of a Web

service NW1 ∈ W1. If¬(NG1 uNW1 v⊥) u ¬(CG1 u CW1 v⊥) then¬(G1 uW1 v⊥). This match

is called "Intersection".

Definition 3.6 (Non-matching) Suppose that a requested capability of a Goal CG1 ∈ G1 is given.

Let a capability of a Web service CW1 ∈ W1 and Nonfunctional properties of a Web service NW1 ∈ W1.

If (NG1 uNW1 v⊥) u (CG1 u CW1 v⊥) then G1 uW1 v⊥. This match is called "Non-matching".

Based on the above definitions, we propose the Web service discovery algorithm

which is shown in Algorithm 1 and is defined as follows:

Definition 3.7 (Discovery) Suppose that a requested capability of a Goal CG1 ∈ G1 is given. Let

a capability of a Web service CW1 ∈ W1 and Nonfunctional properties of a Web service NW1 ∈ W1.

Discovery is defined as to find a set of Web services such that:

NG1 ≡ NW1) u (CG1 ≡ CW1) t (NG1 v NW1) u (CG1 v CW1) t (NW1 v NG1) u (CW1 v CG1)t

¬(NG1 uNW1 v⊥) u ¬(CG1 u CW1 v⊥)

3.4 Case Study

In this section our approach is validated on a case study to show the effectiveness of the

proposed algorithm. To show its applicability, it has been tested in Web Service Modeling

Toolkit (WMST) [94]. The Audio Video Devices (AVD) online store has a powerful

website for selling digital gadgets. Their business is initially based on Europe and they

have just expanded it to US. They have leased a dedicated server from a data center in

US. Nevertheless, due to a business plan for announcement of twenty percent discount

in some category of items, an exceptional load is predicted to build up on the server. As

they have doubt about the ROI, they are not going to acquire another server. Recently,

78 An Architecture for Automated Cloud Service Coordination

Algorithm 1: Discovery
Input: guser is the user’s goal, Gexist is a set of existing goals, W is the set of Cloud

services

1 forall the g ∈ Gexist do

2 if guser ≡ g then

/* g is an existing WSMO goal */

3 return (guser , matchType(g))

4 forall the w ∈ W do

/* w is an existing WSMO service */

5 if C (guser) ≡ Cw and N (guser) ≡ Nw then

/* C and N stands for capability and non-functional

properties respectively */

6 return (w , Exact)

7 else if C (guser) v Cw and N (guser) v Nw then

8 return (w , PlugIn)

9 else if CW v C (guser) and NW v N (guser) then

10 return (w , Subsumption)

11 else if ¬(C (guser) u Cw v⊥) and ¬(N (guser) uNw v⊥) then

12 return (w , Intersection)

13 return (guser , NonMatch)

they have been informed about Cloud computing and its pay-as-you-go usage model and

found it very useful for their case. That is because they can lease a virtual server even for

an hour and terminate it when the load returns to the normal level. However, they are

seeking for a solution to deploy their application automatically on the most suitable IaaS

provider.

We show how our work can help them to achieve their goal. Their virtual unit re-

quirements are depicted in Table 3.1 the and Cloud services’ specification that were ad-

vertised by providers are shown in Table 3.2. The operating systems supported by each

3.4 Case Study 79

Table 3.1: Case study Cloud service request.

Requestor
CPU

(core MHz)
Memory Storage Platform Budget Location

Deployment-

time

(Sec)

OS

AVD 800 1.5 GB 140 GB 32-bit 0.15 $ US 79
Unix com-

patible

Table 3.2: Cloud services listed for the case study.

Requestor
CPU

(core MHz)

Memory

(GB)

Storage

(GB)
Platform Budget Location

D-time

(Sec)

A 1000 1.7 160 32-bit 0.12$ US 79.5

B 1000 2 120 64-bit 0.38$ US 80

C 1000-1200 1.7 170 32-bit 0.10$ US 76.5

C 1000-1200 1.7 170 32-bit 0.11$ EU 76.5

A 4000 7.5 850 64-bit 0.138$ US 78

IaaS provider are depicted in Table 3.3. First, the AVD IT officer connects to the portal

and expresses their software, hardware, and other requirements. AVD needs an Apache

server to be installed on a virtual unit with specification illustrated in Table 3.1. Con-

sequently, the Appliance Administration Service discovers a suitable Apache appliance

that will be packed according to the destination Cloud VM image format standard. Next,

the matchmaker, as explained in Section 3.3, checks the capabilities of both virtual units

Web services against the resource requirements. Since the knowledge base (KB) specifies

that both "Linux family" and "OpenSolaris" are types of "Unix", not only IaaS provider A

but also IaaS provider C, pass the operating system requirement criteria.

Both providers A and C services (which is located are US) pass functional require-

Table 3.3: Supported operating systems for the case study.

Providers Operating Systems

A UNIX, Debian 5.0, 4.0 ; Ubuntu 9.04, 8.10 ; Windows Web Server 2008

B Windows Server 2008 ; Windows Server 2003

C OpenSolaris ; OpenSUSE Linux ; Ubuntu Linux ; Windows Server 2003

80 An Architecture for Automated Cloud Service Coordination

Figure 3.5: Case study validation in WSMT environment.

ments criteria based on Definition 3.3 . As it is shown in Figure 3.5, providers C in EU

and A match type with user requirements is Subsumption as they cannot satisfy loca-

tion and deployment time criteria correspondingly. However, the provider C in US is the

most preferable as it can satisfy all requirements and its match type is PlugIn. Next, as

described in Section 3.2 the signed SLA will be sent to the third party for monitoring.

In this case, the third party realized that the deployment time was 80 seconds which is

3.5 seconds more that what both parties have been agreed on. Therefore, the third party

informs them, and AVD is found eligible for receiving compensation as the SLA was

violated.

3.5 Performance of the Translation Approach

Major Cloud providers have large repository of virtual appliance and unit services. For

example, Amazon Web Service’s repository’s size alone is greater than 10.6 megabytes. To

increase the efficiency of the approach we will only synchronize when the translation ser-

vice is triggered by integrity checking component. We increased the number of services

in the repository by merging repositories from various Cloud providers to investigate

3.6 Related Work 81

Figure 3.6: Execution time of translation for different repository sizes.

the scalability of our approach in terms of execution time needed for the translation. For

each case of repository size, we repeated the experiment 30 times and the results are plot-

ted in Figure 3.6. Regression analysis shows that there is positive and linear relationship

between the repository size and the translation time. The evidence confirms that the re-

gression coefficient is 0.6621, which suggests that if the data size to be translated increases

by a mega byte, translation time increases roughly by 0.6 second. Consequently, the syn-

chronization function can be executed online in an acceptable time even if a considerable

percentage of virtual appliance and unit properties are updated.

3.6 Related Work

Recently, many works have targeted satisfying end user requirements by offering solu-

tions based on virtualization [91, 168]. These works did not consider Cloud providers as

resource suppliers. Therefore, they did not offer any discovery and selection techniques

for resource provisioning. In this section, two of the most recognized works are reviewed.

Keahey et al. [91] presented the idea of virtual workspace (VW), which allows users to

define an environment in terms of their requirements (such as resource requirements or

software configuration), manage and then deploy it in the Grid and Cloud. They have

82 An Architecture for Automated Cloud Service Coordination

their own Cloud, named Nimbus Cloud, for deployment of VW which. It provides virtu-

alization in the form of Xen virtual machine and can be used to make a request to deploy a

workspace based on a specified VM image. It is worth mentioning that that they have not

considered the user QoS requirements and in general SLA. In addition, Cloud discovery

and selection is missing from the work.

A related work has been done in North Carolina State University. The project name

is Virtual Computing laboratory (VCL) [168], which was originally described in Febru-

ary 2004. VCL claims that it is an ideal product to support all kinds of Cloud solution.

VCL services vary from virtual computer laboratory seats or desktops, to single applica-

tions on demand, to high-performance computing services and clusters. However, VCL

support for virtual machine images discovery and selection is limited and it cannot ade-

quately capture QoS requirements.

3.7 Conclusions

In this chapter, an effective architecture for Cloud service coordination is presented. The

presented approach includes three main improvements: persisting deployment config-

uration using a standard semantic language, proposing an advertisement approach for

IaaS providers, and applying ontology-based discovery to find the best suited providers.

One of desired attributes of our architecture is to allow users to present their require-

ments in terms of high-level and general software and hardware characteristics, which

will be mapped to appliances and virtual units.

In the next section, we propose an approach to migrate a multi-tier application to

Multi-Cloud. The approach considers necessary QoS criteria and optimization algo-

rithms to move user applications to Cloud services that have the minimum cost and the

highest reliability.

Chapter 4

Migrating Multi-tier Applications to
Multi-Cloud

Multiple Cloud providers are offering different virtual appliances and computing units with differ-

ent pricing and Quality of Service (QoS) in the market. Thus, it is important to exploit the benefit

of hosting virtual appliances on multiple providers to not only reduce the cost and provide better

QoS but also achieve failure resistant deployment. This chapter presents an approach to simplify

cross-Cloud deployment and particularly focuses on QoS modeling and deployment optimization. An

optimization approach is required for deploying networks of appliances to guarantee minimum cost,

low latency, and high reliability. We propose and compare two different deployment optimization

approaches: genetic-based and Forward-checking-based backtracking (FCBB). They take into account

QoS criteria such as reliability, data communication cost, and latency between multiple Clouds to se-

lect the most appropriate combination of virtual machines and appliances. We evaluate our approach

using a real case study and different request types. Experimental results suggest that both algorithms

reach near optimal solution. Further, we investigate effects of factors such as latency and reliability

requirements and data communication between appliances on the performance of the algorithms and

placement of appliances across multiple Clouds. The results show that the efficiency of optimization

algorithms depends on the data transfer rate between appliances.

4.1 Introduction

ONE of the key challenges in building a platform for deploying applications is

to automatically select, configure, and deploy the necessary application infras-

tructure that consists of number of different components. If we consider the deployment

requirements of a web application service provider, it includes security devices (e.g. Fire-

wall), load balancers, web servers, application servers, database servers, and storage de-

83

84 Migrating Multi-tier Applications to Multi-Cloud

vices. Setting up such a complex combination of applications is costly and error prone

even in traditional hosting environments [158], let alone in Clouds. Virtual appliances

provide an elegant solution for this problem.

A virtual appliance is a virtual machine image that has all the necessary software

components to meet a specific business objective pre-installed and configured [150] and

can be readily used with minimum effort. Virtual appliances not only eliminate the effort

required to build these appliances from scratch, but also avoid any associated issues such

as incorrect configuration. To overcome deployment problems such as root privilege re-

quirements and library dependencies, virtual appliance technology is adopted as a major

Cloud component.

In general, Cloud deployment includes two main phases: discovery which was ex-

plained in the previous chapter, and selection (deployment optimization). In the discov-

ery phase, all virtual units and appliances, which are called Cloud services throughout

this thesis, that satisfy users goals and QoS requirements are retrieved. Then, in the selec-

tion phase, all the combinations of virtual units and appliances are evaluated and ranked

based on user preferences and the top combination in the ranked list is returned as the

best composition. The availability of wide range of virtual appliances and units (com-

puting instances) and the specific QoS requirements of users make it difficult to select the

best combination of cloud services. In addition, multiple providers are offering different

appliances and virtual units with different pricing in the market, therefore it is impor-

tant to exploit the benefit of hosting appliances on multiple providers to reduce the cost

and provide better QoS. However, this could be only possible if high throughput and

low latency can be guaranteed among different selected Clouds. Therefore, the latency

constraint between nodes has to be considered as key QoS criteria in the optimization

problem. Amazon EC2, GoGrid, Rackspace, and other Key players in the IaaS market

constitute different deployment models using virtual appliances and units (computing

instances). However, they do not provide a solution for composing Cloud services based

on users functional and non-functional requirements such as cost, reliability and latency

constraints.

The first step to enable cross-Cloud deployment optimization is to model the appli-

4.2 Motivation Scenario 85

ances, virtual units, and QoS requirements of users, which was achieved in Chapter 3.

In the next step, the service coordinator has to deal with requests (group of connected

applications) with different latency, reliability and budget constraints, and the objective

of minimizing the deployment cost. The problem is to find a composition of combina-

tions of virtual appliances and units that adheres to the user constraints and minimizes

the cost of deployment.

This chapter addresses the modeling of relevant QoS criteria, namely latency, cost

(data transfer cost, virtual unit, and appliance cost), and reliability for selection of the best

virtual appliances and units in Cloud computing environment. In addition, it presents

and evaluates two different selection approaches (genetic-based and Forward-checking-

based backtracking (FCBB)) to help users in migrating network of application or multi-

tier applications to multiple Clouds based on their QoS preferences. For this purpose,

various types of requests (with different network load between appliances) are generated

and data from 12 real Clouds was collected. Furthermore, the chapter investigates effects

of factors such as latency requirements and data communication on the cost of appliance

placement and the selection of providers.

4.2 Motivation Scenario

To study user requirements and concerns for deploying a network of applications on

Clouds, we give an example of a real world case study with known network traffic be-

tween appliances. A good example of network of virtual appliances (a set of appliances

in the form of a connected graph which have data communication among them) is multi-

tier applications supporting web-based services. Each tier has communication require-

ments as characterized by Diniz Ersoz et al. [50]. They considered a data center with 11

dedicated nodes of a 96-nodes Linux cluster and host an e-business web site encompass-

ing 11 appliances: 2 front-end Web-Servers (WS) in its web tier, 3 Databases (DB) in its

database tier and 6 Application Servers (AS) in between. As they have characterized net-

work traffic between tiers, we selected their work to build our case study. Assume that

the administrator of the e-Business application is interested in migrating the appliances

86 Migrating Multi-tier Applications to Multi-Cloud

to the Cloud in order to save on upfront infrastructure and maintenance costs, as well as

to gain the advantage of on-demand scaling. In addition, to allow disaster recovery and

geography-specific service offering, he/she would prefer multiple Cloud deployment.

For such deployment, he/she faces several challenges such as:

1. What is the best strategy for placing appliances across Cloud providers? Should

they be placed based on the traffic they exchange, therefore placing those with

higher connectivity closer to each other to decrease latency and data transfer cost?

2. Is it economically beneficial to do so?

3. If appliances are placed across multiple providers, how the latency between differ-

ent providers affects the performance?

4. How can the most reliable Cloud services be selected for the deployment?

4.3 QoS Criteria

The three QoS criteria considered in the deployment optimization problem are reliability,

cost, and latency.

1. Reliability: We consider reliability as a QoS objective. To measure the IaaS providers’

reliability, as shown by Equations (4.1) and (4.2), Service Level Agreement (SLA)

Confidence Level (SCL) is introduced. It measures how reliably a provider is offer-

ing their services based on the binding SLA. SCL can be computed by a third party,

who is responsible for monitoring the SLA.

SCL =
k

∑
j=1

Ij × SCLj where SCLj = MSQjt − SLOjt (4.1)

Total Reliability TR = ∑
v∈V

SCLv (4.2)

where SCLj is the SLA confidence level for QoS criteria j of a Cloud service; Ij is the

importance of QoS criteria j for user; MSQjt is the monitored value of QoS criteria

4.4 Deployment Problem Formulation 87

j for a period of t; SLOjt is promised QoS criteria j value in SLA for the period of t,

and k is number of QoS criteria monitored.

Although our SCL metric can model various Cloud specific QoS criteria, in this

work we consider only availability as it is the primary criteria specified by current

IaaS providers in their SLAs.

2. Cost: Cost is a non-functional requirement of a user who wants to deploy a net-

work of applications. In our problem, minimization of deployment costs is con-

sidered as the objective of users. The deployment cost includes monetary cost of

leasing virtual units as well as appliances and communication costs. The commu-

nication monetary cost for connected virtual appliances depends on how much data

they exchange and can be determined by the following factors: 1) One time com-

munication message size and 2) Communication rate (how often two appliances

communicate), which can be calculated based on request inter-arrival rate.

3. Latency: Latency can have a significant impact on e-Business web sites perfor-

mance and consequently on the end user experience. Therefore, we have consid-

ered it in the problem as one of the users constraints. It is assumed that customers

have different constraints for the latency between appliances which have to be sat-

isfied with the selection of proper Cloud providers

4.4 Deployment Problem Formulation

4.4.1 Provider Model

Let m be the total number of providers. Each provider is represented in Equation (4.3).

Pk : ({a} , {vm} , Cdatain(Pk), Cdataout(Pk)) (4.3)

Where a, vm, Cdatain(Pk) and Cdataout(Pk) denotes appliance, virtual machine, cost

of internal data transfer and cost of external data transfer respectively. A virtual appli-

ance a can be represented by a tuple of four elements: appliance type, cost, license type,

88 Migrating Multi-tier Applications to Multi-Cloud

and size as represented in Equation (4.4).

a : {ApplianceType; Cost; LicenseType; Size} (4.4)

A virtual machine vm can be formally described as a tuple with two elements as

shown in Equation (4.5).

vm : {MachineType; Cost} (4.5)

4.4.2 User Request Model

The user request for deployment of his application can be translated into a graph G(V, E)

where each vertex represents a server (virtual appliance running on a virtual unit). Server

corresponding to a vertex v is represented as Equation (4.6).

Sv = {appliance, virtualunit} = {av, vmv} , ∀v ∈ V (4.6)

The edge e {v, v′} indicates that vertex v and v′ are connected. The data transfer be-

tween these connected vertexes (i.e., one server to another) is given by "D".

The objective of a user is to minimize the deployment cost of his whole application on

multiple Cloud providers’ infrastructures, given a lease period of "T" and budget B. The

users have constraint for reliability (SCLv) of the provider on which the server should

be hosted and also latency constraint (L(e {v, v′})where v, v′ ∈ V) that represents the

maximum acceptable latency between servers. The cost of renting a server includes the

cost of virtual unit and virtual appliance.

Let appliance for Sv be rented from provider Pk and virtual unit from provider Pl .

The cost of server Sv as shown in Equation (4.7) is the cost of appliance (cost(av,pk)) and

virtual unit (cost(vmv,pl)) plus cost of transferring the appliance if the appliance and

virtual unit are not acquired from a same provider.

4.4 Deployment Problem Formulation 89

Cost (Sv) =

(Cost (av,Pk) + Cost (vmv,Pl))× T if k = l;

(Cost (av,Pk) + Cost (vmv,Pl))× T + Size (av,Pk) ∗

Cdataout (Pl) if k 6= 1.

(4.7)

Let Sv =
{

av,Pk, vmv,pl
}

and S′v =
{

av′,Pk′ , vmv′,pl′
}

be two connected vertexes (servers)

by edge e {v, v′} ∈ E ; and Pk , Pl , Pk′ and Pl′ are the providers that using their resources

Servers Sv and Sv′ are deployed. The data transfer cost between two servers is given by

Equation (4.8).

DCost
(
e
{

v, v′
})

=

DSize (e)× (CDataout (pl) + CDataout (pl′))× T

if l 6= l′

DSize (e)× CDatain (pl)× T

if l = l′

(4.8)

Therefore, the total cost of hosting users application is given by Equation (4.9).

TC = ∑
v∈V

Cost (Sv) + ∑
e∈E

v,v′∈V

DCost
(
e
{

v, v′
})

(4.9)

4.4.3 Deployment Optimization Objectives

The objective of the user is to minimize the deployment cost of his whole application on

multiple cloud infrastructures (Pk, 0 < k < m). Thus, the mathematical model is given

by Equations (4.10), (4.11) , and (4.12).

Min (TC) Subject to 0 < TC < B (4.10)

Latency (Sv, Sv′) < L
(
e
{

v, v′
})

where ∀ e
{

v, v′
}
∈ E (4.11)

SCL (Sv) < SCLv where ∀ v ∈ V (4.12)

90 Migrating Multi-tier Applications to Multi-Cloud

Where, Latancy (Sv, Sv′)is the latency between Cloud infrastructures where server Sv and

Sv′ are hosted, and SCL(Sv) is the reliability of the Cloud infrastructure where server Sv

is hosted.

4.5 Deployment Optimization Algorithms

To tackle the mentioned problem, one may consider a greedy algorithm [27]. However,

it cannot be directly adopted to solve the deployment problem, as it is not capable of

satisfying the budget constraint and latency constraints between vertices. Another ap-

proach that can be used to solve the problem is finding all possible compositions using

exhaustive search, comparing their overall cost, and selecting the composition with the

lowest cost that satisfies budget, reliability, and latency constraints. This approach can

find the optimal solution; however, the computation cost of the algorithm is high due to

NP hardness of the problem [82]. In order to deal with the aforementioned challenges, in

the rest of this section, we describe two algorithms: Forward-checking-based backtrack-

ing (FCBB) and genetic-based Cloud virtual appliance deployment optimization.

4.5.1 Forward-Checking-Based-Backtracking (FCBB)

In FCBB the process of searching providers begins from a start node (vertex) Sv that has

minimum deployment cost (including appliance and virtual unit cost) and for all its chil-

dren there can be found at least one provider that satisfies all constraints (partial forward

checking) [Algorithm 3 lines:12-14]. The partial forward checking on the problem con-

straints is added to the algorithm to avoid back jumps in the circumstances where latency

constraints of the users are comparatively tight.

Then, Sv is added to the processed node list. After that, the algorithm processes all

the children of Sv that are not processed, and for each child of Sv′ , providers are selected

using the selection function [Algorithm 2 lines:8-11] such that 1) latency and SCL con-

straints are satisfied with all the connected processed nodes (backward checking), 2) they

can pass forward checking and 3) they have minimum communication (to already pro-

cessed nodes) and combination cost [Algorithm 3 lines:16-19]. After selection of all the

4.5 Deployment Optimization Algorithms 91

unprocessed children of the start node Sv′ , the similar search and selection process is ap-

plied recursively for all the grandchildren of the start node Sv [Algorithm 3 lines: 12-13].

If the selection function does not find any set of providers, it moves back and replaces

the parent node with the second best set of providers in the Combination list (Backtrack)

[Algorithm 2 lines: 7 and 11].

Algorithm 2: FCBB
Input: Sv, RequestG(V, E)

1 if Sv = theFirstStartNode then

2 Sv ← getStartNode(RequestG(V, E), processedSet);

3 processedSet← processedSet ∪ Sv ;

4 selection(Sv);

5 if selection(Sv′) = null then

6 backtrack;

7 connectedNotProcessed←

getConnectedNotProcessed(parentNode, RequestG(V, E), processedSet);

8 foreach Sv′ in connectedNotProcessed do

9 selection(Sv′);

10 if selection(Sv′)=null then

11 backtrack;

12 foreach Sv′ in connectedNotProcessed do

13 FCBB(Sv′);

4.5.2 Genetic-Based Virtual Unit and Appliance Provider Selection

Since genetic approaches have shown potential for solving optimization problems [31],

this class of search strategies was utilized in our problem. The adoption of genetic-based

approaches for the deployment problem involves 4 steps.

The f irst step is to plan the chromosome, which consists of multiple genes. In our

problem, each vertex in the graph of request is represented by a gene. The second step is to

92 Migrating Multi-tier Applications to Multi-Cloud

Algorithm 3: Selection
Input: Sv

Output: selected []

1 minCost← ∞; constraintsViolated← f alse; f easible← true;

2 foreach combination in getAllCombinationSorted(Sv) do

3 . getAllCombinationSorted returns combinations sorted using quick sort.

4 if SCL(Sv) < SCL(combination.getVUProvider()) and

SCL(Sv) < SCL(combination.getAppProvider()) then

5 connectedProcessed←

getConnectedProcessed(startNode, RequestG(V, E), processedSet);

6 if connectedProcessed = null then

7 foreach Sv′ in connectedProcessed do

8 if Latency(Sv, sv′) > L(e {Sv, sv′}) then

9 constraintsViolated← true;

10 if constraintsViolated = f alse then

11 connectedNotProcessed←

getConnectedNotProcessed(startNode, RequestG(V, E), processedSet);

12 foreach sv′ in connectedNotProcessed do

13 if /∈ combination in getAllCombinationSorted(Sv) that

Latency(Sv, sv′) > L(e {Sv, sv′}) then

14 f easible← f alse . Forward Checking;

15 if f easible = true then

16 cost← communicationCost + combination.getCost();

17 if cost < minCost and cost + totalCost < request.getBudget()

then

18 minCost = cost;

19 selected [Sv]←

{combination.getVUProvider(), combination.getAppProvider()};

4.5 Deployment Optimization Algorithms 93

create the population, hence each gene represents a value that points to a combination of

virtual unit and appliance service (which satisfies requirements of corresponding vertex)

in a sorted (based on the combination cost) list.

Implementation of fitness function is the third step. The fitness values are then used in

a process of natural selection to choose which potential solutions will continue on to the

next generation, and which will die out. The fitness function, as shown in Equation 4.13,

is equal to the total cost of the solution. However, if constraints are violated, the penalty

function is applied. Designing penalty function for genetic-based approach is not a trivial

task. Several techniques have been applied in our work until a proper penalty function

was found that is capable of handling constraints in the problem.

The penalty function is constructed as a function of the sum of the number of vi-

olations for each constraint multiplied by constants as shown in Equation 4.14. In the

penalty function, Age is the age of chromosome, ki is a constant, NVi is number of cases

that violates the constraints, and NNVi is the number of cases that do not violate the

constraints. In addition, to discard the infeasible solutions in early generations, infeasi-

ble solutions with lower age are penalized heavier. Finally, the last step is the evolution

of the population based on the genetic operator. The genetic operator adopted for our

work is the Java Genetic Algorithm Package (JGAP) natural selector [121].

f itness (Chromosome) =

(
∑i∈V Cost (Genei) + ∑ e∈E

i,j∈V
DCost (e {Genei, Genej})

)
∗ T

if constraints are not violated(
∑i∈V Cost (Genei) + ∑ e∈E

i,j∈V
DCost (e {Genei, Genej})

)
∗

T + Penalty ()

if constraints are violated

(4.13)

Penalty () =
n

∑
i=1

(
NVi

NVi + NNVi
× ki

)
×
(

1
Age

)
× f itnessvalue (4.14)

94 Migrating Multi-tier Applications to Multi-Cloud

4.6 Experimental Testbed Modeling

To evaluate the proposed algorithms and study the placement of appliances, essential

input data using real experiments was collected. The collected data can be classified

either in data for providers modeling, and data for user request modeling.

