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Abstract

Cloud and Edge Data Centers have become the backbone infrastructures of daily so-

cial and economical activities. Live migration is the cornerstone of the dynamic resource

management policies for various objectives, such as application performance, network-

ing cost, load balancing, consolidation, energy saving, user mobility, no-downtime main-

tenance, and disaster recovery. Live migration of VMs and containers provides a uni-

versal state-transfer standard to implement these objectives. Therefore, it is critical to

manage the live migration in both computing and networking resources to guarantee

the QoS, improve migration performance, and minimize migration costs and overheads.

Many works have focused on the live migration mechanisms and optimization to im-

prove the performance of individual migration. However, existing migration models

in resource management neglect the resource competitions and dependencies among

multiple migrations. Furthermore, performing the generated multiple live migrations

in arbitrary orders can lead to service degradation. Therefore, efficient migration gen-

eration and scheduling are essential to reduce the impact of live migration overheads

and improve migration performance. In addition, to prevent Quality of Service (QoS)

degradations and Service Level Agreement (SLA) violations, it is necessary to respect the

deadline of migration requests with various priorities and urgencies. In this thesis, we

focus on network-aware multiple migration management based on Software-Defined

Networking (SDN). By separating the control plane and forwarding plane, SDN pro-

vides centralized topology discovery and networking management which enables the

capability of managing resource contentions in finer granularity. This thesis advances

the state-of-the-art by making the following key contributions:

1. A comprehensive taxonomy and literature review on live migration management

in Edge and Cloud computing environments including migration generation poli-
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cies and migration planning and scheduling algorithms.

2. Empirical performance evaluation of live VM migration in SDN-enabled Clouds

with respect to computing, networking, QoS, SDN traffic management, and mul-

tiple migrations.

3. A universal concurrency-aware multiple migration selector integrated with dy-

namic resource policy to generate scheduling-optimized migration requests.

4. SLA-aware multiple migration planning and scheduling algorithms in Cloud en-

vironments composing of a deadline-aware grouping algorithm of migrations and

online scheduling to determine the migration sequence of connected VMs.

5. Efficient large-scale multiple migration algorithms in Edge environments to reduce

the processing time of migration planning while maintaining multiple migration

performance at scale.

6. A detailed study outlining challenges and future research directions in live migra-

tion management.
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Chapter 1

Introduction

The emergence of cloud computing has facilitated the dynamic provision in computing,

networking, and storage resources to deliver services on-demand basis [1, 2]. Tradition-

ally, the application directly running on the native operating system is the foundational

element to host services by utilizing the underlying hardware resources. With the devel-

opment of virtualization, Virtual Machines (VM), which is one of the major technologies

to host cloud services, can share computing, networking, and storage resources from

the physical machines. It helps cloud computing to provide software and platforms

as services to customers. In addition, containerization is the emerging virtualization

technology to support more elastic service frameworks due to its flexibility and small

resource footprint [3–5].

Application providers can lease virtualized instances (VMs or containers) from cloud

providers with various flavors under different Service Level Agreements (SLAs). Then,

the instance managers initialize the VMs and containers, and the cloud broker and or-

chestrator select the feasible placement based on the available resources and the allo-

cation policy. Under highly dynamic environments, cloud providers need to prevent

the violations of SLAs and guarantee the Quality of Service (QoS), such as end-to-end

delay and task processing time. Therefore, there have been extensive works [6, 7] fo-

cusing on dynamic resource management in performance, accessibility, energy, and cost

in order to benefit both cloud computing subscribers and providers. Live migration of

process, VM, container, and storage is the key feature to support the dynamic resource

management in cloud computing environments [8]. Live migration provides a generic

approach without any application-specific configuration and management. It can mi-

grate and synchronize the running states of the VM or container instance from one host

1
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Figure 1.1: Live migration motivations

to another without service disruption.

Commercial cloud infrastructure and services providers, such as AWS, Azure, Goo-

gle, IBM, etc, have been integrating live VM and container migration [9–13] for the pur-

poses, such as higher priority task preemption, kernel and firmware software updates,

hardware updates, and reallocation for performance and availability. For example, the

Google cluster manager Borg controls all computing tasks and container clusters of up

to tens of thousands of physical machines. In Google production fleets, a lower bound of

1,000,000 migrations monthly can be performed with 50 ms average downtime during

the migration [13]. Therefore, it is critical to investigate migration management tech-

niques in dynamic resource reallocation.

From cloud to edge computing, the processing resources and intelligence have been

pushed to the edge of the network to facilitate time-critical services, which requires

higher bandwidth and lower latency [14, 15]. With the combination of different para-

digms, live migration can be conducted between edge servers, physical hosts in the

LAN network, and data center sites through the WAN [16].

Since the state transmission and synchronization are carried out through the net-

work, the performance of live migration heavily relies on the network resources, such as

bandwidth and delay. However, with the expansion of edge and cloud computing, tens

of thousands of nodes connect with each other, which makes it difficult to manage and

configure networking resources at scale. To overcome the network topology complex-

ity, Software-Defined Networking (SDN) [17–19] is introduced to provide centralized
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networking management by separating the data and control plane in the traditional net-

work devices. The SDN controllers can dynamically update the knowledge of the whole

network topology through the southbound interfaces based on the OpenFlow protocol.

For instance, Google has presented its implementation of software-defined inter-data

center WAN (B4) [20] to showcase the SDN at scale. The migration manager based on

the SDN controller can manage the network resources in a fine-grained manner for the

migration tasks and application services in terms of network routing and bandwidth

allocation.

Many works have been focused on the different objectives of resource management

through live migration in both cloud [6, 21, 22] and edge computing environments [7,

23–25], such as load balancing, over-subscription, consolidation, networking, energy,

disaster recovery, and maintenance for hardware and software updates. Figure 1.1 illus-

trates the category of live migration motivations under three main aspects: performance,

accessibility, and economy or cost. Few studies have focused on the impact of live mi-

gration overheads [26, 27] and the sequence of multiple migration scheduling [28–30].

The computing overheads of live migration on memory, I/O interfaces, and CPU can

affect co-located instances on the same host. Migrations should be scheduled efficiently

in order to avoid SLA violations and guarantee the performance of multiple migrations.

The convergence time of live migration directly affects the convergence of the optimal

instance reallocation for dynamic resource management. Moreover, we also need to

manage the downtime of migrations in order to avoid SLA violations. Therefore, it is

essential to minimize the overheads of migrations and improve the multiple migration

performance.

However, there are gaps between current resource management algorithms and mi-

gration scheduling algorithms, which are required to successfully and efficiently per-

form migrations in complex edge and cloud computing environments at scale. Migra-

tion generation during resource management is focusing on management motivations,

such as energy consumption and host utilization, and minimizing the total migration

overheads based on the linear cost model. It disconnects two important phases of mi-

gration management: migration selection phase and migration scheduling phase. More-

over, current research neglects the network resource contentions among multiple migra-
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tions and applications, which can result in QoS degradation, migration failures, and

the degraded performance of migration scheduling and resource management. In ad-

dition, with multiple migration requests generated by resource management as input,

current migration planning and scheduling algorithms ignore the migration network

sharing strategy and migration deadline, which may lead to QoS degradation and SLA

violations. Furthermore, from cloud to edge computing, existing migration planning

and scheduling frameworks and solutions can not suit the increasing number of service

migrations and stochastic arrival migration, such as mobility-induced live migration.

This thesis tackles the migration management problem by considering both comput-

ing and networking resources in SDN-enabled edge and cloud data centers. We present

a taxonomy and comparison of migration management in cloud computing. We propose

a generic concurrency-aware migration generation algorithm along with its integration

to other dynamic resource management algorithms. We also propose multiple migration

planning and scheduling algorithms to improve migration performance and minimize

migration overheads.

The rest of this chapter details the background of migration management in SDN-

enabled cloud computing and discusses the research problems and objectives, evalua-

tion methodology, contributions, and the organization of the thesis.

1.1 SDN-enabled Clouds

This section describes the fundamentals of cloud computing, Software-Defined Net-

working (SDN), and SDN-enabled cloud computing. Since live migration heavily relies

on computer networks to transmit memory states and data, it is essential to study the

network architecture and environment for performing migrations.

1.1.1 Cloud and Edge Computing

Cloud computing provides the on-demand availability of computing and storage re-

sources to other users [1, 2]. The cloud services can be categorized into three categories,

namely Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-
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as-a-Service (SaaS) [1]. Infrastructure-as-a-Service is the most fundamental service which

provides virtual machines and related virtual networks to cloud subscribers. The cloud

infrastructure can be used to provide subscriber’s own platform and software services

running on servers through PaaS and SaaS, respectively. This thesis focuses on the live

migration management performed by the cloud provider in the IaaS context, consider-

ing both computing and networking provisioning and overheads. The cloud provider

or administrator is responsible to provision the computing, networking, and storage

resources to guarantee the QoS and SLAs. The whole cloud infrastructure may be com-

posed of several data centers in different locations. As a result, the live migration can be

performed within a data center (intra-data center) or between two data centers (inter-

data center).

To provide reliable services to latency-sensitive applications, cloud-like services are

pushed to the edge of the networks. Edge Computing brings computing and storage

resources closer to the end-user to improve the response time of the services [7]. In this

case, the cloud data center can be regarded as an edge data center. It reduces the net-

work usage between edge and core networks by allocating the tasks to the services in the

adjacent edge servers. Combined with the cloud computing paradigm, the introduction

of edge computing improves the performance of the emerging user-oriented applica-

tions including Vehicle to Vehicle (V2V), Vehicle to Cloud (V2C), Virtual Reality (VR),

Augmented Reality (AR), Artificial Intelligent (AI), Internet of Things (IoT), etc. Edge

computing introduces new challenges in live migration, mainly due to the mobility of

application users. The mobility-induced migration [6, 7, 25] in edge computing is based

on the user position and the coverage of each edge server and its base stations. When

the position of the end-user change dramatically from one coverage of edge data center

to another, the end-to-end latency will be increased. As a result, the service may need to

be migrated from the previous edge servers to the adjacent one.

1.1.2 Data Center Network

In the cloud data center, the Data Center Network (DCN) are composed by intercon-

nected physical host servers through network links and switches. A typical DCN ar-
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Figure 1.2: Comparisons between traditional and software-defined networking

chitecture consists of a three-layer topology, with each layer including edge, aggrega-

tion, and core switches. In the edge switch layer, host servers within the same rack

are connected to one or multiple Top-of-Rack (ToR) switches. One edge switch can be

connected to upper-tier aggregation switches. Each aggregation switch could be con-

nected to one or several core switches in the top layer. The core switches are connected

to the gateway of the data center. Since DCN hosts a massive number of switches and

servers, researchers have been focusing on the alternative DCN topology to improve

the cost, operation complexity, scalability, and performance, such as Clos and Folded-

Clos/FatTree [31], DCell [32], BCube [33], and and energy consumption such as Elastic-

tree [34]. For example, Google has adopted Clos topologies for its datacenters [35]. The

four-post cluster architecture also applied to the commercial cloud data centers [36].

In the WAN environment, multiple data center sites are connected through the back-

bone network or WAN links. For the commercial massive multi-sites cloud data centers,

dedicated backbone network are used for the inter-datacenter connectivity [37, 38]. For

the general inter-datacenter connectivity, various WAN or Internet topologies are stud-

ied. For instance, researchers investigated an Internet topology dataset [39] of Point of

Presence (PoP)-level 140 WAN topologies and over 270 network topologies with 9,500

PoP locations for data centers and hosting facilities, and 13,500 links [40].
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1.1.3 Software-Defined Networking

Software-Defined Networking (SDN) [41] is the emerging paradigm in networking that

manages the whole network resources with centralized software controllers with stan-

dard software interfaces. Figure 1.2 shows the difference between SDN and traditional

networking. In the traditional networking, the network devices are forwarding packets

to the next hop solely based on its own control logic. The traditional Layer-2 and Layer-3

models are applied to the physical switches and routers. However, SDN separates the

control plane and data plane by network virtualization and centralize the control plane

logically into a software controller.

At the discovery process, SDN controller sends discovery packets to the connected

SDN nodes (forwarding switches) with Link Layer Discovery Protocol (LLDP) protocol

to detect the entire network topology. Through the southbound interfaces of a SDN con-

troller, OpenFlow [42], is used for the communication between SDN-enabled forwarding

nodes and the controller. For each SDN-enabled node, the data plane matches flow en-

tries to forward the traffic. Through the northbound interfaces, network management

applications or routing algorithms can perform high-level networking resource man-

agement based on the monitoring network states and topology, such as limits the flow

bandwidth or manages the network routing. Furthermore, the west/east interfaces of

a SDN controller supports the horizontal communication between controller that facili-

tates the scalable multiple SDN controller framework [43].

With the separation of forwarding plane and control plane, SDN opens up more

opportunities in various aspects of network virtualization to both academia and indus-

try, such as innovative networking protocols for LAN and WAN, virtualized data plane

optimization, traffic and flow management, and Software Function Chaining by Virtual-

ized Network Functions, etc. As a result, OpenFlow becomes the de facto standard SDN

communication and control protocol [44] along with the OF-CONFIG management and

configuration protocol [45]. There are several open-source SDN controllers based on

OpenFlow have been developed, such as NOX [46], Beacon [47], ONOS [48], OpenDay-

Light (ODL) [49], Ryu [50], and FloodLight [51].

Open vSwitch (OVS) [52] as the multilayer software switch running in the Hyper-

visor to provide the switching stack for the hardware virtualization. OVS supports the



8 Introduction

SDN management and control (OpenFlow and OVSDB which is its own implementation

of OF-CONFIG protocol), monitoring (sFlow, NetFlow, SPAN, and RSPAN), QoS (traffic

shaping and queuing), and Security (VLAN and traffic filtering). To support packet pro-

cessing, performance and throughput of networking virtualization, various projects and

works have been conducted on the software data plane acceleration, such as DPDK [53],

SR-IOV [54], VPP [55], and SoftNIC [56].

1.1.4 SDN-enabled Clouds

As the number of end-user and low-latency application services increases, the number of

services in edge and cloud computing also increases accordingly. Therefore, compared

with the traditional cloud data center network, the topology of edge and cloud comput-

ing including compute and network nodes has become more complicated. In traditional

network management, each network device applies its own logic in a distributed man-

ner, where the control and the data plane are in the same device. It only contains the

knowledge of its adjacent nodes (next hop). Thus, it is difficult to dynamically manage

network flows and monitor the status of the entire network which is composed of tens

of thousands of nodes. To address this issue, SDN has been adopted in both edge and

cloud computing [57], namely SDN-enabled Clouds.

Integrating with hypervisor and cloud computing management, SDN-enabled clouds

bring benefits to edge and cloud computing, such as global view of DCN, dynamic and

programmable control planes for network flows, network security and virtualization,

and dynamic network workloads. With the centralized control plane, SDN controllers

can dynamically manage and monitor the network resources in a programmable fash-

ion. Various research has been conducted focusing on the network applications for dy-

namic network resource management [19, 58], such as dynamic bandwidth allocation,

network slicing, network flow consolidation, and the optimization of network utiliza-

tion to improve the performance and energy efficiency of data centers and QoS of appli-

cations.

In the WAN environment, SDN architecture and OpenFlow protocol are adopted for

data center WAN interconnection. Since data centers are geographically located on the
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planet, multiple controllers are deployed for each data center site to tackle the scalability

and latency issues. Global centralized Traffic Engineering (TE) servers are connected

to multiple controllers through gateways [20]. Software-Defined WAN (SD-WAN) [20,

59] leverages the SDN principles combining the tenets of distributed WAN, simplifying

network control policy and traffic flow management in the clouds. In the literature,

SD-WAN is used as the acronym for SDN in the wide-area network. Therefore, SDN-

enabled WAN and SD-WAN can be often used interchangeably.

Since live migration heavily relies on the computer network to transfer the memory

states and data, SDN-enabled edge and cloud computing open up innovative opportu-

nities for networking management to improve live migration performance and schedule

each migration dynamically and efficiently, including network discovery, dynamic net-

work routing, and bandwidth allocation.

1.2 Live Migration

Considering the scudding development of live migration virtualization and cloud com-

puting paradigms, this section introduces the fundamentals of live migration of VM

and container instance from three aspects: virtualization, migration span and migra-

tion type. We use live instance migration to generalize both live VM migration and live

container migration.

1.2.1 Virtualization

Virtual Machine and container are the two standard solutions for virtualized instances

for live migrations. In this section, we introduce the runtime of VM and container

and memory tracing mechanism that supports the resource virtualization and isolation,

which is the foundation for live migration.

Hypervisor: Hypervisor, known as Virtual Machine Monitor (VMM), is software that

creates and runs VM by virtualizing host computer resources, such as memory and pro-

cessors. The hypervisor inserts shadow page tables underneath the running OS to log
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the dirty pages [8]. Then, the shadow tables are populated on demand by translating

sections of guest page tables. By setting read-only mapping for all page-table entries

(PTE) in the shadow tables, the hypervisor can trap the page fault when the guest OS

tries to modify the memory page. In addition, libvirt, as an open-source toolkit for hy-

pervisor management, is widely used in the development of cloud-based orchestration

layer solutions. Integrating it with hypervisors, such as libvirt and KVM/QEMU, one

can track the details of live migration through management user interface command

virsh domjobinfo including dirty page rate, expected downtime, iteration rounds, mem-

ory bandwidth, remaining memory, total memory size, etc.

Container Runtime: Container runtime is software that creates instances and manages

instances on a compute node. Except for the most popular container runtime Docker,

there are other container runtimes, such as containerd, CRI-O, runc, etc. CRIU [60] is

the de-facto software for live container migration. It relies on the ptrace to seize the

processes and injects the parasite code to dump the memory pages of the process into

the image file from within the address space of the process. Additional states, such as

task states, register, opened files, credentials, are also gathered and stored in the dump

files. CRIU creates checkpoint files for each connected child process during a process

tree checkpointing. CRIU restores processes by using the information in the dump files

during the checkpointing in the destination host.

1.2.2 Migration Span

Migration Span indicates the geographic environment where live migrations are per-

formed. It is critical to analyze the migration span since various computing and net-

working settings and configurations directly affect migration management. In this sec-

tion, we categorize live migration based on the migration span into LAN (Layer-2),

such as intra-data center, and WAN (Layer-3) environment, such as inter-data center

and edge-cloud migrations (Fig. 1.3).

Intra-Cloud: Live migrations are the cornerstone of cloud management, such as load

balancing and consolidation. The source and destination hosts of intra-cloud migration
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Figure 1.3: Migration span in LAN and WAN environments

are in the same LAN environment. In the intra-data center environment, hosts are of-

ten shared the data via Network-Accessed Storage (NAS), excluding the need for live

storage transmission (Fig. 1.3(a)). In addition, for the share-nothing data center architec-

ture, management traffic, such as live migration flow, is separated from the tenant data

network to alleviate the network overheads of migrations on other services.

Inter-Clouds & Edge-Cloud: Live migration is widely adopted for inter-data center

management due to various purposes, such as managing cost, emergency recovery, en-

ergy consumption, performance and latency, data transmission reduction, and regula-

tion adoption based on the administrative domains [61, 62]. For the migrations between

edge and cloud data centers, strategies often need to consider the trade-off between pro-

cessing time, network delay, energy, and economy. For example, VNF migration from

edge to cloud to reduce the processing time and migrate service from cloud to edge to

minimize the network delay [63].

For the migrations across WAN, such as inter-data center and edge-cloud migra-

tions, there is no shared storage and dedicated migration network between the data

center sites (Fig. 1.3(b)). Therefore, in addition to the live instance migration focusing

on memory synchronization, live storage migration is necessary. It also applies to the
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architecture without shared storage in LAN. The main challenges of migration in WAN

are optimizing data transmission and handling the network continuity [6].

Edge Computing: Edge computing includes both LAN and WAN architecture. The

motivations and use cases of dynamic resource management in edge computing are

similar to those in cloud computing environments. On the other hand, live migration

at edges is often referred to as service migration focusing on the mobility-induced mi-

grations in Mobile Edge Computing. In the edge WAN solutions, edge data centers are

connected through WAN links as the traditional inter-data center architectures. With

the emerging cloud-based 5G solution [64], edge data centers can be connected through

dedicated backbone links and shared the regional cloud data center and network stor-

age.

SDN-enabled Solution: In addition, by decoupling the networking software and hard-

ware, SDN can simplify traffic management and improve the performance and through-

put of both intra-data centers (SDN-enabled data centers) and inter-data centers (SD-

WAN) including migration networking management. As a result, SDN can improve

traffic throughput of live migration and reduce the networking overheads of live migra-

tion on other services in both LAN and WAN environments [30].
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1.2.3 Migration Types

Migration can be applied to different types of virtual resources, such as process, VM, and

container, is often referred as the disk-less migration. Figure 1.4 illustrates the categories

of migration types. Generally, instance and storage migration can be categorized as cold

or non-live migration and live migration. The live migration can be further categorized

into pre-copy, post-copy, and hybrid migration. Based on granularity, the migration can

be divided into single and multiple migration.

The design and continuous optimization and improvement of live migration mech-

anism are striving to minimize the downtime and live migration time. The downtime is

the time interval during the migration service is unavailable due to the need for synchro-

nization. For a single migration, the migration time refers to the time interval between

the start of the pre-migration phase to the finish of post-migration phases that instance

is running at the destination host. On the other hand, the total migration time of multiple

migrations is the time interval between the start of the first migration and the completion

of the last migration.

For the performance trade-off analysis, memory and storage transmission can be

categorized into three phases:

• Push phase where the instance is still running in the source host while memory

pages and disk block or writing data are pushed through the network to the desti-

nation host.

• Stop-and-Copy phase where the instance is stopped, and the memory pages or disk

data is copied to the destination across the network. At the end of the phase, the

instance will resume at the destination.

• Pull phase where the new instance executes while pulling faulted memory pages

when it is unavailable in the source from the source host across the network.

Based on the guideline of these three phases, single live migration can be categorized

into three types: (1) pre-copy focusing on push phase [8], (2) post-copy using pull

phase [65], and (3) hybrid migration [66] utilizing both push and pull phases. On the

other hand, we can categorize multiple migration mechanisms into mainly two types,
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namely homogeneous and heterogeneous strategies. Furthermore, pre-migration and

post-migration phases are handling the computing and network configuration. During

the pre-migration phase, migration management software creates instance’s virtual in-

terfaces (VIFs) on the destination host, updates interface or ports binding, and network-

ing management software, such as OpenStack Neutron server, configures the logical

router. During the post-migration phase, migration management software updates port

or interface states and rebinds the port with networking management software and the

VIF driver unplugs the instance’s virtual ports on the source host.

Cold Migration: Compared to the live migration, cold memory and data migrations

are data transmission of only one snapshot of VM’s memory and disk or the dump file

of one container checkpoint from one physical host to another. In other words, pure

stop-and-copy migration fits into this category. Although provides simplicity over the

live migration solution, the cold migration bears the disadvantage that both migration

time and downtime are proportional to the amount of physical memory allocated to the

VM. It suffers the significant VM downtime and service disruptive.

Pre-copy Migration: During the pre-copy migration [8], dirty memory pages are iter-

atively copied from the running instance at the source host to the instance container in

the destination host. Figure 1.5 illustrates the pre-copy migration phases. Generally, the
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pre-copy migration of instance memory can be categorized into several phases:

• Initialization: preselects the destination host to accelerate the future migration pro-

cess.

• Reservation: set ups the shared file server (optional), and initializes a container of

the instance for the reserved resources on the destination host.

• Iterative pre-copy: For pre-copy migration, send dirty pages that are modified in

the previous iteration round to the destination host. The initial memory states are

copied in the first round.

• Ctop-and-Copy: the VM is stopped in the source host in the last iteration round

according to the downtime threshold.

• Commitment: source host gets the commitment of the successfully copied instance

from the destination host

• Activation: reserved resources are assigned to the new instance and the old instance

is deleted.

Post-copy Migration: For the post-copy live migration [65], it first suspends the in-

stance at the source host and resumes it at the target host by migrating a minimal subset

of VM execution states. Then, the source instance pro-actively pushes the remained

pages to the resumed VM. A page fault may happen when the instance attempts to ac-

cess the un-transferred pages solved by fetching these pages from the instance in the

source. Post-copy strategy can reduce the live migration time and downtime compared

with pre-copy migration. However, it is not widely adopted due to the unstable and ro-

bustness issue [67]. When the running instance crashes during the post-copy migration,

the service will also be crashed as there is no running instance in the original host with

full memory states and data. For certain services and applications, the instance needs to

constantly pulling faulted pages from the source host while can degrades the QoS for an

extensive period.
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Figure 1.6: A general migration management framework

Hybrid Live Migration: Hybrid post copy [66] aims to reach the balance point by

leveraging all three phases. It can also be considered as an optimization technique based

on pre-copy and post-copy migrations. It starts with the pre-copy model that iteratively

copies dirty pages from source to destination. The post-copy migration will be acti-

vated when the memory copy iteration does not achieve a certain percentage increase

compared with the last iteration. In certain situations, it will reduce the migration time

with slightly increased downtime. However, it bears the same disadvantages of post-

copy migration that pulling faulted pages slow down the processing speed which may

degrade the QoS, and VM reboot may occur when the network is unstable.

Multiple Migration Type: From the perspective of multiple live migrations, there is

the standard homogeneous solution that each migration type is identical and heteroge-

neous solution [68–70] that performing pre-copy, post-copy, or hybrid copy migrations

for multiple migrations at the same time. The heterogeneous strategy aims to improve

network utilization and reduce the total migration time of multiple migrations while

meeting the requirements of different services with various characteristics.

1.3 Research Problems and Objectives

This thesis aims to address research questions on migration management by focusing

on the migration performance and overheads during resource management and migra-

tion planning and scheduling algorithms. Figure 1.6 illustrates the general migration

management workflow. Based on the various objectives, the resource management algo-



1.3 Research Problems and Objectives 17

rithms find the optimal placement by generating multiple live migrations. With the gen-

erated multiple migration requests, the migration planning and scheduling algorithms

optimize the performance of multiple migration, such as total and individual migration

time and downtime, while minimizing the migration cost and overheads, such as migra-

tion influence on application QoS. On the other hand, the computing and networking

resources are reallocated and affected by multiple migrations.

For migration management, it is essential to minimize migration costs, maximize mi-

gration performance, while achieving the objectives of dynamic resource management.

There are three research questions that dominate migration management when perform-

ing dynamic resource management policies and strategies through live migrations:

• How should the migrations be modeled?

To address this question, for the single migration model, we need to specify the

types of migrations that should be performed, types of migrating resources, types

of optimization, available resources, overhead and cost parameters (variables),

and performance metrics. For multiple migrations, we need to identify the re-

sources competitions and contentions among migrations and services, and inves-

tigate parameters and performance metrics.

• How should the migration requests be generated?

To address this question, we need to identify the computing and networking envi-

ronments, such as physical and virtual topologies (micro-services, SFC, and Virtual

DCs), as well as the characteristics and objectives of the resource management poli-

cies, for example, the generation entities, arrival pattern of migration requests, etc.

Considering the objectives of policies, the migration generation manager should

determine the migration requests in a way to minimize migration costs and over-

heads and maximize the performance of both single and multiple migrations.

• How should the migrations be scheduled?

To solve this question, the migration manager needs to efficiently determine the

start time and sequence of migrations in sequential and concurrent ways. For sin-

gle migrations, we should identify the consequence of each migration based on
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available bandwidth and computing resources before and after each migration, as

well as overheads on other resources and services. For multiple migrations, the mi-

gration scheduler needs to manage the resources competitions among migrations

to minimize the total migration time and determine the migration ordering for the

resource deadlock problem. Moreover, the scheduler should schedule migrations

on time to meet the urgency, priority, and deadline (scheduling window).

1.4 Evaluation Methodology

The proposed approaches in this thesis have been evaluated in two methodologies,

namely discrete event-driven simulation and empirical system. Due to limited accessi-

bility and management costs, simulation is a common evaluation methodology to evalu-

ate the proposed algorithms in a complex and large-scale system. Discrete event-driven

simulator supports a more realistic results compared to the mathematical modeling. In

this thesis, we developed and extended CloudSimSDN [71] to model the pre-copy live

migration, including total/individual migration time, downtime, transferred data, dy-

namic network routing, bandwidth allocation, and network monitoring. The simulation

platform enables the reproducible experiments for large-scale migrations with ease of

parameter reconfigurations. We utilize real application and location trace for a realistic

results in the simulation. For example, base stations and taxi trace data in Shanghai,

request trace data of Wikipedia pages, and network trace data of multi-tier web applica-

tions.

We also conducted performance evaluation of live migration requests in a small-

scale empirical testbed to pinpoint the parameters and overheads of live migration in

SDN-enabled data centers composed by OpenStack cloud management platform and

OpenDayLight (ODL) SDN controller.

1.5 Thesis Contributions

To address the research problems mentioned above, this thesis makes the following key

contributions:
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1. A taxonomy on migration management and literature review of the existing mi-

gration generation in dynamic resource management algorithms and migration

planning and scheduling algorithms.

2. Performance evaluation of live migration in SDN-enabled cloud computing:

• Comprehensive evaluation of block live migration in SDN-enabled data cen-

ters regarding both computing and networking parameters.

• Evaluation of migration downtime adjustment algorithm.

• Modeling the trade-off between sequential and parallel migration.

• Evaluation of the effect of flow scheduling update rate on TCP/IP.

• Response time pattern of a multi-tier application under various migration

strategies.

3. Formalized model and framework for live migration in SDN-enabled cloud com-

puting:

• A performance model of pre-copy migration and live storage migration.

• A discrete event-driven simulation framework for each pre-copy migration

phase and multiple migration scheduling.

• A networking model of live migration in SDN-enabled network capable of

measuring migration time, iteration rounds, downtime, transferred data, QoS,

and energy consumption.

• A computing model of live migration capable of simulating the pre and post-

migration overheads.

4. Concurrency-Aware live migration management algorithm for multiple migration

generation:

• Modeling the potential resource contentions of multiple migration requests

according to various source and destination candidates.

• Integration of single and multiple migration overheads in virtual machine

migration.
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• A generic migration management for dynamic resource strategies maximiz-

ing the multiple migration performance while achieving the objectives of re-

source management.

• Experimental validation and evaluation of the proposed migration genera-

tion algorithm with various dynamic resource management focusing on load

balancing, consolidation, and energy consumption.

5. SLA-Aware multiple migration planning and scheduling algorithm:

• A Mixed-Integer Linear Programming (MILP) model of multiple migration

scheduling with various deadlines that minimizes the total migration time

and Service Level Objectives (SLOs) violations during scheduling.

• A resource dependency graph model for multiple migration concurrency and

resource dependency.

• A bandwidth allocation policy to alleviate the migration overheads on other

services and improve the migration performance.

• A deadline-aware concurrent multiple migration planning capable of opti-

mizing total and individual migration performance, QoS, and energy con-

sumption.

• An SDN-based online migration scheduler to manage the start of migration,

bandwidth allocation, and traffic routing.

6. Efficient scheduling algorithm for multiple migration at scale:

• A revised dependency graph model based on the migration source and des-

tination pairs to reduce the problem complexity.

• A novel framework of migration scheduling in edge computing for stochastic

arrival migration requests.

• An iterative Maximum Independent Set model for multiple migration schedul-

ing to maximize the performance of migrations with the highest priorities.

• A novel iterative Maximal Independent Set-based scheduling algorithm to re-

duce the processing time and efficiently schedule multiple migration requests

at large scale.
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Figure 1.7: The thesis structure

• Edge data center placement and network topology based on real base station

positions and taxi GPS traces.

1.6 Thesis Organization

The structure of this thesis and content of each chapter are shown in Figure 1.7. The rest

of the thesis is organized as follows:

• Chapter 2 presents a taxonomy and literature review of migration management in

edge and cloud computing. This chapter is derived from:
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- TianZhang He, Rajkumar Buyya, “A Taxonomy of Live Migration Management

in Edge and Cloud Computing”, ACM Computing Surveys (submitted, July 2021).

• Chapter 3 presents modeling, evaluation and simulation of live migration in SDN-

enabled Cloud data centers. This chapter is derived from:

- TianZhang He, Adel N Toosi, and Rajkumar Buyya, “Performance evaluation

of live virtual machine migration in SDN-enabled cloud data centers”, Journal of

Parallel and Distributed Computing (JPDC), Volume 131, Pages: 55-68, Elsevier, 2019.

- TianZhang He, Adel N Toosi, and Rajkumar Buyya, “SLA-aware multiple mi-

gration planning and scheduling in SDN-NFV-enabled clouds”, Journal of Systems

and Software (JSS), Volume 176, Pages: 110943, Elsevier, 2021.

• Chapter 4 proposes a concurrency-aware live migration management algorithm

of multiple virtual machines that deals with mitigating the migration overheads

and achieving the objectives of dynamic resource policies. This chapter is derived

from:

- TianZhang He, Adel N Toosi, and Rajkumar Buyya, “CAMIG: Concurrency-

Aware Live Migration Management of Multiple Virtual Machines in SDN-enabled

Clouds”, IEEE Transactions on Parallel and Distributed Systems (TPDS), (minor revi-

sion, August 2021).

• Chapter 5 proposes the deadline-aware multiple migration grouping algorithm

and online migration scheduler to determine the sequence of VM/VNF migra-

tions. This chapter is derived from:

- TianZhang He, Adel N Toosi, and Rajkumar Buyya, “SLA-aware multiple mi-

gration planning and scheduling in SDN-NFV-enabled clouds”, Journal of Systems

and Software (JSS), Volume 176, Pages: 110943, Elsevier, 2021.

• Chapter 6 presents a multiple migration planning and scheduling algorithm to

deal with stochastic migration requests at scale. This chapter is derived from:

- TianZhang He, Adel N Toosi, and Rajkumar Buyya, “Efficient Large-Scale Multi-

ple Migration Planning and Scheduling in SDN-enabled Edge Computing”, IEEE
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Transactions on Mobile Computing (TMC), (submitted, June 2021).

• Chapter 7 concludes the thesis and summarizes the key findings and identifies

future research directions. This chapter is derived from:

- TianZhang He, Rajkumar Buyya, “A Taxonomy of Live Migration Management

in Edge and Cloud Computing”, ACM Computing Surveys (submitted, July 2021).





Chapter 2

A Taxonomy and Review on
Migration Management

This chapter proposes a taxonomy of migration management in edge and cloud computing and ex-

plains each aspect in details. We present a conceptual system architecture for migration management.

A detailed survey and analysis of existing approaches is conducted, including migration generation

and migration planning and scheduling. We also present various simulation, emulation, and empir-

ical evaluation methods with corresponding data that have been developed for live migration.

2.1 Introduction

To widely and efficiently apply dynamic resource management algorithms, it is neces-

sary to investigate migration management to minimize the migration overheads, maxi-

mize the performance of migration scheduling, and optimize the objectives of resource

management.

Although many surveys [6, 7, 25, 72–78] of live migration have been presented in

the contexts of performance, mechanism, optimization of single live migration and gen-

eral migration-based dynamic resource management, they only focus on the specific mi-

gration aspects and neglect the aspects of migration management including migration

generation in dynamic resource management and migration planning and scheduling

algorithms. Therefore, in this chapter, we identify the following five aspects of migra-

This chapter is derived from:

• TianZhang He, Rajkumar Buyya, “Live Migration Management in Edge and Cloud Computing En-
vironments: A Taxonomy, Review and Future Directions”, ACM Computing Surveys(submitted, July
2021).

25
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tion management in both edge and cloud computing environments:

• migration performance and cost model

• migration generation in resource management policies

• migration planning and scheduling

• migration lifecycle management and orchestration

• evaluation methods and platforms

Since dynamic resource management algorithms require multiple instances migration

to achieve the objectives, we also emphasize migration management in the context of

multiple migrations solutions and challenges. Based on the proposed taxonomy, we

review related state-of-art works in each category and identify the gaps.

The rest of this chapter is organized as follows. Section 2.2 summarizes the related

surveys, following the system architecture overview in Section 2.3. Section 2.4 presents

the proposed taxonomy of migration management. Section 2.5 describes the details of

essential aspects of migration planning and scheduling algorithms. We review and an-

alyze the related works of migration management including migration generation and

migration planning and scheduling in Section 2.6. Evaluation methods and tools includ-

ing simulation, emulation and empirical platforms are introduced in Section 2.7. Finally,

we conclude the chapter in Section 2.8.

2.2 Related Surveys

In this section, we introduce the details of related surveys in the context of live migra-

tion. Several surveys are conducted to investigate and summarize the works on var-

ious aspects of live migration, including migration elements, migration types, migra-

tion overheads, optimization mechanisms, motivations and objectives, robustness and

security, networking continuity, etc. We summarize the related surveys and illustrate

the level of details covered on the respective issue in Table 2.1, where the cost aspect in-

cludes migration performance and overhead cost, the mechanism aspect includes migra-

tion type and optimization of performance or overhead, the application aspect includes
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Table 2.1: Summary of related surveys in live migration

reference Migration Issues Resource Type Environment Granularity

cost mechanism application management VM container network storage cloud edge single multiple

[72] ✓ ✓ - - ✓ - - - ✓ - ✓

[73] ✓ - ✓ ✓ ✓

[74] ✓ ✓ ✓ ✓ ✓

[75] ✓ ∂ ✓ ∂ ∂ ∂ ∂ ✓

[76] ✓ ✓ ✓ ✓

[77] ✓ ✓ ∂ ∂ ✓

[6] ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ∂

[7] ∂ ✓ ∂ ✓ ✓ ∂ ✓ ✓

[78] ✓ ✓ ✓ ✓ ∂

[25] ✓ ✓ ∂ ∂ ✓ ✓

this ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ denotes broad discussion or the main scope on the respective issue.
∂ denotes partial discussion or the secondary scope on the respective issue.

migration motivations and use cases for resource management, and the migration man-

agement aspects include migration generations with different resource policies, policy-

level migration networking management, single and multiple migration planning and

scheduling. The migration granularity consists of single and multiple migration for het-

erogeneous and homogeneous migration types, co-located VMs in the same source and

destination, and VMs from and to arbitrary hosts. With the development of live migra-

tion in all aspects, the main topics widely discussed in related surveys may only cover

the limited scope of existing works at the time of publication.

Strunk [72] investigated and reviewed the works on the single VM live migration

parameters in terms of physical machine’s CPU and net utilization, VM’s CPU and net

utilization, memory size, and dirty page rate, a taxonomy of migration cost param-

eters, performance prediction modeling, migration overheads such as service perfor-

mance loss and migration energy consumption. Similarly, Xu et al. [74] also reviewed

and summarized the performance overheads of live VM migration in the Infrastructure-

as-a-Service (IaaS) cloud. The survey investigated various causes and scenarios for VM

performance overheads during migrations and the performance and overhead model-

ing methods and compared the complexity and effectiveness of various overhead mit-
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igation techniques. Medina et al. [75] reviewed the works focusing on the mechanism

of VM migration and process replication for the purpose of high availability. They also

reviewed the mechanism and implementation of the hypervisor (Xen, VirtualBox, KVM,

and VMWare) that supports live VM migration, live VM and storage migration across

the WAN, and live migration use cases of load balancing, overloaded host management,

and energy efficiency. They also partially covered few works on trace/replay technique

and container migration by OpenVZ.

Yamada et al. [77] and Noshy et al. [78] reviewed the live migration mechanisms for

pre-copy, post-copy, and hybrid migration and corresponding optimizations, such as

memory compression, deduplication, checkpoint/restore or trace/replay, pipeline and

multicore parallelization. Noshy et al. [78] also mentioned the research directions on

live migration of multiple VMs in total migration time and impacts on co-located VMs.

Zhang et al. [6] presented a comprehensive live VM migration survey mainly talking

about migration motivations, migration types and optimization techniques, network

layer-2 to layer-4, and SDN solutions for the network continuity issue over the WAN.

They also reviewed the papers of multiple migrations on optimizing the total migration

time for co-located VMs in the same host and VMs with network connections. The au-

thors also partially reviewed the works on migration overheads on other services and

had limited coverage on the difference between single and multiple migrations.

For live container migration, Milojičić et al. [79] summarized the early efforts for live

process migration and indicated the challenges that process migration need to be solved.

From the High Availability (HA) perspective, Li et al. [76] compared VM and container

in virtualization mechanisms and implementation difference between the hypervisor

and container-based platform for live migration. The authors also reviewed the works of

failure detection based on CRIU and OpenVZ and pointed out the HA and optimization

features missed in container-based platforms.

For the survey of mobility-induced service migration focusing on service and user

mobility, Machen et al. [23] reviewed the works of live service migration in Mobile Edge

Computing (MEC). They investigated the layered framework, live container migration,

and the performance evaluation of various applications, including gamer server, RAM

simulation, video streaming, and face detection (OpenCV). Wang et al. [7] reviewed
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the works of service migration in MEC. The service can be hosted by different types

of instances such as VMs and containers. The authors mainly focus on the MEC con-

text including the framework of the service migration flow, data transmission optimiza-

tion, and strategies for service migration decisions. Specifically, the authors reviewed

the strategies for service migration (dynamic service placement) in edge computing in

(1) following the mobile users, (2) MDP-based service migration with one and two-

dimensional optimization, and (3) time window-based service migration. In addition,

Rejiba et al. [25] also focused on the mobility-induced service migration in edge-centric

computing environments, including migration elements, migration and transmission

cost. The proposed a taxonomy and review of dynamic resource management algo-

rithms through mobility-induced live migrations based on different objectives, such as

cost, time, and migration success rate.

For the security and robustness, Shetty et al. [73] focused on live migration security,

including secure live migration, control policies (DoS, Internal, Guest VM, false resource

advertise, Inter VM in the same host), transmission channel (insecure and unprotected),

and migration module (stack, heap, integer overflow). Zhang et al. [6] reviewed the

robustness aspect of different migration types. Kokkinos et al. [80] focused on live mi-

gration in long-distance networks (WAN) for disaster recovery. We observe that most

surveys only investigated the single live migration at the OS system level and dynamic

resource management through live migration. Therefore, in this chapter, we summarize

and review the state-of-art works of live migration in the context of migration manage-

ment in edge and cloud computing, including the performance and cost model, migra-

tion generations in resource management algorithms, migration planning and schedul-

ing, migration lifecycle management and orchestration, and evaluation methods.

2.3 System Architecture

In this section, we explain the details of system architecture for migration management.

The system architecture of SDN-enabled edge and cloud data centers consists of an or-

chestration layer, a controller layer, and a physical resource layer (Fig. 2.1). The policy

orchestrator provides the algorithms and strategies for joint computing and network-
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Figure 2.1: System Architecture and its software components

ing resource provisioner and network engineering server, which based on the informa-

tion from network topology discovery component and the cloud and network monitors.

Combined with cloud manager and network engineering server, live migration manager

(lifecycle manager, migration generator, planner, and scheduler) can efficiently control

the lifecycle of single migration and schedule multiple migrations in a finer granularity

by jointly provisioning computing and networking resources.

In the controller layer, there are several individual controllers, including the net-

working manager (SDN controller), resource monitor engines, cloud controller (such as

OpenStack), and container control plane (such as Kubernetes). Based on the controllers,
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strategies of cloud manager and container orchestrator are responsible for automating

deployment, autoscaling, and management of the VMs and containerized applications.

Popular container orchestrators include Kubernetes, DC/OS on the Apache Mesos, and

Docker Swarm. Kubernetes is the de-facto open-source container orchestration and

OpenStack is the most popular open-source cloud management platform. Therefore,

we use Kubernetes and OpenStack as the example to illustrate the system components.

A Kubernetes cluster consists of container control plane components and node com-

ponents. The container control plane consists of cloud controller manager, controller

manager, scheduler, and API server components. It reacts and performs the decision for

the clusters. The API server exports the control plane APIs. The consistent and highly

available key-value store (etcd) is used as the backing store for all cluster data. Scheduler

(kube-scheduler) is a broker to allocate the new pods to an available work node to run

on. The controller manager runs node, job, endpoints, service account, and token con-

trollers, which responses to node lifecycle, pod creation, endpoint objects population,

account and API access token creation, respectively.

