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Abstract

As society deepens its integration with cloud computing for the digitization of ser-

vices, the proliferation of cloud-based latency-sensitive applications can be seen across

various domains, such as the Internet of Things (IoT), Industry 4.0, and applications of

the AI boom. Unlike traditional hyper-scale clouds, such applications require application-

specific computing environments with tightly coupled application and hardware layers

to deliver the stringiest latency performances. Conversely, such tight coupling increas-

ingly limits cloud providers’ control over application performance and hardware life-

cycle management. Their latency service level objectives (SLOs) require infrastructure

to maintain consistent performance through diverse application-specific heterogeneous

hardware configurations that often provide lesser optimization opportunities.

Meanwhile, climate crisis-driven initiatives increasingly push cloud providers to-

wards achieving near-term infrastructure carbon efficiency. Already, cloud infrastruc-

tures are significant contributors to global carbon emissions; thus, achieving near-term

carbon efficiency with increasingly prevailing latency-sensitive cloud computing envi-

ronments is paramount in meeting the cloud’s carbon emission goals. However, the

limited provider’s control in those environments significantly challenges its potential to

achieve carbon efficiency through carbon-aware resource management. In particular, the

limited application performance management prevents cloud providers from applying

resource management techniques aimed at reducing infrastructure active carbon emis-

sions (i.e., operational carbon), such as integrating low-carbon intermittent renewable

energy sources through compromising application performance for carbon efficiency.

Further, the limited provider’s control over the hardware lifecycle management prevents

cloud providers from applying efficient hardware optimization techniques aimed at re-

ducing procured carbon emissions made with associated business activities (i.e., embod-
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ied carbon), such as hardware re-purposing to slow down the accumulation of manufac-

turing carbon emissions from frequent hardware replacements. To this end, uncovering

alternative carbon-aware resource management opportunities entangled within tightly

coupled application and hardware layers of latency-sensitive cloud computing environ-

ments becomes paramount to the cloud’s sustainable growth.

This thesis investigates novel algorithms, approaches, and techniques to identify

and exploit application-specific resource management opportunities to improve oper-

ational and embodied carbon efficiency in latency-sensitive cloud computing environ-

ments without compromising application latency SLOs. This thesis advances the state-

of-the-art in carbon-aware resource management by making the following key contribu-

tions:

1. A comprehensive taxonomy and literature review on the carbon-aware resource

management in latency-sensitive cloud computing environments along with a dis-

cussion on identified research gaps and potential future research work.

2. A dynamic power budget and a decentralized task scheduling algorithm to alle-

viate power constraints with renewable energy in geographically distributed IoT

Micro-Cloud networks.

3. A framework to exploit application-level fault-tolerance in real-time cloud systems

to integrate renewable energy without compromising the system’s deterministic

application execution.

4. A technique to accommodate low-latency applications in multi-region renewable

energy harnessing using server pooling of CPU Simultaneous Multi-Threading

(SMT).

5. An aging-aware CPU core management technique for extended amortization of

procured embodied carbon in Large Language Model (LLM) inference clusters.
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Chapter 1

Introduction

Cloud computing has become the backbone of modern society with the deepening dig-

italization of services such as banking, healthcare, e-commerce, gaming, transport, and

education [15–18]. Today, hyper-scale cloud providers dominate cloud infrastructures

that provide on-demand computation to their users. Over the past fifteen years, the

share of data center capacity for hyper-scale cloud providers has grown from 10% to

37% today [19]. Recently, we have seen a surge in expanding hyper-scale cloud infras-

tructures, where global investments for new data centers have increased by nearly 70%

during the past two years [19]. The primary driver behind this trend is the rise of cloud-

based latency-sensitive use cases, including generative Artificial Intelligence (AI), au-

tonomous driving, Industry 4.0, and content streaming [13, 15, 17].

Adversely, growing cloud infrastructures incur a detrimental impact on their carbon

footprint. Cloud data centers already contribute to nearly 1% of the total global carbon

emissions [20]. As data centers expand, they consume increased amounts of energy from

carbon-intensive energy sources, which elevates their operational carbon footprint [19].

In India alone, data center capacity is expected to grow from 2 GW today to nearly 5

GW by 2030, while its 74% of coal-based dominance in electricity generation today will

likely continue beyond 2030 [19]. Further, the carbon emissions made during associated

business activities over the lifecycle of the data center hardware, such as manufactur-

ing, shipping, retiring, and recycling Information Technology (IT) assets, elevate data

centers’ embodied carbon footprint [21, 22]. Microsoft, a hyper-scale cloud provider, re-

ported that its embodied carbon footprint increased by 30.9% during the past four years

[23].

Carbon emissions released into the atmosphere remain for many years, creating a

1
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Figure 1.1: Comparison of cloud computing environments for latency SLO.

greenhouse effect that leads to catastrophic effects of global warming, such as environ-

mental events of weather extremes and melting polar caps, leading to economic disrup-

tions and conflicts due to food and water insecurity and rising sea levels [24]. Conse-

quently, environmentally conscious parties constrain cloud providers to limit their data

center carbon emissions. One such example is the compliance of cloud providers with

the Paris Agreement, requiring data centers to reduce their emissions by 45% between

2020 and 2030 [25]. Today, major hyper-scale cloud providers continue to integrate sus-

tainability measures for both operational and embodied carbon efficiency. For example,

Amazon Web Services (AWS) is matching 100% consumed electricity with renewable

energy generation, is starting the transition to hydrotreated vegetable oil (HVO) (a fos-

sil fuel alternative that offers up to 90% carbon emission reduction) for backup power

generation, and is working with IT hardware manufacturers and data center building

construction to utilize low-carbon processes [26]. Similar commitments can be seen with

Microsoft Azure [27] and Google Cloud [28].

However, the existing sustainability measures of hyper-scale cloud providers are

largely limited to traditional cloud infrastructures facilitating workloads with flexible

latency Service Level Objectives (SLOs) on generic server hardware. This is because
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flexible latency SLOs provide better opportunities for workload performance manage-

ment for operational carbon efficiency, and generic server hardware provides better op-

portunities for hardware lifecycle management for embodied carbon efficiency. As a

result, emerging latency-sensitive cloud computing environments having tight latency

SLOs and heterogeneous hardware are often overlooked in cloud carbon optimizations.

Figure 1.1 compares latency-sensitive cloud computing environments over traditional

cloud infrastructures by taking latency SLOs as the x-axis and computing environment

heterogeneity as the y-axis. It demonstrates the limited control over workload perfor-

mance management and hardware lifecycle management present in latency-sensitive

cloud computing environments.

The control over workload performance management determines the cloud provider’s

capacity to optimize operational carbon efficiency through 24/7 integration of low-carbon

renewable energy. This is due to the variations in the energy supply of renewable energy

sources. Cloud providers depend on controlling the workload performance to match

their energy demand with intermittent energy supply variations of renewable energy

sources. For instance, suspending/resuming the flexible workloads through time and

space allows cloud operator to increase and decrease their energy consumption to match

the available energy capacity. Figure 1.1 depicts that latency-sensitive cloud computing

environments are often constrained to low-latency and bounded-latency regions in the

latency SLO spectrum, thus presenting fewer opportunities at workload performance

management. For example, Real-Time Clouds having bounded response times require

deterministic computing, which is facilitated by tuning server virtualization stacks for

rigid high-performance real-time power profiling, limiting cloud providers’ control over

fine-grained workload performance management. Similarly, AI or Machine Learning

(ML) Inference Clusters serving interactive queries require faster model computations,

which are facilitated by performance-constrained cloud servers with Graphics Process-

ing Unit (GPU) accelerators.

The control over hardware lifecycle management determines the cloud provider’s

capacity to optimize embodied carbon emissions through various management tech-
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niques of their IT hardware, such as data center design, resource oversubscription, com-

ponent re-purposing, component re-using, and hardware life extensions. As shown in

Figure 1.1, latency-sensitive cloud computing environments demonstrate the most het-

erogeneity in their hardware, thus presenting fewer opportunities for hardware life-

cycle management. For example, Internet of Things (IoT) Micro-Clouds serving Inter-

net of Things (IoT) workloads for geographically distributed end-users are often fa-

cilitated by distributed Micro-Clouds deployed with leased infrastructures, where the

cloud provider does not have control over most hardware that is owned by the third-

party infrastructure provider. Similarly, Modular data centers (i.e., Modular DCs), where

servers are deployed in low-footprint self-contained data center units for rapid deploy-

ment and scaling, provide limited design opportunities and limited options to choose

alternative low-carbon hardware components due to their resource constraints. As a

result, Modular DCs limit the cloud provider’s control to optimize its hardware man-

agement.

Therefore, to achieve sustainable growth in emerging latency-sensitive cloud com-

puting environments, it is imperative to address its limited control of workload perfor-

mance management and hardware lifecycle management with the adoption of efficient

carbon-aware resource management techniques. Thus, the main focus of this thesis is to

study techniques for navigating the complex optimization space of application latency

SLO and computing environment heterogeneity of latency-sensitive cloud computing

environments. This includes the exploration of resource allocation, workload schedul-

ing, workload execution, energy supply variations, and hardware usage patterns.

We first conduct a comprehensive survey to review existing literature, alongside

identified problems, proposed solutions, and the shortcomings, encompassing a broader

scope of resource management for both operational and embodied carbon optimization

in latency-sensitive cloud computing environments. We then proceed to propose effi-

cient techniques for power management, workload scheduling and execution, and hard-

ware longevity for the carbon efficiency of the computing environments. We demon-

strate the superiority of the proposed techniques by extensively evaluating them under

both simulation and practical settings.
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1.1 Background and Motivations

To better understand the research problem addressed in this thesis, in this section, we

present background and motivation on cloud carbon efficiency and latency-sensitive

cloud computing environments.

1.1.1 Latency-Sensitive Cloud Computing Environments

Cloud computing provides on-demand compute/storage services following a pay-as-

you-go model. In traditional cloud computing, service delivery follows distinct mod-

els, such as Infrastructure-as-a-service (IaaS), Platform-as-a-service (PaaS), Software-as-

a-service (SaaS), and more recent models such as Function-as-a-service (FaaS). Each ser-

vice model enables cloud users to bootstrap their application deployment at different

levels. In IaaS, cloud users utilize on-demand provisioning and scaling of managed in-

frastructure resources, such as computing, storage, and networking, to build and deploy

their applications. In PaaS, cloud users utilize managed software platforms to develop,

run, and maintain their applications. In SaaS, cloud users utilize entire managed ap-

plication stacks, in which all maintenance, such as software updates and bug fixes, are

taken care of. More recently, higher levels of compute abstractions are provided with

service models such as FaaS, in which cloud users maintain their application code while

its execution and scaling are managed by the cloud provider. The majority of these

service models provide different levels of segregation between the application and the

infrastructure. In contrast, emerging latency-sensitive cloud computing environments

cater to application deployments that are tightly coupled with the intricacies of the in-

frastructure due to their stringent latency performance constraints.

Figure 1.2 illustrates and compares tight coupling between applications and comput-

ing infrastructure in latency-sensitive cloud computing environments over traditional

cloud computing service models. As shown, traditional cloud service models focus

on delivering ease of use for cloud users. However, latency-sensitive cloud comput-

ing environments require application-specific variations of their infrastructure, leading

to resource and performance-constrained cloud computing environments. To show-

case this, we use three prominent use case examples. In the case of real-time clouds
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Figure 1.2: Tight coupling between applications and computing infrastructure in
latency-sensitive cloud computing environments.

[17], applications require deterministic computing through the cloud virtualization stack

to meet bounded-latency responses. Hence, their computing environment consists of

performance-tuned hardware, such as disabled power efficiency features in Central Pro-

cessing Unit (CPU); guaranteed resource allocation through virtualization, such as pin-

ning CPU cores to application Virtual Machines (VM); and prioritized execution of real-

time application threads through the operating system’s kernel [29]. In the case of the

IoT Micro-Clouds [30, 31], applications are required to serve end-users at the network’s

edge to meet their low-latency responses. As a result, Micro-Clouds often deploy on

resource-constrained leased infrastructure from Colocation data center providers. In the

case of generative AI inference clouds [14], applications often require specialized server

hardware, such as GPU accelerators with phase-specific variants, to meet model com-

putation for low-latency interactive sessions.

Our use case examples demonstrate the complicated intricacies present in latency-

sensitive cloud computing environments. As a result, deriving an efficient resource

management approach for their carbon efficiency becomes increasingly difficult. More-

over, the majority of existing resource management approaches for carbon efficiency

are designed for traditional hyper-scale clouds, which cannot be transferred to latency-

sensitive cloud environments, further challenging the problem of carbon-aware resource

management. In the next subsection, we focus on carbon efficiency in cloud environ-
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Figure 1.3: Carbon emissions of cloud computing environment lifecycle [1].

ments, highlighting its requirements. Afterward, in section 1.2, we outline concrete

challenges that need to be solved to meet those requirements in latency-sensitive cloud

computing environments.

1.1.2 Carbon Efficiency in Cloud Computing Environments

In measuring carbon emissions of a cloud computing infrastructure, the Green House

Gases (GHG) protocol [32], a global standard formed to manage GHG emissions, out-

lines three scopes of emissions for data centers to encompass both direct and indirect

carbon emissions made during the data center lifecycle. Figure 1.3 illustrates key ele-

ments of the data center lifecycle for each scope based on recently published data by

Google [1], a hyper-scale cloud provider.

Lifecycle carbon emissions consist of two categories: operational and embodied emis-

sions. Operational carbon emissions of a cloud computing environment relate to scope

one and scope two emissions of the GHG protocol. Scope 1 refers to direct emissions

made on-site, such as fossil fuel combustion of backup power generators and fleet ve-

hicles and natural gas used for heating. Scope 2 refers to indirect emissions made from

electricity consumption. Data centers often consume electricity from power grids where

it is located; thus, the carbon intensity of the energy sources used to generate electricity

is attributed to the data center’s energy demand, predominantly from workload exe-

cution and overhead consumptions such as server cooling. Embodied emissions of the

cloud computing environment are attributed to indirect carbon emissions made during
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Scope 3 activities, such as from DC construction, hardware manufacturing, and installa-

tion to hardware disposal and recycling. Carbon emissions made in both categories are

measured with kgCO2eq, kilograms of carbon dioxide equivalent.

Carbon efficiency in cloud computing environments refers to reducing emissions

across both embodied and operational aspects. In this thesis, we focus on achieving car-

bon efficiency through effective resource management of the cloud computing environ-

ment. In managing operational carbon emissions, cloud resource management is most

effective in optimizing Scope 2 emissions due to multiple reasons. Optimizing Scope 1

emissions can involve slow processes, such as transitioning to low-carbon fuel sources.

Further, it can be out of the control of the cloud provider, such as fugitive emissions,

and could also be critical to data center operations and thus difficult to optimize for,

such as powering backup generators. In contrast, Scope 2 emissions can be optimized

in the short term by integrating clean energy mixes. Recently, renewable energy sources

with clean energy have been penetrating energy grids around the globe [15], presenting

cloud operators with opportunities to reduce their operational emissions by matching

their electricity demand with clean energy availability. In managing embodied carbon

emissions, resource management techniques are most effective in slowing the rate of em-

bodied carbon accumulation and extending the amortization of procured embodied car-

bon. Alternative approaches to improving the carbon efficiency of business processes,

such as data center construction, hardware manufacturing, and transportation, require

long-term efforts among multiple stakeholders, thus presenting fewer opportunities to

address embodied carbon in the near future.

Therefore, this thesis focuses on aspects of resource management to optimize carbon

efficiency in latency-sensitive cloud computing environments for reducing Scope 2 op-

erational carbon emissions through integrating renewable energy mixes of power grids

and reducing Scope 3 embodied carbon emissions through slowing down its accumu-

lation and extending amortization of those already procured. In the next section, we

discuss key challenges that must be addressed in that.
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1.2 Challenges in Carbon-aware Resource Management in Latency-
Sensitive Clouds

Latency-sensitive cloud computing environments are increasingly prevailing due to the

deep integration of cloud computing with interactive and critical services provided in

modern societies. At the same time, maintaining its sustainable growth is paramount in

our efforts to address the climate crisis. However, unlike traditional cloud computing,

where cloud providers could better optimize for carbon efficiency due to the segregation

of infrastructure from applications, tight coupling of latency-sensitive applications with

the computing infrastructure, and application-specific diverse patterns, challenges the

cloud provider in achieving carbon efficiency with latency-sensitive cloud computing

environments. In order to be able to effectively conduct carbon-aware resource man-

agement, the provider needs to base its techniques on unique patterns of application

execution under different scenarios and hardware configurations.

Carbon-aware resource management spans both operational and embodied carbon

optimizations and requires satisfying the unique resource and performance constraints

of the computing environment. In operational carbon optimization, providers identify

the best approaches to shift electricity consumption to low-carbon renewable energy

availability. In embodied carbon optimization, providers identify long-term approaches

to reduce future accumulation of embodied carbon and amortization of already pro-

cured embodied carbon. We then discuss the resource management challenges associ-

ated with the latency-sensitive cloud computing environments:

• Limited control over workload performance management: A key challenge in

latency-sensitive cloud environments is that applications offer quite limited op-

portunities to compromise their performance over carbon efficiency. In resource

management, exploiting workload performance allows cloud operators to con-

trol electricity demand for better utilization of the energy grid’s carbon intensity.

For instance, traditional cloud servers allow dynamic performance management

techniques such as Dynamic Voltage and Frequency Scaling (DVFS) to control

server power draw. However, with latency-sensitive applications, DVFS can lead

to degraded application performance and violate their Service Level Agreements
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(SLAs) of response times. Therefore, the cloud operator needs to explore fine-

grained application patterns to uncover opportunities to match the infrastructure

energy consumption without degrading latency performance.

• Supply dynamics of clean energy sources: Recently, renewable energy sources

have been increasingly penetrating the global power grids. However, the majority

of such produce electricity with intermittent supply dynamics. This is because in-

termittent renewable energy sources, such as solar and wind, are relatively easy to

provision and operate when compared to stable, clean energy sources, such as nu-

clear plants. Integrating intermittent renewable energy sources significantly chal-

lenges cloud provider in maintaining their workload performance amidst supply

variations, especially within performance-constrained environments of latency-

sensitive cloud applications.

• Unpredictable Network Performances: A significant portion of cloud latency-

sensitive applications relies on globally distributed computing environments to

deliver improved end-user latency performance. These environments heavily de-

pend on the Wide Area Network (WAN) that connect geographically distributed

servers and present opportunities to harness clean energy availability across time

of day. However, existing network traffic management in WANs can often lead

to unpredictable network performance. In this context, cloud providers are chal-

lenged to maintain satisfactory application latency performance over WAN amidst

harvesting cross-region clean energy availability.