1. Providers Modeling: A set of 12 real Cloud providers are selected namely: Amazon,

Zerigo, Softlayer, VMware, Bitnami, rpath, Turnkeylinux, Rackspace, GoGrid, Reli-

aCloud, Lindoe, and Prgmr. Their virtual units and appliances have been modeled

in our system. In addition, latency data between Cloud providers and SCL for each

of them have been measured. The following subsections describe the data collected

in detail.

2. Virtual Unit and Appliance Modeling: We built an aggregated repository of vir-

tual appliance and virtual unit services based on the advertised services by Cloud

providers. Services contain information regarding cost, virtual appliance size, and

data communication cost inside and outside Clouds.

3. Latency and reliability (SCL) calculation: The latency data between Cloud providers

has been collected for three months using the Cloud harmony service [29]. Data col-

lection was conducted twice daily at random times. Tests consist of pinging to de-

termine latency. Table 4.1 shows mean latency between EC2 and 3 different virtual

unit providers as a sample. Max, min and average of latency between providers are

58.94, 2.51 and 29.88 (ms) respectively. In addition, Panopta (a monitoring tool) is

used to supply SCL input data. Table 4.1 demonstrates how a sample of SCL input

data looks like for three Cloud providers service uptime for a 365 days period.

4.6.1 Generation of Requests for Experiments

The request generation involves three steps. Firstly, number of servers requested by the

user and requirements of each server in terms of virtual unit and appliance types are

determined. Next, connected vertices in the request are identified. Finally, data trans-

4.6 Experimental Testbed Modeling 95

Table 4.1: Latency between Clouds and SCL input data.

Cloud A Cloud B
Latency

(ms)

Cloud B Monitored

Availability

Cloud B Promised

Availability

EC2 Rackspace 49.8 99.996% 100%

EC2 GoGrid 8.9 99.996% 100%

EC2 Lindoe 5.01 99.996% 100%

Table 4.2: Request types.

Request Type
Request Graph

Density

Request Inter Arrival

Rate DB↔ AS

Request Inter Arrival

Rate WS↔ As

Strongly connected 0.85
Log-normal

(1.4719,2.2075)

Weibull

(0.70906,10.185)

Moderately connected 0.5
Log-normal

(1.1695,1.9439)

Weibull

(0.41371,1.1264)

Poorly connected 0.25
Log-normal

(0.8912,1.6770)

Weibull

(0.24606,0.03548)

fer rates between connected appliances are identified. For experimental evaluation, two

classes of requests are used, i.e., a real case study and randomly generated requests.

1. Modeling user requests using a real case study: For the real case study exam-

ple, we use the three-tier data centre scenario presented by Ersoz et al. [50]. The

required virtual units and appliance types for each vertex is assigned based on

the scenario. They implemented an e-Business web site that encompasses 11 ap-

pliances: 2 front-end web-servers (WS) in its web tier, 3 databases (DB) in its

database tier, and 6 application servers (AS) in between. In their work, a three-tier

data centre architecture was used to collect the network load between appliances.

Two different workloads, RUBiS [23] and SPECjApp-Server2004, are used by them.

However, our focus is on the RUBiS, which implements an e-Business web site.

That web site includes 27 interactions that can be carried out from a client browser.

Their analysis of experiments results has been represented by various distributions

of request inter-arrival times, and data size between tiers for 15 minutes runs of

the RUBiS workload with 800, 1600, and 3200 clients. This data, which is shown in

96 Migrating Multi-tier Applications to Multi-Cloud

Table 4.2, is used to calculate the network traffic between connected appliances.

2. Modeling user requests for extensive experiment study: Three classes of user re-

quests (network of appliances) namely strongly, moderately, and poorly connected

are created as shown in Table 4.2 which differs from each other in communicated

message sizes, message inter-arrival rates, and graph density (proportion of the

number of edges in request graph to total possible number of edges) of the request

graph. The reason for building 3 classes of requests is to study the effect of net-

work traffic and request graph density on performance of algorithms. For each ver-

tex, we randomly assign a required virtual unit and appliance type, and then we

use a random graph generation technique to identify which vertices are connected.

All generated network of appliances follow the topology presented by Ersoz et al.

[50]. Based on appliances that are connected to each other, data transfer rates are

assigned. For example, if one appliance is a database and the other one is an appli-

cation server and the request is in category of strongly connected, then the request

inter-arrival rate is Log-normal (1.4719, 2.2075). In addition, to investigate effects of

message size on the performance of algorithms, two classes of requests with differ-

ent message sizes are created using workload "a" [50] (e-Business application with

small message size) and "b" [4] (98 World cup with large message size).

4.7 Experimental Results

The experiments aim at:

• comparing the proposed heuristics with Exhaustive Search (ES) using the real case

study,

• evaluating effects of variation in request types on algorithms performance,

• analyzing effects of variation in request types and constraints on distribution factor

and deployment cost,

• and investigating effects of number of iterations an population size on the algo-

rithm performance.

4.7 Experimental Results 97

Figure 4.1: Performance evaluation for case study.

Table 4.3: Mean execution time for case study.

Algorithm Mean Execution time(s)

FCBB 0.102

genetic 36.393

Exhaustive Search (ES) 3248.152

4.7.1 Comparison with Exhaustive Search (ES)

Figure 4.1 shows how close the proposed algorithms are to the Exhaustive Search (ES)

for the case study. Both of them could reach the same solution achieved with ES. As

evidenced by Table 4.3, the mean execution time for finding the solution using exhaustive

search of the solution space is extremely high comparing to our proposed algorithms. The

execution time for the ES approach rises further exponentially with the computational

effort for larger number of servers and providers. Therefore, it cannot be considered as a

practical solution for the problem. To further examine the near-optimality of FCBB and

the genetic approach, we conducted experiments with 10 different requests (in terms of

service requirements, graph density, message size, and request inter-arrival time) for each

category of 10, 15, and 20 servers. The results are shown in Table 4.4, where we observe

that on average, the difference in deployment cost compared with ES is 7% for the FCBB

and 1% for genetic approach. Therefore, both FCBB and genetic approach can reach a

near-optimal solution without much computational cost.

98 Migrating Multi-tier Applications to Multi-Cloud

Table 4.4: Mean exhaustive search(es) costs/algorithms costs.

Algorithm Number of servers

10 15 20

ES/FCBB 0.9841 0.9175 0.9013

ES/genetic 0.9952 0.9868 0.9923

4.7.2 Results of Variation in Request Types on Algorithms Performance and
Execution Time

Figures 4.2 and 4.3 depict the performance of the proposed algorithms for different re-

quest types (strongly, moderately, and loosely connected) with different number of servers.

In the case of workload "a", as the message size is small, differences are comparatively

small, except for strongly connected requests (Figure 4.2a and especially for the case of

100 servers where genetic-based approach can save approximately 3% of cost. In other

cases of workload "a", when vertices are moderately or poorly connected, the genetic-

based approach has better or relatively same performance (regarding the cost) compared

to the FCBB algorithm. However, when the message size is larger (workload "b"), as

shown in Figure 4.3a, the genetic algorithm in almost all cases outperforms the FCBB

algorithm. In Table 4.5, mean execution times for 20 experiments in relation to the num-

ber of servers for groups of requests is given. It shows that the execution time of FCBB

is negligible compared to the genetic’s one. It also shows that adding "forwards check-

ing" feature successfully decreases execution time, especially for the requests that require

more than 10 servers and therefore it outperforms the "discard subset" algorithm offered

in [82] (the algorithm proposed to solve the web service composition optimization prob-

lem with multiple constraints) regarding the execution time while they both could result

in the same objective values for all cases.

Therefore, the performance of the algorithms differs from one workload to another

and when there exists a workload with small message size (like the e-Business workload

"a"), performance differences of algorithms are low. In such cases, FCBB can be used to

save execution time. However, when the message size increases, they show compara-

tively higher differences. As a result, when users look for minimizing cost instead of

4.7 Experimental Results 99

(a) Strongly connected.

(b) Moderately connected.

(c) Loosely connected.

Figure 4.2: Change in connectivity for workload a.

100 Migrating Multi-tier Applications to Multi-Cloud

(a) Strongly connected.

(b) Moderately connected.

(c) Loosely connected.

Figure 4.3: Change in connectivity for workload b.

4.7 Experimental Results 101

Table 4.5: Mean execution time(s).

Algorithm Number of servers

10 25 50 75 100

FCBB 0.103 0.115 0.288 0.407 0.841

Discard subset 0.138 0.271 0.849 2.339 6.091

genetic 31.997 144.426 497.377 1288.056 1814.488

execution time, the genetic-based approach is the more appropriate solution.

4.7.3 Effects of Variation in Request Types and Latency Constraints on Distri-
bution Factor

In this experiment, the objective is to study the possibility of placing a network of ap-

pliances on different providers rather than on a single one. For this purpose a metric

named "distribution factor" is designed, which shows the proportion of the number of

different providers selected to the total number of providers. Table 4.6 shows how a re-

quest type (data transfer rate, and graph density as explained in Table 4.2) affects the

distribution factor. For the loosely connected requests with loose latency requirement,

we conclude that considering multiple Cloud providers decreases the deployment cost

while still maintaining the minimum performance requirements (by adhering to latency

constraint). For all cases from 10 to 100 servers, when there is a higher data transfer and

number of connection between vertices, the distribution factor decrease dramatically. For

the majority of cases, it is decreased by more than 75%. It means that FCBB selection al-

gorithms have a tendency to select the same virtual unit provider for all vertices to save

on communication cost. The same trend can be observed for the genetic-based approach.

However, when the latency constraints are tight, if we consider multiple providers for

deployment, the cost will be lower. But still the distribution factor decreases by 25%.

Consequently, the experiments show that network of appliances with higher graph den-

sities and data transfer are less likely to be distributed across multiple providers and they

are expected to have higher deployment cost.

102 Migrating Multi-tier Applications to Multi-Cloud

Table 4.6: Distribution factor.

Request type Number of servers

10 25 50 75 100

Loosely connected & Loose latency 44% 55% 55% 55% 44%

Strongly connected 11% 11% 11% 11% 11%

Tight latency 22% 44% 33% 33% 33%

Table 4.7: Effects of the deployment constraints on the cost.

Request type Average percentage of cost increase

High reliability 5.8117414

Tight latency 10.1966957

4.7.4 Consequence of Variation of Reliability Constraints on Deployment Cost

This experiment is designed to help us understand how characteristics of network of ap-

pliances affect the deployment cost when they are migrated to the Cloud. As illustrated

in Table 4.7, the deployment cost increases by almost 10% on average when latency re-

quirement is tighter as less number of providers could satisfy latency requirement (lower

distribution factor). In addition, demanding providers with higher reliability has slightly

increased the cost of deployment which is less than the increase in the case when the

latency constraint is tighter.

4.7.5 Varying Iteration Number and Population Size

Figure 4.4a and 4.4b represent the effects of increasing the number of iterations and pop-

ulation size on improvement of objective function. The examined request has 100 highly

connected vertices from workload (b). The aim is to show to what extent increasing the

number of iterations and population size improves performance of the genetic approach.

It can be observed that increasing the number of iterations and population size contribute

to the objective function. However, from a certain point (for population size 1000 and for

iteration number 500), the improvement is marginal and negligible.

4.8 Conclusions 103

(a) Population size versus cost. (b) Number of iteration versus cost.

Figure 4.4: Varying iteration number and population size.

4.8 Conclusions

This chapter mainly focused on cross-Cloud Quality of service service modeling and de-

ployment optimization. We investigated the Cloud provider selection problem for de-

ploying a network of appliances and proposed new QoS criteria. The problem of de-

ployment is formulated and tackled by two approaches namely FCBB and genetic-based

selection. We evaluated the proposed approaches by a real case study using real data

collected from 12 Cloud providers, which showed that the proposed approaches deliver

near-optimal solution. Next, they were tested with different types of requests. The re-

sults show that when message size increases, approaches present comparatively higher

differences, and if execution time is not the main concern of users, genetic-based selec-

tion in most cases achieves better value for the objective function. In contrast, if the

massage size between appliances is small, FCBB can be used to save on execution time.

Further, based on the conducted experiments, we found out that network of appliances

with higher graph density and data transfer are less likely (in contrast to requests with

lower data transfer) to be distributed across multiple providers. However, for requests

with tight latency requirements, appliances are still placed across multiple providers to

save on deployment cost. Further, we show how the iteration number and population

size affect the performance of the genetic algorithm.

104 Migrating Multi-tier Applications to Multi-Cloud

In the next chapter, a Cloud migration scenario is investigated where user look for a

Cloud service composition which maximizes reliability and minimizes deployment time

and cost. The chapter proposes a selection methodology for this purpose that also simpli-

fies the process of migration for non-experts who do not have clear idea regarding their

preferences and compatibility of Cloud services in the composition.

Chapter 5

Cloud Service Composition Under
Fuzzy Preferences of Users

This chapter investigates challenges of Cloud service composition, where a single Cloud service, on

its own, cannot satisfy all the user requirements. Cloud service composition, which includes several

tasks such as discovery, compatibility checking, selection, and deployment, is a complex process and

users find it difficult to select the best one among the hundreds, if not thousands, of possible compo-

sitions available. In this chapter, we develop an ontology-based approach to analyze appliance and

virtual unit compatibility constraints to simplify the process of deployment for unskilled users by ap-

plying reasoning on the expert knowledge. In addition, minimizing effort of users in expressing their

preferences is pivotal for the success of the proposed solution. Therefore, we have applied combination

of evolutionary multi-objective algorithms and fuzzy logic for composition optimization to let users

express their needs in high-level linguistics terms which brings a great comfort to them compared to

systems that force users to assign exact weight for all preferences. Our approach is validated using a

real Cloud service composition request to show its effectiveness and applicability. In addition, perfor-

mances of several multi-objective algorithms for the composition problem have been compared and the

effectiveness of applying fuzzy logic to deal with vague preferences of users in the problem is tested.

5.1 Introduction

IN order to offer their solutions in the Cloud, service providers can either utilize the

Platform-as-a-Service (PaaS) offerings such as Google App Engine 1, or develop their

own hosting environments by leasing virtual machines from Infrastructure-as-a-Service

(IaaS) providers like Amazon EC22. However, most PaaS services have restrictions on

1Google App Engine. http://appengine.google.com/
2Amazon EC2. http://aws.amazon.com/ec2/

105

http://appengine.google.com/
http://aws.amazon.com/ec2/

106 Cloud Service Composition Under Fuzzy Preferences of Users

the programming language, development platform, and databases that can be used to

develop applications. For example Google App Engine mainly supports applications

developed using Java or Python only. Such restrictions encourage service providers to

build their own platforms using IaaS service offerings.

One of the key challenges in building a platform for deploying applications is to au-

tomatically compose, configure, and deploy the necessary application infrastructure that

consists of number of different components. If we consider the deployment requirements

of a web application service provider, it will include security devices (e.g. Firewall), load

balancers, web servers, application servers, database servers, and storage devices. Set-

ting up such a complex combination of appliances is costly and error prone even in tra-

ditional hosting environments [158], let alone in Clouds. Virtual appliances provide an

elegant solution for this problem.

Furthermore, a user may require more than one virtual appliance and machine, and a

composition of them that can meet all the requirements of users is required. However, the

selection of the best composition is a complex task. The best choices found for individual

appliances cannot be simply put together as some appliances will not be compatible with

the hosting environment. For example, if an appliance format is OVF it cannot currently

be deployed on Amazon EC2 as it only accept appliance with AMI format3. In addition

to that, there exist legal constraints imposed by countries such as the USA on importing

and exporting of appliances from a provider to another.

In this chapter, to simplify the process of selecting the best virtual appliance and unit

(computing instance) composition, a novel framework is presented. The composition

problem that we have considered is to find the best combination of compatible appliances

and virtual units that minimizes the deployment cost and deployment time, and maxi-

mizes the reliability. In this framework, first we model the compatibility of appliances

using Web Service Modeling Ontology (WSMO) [145] and utilize Web Service Model-

ing Language reasoner (WSML-reasoner) [145] to check the compatibility of services in a

composition. Then we consider three user QoS objectives: the lowest cost, quickest de-

ployment time, and the highest reliability. After that, different algorithms are utilized to

3Amazon Machine Images (AMIs). https://aws.amazon.com/amis

https://aws.amazon.com/amis

5.1 Introduction 107

solve this multi-objective problem and their performances are compared. Finally we re-

fine the selected appliance compositions based on users’ preferences by utilizing a fuzzy

logic approach.

To further highlight the contribution of this chapter first we describes issues with

current research and practices and then how those have been addressed in this chapter.

5.1.1 Issues with Current Virtual Appliance Management Systems

Public Clouds have different deployment model, in IBM smart Cloud model4 users first

have to select their software solution form what is called asset catalogs and then select

the instance configuration for that virtual appliance. In addition, IBM smart Cloud pro-

vides an Image composition toolkit which builds required virtual appliance from images

in IBM smart Cloud repository or by importing images from other Cloud repositories.

However, IBM smart Cloud does not provide any ranking system to choose the best

Cloud provider, instance type and asset catalogue for the deployment. In addition, it also

lacks an approach to identify which images are compatible with different instance type

of different Clouds. Moreover, some countries like USA impose restriction on the loca-

tion of imported and exported images, and computing units which introduces legal con-

straints which have to be considered when services form different Cloud providers are

composed. Amazon EC2, GoGrid, Rackspace, and other Key players in the IaaS market,

although constitute different deployment models, however none provides a solution for

composing Cloud services based on user’s functional and non-functional requirements

as cost, the total deployment time, reliability, and compatibility constraints. Therefore, in

this chapter we propose:

1. A Cloud service composition optimization technique that allows non-expert Cloud

users set their preferences using high level if-then rules and get user friendly rec-

ommendations on the composition solution’s prominence. Majority of end users is

avoiding systems which incur complexity in capturing their constraints, objectives

and preferences. An example of such systems is the one which require users to as-

4IBM smart Cloud. http://www-935.ibm.com/services/au/en/cloud-enterprise/

http://www-935.ibm.com/services/au/en/cloud-enterprise/

108 Cloud Service Composition Under Fuzzy Preferences of Users

sign weights to their objectives. In this case, users have to find a way to prioritizes

their preferences and then map them to weights. Then, the system has to find out

how precise users have gone through the process of weight assignment. To tackle

this issue, a major objective of this research is to offer ranking system for Cloud ser-

vice (i.e. virtual appliance and machine) composition that let them expressing their

preferences conveniently using linguistic high-level rules. Our system then utilizes

Multi-Objective evolutionary approaches, and fuzzy inference system to precisely

capture the entered preferences for ranking purpose.

2. An approach to helps non-expert users with limited or no knowledge on legal and

virtual appliance image format compatibility issues to deploy their services flaw-

lessly. For this purpose, we first automatically build a repository of Cloud services

in WSML and then enrich it with experts’ knowledge (lawyers, software engineers,

system administrators, etc) on the aforementioned constraints. The knowledgebase

then is used for reasoning in an algorithm that identifies whether set of Cloud ser-

vice consists of virtual appliance and units are compatible or not.

5.2 Composition Problem

The first step in service composition is to model the appliances (based on cost, size, func-

tionality, etc.) and QoS requirements of users. This step not only allows appliance and

virtual unit providers to advertise QoS of their services, but also provides a way for end

users to express their QoS preferences. As shown in Chapter 3, in this work, WSML is

extended and used for appliance and virtual unit QoS modeling. Unlike syntax-based

modeling, WSML, which is a semantic based language, offers a common language for

all parties involved in the composition to express and understand each other’s require-

ments. Similarly, in this chapter we have developed ontology-based modeling for all the

compatibility and QoS requirements.

Currently there is no single directory that lists all the available virtual appliances and

machines. Hence as a first step we built a directory by aggregating the virtual appliance

5.2 Composition Problem 109

and unit information from the vendors such as VMware Virtual Appliance Marketplace5,

AMI directory6, Parallels Virtual Appliance Directory 7, GoGrid8, and TurnKey Linux9.

The information gathered includes the name of the virtual appliance and unit, purpose,

operating system and other software utilized, price, virtual unit characteristics, size of

the appliance, Cloud service provider from whom it needs to be downloaded and any

restrictions and compatibility requirements in order to use the appliance. To build this

database we have utilized the Application Programming Interfaces (API) and web ser-

vices provided by vendors (e.g. Amazon EC2 API) and for others (e.g. VMWare) we

crawled the web pages where the appliance information is listed. One of the important

aspects to consider is that the available appliance information and the provider details

are constantly changing and rapidly increasing. Hence the data gathering module, as

explained in Chapter 3, has been designed so that it can keep the data up-to-date and is

extensible in future for any new appliance vendors. For more information on this module

refer to Chapter 3.

5.2.1 Evaluation of Composition Criteria

The composition problem is to find the best combination of compatible and composable

appliances and virtual machines that minimizes the deployment cost and deployment

time, and maximizes the reliability while adhering to composability constraints. A formal

description of the problem is given below.

Provider Model

Let m be the total number of providers. Each provider, can provide virtual appliances,

virtual units or both, and is represented as shown in Equation (5.1).

5VMware Virtual Appliance Marketplace. www.vmware.com/appliances/
6Amazon Machine Images (AMIs). https://aws.amazon.com/amis
7Parallels Virtual Appliance Directory. http://www.parallels.com/ptn/download/va/
8GoGrid. http://www.gogrid.com
9TurnKey Linux. http://www.turnkeylinux.org/all

www.vmware.com/appliances/
https://aws.amazon.com/amis
http://www.parallels.com/ptn/download/va/
http://www.gogrid.com
http://www.turnkeylinux.org/all

110 Cloud Service Composition Under Fuzzy Preferences of Users

Provider Pk :
{
{a} , {vm} , Cdext , Cdint

}
where 0 < k ≤ m

(5.1)

where a, vm, Cdext , Cdint denotes appliance, virtual machine, Cost of external data

transfer and Cost of internal data transfer respectively. A virtual appliance a can be rep-

resented by a tuple of five elements (Equation (5.2)) : appliance type, cost, license type,

compatibility list, and size.

a : {ApplianceType, Cost, LicenseType, CompatibilityList, Size} (5.2)

A virtual machine vm can be formally described as a tuple with two elements as shown

in Equation (5.3).

vm : {MachineType, Cost} (5.3)

The user request for the appliance composition can be translated into a weighted

graph G (V, E) where each vertex represents a server that consists of a virtual appliance

running on a virtual machine. Server corresponding to vertex v is represented by Equa-

tion (5.4).

Sv = {av, vmv} , ∀ v ∈ V (5.4)

Each edge e {v, v′} ∈ E indicates that corresponding servers communicate. The Data

Transfer Rate between these connected vertexes (i.e. one server to another) is given by

the weight associated to edge e.

Compatibility

When multiple Cloud services (i.e. virtual appliances and units) are composed together,

they should be compatible with each other. In this work, we consider legal and image

format compatibility constraints. However, it should be noted that in reality there will be

5.2 Composition Problem 111

other compatibility constraints such as compatibility between the products installed on

the appliances.

• Virtual appliance image format compatibility: Before we finalize the deployment

plan, we have to find out whether the image formats of chosen set of virtual appli-

ances are compatible with the destination virtual unit provider. As it is illustrated

in the first row of Table 5.1, a sample ontology-based reasoning on the built knowl-

edgebase (as shown in Appendix A in Section A.1) shows that image with ID of

"aki00806369" is compatible with the large instance type provided by Amazon EC2.

• Legal requirements: In Cloud infrastructure, virtual machines can be deployed in

data centers located in different parts of the world. However, there are legal re-

quirements, for example US restrictions on exporting encryption technology [10],

that prevent the export and deployment of software developed in one country to

another. Hence, we need to ensure that the virtual appliances can be legally de-

ployed on the selected virtual units. The second row of the Table 5.1 presents a

query which sets appliance with the ID of "aki00806369" compilable to only virtual

units provided by Clouds located in a same country where the appliance provider

is situated.

To evaluate the compatibility requirements, first the Ontology-based vocabulary is cre-

ated using WSML, as shown in the Appendix A.1[line 151-156] in which compatibility

constraints are imposed by experts in the form of axioms in the ontology or alternatively

by reasoning on the ontology. For example, the ontology listed in Appendix A.1 shows

how an axiom (set by an expert) enforces that appliances can only be deployed on vir-

tual units provided by Cloud providers which are located in the same country as the

appliance provider. After building required ontology, we can exploit the advantages of

Description Logic (DL) to query the knowledgebase and check compatibility constraints

of composition candidates. A WSML-DL query sample given in Table 5.1 shows which

virtual unit is compatible (legally and regarding image format) to the appliance with the

ID of "aki00806369".

112 Cloud Service Composition Under Fuzzy Preferences of Users

Table 5.1: Compatibility reasoning for Cloud service composition.

Query String Result

?x[isCompatipleWith hasValue ?y] :- ?x memberOf

virtualAppliance and ?x [hasName hasValue ?v] and

?v=aki00806369 and ?y memberOf virtualUnit and

?y[hasProvider hasValue?pvu] and ?pvu [supportVm-

Format hasValue ?supportedFormat] and ?x[hasFormat

hasValue ?format] and ?format[hasName hasValue

?formatName] and ?supportedFormat[hasName has-

Value ?supportedFormatName] and ?supportedFormat-

Name=?formatName.

?formatName: "AMI" ?v:

"aki00806369" ?pvu: Amazon-

California ?p: AmazonCalifornia

?supportedFormatName: "AMI"

?format: AMI ?supportedFor-

mat: AMI ?y: largeInstance ?x:

aki00806369

?x [isCompatipleWith hasValue ?y]:- ?x memberOf

virtualAppliance and ?x [hasName hasValue ?v] and

?v=aki00806369 and ?x[hasProvider hasValue ?p] and

?y memberOf virtualUnit and ?y[hasProvider hasValue

?pvu] and ?p[hasCountry hasValue ?capp] and ?pvu

[hasCountry hasValue ?cvu] and?capp[hasName has-

Value ?cappName] and ?cvu[hasName hasValue ?cvu-

Name] and ?cappName=?cvuName.

?v: "aki00806369" ?pvu: Ama-

zonCalifornia ?p: AmazonCali-

fornia ?capp: USA ?cappName:

"USA" ?cvu: USA ?cvuName:

"USA" ?y: largeInstance ?x:

aki00806369

Our objective is to achieve full compatibility among the appliances in the composi-

tion. Based on the compatibility constraints considered in our work, the compatibility

(C) can be calculated based on Equation (5.5).

C =

 0 if there exists at lease one pair of incompatible services;

1 otherwise.
(5.5)

In addition, Algorithm 4 illustrates the process to evaluate the compatibility of the

services in a composition. The algorithm checks the compatibility constraint (by sending

the related query to WSML-reasoner) for each pair of appliance and virtual unit in the

5.2 Composition Problem 113

composition, and the only compositions where all constraint queries are satisfied would

be returned as valid.