The Cloud control plane consists of the monitor (Ceilometer), statistics collector

(Gnocchi), compute service (Nova), and network service (Neutron). The monitor service

(OpenStack Ceilometer) collects, normalizes, and transforms data produced by other

cloud services, and the statistics collector (Gnocchi) provides the time-series data stor-

age. The compute service (OpenStack Nova) provides virtual machines provisioning.

The network service (OpenStack Neutron) provides the management of virtual network-

ing, such as start, update and bind the VM’s port, as well as the communication between

VMs. However, it does not control network devices (switches) but only controls net-

working modules in compute nodes and network nodes. The compute and network

services communicate with corresponding agents (Nova agent and Neutron OVS agent)

in each compute node through service APIs (Oslo messaging APIs) for the computing

resource provisioning of VMs and network interfaces for interconnection.

The SDN controller manages the OpenFlow switches and flow forwarding entries

and collects the device and flow statistics through southbound interfaces. Networking

applications through SDN controller northbound interfaces perform topology discovery,

network provisioning, and network engineering policies.
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There are continuous efforts to integrate container networking in Kubernetes with

OpenStack, such as Kuryr Kubernetes [81]. Open Virtual Network, an OVS-based SDN

solution, is widely adopted in industrial cloud networking. With the help of Open Vir-

tual Network (OVN) and OVS as the data plane, Kube-OVN [82] integrates the OVN-

based network virtualization with Kubernetes offering some advanced overlay network

features such as subnet, QoS, static IP allocation, traffic mirroring, and OpenFlow-based

network policy. As shown in Fig. 2.1, the CNI driver will add the pod interface to OVS

and connect it to OVN. As a result, it also provides the network interconnection with

OpenStack and SDN controller, which enables the global networking topology visibility.

A Kubernetes cluster consists of a set of worker nodes that run containerized appli-

cations. Each worker node host several pods that are the components of the application

workload. The node components include node agent (kubelet), network proxy (kube-

proxy), and container runtime. The kubelet is the worker node agent running on each

node that registers the node with the API server. The network proxy that runs on each

node in the container cluster maintaining network rules on nodes.

The OpenFlow switch implemented by OpenVSwitch (OVS) consists of QoS Queue,

flow forwarding table, monitor agent, and OVSDB server. The OVSDB management

protocol is used to configure the OVS, such as creating, modifying, deleting the bridges,

ports, and interfaces. OpenVSwitch supports flow QoS, such as dropping ingress traffic

when exceeding the configured threshold and perform traffic shaping with traffic queu-

ing. It also supports monitor agents, such as the sFlow agent, to perform real-time flow

monitoring and analytics.

2.4 Taxonomy of Migration Management

In this section, we present the taxonomy of migration management in five aspects (Fig.

2.2), namely: (1) performance and cost model; (2) resource management and migration

generation; (3) migration planning and scheduling; (4) migration lifecycle management

and orchestration, and (5) evaluation method.
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Figure 2.2: Taxonomy of migration management

2.4.1 Migration Performance and Cost Modeling

The migration performance and cost modeling is the fundamental element for migra-

tion management to evaluate and predict the total cost and scheduling performance

of multiple migration requests. In this section, based on the related literature and our

observation, we identify the parameters, metrics, and modeling methods involved in the

performance and cost model of live migrations.

Parameters

Table 2.2 illustrates the parameters (variables) involved in live migration under three

categories: computing, networking, and storage resources. Moreover, we also identify the

migration parameters in the granularity aspect: single and multiple migration. The com-

puting resource parameters include CPU load and utilization, memory load and utiliza-

tion, memory size, dirty page rate, WSS size as frequent updating memory pages for

live migration optimization, and I/O interfaces (i.g. cache interface, host network card

interface, inter-CPU interfaces). The networking resource parameters include the migra-

tion routing, available bandwidth (link and routing bandwidth for single and multiple

paths), migration distance (the number of network hops), the number of involved net-
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Table 2.2: Parameters of the live migration model

Category Parameters

Computing CPU utilization memory utilization I/O interface WSS size

Networking bandwidth interfaces routing delay/distance layers/hops

Storage sharing data size storage type read/write speed

Single migration dirty page rate iterations threshold downtime threshold configuration delay priority

Multiple migration migration impact concurrency migration time routing scheduling window

Table 2.3: Metrics of live migration performance

Category Metric

Time migration time downtime deadline/ violation time

Data dirty memory storage stop-and-copy size

QoS response time network delay available resource

Energy physcial host network device cooling

SLA service availability success ratio policy performance

work layers, network delay (link delay and end-to-end latency). In addition, the storage-

related parameters include writing and reading speed and storage data size.

The single live migration parameters include dirty page rate, the threshold of pre-

copy iteration rounds, downtime threshold for pre-copy migration, configuration delay

in pre and post-migration processes, and the priority of the migration request. On the

other hand, we need to consider several parameters of multiple migration scheduling,

such as the migration impact on other services and subsequent migrations, the concur-

rency of multiple migration scheduling with resource contentions among migrations,

the single migration time in multiple migration scheduling, the migration routing con-

sidering the traffic of other services and migrations, and the scheduling window of each

migration with various priorities and urgencies.
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Metrics

Many works have investigated the metrics of single migration performance. However,

few works are focusing on the performance metrics of multiple migrations. Therefore,

we also extend the investigation of the single live migration metrics to the multiple mi-

grations in these categories. As shown in Table 2.3, we categorize these metrics into

different categories: time, data, QoS, energy, and SLA related. We explain each metric as

follows.

Migration Time: Migration time is one of the two main metrics used to evaluate the

single migration performance and overhead. A large migration time normally results in

a large overhead on both computing and networking resources for the migration VMs

and other services.

Downtime: Downtime is another key metric used to evaluate the single migration per-

formance. During the downtime caused by migration, the service is not available to the

users.

Iteration Number: For migration types utilizing the pre-copy strategy, the number of

iteration rounds is a direct parameter affecting the migration converging hence the mi-

gration time and downtime.

Data Transmission Size: It is the key metric to judge the network overhead during the

migration across the network. For pre-copy migration, it is highly positively correlated

to the migration time. The total amount of data transmission is the sum of the data

amount of each instance. It can be divided into two aspects: memory data and storage

data.

Total Migration Time: The total migration time of multiple migrations is the time in-

terval between the start of the first migration and the completion of the last migration.

This is the key metric to evaluate the multiple migration performance and overheads.
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Average Migration Time: The average migration time is the average value of individ-

ual migration time of all instances within a time interval. With the continuous arrival

migration requests, the average migration time is preferable to the total migration time.

The total migration time of a bunch of instances is only a suitable metric for the period-

ically triggered source management strategies.

Average Downtime: Similar to the average migration time, the average downtime is

the mean value of individual downtime of all instance migrations within a time inter-

val. Time unit, such as millisecond (ms) and second (s), is used for migration time and

downtime.

Energy Consumption: Energy consumption consists of the electricity cost, green en-

ergy cost, cooling cost, physical host, networking devices cost. It is a critical metric of

live migration overheads used for green energy algorithms and data centers. Joule (J) is

used as a unit of energy and Wh or KWh is used in electrical devices.

Deadline Violation: Migration request or task is the key element for the multiple mi-

gration scheduling algorithms. Service migrations with different time requirements will

have the corresponding deadline and scheduling window. As a result, the number of

deadline violations for migrations with different priorities and urgency is the key metric

to evaluate a deadline-aware or priority-aware migration scheduling algorithm.

Resource Availability: The remaining computing, networking, storage resources dur-

ing and after the single migration and multiple migrations. It is critical for migration

success rate as there should be sufficient resources for the new instance in the destina-

tion. Furthermore, resource availability during the migration affects the performance of

the subsequent migrations. Resource availability after the migration is also a metric for

the resource reconfiguration evaluation for various policies.

Quality of Service (QoS): QoS metrics of the migrating service and other services (co-

located VMs, shared-resource VMs, connected VMs) include response time, end-to-end
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delay, network delay, and network bandwidth during and after the single migration or

each migration during multiple migration scheduling.

Service Level Agreement (SLA): Migration may cause service unavailable due to the

migration-related issues, such as downtime, network continuity, network robustness,

and migration robustness. Therefore, SLAs are provided to subscribers and tenants as

the availability rate for the services with and without migrations. Therefore, SLA viola-

tions is another critical metric.

Modeling Methods

This section introduces the different modeling methods for live migration performance

and overheads, including theoretical modeling and experimental modeling (profiling and pre-

diction).

Theoretical: In theoretical modeling, the system behaviors are described mathemati-

cally using formulas and equations based on the correlation of each identified param-

eters [83–92]. Some works only model the migration costs and performance based on

the parameters correlation. Other works follow the behaviors of live migration, such

as iterative copying dirty page rate to model, the performance, and overheads in finer

granularity.

Profiling: Experimental modeling methods are based on measurements with controlled

parameters. Empirical running analysis, such as Monte Carlo, are relied on repeated

random sampling and time-series monitoring and recording for migration performance,

overheads, and energy consumption profiling [84, 93, 94]. For both overhead and per-

formance modeling, empirical experiment profiling can also derive the coefficient pa-

rameters in the model equations [88, 91, 95, 96]. Regression algorithms are also used to

model the cost and performance based on the measurement [92, 97].

Prediction: Generally, mathematic cost models can be used to estimate migration per-

formance and overheads. Performance estimation and prediction algorithms [72, 84, 88,
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92, 96, 98] are proposed to simulate migrations processes to minimize the prediction

error. Furthermore, Machine Learning (ML)-based modeling [99, 100] are adopted to

generalize parameters in various resources to obtain a more comprehensive cost and

performance prediction model.

Cost and Overhead Modeling

The cost and overhead models of live migration are integrated with the policy objec-

tives for modeling and optimizing the dynamic resource management problems. Sim-

ilar to the migration parameters, the cost and overhead modeling can be categorized

into computing, networking, storage, and energy caused by virtualization and live mi-

gration (see survey [74]), migration influence on subsequent migrations and co-located

services [28, 29, 90, 101, 102], and migration networking competitions with each other in

the multiple migration context [29, 30, 103].

Performance Modeling

For resource management and migration scheduling algorithms, the performance mod-

els of single and multiple migrations are used to maximize the migration performance

whiling achieving the objectives of resource management. The category of performance

model is similar to the performance metrics classification. In other words, performance

models can be categorized as migration success rate, migration time, downtime, trans-

ferred data size, iteration number, and deadline violation [74]. With the complexity of

modeling multiple migrations, it is difficult to model the performance of multiple mi-

gration directly on total migration time. Therefore, multiple migration performance and

cost models are focusing on the single migration performance based on the currently

available resources during multiple migration scheduling [102, 103] and the involved

parameters for the resources contentions, such as shared network routing, shared links,

shared CPU, memory, network interfaces, and the number of migrations in the same

host [28–30, 104].



2.4 Taxonomy of Migration Management 39

Migration 
Generation

Target
Selection

Objectives

Source RoutingdestinationInstance

Overheads Performance Network Scheduling

Figure 2.3: Categories of migration generation in dynamic resource management

2.4.2 Migration Generation in Resource Management

In this section, we discuss migration request generation of resource management algo-

rithms. We investigate how the migration performance and overhead models integrated

with the policy affect the optimization problems and migration generations in two as-

pects: migration target selection and migration generation objectives. Figure 2.3 illustrates

the details of each aspect.

Migration Target Selection

The targets of one migration include the selections of source, destination, instance, and

network routing. During the migration generation for resource management manage-

ment, the targets of migrations can be selected simultaneously or individually. For si-

multaneous solutions, such as approximation algorithms, several migration instances,

source or destination hosts, and network routings can be generated at the same time.

For individual solutions, such as heuristic algorithms, each migration request can be

generated once at a time in each algorithm loop.

Source Selection: The source host of one migration request is selected based on the

objectives of resource management policies, such as failure, resource utilization, energy

consumption, over-subscripted host, and under-subscripted host.

Instance Selection: During the instance selection for migration request, the migration

generation algorithm needs to consider the various objectives of resource management

policy, the availability of resources in potential destinations, and the overheads of live
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migration, such as dirty page rate and the number of allowed migrations. For use cases

such as gang migration, disaster recovery, software update, and hardware maintenance,

all instances within the source hosts or sites will be selected.

Destination Selection: Many works considered the selection of migration destination

as a bin packing problem, where instances as items with different volumes need to be

packed into a finite number of bins with fixed available volumes in a way to minimize

the number of bins used. There are several online algorithms to solve the problems, such

as Next-Fit (NF), First-Fit (FF), Best-Fit (BF), Worst-Fit (WF), etc. By considering both

objectives of various resource management and migration overheads and performance,

heuristic and approximation algorithms are proposed.

Flow Routing: The available bandwidth and network delay are critical for migration

performance, such as migration time and downtime. The migration flows of pre-copy

migration are elephant flows and post-copy migrations are sensitive to the network de-

lay. Meanwhile, in the network architecture where the migration traffic and service

traffic share network links, the migration traffic can significantly affect the QoS of other

services. In the SDN-enabled data centers, the allocated bandwidth and the routings of

both migration and services traffic can be dynamically configured to improve the per-

formance of live migration and minimize the migration network overheads.

Migration Generation Objectives

In this section, we summarize the different objectives of migration selections in resource

management policies from the perspective of live migration management, including mi-

gration overhead, performance, network, and scheduling awareness. Many works are pro-

posed in dynamic resource management for various objectives, such as performance,

networking, energy, QoS, and disaster recovery. Most of the works only consider the

memory footprint (memory size) and available bandwidth. Without the proper live

migration modeling, the selected migration requests for instance reallocation and cor-

responding scheduling will result in unacceptable scheduling performance and service

degradations. Some works consider the individual migration performance and comput-
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ing and networking overheads during the migration generation or instance placement

selection for the dynamic management policy. The total migration cost, as a result, is

only a linear model, which can not reflect the concurrency among migrations and the

resource contentions between migrations and services. As a result, the solution is only

optimized for sequential live migration solutions.

Overhead-aware: Many works of resource management policies are focusing on min-

imizing the cost or overheads of migrations and modeling the total cost as a sum of the

individual live migration cost. Mann et al. [105] allocated minimal essential bandwidth

for a migration flow that finished just in time to minimize the QoS violations during

migrations. It may only suit the sequential scheduling with one-by-one migration as

it can not model the multiple migrations contending network bandwidth in concurrent

scheduling.

Performance-aware: Most of the resource management solutions through live migra-

tions do not consider and guarantee migration performance. Some works are focusing

on the multiple-objective optimization integrating with the objectives of resource man-

agement, such as the cost and performance of migrations [90, 104, 106–108] .

Network-aware: Live migration traffic and application traffic are sharing network re-

sources. Therefore, we need to consider the network contentions and instance connec-

tivity to optimize the networking throughput and communication cost during or after

the migrations [27, 109–113].

Scheduling-aware: Current works do not consider the migration scheduling perfor-

mance with the linear model of migration cost and interfaces. In the migration genera-

tion phase of resource management policies, we can optimize the performance of single

or multiple migration scheduling and guarantee the optimal or the near-optimal per-

formance of the objectives of the original resource management policy. Compared to

policy-aware migration management, it is more adaptive without the need for specific

modeling and design. It has less impact on the enormous amounts of existing dynamic

resource management policies.
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Figure 2.4: Categories of migration lifecycle management and orchestration

2.4.3 Migration Lifecycle and Orchestration

Based on various scenarios of dynamic resource management through live migrations, it

is critical to investigate the migration lifecycle and orchestration layer including migra-

tion arrival patterns and corresponding management framework. Therefore, this sec-

tion summarizes the migration lifecycle management and orchestration in the several

aspects: arrival pattern, orchestration, monitoring, and management framework. Figure 2.4

illustrates the details of each aspect.

Arrival Patterns

Arrival patterns of migration requests based on various paradigms and objectives in

fog, edge, and cloud computing environments can be categorized as periodic and stochas-

tic pattern. For existing dynamic resource management algorithms, the migration gen-

eration and arrival patterns are periodic due to the overhead of live migrations. The

dynamic resource management, such as regular maintenance and updates, load balanc-

ing, and energy-aware consolidation algorithms, triggered the reallocation periodically.

On the other hand, arrival patterns of event-driven migrations are often stochastic due

to the nature of the service. For example, the mobility-induced migration in edge com-

puting is based on the user behaviors and movement.
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Orchestration

Several orchestration systems have been proposed to control computing and network

resources in fog, edge, and cloud computing environments [114–119]. Generally, the

system architecture includes the orchestration layer on top of the cloud manager (such

as VM manager) and networking manager (such as SDN controller) that perform re-

source provisioning, allocation, monitoring, and billing. In the WAN environments with

several sites across IoT, edge, and cloud domains, a global orchestration layer oversees

the global networking and service provisioning on top of the individual orchestrator in

each data center site [20, 119]. Based on the joint computing and networking provision-

ing, migration algorithms are located in the orchestration layer to perform the high-level

migration optimization, planning, and scheduling.

Monitoring

Based on the monitor components of cloud manager and network manager, migration

monitor is a key component for migration management applications. The states and

availability of computing and networking resources are essential for migration lifecycle

management and migration planning and scheduling. The monitors collect real-time

information of computing and networking resources at computer nodes, virtualized in-

stances (VMs and containers), and network devices. Based on the resource types, moni-

toring can be categorized as computing, networking, storage, and energy monitoring.

For computing resources, we need kernel-level monitoring for CPU, memory uti-

lization, network interfaces, memory tracing for dirty page rate and WSS, and process

tree state parsing in user space for containers, machine-level monitoring for available

resources supported by VM hypervisor and container runtime, and application-level

monitoring such as cloud service daemon availability and functioning, instance reacha-

bility, and processing time. For example, Ceilometer and Gnocchi components are ser-

vices for measuring and collecting the usage metrics (e.g. CPU time) and event data (e.g.

instance creation) for OpenStack clouds. OpenStack Aodh based on the measurements

from Gnocchi is an alarm notification service, which can trigger the policy actions based

on the pre-defined Service Level Objectives (SLOs) level.
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The network monitoring can be categorized as packet-level and network-level mon-

itoring. For the packet-level monitoring, network management and sampling protocols,

such as SNMP [120], NetFlow/IPFIX [121], and sFlow [122], are used. Simple Network

Management Protocol (SNMP) [120] is an Internet standard protocol for collecting, or-

ganizing, and modifying the information of managed network devices. It is widely

used in network management for network monitoring. Cisco NetFlow and IPFIX [121]

are adopted to collect the IP traffic information and monitor the network flow. For the

sFlow protocol [122], it can provide real-time measurements of the network by captur-

ing sampled packets through the sFlow agent in the switches. The sFlow engine located

in the controller gathers the information from sFlow agents through RESTful APIs. By

integrating traffic analysis techniques with SDN and OpenFlow protocol, network ana-

lytics are enabled for anomaly detection and mitigation [123–125], network-wide traffic

visibility [126], and large flow detection and mitigation [127], which directly benefits

the network management of live migration. For the network-level monitoring, SDN

controller through OpenFlow protocol can collect device information and flow statistics

measured at switches’ data plan [128–131], which enables the network application on

network topology monitoring, traffic engineering, and abnormal detection.

Storage and volume monitoring is also essential for determining the disk and space

availability, space requirement, reading and writing speed, the status of storage migra-

tion, and the usage of cache space on disk storage. For example, OpenStack Swift Recon

is the object storage monitoring middleware collecting the general machine statistics

and storage-specific meters. Energy consumption monitoring for both physical hosts

and network devices is critical for migration overheads and performance in the energy-

aware data centers [132, 133]. For example, smart meter energy monitors and Power

Distribution Units (PDU) offer the data center managers fully intelligent data center

power distribution units and monitoring ability.

Management Framework

Based on characteristics of resource management policies in various scenarios and use

cases, the triggered pattern of migration planning can be categorized into periodic,
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discrete-time, and on-demand types.

On-Demand: In the on-demand framework, the migration will be planned and sched-

uled whenever the request arrives. The on-demand framework can be applied to the

scenarios that individual users and events are the subjects to trigger the migration from

one host to another, such as mobility-induced migration and migration requests by pub-

lic cloud subscribers and tenants.

Discrete-Time: In the discrete-time framework, arrival migration requests are put into

plan waiting queues, which regulates the migration arrival speed and processing speed

of planning algorithm. The migration planner will read migration requests from the

plan waiting queues and unscheduled migrations from previous rounds periodically

at the start of each configured time interval, such as one second. For each input, the

planner will calculate the migration plan based on the migration priority and states of

computing and networking resources. The planned migration requests will be waited in

the queue to be started by the migration scheduler according to the plan. Since the time

interval of each input can be very small, some unscheduled requests in the previous

migration plan may affect the decision of the current planning round. The discrete-

time framework suits the scenarios where migration can arrive stochastically and arrive

much more frequently than the traditional dynamic resource management strategies,

such as mobility-induced migration in edge computing.

Periodic: In the periodic planning framework, migration plans are calculated based

on periodically arrived migration requests from the dynamic resource management al-

gorithm. The time interval between each migration planning can be configured as the

value of the resource management interval. With a large time interval, multiple migra-

tion requests for the instance reallocation will not be affected by the migrations from

the previous round. Within each time interval, all instance migrations can be completed

before the start of next planning round.
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Figure 2.5: Categories of migration planning and scheduling algorithms

2.5 Migration Planning and Scheduling

In this section, we introduce the taxonomy for migration planning and scheduling, in-

cluding migration granularity, scheduling objectives, scopes, types, and methods. Figure 2.5

illustrates the details of each category. Compared to real-time task scheduling, there is

enough time to perform more complex migration scheduling, which further improves

multiple migration performance and alleviates migration overheads. When it comes

to multiple migrations, based on the objectives of live migration, the migration plan-

ning algorithm needs to calculate and optimize the sequence of each migration. In other

words, the planning algorithm needs to consider the following issues, including avail-

ability, concurrency, correlation, and objective.

2.5.1 Migration Granularity

The migration granularity in the context of migration planning and scheduling can be

categorized into single migration and multiple migration.
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Single Migration: In single migration, only one instance is migrated at the same time.

The research scope of single migration focusing on the performance and overhead of in-

dividual migration, including migration mechanisms, optimization techniques in both

computing and networking aspects. The key metrics of single migration performance

are migration time and downtime. The overheads of single migration include network

interfaces, CPU, and memory stress, migration process overheads in the source and des-

tination hosts (i.g. dirty memory tracing overheads), service-level parameters (i.g. re-

sponse time), and available bandwidth for the migration service and other services in

the data center.

Multiple Migrations: In multiple migration, multiple instances are considered to be

migrated simultaneously. Multiple migration can be divided into various aspects based

on the instance and service locations and connectivity, including co-located instances

(gang migration) and cluster migrations (same source and destination pair), and related

instances (connected services and applications, VNFs in SFC, entire virtual network,

VMs in the same virtual data center). The overheads and performance of multiple mi-

grations need to be evaluated and modeled in the migration generation, planning, and

scheduling phases.

The overheads of multiple migrations can be categorized into service-level and system-

level overheads. The service-level overheads include multiple migration influences on

the migrating service, subsequent migrations performance, and other services in the

data centers, and the system-level overheads include the multiple migration influence

on the entire system, such as availability of networking and computing resources. On

the other hand, the performance of multiple migration can be divided into global and in-

dividual performance. Total migration time, downtime, and transferred data size are the

key metrics for the global migration performance of multiple migration. Performance

metrics, such as average migration time, average downtime, and deadline violation, are

used for the individual performance in multiple migration.
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2.5.2 Objectives and Scopes

In this section, we summarize the objectives of migration planning algorithms and schedul-

ing strategies. It can be categorized into migration ordering, migration competitions, over-

head and cost, migration performance, migration timeliness, and migration availability and fea-

sibility. We also categorized the scheduling scope in two aspects: co-located scheduling

and multiple migration scheduling with multiple source-destination pairs (multi pairs).

Migration Ordering: The works of migration ordering problems focus on the feasibil-

ity of multiple migrations [28, 104] and migration ordering of co-located instances [101,

102] in the one-by-one scheduling solutions. In other words, given a group of migra-

tion requests, the feasibility problem is solving the problem that whether given migra-

tions can be scheduled and the scheduling ordering of these requests due to the resource

deadlock. The performance problem in the migration ordering context is finding an op-

timized order to migrate the co-located instance in order to minimize the overheads of

multiple migrations and maximize the performance of multiple migration in the one-

by-one scheduling manner.

Migration Competitions: Resource competition problems include the competitions

among migrations and between migrations and other services during the simultaneous

migration scheduling [29, 30, 103]. Since migrations and services are sharing computing

and networking resources, it is essential to determine the start sequence of migrations in

both sequential and concurrent scheduling manner to minimize the resource throttling

and maximize the resource utilization with respect to both QoS and migration perfor-

mance. The resource dependencies and competitions among migrations and services

need to be considered in both migration generation phase and the planning and schedul-

ing phase in order to improve the performance of multiple migration and minimizing

the overheads of multiple migration.

Overhead and Cost: It is critical to minimize migration overheads and costs to alle-

viate the QoS degradations and guarantee the SLA during live migration scheduling.

The computing overheads on CPU, memory, and I/O interfaces affect the co-located in-
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stances negatively. The migrations also share the same network links with other services.

It may lead to QoS degradations due to the lower bandwidth allocation. As a result, a

longer migration process leads to larger computing (CPU and memory) and network-

ing overheads (network interfaces and available bandwidth). Network management

policies and routing algorithms are adopted to dynamically allocate the bandwidth and

network routing to migrations. Furthermore, the migration downtime also need to be

managed to avoid the unacceptable application response time and SLA violations.

Migration Performance: The performance of multiple migration scheduling is one of

the major objectives of migration planning and scheduling algorithms. The total mi-

gration time is highly relative to the final management performance. In other words,

a smaller migration time leads to a quicker optimization convergence. Furthermore, in

green data center solutions, the energy consumptions induced by live migration need to

be modeled properly.

Timeliness: The timeliness of the migration schedule is also critical to resource man-

agement performance [103, 134]. For the migration with various priorities and urgen-

cies, inefficient migration planning or scheduling algorithms may result in migration

deadline violations, which leads to QoS degradations and SLA violations. For example,

some VNF needs to be migrated as soon as possible to maintain low end-to-end latency

requirements. On the other hand, some migration requests of web services with high la-

tency tolerance and robustness are configured with a much larger scheduling window.

Availability and Feasibility: Migration availability and feasibility problems are also

considered in the planning and scheduling algorithms [28, 104]. There should be re-

served resources in the destination hosts and sites in order to host the new instance. In

the context of multiple migration, resource deadlock and network inconsistency may

also affect the migration success ratio. Intermediate migration host and efficient migra-

tion ordering algorithms are proposed to solve the migration feasibility issue.
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Scheduling Scopes

The multiple migration scheduling and planning algorithms can be divided into co-

located and migrations with multiple source-destination pairs (Fig. 2.6). In co-located

instance migrations, such as gang migration, the solution only focus on one source

and destination pair. On the other hand, multiple instances migration involves vari-

ous source and destination hosts or sites. For the migrations across dedicated network

links, networking contentions between migration and services are omitted. In the data

center network without dedicated migration networks, some works consider the virtual

network connectivity among applications during the migration schedule.

2.5.3 Scheduling Types

The migration scheduling types of multiple migration can be categorized as sequential

multiple migration, parallel multiple migration, and concurrent multiple migration.

Sequential: In the sequential multiple migration solution depicted in Fig. 2.7(a), mi-

gration requests are scheduled in the one-by-one manner. In most scenarios for live VM

migration, the network bandwidth is not sufficient for live migration to share network

links with other migrations. Therefore, sequential migration scheduling for network-

ing resource-dependent migrations is the optimal solution. It is used to the migration

scheduling in co-located multiple migration scheduling and planning.
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Figure 2.7: Scheduling types of multiple migration scheduling

Parallel: In the parallel or synchronous multiple migration solution (Fig. 2.7(b)), mi-

gration requests start simultaneously. For the migrations with network link sharing,

parallel migration scheduling is preferred only when the networking overheads induced

by dirty pages and the memory footprint of migrating instances are smaller than the

migration computing overheads. In other words, in most scenarios, the parallel migra-

tion may result in longer total and individual migration time and downtime. On the

other hand, for the migrations without network links sharing across dedicated migra-

tion networks, the minimum total and individual migration time can be achieved. Some

solutions are mixing the sequential and parallel migration solution that groups of migra-

tions are started at the same time as in parallel solution and each group of migrations is

scheduled sequentially.

Concurrent: Furthermore, concurrent or asynchronous migration planning and schedul-

ing algorithms are proposed to schedule multiple migration requests efficiently by cal-

culating and scheduling the start time of each migration independently (Fig. 2.7(c)). Mi-
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grations contend network resources with other migrations and services. Furthermore,

the service traffic relocation induced by migration completion may affect subsequent

migrations. As a result, migrations without resource contentions can be scheduled in

the parallel manner and migrations with resource dependency need to be scheduled se-

quentially. Therefore, it is essential to manage the dependency and concurrency among

migrations during multiple migration scheduling to optimize the multiple migration

performance.

2.5.4 Scheduling Methods

After the phase of multiple migration planning, the calculated migration plan is going to

be scheduled in the migration scheduling phase. We categorize scheduling methods into

three types, namely prediction, fixed ordering, and online scheduler. In order to schedule

single and multiple migrations, the migration manager and scheduler need to know

when a migration has finished or needs to be started.

Prediction: Based on the prediction model and current available computing and net-

working resources, the start time of each migration is configured during the planning

phase. Furthermore, the bandwidth allocated to each migration is also configured based

on the available bandwidth at the time of migration planning.

Fixed ordering: Multiple migration tasks are scheduled based on the order calculated

by migration planning algorithms. In other words, one migration is started as soon as

possible when one or several specific migrations are finished. The fixed ordering model

of multiple migration requests is similar to the dependent tasks, which can be modeled

as a Directed Acyclic Graph (DAG).

Online Scheduler: The states of the networking environment, such as network topol-

ogy, available links and interfaces, available bandwidth, and network delay, are con-

stantly changed. The computing resources, such as memory, vCPU, storage, destination

hosts, and sites, may also become unavailable during the multiple migration scheduling.

Integrating with dynamic computing and networking management, online migration
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scheduler can dynamically start the migrations based on current states of computing

and networking. The resource may not be available based on the predicted schedul-

ing time or orders. The online scheduler can dynamically adjust the migration plan to

efficiently schedule multiple migrations Furthermore, by balancing the allocated band-

width to migration and application traffic, the online scheduler can guarantee both QoS

and migration performance.

2.6 Current Research on Migration Management

In this section, we review the current research on migration management by focusing on

the migration generation during dynamic resource management and the migration plan-

ning and scheduling algorithms. Each work can involve several categories of live mi-

gration management. Therefore, we choose the major category to organize and present

the reviews in a more straight forwarding way.

2.6.1 Migration Generation

In this section, we review and summarize representative works on migration generation

based on the resource management objectives, such as load balancing, energy-saving,

network communication optimization, and migration-aware solutions.

Many works have studied the load balancing problem in dynamic resource manage-

ment through live migrations [27, 135–138]. Singh et al. [135] propose a multi-layer vir-

tualization system HARMONY. It uses VMs and data migration to mitigate hotspots on

servers, network devices, and storage nodes. The load balancing algorithm is a variant

of multi-dimensional knapsack problem based on the evenness indicator, i.e. Extended

Vector Product (EVP). It considers the single live migration impact on application per-

formance based on CPU congestion and network overheads. Verma et al. [136] estimate

the migration cost based on the deduction of application throughput. The proposed al-

gorithm (pMapper) selects the smallest memory size VMs from the over-utilized hosts

and assigns them to under-utilized hosts in the First Fit Decreasing (FFD) order. Wood et

al. [137] propose a load balancing algorithm Sandpiper that selects the smallest memory
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Table 2.4: Characteristics of Migration Generation in Dynamic Resource Management

Reference Mig. Com. Mig. Net. Mig. Obj. Res. Obj.

mem
dirty

rate
cpu bw route hop layer perf. cost num comp. net. energy QoS

Singh et al. [135] ✓ ✓ ✓ ✓ ✓

Verma et al. [136] ✓ ✓ ✓ ✓ ✓

Wood et al. [137] ✓ ✓ ✓

Mann et al. [27] ✓ ✓ ✓ ✓ ✓

Forsman et al. [138] ✓ ✓ ✓ ✓ ✓

Xiao et al. [139] ✓ ✓ ✓ ✓ ✓

Beloglazov et al. [140] ✓ ✓ ✓

Beloglazov et al. [141] ✓ ✓ ✓ ✓ ✓

Witanto et al. [142] ✓ ✓

Li et al. [143]

Piao et al. [144] ✓ ✓

Tso et al. [110] ✓ ✓ ✓ ✓

Cao et al. [145] ✓ ✓ ✓ ✓ ✓

Cui et al. [106, 107] ✓ ✓ ✓ ✓ ✓

Xu et al. [90] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cui et al. [112] ✓ ✓ ✓ ✓ ✓

Flores et al. [108] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mig. Com.: Migration Computing parameters - mem (memory size), cpu (CPU load and
utilization); Mig. Net.: Migration Networking parameters - bw (bandwidth), route (migra-
tion traffic routing), hop (migration distance), layer (involved network layers); Mig. Obj.:
Migration Objectives - perf. (migration performance), cost (migration cost and overheads),
num (migration number); Res. Obj.: Resource management Objectives - comp. (comput-
ing), net. (networking), energy (device and cooling energy cost), QoS (response time and
SLA violations).

size VM from one of the most overloaded hosts to minimize the migration overheads.

Mann et al. [27] (Remedy) focus on the VM and destination selection for the load balance

of application network flows by considering the single migration cost model based on

the dirty page rate, memory size, and available bandwidth. Forsman et al. [138] propose

a pre-copy live VM migration selection algorithm for automated load balancing strat-

egy based on the migration cost [88], expected load distribution, and utilization after
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migration.

Dynamic VM consolidation algorithm is one of the techniques to reduce energy

consumption through VM migrations. Khan et al. [146] review the related works on

dynamic virtual machine consolidation algorithms for energy-efficient cloud resource

management. Xiao et al. [139] investigate dynamic resource allocation through live mi-

gration. The proposed algorithm avoids the over-subscription while satisfying resource

needs of all VMs based on exponentially weighted moving average (EWMA) to predict

the future loads. It also minimizes the energy consumption of physical machines by

hot spot mitigation. The cost of live migration is modeled as the memory size. The au-

thors argue that live migration with self-ballooning causes no noticeable performance

degradation.

Beloglazov et al. [140] propose Minimization of Migrations (MM) algorithm to select

the minimum migration number needed to fulfill the objective of overloaded host mit-

igation and underloaded host consolidation. Best Fit Decreasing algorithms are used.

VMs are sorted in decreasing order based on the CPU utilization and network con-

sumption of expected allocation. Furthermore, Beloglazov et al. [141] (LR-MMT) focus

on energy saving with local regression (LR) based on history utilization to avoid over-

subscription. The proposed algorithm chooses the VM with the least memory size from

the over-utilized host and the migration destination with the largest energy saving. The

minimum migration time is modeled based on VM memory size and available band-

width.

Witanto et al. [142] propose a machine-learning selector with neural network. High-

level consolidation through VM migrations may reduce energy consumption, but will

result in higher SLA violations. Therefore, the proposed algorithm dynamically chooses

existing consolidation algorithms and strategies to manage the trade-off between energy

and SLA violation (due to VM migration downtime) based on the priority availability in

the system.

For the works on networking provisioning through live migration, Piao et al. [144]

propose a virtual machine placement and migration approach to minimize the data

transfer cost. The proposed migration approach is triggered when the execution time

crosses the threshold that specified in the SLA. Tso et al. [110] propose a distributed
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network-aware live VM migration scheme to dynamically reallocate VMs to minimize

the overall communication footprint of active traffic flows in multi-tier data centers.

The authors investigate the performance degradation issue during migration, which is

caused by the congestion at the core layers of the network where bandwidth is heavily

oversubscribed. The proposed distributed solution generates migration requests itera-

tively based on the local VM information (one-by-one migration scheduling) to localize

VM traffic to the low-tier network links. The migrations are performed only when the

benefits of traffic reallocation outweigh the migration cost based on VM memory and

downtime. However, the work lacks a realistic comparison between migration over-

heads and migration benefits for communication management. With the help of SDN,

the assumption of requirements that centralized approaches obtaining knowledge of

global traffic dynamics is prohibitively expensive may be untenable.

Cao et al. [145] investigate the VM consolidation problem considering the network

optimization and migration cost. Migration overheads are modeled as the host power

consumption (the product of power increase and migration time) and traffic cost (the

produce of VM memory size and distance in hop number between source and destina-

tion). Cziva et al. [115] propose an SDN-based solution to minimize network communi-

cation cost through live VM migration in a multi-tire data center network. The authors

model the communication cost as the product of the average traffic load per time unit

and weight of layer link. They argue that the migration cost can be introduced into the

solution by modeling the migration network traffic cost. Similarly, Cui et al. [106, 107]

study the joint dynamic MiddleBox/VNF network chaining policy reconfiguration and

VM migration problem in the SDN-enabled environment to find the optimal placement

minimizing the total communication cost. The authors consider both VM migration

time and the traffic data induced by the MiddleBox/VNF migration. However, the pa-

per lacks the information for how the communication cost is modeled. The migration

cost is considered by comparing the network rate with data per time unit with the total

transferred data size of live migration. Furthermore, only modeling the migration cost as

transferred data size without considering the networking bandwidth and routing may

result in poor migration scheduling performance and QoS degradations.

With the input of candidate VMs and destinations provided by existing resource



2.6 Current Research on Migration Management 57

management algorithms, Xu et al. [90] propose a migration selector (iAware) to min-

imize the single migration cost in terms of single migration execution time and host

co-location interference. It considers dirty page rate, memory size, and available band-

width for the single migration time. They argue that co-location interference from a

single live migration on other VMs in the host in terms of performance degradation is

linear to the number of VMs hosted by a physical machine in Xen. However, it only

considers one-by-one migration scheduling.

Cui et al. [112] propose a new paradigm for VM migration by dynamically construct-

ing adaptive network topologies based on the VM demands to reduce VM migration

costs and increase the communication throughput among VMs. The migration cost is

modeled as the product of the number of network hops and VM’s memory size. The

authors argue that the general VM migration cost value can be replaced by specific cost

metrics, such as migration time and downtime based on allocated bandwidth and mea-

sured dirty page rate of the VMs.

Li et al. [143] propose a greedy-based VM scheduling algorithm to minimize the to-

tal energy consumption, including the cooling and server power consumption models.

For the selection of migration requests, the proposed algorithm selects all physical ma-

chines with the temperature above the threshold proportion as source hosts. Then, it

selects the VM with the minimum utilization from all selected source hosts and selects

the server with the minimum power increase as the migration destination for each VM.

The authors focus on energy consumption through live migrations without consider-

ing the migration cost. However, the proposed algorithm outputs multiple migration

requests without the actual migration planning and scheduling algorithms.

Flores et al. [108] propose a placement solution that integrates migration selection

with data centers policies to minimize the communication cost by considering network

topology, VM virtual connections, communication cost, and network hops for live mi-

gration cost. Considering the routing cost, the proposed migration scheduling algorithm

migrates VMs in order to minimize the total cost of migration and VM communication.

However, the cost model of migration is still linear without considering the concurrent

scheduling performance of multiple migrations.

We summarize the characteristics of migration generation in Table 2.4 based on four
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Table 2.5: Comparisons of Solutions on Migration Planning and Scheduling

Reference Schedule Net Scope Heter Mig Obj

Seq. Parl. Cnrc.
Mig.

net.

Net.

mgmt.
Connect. Co-loc.

Multi

src-dst

QoS

aware

Mig.

order

Mig.

Feas.

Mig.

perf.

Mig.

cost

Deshpande et al. [147] ✓ ✓ ✓

Deshpande et al. [148, 149] ✓ ✓ ✓

Rybina et al. [101] ✓ ✓ ✓ ✓ ✓

Fernando et al. [102] ✓ ✓ ✓ ✓ ✓ ✓

Ghorbani et al. [28] ✓ ✓ ✓ ✓

Sun et al. [150] ✓ ✓ ✓ ✓ ✓

Deshpande et al. [26] ✓ ✓ ✓ ✓ ✓ ✓

Zheng et al. [151] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Liu et al. [152] ✓ ✓ ✓ ✓ ✓ ✓

Lu et al. [153] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lu et al. [154] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kang et al. [155] ✓ ✓ ✓ ✓ ✓

Ye et al. [156] ✓ ✓ ✓ ✓

Sarker et al. [104] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bari et al. [29] ✓ ✓ ✓ ✓ ✓ ✓

Wang et al. [30] ✓ ✓ ✓ ✓ ✓

Schedule Type: Seq. (Sequential), Parl. (Parallel), Cnrc. (Concurrent), Net: Networking re-
lated - Mig. net. (Dedicated migration network), Net. mgmt. (Networking management),
Connect. (instance Connectivity), Scope: Co-loc. (Co-located instances), Heter: Heteroge-
neous solutions (mixing various migration types), and Mig Obj: migration management
objectives - Mig. order (migration ordering), Mig. feas. (migration feasibility), Mig. perf
(migration performance), Mig. cost (Migration cost and overheads).

categories: migration computing parameters, migration network parameters, objectives

of migration optimization in the solution, and objectives of resource management.

2.6.2 Migration Planning and Scheduling

In this section, we review the state-of-the-art works on migration planning and schedul-

ing algorithms. Studies of migration planning and scheduling focus on various as-

pects, such as migration feasibility, migration success or failure ratio, migration effects,

scheduling deadline, application QoS, scheduling orders, migration scheduler, migra-

tion routing, and migration performance in total migration time, average migration
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time, downtime, and transferred data size. As shown in Table 2.5, we summarize the

characteristics of reviewed solutions of migration planning and scheduling in various

categories: scheduling type, migration networking awareness, migration scopes, het-

erogeneous migration types, and migration scheduling objectives.

Co-located Multiple Migrations

Deshpande et al. [147] consider the migration of multiple co-located VMs in the same

host as the live gang migration problem. They optimize the performance of multiple

live migrations of co-located VMs based on the memory deduplication and delta com-

pression algorithm to eliminate the duplicated memory copying from the source to the

destination host. Since co-located VMs share a large amount of identical memory, only

identical memory pages need to be transferred during the iterative memory copying in

pre-copy migration. They also employ delta compression between copied dirty pages

to reduce the migration network traffic. Moreover, Deshpande et al. [148, 149] further

investigate the same problem using cluster-wide global deduplication by improving the

technique from the co-located VMs in the same host to the ones in the same server rack.

Rybina et al. [101] investigate the co-located resource contentions on the same phys-

ical host. The authors evaluate all possible migration orders in a sequential manner in

terms of total migration time. They find that it is better to migrate the memory-intensive

VM in order to alleviate the resource contentions. Fernando et al. [102] proposed a so-

lution for the ordering of multiple VMs in the same physical host (gang migration) to

reduce the resource contentions between the live migration process and the migrating

VMs. The objectives of the solution are minimizing the migration performance impact

on applications and the total migration time. The migration scheduler decides the or-

der of migrations based on different workload characteristics (CPU, Memory, network-

intensive) and resource usage to minimize the total migration time and downtime. Fur-

thermore, an SDN-enabled network bandwidth reservation strategy is proposed that re-

serves bandwidth on the source and destination hosts based on the migration urgency.

When the available bandwidth in the destination can not satisfy the migration require-

ment, network middle-boxes [157] are used as network intermediaries to temporarily
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buffer the dirty memory.