• Limited control over hardware lifecycle: A key characteristic in latency-sensitive

cloud environments is that cloud providers often have limited control over their

infrastructure hardware. For instance, Micro-Clouds deployed in leased infras-

tructures limit the cloud provider’s role as a renter in infrastructure ownership,

thus providing fewer opportunities to optimize embodied carbon emissions. In

the case of modular data centers, where servers are deployed in low-footprint self-

contained data center units, providers have limited options when choosing alter-

native hardware components with limited embodied carbon footprints due to the

resource constraints of the modular data center. Therefore, cloud providers must
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uncover opportunities present in hardware compatibility, hardware performance,

and infrastructure design to reduce accumulation and increase amortization of

infrastructure embodied carbon through efficient resource management mecha-

nisms, such as hardware re-purposing, hardware re-using, and extending hard-

ware lifetimes.

• Asymmetric hardware life cycles: Due to the stringent performance requirements,

latency-sensitive cloud servers can depend on hardware accelerators. These server

components are less mature in their development when compared to traditional

server components; thus, manufacturers release newer hardware generations with

improved performance quite frequently. As a result, cloud providers are chal-

lenged with a shorter hardware lifecycle for accelerators, which adversely increases

the accumulation of the environment’s embodied carbon footprint.

• Premature hardware failures: Catering for bounded latency performance of cer-

tain latency-sensitive cloud environments requires high-performance tuning of

hardware to maintain consistent peak server performance. Such that potential vio-

lations of response time bounds in Service Level Agreement (SLA) are minimized.

However, in the long term, such performance tunings degrade the reliability of the

hardware, leading to premature failures and, eventually, shorter hardware refresh

life cycles. In this context, cloud providers are challenged by the faster accumula-

tion of embodied carbon from replacement hardware. Therefore, hardware perfor-

mance tuning must be efficiently optimized to slow down hardware degradation

while preserving application latency performance.

1.3 Research Questions and Objectives

There are two major challenges in achieving carbon efficiency in latency-sensitive cloud

computing environments. Firstly, the action space of integrating unstable renewable

energy sources for latency-sensitive applications must be carefully explored to identify

potential resource management solutions that satisfy application-specific latency Ser-

vice Level Objectives (SLOs) over renewable energy supply dynamics. Secondly, ef-
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ficient resource management solutions must be derived to enable cloud providers to

optimize their latency-sensitive application-specific hardware for lower embodied car-

bon, such as achieving prolonged usage of existing hardware, re-purposing hardware to

yield a second life, and reducing the dependency on components with higher embod-

ied carbon by design, all while satisfying latency SLOs. The objective of this thesis is to

study these challenges in prominent latency-sensitive cloud computing environments at

a fine-grained level and propose approaches for all resource management aspects while

satisfying performance and resource constraints. In order to meet these objectives, we

formulate and address the following research questions.

• Q1. How to leverage the provisioning flexibility of on-site renewable energy sources to

improve power budget constraints of decentralized and distributed IoT Micro-Cloud net-

works deployed with Colocation data center providers? Due to congested power grid

capacities, Colocation data center providers tend to constrain tenants’ subscrip-

tions to the shared power delivery as a mechanism for scaling to cater to the ris-

ing demand. Adversely, renting Micro-Clouds is at the risk of workload perfor-

mance compromises in mitigating power overdraw events. In contrast to power

grids, on-site renewable energy generation provides provisioning flexibility to re-

lax power constraints, yet its supply dynamics could present uncertainty in de-

livering stable power subscriptions. Therefore, it requires efficient management

of IoT tasks within the Micro-Cloud network addressing dynamic network per-

formance of WAN, cross-regional clean energy availability, and maintaining the

task’s latency performance at all times.

• Q2. How to integrate clean energy with real-time cloud environments of bounded la-

tency without compromising the deterministic nature of its application execution? Real-

time clouds ensure deterministic application performance for end-users to cater

to critical services with bounded response times. To do so, they often compro-

mise carbon-efficiency over the computing stack’s performance. Although the in-

tegration of clean energy is effective in reducing the environment’s operational

carbon emissions, it demands alternative strategies to uncover mechanisms that

only exploit properties of the system where its deterministic nature remains intact.
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Therefore, this problem must be addressed carefully, given that intermittency in

the supply dynamics of clean energy sources is orthogonal to delivering determin-

istic performance.

• Q3. How to efficiently incorporate low-latency applications in load shifting strategies har-

nessing clean energy availability with multi-region cloud environments? Low-latency

applications are often considered inflexible for load-shifting strategies used in multi-

region renewable energy harvesting approaches due to the risks of performance

compromises in serving them over WAN with unpredictable network performance.

However, given the significant demand for low-latency workloads, it is beneficial

for cloud providers to leverage those in load shifting. A potential approach to this

problem is limiting scenarios where low-latency applications are being served over

WAN through efficient application scheduling. In doing so, the provider must ex-

plore their workload mix to dynamically identify scheduling opportunities.

• Q4. How to sustainably maintain the accumulation of embodied carbon in the rapid ex-

pansions of cloud compute clusters catering to low-latency generative AI applications?

The recent surge in AI is predominantly driven by large language model-based

generative AI applications. However, it is important to sustain the embodied car-

bon accumulation from cloud providers expanding their generative AI compute

clusters to cater to the rising demand. Several key details must be addressed in

this research question. Firstly, the provider must identify key elements contribut-

ing to embodied carbon growth and carefully filter for the best carbon optimiza-

tion opportunities. For example, although frequent upgrades of GPU accelerators

that are commonly used in such deployments may contribute to embodied car-

bon accumulation, it could provide important business value in utilizing rapid

performance improvements in newer hardware. Secondly, providers must derive

long-term planning to optimize the embodied carbon of the filtered elements. Col-

lectively, identifying the most effective aspect of embodied carbon optimization

and utilizing better planning in the long term is vital in solving this research ques-

tion.
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1.4 Thesis Contributions

In addressing research problems discussed in Section 1.3, this thesis makes the following

contributions:

1. Presents a taxonomy encompassing aspects of resource management for both op-

erational and embodied carbon efficiency in latency-sensitive cloud computing en-

vironments and a detailed analysis of existing related literature using the proposed

taxonomy.

2. Investigates a combined solution of dynamic power budget coupled with efficient

decentralized task scheduling across geographically distributed regions to allevi-

ate power budget violations while utilizing clean renewable energy availability

(addresses the Q1).

• An approach to realize a dynamic power budget using existing power deliv-

ery infrastructure of Colocation data center providers.

• A dynamic decentralized algorithm to solve the multi-objective problem of

low-latency task scheduling for the utilization of the proposed dynamic power

budget of clean energy integration under realistic WAN settings.

3. Proposes a framework that drives CPU core availability based on the dynamics

of renewable energy sources to exploit fine-grained fault-tolerance present in real-

time cloud systems, enabling clean energy harvesting without affecting the real-

time system’s deterministic nature (addresses the Q2).

• A core-level VM Execution Model to maintain real-time compute performance

for application VMs amidst renewable energy dynamics.

• A server-level VM Packing Algorithm to effectively utilize CPU core avail-

ability across servers to alleviate application execution compromises.

• A practical testbed built on HP ProLiant servers with Intel Xeon Silver CPUs,

running an extended version of the OpenStack [33] cloud resource manage-

ment middleware to evaluate the proposed framework. Each node hosts a

daemon service that wraps the Intel idle state management libraries and a set
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of VMs executing the rtEval application [7], a comprehensive load testing tool

for measuring realtime latency.

• An open-source release of the implemented framework, accompanied by de-

tailed documentation, provided for the benefit of the research community.

4. Proposes a load shifting technique to limit offloading low-latency applications

over WAN during cross-region clean energy harvesting by maintaining a static re-

source availability with CPU Simultaneous Multi-threading (SMT) (addresses the

Q3).

• An SMT pooling approach to maintain static CPU resources amidst dynamic

supply valleys and peaks of renewable energy sources.

• A VM scheduling algorithm to efficiently manage low-latency applications

alongside best-effort applications, limiting offloading scenarios of low-latency

applications over WAN.

• Practical implementation of the proposed SMT pooling approach and VM

scheduling algorithm.

• A practical testbed environment with OpenStack [33] and servers with Intel

Hyper-threading technology for evaluating the proposed load-shifting tech-

nique.

5. Proposes an aging-aware CPU core management technique for extended amortiza-

tion of embodied carbon in cloud Large Language Models (LLM) inference clusters

that are mostly concentrated on server CPU components (addresses the Q4).

• An investigation into embodied carbon analysis of inference servers and un-

covering CPU utilization patterns that provide better opportunities for car-

bon optimization.

• A technique for aging-aware CPU core management to increase CPU life and

achieve extended carbon amortization long-term.

• Extensions to a high-fidelity LLM cluster simulator from Microsoft, a hyper-

scale cloud provider, to model the role of the CPU and its hardware degrada-
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tion over time for evaluating proposed aging-aware CPU core management

technique.

• An open-source release of the extended simulator, accompanied by detailed

documentation, provided for the benefit of the research community.

1.5 Thesis Organization

The structure of this thesis is shown in Figure 1.4. The rest of this thesis is organized as

follows:

• Chapter 2 presents a taxonomy and literature review on the resource management

aspects of carbon efficiency in latency-sensitive cloud computing environments.

This chapter is derived from:

– Tharindu B. Hewage, Shashikant Ilager, Maria Rodriguez Read and Rajku-

mar Buyya, ”Carbon-aware Resource Management in Latency-Sensitive Cloud

Computing Environments: A Taxonomy and Review”, ACM Computing Sur-

veys (CSUR) [Submitted, May 2025].

• Chapter 3 presents a dynamic decentralized task scheduling algorithm to leverage

the provisioning flexibility of renewable energy sources for multi-objective opti-

mization of power overdraw and application latency performance management in

distributed Micro-Cloud deployments. This chapter is derived from:

– Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, Patricia Ar-

roba, and Rajkumar Buyya, ”DEMOTS: A Decentralized Task Scheduling Al-

gorithm for Micro-Clouds with Dynamic Power-Budgets,” Proceedings of the

16th IEEE International Conference on Cloud Computing (CLOUD), Pages: 418-

427, Chicago, IL, USA, July 2-8, 2023.

• Chapter 4 presents a framework to harness clean energy for real-time cloud sys-

tems with stringiest latency performance requirements and deterministic applica-

tion execution. This chapter is derived from:
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Figure 1.4: Thesis structure.
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– Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, and Rajkumar

Buyya, ”A Framework for Carbon-aware Real-Time Workload Management

in Clouds using Renewables-driven Cores”, IEEE Transactions on Computers,

early access, May 2025.

• Chapter 5 presents a load shifting technique to accommodate low-latency appli-

cations in multi-region cloud renewables harvesting via SMT core pooling. This

chapter is derived from:

– Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, and Rajkumar

Buyya, ”A Technique for Load Shifting Low-latency Applications in Multi-

Region Renewables Harvesting via SMT Core Pooling”, IEEE Transactions on

Power Systems [Submitted, May 2025].

• Chapter 6 presents an aging-aware CPU core management technique for extended

embodied carbon amortization in cloud-based large language model inference clus-

ters. This chapter is derived from:

– Tharindu B. Hewage, Shashikant Ilager, Maria Rodriguez Read, and Ra-

jkumar Buyya, ”Aging-aware CPU Core Management for Embodied Carbon

Amortization in Cloud LLM Inference”, Proceedings of the 16th ACM Interna-

tional Conference on Future and Sustainable Energy Systems (E-ENERGY), Rotter-

dam, Netherlands, June 17-20, 2025 [Accepted].

• Chapter 7 concludes the thesis by summarizing its findings and outlining potential

future research directions.



Chapter 2

A Taxonomy on Carbon-aware
Resource Management in
Latency-Sensitive Clouds

This chapter investigates the existing carbon-aware resource management techniques in latency-

sensitive cloud computing environments and proposes a taxonomy of elements that influence those

techniques under the holistic view of carbon-efficiency over both operational and embodied carbon

footprints. We explore workload management, control, environment, and latency SLO aspects in

operational carbon management and aspects of the cloud environment’s pre-deployment and post-

deployment stages in embodied carbon management. After an in-depth literature analysis, we con-

duct a comprehensive survey and analysis of existing techniques according to the proposed taxonomy.

Finally, we identify the gaps in the literature and propose directions for further improvement of car-

bon efficiency in latency-sensitive cloud computing environments.

2.1 Introduction

The primary difference between carbon-aware resource management for latency-sensitive

workloads and carbon optimization in traditional hyper-scale cloud environments is

the lack of flexibility in application workloads to compromise performance over carbon

efficiency. Cloud carbon optimization involves managing cloud environments, which

are complex cyber-physical systems of carbon-intensive stable energy sources, carbon-

This chapter is derived from:

• Tharindu B. Hewage, Shashikant Ilager, Maria Rodriguez Read and Rajkumar Buyya, ”Carbon-
aware Resource Management in Latency-Sensitive Cloud Computing Environments: A Taxonomy
and Review”, ACM Computing Surveys (CSUR) [Submitted, May 2025].
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efficient variable availability energy sources, IT assets that guarantee reliable and high

performance through carbon-intensive frequent component upgrades, and aging and

recycled IT assets with lower carbon intensity with degraded performance and reli-

ability. Carbon-aware resource management refers to the overall aspect of managing

the resource requirements of the application workload while optimizing for carbon effi-

ciency, emphasizing harmony between application workload performance and intrica-

cies of cloud environment elements. With the stringiest Service Level Objective (SLOs)

of latency-sensitive applications, carbon-aware resource management has fewer oppor-

tunities to compromise application workload performance, requiring the exploration of

complex application patterns intertwined with deployment architectures to uncover al-

ternative means of carbon optimization while meeting application SLOs. We identify

two significant aspects in that, which must be dealt with in a manner suitable for the

intricacies of latency-sensitive cloud environments.

• Operational Carbon Management: As cloud environments operate, their IT as-

sets consume electricity and produce heat as waste, which requires cooling sys-

tems to counter-balance the thermal energy. Energy consumption of IT assets

and cooling systems draws power from various energy sources, where the car-

bon intensity of the source can vary. The direct impact of the cloud environment

on carbon emissions of the energy source primarily defines its operational carbon

footprint. As the carbon intensity of the energy source reduces, their supply vari-

ability increases more often, thus challenging application workload performance.

Maintaining required application latency performance while maximizing the inte-

gration of low-carbon intensity energy sources requires efficient resource manage-

ment techniques.

• Embodied Carbon Management: Deploying, maintaining, and scaling physical

elements of cloud environments incur an indirect carbon cost associated with car-

bon emissions made during manufacturing, supplying, and recycling IT assets,

which are embodied in them. As the demand for latency-sensitive applications

increases, cloud environments must scale accordingly while maintaining the per-

formance of IT assets through frequent hardware refreshes, leading to the accu-
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mulation of embodied carbon. Providers must employ efficient resource man-

agement techniques to slow embodied carbon accumulation while maintaining

latency SLOs of application workloads by managing IT assets with heterogeneous

reliability and performance characteristics.

Next, we identify the challenges associated with carbon-aware resource manage-

ment techniques, which are significant in latency-sensitive workloads. We analyze the

stated challenges from the perspective of carbon footprint reduction and meeting latency

SLOs of end users.

• Diverse latency requirements of application workloads: Latency-sensitive appli-

cation workloads exhibit varying degrees of latency tolerance in their service level

agreements (SLOs). For instance, workloads may allow intermittent latency degra-

dations, which end-user applications can tolerate. However, that may not be possi-

ble for time-critical applications, where SLOs expect strict bounds on the response

time. Thus, these systems must apply carbon optimizations adapting to the ap-

plication latency requirements. Further, applications may exhibit different SLOs

within their components. Navigating through these complex latency requirements

in cloud environments is challenging, where impacting applications SLOs can in-

cur heavy penalties to the cloud operator.

• Variable-availability of carbon-efficient energy: Often, energy sources with lesser

carbon intensity are renewable sources with variable availability, such as solar and

wind. Compared to stable sources, such as nuclear energy with low carbon inten-

sity, variable availability renewable energy plants can be built and made opera-

tional with less cost and time. Additionally, energy capacity availability can spa-

tially vary in geographically distributed cloud environments, which are increas-

ingly prevailing due to the capabilities of low latency application execution near

end users. As a result, cloud environments are significantly challenged due to the

intermittent availability of low-carbon energy capacities in both space and time to

deliver consistent performance to meet application latency SLOs. Not integrating

intermittent energy sources could significantly increase the cloud environment’s
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carbon footprint, whereas the opposite must ensure that application performance

is intact.

• Intermittent performance degradations in inter-cloud networks: Cloud environ-

ments typically consist of hyper-scale data centers. A typical deployment pattern

for latency-sensitive cloud applications is to use networked data centers that are

geographically spread. These inter-cloud networks communicate through Wide

Area Networks (WAN), which can undergo intermittent traffic congestions, de-

grading the communication latency. Geo-spread availability of data centers en-

ables cloud operators to redirect workload execution to match the dynamic avail-

ability of low-carbon energy capacity during the day. However, WAN traffic con-

gestion challenges the opportunities to do so. Degraded network performance

could increase traffic redirection delay, violating application latency SLOs.

• Hard-constraints of resource allocation for latency performance: Specific latency-

sensitive applications require deterministic system performance to ensure critical

service delivery. For instance, real-time services must meet the hard bounds of

their response times. In order to do so, they demand cloud servers to be tuned for

high-performance and rigid allocation of computing resources, such as isolated

CPU cores for virtual machines and turning off power optimization features of the

CPU. As a result, the power management capabilities of the cloud environment are

limited, especially when integrating low-carbon renewable energy sources with

variable availability. Further, rigid resource allocations make redirecting work-

loads among sites with better carbon efficiency difficult due to limited placement

opportunities satisfying the same placement constraints.

• Resource-constrained cloud environments: In order to satisfy the low-latency serv-

ing of application services, some latency-sensitive workloads must be deployed

closer to users at the network’s edge. These are primarily metropolitan areas where

building new data centers can be expensive. A typical deployment pattern is to de-

ploy cloud servers in resource-constrained cloud environments, such as colocated

data centers, which allocate specific space and power budget limits to servers. In

return, the site’s capability to utilize low-carbon energy sources or headroom with
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low-carbon servers is limited. For the provider, efficient use of the sites to reduce

their carbon impact under resource-constrained environments becomes a complex

task.

• Degradation of IT assets: Due to strict performance requirements, low-latency ap-

plications may use underlying hardware in an unsustainable manner, leading to

premature degradations and carbon-costly frequency hardware replacements. For

the cloud operator, alleviating hardware degradation is paramount for both cost

and carbon. Since most hardware degradations are slow processes, understanding

application patterns that lead to degradations over time and uncovering opportu-

nities to optimize them while maintaining short-term application latency perfor-

mance can be challenging.