Algorithm 4: Compatibility evaluation algorithm
Input: Composition c, Constraint List (cl) such as Image Format and Legal

Compatibility

Output: Composition Validity

1 if CompositionValidity(c, cl) Exists in Cache then

2 ValidComposition = GetCompositionValidtyFromCache();

3 ValidComposition=True;

4 foreach Appliance a and Virtual Unit vu In Composition do

5 foreach Constraint t in ConstraintList do

6 if Compatibility (t, a, vu) Exists in Cache then

7 ValidComposition = Get Compatibility FromCache();

8 else

9 ValidComposition = CheckCompatibilitybyReasoning(t, a, vu);

10 Insert Compatibility toCache(t, a, vu);

11 if ValidComposition=False then

12 break;

13 InsertCompositionValiditytoCache();

14 return ValidComposition;

Cost

The costs involved in procuring and using virtual appliances can be categorized as fol-

lows:

• Acquisition Cost: Costs involved in purchasing the virtual appliance, such as li-

censing cost, cost of the virtual machine and any costs associated with deployment

such as the data transfer costs to transfer the appliances to the virtual machine at

114 Cloud Service Composition Under Fuzzy Preferences of Users

the IaaS provider.

To build a server Sv, lets assume appliance av is obtained from provider Pk and

virtual machine vmv is obtained from provider Pl . If this server will be running for

a duration of T (lease period), the Equation (5.6) shows the Acquisition Cost.

AqCost (Sv) = Cost (av,Pk)× T + Cost (vmv,Pl)× T + AppTransCost (k, l) (5.6)

where Cost (av,Pk) is the cost of appliance per unit of time, Cost (vmv,Pl) is the cost of

virtual machine per unit of time, and the cost of appliance transfer from appliance

provider k to virtual unit provider l is given by Equation (5.7).

AppTransCost (k, l) =

0 if k = l;

Size (av,Pk)

×Cdext (Pl) if k 6= l.

(5.7)

• Ongoing Cost: This will include the costs of running the virtual appliance, such as

the cost of data transfers. In this work we consider only the costs associated with

data transfers as ongoing costs.

Let v, v′ be two vertexes (servers) on provider l, connected by edge e {v, v′}. The

data transfer cost between the two servers is given by Equation (5.8):

TransCost
(
e
{

v, v′
})

= Size
(

Datae{v,v′}
)
× Cdint (5.8)

• Decommissioning Cost: Decommissioning cost will primarily include archival and

removal costs of the data at the end of the application life cycle such as the data

sanitisation, and henceforth as shown in Equation (5.9) will depend on the size of

the data stored. The amount of data stored will vary from server to server.

DecomCost (Sv) = CostPerUnit× SizeO f Datav (5.9)

5.2 Composition Problem 115

Based on the costs calculated above, Total Cost (TC) can be computed as shown in Equa-

tion (5.10),

TC = ∑
v∈V

AqCost (Sv) + ∑
e∈Ev,v′∈V

TransCost
(
e
{

v, v′
})

+ ∑
v∈V

DecomCost (Sv) (5.10)

Deployment Time

Virtual appliances significantly minimize the time required to build and configure the

necessary independent components. However, the size of the virtual appliances will

range from a few megabytes to tens of gigabytes depending on the applications installed

on them and will impact the time required to transfer and deploy the appliances from the

appliance provider to the virtual machine provider. Hence, we consider the deployment

time as one of the composition objectives. The time required to deploy a given appliance

av obtained from provider Pk on a virtual machine vmv obtained from provider Pl is given

by Equation (5.11),

DT (av,Pk , vmv,Pl) =

InitTime (vmv,Pl) if k = l;

InitTime (vmv,Pl) +
Size(av,Pk)

DataTrans f erRate(Pk ,Pl)
if k 6= l.

(5.11)

where InitTime (vmv,Pl) is the time required to initialize the appliance on the virtual

unit. As appliances can be deployed in parallel, Total Deployment Time (TD) will be

given by Equation (5.12),

TD = Max {DT (av,Pk , vmv,Pl)} (5.12)

Reliability

Finally, we consider the reliability as another QoS objective. To measure the IaaS providers’

reliability we introduce Service Level Agreement (SLA) Confidence Level (SCL) in Chap-

ter 4, which measures how reliably a provider is offering their services based on the

116 Cloud Service Composition Under Fuzzy Preferences of Users

Table 5.2: Virtual appliance composition objectives.

Criteria Metric Type Requirement

Compatibility (C) C Constraint To be equal to 1

Total Cost (TC) $ Objective To be minimized

Total Deployment Time (TD) mS Objective To be minimized

Total Reliability (TR) SCL Objective To be maximized

binding SLA. Total reliability can be computed according to Equations (5.13) and (5.14)

by a third party, which is responsible for monitoring the SLA.

SCL =
k

∑
j=1

Ij × SCLj where SCLj = MSQjt − SLOjt (5.13)

Total Reliability TR = ∑
v∈V

SCLv (5.14)

where SCLj is the SLA confidence level for QoS criteria j of a Cloud service; Ij is the

importance of QoS criteria j for user; MSQjt is the monitored value of QoS criteria j for

a period of t; SLOjt is promised QoS criteria j value in SLA for the period of t, and k is

number of QoS criteria monitored.

Although, our SCL metric can model various Cloud specific QoS criteria, in this

work we consider only availability as it is the primary criteria specified by current IaaS

providers in their SLAs.

5.2.2 Overall Objectives

The final objective is to find a fully compatible service composition that minimizes the de-

ployment cost and time, and improves the reliability of the composition while adhering

to compatibility constraints as shown in Table 5.2.

5.3 Composition Optimization Technique 117

5.3 Composition Optimization Technique

In our problem we consider three user objectives, the lowest cost, quickest deployment

time, and the highest reliability. This makes it infeasible to find an optimal composition as

these objectives can conflict with each other. One way to address this problem is to con-

vert the appliance composition problem to a single-objective problem by asking users to

give weights to all the objectives. However, that approach is error prone and impractical,

as not all the users will have the knowledge to appropriately assign weights to objec-

tives. Furthermore, as the composition will depend on the capability of users to assign

proper weight to the objectives, we have to find a way to evaluate the knowledge of users

about each objective to assure the performance of the approach. As shown in Figure 5.1,

we have tackled these challenges in two steps. First we find the Pareto front [179] com-

position solutions using different multi-objective algorithms (OMOPSO, NSGA-II, and

SPEA-II). We have used Jmetal [48] for this purpose which allows us to define problems

by defining each gene (variable) to point to Cloud service candidates as show in Figure

5.1. Then, we defined necessary fitness functions for all the defined objectives and choose

the algorithm to solve the problem. In the next step, we help users to describe their pref-

erences using high level "if-then" rules, which builds our fuzzy engine rule-base to rank

the Pareto front acquired from the previous step. By doing this we acquire Pareto front

once and then filter it according to the user preferences. This has a great advantage when

compared to the method offered in [14] as our method does not require to search the so-

lution space each time the user preferences change. Next, we overview our optimization

approach and then explain our fuzzy logic based ranking approach.

Evolutionary algorithms have been effectively applied for solving optimization prob-

lems. Among them NSGA-II [41] and SPEA-II [190] outperform many other genetic opti-

mization algorithms [41]. Nevertheless, recently other meta-heuristics which work based

on swarm intelligence such as Particle Swarm Optimization (OMOPSO) [153] are also

used to tackle multi-objective optimization problems. In this work, we perform a com-

parative study between the algorithms NSGA-II, SPEA-II, and OMOPSO for the appli-

ance composition problem to determine which of them will be suitable for our problem.

To the best of our knowledge none of previous works have compared multi-objectives

118 Cloud Service Composition Under Fuzzy Preferences of Users

Fuzzy Ranking

EngineMulti-objective

Fitness

Evaluation

Engine

User

Preference

s

Pareto

Front

List

Ranked Pareto

Front List

App1

Y

App 1:

Candidate

List

App2

App3

Appn

IaaS 1:

Candidate List

IaaSV
a

ri
a

b
le

s
 (

G
e
n

e
s)

Figure 5.1: Virtual appliance composition optimization approach.

algorithms and then combined them with fuzzy logic for Cloud service composition.

Fuzzy logic based ranking: Our proposed fuzzy inference engine includes three in-

puts and one output. Inputs of the system are normalized Deployment time (DT), De-

ployment Cost (DC), and Reliability of composition, which are all described based on

the same membership functions in Figure 5.2a. Output of the fuzzy engine as shown

in Figure 5.2b represents how desirable the current set of inputs are based on the fuzzy

rule-based indication. For example, the value "0" in output means the solution is highly

undesirable whereas the value "1" shows that the solution is highly desirable. Fuzzy rules

should be defined by the user to describe their QoS preferences. For example a rule can

be defined as:

if DT is low and DC is low and Reliability is high, composition is highly desirable.

Table 5.3 shows some sample rules that can be expressed by the users. In this work

we use a fuzzy engine based on Mamdani inference system [116] with Centroid of area

defuzzification strategy. Readers can refer to [183] for detailed information on fuzzy

inference systems. Once rules and defuzzification strategy are defined, a fuzzy inference

system can map the inputs of fuzzy engine to its output. Figure 5.3 demonstrates how

deployment time, cost, and reliability are mapped to composition desirability when all

rules are set.

5.3 Composition Optimization Technique 119

Table 5.3: Sample high level rules set by users.

DC DT Reliability Composition Desirability

Low Low Low Undesirable

Low Low Medium Neutral

Low Low High Highly Desirable

High Low High Not sure

Low High High Not sure

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

o
f

m
em

b
er

sh
ip

low mid high

(a) Input fuzzy sets.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

o
f

M
em

b
er

sh
ip

Highly Undesirable Undesirable Neutral Desirable Highly Desirable

(b) Output fuzzy sets.

Figure 5.2: Fuzzy engine input and output fuzzy sets.

120 Cloud Service Composition Under Fuzzy Preferences of Users

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

DTDC

C
o
m

p
o
si

ti
o

n
 D

es
ir

a
b

il
it

y

(a) Mapping of DT and DC to composition de-

sirability.

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

ReliabilityDT

C
o
m

p
o
si

ti
o
n

 D
es

ir
a
b

il
it

y

(b) Mapping of DT and reliability to composi-

tion desirability.

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ReliabilityDC

C
o

m
p

o
si

ti
o
n

 D
es

ir
a
b

il
it

y

(c) Mapping of DC and reliability to composi-

tion desirability.

Figure 5.3: Mapping from QoS criteria values to composition desirability value.

5.4 Performance Evaluation 121

5.4 Performance Evaluation

In order to realize and evaluate the proposed approach, a number of components and

technologies are utilized as explained in Table 5.4. Most importantly, multi-objective al-

gorithms are implemented in jMetal [48] and then Pareto Front composition solutions

have been passed to our fuzzy-logic based ranking components, which utilizes jFuzzy-

Logic [28] to define the membership functions and rules.

Table 5.4: Technologies used for appliance composition tasks.

Component Supported by Description

Inter-Cloud API jclouds 10 jclouds presents cloud-agnostic abstrac-

tions, with stable implementations of Com-

pute Service which simplifies the task of

managing machines in the cloud.

Monitoring Cloud Harmony API [29] Providing objective, measurable, and unbi-

ased analysis on cloud services.

Discovery WSMO Discovery

Engine

Developed to exploit semantic descriptions

of services based on WSMO and WSML for

the dynamic discovery

Compatibility Evalua-

tion

WSML-Reasoner WSML-Reasoner

Translator WSMO Grounding [101] to transfer description of Clouds services to

WSML

Fuzzy Inference jFuzzyLogic [28] jFuzzyLogic is a fuzzy logic package writ-

ten in java. It implements Fuzzy control

language (FCL) specification.

Multi-Objective

Optimization

jMetal [48] jMetal is an object-oriented Java-based

framework aimed at the development, ex-

perimentation, and study of metaheuris-

tics for solving multi-objective optimiza-

tion problems.

122 Cloud Service Composition Under Fuzzy Preferences of Users

5.4.1 Request Modeling and Data Collection

In this experiment we consider a case study of a web-based collaboration application

that allows users to store, manage, and share documents and drawings related to large

construction projects. The composition of 14 appliances required for this application is

described in Table 5.5. To meet these requirements, our objective is to find the best Cloud

service composition.

Appliance Discovery

Table 5.6 shows an example of the data gathered during the appliance discovery phase.

The last column of Table 5.5 shows the number of matching appliances available for our

request model just from one provider (VMWare Market Place). This information alone

shows the scale of choices available to the user and the complexity of the problem. We

expect the number of available appliances and providers will increase rapidly over time.

Cloud Service Provider Information

Cloud service providers details, such as the promised availability and monitored avail-

ability (for calculating SCL), data transfer costs, and data throughput between two Cloud

service providers (to estimate the transfer time of virtual appliances) are obtained using

the CloudHarmony service11. When the required data is not available from them, it is di-

rectly obtained from the Cloud service provider. Similar to the virtual unit and appliance

directory, the module to obtain the Cloud service provider information also can be used

to update and extend the information in future.

5.4.2 Results

There are three main experiment results presented in this section: 1) a performance com-

parison between the OMOPSO, NSGA-II, and SPEA-II algorithms for the real case study,

2) an evaluation of the effectiveness of fuzzy inference system on handling imprecise user

preferences, and 3) an analysis of the execution-time of the ontology-based compatibility

11CloudHarmony. http://cloudharmony.com/

http://cloudharmony.com/

5.4 Performance Evaluation 123

Table 5.5: Application composition for the request model.

Appliance Purpose Required Available

Firewall For packet filtering and

port blocking

01 97

Intrusion Detection Pattern based intrusion detection

and malicious file scanning

01 22

Load Balancer Distributes the load between

several web application servers

01 41

Web Server Hosts the web application and

accepts end user requests

04 386

Application Server Implements the business logic 03 492

Database Server Hosts all the data related to the

application

01 130

Database Reporting

Server

Dedicated server used to produce

reports

01 19

Email Server Email server is used to send outgo-

ing notifications (E.g. Availability

of a new document) and process in-

coming emails (E.g. Document sub-

missions)

01 134

Server Health

Monitoring

Monitors each component in the

composition and takes any re-

quired corrective action including

sending alerts to system adminis-

trators

01 12

checking algorithm. NSGA-II and SPEA-II algorithms use a population of size of 100,

and maximum number evaluations of 25000. OMOPSO is configured with 100 particles,

with a maximum of 100 leaders and maximum number of iterations of 250. We have

carried out 40 independent runs per experiment and then statistically analyzed results.

124 Cloud Service Composition Under Fuzzy Preferences of Users

Table 5.6: Sample appliance directory.

Name Purpose Software Price Size Provider

Tomcat on Apache Web server Ubuntu, Apache,

Java, and MySQL

Free 149MB TurnKey

IPCop Firewall Firewall Linux Free 40MB VMWare

Performance of single-objective optimization algorithms can be evaluated by analyzing

the best value achieved by the algorithms. However, in the case of multi-objective opti-

mization, it is not practical. There are quality indicators, which can be used to evaluate

the quality of the obtained set of solutions, and determine the convergence and diversity

properties of algorithms. In our experiments the algorithms are compared using Execu-

tion Time, Inverse Generational Distance (IGD) [190] which determines convergence of

algorithms, and Spread which determines diversity [42] and Hypervolume which deter-

mines both. In addition, it has been complemented by the application of statistical tests to

ensure the significance of the results. Otherwise, the drawn conclusions may be incorrect

as the differences between the algorithms could have occurred by chance.

As in our problem the Pareto fronts are not known, applying the aforementioned

quality indicators is not possible. As a common approach, we build a reference front

by collecting all the results of 100 runs of the algorithms. This approach helps us to

compare the relative performance of algorithms (Jmetal [48] provides an automatic way

of obtain the reference front). The Hypervolume [166] indicator has been widely used

and is strictly Pareto-compliant [32]. If the indicator values a solution higher than the

other, and that solution set dominates the other one’s set, the indicator is called Patreto-

complaint. The Hypervolume calculates the volume of dominated portion of the objec-

tive space. In addition to Hypervolume, we have also used other two widely used and

recommended indicators [42], namely IGD and spread. As shown in Equation (5.15), IGD

works out the average distance of the obtained solution points from the optimal Pareto

fronts. Where the di is the Euclidean distance between the obtained solution points and

the closest member of optimal Pareto front and n is the number of points in the optimal

Pareto front. Hence, when the achieved solution is in the optimal Pareto front the IGD is

5.4 Performance Evaluation 125

OMOPSOSPEA-IINSGA-II

4500

4000

3500

3000

2500

2000

1500

1000

500

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s)

(a) Execution time.

OMOPSOSPEA-IINSGA-II

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

H
y

p
er

v
o
lu

m
e

(b) Hypervolume.

OMOPSOSPEA-IINSGA-II

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

S
p

re
a
d

(c) Spread.

OMOPSOSPEA-IINSGA-II

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

I
G

D

(d) IGD.

Figure 5.4: Comparison of algorithms

126 Cloud Service Composition Under Fuzzy Preferences of Users

Table 5.7: Statistical comparison of algorithms.

95% CI for

Difference

ANOVA Test

Execution time Spread IGD Hypervolume

NSGA-II-SPEA-II (-2469.5,-2579.4) (0.0476,0.1820) Not Significant Not Significant

NSGA-II-OMOPSO (420.4, 531.1) (0.2002,0.3355) (0.003222,0.009074) (0.00599,0.01848)

SPEA-II-OMOPSO (2944.8, 3055.5) (0.0854,0.2206) (0.002913,0.008765) (0.00372,0.01620)

equal to 0.

IGD =

√
∑n

i=1 di
2

n
(5.15)

In addition, spread is a metric to calculate the broadness and calculated based on

Equation (5.16).

Spread =
d f + dl + ∑N−1

i=1

∣∣di − d̄
∣∣

d f + dl + (N − 1)d̄
(5.16)

where di is the Euclidean distance between consecutive solutions in the obtained so-

lutions. d f and dl are the Euclidean distance between the boundary solutions of the ob-

tained pareto front set. When spread is equal to zero, it means obtained solutions are

well diverse.

The spread, IGD, Hypervolume, and execution time of three algorithms are com-

pared using Analysis of Variance (ANOVA) test, as the quality values are normally dis-

tributed and there is no strong evidence to indicate that variance is not constant. From the

ANOVA table the P-value is less than 0.001, which strongly suggests that there are differ-

ences in mean spread, IGD, Hypervolume, and execution time between the algorithms.

The algorithm that obtains smaller spread is capable of acquiring a set of non-dominated

composition solutions with better diversity. In addition, if an algorithm achieves smaller

value for IGD, it is better in converging to Pareto-optimal front. However, algorithms

with larger value of Hypervolume are more desirable.

In our experiment, when Hypervolume is used for comparison, OMOPSO outper-

forms NSGA-II and SPEA-II as shown in Table 5.7 and Figure 5.4b. In addition, if spread

is used for diversity comparison, as shown in Table 5.7 and Figure 5.4c, 95% confidence

5.4 Performance Evaluation 127

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

DCDT

R
el
ia
b
il
it
y

(a) NSGA-II pareto front appliance composition

solutions without any user preferences.

(b) Coloring NSGA-II output using fuzzy Logic

based on 9 user preference rules.

(c) Coloring NSGA-II output using fuzzy Logic

based on 18 user preference rules.

(d) Coloring NSGA-II output using fuzzy Logic

based on 27 user preference rules.

Figure 5.5: Appliance composition optimization results

128 Cloud Service Composition Under Fuzzy Preferences of Users

interval (CI) for the difference between NSGA-II - OMOPSO and SPEA-II - OMOPSO

are (0.2002, 0.3355) and (0.0854, 0.2206) respectively. This shows the better suitability of

OMOPSO in achieving higher diversity. In addition, SPEA-II outperforms NSGA-II in

terms of Spread. Moreover, as Figure 5.4a illustrates OMOPSO has the lowest execu-

tion time. Furthermore NSGA-II performs better than the SPEA-II in terms of execution

time. For the convergence comparison, IGD has been considered. As shown in Figure

5.4d and in Table 5.7, 95% CI for differences between NSGA-II - OMOPSO and SPEA-

II - OMOPSO are reported as (0.003222, 0.009074) and (0.002913, 0.008765) respectively,

which shows OMOPSO is better in converging to Pareto-optimal front.

Figure 5.5a shows the output of NSGA-II for the case study appliance composition

without considering any user preferences. In this case users would receive a set of non-

dominated composition solutions. It indicates that all the composition solutions have

their own outstanding characteristics and none of the points could dominate the others.

In reality, Cloud users at least have some vague idea regarding their objectives which

can be captured by asking them to set high level linguistic rules. To emulate the user

behavior, in our experiment, 27 sample fuzzy rules are designed similar to the one de-

scribed in Section 5.3. Based on these rules, by applying fuzzy inference system, we

mapped points in Figure 5.5a to a number between 0 (least desirable) and 1 (most desir-

able). That number was used to color the points in a way that if the composition solution

is more appealing to the user, the corresponding point is darker. As shown in Figures

5.5b and 5.5c when the number of preferences defined by the user using the if-then rule

increases, the solution’s prominence also becomes clearer. As it can be seen in Figure

5.5d, when all the 27 rules are set (none of them set as "not sure"), the majority of points

have distinct colors, however as the number of rules set to "not sure" increases more and

more solutions will have the same color. As Figure 5.5d shows two points at the center

are the darkest and therefore are the most appealing solutions. Using these techniques

non-expert Cloud users are now able set their preferences using high level if-then rules

and get user friendly recommendations on the solution’s prominence. This experiment

also shows how the system could be useful for end user with different levels of knowl-

edge. Traditionally when end users are asked to assign weights to the objectives, they

5.5 Conclusions 129

Number of Discovered for Each

Number of Required Appliances

20105

115311531153

140000

120000

100000

80000

60000

40000

20000

0

E
x

e
c
u

ti
o

n
 T

im
e

(m
s
)

Figure 5.6: Execution-time analysis of the compatibility checking algorithm.

have to be aware of their preferences precisely, however our approach can help users

with different levels of knowledge.

Execution-time Analysis of the Ontology-based Compatibility Checking Algorithm

As the reasoning is computationally intensive, we have measured the execution-time of

the ontology-based compatibility checking algorithm. As shown in Figure 5.6, the im-

pacts of the number of required appliances in the composition and the number of the

discovered possible candidate appliances for each of the required appliances, on the ex-

ecution time have been investigated. For each case the experiment has been repeated for

40 times with different request requirements. As illustrated in Figure 5.6, when the num-

ber of appliances in the composition and the number of discovered appliances increase

the execution time grows. However, on average it never goes beyond two minutes, which

makes the algorithm eligible to be used for online services.

5.5 Conclusions

In this chapter we have investigated the virtual appliance composition problem and iden-

tified the key challenges. To tackle these challenges, we presented an ontology-based

130 Cloud Service Composition Under Fuzzy Preferences of Users

approach to describe appliances and their QoS properties, which helped us to build a

composition with a set of compatible appliances. Our system helps non-expert users

with limited or no knowledge on legal and image format compatibility issues to deploy

their services faultlessly. In addition, we offered a technique to optimize the appliance

composition based on user preferences such as deployment time, cost, and reliability.

The approach exploits the benefits of evolutionary algorithms such as OMOPSO, NSGA-

II, and SPEA-II for optimization and fuzzy logic to handle vague preferences of users.

Results show that for the proposed case study, we can effectively help an unskilled user

to identify the appliance compositions which are closest to their preferences. Further-

more, experimental results show OMOPSO outperforms NSGA-II and SPEA-II in terms

of execution time, composition solution’s diversity, and convergence. In addition results

show the compatibility checking algorithm has acceptable execution time as number of

discovered appliances candidate and number of appliance in composition grow.

Now that we have concluded or contributions for Cloud service discovery and com-

position optimization, we are going to to discuss SLA management component. Par-

ticularly, the next chapter focuses on our proposed negotiation techniques which after

the discovery phase helps providers and users to reach consensus on a set of QoS and

non-functional values in SLA.

Chapter 6

An Autonomous Negotiation Strategy
for Cloud Computing Environments

Cloud Service Level Agreement (SLA) Negotiation is a process of joint decision making between

Cloud clients and providers to resolve their conflicting objectives. As shown in previous chapters,

Cloud service coordination operations such as discovery, selection, and composition are accomplished

automatically. Therefore, negotiation between Cloud clients and providers can be a bottleneck if it is

carried out manually. Our objective is to offer a state-of-the-art solution to automate the negotiation

process in Cloud environments. The proposed negotiation strategy is based on a time-dependent tac-

tic. For Cloud providers, the strategy uniquely considers utilization of resources when generates new

offers and automatically adjusts the tactic’s parameters to concede more on the price of less utilized

resources. In addition, while the previous negotiation strategies in literature trust offered QoS values

regardless of their dependability, our proposed strategy is capable of assessing reliability of offers re-

ceived from Cloud providers. Furthermore, to find the right configuration of the time-dependent tactic

in Cloud computing environments, we have investigated the effect of modifying its parameters such

as initial offer value and deadline on negotiation outputs that include ratio of deals made, and social

optimality. The proposed negotiation strategy is tested with different workloads and in diverse mar-

ket conditions to show how the time-dependent tactic’s settings can dynamically adapt to help Cloud

providers increase their profits.

6.1 Introduction

CLOUD SLA Negotiation is a process of joint decision-making between Cloud users

and providers to resolve their conflicting objectives. Cloud services have cost,

availability, and other non-functional properties on one hand, and generate profits on

the other hand. In Cloud environments, both clients and providers have cost-benefit

131

132 An Autonomous Negotiation Strategy for Cloud Computing Environments

models for negotiation and decision making. Therefore, SLA negotiation automation re-

quires mapping of the knowledge and objectives of policy makers to lower-level decision-

making techniques. The first step towards the automation is finding, capturing, and

modeling goals and objectives of parties involved in the negotiation. The second step

is finding a proper strategy to use those goals in the low-level negotiation process. In

this chapter, the negotiation target is a Cloud virtual machine service and the negotiated

parameters are listed below.