Migration Feasibility

For the migration scheduling feasibility, Ghorbani et al. [28] proposed a heuristic one-by-

one migration sequence planning for a group of migration requests to solve the problem

of transient loop and network availability during the migration. The authors consider

the environments that the requirement of the virtual network must be satisfied with

bandwidth over-subscription. With the bandwidth requirement of virtual links between

instances, random migration sequence will lead to the failure of migrations of most of

the instances. With the flow install time of current SDN controller implementation, the

orders of network updates due to migration within the forwarding table may cause the

transient loop issue. The authors did not consider the concurrent VM migration schedul-

ing with various network routings.

Heterogeneous and Homogeneous Solutions

Multiple migration can be divided into heterogeneous and homogeneous solutions. For

the heterogeneous solution, different types of live migration (pre-copy and post-copy

migrations) are used simultaneously. In an environment that all migrations are shar-

ing the same network, Sun et al. [150] considers the sequential and parallel migration

performance of multiple VMs. The authors proposed an improved one-by-one migra-

tion scheduling based on the assumption that the downtime of live migration is large

enough. When the first VM is stopped during the downtime of pre-copy migration, the

algorithm stops and performs the post-copy on the remaining connected VMs within

the same service. Furthermore, the authors proposed an m-mixed migration algorithm

for parallel multiple migration started at the same time. The algorithm chooses the first

m VMs to perform pre-copy migration, while the rest are performed with post-copy mi-

gration. They validate the efficiency of the proposed solutions, such as the blocking ratio

and average waiting time of each migration request, based on the proposed M/M/C/C

queuing models.

The networking contentions between migrations and application traffic can increase
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the migration time and degrades the application QoS. To reduce the network contentions

between migrations and applications, solutions for co-located multiple VM migrations

with both pre-copy and post-copy migrations are adopted. The intuition of these solu-

tions is utilizing both inbound and outbound network interfaces. When the co-located

instances are migrated using pre-copy or post-copy, the traffic between co-located in-

stances contends with the migration traffic. Therefore, the migrating instance with post-

copy in the destination host communicates to another migration instance with pre-copy

in the source host, which alleviates the network contentions between the application

traffic and pre-copy migration traffic. Deshpande et al. [26] proposed a traffic-sensitive

live migration technique by utilizing pre-copy or post-copy migration based on the ap-

plication traffic direction to reduce the migration network contention.

Instance Correlation and Connectivity

The instances in the data center are often connected with each other through network

virtual links under various application architecture, such as multi-tier web applica-

tions and Virtual Network Functions (VNFs) in Service Function Chaining (SFC). Sev-

eral studies focus on optimizing the multiple migration of multi-tier applications and

network-related VMs. Research [158, 159] evaluates the impact of live migration on

multi-tier web applications, such as response time. Zheng et al. [151] investigate the

multi-tier application migration problem and propose a communication-impact-driven

coordinated approach for a sequential and parallel scheduling solution. Liu et al. [152]

work on the correlated VM migration problem and propose an adaptive network band-

width allocation algorithm to minimize migration cost in terms of migration time, down-

time, and network traffic. In the context of multi-tier applications, the authors proposed

a synchronization technique to coordinate correlated VM migrations entering the stop-

and-copy phases at the same time, which reduces the network traffic between correlated

applications across the inter-data center network. Lu et al. [153] also focus on the corre-

lated VMs migration scheduling of multi-tier web applications with dedicated network

for migrations. The authors investigate the sequential and parallel migration strategies

for multiple migrations which start at the same time. The proposed heuristic algorithm
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groups the related VMs based on the monitoring of communication traffic and sorts the

sequential migration order based on migration time and resource utilization. Expend-

ing the concept from multi-tier application connectivity, Lu et al. [154] proposed a sep-

aration strategy by partitioning a large group of VMs into traffic-related subgroups for

inter-cloud live migration. Partitioned by a mini-cut algorithm, subgroups of pre-copy

migrations are scheduled sequentially and VMs in the same subgroup are scheduled in

parallel to minimize the network traffic between applications across inter-data center

networks.

Parallel and Concurrent Scheduling

Studies [150, 155] investigate solutions for mixed sequential and parallel migrations.

Kang et al. [155] proposed a feedback-based algorithm to optimize the performance of

multiple migration in both total and single migration time considering the sequential

and parallel migration cost, and available network resources. It adaptively changes the

migration number based on the TCP congestion control algorithm. Ye et al. [156] inves-

tigate the multiple migration performance in sequential and parallel migrations. The

authors conclude that sequential migration is the optimal solution when the available

network bandwidth is insufficient.

For the multiple migration planning and scheduling algorithms of concurrent migra-

tions, the migration planning algorithm and migration scheduler determine when and

how one migration of the multiple migration requests should be performed within the

time interval of the total migration time. Sarker et al. [104] proposed a naive heuristic

algorithm of multiple migration to minimize the migration time and downtime. The

proposed scheduling algorithm starts all available migrations with minimum migra-

tion cost until there is no migration request left. The deadlock problem is solved by

temporarily migrating VM to an intermediate host. Bari et al. [29] proposed a grouping-

based multiple migration planning algorithm in an intra-data center environment where

migrations and applications share the network links. The authors model the multiple

VM migration planning based on a discrete-time model as a MIP problem. The available

bandwidth may be changed after each migration due to the reconfiguration of virtual
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network links. The subsequent migrations are affected by the previous migration result.

Considering the influence of each migration group during the scheduling, the proposed

algorithm sets the group start time based on the prediction model. Migration in each

group can be scheduled simultaneously if the resources occupied by the previous group

are released. However, the authors neglect the influence of individual migration in their

solution, which can lead to performance degradation of the total migration time. With-

out considering the connectivity among applications in a WAN environment, Wang et

al. [30] simplify the problem by maximizing the network transmission rate but directly

minimizing the total migration time. With the help of SDN, the authors introduce the

multipath transmission for multiple migrations. A fully polynomial-time approxima-

tion FPTAS algorithm is proposed to determine the start time of each migration.

2.6.3 Summary and Comparison

All studies covered in the survey are summarized in Table 2.4 and Table 2.5 based on

our taxonomy in Figure 2.3 and 2.5, respectively. For migration generation in dynamic

resource management algorithms, many studies optimize at least two of the resource

objectives regarding the computing resources, networking resources, energy consump-

tion, and application QoS. Most researchers do not consider the migration scheduling

performance in the proposal which has no tick in the table. These studies consider and

model migration computing costs linearly or individually based on memory size, avail-

able bandwidth, or the total migration number. A number of works consider the actual

single pre-copy live migration model based on memory size, dirty page rate, and avail-

able bandwidth. For the migration network cost modeling and management, most of the

works only consider the available bandwidth or the transferred data volume, while few

works consider the network routing or the migration distance on hops and layers. Inte-

grating with existing resource management algorithms, few works focusing on migra-

tion interferences and migration scheduling performance. However, the linear models

of these works are only suitable for sequential migration scheduling optimization.

For migration planning and scheduling algorithms, researchers are actively study-

ing the migration scheduling performance and migration cost, some considering the
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application QoS during migrations, while others focusing on migration availability and

scheduling feasibility. For heterogeneous and homogeneous solutions, most works are

focusing on the homogeneous solution with one migration type such as pre-copy mi-

gration, while others consider both pre-copy and post-copy migrations. However, there

is no concurrent planning and scheduling algorithm considering scenarios where multi-

ple migration with mixed types. The scheduling scope is varied based on the proposed

method, early studies focusing on co-located migrations with one source and destina-

tion pair, while recent proposals considering the multiple migration scheduling with

various source and destination pairs.

For networking management and efficiency, some researchers consider the migration

scheduling in dedicated migration networks, or do not consider the network overheads

on other services and applications. Others consider the connectivity of correlation in-

stances with virtual network communication during migrations. Without considering

the network over-subscription, the bandwidth requirements of virtual links between

instances are guaranteed during migrations. To improve migration performance and

reduce migration traffic impacts, networking management algorithms are adopted to

optimize the network routing for migration traffic and application traffic.

The scheduling types are varied based on the proposed solution and scheduling

scopes, most of the works consider sequential migration scheduling, while others focus-

ing on the parallel migrations or applying both types. Recently, several researchers fo-

cus on concurrent migration planning and scheduling for efficient, optimal, and generic

solutions. Few works focus on the timeliness of migration with optimizations and pre-

diction models, such as migration finishes before a given deadline without general con-

current migration scheduling. Furthermore, energy consumption is a critical objective in

dynamic resource management of data centers. Therefore, migration energy cost mod-

eling also needs to be investigated. Mathematical models, simulation platforms, and

empirical methods are used for evaluation. Most of the studies only use one of the eval-

uation methods, while several studies use more than one method. We introduce the

details of available evaluation methods and technologies in the following section.
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2.7 Evaluation Methods and Technologies

To accelerate the research and development of dynamic resource management in cloud

computing, data traces, software and tools are required for testing the migration per-

formance and overheads in the edge and cloud data centers. Furthermore, evaluation

platforms are needed to test and evaluate the networking management algorithms based

on OpenFlow protocol and SDN architecture. Therefore, the testbed needs the capability

to measure the energy consumption, downtime impacts, response time, and processing

time to properly evaluate the proposed resource management policies and migration

scheduling algorithms. In this section, we introduce the related emulators, simulation

tools, and empirical solutions.

2.7.1 Simulation and Emulation

Simulators are essential evaluation platforms that accelerate the innovation and imple-

mentation of proposed solutions and algorithms by providing controllable and repro-

ducible experiment environments with ease of configuration and modification. Emula-

tion provides an environment for the end-system to mimic the entire system, such as a

network for physical hosts and application programs, and the end-system operates as if

it were in a real environment. The simulation in cloud computing can be divided into

computing and networking simulation.

For the networking emulation, Mininet is an open-source network emulator for the

rapid prototyping of the Software-Defined Networking, which emulates the entire net-

work of hosts, switches, and links. As it utilizes network virtualization provided by the

Linux kernel, Mininet can produce more accurate results in network delays and con-

gestion at the Operating System level. It also natively supports the innovations and

implements of SDN controllers and OpenFlow protocol.

Abstracting network traffic descriptions, discrete event network simulators, such as

NS-3 , OMNet++ , and NetSim , provide the extensible, modular, and component-based

Mininet. https://github.com/mininet/mininet
NS-3. https://www.nsnam.org/
OMNet++. https://omnetpp.org/
NetSim. https://www.tetcos.com/

https://github.com/mininet/mininet
https://www.nsnam.org/
https://omnetpp.org/
https://www.tetcos.com/
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simulation library and framework to support network simulation. Researchers could

build the SDN module extension to support the OpenFlow and SDN controller simula-

tion. For example, Chaves et al. [160] proposed OFSWITCH13 as an SDN module to

support OpenFlow in NS-3. Klein et al. [161]implement the OpenFlow model by utiliz-

ing the INET framework of OMNet++. NetSim does not support SDN controller and

OpenFlow, but one can utilize the discrete-event mechanism to add a new OpenFlow

switch module to support forwarding tables and OpenFlow events and use the real-time

tunneling interaction supported by NetSim to create communication between the real

SDN controller and evaluate the dynamic management algorithms. Some works [162]

implement the migration module to generate the network traffic to simulate and evalu-

ate the network overheads of live migration. The migration network traffic generation

could be improved by profiling the live migration with various resources and appli-

cations workloads. However, it can not evaluate the computing cost and overheads

induced by the live migration processes.

For the simulation platform for cloud computing, CloudSim is a popular discrete

event-driven cloud simulator implemented in Java. Various data center management

algorithms and solutions can be evaluated in CloudSim, including brokering policy, VM

instance placement, and dynamic resource reallocation. It also supports workload pro-

cessing in VMs. iFogSim [163] based on CloudSim discrete event-based architecture

extending the cloud data center components to fog computing components to simulate

the corresponding events in the IoT context. However, CloudSim and iFogSim do not

support network events in detail. The instance reallocation through live migration is

only modeled as a delayed event according to the memory size.

Based on iFogSim, Myifogsim [164] and its extension MobFogSim [165] are proposed

for the simulation of user mobility on the map with radio base stations (access points).

It supports the evaluation of migration policies for migration request generation. The

proposed extension only simulates cold migration and post-copy migration without the

support of network topology, network flow, and bandwidth emulation. However, these

proposed simulation platforms and extensions lack the capability of network simula-

tion. There is no widely-used pre-copy migration simulation model to minimize the

downtime (downtime too high for lazy post copy), and no multiply migration simu-
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lation, and lacking capabilities for QoS simulation, such as response time of services

during the migrations.

Integrating with CloudSim, CloudSimSDN [71] is developed and implemented to

support packet-level network simulation in order to evaluate the network transmission

and links delays in the data center network architecture including host, switches, and

links. Based on CloudSimSDN, CloudSimSDN-NFV [166] provides the NFV supports

including automatic scaling and load balancing in SFC, and expends the network ar-

chitecture from intra-data center to the inter-cloud and edge computing network. By

leveraging simulation capabilities for both computing and networking, we can extend

the corresponding components based on the CloudSimSDN to simulate each phase of

pre-copy live migration.

2.7.2 Empirical Platforms and Prototypes

The dynamic resource management and live migration management algorithms are lo-

cated in the orchestration layer. However, current public and research cloud platforms

only support user management at the software level. There is a lack of experimental

infrastructure for cloud management through live migration since the live migration

management needs to be performed at the administrator level.

OpenStackEmu [167] combines the OpenStack and SDN controller with network em-

ulation. It enables the connection between the large-scale network and the OpenStack

infrastructure hosting the actual VMs. OpenStackEmu also provides network traffic gen-

eration in the framework. SDCon [168] is a orchestration framework integrating Open-

Stack, OpenDayLight (ODL) SDN controller, OpenVSwitch and sFlow. By enabling the

NetVirt feature in ODL and setting ODL as the default SDN controller in OpenStack

Neutron, an OpenStack-based private data center can be used as a testbed for evalu-

ating various dynamic resource management policies and VM migration management

algorithms.

As containers can be hosted in VMs, live container migration can be performed in

the public cloud platform with virtual networking support across VMs. However, it

lacks the ability to manage the networking resources as the underlying network and
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VMs’ location in the hosts can not be guaranteed. The cross-layer operations can bring

uncertainty for the migration overhead evaluation. CloudHopper [169] is a proof-of-

concept live migration service for containers to hop around between Amazon Web Ser-

vices, Google Cloud Platform, and Microsoft Azure. Live container migration in Cloud-

Hopper is automated. It also supports pre-copy optimization, connection holding, traffic

redirection, and multiple interdependent container migration.

2.7.3 Cloud Trace Data

Application workloads traces and cloud cluster traces support the realistic, repeatable

and comparable evaluation results for various solutions and algorithms. There are sev-

eral popular traces used by the evaluation of dynamic resource management in data

centers, including PlanetLab, Wikipedia , Yahoo!, , Google, Alibaba Cluster Trace .

PlanetLab data provides CPU utilization traces from PlanetLab VMs. Wikipedia

data provides the workloads for multi-tier web applications which is a typical appli-

cation architecture in the data center. Yahoo! cloud serving benchmark (YCSB) is a set

of workloads that defines a basic benchmark for cloud data centers, including update

heavy, read mostly, read-only, real least, short ranges, and real-modify-write workloads.

Google Borg cluster workload trace provides traces of workloads running on Google

compute cells managed by the cluster management software (Borg). Alibaba Cluster

Trace Program provides trace data of a whole cluster running both online services and

batch jobs. The trace data includes both parts of machines data and the workload of the

whole cluster.

Planet Lab Trace Data. https://github.com/beloglazov/planetlab-workload-traces
Wikipedia Data. https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/

Pagecounts-raw
Yahoo Benchmark. https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
Google Cluster Trace. https://github.com/google/cluster-data
Alibaba Cluster Trace. https://github.com/alibaba/clusterdata

https://github.com/beloglazov/planetlab-workload-traces
https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw
https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/google/cluster-data
https://github.com/alibaba/clusterdata
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2.8 Summary

This chapter presents a taxonomy of live migration and migration management and the

survey of the state-of-art works of migration management in edge and cloud comput-

ing. We categorize aspects of existing works in migration management, which include

performance and cost model, migration generation in resource management policies,

planning and scheduling algorithms, management lifecycle and orchestration, and eval-

uation methods. Each aspect in the taxonomy is explained in detail and corresponding

papers are presented. We describe and review representative works of dynamic resource

management focusing on the migration generation in migration computing parameters,

networking parameters, and migration objectives. We also categorize and review the

state-of-the-art on migration planning and scheduling in migration scheduling types,

migration network awareness, scheduling scope, heterogeneous and homogeneous so-

lutions, and scheduling objectives. Various objectives of multiple migration scheduling

are explained, following the simulators, emulators, and empirical platforms.





Chapter 3

Performance Evaluation of Live VM
Migration in SDN Clouds

In Software-Defined Networking (SDN) enabled cloud data centers, live VM migration is a key

technology to facilitate the resource management and fault tolerance. Despite many research focus

on the network-aware live migration of VMs in cloud computing, some parameters that affect live

migration performance are neglected to a large extent. Furthermore, while SDN provides more traffic

routing flexibility, the latencies within the SDN directly affect the live migration performance. In

this chapter, we pinpoint the parameters from both system and network aspects affecting the perfor-

mance of live migration in the environment with OpenStack platform, such as the static adjustment

algorithm of live migration, the performance comparison between the parallel and the sequential mi-

gration, and the impact of SDN dynamic flow scheduling update rate on TCP/IP protocol. From

the QoS view, we evaluate the pattern of client and server response time during the pre-copy, hybrid

post-copy, and auto-convergence based migration. In the end, we present the extended event-driven

simulation platform for live migration in SDN-enabled cloud and edge computing environments.

3.1 Introduction

There are continuous efforts to improve live VM migration, such as improving the per-

formance of live migration algorithm [68, 170], modeling for better prediction of the

cost [84, 98], network-aware live migration to alleviate the influence of migration on

SLA and application QoS [26, 90, 138], optimizing the multiple live VM migration plan-

This chapter is derived from:

• TianZhang He, Adel N Toosi, and Rajkumar Buyya, “Performance evaluation of live virtual machine
migration in SDN-enabled cloud data centers”, Journal of Parallel and Distributed Computing (JPDC),
Volume 131, Pages: 55-68, Elsevier, 2019.
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ning [28–30, 150], and benchmarking the live migration effects on applications [158, 159].

Nonetheless, many parameters, such as downtime adjustment and non-network over-

heads, that affect the live migration time and downtime are neglected to a large extent.

During a live VM migration, the downtime threshold for the last memory-copy iteration

could be changed as time elapses. This will affect the memory-copy iteration rounds,

which leads to different migration time and downtime. Computing overheads of live

VM migration can also constitute a large portion of total migration time, which will

affect the performance of multiple VM migrations.

On the other hand, some work focus on the live VM migration in Software-Defined

Networking (SDN) scenarios [27, 28, 30]. By virtualizing the network resources, we

could use SDN to dynamically allocate bandwidth to services and control the route of

network flows. Due to the centralized controller, SDN can provide a global view of

the network topology, states of switches, and statistics on the links (bandwidth and la-

tency). Based on the information, orchestrator can calculate the ‘best’ path for each flow

and call SDN controller Northbound APIs to push the forwarding rules to each switch

in the path. However, the latencies of the flow entry installation on the switch and the

communication between SDN controller and switches could impact the traffic engineer-

ing performance in the SDN-enabled cloud data centers. Thus, the scheduling update

rate of choosing the ‘best’ path will affect the live migration traffic.

Moreover, although some work [158, 159] focus on the impacts of live migration

on the cloud services, such as multi-tier web application, the worst-case response time

pattern as well as the technologies, such as hybrid post-copy and auto-convergence, for a

successful live migration need to be investigated further. Hybrid post-copy (H-PC) [65]

is the strategy that combines pre-copy and post-copy migration. The post-copy mode

will be activated after the certain pre-copy phase where most of the memory has been

transferred. Based on the CPU throttling, Auto-convergence (AC) [171] will decrease the

workload where the memory write speed is relative to the CPU executing speed.

We evaluate the live migration time, downtime, and total transferred data using

OpenStack [172] as the cloud computing platform. OpenStack uses the pre-copy live

migration with the default driver Libvirt (virtualization API) [173]. Our study is funda-

mentally useful to resource scheduling, such as energy-saving strategy, load balancing,
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and fault tolerant, driven by SLA. The contributions are fourfold, and are summarized

as follows:

• Evaluation of the performance of block live migration in OpenStack with different

configuration of static downtime adjustment algorithm. Experimental results can

be used as reference to dynamically configure optimal migration time and down-

time.

• Modeling and identification of the trade-off between sequential and parallel mi-

gration when the host evacuation happens in the same network path.

• Evaluation of the effect of flow scheduling update rate on the migration perfor-

mance as well as TCP/IP protocol in SDN-enabled clouds. Experimental results

can guide to optimize the update rate and select the best path of SDN forwarding

scheduler in order to achieve better migration performance.

• Evaluation of the response time of a multi-tier web application under pre-copy,

hybrid post-copy and auto-convergence based live migration. Specifically, exper-

imental results demonstrate the worst-case response time and the situation when

the pre-copy migration could not finish in a reasonable time.

The rest of the chapter is organized as follows. Section 2 introduces the related work

and motivations. In Section 3, we present the system overview of SDN-enabled data cen-

ters and details of the live migration in OpenStack. The mathematical models of block

live migration, sequential and parallel migrations are presented in Section 4. In Section

5, we describe the objectives, testbed specifications, metrics, and the experimental setup

of the evaluated parameters. We quantitatively show how these parameters can dramat-

ically affect the migration time and service performance. Finally, we conclude our work

in Section 6.

3.2 Related Work

Clark et al. [8] firstly proposed the live VM migration comparing to the naive stop-and-

copy method. During the iterative memory copy phase of live migration implemented in
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Xen virtualization platform, rapid dirtying pages which updated extremely frequently,

called Writable Working Set (WWS), was introduced. These pages will not be transmit-

ted to the destination host in the iteration round in order to reduce the total migration

time and transferred data. In addition, the authors elaborated the implementation issues

and features with regard to the managed migration (migration daemons of Xen in host

and destination hosts), self migration (implementation the mechanism within the OS),

dynamic rate-limiting for each iteration round, rapid page dirtying, and paravirtualized

optimizations (stunning rogue process, i.e. limit write faults of each process, and freeing

page cache pages, i.e. reclaiming back cold buffer cache pages). Although pre-copy mi-

gration is widely used in various virtualization platforms, such as Xen, QEMU/KVM,

VMWare, it is worth noting that migration algorithms and performance of different hy-

pervisors are different in terms of dirty pages detection and transmission and stop-and-

copy threshold [94]. For instance, the page skip (WWS) mechanism does not be imple-

mented in KVM.

In order to alleviate the overheads caused by live VM migrations, the prediction

model is required to estimate the live migration performance in advance. Akoush et

al. [84] proposed a model to estimate the migration time and downtime of live VM mi-

gration based on the two main functions of migration, i.e. peek and clean. The peek

function returns the dirty bitmap and the clean function returns the dirty pages and re-

sets them to clean state. They used both average dirty page rate (AVG) and history based

page dirty rate (HIST) in their prediction algorithms. The HIST model could capture the

variability of live migration and help to decide the moment at which migration begins

to minimize the migration cost. Moreover, Liu et al. [88] introduced the rapid page

dirtying in its migration performance prediction model. In order to obtain a more accu-

rate prediction model, the authors refined the previous prediction model of migration

performance by estimating the size of WWS. Based on the observation, it is an approx-

imated proportional size of the total dirty pages in each iterative memory copy round

with regard to previous iteration time and dirty pages rate. The authors also proposed

an energy consumption model of live migration based on the linear regression between

total transferred data and measured energy consumption. The synthesized cost for mi-

gration decision is based on the estimated values of downtime, migration time, trans-
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ferred data, and energy cost. Furthermore, based on prediction model of migration cost,

different migration strategies for load balancing, fault toleration, and server consolida-

tion are proposed [98]. The algorithms choose the proper migration candidates in order

to minimize the total migration cost while satisfying the requirements of rescheduling

algorithms. Contrary to their work we focus on the mechanism and performance of

proposed parameters and corresponding models.

Prediction models of live migration which assume a static downtime threshold [84,

88, 98] or constant dirty page rate [30] cannot reflect the real migration time and down-

time in OpenStack. The downtime threshold in OpenStack uses a static adjustment al-

gorithm. It is increased monotonically with a certain time interval and steps during the

migration in order to reduce the migration time. A misconfigured downtime configura-

tion will lead to a poor performance of live migration, such as unstable downtime which

results in the SLA violation and a long-time migration that degrades the network perfor-

mance. Therefore, in order to dynamically set optimal configurations, we need to have a

better understanding of the relationship between downtime adjustment configurations

and migration performance in OpenStack.

Planning of the sequential and parallel migration in intra and inter-data centers to

optimize the server evacuation time and minimize the influence of live migration has

attracted interest recently [28–30]. However, they only focus on the network aspect of

multiple live migration planning to decide the sequence of sequential and concurrent

live migration in order to minimize the migration duration. As mentioned in [84], the

total migration time includes pre-migration, pre-copy phase, stop-and-copy phase and

post-migration overheads. The most proportion of migration time could be the oper-

ation overheads. Therefore, in order to have a better algorithm of the multiple VM

evacuation planning, we need to pinpoint the impacts of non-network overheads on

the parallel and sequential migration in the same path.

Moreover, Software-Defined Networking (SDN) [57] as a powerful feature in Cloud

computing provides a centralized view of topology and bandwidth on every path. We

could flexibly implement network scheduling algorithm and set bandwidth limit for live

migration and other application traffics. In a highly dynamic network environment, the

‘best’ path decided by scheduling algorithm based on an update rate could change fre-
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quently. Therefore, not only the bandwidth but traffic pattern, SDN control plan [174]

and flow table latency [175] could also affect the live migration performance. Under-

standing the SDN latency in the flow scheduling is very important for achieving better

live migration performance.

With different application context, the impacts of live migration on application per-

formance could change dramatically. For instance, the workload of a multi-tier web ap-

plication with specific write and communication pattern [158, 159] is different with the

workload in scientific computing applications. The response time should be soft real-

time to satisfy the QoS of application. Therefore, network service suffers more from the

disruption due to the downtime and the performance degradation due to the live VM

migration. As there are few works on this topic, evaluating the live migration effects

on the response time of different types of network-sensitive applications is desirable.

However, current work did not consider the worst-case response time and the situation

when the pre-copy migration could not finish in a reasonable time. Thus, we need to

evaluate the response time distribution of the web application during the migration,

and the impacts of strategies, hybrid post-copy, and auto-convergence, on application

response time which perform a successful live migration.

3.3 System Overview

In SDN-enabled data centers, the computing resources are under control of cloud man-

agement platform, such as OpenStack, while the networking resources are managed by

SDN controller. The management module (orchestrator) coordinates the SDN controller

and the OpenStack services by using northbound RESTful APIs to perform VM migra-

tion planning in resource scheduling algorithm such as the SLA-aware energy-saving

strategy as shown in Fig. 3.1. In OpenStack, Nova service runs on top of Linux servers as

daemons to provides the ability to provision the compute servers. Meanwhile, Neutron

component provides ‘connectivity as a service’ between network interfaces managed by

other services like Nova.

More specifically, the cloud controller of Infrastructure as a Service (IaaS) platform,

OpenStack, is in charge of configuring and assigning all computing and storage re-
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Figure 3.1: System Overview

sources, such as allocating flavor (vCPU, memory, storage) to VMs, placing the VMs

on physical hosts using Nova component. It keeps all the information about physical

hosts and virtual machines, such as residual storage and available computing resources.

At the same time, all computer nodes update the states of hosted VMs to OpenStack

Nova service. Furthermore, Neutron, the OpenStack network component, provides the

management of virtual networking, such as start, update and bind the VM’s port, as
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well as the communication between VMs. However, the OpenStack Neutron does not

control network devices (switches). It only controls networking modules in compute

nodes and network nodes.

Therefore, the SDN controller uses OpenFlow [42] protocol through southbound in-

terfaces to manage the forwarding planes on network devices (switches). The open-

source virtual switch, Open vSwitch (OVS) [176], provides the virtualization switching

stack supporting OpenFlow and other standard protocols. Therefore, without expensive

dedicated switches, we could install OVS in the white box as the OpenFlow switch in

SDN-enabled data centers. Based on the link information between OpenFlow devices,

the SDN controller calculates the forwarding tables for all network traffics. The Open-

Flow switches forward the traffic flow according to the received forwarding tables from

SDN controller. It also measures the received and transmitted data size as well as the

bandwidth and latency between each other.

3.3.1 Live Migration in OpenStack

In this section, we present the details of block live migration in OpenStack. Provid-

ing a comprehensive solution to control the computing and network resources in the

datacenter, OpenStack uses Libvirt [173] to manage hosts in order to support different

kinds of virtualization. Nova live migration interacts with Neutron to perform the pre-

and post-live-migration operations, and uses Libvirt to handle the actual live migration

operations. The pre-copy live VM migration is used by default driven by libvirt.

Since libvirt 1.0.3, the QEMU’s Network Block Device (NBD) server and “drive-

mirror” primitive [177] are used to perform live storage migration (without shared stor-

age setup). Similarly, since VMWare ESX 5.0, it uses VMKernel data mover (DM) and

IO mirroring to perform live storage migration [178]. It separates the storage streaming

data flows from the instance’s RAM and hypervisor’s internal state data flows. The disk

transmission will perform concurrently with IO mirroring and VM migration. The write

operation can be categorized into three types: 1) Into the block has been migrated, the

writes will be mirrored to the target. 2) Into the block being migrated, the writes will

be sent to the target first and wait in the queue until the region migration finished. 3)



3.3 System Overview 79

Iterative Pre-copy

Pre-migration

Stop-
and-
copy

Total Migration Time

Tdown

Initialization 
& 

Reservation

Pre-overhead Post-
overhead

T0 T1 Ti

Commitment

Post-
migration

& Activation

Data Transmission

Write mirroring

Tblk

Figure 3.2: OpenStack block live migration

Into the block which will be migrated, the writes are issued to the source disk without

mirroring. By caching the backing file or instance image when it boot in the Nova com-

pute host, the mirror action could just apply to the top active overlay in the image chain.

Thus, the actual disk transmission will be reduced.

Similar to the pre-copy migration described in [8], the block live migration in Open-

Stack includes 9 steps (Fig. 3.2):

1. Pre-live migration (PreMig): Creates VM’s port (VIF) on the target host, updates

ports binding, and sets up the logical router with Neutron server.

2. Initialization (Init): Preselects the target host to speed the future migration.

3. Reservation (Reserv): Target host sets up the temporary share file server; and ini-

tializes a container for the reserved resource on the target host.

4. Disk Transmission: For live storage migration, starts to perform storage migration

and synchronizes the disk through IO mirroring.

5. Iterative pre-copy: For pre-copy VM migration, sends dirty pages that are modi-

fied in the previous iteration round to the target host. The entire RAM is sent in

the first round.

6. Stop-and-copy: the VM is paused during the last iteration round according to the

downtime threshold (remained amount is less than the required).
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7. Commitment (Commit): Source host gets the commitment of a successfully re-

ceived instance copy from the target host.

8. Activation (Act): Reassigns computing resource to the new VM and delete the old

VM on the source host.

9. Post-live migration (PostMig): On the target host, updates port state and rebinds

the port with Neutron. VIF driver unplugs the VM’s port on the source host.

Where copying overheads are due to the pre-copy iteration and downtime is caused

by the stop-and-copy, commitment and parts of the activation and post-migration op-

erations. Although the network-related phases (disk transmission, pre-copy iteration,

and stop-and-copy) usually dominate the total migration time, the pre- and post-live-

migration, initialization, reservation, commitment, and activation could add a signifi-

cant overhead to the migration performance in certain scenarios (large available network

bandwidth, small disk size or low dirty page rate). The pre-live-migration, initialization,

reservation could be classified as pre-migration overheads while the commitment, acti-

vation and post-live-migration as post-migration overheads.

Downtime Adjustment Algorithm: Unlike the stop conditions that are used in QEMU

or Xen migration algorithm, the downtime threshold in OpenStack live migration in-

creases monotonically in order to minimize the downtime for lower dirty page rate VM

while increasing the availability of high dirty page rate VM migration with a reasonable

downtime. The downtime adjustment algorithm used in Libvirt is basically based on

three static configuration values (max downtime, steps, delay):

• live migration downtime: The maximum threshold of permitted downtime;

• live migration downtime steps: The total number of adjustment steps until the max-

imum threshold is reached;

• live migration downtime delay: Multiplies the total data size with the factor equals

to the time interval between two adjustment steps in seconds.

For example, the setting tuple (400, 10, 30) means that there will be 10 steps to increase

the downtime threshold with 30 seconds delay for each step up to the 400ms maxi-

mum. With the total 3 GB RAM and Disk data size, the downtime threshold at time t,
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as Td−thd(t), will be increased at every 90 seconds starting from 40ms, i.e. Td−thd(0) =

40ms, Td−thd(90) = 76ms, ..., Td−thd(900) = 400ms, ..., Td−thd(t > 900) = 400ms. The

mathematical model of downtime adjustment algorithm is shown in Equation (3.9).

Although OpenStack only support static downtime adjustment in configuration files,

we could use the virsh command to interact with the on-going migration based on the

elapsed time.

3.4 Mathematical Model

We present the mathematical model of block live migration as well as the sequential and

parallel migrations in the same network path.

3.4.1 Block Live Migration

The mathematical model of block live migration is presented in this section. Accord-

ing to the OpenStack live migration process, the components of pre and post-migration

overheads can be represented as:

Tpre = PreMig + Init + Reserv

Tpost = Commit + Act + PostMig

(3.1)

We use D and M to represent the system disk size and the VM memory size, and let

ρ denotes the average compression rate used in memory compression algorithm [179].

Let ρ
′

and R
′

denotes the average disk compression rate and mirrored disk write rate.

Let Ri and Li denote the average dirty page rate need to be copied and bandwidth in it-

eration round i. In total n round iterative pre-copy and stop-and-copy stages, Ti denotes

the time interval of ith round iteration shown in Fig. 3.2. Therefore, the transferred
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volume Vi in round i can be calculated as:

Vi =


ρ ·M

ρ · Ti−1 · Ri−1

ifi = 0

otherwise

(3.2)

As shown in Fig. 3.2, the time interval of the ith iteration can be calculated as:

Ti = Vi/Li =ρi+1 ·∏i−1
j=0 Rj ·M

/
∏i

j=0 Lj (3.3)

In [30], they assume that, when Ri, Li are constant, the average dirty page rate is not

larger than the network bandwidth in every iteration. Let ratio σ = ρ · R/L. Therefore,

Ti = ρ ·M · σi/L. The total time of iterative memory pre-copy Tmem can be calculated as:

Tmem =
ρ ·M

L
· 1− σn+1

1− σ
(3.4)

Then, the transmission time of live storage migration Tblk can be represented as:

Tblk ≤ ρ
′ ·
(

D + R
′ · Tblk

)/
L (3.5)

Thus, the upper bound transmission time of the live storage migration is:

Tblk ≤
ρ
′ · D

L− ρ′ · R′ (3.6)

For a more accurate Tblk, one need to simulate the write behavior based on the actual

workload. The network part of block live migration is the maximum value of Equation

(3.4) and (3.6):

Tcopy = Max {Tblk, Tmem} (3.7)

The total migration time of block live migration Tmig can be represented as:

Tmig = Tpre + Tcopy + Tpost (3.8)
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Let (θ, s, d) denotes the setting tuple (max downtime, steps, delay) of the downtime

adjustment algorithm. Therefore, the live migration downtime threshold at time t can

be represented as:

Td−thd(t) =
⌊
t
/
(d · (D + M))

⌋
· (θs− θ)

/
s2 + θ/s (3.9)

The downtime threshold of remained dirty pages accordingly will be

Vd−thd(t) = Td−thd(t) · Ln−1 (3.10)

where Ln−1 is the n-1 round bandwidth estimated by the live migration algorithm and

Ln−1 = L when transmission bandwidth is a constant.

The live migration changes to the stop-and-copy phase when remained dirty pages

is less than the current threshold, as Vn ≤ Vd−thd(t). Using the Equation (3.2) in the

inequality, the total round of memory iteration can be represented as:

n =

⌈
logσ

Vd−thd(t)
M

⌉
(3.11)

Therefore, the upper bound of actual migration downtime is Tdown = Td + T
′
post ≤

Td−thd(t) + T
′
post, where Td is the time that transferring the remained dirty pages and

storage and T
′
post is the time spent on the part of post-migration overheads to resume the

VM.

3.4.2 Sequential and Parallel Migrations

When applying energy-saving policy, hardware maintenance, load balancing or encoun-

tering devastating incidents, we need to evacuate part of or all VMs from several phys-

ical hosts to others through live VM migrations as soon as possible. In this section, we

establish the mathematical model of sequential and parallel live VM migrations which

share the same network traffic path. For example, there are 4 same live migrations shar-

ing the same network path as well as source and destination hosts. In Figure 3.3, lower

graph shows the sequential live migration. Because each migration fully uses the path

bandwidth, the network transmission part is much smaller than the part of parallel mi-
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Figure 3.3: An example of sequential and parallel migrations

gration shown in the upper graph at which 4 migrations share the bandwidth evenly.

However, in this example, the total network bandwidth is extremely large comparing

to the dirty rate and the memory size of each VM is relatively small. Therefore, the pre

and post migration overheads contribute substantially to the total migration time. As

the result, even though sharing the same network path could extend the memory itera-

tion, parallel migration running the pre and post migration on multicore in this situation

actually outperforms the sequential algorithm.

Because the pre-live-migration process of next migration is executed after the com-

pletion of current migration, there is a bandwidth gap between every sequential live

migration because of the non-network overheads. Therefore, the total evacuation time

of N VM sequential migrations could be calculated as the sum of every migration’s over-

head processing time and network transmission time:

Tseq = ∑N
1 Tmig = ∑ Toverhead + ∑ Tnetwork (3.12)

The response time of VM migration task refers to the time interval from the point

that migration task is released and the point it is finished. The migration time indicates

the real execution time of the migration task which excludes the waiting time which is

the time interval between the migration task release point and the actual start point. The

evacuation duration refers to the time interval from the beginning of the first released

migration task to the end of the last finished task of all VM migrations.
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Pre- and post-migration overheads refer to the operations that are not part of the

direct network transmission process. These non-network operations could add a signif-

icant overhead to the total migration time and downtime. For more concise explanation,

we assume that every VM in parallel migration has same dirty page rate and flavor. Let

m denotes the allowed parallel number, p denotes the processing speed of one core.

We assume that the largest allowed parallel migration is smaller than the minimum core

number on the hosts, m ≤ Num(cores), m ≤ N. When m > N, m = N in the corre-

sponding equations. As every migration sharing the network bandwidth equally, L/m

is the transmission rate for each migration. Therefore, using the previous equations, the

network transmission time of parallel m migrations can be represented as:

Tm
network = Max

{
m · Tblk,

m · ρ ·M
L

· 1− (mσ)n+1

1−mσ

}
(3.13)

It is clear that Tm
network ≥ ΣmT1

network.

Let Wpre and Wpost denote the workload of pre and post-migration overheads. As the

overheads are significant when the network bandwidth L allocated to the path is more

than sufficient or the dirty page rate R is small, we assume that:

ΣmWpre
/

m · p ≥ Tm
network (3.14)

Let X = ⌊N/m⌋ denote total X busy rounds of m cores. Therefore, the maximum evac-

uation time of parallel migration Tpar = Max(T
′
par, T

′′
par) can be represented as:

T
′
par =

∑Xm
1 Wpre
m·p + ∑N

Xm+1 Wpre
N−Xm+2 + TN−X

network +
∑N

Xm+1 Wpost
N−Xm+2

=
(⌊N/m⌋+1)·Wpre+Wpost

p + TN−X
network

T
′′
par =

∑m
1 Wpre
m·p + Tm

network +
∑Xm

1 Wpost
m·p + ∑N

Xm+1 Wpost
N−Xm+2

=
(⌊N/m⌋+1)·Wpost+Wpre

p + Tm
network

(3.15)
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As 0 ≤ σ < 1, we could get the upper bound of parallel network transmission time:

Tm
network ≤ Max

{
m · Tblk,

m · ρ ·M
L · (1−mσ)

}
(3.16)

Moreover, the average response time of N sequential and parallel migrations can be

represented as:

Tseq
response = (N + 1)

/
2 ·
(

Woverhead
/

p + T1
network

)
(3.17)

Tpar
response = Woverhead

/
p + Tm

network (3.18)

Furthermore, the lost time of network transmission and the saved time of overhead

processing for m concurrent live migration can be calculated as:

∆network = Tm
network − ΣmT1

network (3.19)

∆workload = ΣmToverhead − ΣmToverhead
/

m · p (3.20)

Therefore, when ∆network < ∆workload, the evacuation time of parallel migration is smaller

than the sequential migration.

All proposed models and results of single migration and sequential and parallel mi-

grations for block live migration also apply to the general live VM migration with disk

sharing by deleting the live disk transmission parts, Tblk and D, in the models.

3.5 Performance Evaluation

There are several parameters which can influence the live VM migration performance

in SDN-enabled data centers from system view, such as the flavor, CPU, memory, and

static downtime adjustment, network view, such as parallel and sequential migrations,

available bandwidth, and dynamic flow scheduling update rate, and application view,

such as response time under different migration strategies. In this section, we explore

the impacts of these parameters on migration performance. The migration time, down-

time, and transferred data shown in the results are the average values. In OpenStack,

we can use the nova migration-list to measure the duration of live migration. The down-
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Table 3.1: Specifications of physical hosts in CLOUDS-Pi

Machine CPU Cores Memory Storage Nova

3 × IBM X3500 M4 Xeon(R) E5-2620 @ 2.00GHz 12 64GB (4 × 16GB DDR3 1333MHz) 2.9TB compute1-3

4 × IBM X3200 M3 Xeon(R) X3460 @ 2.80GHz 4 16GB (4 × 16GB DDR3 1333MHz) 199GB compute4-7

2 × Dell OptiPlex 990 Core(TM) i7-2600 @ 3.40GHz 4 8GB (4 × 16GB DDR3 1333MHz) 399GB compute8-9

time of live migration could be calculated by the time stamp difference of VM lifecycle

event (VM Paused and VM Resumed) in both Nova log files. Each configured migration

experiment is performed 6 times.

3.5.1 Testbed and its Specification

As current production system will not allow users to access or modify the low-level

infrastructure elements, such as resource management interfaces and SDN controllers

and switches, needed for experiments, we created our own testbed. CLOUDS-Pi [180], a

low-cost testbed environment for SDN-enabled cloud computing, is used as the research

platform to test virtual machine block live migration. We use OpenStack combined with

OpenDayLight [181] (ODL) SDN controller to manage the SDN-enabled Data Centers,

which contains 9 heterogeneous physical machines connected through Raspberry Pis

as OpenFlow switches whose specifications are shown in Table 3.1. The Raspberry Pis

are integrated with Open vSwitch (OVS) as 4-port switches with 100 Mbps Ethernet

Interfaces. The network physical topology is shown in Fig. 3.4. The OpenStack version

we used is Ocata and the Nova version is 15.0.4 and the Libvirt version is 3.2.0. The

Ubuntu tool stress-ng [182] is used as the micro-benchmark to stress memory and CPU

to pinpoint the impacts of parameters on migration performance.

It will allow researchers to test any SDN-related technology in the real environment.

Allowed network speed in the testbed is scaled together with the size of computing clus-

ter. Although the testbed’s scale is small regarding the number of computer nodes and

the network, it can represent the key elements in the large-scale systems. The evalua-

tion results produced by the testbed will be more serious in a large scale environment.

Furthermore, as we do not focus on the IO stress on the migrating storage, the evalua-
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Figure 3.4: SDN-enabled Data Center Platform

tion results could also benefit the live migration with shared storage, as well as the live

container migration.