Both aspects of resource management identified above need to be addressed, consid-

ering the discussed challenges. Researchers have experimented with various techniques

to overcome these challenges and derive better system architectures, workload execu-

tion patterns, resource allocation techniques, and resource scheduling techniques. In

this chapter, we conduct an in-depth review of the existing literature and identify a clas-

sification of the aspects that influence their decisions. In the classification, we discuss

inherent challenges and concerns related to those aspects in the context of carbon opti-

mization for latency-sensitive application workloads.

Carbon optimization in cloud environments is determined by the features of the un-

derlying system and the characteristics of the workload latency SLOs. Similarly, our

classification comprises key design aspects of the systems, characteristics of the latency-

sensitive workloads that the infrastructure is designed for, and the goals of the resource

management. Further, using our proposed taxonomy, we summarize existing research

on operational and embodied carbon aspects, system architecture designs, and resource

scheduling techniques in executing latency-sensitive application workloads. Moreover,

we propose ideas for future work to advance resource management in this context.

Cloud operators would benefit from our classification by understanding the key fo-

cus areas of carbon optimization under latency-sensitive cloud environments and the

existing approaches that have already been evaluated. Researchers studying resource
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management techniques can refer to existing approaches and future work ideas, which

could subsequently form the basis for designing novel techniques. The classification

provides a holistic overview of existing and emerging literature for carbon optimization

in both embodied and operational carbon aspects.

The rest of the chapter is organized as follows. An overview of the existing surveys

and studies on carbon-aware resource management in latency-sensitive cloud environ-

ments is provided in Section 2.2. Section 2.3 presents the proposed taxonomy of re-

source management. Section 2.4 summarizes existing works on carbon-aware resource

management in latency-sensitive cloud environments based on the taxonomy. Finally,

Section 2.5 discusses the identified gaps in the literature, and Section 2.6 concludes this

chapter.

2.2 Related Surveys

Literature surveys investigate existing literature for an area of interest to understand

its current state of progress better. In that regard, many surveys study the carbon ef-

ficiency aspect of cloud environments. Preliminary surveys characterize carbon effi-

cient cloud computing as green cloud computing emphasizing integrating low-carbon

intensity renewable energy sources [34–36]. In that, they study diverse aspects of re-

source management, such as workload scheduling, power management, and electronic

waste management [34–36]. However, they model for generic abstractions of applica-

tion workloads, such as either batch or interactive workloads, and generic cloud data

centers with mostly the same hyper-scale data center system architectures designed for

those. In contrast, more recently, a branch of surveys can be seen, which study carbon

efficiency in cloud environments that are designed for emerging latency-sensitive work-

loads [37–44]. In their studies, application latency-specific requirement are studied, such

as low-latency streaming applications [37, 38] and Internet of Things (IoT) applications

[39–43]. Yet none of these studies consider the holistic view of carbon-aware resource

management under latency-sensitive application execution. They consider carbon effi-

ciency as one of many aspects of resource management and often overlook both opera-

tional and embodied carbon aspects. Given that power grids continue to decarbonize by
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integrating renewable energy sources, embodied carbon is more significant than ever. In

this chapter, we address emerging latency-sensitive cloud applications through a holis-

tic study of resource management techniques for both operational and embodied carbon

management.

2.3 The Taxonomy

At the topmost level, our taxonomy segregates carbon-aware resource management into

the two primary aspects that we identified: operational and embodied carbon manage-

ment. Operational carbon management comprises workload management, control ar-

chitecture, system tier, and latency tolerance. Embodied carbon management comprises

pre-deployment and post-deployment stages. Figure 2.1 illustrates the proposed taxon-

omy. In the following sections, we discuss each category in detail, referring to techniques

explored in literature so far.

2.3.1 Operational Carbon Management

Most works on carbon efficiency focus on reducing carbon emissions at the operational

level of the cloud environment. Here, the foundational approach is to utilize low-

carbon-intensive energy sources to power the IT assets. In doing so, resource man-

agement techniques are challenged by the variable availability of the renewable energy

sources present today, such as solar and wind. Operators opt for variable-availability

renewable energy plants due to the lesser cost and deployment times, in contrast to low-

carbon-intensive energy plants that provide relatively stable electricity generation. For

instance, nuclear and hydro plants capable of providing stable, low-carbon-intensive en-

ergy can take many years to finish construction, whereas a solar power plant can be de-

ployed in a few years. Adversely, cloud operators integrating renewable energy sources

must match supply dynamics with the data center power load, which is challenging

due to timing constraints of latency-sensitive workloads. For that, resource management

techniques must address the integrated management of application latency performance

and data center power load.
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Figure 2.1: The taxonomy of carbon-aware resource management in latency-sensitive cloud environments.
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This section identifies and briefly reviews their methods under the key resource man-

agement aspects of operational carbon management.

Workload Management

Workload execution yields dynamic power consumption patterns in cloud servers. In

clouds, workload execution is carried out in isolated environments from the cloud op-

erator due to privacy concerns, leaving the operator with high-level abstractions of run-

ning workloads. In return, the operator must utilize those abstractions to match the

server load to the dynamic availability of renewable energy sources. In the following

sections, we discuss prominent methods present in the literature in doing that, empha-

sizing how existing works leverage those for latency-sensitive workloads.

Admission Control and Placement: Distributed system architectures of cloud environ-

ments typically consist of multiple data centers or compute clusters that provide het-

erogeneous performances for latency and carbon efficiency. Therefore, cloud providers

have the opportunity to optimize carbon efficiency via the admission control or place-

ment decisions made upon the arrival of workloads. In that, workloads are scheduled

to execution sites, improving renewable energy utilization with minimum impact on the

latency performance.

Yuan et al. [45] study the problem of scheduling tasks among distributed green data

centers to meet their response time constraints. Data centers in their system model in-

tegrate on-site renewable energy and periodically relay energy metrics to a centralized

task scheduler, such as the electricity price of the power grid and the conversion rate of

wind and solar radiation to electricity. Users’ tasks arrive at the centralized scheduler

and are queued according to the application to which each task belongs. They propose

a task scheduling algorithm to split the queued tasks among distributed green data cen-

ters to minimize the combined energy cost of both power grid and renewable energy

while strictly meeting the task’s delay-bounded constraints. In contrast to centralized

task arrival, tasks can also arrive in each compute region. Chien et al. [46] design re-

quest direction algorithms to minimize the carbon cost of latency-sensitive generative

AI inference requests. Their system model consists of multiple compute regions with
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different carbon intensities. When a compute region receives a user request, it will be

directed to the region with minimum carbon intensity, where the placement decision

depends upon the calculated latency of both computation and round trip network time

for each compute region. Admission control and placement also fit well with workloads

with bounded response times, such as real-time services, because carbon efficiency can

be estimated prior to service deployment. Kaur et al. [47] investigate scheduling con-

tainers of real-time services in the edge-cloud continuum. They schedule containers

among Kubernetes clusters having on-site renewable energy integration. Their schedul-

ing algorithm encompasses carbon footprint minimization and constraints to maintain

the real-time performance of services, such as reducing network interference.

Load Shifting: Load shifting involves either suspending/resuming workloads (i.e., shift-

ing in time) or geographically migrating workloads (i.e. shifting in space). Both aim to

match the abundance of renewable energy, which varies based on time or location. Load

shifting with latency-sensitive workloads primarily leverages shifting in space to avoid

latency violation risks of suspending workloads. Shifting in space involves chasing re-

newable energy availability across geographical locations, in which the network latency

performance and scheduling overhead must be efficiently managed.

Sajid et al. [48] proposes connecting geographically distributed data centers with

high-performance networks and addressing scheduling overhead with a blockchain-

based decentralized approach. Sun et al. [49] leverage space shifting but use it as a

last resort to incur a minimum impact on workloads. In return, they achieve average

space shifting to 0.015 times per VM per hour, minimizing the associated latency over-

head. For workloads that allow a tolerable latency slack, Sukprasert et al. [50] conduct

space shifting within a subset of locations that incur latency impact within the tolerable

slack. Limiting the use of a subset of locations can reduce overall carbon efficiency. To

mitigate that, they demonstrate complementing existing workloads with shiftable batch

workloads. Murillo et al. [51] apply exploitation of tolerable latency slack in content

delivery networks (CDNs) and show that in CDNs, increasing the latency slack to 60ms

can lead to over 60% reduction of carbon emissions. To do so, they complement space

shifting with a second form of shifting, called capacity shifting, which moves CDN ca-

pacity to greener regions at a coarser time scale of days or weeks. Another opportu-
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nity is the workload portability present within applications. Gsteiger et al. [49] exploit

space-shifting opportunities within serverless applications. They leverage functions not

in the application workflow’s critical path and use them to perform space shifting. As

a result, end-to-end application latency is left intact. Space-shifting opportunities are

also present in specific application load-balancing scenarios. Souza et al. [52] exploit

space-shifting opportunities in distributed web services. They conduct dynamic server

provisioning and load balancing for dynamic carbon intensities and network latency

constraints across geo-distributed regions.

Throttling: Throttling is an in-place technique to dynamically adjust the server per-

formance without shifting the running load. Using throttling, the cloud operator can

degrade the servers’ performance to reduce its power draw, matching the variable avail-

ability of renewable energy. In return, servers take a prolonged time to execute workload

instructions, impacting workload service quality such as increasing the response latency

in latency-sensitive applications. Therefore, throttling must be carefully orchestrated so

that its impact on the application does not violate service level objectives (SLOs).

Li et al. [53] use a data center power delivery architecture that provides access to

both renewable energy sources and energy storage and propose a CPU hardware con-

troller called Chameleon. Chameleon switches between two modes of power manage-

ment in matching renewable energy dynamics: an energy mode that throttles server per-

formance using dynamic voltage and frequency scaling and a performance mode that

uses storage energy for power deficiencies. When applied, DVFS degrades CPU per-

formance, affecting running workloads. The authors employ a reinforcement learning-

based controlling mechanism to efficiently manage mode switching to mitigate that. Ja-

hanshahi et al. [54] propose a data center power shaping framework that leverages

throttling through DVFS to match the dynamics of renewable energy. They co-locate

latency-critical workloads and latency-tolerant complementary workloads. Then, CPU

cores are grouped into three categories: working, offset, and free. Latency-critical work-

loads are then pinned to working cores with minimal throttling possibilities, and the

remaining cores are allocated for complementary workloads. With that, they leverage

data center-level power shaping signals to manage core groups efficiently, balancing

throttling and workload performance.
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Sharma et al. [55] propose an application-independent power management mecha-

nism called Blink. Blink activates and deactivates servers to yield a duty cycle and, as

a result, can control the average power consumption of servers. Applications that can

leverage Blink architecture modify their design to adopt that. The duty cycle in Blink

throttles servers, which is specified through a blinking policy. Blinking policy balances

power management and application performance depending on the application. Ex-

periments with latency-sensitive applications such as Memcached show blinking can be

adopted with only a modest throttling overhead. Govindan et al. [56] experiment bat-

tery energy storage to utilize renewable energy and use application throttling to sustain

battery longevity via lesser frequent discharge cycles. In combining both, they aim to

balance between application throttling and premature battery failures. Agarwal et al.

[57] propose application throttling through host virtualization to match renewable en-

ergy variations. They dynamically change the number of physical cores mapped to vir-

tual machines while keeping the number of virtual cores intact. In return, application in-

terruptions are avoided, yet CPU performance can be throttled. Their approach applies

to applications that can tolerate a specific degree of degradation of latency performance.

Souza et al. [58] propose a virtualized data center-level energy system to allow appli-

cations to control the energy sources according to their workload patterns. In return,

applications can better adapt to renewable energy dynamics by exploiting application-

specific usage patterns. Here, applications are provided with APIs to throttle their ap-

plication containers through power capping to control their power draw, which is then

exercised to match their latency SLOs better.

Preemption: Isolated execution environments in clouds typically do not reveal under-

lying infrastructure dynamics to users. For example, a virtual machine’s Service Level

Objectives (SLOs) are to provide a dedicated and stable physical machine, regardless of

underlying resource allocation dynamics. Adversely, cloud operators lose the opportu-

nity to offload infrastructure dynamics to end users where applicable, such as absorbing

variable availability of renewable energy. However, recent cloud offerings, such as pre-

emptible VMs [59, 60], attempt to narrow that by providing virtual machines that reflect

infrastructure-level dynamics to users. Preemptible VMs unlock the opportunity to re-

lay variable availability of renewable energy to the application layer in specific latency-
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sensitive cloud environments, given that the application layer provides fault tolerance.

Preemption allows reducing server load upon loss of renewable energy capacity through

fault tolerance.

Sun et al. [49] leverage preemptive VMs to delay drawing power from the carbon-

intensive grids in geographically distributed networks of modular data centers integrat-

ing renewable energy. Their application layer allows users to define fault tolerance by

deploying both preemptive and regular VMs. In case of a loss of energy capacity, they

first attempt to reduce the data center power draw via VM migrations. If that is insuf-

ficient, they opt to shut down preemptive VMs to further reduce the data center power

draw rather than sourcing energy from the carbon-intensive power grid. In doing so,

an up-time threshold is maintained for preemptive VMs, and VM shutdowns are con-

ducted to adhere to that.

Control Architecture

Integrated management of workloads and variable availability of renewable energy

sources requires coordination between different resource management elements such as

workloads, data centers and servers, and power delivery. In that regard, there are two

prominent control architectures: centralized and decentralized. In this section, we dis-

cuss how related works apply their chosen control architecture, adhering to the latency

constraints of their cloud environment design.

Centralized: A centralized architecture enables a single point of control, providing an

ease of management to the cloud operator. For instance, it allows operators to monitor

the cloud environment and execute scheduling logic centrally, yielding its better main-

tenance, such as extending scheduling logic for future requirements. Further, system

elements such as servers and data centers in centralized control are synchronized by

design, eliminating the need to perform complex state transfers.

Yuan et al. [45] leverage centralized control to schedule tasks for applications repli-

cated across multiple data centers that integrate on-site renewable energy. They employ

per-application queues and execute scheduling logic to optimize green energy while

meeting delay-bound constraints. Jahanshahi et al. [54] design PowerMorph: a power
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reshaping framework to support frequency regulation requirements of the power grids

that can integrate renewable energy sources. PowerMorph reshapes the power con-

sumption of data centers that execute latency-critical applications. A critical challenge

in their design is that frequency regulation bids happen every hour, yet the data center

should follow the regulation signal every two seconds, where the latter does not pro-

vide enough opportunity to perform cluster-level optimization. To overcome that, they

offload it to the server level and utilize centralized control at the data center level to

conduct regulation provisions.

Sharma et al. [55] propose an application-independent centralized control plane that

manages cluster power. Through the APIs, latency-sensitive applications interact with

the control plane to regulate their power consumption through opportunities present

in specific application patterns. In return, the cluster can integrate renewable energy

sources while offloading load adjustment to applications. Govindan et al. [56] introduce

energy buffers using batteries to integrate renewable energy in data centers. They use a

centralized peak power budget enforcer component to leverage a hybrid approach com-

bining batteries and server throttling. The hybrid approach performs better in dynami-

cally adapting workload service level agreements, such as latency constraints. Sun et al.

[49] use a centralized VM scheduler to obtain the global perspective of a modular data

center network that integrates on-site renewable energy. It then uses that to find the best

fit for VMs to achieve optimized decisions across a mix of modular data centers, priority

VMs, and non-priority VMs. In return, the least interruptions are made with priority

VMs, such as VMs executing latency-sensitive workloads. Murillo et al. [51] conduct

load shifting in content delivery networks deployed on geographically distributed edge

data centers that integrate renewable energy. They implement a centralized manage-

ment component that provides an information service for weather and energy costs,

capacity, and demand. As a result, the central component makes informed decisions

about spatial load balancing and capacity shifting, considering trade-offs between la-

tency, carbon, and cost. Gsteiger et al. [61] leverage centralized carbon forecasting,

pricing, and transmission latency to offload serverless workflows across geo-distributed

regions with different carbon intensities. Through centralized management, they iden-

tify and deploy serverless functions that have the potential to offload while keeping
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latency-sensitive functions intact. Similarly, Souza et al. [52] conduct centralized carbon

forecasting, load balancing, and provisioning for distributed web services to minimize

emissions while reducing the latency caused by load balancing. Kaur et al. [47] facili-

tate real-time services across edge nodes integrating on-site renewable energy. In that, a

centralized controller runs scheduling logic to schedule applications to meet energy and

performance obligations.

Decentralized: In decentralized control, cloud environments achieve improved scalabil-

ity and autonomy of individual elements. Further, it eliminates single point of failures

in the system design. Nevertheless, decentralized control can introduce additional syn-

chronization overheads between individual system elements. As a result, decentralized

control is rarely applied in the literature. However, given that the carbon efficiency of

renewable energy sources improves as they spread spatially, decentralized control can

deliver scalable cloud environments that provide low-latency application performances,

while effectively utilizing geographically spread low-carbon intensive energy sources.

Sajid et al. [48] propose a blockchain-based decentralized workload distribution and

management model for geo-distributed data centers. It optimizes variability in renew-

able energy generation as a cost optimization problem and uses a blockchain model to

employ a decentralized control architecture. Their work is designed for low-latency net-

works. Nevertheless, their approach can increase both request scheduling times and

processing overheads, affecting application latency performances. To mitigate that, they

design their management technique to optimize for both. Li et al. [53] integrate re-

newable energy in a decentralized manner by allocating individual power budgets to

servers and introducing each with a power management microcontroller. In return, each

server aims to maximize renewable energy usage individually. Server performance,

such as workload latency, is maintained through the power profiles of the microcon-

troller, which switches between an energy-oriented profile or a performance profile to

maintain adequate workload performance while utilizing both renewable energy and

battery-stored energy. Agarwal et al. [62] similarly integrate renewable energy. They

drive the availability of CPU cores to match renewable energy availability individually

at the server level in a decentralized manner. They modify the virtualization layer to

efficiently manage dynamic CPU core availability so that virtual machines can continue
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executing, eliminating service interruptions.

System Tier

Carbon-aware resource management techniques can be applied at multiple system tiers

of the cloud environments. Given the diverse latency SLOs of latency-sensitive appli-

cations, each tier offers different optimization opportunities often specific to application

dynamics. In this section, we discuss relevant works in the literature that apply opera-

tional carbon optimization at various system tiers.

Server Level: Server-level integration of renewable energy commonly involves improv-

ing the power delivery architecture of the data center to supply a particular renewable

energy allocation to each server. Then, server-level workload management ensures the

server load adheres to the energy allocation. As a result, power management can be

conducted without migrating workloads between servers, eliminating associated tem-

porary service blackouts that impact application latency performance.

Li et al. [53] leverage server-level energy allocation and introduce a micro-controller

in each server to match the energy dynamics by throttling the server performance when

needed, given that the workload throughput constraints allow that. Otherwise, battery-

stored energy is used to match energy availability. Similarly, Agarwal et al. [62] use a

server-level renewable energy budget. They employ dynamic core availability for run-

ning workloads to throttle at the server level when needed. In return, workload migra-

tion and the associated interruptions are avoided.