• Hard Disk (functional requirement and fixed)

• CPU (functional requirement and fixed)

• RAM (functional requirement and fixed)

• Cost (QoS requirement and negotiable)

• Availability (QoS requirement and negotiable)

• Deadline (non-functional requirement and fixed)

As described in Table 6.1, users aim for the lowest price and the highest availability

while Cloud providers would like to sell their services in the highest possible price and

at the lowest QoS guarantee. Besides, users have time constraints when they are partici-

pating in the negotiation. That is because if they do not acquire the required resources by

a particular time, they are not able to satisfy their end users expectations or reach their

business objectives. Furthermore, Cloud providers have to consider the utilization of re-

sources when they are offering prices during negotiation. It means that they are willing

to concede on the prices of resources which are less utilized. Moreover, when service

requestors are conceding in such multi-issue negotiation, the negotiation strategy has to

prioritize the criteria which are more important to users. Both negotiation strategies for

users and providers have the objectives of maximizing the chance of signing the contract

during the negotiation.

Automated SLA negotiation has attracted a great deal of interest in the context of

Service Oriented Architecture (SOA), Grid Computing, and recently Cloud Computing.

6.1 Introduction 133

Table 6.1: Negotiation objectives.

Objectives
Negotiation Parties

Requestors Providers

Cost To be minimized To be maximized

Availability To be maximized To be minimized

Other - Acquiring the resource by

deadline

- Conceding on less important

QoS

- Verifying providers offer relia-

bility

- Maximizing number of agree-

ments

- Maximizing Profit

Works in these contexts mainly focused on offering negotiation strategies which maxi-

mize the user’s utility values and the number of signed contracts. However, they have

not considered infrastructure management issues (such as resource utilization balancing)

in the bargaining strategy. It means that Cloud providers are willing to concede on the

price of resources which are less utilized, and that has to be reflected in the negotiation

tactics. In addition, previous works have not considered reliability in the negotiation

process. These works assume that service requestors would trust whatever QoS crite-

ria values providers offer in the process of negotiation. Nevertheless, providers may

offer a QoS value during the negotiation that was not achieved according to the moni-

tored QoS data. To address such issues, this chapter proposes a negotiation strategy that

acquires user’s preferences and provider’s resource utilization status and utilizes time-

dependent tactic along with theory of statistics to maximize the Cloud providers profit

while adhering to deadline constraints of users and verifying providers offer reliability.

Through a series of experiments, we investigate the effect of modifying parameters of

the time-dependent tactic such as initial offer value and deadline on negotiation outputs

including social welfare and success of negotiation in Cloud environments. In addition,

the offered negotiation strategy is tested for different workloads and in diverse market

conditions to show how time-dependent tactic’s settings can dynamically change to help

134 An Autonomous Negotiation Strategy for Cloud Computing Environments

Cloud providers to increase their profits.

6.2 Motivations

6.2.1 Offers Reliability

In the negotiation models presented in the literature [52, 53, 192], a method for determin-

ing the reliability of offers and counter offers is missing. Since in parallel negotiations in

Multi-Cloud a party makes a decision based on the presented QoS values in SLA offers,

there has to be a way to know how reliable the provider is in delivering the promised

QoS values. The recorded data from monitoring services can be analyzed and converted

to reliability information of offers. As explained in Chapter 3, the monitoring is based on

the copy of the signed SLA, which is kept in the SLA repository. Third party monitoring

results can be similar to what Cloud harmony [29] services report. To make inference

from the observed data, we use the theory of statistics (Beta Density Function), which

will be explained in Section 6.4.

6.2.2 Balancing Resource Utilization to Host More Virtual Machines

Previous works [178, 192] believe that, when service providers are concurrently nego-

tiating with multiple users, using the same negotiation strategy for all incoming re-

quests would maximizes providers’ profits. However, we argue that in the Cloud con-

text, providers are interested in a SLA negotiation strategy that balances the available

resources, which helps them to host more virtual machines by avoiding resource frag-

mentation. To achieve that, providers have to concede more on the price of resources

that are less utilized (or have more free capacity) and less on the price of resources that

are more utilized. Consequently, providers offer more attractive prices in earlier stages

of negotiation for clients whose requested virtual machines’ allocation would balance re-

source utilization. For example, the request shown in Figure 6.1a will be offered more

attractive deals in early stage of negotiation compared to request demonstrated in Figure

6.1b, because request shown in Figure 6.1b leads to a more balanced utilization of CPU

6.3 Negotiation Framework 135

and RAM than request represented in Figure 6.1a.

(a) (b)

Figure 6.1: Requests and their effects on balancing resource utilization.

6.2.3 Investigating Behavior of the Time-dependent Function in the Cloud
Computing Context

Time-dependent tactics [52] are proper candidates to be adopted for Cloud computing

environments as users have deadlines for acquiring resources when they are participat-

ing in a negotiation. However, with the best of our knowledge, their applicability has

not yet been evaluated for the Cloud context. Therefore, first we create a testbed that

allows us to implement time-dependent functions for an environment consisting of mul-

tiple Clouds and brokers, and then we modify negotiation parameters such as deadline

of requests, initial offer values, and type of tactic (polynomial or exponential) to study

the behavior of time-dependent tactics for our problem.

6.3 Negotiation Framework

Figure 6.2 shows the major components in the negotiation framework and Figure 6.3

briefly describes the sequence of interactions between the Cloud and the requester ne-

gotiation service. A service requester specifies certain requirements such as hardware

specifications like CPU, storage, and memory. In addition, the requester provides prefer-

136 An Autonomous Negotiation Strategy for Cloud Computing Environments

reliability

evaluator

third party Cloud

monitoring service

client

NS

Cloud service functional

requirements and non-

functional preferences

ontology-

based

discovery

semantic

SLA

repository

data center

monitoring
Cloud

NS

Cloud

service

repository

WSML

monitoring

service

manager

Figure 6.2: The proposed negotiation framework.

ences on the QoS criteria. Afterward, functional and QoS requirements are used as input

for discovering suitable Cloud services. In the sequence, the client Negotiation Service

(NS) starts negotiating with the discovered service providers’ NSes on QoS criteria (price

and availability) based on the requester’s preferences. It is worth mentioning that client

budget and deadline for acquiring resources are used by the client NS to make a decision

on accepting or rejecting an offer. Client NS uses a time-dependent tactic that takes the

client’s preferences as an input and automatically generates an initial and then following

offers. Once Cloud NS receives the offer, it uses request functional requirements, QoS

requirements, and Cloud resources utilization from the monitoring system to generate

counter offers. On the arrival of providers’ offers, the client NS uses the reliability evalu-

ator components and the time-dependent tactic to accept or reject the offer, or otherwise

reply with a counteroffer.

If the negotiation is successful, the SLA contract will be signed by both parties and

the obtained contract, which includes the set of expected QoS values (service level objec-

tives), is kept in the SLA contract repository. Afterward, as it will be discussed in Chapter

7, the monitoring service manager discovers and selects the required monitoring services

based on user preferences (cost and reliability) for each SLA contract in the repository.

They constantly monitor the SLA and notify the reliability evaluator on any violation of

6.4 Negotiation Strategy 137

Figure 6.3: Negotiation sequence diagram.

service level objectives.

Moreover, as explained in Chapter 3, QoS ontology, Cloud services, their QoS, user

requests, and SLA contracts in the proposed framework are described using Web Service

Modeling Ontology (WSMO) in Web Service Modeling Language (WSML) [145]. Con-

sequently, the Cloud service and monitoring service discovery component can perform

semantic matching using defined terms in ontology. The ontology-based discovery can

increase the level of flexibility and automation, allowing the two parties to use their own

terminology as long as it is related to the commonly understood conceptual model.

6.4 Negotiation Strategy

Prior to explaining the negotiation strategies for each party, a brief description of the

negotiation model and the applied negotiation tactics are given. In addition, descriptions

of symbols used for expressing the negotiation process are listed in Table 6.2.

138 An Autonomous Negotiation Strategy for Cloud Computing Environments

6.4.1 Negotiation Model

To create a negotiation model, we extended the model proposed by Raiffa [140] to incor-

porate the reliability of offers. In the model, the negotiation service receives requestor

preferences on the importance (Wi) of n negotiation issues, mini and maxi (reservation

values), which are the acceptable range of values for issue i (VIi), and negotiation dead-

line (tmax). The service then measures the utility of offers received from the other negoti-

ation service based on the Equations (6.1) and (6.2).

UV =
n

∑
i=1

WiVIi(yi) where
n

∑
i=1

Wi = 1 (6.1)

VIi(yi) =

maxi−yi

maxi−mini
VIi increases as yi decreases;

yi−mini
maxi−mini

VIi decreases as yi decreases.

(6.2)

Next, as shown in Equation (6.3), the offer is accepted if its utility value is greater

than or equal to the utility of the counter offer that will be sent by the negotiation ser-

vice. Otherwise, the negotiation service generates a new counter offer. In addition, if the

timestamp of the received offer (to f f er) is greater than the deadline, the service terminates

the negotiation.

Response =

terminate if to f f er > tmax;

accept if UVo f f er > UVcounter offer;

new counter offer otherwise.

(6.3)

6.4.2 Time-dependent Negotiation Tactic

As cited by Faratin et al. [52], time-dependent negotiation tactics are a class of functions

that compute the value of a negotiation issue by considering the time factor. Therefore,

they are particularly helpful when the NS receives a deadline (tmax) as an input, and has

to concede faster as the deadline approaches. For this family of tactics, Equation (6.4)

6.4 Negotiation Strategy 139

is used by NS "a", which represents either a Cloud service requestor or a provider to

generate a new counter offer for NS "b" for the negotiable issue i.

Ot
a→b[i] =

 mina
i + αa

i (t)
(
maxa

i −mina
i
)

if Va
i is decreasing;

mina
i +

(
1− αa

i (t)
) (

maxa
i −mina

i
)

if Va
i is increasing.

(6.4)

Numerous functions have been defined for calculation of αa
i (t) such as polynomial

and exponential [52]. As it can be figured out from Equation (6.5), by changing the value

of β (convexity degree) in both functions, the behavior of the negotiation tactic changes.

If β > 1 then the tactic reaches its reservation’s value at the early stage of negotiation.

On the contrary, in the case of β < 1, it concedes to its reservation value only when the

deadline is approaching. We adopt this family of the negotiation functions and change β

dynamically to maximize the NS utility function.

αa
i (t) =

ka

i +
(
1− ka

i
) (min(t,tmax)

tmax

)1/β
Polynomial;

e(1−
min(t,tmax)

tmax)
β
lnka

i Exponential.

(6.5)

6.4.3 Providers Strategy

For providers, the negotiation service input is composed of the Cloud resource utiliza-

tion, minimum and maximum resource prices, and amounts of requested resources. The

output of NS can be a SLA contract with a detailed description of a provider, a client, a

service, and service level objectives. Providers are interested in an SLA negotiation strat-

egy that balances the available resources and gives the attractive offers while keeps their

utility functions high. To achieve that, providers have to concede more (by adjusting

time-dependent function parameters) on the price of the resources that are less utilized

(or have more free capacity) and less on the resources that are more utilized.

140 An Autonomous Negotiation Strategy for Cloud Computing Environments

Ta
bl

e
6.

2:
D

es
cr

ip
ti

on
of

sy
m

bo
ls

.

Sy
m

bo
ls

D
es

cr
ip

ti
on

Sy
m

bo
ls

D
es

cr
ip

ti
on

a,
b

ne
go

ti
at

io
n

pa
rt

ie
s

R
P j

t
pr

ic
e

of
a

re
so

ur
ce

j(
e.

g.
R

A
M

)a
tt

W
i

im
po

rt
an

ce
of

is
su

e
i

α
R

P j
ti

m
e-

de
pe

nd
en

tf
un

ct
io

n
fo

r
pr

ic
e

of
re

so
ur

ce
j

V
I i

of
fe

r
va

lu
e

fo
r

is
su

e
i

IR
P j

in
it

ia
lp

ri
ce

fo
r

re
so

ur
ce

j

U
V

ut
ili

ty
va

lu
e

of
th

e
of

fe
r

A
j

po
rt

io
n

of
re

so
ur

ce
jt

ha
ti

s
av

ai
la

bl
e

t o
ff

er
of

fe
r

ti
m

es
ta

m
p

β
j

co
nv

ex
it

y
de

gr
ee

fo
r

pr
ic

e
of

re
so

ur
ce

j

t m
ax

ne
go

ti
at

io
n

de
ad

lin
e

R
U

BO
re

so
ur

ce
ut

ili
za

ti
on

ba
la

nc
in

g
or

ie
nt

ed
ta

ct
ic

O
t a→

b
[i

]
of

fe
r

se
nt

fr
om

a
to

b
fo

r
is

su
e

i
PO

pr
io

ri
ty

or
ie

nt
ed

ta
ct

ic

m
in

a i
m

in
im

um
ac

ce
pt

ab
le

va
lu

e
of

is
su

e
if

or
a

γ
1

re
la

ti
ve

im
po

rt
an

ce
of

R
U

BO

m
ax

a i
m

ax
im

um
ac

ce
pt

ab
le

va
lu

e
of

is
su

e
if

or
a

γ
2

re
la

ti
ve

im
po

rt
an

ce
of

PO

y i
de

fin
es

th
e

ra
ng

e
of

va
lu

es
fo

r
an

is
su

e
i

R
C

of
fe

rV
I i

re
lia

bi
lit

y
co

ns
tr

ai
nt

fo
r

is
su

e
i

α
a i

(t
)

ti
m

e-
de

pe
nd

en
tf

un
ct

io
n

of
is

su
e

if
or

a
R

of
fe

rV
I i

re
lia

bi
lit

y
of

an
of

fe
r’

s
va

lu
e

of
is

su
e

i

V
a i

va
lu

e
of

fe
re

d
fo

r
is

su
e

ib
y

a
C

O
D

co
ns

en
su

s
de

si
ra

bi
lit

y

K
a i

in
it

ia
lo

ff
er

va
lu

e
fo

r
is

su
e

ib
y

a
C

F
co

nc
ed

in
g

fa
ct

or

β
co

nv
ex

it
y

de
gr

ee
ρ

,τ
be

ta
di

st
ri

bu
ti

on
pa

ra
m

et
er

s

P t
pr

ic
e

of
vi

rt
ua

lm
ac

hi
ne

in
st

an
ce

at
t

6.4 Negotiation Strategy 141

Unlike the majority of works that require time-dependent function parameters to be

given explicitly, Zulkernine et al. [192] proposed a method to derive the parameters from

the high level negotiation policy. Inspired by their work, we propose an approach to

derive a price for the next offer based on the Cloud resource utilization. In comparison to

their work, we argue that our approach is more suitable for parallel negotiation in Cloud

context. The reason is we are discriminating regarding the pattern of concession when

negotiating concurrently with multiple clients, while Zulkernine et al. apply the same

pattern of concession for all clients. As shown in Equations (6.6), (6.7), (6.8), (6.9), and

(6.10), we first define a total price of a VM instance as the sum of prices of its individual

resources Equation ((6.6)). In the next step, for each resource, a time-dependent function

(Equations (6.7) and (6.8)) is defined, and its parameter is adjusted (Equations (6.9) and

(6.10)) based on its underutilized capacity compared to average resources’ idle capacity

(A) for m type of resources.

Pt =
m

∑
j=1

RPjt (6.6)

RPjt = MinRPj + αRPj
(

MaxRPj −MinRPj
)

(6.7)

αRPj = IRPj +
(
1− IRPj

) (min (t, tmax)

tmax

)1/β j

(6.8)

A =
∑m

j=1 Aj

m
(6.9)

β j = CF× eC(Aj−A)

where CF = ω× COD and,

ω and C are constants and c,ω > 0.

(6.10)

As shown in Equation (6.10), when the idle capacity of a resource is greater than the aver-

age free capacity of resources in the data center, Aj − A > 0 and β j > 1, and therefore the

negotiation strategy is conceding on the price of that resource. As a result, providers offer

a more attractive price in earlier stages of negotiation for clients whose requested virtual

machines’ allocations would balance resource utilization. This increases the chance of

reaching an agreement with the preferred request. However, in this tactic β is calculated

based on the resources utilization and does not reflect the preferences of provider regard-

142 An Autonomous Negotiation Strategy for Cloud Computing Environments

ing the importance of price and guaranteed availability criteria. The tactic based on [192]

is adopted in Equation (6.11) to derive β from provider’s preferences. Consequently, in

order to satisfy all providers’ objectives, the negotiation strategy has to be built as a mix-

ture of those aforementioned tactics as shown in Equation (6.12).

β j = eC(1
n−Wi) (6.11)

Where n is the number of criteria in the negotiation, C is a constant, and Wi is the impor-

tance of issue i and ∑n
i=1 Wi = 1.

Ot
a→b [i] = γ1RUBOt

a→b [i] + γ2POt
a→b [i] (6.12)

Where γ1 + γ2 = 1, and RUBO, PO are offers’ issue values generated by Resource Uti-

lization Balancing Oriented tactic and Preference Oriented tactic respectively.

6.4.4 Cloud Client NS

The client NS receives user preferences on budget, deadline, and importance of QoS crite-

ria and maps them to low level time-dependent parameters as described in the previous

section and based on Equation (6.11) [192]. It means that β is defined in a way that the NS

concedes less if the criteria are more important to the user and concedes more otherwise.

In order to capture the importance of the criteria for the user, Analytic Hierarchy Process

(AHP) [147] is adopted. Similar to the provider NS, the output can be a SLA contract with

full specification of services, provider, client, and service level objectives. In this strategy,

our contribution lies in the probabilistic assessment of offers reliability in negotiation.

The client NS assesses providers’ offers in a probabilistic approach based on their past

adherence level to SLA contracts. Therefore, as shown in Equation (6.13), the client NS

only accepts offers when similar previous accepted offers have achieved a certain level of

reliability (based on the monitored data) for each issue. For example, if in a multi-criteria

negotiation a provider concedes in availability, and its reliability in such criteria is not

high, users should not consider that an attractive offer.

6.4 Negotiation Strategy 143

Offer acceptance conditions =

 UVo f f er > UVcounter offer and

for each VIi Roffer VIi > RCoffer VIi

(6.13)

We used the beta reputation system [89] to assess the reliability of offers. The rea-

son is that Monitoring Outcome (MO) of a particular SLA contract can be modeled as in

Equation (6.14), and therefore is a binary event. Consequently, the beta density function,

which is shown in Equation (6.15), can be efficiently used to calculate posteriori proba-

bilities of the event. As a result, the mean or expected value of the distribution can be

represented by Equation (6.16).

MO = {SLA not violated,SLA violated} (6.14)

f (x|ρ, τ) =
Γ (ρ + τ)

Γ (ρ) Γ (τ)
xρ−1 (1− x)τ−1

where 0 ≤ x ≤ 1, ρ > 0, τ > 0
(6.15)

µ = E (x) = ρ/ (ρ + τ) (6.16)

As mentioned in Section 6.3, in our architecture a component is responsible for mon-

itoring SLA contracts. If we assume that the monitoring component has detected that

SLA violation occurred v times for provider p (for a total number of n monitored SLAs).

Considering that ρ = n− v + 1 and τ = v + 1, the reliability is equal to probability ex-

pectation of SLA is not going to be violated and is calculated as shown in Equation (6.17).

Once Roffer VIi is calculated for all issues, NS can only accept the offer if, for all the issues,

Roffer VIi is greater than RCoffer VIi .

Roffer VIi =
n− v + 1

n + 2
(6.17)

144 An Autonomous Negotiation Strategy for Cloud Computing Environments

6.5 Performance Evaluation

For our performance evaluation, we extended CloudSim [20], a discrete event Cloud sim-

ulator, to build a new environment for testing negotiation techniques for Cloud comput-

ing environment. The extended package’s main classes are illustrated by a Class diagram

in Figure 6.4. The package enables data centers and brokers to have distinct negotiation

strategies that describe the detailed sequence of actions in negotiation and the series of

condition for accepting, replying, and rejecting offers. Each negotiation strategy consists

of a single negotiation tactic (e.g. time-dependent) or a combination of them, which is

responsible for generating a new offer in each round of negotiation.

The inter-arrival time of requests would not affect the performance of the negotiation

strategies. Therefore, it is simply considered as a uniformly distributed value between

0.0 and 1.0 second. The simulation period is 1 hour and when the Demand to Supply Ra-

tio in the experiment (DSR) is less than 1, the datacenters capacity is set to 100,000 Hosts.

When DSR is greater than 1, Data center capacity is set to 10,000 Hosts. Each Host has

12 CPU cores, each 1.7 GHz; 12 GB RAM, and disk capacity of 4 TB. Reservation values

for Cloud clients are set to $5 per resource unit for the minimum price and $15 for the

maximum. For Clouds, however, reservation values are $10 and $20 per resource unit for

minimum and maximum price, respectively. Using the request generator class, brokers

send requests simultaneously to data centers. The request generator randomly gener-

ates requests with different deadlines and required instance types, which are formally

represented by Equation (6.18).

Instance = NCU + NRU + NHDU (6.18)

Where NCU is the number of CPU units requested, NRU is the number of RAM units

requested, and NHDU is the number of hard disk units requested. Requests generated

for experiments can be classified into two classes, namely balanced and unbalanced. In a

balanced request, NCU = NRU = NHDU , while in an unbalanced requests NCU 6= NRU 6=

NHDU . The balanced and unbalanced requests for our experiments have been designed

6.5 Performance Evaluation 145

according to Amazon EC2 instances types1. In addition, they can be further categorized

to requests with tight (from 20 to 40 rounds), moderate (from 40 to 50 rounds), and loose

(from 50 to 100 rounds) deadline. The experiments are repeated 30 times.

The conducted experiments are mainly going to investigate:

• How modifying deadline of requests, initial offer values, and time-dependent func-

tion type affect the consensus rate and social welfare(Section 6.5.1 and 6.5.2);

• How successful the proposed strategy for Cloud NS is in accommodating more

requests and thus increasing Cloud providers’ profits, which is calculated based

on the number of VMs allocated and the achieved price in the negotiation (Section

6.5.3);

• How to react to different market conditions (demand-to-supply ratio) to increase

the profitability of the negotiation strategy (Section 6.5.4).

Figure 6.4: Class diagram of negotiation package for CloudSim.

1 Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/

http://aws.amazon.com/ec2/instance-types/

146 An Autonomous Negotiation Strategy for Cloud Computing Environments

(a) NSO for initial offer=0.1 (b) deals made for initial offer=0.1

(c) NSO for initial offer=0.2 (d) deals made for initial offer=0.2

(e) NSO for initial offer=0.4 (f) deals made for initial offer=0.4

(g) NSO for initial offer=0.6 (h) deals made for initial offer=0.6

(i) NSO for initial offer=0.8 (j) deals made for initial offer=0.8

Figure 6.5: Impact of initial offer on NSO and negotiation success rate.

6.5 Performance Evaluation 147

(a) NSO for CF=0.05 (b) deals made for CF=0.05

(c) NSO for CF=0.5 (d) deals made for CF=0.5

(e) NSO for CF=0 (f) deals made for CF=0

(g) NSO for CF=5 (h) deals made for CF=5

(i) NSO for CF=50 (j) deals made for CF=50

Figure 6.6: Impact of CF on NSO and negotiation success rate.

148 An Autonomous Negotiation Strategy for Cloud Computing Environments

6.5.1 Effect of Strategies and Negotiation Parameters on Negotiation Outcome

The designed negotiation scenario consists of one broker and one data center, with ne-

gotiation parameters (CF and K) equally set for both parties. As shown in Equation

(6.19), we use Normalized Social Optimality (NSO) to test the social welfare of negotia-

tion strategies and parameters. The closer the values of NSO are to 0 the higher the social

welfares of the strategy. Not surprisingly, when lower values are given to Consensus

Factor and initial offer, the ratio of successful negotiation decreases. In contrast, higher

values for CF and initial offer increase the chance of reaching an agreement. However,

when they are set to extreme values (as shown by Figure 6.5i when the K factor reaches

0.8), the offers received from a data center are accepted in a first round of negotiation and

there is no time for a broker to concede. Therefore, the broker has comparatively higher

utility value in this case and NSO increases dramatically.

In addition, as illustrated in Figure 6.6, when the polynomial function is used, the

chance of reaching an agreement even if the initial offer and CF is set to lower values

increases. Nevertheless, as depicted in Figure 6.6i in a majority of the cases, when CF

is set to the highest value (50), the exponential function reaches lower NSO, and thus

higher social welfare. Moreover, adoption of CF of .5 and 5 as shown in Figures 6.6g

and 6.6c and K of .4 and .2 as depicted in Figures 6.5c and 6.5e comparatively result in

a higher social welfare. This means that if the objective of the negotiation is to achieve

higher social welfare, initial offers should set at maximum below the half of the overall

concession that one party is going to make, and then it should not concede either very

quickly or too slowly.

NSO =

∣∣∣∣ UVBR

UVDC + UVBR
− UVDC

UVDC + UVBR

∣∣∣∣ (6.19)

6.5.2 Impact of Change in Deadline on the Ratio of Deals Made

One broker and one data center participate in this negotiation case, and the request gen-

erator builds negotiation messages based on a given deadline type probability. For the

majority of cases illustrated in the Figure 6.7, when the probability of tight deadline in-

6.5 Performance Evaluation 149

creases, the ratio of agreements decreases until no or a few deals are achieved. However,

when CF and K leastwise set to 0.5 and 0.1 for polynomial function and 5 and 0.2 for

exponential function, the deadline has no impact on the number of deals made, and both

strategies reach 100 % of consensus rate. This shows the dominance of the polynomial

function in reaching higher number of deals when the deadline is tight.

Figure 6.7: Impact of deadline on the success rate of negotiation. By “0.05-0.01-E", we
mean that CF, K, and time-dependent functions are set to 0.05, 0.01, and exponential,
respectively.

6.5.3 Performance of the Proposed Negotiation Strategy

To demonstrate the efficiency of our negotiation strategy, this experiment was designed

with four brokers and a data center. All parties adopted the aforementioned polynomial

function. The data center first adopted a pure time-dependent function and concurrently

negotiated with four brokers, then we repeated the experiment with the same configura-

tion but this time we replaced the strategy with our negotiation strategy. As Figure 6.8

shows, when the percentage of unbalanced requests increases, the revenue difference be-

tween strategies offered in purely time-dependent works [52, 192] and our work grows.