3.5.2 Primary Parameters

First, we evaluate the fundamental parameters, such as flavor, memory and CPU loads,

which affect the migration time, downtime and total transferred data of block live VM

migration in OpenStack. As we measured, the amount of data from destination to source

can be omitted because it only accounts for around 1.8 percent of total transferred data.

The transferred data is measured by the SDN controller through OpenFlow protocol.

We set 7 flavors in OpenStack, which are nano, tiny, micro, small, medium, large, xlarge

(Table 3.2). Not only the RAM size but the ephemeral disk size can affect the migration

time as well as the total transferred data (Equation 3.8). We evaluate these primary

parameters by migrating instances from compute2 to compute3. In the flavor experiment,

we use two Linux images, CirrOS and Ubuntu-16.04, and the smallest flavor suitable

for the Ubuntu image is micro. The image size of CirrOS is 12.65 MB, and Ubuntu
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Figure 3.5: Primary VM parameters

is 248.38 MB. In memory stress experiment, we evaluate the migration performance of

different memory-stressed Ubuntu-16.04 instance with micro flavor from 0 to 80 percent.

In CPU stress memory experiment, we compare the migration performance with 0 to 100

stressed CPU between Ubuntu instance with 0 memory stress (mem0) and 40 percent

memory-stressed (mem40) VMs.

Flavor: Figure 3.5(a) illustrates the migration performance (migration time, down-

time, and total transferred data) of idle VMs with different flavors. Larger RAM and

disk sizes lead to longer migration time and total transferred data. The VM block live

migration cost with the same flavor could be a huge difference due to the system disk

size and the required RAM of different OS instance. According to the downtime ad-
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Table 3.2: Specifications of VM flavors in OpenStack

No. Name vCPUs RAM Disk No. Name vCPU RAM Disk

1 nano 1 64MB 1GB 5 medium 2 3.5GB 40GB

2 tiny 1 512MB 1GB 6 large 4 7GB 80GB

3 micro 1 1GB 10GB 7 xlarge 8 15.49GB 160GB

4 small 1 2GB 20GB

justment algorithm, a longer migration time can lead to a larger downtime. However,

the difference of downtime is small compared to the significant difference of migration

time. From flavor micro to xlarge, the transferred data is increased linearly. Further-

more, the transferred date vs. flavor figure illustrates that there is a constant data size

difference between CirrOS and Ubuntu with the same flavor. With the same flavor, VM

with a larger and more complex OS installed has a longer migration time and larger

transferred data as the data size difference of the OS base image and dirty rate caused

by OS processes.

Memory: The dirty page rate (and dirty block rate) directly affects the number of

pages that are transferred in each pre-copy iteration. Fig. 3.5(b) shows that the perfor-

mance of different memory-stressed Ubuntu instances from 0 to 80 percent on the mi-

gration time, downtime, total data transferred from source. As shown in Equation (3.8)

and (3.9), the relationship between the dirty page rate and live migration performance

is not linear due to the downtime adjustment algorithm. The downtimes of migrations

may be constant with different dirty page rates because of the delay of every downtime

adjustment, such as 0 and 20 percent memory-stressed VMs. With the downtime adjust-

ment algorithm, the downtimes of live migrations with drastically different dirty page

rate remain at a stable range.

CPU: Higher CPU workloads can lead to a migration performance degradation be-

cause of the page copying operation overhead during the pre-copy iterations. Mean-

while, the high CPU workloads can also cause interference among memory-intensive

tasks which leads to a large migration time. We examine the block live migrations based
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Figure 3.6: Live migrations based on different step and delay settings

on various CPU loads from 0 to 100 percent. Figure 3.5(c) shows that, without stressed

memory, the CPU loads inside VMs are irrelevant to the downtime and duration of live

migration with the minor copying overhead due to the pre-copy iterations. However,

as the CPU usage of a 40-percent-stressed memory task is 100 percent, an extra CPU

workload can lead to a larger amount of total transferred data and migration time. For

idle VMs, the migration time and transferred data are constant under various range of

CPU workload. For more busy VMs, extra CPU workload leads to a linear increase in

migration time and transferred data size.

3.5.3 Downtime Configuration Effectiveness

In OpenStack, the live VM migration time could shift dramatically based on different

configuration tuples (max downtime, steps, delay). Although only implemented in Open-
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Stack, the downtime adjustment algorithm can also apply to other cloud computing

platforms. In this experiment, the Ubuntu-16.04 instance with micro flavor is migrated

between NOVA compute node compute2 and compute3. We perform migrations based

on the different step or delay settings and other two default values, i.e., (500, 4, 75) and

(500, 10, 5), with 0 to 75 percent stressed memory VM.

Figure 3.6 indicates that for less memory stressed VMs (low dirty page rate), the

static algorithm based on short delay could lead to a higher downtime with a slightly

different migration time. However, for heavy memory stressed VMs (high dirty page

rate), the adjustment of large delay setting, such as delay40, delay110, leads to an ex-

tremely long migration duration. The larger adjustment step setting leads to a larger

migration time with a smaller downtime. However, step8 (500, 8, 75) leads to a better

result in migration time compared to step12 and in downtime compared to step4 when

VM memory is 75 percent stressed. We also notice that the setting (500, 10, 5) is a better

choice when VM has high dirty page rate and (500, 4, 75) is better when the rate gets

lower. When the dirty page rate is high, the migration time gets benefits from quickly

raised downtime threshold while the downtime remains at a stable range. When it is

low, the downtime gets benefits from smaller downtime threshold with slow adjust-

ment. We should dynamically configure the optimal downtime setting tuple to improve

both migration time and downtime based on the migration model for every live migra-

tion task.

3.5.4 Live VM Migration in Parallel

The default value max concurrent live migrations=1 of NOVA configuration of max al-

lowed parallel migration is one, which means only one live migration could be per-

formed at the same time. In this experiment, we evaluate the migration duration of one

compute host that needs to evacuate all VMs to another. First, we need to change the

default max allowed parallel migration to perform maximum m live migrations in par-

allel. The CirrOS instances with tiny flavor are migrated between node compute2 and

compute3. All migration operations are released at the same time with different maxi-

mum parallel migration. We measure the response time of each migration task and the
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Figure 3.7: (a) Sequential migrations with different number of VMs; and (b) Multiple
live migrations of 10 VMs where x-axis indicates the max allowed concurrent migration.

total evacuation time of 10 idle CirrOS VMs. We also exam the sequential live migration

with several VMs from 2 to 10.

Figure 3.7(a) indicates that the response time (rt), migration time (mt) and evacuation

duration (dur) of sequential live migrations increase linearly with the number of VMs.

Figure 3.7(b) only demonstrates the rt and dur, as the mt equals to the rt in this parallel

migration experiments. However, the parallel migrations could significantly reduce the

total evacuation time and each migration time of 10 idle VMs. With the max allowed

concurrent migration increasing from 1 to 10, the total live migration evacuation time

decreases by 59.6%. Meanwhile, the migration time of each VM decreases up to 50%.

As shown in Equation (3.19), (3.20), when ∆network < ∆workload, the pre- and post-

migration overheads constitute a large portion of the total migration time, e.g., parallel

migration of the tiny flavor CirrOS VMs with 100Mbps bandwidth (Fig. 3.7(b)). There-

fore, several pre- and post-live-migration processes concurrently running on both hosts

can reduce the total evacuation time (3.15) and average response time (3.18) compared

to the sequential live migrations (3.12), (3.17). Therefore, when the multiple VM evacu-

ation happens in the same network path, we need to decide the sequential and parallel
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Figure 3.8: Block live migrations with TCP and UDP background traffic

live migration based on both network and computing aspects to achieve a better total

migration time (duration).

3.5.5 Network-Aware Live Migration

As the networking resources are limited, we pinpoint the essential network aspects

that influence the efficiency of block live migration in SDN-enabled cloud computing,

such as, the available network bandwidth, network patterns, SDN flow scheduling al-

gorithms.

TCP and UDP Traffic: Block live Migration is highly relative to the network band-

width as well as the background traffic on the links. The total migration time and down-

time are negatively correlated with the network bandwidth. Therefore, we measure the

migration performance under the default downtime configuration with various network

traffic scenarios with different constant bandwidth rate (CBR) in TCP and burst trans-

mission in UDP. UDP datagrams are sent in the same data size in every 10 seconds.

The iperf3 [183] is used to generate background traffic between live migration source

and destination hosts through the same path in SDN-enabled data center network. The

image of VM is Ubuntu-16.04 with micro flavor under no stressed memory. Figure 3.8

indicates that, when the dirty page rate is 0, the transferred data is not linearly increased

with the migration time. The migration time is increased linearly with the bandwidth

decreasing.

Dynamic SDN Flow Scheduling: In this experiment, we pinpoint the impact of the

flow scheduling algorithm update rate on block live migration in SDN-enabled cloud

computing. When SDN controller is proactively scheduling the flows, latencies exist
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Figure 3.9: Live migrations based on different SDN scheduling update rate

between controller and switches (PacketOut message send to the switches and PacketIn

to the controller). Moreover, in the flow tables, latencies occur when installing, delet-

ing flow entities. The scheduler based on SDN controller (OpenDayLight) REST APIs

proactively pushes the end-to-end flow in a certain time period to dynamically set the

best path. The idle Ubuntu-16.04 instance with micro flavor is migrated from compute3

to compute9. As shown in Fig. 3.4, there are two shortest paths between compute3 and

compute9 that each one contains 5 OpenFlow nodes (OpenFlow-enabled switches). A

round-robin scheduler rescheduling the traffic of live migration periodically based on

these paths. We also use iperf3 to generate TCP and UDP traffic to evaluate the latency,

TCP window size, and packet loss rate.

Figure 3.9(a) shows that the migration time is positively correlated with the update

rate while the transferred data is just slightly increased. As the dynamic scheduling up-

date rate increases, the link bandwidth rapidly decreases which leads to a large migra-

tion time. Meanwhile, Figure 3.9(b) indicates that the TCP throughput goes down more

frequently with high flow update rate. The TCP congestion window size decreases to
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Figure 3.10: Network performance with different SDN scheduling update rate

1.41 KBytes when the bandwidth is 0 bits/sec. Figure 3.10 shows the TCP and UDP pro-

tocol performance with different update rates from 0.1Hz to 10Hz. The packet loss rate

increase linearly with the update rate and the average maximum TCP latency (Round-

Trip Time) is 2 times larger at 2Hz than the minimum value at 0.1Hz. When the TCP

traffic suffers the bandwidth degradation, the UDP transmission rate is always around

90 Mbps regardless of the scheduling update rate.

With the high flow entries updating in OpenFlow-enabled switches, the latencies be-

tween SDN controller and switches, and inside the switch flow tables have a significant

influence on traffic forwarding performance. The network congestion leads to the high

packet loss rate. The period of no traffic interval is caused by the TCP congestion avoid-

ance algorithm. It decreases the data transfer rate when encounters packet loss based

on the assumption that the loss due to the high latency and network congestion. Fur-

thermore, the flow update rate could also impact the TCP window size that causes the

bandwidth jitters due to the TCP slow start. In a highly dynamic network, the available

bandwidth and delays in the routing paths can change frequently. Therefore, it is essen-

tial that optimize the update rate and best path selection of SDN forwarding scheduler

based on the trade-off between OpenFlow-enabled switches performance (bandwidth

degradation due to delays inside switches and between controller and switches) and the

available network bandwidths and delays.
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Table 3.3: Request response time without VM migration

Exp. Duration(s) RT(ms) HTTP0 HTTP200 Total

Initial 1200 74.21 35 42310 51634

Initial 500 75.90 22 17435 21438

Initial 400 75.77 22 13893 17088

scheduled 400 65.380 17 14175 17357

Table 3.4: Application performance in 400 seconds

Exp. MT(s) RT(ms) HTTP0 HTTP200 Total

c-93 248.34 84.201 20 14166 17348

s-39 N/A 192.273 109 13410 16558

3.5.6 Impacts on Multi-tier Application Response Time

In this experiment, we evaluate the impact of VM live migration on the real web appli-

cation, such as MediaWiki, using WikiBench [184]. It uses MediaWiki in the application

server and real database dumps in the database server. In client VM, the wikijector as

traffic injector controls the simulated client to reply the traces of real Wikipedia traffic.

Regarding the scale of the testbed, we use 10 percent of Wikipedia trace to simulate the

real traffic. The database and MediaWiki Apache servers are allocated in compute3, and

one WikiBench injector as the client VM located in compute9. The client and server VMs

are the Ubuntu instances with micro flavor and database server is with large flavor. The

first scenario (c-93) is migrating the client VM to compute3 to simulate the consolidation

(scheduled) to reduce the latency. The second one (s-39) is migrating the application

server to compute9 in order to evaluate the effect of live migration on application re-

sponse time.

In the scenario c-93, the major application traffic is outbound traffic from the destina-

tion host. Therefore, the live migration traffic would just slightly affect the QoS of web

service. Table 3.3 indicates that the application response time (RT) is improved after the



98 Performance Evaluation of Live VM Migration in SDN Clouds

Pre-copy Impact

Downtime
Downtime 
Impact

(a) Client VM migration

0 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

0

1000

2000

Re
sp

on
se

 T
im

e 
(m

s)

(b) Service VM migration segment

Figure 3.11: Response time of Wikipedia in 400s

VM consolidation (scheduled). Figure 3.11a shows the initial response time (std-200) of

the success requests (HTTP 200) and the response time of success requests during the

client VM migration (mig-200). It indicates that the response time is increased during

the migration and the worst-case response time occurs after the downtime of client’s

live VM migration because the application server needs to process extra requests and

migration downtime postpones the response time of the requests which are sent before

and during the downtime. On the other hand, if the injector and application server are

located in the same host when the migration is performing, due to all requests happened

inside the host, the live migration traffic will not affect the application response time.

However, in scenario s-39, i.e., the application traffic is sent to client VM (compute9),

the pre-copy live migration traffic flow will contend for the shared bandwidth due to

the same traffic direction. Therefore, the worst case response time may occur not only

after downtime but during the migration time as shown in Fig. 3.11b. Meanwhile, Ta-
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Table 3.5: Server migration under different strategies

Exp. MT(s) Duration(s) RT(ms) HTTP0 HTTP200 Total

s-39 N/A 400 192.27 109 13410 16558

AC 908 1200 245.33 6722 18461 29915

H-PC 237 500 156.73 190 16906 20912

ble 3.4 shows that the average response time of requests is dramatically larger than the

migration of client VM. The request timeout (HTTP 0) happens much often due to the

server migration.

We notice that the server migration from compute3 to compute9 cannot finish in 20

minutes. For memory-intensive instances, like the Wikipedia server, there are two op-

tional strategies to perform a successful live migration: Hybrid post-copy (H-PC) and

Auto-convergence (AC). Thus, we evaluate the migration performance and impacts on

the response time of the hybrid post-copy and auto-convergence strategies for Wikipedia

server in the scenario s-39. Table 3.3 shows the initial response time of 1200 seconds, 500

seconds and 400 seconds time intervals without any migration as well as the average

migration time (Duration), response time (RT), and the number of success (HTTP200),

timeout (HTTP0), and total requests.

Hybrid post-copy: With the start of pre-copy mode, the post-copy migration will be

activated if the memory copy iteration does not make at least 10 percent increase over

the last iteration. It will suspend the VM and process state on the source host. The VM

will resume on the target host and fetch all missing pages as needed. However, the post-

copy page fetching will slow down the VM which degrades the service performance and

the VM will reboot if the network is unstable. The average response time of hybrid post-

copy is better than the pre-copy migration as shown in Table 3.5. The timeout requests

are slightly increased during the post-copy migration. Furthermore, Figure 3.12(a) indi-

cates response time of success and timeout requests without migration (std-200, std-0)

and during the hybrid post-copy (mig-200, mig-0). It illustrates that under a stable net-

work environment, the impacts of missing page fetching on application response time

is less than pre-copy iteration traffic.
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Figure 3.12: Response time of successful server migrations

Auto-convergence: By throttling down the VM’s virtual CPU, auto-convergence will

only influence the workloads where the memory write speed is dependent on the CPU

execution speed. As migration time flows it will continually increase the amount of

CPU throttling until the dirty page rate is low enough for migration to finish. Figure

3.12(b) indicates that the task of Wikipedia request has a worse response time under

a larger throttling amount. The request tasks are highly related to the CPU execution

speed. Therefore, the throttling down leads to a successful migration of the Wikipedia

server. However, as the timeout threshold of a request is 2 seconds, the performance of

the server is devastated under the last throttling down, i.e., most requests are timed out

(mig-0). A larger timeout threshold for requests should be set according to the amount

of throttling down. Although it can successfully perform the live server migration, the

average response time is even larger than the pre-copy migration requests’ (Table 3.5).
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Figure 3.13: MigrationScheduler to simulate single live migration follows the sequence
of MigrationPlanning

Moreover, compare to the hybrid post-copy strategy, the auto-convergence leads to a

much larger migration time.

For memory-intensive VMs, H-PC is a better strategy in a stable network environ-

ment. Otherwise, AC is the option for applications that dirty page rate is highly related

to the CPU speed. Due to the throttling down, service time out should be increased

accordingly.

3.6 Simulation Platform

In this section, we first introduce the details of our event-driven simulation platform

that used in this thesis large-scale experiments of multiple live migrations in SDN and

NFV-enabled cloud data centers.

To evaluate the performance of large-scale multiple live migrations, we extended

the CloudSimSDN-NFV [166] by implementing the phases of live VM migration and

corresponding parameters (Table 3.6 and Fig. 1.5). It is an event-driven simulation en-

This section is derived from:

• TianZhang He, Adel N Toosi, and Rajkumar Buyya, ”SLA-aware multiple migration planning and
scheduling in SDN-NFV-enabled clouds”, Journal of Systems and Software (JSS), Volume 176, Pages:
110943, Elsevier, 2021.
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Table 3.6: Simulation events in MigrationScheduler, SDNDataCenter, and NetworkOperat-
ingSystem

Num. Event and Operation Function

0 SDN VM MIG PRE check available network and set up the migration routing

1 SDN VM MIG START start the pre-copy phases

2 SDN PACKET COMPLETE check the application and migration flows, estimate the downtime and send the remaining dirty page

3 SDN PACKET SUBFLOW COMPLETE check the completion of multiple migration flows

4 SDN VM PAUSE pause the VM/VNF based on the downtime and iteration threshold

5 SDN VM RESUME resume the VM/VNF on the dest host after the completion of the stop-and-copy flow

6 SDN VM MIG POST shut and delete the original instance and rerouting the flows to the new VM/VNF.

7 SDN VM MIG SCHEDULER process the migration scheduling in the current time.

Table 3.7: Parameters supported in event-driven simulator

Type Parameters

computing CPU Memory Disk Workloads Task Scheduling Task Priority Overbooking Ratio

networking Bandwidth Topology Switch Buffer Ports Channel Control Plane Data Plane

monitoring Statistic Energy Consumption Utilization Response time Network Delay Fault Handling

live migration dirty page rate mig. time downtime transferred data deadline available bw flow path

vironment supporting SDN-enabled cloud computing. It also provides the mechanism

of auto-scaling of VNF and automatic load balancing through different SFCs. Table 3.7

illustrates some parameters supported by the extended version.

Fig. 3.13 illustrates the implemented components regarding live VM migration: Mi-

gration Class contains all the information regarding one migration task, such as the mi-

grating VM/VNF (RAM size, dirty page rate, data compression ratio, remaining dirty

pages), source and destination hosts, the scheduling window, assigned routings, the cur-

rent phase of live migration, etc. The MigrationPlanner takes the current migration tasks

in the waiting queue as input and calculates the sequence of multiple migrations and

sends the result to the MigrationScheduler. If there are additional migration tasks arrive,

it will calculate the sequence again based on the on-going and waiting to schedule mi-

gration tasks. MigrationScheduler takes charge of starting the migration task based on

the output of the MigrationPlanner. When a migration complete, the SDNDataCenter will

send the event 7 (Table 3.6) to trigger the scheduler to start new migrations according

to the remaining scheduling planning. With the events of live migration, the Class SD-

NDataCenter emulate the live migration in every phase as shown in Fig. 1.5: (1) checking
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the availability of network and computing resources; (2) sending the memory and dirty

pages to the destination hosts iteratively; (3) checking the current downtime and itera-

tive rounds with the thresholds; (4) pausing the workload processing and refusing the

new packets arrive at the instance; (5) resuming the workload processing and rerout-

ing the network packets to the new location. (6) noticing the on-line scheduler about

the completion; (7) if selected, storing the statistic for every migration step. The Net-

workOperatingSystem calculates the routings and allocated bandwidth to the migration

flows based on the selected network routing policy and bandwidth sharing scheme. It

simulates the network packet transmission based on the bandwidth and delay along the

path, packs and unpacks the contents from and to the compute nodes.

3.7 Summary

We established the mathematical model of block live migration to have a better un-

derstanding of the static downtime adjustment algorithm in OpenStack, as well as the

parallel and sequential migration cost in the same network path. For the downtime ad-

justment algorithm, we should dynamically set the downtime configuration (maximum

downtime, adjustment steps, and delays) to achieve the optimal migration performance.

When non-network overheads, such as pre- and post-migration workloads, constitute a

large portion of total migration time, parallel migration should be chosen to reduce the

response time, downtime, and the total evacuation time of multiple migrations in the

same path. We also evaluated the impacts of SDN scheduling update rate on live migra-

tion performance. The result suggests that a high update rate leads to a large TCP/UDP

packet loss which will affect the migration performance.

From the QoS perspective, we investigated the response time pattern of client and

server live migrations with pre-copy, hybrid post-copy, and auto-convergence strategies.

For memory-intensive VM, as the pre-copy migration cannot finish in a reasonable time,

we should choose hybrid post-copy to perform a successful migration if the network

environment is stable. Otherwise, we could perform the auto-convergence feature dur-

ing the pre-copy migration. However, the auto-convergence dramatically influences the

application response time, i.e., requests are timed out because of the CPU slowdown.
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Moreover, for the pre-copy migration of server VM, as the migration and application

traffic flows contend with each other, the worst-case response time will not just occur af-

ter the downtime but during the migration. Moreover, the models and parameters in the

chapter are compatible with other optimization technologies for single live VM migra-

tion [8, 68, 170, 185] and algorithms of multiple migrations [26, 28–30, 90, 150] because

these work focus on different optimization factors. Therefore, the results in the chapter

still stand and can benefit other optimization methods and algorithms.



Chapter 4

Concurrency-Aware Live Migration
Management

By neglecting the resource dependency among potential migration requests, the existing solutions

of dynamic resource management can result in the Quality of Service (QoS) degradation and Ser-

vice Level Agreement (SLA) violations during the migration schedule. Therefore, it is essential to

integrate both single and multiple migration overheads into VM reallocation planning. In this chap-

ter, we propose a concurrency-aware multiple migration selector that operates based on the maximal

cliques and independent sets of the resource dependency graph of multiple migration requests. Our

proposed method can be integrated with existing dynamic resource management policies. The ex-

perimental results demonstrate that our solution efficiently minimizes migration interference and

shortens the convergence time of reallocation by maximizing the multiple migration performance

while achieving the objective of dynamic resource management.

4.1 Introduction

Dynamic resource management such as load balancing and energy-saving policies can

request multiple migrations when the algorithms are triggered periodically. There exist

notable research efforts in dynamic resource management that alleviate single migra-

tion overheads, such as single migration time and co-location interference while select-

ing the potential VMs and migration destinations. As a resource-intensive operation,

live migration consumes both computing and networking resources when transmitting

This chapter is derived from:

• TianZhang He, Adel N Toosi, and Rajkumar Buyya, “CAMIG: Concurrency-Aware Live Migration
Management of Multiple Virtual Machines in SDN-enabled Clouds”, IEEE Transactions on Parallel
and Distributed Systems (TPDS), (minor revision, Aug 2021).
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the memory dirty pages from the source to the destination host. It puts stress on both

the migrating services and other services in the cloud data centers. Thus, it is crucial

to minimize migration interference during dynamic resource management. There are

continuous efforts to take migration overheads into consideration during the dynamic

resource management [90, 136, 137, 141].

Currently, most migration cost models consider overheads of single migration [84,

99], such as migration time (single execution time), downtime, transferred data with re-

spect to the size of memory, dirty page rate, data compression rate and available band-

width while allowing multiple migrations in dynamic resource management. For the

migration selection, the existing resource management algorithms utilize the cost model

of single migration to minimize the overheads. Then, with the migration requests gener-

ated as the input, multiple migration planning and scheduling algorithms [28–30] decide

the sequence of these migration requests to achieve the maximal migration performance.

There are obvious gaps regarding the multiple migration performance between the

existing dynamic resource management policies, the migration cost model and the mul-

tiple migration scheduling. The total migration time, the time interval between the start

of the first migration and the end of the last migration, is the convergence time for the re-

source management solution. Overall, the real-time demands for live migration should

be met by improving the performance in total migration time. For example, with the

nature of highly variable workloads, SLA violations will occur as the resource demand

surpasses the provisioned amount. In this case, a faster live migration convergence

equals to less SLA violations.

Resource dependency between two migrations, such as sharing source and destina-

tion hosts or network paths, can largely affect the performance of multiple migration

scheduling. With the network as a bottleneck, two resource-dependent migrations can

only be scheduled sequentially, while independent ones scheduled concurrently [29, 30].

If large amount of resource dependencies among migrations are generated by dynamic

resource management, the performance of multiple migration scheduling will suffer a

significant degradation. Since single migration overheads are only related to one migra-

tion, it is critical to consider multiple migration overheads in order to generate migration

requests with less resource dependencies.
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Therefore, this chapter incorporates the resource dependency of multiple migrations

into the cost model to bridge the gaps. Based on the maximal cliques and independent

sets of the dependency graph of potential migrations, we propose a concurrency-aware

migration (CAMIG) selection strategy for migrating VMs and destination hosts of the

dynamic resource management. The contributions of this chapter are summarized as

follows:

• We propose and model the multiple migration selection problem to minimize in-

terference due to resource dependency among multiple migrations while achiev-

ing the objective of dynamic resource management.

• We introduce the resource dependency graph to model migration concurrency.

• We propose a flexible concurrency-aware migration selection strategy for dynamic

resource management.

• We conduct extensive experiments in an event-driven simulation to show the per-

formance improvement in terms of total migration time in correspondence with

resource management objective.

The rest of the chapter is organized as follows. The existing work in migration cost

management and multiple migration scheduling are reviewed in Section 4.2. The sys-

tem framework and the migration overheads are discussed in Section 4.3. The problem

model is described in Section 4.4. In Section 4.5, we propose the concurrency-aware mi-

gration selection algorithm. In Section 4.6, we compare our proposed algorithm with

other dynamic resource management algorithms in both load-balancing and energy-

saving scenarios. Finally, we summarize the chapter in Section 4.7.

4.2 Related Work

Many dynamic resource management solutions utilize live migration as a tool to achieve

objectives, such as load-balancing [27, 135–137], energy efficiency [186, 187], delay main-

tenance [188, 189], communication cost [190]. Among these solutions, some resource

management algorithms consider a linear model of the total migration overheads as
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the sum of individual migration overhead [27, 90, 135–137, 141, 187]. However, exist-

ing research only considers the objectives of resource management while neglecting the

multiple migration overheads and migration scheduling performance. Generally, dur-

ing dynamic resource management, there are three steps to generate migration requests:

(1) source host selection; (2) VM selection; and (3) destination host selection. The over-

head or interference model of single migration [84, 99] is considered during the VM and

destination selections.

For the VM and destination host selection, many dynamic resource management

policies consider single migration overheads in terms of the memory size of migrating

VM, single migration time, and the impact of one migration on other VMs located in

the source or destination host, such as CPU, bandwidth of host network interface, and

application bandwidth. In the load balancing scenario, Verma et al. [136] estimated the

migration cost based on the deduction of application throughput. It selects the smallest

memory size VMs from the over-utilized hosts and assigns them to the under-utilized

hosts in the First Fit Decreasing (FFD) order. Singh et al. [135] proposed a multi-layer

virtualization system HARMONY. It migrates VMs and data from hotspots on servers,

network devices, and storage nodes. The load balancing algorithm is a variant of Toyoda

multi-dimensional knapsack problem based on the evenness indicator Extended Vector

Product (EVP). It considers the single live migration impact on application performance

based on CPU congestion and network overheads. Wood et al. [137] proposed the load

balancing algorithm Sandpiper that selects the smallest memory size VM from one of the

most overloaded hosts to minimize the migration overheads. Mann et al. [27] focused

on the VM and destination selection for the load balance of application network flows by

considering the single migration cost model based on the dirty page rate, memory size,

and available bandwidth. In the energy-saving scenario, Xiao et al. [139] investigated

dynamic resource allocation through live migration. The proposed algorithm avoids the

over-subscription while satisfying the resource needs of all VMs based on exponentially

weighted moving average to predict the future loads. It also minimizes the physical ma-

chines regarding the energy consumption. Similarly, LR-MMT [141] focused on energy

saving with local regression based on history utilization to avoid over-subscription. It

chooses the least memory size VM from the over-utilized host and the most-energy sav-
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ing destination. Wu et al. [187] also studied the same problem of maximizing the power

saving through VM consolidation by limiting individual migration costs. With the input

of candidate VMs and destinations provided by other resource management algorithms,

iAware [90] is a migration selector minimizing the single migration cost in terms of sin-

gle migration execution time and host co-location interference. It considers dirty page

rate, memory size, and available bandwidth for the single migration time. They argue

that co-location interference from a single live migration on other VMs in the destination

host in terms of performance degradation is linear to the number of VMs hosted by a

physical machine in Xen. However, it only considers one-by-one migration scheduling.

Taking the list of migration tasks generated by dynamic resource policies as input,

the migration scheduling algorithms focus on minimizing the migration time by effi-

ciently scheduling them. To find a possible sequence of migration tasks, one-by-one

scheduling [28] focused on avoiding the deadlock on the available resource of physical

hosts. The multiple migration planning and scheduling algorithms [29, 30] focused on

the migration performance in terms of minimizing the total migration time by schedul-

ing given migration tasks concurrently when necessary.

However, in existing studies, dynamic resource management and multiple migra-

tion scheduling have been considered separately. Current works only minimize the

sum of single migration overheads. With the requirement of several live migrations

to achieve the objective of dynamic resource management, the concurrency or resource-

dependency in networking and computing resources among potential VM migrations

in the selection process of VMs and destination hosts has been neglected.

4.3 Live Migration in Dynamic Resource Management

4.3.1 System Overview

By integrating Software-Defined Networks (SDN) [42], the SDN-enabled cloud data cen-

ters have a centralized solution for the monitoring, planning, and scheduling of virtual-

ized computing and networking resources [57]. As shown in Fig. 4.1, the dynamic re-

source manager is integrated with migration selector and multiple migration scheduler
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Figure 4.1: System Overview

based on both monitoring computing resource and network resources. VMs are hosted

on physical machines to provide various cloud services. The computing resources are

controlled by VM Manager (VMM), such as OpenStack Nova, while the networking re-

sources (such as available bandwidth and routing) are managed by the SDN controller

and VM Networking Service, such as OpenStack Neutron, in a centralized way. The

SDN controller can dynamically manage the routing for elephant flows (such as flows

of live migrations) to avoid the congestion and alleviate the impact on cloud services.

We can predict the cost of live migration by the available bandwidth between the source

and destination hosts.

Driven by the QoS and SLA or other parameters, such as energy and communication

cost, the dynamic resource manager migrates VMs from one host to another through

live migration based on the current and historical data. After the dynamic resource

management [186–188, 190] generates a list of VM migrations for the new placement,

the multiple migration scheduler [28–30] plan and schedule the migration tasks. It will

schedule migrations to be conducted concurrently when they are resource independent

and sequentially when dependent.
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4.3.2 Single Migration Cost Model

Compared to the live block migration, we simplifies the live migration model by con-

sidering the iterative memory copying of pre-copy migration with storage migration.

To better understand the impact of multiple migrations on performance in dynamic

resource management settings, we introduce the mathematical model of a single live

migration. Live migration can be categorized into two types: post-copy and pre-copy

migration. Since the pre-copy migration is the most widely used approach in hypervi-

sors (KVM, VMWare, Xen, etc), we consider it as the base model. During the pre-copy

live migration for VMs or Containers, the hypervisor or the Checkpoint/Restore agent

in the userspace (CRIU) [60] iteratively copies the dirty memory pages in the previous

transmission interval from the source host to the destination host.

The most important aspect of single migration overheads is the migration time or

the single migration execution time. According to the live migration process [8], the pre-

copy live migration consists of eight phases (see Fig. 1.5): pre-migration, initialization,

reservation, iterative memory copy, stop-and-copy, commitment, and post-migration.

Thus, live migration consumes both computing resources (pre-/post-migration over-

heads) and networking resources (memory copy and dirty page transmission) as shown

in Chapter 3. The total single migration time Tmig can be categorized into three parts:

pre-migration computing overheads, memory-copy networking overheads, and post-

migration computing overheads:

Tmig = Tpre + Tmem + Tpost (4.1)

Based on the iterative pre-copy illustrated in Fig. 1.5, the migration performance in

terms of memory-copy can be represented as:

Tmem =
ρ ·Mem

L
· 1− σi+1

1− σ
(4.2)

i = min
(⌈

logσ

Vthd

M

⌉
, Θ
)

(4.3)

where the ratio σ = ρ · R/L, ρ is the compression rate of dirty memory, Mem is memory
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size, L is available bandwidth, R is dirty page rate, i is the total migration round, Θ

denotes the maximum allowed number of iteration rounds, Vthd = Tdthd · Li−1 is the

remaining dirty pages need to be transferred in the stop-and-copy phase, and Tdthd is

the configured downtime threshold.

4.3.3 Resource Dependency

Not only the overheads of the single migration but also resource dependencies among

multiple migrations can heavily affect the performance of dynamic resource manage-

ment.

For dynamic resource management policies, there are mainly three selection steps:

(1) selection of source physical hosts that need to be adjusted based on the management

objective; (2) selection of VM(s) which need to be migrated from the selected host(s);

and (3) selection of destination hosts of live VM migrations among potential candidates.

With the input of candidate VMs and available destination hosts, different combinations

of source and destination can achieve the same objective of dynamic resource manage-

ment. However, there is a huge difference between these combinations in the scheduling

performance of multiple migrations due to the resource dependencies among migra-

tions. If sharing the same source or destination hosts, or part of the network routing,

two live migrations are resource-dependent.

Two resource-dependent migrations can not be scheduled at the same time [29]. Be-

cause, according to equation (4.2), larger bandwidth allocation means a smaller migra-

tion execution time and downtime. Thus, the networking resources are the bottlenecks

which need to be optimized during the multiple migrations. For example, we have a

number of migrations partially or entirely sharing network paths. Based on equation

(4.2), if scheduled at the same time, experimental results in Chapter 3 show that the total

migration time will be more than the sum of single execution time. Thus, sequential

scheduling of dependent migrations is the most efficient way to optimize the migra-

tion performance as shown in Chapter 3. Meanwhile, migrations which are resource-

independent can be scheduled concurrently to reduce the total migration time. There-

fore, it is essential to exclusively allocate one network path to only one migration until
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Figure 4.2: Scenario of Resource Dependencies during Migration Selections

it is finished to achieve the optimal total migration time, average execution time, and

downtime.

4.3.4 Illustrative Example

Fig. 4.2(a) shows the initial VM placement of the illustrative example along with the

resource dependency among possible migration selections. Fig. 4.2(b) illustrates the

virtual connections between VMs and the memory size (GB) and dirty page rate (Mbps)

for each. Moreover, the threshold of iteration rounds is 30 and downtime threshold is

0.5 seconds. The objective of the management policy is to reduce the communication

cost by VM consolidation. There are several potential migration combinations which

can fulfill the objective: M1: v1
1 : H1 → H3 and v1

2 : H1 → H4; M2: v1
1 : H1 → H3 and

v2
2 : H4 → H1; M3: v2

1 : H3 → H1 and v1
2 : H1 → H4; and M4: v2

1 : H3 → H1 and

v2
2 : H4→ H1. We can schedule two resource-independent migrations concurrently (M2

and M3). On the other hand, one migration can only be scheduled in sequence after the

completion of another dependent migration (M1 and M4).

We used Mininet [191] to emulate the iterative network transmission of the live mi-

gration. The execution time for each potential migration of v1
1, v2

1, v1
2, and v2

2 based on

the available bandwidth is 6.2791, 15.0889, 29.1980, and 12.5143 seconds, respectively.

The total migration time of combination M1-M4 is 34.8858, 12.4334, 28.4711, and 27.6032
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seconds. Moreover, when the service network and migration (control) network are run-

ning separately [103], the available bandwidth for each live migration is the same (10

Gbps). Then, the total migration time of four different combinations M1-M4 is 28.1936,

12.1227, 22.6056, and 26.8893 seconds, respectively. Comparing M2 with M1 and M4,

since there is no resource-dependent migration in M2, the total migration time is signif-

icantly shorter. Comparing M2 with M3, although there is no network resource shar-

ing in both combinations, the single live migration overheads of M2 is smaller due to

the memory size, dirty page rate, and the available bandwidth. In summary, although

all the potential combinations can achieve the desired objective, the scheduling perfor-

mance of multiple migrations varies considerably. Therefore, it is essential to minimize

both resource dependencies among migration requests and single live migration over-

heads during dynamic resource management.

4.4 Problem Modeling

In this section, we model the problem of multiple migration selection to minimize the

migration dependency while achieving the objective of dynamic resource management

as a Mixed Integer Programming (MIP) problem.

In the model, H is the set of all candidate destination physical hosts h ∈ H while N

denotes the set of candidate VMs i ∈ N for the migration. Hi is the set of candidate hosts

for VM i. Let binary variable y(i,h) ∈ {1, 0} indicate both initial and final placement of

VM i in host h. When the VM i is in the initial host pi, y(i,pi) = 1. When VM i is in the

host h in the final placement, y(i,h) = 1. Otherwise, y(i,h) = 0. Let the binary variable

x(i,h) ∈ {1, 0} indicate whether VM i is in the host i in the final placement. In other

words, if VM i is migrated to host h, then x(i,h) = 1 and h! = pi. If VM i is not migrated,

then x(i,h) = 1 and h = pi. Otherwise, x(i,h) = 0 which indicates that VM i is not in host

h in the final placement determined by the dynamic resource management policy.

To generalize the problem, we can omit the VM index i for h ∈ Hi by adding extra
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constraints to x(i,h) when some destination hosts are not available for the specific VM i:

x(i,hi)
= 0 ∀hi ∈ Hi = H\Hi

(4.4)

where hi indicates the unavailable host for VM i.

The migration execution time th
i of x(i,h) = 1, h! = pi can be calculated according to

equations (4.1)-(4.3). Furthermore, we normalize the migration execution time based on

the largest and smallest execution time among the different source and destination pairs

for every VMs.

As there can be only one destination and the VM must be allocated in one and only

one host at the same time, we add the following constraints to the binary variable x(i,h):

∑
h∈H

x(i,h) = 1 ∀i ∈ N (4.5)

The VM i can only be migrated from source host of the initial placement hs = pi

where y(i,pi) = 1 to the destination host of the final placement hd that y(i,hd) = 1,

x(i,hd) = 1 and x(i,pi) = 0 or not be migrated at all x(i,hd) = 1, hd = pi. Thus, we have the

constraints expression as follows:

x(i,h) − y(i,h) ≤ 0 ∀i, h ∈ N × H (4.6)

Constraints of the placement binary variable y(i,h) are:

1 ≤ ∑
h∈H

y(i,h) ≤ 2 ∀i ∈ N (4.7)

where ∑
h∈H

y(i,h) = 2, when VM i is migrated to other host in the final placement. ∑
h∈H

y(i,h) = 1,

when VM i is still in host pi in the final placement.

Let z(i,j,h1,h2) denote the binary variable indicating whether VM i and j are migrated



116 Concurrency-Aware Live Migration Management

to destination h1 and h2:

z(i,j,h1,h2) ∈ {1, 0} ∀i, j ∈ N, h1, h2 ∈ H (4.8)

where z(i,j,h1,h2) = 1, if y(i,h1) = 1, y(j,h2) = 1 and pi! = h1, pj! = h2. Otherwise,

z(i,j,h1,h2) = 0.

There is a resource dependency graph Gdep for all possible migrations. Let vs,d denote

a migration with source host s and destination host d. If node vpi ,h1 and vpj,h2 are con-

nected in graph Gdep, then edge e(i,j,h1,h2) = 1. This indicates that potential migrations of

VM i from host pi to h1 and VM j from host pj to h2 are resource-dependent which can

only be scheduled in a sequential manner. Thus, the resource dependency between two

potential migrations can be represented as:

e(i,j,h1,h2) · z(i,j,h1,h2) (4.9)

Let Oinit and Otar denote the initial score and target score of dynamic resource man-

agement and ε represent the tolerant value for accepted range. Let O(x(i,h)) denote the

objective score achieved after all migrations based on x(i,h) indicator. Thus, the con-

straints of final placement for dynamic resource management can be represented as:

∣∣∣O (x(i,h)
)
−Otar

∣∣∣ ≤ ε ∀(i, h) ∈ N × H (4.10)

In practice, we can replace (4.10) for a specific placement score function. For example,

in load balancing policies, let wi and wj denote the load of VM i and j. We can represent

the constraints of dynamic resource target for the final placement as:∣∣∣∣∣∑i∈N
x(i,h1) · wi − ∑

j∈N
x(i,h2) · wj

∣∣∣∣∣ ≤ ε
′

(4.11)

where ∀(h1, h2) ∈ H × H : h1 ̸= h2 and ε
′
is the tolerant value among the physical hosts.

In addition, let Ch
(Mem,Core,Disk,Work) = (1, 1, 1, 1) denote the normalized computing re-

source capacity of physical host h for memory Mem, CPU Core, storage disk Disk, and
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total workload Work. Therefore, the constraints of computing resources, such as work-

load, can be represented by:

∑
i∈N

x(i,h) · wi ≤Ch
(Work) ∀h ∈ H (4.12)

The single and multiple migration overheads, Intersingle and Intermulti, are calculated

as:

Intersingle = ∑
i∈N

(
y(i,pi) − x(i,pi)

)
· th

i (4.13)

Intermulti = ∑
i,j∈N,h1,h2∈H

(
th1
i + th2

j

)
· e · z (4.14)

where e and z omit the subscripts for a concise equation.

Therefore, the objective of the problem in terms of minimizing single migration over-

heads and resource dependencies among multiple migration requests can be formulated

as:

min(Intersingle + Intermulti) (4.15)

subject to constraints (4.4) - (4.12).

The objective function contains two parts: the first objective is for the sum of single

migration overhead, where th
i indicates single migration time of VM i from source host

pi to destination host h. Note that, although we only model the migration time in our

model, it can be extended to other interference, such as CPU congestions, bandwidth

overheads on other applications, and the number of co-located VMs in the destination

host. The second part is the multiple migration overheads during multiple migration

scheduling. In other words, it indicates how much overheads due to resource depen-

dencies happened. The fewer dependencies in migration requests with less individ-

ual overheads, the greater the possibility of larger concurrent migration groups during

scheduling resulting in a shorter total migration time.
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4.5 Concurrency-Aware Selection

Solving the MIP model in Equation (4.15) is NP-hard, it is not practical to use MIP solver

to get the solution. In this section, we introduce the Concurrency-Aware Migration

(CAMIG) selection algorithm for minimizing the resource dependencies and overheads

among VM migrations during dynamic resource management. Based on the three selec-

tion steps of resource management policy, CAMIG has the flexibility to integrate with

existing policies. Provided that the VMs are selected by the policy, CAMIG can select

migration destinations to minimize the resource dependency. Furthermore, if only the

management objective and source host selection criteria are given, CAMIG selects both

VMs and migration destinations.