Data Center Level: Data center-level integration of renewable energy allows resource

management techniques to absorb the variable availability of renewable energy by ad-

justing the power consumption of servers as a whole. In return, resource management

techniques can explore utilization patterns across the data center server to adjust its

power consumption while minimizing the application latency performance.

Sharma et al. [55] employ an application-independent power management frame-

work that allows defining policies to engage servers in the data center to yield a duty cy-

cle of activation and deactivation, thus reducing the average power draw of the data cen-

ter to match renewable energy availability. They demonstrate that specific distributed
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latency-sensitive applications integrated into the framework through their APIs can

adapt their application patterns to deliver acceptable performances. Govindan et al.

[56] apply energy buffers in the data center power delivery with UPS batteries to ab-

sorb renewable energy variations. They use server throttling at the data center level to

optimize battery life and application performance, such as workload latency. Souza et

al. [58] leverage data center-level renewable energy integration to provide virtualized

energy systems to applications. In return, individual applications executing in the data

center manage grid energy, renewable energy, and batteries through virtualization, em-

ploying application-specific carbon budgeting policies that allow meeting their latency

constraints.

Data center and Server Levels: Given application characteristics, integrated manage-

ment at both data center and server levels can yield better integration of renewable

energy. In that, server-level integration can enable workload management, avoiding

workload migrations, while data center-level management can complement that across

the servers.

Jahanshahi et al. [54] design a power reshaping framework for data centers catering

to energy capacity signals from the power grid, such as the varying capacity of renew-

able energy integration. They execute both latency-sensitive and complementary work-

loads in servers. Due to short intervals of power shaping and long intervals of power

biding with the grid, they employ server-level power management via workload throt-

tling and core allocation among latency-sensitive and complementary workloads while

conducting data center-level power biding at longer intervals.

Inter-cloud Level: Integrating renewable energy at the inter-cloud level allows renew-

able energy availability to be utilized in different geographical locations. Here, the chal-

lenging aspect is maintaining the application performance of latency-sensitive work-

loads over the communication overhead of the network that connects geographical lo-

cations. In that, resource management techniques aim to tackle the variable availability

of renewable energy by directing workloads to locations with sufficient energy avail-

ability while adhering to latency constraints.

Yuan et al. [45] conduct spatiotemporal task scheduling across geographically dis-

tributed green data centers. Their task scheduling problem applies a delay-bound con-
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straint to maintain workload latency performance, and scheduling algorithms are de-

signed to adhere to that. Sajid et al. [48] design their work for high-performance inter-

cloud networks. Hence, they optimize application latency performance by minimizing

both processing overhead and inter-cloud workload migration delays. Sun et al. [49] co-

locate complementary workloads with latency-sensitive workloads in geo-distributed

clouds, and aim to reduce the workload migration frequency of latency-sensitive work-

loads to minimize their latency impact. Sukprasert et al. [50] explore inter-cloud work-

load execution for latency-sensitive interactive workloads to harness renewable energy.

They migrate interactive workloads to greener locations if latency constraints allow

it. Murillo et al. [51] apply inter-cloud renewable energy harnessing to content deliv-

ery networks. They combine request latency-aware workload shifting with VM capac-

ity shifting while maximizing renewable energy utilization within latency boundaries.

Gsteiger et al. [61] utilize inter-cloud renewable energy availability for serverless appli-

cations. They segregate functions from serverless application workflows that can be of-

floaded without increasing end-to-end latency, and use that to utilize energy availability

across clouds. Souza et al. [52] harness renewable energy across clouds for distributed

web services. They provision resources based on carbon forecasting and conduct load

balancing across clouds within the latency constraints. Chien et al. [46] investigate inter-

cloud serving of generative AI requests. Directing requests to locations with minimum

carbon intensity shows that renewable energy can be utilized without significantly im-

pacting request latency. Kaur et al. [47] leverage a multi-cluster deployment across

different locations to execute real-time services. They propose a controller to utilize re-

newable energy across locations while maintaining adequate application performance.

Latency Tolerance

Application workloads in latency-sensitive cloud environments exhibit various service

level objectives (SLOs) in their latency performance. We classify them into two primary

categories: Low-latency and Bounded-latency. Low-latency applications can tolerate

latency performance degradations to a specific level, where resource management tech-

niques aim to improve their service quality by minimizing such degradations. Bounded-
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latency applications, such as real-time applications, have bounded latency responses.

For those, resource management techniques must strictly meet the response time bound-

aries. In this section, we discuss how relevant works achieve that in utilizing the variable-

available renewable energy sources.

Low-latency: Low latency applications that tolerate certain levels of latency degradation

provide better flexibility in adapting to performance optimization of variable-available

renewable energy integrations. As a result, most related works exploit that in two pri-

mary aspects: server performance throttling to match renewable energy availability and

workload migration across geographical locations for greener energy availability.

Li et al. [53] leverage dynamic throttling of server performance to engage an energy-

efficient power profile that harnesses renewable energy. They employ techniques to

dynamically switch between a high-performance power profile to minimize the im-

pact of workload latency from server performance throttling. Jahanshahi et al. [54] use

Dynamic Voltage Frequency Scaling (DVFS) to throttle CPU core performance, match-

ing renewable energy availability. They minimize latency increases for latency-critical

workloads by throttling cores allocated to complementary workloads first. Similarly,

Govindan et al. [56] use DVFS-based throttling to optimize between latency perfor-

mance and longevity of battery energy storage, and Agarwal et al. [62] use throttling

through shrinking CPU core availability to exploit latency performance for renewable

energy harnessing. Sharma et al. [55] use application-independent blinking of server

activation to match renewable energy availability, and offload optimizing latency per-

formance over throttling to the application. A similar approach can be seen with Souza

et al. [58], where a virtualized energy system allows applications to manage to throttle

their containers according to workload patterns while minimizing the latency perfor-

mance impact over variable availability of renewable energy.

Besides server performance throttling, many works exploit low latency for renew-

able harnessing across geographical locations. Sajid et al. [48] exploits latency flexibil-

ities in workloads with intermittent interruptions of workload availability to shift and

execute them in greener data centers. They propose an optimized scheduling approach

to minimize the interruption durations. A similar workload migration approach is used

by Sun et al. [49] for modular data centers. They prioritize migrating VMs with fewer
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VM states to reduce the impact of migration overhead on latency performance. Murillo

et al. [51] explore adjusting response latency time in content delivery networks to better

harness renewable energy across edge data centers. They show that increasing latency

within safe limits can reduce carbon emissions up to 35.5%. Gsteiger et al. [61] leverage

low latency in serverless applications for carbon optimization by segregating functions

in application workflows, and offloading those with lesser latency impact to greener

locations. Souza et al. [52] increase request latency in distributed web services for re-

newable energy harvesting across locations by combining load balancing and resource

provisioning. Chien et al. [46] apply renewable energy harnessing across geo-spread lo-

cations to serve generative AI requests, and show low-latency characteristics of requests

allow operating within safe limits.

Bounded-latency: Exploiting applications with bounded latency constraints for renew-

able energy integration is less common. This is due to the rigid nature of latency upper

bounds, which do not provide much room for resource management techniques to ab-

sorb renewable energy variations.

Yuan et al. [45] leverage a scheduling algorithm that strictly guarantees the task’s

delay-bound constraints while maximizing the usage of renewable energy across dis-

tributed green data centers. Kaur et al. [47] explore real-time services with well-defined

response time boundaries for harvesting renewable energy across Kubernetes clusters

with on-site renewable energy integration. They propose a controller to optimize green

energy utilization and performance impacts from application inferences in container

scheduling.

2.3.2 Embodied Carbon Management

Management of embodied carbon is broad, spanning across the lifecycle of IT assets. We

classify those into two primary stages: Pre-deployment and Post-deployment. We then

discuss related resource management techniques in planning, designing, managing, and

recycling IT assets in cloud environments, referring to the primary stages that we iden-

tified, while narrowing our focus for those considering the impact to application latency

performance.
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Pre-deployment

Since embodied carbon management is conducted through the management of IT assets,

the pre-deployment stage of cloud environments approaches that at the infrastructure

design. A well-designed infrastructure for carbon efficiency reduces the need to opti-

mize again once the infrastructure is available to execute workloads. Here, we focus on

two primary aspects: infrastructure design and low-carbon component use, emphasiz-

ing the latency performance of running workloads as a design goal.

Infrastructure Design: Cloud environments can exhibit heterogeneous designs depend-

ing on the workload performance requirements. Each design can offer specific oppor-

tunities to improve embodied carbon efficiency. Moreover, specific tools in estimating

embodied carbon footprints can lead to better designs. Finally, techniques that maintain

adequate application latency performance with a reduced hardware footprint can also

reduce the embodied carbon footprint.

Sun et al. [49] investigate geographically distributed data center networks capable of

serving low-latency workloads. They use modular data centers that integrate renewable

energy sources (rMDC) in their design. rMDC incurs a lesser embodied carbon footprint

than traditional data centers. Their work enables colocating rMDC with more stable en-

ergy sources, reducing the number of servers required to utilize peak energy spikes,

thus further reducing the embodied carbon. Ji et al. [63] design a carbon estimation

tool for servers with accelerators, such as GPU and FPGA, that serves latency-sensitive

workloads. They advance accurate embodied carbon estimation and enable operators to

derive improved carbon efficiency in their designs. Tannu et al. [64] explore embodied

carbon intensity in storage mediums. Their work provides insightful guidance on se-

lecting carbon-efficient storage mediums like HDD or SSD. SSDs provide better perfor-

mance for workload latency than HDDs, yet their embodied carbon efficiency can differ.

Therefore, carbon insights help operators make design decisions to balance workload

performance and embodied carbon efficiency. Gupta et al. [65] aim to shrink the overall

hardware footprint of the cloud environment using resource oversubscription, reduc-

ing underutilization and embodied carbon footprint. They design a dynamic system

to observe resource underutilization and present a dynamic resource leasing platform.

Through that, their system can execute latency-sensitive workloads with capacity avail-
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ability service level agreements (SLOs) over the oversubscribed infrastructure. Results

show that infrastructure shrinking as much as 25% is achievable.

Low-carbon Component Use: Opting for components with lower embodied carbon

footprints enables operators to optimize the carbon efficiency of their cloud environ-

ment design. However, the associated performance bottlenecks must be identified, and

suitable techniques must be employed to mitigate those.

Zhong et al. [66] propose a tiered memory system that reduces embodied carbon

footprint. Instead of local DRAM, they use a hardware-managed tiered memory system

for low-carbon CXL-based memory. Although the embodied carbon footprint of CXL is

lower, it can incur higher latencies than local DRAM. They introduce a software stack to

manage that. The combined hardware-managed tiering system and the software stack

provide memory performance closer to local DRAM.

Post-deployment

Once deployed, a cloud environment’s embodied carbon footprint can be optimized by

managing installed IT assets. Most works aim to extend an asset’s operating life or reuse

older components. At the post-deployment stage, the embodied carbon footprint is al-

ready acquired. Thus, extending the asset’s lifetime or reusing older components allows

operators to amortize the acquired carbon further. However, using aged components

can increase component failure risks in the cloud environment. Resource management

techniques must mitigate that by exploring opportunities in hardware-software settings

while maintaining adequate workload latency performances.

Lifetime Extension: Resource management techniques that optimize embodied carbon

footprint through the asset’s lifetime extension exploit resource usage patterns specific to

the hardware in focus. They manipulate resource usage patterns, and through that, they

improve asset longevity. The resulting lifetime extension allows for further amortization

of the asset’s embodied carbon footprint.

Zhao et al. [67] aims to reduce uneven core wear-off in multi-core CPUs from exe-

cuting workloads with core affinity, such as real-time workloads requiring deterministic

performance. In return, premature failures of specific cores can be avoided for extended
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CPU life. They provide a performance metric independent of CPU micro-architectural

characteristics to measure uneven CPU core usage, which can be used at the cloud re-

source management layer. Leveraging the proposed metric, the workload scheduler can

shift workloads between CPU cores based on the CPU stress. Wang et al. [68] employ

an aging-aware workload scheduler to maintain workload performance among servers

with heterogeneous aging characteristics. They identify older servers that could main-

tain sufficient performance under specific conditions, such as during low load times,

and use that knowledge in the workload scheduler. Tannu et al. [64] reduce SSD wear-

off in storage server fleets. They employ dynamic data redirection to locations with

lower write intensity, evens out SSD writing across the server fleet, reducing their aging

rate and allowing extended embodied carbon amortization. Similarly, Gupta et al. [69]

reduce the SSD aging rate by increasing over-provisioning in their cloud environment

setting to reduce the write amplification factor. McAllister et al. [70] exploit premature

failure risks in flash-based cache. Instead of a legacy logical block addressable device

interface, they propose fairyWREN, a flash cache designed for write read erase interface

(WREN). WREN allows application control over data placement and garbage collection,

which fairyWREN uses to reduce writes via caching policies. fairyWREN has a better

read latency at peak load, improving the latency-sensitive performance of workloads

and extending flash storage lifetime for improved embodied carbon amortization.

Component Reuse: Used components can be employed in data centers to reduce ac-

quired embodied carbon in newer components, given that the workload performance,

such as latency requirements, is maintained. Used components have already amortized

their initial embodied carbon footprint to a certain degree; thus, using them reduces the

overall embodied carbon footprint of the cloud environment.

Wang et al. [71] propose a framework to evaluate carbon savings at scale with used

components, such as used memory and SSD. It enables providers to evaluate the perfor-

mance at scale with used components, such as tail latency and low load latency. In re-

turn, operators can make an informed decision on using used components in their cloud

environment. Tannu et al. [64] propose re-purposing used flash devices. They focus on

Multi-level cell (MLC) devices, which store multiple bits within each cell, thus provid-

ing higher capacities. However, MLC can rapidly wear out compared to single-cell de-
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vices (SLC). The work proposes a strategy to transform used MLC into low-capacity SLC

devices, enabling a second life to amortize embodied carbon. Chien et al. [46] explore

embodied carbon optimization for the geo-distributed serving of low-latency generative

AI requests, where used servers provide headroom in each location. The work evaluates

the amount of headroom needed for effective carbon improvements. Gupta et al. [69]

explore reusing general-purpose hardware instead of employing specialized accelera-

tors. Their work shows a promising balance between component reuse and workload

performance.

2.4 Classification of Resource Management Techniques Using
Taxonomy

Table 2.1 and 2.2 review key works on carbon-aware resource management in latency-

sensitive cloud environments related to the proposed taxonomy, where Table 2.1 focus

on operational carbon management and Table 2.2 focus on embodied carbon manage-

ment. The works we present here propose novel resource management techniques ex-

ploring one or more resource management aspects that we have identified.
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Work Workload Management Control Environment Latency SLO

Load

Matching

Granularity Mixed
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System

Tier

Topology Application Tolerance Optimize
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Shifting,

Preemption

VM ✓ Centralized Inter-

Cloud

Networked

Clouds
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latency
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[51] Load

Shifting

Server

Load

- Centralized Inter-

Cloud

Networked
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CDNs Low-

latency

Response

Latency

[61] Load

Shifting

Function ✓ Centralized Inter-

Cloud
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Clouds

Serverless Low-

latency

End-to-

end

Latency

[52] Load

Shifting

Request - Centralized Inter-

Cloud

Networked

Clouds

Distributed

Web

Services
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latency

Response

Latency
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Gen. AI
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Latency

[48] Load

Shifting
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Cloud
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Migration

Latency
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[45] Admission

Control and

Placement

Task - Centralized Inter-

Cloud

Networked

Clouds

Green

DCs
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Latency
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Load
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level
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Response

Latency

Table 2.1: Classification of resource management techniques of operational carbon reduction.
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- - - Accelerators Accelerated

Computing
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[67] Workload

Scheduling

- - CPU Aging - CPU

Wear-off

Scheduling

Overhead

[68] Workload

Scheduling

- - Server Aging - Servers Age vs

Performance

[69] Over

Provisioning

- - SSD Aging General-

purpose

H/W for

Accelerators

Write
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Accelerators

Storage

Access,
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purpose
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- - Flash Device

Aging

- Storage Write
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Storage
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- - - Used

Components

Reusing at

Scale

Age vs
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[46] Workload

Scheduling

- - - Servers Data Center

Headroom

Age vs

Performance

Table 2.2: Classification of resource management techniques for embodied carbon reduction.
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2.5 Research Gaps

The in-depth review we conducted for carbon-aware resource management in latency-

sensitive cloud computing environments highlights open problems with great potential

for exploration. This section discusses those areas in detail, alongside the broader cate-

gories we have identified, for operational and embodied carbon efficiency. In return, we

lay the groundwork for research and development work for the future.

2.5.1 Cloud Environment Characteristics

Emerging low-latency applications such as the Internet of Things (IoT) execute in cloud

deployments that rent space and power with distributed resource-constrained environ-

ments such as colocation data centers. As tenants, clouds subscribe to limited power

budgets from the colocation provider, which may integrate on-site renewable energy in

its shared power delivery to improve carbon efficiency. As a result, tenant clouds are

challenged with better utilization of renewable energy through shared power delivery,

not just locally but across distributed deployments of similar clouds that provide vary-

ing renewable energy availabilities depending on the time of the day and the location.

Most low-carbon intensive renewable energy integration solutions for cloud envi-

ronments use data center-level allocation of renewable energy. Although that allows

management of workloads across servers or even between clouds to match the renew-

able energy capacity intermittencies, server-level or core-level renewable energy alloca-

tions can benefit applications with strict latency SLOs preventing workload migrations.

However, dynamic resource usage in clouds may allocate workloads unevenly across

servers, which may yield underutilization of renewable energy with server or core-level

energy allocations. Exploiting opportunities in resource management to improve such

is an interesting open problem.

Increasingly popular generative AI-based applications demand low-latency responses,

which require cloud servers with accelerators for faster model computation. Although

existing works segregating generative AI model computation workflows explore bet-

ter energy efficiency through older servers, exploring embodied carbon impact in that

has not been thoroughly exploited. For instance, defining latency SLOs for generative
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AI model inference requests can better inform the request scheduler to balance perfor-

mance and carbon efficiency among older and newer generation servers, allowing cloud

environments to deploy older generation servers or used servers to reduce their embod-

ied carbon footprint.

2.5.2 Application Characteristics and Latency SLOs

Cloud providers increasingly offer infrastructure-as-a-service (IaaS) solutions that reveal

application criticality to the cloud provider, such as evictable virtual machines. Lever-

aging such with application fault-tolerance for renewable energy intermittency is still

an open challenge. For example, IaaS can be utilized to deploy application-specific mid-

dleware solutions serving latency-sensitive workloads that can tolerate intermittent VM

failures. In that, exploiting application-specific latency service level objectives (SLOs) to

integrate renewable energy with VM evictability as a load-matching technique requires

novel resource management techniques.