The results show that even for the cases where only a small percentage of incoming re-

quests are unbalanced (20 percent), data centers can still increase their profits by almost

10 percent on average. In addition, if the chance of a request to be unbalanced is 50

150 An Autonomous Negotiation Strategy for Cloud Computing Environments

percent, then the profit growth increases to 20 percent on average. And finally, for the

case that Percentage of Unbalanced Requests (PUR) is set to 100, our strategy can domi-

nate previous work’s strategy by nearly 27 percent. Therefore, results demonstrates that

our negotiation strategy successfully acts as an admission control system that attracts the

most profitable requests. In addition, the proposed strategy not only increases the rev-

enue of the data center, but also, as demonstrated in Figure 6.9, increases the combined

utility of the whole system. This means the that strategy increases data center profit as

well as the whole system’s (including brokers) utility.

Figure 6.8: Impact of request type on the performance of the strategy. Workloads are built
with different Percentage of Unbalanced Requests(PUR).

6.5.4 Effect of Demand to Supply Ratio and Consensus Desirability on Data-
centers Revenue.

In order to demonstrate how our proposed strategy can increase its competency when

there is another data center in the negotiation scenario, this experiment is designed with

four brokers and two data centers. The polynomial function is adopted for the brokers

and one of the data centers and our strategy for the second data center. We investigated

the performance of the proposed strategy under different market conditions by varying

Demand to Supply Ratio.

Demand to Supply Ratio (DSR) is a single numerical measure of the gap in supply and

6.5 Performance Evaluation 151

Figure 6.9: Impact of request type on the combined utility of the strategy.

Figure 6.10: Impact of Consensus Desirability (COD) on the data centre profit when DSR
is less than one.

demand for resources in the market. Fairly precise estimation of DSR can be calculated

by a methodology offered by Macias et al. [115]. When DSR is less than one, competition

among providers increases, and they try to win a larger share of markets by attracting

as many VM requests regardless the request specification. Therefore, conceding faster

by rising Consensus Desirability (COD) increases the chance of attracting more requests,

and hence improving the revenue. The experiment shows that (Figure 6.10), when DSR

152 An Autonomous Negotiation Strategy for Cloud Computing Environments

Figure 6.11: Impact of Consensus Desirability (COD) on the data centre profit when DSR
is greater than one.

is less than one, data centers have higher revenue if COD is set to higher value. However,

after a certain point (COD = 0.6), increasing COD would result in no gain, but a slight

loss in revenue. In contrast, as illustrated in Figure 6.11, when DSR is greater than one,

data centers with lower COD earn higher revenue.

Furthermore, the gap between data center revenue increases when DSR is low, be-

cause a failure in reaching an agreement means that those providers have permanently

lost a chance of increasing their data center’s utilization to other providers. However,

when DSR is high, even if providers do not win an agreement at the beginning, their

chances increase as other providers’ utilization increases and there is no room for new

requests.

6.6 Conclusions

In this chapter, we proposed a time-dependent negotiation strategy that is capable of as-

sessing the reliability of offers to increase the dependability of our strategy and fill the

gap between decision making and bargaining. To select an appropriate configuration

for different negotiation objectives (e.g. maximizing social welfare or number of deals

made), we investigated consequence of modification of parameters such as deadline, ini-

6.6 Conclusions 153

tial offer, and type of time-dependent tactic (polynomial or exponential). Although many

of the works in the literature apply the same pattern of concession for all clients when ne-

gotiating in parallel, we argued that discriminating regarding the pattern of concession

helps Cloud providers to accommodate more requests and thus increase their profit. Our

approach was tested against purely time-dependent approaches, and it showed its dom-

inance in generating more profit for providers. Furthermore, we showed how providers

could dynamically and based on market condition increase or decrease the Consensus

Desirability to raise their revenue.

In the next chapter, the monitoring service manager component will be discussed.

We will show how the component discovers and selects the required monitoring services

based on user preferences (cost and reliability) for each SLA contract in the repository.

In addition, the next chapter reveals how we eliminate the impact of the SLA failure

cascading on the false positive rate of the monitoring system.

Chapter 7

A Dependency-aware Approach for
SLA Management

The major motivations to adopt Cloud services include no upfront investment on infrastructure

and transferring responsibility of maintenance, backups, and license management to Cloud Providers.

However, one of the key challenges that hold businesses from adopting Cloud computing services is

security and performance of Clouds. That is because by migrating to the Cloud, they move some of

their information and services out of their direct control. Therefore, their main concern is how well

the Cloud providers keep their information (security) and deliver their services (performance). To cope

with this challenge, several service level agreement management systems have been proposed. How-

ever, monitoring service deployment as a major responsibility of those systems has not been deeply

investigated yet. Therefore, this chapter shows how monitoring services have to be described, de-

ployed (discovered and ranked), and then how they have to be executed to enforce accurate penalties

by eliminating service level agreement failure cascading effects on violation detection.

7.1 Introduction

MAJOR motivations to adopt Cloud services include reasonable price as they are

offered in economy of scale, and transferring responsibility of maintenance,

backups, and license management to Cloud service providers. However, one of the key

challenges that holds back businesses from adopting Cloud computing services, even if

they found it cost effective is that, by migrating to Cloud, they move some of their infor-

mation and services out of their direct control [88]. The main concern is how confiden-

tially the Cloud providers keep their information (security) and with which quality they

deliver their services (performance). To cope with this challenge, service level agreement

155

156 A Dependency-aware Approach for SLA Management

(SLA) has been introduced. The SLA contract, which is signed by both parties, includes

Quality of Service (QoS) requirements and penalties in case the QoS requirements are not

met by providers. Nonetheless, relying only on SLA is not sufficient to ensure Cloud re-

liability. For example, if a business has a critical Web application deployed on the Cloud

and it fails, thousands of dollars might be lost. However, according to most SLA con-

tracts, Cloud providers only give a penalty as much as a portion of the deployment fee.

As a result, the responsibility cannot be transferred to the Cloud service providers by

SLA. Instead, efficient runtime monitoring services have to be deployed to validate the

SLA and enforce penalties. In addition, as noted by Theilmann et al., realization of the

vision of dynamic service coordination requires the whole process of monitoring to be

automated. Therefore, automating monitoring service deployment is the main objective

of this chapter.

We consider a Cloud service chain, which includes services such as virtual unit (in-

frastructure as a service), virtual appliance, and software as a service. In such an envi-

ronment where various providers are involved in satisfying user requirements, we face a

set of difficulties in SLA monitoring. Firstly, existence of different SLA offers, counter of-

fers, and contract templates makes it difficult to discover necessary monitoring services

that have required capabilities to monitor service level objectives in SLAs. Therefore,

creating a standard model for describing SLAs in different layers of the Cloud has been

considered [102] as a major challenge in this area of research. In this research, this issue

has been addressed by a form of semantic SLA, which brings a common language and

understanding to all parties involved in service provisioning in the Cloud.

Next, in the Multi-Cloud environment, where services from IaaS , PaaS, IaaS are pro-

visioned and integrated, there are dependencies between performances of services. It

means that if one of the lower-layer services (infrastructure layer) is not functioning prop-

erly, it can affect performance of higher-layer services. While SLA dependency has been

considered by several works [102], no practical approach has been presented to model

the dependencies among services. Consequently, this chapter shows how dependency

knowledge can be modeled using semantic technology, and how that knowledge can be

used in discovery of monitoring services and SLA failure detection. In summary, this

7.2 Cloud Service and Monitoring Layers 157

chapter investigates:

• A Semantic- based SLA that can be understood by all parties including providers,

requestors, and monitoring services. The Semantic SLA contract is defined in a way,

which can be used as a goal for discovery of necessary monitoring services.

• SLA dependency modeling using Web Service Modeling Ontology (WSMO) to build

a knowledgebase that can be exploited to eliminate effects of SLA failure cascading

on violation detection.

• An algorithms for discovery and ranking of monitoring services that considers user

preferences on reliability, budget, and legal constraints.

7.2 Cloud Service and Monitoring Layers

As Emeakaroha et al. [49] and Theilmann et al. [160] cited, Cloud services can be classi-

fied in different layers (as depicted in Figure 7.1), which will lead to hierarchical structure

of SLA contracts between different supply chain partners. In our scenario, three layers,

namely infrastructure, application, and business layers, are considered. They are defined

as follows:

1. Infrastructure layer services: In this layer Cloud service providers offer virtual

units, which are resources that have been virtualized and can be a virtual com-

Cloud Monitoring

Infrastructure Layer

Virtual
Machine

Network

Application Layer

Database
Application

Server
Web

Server

Business
Layer

Figure 7.1: Cloud monitoring service layers.

158 A Dependency-aware Approach for SLA Management

puter, database system, or even a virtual cluster. Monitoring criteria for infrastruc-

ture as a service provider typically includes network uptime and server uptime.

Other QoS metrics include network (such as bandwidth availability), system per-

formance, support response time, server deployment latency, CPU utilization, and

RAM monitoring.

2. Application layer services: The role of appliance providers is providing a ready-

to-run software package with predictable behavior. Virtual appliances are shown to

provide a better service deployment mechanism [158]. Therefore, they are adopted

as a major Cloud component functioning in application layer [60].

3. Business layer service: This layer answers end-users business requirements by

providing services implemented on top of appliance and infrastructure layers. As

shown by Comuzzi et al. [34], service level objectives (SLO) in this layer can be

modeled by a set of business rules. End-user satisfaction (for example in terms of

response time) [88] is another important metric that can be monitored in this layer.

In this chapter, we consider Cloud services, that are located in different layers, with per-

formance dependencies. It means that if one of the lower-layer (infrastructure layer)

services in a chain is not functioning properly, it can affect the higher-layer service’s per-

formance.

7.3 Motivating Scenario

Amir, the IT administrator of an e-Business website, is required to deploy necessary mon-

itoring services. The e-business services are implemented on top of a LAMP appliance

from VMware and hosted on Amazon EC2. In addition, the e-Business application re-

quires access to SalesForce.com as illustrated in Figure 7.2.

In one hand, he has advertised the monitoring services in a repository, and on the

other hand he has signed SLAs, which have to be monitored. Therefore, the required

monitoring services should be deployed based on the information given in SLA con-

tracts and on Cloud user and provider preferences (regarding cost and reliability of the

7.3 Motivating Scenario 159

IaaS (Amazon

EC2)

SaaS (Salesforce)

Appliance

Provider

(VMWare)

Figure 7.2: Cloud monitoring service layers.

monitoring services). Because his traditional IT monitoring tools simply cannot monitor

varied components, he has decided to use third party monitoring services. He prefers

to deploy monitoring services with the highest reliability and the least price. As he in-

tends to automate the whole process of monitoring deployment and execution, he faces

the following challenges:

1. The first problem is how to discover the required monitoring services using SLA

contracts when not all parties (Monitoring Service providers and Cloud service

providers) are using the same terminology for describing capabilities of monitor-

ing services and QoS criteria, which has to be monitored in SLA.

2. The second challenge is how he can rank the discovered monitoring services to

increase reliability and save on cost. If we assume he can overcome the first two

problems, still the following challenge exists:

3. Imagine the monitoring service that is responsible for monitoring Salesforce ser-

vices, reports a violation of SLA, hence Amir has reported the violation to Sales-

force. Salesforce investigated the violation report and replied back stating that

their service during that time was fully functional. Therefore, Amir has checked

the monitoring service’s logs and has found that the root cause of the SLA failure

was Amazon EC2 throughput. Now he faces a new challenge:

• How could he model services performance inter-dependencies in his system?

• How could he eliminate SLA failure cascading effects on violation detection?

160 A Dependency-aware Approach for SLA Management

Monitoring

Service

Repository

Monitoring Service(MS) Manager

MS

Discovery

MS Ranking

Knowledge -

base

Alert Centre

SLA Contract

Repository

Figure 7.3: Monitoring Service Management architecture.

7.4 Monitoring Architecture

We propose a monitoring service manager as shown in Figure 7.3 to tackle the challenges

listed in Section 7.3. The monitoring service manager discovers and selects the required

monitoring services based on user preferences (cost and reliability) for each SLA contract

in the repository. Moreover, the Alert Center listens to all the incoming alerts from the

monitoring services and uses the dependency knowledge to filter alerts caused as a result

of SLA failure cascading.

7.4.1 Service Level Agreement Contract Repository

As explained in Chapter 3, in a heterogeneous environment such as the Cloud, it is dif-

ficult to enforce syntax and semantics of services, their quality of services, and conse-

quently SLA contracts. Therefore, applying symmetric attribute-based on matching be-

tween SLA contracts and monitoring services is impossible. In order to tackle the prob-

lems, the first step is creating a QoS ontology for Cloud services that provides common

understanding for QoS among all parties involved in service provisioning. For this pur-

pose (as it is shown in Figure 7.4), we extended WSML to support description of Cloud

service QoS. Figure 7.4 shows how QoS such as availability, throughput, and their mea-

surement unit ontology can be described using WSML. In the next step, the Cloud QoS

ontology is applied to model SLA contracts semantically as illustrated in Figure 7.5. Con-

sequently, monitoring service discovery can perform semantic matching using defined

terms in the ontology. The ontology-based discovery increases the level of flexibility and

7.4 Monitoring Architecture 161

automation, allowing the two parties to use their own terminology as long as it is re-

lated to the commonly understood conceptual model. All the SLAs are stored in the SLA

repository to be used as a goal for discovery of required monitoring services. For ex-

ample, Figures 7.5 and 7.6 show that SLA needs a monitoring service that can monitor

the bandwidth, storage, and availability of a Cloud service and, if the set of described

obligations is not met by the Cloud service, can raise an alert.

1 namespace { _"http://www.example.org/ontologies/Cloud_Service_QoS#",
2 wsml _"http://www.wsmo.org/wsml/wsml_syntax#" }
3

4 ontology Cloud_Service_QoS
5

6 concept Stockholder
7 concept Provider subConceptOf Stockholder
8 concept Customer subConceptOf Stockholder
9 concept AplianceProvider subConceptOf Provider

10 concept VirtualUnitProvider subConceptOf Provider
11 concept MonitoringService subConceptOf Provider
12

13 concept MeasurementUnit
14 concept Incoming_Bandwidth subConceptOf MeasurementUnit
15 concept Incoming_Bandwidth subConceptOf MeasurementUnit
16 concept Outgoing_Bandwidth subConceptOf MeasurementUnit
17 concept MemoryUnit subConceptOf MeasurementUnit
18 concept TimeUnit subConceptOf MeasurementUnit
19 i n s t a n c e GB memberOf MemoryUnit
20 value hasValue "GB"
21 i n s t a n c e Kbps memberOf Incoming_Bandwidth
22 value hasValue "Kbps"
23 i n s t a n c e Kbps memberOf Outgoing_Bandwidth
24 value hasValue "Kbps"
25 i n s t a n c e Sec memberOf TimeUnit
26 value hasValue "Sec"
27

28 concept ApplianceQoS
29 concept ApplianceReliability subConceptOf ApplianceQoS
30 concept ApplianceAvailability subConceptOf ApplianceQoS
31 concept ResponseTime subConceptOf ApplianceQoS
32 concept Throughput subConceptOf ApplianceQoS
33

34 concept VirtualUnitQoS
35 concept StartTime subConceptOf VirtualUnitQoS
36 concept VirtualUnitAvailability subConceptOf VirtualUnitQoS
37 concept Latancy subConceptOf VirtualUnitQoS
38 concept VirtualUnitReliability subConceptOf VirtualUnitQoS
39 concept RAM subConceptOf VirtualUnitQoS
40 concept CPU subConceptOf VirtualUnitQoS
41 concept Storage subConceptOf VirtualUnitQoS
42 concept Bandwidth subConceptOf VirtualUnitQoS

Figure 7.4: QoS ontology.

162 A Dependency-aware Approach for SLA Management

1 namespace { up _"http://www.wsmo.org/ontologies/nfp/upperOnto.wsml#",
2 dc _"http://purl.org/dc/elements/1.1 #",
3 reg _"http://www.example.org/contract_goal.wsml#",
4 oblg _"http://www.wsmo.org/ontologies/nfp/obligations.wsml#",
5 CSQ _"http://www.example.org/ontologies/Cloud_Service_QoS.wsml#",
6 ConOnt _"http://www.example.org /contract_ontology.wsml#",
7 }
8 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 ∗ Contract Goal

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
11 goal _"http://www.example.org /contract_goal"
12

13 nonFunctionalProperties
14 up#nfp hasValue up#hasObligations
15 up#hasObligation hasValue req#DefinitionObligations
16 up#hasViolation hasValue oblg#DefinitionViolations
17 endNonFunctionalProperties
18

19 importsOntology {CSQ#Cloud_Service_QoS,
20 CloudServicesDependencies }
21

22 capability _"http://www.example.org /contract_goal#capl"
23 effect
24 definedBy
25 [[
26 [[POBox hasValue "P.o.Box 218",
27 City hasValue "Yorktown, NY 10598, USA"] memberOf Contact and
28 [Location hasValue "USA",
29 TrustedServices hasValue {"CloudHarmony", "CloudStatus", "Nimsoft",
30 "Monitis", "Hypertic" }
31] memberOf ProviderMonitoringConstraint
32] memberOf ServiceProvider [hasName hasValue "Amazon"] and
33 [[Street hasValue "30Saw Mill River RD",
34 City hasValue "Hawthorne", NY 10532, USA"] memberOf Contact and
35 [Location hasValue "USA",
36 TrustedServices hasValue {"Nimsoft", "Monitis", "Hypertic"}
37] memberOf CustomerMonitoringConstraint
38] memberOf ServiceCustomer [hasName hasValue "Customer"]
39] memberOf Parties and
40 [hasInstance hasValue "small",
41 hasPrice hasValue "$100"
42] memberOf ServiceDefinition [hasName hasValue "EC2"]
43] memberOf SLA [hasName hasValue "ServiceAgreement1"]

Figure 7.5: SLA contract goal.

7.4.2 Monitoring Service Repository

There are traditional server monitoring services that can be used to likewise monitor

cloud services. There are also vendor specific monitoring services like EC2 CloudWatch1

. In addition, there are third party independent Cloud monitoring services like Cloud-

1 Amazon CloudWatch. http://aws.amazon.com/cloudwatch/

 http://aws.amazon.com/cloudwatch/

7.4 Monitoring Architecture 163

1 // Contract Ontology
2 ontology _"http://www.example.org/contract_ontology#"
3 i n s t a n c e Cloud_Service_QoS memberOf CSQ#Cloud_Service_QoS
4 CSQ#MemoryUnit hasValue ?MemoryUnit
5 CSQ#Incoming_Bandwidth hasValue ?Incoming_Bandwidth
6 CSQ#Outgoing_Bandwidth hasValue ?Outgoing_Bandwidth
7 CSQ#TimeUnit hasValue ?TimeUnit
8 . . .
9 axiom DefinitionObligations

10 definedBy
11 hasObligation (CSQ#hasBandwidthËŔ ? BandwidthSupportValue):−
12 CSQ#hasBandwidth [value hasValue ?BandwidthSupportValue] and
13 ?BandwidthSupportValue <60 and ?BandwidthSupportValue > 5 0 .
14 hasStorage hasValue "100" .
15 hasVirtualUnitAvailability hasValue "98" .

Figure 7.6: SLA contract ontology.

status2 that advertise their capabilities of Cloud service monitoring in the repository. For

the monitoring service to be discovered, they have to expose their monitoring capabili-

ties in a uniform way as discussed earlier. A monitoring service’s description contains

its monitoring capability [34] and its non-functional properties. We have modeled mon-

itoring services using WSMO in our system. As it is shown in Figure 7.7, the capability

of monitoring services identifies the Cloud services and their QoS criteria, which can be

monitored. In addition, non-functional properties of monitoring services such as price,

reliability, and location have been considered in the modeling. The non-functional prop-

erties of monitoring services are used by the ranking component to rank them based on

user preferences.

For example, as illustrated in Figure 7.7, the monitoring service is capable of monitor-

ing Cloud virtual unit services that are located in the USA from specific providers (EC2,

GoGrid, and RackSpace). Moreover it can only monitor the CPU, bandwidth, memory,

availability, and throughput of the services. It is worth mentioning that, semantically

described monitoring services use QoS ontology depicted by Figure 7.4. This Ontology

provides shared understanding of QoS criteria for all parties in SLA management phases.

2 Hyperic. http://www.hyperic.com/products/Cloud-monitoring.html

http://www.hyperic.com/products/Cloud-monitoring.html

164 A Dependency-aware Approach for SLA Management

7.4.3 Monitoring Service Manager

The Monitoring Service Manager (MSM) component is responsible for discovery, selec-

tion, and coordination of third party monitoring services. The main objective of this

component is automating the process of deploying necessary third party monitoring ser-

vices by applying semantic service technology. It consists of several sub-components

such as discovery, ranking, knowledgebase, and alert center, which will be explained in

the following sections.

1 //Monitoring Service
2 webService _"http://www.example.org/VirtualUnitMonitoringService/Nimsoft"
3

4 importsOntology {CSQ _"http://www.example.org/ontologies/Cloud_Service_QoS.wsmL#",
5 VU _"http://www.example.org/ontologies/Virtual_Unit.wsml#" }
6

7 capability _"http://www.example.org/VirtualUnitMonitoringService/Nimsoft#Capl"
8 nonFunctionalProperties
9 VU#Price hasValue ?price

10 VU#Location hasValue ?loc
11 CSQ#Reliability hasValue ?reliability
12 endNonFunctionalProperties
13 sharedVariables {?band, ?CPU, ?memory, ?availability, ?throughput }
14 effect
15 definedBy
16 [
17 [VU#Location hasValue "USA",
18 VU#Providers hasValue {"Amazon", "GoGrid", "RackSpace" }
19] memberOf ProviderSupported and
20 [CSQ#Bandwidth hasValue ?band,
21 CSQ#CPU hasValue ?CPU,
22 CSQ#Memory hasValue ?memory,
23 CSQ#Availability hasValue ?availability,
24 CSQ#Throughput hasValue ?throughput ,
25] memberOf QoS_Criteria
26] memeberOf MonitoringService [hasname hasValue "Nimsoft"]

Figure 7.7: Ontology-based monitoring service modeling.

Knowledgebase: Cloud Service Dependency Knowledge Modeling

In our work, service dependency [176] is defined as a relationship between one service

and one or multiple services where if a service A is dependent on service B, performance

of a service A in one or multiple QoS criteria can be affected by service B. The QoS

dependency of a Cloud service can be defined formally as follows:

let CS = {S1, S2, · · · , Sn} be a set of Cloud services. Then service dependency can be

7.4 Monitoring Architecture 165

defined as:

Cloudservicedependency : {Sd, S, QCd, QC, EQC} (7.1)

Where: Sd is a service such that its performance in the QoS criteria QCd depends on the

performance of QoS criteria of QC of service S. In addition, EQC is the expected QoS

criteria performance from S. It means the service Sd is able to perform according to its

SLA for the QoS criteria QCd if S can perform as at least equal to EQC for QoS criteria

QC.

It is worth mentioning that dependency rules in the knowledgebase are transitive. For

example if S1 performance depends on S2, and S2 performance depends on S3, therefore

knowledgebase deduces that S1 performance also depends on S3. Knowledge regarding

dependencies is particularly significant for:

• Discovery of monitoring services, which will be discussed in the next section, where

we explain how does the discovery algorithm differs from what was presented in

Chapter 3.

• Prevention of false positives caused by SLA failure cascading, which will be dis-

cussed later in this chapter.

We present an approach for modeling dependencies as a foundation for adopting multi-

layer Cloud services. Description Logics (DLs) is a known as formalism for representing

knowledge. Consequently, DL languages such as WSML-DL are considered the core of

the knowledge representation system. Once dependency of services are represented as

knowledge, it can be queried by WSML-reasoner for the reasoning purpose. An exam-

ple of the modeling is shown in Figure 7.8, where the appliance service availability is

dependent on virtual unit availability.

Monitoring Service Discovery

As described in privious sections, we have defined all the monitoring services specifica-

tions as well as SLA contracts based on WSMO to enable semantic-based discovery of

appropriate monitoring services. Figure 7.8 demonstrates the monitoring services mod-

eling based on WSMO. Moreover, an example of how to model SLA contract goals based

166 A Dependency-aware Approach for SLA Management

1 namespace { _"http://www.example.org/ontologies/CloudServicesDependencies#",
2 dc _"http://purl.org/dc/elements/1.1#",
3 up _"http://www.wsmo.org/ontologies/nfp/upperOnto.wsml#",
4 CSQ _"http://www.example.org/ontologies/Cloud_Service_QoS.wsml#",
5 WSML _"http://www.wsmo.org/wsml/wsml-syntax#" }
6 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 Dependencies ontology
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
9

10 ontology CloudServicesDependencies
11

12 nonFunctionalProperties
13 up#nfp hasValue up#hasDependency
14 endNonFunctionalProperties
15

16 importsOntology {CSQ#Cloud_Service_QoS }
17

18 // Dependencies Rules
19 axiom DefinitionDependencies
20 nonFunctionalProperties
21 dc#description hasValue
22 "Note: the appliance service availability is dependent on virtual unit
23 availability"
24 endNonFunctionalProperties
25 definedBy
26 ?hasDependency memberOf CSO#ApllianceAvailability
27 Implies
28 ?hasDependency [up#hasDependency hasValue CSQ#VirtualUnitAvailability] .

Figure 7.8: Ontology-based dependency modeling.

on WSMO is shown in Figures 7.5 and 7.6. In order to realize the discovery component

of our proposed architecture, a monitoring service discovery algorithm (Algorithm 5)

has been presented. This algorithm applies five matching operations namely Exact, Plu-

gIn, Subsumption, Intersection, and NonMatch in response to the requested SLA contract

goal. The definitions of these matching types can be found in Chapter 1.