The rationale behind CAMIG is to select the migration with the least resource depen-

dency and single migration overheads in each round with the currently selected migra-

tions and minimize the dependency for the future one based on the maximal cliques and

independent sets of the resource dependency graph. The graph theory concepts, such as

maximal cliques and independent sets, are explained in Section 4.5.2. There are mainly

three steps in the algorithm: (1) build the migration dependency graph; (2) get all max-

imal cliques and independent sets of a migration from the dependency graph; and (3)

calculate the single migration interference and migration concurrency metric (MIGC) of

all candidate migrations.

4.5.1 Migration Dependency Graph Build

We first explain how to generate the resource dependency graph Gdep based on the po-

tential migrating VMs and destinations. For the undirected graph Gdep = (V, E), let v

(v ∈ V) be the source-destination pair (src-dst) node or vertex representing one poten-

tial migration. Migrations with same src-dst node are categorized in list M (vsd). Let

e(v, u) ∈ E be the dependency between two migrations with src-dst node v and u. As

shown in Algorithm 1, with the input of potential migrating VMs and corresponding

destination candidates Hi, we first add src-dst nodes and classify potential migrations

into the corresponding node in M (vsd). Then, we add edges into Gdep based on the

source and destination of each node. Fig. 4.3 demonstrates an illustrative example of
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Figure 4.3: A Resource Dependency Graph with two of its Maximal Cliques Marked by
color

resource dependency graph based on a given list of potential migrations (v1 to v9) in a

specific dynamic resource management which involves 9 src-dst pairs in the same phys-

ical network topology shown in Fig. 4.2(a) (four hosts connected through one switch).

Each vertex vHs Hd indicates the pair of source and destination host for a group of poten-

tial migrations. For the sake of conciseness, we use v1 to v9 to represent node vH1 H2 to

vH4 H2 .

Algorithm 1: Create Gdep and vsd queues

Input: potential VM i ∈ N, Destinations {Hi}
Result: migration depGraph Gdep, {M(vsd)}

1 foreach i ∈ N do
2 s← pi;
3 foreach d ∈ Hi do
4 ADDNode (Gdep, vsd);
5 M(vsd)← M(vsd) ∪ i;

6 foreach v ∈ V(Gdep) do
7 foreach u ∈ V(Gdep) do
8 if v! = u then
9 if ISDependent (u,v) then

10 ADDEdge (Gdep, (u, v));

11 return Gdep , {M(vsd)}

Regardless of the number of potential migrations, the scale of Gdep only depends on

the source and destination hosts involved. Given a list of migrations M = {m0, m1, ..., mn},
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the dependency graph G(M) of M can be constructed as G(M) = (V, E). As migrations

with the same source and destination are always resource-dependent, we categorize mi-

grations into different lists of src-dst pair v. Then, all migrations can be represented as

{M(vsd)} = {M(v0), ..., M(v|V|)}. The size of node |V| in the migration dependency

graph will be the total combination of source and destination hosts. Through this pre-

processing, the total nodes of Gdep can be reduced from as many as the potential mi-

grations |M| to the migration pair participated |V|. Therefore, the upper-bound of total

nodes in graph Gdep(M) is |Hsrc| · |Hdst|. Hsrc and Hdst are the number of potential source

and destination hosts, respectively.

Note that the dependency graph supports the multiple routing transmission and

dynamic migration routing based on the current network status. In certain data center

networks, multi-path transmission and multiple network interfaces of physical hosts are

supported. Thus, the vertex vP
sd in Gdep can be extended to indicate the network paths

Psd for migrations from the specified network interfaces set s of source host to interfaces

set d of destination host. Let u(P) indicate the available bandwidth of network paths P.

Given two pairs of src-dst interfaces set (sj, dj) and (sk, dk) and corresponding network

paths Pj and Pk, two vertices vj and vk are resource-independent, when statement (4.16)

are true and sk ∩ sj = ∅ and dk ∩ dj = ∅:

u
(

Pj
)
− u

(
Pj ∩ Pk

)
≥ min

(
u
(

Pj
)

, NCj
s, NCj

d

)
∧

u (Pk)− u
(

Pk ∩ Pj
)
≥ min

(
u (Pk) , NCk

s , NCk
d

) (4.16)

where (NCj
s, NCj

d) and (NCk
s , NCk

d) indicate the network capacity of interface set and

u
(

Pj
)

and u (Pk) indicate the available bandwidth of network paths. Otherwise, the two

vertices are resource-dependent. The upper bound of total nodes in Gdep is the total

number of Psd.
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Figure 4.4: All Maximal Cliques and MISs of Gdep in Fig. 4.3

4.5.2 Maximal Cliques and Independent Sets

Before discussing how to get maximal cliques and maximal independent sets (MISs)

which include a certain node v, we first review some basic concepts, such as clique,

independent set, and degeneracy. A clique is a subset of vertices of an undirected graph

G such that every two distinct vertices in the subset are adjacent [192]. The maximal

clique is a clique that cannot be extended by including one more adjacent vertex. On the

other hand, an independent set of a graph G is the opposite of a clique that no two nodes

in the set are adjacent. Fig. 4.4 shows all maximal cliques and MISs of the Gdep (Fig. 4.3).

For example, {v3, v1, v2} is one of its maximal cliques and {v2, v7, v5, v9} is one of its

maximal independent sets. The problems of finding all maximal independent sets and

cliques are complementary and NP-hard [192, 193]. Finding all maximal independent

sets of a graph is equal to finding all maximal cliques of its complement graph [194]. As

a robust metric to indicate graph density or spareness, degeneracy of a graph G is the

smallest value d such that every nonempty subgraph of G contains a vertex of degree at

most d [195].

A clique of Gdep is a set of src-dst nodes, where migrations with these nodes can

not be scheduled at the same time. In contrast, the migrations from the src-dst nodes

within an independent set can be scheduled concurrently. To check and evaluate the

resource dependency or concurrency of each migration with src-dst pair node v, we

need to generate all maximal cliques {Cv} and MISs {Iv} of Gdep including node v . Let
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Algorithm 2: Get All Maximal Independent Sets of Node v in Gdep

Input: G, Ḡ, v, node neighbors in Ḡ {ḠN(n)}, n ∈ V
Result: All MISs {Iv} of node v, v ∈ V(Gdep)

1 Function CLIQUES (Ḡ, cand):
2 n← GETNodeMaxDegree (Ḡ);
3 foreach m ∈ cand− ḠN(n) do
4 del(m, cand);
5 I ← I ∪ {m};
6 if Ḡ ∩ ḠN(m) = ∅ then
7 {Iv} ← {Iv} ∪ I;
8 else
9 if cand ∩ adj[m]! = ∅ then

10 CLIQUES (Ḡ ∩ ḠN(m), cand ∩ ḠN(m));

11 del(m, I);

12 End Function
13 Iv ← ∅; I ← {v};
14 cand← cand− GN(v)− {v};
15 V(G)← V(G)− GN(v)− {v};
16 return CLIQUES (Ḡ, cand);

{C} and {I} be all maximal cliques and all maximal independent sets of Gdep, where

C ∈ {C} and I ∈ {I} is one of the maximal cliques and MISs. Let Cv ∈ {C} and

Iv ∈ {I} denote one of the maximal cliques and independent sets including node v.

Then, {Cv} ⊆ {C} and {Iv} ⊆ {I}.

We propose an algorithm for listing {Cv} and {Iv} based on {C} of dependency

graph. For getting all maximal cliques {C} of a graph, the general-purpose algorithms

for listing all maximal cliques [194, 196] based on Bron-Kerbosch algorithm [192] take ex-

ponential time due to the maximum possible number of cliques. These general-purpose

algorithms are not sensitive to the density of a graph. Therefore, parametrized by degen-

eracy, we use a variant algorithm Bron-Kerbosch Degeneracy [197] to generate all max-

imal cliques of the original resource-dependency graph without duplication. All maxi-

mal cliques are generated in the tree-like structure by employing the pruning methods

with pivoting to allow quick backtrack during the search. Based on the Bron-Kerbosch

algorithm with pivoting, the Bron-Kerbosch Degeneracy uses a degeneracy ordering to

order the sequence of recursive calls without pivoting at the outer level of the original
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Bron-Kerbosch algorithm [197]. Applied to a n-vertex graph with d degeneracy, it lists

all maximal cliques in time O
(
dn3d/3).

4.5.3 Dependency Graph Properties

In this section, we analyze the properties of dependency graphs in different data center

networks in terms of degree and density (degeneracy). The evaluation results demon-

strate the rationale of using Bron-Kerbosch Degeneracy and cliques-based algorithm on

resource dependency graphs. Besides the FatTree topology used in the experimental

evaluation, we evaluated the resource dependency graph of network topologies in the

WAN environment for inter-datacenter network. We investigated total of 202 network

topologies in the Internet Zoo topology [39]. To maximize the complexity, we generate

the dependency graph based on all source and destination combinations. The graph

maximum degree, average degree, and degeneracy of the original dependency graph

Gdep and its complement graph Ḡdep are studied. The maximum degree of graph and

average node degree of Gdep and Ḡdep for each topology are shown in Fig. 4.5(a) and

4.5(b). Fig. 4.5(c) demonstrates the degeneracy against the total src-dst node number.

As the number of total node in the graph grows, the density of the complement graph

grows much faster than the original dependency graph. For all network topologies, the

maximum degree of graph, average node degree, and degeneracy of graph from Ḡdep

are 2.69, 5.01, and 4.34 times of Gdep.

It is known that all maximal cliques can be calculated in a total time proportional to

the maximum number of cliques in an n-vertex graph [194]. In other words, each clique

is listed in polynomial time for all maximal cliques [193]. CLIQUES algorithms [194, 196]

based on Bron-Kerbosch are optimal by considering only vertex. However, with an ex-

ponential growth of the maximum possible number of cliques, the running time of these

algorithms for all maximal cliques is also exponential [197]. The worst-case running time

of CLIQUES is O
(
3n/3) [196]. The upper bound of all maximal cliques/independent sets

of a Graph G is 3n/3.

For an n-vertex graph with degeneracy d, by introducing the sequence ordering

based on degeneracy, Bron-Kerbosch Degeneracy algorithm [197] can list all maximal
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Figure 4.5: Dependency Graph Properties of WAN

cliques in time O
(
dn3d/3). (n− d) 3d/3, n ≥ d + 3 is the upper bound of all maximal

cliques number. Therefore, compared to other general purpose algorithms, it can list all

maximal cliques in spare graphs (Gdep) in near-optimal time (Fig. 4.5(c)). If one set of

vertices I is maximal independent set in one graph, it is a maximal clique in the com-

plement of graph. Since getting all maximal independent sets of a graph is equal to

getting all cliques of its complement graph. As a dense graph (Ḡdep), it is impractical

to get maximal cliques of the complement graph. Therefore, we cannot efficiently cal-

culate all maximal independent sets from the dependency graph directly based on the

Bron-Kerbosch algorithm.

As shown in the dependency graph property analysis (Section 4.5.3) and the time

analysis in the performance evaluation (Section 4.6.2), it is not practical to generate all

maximal independent sets {I} due to the density of the complement of Gdep. Thus, we

propose a clique-based maximal independent set algorithm to calculate {Iv}. As shown

in Algorithm 2, it fist excludes all adjacent nodes of v in the resource dependency graph
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G. Then, it chooses node with maximum degree from each connected candidates of the

remaining complement graph Ĝ recursively in a branch-and-bound method until there

is no vertex left. Algorithm 2 can achieve the worst-case optimal time complexity of

finding all MISs of a node v as O
(
3m/3) [196], where m = |V(G)− GN(v)| − 1.

4.5.4 Concurrency for Migration Candidates

In this section, we introduce the migration concurrency metric (MIGC) to indicate the

resource dependency level of a potential migration. It is based on the maximal cliques

and independent sets of an src-dst pair node. Let Mx
mig be the list of migrations have

been selected currently. Let Mx be the list of src-dst pair nodes vj of each migration

mj ∈ Mx
mig. For the first round x = 0, when the list of selected VM migration is empty,

MIGC can be calculated as:

MIGCv = κ ·max (|Cv|)
/

max (|Iv|) (4.17)

where Iv ∈ {Iv} and Cv ∈ {Cv}, κ is the coefficient for the value normalization. When

x > 0, the MIGC of migration with src-dst pair node v in Gdep can be represented as:

MIGCMx

v = MIGCliqMx

v + 1
/

MIGIndMx

v (4.18)

The migration independent score of the testing node v regarding to the selected migra-

tion list can be calculated as:

MIGIndMx

v =

∑
vj∈Mx

∑
Iv∈{Iv}

∣∣vj ∩ Iv
∣∣

|{Iv}| · |Mx| (4.19)

where ∑
vj∈Mx

∑
Iv∈{Iv}

∣∣vj ∩ Iv
∣∣ indicates how many times src-dst nodes vj of migration from

the currently selected list vj ∈ Mx is shown in all MISs of the testing node v. |{Iv}| · |Mx|
is the product of the total number of Iv and the number of selected migrations.

Similarly, the migration clique score for src-dst pair node v according to the node list
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of currently selected migrations Mx is represented as:

MIGCliqMx

v =

∑
vj∈Mx

∑
Iv∈{Cv}

∣∣vj ∩ Cv
∣∣

|{Cv}| · |Mx| (4.20)

where the numerator part indicates how many times the src-dst pair nodes of currently

selected migrations is included in the maximal cliques of the node v.

The range of the migration clique score and independent set score is MIGCliq ∈ [0, 1]

and MIGInd ∈ (0, 1]. The largest MIGCliq is 1 when all src-dst pair nodes of selected

migrations in M shown in every maximal clique of the testing node. MIGCliq is 0 when

there is no pair node included. If there is no src-dst pair from the existing migration list

included in the MISs of node v, we set the second part of MIGC as max
(
1
/

MIGInd
)
+Ψ

with minimum MIGInd value and Ψ as the extra cost. Thus, the smaller MIGC of a

potential migration, the fewer migration dependencies for the selected migration lists

and future selections. Note that we do not need to check MIGC of two migrations with

the same node, as the result will be the same.

4.5.5 Concurrency-Aware Migration Selector

In this section, we explain the details of the proposed concurrency-aware migration se-

lector (CAMIG) in Algorithm 3. It minimizes resource dependency and migration over-

heads while achieving the objective of resource management. Given the input of the

objective of the dynamic resource management, the objective function, available VMs,

candidates source and destination hosts, the networking information monitored by the

SDN controller, and the VM and host information, CAMIG will generate the live migra-

tion list which consists of the selected VMs and the corresponding destinations.

In Step 1, Gdep and M (vsd) are generated according to Algorithm 1. In line 3, we find

all maximal cliques {C} of Gdep. From line 5-18, at each round x, we select the optimal

migration from src-dst node v̂j
sd based on both MIGC and single migration overhead

Intersingle. As a result, it gets the overall minimal dependencies and single overheads

of the total migrations to satisfy the objective of the dynamic resource management.

For Step 2, in each optimal round, it first updates the single migration interference of
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Algorithm 3: CAMIG
Input: Performance Objective Score∗, protential VMs i, source Hs, dst Hd
Result: Selected Migration List Mmig

1 Step 1. get node clique and indep matrix
2 Gdep, {M(vsd)} ← CREATEdepGraph (Hs, Hd, k);
3 {C} ← ALLCliques (Gdep);
4 x ← 0; Mx ← ∅; Mx

mig ← ∅;
5 do
6 Step 2. get candidate VMs
7 UPDATEMigInterference (VMi, Hi

d, Li
sd);

8 ˆScore
x+1

, {vj
sd}, {m

j
sd} ← GETMigCandidates (pcurrent, {wi}, {Hi

d}, Scorex,
Mx

mig);
9 Step 3. select the optimal migration

10 v̂j
sd ← v0

sd; m̂j ← m0
sd;

11 if |{vj
sd}| > 1 then

12 foreach v ∈ {vsd} do
13 Cv = ALLCliques ({C}, v);
14 Iv = ALLIndepSet (Gdep, {C}, v);
15 if Interj,v < Intermin then
16 Intermin ← Interj,v;
17 v̂j

sd ← vj
sd; m̂j ← mj

sd;

18 Mx+1 ← Mx ∪ v̂j
sd; Mx+1

mig ← Mx
mig ∪ m̂j

sd;

19 UPDATEdepGraph (Gdep, {C}, m̂j
sd, v̂j

sd)

20 while | ˆScore
x+1 − Score∗| > δ and ˆScore

x+1
> ˆScore

x
and x + 1 < |{m}|;

21 return Mmig

each candidate VM for its potential destinations. According to the selected migrations

of previous rounds Mx
mig and current placement, it gets the newest VM to Host map-

ping. Then, it obtains the candidate migrations {mj
sd} and corresponding pairs vj

sd in

this round with the same objective score ˆscorex+1. It can generate more potential mi-

grations by enlarging the score tolerance of the optimal objective in each round. For

Step 3, the optimal migration with the minimum total migration interference Intermin is

selected. It first calculates {Cv} based on all maximal cliques {C} generated based on

Bron-Kerbosch Degeneracy algorithm and {Iv} according to Algorithm 2. Then, based

on the pair list of already selected migrations Mx, the migration overhead of migration
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mi with src-dst pair v can be calculated as:

Interi,v = κmig · Interi,v
single + κmig · Interi,v

single ·MIGCMx

v (4.21)

where κmig is the coefficient for the value normalization of single migration overheads.

Then, the single migration overhead Interi,v
single and MIGCMx

v can be calculated based

on Equation (4.1)-(4.3) and (4.17)-(4.19), respectively. In line 17, it adds the optimal

migration of this round m̂j
sd and its pair node v̂j

sd to the currently selected migration list

Mx
mig and corresponding node list Mx.

In line 19, algorithm UpdatedepGraph updates the dependency graph and all max-

imal cliques according to the selected migration. Certain potential migrations related to

the selected optimal migration are deleted from the the pair list. For example, in Section

4.3.4, if we choose migration v1
1 : H1 → H3, then v2

1 : H3 → H1 is excluded for future

selection. Note that we do not need to use Bron-Kerbosch Degeneracy to recalculate {C}
based on the new subgraph (Theorem 1). If the pair list is empty after update Msd = ∅,

the corresponding node vsd will be removed from Gdep and {C}. If the updated clique

size is 1 and the only one vertex left has connected edge, remove such clique. Duplicated

cliques are also removed.

The stop conditions of CAMIG are: (1) at the round x, the currently selected VM

migrations achieve the objective of dynamic resource management; (2) the objective is

not improved in the last round; (3) round number equals to the total number of potential

VMs.

Theorem 1 (Correctness of UpdatedepGraph). Given a graph G = (V, E), V ̸= ∅, its all

maximal cliques {C} and its subgraph G
′
= G[V\{v′}] with removing vertices {v′}, results of

UpdatedepGraph algorithm {C′′} and listing all maximal cliques {C′} of G
′

are the same.

Proof. Bron-Kerbosch Degeneracy generates all and only maximal cliques {C} of G [197].

(1) For ∀C
′
, ∀C

′′
, |C′ | = 1 and |C′′ | = 1. Because the V(G)\{v′} = V(G

′
). Thus,

{C′} = {C′′}. (2) For ∀C
′
, ∀C

′′
, |C′ | > 1 and |C′′ | > 1. For the sake of prove, we as-

sume that ∃C
′
, C
′

/∈ {C′′}. Then, ∃Ce, ∃C
′
e, Ce = C

′
e ∪ {ve} ∪ {v

′
e}, where Ce ∈ {C},

C
′
e ∈ {C

′}, part of remaining vertices {ve} ⊆ V(G)\{v′}, part of removing vertices

{v′e} ⊆ {v
′}. Then, we have C

′
e ∪ {ve} ∈ {C

′′}. If {ve} ̸= ∅, because ∀C
′
, ∃C, C

′ ⊆ C,
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then C
′
e ∪ {ve} ∈ {C

′}. We have a contradiction, as C
′
e is a maximal clique of G

′
. If

{ve} = ∅ or Ce = C
′
e, as the UpdatedepGraph removes all v

′ ∈ {v′}, we have a contra-

diction C
′
e ∈ {C

′′}. Thus, ∀C
′ ∈ {C′′}. Similarly, we can prove ∀C

′′ ∈ {C′}. Therefore,

{C′} = {C′′}.

The worst-case running time of Bron-Kerbosch Degeneracy is O
(
dn3d/3) [197] with

total n vertices and degeneracy d. The upper bound of all maximal cliques/independent

sets of a Graph G is (n− d) 3d/3. Thus, given c maximal cliques, the time complexity

of the algorithm for calculating MIGC is O(cn). Then, the worst-case running time of

CAMIG is O
(
(n− d) n23d/3). We perform extensive computational evaluation on time

complexity in Section 4.6.2. It demonstrate that algorithm CAMIG is very fast in practice.

4.6 Performance Evaluation

In this section, we evaluate the performance of our proposed concurrency-aware mi-

gration selection (CAMIG) algorithm for dynamic resource management with several

parameters, such as total migration time, total migration number, and corresponding

dynamic resource management performance in load balancing and energy-saving sce-

narios. We used both real-world workload trace from PlanetLab [198] and synthetic

workloads for the evaluation. We also performed extensive computational experiments

for time analysis. The results show that the proposed algorithm can significantly im-

prove the multiple migration performance while achieving the target of resource man-

agement.

The scalability of Mininet is limited due to the limitation of its resource usage and

the operating systems, which prevents the cloud-scale simulations. Furthermore, it can

not simulate the computing resource for the dynamic resource management and mul-

tiple migration scheduling. Thus, we have implemented components for the multiple

migration scheduling simulations based on the CloudSimSDN [166]. The accuracy of

network processing of CloudSimSDN compared to Mininet is validated in [71]. Based

on the event shown in Fig. 1.5, the event-driven simulator can evaluate the performance

of multiple migrations in terms of the total migration time, migration execution time,
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total transferred data, and downtime. Based on the system architecture, we also im-

plemented the corresponding components to support the network resource monitoring,

the multiple migration planning algorithm, and the on-line migration scheduler based

on the resource-dependency graph of the selected migration list.

4.6.1 Load Balancing Scenario

In this section, we evaluate the influence of migration concurrency during the dynamic

resource management in the load balancing scenario. The target of the resource manage-

ment policy in this experiment is to keep the total CPU utilization of each physical host

to 50%. For other solutions besides the optimal, we set the target range of the total CPU

utilization from 45% to 55%. We compare our algorithm CAMIG with the result of the

optimal and other load-balancing algorithms: Sandpiper [137], FFD [136], and iAware

[90]. We first evaluate the proposed algorithms on small-scale experiments with 8 phys-

ical hosts in a Fat Tree topology. Then, we extend the scale of experiments for more

complex scenarios. In extensive experiments, by integrating the proposed concurrency-

aware algorithm with existing dynamic resource management algorithms, we directly

evaluate and illustrate the scheduling performance improvement in multiple migration

planning and scheduling algorithm.

Experimental Setup

In order to focus on the performance of multiple migrations for different migration re-

quests generated by various resource management algorithms, we controlled variables

of single migration overheads, such as dirty page rate, that other comparison algorithms

ignore. In the load-balancing scenario, we use the same source selection as Sandpiper to

choose over-utilized source hosts for potential migration.

The actual location of physical hosts in Fat Tree topology with different resource uti-

lization is generated randomly, which causes different source and destination selections

in each random setup. Without specific explanation, the result is the average value of 10

experiments. Causing utilization difference among hosts, the initial placement of VMs

in each machine with different CPU utilization and memory size is shown in Fig. 4.6.
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Figure 4.6: One of random data center setups with initial mapping for 8 different physi-
cal hosts with CPU utilization(%) and Requested Memory(GB)

To differentiate the migration value in management objective and migration schedule,

we create VMs with different combinations of high, medium, and low value of resource

utilization and memory size. The CPU utilization of each VM is from 4% to 20% of the

total host CPU resource. As a result, the CPU utilization of each host is from 10% to

90%. The Memory size of each VM is from 2 GB to 16 GB, which can result in various

migration overheads. Other parameters of pre-copy migration are set as the same for

each VM. The dirty page rate factor is 0.001 per second. For example, with a 0.001 per

second dirty page rate factor, the dirty page rate of a VM with 16 GB memory is 128

Mbps. The data compression ratio is 0.8. The iteration and downtime threshold is 30

and 0.5 seconds, respectively. For the physical topology, we create a k-8 FatTree Data

Center Network (128 hosts) with 1 Gbps bandwidth between switches. Each physical

host has 16 CPUs with 10000 MIPS each, 10GB RAM, 1 TB storage, and 1 Gbps network

interface.

Dual simplex (Gurobi optimizer 9.0 and Python-MIP 1.6.7 ) were used to get the op-

timal solution of the MIP model. We also proposed a baseline algorithm called HostHits

(hht). As shown in CAMIG selections, several potential destinations can achieve the

Gurobi solver, https://www.gurobi.com/
Python-MIP. https://github.com/coin-or/python-mip

https://www.gurobi.com/
https://github.com/coin-or/python-mip
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Table 4.1: Total migration time and sum of migration execution time comparison in the
extending mapping scenarios

approach multi1 multi2 multi3 multi4

optimal 71.5313 / 172.9520 71.5313 / 345.9040 71.5313 / 518.8560 71.5313 / 691.8080

camig 86.5060 / 189.5725 86.5060 / 379.1451 86.5060 / 568.7177 86.5060 / 758.2903

sandpiper 86.5060 / 189.5725 86.5060 / 379.1451 99.4928 / 594.7547 99.4860 / 784.4188

optimal+sandpiper 86.5329 / 189.6183 86.5329 / 379.2367 86.5094 / 568.8412 86.5329 / 758.4734

ffd 73.2070 / 133.0450 88.1817 / 266.1101 73.2203 / 399.2128 88.1949 / 532.3334

iaware 86.5158 / 174.6271 578.5142 / 969.6401 374.0354 / 1448.9137 419.1750 / 1941.2873

Table 4.2: Comparisons of dependent migrations, multiple migration interference, and
standard deviation of CPU utilization

approach multi1 multi2 multi3 multi4

optimal 5/ 3.1648/ 0 10/8.9682/ 0 15/ 10.2091/ 0 20/ 14.3697/ 0

camig 10/ 6.2048/ 7.4286 20/13.0928/ 6.9333 30/ 31.2534/ 6.7826 40/ 36.4625/ 6.7097

sandpiper 10/ 6.2048/ 7.1428 34/ 22.9404/ 6.6667 55/ 58.0650/ 6.6087 76/ 70.0414/ 6.5161

optimal+sandpiper 10/ 6.8879/ 14.2857 20/ 13.9321/ 10 30/ 21.4943/ 8.7826 40/ 32.6992/ 9.7419

ffd 11/ 6.3697/ 84.5714 21/ 19.2937/ 78.9333 33/ 23.1770/ 77.2173 54/ 45.3416/ 76.3870

iaware 15/ 9.0528/ 35.7142 53/ 49.4754/ 210.8 48/ 38.6271/ 235.9130 79/ 68.3587/ 248.25801

same objective of dynamic resource management. It chooses the least selected/hit host

as the destination of VM migration in each migration selection iteration.

For original Sandpiper, FFD and iAware without multiple migration scheduling, the

sum of migration execution time is the actual total migration time of these algorithms,

because they only consider one-by-one migration scheduling. However, given the mul-

tiple migration requests, we apply the multiple migration planning and scheduling al-

gorithm proposed in Chapter 5 to all resource management algorithms in experiments

and evaluate and show the results of corresponding performance in multiple migration

scheduling.

Results Analysis

In one setup of scenario multi1 (Fig. 4.6), the optimal result of multiple migrations for

load balancing of the CPU utilization is ⟨2, 0, 7⟩, ⟨17, 4, 1⟩, ⟨18, 4, 1⟩, ⟨20, 5, 2⟩, ⟨21, 5, 2⟩,
⟨27, 6, 3⟩, ⟨28, 6, 3⟩, ⟨30, 6, 3⟩, where the three-tuple ⟨vmnumber, sourcehost, destinationhost⟩
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indicates a live VM migration. The standard deviation of the CPU loads in the optimal

results is 0. The total migration number is 8, the dependency number is 5, and the max-

imum clique size is 3.

The total 10 migration requests of Sandpiper is ⟨29, 6, 3⟩, ⟨30, 6, 3⟩, ⟨22, 5, 2⟩, ⟨27, 6, 3⟩,
⟨23, 5, 2⟩, ⟨17, 4, 1⟩, ⟨20, 5, 2⟩, ⟨2, 0, 7⟩, ⟨28, 6, 3⟩, ⟨18, 4, 1⟩. In the load-balancing scenario,

we use the same source selection as Sandpiper to choose over-utilized source hosts

for potential migration. The result of CAMIG is ⟨29, 6, 3⟩, ⟨30, 6, 3⟩, ⟨22, 5, 2⟩, ⟨27, 6, 3⟩,
⟨23, 5, 2⟩, ⟨17, 4, 1⟩, ⟨20, 5, 2⟩, ⟨2, 0, 7⟩, ⟨33, 6, 3⟩, ⟨18, 4, 1⟩. The 9 migrations of FFD is:

⟨17, 4, 1⟩, ⟨18, 4, 2⟩, ⟨22, 5, 7⟩, ⟨23, 5, 1⟩, ⟨21, 5, 3⟩, ⟨27, 6, 2⟩, ⟨28, 6, 3⟩, ⟨29, 6, 3⟩, ⟨30, 6, 2⟩.
As shown in Table 4.2, the standard deviation of CPU utilization of FFD is 84.57 which

is the worst among other load-balancing algorithms. The total 9 migration list of iAware

is ⟨17, 4, 1⟩, ⟨18, 4, 2⟩, ⟨22, 5, 7⟩, ⟨23, 5, 1⟩, ⟨21, 5, 3⟩, ⟨27, 6, 2⟩, ⟨28, 6, 3⟩, ⟨29, 6, 3⟩, ⟨30, 6, 2⟩.

The rationale is that Sandpiper chooses the largest volume/memory VM from one of

the most overloaded physical host to minimize live migration overheads. The volume

as the multi-dimensional loads indicator is defined as: Volume = 1
(1−cpu)(1−net)(1−mem)

[137], where cpu, net, and memory are normalized utilizations of corresponding resources.

FFD (First-Fit Decreasing) algorithm selects the smallest size VMs from over-utilized

hosts and assigns them in the FFD ordering of the spare resources to under-utilized

hosts. iAware considers both co-location VM interference and the single live migration

overheads. The co-location VM interference is linear to the number of VMs one physical

machine hosts in Xen. The migration selection in iAware is sequentially decided in each

round of the greedy algorithm. The migration tasks are also scheduled one by one.

Scalability Evaluation

We extend the scale of experiments (multi2, multi3, and multi4) by multiplying the same

mapping 2, 3, and 4 times with random physical host locations. Each scenario has 16,

24, 32 candidate destination hosts with a total 76, 114, and 152 potential migration VMs,

respectively. For example, the physical Host 16, Host 8 and Host 0 have the same VM

initial allocation. However, for each scenario, the placement of each physical host in the

FatTree is generated randomly. As the resource management algorithms do not have
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the prior knowledge of the initial placement, the combination of source, destination,

and instances during migration selection is increased exponentially. As a result, with

the experiment scale increasing, more random source and destination combinations of

potential migrations are generated for each experiment. We conducted 10 experiments

in each scenario and show the average results. In Table 4.1 and 4.2, we show the results

of the optimal solution, CAMIG and the optimal solution with Sandpiper VM selection,

Sandpiper, FFD, and iAware in total migration time with multiple migration schedule,

total migration execution time (one-by-one schedule), the number of dependent migra-

tion tasks, multiple migration interference value, and the load-balancing performance

(standard deviation of CPU utilization). The multiple migration interference value is

the sum of normalized single overheads from dependent migrations. Although all phys-

ical hosts are arranged randomly, the optimal result should be the same as in scenario

multi1.

Analysis: Table 4.1 and 4.2 show that the MIP model achieves the optimal in all

scenarios. With the source host selection from Sandpiper, comparing CAMIG with

the optimal solution, as the problem scale increases, CAMIG can maintain the opti-

mal performance in multiple migration scheduling as well as the number of resource-

dependent migrations. In multi3 and multi4, CAMIG over-satisfies the requirement of

load-balancing by losing the value of multiple migration interference. For the Sandpiper

and iAware, as the the scale of the problem increases, the number of dependent migra-

tions and the value of multiple migration interference increase dramatically, which leads

to a larger total migration time in both multiple and one-by-one scheduling. FFD can

not satisfy the requirement of load-balancing in the system.

The total migration time of Sandpiper is increased by 15.01% in multi3 and multi4.

In Table 4.2, although FFD has the lowest total migration time and migration execution

time, it cannot achieve the ideal load-balancing performance. The standard deviation

of FFD is the largest among other algorithms. Moreover, the largest total migration is

increased by 21.33% compared to the lowest. For iAware, the actual total migration time

equals to the total migration execution time by only allowing one-by-one scheduling.

With multiple migration scheduling, iAware has the worst performance in total migra-

tion time and load-balancing due to the trade-off between migration execution time and
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Figure 4.7: Performance comparison with one-by-one, multiple scheduling, CAMIG,
and HostHits

co-location interference. The total migration time varies largely in different scenarios,

increasing at most 568.68%.

Extensive Evaluation

As every load-balancing policy has its own logic for VM selection, it is difficult to eval-

uate the improvement of multiple migration directly. Thus, in this section, we extended

the experiments by integrating the HostHits and CAMIG algorithm with the existing

policies: iAware, FFD, and Sandpiper. With the benefit of flexibility, CAMIG can be

adapted to other existing dynamic resource management algorithms. We randomly gen-

erated VM Memory Size from 8 to 14 GB with the same scenarios (Fig. 4.6). Each result

is the average value of 10 experiments in each scenario. Fig. 4.7 illustrates the multi-

ple migration performance in total migration time based on the migration requests of

these policies with one-by-one scheduling and multiple migration scheduling (+sch),
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and multiple migration scheduling performance based on the migration requests of

CAMIG (+camig) and HostHits (+hht) in 4 different scenarios.

Analysis: Fig. 4.7(a) indicates that iAware with CAMIG can achieve the best per-

formance with multiple migration scheduler in all 4 scenarios. The performance is in-

creased by 20.55%, 57.57%, 70.02%, and 77.93% when migration requests scheduled by

the multiple migration scheduler, respectively. However, with CAMIG the performance

is increased by 48.54%, 72.63%, 73.52%, and 86.48% compared to the original iAware

and increased by 35.29%, 35.50%, 11.89%, and 38.68% compared to the performance

of iAware with only multiple migration scheduler. Moreover, although iAware with

HostHits generally has a better performance compared to iAware+scheduler, as shown

in scenario multi3, it results in a worse total migration time due to creating a larger

clique of the dependency graph. For FFD, CAMIG can increase the performance up

to 91.90%, 57.82%, and 26.42% compared to FFD with one-by-one scheduler, multiple

migration scheduler, and HostHits (Fig. 4.7(b)). Moreover, Fig. 4.7(c) shows that the

performance of Sandpiper with CAMIG in total migration time is increased by up to

87.87% and 24.68% than Sandpiper with one-by-one scheduler and multiple migration

scheduler, respectively.

Summary

In summary, CAMIG can efficiently improve the multiple migration performance while

achieving the target of load-balancing resource management. The performance of com-

paring load-balancing policies can be increased by up to 91.90%, 57.82%, and 28.89% as

compared to the one-by-one scheduler, the multiple migration scheduler, and HostHits,

respectively. CAMIG always outperforms the original policy and the HostHits. The

round-robin algorithm HostHits cannot guarantee the multiple migration performance

though it generally can decrease the total migration time.

4.6.2 Processing Time Analysis

In this section, we analyze the time complexity of the proposed CAMIG algorithm. The

experiments were run in the computer with i7-7500U CPU with 2.70 GHz, and 15.9 GB
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and independent set of nodes

RAM in Windows 10 64-bit Operating System. Fig. 4.8 illustrates that the runtime of

the optimal solution solved by MIP solver is increased exponentially against the linear

growth of the problem size. The runtime of the optimal solution on average is 3.07s,

251.51s, 5373.35s, and 42388.0s in 4 scenarios, respectively. Thus, it is impractical to

generate the optimal result when facing the problem in real life.

Fig. 4.9 illustrates the connectivity properties of dependency graph in terms of av-

erage degree ∑ d (G)
/
|V (G)|, maximum degree ∆ (G), and degeneracy of the depen-

dency k (G) and its complement Ḡ. The number of maximal cliques is 12, 28, 42, 56

with the degeneracy (a measure of graph spareness) of the dependency graph as 6, 14,

22, 30. Therefore, it is much easier to generate all maximal cliques with a small de-

generacy. However, the degeneracy of the complement dependency graph increased

dramatically as 16, 85, 211, 393. Thus, it is impractical to generate all maximal cliques of

the complement graph as the problem size becomes significantly large. In other words,
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Table 4.3: Performance Comparison between LR-MMT, HostHits, CAMIG in energy-
saving scenario

algorithm mig. num ∑ total mig. time ∑ dt. (s)
workload num serve time incl. and excl. timeout (s) energy cost (Wh)

total timeout total excl. avg. excl. avg. incl. total host switch

NoMig - - - 1506464 0 11214923.24 7.44 - 1733432.22 1733432.22 0

LR-MMT 3741 28038.66 355.079 1399857 106497 8700783.51 6.21 1105.63 470492.05 465412.23 5079.82

HostHits 3680 25872.79 359.032 1416806 89550 9028858.54 6.37 447.61 487254.15 481810.21 5443.94

CAMIG 2534 7453.37 178.071 1458906 47522 9945354.17 6.82 80.76 450966.81 447817.74 3149.07
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Bron-Kerbosch Degeneracy algorithm can reach the worst-case runtime when the graph

becomes considerably dense. As a result, it can only generate all 661 maximal indepen-

dent sets in the smallest scale scenario (multi1). Fig. 4.10 shows the runtime comparison

of CAMIG in total processing time, finding all maximal cliques, and generating all max-

imal cliques and independent sets for every node. As shown in Algorithm 2, we do not

need to calculate all maximal cliques and independent sets of every node in the graph.

The all nodes cliques/indep illustrates the upper-bound of runtime. The processing

time of CAMIG is increased linearly against the total src-dst node in resource depen-

dency and the average degree or the degeneracy of the complement of the dependency

graph as shown in Fig. 4.9.

4.6.3 Long-term Energy Saving Scenario

To evaluate the proposed algorithm with the real-world long-term workloads [198], we

integrated and compared CAMIG with LR-MMT [141] in the energy-saving scenario in

terms of total migration time, migration numbers, downtime, total/average CPU serve

time with and without the timeout workloads, and energy (power) cost of both hosts
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and switches.

Evaluation Configuration

For the long-term experiments, we created a k-16 FatTree topology (1024 hosts) with 1

Gbps physical links between switches to simulate the environment with limited network

resources for live migrations. Each physical host has 8 CPUs with 4000 MIPS, 1024 GB

Memory size, 1000 GB Storage, and 1 Gbps network interface. The real-world workload

trace of CPU utilization from Planetlab [198] was used for the experiments running in

24 hours. There are 1052 CPU utilization files mapping to the same amount of VMs. We

generated the workloads based on the MIPS requirement and the CPU utilization varied

along the time. In order to illustrate the influence of multiple migration performance,

there is no application traffic between different VMs other than the migration flows.

There are 4 flavors of VM: 2 vCPUs, [2500, 2000, 1000, 1000] MIPS, [2, 4, 4, 2] GB RAM,

100 Mbps virtual bandwidth, and 4 GB Disk Size. The initial placement of VMs are

allocated based on the optimization criteria defined by LR-MMT [141].

The LR-MMT algorithm utilizes the Local Regression (LR) method to predict the

overloading hosts in the upcoming monitor interval. Minimum Migration Time (MMT)

policy is used for VM selection to minimize the migration overheads. During each mon-

itoring interval of dynamic resource management, CAMIG, as a flexible algorithm, uti-

lizes the same local regression to detect over/under-utilized hosts. In LR-MMT, though

there are many equivalent optimal destinations, it only chooses the first fit. In this ex-

periment, for the sake of fair comparison, the destination candidates used in CAMIG are

provided by the same energy-saving policy in LR-MMT.

Evaluation Results

As shown in Table 4.3, CAMIG algorithm outperforms both LR-MMT and HostHits.

The total energy consumption under no dynamic resource management is 1733432.22

Wh. The LR-MMT algorithm saves 72.86% energy consumption. Comparing CAMIG

with LR-MMT, the host and switch energy consumptions are 3.78% and 38.01% less,

respectively. The total migration number is 32.26% less, the sum of total migration time
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of each monitoring interval is 73.42% less, the total downtime is 49.85% less than the LR-

MMT algorithm. The performance improvements in total migration time also result in

fewer workload timeouts and CPU resource shortages. For VM processing, the average

CPU server time is 92.70% less when there is no timeout mechanism. With a timeout

mechanism, CAMIG also reduces the workload timeout by 14.30% compared to the LR-

MMT.

As the sum of total migration time and total migration time of each monitoring inter-

val shown in Table 4.3 and Fig. 4.12, within the 24 hours experiment, the performance of

CAMIG in multiple migration scheduling is largely better than the LR-MMT. A shorter

total migration time during each monitoring interval means a quicker state convergence

for minimizing the over-utilization period and maximizing the energy-saving through

VM consolidation for under-utilizing hosts. In other words, minimizing the dependen-

cies among multiple migrations is not only critical for the migration scheduling, but also

for the dynamic resource management that provides the migration list.

During the experiments, we find out that there are relatively large equivalent des-

tination candidates in terms of energy saving. Therefore, by exploring the concurrency

score among these candidates, we can minimize the resource dependencies among the

migrations. As shown in Fig. 4.11, there are more migrations in CAMIG from 1200s

to 3600s than LR-MMT. It is because in LR-MMT once the candidate is used it will be

excluded from the remaining destinations. However, by choosing equivalent hosts dur-

ing the destination selection, CAMIG algorithm enables more available destinations for

VMs which need to be migrated from both under and over-utilized hosts. Thus, CAMIG

algorithm actually produces fewer migrations in the remaining monitor intervals. It also

illustrates that in some cases even the total migration number of CAMIG is larger, the

total migration time is much smaller due to the minimum dependency among the mi-

grations. Fig. 4.12 shows that, under certain circumstances (the peak migration time at

20000 second), even if there is a small number of migration tasks, the total migration

time is still very large. Due to the nature of the consolidation algorithm, there are many

migration tasks sharing the same destination or source hosts. Therefore, in traditional

architectures, such as FatTree or even the dedicated migration network, it is inevitable

that the convergence of multiple migrations is slower. As a result, the performance of
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multiple migration scheduling may be limited by this nature of resource competition

among the consolidating VM migrations.

To summarize, the evaluation demonstrates that, our proposed Concurrency-Aware

migration (CAMIG) algorithm can efficiently minimize the resource dependency among

the multiple migration tasks and achieve the objective of dynamic resource management

in the long run. Thus, it also improves the performance of dynamic resource policies in

terms of both QoS and energy consumption.

4.7 Summary

In this chapter, we formally established a MIP model for the problem and proposed

two algorithms: (1) HostHits and (2) CAMIG. We conducted experiments to compare

our proposed algorithms with existing dynamic resource management policies in load

balancing and energy-saving scenarios by using both random synthetic setup and real

trace data. Without changing the framework of existing policies, the results indicate that

CAMIG can largely improve the performance of multiple migrations by up to 91.90%

while achieving the target of dynamic resource management efficiently with near-linear

computation growth in practice. In the long-term experiments, it can also reduce the to-

tal migration number, service downtime and management target in the host and switch

energy consumptions.





Chapter 5

SLA-Aware Multiple Migration
Planning and Scheduling

In this chapter, we propose SLAMIG, a set of algorithms that composes deadline-aware multi-

ple migration grouping algorithm and on-line migration scheduling to determine the sequence of

VM/VNF migrations. The experimental results show that our approach with reasonable algorithm

runtime can efficiently reduce the number of deadline misses and has a good migration performance

compared with the one-by-one scheduling and two state-of-the-art algorithms in terms of total mi-

gration time, average execution time, downtime, and transferred data. We also evaluate and analyze

the impact of multiple migrations on QoS and energy consumption.