Many renewable energy integration techniques for latency-sensitive cloud environ-

ments leverage low-latency applications. However, as the cloud paradigm continues to

penetrate a wide range of use cases, applications with bounded latency SLOs, such as

real-time services becomes significant in the operational carbon footprint of cloud com-

puting. Therefore, exploring potential opportunities to absorb the variable availability

of renewable energy sources with bounded latency applications becomes paramount in

reducing that.

Another aspect of bounded latency applications is that they often require servers

tuned to high-performance power profiles, which can yield server components to stress

over longer periods. As a result, server components can undergo premature failures,

forcing the cloud provider to engage in frequent server replacements and increasing the

cloud environment’s embodied carbon footprint. In this context, sustainable usage of

cloud resources while maintaining an adequate server performance to meet application

latency SLOs becomes critical in managing bounded latency applications.

Opportunities in server longevity for embodied carbon reduction can be seen in in-

creasingly prevailing generative AI inference clusters, which offload most of the compu-
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tation stress to accelerators such as GPUs. As a result, resource usage patterns in such

clusters can lead to underutilization of resources such as CPUs. Improving resource

management techniques to identify underutilization patterns and leverage that to re-

duce computation stress in server components can improve their longevity, leading to

amortizing embodied carbon over the improved lifetime.

2.5.3 Resource Management Approaches

Due to low-latency performance in executing applications at the network’s edge, geo-

graphically distributed cloud environments are becoming increasingly popular. Nev-

ertheless, carbon optimization in those deployments today mostly leverages central-

ized control, mainly for the ease of maintenance and management, yielding bottlenecks

such as limited scaling capabilities. As a solution, decentralized control can be imple-

mented. However, decentralized resource management requires efficient synchroniza-

tion between clouds with minimum latency overhead. Exploring application-specific

opportunities, such as executing with mixed latency SLOs of both low-latency and bounded

components, can lead to better implementation of decentralized control.

Computing models such as serverless computing allow the resource management

layer to make granular management decisions. For instance, instead of application-level

scheduling, the resource management layer can schedule functions that may collectively

conduct an application workflow. As a result, additional opportunities are available

to make granular changes to the server power draw, which can match intermittent re-

newable energy availability. Exploiting that for various renewable energy allocation

methods, such as server-level or core-level allocations, and various latency SLOs is an

interesting research problem.

Another aspect is the management of thermal load on server components to im-

prove its longevity. Inefficient resource usage patterns could stress server components

over time, creating thermal hotspots and leading to premature component failures. For

instance, uneven CPU stress of infrastructure tasks such as virtualization and workloads

tasks have been identified to create thermal hotspots in CPU cores. Further exploring

it for bounded latency applications that may incur similar stress due to their dedicated
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allocation of CPU cores and exploiting scheduling those with infrastructure tasks and

low-stress application tasks to improve CPU longevity for servers executing mixed la-

tency SLO applications can yield better management of their embodied carbon footprint.

2.6 Summary

In this chapter, we presented a detailed review of the aspect of carbon-aware resource

management, focusing on latency-sensitive cloud computing environments. We pro-

posed a taxonomy for a holistic view of carbon-aware resource management in both

operational and embodied carbon efficiency. We discussed both aspects of operational

and embodied carbon management and analyzed existing works using the taxonomy.

Our taxonomy presents an in-depth view of both operational and embodied carbon as-

pects for cloud operators to identify carbon optimization opportunities to meet their

short-term and long-term carbon efficiency goals. Further, it provides the groundwork

for researchers to understand existing works in carbon-aware resource management to

investigate and build upon their work. Finally, we provide a gap analysis highlighting

the identified challenges, emphasizing the great potential for future work.

This thesis explores and addresses some of the identified research gaps. Beyond that,

we further outline potential new research directions in the last chapter.





Chapter 3

Decentralized Task Scheduling for
Micro-Clouds Integrating Renewables

Emerging latency-critical Internet of Things (IoT) applications increasingly utilize geographi-

cally distributed lightweight Micro-Clouds to alleviate network overheads from Wide Area Network

(WAN) traffic congestion. These Micro-Clouds often lease infrastructure resources from Colocation

data center providers to reduce deployment costs. This chapter focuses on power budget constraints

imposed by Colocation providers on the tenant Micro-Clouds, emphasizing utilizing the provision-

ing flexibility of renewable energy sources to mitigate the application latency performance impact

involved. We propose a dynamic power budget for Micro-Clouds using on-site renewables and a

decentralized task scheduling algorithm to effectively utilize that across geographical locations. The

proposed approach aims to reduce the Colocation provider’s power constraint violations by schedul-

ing over dynamic WAN performance and renewable energy availability. We implement and evaluate

our approach in a simulated environment. The proposed approach, when compared with state-of-

the-art scheduling techniques, can reduce power overdraw impact up to 19%, task latency increase

impact up to 47%, and task schedule time impact up to 49%.

3.1 Introduction

The growing use of latency-critical applications in Micro-Clouds, driven by the Inter-

net of Things (IoT), is expected to result in substantial energy demand. Micro-Clouds

decentralize traditional hyper-scale clouds by dispersing computational capacity over a

This chapter is derived from:

• Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, Patricia Arroba, and Rajkumar Buyya,
”DEMOTS: A Decentralized Task Scheduling Algorithm for Micro-Clouds with Dynamic Power-
Budgets,” Proceedings of the 16th IEEE International Conference on Cloud Computing (CLOUD), Pages:
418-427, Chicago, IL, USA, July 2-8, 2023.
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large number of lightweight data centers deployed at the network’s edge [30, 31]. This

approach exploits lower communication latency, making them ideal for IoT applica-

tions. Compared to traditional hyper-scale clouds, Micro-Clouds have a smaller energy

footprint, resulting in smaller power ratings (less than three orders of magnitude than

a traditional hyper-scale cloud [30]). However, due to the predicted fast growth rate,

Micro-Clouds are expected to consume a similar amount of energy as traditional hyper-

scale clouds by 2028 [72, 73].

Due to their lightweight nature, Micro-Clouds offer flexibility in cost-effective de-

ployments. In this regard, deploying Micro-Clouds as tenants in multi-tenant Coloca-

tion data centers (hereby used as Colocation data centers) is widely adopted. For ex-

ample, the data center operator Vapor IO plans to build thousands of edge Colocation

data centers, which are a type of Colocation data centers hosting latency-critical IoT

workloads [74]. In a Colocation data center, the data center operator manages the data

center facility and physical power/cooling infrastructures, and leases them to service

providers (i.e. tenants) as a shared space. The service providers deploy Micro-Clouds

on the leased resources. In this approach they only have to manage physical servers,

thereby significantly reducing maintenance costs [74].

Keeping up with the rapid growth of Micro-Clouds is expensive for data center op-

erators due to significant costs in building new data centers [75]. Because of that, data

center operators exploit utilizing existing resources. Typically, additional physical space

is already available in data centers. Therefore, the data center operators focus on em-

ploying server-level recovery mechanisms to oversubscribe its power infrastructure by

provisioning additional servers. This technique is known as power oversubscription

and it is a common approach used by data centers [74, 75].

In Colocation data centers, the data center operator cannot employ power oversub-

scription via server-level recovery mechanisms. This is because the Colocation data cen-

ter provider does not have control over the servers that are managed by tenants. To

overcome this challenge, the data center operator implements a reduced soft power bud-

get in the tenant’s subscribed power. The difference between the soft power budget and

the subscribed power capacity is then used to provision additional servers [74]. For ex-

ample, in the case of a Micro-Cloud deployment as a tenant in a Colocation data center,
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the Micro-Cloud operates under a reduced soft power budget, such as 90% of the orig-

inally subscribed power. The remaining 10% of the power capacity contributes to the

provision of additional servers.

However, operating under a soft power budget can result in Micro-Clouds having to

resort to extreme power reduction measures such as power capping and workload throt-

tling. Especially, when the rare power peaks exceed the available power budget (i.e.

power overdraw events) [76]. This can have a detrimental impact on the performance of

latency-critical workloads. Therefore, balancing between the power oversubscription

techniques and the optimal workload performance is an ongoing challenge [75].

In this regard, our work aims to improve workload performance by minimizing

power overdraw events. As a result, the need to employ extreme power recovery tech-

niques is also minimized. One way to achieve this is increasing the soft power budget

by combining additional energy. But drawing this additional energy from the power

grid is not feasible because the power grids feeding energy to Colocation data centers

are already stressed [77]. On the other hand, Colocation data centers already procure

onsite renewable energy [78]. Therefore, drawing additional energy from on-site re-

newable sources is a viable option. The next challenge in this approach is combining

additional energy with the soft power budget in a cost-effective manner. Such that expen-

sive upgrades in the tenant power delivery system are minimized. When we consider

an existing tenant in a Colocation data center, this tenant subscribes to a certain amount

of power. This subscribed power is delivered to the Micro-Cloud via a Power Delivery

Unit (PDU) with a sufficient power capacity. When soft power budget is implemented, a

portion of the PDU power capacity is left unused (e.g., for soft power budget equivalent to

90% of the subscribed power, a 10% in the PDU capacity is left unused). We identify that

this underutilized PDU capacity can be used to combine additional energy with the soft

power budget, thus avoiding expensive PDU upgrades. Therefore, we propose the addi-

tion of renewable power to the soft power budget, thereby creating a dynamic power budget

for Micro-Clouds. The dynamic power budget increases the soft power budget, thereby min-

imising power overdraw events and the need for extreme power reduction measures. This

improves workload performance under power oversubscription techniques being ap-

plied. An example of this approach is illustrated in Figure 3.1.
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Figure 3.1: Dynamic power budget for the Micro-Clouds.

Furthermore, the dynamic power budget can be implemented across a geographically

distributed network of Micro-Clouds deployed with Colocation data centers. In such a

scenario, excess power in the dynamic power budget is highly likely to be available in one

or more Micro-Clouds at a given time due to the intermittent nature of the renewable

energy across different time zones. This motivates us to avoid employing extreme power

reduction measures entirely, by offloading tasks to another Micro-Cloud with available

power in its dynamic power budget. Concretely, if a Micro-Cloud is about to undergo a

power overdraw event, its energy consumption can be reduced below its power budget by

offloading a portion of its tasks to other Micro-Clouds that have available power in their

dynamic power budgets. The feasibility of this approach is shown in Fig. 3.2 in which, the

dynamic power budget is compared across three time zones. We observe that when a power

overdrawn event occurs at one location, one or more of the other locations have available

power in their dynamic power budget.

When tasks are offloaded across Micro-Clouds, it is carried out via dynamic task

scheduling. Dynamic task scheduling allows for real-time adaptation to changes in the

system, albeit at the cost of additional computational overhead, which can be minimized

through lightweight computation approaches. Moreover, it is crucial to perform dy-
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Figure 3.2: Micro-Clouds with dynamic power budgets across different time zones (Cap-
tured against Azure workload traces [2] and solar energy via the PVGIS tool [3] over 5.5 hours
of workload execution).

namic task scheduling in a decentralized manner. Otherwise, substantial round-trip

communication times can lead to delayed scheduling decisions. A few studies such

as Multi-Criteria Optimal Placement (MCOP) [79] and lightweight service placement

heuristic [80] have explored decentralized dynamic task scheduling in Micro-Cloud net-

works. They focus on multi-criteria optimization, such as node availability and the

number of connections. But they do not consider the potential bottlenecks in inter-

Micro-Cloud communication. Micro-Clouds are usually interconnected via Wide Area

Networks (WAN). WAN can undergo severe traffic congestion, in which its tail latency

can be worsened up to 2.5x [81]. Since Micro-Clouds frequently communicate with each

other during decentralized task scheduling, dynamic WAN traffic congestion becomes a

severe bottleneck to it. Additionally, these studies do not consider the energy optimiza-

tion of Micro-Clouds. Consequently, we address these bottlenecks taken into account

during scheduling decisions.

We propose an approach to realize a dynamic power budget in a Micro-Cloud, and

a novel task scheduling algorithm called DEMOTS: Decentralized Multi-criteria Opti-

mization Task Scheduling to harness dynamic power budget across a network of Micro-

Clouds. DEMOTS utilizes a decentralized approach to schedule tasks while tolerating
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dynamic WAN traffic congestion. DEMOTS outperforms state-of-the-art scheduling al-

gorithms by up to 19% gain in reducing power overdraw impact, up to 47% gain in

reducing task latency increase impact, and up to 49% gain in reducing task schedule

time impact, across various tuning levels. In summary, the key contributions of our

work are:

• An approach to realize a dynamic power budget for Micro-Clouds deployed in Colo-

cation data centers.

• A system model and performance metrics to measure the impact of power overdraw

events on Micro-Clouds, and the impact of dynamic task scheduling on latency-

critical IoT tasks.

• A formal definition of decentralized task scheduling with dynamic power budgets,

and formulation of the multi-objective problem.

• A novel dynamic decentralized task scheduling algorithm (DEMOTS) to solve the

multi-objective problem by utilizing the dynamic power budget under realistic WAN

traffic congestions.

• Extensive experiments and analysis of results comparing with the state-of-the-art

algorithms demonstrating the superiority of DEMOTS.

The rest of the chapter is organized as follows. In Section 3.2 we discuss the re-

lated literature. Section 3.3 provides the system model and its essential components.

In Section 3.4 we present our proposed DEMOTS algorithm. Section 3.5 describes the

performance evaluation and experimental results. Finally, Section 3.6 summarises the

chapter.

3.2 Related Work

Most existing approaches for dynamic task scheduling in multi-cloud networks, which

are distributed geographically, focus on centralized renewable energy harnessing. Yuan

et al. [45] focus on scheduling delay-tolerant applications in a centralized manner, while
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Table 3.1: A comparison of related task scheduling algorithms.

Work Geo-
Distributed

Dynamic Decentralized WAN Traffic Task
Latency

Tarneberg et
al. [73]

✓

Sharma and
Rao [82]

✓ ✓

Zhao et al. [72] ✓ ✓

Yuan et al. [45] ✓ ✓ ✓

Sajid et al. [48] ✓ ✓ ✓

Selimi et al.
[80]

✓ ✓ ✓

Panadero et al.
[79]

✓ ✓ ✓

Our Proposed ✓ ✓ ✓ ✓ ✓

strictly meeting delay-bounded constraints, and taking into account the spatial and tem-

poral variations of both grid and renewable energy. Sharma and Rao [82] propose a cen-

tralized scheduler that aims to optimize the percentage of renewable energy used. They

identify a trade-off between average task waiting time and the percentage of renewable

energy and suggest a method to improve the renewable energy percentage in geograph-

ically distributed multi-clouds. Zhao et al. [72] present a more recent approach that

uses centralized deep reinforcement learning to utilize renewable energy in geographi-

cally distributed multi-clouds. Similarly, Tarneberg et al. [73] use a dynamic application

placement technique to achieve the optimal placement of applications in mobile multi-

cloud networks. However, this approach is not purely decentralized, and it is not capa-

ble of performing prioritized scheduling of specific criteria such as latency or power.

In contrast with centralized approaches, some recent works have explored decentral-

ized approaches. Sajid et al. [48] use blockchain technology to implement a decentral-

ized scheduling mechanism for energy management across geographically distributed

multi-clouds. The use of renewable energy is managed through the blockchain network.

Selimi et al. [80] employ a lightweight service placement heuristic that schedules tasks
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in community networks with dynamic network bandwidth and node availability. How-

ever, it requires the decision of a clustering parameter for optimum performance, which

can be difficult in growing Micro-Clouds. To address this issue, Panadero et al. [79] pro-

pose the Multi-criteria Optimum Placement (MCOP) algorithm, which automatically

handles the clustering issue. However, none of the approaches described above takes

into account the impact on latency-critical tasks, as well as the impact of realistic WAN

traffic congestion levels during their scheduling decisions.

Table 3.1 summarizes the related work compared to the proposed approach. The

majority of the reviewed approaches use centralized scheduling, which becomes a bot-

tleneck for geographically distributed Micro-Cloud networks due to increased commu-

nication delays over WAN. Decentralized scheduling approaches provide an advantage,

but none of them considers realistic WAN traffic congestion levels, energy optimizations,

and the impact of scheduling decisions on the reliability of latency-critical IoT applica-

tions. The proposed approach aims to address these identified gaps.

3.3 System Model and Problem Formulation

3.3.1 System Model

The proposed system architecture model, shown in Figure 3.3, is a geographically dis-

tributed, decentralized, and homogeneous network of Micro-Clouds. The network la-

tency between Micro-Clouds can change due to WAN traffic congestion. Each Micro-

Cloud leases power infrastructure and physical space from a Colocation data center

provider. The provider employs the proposed approach to provide a dynamic power bud-

get for Micro-Clouds. Users submit latency-critical IoT tasks dynamically to the closest

Micro-Cloud. A decentralized task scheduler in each Micro-Cloud dynamically sched-

ules tasks among the Micro-Clouds to avoid power overdraw events. The following sub-

sections describe different models and performance metrics we use.
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Figure 3.3: System architecture of the geographically distributed network of Micro-
Clouds.

Workload Model

We use a location-aware, utilization-based workload model where the workloads are

submitted dynamically to Micro-Clouds based on the local time and following a daily

trend. The set of tasks that were submitted and executed by all the Micro-Clouds during

the time period t = 0 to t = TMAX are denoted by Ω,

Ω = {t1, ..., tM}

where M is the total number of tasks.

Power Consumption Model

Micro-Cloud power consumption is primarily determined by the power consumption

of computing elements (i.e. power consumption of the Information Technology (IT) sys-

tems), and power overhead not used for computing (mostly used for cooling systems)

[83]. Using the Power Usage Effectiveness (PUE) [84] metric, a linear relationship can be

derived between the IT power and the overhead power [85].

Poverhead = (PUE− 1)× PIT (3.1)
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where PIT is the IT power, Poverhead is the power overhead, and PUE is a constant value.

Due to this, we model power consumption just considering PIT. For each Micro-Cloud

PIT is introduced as Pci(t) (dynamic IT power consumption of ith Micro-Cloud) using

a host power consumption model. Our model is based on the CPU utilization level, as

this resource represents the main contribution to the host power consumption [86].

Pci(t) =
hosts∈ithMicro-Cloud

∑
j

Pwj(Uj(t)) (3.2)

where Pci(t) is the power consumption of the ith Micro-Cloud and for the jth host in that

Micro-Cloud, the Pwj is the power consumption model, and Uj(t) is the CPU utilization

at tth time.

Dynamic Power Budget Model

To model the dynamic power budget, we combine the soft power budget (Pspbi
) and the in-

termittent renewable power provided by the Colocation data center provider (Prpi
(t)).