As shown in Figure 7.3, the SLA contract repository is responsible to keep all the

information regarding the existing SLA contract goals (gexist) together with their matching

monitoring services and matching types. In the monitoring service discovery algorithm,

if each of the existing SLA contract goals can be matched with the requested SLA contract

goal (guser), then the discovery mechanism will not continue anymore, and the already

existing goal that consists of the matched monitoring services and the matching type

will be sent as the result. In case of no match between guser and gexist, the discovery

mechanism is applied on all available monitoring services (w) located in the monitoring

service repository (W) to look for the matched monitoring services. In that case, the

7.4 Monitoring Architecture 167

Algorithm 5: Monitoring Service Discovery
Input: guser is the SLA contract goal, Gexist is a set of existing SLA contract goals, W

is the set of Cloud services

1 forall the g ∈ Gexist do

2 if guser ≡ g then

/* g is an existing SLA contract in WSMO format */

3 return (guser , matchType(g))

4 forall the w ∈ W do

/* w is an existing monitoring service */

5 if w ∈ (Tp(guser) u Tp(guser)) then

/* Tp(guser) andTp(guser) are trusted monitoring services of the

Cloud and the user */

6 Ω(guser) = DC (guser) t O(guser) /* DC is set of QoS Criteria of a

described service in SLA that other services

performance dependent on */

/* O is set of obligations in the SLA contract */

7 if Ω(guser) ≡ QoS(w) and N (guser) ≡ Nw then

8 return (w , Exact)

9 else if Ω(guser) v QoS(w) and N (guser) v Nw then

10 return (w , PlugIn)

11 else if QoS(w) vΩ(guser) and NW v N (guser) then

12 return (w , Subsumption)

13 else if ¬(Ω(guser) u QoS(w) v⊥) and ¬(N (guser) uNw v⊥) then

14 return (w , Intersection)

15 return (guser , NonMatch)

candidate monitoring service must be a member of trusted services, which are supported

by both service providers and customers. If the aforementioned conditions are satisfied,

the matchmaker process is executed to find out the matching type between monitoring

168 A Dependency-aware Approach for SLA Management

services and the guser. In that case, two set of elements of guser and (w) are compared with

each other, as follows:

1. Ω(guser) with QoS criteria of the monitoring service in which Ω(guser) is a collection

of obligations of the guser and QoS criteria of Service Definition (guser) that perfor-

mance of other services are dependent on. Here is precisely where we require de-

pendency knowledge for discovery. When a monitoring service is discovered for an

SLA contract of a Cloud service, the monitoring service not only has to be capable

of monitoring all QoS criteria described in SLA contracts but also has to monitor

QoS criteria of the Cloud service (which is defined in the contract) that other ser-

vices are dependent on. This way, if ascendant services cause an SLA failure, the

monitoring service has the record of that, and using the dependency knowledge

box, the root cause of the problem can be detected.

2. Non-functional properties (reliability and cost) of the guser and and (w) must be

compared with each other.

Monitoring Service Ranking

The Non-functional properties for ranking of monitoring services are cost and reliability,

which are defined as follows:

1. Reliability: one important comparison factor for monitoring services is reliability.

For example, initially, we have evaluated two products for monitoring Cloud ser-

vices. However, we quickly realized that these services triggered many false posi-

tives because they only do single-node outage verification and, occasionally, those

monitoring nodes themselves experienced network issues that caused them to in-

advertently trigger outages. Finally, we find a monitoring service that does triple-

node outage verification before triggering an outage, which provides a much more

reliable result. In order to measure the reliability of monitoring services, a formula

is developed as shown in Equation (7.2).

2. Cost: monitoring service cost is a non-functional requirement of a user who wants

7.4 Monitoring Architecture 169

to deploy required monitoring services. In our problem, minimization of deploy-

ment cost is considered as the objective of users. Besides, there are different kinds

of pricing for monitoring services in the market, for example EC2 offers Cloud-

watch for free for a 5-min interval monitoring with any EC2 instance. Other ser-

vices charge per server or per service. For example, Cloudkick charges $99/month

for six servers/month. Panopta charges per service monitored at around $1.5/ser-

vice/month.

In the selection phase, based on user QoS preferences, all discovered services are ranked

and the top service in the ranked list is returned. As discussed in the previous section,

reliability and cost are considered QoS criteria of monitoring services. We first offer an

approach to measure reliability of monitoring services, and then show how monitoring

services can be ranked by applying the analytical Hierarchy Process (AHP) approach

[148] (more detailed description regarding AHP can be found in Chapter 2). There are

several third-party Cloud monitoring services exist in the market, and this allows users

some degree of flexibility in choosing the service that best suits their preferences. One

very important factor to consider while comparing monitoring services is their reliability,

which can be measured based on a monitoring service’s false reports generated for each

monitored QoS criteria as shown in Equation 7.2. The false positive is referring to the

frequency with which the monitoring service reports violation of SLA in error. And the

false negative is the frequency with which the monitoring service fails to detect an actual

violation of SLA.

Reliability =
k

∑
c=1

Ic

(
Wnc ×

total number of detection
false violation detection

+Wpc ×
total number of detection + number of violation not detected

number of violation not detected

) (7.2)

Where

Ic is the relative importance of criterion c.

Wpc is the relative importance of false positive rates compared with false negative rates

Wnc is the relative importance of false negative rates compared with false positive rates

170 A Dependency-aware Approach for SLA Management

Table 7.1: Major scale of pair-wise comparisons.

Scores Response to the question

1 Equal importance or preference.

3 Moderate importance or preference of one over another.

5 Strong or essential importance or preference.

7 Very strong or demonstrated importance or preference.

9 Extreme importance or preference.

The reason for introducing weights for false positive and negative rates is to allow

users giving higher weights to the rates and criteria that are more important to them. To

capture weights in the equation and rank the monitoring services, AHP has been applied,

which is one of the most applied methods in the multiple criteria decision making cate-

gory. The AHP method was suggested by Satty in 1998 [148] and is based on pairwise

comparison of criteria to determine their weights in a utility function. The major contri-

bution of AHP is to convert subjective assessments of relative importance to numerical

values or weights. The methodology of AHP is based on pairwise comparisons of the

criterion by asking the question of "how important is criterion Ci compared with crite-

rion Cj?" The answer (which could be one of those shown in Table 7.1) to the question

determines weights for criteria. Figure 7.9 depicts the process of choosing the best mon-

itoring service provider when two criteria (cost and reliability) are considered. After the

pairwise comparison, as Figure 7.9 shows, the relative importance was assigned to each

criterion. In the next step, similar questions have to be asked to evaluate the performance

scores for monitoring services on the subjective criteria. And then, based on the results

of this phase, alternatives can be ranked and selected. We have adopted an open decision

maker software to our project, and result of the ranking for the discovered services is

demonstrated in Figure 7.11.

Violation Reporting

This subcomponent is in charge of violation detection and reporting to enforce accurate

penalties by elimination of SLA failure cascading effects on violation detection. In order

7.4 Monitoring Architecture 171

Ranking the Monitoring Service

Reliability Cost

Goal Goal

Criteria 1 Lease-
based

Purchase-
based

Criteria 2 Criteria 3 Criteria n

False Negative False Positive

Monitoring
Service 1

Monitoring
Service 2

Monitoring
Service n

QoS
Properties

False
Alarm

QoS
Properties

Services

Monitored
Criteria

License
Type

Services

Figure 7.9: Applying AHP for ranking monitoring services.

Algorithm 6: False Alarm Detection
Input: VR

/* VR is a violation report */

1 FalseAlarm = False

2 Sd ← VRS

3 QCd ← VRQC

4 forall the Sa ∈ DS do

/* DS is a set of all deployed services */

5 if ∃(Sd, Sa, QCd, QCa, EQC) then

6 AS← Sa /* AS is a set which contains all the ascendant

services */

7 forall the Sa ∈ AS do

8 if QCa is worse than EQC then

9 FalseAlarm = True

to do that, as shown in Algorithm 6, if it receives violation reports(VR) on performance of

a service (Sd) on a QoS criteria (QCd) from the monitoring service, it queries the knowl-

edgebase to check whether the service performance for that criteria depends on other

service’s performance or not. If it is dependent, then it checks the performance of the

172 A Dependency-aware Approach for SLA Management

QoS criteria of the ascendant service; if it is not as equal or better than EQC, then it con-

cludes that the reported violation is false, and instead, it reports the root cause of the

problem and all the consequent effects.

7.5 Performance Evaluation

Experiments in this section were run on a system with Intel i3-350-M, 2.27-GHz processor

and 4 GB of RAM. The main experiments are:

• a feasibility test for the a case study with one SLA contract and five monitoring

services in the repository; and

• and Deployment time (discovery and ranking execution time) measurement for dif-

ferent number of monitoring services in the repository.

7.5.1 Monitoring Services Discovery for Case Study

For the case study, the SLA contract in Figures 7.5 and 7.6 is considered to be the goal,

and a set of five monitoring services with different QoS parameters and capabilities were

imported to the repository. The summary of the capabilities are shown in Table 7.2. Fig-

ure 7.10 illustrates the output of discovery algorithm. It shows, three monitoring services,

namely monitis, hyperic, and nimsoft, could match (with match type of subsumption) the

requirements. The other two monitoring services were not discovered because Cloudhar-

mony does not have the capability to monitor the SLA contract, and Cloudwatch was not

in the trusted list of both the Cloud and the user. Then, in the ranking phase, as it is

shown in Figure 7.11, monitoring services are ranked using AHP, and nimsoft monitor-

ing service scored higher when reliability criteria is more important to the user.

7.5.2 Deployment Time Measurement

In thus experiment, we increased the number of monitoring services in the repository

to investigate the scalability of our approach in terms of execution time. For different

7.5 Performance Evaluation 173

Table 7.2: Monitoring services in the repository for the case study.

Monitoring

service

QoS monitoring capabilities Service monitoring capa-

bilities

Location

Monitis CPU, memory, storage, load, pro-

cesses, availability

EC2, GoGrid USA

Hyperic CPU, memory, storage, availability,

bandwidth

EC2, GoGrid USA

Nimsoft CPU, memory, storage, availability,

bandwidth

EC2, GoGrid USA

Cloudharmony Availability, throughput EC2, GoGrid, RackSpace,

Flexiscale

USA

Cloudwatch CPU, memory, storage EC2 USA

Figure 7.10: Monitoring service discovery algorithm validation for the case study.

numbers of monitoring services, we repeated the experiment 20 times. Each time the

SLA contract QoS types were randomly altered. As it is illustrated in Figure 7.12, the

mean deployment time, which is the sum of discovery and ranking time, has increased

from less than 3 seconds when there are only 30 offers in the repository to almost 10 s

when the number of offers increased to 120. Therefore, although our approach causes

174 A Dependency-aware Approach for SLA Management

Figure 7.11: Ranking algorithm validation for the case study.

Number of Monitoring Services

D
e
p
lo
y
m
e
n
t
T
im
e
 (
m
s
)

120906030

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

Figure 7.12: Execution time for monitoring service discovery and rankling.

semantic-based matching overhead, still it can discover and rank services in a reasonable

time even for large number of services in the repository.

7.6 Conclusions 175

7.6 Conclusions

Automating the process of SLA management in Cloud needs an approach for deploy-

ment of required monitoring services. In heterogeneous environment such as Cloud,

the discovery of monitoring services cannot be accomplished using syntax-based match-

ing of advertised monitoring services in repository and signed SLAs. Consequently, this

work proposed an ontology-based approach for modeling monitoring capabilities and

SLA contracts to semantically match them and avoid low recall caused by lack of com-

mon QoS understanding. This chapter started with modeling of QoS ontology using

WSMO and continued with exploiting the QoS ontology in SLA template and monitor-

ing services description to build an inter-Cloud language for monitoring service deploy-

ment. In addition, the chapter discusses the effects of QoS dependencies among services

on generation of false SLA violation report. It tackled the problem by deploying fittest

monitoring services and filtering violation reports using dependency knowledge. We

tested our approach on a case study and the results show the efficiency and effectiveness

of the proposed work. In addition, the computational overhead of the semantic discovery

and AHP for the repository has been measured for various numbers of monitoring ser-

vices. The results show the approach is scalable and the deployment can be accomplished

in a reasonable time.

Chapter 8

Conclusion and Future Directions

8.1 Discussion

IN order to minimize the risk of failure in a single Cloud computing environment, re-

duce the cost, and provide better QoS, it is important to exploit the benefit of migrat-

ing applications of Cloud users to multiple providers. Although Clouds adopted some

common communication protocols such as HTTP and SOAP, the integration and interop-

erability of all services and finally service deployment and coordination in Multi-Cloud

remain the biggest challenges. In this thesis, we addressed the problem of service coor-

dination in Multi-Cloud, the process of making a service ready for use, which includes

service discovery, SLA negotiation, service selection, and monitoring.

To tackle challenges involved in Multi-Cloud service coordination, Chapter 1 set ob-

jectives pursued by this thesis. In Chapter 2, we investigated in detail the major require-

ments for each phase of Cloud service coordination and commented on existing works

in different contexts to identify gaps in this area of research. Our investigation revealed

a lack of architecture that focuses on satisfying user requirements using virtual appli-

ances and machines from various Cloud providers by automating the process of service

deployment and coordination.

Therefore, in Chapter 3, an architecture was proposed that captures software, hard-

ware and quality of services requirements. The architecture uses service discovery, SLA

negotiation, and service selection techniques to map the user requirements to Cloud of-

ferings (virtual appliances, virtual units or machines, and monitoring services). Fur-

thermore, Chapter 3 explored Cloud service discovery in Multi-Cloud environments. In

177

178 Conclusion and Future Directions

a heterogeneous environment such as Multi-Cloud, it is difficult to enforce syntax and

semantics of virtual machine descriptions and user QoS requirements among Clouds.

Therefore, applying symmetric attribute-based matching between requirements and re-

quest is impossible. Therefore, we used ontology-based discovery to semantically match

user’s requirements to Cloud services. The discovery approach is validated in a case

study which shows its effectiveness and applicability.

Currently, there is no integrated repository of semantic-based services for virtual ap-

pliances and units. The first step towards describing services and their QoS is to commu-

nicate with Clouds and the Cloud monitoring services through their APIs and gather the

required meta-data for building the repository. Virtual appliances and units meta-data

are defined in the form of Extensible Markup Language (XML). However, to get the ad-

vantages of Ontology-based discovery, they have to be described conceptually using Web

Service Modeling Ontology (WSMO) ontologies and in the form of Web Service Model-

ing Language (WSML). The manual translation of Cloud appliance and virtual unit offer-

ings’ descriptions is not a feasible approach. Therefore, we offered a translation approach

to semantically enrich Cloud offerings that minimizes human intervention. The perfor-

mance of translation technique was measured for different repository sizes that proves

its scalability.

In Chapter 4, we discussed that the problem of migrating multi-tier applications to

Multi-Cloud requires a selection approach to satisfy user requirements such as mini-

mizing deployment cost (including data transfer cost) and constraints such as latency

between tiers. The selection problem was mapped to the multi-dimensional knapsack

problem and tackled by two algorithms, namely Forward-Checking-based-backtracking

(FCBB) and the genetic-based approach with necessary fitness and penalty functions. We

evaluated the proposed approaches by a real case study using real data collected from

12 Cloud providers, which showed that they deliver near-optimal solutions. Next, we

tested Cloud service selection approaches with different types of requests. We noticed

that the messages size has a considerable impact on the performance of the algorithms. If

the execution time is not the main concern of users, genetic-based selection in most cases

achieves better value for the objective function. In contrast, if the massage size between

8.1 Discussion 179

appliances is small, FCBB can be used to save on execution time while acquiring near-

optimal solutions. Furthermore, based on the conducted experiments, we realized that

network of applications with higher graph density and data transfer are less likely to be

distributed across multiple providers (in contrast to requests with lower data transfer).

However, for requests with tight latency requirements, services are still placed across

multiple providers to save on deployment cost.

Moreover, as discussed in Chapter 1 we aimed at simplifying the process of service

coordination for no-experts users. In Chapter 5, this has been achieved by means of two

approaches. The first approach, exploits the benefits of evolutionary algorithms (NSGA-

II and SPEA-II) for optimization and fuzzy logic to handle vague preferences of users.

Results show that for the proposed case study, we can effectively help unskilled users to

identify the service compositions which are closest to their preferences by set of high-

level linguistic rules. The second approach uses WSMO to model expert knowledge

regarding the compatibility of virtual appliance and infrastructure services. Once the

knowledgebase is built, we proposed a compatibility checking algorithm to automati-

cally filter all incompatible services. Results show that the compatibility checking algo-

rithm has acceptable execution time as number of discovered candidates and number of

services in composition grow.

Furthermore, Chapter 6 provided the building blocks to evaluate mechanisms for

SLA negotiation in Cloud. SLA negotiation strategies can be considered as a means of

pricing Cloud services based on the resource availability and utilization. We have re-

stricted our focus specifically to the time-dependent strategy that can handle deadline

constraint of users. We then extended it to be capable of assessing the reliability of offers.

In addition, a novel approach proposed to dynamically update time-dependent func-

tion parameter based on resource utilization to maximize the profit of Cloud providers.

In contrast to the majority of the works in the literature that apply the same pattern of

concession for all clients when negotiating in parallel, we argued that discriminating re-

garding the pattern of concession helps Cloud providers to accommodate more requests

and thus increase their profit. This way providers offer a more attractive price in ear-

lier stages of negotiation for clients whose requested virtual machines’ allocations would

180 Conclusion and Future Directions

balance resource utilization. This increases the chance of reaching an agreement with the

preferred request. Our approach was tested against purely time-dependent strategies,

and experimental results shows dominance of our strategy in generating more profit for

providers.

Signing SLA contract with Cloud providers is not sufficient to ensure Cloud reliability.

For example, if a business has critical web application deployed on Cloud and it fails,

it may result in thousands of dollars lost for the business. Nevertheless, according to

most SLA contracts, they only give a penalty as much as a portion of the deployment fee.

Therefore, the responsibility cannot be transferred to the Cloud service providers by SLA.

Instead, an efficient runtime monitoring services have to be deployed to validate the SLA

and enforce the penalties. Chapter 7 discusses the effects of QoS dependencies among

services on generation of false SLA violation report. Therefore, it tackles the problem by

discovering and selecting proper monitoring services and filtering violation reports using

dependency knowledge. For the selection of the required monitoring service, a mixture

of semantic-based discovery and Analytic Hierarchy Process (AHP) [67] was used. The

approach was proven efficient, once tested on a case study, and scalable, once evaluated

for service repositories with larger size.

8.2 Future Directions

As shown in Figure 8.1, this thesis reveals six future directions to enhance service co-

ordination in Cloud computing. They are described in detail in the following sections:

8.2.1 Multi-Cloud Auto-scaling and Failure Recovery Optimization

In Chapter 4 we have tackled the service selection problem for migrating multi-tier ap-

plication to Cloud which is accomplished prior to deployment. However, for the post-

deployment phase it would be relevant to study cross-cloud automatic scaling optimiza-

tion. Automatic scaling is a feature that scales the capacity of the Cloud services up or

down automatically based on a set of user-defined conditions. Automatic scaling ensures

8.2 Future Directions 181

Figure 8.1: Future directions.

that the number of Cloud services increases during surge in demand to adhere to service

level objectives, and decreases during fall in demand to save cost. Conditions for auto-

matic scaling can be set based on metrics such as average CPU utilization. It is interesting

to investigate the problem of automatic scaling in Multi-Cloud environments where users

also define a set of constraints and objectives. For example, users can set budget, deploy-

ment time, throughput, and latency as constraints and cost minimization as an objective.

It is important to investigate the scaling optimization algorithm which select a Cloud ser-

vice dynamically and on-demand that not only minimizes the cost but also satisfies the

other constraints. Another promising research topic is discovering and selecting services

for back up, and a deployment configuration which facilitates the recovery in a fast and

cost-optimal manner.

8.2.2 Quality of Service Modeling of Cloud Offerings and Dynamic Context-
aware Service Selection

Cloud services have specific characteristics and QoS dimensions which have to be identi-

fied. After that, it is important to investigate approaches for measuring those QoS criteria.

182 Conclusion and Future Directions

More specifically, defining criteria which are able to model energy and carbon emission

efficiency [65], reliability [86], and trust [135] of a Cloud service are increasingly attrac-

tive to users . For example, methods to evaluate reliability and trust of providers from

user feedbacks and monitoring services together can be further studied. This consists of

collecting required raw data from trusted sources and statistically analyzing and aggre-

gating them.

In addition, user experience is another important benchmark for Cloud service providers.

Recently, crowdsourcing is used to create collective knowledge to assess QoS of Cloud

services [26]. Discovering the crowd which is able to evaluate a service efficiently, dele-

gating evaluation tasks to crowds, and calculating the accuracy of the aggregated assess-

ments are relevant problems to investigate.

In Cloud computing dynamic modeling of service status and user demand and prefer-

ences is an essential task. Researchers can investigate service selection approaches which

dynamically maps user requests to services based on the context attributes (users’ device

characteristics and locations) and status of Cloud services.

8.2.3 Service Selection Where Multiple Spot Markets Exist

Amazon introduced a new type of instances called Spot Instance in 2009 1 that has not

been considered in our service selection problem. The price of each spot instance VM

type depends on its demand within each data center. Spot instances offer a low price

but less reliable infrastructure service for the public Cloud users. In the Amazon EC2

spot market users bid for infrastructure services and are in charge of balancing between

reliability and cost. If we assume there are more than one spot markets with different

price histories[87], then it is important to: 1) identify a set of decision making criteria for

market selection and 2) select the bid that minimizes the total cost of deployment while

meeting Service Level Agreement (SLA) constraints.

1Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/spot-instances/

http://aws.amazon.com/ec2/spot-instances/

8.2 Future Directions 183

8.2.4 Considering Heterogeneous Negotiation Strategies in Multi-Cloud En-
vironments

In this thesis, a time-dependent strategy has been considered for all parties in SLA nego-

tiation. However, it is interesting to study effects of considering heterogeneous strategies

in the SLA negotiation problem. Therefore, distinct strategies (e.g. time-dependent, tit-

for-tat, etc.) can be assigned to negotiation parties and achieved profits and ratios of

deals made can be computed and compared. In addition, as SLA Negotiation can be

considered as a means of pricing Cloud services, it is important to compare the pricing

methodology and history of all strategies under diverse market conditions (demand to

supply ratios).

8.2.5 Combining Fuzzy Similarity and Time-dependent Negotiation Strate-
gies

Applying a combination of fuzzy similarity (see Chapter 2) and time-dependent strate-

gies for the presented negotiation problem in Chapter 6 is another area to be explored.

This is particularly applicable for the multi-criteria negotiation scenarios. To apply fuzzy

similarity, hill climbing technique can be used to search for feasible contracts that have

the highest similarity with the opponent’s offer and have the same utility value as the

previously offered contract. This strategy can be compared with our strategy to find out

whether it can improve the combined utility and social optimality of negotiation parties.

8.2.6 Measuring the Impact of Applying Dependency-aware SLA Violations
Detection Approach on Decreasing the Number of False Positives

It is important to investigate the impact of using the proposed dependency-aware SLA

filtering (see Chapter 7) on decreasing the number of false positives. More specifically,

a simulation environment can be built with infrastructure, and application services with

SLA dependencies that is equipped with our proposed SLA violation filtering engine.

After that an approach has to be identified to model the failure of Cloud services in the

system. By failure model we mean distribution of a service availability and unavailability

intervals. For this purpose the Failure Trace Archive (FTA) [99] can be used. Next, in the

184 Conclusion and Future Directions

experiments failure logs can be collected and analyzed with and without our filtering

engine to test its effectiveness on decreasing the number of false positives.

Bibliography

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,

J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement specification (ws-

agreement),” in Global Grid Forum, vol. 2, 2004.

[2] P. Anedda, M. Gaggero, and S. Manca, “A general service oriented approach for

managing virtual machines allocation,” in Proceedings of the 2009 ACM symposium

on Applied Computing. ACM, 2009, pp. 2154–2161.

[3] J. Anselmi, D. Ardagna, and P. Cremonesi, “A qos-based selection approach of au-

tonomic grid services,” in Proceedings of the 2007 workshop on Service-oriented com-

puting performance: aspects, issues, and approaches, High Performance Distributed Com-

puting (HPDC), vol. 25, no. 25. Citeseer, 2007, pp. 1–8.

[4] M. Arlitt and T. Jin, “A workload characterization study of the 1998 world cup web

site,” IEEE Network, vol. 14, no. 3, pp. 30–37, 2000.

[5] K. Atanassov and G. Gargov, “Interval valued intuitionistic fuzzy sets,” Fuzzy sets

and systems, vol. 31, no. 3, pp. 343–349, 1989.

[6] A. Averbakh, D. Krause, and D. Skoutas, “Exploiting user feedback to improve

semantic web service discovery,” in Proceedings of the 8th International Semantic Web

Conference (ISWC), pp. 33–48, 2009.

[7] R. Axelrod, The evolution of cooperation: revised edition. Basic books, 2006.

185

186 BIBLIOGRAPHY

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, The de-

scription logic handbook: Theory, implementation and applications. Cambridge univer-

sity press, 2003.

[9] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo,

C. Kaler, D. Langworthy, A. Nadalin et al., “Web services policy 1.2-framework

(ws-policy),” W3C Member Submission, vol. 25, p. 12, 2006.

[10] R. Barth and C. Smith, “International regulation of encryption: technology will

drive policy,” Borders in Cyberspace: Information Policy and Global Information Infras-

tructure, pp. 283–299, 1999.

[11] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten,

“Portable batch system: External reference specification,” Technical report, MRJ

Technology Solutions, Tech. Rep., 1999.

[12] B. Benatallah, M. Dumas, M.-C. Fauvet, and F. Rabhi, “Towards patterns of web

services composition,” in Patterns and Skeletons for Parallel and Distributed Comput-

ing, F. Rabhi and S. Gorlatch, Eds. Springer London, 2003, pp. 265–296.

[13] L. Bodenstaff, A. Wombacher, M. Reichert, and M. Jaeger, “Monitoring dependen-

cies for slas: The mode4sla approach,” in Proceedings of the IEEE International Con-

ference on Services Computing (SCC), vol. 1. IEEE, 2008, pp. 21–29.

[14] J. Branke and K. Deb, “Integrating user preferences into evolutionary multi-

objective optimization,” Knowledge Incorporation in Evolutionary Computation, pp.

461–477, 2005.

[15] J. Brans, P. Vincke, and B. Mareschal, “How to select and how to rank projects:

The promethee method,” European journal of operational research, vol. 24, no. 2, pp.

228–238, 1986.

[16] R. Buyya, “Economic-based distributed resource management and scheduling

for grid computing,” PhD Thesis, Monash University, Melbourne, Australia, 2002.

[Online]. Available: http://www.buyya.com/thesis/thesis.pdf

http://www.buyya.com/thesis/thesis.pdf

BIBLIOGRAPHY 187

[17] R. Buyya and S. Venugopal, “The gridbus toolkit for service oriented grid and util-

ity computing: An overview and status report,” in Proceedings of the 1st IEEE Inter-

national Workshop on Grid Economics and Business Models (GECON). IEEE, 2004, pp.

19–66.

[18] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging it platforms: Vision, hype, and reality for delivering computing as the

5th utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616, 2009.

[19] R. Buyya, R. Ranjan, and R. Calheiros, “Intercloud: Utility-oriented federation of

cloud computing environments for scaling of application services,” in Algorithms

and Architectures for Parallel Processing, ser. Lecture Notes in Computer Science, C.-

H. Hsu, L. Yang, J. Park, and S.-S. Yeo, Eds. Springer Berlin Heidelberg, 2010, vol.

6081, pp. 13–31.