5.1 Introduction

With the rapid adoption of cloud computing, the requirement of providing Quality of

Service (QoS) guarantees is critical for cloud services, such as Web, big data, virtual re-

ality, and scientific computing. For the benefit of cloud administrators, it is essential to

prevent violations of Service Level Agreements (SLAs) and maintain QoS in heteroge-

neous environments. Therefore, there has been a notable focus on the quality, efficiency,

accessibility, and robustness of cloud services. For instance, the latency of service func-

tion chaining (SFC) [199] should be optimized to benefit both network service providers

and end users.

This chapter is derived from:

• TianZhang He, Adel N Toosi, and Rajkumar Buyya, “SLA-aware multiple migration planning and
scheduling in SDN-NFV-enabled clouds”, Journal of Systems and Software (JSS), Volume 176, Pages:
110943, Elsevier, 2021.

143
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Although researchers have been trying to achieve the objectives of dynamic resource

rescheduling through live migration [63, 200], few studies have focused on the impact

of live migration overheads [26, 27] and the sequencing of multiple migrations [28–30].

Due to the end of life of some VMs and the variance of workloads in cloud comput-

ing, dynamic resource management constantly generates many migration requests in

optimization rounds. As a result, multiple migration requests need to be scheduled.

For example, dynamic resource management policies for performance efficiency and

energy-saving [141] can generated up to 12500 migrations within 10 days. Moreover,

commercial cloud platforms provides live migration to keep VM instances running dur-

ing the host event, such as hardware or software update. For example, in Google Cloud

Compute Engine, live migration occurs to one VM at least once every two weeks due

to the software or hardware update. In 2020, to make the compute infrastructure cost

effective, reliable and performant, Google Cloud Compute Engine also introduced dy-

namic resource management for E2 VMs through performance-aware live migration.

Therefore, it is important to determine the order (sequence) of the migration tasks to

optimize the total migration time [28–30], which is the interval between the start of the

first migration and the completion of the last migration.

In cloud data centers, Software-Defined Networking (SDN) can enable the central-

ized control of network resources in terms of network topology, connectivity, flow rout-

ing, and allocated bandwidth. The Virtual Network Functions (VNFs) hosted in cloud

data centers can also be linked as a Service Function Chaining (SFC) [199] by SDN con-

troller. Migration planning for VNFs in the chain is not trivial since SFC requires traffic

to traverse through a certain sequence of VNFs. In addition, because migrations share

the network resources with other services, it is necessary to efficiently plan and sched-

ule migration tasks to reduce the overhead impact on the QoS of other applications. The

migration planner and scheduler based on the SDN controller can manage the network

resources in a fine-grained manner for the migration tasks and application services in

terms of network routing and bandwidth allocation.

Google Cloud Compute Engine. https://cloud.google.com/compute/docs/instances/
setting-instance-scheduling-options

Dynamic resource management in E2 VMs. https://cloud.google.com/blog/products/
compute/understanding-dynamic-resource-management-in-e2-vms

https://cloud.google.com/compute/docs/instances/setting-instance-scheduling-options
https://cloud.google.com/compute/docs/instances/setting-instance-scheduling-options
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms


5.1 Introduction 145

Connectivity and Sequence: Compared with services such as scientific computing,

the connectivity and corresponding network requirement of links in SFC between source

and destination are dynamically changing. This will also cause the remaining band-

width of the migration to change. Furthermore, as the available bandwidth of the phys-

ical link changes according to the connectivity of the SFC, we also need to carefully

consider the impact of the new placement of the VNF. As a result, the new placement

will affect the rest of the migration requests that use the same path. In addition, two

migrations could be performed concurrently if there are no shared paths between them.

However, performing multiple live migrations in arbitrary order will result in service

quality degradation. Therefore, efficient planning of the migration sequence is crucial to

reduce the impact of live migration overheads.

In addition to the optimization of total migration, several other parameters that affect

migration performance are largely neglected:

Scheduling window (deadline): For migration such as scheduled maintenance, dis-

aster evacuation, load balancing policy, and other dynamic allocation algorithms [63,

103], it is usually associated with a time window (defined deadline) that requires the

VM or VNF to be evacuated from the source and run on the destination host. For in-

stance, the deadlines for SLA-related migration tasks are based on the violation speed

and the cumulative violations threshold of Service Level Objective (SLO), such as re-

sponse time and end-to-end delay. The scheduling window refers to the time interval

between the arrival of migration task request and the deadline for the new placement.

Failure to meet the deadline will result in QoS degradation and SLA violation.

Allocated bandwidth: During the live VM migration, the applications running in-

side VM constantly modify the local stack and variables in the memory. The memory

modified during the last round of dirty memory transmission needs to be transferred

again. The goal of live migration is to reduce the memory difference between the source

and destination hosts in order to stop the VM and copy the remaining dirty memory

pages to the destination. A smaller memory difference in the stop-and-copy round

means that the service has much shorter downtime. Therefore, live migration is highly

dependent on the network for dirty memory transmission. We can consider live mi-

gration as a non-preemptive task. If the available bandwidth is lower than the rate of
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memory dirtying during the iterative transmission, then the data transferred previously

used for migration convergence will be in vain. Furthermore, although the average

bandwidth for the entire process of a migration might be the same, the insufficient band-

width at the beginning may severely extend the migration time. Therefore, we should

carefully allocate available paths to multiple migration requests.

To help cloud providers guarantee QoS and SLAs during the multiple live migra-

tions, we investigate the problem of optimizing the total migration time, transferred

data, downtime, and average execution time of multiple VM/VNF migrations within

the scheduling window in software-defined cloud data centers. We propose SLAMIG

(SLA-aware Migration), which is a set of algorithms that includes the deadline-aware

concurrent migration grouping for multiple VM/VNF migrations and an on-line mi-

gration scheduler to minimize the total migration time by considering the migration

deadlines.

The main contributions of this chapter are summarized as follows:

• We modeled the multiple migration planning problem to optimize total migration

time and deadline missing in the context of VMs/VNFs connectivity.

• We are the first to introduce the scheduling window for multiple migration schedul-

ing.

• We investigated the impact of allocated bandwidth on the beginning of one migra-

tion.

• By maximizing the concurrent migration groups with minimal weight, we pro-

posed a heuristic algorithm that achieves good performance for multiple migra-

tions by considering the migration deadline.

• We designed an on-line migration scheduler to dynamically schedule migrations

from different migration groups.

• We not only analyzed the multiple migration scheduling in total migration time

and downtime, but the average execution time, total transferred data, deadline

violations, QoS, and energy consumption.
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Table 5.1: Configurations of different flavors

No. Flavor Mem CPU Disk No. Flavor Mem CPU Disk

(GB) (cores) (GB) (GB) (cores) (GB)

1 xlarge 64 12 120 5 tiny 2 1 2

2 large 16 8 60 6 micro 1 1 1

3 medium 8 4 20 7 lb/ids/fw 8 10/12/16 8

4 small 4 2 10 8 web/app/db 256 8/4/12 1000

The rest of this chapter is organized as follows. In Section 5.2, we present the motiva-

tion example, the impact of migration bandwidth, the model of sequential and parallel

migrations, deadline of the migration, and the problem formulation of multiple migra-

tion planning. Section 5.3 explains the observations, rationales of algorithm design, and

the details of proposed algorithms. Section 5.4 describes the experiment design and an-

alyzes results. Finally, we review the related work in Section 5.5 and summarize the

chapter in Section 5.6.

5.2 Motivation and Problem Formulation

5.2.1 Motivation Example

In this section, we discuss the problem and our motivation using an example of op-

timizing the total migration time to show the impact of migration orders on the total

migration time, VNF/VM downtime, and SFC/VDC migration time and downtime.

Migration processes produce elephant flows which take a disproportionate part of

network resources for a long time. At the end of each migration, the network flows

within the data center network are redistributed accordingly due to the relocation of

VNFs or VMs and their connectivity. With the change of available bandwidth in Data

Center Network (DCN), the result of one migration will affect subsequent migrations

that share the links with the completed one. The objective of migration planning is to
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Figure 5.1: Initial mapping for VM/VNF vj
i of VDC/SFC Gj, migration requests (sj, dj),

and available bandwidth u of upload/download interfaces

find the orders of migrations to optimize the total live migration time of all requested

migrations with certain constraints, such as the priority, required bandwidth, residual

bandwidth on the links, and capacity of CPU, memory, and storage resources.

In the network of tree topology shown in Fig. 5.1, there are 4 switches which include

2 top-of-rack (S1 and S2), 2 aggregation switches (S3 and S4), and 4 hosts (H1 to H4).

All the hosts and switches are connected through 10Gbps links. One SFC G1, one VDC

G2 and four other VMs (v3
1 to v6

1) are hosted in different hosts accordingly. Fig. 5.2

shows the connectivity and reserved bandwidth of virtual links among instance with

different flavors (Table 5.1) of G1 and G2, as well as the dirty page rate and CPU, memory,

and storage requirements. SFC G1 contains 4 VNFs where v1
2 and v1

3 are the same type

of VNF. The migration time is composed of the processing time of pre-migration and

post-migration overheads on computing resources and the network transmission time of

the dirty memory. We assume the processing time of pre-migration and post-migration

overheads on the single core are 0.8 seconds and 1.2 seconds, respectively.
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Figure 5.2: SFC and VDC configurations <flavor, dirty page rate, migration deadline>

Fig. 5.1 illustrates the initial mapping of these VNFs/VMs and migration requests for

another possible mapping in the physical topology. Let u denote the residual bandwidth

on the links. According to the reserved requirements of virtual links, we calculate the

initial available inbound and outbound bandwidth of each network interface.

At the time t0 = 0, the coordinator receives several migration requests at the same

time based on the configured optimal reallocation interval as shown in Fig. 5.1. Other

VDCs and SFCs which are unrelated to the migration in the host are not shown. The

maximum memory copy round is 30 and the downtime threshold is 0.5 second. There

are two of possible orders: S1 = (v1
1, v2

2, v1
4), (v

2
1), (v

3
1, v4

1, v5
1, v6

1) and S2 = (v2
1, v1

4), (v
1
1, v3

1),

(v4
1), (v

5
1), (v

6
1), (v

2
2), shown in Fig. 5.3. Migration tasks within the same group could

perform concurrently. For subsequent migrations from different concurrent migration

group, the scheduler will start a migration as soon as a sharing-resource migration in

the other group is finished. For example, migration of v2
1 will start after the migration of

instance v1
1 is finished (Fig. 5.3(a)). After each migration, all virtual links connected to

the migrated instance will be rerouted to the destination host. Therefore, the available

bandwidth of the remaining migrations will be updated according to the new instance

placement at the end of each migration.

By leveraging simulation capabilities for both computing and networking, we im-

plemented and extended the corresponding components based on the CloudSimSDN

[166] to simulate each phase of pre-copy live migration. As shown in Fig. 5.3, the total

migration time Ttotal of two migration scheduling orders is 377.645 and 511.625 seconds,

respectively. The average downtime ΣTd/n is 0.317 and 0.353 with maximum 0.807 and
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Figure 5.3: Results of different scheduling orders

1.538 seconds for v2
1 instance. Furthermore, for the migrations of v3

1, v4
1, v5

1, and v6
1 in-

stance, as the processing time of computing overheads is 2.0 seconds, the total migration

time from the start of migration v3
1 is 4.691 and 10.593 seconds by using parallel and se-

quential method, respectively. The average value of the remaining scheduling window

Σξ/n of two orders is 26.104 and -99.708, respectively. Although these orders both per-

form concurrent migrations that do not share the same resources, the first scheduling

order leads to a better performance in terms of total migration time, average downtime,

SFC/VFC migration time, and remaining scheduling window (i.e. less SLO violations).

5.2.2 Impact of Bandwidth and Dirty Rate

First, we argue that the bandwidth allocated to the early iterative transmission rounds

can highly affect the performance of a migration. Based on the mathematical model
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Figure 5.4: Migrations with xlarge flavor under various bandwidth functions

shown in Section 4.3.2, Figure 5.4 illustrates the migration performance under three dif-

ferent bandwidth functions, where: 1) begins with low bandwidth then increases the

bandwidth for each iteration round; 2) has a constant bandwidth; 3) starts with high

bandwidth then decreases the bandwidth for each iteration round. It indicates that even

with the same average bandwidth during the migration, insufficient bandwidth in the

early steps will cause a huge amount of dirty pages remained to transfer for the sub-

sequent transmission rounds (Equation (3.3)). This causes a much slower convergence

process to reach the point that remaining dirty pages satisfies the downtime thresh-

old. Furthermore, according to the migration threshold and round constraints (Equation

(4.3)), starting the migration with insufficient bandwidth results in a large accumulation

of the remaining dirty pages in the previous rounds. In other words, in order to com-

plete the migration within a reasonable time, an unacceptable service downtime will

occur regardless of the downtime threshold due to the migration round constraint.

5.2.3 Deadline-related Migration

In this section, we discuss deadline-related migration. As one of the reasons for SLA

violation, the Service Level Objective (SLO) violation speed and total violation thresh-

old are the main monitoring parameters. If the cumulative violations of SLO exceed the

threshold, one SLA violation happens. In this situation, the migration request is gen-

erated due to the SLO violations under the current placement of VMs/VNFs with the
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Table 5.2: List of commonly used notations

Notation Description

M Memory size of VM/VNF

R Dirty page rate

L Bandwidth assigned to Migration

Tpre Pre-migration processing time

Tpost Post-migration processing time

Tnetwork memory copy network transmission time

Vi the transferred data of ith round of memory copy

Ti the time interval of ith round of memory copy

Tdthd the downtime threshold

ρ the memory compression rate

σ the ratio of R to L multiple ρ

λ(p) the maximum allowed parallel number in path p

r the processing speed of one compute core

Tn
network parallel Tnetwork of n migrations in the same path

mj the memory size of migration j;

sj, dj the ordered pair of source and destination

N the set of physical network nodes

E the set of physical network links

Ni nodes set of VDC/SFC Gi

Ei links set of VDC/SFC Gi

P set of all paths in the network

Pj set of all paths between (sj, dj)

c(e) capacity of link e

u(e) residual bandwidth in link e

u(p) available bandwidth of path p

Dj deadline of migration j

D(Gj) deadline of all migrations that nj ∈ Gi

θ maximum tolerant number of SLA violations

ω cumulative SLA violation rate

ξ remaining migration scheduling window

Yt cumulated violations at time stamp t
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workload bursting, end-user mobility, and resource over-subscription [63, 185, 200]. The

SLO thresholds are configured by the cloud infrastructure management to alert on the

significant events. A migration request can be issued due to the SLO violations under

the current situation. For instance, VNF need to be relocated to the cloud before exceed-

ing the threshold of cumulative violation due to current SLO violation rate in terms of

response time and latency [63], and VMs need to be migrated from the overbooked hosts

due to the service workload burst [185]. The burst of workload and location changing

of end users can cause serious SLA violations and QoS degradation. Thus, VM/VNF

migrations need to be finished before a certain deadline to prevent the cumulative SLO

violations exceeding the threshold.

Thus, the deadline for the VM migration can be estimated based on the threshold

of total allowed SLO violations and the current SLO violation speed. Based on the new

optimal allocation, the placement algorithm will request corresponding VM migrations

to prevent the accumulated SLO violations from exceeding the threshold. Among these

migration tasks, different services and VNFs have several levels of urgency in terms of

the current average SLO violation cumulative rate ω based on the monitoring, the cur-

rent number of cumulated violations Yt, and the threshold of total violations θ. There-

fore, when the dynamic resource policy triggered at time t by the configured period, the

deadline of migration task can be calculated as:

D = (θ −Yt)
/

ω (5.1)

For the migration tasks which specify the scheduling window (e.g., scheduled mainte-

nance), the deadlines can be directly used as the input for migration scheduling.

Furthermore, there are time-critical migration requests with specific deadline D(Gi)

for the whole SFC or VDC Gi. In other words, all related VMs/VNFs inside the SFC/VDC

need to be migrated and run in the destination hosts before the required deadline. A sim-

ple solution is to directly assign the group deadline to each migration task. For better

performance, the deadline for each task can be calculated by subtracting the sum of the
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worst execution time of other migration tasks from the group deadline:

Dk = D
(

Gi
)
−∑nj∈Gi

/
nk

T j
exe (5.2)

In practice, live VM migrations can be scheduled in low activity periods [103]. VMs

or VNFs interact with different groups of end users with geographical variances or ap-

plications with different access features. For instance, VMs of Web applications allocated

in the same physical host serve different areas, such as China, Japan, Australia, and Eu-

rope, may experience hours or minutes low-activity scheduling window. As a large

amount of VMs/VNFs with various features allocated in relative limited physical hosts,

the low activity window for migration scheduling can be extremely limited.

5.2.4 Problem Formulation

In this section, we formally define the problem of live SFC/VDC migration planning

as a Mixed Integer Linear Programming (MILP) problem. In the model, the physical

data center is represented by a graph G = (N, E), where N denotes the set of nodes

including physical hosts, switches, and routers, and E denotes the set of directed links

between nodes. The remaining CPU, memory, and disk in the destination node N should

be larger than the resources required by the migrating VM.

Let τ denote the instant of time when a migration starts or finishes. From the begin-

ning of the first migration to the end of the last migration, at least one migration is is

in progress in the data centers. Let Ti
mig denote the response time (single execution time

of the migration i plus the waiting time to start). Then, for more concise expression, we

use τ0 as the begin time instant and τK as the end time instant for a total of K migration

tasks.

τi ∈
[
0, T1

mig, ..., TK
mig

]
= [τ0, τ1, ..., τK] (5.3)

where the total K migrations are sorted by the completion time and τi ≥ τi−1, i =

0, 1, ..., K. It converted the original problem to total K discrete state.

Let Xτi
k ∈ {0, 1} denote the binary variable that indicates whether the migration
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k ∈ R+ occurs at time interval τ ∈ [τi, τi+1). Therefore, the response time of migration k

can be calculated as:

τk = Tk
mig =

k

∑
i=1

Xτi
k · (τi − τi−1), 1 ≤ k ≤ K (5.4)

As mentioned in pre-copy migration model, the migration task cannot be preempted

(stopped) after it is started. For memory state synchronization, the transferred memory

data (dirty pages) in previous iterative rounds will become infeasible and cause an un-

acceptable overhead on the DCNs. Thus, we need to add the following constraint to the

binary variable:

Xτi
k ≥ Xτi−1

k , 0 ≤ τi < τk (5.5)

Furthermore, let Zj,k denote the binary variable indicating whether two migrations j and

k can be performed concurrently:

Zj,k = Xj · Xk =


1,

0,

indep.

sharing.

(5.6)

If migration j and k share the same pair of source and destination or network paths,

thereby affecting the available bandwidth allocated to either migration, the two migra-

tions are resource dependent (sharing). Otherwise, two independent migrations can be

performed concurrently.

Let Pk denote the set of paths p available for the migration k. The relation between

allocated bandwidth for migration k and available bandwidth along the path p can be

represented as:

lk = ∑p∈Pk
x (p) (5.7)

According to the SFC/VDC Gj and physical DCN G, the total flows including migra-

tion transmission p and reserved service virtual links p′ can not exceed the capacity u(e)

of link e. For ∀τi, i = 0, 1, ..., K, we calculate the available bandwidth for migration lτi
k

under the new input because the migration i is finished at time instant τi and the virtual



156 SLA-Aware Multiple Migration Planning and Scheduling

links need to be rerouted due to the new placement. The constraint during time interval

τ = [τi, τi+1) can be represented as follows:

∑p∈Pe
x (p) + ∑p′∈Pe

x
(

p′
)
≤ u (e) , ∀e ∈ E (5.8)

Moreover, the allocated bandwidth for migration k cannot exceed the interface ca-

pacity of source and destination hosts. There is no allocated bandwidth before the mi-

gration begins and after it is completed. Thus, we have the constraints expression as

follows:

lk ≤ min
{

Ck
s , Ck

d

}
(5.9)

lτ
k ≤ Xτ

k ·Ψ (5.10)

where Ck
s , Ck

d denote the interface capacity of source and destination host. Ψ ∈ R+ is

a constant larger than the maximum bandwidth of paths in the network that could be

allocated to the migration.

In addition, as shown in Section 5.2.2, if the allocated bandwidth for the first few

transmission rounds is smaller than the dirty page rate, there will be a huge performance

degradation. Thus, we add the extra constraint to lτ0
k for the migration start:

lτ0
k > rk (5.11)

The problem of minimizing the total migration time and SLO violations during the

scheduling can be formulated as:

min

(
K

∑
i=1

Xτi
K · (τi − τi−1) +

K

∑
k=1

(τk − Dk)

)
(5.12)

subject to constraints (5.3)-(5.11). The commonly used notations in the chapter are shown

in Table 5.2.

The problem is NP-hard to solve because it generalizes the data migration problem

[29] without the extra constraints of resources and migration deadline. The model in [30]

also represents the same problem, but it didn’t consider the impact of flow relocation on

the performance of remaining migrations. They are all proved to be NP-hard. Solving
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the MILP problem in a reasonable time is not feasible, because the general algorithms

supported in MILP solver will lead to extremely high time complexity.

5.3 Algorithm Design

In this section, we describe the details of our algorithm. The proposed deadline-aware

multiple migration planning algorithm has two main components: the migration group

planning and the on-line scheduler. Observations and algorithm rationales are as fol-

lows:

• Since live migration is highly dependent on available network bandwidth, migra-

tions with different network paths, source and destination hosts can be performed

concurrently. The scheduling algorithm should maximize the number of resource-

independent tasks migrating at the same time. In addition, for a single migration,

multi-path transmission can improve performance.

• Due to the computational overhead, migrations with low dirty page rate and small

VM memory size can be migrated in parallel through the same paths by treating

them as one migration as discussed in Chapter 3. On the other hand, for migra-

tions with large memory and dirty page rate, the sequential schedule for resource-

dependent migrations can optimize the total migration time.

• One physical host interface can only receive one and send one migration at the

same time, i.e, one pair of ordered source and destination hosts (sj, dj) can only be

assigned to one migration at the same time.

• After each migration completion, the network resources used by both migrations

and cloud services will change. For migration plans such as consolidation, migra-

tions with small execution time quickly free up more bandwidth for subsequent

migrations, thereby reducing the total migration time. On the other hand, migra-

tions that negatively affect network bandwidth will increase the execution time of

other migrations.
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• If the available bandwidth is smaller than the dirty page rate, the migration should

not be started as the accumulated dirty pages will become bigger after each round

of memory copy, resulting in unacceptable migration execution time and down-

time.

5.3.1 Multiple Migration Planning

The proposed heuristic algorithm for concurrent migration group is shown in Algorithm

4. Given the input of migration requests in terms of flavor, dirty rate, compression ratios,

the scheduling windows of migration tasks (deadlines), and the pair of source and des-

tination host, the algorithm will return the ordered list of concurrent migration groups

where each group is the maximal resource-independent migration group.

First, we need to assign the deadline to each SLO-related migration task based on

the Equation (5.1) and (5.2). Secondly, considering the computing overheads, the mi-

gration tasks need to preprocess the integrated network-sharing migrations that suit the

parallel method. In other words, if the migration time not exceeds the deadline and the

total migration time is reduced, the scheduler will perform the parallel method for such

migration.

From line 2-5 in Algorithm 4, the dependency graph Gdep is created for all feasible

migration tasks. If two tasks share migration resources (dependent), the edge (nj, nk)

will be added into Gdep. As we allow multi-path transmission for memory copying, not

only the ordered pair of source and destination (s, d) but also intersected network paths

of migrations with different (s, d) will be shared. Therefore, whether two migrations

can be concurrently performed is described in Algorithm 6, where Pk denotes the set of

paths that can be allocated to migration k, u(Pk) denotes the total available bandwidth,

and Ck
s , Ck

d denote the interface capacity of source and destination hosts. In addition,

Xj ∗ Xk = 0 denotes that migration j and k share resources (dependent). Otherwise, the

two migrations with Xj ∗ Xk = 1 can be performed concurrently.

From line 7-13 in Algorithm 4, we divide the dependency graph Gdep into the largest

complete dependency subgraph of the remaining graphs {Ndep}, where each migration

is dependent on others. One migration j exist and can only exist in one complete sub-



5.3 Algorithm Design 159

Algorithm 4: Heuristic graph-based algorithm of concurrent migration group-
ing

Input: {n : sn → dn}
Result: migGroups {GSq

mig}
{Creating Dependency Graph Gdep of Mig Tasks}
Gdep ← null;
foreach nj in FeasibleMigs do

for nj+1 in FeasibleMigs do
if ISIndependent(mk, mj)==0 then

addEdge(Gdep,(mk, mj));

{Creating resource-dependent complete subgraphs}
{Ndep} ← ∅;
foreach nj ∈ Gdep do

if IsVisited(nj)==False then
N j

dep ← {nj}; //complete graph contains mig j;
SetVisited(nj)← Ture;

CREATECompleteDepGroup(nj, Gdep, N j
dep);

{Ndep} ← {Ndep} ∪ N j
dep;

{Scoring and Sorting each node}
foreach Ni

dep ∈ {Ndep} do
foreach nj in Ni

dep do

cost
(
nj
)
← α · T j

mig + β ·
(

T j
mig − Dj

)
+ γ · Ij;

Ni
dep ← sorting(Ni

dep,{cost(nj)});
{Get migration groups from node-weighted subgraphs}
return {GSq

mig} ← GETConcurrentGroup({Ndep});
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Algorithm 5: Creating concurrent migration groups
GETConcurrentGroup({Ndep}):
Sq ← 0; //scheduling priority for migration groups;

GSq
mig ← ∅;

foreach nj ∈ {Ndep} do
new← Ture;
for s = 0 to Sq do

f lag← True;
foreach nk ∈ Gs

mig do
if getEdge(nj, nk, Gdep) then

f lag← False;

if f lag == True then
Gs

mig ← Gs
mig ∪ {nj}

new← False;
break;

if new == True then
Sq ← Sq + 1;

GSq
mig ← {nj};

delete(Gdep, {Ndep}, nj);

sorting({GSq
mig}, ∑ cost(nj ∈ Gs

mig));

return {GSq
mig}

graph nj ∈ Ni
dep as the complete dependency subgraph |Ndep| is the largest. Between

complete subgraphs, there are links remained according to the original dependency

graph. The corresponding recursive algorithm is described in Algorithm 7.

From line 15-18, in each complete subgraph, we calculate the score of each migration

(line 17) and sort them from the smallest to the largest based on the score. For the func-

tion of migration cost cost(nj), it is the weighted sum of the migration time (Equation

(4.1), (3.4), and (4.3)), minus slack time, and the impact of migration j on other migra-

tions, where α, β, γ are coefficients. In our algorithm, as the cost of each individual

migration is evaluated separately, we categorize the benefit of single migration into di-

rect and potential impact Ij = a · Idirect
j + b · Ipotent

j , where a + b = 1. The direct impact of
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Algorithm 6: Check independence of two migrations with multi-paths and in-
terface constraints

Input: Pk, Pj, (sk, dk), (sj, dj)
Result: Xj ∗ Xk = 1 or 0
Function IsIndependent(mk, mj):

if sk == sj and dk == dj then
return Xj ∗ Xk = 0;

else
if sk ̸= sj and dk ̸= dj then

if u
(

Pj
)
− u

(
Pj ∩ Pk

)
≥ min

(
u
(

Pj
)

, Cj
s, Cj

d

)
and

u (Pk)− u
(

Pk ∩ Pj
)
≥ min

(
u (Pk) , Ck

s , Ck
d

)
then

return Xj ∗ Xk = 1;
end

else
return Xj ∗ Xk = 0;

end
end

migration j can be represented as:

Idirect
j =

 ∑
nk∈{Ndep}−nj

Tk
exe
′ − ∑

nk∈{Ndep}
Tk

exe


+

 ∑
nk∈{Ndep}−nj

(
Tk

mig
′ − Dk

)
− ∑

nk∈{Ndep}

(
Tk

mig − Dk

) (5.13)

where {Ndep} is the set of all complete dependency subgraphs. Tk
exe
′ and Tk

mig
′ denotes

the execution time and the migration time after the migration nj is completed. If the

migration nk and nj are resource dependent, Tk
mig
′ will be the sum of Tk

exe
′ and T j

exe.

The potential impact considers the possibility of decreased migration time when the

bandwidth of some parts of the migration paths increases. Then, it can be represented

as:

Ipotent
j = ∑

nk∈{Ndep}−nj

∑
p∈Pk

|{ê}|
|p| ·

(
Tk,u(ē)

mig − Tk
mig

)
(5.14)

where |{ê}| is the number of links with increased bandwidth and ê ∈ p, p ∈ Pk. The

migration time Tk,u(ē)
mig is based on the minimal increased bandwidth among the links
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Algorithm 7: Create Complete dependency Subgraph

CREATECompleteDepGroup(nj, Gdep, N j
dep):

N j
adj ← adjacency(Gdep, nj);

SetVisited(nj)← Ture;

for nk ∈ N j
adj do

if IsVisited(nk)==False and IsCompleteGraph(N j
dep, nj) then

N j
dep ← N j

dep ∪ {nk};
CREATECompleteDepGroup(nk, Gdep, N j

dep);

if |N j
dep| larger than previous then

return N j
dep

u(ē) = min(u(ê)).

In the final step (line 18), the cost-driven algorithm creates concurrent migration

groups (Algorithm 5), where the selected migrations are resource independent. As

shown in Algorithm 5, according to the sorted N j
dep ∈ {Ndep}, it will always first se-

lect a migration nj with the lowest score from each complete dependency subgraph

N j
dep ∈ {Ndep} (line 3). If there is no migration group feasible for nj (new == true),

it will create a new concurrent migration group Gs
dep. After adding the migration to one

migration group Gs
mig, it will be deleted from the dependency graph Gdep and the corre-

sponding subgraph N j
dep ∈ Ndep (line 17). In line 18, migration groups are added to the

sorted list from minimum to maximum score in seconds.

When additional migration tasks arrive after the initial processing, the on-line mi-

gration scheduler will first remove the node from the migration dependency graph after

completing one migration. If additional migration tasks arrive, our proposed algorithm

will add the new tasks to the existing migration dependency graph. The planning al-

gorithm will also remove the ongoing migrations from the dependency graph. Then, it

recalculates the plan based on the current system status (available network and comput-

ing resources).
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Algorithm 8: Updating and scheduling feasible migrations
Data: migGroups, currentGroupNum
Result: Start feasible migrations and groups
foreach G in migGroups do

groupNum = getGroupNum(G);
if groupNum¡= currentGroupNum then

foreach mig in G do
if isMigFeasible(mig) then

processMigrationStart(mig);

{Scheduling migration in subsequent group};
if hasNext(Gcurrent) then

Gnext = getNextGroup(Gcurrent);
flag = False; for mig in Gnext do

if isMigFeasible(mig) then
preocessMigrationStart(mig);
flag = true;

if flag then
Gcurrent = Gnext;

else
if size(inMigrationList) == 0 and size(migPlan)==0 then

setTotalMigTime(migPlan);

5.3.2 Time Complexity Analysis

Let N denote the total migration tasks number. Then, the process for creating depen-

dency graph requires O (N). For the breadth-first research in dependence graph to cre-

ate complete subgraphs, it requires O
(

N + N (N − 1)
/

2
)
. Let E denote the total num-

ber of physical links. Then, the time complexity of cost function (Line 16) is O (NE).

Thus, The worst case time complexity of scoring and sorting is O
(

N2E + N log (N)
)
.

The worst case for creating concurrent migration group is O
(

N2). Therefore, the time

complexity of worst case of Algorithm 4 is O
(

N2E
)
.

5.3.3 On-line Migration Scheduler

For the real data center environment, the network workloads vary greatly over time.

Therefore, it is impracticable to set the start time of each migration just based on the
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prediction model and the available bandwidth at the current time τ = 0. The proposed

on-line migration scheduler can dynamically schedule the subsequent migrations at the

end of each migration.

The algorithm used by the SDN-enabled migration scheduler is shown in Algorithm

8. It includes two steps: 1) check feasible migrations in the previous and current mi-

gration groups; 2) start all feasible migrations in the next group. By only considering to

start the next migration group in the ordered list at each time, it prevents the occurrence

of priority inversion. The priority inversion refers to the migration group with a higher

score (lower priority) may start to migrate before the group with a smaller score.

5.4 Performance Evaluation

In this section, we first introduce the various scenarios and parameters to be evaluated

in both inter and intra-datacenter environments. Then, we analyze the results and con-

clude the experiments. We compare the performance of SLAMIG with the one-by-one

scheduling and other two state-of-art algorithms [29, 30]. The results indicate that our

proposed algorithms achieve good migration performance in terms of the total migra-

tion time, total transferred data, average migration time, and average downtime, mean-

while can efficiently reduce the deadline violations during the multiple live migrations.

Furthermore, we evaluate and analyze the impact of multiple migration planning and

scheduling on the energy consumptions and the QoS of applications.

5.4.1 Evaluation Scenarios and Configurations

In this section, we list the details of various evaluation scenarios and corresponding

setups regarding the physical datacenter topologies, virtual topologies (applications),

and workloads.

For the physical data center topology, we evaluated the performance of multiple

migrations planning algorithms in both (1) WAN environment for Inter-Data Centers

Network [39] and (2) Intra-Data Center Network (FatTree). The three-tier 8-pod FatTree

[31] intra-data center network consists of 128 physical hosts with the configuration of
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Figure 5.5: AARNET as the inter-datacenter WAN

24 cores, 10000 MIPS each, 10240 GB RAM, 10PB storage, and 10 Gbps for all physical

links. The inter-data center network used in the experiment is shown in Fig. 5.5. Each

link between routers has 10 Gbps bandwidth. Each router as the gateway connects to the

local data center cluster through the 40 Gbps link. Each local data center includes 2048

hosts with the same configuration of the one in FatTree which designed to be sufficient

for all instances during the experiments.

Regarding the types of virtual topology (application), we selected them by different

flavors and connectivity. Table 5.1 illustrates the flavors we used for different applica-

tions, such as multi-tier web applications and SFCs. In general, we generated 4 different

types of virtual topologies: (1) single; (2) star-to-slave; (3) sfc; and (4) wiki (multi-tier web

application with SFCs).

There is no connection or network communication between VMs in the single topol-

ogy. For every group of star-to-slave, there is one master instance that connects to other

slave instances in a star fashion. The network requests and workloads are only sent

from the master to the slave instance. Figure 5.6(a) indicates a star-to-slave virtual topol-

ogy where v0
0 is the master instance and v0

1 to v0
4 are the slave instances. The sfc consists of

VNFs chained together where each tier can have multiple identical VNFs with the same

function. The workloads are sent evenly to the VNFs with same function as shown in

Fig. 5.6(b).
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Figure 5.6: Virtual Topologies used in the experiments

Each request generated between two VMs/VNFs in star-to-slave and sfc experiments

consists of three parts: computing workload in the sender VM (instruction numbers),

data transmission workload (bits), and computing workload in the recipient VM. The

request is first processed in the sender VM. Then, network data is generated and sent

to the recipient VM. Finally, the recipient VM processes the request. The service request

arrival time of star-to-slave and sfc experiments are generated in a finite time interval

based on the Poisson distribution with a mean as 20 and 200 per second, respectively.

Each packet size (pSize) is generated in the normal distribution with pSize as the mean

value and 0.1pSize as the variance. The CPU processing workloads in the sender and

recipient are generated based on the given workload size (loadsize) of request sender

and recipient in the normal distribution with loadsize as the mean value and 0.2loadsize

as the variance. The pSize of each packet is 5 Mbits. The loadsize for request sender and

recipient is 100 and 50, respectively.
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In the scenarios of wiki, we simulate the three-tier web applications consisting of web

(web), application (app), and database (db) servers. We generate synthetic workloads

based on Wikipedia trace [184] following the three-tier application model [201]. Net-

work traffics between servers is forwarded to different types of VNFs: Load Balancer

(lb), Firewall (fw), and Intrusion Detection System (ids). The configuration of different

types of servers and VNFs are shown in Table 5.1 and 5.3. As shown in Figure 5.6(c),

flows from the web servers are forwarded to VNF lb1 then fw before reach to the app

servers. Meanwhile, flows from the app servers are forwarded to VNF lb2 and ids be-

fore reach to the db servers. For those flows coming back to the web servers from db

servers, they need through VNFs ids and lb2 then app servers and the VNF lb1. In addi-

tion to those general VM specifications, VNFs have a specific field named MIPO (million

instructions per operation)[166], which models the throughput of the VNF. The MIPO

specifies the CPU workload length for a single network operation provided by a VNF.

Thus, it can provide the throughput of the VNF along with the MIPS. For example, a

VNF with 10000MIPS and 10MIPO can handle 100 operations (request) per second. We

assign MIPO to Load Balancer, IDS, Firewall as 20, 200, and 800, respectively.

5.4.2 Results and Analysis

In this section, we evaluate the performance of our proposed algorithms SLAMIG through

several experiments, including migration performance, QoS awareness, deadline aware-

ness, and energy consumption. In order to compare with other multiple migration

scheduling algorithms [29, 30], we use the similar simulation settings in terms of initial

placement and dynamic resource management policy. Using the settings, we highlight

the benefits of our multiple migration planning and scheduling algorithm compared

to other algorithms. Note that, given the multiple migration requests provided by the

dynamic resource management policies, multiple migration planning and scheduling

algorithms are not confined to any specific resource reallocation scenario. The initial

placement of all instances are generated in the way that connected VMs and VNFs are

distributed among hosts in Least Full First (LLF) manner. The dynamic resource algo-

rithm generates migration requests to consolidate all connected VMs and VNFs into the
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Table 5.3: Experiment scenarios profile of wiki

Scen- VNFs # VMs # Reser. bw Target Rate Mig.

arios lb1 fw lb2 ids web app db (Mbps) (Request/s) #

wiki-s1 1 3 1 3 8 24 2 2 7.8402 34

wiki-s2 2 6 2 6 32 96 8 2 1.9601 118

wiki-s3 2 6 2 6 80 240 20 2 1.5680 180

same host as compactly as possible, and if not, allocate them to the most full hosts. The

configuration can simulate a large amount of resource contention between the multiple

migration requests for the dynamic resource management to efficiently utilize the cloud

resources. We compare the performance of SLAMIG with the one-by-one migration pol-

icy as the baseline and the other two state-of-art algorithms. One algorithm (CQNCR)

[29] migrates VMs by groups. The other is the approximation algorithm (FPTAS). It op-

timizes the total migration time by maximizing the total assigned network bandwidth

to migrations [30].

Migration Performance

In this section, we evaluated the migration performance in terms of total migration time,

total downtime, average execution time, total transferred data, and processing time. In

experiment single, we randomly generated a total of 100 to 1000 instances with flavor

from micro to large in the inter-data center topology or Wide Area Network (WAN)

(Fig. 5.5). We use the dirty page factor in the simulation experiments, which is the

ratio of the dirty memory rate (bits per seconds) to the total memory of the VM (bits)

being migrated. For the scenarios of migrating instances with low and high dirty page

rate, we randomly generate the dirty page factor from 0.01 to 0.05 and from 0.01 to 0.15,

perspectively. The dirty page rate (Gbps) is the product of the total memory size and the

dirty page factor.

Furthermore, we evaluate the migration performance of wiki scenarios in FatTree.

Table 5.3 illustrates the details of three scenarios in the wiki experiment, including the
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virtual topologies of SFCs and multi-tier web applications, reserved virtual bandwidth,

the request arrival rate, and the number of migration tasks. The dirty page factor is set

as 0.001 for all instances.
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Figure 5.7: Live migration of non-connected VM (single) in AARNET

Single VM Topology in Inter-Data Centers: First, we evaluated the migration perfor-

mance in a large scale manner from 100 to 1000 total migration tasks (Fig. 5.7). The

results indicate that in SLAMIG can achieve the best total migration time without scar-

ifying the downtime performance in both high dirty page rate and low dirty page rate

cases. Regarding the processing time of multiple migration planning, our algorithm is

less time consuming than the approximated algorithm (FPTAS) and iterative heuristic

grouping (CQNCR). In the scenarios of the low-dirty-page-rate single experiment, the
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total migration time of SLAMIG is 62.85% to 63.69% less than the baseline and 10.50%

to 39.41% less than the FPTAS. By starting the migrations group by group at the same

time, the total migration time of CQNCR is only marginally smaller than the result of

the baseline (maximum 9.06%). Meanwhile, as shown in Fig 5.7(b), the total downtime

of SLAMIG is at least 40.27% and at most 55.87% less than the FPTAS.

For the result of algorithm running time, we observe that the SLAMIG algorithm can

significantly reduce the computation time compared to solving the approximate MIP

problem in FPTAS. In addition to Fig. 5.7(d), when there are 1000 migration tasks, the

processing times of CQNCR, FPTAS, SLAMIG are 15471.29, 89.94, and 30.23 seconds

respectively. When performing 500 migration tasks, the processing time of SLAMIG

(24.64s) is 44.70% less than that of FPTAS. The runtime of sequential scheduling is less

than 1 second, because in our experiments, the available sequence only needs to be cal-

culated once as all sequential combinations are schedulable. For the algorithm CQNCR,

after updating the network bandwidth and computing resources in each round, it iter-

atively groups the migrations in a greedy manner and selects the migration group with

the most positive impact. Thus, when the number of migration tasks increases, the pro-

cessing time will increase dramatically (Fig. 5.7(d)). Compared with CQNCR, our pro-

posed algorithm can calculate all concurrent migration groups in one round. Since each

migration task has been given a weight in the dependency graph, we also generate the

largest possible migration group with minimal weight. Therefore, it can achieve better

performance in total migration time. Note that in our algorithm, generating a migration

dependency graph takes up most of the processing time in multiple routing environ-

ments. For the single routing environment such as FatTree, we only need to check the

source and destination hosts, which will further reduce the processing time.

Fig. 5.7(c) shows the details of the experiment of single instances with a high dirty

rate. Compared with the other two algorithms, SLAMIG can maintain the performance

of the total migration time. By allowing other migration tasks to be initiated when there

is a small amount of bandwidth to maximize the overall network transmission rate,

FPTAS may cause significant performance degradation in both total migration time and

downtime. In the worst case, the total migration time shown is even greater (106 times)

than the result of one-by-one scheduling. Moreover, all migration start times are based
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Figure 5.8: Live migration of multi-tier applications with SFCs (wiki) in FatTree

on the prediction model in CQNCR. Inevitably, in the worst case, several migrations will

start when their resource-dependent migration tasks haven not been completed, which

will cause the allocated bandwidth to be less than the dirty page rate. In other words,

the allocated bandwidth is insufficient to converge the migration in the worst case.

Web Application Topology in FatTree: In the experiment of wiki, we evaluated the

algorithm performance regarding the total migration time, total downtime, average ex-

ecution time, and total transferred data during the live migrations (Fig. 5.8). In all

three scenarios, the SLAMIG achieves the optimal total migration time while maintain-

ing other migration performance criteria at the level of sequential scheduling. Com-
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pared with the baseline, the SLAMIG reduce the total migration time by 60.74%, 74.41%,

and 87.13%. The results are −5.66%, 83.47%, and 73.02% less than FPTAS and 21.41%,

94.96%, and 43.17% less than CQNCR.

In some cases, such as wiki-s1 in Fig. 5.8(a), we noticed that the total migration time

of FPTAS may be slightly better than our algorithm. It is because several migration tasks

can be scheduled in the same paths when a small amount of bandwidth is available to

maximize the overall network transmission rate. One migration can be started even the

allocated bandwidth is smaller than the dirty page rate. Although the sum of migration

execution time is larger, the total migration time may be smaller due to the early start

time. As mentioned in Section 5.2.2, we argue that it will increase the average execution

time of each migration task (Fig. 5.8(c)), resulting in larger downtime (Fig. 5.8(b) and

5.7(b)) and total transferred data (Fig. 5.7(d)).