Pbi(t) = Pspbi
+ Prpi

(t) (3.3)

where Pbi(t) is the dynamic power budget of the ith Micro-Cloud at the time t.

Power Overdraw Model

We model the power overdraw as the amount of the power consumption exceeding the

Pbi(t) at tth time.

Podi(t) =

Pci(t)− Pbi(t) if Pci(t) > Pbi(t)

0 otherwise
(3.4)

where Podi(t) is the power overdraw amount at the time t.
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Performance Metrics

The following performance metrics are calculated for all Micro-Clouds in the network

during the time period t = 0 to t = TMAX.

• Power Overdraw Impact (POI): Measures magnitude and the time spent during power

overdraw events.

POI =
N

∑
i=1

∫ t=TMAX

t=0
Podi(t) dt (3.5)

• Task Schedule Time Impact (TSI): Measures the amount of time that tasks were blacked

out during the dynamic scheduling.

TSI = ∑
tk∈Ω

TSTtk
(3.6)

where TSTtk
is the time spent by the task tk during inter-Micro-Clouds scheduling.

• Task Latency Increase Impact (LI): Measures the increased end-user communication

latency and the amount of time spent with that.

LI = ∑
tk∈Ω

∑
i∈N

Ltki × Ttki (3.7)

where Ltki is the latency increase between the originating Micro-Cloud of the task

tk, and the ith Micro-Cloud. Ttki is the time it spent in the ith Micro-Cloud.

3.3.2 Problem formulation

The overall objective of our problem is to minimize Power Overdraw Impact (POI), but

in doing so, also try to minimize both Task Schedule Time Impact (TSI) and Task Latency

Increase Impact (LI).
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3.4 DEMOTS - Decentralized Multi-criteria Optimization Task
Scheduling

We present our proposed DEMOTS approach, which is a decentralized algorithm that

dynamically schedules tasks and adapts to traffic congestion levels in the inter-Micro-

Cloud network. It runs in each Micro-Cloud.

DEMOTS continuously monitor for potential power overdraw events of the Micro-

Cloud via the Power Overdraw Model (Podi(t)) defined in eq. 3.4. It tries to offload

a batch of low-priority tasks to bring down the power consumption of the Micro-Cloud.

For each task in the batch, it broadcasts a task offload request across the WAN and waits

for responses within a fixed window of time using a time-out. Based on the responses

received, the lexicographic method is used to filter and select a destination Micro-Cloud

for each task. The selection is based on three optimization criteria designed to mini-

mize Power Overdraw Impact (POI), Task Schedule Time Impact (TSI), and Task Latency

Increase Impact ( LI). Finally, the tasks are offloaded to the destination Micro-Clouds.

Overall, DEMOTS propose three novel optimization criteria to minimize POI , TSI ,

LI , and a novel decentralized approach to offload tasks over WAN with dynamic traffic

congestion levels.

3.4.1 Optimization Criteria

The following three optimization criteria are proposed for selecting a destination Micro-

Cloud to offload the task tk.

Minimize POI

Prioritizing Micro-Clouds with sufficiently available Pbi(t) would minimize the POI . We

propose the Power Reliability (Pri) metric to measure the sufficiently available Pbi(t).

Pri(t) = P([Pbi(t)− Pci(t)] > Pci
MAX

tk
) (3.8)

Where Pci
MAX

tk
is the maximum amount of power that the task tk would consume at

the ith Micro-Cloud. We then estimate Pci(t) with its rolling average value, denoted as
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Figure 3.4: Calculating power reliability (Pri) of the ith candidate Micro-Cloud.

Pcavgi .

Pri(t) = P([Pbi(t)− Pcavgi ] > Pci
MAX

tk
)

Pri(t) = P(Pbi(t) > (Pci
MAX

tk
+ Pcavgi))

Define k = Pci
MAX

tk
+ Pcavgi . Then,

Pri = P(Pbi(t) > k)

where k is a positive constant. This simplifies Pri to the cumulative sum of the proba-

bility density function (PDF) of the Micro-Cloud’s Pbi(t) as illustrated in Fig. 3.4. We

estimate this PDF using historical data for each Micro-Cloud to calculate the Pri. Thus,

the first optimization criterion is to select the candidate Micro-Cloud maximizing Pri.

Criterion 1 : arg max
i

(Pri) (3.9)

Minimize TSI

Prioritizing Micro-Clouds with sufficient processing capability would ensure immedi-

ate task deployment, thus optimizing the TSI . We propose the Redundant Processing

Capacity metric of the ith candidate Micro-Cloud (Rpci ) to measure sufficient processing
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Table 3.2: Description of symbols for DEMOTS task scheduling algorithm.

Symbol Description

N Number of Micro-Clouds in the inter Micro-Clouds network.

TMAX Time duration.

Ω Set of tasks that were executed during TMAX.

γ Sensitivity of the dynamic task schedule initiation. A higher value
leads to aggressive task offloading.

θ Batch size of the low-priority tasks. A higher value initiates a
larger number of task offload requests.

capability.

Rpci =
CPEi(t)− TPEtk

TPEtk

(3.10)

In which,

• CPEi(t) = Available processing elements count in the ith candidate Micro-Cloud at time t

• TPEtk
= Minimum required processing elements for task tk

Thus, the second optimization criterion is to select the candidate Micro-Cloud maxi-

mizing Rpci .

Criterion 2 : arg max
i

(Rpci) (3.11)

Minimize LI

Prioritizing Micro-Clouds having the minimum increase in end-user communication la-

tency would optimize the LI . Thus, the third optimization criterion is to select the candi-

date Micro-Cloud minimizing the increase in end-user communication latency (Lincreasei ).

Criterion 3 : arg min
i
(Lincreasei) (3.12)
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Algorithm 1 Initiate.
Input: Pbi(t), Pci(t)
Output: Task Schedules

1: while each-refresh-interval do
2: Pratio(t)← Pbi(t)−Pci(t)

Pbi(t)
3: if Pratio(t) ≤ γ then
4: Tlp(t)← getLowPriorityTasks(θ)
5: while tk ← Tlp(t) do
6: broadcast(tk)
7: scheduleDispatch(tk)

Algorithm 2 Respond.
Input: Rqtk : Offload request for tk
Output: Response

1: Lincreasei ← getLatency(Rqtk)
2: CPEi ← getPCM(Rqtk)
3: Pri ← getPR(Rqtk)
4: replyBack

(
Lincreasei , CPEi , Pri

)
3.4.2 Decentralized Tasks Offloading over WAN

DEMOTS tasks offloading has three stages; Initiate: Broadcasts task offload requests

of low-priority tasks, Respond: Responds to the task offload requests, and Dispatch:

Selects the destination Micro-Cloud using three optimization criteria and offloads the

task.

• Initiate: A Micro-Cloud periodically calculates its available power percentage

relative to the Dynamic Power Budget (Pbi(t)). If the available power percentage

is below the threshold set by the tuning parameter γ ∈ {0, 1}, the Micro-Cloud se-

lects a batch of low-priority tasks, where the batch size is set by the tuning param-

eter θ ∈ {0, 1}. Since the scheduler does not have information about the priority

level of the tasks, resource usage is used as an estimator of the priority, where high

resource usage means high priority. For each task in the batch, the Micro-Cloud

broadcasts a task offload request over the WAN, and a timeout is set to wait for

responses. Due to WAN traffic congestion, obtaining responses from all available

Micro-Clouds within a reasonable time cannot be guaranteed, thereby the time-
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out ensures a reasonable reaction time to power overdraw events. Upon meeting

the time-out, a Dispatch stage is scheduled for each task offload request. This

process is outlined in Algorithm 1.

• Respond: Upon receiving a task offload request from another Micro-Cloud, a

Micro-Cloud responds with the necessary information that is needed to compute

three optimization criteria for the offloading task. This process is outlined in Al-

gorithm 2, in which the processing capacity metric CPEi(t) is calculated by the

sub-routine getPCM, and Power Reliability (Pri) is calculated by the sub-routine

getPR.

• Dispatch: When the time-out is reached for a task offload request, the destina-

tion Micro-Cloud is chosen by evaluating three criteria using the lexicographic

method. The most significant criterion is Criterion 1, which ensures that Dynamic

Power Budget (Pbi(t)) is available. A subset of responses is filtered based on this

criterion. Then, this subset is further filtered based on Criteria 2 and 3 to isolate a

single response, which is selected as the destination Micro-Cloud. The task is then

offloaded to this destination Micro-Cloud.

3.5 Performance Evaluation

In this section, we describe our experimental setup and demonstrate the effectiveness of

DEMOTS algorithm by analyzing the results and comparing them with baselines.

3.5.1 Experimental Setup

We evaluate our proposed solution in a simulated environment using the CloudSim

toolkit [87]. We use real-world workload traces for generating application workload.

We also configure other relevant parameters from real-world traces and models such as

network latency data, power models, and solar energy traces.

We extend the Datacenter class of CloudSim toolkit to implement a power budget-

aware Micro-Cloud component and further extend the Host class to implement power-
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aware hosts. Each host utilizes an extended PowerModel class to model the physical

server that we use. We implement new Power Source classes and embed them into the

extended Datacenter class to manage renewable energy through solar energy traces. The

utilization of each VM and its associated workload is implemented using the extended

Vm and Cloudlet classes of the CloudSim toolkit. To manage resource utilization data in

the workload trace, we employ an extended Cloudlet Scheduler class. The inter-Micro-

Cloud network is managed using the default implementation of the Network Topology

class in the CloudSim toolkit, and network latency data is handled accordingly.

Micro-Cloud Design: We design a Micro-Cloud as a tenant residing in a Colocation

data center which occupies a full dedicated server rack [74]. We select the rack size as

42U, based on modern mixed-energy Micro-Clouds designs [88]. We consider a rack that

has 21 Fujitsu RX300 S6 XeonE5620 servers, each occupying 2U. We use a power model

developed specifically for the selected server type [89]. The peak power consumption of

this server rack is 3.9 kW.

Dynamic Power Budget Implementation: We implement our proposed dynamic power

budget approach for the Micro-Cloud. We set the soft power budget imposed by the data

center operator at 90% of the Micro-Cloud’s subscribed power (which is 3.9 kW, the peak

power consumption in our Micro-Cloud design). Therefore, we provision a solar panel

providing 265 W peak power [88], to accommodate the remaining 10% of that. The so-

lar energy is simulated using the real traces obtained from the European Commission’s

Photovoltaic Geographic Information System (PVGIS) [3], per each geographical loca-

tion.

Dynamic Workload Submission: We utilize the Microsoft Azure public VM work-

load traces from the year 2019 [2]. It represents one of the most recent publicly avail-

able production VM workload traces [90], and exhibits a dynamic workload submission

trend. We shift that trend based on the local time zone, such that the workload submis-

sion trend is location-aware.

Experiment Scenario: We employ a geographically distributed Micro-Clouds net-

work. Each of the Micro-Cloud in the network is deployed in a Colocation data center

as a tenant. The Colocation data centers are located in dispersed geographical locations,

such that they are in different time zones from each other. The geographical locations
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are configured based on AWS data center regions. While AWS regions are hyper-scale

clouds, we assume our Micro-Clouds exist in similar locations inside colocated facilities

to reflect the realistic scenarios, such as the presence of Micro-Clouds across time zones

and geographically closer to application users. We use nine different AWS regions con-

nected over a WAN, and the real average inter-region communication latency values

[91]. In order to simulate the effects of WAN traffic congestion, we scale WAN commu-

nication latency from its average values, up to the worst-case upper bound, which is

2.5x [81].

3.5.2 Baseline Algorithms

We consider approaches suitable for Micro-Cloud networks and avoid comparisons with

centralized scheduling approaches that can lead to significantly delayed scheduling de-

cisions due to WAN traffic congestion. Therefore, we compare our DEMOTS approach

with the following two decentralized scheduling methods.

• Nearest Neighbour (NN): A heuristic that schedules tasks to the nearest available

Micro-Cloud, in terms of the latency [92].

• MCOP: A dynamic decentralized task scheduling algorithm for Micro-Cloud net-

works [79]. MCOP is the state-of-the-art decentralized task scheduling algorithm

for Micro-Clouds that provides faster execution based on its lightweight heuristic

approach.

3.5.3 Results and Analysis

We carried out 24-hour-long experiments for different parameter configurations. The γ

value determines between a reactive (γ = 0) and a proactive (γ > 0) approach towards

managing power overdraw events. Our aim is to avoid these events entirely, thus we set γ

at 0.3 (i.e., 30% of the available power triggers task offloading). The θ controls the batch

size of tasks offloading. We observed scheduler sensitivity towards θ across a range

of values (θ ∈ {0.3, 0.4, 0.5, 0.6}). Each scenario was executed across worsening WAN

traffic congestion by up-scaling communication latency. In all configurations, we set
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Figure 3.5: Performance metrics comparison of the task scheduling among Micro-
Clouds for θ = 0.3.

DEMOTS timeout, such that when the WAN latency values are at the average, DEMOTS

is able to receive responses from all the Micro-Clouds in the network before offloading

a task.

Fig. 3.5 shows scheduler performances for θ = 0.3 in Task Latency Increase Impact

(LI), Task Schedule Time Impact (TSI) and Power Overdraw Impact (POI). As WAN la-

tency increases, both MCOP and NN show linear trends for LI and TSI (Fig. 3.5-a and

Fig. 3.5-b), and a constant trend in POI (Fig. 3.5-c). The reason behind both these trends

is that MCOP and NN are not aware of the changes in WAN latency, thus performing

the same scheduling decisions. Based on Equations 3.6 and 3.7, if the scheduling deci-

sions remain the same, the LI and TSI change linearly with the increasing WAN latency,

whereas based on Equation 3.5 the POI stays the same. In contrast, DEMOTS reacts to

changing WAN latency and outperforms DEMOTS across all three metrics ( Fig. 3.5-a,

Fig. 3.5-b, and Fig. 3.5-c). This is justified as DEMOTS uses a timeout-based waiting

approach, in which the worsening WAN latency forces it to change its scheduling de-

cisions. DEMOTS achieve the same performance as MCOP when WAN latency is at

its average. However, as WAN latency increases, DEMOTS take a different scheduling

approach from MCOP, which converges in better performances.

Fig. 3.6 shows the comparison of the total number of task reschedules by sched-

ulers, which is preferred to be minimized for latency-critical IoT tasks. Because for such

tasks, reliability is critical, and an increased number of reschedules reduces task reliabil-

ity. In that regard, NN shows significantly worst task reliability. NN’s lowest number

of task reschedules is achieved at θ = 0.3, in which both MCOP and DEMOTS show
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Figure 3.6: Total number of task reschedules of the task scheduling among Micro-Clouds
against θ.

Figure 3.7: Power overdrawn impact performance of the task scheduling among Micro-
Clouds against θ.

significantly lower numbers of task rescheduled (Fig. 3.6-d). This trend continues for

increasing θ (Fig. 3.6-c to Fig. 3.6-a). In comparison, DEMOTS and MCOP seem to

be in a similar range, with DEMOTS having a slight increase over MCOP. The θ deter-

mines the task batch size, thus overall, decreasing θ results in a reduced number of task

reschedules across all schedulers, as shown from Fig. 3.6-a to Fig. 3.6-d.

Fig. 3.7 shows scheduler sensitivity towards θ in optimizing Power Overdraw Im-

pact (POI). In general, decreasing θ results in lowering POI performance (i.e., higher

values for POI) for all schedulers as seen from Fig. 3.7-a to Fig. 3.7-d. NN has the worst

sensitivity, with POI having a comparatively fast growth rate. In contrast, both MCOP

and DEMOTS show better sensitivity. Moreover, DEMOTS outperform other schedulers

by converging to better POI across the WAN latency scale, despite the decreasing θ.
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Table 3.3: Performance comparison of schedulers.

θ
Scheduling

Algorithm

Mean Value across the WAN Latency Scale (1-2.5x)

Avg.

POI per

Micro

-Cloud

(×106ws)

Gain over

MCOP

Avg. LI

per task

(s * s)

Gain over

MCOP

Avg.

TSI

per task

(×10−3s)

Gain over

MCOP

Total Task

Re-

schedules

Gain over

MCOP

0.3

NN 7.70 6.0% 51.52 47.91% / 8.0 -4.92% 1883 -267.77%

MCOP 8.19 - 98.89 - 7.6 - 512 -

DEMOTS 7.38 9.85% 47.88 51.58% 3.8 49.86% 448 12.5%

0.4

NN 6.96 15.85% 34.75 37.41% 9.6 -123.35% 3384 -711.51%

MCOP 8.27 - 55.52 - 4.3 - 417 -

DEMOTS 6.66 19.46% 37.50 32.45% 4.0 5.41% 600 -44.06%

0.5

NN 4.93 20.46% 37.78 40.80% 1.22 -101.75% 5629 -882.37%

MCOP 6.20 - 63.83 - 6.06 - 573 -

DEMOTS 5.20 16.12% 38.53 39.63% 5.4 9.70% 890 -55.41%

0.6

NN 3.50 27.06% 34.42 33.84% 1.0 -56.18% 5153 -528.41%

MCOP 4.80 - 52.04 - 6.0 - 820 -

DEMOTS 4.16 13.45% 36.86 29.15% 6.0 3.96% 1369 -67.0%
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Figure 3.8: DEMOTS: harnessing dynamic power budget (Collected data from 24 Hours of
workload execution).

To summarize, a comparison of average performance metrics over the WAN latency

scale is depicted in Table 3.3. While having better Power Overdraw Impact (POI) and

Task Latency Increase Impact (LI) gains over MCOP (6% to 27%, and 33% to 47% respec-

tively), NN lags behind in Task Schedule Time Impact (TSI) (-4% to -123%). Most impor-

tantly, NN needs to perform a higher number of task reschedules over MCOP (-267%

to -882%), which significantly decreases task reliability. In contrast, DEMOTS performs

much better in the number of tasks reschedules over MCOP (-67% to 12.5%). Therefore,

both MCOP and DEMOTS surpass NN in scheduling latency-critical IoT tasks demand-

ing the highest level of reliability. Moreover, DEMOTS outperforms MCOP by 36% to



3.6 Summary 75

47% in POI , 9% to 19% in LI , and 3% to 49% in TSI . Therefore, in the overall schedul-

ing problem, DEMOTS is able to harness dynamic power budget to reduce power overdraw

events by dynamically scheduling latency-critical IoT tasks over a WAN with dynamic

traffic congestion.

Fig. 3.8 showcase DEMOTS harnessing dynamic power budget across different time

zones. In which, we observe the collective decentralized task offloading of DEMOTS

successfully shares the workload based on available power. Concretely, the Micro-Cloud

in California handles workloads near its power capacity (i.e., power consumption is

around the soft power budget), until the observing time reaches 60k (seconds). Through-

out this period of time, DEMOTS do not offload tasks to California. Afterwards, the

zone receives excess dynamic power budget, in which California starts receiving tasks from

other Micro-Clouds executing DEMOTS to utilize the excess power. The same behaviour

can be seen in parallel for both Ireland and Tokyo.