[20] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya, “Cloudsim: a

toolkit for modeling and simulation of cloud computing environments and evalua-

tion of resource provisioning algorithms,” Software: Practice and Experience, vol. 41,

no. 1, pp. 23–50, 2011.

[21] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, “Cloud federations in

contrail,” in Proceedings of the 17th International European Conference on Parallel and

Distributed Computing (Euro-Par): Parallel Processing Workshops. Springer, 2012, pp.

159–168.

[22] C. Carlsson and R. Fullér, “Owa operators for decision support,” in Proceedings

of the 3rd European Congress on Intelligent Techniques and Soft Computing (EUFIT),

vol. 97, pp. 1539–1544, 1997.

[23] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and scalability of ejb

applications,” ACM Sigplan Notices, vol. 37, no. 11, pp. 246–261, 2002.

[24] Z. Cheng, Z. Du, Y. Chen, and X. Wang, “Soavm: A service-oriented virtualization

management system with automated configuration,” in Proceedings of the IEEE In-

188 BIBLIOGRAPHY

ternational Symposium on Service-Oriented System Engineering (SOSE). IEEE, 2008,

pp. 251–256.

[25] M. Chhetri, Q. Vo, and R. Kowalczyk, “Policy-based automation of sla establish-

ment for cloud computing services,” in Proceedings of the 12th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2012, pp.

164–171.

[26] D. Choffnes, F. Bustamante, and Z. Ge, “Using the crowd to monitor the cloud: Net-

work event detection from edge systems,” in Proceedings of the ACM Special Interest

Group on Data Communication (SIGCOMM), 2010.

[27] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of oper-

ations research, vol. 4, no. 3, pp. 233–235, 1979.

[28] P. Cingolani and J. Alcala-Fdez, “jfuzzylogic: a robust and flexible fuzzy-logic in-

ference system language implementation,” in Proceedings of the IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), june 2012, pp. 1 –8.

[29] CloudHarmony, “Benchmarks,” http://cloudharmony.com/.

[30] R. Coehoorn and N. Jennings, “Learning on opponent’s preferences to make effec-

tive multi-issue negotiation trade-offs,” in Proceedings of the 6th international confer-

ence on Electronic commerce. ACM, 2004, pp. 59–68.

[31] C. A. C. Coello et al., “A comprehensive survey of evolutionary-based multiobjec-

tive optimization techniques,” Knowledge and Information systems, vol. 1, no. 3, pp.

129–156, 1999.

[32] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary algorithms for

solving multi-objective problems. Springer, 2007, vol. 5.

[33] C. Coello Coello and M. Lechuga, “Mopso: A proposal for multiple objective par-

ticle swarm optimization,” in Proceedings of the 2002 Congress on Evolutionary Com-

putation (CEC), vol. 2. IEEE, 2002, pp. 1051–1056.

BIBLIOGRAPHY 189

[34] M. Comuzzi and G. Spanoudakis, “Describing and verifying monitoring capabil-

ities for sla-driven service-based systems,” in Proceedings of the 21st International

Conferences on Advanced Information System Engineering (CAiSE), 2009.

[35] G. Cretella and B. Di Martino, “Semantic web annotation and representation of

cloud apis,” in Proceedings of the third International Conference on Emerging Intelligent

Data and Web Technologies (EIDWT). IEEE, 2012, pp. 31–37.

[36] G. Cretella and B. Di Martino, “Towards a semantic engine for cloud applications

development,” in Proceedings of the 2012 Sixth International Conference on Complex,

Intelligent and Software Intensive Systems (CISIS). IEEE, 2012, pp. 198–203.

[37] G. Cretella, B. Di Martino, and V. Stankovski, “Using the mosaic’s semantic engine

to design and develop civil engineering cloud applications,” in Proceedings of the

14th International Conference on Information Integration and Web-based Applications &

Services. ACM, 2012, pp. 378–386.

[38] C. Darwin and J. W. Burrow, The Origin of Species: Or, the Preservation of Favoured

Races in the Struggle for Life. Oxford University Press, 1963.

[39] S. De, R. Biswas, and A. Roy, “An application of intuitionistic fuzzy sets in medical

diagnosis,” Fuzzy Sets and Systems, vol. 117, no. 2, pp. 209–213, 2001.

[40] J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The web service modeling

language wsml: An overview,” in Proceedings of the 3rd European conference on The

Semantic Web: research and applications (ESWC06), pp. 590–604, 2006.

[41] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions on, vol. 6,

no. 2, pp. 182–197, 2002.

[42] K. Deb, Multi-objective optimization. John Wiley & Sons Hoboken, NJ, 2001.

[43] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and M. Loichate, “Build-

ing a mosaic of clouds,” in Proceedings of the 15th International European Confer-

190 BIBLIOGRAPHY

ence on Parallel and Distributed Computing (Euro-Par): Parallel Processing Workshops.

Springer, 2010, pp. 571–578.

[44] M. Dimitrov, A. Simov, V. Momtchev, and M. Konstantinov, “Wsmo studio–a se-

mantic web services modelling environment for wsmo,” in Proceedings of the 4th

European conference on The Semantic Web: Research and Applications (ESWC), pp. 749–

758, 2007.

[45] DMTF, “Open virtualization format,” http://www.dmtf.org/standards/ovf.

[46] J. Dujmovic, “Mixed averaging by levels (mal)ï£¡a system and computer evaluation

method,” in Proceedings of the Informatica Conf.(in Serbo-Croatian), Bled, Yugoslavia,

1973.

[47] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The cops (com-

mon open policy service) protocol,” 2000.

[48] J. Durillo and A. Nebro, “jmetal: A java framework for multi-objective optimiza-

tion,” Advances in Engineering Software, vol. 42, no. 10, pp. 760–771, 2011.

[49] V. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level metrics to high

level slas-lom2his framework: Bridging the gap between monitored metrics and sla

parameters in cloud environments,” in Proceedings of the 2010 International Confer-

ence on High Performance Computing and Simulation (HPCS). IEEE, 2010, pp. 48–54.

[50] D. Ersoz, M. Yousif, and C. Das, “Characterizing network traffic in a cluster-based,

multi-tier data center,” in Proceedings of the 27th International Conference on Dis-

tributed Computing Systems (ICDCS). IEEE, 2007, pp. 59–59.

[51] K. Fakhfakh, S. Tazi, K. Drira, T. Chaari, and M. Jmaiel, “Semantic enabled frame-

work for sla monitoring,” International Journal on Advances in Software, vol. 2, no. 1,

pp. 36–46, 2009.

[52] P. Faratin, “Automated service negotiation between autonomous computational

agents,” Ph.D. dissertation, PhD Thesis, University of London, 2000.

http://www.dmtf.org/standards/ovf

BIBLIOGRAPHY 191

[53] P. Faratin, C. Sierra, and N. Jennings, “Using similarity criteria to make issue trade-

offs in automated negotiations,” artificial Intelligence, vol. 142, no. 2, pp. 205–237,

2002.

[54] D. Fensel and C. Bussler, “The web service modeling framework wsmf,” Electronic

Commerce Research and Applications, vol. 1, no. 2, pp. 113–137, 2002.

[55] D. Fensel, F. Facca, E. Simperl, and I. Toma, “Web service modeling ontology,” in

Semantic Web Services. Springer Berlin Heidelberg, 2011, pp. 107–129.

[56] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting xml schema to owl,” in Web

Engineering, ser. Lecture Notes in Computer Science, N. Koch, P. Fraternali, and

M. Wirsing, Eds. Springer Berlin Heidelberg, 2004, vol. 3140, pp. 354–358.

[57] J. Fernández Salido and S. Murakami, “Extending yager’s orness concept for the

owa aggregators to other mean operators,” Fuzzy Sets and Systems, vol. 139, no. 3,

pp. 515–542, 2003.

[58] A. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sirvent,

J. Guitart, R. Badia, K. Djemame et al., “Optimis: A holistic approach to cloud ser-

vice provisioning,” Future Generation Computer Systems, vol. 28, no. 1, pp. 66–77,

2012.

[59] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scal-

able virtual organizations,” International journal of high performance computing appli-

cations, vol. 15, no. 3, pp. 200–222, 2001.

[60] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing

360-degree compared,” in Proceedings of the Grid Computing Environments Workshop

(GCE). Ieee, 2008, pp. 1–10.

[61] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, The Physiology of the Grid. John

Wiley & Sons, Ltd, 2003, pp. 217–249.

192 BIBLIOGRAPHY

[62] J. García, D. Ruiz, A. Ruiz-Cortés, and J. Parejo, “Qos-aware semantic service selec-

tion: An optimization problem,” in Proceedings of the IEEE Congress on Services-Part

I. IEEE, 2008, pp. 384–388.

[63] J. Garcıa, I. Toma, D. Ruiz, and A. Ruiz-Cortés, “A service ranker based on logic

rules evaluation and constraint programming,” in Proceedings of the 2nd ECOWS

Non-Functional Properties and Service Level Agreements in Service Oriented Computing

Workshop, vol. 411. Citeseer, 2008.

[64] J. García, D. Ruiz, and A. Ruiz-Cortés, “On user preferences and utility functions

in selection: A semantic approach,” in Proceedings of the Service-Oriented Comput-

ing - ICSOC 2007 Workshops, ser. Lecture Notes in Computer Science, E. Nitto and

M. Ripeanu, Eds., vol. 4907. Springer Berlin Heidelberg, pp. 105–114.

[65] S. Garg, C. Yeo, and R. Buyya, “Green cloud framework for improving carbon ef-

ficiency of clouds,” in Proceedings of the 17th International European Conference on

Parallel and Distributed Computing (Euro-Par), pp. 491–502, 2011.

[66] S. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for comparing and

ranking cloud services,” in Proceedings of the Fourth IEEE International Conference on

Utility and Cloud Computing (UCC). IEEE, 2011, pp. 210–218.

[67] S. Gass and T. Rapcsák, “Singular value decomposition in ahp,” European Journal of

Operational Research, vol. 154, no. 3, pp. 573–584, 2004.

[68] Í. Goiri, F. Julia, J. Fitó, M. Macías, and J. Guitart, “Resource-level qos metric for

cpu-based guarantees in cloud providers,” in Economics of Grids, Clouds, Systems,

and Services, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2010, vol. 6296.

[69] D. E. Goldberg, “Genetic algorithms in search, optimization and machine learn-

ing,” 1989.

[70] S. Greco, Multiple criteria decision analysis: state of the art surveys. Springer, 2004,

vol. 78.

BIBLIOGRAPHY 193

[71] R. Grønmo and M. Jaeger, “Model-driven methodology for building qos-optimised

web service compositions,” in Distributed Applications and Interoperable Systems, ser.

Lecture Notes in Computer Science, L. Kutvonen and N. Alonistioti, Eds. Springer

Berlin Heidelberg, 2005, vol. 3543, pp. 68–82.

[72] W. W. Group et al., “D2v1. 0: Web service modeling ontology (wsmo). wsmo work-

ing draft,(2004),” 2004.

[73] T. Guha and S. Ludwig, “Comparison of service selection algorithms for grid ser-

vices: Multiple objective particle swarm optimization and constraint satisfaction

based service selection,” in Proceedings of the 20th IEEE International Conference on

Tools with Artificial Intelligence, 2008. ICTAI’08., vol. 1. IEEE, 2008, pp. 172–179.

[74] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, “Wsmx-a semantic

service-oriented architecture,” in Proceedings of the IEEE International Conference on

Web Services (ICWS). IEEE, 2005, pp. 321–328.

[75] L. Han and D. Berry, “Semantic-supported and agent-based decentralized grid re-

source discovery,” Future Generation Computer Systems, vol. 24, no. 8, pp. 806–812,

2008.

[76] T. Han and K. Sim, “An ontology-enhanced cloud service discovery system,” in

Proceedings of the International MultiConference of Engineers and Computer Scientists,

2010.

[77] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van

HARMELEN, M. Klein, S. Staab, R. Studer et al., “Oil: The ontology inference

layer,” Technical Report IR-479, Vrije Universiteit Amsterdam, Faculty of Sciences,

Tech. Rep., 2000.

[78] C. Hou, “Predicting agents tactics in automated negotiation,” in Proceedings of the

IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT). IEEE,

2004, pp. 127–133.

194 BIBLIOGRAPHY

[79] X. Hu and R. Eberhart, “Multiobjective optimization using dynamic neighborhood

particle swarm optimization,” in Proceedings of the Congress on Evolutionary Compu-

tation, vol. 2. IEEE, 2002, pp. 1677–1681.

[80] P. Hung, H. Li, and J. Jeng, “Ws-negotiation: an overview of research issues,”

in Proceedings of the 37th Annual Hawaii International Conference on System Sciences.

IEEE, 2004, pp. 10–pp.

[81] C. Hwang, K. Yoon et al., Multiple attribute decision making: methods and applications:

a state-of-the-art survey. Springer-Verlag New York, 1981, vol. 13.

[82] M. Jaeger and G. Rojec-Goldmann, “Seneca–simulation of algorithms for the selec-

tion of web services for compositions,” Technologies for E-Services, pp. 84–97, 2006.

[83] M. Jaeger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and K. Geihs, “Ranked

matching for service descriptions using owl-s,” in Kommunikation in Verteilten Sys-

temen (KiVS), ser. Informatik aktuell. Springer Berlin Heidelberg, 2005, pp. 91–102.

[84] M. Jaeger, G. Muhl, and S. Golze, “Qos-aware composition of web services: a look

at selection algorithms,” in Proceedings of IEEE International Conference onWeb Ser-

vices (ICIW). IEEE, 2005.

[85] M. Jaeger, G. Rojec-Goldmann, and G. Muhl, “Qos aggregation for web service

composition using workflow patterns,” in Proceedings.of the Eighth IEEE Interna-

tional Enterprise Distributed Object Computing Conference (EDOC). IEEE, 2004, pp.

149–159.

[86] P. Jaeger, J. Lin, and J. Grimes, “Cloud computing and information policy: Com-

puting in a policy cloud?” Journal of Information Technology & Politics, vol. 5, no. 3,

pp. 269–283, 2008.

[87] B. Javadi and R. Buyya, “Comprehensive statistical analysis and modeling of spot

instances in public cloud environments,” The University of Melbourne, Melbourne,

Tech. Rep, 2011.

BIBLIOGRAPHY 195

[88] D. Jones, The Defnitive Guide to Monitoring the Data Center, Virtual Environments, and

the Cloud. Nimsoft, Campbell, CA.

[89] A. Jsang and R. Ismail, “The beta reputation system,” in Proceedings of the 15th Bled

Electronic Commerce Conference, 2002, pp. 41–55.

[90] R. Kanagasabai et al., “Owl-s based semantic cloud service broker,” in Proceedings

of the 19th International Conference on Web Services (ICWS). IEEE, 2012, pp. 560–567.

[91] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual workspaces: Achieving

quality of service and quality of life in the grid,” Scientific Programming, vol. 13,

no. 4, p. 265, 2005.

[92] U. Keller, R. Lara, H. Lausen, A. Polleres, L. Predoiu, and I. Toma, “Semantic web

service discovery,” WSMX Working Draft, 2005.

[93] J. Kephart and W. Walsh, “An artificial intelligence perspective on autonomic com-

puting policies,” in Proceedings of the Fifth IEEE International Workshop on Policies for

Distributed Systems and Networks, 2004. POLICY 2004. IEEE, 2004, pp. 3–12.

[94] M. Kerrigan, “D9. 1v0. 2 web service modeling toolkit (wsmt),” WSMX Deliverable

available from http://www. wsmo. org/TR/d9/d9, vol. 1, p. v0, 2005.

[95] M. Klein, D. Fensel, F. Van Harmelen, and I. Horrocks, “The relation between on-

tologies and xml schemas,” Electronic Trans. on Artificial Intelligence, 2001.

[96] M. Klusch, B. Fries, and K. Sycara, “Owls-mx: A hybrid semantic web service

matchmaker for owl-s services,” Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 7, no. 2, pp. 121–133, 2009.

[97] M. Klusch and F. Kaufer, “Wsmo-mx: A hybrid semantic web service matchmaker,”

Web Intelligence and Agent Systems, vol. 7, no. 1, pp. 23–42, 2009.

[98] M. Klusch and M. Klusch, “Semantic web service coordination,” pp. 59–104, 2008.

[99] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The failure trace archive: Enabling

comparative analysis of failures in diverse distributed systems,” in Proceedings of

196 BIBLIOGRAPHY

the10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CC-

Grid). IEEE, 2010, pp. 398–407.

[100] J. Kopeckỳ, M. Moran, D. Roman, and A. Mocan, “Wsmo grounding,” WSMO

Working Draft D, vol. 24, 2005.

[101] J. Kopeckỳ, D. Roman, T. Vitvar, M. Moran, and A. Mocan, “Wsmo grounding.

wsmo working draft v0. 1, 2007.”

[102] C. Kotsokalis, R. Yahyapour, and M. Gonzalez, “Sami: The sla management in-

stance,” in Proceedings of the Fifth International Conference on Internet and Web Appli-

cations and Services (ICIW). IEEE, 2010, pp. 303–308.

[103] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented architecture best

practices. Prentice Hall PTR, 2005.

[104] K. Kritikos and D. Plexousakis, “Semantic qos metric matching,” in Proceedings of

the 4th European Conference on Web Services (ECOWS). IEEE, 2006, pp. 265–274.

[105] D. D. Lamanna, J. Skene, and W. Emmerich, “Slang: A language for defining service

level agreements,” ser. FTDCS ’03. IEEE Computer Society, 2003, pp. 100–.

[106] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm, “Preference-based selection

of highly configurable web services,” in Proceedings of the 16th international confer-

ence on World Wide Web. ACM, 2007, pp. 1013–1022.

[107] S. Lamparter, A. Ankolekar, R. Studer, D. Oberle, and C. Weinhardt, “A policy

framework for trading configurable goods and services in open electronic mar-

kets,” in Proceedings of the 8th international conference on Electronic commerce: The new

e-commerce: innovations for conquering current barriers, obstacles and limitations to con-

ducting successful business on the internet. ACM, 2006, pp. 162–173.

[108] R. Lawley, M. Luck, K. Decker, T. Payne, and L. Moreau, “Automated negotiation

between publishers and consumers of grid notifications,” Parallel Processing Letters,

vol. 13, no. 04, pp. 537–548, 2003.

BIBLIOGRAPHY 197

[109] A. Lawrence, K. Djemame, O. Wäldrich, W. Ziegler, and C. Zsigri, “Using service

level agreements for optimising cloud infrastructure services,” in Proceedings of the

Towards a Service-Based Internet. ServiceWave 2010 Workshops. Springer, 2010, pp.

38–49.

[110] J. Li and R. Yahyapour, “Negotiation strategies for grid scheduling,” in Advances in

Grid and Pervasive Computing, ser. Lecture Notes in Computer Science, Y.-C. Chung

and J. Moreira, Eds. Springer Berlin Heidelberg, 2006, vol. 3947, pp. 42–52.

[111] M. Litzkow, M. Livny, and M. Mutka, “Condor-a hunter of idle workstations,”

in Proceedings of the 8th International Conference on Distributed Computing Systems

(ICDCS). IEEE, 1988, pp. 104–111.

[112] Z. Liu, T. Liu, L. Cai, and G. Yang, “Quality evaluation and selection framework of

service composition based on distributed agents,” in Proceedings of the Fifth Inter-

national Conference on Next Generation Web Services Practices (NWESP). IEEE, 2009,

pp. 68–75.

[113] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web service level agreement

(wsla) language specification,” IBM Corporation, pp. 815–824, 2003.

[114] S. Ludwig and S. Reyhani, “Selection algorithm for grid services based on a quality

of service metric,” in Proceedings of the 21st International Symposium on High Perfor-

mance Computing Systems and Applications (HPCS). IEEE, 2007, pp. 13–13.

[115] M. Macias and J. Guitart, “Using resource-level information into nonadditive ne-

gotiation models for cloud market environments,” in Proceedings of the 2010 IEEE

Network Operations and Management Symposium (NOMS). IEEE, 2010, pp. 325–332.

[116] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy

logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13,

1975.

198 BIBLIOGRAPHY

[117] K. Mansour, R. Kowalczyk, and M. Wosko, “Concurrent negotiation over quality

of service,” in Proceedings of the 2012 IEEE Ninth International Conference on Services

Computing (SCC). IEEE, 2012, pp. 446–453.

[118] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “Owl-s: Semantic markup

for web services,” W3C Member submission, vol. 22, pp. 2007–04, 2004.

[119] E. Maximilien and M. Singh, “A framework and ontology for dynamic web services

selection,” IEEE Internet Computing, vol. 8, no. 5, pp. 84–93, 2004.

[120] D. McGuinness, F. Van Harmelen et al., “Owl web ontology language overview,”

W3C recommendation, vol. 10, no. 2004-03, p. 10, 2004.

[121] K. Meffert, N. Rotstan, C. Knowles, and U. Sangiorgi, “Jgap-java genetic algorithms

and genetic programming package,” URL: http://jgap. sf. net, 2008.

[122] P. Mell and T. Grance, “The nist definition of cloud computing (draft),” NIST special

publication, vol. 800, p. 145, 2011.

[123] D. Menasce, “Qos issues in web services,” IEEE Internet Computing, vol. 6, no. 6,

pp. 72–75, 2002.

[124] D. Menascé, E. Casalicchio, and V. Dubey, “On optimal service selection in service

oriented architectures,” Performance Evaluation, vol. 67, no. 8, pp. 659–675, 2010.

[125] M. Menzel and R. Ranjan, “Cloudgenius: decision support for web server cloud mi-

gration,” in Proceedings of the 21st international conference on World Wide Web. ACM,

2012, pp. 979–988.

[126] J. Morse, “Reducing the size of the nondominated set: Pruning by clustering,” Com-

puters & Operations Research, vol. 7, no. 1, pp. 55–66, 1980.

[127] H. Muñoz, I. Kotsiopoulos, A. Micsik, B. Koller, and J. Mora, “Flexible sla negoti-

ation using semantic annotations,” in Proceedings of the Service-Oriented Computing

(ICSOC), ServiceWave Workshops. Springer, 2009, pp. 165–175.

BIBLIOGRAPHY 199

[128] B. Narasimhan and R. Nichols, “State of cloud applications and platforms: The

cloud adopters’ view,” Computer, vol. 44, no. 3, pp. 24–28, 2011.

[129] T. Nguyen, N. Boukhatem, and G. Puiolle, “Cops-sls usage for dynamic policy-

based qos management over heterogeneous ip networks,” Network, IEEE, vol. 17,

no. 3, pp. 44–50, 2003.

[130] M. Paolucci, J. Soudry, N. Srinivasan, K. Sycara, M. Paolucci, J. Soudry, N. Srini-

vasan, and K. Sycara, “A broker for owl-s web services,” in Extending Web Services

Technologies, ser. Multiagent Systems, Artificial Societies, and Simulated Organiza-

tions, L. Cavedon, Z. Maamar, D. Martin, and B. Benatallah, Eds. Springer US,

2004, vol. 13, pp. 79–98.

[131] I. Papaioannou, D. Tsesmetzis, I. Roussaki, and M. Anagnostou, “A qos ontology

language for web-services,” in Proceedings of the 20th International Conference on Ad-

vanced Information Networking and Applications (AINA), vol. 1. IEEE, 2006, pp. 6–pp.

[132] P. Papakos, L. Capra, and D. Rosenblum, “Volare: context-aware adaptive cloud

service discovery for mobile systems,” in Proceedings of the 9th International Work-

shop on Adaptive and Reflective Middleware. ACM, 2010, pp. 32–38.

[133] K. Parsopoulos and M. Vrahatis, “Particle swarm optimization method in multiob-

jective problems,” in Proceedings of the 2002 ACM symposium on Applied computing.

ACM, 2002, pp. 603–607.

[134] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski, “Introducing stratos:

A cloud broker service,” in Proceedings of the 5th IEEE International Conference on

Cloud Computing (IEEE CLOUD). IEEE, 2012, pp. 891–898.

[135] S. Pearson and A. Benameur, “Privacy, security and trust issues arising from cloud

computing,” in Proceedings of the Second International Conference on Cloud Computing

Technology and Science (CloudCom). IEEE, 2010, pp. 693–702.

[136] D. Petcu, G. Macariu, S. Panica, and C. Crăciun, “Portable cloud applications-from

theory to practice,” Future Generation Computer Systems, 2012.

200 BIBLIOGRAPHY

[137] D. Pisinger, “Algorithms for knapsack problems,” Ph.D. dissertation, University of

Copenhagen, 1995.

[138] F. Protocol, Specification, Foundation for Intelligent Physical Agents.

[139] I. Rahwan, R. Kowalczyk, and H. H. Pham, “Intelligent agents for automated one-

to-many e-commerce negotiation,” in Proceedings of the 25th Australasian conference

on Computer science, ser. ACSC ’02. Darlinghurst, Australia, Australia: Australian

Computer Society, Inc., 2002, pp. 197–204.

[140] H. Raiffa, The art and science of negotiation. Belknap Press, 1982.

[141] M. Rak, L. Liccardo, and R. Aversa, “A sla-based interface for security management

in cloud and grid integrations,” in Proceedings of the 7th International Conference on

Information Assurance and Security (IAS). IEEE, 2011, pp. 378–383.

[142] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed resource man-

agement for high throughput computing,” in Proceedings of the Seventh International

Symposium on High Performance Distributed Computing (HPDC). IEEE, 1998, pp.

140–146.

[143] S. Ran, “A model for web services discovery with qos,” ACM Sigecom exchanges,

vol. 4, no. 1, pp. 1–10, 2003.

[144] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, and M. Parashar, “Peer-to-peer cloud

provisioning: Service discovery and load-balancing,” Cloud Computing, pp. 195–

217, 2010.

[145] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,

C. Feier, C. Bussler, D. Fensel et al., “Web service modeling ontology,” Applied On-

tology, vol. 1, no. 1, pp. 77–106, 2005.

[146] A. RUIZ-CORTÉS, O. MARTÍN-DÍAZ, A. Duran, and M. Toro, “Improving the au-

tomatic procurement of web services using constraint programming,” International

Journal of Cooperative Information Systems, vol. 14, no. 04, pp. 439–467, 2005.

BIBLIOGRAPHY 201

[147] T. L. Saaty, “Axiomatic foundation of the analytic hierarchy process,” Management

science, vol. 32, no. 7, pp. 841–855, 1986.