Considering total downtime, average execution time, and total transferred data, we

should concurrently schedule the resource-dependent migration tasks to alleviate the

impact of multiple live migrations on the system and guarantee the QoS of the migrat-

ing instances. The results indicate that there is no statistical difference between SLAMIG

and the sequential scheduling in these parameters. However, the FPTAS and CQNCR

drastically increase the total downtime by 1.75/1.66, 44.19/458.23, 7.77/1.28 times, the

average execution time by 4.006/5.03 times, 28.44/59.92, 14.51/3.60, and the total trans-

ferred date by 0.66/0.83, 4.70/9.88, 2.41/0.60 times, respectively. Although the FPTAS

and CQNCR can achieve a better performance of total migration time compared to the

baseline in other scenarios, bandwidth sharing among resource-dependent instances

with large memory and high dirty page rate will lead to unacceptable results (wiki-s2).

Summary: (1) SLAMIG achieves the optimal migration performance in terms of the to-

tal migration time, downtime, average execution time, and total transferred data, while

the processing time is less than the CQNCR iterative grouping and FPTAS approxima-

tion algorithm. (2) The prediction model of migration is used to estimate the execution

time of one migration and the total migration time of a concurrent migration group.

However, it is not efficient to assign a fixed start time for a live migration only based

on the prediction model. In an independent migration group, the execution time varies,
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which leads to multiple time gaps between the completion time and the estimated start

time of the next group. Moreover, in the real environment, the real-time dirty page

rate may be different from the historical statistics and the current monitoring value.

In a dynamic network environment, the available network bandwidth used in the pre-

diction model may also change over time. In short, the prediction execution time is

not necessarily identical to the actual time during the scheduling, which will cause two

resource-dependent migrations to run concurrently. Therefore, it is essential for the on-

line scheduler to dynamically schedule migration tasks according to the plan. (3) By

maximizing the total network transmission rate, the total migration time can be reduced

to a certain extent, but the optimal migration performance cannot be achieved. If one

migration starts with the allocated bandwidth below its dirty page rate, it will extremely

enlarge the execution time. For migrations with large dirty page rates, allocating band-

width that is just slightly larger than the dirty page rate will still result in an unaccept-

able migration performance with a large downtime and memory-copy iteration round.

Therefore, we should not neglect the concurrency or resource sharing dependencies be-

tween different migration tasks. (4) Regarding the performance and impact of multiple

migration scheduling, total migration time is not the only parameter that needs to be

optimized. The average bandwidth for each migration can also reflect the efficiency of

multiple migration scheduling. A larger allocated bandwidth means smaller single mi-

gration execution and the downtime. As shown in the Equation 4.3, it will also result

in fewer iteration rounds for dirty page copying. Thus, it we should also achieve better

performance in terms of average bandwidth of each migration resulting in better aver-

age execution time, total/average migration downtime, and total/average transferred

data.

QoS-Aware

In this experiment, we evaluated the impact of multiple migration planning on QoS in

terms of the network transmission time of application requests.

There are three network bandwidth sharing policies to manage the migration flow

in Section 5.4.2: (1) free used by FPTAS; (2) reserved used by CQNCR; and (3) ratio used
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Figure 5.9: Average network transmission time without live migration with different
number of links and reserved virtual link bandwidth under ratio bandwidth sharing
policy

by SLAMIG and OneByOne. The bandwidth sharing solutions proposed by FPTAS and

CQNCR which do not consider the bandwidth competition can only be adopted in an

ideal scenario where the remaining bandwidth for the live migration is sufficient. For

the free policy, the live migration can only utilize the available bandwidth along the net-

work paths left by other service traffic. For the reserved policy, the live migration only

use the remaining unreserved bandwidth left by other virtual links. The available band-

width reserved by other services can not be allocated to the migration flow. Therefore,

under the free or reserved bandwidth sharing policy, the live migration flow will not
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Figure 5.10: Average network transmission time during live migration with different
number of links and reserved virtual link bandwidth under ratio bandwidth sharing
policy

affect the network transmission time of other services in terms of network bandwidth

competition. Note that in the separated control (migration) network [103], the migration

flow will not affect the bandwidth allocation of service traffic. However, we argue that

the free and reserved policies can only be adopted when the remaining bandwidth for the

live migration is sufficient to converge the live migration in time. Furthermore, in some

worst cases, as shown in Fig. 5.8, the massive downtime caused by the free or reserved

policy will seriously affect the request response time of the migrating service.

When other service traffic and migration flows compete on the network bandwidth,
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Chapter 3 shows the effect of single live migration on the service response time of the

migrating VM. Chapter 3 also evaluates the impact on the TCP and UDP traffic and

[26, 90] investigate the effect on other service traffic during the migration. For the ratio

policy, the actual allocated bandwidth of a network flow is based on the ratio of the

reserved bandwidth of the flow to the total bandwidth demand along the network path.

It is practical to use ratio bandwidth sharing policy when the remaining bandwidth for

the migration flow is insufficient to converge the migration or it is urgent to finish the

migration to avoid QoS degradation and SLA violations.

With the ratio policy, we first explain the principle of the impact of live migration

on the network traffic between VMs. In the experiment, we control the number of vir-

tual links between VMs along the network path of one migration. The network traffic

between two VMs is generated based on the wiki workload. Figure 5.9 illustrates the

average network transmission time of network traffic between VMs, where reserved

bandwidth size for each virtual link, the total number of virtual links in the evaluating

network path, and the available bandwidth of the evaluating network path are con-

trolled variables. The results indicate that when the total bandwidth of reserved virtual

link is lower than the physical bandwidth, the reserved bandwidth of each virtual link

can be satisfied. As the number of links increases, the actual bandwidth allocated for

each virtual link decreases, which leads to the longer network transmission time. Figure

5.10 shows the average network transmission time when the service traffic is sharing

the bandwidth with one live migration under the ratio policy. In our experiments, the

reserved bandwidth for live migration is equal to the physical network bandwidth. As

the physical network bandwidth increases, the impact of live migration on the network

transmission time of other service traffic decreases. Furthermore, it also indicates that

when the number of virtual links along the migration path or the reserved bandwidth

for each virtual link increases, the live migration has less impact on the network trans-

mission time of service traffic.

To demonstrate the performance of different migration scheduling algorithms with

ratio bandwidth sharing policy, in addition to the wiki experiment configuration in the

FatTree data center network, we also added the experimental results from two types of

virtual topologies: (1) start-to-slave and (2) sfc. The star-to-slave and sfc experiments are
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Table 5.4: Simulation configurations of star-to-slave and sfc experiments

group startoslave vm link bw (Mbps) Mig # sfc vnf link bw (Gbps) Mig #

5 star-s1 25 100 19 sfc-s1 21 1.0 19

10 star-s2 50 100 37 sfc-s2 43 1.0 40

15 star-s3 75 100 55 sfc-s3 69 1.0 65
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Figure 5.11: Average network transmission of application requests under ratio policy

both evaluated in the inter-data center network. Table 5.4 describes the configuration

of the group number, instance number, link reserved bandwidth, and the number of

migration tasks in these two experiments. We set up the network resources in the way

that network traffic within the host can take full advantage of the reserved bandwidth



178 SLA-Aware Multiple Migration Planning and Scheduling

of the virtual link between VMs/VNFs. For the master instance with small flavor, the

dirty page factor is 0.12, and for the slave instance with tiny flavor and a VNF with large

flavor, the dirty page factor is 0.02.

Fig. 5.11(a) and 5.11(b) demonstrate the average network transmission time of appli-

cations in the initial placement (nomig): (1) In the star-to-slave experiment, applications

experience large delay from master to slave instances; (2) In sfc experiment, the network

transmission time between applications is small in the initial placement. The average

network transmission time is 2.48s, 0.02s, and 0.02s, respectively.

The results of star-to-slave indicate that the consolidating migrations can efficiently

reduce the delay encountered by the application. The SLAMIG achieves the minimal av-

erage network transmission time of application requests in all three scenarios which are

0.14s, 0.32s, and 0.64s less than the second-best results. Compared to the non-migration

situation, it can also reduce the network transmission time by 95.79%, 90.70%, and

89.25%. In the experiment of sfc, FPTAS excessively increases the network transmission

time of application requests. As the FPTAS algorithm intends to maximize the network

transmission rate of all migration tasks, it significantly reduces the transmission band-

width among the application servers. In scenario sfc-s1, SLAMIG reduces the average

network transmission time due to consolidation. Because less total migration time and

average execution time will result in a shorter network transmission time during the

multiple migrations. For the scenario sfc-s2 and sfc-s3, the initial placement is suffi-

cient to provide enough bandwidth according to the virtual link reservation. SLAMIG

does not increase network transmission time in sfc-s2, and only increases 0.35s in sfc-s3,

which can guarantee the QoS during the multiple live migrations. For the experiment of

wiki, SLAMIG can maintain the QoS at the same level of the sequential scheduling with

ratio bandwidth sharing policy. However, the average transmission time of all service

requests increases by 0.04s, 0.131s, and 0.272s in FPTAS and 0.08s, 0.193s, and 0.269s in

CQNCR.

Summary: Although the migration downtime is an important parameter to evaluate

the impact of migration on the migrating instances, the QoS of other services in the data

center network is largely ignored. By utilizing the free and reserved bandwidth sharing
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Table 5.5: Evaluation scenarios of deadline-related migrations

name vm nfv D(star) (s) D(sfc) (s) total mig

star-sfc-5 25 23 100 300 46

star-sfc-10 50 40 200 500 87

star-sfc-15 75 75 300 800 138
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Figure 5.12: Deadline-related experiments in inter-datacenter

policy, the transmission time of application requests will not be affected. However, in

the case where ratio bandwidth sharing policy is required to converge the migration, our

proposed algorithms can minimize the impact of multiple migrations on the application,

thereby ensuring the QoS and mitigating SLA violations.

Deadline-Aware

In this section, we evaluate and analyze the performance of different multiple migration

plans under various urgency and priorities. In the experiment star-sfc, we evaluated

the deadline awareness in the remaining scheduling window and the number of total

missing deadlines. In Table 5.5, as shown in the QoS-aware experiment, instances in

star-to-slave have large delays due to the burst workloads, so the deadlines are tight.

Meanwhile, the deadline for migration VNFs in sfc with sufficient bandwidth is larger.
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The dirty page factor is 0.02 for all instances in this experiment.

Fig. 5.12 illustrates the results of the remaining scheduling window and the total

missing deadlines. By ignoring the nature of migrations with various urgency and pri-

orities, the two algorithms (FTPAS and CQNCR) as a comparison have unacceptable per-

formance in terms of the remaining scheduling windows and the number of migration

deadline violations. The average number of remaining scheduling window of FPTAS is

negative due to the large execution time by allowing insufficient migration bandwidth.

In all three scenarios, SLAMIG has the most remaining scheduling window, which can

reduce SLA violations and guarantee the QoS during the migration with different pri-

orities. Compared with FPTAS, CQNCR, and the baseline, FPTAS reduces the deadline

violations by 100%, 96.875%/88.89%/95.56%, and 90.65%/64.29%/83.08%.

Summary: By comprehensively considering the scheduling window, execution time,

and the impact of one migration, SLAMIG can efficiently reduce the deadline missing

while achieving the optimal migration performance. As a result, the total number of

SLO violations can be minimized. Due to the flexibility of SLAMIG, one can also change

the weight function to further reduce the migration deadline violations by trading off

the performance of total migration time.

Energy Consumption

In this section, we evaluate and analyze how different multiple migration plans can af-

fect the energy consumption of hosts and switches. Switch [202] and Host [203] power

models are used to calculate the overheads of multiple live migrations in the data cen-

ters. Fig. 5.13 shows the power consumption of host and switch in experiment star-sfc

and wiki. As fewer hosts are involved after the consolidation, earlier migration conver-

gence can reduce the host power consumption. In the experiment of star-sfc, SLAMIG

reduces the host power consumption by 63.26%, 26.99%, and 12.86% compared to the

non-migration and reduces by 26.03%, 16.20%, and 7.45% compared to the second-best

results. We also observed similar results of host energy consumption in wiki-s1 and

wiki-s2 scenarios. In wiki-s3, due to involved hosts are consistent after migrations, there

are only ignorable variances of host energy consumption among different algorithms.
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Figure 5.13: Energy consumption in hosts and switches

For the power consumption in networking resources (switches), the main contri-

bution comes from the elephant flows of migrations from source to destination hosts.

Another contribution comes from the application communications, where requests are

sent between different physical hosts. In Fig. 5.13(b), the networking energy consump-

tion of FPTAS is much larger than other algorithms because it allows small bandwidth

allocation to maximize the global migration network transmission rate. Our proposed

approach is 29.70%, 17.61%, 10.85% less than the second-best result. Fig. 5.13(d) in-

dicates that SLAMIG also comsumes the least energy during the multiple migrations

in wiki experiment. Compared with the sequential scheduling, SLAMIG reduces by
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17.16%, 13.83%, and 26.45%. As mentioned, although the total migration time of FPTAS

is smaller in wiki-s1, it costs 197.94Wh more than the SLAMIG. Therefore, the average

migration execution time is also related to the migration overhead of energy consump-

tion.

Summary: Although smaller total migration time can reduce the total energy con-

sumption due to consolidation, maintaining the average execution time is critical to

the network power consumption. Due to the heavy usage of network resources, the

switches consume a lot of energy during the migration. Even though consolidation

and dynamic switching off the switches and hosts can help data centers save energy,

migrating high-dirty-rate instances will increase the energy consumption of switches.

Therefore, multiple migration tasks must be carefully planned based on the migrating

candidates, sources and destination hosts. Dynamic resource management policies also

need to consider the trade-off between the optimal allocation and migration energy over-

heads.

5.5 Related Work

Table 5.6: Comparisons of multiple migration planning and scheduling

App- deadline QoS energy concurrent mig. online mig. multipath objectives

roach awareness awareness consumption scheduling scheduler routing

[204] ✓ x x x x x reduce the dirty memory transmission

[28] x ✓ x x x x sequence for loop-free and bandwidth constraints

[27],[90] x ✓ x - - - select migrating VMs to minimize interference

[29] x ✓ x ✓ x x total mig. time and downtime with reserved bandwidth sharing

[103] ✓ x x - ✓ x converge migration tasks before deadline

[30] x x x ✓ x ✓ total mig. time and downtime with free bandwidth sharing

SLAMIG ✓ ✓ ✓ ✓ ✓ ✓ total mig. time, downtime, avg. exe. time, and transferred data

Akoush et al. [84] explored the important parameters, link bandwidth and page

dirty rate, that affect migration performance. They conducted experiments on migration

performance under various workloads and proposed two simulation models based on

the assumption of average memory dirty rate and history-based dirty rate of VM to

predict migration performance. There are some works on the VM migration selector
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to minimize the overall cost and reduce interference. Remedy [27] relied on the SDN

controller to monitor the state of the data center network and predict the cost of VM

migration. The VM migration controller of heuristic destination selector minimizes the

migration impact on the network by considering the cost of migration, the available

bandwidth for migration, and the network balance achieved after migration. iAware

[90] proposed a simple and light-weight interface-aware VM live migration strategy. It

jointly estimates and minimizes the overall performance overhead of both migration

interference and VM co-location interference with respect to I/O, CPU, and memory

resources during and after migration.

There are Few studies related to the (soft) real-time issue in live VM migration. These

studies mainly focused on how to reduce the execution time of a single live migra-

tion. Tsakalozos et al. [103] studied the live VM migration with time-constraints in

the sharing-nothing IaaS-Clouds, where the cloud operator can assign specific schedul-

ing windows for each migration task. For alleviating the SLA violations, they proposed

a migration broker to monitor and limit the resource consumption, that is, to reduce

the dirty page rate to force certain migrations to converge on time. By investigating the

computing and network resources used by single live migration, Checconi et al. [204]

presented a method to delay the frequent page dirtying in order to reduce the execution

time and downtime of a single live migration.

Furthermore, there are several works focus on optimizing multiple live VM migra-

tion planning. Ghorbani et al. [28] proposed a simple one-by-one heuristic VM migra-

tion planning, which did not consider parallel VM migration through different network

paths. Sun et al. [150] explore the optimal planning for multiple VM migrations by mix-

ing pre-copy and post-copy migration. Based on the fact of application network traf-

fic direction characteristic, it maximizes the available bandwidth to improve serial and

parallel migrations. Similarly, Deshpande et al. [26] improved the live migration perfor-

mance by considering pre-copy or post-copy migration based on the application traffic

direction. CQNCR [29] focuses on the multiple VM migration planning in one data cen-

ter environment by considering the available bandwidth and network traffic cost after

migration. They modeled the multiple VM migration planning based on a discrete-time

model as a Mixed-Integer Programming (MIP) problem. A heuristic migration group-
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ing algorithm by setting the group start time based on the prediction model is proposed.

However, because there are different combinations of migration grouping, grouping and

weighting the migration groups directly can lead to performance degradation of the to-

tal migration time. Without considering the connectivity between VMs and the change

of bandwidth, FPTAS [30] simplifies the problem by maximizing the net transmission

rate rather than minimizing the total migration time. In the context of SDN, the primary

contribution compared to other research is the introduction of the multipath transmis-

sion when migrating VMs. As a MIP problem, they propose a fully polynomial-time

approximation by further omitting certain variables. Table 5.6 summarizes the compari-

son of live migration planning and scheduling methods for the objectives to be migrated,

and whether the deadline of different migration tasks, QoS of applications, the energy

consumption of hosts and switches, concurrent migration scheduling, and enables the

multiple routing of migration flows and online scheduler to manage migration tasks are

considered. The dash mark indicates the parameter of the work is not relevant.

5.6 Summary

Due to the limited computing and network resources as well as migration overheads, it

is essential to intelligently schedule the migration tasks in data centers to achieve opti-

mal migration performance, while mitigating the impacts of migration on cloud services

and preventing SLO violations during the migration schedule. In this chapter, we pro-

posed a set of algorithms (SLAMIG) which includes concurrent migration grouping and

the on-line migration scheduler. Instead of grouping migrations directly, SLAMIG can

optimize the order of concurrent migration groups by sorting each migration based on

complete dependency subgraphs. In addition to the dirty page rate, extra bandwidth

constraints can significantly improve the performance. The on-line migration sched-

uler can guarantee the concurrency and scheduling order of different migrations in a

dynamic network environment.

We argue that along with the total migration time, optimizing the average execution

time, transferred data, and downtime are essential metrics to evaluate the multiple mi-

gration performance. The total migration time is more related to the time requirements
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(for example, migration deadlines and SLO violations), while the sum of execution time,

transferred data, and service downtime are related to the actual overheads. By opti-

mizing the total migration time, we can guarantee the SLA and dynamic performance

requirements of cloud services. By optimizing the sum of execution time, transferred

data, and downtime, we can guarantee the QoS of services and achieve more revenue

as the cloud provider. Experimental results show that SLAMIG can efficiently reduce

the number of migration deadline missing and meanwhile achieve good migration per-

formance in total migration time, average execution time, downtime, transferred data

with acceptable algorithm runtime. Furthermore, the average execution time is an es-

sential parameter to minimize the impact of multiple migration scheduling on the QoS

of applications and energy consumption.

Live container migration has been introduced to facilitate user mobility to guarantee

service delays in the edge computing environment. In the next chapter, we intend to

investigate the planning and scheduling algorithms for live container migration in terms

of the algorithm complexity and networking management in the edge computing or

cloud radio access network environment.





Chapter 6

Efficient Large-Scale Multiple
Migration Planning and Scheduling

With the expansion of network topology scale and increasing migration requests, the current mul-

tiple migration planning and scheduling algorithms of cloud data centers can not suit large-scale

scenarios in edge computing. The user mobility-induced live migrations in edge computing require

near real-time level scheduling. Therefore, in this chapter, through the Software-Defined Networking

(SDN) controller, the resource competitions among live migrations are modeled as a dynamic resource

dependency graph. We propose an iterative Maximal Independent Set (MIS)-based multiple migra-

tion planning and scheduling algorithm. Using real-world mobility traces of taxis and telecom base

station coordinates, the evaluation results indicate that our solution can efficiently schedule multiple

live container migrations in large-scale edge computing environments. It improves the processing

time by 3000 times compared with the state-of-the-art migration planning algorithm in clouds while

providing guaranteed migration performance for time-critical migrations.

6.1 Introduction

The introduction of edge computing [205] brings opportunities to improve the perfor-

mance of the emerging user-oriented applications by pushing computation and intelli-

gence to end-users, including Vehicle to Cloud (V2C), Vehicle to Vehicle (V2V), Virtual

Reality (VR), Augmented Reality (AR), Artificial Intelligent (AI), or Internet of Things

(IoT) applications and so forth. Driven by container virtualization, microservices are

This chapter is derived from:

• TianZhang He, Adel N Toosi, and Rajkumar Buyya, “Efficient Large-Scale Multiple Migration Plan-
ning and Scheduling in SDN-enabled Edge Computing”, IEEE Transactions on Mobile Computing
(TMC), (submitted, June 2021).
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more suitable for dynamic deployment on edge computing [23, 206] due to smaller

memory footprint and faster startup. By allocating the containerized services in the

Edge Data Centers (EDCs) or Mobile Edge Clouds (MECs) [15], strict end-to-end (E2E)

communication delays between end-users and services can be guaranteed.

From the centralized cloud computing framework to decentralized edge comput-

ing, surveys [7, 25] investigated the challenges faced by the infrastructure and service

providers regarding dynamic resource management and user mobility. By providing

non-application-specific compute and memory state management, live migration is the

solution to these challenges. Live migration of VM [8] and container [207] through the

open-source Checkpoint/Restore in Userspace (CRIU) software [60], which had kernel

support since Linux 3.11, aims to provide little or no disruption to the running service

during migrating in the edge computing. It iteratively copies unfinished computation

tasks with intermediate computation states in the memory from source to destination

until the memory difference between two synchronizing instances is small enough for

the stop-and-copy phase. In addition, for the container image, if the image does not

exist in the destination, it can be transferred from the previous EDC or remote clouds or

accessed through shared storage. Thus, live migration performance highly relies on the

available bandwidth of the network routing connecting source to destination.

Industrial infrastructure and service providers, such as IBM, RedHat, Google, etc,

have been integrating live container migration into their productions [9, 12]. Google has

adopted live VM and container migration with CRIU into Borg cluster manager [11–13]

for reasons, such as, higher priority task preemption, software updates, such as kernel

and firmware, or reallocating for availability or performance. It manages all compute

tasks and runs on numerous container clusters each with up to tens of thousands of

machines. A lower bound of 1,000,000 migrations monthly in the production fleet have

been performed with 50ms median blackout [13]. Live container migration provides

technical simplicity without handling state management and application-specific evic-

tions. However, it is also identified that writing and reading to remote storage through

network dominates the checkpoint/restore process and the scheduling delay is the large

source of delay regarding the performance of multiple live migrations.

Recently, some works have focused on user or service mobility in mobile edge com-
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Figure 6.1: User-mobility induced live container migration in edge computing

puting through live container migration [7, 25, 189, 208–211]. With the limited coverage

range of each EDC, when a user moves from one base station to another, the network

latency could deteriorate after the network handover. To guarantee the Quality of Ser-

vice (QoS), the service may need to be migrated from the previous EDC to the proximal

one through live container migration. Figure 6.1 illustrates an example scenario where

an autonomous vehicle sends workload to the corresponding stateful service in the EDC

for real-time object detection. There is a total of 9 base stations assigned to 3 different

EDCs. Two autonomous vehicles move to a new position from time t1 to t2. For vehicle

user1, when leaving the range of base station BS1
1 and entering the range of base station

BS1
2 at time t1

′, there is a live container migration from EDC1 to EDC2 induced by the

user1’s movement. Meanwhile, as user2 crosses the range boundary of the base station

BS1
3 to BS2

3, since the two base stations both belong to the same edge data center EDC3,

the E2E delays of the service can be guaranteed. Therefore, there is no live migration
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induced by user2’s movement.

In cloud computing environments, dynamic resource management policies triggers

live migration requests periodically to optimize the resource usage or to maintain QoS

of applications [141]. However, in the edge environment, service migration/mobility is

highly relative to user mobility [25, 189, 208, 209, 211]. Migration requests of containers

or VMs from services and users may share and compete for the computing and net-

work resources, such as migration source, destination, and network routings. It brings

more challenges for the multiple live migration planning and scheduling. However,

most research on live service migration in edge and cloud computing neglects the actual

live migration cost regarding the iterative dirty memory transmission [8] and resource

competition among migrations in both computing and network resources. As a result,

performing multiple live migrations in arbitrary order can lead to service degradation.

Few works focus on multiple VM migration planning and scheduling in cloud data

centers [29, 30]. The framework of current migration scheduling algorithms periodically

triggered by resource management policies with a long time interval is not suitable for

stochastic scenarios of mobility-induced migration in edge computing. Furthermore,

the network scale, the numbers of end-users and live container migration requests in-

crease ten thousand times in edge environments. Without proper modeling, the problem

complexity will increase dramatically as the number of migration requests and network

scale increase. As a result, the complexity and processing time of current algorithms do

not meet the real-time requirement of the live migration at scale in edge environments.

Therefore, this chapter proposes efficient large-scale live container migration plan-

ning and scheduling algorithms focusing on mobility-induced migrations in edge com-

puting environments. It can also apply to multiple migration scheduling for the general

periodical dynamic resource management at scale. The contributions of this chapter are

summarized as follows:

• We introduce the resource dependency graph of the source-destination pair for

resource competition among migration requests to reduce the problem complexity.

• We model the problem as finding the Maximum Independent Set of the Depen-

dency Graph iteratively.
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• We propose iterative-Maximal Independent Set (MIS)-based algorithms for effi-

cient large-scale migration scheduling and prove the corresponding Thermos.

• We implement an event-driven simulator to evaluate the user mobility and live

container migrations. The experiments are conducted with real-world dataset and

traces.

The rest this chapter is organized as follows. We review the related work in Sec-

tion 6.2. Section 6.4 analyzes and models the problem of multiple container migration

scheduling. Section 6.5 proposes two main methods of large-scale migration scheduling.

Section 6.6 shows the performance analysis of proposed algorithms and Section 6.7 illus-

trates the experimental design and evaluation of proposed algorithms with real-world

dataset. Section 6.8 summarizes the chapter.

6.2 Related Work

The live VM migration realization [75] and its application in cloud data centers have

been matured last few years. The research on live container migration in edge com-

puting is an active field [7, 25]. Clark et al. [8] proposed the live VM migrations and

discussed the details of pre-copy or iterative live migration. On the other hand, the

research on live container migration is trending and becomes more mature in recent

years. Mirkin et al. [207] represented the checkpointing and restart features for the

OpenVZ container. The checkpointing function is also used for live migration. Check-

point/Restore In Userspace (CRIU) [60] is a Linux software to migrate container’s in-

memory state in userspace. It is currently integrated with LXC, Docker (runC), and

OpenVZ to achieve the live container migration. Nadgowda et al. also proposed [212] a

CRIU-based memory migration together with the data federation capabilities of union

mounts to minimize migration downtime. Similarly, Ma et al. [209, 210] utilized the lay-

ered storage feature based on AUFS storage drive and implemented a prototype system

to improve the performance of docker container migration. Furthermore, several works

studied the performance difference between container and VM live migration [23, 206].

Results show that the live container migration is much faster than the live VM migration
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Table 6.1: Comparisons of multiple migration planning and scheduling works

research real-time planning large-scale service correlations user-mobility deadline SDN-enabled Cloud DC Edge computing

CQNCR [29] − − ✓ − − − ✓ −

FPTAS [30] − − − − − ✓ ✓ −

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

due to its much smaller memory footprint and fast startup features.

More research recently focuses on dynamic resource scheduling in fog and edge com-

puting environments based on the live container migration (details in survey [7, 25]). In

[189, 208], the authors modeled the sequential decision making problem of generating

service migration requests using the distance-based Markov Decision Process (MDP)

framework. By reducing the state space, they proposed a distance-based MDP to get

the approximated results. The research [211] also investigated the same problem by

using the MDP framework. The authors proposed a reinforcement learning-based on-

line microservice coordination algorithm to learn the optimal strategy for live migration

requests to maintain the QoS in end-to-end delay.

However, current algorithms can not meet the requirement of live container migra-

tions in edge computing (Table 6.1). The framework of migration scheduling [29] which

are periodically triggered by resource management policies with a long time interval

is not suitable for the mobility-induced migration scenario. Furthermore, by modeling

and calculating every resource competition of migration directly, the problem complex-

ity [29, 30] increases along with the migration request number which is not suitable for

large-scale situation. The running time of migration planning is also too large to sched-

ule time-critical live container migrations. The algorithms do not consider the deadline

or urgency (priority) of migration. In addition, without an on-line scheduler, the start

time of a migration schedule is only based on the estimated migration time which can

lead to migration performance and QoS degradation.

6.3 System Architecture

In the edge computing, there is no dedicated network for the live migration to support

the user mobility compared with the traditional setups in cloud data centers [103]. By in-
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Figure 6.2: Lifecycle for live container migrations

tegrating the Software-Defined Networking (SDN) into edge computing, the centralized

SDN controller can dynamically separate network resources from the service network

to build a virtual WAN network for live migrations. The available bandwidth and net-

work routing are dynamically allocated based on the reserved bandwidth of the service

network. This solution alleviates the overheads of live migration on other services and

guarantees the performance of multiple live migrations. To achieve a fine-grained live

migration scheduling, the migration scheduling service is integrated with the SDN con-

troller, such as OpenDayLight (ODL), Open Network Operating System (ONOS) and

Ryu, and container management and orchestration module, such as Kubernetes and

Docker Swarm, to control both network and computing resources during each migra-

tion lifecycle.

6.3.1 Migration Lifecycle

In this section, we introduce the framework of migration scheduling in edge comput-

ing. Compared with periodically arrived multiple live migrations in cloud data centers,

the arrival of live container migration induced by user mobility is stochastic. Therefore,

we design the scheduling framework for the planning and scheduling of live container

migration in edge computing with stochastic environments. As shown in Fig. 6.2, when

a migration request arrives, it enters the WAITING state if it is feasible for scheduling,

which means the container is not in migration. Otherwise, it will enter into the FAILED
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waiting migration list of the corresponding container. The migration planning event is

triggered periodically within a short interval (such as every 1 second). It will gener-

ate the migration scheduling plan according to both waiting and running migrations.

Based on the migration plan, the SDN-enabled on-line scheduler starts the migration

with the allocated bandwidth and routing. Then, the live container migration will start

the pre-migration phase to extract the container procedure tree. This will trace the dirty

memory in the userspace of the source server and create an empty container instance in

the destination for state synchronization [60]. In MEM COPY, the dirty memory is trans-

ferred iteratively to the synchronizing instance in the destination. In the post-migration

phase, the network communication of the migrated service will be redirected to the new

instance in the destination. Then, the migrated container will recover at the destination.

It will also trigger the start of subsequent resource-dependent migrations in the plan

and change the feasibility flag of the first migration request of the same container in the

FAILED migration waiting list.

6.4 Motivations and Problem Formulation

In this section, we first present the performance model of single live migration. Then, we

analyze the challenges faced by multiple live container migrations scheduling in edge

computing: resource competition or dependency and real-time planning and schedul-

ing. Finally, we model the problem as iteratively generating the Maximal Independent

Set (MIS) based on the resource dependency graph.

6.4.1 Resource Competition

We first explain the network sharing competition overheads in multiple migration schedul-

ing. Two migrations may share the same source, destination, or part of network rout-

ings. Therefore, performing multiple live migrations in arbitrary order can lead to ser-

vice degradation and unacceptable migration performance [29, 30]. A smaller band-

width during the live migration means a longer migration time and more dirty pages

need to transfer in order to limit the state difference between two instances for the last
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(a) Average migration time (b) Iterations and downtime(dt)

Figure 6.3: Migration performance against the number of migration sharing network
bandwidth

stop-and-copy phases which contributes as the downtime. Thus, the sum of the indi-

vidual migration time of several live migrations is less than the total live migration time

as shown in Chapter 3. For example, based on the live migration model, Fig. 6.3(a) and

6.3(b) show the situation when several identical migrations sharing the same network

path. The container’s initial memory size is 1 GB with a 20 MB/s dirty page rate. The

downtime and iteration threshold is configured at 0.5 seconds and 30 times, respectively.

In this example, for the sake of a clear comparison between the sum of individual mi-

gration time and the total migration time, we start all migrations at the same time. In

this case, the average migration time as shown also equals the total migration time.

The average execution time of live migrations scheduled sequentially with 10 Gbps

and 1 Gbps is 0.8482 and 7.5241 seconds. The average downtime is 0.0082 and 0.1048

seconds. The iteration rounds are 3 and 4, respectively. However, the average migration

time or total multiple migration time of 5 live migrations sharing 10 Gbps and 1 Gbps

is 3.604 and 88.43 seconds. The average downtime is 0.2048 and 0.3689 seconds with

3 and 12 iterations, respectively. As the number of migrations increases (Fig. 6.3(a)),

the allocated bandwidth decreases linearly. However, to achieve the required migra-

tion downtime, the average migration time will increase exponentially. At 7 and 80

migrations sharing of 1 Gbps and 10 Gbps respectively, the iteration rounds reach the
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Figure 6.4: Example live migration requests and the network topology with 5 edge data
centers

threshold as 30 (Fig. 6.3(b)). Then, with more bandwidth-sharing migrations, the dirty

page rate is larger than the allocated migration bandwidth. The downtime exceeds the

0.5 seconds threshold and increases significantly from 0.78 to 64.0 seconds and from 1.85

to 640 seconds. For the time-critical live migrations, a longer migration time will in-

crease the possibility of migration deadline violation and QoS degradation. Therefore,

it is optimal to sequentially schedule the resource-dependent migrations while concur-

rently schedule the independent ones. If there is a set of independent migrations and no

other resource-dependent migrations are running, we can start all migration in such a

concurrent scheduling group. The objective of migration scheduling is to maximize the

number of migrations that can be scheduled concurrently.

Figure 6.4 shows an illustrative example with twelve live migrations requests on

the edge network topology of 5 total EDCs. Let msd
i denote the migration request that

migrating container i from EDC s to EDC d. For the sake of a concise example, we

limit the network interfaces used by the migration traffic. In other words, migration

traffics share the same interfaces when the source or the destination is the same. It can

be easily extended to the set of network interfaces in source {s} and destination servers

{d} and the corresponding network paths {p}. The network routing policy considers

the shortest network path with the minimal number of migration flows. For example,

there are two network routes between EDC1 and EDC3. As there is one migration from

EDC2 to EDC3, it chooses network path {EDC1, EDC4, EDC3} in this case.
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Figure 6.5: The resource dependency graph of example migrations, iterative maximal
independent set as concurrent migration groups, and two colored possible maximal in-
dependent sets for the first iteration, and one possible concurrent migration groups

Resource-independent migrations from one concurrent scheduling group can be sched-

uled at the same time. The planning algorithm needs to generate a scheduling plan

consists of several concurrent migration groups that each group size is as large as pos-

sible. A larger concurrent scheduling group indicates that there are more migrations

could be performed at the same time. As a result, the better performance of multiple

migrations in total migration time and the QoS of migrating service can be guaranteed.

Note that two migrations from different migration groups are not necessarily resource-

dependent. As shown in Fig. 6.5, based on the network topology provided by the SDN

controller, we create an undirected graph of resource dependency among migrations

based on the source, destination, and network routing of migration requests. Each node

vsd
p represents a list of migrations sharing the same source s, destination d, and network

path p. In other words, migrations in one node list form a complete graph as all mi-

grations are resource-dependent to all others in the list. For example, the migration list

of node v13 is {m13
1 , m13

12}. It significantly limits the problem complexity as the number

of migration requests increases. The edge of the dependency graph indicates resource

competition (network interfaces at source or destination, or bandwidth sharing along

network routes) between migrations. A concurrent group equals to an independent set
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of the resource dependency graph. A maximal concurrent scheduling group is a set of

resource-independent migrations that is not a subnet of any other concurrent group. In

other words, there is no other migration outside the concurrent group can be added to it

so that all migrations can be performed at the same time. Therefore, it equals a maximal

independent set (MIS). The largest size MIS is a maximum independent set. As shown in

Fig. 6.5, there are several combinations of migrations for a maximal concurrent schedul-

ing group. In the first iteration, one of the maximum group is
{

m13
1 , m32

7 , m25
5 , m41

9
}

and

one of the maximal group is
{

m23
3 , m45

11, m31
6
}

. Thus, the maximum group is a better

choice. After selecting the migrations from the nodes of the maximal independent set,

we delete these migrations and update the dependency graph. One node is deleted from

the graph when there is no migrations left in its migration list. For example, after the

first iteration, we only delete nodes v25, v41, v32, because there is still one migration m13
12

left in node v13 list. Thus, it is essential to select migrations carefully to achieve the

maximum size of the concurrent groups. At the end, the on-line scheduler schedules all

migration in the first group. Then, when there is one migration finishes, the scheduler

starts all migrations blocked by the finished migration following the order of migration

groups.

Before discussing how to get the Maximum Independent Set, the largest Maximal

Independent Set (MIS), of the resource dependency graph, we first review some basic

graph concepts [192], such as clique C and independent set I. A clique is a subset of

vertices of an undirected graph G such that every two distinct vertices in the subset are

adjacent. The maximal clique is a clique that cannot be extended by including one more

adjacent vertex. On the other hand, an independent set of a graph G is the opposite of

a clique that no two nodes in the set are adjacent. The maximum clique or independent

set is the maximal clique or independent set with the largest size. α (G) denotes the size

of the largest MIS of graph G. Therefore, an independent set of the resource dependency

graph equals a concurrent migration group. The migrations from the nodes in an inde-

pendent set I can be scheduled concurrently. Meanwhile, migrations from the nodes in

a clique are resource-dependent which need to be scheduled sequentially.
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6.4.2 Real-Time Planning

There are few multiple migration planning and scheduling algorithms for live VM mi-

gration in cloud data centers [29, 30]. However, the processing time of the scheduling

sequence of multiple live migrations based on the algorithms in cloud data centers is

not suitable for the real-time requirement of mobility-induced migrations in edge com-

puting. For example, the processing time of FPTAS [30] and CQNCR [29] for migration

planning is about 5 and 10 seconds for 100 migrations. The processing time increases

to 44.56 and 968.46 seconds for FPTAS and CQNCR to generate the scheduling plan of

500 migrations. For traditional dynamic resource management, the algorithm triggered

every 10 minutes or 30 minutes. This leaves enough time budget for algorithms to gener-

ate the optimal scheduling sequence. However, in the edge computing environment for

mobility-induce live migrations, the live migration requests arrive at any time stochas-

tically. Most of the migration requests are also time-critical. Thus, the processing time

of the planning and scheduling algorithm for mobility-induced migrations should be

adapted to suit the real-time scenario.

6.4.3 Problem Modeling

The planning and scheduling algorithm is triggered periodically after every time inter-

val ∆sch. We let Mt
arriv denote the set of arrival migration requests at planning time t.

Mt
wait is the set of migration requests waiting for planning at time t. Mt

f ail is the set of

infeasible migrations, such as its requested container is in migration. Mt
plan is the set of

migrations that have been planned but not finished at time t, and Mt
f inish is the set of

finished migrations at time t.

The input of migration requests at every migration planning time t is Mt
input =

Mt
plan ∪ Mt

wait. For each live container migration mj, we have source and destination

edge data center and allocated network routing, (sj, dj, pj), available bandwidth lj, ar-

rival time aj, estimated migration time Tj, relative deadline Dj, start time bj, and finish

time f j. Therefore, the response time can be represented as rj = f j − aj. The slack time

of migration scheduling, the remaining scheduling window that one migration will not

miss its deadline, is τj = aj + Dj − Tj − t. The objective of live container migration plan-
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ning and scheduling is to maximize the number of running resource-independent live

migrations until the next planning time t + ∆sch.

At every planning and scheduling time t, the resource dependency graph G = (V, E)

denotes the acyclic undirected graph where |G| = |V|. Each node u ∈ |V| represents

the list of migrations M(u) where migration shares the same source s, destination d, and

network routing p. By sharing the same source and destination and network routing,

migrations in the list of a node are all resource-dependent. Let (u, v) ∈ E denote the

edge between node u and v. It indicates the resource dependency between migrations

from both nodes. V (G) denotes the set of nodes of graph G.

We model the multiple migration planning problem as generating the maximal inde-

pendent set of the dependency graph iteratively. In other words, in each iteration, we get

the maximal independent set of the remaining graph, then update the graph by deleting

corresponding migrations. Let Gi+1 = Gi [V (Gi)− Si] represent the remained graph by

directly deleting vertex from set of nodes Si. Let Ii denote the maximal independent set

of graph Gi. Then, the remained graph Gi+1 in each iteration can be represented as:

Gi+1 = Gi [[V (Gi)− Ii]] = Gi [V (Gi)− Si] (6.1)

by deleting set of nodes Si = {u|u ∈ Ii, M(u) = ∅}, where the migration list of the

deleted node u is empty. Therefore, for each migration planning, the objective is to

generate the iterative maximum independent set of dependency graph:

max |Ii| , ∀Ii ∈
{

Ii
iter

}
(6.2)

where
{

Ii
iter
}

= {I1, I2, ..., IK} is the total K iterative independent sets and there is no

vertices left in the K + 1 remaining graph as GK+1 = ∅. In other words, each iterative

independent set size equals the size of maximum independent set of remaining graph

|Ii| = α (Gi).

We extend the model to generate the iterative maximum weighted independent set

for migration with different priorities, such as migration deadline. The weight of an

independent set is W (I) = ∑u∈I W (u). The largest weight of migration m̂ in the node

migration list is the weight of its corresponding node in the dependency graph W (u) =
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W (m̂) that

W (m̂) ≥W (m) , ∀m̂, m ∈ M (u) (6.3)

Then, the objective of multiple migration planning can be represented as:

max W (Ii) , ∀Ii ∈
{

Ii
iter

}
(6.4)

The weight of node W(u) = 1 when there is no need to differentiate migrations in dif-

ferent nodes. Generating the maximum (weighted) independent set of an undirected

acyclic graph is a well known NP-hard problem [193, 196]. Therefore, generating the

iterative maximum independent set as the subset is also NP-hard.

6.4.4 Complexity Analysis

Because an independent set of G is a clique in the complement graph of G and vice

versa, the independent set problem and the clique problem are complementary [192–

194]. In other words, listing all maximal independent sets or finding the maximum

independent set of a graph equals listing all maximal cliques or finding the maximum

clique of its complement graph. Thus, in each iteration, we can equivalently find the

maximum independent set by getting the maximum clique Ci of the complement graph

Ci (Ḡi) = Ii (Gi).

It is known that all maximal cliques can be calculated in a total time proportional to

the maximum number of cliques in an n-vertex graph [194]. In other words, each clique

is generated in a polynomial time in all maximal cliques listing [193]. When we only

consider vertex, the maximal cliques listing algorithm (CLIQUES) [194, 196] based on

Bron-Kerbosch [192] is the optimal algorithm. The worst-case running time of CLIQUES

is O(3n/3). The upper bound of all maximal cliques or independent sets of a graph is

3n/3 [213]. For the problem of finding one maximum independent set, the time complex-

ity is improved from O(2n/3) in [214] to O(20.276n) [215]. Based on the work [215], the

best-known time complexity is O
(
2n/4) [216]. Therefore, it is computationally impos-

sible to solve the exact problem of listing all maximal cliques (maximum clique) of its

complement graph Ḡdep or all maximal independent sets (maximum independent set)
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of Gdep for the real-time live container migration scheduling in edge computing which

exhibits an exponential time complexity.

6.5 Migration Planning and Scheduling

In this section, we present the proposed planning and scheduling algorithms for large-

scale live container migrations in edge computing. With the waiting live container mi-

gration requests and planned unfinished live migrations as the input, the migration

planner needs to efficiently schedule arriving migrations while maintaining the QoS.