3.6 Summary

In this chapter, we explored latency-critical Internet of Things (IoT) applications de-

ployed on distributed Micro-Clouds that are leasing resources from power-constrained

Colocation data centers. To scale its capacity amidst power constraints, Colocation data

center providers impose a soft power budgets on its leasing Micro-Clouds. In return,

Micro-Clouds are forced to manage potential power overdraw events with extreme power

overdraw recovery techniques, increasing the probability of compromising the latency

performance of the IoT tasks. We proposed an approach to advance the soft power bud-

get to a dynamic power budget, leveraging the provisioning flexibility of renewables to

increase the data center energy capacity via on-site renewable energy sources. To ef-

fectively harness dynamic power budgets across geographically distributed Micro-Clouds

connected over a Wide Area Network (WAN), we proposed DEMOTS: A dynamic de-

centralized task scheduling algorithm. DEMOTS can jointly optimize task latency per-

formance and dynamic power budgets over unstable network overheads of WAN traffic

congestion. Our extensive simulation-based evaluation experiments showed that the

proposed DEMOTS outperformed the state-of-the-art decentralized scheduling algo-
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rithm by up to 19% reduction in Power Overdraw Impact, up to 47% reduction in Task

Latency Increase Impact, and up to 49% reduction in Task Schedule Time Impact.

This chapter presented a dynamic decentralized task scheduling algorithm that ex-

ploits the provisioning flexibility of renewable energy sources to reduce power over-

draw events in power-constrained Micro-Clouds executing latency-critical IoT applica-

tions. In the next chapter, we study leveraging renewable energy to reduce the opera-

tional carbon footprint of cloud computing environments facilitating bounded-latency

applications, in particular, resource management for the operational carbon efficiency of

real-time cloud applications.



Chapter 4

Carbon Optimization for Real-Time
Cloud Systems using

Renewables-driven Cores

Operational carbon optimization in cloud platforms is often limited to temporally flexible work-

loads that can be executed when and where renewable energy is available. In this chapter, we focus

on temporally inflexible real-time workloads instead and present a framework to utilize renewable

energy in real-time cloud systems using renewables-driven cores. Our framework proposes a VM

Execution Model to ensure workload VMs are intact from core availability dynamics. Furthermore,

using renewables-driven cores, it introduces the Green Cores concept to convert the utilization of

renewables as a server packing attribute and derive a novel VM Packing Algorithm to efficiently

harvest renewable energy across servers. We practically evaluate our framework by implementing it

with OpenStack. To conduct long-running experiments, we use a large-scale simulator using real-

world trace data. Our results demonstrate that the proposed framework outperforms state-of-the-art

baselines by a 6.52× reduction in real-time latency variance and a joint 79.64% increase in renew-

able energy harvest with a 34.83% reduction in VM interruptions.

4.1 Introduction

Due to the environmental concerns of Greenhouse gas (GHG) emissions, electrical grids

continue to integrate low-emission renewable energy sources. In 2022, the share of re-

newables in total electricity generation was 39% and is projected to be 91% by 2035 [93].

This chapter is derived from:

• Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, and Rajkumar Buyya, ”A Framework
for Carbon-aware Real-Time Workload Management in Clouds using Renewables-driven Cores”,
IEEE Transactions on Computers, early access, May 2025.
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However, a significant portion of renewable energy sources, such as solar and wind, ex-

hibit variable-availability (intermittent) supply dynamics [15]. Between 2022 and 2035,

energy reports project the share of solar and wind renewables in total generation to rise

from 12% to 58% [93].

Data centers develop various load matching strategies to match workload execution

over renewable energy supply dynamics. Amongst them, load shifting is commonly

practised [94–97]. Load shifting uses workloads with temporal flexibility to suspend/re-

sume their execution. For example, Google’s delay-tolerant workloads, such as machine

learning, data compaction, and data processing, tolerate delays as long as their work

gets completed within 24 hours [96]. Workloads execute in periods when renewable en-

ergy capacity is higher, resulting in reduced GHG emissions. However, load shifting falls

short when applied to real-time workloads with strict response time boundaries [98].

Real-time workloads cannot tolerate the delays inherent in load shifting.

Nevertheless, the growing prevalence of real-time cloud applications, such as au-

tonomous vehicles, industrial automation [13], and railway control systems [17] expects

to account for nearly 30% of the world data by 2025 [99]. As a result, cloud operators will

eventually have to incorporate growing real-time workloads in intermittent renewable

energy integration. In this context, one must find an alternative load matching strat-

egy to load shifting for delay-intolerant real-time workloads. Existing solutions, such as

applying CPU-wide low power profile to match renewable energy supply [100], often re-

sult in increased latency, making them unsuitable for real-time applications. Moreover,

techniques like Harvest Virtual Machines (HVMs), which allow uninterrupted execu-

tion of workloads with reduced resources [6], can still degrade performance and fail to

meet real-time constraints.

Given these challenges, there is a need for an efficient strategy to integrate renew-

able energy into real-time cloud systems (Real-Time Clouds). To this end, we propose

a framework to harvest renewable energy in Real-Time Clouds. We use Renewables-

driven cores to integrate renewable energy for servers. It dynamically switches the

power profiles of each CPU core between a real-time power profile and a low power pro-

file to match renewable energy intermittency. Then, our framework applies a twofold

solution to utilize this dynamic core availability. First, we develop a VM Execution
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Model to guarantee that real-time virtual machines (VMs) occupy cores at the real-

time power profile. Our model adopts renewable energy fluctuations by conducting

criticality-aware VM evictions as needed. Secondly, we develop a VM Packing Algo-

rithm to optimize the use of available cores across servers. It reduces the likelihood of

VM evictions while maximizing renewable energy utilization (renewable energy har-

vest). Our algorithm frames renewable energy management as a VM placement opti-

mization problem by introducing the concept of Green Cores. Green Cores presents

each server as an inventory of two virtual CPU core types: Green and Regular. Green

cores quantify renewable energy usage, whereas Regular cores quantify core usage that

does not increase risks of VM eviction incidents. Using Green Cores, we achieve a

computationally inexpensive VM packing algorithm, which is required to handle VM

throughput at scale [96].

We implement our framework in OpenStack [33] as openstack-gc. We combine Open-

Stacks control plane with an on-node daemon service. The daemon service implements

Renewables-driven cores in the server using per-core sleep states. openstack-gc con-

trol plane then communicates with the daemon service to orchestrate our VM Execution

Model and VM Packing Algorithm. We evaluate our framework at the core-level using

VMs running RTEval, a program from the Real-Time Linux project to measure real-time

performance [7]. We evaluate our framework at the server-level using a 14-day VM ar-

rival trace from Azure [8]. We use two testbeds: an experimental openstack-gc cloud

deployed on an HPE ProLiant server with a 12-core Intel Xeon CPU, and a large-scale

simulation testbed. We make the following contributions in designing, implementing,

and evaluating our framework.

• We propose a core-level VM Execution Model to utilize renewable energy without

degrading real-time latency performance in VMs. We leverage criticality-aware

VM evictions for that.

• We propose a server-level VM Packing Algorithm to reduce VM eviction incidents

over renewable energy utilization.

• We implement a prototype of our framework in OpenStack, detailing its design

and demonstrating its practicality.
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• We evaluate our approach against multiple baselines. Our results show: i) 6.52×
reduction in coefficient of variation of real-time latency in VMs over the existing

workload temporal flexibility-based VM execution model, and ii) a joint optimiza-

tion of 79.64% reduction in VM eviction incidents and 34.83% increase in utilized

renewable energy over state-of-the-art packing algorithms [101].

The rest of the chapter is organized as follows: Section 4.2 discusses related work.

Section 4.3 provides the background and motivation for our problem with a use case

study. Section 4.4 details our system model and problem formulation. Section 4.6 out-

lines the design of our proposed framework. Section 4.7 describes the implementation

of openstack-gc. Section 4.8 presents the performance evaluation of our framework, and

finally, Section 4.9 summarises the chapter.

4.2 Related Work

Load matching with renewables-driven cores: Common load matching techniques

for intermittent renewable energy, such as geographical load balancing, workload mi-

gration, admission control, and capacity planning [95–97], depend on either suspend-

ing/resuming or migrating flexible workloads. In contrast, Renewables-driven cores

avoids both by performing load matching with dynamic core availability. SolarCore

[102] and Chameleon [53] use per-core Dynamic Voltage and Frequency Scaling (DVFS)

and Power Gating to implement Renewables-driven cores. In their work, workloads uti-

lizing power-adjusted cores can undergo performance degradation, thus better suited

for throughput workloads with flexible deadlines. PowerMorph [54] improves this via

core grouping, hosting critical and best-effort workloads and power adjustments iso-

lated to core groups. However, workload core affinity can dynamically change during

load matching, unfavourable for time-critical workloads such as real-time compute [29].

Slackshed [6] implement Renewables-driven cores for virtual machine (VM) execution.

They achieve uninterrupted VM execution at the expense of dynamic CPU allocation,

thus better suited for throughput workloads with flexible time constraints.

In contrast, our work preserves workload time boundaries over Renewables-driven

cores and leverages criticality-aware VM evictions within safe limits of the application
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Table 4.1: Comparison of relevant work with our proposed framework for carbon-
optimization in real-time clouds.

Work
Rnw-

driven
Cores

Critical
Workloads

Real-
Time

VM
Mgt.

Criticality-
aware
Packing

Rnw.
Harvest

SolarCore
(2011) [102]

✓ ✓

Chameleon
(2013) [53]

✓ ✓

Kumbhare et.
al (2021) [101]

✓ ✓ ✓

PowerMorph
(2022) [54]

✓ ✓ ✓

Slackshed
(2023) [6]

✓ ✓ ✓

Our Proposed ✓ ✓ ✓ ✓ ✓ ✓

layer.

VM packing algorithms: VM packing is a widely studied research problem. Most ex-

isting works focus on variants of bin packing algorithms to improve resource utilization

at scale [103, 104], yet consider servers as static inventories. Opposed to that, Kumbhare

et al. [101] explore an inventory where servers oversubscribe power delivery, yielding

a dynamically changing inventory capacity. They propose a criticality-aware packing

algorithm to co-pack critical and best-effort components, reducing workload impact.

However, in doing so, they do not consider renewable energy harvesting opportunities.

In contrast, our work achieves joint optimization of workload impact and harvesting

in dynamic inventories.

4.3 Background, Motivation, and Use case

This section provides background on real-time workloads in clouds (Real-Time Clouds)

and the application of Renewables-driven cores. It then motivates our contributions
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with a use case study. Finally, it outlines the key takeaways.

4.3.1 Real-Time Clouds

Real-Time Clouds deploy cloud-based real-time applications, such as industry 4.0 use

cases [105], transport use cases [17], and software-defined networks [4]. A key require-

ment in real-time computing is to produce computation results in a bounded time [105].

Clouds achieve that by tuning the entire virtualization stack to reduce latency in ex-

ecuting application instructions [17, 29, 106, 107], such as setting each CPU core to a

consistent high-performance power profile and pinning each virtual machine (VM) core

to a dedicated physical core, resulting rigid VM placement constraints while deliver-

ing deterministic performance. Further, real-time cloud systems employ an application-

specific middleware layer over VMs to provide fault-tolerance in VM failures [4, 17].

4.3.2 Renewables-driven Cores

Renewables-driven cores is a load-matching technique that dynamically adjusts per-core

power draw in CPU to match server load for renewable energy dynamics [53, 102]. Un-

like the CPU-wide throttling techniques [101], it narrows power optimization to the core

level. However, such per-core power dynamics must be efficiently utilized, adhering to

application performance requirements using a suitable workload execution model. Ex-

isting works that utilize Renewables-driven cores in clouds use Harvest Virtual Machine

(HVM) as the workload execution model [108], which dynamically shares available CPU

cores among the VM cores.

4.3.3 Motivation

We outline the motivation behind our proposed framework, specifically focusing on the

rationale for selecting Renewables-driven cores as the load-matching technique for Real-

Time Clouds. Then, we discuss the lack of static compute allocation in the existing VM

execution solution for Renewables-driven cores and how it can impact real-time VMs.

Following this, we present our approach to addressing this limitation by exploiting the
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Figure 4.1: Renewables-driven cores in Real-Time Clouds.

presence of mixed-criticality in Real-Time Clouds, composed of VMs hosting critical

components and best-effort components, to implement criticality-aware VM evictions.

How do Renewables-driven cores align with the needs of Real-Time Clouds? Renew-

able energy integration using Renewables-driven cores as the load-matching technique

enables avoiding both suspend/resume and CPU-wide throttling of workloads. Figure

4.1 illustrates a scenario where a set of cores reside in the low power profile. However,

the remaining cores reside in the real-time power profile. They provide the opportunity

to serve real-time VMs amidst renewable energy fluctuations.

Why is a static compute allocation important to real-time VMs?: To apply Renewables-

driven cores in Real-Time Clouds, we need a workload execution model to match dy-

namic core availability for VMs. In this regard, the existing solution is Harvest VMs

(HVMs) [6]. HVMs approach is to change the number of physical cores (pCPUs) in the

VM but preserve the number of virtual cores (vCPUs). It allows continued execution

of the VM amidst dynamic core availability. However, for real-time VMs, this dynamic

compute allocation can introduce performance degradation. For instance, if the number

of pCPUs is less than that of vCPUs, vCPUs oversubscribe physical cores, leading to

scheduling delays, which must be avoided with real-time compute [29]. Therefore, in-

sufficient pCPU allocations can lead to undesirable real-time latency spikes in the VMs.

Maintaining a static compute allocation is important to avoid such scenarios. In Sec-

tion 4.8.2, we practically show the VM’s real-time performance degradation when the

number of pCPUs falls below vCPUs.

Opportunities in mixed-criticality within Real-Time Clouds to provide static com-

pute allocation for VMs over Renewables-driven cores: An alternative to the HVM ap-

proach of continuing the execution of VMs with insufficient pCPUs is to evict the VMs.

Existing works show opportunities for this in Real-Time Clouds via the mixed-criticality
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Table 4.2: Mixed-criticality use cases in 5G network slicing. [13].

Scenario Reliability Criticality

Autonomous Driving 99.999% Critical

Industrial Machinery 99.999% Critical

4K/8K HD Video - Best-effort

Mass Gathering - Best-effort

of real-time systems [4, 17, 109]. Firstly, they model real-time system components as ei-

ther critical or best-effort. Then, an application-specific middleware layer exploits this

mixed-criticality to provide fault tolerance for component failures. In real-time cloud

systems, application-specific middleware layers use reconfiguration policies to recover

the system upon VM failures [4]. In this context, there is an opportunity to conduct VM

evictions in Real-Time Clouds safely. Since a VM eviction is a well-defined failure event,

the application-specific middleware layer can tolerate it through reconfiguration. More

importantly, we can guarantee a static compute allocation for VMs with a fixed allo-

cation of CPU cores and conduct criticality-aware VM eviction if cores are insufficient

instead of continued VM execution with degraded performance.

4.3.4 Usecase

To further motivate our approach, we experiment with a real-time cloud use case of 5G

Network Slicing via Virtual Network Functions (VNF) [13]. As the application-specific

middleware layer, we employ the production-grade VNF management and orchestra-

tion middleware, OSM MANO [4]. We map VNFs to critical and best-effort components

based on the service quality level of their network slice. Table 4.2 denotes an example

where the criticality of four different 5G scenarios is interpreted based on service reliabil-

ity. Figure 4.2 illustrates our study. We connect the MANO deployment with a real-time

tuned two-node OpenStack deployment as the real-time cloud. We use the auto-heal

feature of MANO as the reconfiguration policy [4]. Each VNF is deployed as a VM in

OpenStack with two virtual CPU cores. We use 50% Renewables-driven cores in servers

at 100% initial renewable energy capacity. Once the deployment stabilizes, we drop that
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Figure 4.2: Use case: load matching with evictions via application-level reconfiguration
of NFV Management Middleware MANO’s auto-healing over VM failures [4].

Table 4.3: Comparison of the VM packing inventory when load matching with the 5G
network slicing prototype over different packing strategies.

Packing Before After Evictions

Node
1

Node
2

Node
1

Node
2

Tightly 0/8 8/8 4/4 4/4 2

Spread 4/8 4/8 4/4 4/4 0

to 0%, reducing server core count by half and evicting VMs to load match. We repeat

the experiment for two VM scheduling approaches in OpenStack.

Table 4.3 denotes our observations. Firstly, upon the loss of renewable energy ca-

pacity, MANO reconfigured the available cores through auto-healing. Secondly, Open-

Stack initiates VM evictions. Thus, knowledge of VM criticality is beneficial in reducing

the impact of eviction. For example, it permits evicting best-effort components prior to

critical components. Thirdly, the VM packing strategy can change the number of VM

evictions. Of the two packing approaches used in our use case, the Tightly approach

triggered two eviction incidents, whereas the spreading approach yielded none.

4.3.5 Key Takeaways

From our motivations and the use case experiment, we identify the following key take-

aways:

1. Renewables-driven cores enable integrating renewable energy in Real-Time Clouds.
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In that,

(a) A static compute allocation for VMs ensures their real-time performance.

(b) Criticality-aware VM evictions enable maintaining static compute allocations

over Renewables-driven cores.

2. The server-level VM packing strategy can influence the likelihood of VM eviction

incidents.

Motivated by the above, we design our framework to apply Renewables-driven

cores in Real-Time Clouds. It addresses point 1 using a VM Execution Model and point 2

using a VM Packing Algorithm. It advances cloud renewable energy integration by pro-

viding deterministic computing amidst the supply intermittency of renewable energy. It

enables carbon-efficient computing with time-critical real-time cloud workloads, which

is otherwise considered inflexible for carbon optimization [96].

4.4 System Model and Problem Formulation

4.4.1 System Model

Our system model is shown in Figure 4.3. In that, each server receives dedicated allo-

cations of grid and renewable energy capacities through a mixed power delivery sys-

tem. Allocations are even across all servers. We use homogeneous servers for simplicity,

but the model can be adapted for heterogeneous servers by allocating power capacities

proportionately. Each server monitors the dynamic availability of its allocated renew-

able capacity for load matching. We model renewable energy as intermittent and carbon-

free and grid energy as static and carbon-intensive. An application-specific middleware

layer manages each VM. It can tolerate VM eviction incidents. At arrival, VMs provide

their criticality to the cloud control plane as either critical or best-effort. A VM packing

algorithm then places VMs in the server inventory.
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Figure 4.3: A high-level system model of the proposed carbon-aware real-time cloud
with contributions highlighted in green.