[148] T. Saaty, “Fundamentals of decision making,” Pittsburgh: RWS Publications, 1994.

[149] A. Sahai, V. Machiraju, M. Sayal, A. P. A. v. Moorsel, and F. Casati, “Automated

sla monitoring for web services,” in Proceedings of the 13th IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management: Management Technolo-

gies for E-Commerce and E-Business Applications, ser. DSOM ’02. London, UK, UK:

Springer-Verlag, 2002, pp. 28–41.

[150] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow, M. Lam, and

M. Rosenblum, “Virtual appliances for deploying and maintaining software,” in

Proceedings of the 17th USENIX conference on System administration, 2003, pp. 181–

194.

[151] J. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster, M. D’Arcy, and A. Cher-

venak, “Monitoring the grid with the globus toolkit mds4,” in Journal of Physics:

Conference Series, vol. 46, no. 1. IOP Publishing, 2006, p. 521.

[152] A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker, “Uddie: An extended registry for

web services,” in Proceedings of the 2003 Symposium on Applications and the Internet

Workshops. IEEE, 2003, pp. 85–89.

[153] M. Sierra and C. Coello, “Improving pso-based multi-objective optimization us-

ing crowding, mutation and e-dominance,” in Proceedings of the 3rd International

Conference on Evolutionary Multi-Criterion Optimization (EMO). Springer, 2005, pp.

505–519.

[154] K. Sim, “Grid resource negotiation: survey and new directions,” IEEE Transactions

on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 3, pp.

245–257, 2010.

202 BIBLIOGRAPHY

[155] K. Sim and S. Wang, “Flexible negotiation agent with relaxed decision rules,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 3, pp.

1602–1608, 2004.

[156] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting

in genetic algorithms,” Evolutionary computation, vol. 2, no. 3, pp. 221–248, 1994.

[157] M. Stollberg, M. Hepp, and J. Hoffmann, “A caching mechanism for semantic web

service discovery,” in Proceedings of the 6th international semantic web and 2nd Asian

conference on Asian semantic web conference, ser. ISWC’07/ASWC’07. Berlin, Hei-

delberg: Springer-Verlag, 2007, pp. 480–493.

[158] C. Sun, L. He, Q. Wang, and R. Willenborg, “Simplifying service deployment with

virtual appliances,” in Proceedings of the IEEE International Conference on Services

Computing (SCC), vol. 2. IEEE, 2008, pp. 265–272.

[159] E. Szmidt and J. Kacprzyk, “Intuitionistic fuzzy sets in group decision making,”

Notes on IFS, vol. 2, no. 1, pp. 11–14, 1996.

[160] W. Theilmann, U. Winkler, J. Happe, and I. M. de Abril, “Managing on-demand

business applications with hierarchical service level agreements,” in Proceedings of

the 3rd future internet conference on Future internet, ser. FIS’10. Springer-Verlag, 2010,

pp. 97–106.

[161] I. Toma, D. Foxvog, and M. Jaeger, “Modeling qos characteristics in wsmo,” in Pro-

ceedings of the 1st workshop on Middleware for Service Oriented Computing (MW4SOC

2006). ACM, 2006, pp. 42–47.

[162] I. Toma, D. Roman, D. Fensel, B. Sapkota, and J. M. Gomez, “A multi-criteria service

ranking approach based on non-functional properties rules evaluation,” in Proceed-

ings of the 5th international conference on Service-Oriented Computing (ICSOC), ser.

ICSOC ’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 435–441.

BIBLIOGRAPHY 203

[163] V. Tosic, K. Patel, and B. Pagurek, “Wsol - web service offerings language,” in Re-

vised Papers from the International Workshop on Web Services, E-Business, and the Se-

mantic Web, ser. CAiSE ’02/ WES ’02. Springer-Verlag, 2002, pp. 57–67.

[164] V. Tran, H. Tsuji, and R. Masuda, “A new qos ontology and its qos-based ranking

algorithm for web services,” Simulation Modelling Practice and Theory, vol. 17, no. 8,

pp. 1378–1398, 2009.

[165] D. Tsesmetzis, I. Roussaki, and E. Sykas, “Modeling and simulation of qos-aware

web service selection for provider profit maximization,” Simulation, vol. 83, no. 1,

pp. 93–106, 2007.

[166] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: classifications,

analyses, and new innovations,” DTIC Document, Tech. Rep., 1999.

[167] J. Varia, “Best practices in architecting cloud applications in the AWS Cloud,” in

Cloud Computing: Principles and Paradigms, R. Buyya, J. Broberg, and A. Goscinski,

Eds. Wiley Press, 2011, ch. 18, pp. 459–490.

[168] M. Vouk, S. Averitt, M. Bugaev, A. Kurth, A. Peeler, A. Rindos, H. Shaffer, E. Sills,

S. Stein, and J. Thompson, “Powered by vcl-using virtual computing laboratory

(vcl) technology to power cloud computing,” in Proceedings of the 2nd International

Conference on Virtual Computing (ICVCI), 2008, pp. 15–16.

[169] A. Walsh, UDDI, SOAP, and WSDL: The Web Services Specification Reference Book.

Prentice Hall Professional Technical Reference, 2002.

[170] N. Wancheng, H. Lingjuan, L. Lianchen, and W. Cheng, “Commodity-market based

services selection in dynamic web service composition,” in Proceedings of the of the

2nd IEEE Asia-Pacific Service Computing Conference. IEEE, 2007, pp. 218–223.

[171] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj, “Integrated quality of service

(qos) management in service-oriented enterprise architectures,” in Proceedings of

the 8th IEEE International Enterprise Distributed Object Computing Conference (EDOC).

IEEE, 2004, pp. 21–32.

204 BIBLIOGRAPHY

[172] P. Wang, “Qos-aware web services selection with intuitionistic fuzzy set under con-

sumers vague perception,” Expert Systems with Applications, vol. 36, no. 3, pp. 4460–

4466, 2009.

[173] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A qos-aware selection model for

semantic web services,” in Proceedings of the 4th international conference on Service-

Oriented Computing, ser. ICSOC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.

390–401.

[174] X. Wang, K. Yue, J. Z. Huang, and A. Zhou, “Service selection in dynamic demand-

driven web services,” in Proceedings of the IEEE International Conference on Web Ser-

vices, ser. ICWS ’04. Washington, DC, USA: IEEE Computer Society, 2004.

[175] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf, “Dublin core metadata for resource

discovery,” Internet Engineering Task Force RFC, vol. 2413, p. 222, 1998.

[176] M. Winkler, T. Springer, and A. Schill, “Automating composite sla management

tasks by exploiting service dependency information,” in Proceedings of the IEEE 8th

European Conference on Web Services (ECOWS). IEEE, 2010, pp. 59–66.

[177] Z. Xiao and D. Cao, “A policy-based framework for automated sla negotiation for

internet-based virtual computing environment,” in Proceedings of IEEE 16th Inter-

national Conference on the Parallel and Distributed Systems (ICPADS). IEEE, 2010, pp.

694–699.

[178] J. Yan, R. Kowalczyk, J. Lin, M. Chhetri, S. Goh, and J. Zhang, “Autonomous service

level agreement negotiation for service composition provision,” Future Generation

Computer Systems, vol. 23, no. 6, pp. 748–759, 2007.

[179] Y. Yao and H. Chen, “Qos-aware service composition using nsga-ii1,” in Proceed-

ings of the 2nd International Conference on Interaction Sciences: Information Technology,

Culture and Human, ser. ICIS ’09. New York, NY, USA: ACM, 2009, pp. 358–363.

[180] R. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy-based admis-

sion control,” 2000.

BIBLIOGRAPHY 205

[181] H. Yu and S. Reiff-Marganiec, “A method for automated web service selection,” in

Proceedings of the IEEE Congress on Services-Part I. IEEE, 2008, pp. 513–520.

[182] H. Yu and S. Reiff-Marganiec, “Non-functional property based service selection: A

survey and classification of approaches,” 2008.

[183] L. Zadeh, “Fuzzy logic= computing with words,” IEEE Transactions on Fuzzy Sys-

tems, vol. 4, no. 2, pp. 103–111, 1996.

[184] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “Qos-

aware middleware for web services composition,” IEEE Transactions on Software

Engineering, vol. 30, no. 5, pp. 311–327, 2004.

[185] W. Zeng, Y. Zhao, and J. Zeng, “Cloud service and service selection algorithm re-

search,” in Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary

Computation. ACM, 2009, pp. 1045–1048.

[186] X. Zheng, P. Martin, and K. Brohman, “Cloud service negotiation: Concession vs.

tradeoff approaches,” in Proceedings of the 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (ccgrid). IEEE Computer Society, 2012, pp.

515–522.

[187] X. Zheng, P. Martin, W. Powley, and K. Brohman, “Applying bargaining game the-

ory to web services negotiation,” in Proceedings of the 2010 IEEE International Con-

ference on Services Computing (SCC). IEEE, 2010, pp. 218–225.

[188] C. Zhou, L. Chia, and B. Lee, “Daml-qos ontology for web services,” in Proceedings

of the IEEE International Conference on Web Services. IEEE, 2004, pp. 472–479.

[189] H. Zimmermann, “Fuzzy programming and linear programming with several ob-

jective functions,” Fuzzy sets and systems, vol. 1, no. 1, pp. 45–55, 1978.

[190] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative

case study and the strength pareto approach,” IEEE Transactions on Evolutionary

Computation, vol. 3, no. 4, pp. 257–271, 1999.

206 BIBLIOGRAPHY

[191] F. Zulkernine, P. Martin, C. Craddock, and K. Wilson, “A policy-based middleware

for web services sla negotiation,” in Proceedings of the IEEE International Conference

on Web Services (ICWS). IEEE, 2009, pp. 1043–1050.

[192] F. Zulkernine and P. Martin, “An adaptive and intelligent sla negotiation system

for web services,” IEEE Transactions on Services Computing, vol. 4, no. 1, pp. 31–43,

2011.

Appendix A

Ontologies

A.1 Portion of Developed Ontology

1 wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
2 namespace { _"http://www.cloudslab.org/CloudProvider#"
3 }
4 ontology CloudProviderOntology
5 concept VMFormat
6 hasName ofType _string
7 concept place
8 hasName ofType _string
9 concept state subConceptOf place

10 concept country subConceptOf place
11 concept l o c a t i o n
12 hasState ofType state
13 hasCountry ofType country
14

15 concept cloudService
16

17 concept monitoringMetric
18 hasName ofType _string
19 i n s t a n c e CPUUtilization memberOf monitoringMetric
20

21 concept loadBalancer subConceptOf cloudService
22 hasPort ofType _integer
23 hasProtocol ofType _string
24 isHealthcheckEnabled ofType _boolean
25 checkInterval ofType _integer
26 hasTimeOut ofType _integer
27 hasThreshold ofType _integer
28

29 concept virtualAppliance subConceptOf cloudService
30 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId" ofType _string
31

32 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageLocation"
ofType _string

33

34 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageState"
ofType _string

35

36 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageOwnerId"
ofType _string

37

207

208 Ontologies

38 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#isPublic" ofType
{_string, _boolean }

39

40 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#architecture"
ofType _string

41

42 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageType"
ofType _string

43

44 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#kernelId" ofType
_string

45

46 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#ramdiskId"
ofType _string

47

48 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#platform" ofType
_string

49

50 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageOwnerAlias"
ofType _string

51

52 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#name" ofType
_string

53

54 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#description"
ofType _string

55

56 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#rootDeviceType"
ofType _string

57

58 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#rootDeviceName"
ofType _string

59

60 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
virtualizationType" ofType _string

61

62 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#hypervisor"
ofType _string

63

64 hasProvider ofType cloud
65 isCompatipleWith ofType virtualUnit
66 hasName ofType _string
67 hasFormat ofType VMFormat
68

69 i n s t a n c e aki00806369 memberOf virtualAppliance
70 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId"

hasValue "aki-00806369"
71 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageLocation"

hasValue "karmic-kernel-zul/ubuntu-kernel-2.6.31-300-ec2-i386
-20091001-test-04.manifest.xml"

72 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageState"
hasValue "available"

73 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageOwnerId"
hasValue "099720109477"

74 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#isPublic"
hasValue "true"

75 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#architecture"
hasValue "i386"

76 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageType"
hasValue "kernel"

A.1 Portion of Developed Ontology 209

77 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#rootDeviceType"
hasValue "instance-store"

78 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
virtualizationType" hasValue "paravirtual"

79 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#hypervisor"
hasValue "xen"

80 hasProvider hasValue {AmazonCalifornia }
81 hasName hasValue "aki00806369"
82 hasFormat hasValue AMI
83 i n s t a n c e aki00896a69 memberOf virtualAppliance
84 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId"

hasValue "aki-00896a69"
85 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageLocation"

hasValue "karmic-kernel-zul/ubuntu-kernel-2.6.31-300-ec2-i386
-20091002-test-04.manifest.xml"

86 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageState"
hasValue "available"

87 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageOwnerId"
hasValue "099720109477"

88 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#isPublic"
hasValue "true"

89 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#architecture"
hasValue "i386"

90 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageType"
hasValue "kernel"

91 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#rootDeviceType"
hasValue "instance-store"

92 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
virtualizationType" hasValue "paravirtual"

93 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#hypervisor"
hasValue "xen"

94 hasProvide hasValue {AmazonVirginia }
95 hasname hasValue "aki00896a69"
96 hasFormat hasValue AMI
97 concept virtualUnit subConceptOf cloudService
98 hasName ofType _string
99 hasProvider ofType cloud

100

101 i n s t a n c e largeInstance memberOf virtualUnit
102 hasName hasValue "largeInstance"
103 hasProvider hasValue AmazonCalifornia
104

105

106 concept state subConceptOf place
107 concept country subConceptOf place
108

109 i n s t a n c e USA memberOf country
110 hasName hasValue "USA"
111 i n s t a n c e Singapour memberOf country
112 hasName hasValue "Singapour"
113 i n s t a n c e Canada memberOf country
114 hasName hasValue "Canada"
115 i n s t a n c e Ireland memberOf country
116 hasName hasValue "Ireland"
117 i n s t a n c e Brazil memberOf country
118 hasName hasValue "Brazil"
119 i n s t a n c e Japan memberOf country
120 hasName hasValue "Japan"
121 i n s t a n c e China memberOf country
122 hasName hasValue "China"

210 Ontologies

123 i n s t a n c e Australia memberOf country
124 hasName hasValue "Australia"
125 i n s t a n c e England memberOf country
126 hasName hasValue "England"
127

128 i n s t a n c e Toronto memberOf state
129 hasName hasValue "Toronto"
130 i n s t a n c e Tokyo memberOf state
131 hasName hasValue "Tokyo"
132 i n s t a n c e Dublin memberOf state
133 hasName hasValue "Dublin"
134 i n s t a n c e Virginia memberOf state
135 hasName hasValue "Virginia"
136 i n s t a n c e Oregon memberOf state
137 hasName hasValue Oregon
138 i n s t a n c e California memberOf state
139 hasName hasValue "California"
140 i n s t a n c e Hongkong memberOf state
141 hasName hasValue "Hongkong"
142 i n s t a n c e Victoria memberOf state
143 hasName hasValue "Victoria"
144 i n s t a n c e London memberOf state
145 hasName hasValue "London"
146 i n s t a n c e Singapour memberOf state
147 hasName hasValue "Singapour"
148

149 concept cloud
150 hasName ofType _string
151 supportVmFormat ofType VMFormat
152 hasCountry ofType country
153 hasState ofType state
154

155 i n s t a n c e AMI memberOf VMFormat
156 hasName hasValue "AMI"
157

158 i n s t a n c e OVF memberOf VMFormat
159 hasName hasValue "OVF"
160

161 i n s t a n c e GSI memberOf VMFormat
162 hasName hasValue "GSI"
163

164 i n s t a n c e VMDK memberOf VMFormat
165 hasName hasValue "VMDK"
166

167 i n s t a n c e TerremarkCanada memberOf cloud
168 hasName hasValue "TerremarkCanada"
169 supportVmFormat hasValue {OVF, VMDK }
170 hasCountry hasValue Canada
171 hasState hasValue Toronto
172

173 i n s t a n c e TerremarkEngland memberOf cloud
174 hasName hasValue "TerremarkEngland"
175 supportVmFormat hasValue {OVF, VMDK }
176 hasCountry hasValue England
177 hasState hasValue London
178

179 i n s t a n c e TerremarkChina memberOf cloud
180 hasName hasValue "TerremarkChina"
181 supportVmFormat hasValue {OVF, VMDK }
182 hasCountry hasValue China

A.2 Deployment Descriptor 211

183 hasState hasValue Hongkong
184

185 i n s t a n c e TerremarkAuastralia memberOf cloud
186 hasName hasValue "TerremarkAustralia"
187 supportVmFormat hasValue {OVF, VMDK }
188 hasCountry hasValue Australia
189 hasState hasValue Victoria
190

191 i n s t a n c e AmazonVirginia memberOf cloud
192 hasName hasValue "AmazonVirginia"
193 supportVmFormat hasValue {AMI }
194 hasCountry hasValue USA
195 hasState hasValue Virginia
196

197 i n s t a n c e AmazonSingapour memberOf cloud
198 hasName hasValue "AmazonSingapour"
199 supportVmFormat hasValue {AMI }
200 hasCountry hasValue Singapour
201 hasState hasValue Singapour
202

203 i n s t a n c e AmazonIreland memberOf cloud
204 hasName hasValue "AmazonIreland"
205 supportVmFormat hasValue {AMI }
206 hasCountry hasValue Ireland
207 hasState hasValue Dublin
208

209 i n s t a n c e AmazonCalifornia memberOf cloud
210 hasName hasValue "AmazonCalifornia"
211 supportVmFormat hasValue {AMI }
212 hasCountry hasValue USA
213 hasState hasValue California
214

215 i n s t a n c e AmazonJapan memberOf cloud
216 hasName hasValue "AmazonJapan"
217 supportVmFormat hasValue {AMI }
218 hasCountry hasValue Japan
219 hasState hasValue Tokyo
220

221 relation compatible (ofType virtualAppliance, ofType virtualUnit)
222

223

224

225 axiom compatbilewith
226 definedBy
227

228 ?x memberOf virtualAppliance and ?x [hasProvider hasValue ?p] and ?y memberOf
vitrtualUnit and ?y [hasProvider hasValue ?pvu] and

229 ?p [hasCountry hasValue ?capp] and ?pvu [hasCountry hasValue ?cvu] and ?capp [hasName
hasValue ?cappName] and ?cvu [hasName hasValue ?cvuName] and

230 stringEqual (?cvuName,?cappName)
231 implies ?x [isCompatibleWith hasValue ?y] .

A.2 Deployment Descriptor

1 wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
2 namespace { _"http://www.cloudslab.org/Deployment#" }
3 ontology Deployment
4 importsOntology _"http://www.cloudslab.org/CloudProvider#CloudProviderOntology"

212 Ontologies

5

6 concept ScalingPolicy
7 hasName ofType _string
8 hasUpperBoundThreshold ofType _integer
9 hasLowerBoundThreshold ofType _integer

10 hasPeriod ofType _integer
11 hasMetric ofType _"http://www.cloudslab.org/CloudProvider#monitoringMetric"
12

13 concept ScalingGroup
14 hasName ofType _string
15 hasVirtualUnit ofType _"http://www.cloudslab.org/CloudProvider#virtualUnit"
16 hasVirtualAppliance ofType _"http://www.cloudslab.org/CloudProvider#virtualAppliance"
17 hasMinSize ofType _integer
18 hasMaxSize ofType _integer
19 hasLocation ofType _"http://www.cloudslab.org/CloudProvider#location"
20 hasLoadBalancer ofType _"http://www.cloudslab.org/CloudProvider#loadBalancer"
21 hasPolicy ofType ScalingPolicy
22 hasSecurityGroup ofType SecurityGroup
23

24 concept SecurityGroupRule
25 hasName ofType _string
26 hasProtocol ofType _string
27 hasPort ofType _integer
28 HasSourceIP ofType _string
29 hasAuthorizedSecurityGroup ofType SecurityGroup
30 isAuthorizingSecurityGroup ofType _boolean
31

32 concept SecurityGroup
33 hasName ofType _string
34 hasLocation ofType _"http://www.cloudslab.org/CloudProvider#location"
35 hasRules ofType SecurityGroupRule
36

37 concept DeploymentDescriptor
38 hasScalingGroup ofType ScalingGroup
39 hasSecurityGroup ofType SecurityGroup
40

41 i n s t a n c e WSRule1 memberOf SecurityGroupRule
42 hasName hasValue "WSRule1"
43 hasProtocol hasValue "TCP"
44 hasPort hasValue 80
45 HasSourceIP hasValue "0.0.0.0/0"
46 isAuthorizingSecurityGroup hasValue false
47

48 i n s t a n c e WSSecurityGroup memberOf SecurityGroup
49 hasName hasValue WSSecurityGroup
50 hasLocation hasValue _"http://www.cloudslab.org/CloudProvider#California"
51 hasRules hasValue WSRule1
52

53

54 i n s t a n c e WSLoadBalancer memberOf _"http://www.cloudslab.org/CloudProvider#
loadBalancer"

55 hasName hasValue "WShasLoadBalancer"
56

57 i n s t a n c e WSScalingPolicy memberOf ScalingPolicy
58 hasName hasValue "WSScalingPolicy"
59 hasUpperBoundThreshold hasValue 80
60 hasLowerBoundThreshold hasValue 10
61 hasPeriod hasValue 600
62 hasMetric hasValue _"http://www.cloudslab.org/CloudProvider#CPUUtilization"
63

A.2 Deployment Descriptor 213

64 i n s t a n c e webServerScalingGroup memberOf ScalingGroup
65 hasName hasValue "webServerScalingGroup"
66 hasVirtualUnit hasValue _"http://www.cloudslab.org/CloudProvider#largeInstance"
67 hasVirtualAppliance hasValue _"http://www.CloudsLab.org/ontologies/VirtualAppliance#

aki-00806369"
68 hasMinSize hasValue 1
69 hasMaxSize hasValue 3
70 hasLocation hasValue _"http://www.cloudslab.org/CloudProvider#California"
71 hasLoadBalancer hasValue WSLoadBalancer
72 hasPolicy hasValue WSScalingPolicy
73 hasSecurityGroup hasValue WSSecurityGroup
74

75 i n s t a n c e DDsample memberOf DeploymentDescriptor
76 hasScalingGroup hasValue webServerScalingGroup
77 hasSecurityGroup hasValue WSSecurityGroup

	Introduction
	Motivation and Scope
	Research Problems and Objectives
	Objectives

	Contribution
	Thesis Organization

	Taxonomy and Survey of Cloud Service Coordination Methodologies
	Background
	Discovery
	Non-logic Based Discovery
	Semantic-based
	Building Semantic-based Service Repository
	Hybrid Matchmaking
	Decentralized P2P Discovery

	Service Selection Taxonomy
	QoS Management
	Process of Service Selection
	Service Selection Context
	Service QoS Modeling Taxonomy
	Taxonomy of Web Service Selection Approach

	Service Level Agreement Management
	SLA Negotiation Techniques
	Negotiation for Multiple Services
	SLA Monitoring
	SLA Language

	Analysis and Positioning
	Requirement Analysis
	An Investigation of Existing Work
	Scope and Positioning of This Thesis

	Conclusions

	An Architecture for Automated Cloud Service Coordination
	Introduction
	Architecture
	Matchmaker Architecture
	Automoted Construction of Semantic-based Cloud Services and Their Quality of Services
	Matchmaking Algorithm

	Case Study
	Performance of the Translation Approach
	Related Work
	Conclusions

	Migrating Multi-tier Applications to Multi-Cloud
	Introduction
	Motivation Scenario
	QoS Criteria
	Deployment Problem Formulation
	Provider Model
	User Request Model
	Deployment Optimization Objectives

	Deployment Optimization Algorithms
	Forward-Checking-Based-Backtracking (FCBB)
	Genetic-Based Virtual Unit and Appliance Provider Selection

	Experimental Testbed Modeling
	Generation of Requests for Experiments

	Experimental Results
	Comparison with Exhaustive Search (ES)
	Results of Variation in Request Types on Algorithms Performance and Execution Time
	Effects of Variation in Request Types and Latency Constraints on Distribution Factor
	Consequence of Variation of Reliability Constraints on Deployment Cost
	Varying Iteration Number and Population Size

	Conclusions

	Cloud Service Composition Under Fuzzy Preferences of Users
	Introduction
	Issues with Current Virtual Appliance Management Systems

	Composition Problem
	Evaluation of Composition Criteria
	Overall Objectives

	Composition Optimization Technique
	Performance Evaluation
	Request Modeling and Data Collection
	Results

	Conclusions

	An Autonomous Negotiation Strategy for Cloud Computing Environments
	Introduction
	Motivations
	Offers Reliability
	Balancing Resource Utilization to Host More Virtual Machines
	Investigating Behavior of the Time-dependent Function in the Cloud Computing Context

	Negotiation Framework
	Negotiation Strategy
	Negotiation Model
	Time-dependent Negotiation Tactic
	Providers Strategy
	Cloud Client NS

	Performance Evaluation
	Effect of Strategies and Negotiation Parameters on Negotiation Outcome
	Impact of Change in Deadline on the Ratio of Deals Made
	Performance of the Proposed Negotiation Strategy
	Effect of Demand to Supply Ratio and Consensus Desirability on Datacenters Revenue.

	Conclusions

	A Dependency-aware Approach for SLA Management
	Introduction
	Cloud Service and Monitoring Layers
	Motivating Scenario
	Monitoring Architecture
	Service Level Agreement Contract Repository
	Monitoring Service Repository
	Monitoring Service Manager

	Performance Evaluation
	Monitoring Services Discovery for Case Study
	Deployment Time Measurement

	Conclusions

	Conclusion and Future Directions
	Discussion
	Future Directions
	Multi-Cloud Auto-scaling and Failure Recovery Optimization
	Quality of Service Modeling of Cloud Offerings and Dynamic Context-aware Service Selection
	Service Selection Where Multiple Spot Markets Exist
	Considering Heterogeneous Negotiation Strategies in Multi-Cloud Environments
	Combining Fuzzy Similarity and Time-dependent Negotiation Strategies
	Measuring the Impact of Applying Dependency-aware SLA Violations Detection Approach on Decreasing the Number of False Positives

	Ontologies
	Portion of Developed Ontology
	Deployment Descriptor