Based on the problem modeling in Section 6.4.3, this problem is reduced to finding an

MIS of the migration dependency graph iteratively. Therefore, we propose two major

approaches to generate the iterative MISs of the dependency graph: (1) Direct iterative

MIS generation and (2) Maximum Cliques (MCs)-based MIS generation.

6.5.1 Direct iterative-Maximal Independent Sets

For the direct iterative MIS generation, we follow the rationals based on the planning

model as follows: (1) Create dependency graph Gdep based on the source, destination,

and network routing of the input migrations and the network topology; (2) Generate

the Maximum Independent Set (MIS) I of G; (3) Delete the nodes u ∈ I from G if its

migration list M(u) is empty; and (4) Repeat the procedure 2 and 3 until there is no

vertices left Gdep = ∅.

The Approximation

For the approximation algorithm (approx) of creating the iterative maximum indepen-

dent set, the procedure is as follows: In the approximation algorithm (Algorithm 9), we

use the approximating maximum independent sets algorithm by excluding subgraph

[217] to generate MIS in each iteration. Note that we skip the MIS generation and remove

the migrations directly if the node size of Gdep is unchanged in the current iteration. In

other words, if we need to recalculate the MIS of the remaining graph, there is at least

one node removed from the graph Gi. Given total m live container migrations, we create
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the corresponding dependency graph with n vertices. Therefore, regardless of the total

number of migration requests, the upper bound of the complexity of planning multiple

migrations scheduling is limited by the involved source, destination, and network rout-

ing. In the worst case, the planning algorithm only needs at most n iteration rounds to

calculate the concurrent migration group. In each iteration, it guarantees O(n/(log n)2)

approximate maximum independent set in polynomial time [217].

Algorithm 9: Iterative approximation grouping
Input: {Gdep}
Result: migGroups {Iiter}
i← 0; Gi ← Gdep; {Iiter} ← ∅;
while V (Gi) ̸= ∅ do

Ii ← APPROX MIS(Gi);
Gi+1 ← Gi [[V (Gi)− Ii]];
{Iiter} ← {Iiter} ∪ Ii;
i← i + 1;

Based on the newly generated scheduling plan {Iiter}, the SDN-enabled on-line mi-

gration scheduler will start all feasible migrations in the first group I0, considering the

resource dependency with current running migrations. Then, whenever a migration fin-

ishes, the scheduler starts all remaining feasible migrations in each concurrent migration

group Ii followed by the scheduling plan order.

Greedy MIS Algorithm

The greedy algorithm (iter-GWIN) generates the concurrent groups (MIS) of live migra-

tion iteratively. A greedy maximal independent set algorithm (GWIN) [218] based on

the weight and the degree of a node is adapted to directly generate the MIS in each it-

eration. Let ∆G denote the maximum degree and d̄G is the average degree of G. The

degree of node u in G is dG (u) = |NG(u)|. NG (u) is the set of neighbor nodes of vertex

u and N+
G (u) = NG (u) ∪ {u}.

As shown in Algorithm 10, from line 3-8, it selects the node with largest score re-
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Algorithm 10: iter-GWIN
Input: {Gdep}
Result: migGroups {Iiter}
i← 0; Gi ← Gdep; {Iiter} ← ∅;
while V (Gi) ̸= ∅ do

Ii ← ∅; Gj ← Gi; j← 0;
while V

(
Gj
)
̸= ∅ do

select node û in Gj;
Ii ← Ii ∪ {û};
Gj+1 ← Gj

[
V
(
Gj
)
− N+

G (û)
]
;

j← j + 1;
Gi+1 ← Gi [[V (Gi)− Ii]];
{Iiter} ← {Iiter} ∪ Ii;
i← i + 1;

garding the minimal degree and maximal weight:

W (u)
/
(dGi (u) + 1) (6.5)

It removes the selected node and its neighbors from the graph and repeats the procedure

until there is no vertices left.

As mentioned in the problem modeling, the weighted node equals the maximum

weight of migrations from its list. The migration weight could be arrival time, esti-

mated migration time, or correlation network influence [29] after migration for non-

time-critical migrations and the deadline or slack time for real-time migrations schedul-

ing. In this chapter, we consider the weight function regarding the slack time τ as fol-

lows:

W (m) =



10 · β
/

τ

100 · |τ|
/

β

100

τ > β

τ < −β

other

(6.6)

where β is the slack time threshold. We set β = 1. The weight of node is W(u) = γ ·
W(m), where γ is the coefficient regulator for the urgency of the scheduling migration.
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We set γ = 1. Moreover, in the situation that the priorities of all migrations are the

same, we only need to consider the size of MIS. The node weight is set to 1 W(u) =

1. In each iteration, the lower-bound of the maximum (weighted) independent set is

∑u∈V W (u)
/
(dG (u) + 1) [218]. As iteration is n in the worst case, the time complexity

of iter-GWIN is O(n2 log n) for weighted graph and O
(
n2) for unweighted graph.

6.5.2 The Maximum Cliques-based Heuristics

In this section, based on the observation of the density property of migration resource

dependency graph, we propose the iterative Maximum Cliques (MCs)-based algorithm.

We first discuss the rationals of the proposed algorithm.

The degeneracy of a graph G is the smallest number d such that every subgraph of

G contains a vertex of degree at most d. It is a measure for the graph spareness. For

an n-vertex graph with degeneracy d, by introducing the sequence ordering based on

degeneracy, Bron-Kerbosch Degeneracy algorithm [197] can list all maximal cliques in

time O(dn3d/3). With a spare graph that n ≥ d + 3, the upper bound of all maximal

cliques number is (n− d) 3d/3. Figure 4.5(c) illustrates the nodes and the density (de-

generacy) of the resource dependency graph of WAN network topologies [39] and its

complement. It shows that the degeneracy of the complement graph Ḡdep is 4.34 times

that of Gdep. For Gdep and its complement graph, the average ratio of dependency d to

the total number of nodes n is 0.153 and 0.714, respectively. The resource dependency

graph is considerably more sparse than its complement graph. Therefore, for Gdep, there

are much fewer maximal cliques than the total MIS. As a result, according to the theoret-

ical time complexity, the running time of listing all maximal cliques or maximum clique

of Gdep is much smaller than that of listing all maximal independent sets or maximum

independent set of Gdep. Therefore, the iterative Maximum Cliques (MCs)-based heuris-

tics algorithm has two steps: (1) calculates the list of iterative maximum cliques and (2)

generates the iterative maximal independent set based on the list. As nodes from one

maximal clique can not be included into the same independent set, the iterative maxi-

mum cliques serve as a heuristic pruning decider to speed up the algorithm.
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Algorithm 11: Iterative heuristic of migration grouping
Input: {Gdep}
Result: migGroups {Iiter}
{Citer} ← ∅;{Iiter} ← ∅;
while |Gdep| ! = 0 do
{Iterative creating Maximum Cliques}
Ĉi ← MAXIMUM CLIQUE(Gdep);
Gdep ← Gdep

[
V
(
Gdep

)
− Ĉi

]
;

{Citer} ← {Citer} ∪ Ĉi;
while {Citer} ̸= ∅ do

I ← ∅
foreach Ĉi in {Citer} do

m← ADDINDEP(I, Ĉi);
DELNODE (Ĉi , m);

{Iiter} ← {Iiter} ∪ I;
return {Iiter}

Iterative-rounds MCs algorithm

Let Ĉi denote the maximum clique and
{

C̄i
}

denote the maximal cliques list of round

i graph. The iterative-rounds Maximum Cliques (MCs)-based heuristic algorithm (Al-

gorithm 11) follows two steps: (1) generating the maximum clique iteratively and (2)

obtaining the MIS from the iterative maximum cliques.

As shown in Algorithm 11, we first create dependency graph Gdep as the input based

on the source-destination of the given migrations and the network topology. From line

1-6, the algorithm calculates the iterative maximum cliques of the dependency graph

until there is no vertices left. In each iteration, it generates the maximum clique (Bron-

Kerbosch Degeneracy algorithm) [197] of the remaining graph. It is proved that the

algorithm is highly efficient in a sparse graph, such as the resource dependency graph

[197]. Then, it updates the remaining graph by deleting the nodes of the maximum

clique from Gdep. Let dG[C](u) = |NG[C](u)| denote the degree of node u to the remaining

graph which excludes all nodes in the clique. The node score can be represented as:

W (u)
/(

dG[C] (u) + 1
)

(6.7)

In the second step (line 7-12), it generates maximal independent sets based on the
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iterative maximum cliques. In each round (line 9-11), it selects the feasible node with

maximum score of each maximum clique Ĉi and adds largest-weight migration from its

list into the independent set. A node is feasible when it can be included in the current

independent set. If there is no migrations left in the migration list of the selected node

M(u), the selected node is removed from the clique. As the largest possible number of

maximal cliques in an n-vertex graph with degeneracy d is (n− d) 3d/3. Therefore, ac-

cording the iter-MCs algorithm, the upper bound of the size of the iterative maximum

independent set of each iteration is also (n− d) 3d/3. In the worst case, the time com-

plexity of iter-MCs is O(dn23d/3).

Theorem 2 (Correctness of MIS from Maximal Cliques). The Independent Sets generated

from maximal cliques are the maximal independent sets of the graph.

Proof. Iq = {q0, q1, q2, ..., qd} is one of the independent sets generated from the maximal

cliques of G (V, E), where one vertex comes from only one maximal clique q ∈ Cq. As-

sume, for the sake of contradiction, there is at least one vertex p, p ∈ Cp exists, that

Iq ∪ {p} is also an independent set. That is, there is no edge between p and any other

vertex ∀q, q ∈ Iq, ¬∃ (p, q) ∈ E. Based on the definition of the heuristic algorithm, we

can get ∀r ∈ Cp, r /∈ Iq, that ∃q ∈ Iq, where (p, r) ∈ E. Thus, ∃p, q, where p ∈ Cp, q ∈ Iq,

that ¬∃ (p, q) ∈ E and ∃ (p, q) ∈ E, which is impossible. Since, we have a contradiction,

it must be that Iq is a maximal independent set.

Single-Round MCs Algorithm

Furthermore, we propose a single-round MCs-based algorithm (single-MCs). It gener-

ates the optimal iterative maximum cliques only based on the all maximal cliques of the

initial dependency graph Gdep. The maximum clique size of each iteration is the same

as the iter-MCs. We also prove the correctness of the proposed single-round iterative

maximum cliques algorithm.

The first step of the iter-MCs algorithm is replaced by Algorithm 12. The algorithm

only generates the list of all maximal cliques {C̄} once by using the Bron-Kerbosch De-

generacy algorithm. Until there is no vertices left in the clique list, it selects the maxi-

mum clique (largest maximal clique) Ĉi from the list and deletes the nodes of the selected
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Algorithm 12: Single-round iterative maximum cliques
Input: {Gdep}
Result: migGroups {Citer}
SINGLE-ITER({Gdep}):
{Citer} ← ∅;{

C̄
}
← FINDCLIQUES(Gdep);

while
{

C̄i
}
̸= ∅ do

Ĉi ← MAX(
{

C̄
}
);

{Citer} ← {Citer} ∪ Ĉi;{
C̄
}
← DELNODES (Ĉi,

{
C̄
}

);
return {Citer}

maximum clique from all maximal cliques.

Theorem 3 (Correctness of the algorithm single-MCs). Given a graph G = (V, E) V ̸= ∅

, the single iteration algorithm SINGLE-MCs generates all and only iteration maximum cliques.

Proof. It is proven that the Bron-Kerbosch Degeneracy algorithm generates all and only

maximal cliques without duplications [197]. Then, we only need to prove the results of

iterative maximum cliques are the same in iter-MCs and single-MCs, i.e., one can get all

the iterative maximum cliques based on the maximal cliques of the original graph by

deleting the vertices from the maximum clique in the last round.

Let C (G) = {C0, C1, ..., Cd} denote all maximal cliques of the original graph G, where

|Ci| ≥ |Ci+1|. ∀Ci, Cj ∈ C (G), that Ci ̸= Cj, Ci ̸⊂ Cj. The next iteration graph is G\C0 =

G [V (G)− C0]. Then, C(G\C0) = {C′1, C
′
2, ..., C

′
e}. The output of first round of single-

MCs is C (G) \C0 = {C′′1 , C
′′
2 , ..., C

′′
e }.

Assume, for the sake of contradiction, there is one maximal clique C f = C
′′
i ∪ {q},

q ∈ V − C0, q /∈ C
′′
i , which C f ∈

{
C
′
j

}
and C f /∈

{
C
′′
i

}
. Based on the algorithm single-

MCs and definition of maximal clique, due to {q} /∈ C0, C f ∪ C0 is also a maximal clique

that C f ∪ C0 ∈ C (G). However, as C0 is the maximum clique of G, it is impossible that

C f /∈ ∅. Since, we have a contradiction, the C f is not exist. Therefore, C (G) \C0 =

C(G\C0).
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Table 6.2: Performance comparison with first, second, and third quartile of processing
time, total MIS number (iteration), maximum, mean, 95th, and 99th quartile of the inde-
pendent set size in each result of the total 202 WAN topologies

algorithm proc. time (s) total sets |{I}| max({|I|}) mean({|I|}) 95%({|I|}) 99%({|I|})

single-MCs 8.8115 1.0047 0.1554 164.5 75.0 30.0 88.0 54.0 36.0 8.1594 6.1667 5.0 23.05 16.8 12.825 45.9 25.8 17.7

iter-MCs 49.1566 4.5807 0.4723 165.0 75.0 30.0 88.0 54.0 36.0 8.1594 6.2124 5.0 23.0 16.8 12.65 45.6 26.0 17.7

iter-GWIN 14.2786 1.4916 0.1610 159.5 76.0 31.0 88.0 54.0 36.0 8.2844 6.3448 5.1909 24.8 18.0 13.15 48.9 27.0 18.6

approx 1115.2929 57.2547 5.5257 171.5 84.0 32.0 59.0 36.0 25.0 7.7568 5.9492 4.6946 21.6 15.85 12.0 36.8 23.2 15.8

0 10 20 30 40 50 60 70 80
No. of Iterations

0

500

1000

1500

2000

De
gr

ee
 n

um

indep_approx
clique
indep_heu

Figure 6.6: Degree of iteration cliques/independent set to the remaining nodes

6.6 Graph Algorithm Performance and Analysis

In this section, we evaluate proposed migration planning algorithms for the problem of

iterative MIS generation: (1) iter-MCs (2) single-MCs; (3) approximation; and (4) iter-

GWIN, in processing time, maximal independent set size, and iteration rounds. Based

on more than two hundred real network WAN topologies [39], we consider a set of

live migration requests with each source and destination combination. Each migration

request corresponds to one combination with the network routing of the shortest path.

We run the computational experiments in Python 3.6.3 and NetworkX package [219]

version 2.4 as the graph library with source code.

The iterative maximum clique generation of migration dependency graph is faster

than that of iterative MIS in three aspects: (1) As the analysis of dependency graph in

section 6.5.2, dependency graph Gdep is more sparse than its complement Ḡdep. There-

fore, getting the maximum clique of Gdep in one iteration is faster than that of Ḡdep; (2)
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Figure 6.7: Processing time comparison between iter-MCs and approximation

The maximum clique can reduce the complexity of the graph much more efficiently in

each iteration; and (3) There are fewer iterative maximum cliques of Gdep than the iter-

ative independent sets. In other words, the number of iteration rounds of the iterative

maximum clique is smaller.

Figure 6.6 demonstrates an illustrative result of one of the network topology (Aus-

tralia’s Academic and Research Network, AARNet). The dependency graph consists

of a total of 342 nodes and 11754 edges. It shows the degree of the maximum clique

and independent set in each iteration to the remaining nodes. In other words, it is the

edges of the removed nodes in each iteration excluding the edges between nodes from

the maximum clique. Note that there is no edges (degree is zero) between nodes in one

independent set. With the degree in the maximum clique and the degree to the remain-

ing graph, the complexity of Gdep is dropped dramatically in the first three iterations.

On contrary, by removing the maximum independent set, the complexity of the graph

remains at a high level and declines steadily. Furthermore, the number of total iterative

maximum cliques and iterative MISs is 47 and 70, respectively. Comparing the result

of the approximation (indep approx) with iter-MCs (indep heu), the heuristic iterative

MCs-based algorithm achieves better performance in the size of the maximum clique in

each iteration and the total iteration rounds.

Since the processing time varies greatly, we use two separated figures to represent

the results of processing time. Figure 6.7 shows the performance comparison between

the approximation (approx) and iter-MCs in processing time. Figure 6.8 shows the com-
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Figure 6.8: Processing time comparison for iter-GWIN, iter-MCs, and single-MCs

parison between iter-MCs, single-MCs and iter-GWIN. The results of computational ex-

periments indicate that the approximation algorithm has the worst performance in pro-

cessing time. From approx to iter-MCs (Fig. 6.7), the average processing time of all

topologies decreases by 91.32%. From iter-MCs to iter-GWIN and iter-GWIN to single-

MCs, the average processing time decreases by 57.40% and 20.84%. Table 6.2 also il-

lustrates the third (Q3), second (mean), and first quartile (Q1) of the average process-

ing time. For the dependency graph with every source and destination combinations

of a relative small size network, the single-MCs and iter-GWIN can both generate the

scheduling plan in around 0.15 seconds. However, the performance difference in pro-

cessing time increases with the size of the network topology. For mean and the Q3 of all

processing time results, the average processing time of single-MCs decreased by 32.64%

and 38.29% from iter-GWIN, respectively. In summary, the single-MCs algorithm has

the best performance in processing time.

We also evaluate the size of the result list or iteration rounds |{I}|. It is the number of

sets the algorithm divides into different concurrent groups for the given migrations. For

the approx algorithm, from Q3 to Q1, it generates 171.5, 84.0, and 32.0 many of iterative

MIS in one planning result. From approx to iter-MCs, the iteration number decreases by

3.79%, 10.71%, and 6.25%, respectively.

For the performance in iterative MISs of each graph, we examine the size of the

largest iterative MIS (max({|I|})) and the mean size (mean({|I|})). As the first several

rounds of the result are the most essential factors on scheduling performance, we also



212 Efficient Large-Scale Multiple Migration Planning and Scheduling

evaluate the algorithm in the 95-quartile and 99-quartile of the iterative MISs size. The

algorithm iter-GWIN has the best performance in the large network topology. The to-

tal number of iterative MIS is reduced by 3.04% compared to the results of single-MCs.

Although the mean results of the set size mean({|I|}) of approx algorithm is close to

other three algorithms, its performance in the first several iterations is the worst. As

a result, the total set of approx algorithm is significantly larger than other algorithms.

For the maximum set size, single-MCs, iter-MCs and iter-GWIN has the identical perfor-

mance in Q1, mean, and Q3 from all results of network topologies. For the 95th and 99th

quartile iter-GWIN for directly calculate the maximum clique has a slightly better per-

formance over the iterative MCs-based heuristic algorithms even though the processing

time is higher.

6.7 Simulation and Performance Evaluation

In this section, we evaluate proposed solutions using real-world traces on an event

driven simulator. We first describe the real-world telecom base station dataset and taxi

GPS traces used in the experiments. We explain the placement of edge data centers

and the network topology and region coverage of each EDC. The event-driven simula-

tor for software-defined network-enabled edge-cloud computing CloudSimSDN [166]

is extended to emulate the the user movement and the live container migration in edge

computing. It provides a network operating system based on the software-defined net-

working for dynamic service and network resource monitoring and allocation. Com-

pared to the simulation results driven by mathematical models, this can generate more

realistic results without following the strong assumption encoded in the proposed math-

ematical modeling.

We compare and evaluate the performance of live container migration planning and

scheduling algorithm (iter-GWIN and single-MCs) against a policy with no planning

scheduling and the state-of-art live VM migration cloud algorithm FPTAS [30] in pro-

cessing time, migration time, downtime, transferred data, deadline violations, and net-

work transmission time.
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(a) Shanghai Telecom base station locations (b) The taxi GPS trace in the first hour

Figure 6.9: Experimental dataset and configurations of longitude and latitude
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(b) Edge data center coverage with Voronoi cells

Figure 6.10: Edge data center topology and coverage in longitude and latitude

6.7.1 Experimental Data

In this section, we describe the base stations coordinates provided by Shanghai Telecom

dataset and Shanghai Qiangsheng taxi GPS trace dataset (April 1, 2018) used in our

experiments. The given data is preprocessed by limiting the range of the longitude and

latitude from 30.40◦ N to 31.35◦ N and 120.51◦ E to 122.12◦ E as there are some taxis

travel to nearby cities. The Shanghai Telecom dataset contains the longitude and latitude

coordinates of a total of 3233 base stations as shown in Fig. 6.9(a). We use K-means

http://sguangwang.com/TelecomDataset.html
http://soda.shdataic.org.cn/download/31
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Figure 6.11: Example of live migration request triggered by user movement of longitude
and latitude

algorithms [220] to generate the location of a total of 200 Edge Data Centers (EDCs)

based on the longitude and latitude of the given base stations. Figure 6.9(b) illustrate

the taxi GPS trace in the first hour. Besides the GPS coordinates and timestamp, each

data record of the taxi dataset also includes the taxi id, service status, such as alarm,

occupation, taxi light, road type, and breaking, as well as vehicle speed, direction, and

the number of connected satellites.

Figure 6.10(a) illustrates base stations are clustered and connected to one of the re-

gional Edge Data Centers. There is no information on the physical network topology

and connectivity between EDCs. As shown in Fig. 6.10(a), for the geometric spanner,

we choose Delaunay Triangulation [221] to generate links between the gateway of each

EDC. For the network routing within the generated network topology, we consider the

shortest path, which is no longer than 4π/3
√

3 times the Euclidean distance between

source and destination. As a result, the boundary of EDC regions (Fig. 6.10(b)) is a

Voronoi diagram [221] where the Euclidean distance of any point to its corresponding

EDC region is less than or equal to its distance to any other EDC.

Similar to other research regarding the generation of mobility-induced live migra-
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Table 6.3: Multiple container migration scenarios

Scenario S1 S2 S3

vehicles 1000 2000 4000

migrations 9933 19522 37822

tions in edge computing [189, 211], we combine these two datasets to simulate the sce-

narios where the user needs to connect to the services and maintains the low end-to-end

latency through live container migration in edge computing environments. Figure 6.11

demonstrates an example that the request of live container migration is induced when

a taxi moves across the boundary between two clusters of EDCs. The deadline of each

live container migration is generated based on the average mobility speed of users in

the last 3 GPS records, travel direction, and the signal strength of base stations.

6.7.2 Experimental Setup

In this section, we describe details of the experiment setup. The end-to-end delay be-

tween the user and the service is the time interval from the user (taxi) sent workload

to the container assigned in the EDC to the result is received by the user. To generalize

computer vision use case workloads, the service task generated during the experiments

follows the Poisson distribution with a mean of 24 per second (24 FPS). In each task, the

network packet size sent from a user is 16384 bytes (128 ∗ 128 bytes). The processing

workloads in the container are randomly generated from 500 to 1000 cycles per bit [211].

The result packet sent back from the container to the user is 128 bytes. The sum CPU

power frequency for each EDC with multiple CPUs is 25 GHz [222, 223]. To simulate

the limited network resources for migrations in the edge, we consider that the reserved

network bandwidth between a container and its user is 3 Mbps. The physical network

bandwidth is 1 Gbps. The network delay between any based station to its regional EDC

is 5 ms and the delay between two EDCs is randomly generated in the range 5 to 50

ms [211].

According to the evaluation results of container memory and dirty memory size dur-
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ing live container migrations [210], we generate the container memory from 100 MB

to 400 MB. The dirty page rate for each dirty memory transmission is from 2MB/s to

8MB/s and the data compression rate is 0.8 [179]. We configure the downtime threshold

and the maximum iterations for live container migration at 0.5 seconds and 30 times as

shown in Chapter 5, respectively. Based on the SDN controller, the remaining network

bandwidth between the source and destination EDC which is not utilized by services

is allocated to the live container migration traffic. If several live migrations are sharing

part of their routings, the bandwidth will be allocated evenly to each of the network

flows.

From the experimental scenario S1 to S3 (Table 6.3), 1000, 2000 and 4000 vehicles are

selected randomly. We consider the GPS trace of selected vehicles within 1 hour. For the

initial placement at the start of the experiment, we allocate corresponding containers for

each vehicle at the same edge data center according to its GPS coordinates. The nearest

edge data center first policy is considered for our experiment to generate the live con-

tainer migration requests. According to the user mobility, one live container migration

will be triggered when one vehicle exits the coverage area of its current edge data center.

There are 9933, 19522, and 37822 migration requests induced by these vehicles’ move-

ment, respectively. During the live container migration, the dirty memory of migrating

container will be copied iteratively from the source edge data center to the nearest edge

data center through the shortest network path. For the evaluation sensitivity, the results

of each scenario are an average of 10 individual experiments. In this experiment, we con-

sider that the container image as a universal service is already available in all edge data

centers or shared by the network storage between EDCs. CloudSimSDN-NFV [166], an

event-driven simulator, is extended with corresponding components to support the live

container migration and user mobility in edge computing environments.

6.7.3 Experimental Results and Analysis

In Section 6.6, we compare the algorithm performance in terms of the size of iterative

MISs and processing time. Thus, we only evaluate the two best algorithms in this sec-

tion. We compare the experimental results between no migration scheduler, iter-GWIN,
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Figure 6.12: Migration performance comparison with no scheduler, iter-GWIN, and
single-MCs under different scenarios.

single-MCs, and the current state-of-the-art migration planning and scheduling in WAN

FPTAS [30]. In FPTAS, to maximize the total bandwidth utilized by migrations, one

migration can be started even there is considerably limited bandwidth which is much

lower than the dirty page rate per second. The solution can cause devastating migration

performance. Thus, we improve FPTAS by adding a bandwidth threshold (FPTAS-BW)

that the available bandwidth must larger than the dirty page rate as the migration start
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Table 6.4: Total processing time comparison in milliseconds

algorithm S1 S2 S3

iter-GWIN 306.9607 762.3356 3997.8309

single-MCs 332.5682 583.3951 1544.6291

FPTAS[30] 903597.39 1923036.81 4677990.57

condition. As the vehicle number increases from scenario 1 (S1) to scenario 3 (S3), the

density of live migration requests in certain areas increases dramatically. The resource

competition or resource dependency among live container migration requests will also

increase. As a result, the complexity of the dependency graph may also increase. When

the requirements of live container migration requests exceed the resource capacity pro-

vided by the edge computing, it is inevitable that some of the deadlines of some migra-

tion requests can not be satisfied.

Table 6.4 shows the total processing time of migration planning and scheduling al-

gorithms within 1 hour in milliseconds. From S1 to S3, the average processing time of

single-MCs for each migration planning is 0.1175, 0.1936, and 0.4904 milliseconds. Com-

pared to iter-GWIN, the processing time of single-MCs decreased by 61.36% in scenario

S3. The results are consistent with the algorithm evaluation in Section 6.6. Furthermore,

compared to FPTAS [30], the performance of our solution in terms of processing time

has been improved by more than 3000 times. In S3, the processing time of FPTAS is

about 78 minutes. As a result, even with any weight modification in the algorithm, the

migration deadline in seconds will be missed. Therefore, as the results of FPTAS-BW

in deadline violation are off the limit of chart comparison, we only compare it in the

migration performance.

From S1 to S3, without migration planning and scheduling, more live migrations

compete with each other on the network routing and the available bandwidth. As a

result, the average migration time increases dramatically from 2.25 and 4.59 seconds to

299.89 seconds (Fig. 6.12(a)). Particularly, in S3, the allocated bandwidth may either

be smaller than the dirty page rate and cause a large downtime for some migrations.

Or, it causes a much longer migration time due to a large number of memory-copying
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iterations. As a result, the migrating service suffers a devastating consequence. Fur-

thermore, for FPTAS-BW, by maximizing the total migration bandwidth rather than the

resource competitions, it suffers smaller average bandwidth per migration. Thus, as

shown in Fig. 6.12 the performance of our purposed solution in terms of average migra-

tion time, average downtime, and total transferred data are increased by up to 30.24%,

51.56%, and 2.06%, respectively. Meanwhile, for the proposed planning and scheduling

algorithms iter-GWIN and single-MCs, the performance of live migration can be guar-

anteed even with severe resource competitions. Results (Fig. 6.12(a), 6.12(b)) show that

the average migration time and downtime are optimal at 1.9 sand 0.13 seconds as there

is no bandwidth sharing between resource-dependent migrations. Furthermore, for all

the migrations that arrive within the 3600 seconds time interval in S3, iter-GWIN and

single-MCs can finish the scheduling of all migrations in 3603.91 and 3601.43 seconds.

However, the total migration time of no scheduler is 3603.43 seconds in S2 and 48878.65

seconds in S3. A shorter average migration means less possibility of QoS degradation

and less occupation time on the network resource. A smaller downtime equals fewer

disruptions on the migrating services.

Another critical migration performance is the transferred data of the live migration.

It is also highly related to network energy efficiency. In S1 and S2, although average mi-

gration time and downtime increase due to less allocated bandwidth, there is no surge

in the transferred data for the no migration scheduling situation (Fig. 6.12(c)). Because

of the container’s small memory footprint, the shared bandwidth can still satisfy the

downtime threshold with relatively small memory-copying iterations. However, when

the bandwidth becomes the bottleneck, a large number of memory-copying iteration

needed to meet the downtime threshold. Therefore, the total transferred data in S3 in-

crease by 114.47% compared with the optimal result from single-MCs.

The deadline of a live migration request is highly related to the QoS and SLA re-

quirement of the real-time migrating service. For iter-GWIN and single-MCs, the ratio

of migration violation numbers to the total migration number is 0.071% and 0.107% in S2

and 0.756% and 1.002% in S3 (Fig. 6.12(d)). However, the ratio for no migration sched-

uler is 3.07 times in S2 and 8.46 times compared to the best result from iter-GWIN. The

ratio of total violation time to the service time of all containers in one hour is 0.00127%
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and 0.00148% in S2 and 0.0425% and 0.0720% in S3, respectively (Fig. 6.12(e)). In S3,

although migration performance in terms of migration time and downtime is optimized

by the migration scheduler, the network resource is insufficient to schedule all 37822 mi-

gration requests on time with the live migration competitions. It is inevitable to violate

the deadline of certain migrations with lower priority to satisfy the deadline for others.

As a solution, one needs to increase the network resource by providing duplicate EDCs

and additional network routing or available bandwidth in the hot spot to alleviate the

deadline violation of real-time migrations.

The end-to-end delay for the migrating edge service is affected by the migration

downtime and the duration of deadline violation. For the network transmission time,

we compare the results of no user movement and no migration, no migration requests

with user movement, no scheduler, iter-GWIN and single-MCs (Fig. 6.12(f)). In the sce-

nario that all vehicles stay at the s and do not move during the experiment time (nomov),

the average network transmission time to the service or the end-user is from 17.4 to 19.9

milliseconds from S3 to S1. Without the live migration requests (nomig), the end-to-

end delay can be not guaranteed due to the network delay between the EDC and the

end-user. Specifically, the average network transmission time is around 56 milliseconds.

The live migration planning and scheduling algorithm (iter-GWIN and single-MCs) can

guarantee the average service network transmission time. In S3, without a migration

scheduler, the downtime and deadline violation have a considerable impact on the ser-

vice network delay. The network delay increases by 6.62 times compared to the result of

iter-GWIN.

In summary, our proposed algorithms can efficiently plan and schedule large-scale

mobility-induced live container migrations in edge computing. Even in the case of a mi-

gration request surge, it guarantees the performance of live container migrations and

maintains the QoS of migrating services. It significantly reduces average migration

time (up to 99.36%), average down time (up to 99.94%), total deadline violations (up

to 88.18%) and violation time (up to 99.94%).
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6.8 Summary

In this chapter, we investigated the challenges of live container migration scheduling

in edge computing environments including (1) resource competition or dependency

among live migrations and (2) real-time migration planning and scheduling. We mod-

eled the relationship of resource dependency among migrations as an undirected graph.

and the scheduling problem as generating the maximum independent set of the de-

pendency graph iteratively. We proposed a framework for user-triggered or mobility-

induced migration scheduling which is different from the traditional scheduling for live

VM migrations in cloud data centers. The SDN is introduced to separate the computer

network to minimize the impact of migration flows on other edge services. Based on

the dynamic computing resources, network resources and topology provided by the

container/VM orchestration engine and SDN controllers, the migration management

service can plan and schedule multiple migration requests in a fine-grained manner. We

proposed two methods for large-scale migration planning and scheduling algorithms

based on iterative Maximal Independent Sets. Computational experiments were con-

ducted to evaluate the algorithms’ performance. Furthermore, the results of experi-

ments based on real-world data indicate that proposed algorithms can efficiently plan

and schedule large-scale mobility-induced live container migrations in a complex net-

work environment in a timely manner, while maintaining the QoS of migrating services.

It can optimize the live migration performance and minimize the deadline violation in

migration scheduling.





Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis and highlights the key contributions. It also discusses future

research directions for live migration management in edge and cloud computing.

7.1 Conclusions and Discussion

The introduction of live migration offers flexible resource reallocation when it is applied

in cloud computing environments. Resource management through migration requests

enables dynamic adaption and reconfiguration in both computing and networking re-

sources to achieve various optimizations, such as load balancing, traffic consolidation,

energy efficiency, QoS awareness, and SLA guarantee. Minimizing the migration over-

heads and maximizing the scheduling performance of multiple migration are the key

components for a successful resource reallocation. The massive demand of cloud and

edge services results in complex, large-scale, and heterogeneous migration environ-

ments.

The state-of-the-art solutions neglect resource dependency, migration concurrency

and timeliness in processing time and scheduling window, which have become inade-

quate in the current cloud and edge computing environments. Traditional data center

networks can not provide virtual traffic management and topology discovery required

for multiple migration management in complex and large-scale systems. With the adop-

tion of SDN in clouds, it is feasible and efficient to integrate both computing and net-

working resources to manage the multiple migration generation policies and multiple

migration scheduling algorithms. In this thesis, we investigate multiple migration man-

agement in both edge and cloud computing environments to optimize migration perfor-

223
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mance and satisfy various objectives of resource policies. In detail, Chapter 1 introduces

the fundamental background of SDN-enabled cloud computing and live migration, and

delineates the research problems and corresponding objectives.

Chapter 2 presented a taxonomy and comprehensive literature review of migration

management in parameter and metrics, performance and cost model, resource manage-

ment policies, migration generation, granularity, lifecycle and orchestration, and man-

agement framework. We also investigated the migration planning and scheduling al-

gorithms in objectives, scopes, scheduling types and methods. A conceptual system

architecture and various simulation and empirical evaluation methods were presented.

Chapter 3 investigated the performance and impact of live virtual machine migration

in OpenStack and OpenDayLight platform under various parameters, configurations,

and scenarios, such as CPU utilization, memory overheads, bandwidth allocation, itera-

tion threshold, downtime configuration, parallel migration, network routing, flow entry

latency, response time for different application types, and hybrid migration. We also

presented the mathematical model for live block migration and sequential and parallel

migrations.

Chapter 4 presented a generic concurrency-aware live migration generation algo-

rithm integrating with existing dynamic resource management policies and strategies

to optimize the scheduling performance of multiple migration requests and satisfy the

policy objectives. The proposed graph-based algorithm evaluates the potential migra-

tion combinations of candidate source, destination, and VM and minimizes the migra-

tion overheads and the potential resource dependencies among generated migration re-

quests.

Chapter 5 proposed an SLA-Aware multiple migration planner and scheduler that

composes a deadline-aware multiple migration grouping algorithm and an online mi-

gration scheduler to determine the migration sequence of connected VMs and VNFs.

The proposed solution efficiently reduces the number of deadline violations and achieves

a good migration performance in total and individual migration time, downtime, trans-

ferred data. We also analyzed the impacts of multiple migrations on application QoS

and energy consumption.

Chapter 6 proposed an efficient multiple migration scheduling algorithm for live
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container migration at scale. A novel migration framework was proposed to adapt to the

stochastic migration arrival pattern in edge computing environments. The proposed it-

erative Maximal Independent Set-based planning and scheduling algorithm can greatly

reduce the processing time to suit the real-time requirement of mobility-induced migra-

tions in large-scale edge computing while providing the guaranteed migration perfor-

mance for time-critical migration requests.

The chapters mentioned above collectively present the multiple migration manage-

ment in SDN-enabled clouds, which is a timely contribution to the state-of-the-art.

7.2 Future Research Directions

From cloud computing to mobile edge computing, service requirements of low latency

and high mobility bring new challenges to live migration management. This thesis pro-

vides fundamental framework and solutions to the multiple migration management

in edge and cloud computing environments. The solutions of Chapter 4 and 5 can be

applied to the periodic multiple migration management scenarios such as dynamic re-

source and energy management through live VM and container migrations in edge com-

puting. The novel framework and algorithms of Chapter 6 are suitable for the stochastic

multiple migration scheduling scenarios in mobile edge computing, such as mobility-

induced service migration, with high mobility and low latency.

This thesis addressed several challenges of migration management in cloud and edge

data centers. However, cloud and edge computing can be improved by addressing sev-

eral key issues of live migration that require further investigation. Figure 7.1 illustrates

the overview of future directions discussed in this section.

7.2.1 Flexible Networking Management by Network Slicing

The containerized services allocated in the mobile edge clouds bring up the opportunity

for large-scale and real-time applications to have low latency responses. Meanwhile,

live container migration is introduced to support dynamic resource management and

users’ mobility. The container footprint becomes much smaller compared to the VM. As
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a result, the proportion of network resources limitations on migration performance is

reduced. Instance-level parallelizing for multiple migration can improve the scheduling

performance due to the computing cost of migration. Therefore, it is critical to investi-

gate the networking slicing algorithms to concurrently schedule both VM and container

migrations to improve multiple migration performance and alleviate the impacts on ser-

vice traffic. Holistic solutions are needed to manage the networking routing and band-

width allocation based on the various network requirements of live VM migrations, live

container migrations, and applications.

7.2.2 Optimization Modeling, Compatibility and Combination

There are continuous efforts striving to improve the performance and alleviate the over-

heads of live migration through system-level optimization [6]. The disadvantage of

the original pre-copy migration is the migration convergence. The optimization works

of improving live migration performance mainly focus on reducing the live migration

time and downtime, including reducing the memory data required for transmission to

the destination, speeding up the migration process in the source host, and increasing

the bandwidth between the source and destination hosts. However, there are gaps be-

tween current migration cost and performance modeling and the exiting migration op-

timization mechanisms in process parallelizing, compression, de-duplication, memory
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introspection, checkpoint and recovery, remote direct memory access (RDMA), and ap-

plication awareness. The existing migration optimization is at the system level which

needs to be modeled carefully and properly to reflect the nature and characteristics of

the optimization. Although there are extensive optimizations on live VM migration,

each one claims a certain performance improvement compared to the default live VM

migration mechanism. However, it is unclear the compatibility of each migration opti-

mization technology and the performance improvement of the combination of various

mechanisms.

7.2.3 Live Container Migration Optimization

There is a research interest and trend of adapting or directing imitating optimization

mechanisms of live VM migration to develop and improve live container migrations [23,

76, 207, 212, 224]. For example, Remote Direct Memory Access (RDMA) can be utilized

as the high-speed interconnect techniques [225], which has been applied to improve the

performance of live VM migration. RDMA enables the remote accessing of memory and

disk data without the CPU and cache. Multipath TCP (MPTCP) can be used to allow

TCP connections to use multiple paths to increase the network throughput and redun-

dancy [226]. The container layered storage can be leveraged to alleviate synchronization

overheads of a file system in the architecture without shared storage [210]. However,

there are still gaps in this research direction and more evaluation and investigation of

single and multiple container migrations with real applications need to be done in cloud

and edge data centers to speed up this improvement for live container migration and its

scheduling.

7.2.4 Management Scalability

With the expansion of edge and cloud computing networks, the complexity of the mi-

gration planning and scheduling problem becomes unavoidably large. However, the

timeliness requirement of the management algorithm is also changed from cloud to edge

computing. For the time-critical applications, the resource and migration management

algorithms need to be scalable to suit the large-scale computing and networking envi-
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ronments. Therefore, it is essential to investigate the distributed management frame-

work and algorithms to enhance scalability of the migration management algorithms.

Controller placement problems need to be investigated regarding the SDN controller ca-

pacity and the network latency between controller and OpenFlow switches. The prob-

lems of edge data center placement and base station clustering need to be investigated

based on the user mobility information to reduce the number of live migrations. Each

edge manager and SDN controller needs to cover a certain area and data centers and co-

operates with other controllers. A certain strategy needs to be developed to determine

the size of the cluster area and the placement of each manager and controller based on

the parameters such as network delay and processing capability.

7.2.5 Autoscaling and Live Migration

For instance-level scaling, scaling up and down is used for allocation and deallocation

virtualized instances in cloud computing to elastically provision the resource in the same

host. In addition, system-level scaling up [227] supports fine-grained scaling on the

system resources, such as CPU, memory, and I/O, to reduce the considerable overhead

and extra cost. On the other hand, scaling out is used to support application allocation

in other compute nodes to increase the processing capacity of the service. The load-

balancer will distribute the traffic to all running instances of the application.

Current resource management strategies of cloud providers perform live migration

for both stateful and stateless services to achieve the objectives, such as energy consump-

tion and traffic consolidation. There is no configuration and information to differentiate

the instance types (stateful and stateless) across various cloud types (IaaS, PaaS, SaaS,

and FaaS). The cloud or service providers can further reduce management overheads

by performing autoscaling and live migration to stateful and stateless instances respec-

tively. Therefore, it is critical to integrate the autoscaling and live migration strategies to

holistically manage the resources based on the instance types to minimize the manage-

ment overhead and cost. The advantages and disadvantages of instance-level scaling,

resource-level scaling, and live migration need to be investigated. In addition, the spe-

cific SLA of migration and scaling is needed for various instance types.
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7.2.6 Robustness and Security

For the migration security, Shetty et al. [73] focus on secure live migration, control poli-

cies (DoS, Internal, Guest VM, false resource advertise, Inter VM in the same host),

transmission channel (insecure and unprotected), and migration module (stack, heap,

integer overflow). SDN-based network resilience management and strategies, such as

traffic shaping, anomaly detection, and traffic classification, need to be investigated to

tackle the network security issue for live migration.

Furthermore, migration robustness also needs to be investigated to increase the avail-

ability and accessibility of dynamic resource management. Compared to pre-copy mi-

gration, post-copy migration starts the instance at the destination host as soon as the

initial memory is copied, which makes it vulnerable to state synchronization failure. As

a result, if there is a post-copy migration failure, the running processes can not be re-

sumed and the migrating instance is shutdown. Fernando et al. [67] proposed a failure

recovery mechanism for post-copy migration to alleviate the cost of post-copy migration

failure. Furthermore, failure cost models need to be developed based on different migra-

tion types and mechanisms and applied to services with various SLA levels accordingly.

7.3 Final Remarks

Edge and cloud computing have become the backbone of the digital world for host-

ing applications in science, business, transportation, and content delivery. Resource

management through live migration enables the edge and cloud data centers to reach

their full potentials in performance, availability, energy efficiency and running cost. This

thesis investigated how to efficiently manage live migrations during resource manage-

ment in SDN-enabled Clouds, including SDN networking management, migration over-

heads, migration performance, application QoS, scheduling timeliness, scheduling con-

currency, management framework, competitions of migration generation, and migration

planning and scheduling. The proposed methods and solutions guarantee migration

timeliness, reduce energy consumption, minimize migration overheads, SLA violations,

and QoS degradations, maximize the performance of individual migration and multi-



ple migration scheduling, and facilitate and improve the performance and effectiveness

of dynamic resource management. Research of migration management, such as pre-

sented in this thesis, will enable cloud and edge providers to successfully and efficiently

perform live migrations in complex edge and cloud computing environments at scale.

Moreover, these research outcomes can drive further innovations and developments of

edge and cloud computing systems.
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