4.4.2 Problem Formulation

Server power modeling: Data center power modeling outlines key load elements, such

as information and technology (IT), cooling, and internal power conditioning system

[110]. IT load corresponds to server power consumption of active VM execution and

idle power draw, which can be modeled encompassing the power consumption of server

components such as CPU, Memory, GPU and HDD [111, 112]. Our focus in this chapter

is integrating intermittent renewable energy with the IT load for CPU-dominant real-

time workloads [17, 29]. In that regard, server power can be estimated using a linear

function ( f ) of CPU power (PCPU(t)) [112] with over 90% accuracy. Based on that, we

derive a CPU utilization-aware linear multi-piece server power model for the server

power usage of the power distribution unit (PDU). First, we state server power at time t

(PS(t)) as,

PS(t) = f (PCPU(t))

In multi-core CPUs, the cumulative sum of core power becomes a close upper bound

of PCPU(t) [113]. Based on that, we derive an upper-bound to server power and use that

as an estimate to PCPU(t). Therefore, for a server with N number of cores,
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Figure 4.4: CPU power as cores awake in Renewables-driven cores of Intel Xeon Silver
CPU with core power states: i) Sleep ≡ sleep state of C6, ii) Active ≡ sleep state of POLL,
and iii) Pinned ≡ pinned with 100% utilization.

.

PS(t) ≃ f (
N

∑
i=1

PCOREi(t)) (4.1)

where PCOREi(t) is the power consumption of ith core at time t. Commodity servers

often consist of homogeneous cores. Thus, we apply the same model here. Next, we

model power states for the three distinct states of PCOREi(t). When a core is unused, its

power state is either,

• Active ≡ PCOREi(t) = PACT (an idle core)

• Sleep ≡ PCOREi(t) = PSLP (a core in the low power profile)

In contrast, a core pinned to a VM exhibits a power state of PCOREi(t) = F(UCOREi(t)).

Where UCOREi(t) is the utilization of the core at time t, and F is a linear function [113].

Dynamics of UCOREi(t) depends on the VM workload, which is a black box to the cloud

operator [101]. Therefore, in packing problems, a representative utilization statistic is

commonly estimated based on historical data [101, 112]. Based on this, we use URT to

estimate UCOREi(t). Cloud operator sets the exact URT value using deployment-specific

data. As a result, the pinned power state of a core becomes,

Pinned ≡ PCOREi(t) = PPIN , where PPIN = F(URT)

We verify our core power model with an Intel Xeon Silver CPU with 12 cores. For

that, we use URT = 100%. We wake up cores from 1 to 12 and plot CPU package power

obtained through Intels Running Average Power Limit (RAPL) interface. We conduct

the same experiment for both Active and Pinned scenarios. Figure 4.4 illustrates our

results. The constant slopes of the linear graphs verify PPIN and PACT. The remaining
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power state is PSLP and it contributes to both the graphs, thus the same linear trends also

verify PSLP.

We then apply the core power model in Equation 4.1 and derive the following model

to estimate server power using core counts as variables.

PS(t) ≃ f (m(t)× PPIN + l(t)× PSLP

+(N −m(t)− l(t))× PACT)
(4.2)

where at time t, m(t) is the pinned core count and l(t) is the sleeping core count.

Renewable energy harvest: Electricity generated from replenishing renewable energy

sources (i.e., renewables) emits significantly lower amounts of carbon when compared

to grid energy, which often relies on fossil fuel-based energy generation. However, most

renewable energy sources rely on intermittent natural resources that vary depending on

the time of the day and geographical location, such as solar and wind [15]. In return,

renewables yield intermittent power capacities compared to stable grid power.

In our model, renewable energy harvesting denotes maximizing the utilization of

the intermittent power capacity of renewables. We use a heterogeneous server power

allocation of dedicated renewable and grid energy capacities. In doing so, each server

is guaranteed a specific amount of stable power capacity, allowing the resource man-

agement layer to utilize that in maintaining the stringiest service level objectives (SLOs)

of real-time VMs. The portion of the renewable energy capacity is set by the data cen-

ter operator, depending on the fault tolerance levels of the data center power delivery.

In Section 4.8.1, we provide an example of deciding that with our large-scale testbed

design. The dynamics of the renewable capacity availability depends on the volume

pattern of the renewable energy source. Figure 4.13a illustrates an example of that with

our 14-day VM packing experiments. We assume renewable energy does not incur ad-

ditional costs besides supply dynamics.

As a result of the heterogeneous server power allocation, harvesting renewables in

our system model must be done at the server level. When server power meets the grid

capacity (PGRID), we denote PS(t) = PGRID. Renewable energy harvesting begins when

PS(t) > PGRID. Therefore, for an arbitrary time period ∆T, we denote harvested renew-
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able energy (ERW(∆T)) of the server as,

ERW(∆T) =
∫

∆T
{u(PS(t)− PGRID)

×(PS(t)− PGRID)} dt
(4.3)

where u is the unit step function.

Service quality: We model service quality with real-time latency performance of VMs

and the number of VM eviction incidents. In our system model, an application-specific

middleware layer provides fault tolerance over VM evictions. Therefore, we prefer min-

imizing VM evictions as an objective at the resource management layer. Meanwhile,

real-time latency performance impacts application business logic. We prefer a bounded

latency performance for that.

Problem formulation: We formulate our problem as follows: Given an arbitrary ∆T

period, maximize renewable energy harvesting while preserving service quality. Thus

our objective is:

Maximize ERW(∆T) and Minimize n

where ERW(∆T) is the harvested renewable energy derived in Equation 4.3, and n is the

number of VM eviction incidents. The objective function should satisfy the following

constraints:

l̄i ≤ l̄maxi and σi ≤ σmaxi for vmi ∈ Svm

Svm is the virtual machines executed during ∆T and l̄i and σi are the mean and variance

of real-time latency, respectively. l̄maxi and σmaxi are deployment-specific upper bounds.
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4.5 Green Cores: Convert Renewables Utilization into a Pack-
ing Attribute

In this section, we introduce the concept of Green Cores, which converts the utilization

of renewables as a server packing attribute, and outline its core idea, formulation, and

boundaries. Green Cores enables us to design a framework in Section 4.6 to efficiently

harvest renewables in Real-Time Clouds. In Section 4.8, we show the superiority of that

over existing VM management approaches.

4.5.1 High-level idea of Green Cores

The core idea behind Green Cores is to identify the actual harvest of renewables, which is

not reflected in Renewables-driven cores. Although Renewables-driven cores increases

the available CPU cores matching that of renewables capacity, its increased core count is

not an accurate signal for renewables harvest. Instead, a combination of core availability

and their utilization with VMs encompass the server utilization of renewable energy

capacity. Existing works addressing similar problems integrate feedback signals from

power systems to identify server power draw and conduct VM packing accordingly

[101] with the added complexity of integrating power domain and VM packing. Instead,

we calculate a server inventory of Green Cores using the characteristics of Renewables-

driven cores and our power allocation, which derives a server inventory of green and

regular virtual core types. Unlike Renewables-driven cores, the number of green cores

utilized maps to renewables harvest.

4.5.2 Comparison between Renewables-driven cores and Green Cores

Although both Renewables-driven cores and Green Cores may sound similar, they are

distinct concepts. Renewables-driven cores is a physical notation that refers to the avail-

ability of additional cores corresponding to renewable energy dynamics. However, uti-

lization of those additional cores does not necessarily utilize available renewables ca-

pacity. In contrast, the Green Cores is a virtual notation that converts the utilization of

renewables into a packing attribute, such that utilizing a green core map to renewables
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harvest.

4.5.3 Formulation of the Green Cores server inventory

In a server, we denote the number of cores that remain in a constant real-time power

profile as R where 0 ≤ R ≤ N, such that the size of Renewables-driven cores at time t

(l(t)) is 0 ≤ l(t) ≤ N− R. We choose a value for R such that when R cores are at a Pinned

power state and l(t) is N− R, the server power draw meets the grid capacity. Using our

server power model in Equation 4.1 we derive,

PS(t) ≃ f (R× PPIN + (N − R)× PSLP) = PGRID (4.4)

where m(t) = R, l(t) = N − R, and PGRID is the grid capacity.

We derive an equation for the amount of renewable energy harvested by subtracting

Equation 4.4 from Equation 4.1.

PS(t)− PGRID = f (m(t)× PPIN + l(t)× PSLP

+(N −m(t)− l(t))× PACT

−R× PPIN − (N − R)× PSLP)

(4.5)

We then model m(t) with R as m(t) = R + g(t) where g(t) is an arbitrary function.

Substituting this model in Equation 4.5 yields:

PS(t)− PGRID = f (g(t)× (PPIN − PACT)

+(PACT − PSLP)× ((N − R)− l(t)))

Here, we denote the leakage power (L(t)): power drawn by Renewables-driven cores

at the Active state as L(t) = (PACT − PSLP)× ((N − R)− l(t)).

PS(t)− PGRID = f (g(t)× (PPIN − PACT) + L(t)) (4.6)
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Then, substituting Equation 4.6 in Equation 4.3, we estimate renewable energy har-

vest for an arbitrary time period δt where g(t) ≥ 0,

ERW(δt) =
∫

δt
f (g(t)× (PPIN − PACT) + L(t)) dt

where f is the linear function to map CPU power into server power, in which a posi-

tive input yields a positive power value. Here, when δt is small enough to match the

measurement interval of the system, the ERW(δt) can be stated as,

ERW(δt) ≃ f (g(δt)× (PPIN − PACT) + L(δt))× δt

where both g(δt) and L(δt) are values measured for the δt interval. The design of our

Renewables-driven cores ensures that L(δt) is independent from workload execution.

In contrast, the value of g(δt) depends on the packing decisions of the clouds control

plane. Therefore, if g(δt) is changed with different packing algorithms,

ERW(δt) ∝ g(δt) (4.7)

Equation 4.7 states that if the packing algorithm positively increases g(δt), the re-

newable energy harvest increases. However, a positive g(δt) also means that m(t) > R,

implying VMs are pinned to Renewables-driven cores, thus increasing the eviction pos-

sibilities.

Based on the calculation, We derive the server inventory of Green Cores. Green

Cores presents a server with CPU cores of two types: Green and Regular. For Green

cores, active cores (CGactive ) are calculated with (N − R) − l(t) and used cores (CGused )

are calculated with g(t) if g(t) ≥ 0 (otherwise is set to 0). For Regular cores, active

(CRactive ), and used (CRused ) cores are calculated with R, and m(t) if m(t) < R (otherwise

is set to R), respectively. Calculations of Green cores quantify the usage of renewable

energy capacity, and calculations of Regular cores quantify the usage of cores that do

not increase the risks of VM eviction incidents.

This is illustrated in Figure 4.5 with a side-by-side comparison between power do-

main and the server inventory of Green Cores. In this scenario, the number of pinned

cores (m(t)) increases from t1 to t5. As a result, server power draw (PS(t)) increases.
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Figure 4.5: Comparison of server power draw vs proposed server inventory of Green
Cores.

Until t3, server power draw is less than the grid capacity, where CGused = 0 and CRused

is proportionate to the utilized energy capacity. During this period, there are no risks

of VM eviction incidents. Beyond t3, the risk of VM eviction incidents increases as the

server power draw utilizes renewable energy capacity, where CGused is proportionate to

the utilized energy capacity and CRused is capped at R.

4.5.4 Boundaries of the Green Cores server inventory

The derivation of Green Cores server inventory is tightly coupled with Renewables-

driven cores and the power model in our system model. As a result, it relies on the

accuracy of estimation techniques we used in Section 4.4.2. Nevertheless, the core idea

of Green Cores can be applied to similar contexts by adjusting the inventory calculation

for their specific system models.

4.6 Design

In this section, we outline the design of our framework. It combines a core-level VM

Execution Model with a server-level VM Packing Algorithm. The VM Execution Model

guarantees a static compute allocation for VMs at the core-level amidst the intermit-

tency of Renewables-driven cores. To do so, it exploits the mixed-criticality of Real-Time

Clouds and conducts criticality-aware VM evictions. In order to reduce the severity of

that, we pack VMs at the server-level to optimize the number of best-effort and crit-

ical VM types provided to each server while maximizing the per-server utilization of
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renewable energy capacity. We do that with our server-level VM Packing Algorithm.

4.6.1 Design of the Core-level VM Execution Model

We select a subset of cores and apply Renewables-driven cores to them. At 100% re-

newable energy capacity, we set all server cores to the real-time power profile. At 0%

renewable energy capacity, we put all cores in the subset to a low power profile. For in-

between, we set the real-time power profile to a partial amount of cores in the subset and

set the low power profile for the rest. In this case, the number of cores in the real-time

power profile is proportionate to available renewable energy capacity. For example, at

50% renewable energy capacity, half of the cores in the subset are set to the real-time

power profile. In our approach, Renewables-driven cores dynamics depend solely on

the renewable energy intermittency and are independent of the workload execution dy-

namics.

We pin VM cores to server cores set to the real-time power profile at the VM de-

ployment and do not change it for the duration of the VM lifetime. If the number of

such server cores is insufficient to serve running VMs, we perform a minimum amount

of criticality-aware VM evictions. We evict best-effort VMs first and critical VMs as a

last resort. Our model guarantees a static compute allocation for a VMs lifetime. The

VM eviction events trigger well-defined VM failure events at the application-specific

middleware layer, allowing it to recover through reconfiguration. In the next section,

we design a server-level VM Packing Algorithm to reduce the possibility of such VM

eviction events.

4.6.2 Design of the Server-level VM Packing Algorithm

Possibilities of VM eviction incidents with our VM Execution Model increases when the

number of VMs packed in a server begin renewable energy harvesting (see Equation 4.3).

Therefore, optimizing VM eviction incidents must be conducted jointly with optimizing

the renewable energy harvest. We convert that joint optimization task into a VM packing

optimization problem using the Green Cores server inventory we introduced in Section

4.5. We then design a server-level VM packing algorithm to address that.
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Figure 4.6: Joint optimization of renewables harvest and VM eviction incidents via the
Euclidean space of Green Cores server inventory.

Algorithm 3 Proposed VM Packing Algorithm.
Input: V, S, τ1, τ2
Output: Placement Sorted Servers

1: function GETPLACEMENTPREFERENCES(V: VM, S: Candidate servers, τ1: Ideal
point for critical VMs, τ2: Ideal point for best-effort VMs)

2: ϵ← GetCriticality(V)
3: τ ← GetIdealPoint(ϵ, τ1, τ2)
4: for all si ∈ S do
5: dsqi ← GetRNW(si)
6: drnwi ← GetSQ(si)
7: di ← GetDistance(dsqi , drnwi , τ)
8: si.score← 1− di

9: return getSorted(S)
10: function GETIDEALPOINT(ϵ, τ1, τ2)
11: return τ1 if ϵ is critical else τ2

12: function GETSQ(si)
13: CRactive(t), CRused(t)← si

14: return
|CRactive (t)−CRused (t)|

CRactive (t)

15: function GETRNW(si)
16: CGactive(t), CGused(t)← si

17: return
|CGactive(t)

−CGused
(t)|

CGactive (t)

18: function GETDISTANCE(dsqi , drnwi , τ)
19: dsqτ , drnwτ ← τ

20: distance←
√

(dsqτ−dsqi )
2+(drnwτ−drnwi )

2
√

2
21: return distance

Algorithm 3 outlines the proposed VM packing algorithm. It takes the VM creation

request (V) and the set of candidate servers (S) as inputs. It then provides a sorted list
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of candidate servers in the order of placement preference as the output. Additionally,

it takes two other input parameters, called ideal points, each for critical VMs (τ1) and

best-effort VMs (τ2). Our intuition behind the packing algorithm stems from the repre-

sentation of a server in Green Cores. In that, a server is presented with two attributes:

green cores and regular cores. Our algorithm uses those attributes to represent a server

in a two-dimensional Euclidean feature space. Figure 4.6 illustrates that. For an arbi-

trary time t, we calculate a two-dimensional feature vector ≡ (drnw, dsq) to represent

a server in this space. We denote the axis drnw to quantify the opportunity to harvest

renewables. We denote the axis dsq to quantify the opportunity to deploy VMs with

a minimum probability for an eviction incident. Firstly, we get the criticality of the V

(ϵ), which is either critical or best-effort (line 2). Then, we filter the corresponding ideal

point (τ) for ϵ (line 3). Afterward, we iterate through each server in S and calculate its

feature vector. For the ith server, we calculate the value for drnw as dsqi with GetRNW

subroutine (line 5), and we calculate the value for dsq as drnwi with GetSQ subroutine

(line 6). Using both, we calculate the Euclidean distance between the feature vector and

the τ using the GetDistance subroutine (line 7) and derive the preference score from that

as closest being the higher (line 8). Using the calculated preference score, we sort the S

and provide it as the output (line 9).

Process of VM Packing: A server inventory is empty at first, where its feature vector

maps to ≡ (1, 1). As VMs get packed, their regular core usage increases. Thus, the

feature vector moves vertically towards ≡ (1, 0). Once all regular cores are used, its

green core usage increases; thus, the feature vector moves horizontally towards≡ (0, 0).

This behavior allows the packing algorithm to decide its server preference depending

on VM criticality. Figure 4.6 illustrates a scenario of ideal point placement. In that,

the ideal point for critical VMs is placed between (1, 1) and (1, 0), such that critical VMs

prefer servers with available cores supported by stable grid energy (refer Section 4.5.3) to

reduce the eviction risks. In contrast, the ideal point for best-effort VMs is between (0, 0)

and (1, 0), such that best-effort VMs prefer servers that draw power beyond the grid

allocation to maximize renewables harvest. Tunable ideal points in our algorithm enable

the cloud operator to adjust for deployment-specific performances [105]. In Section 4.8,

we show its superiority in the sensitivity analysis of our large-scale VM packing testbed.
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Figure 4.7: OpenStack-GC system architecture with highlighted server load matching
workflow.

4.7 Implementation

In this section, we outline openstack-gc: implementation of our framework in Open-

Stack.

Implementation of Openstack-GC: Figure 4.7 illustrates the system architecture of openstack-

gc. We highlight newly added OpenStack extensions in green. We deploy an on-node

daemon service to realize Renewables-driven cores. We introduce a Green Cores Con-

troller at the control plane to orchestrate the proposed VM Execution Model. We imple-

ment the proposed VM Packing Algorithm as a VM scheduling algorithm in OpenStack.

Renewables-driven cores: We implement an on-node daemon service in Golang to

control per-core power profiles. By making an API call to the daemon service, the

openstack-gc control plane can specify the number of cores to put into a specific power

profile. If the real-time power profile is requested, the daemon service sets the requested

number of cores into a high-performance state. If the low power profile is requested, the

daemon service sets the requested cores into a deep sleep state. The daemon service

wraps the Intel Power Optimization Library1 and overrides the kernel management of

the sleep state and operating frequency of each core to achieve this.

1https://github.com/intel/power-optimization-library.git

https://github.com/intel/power-optimization-library.git
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VM Execution Model: We orchestrate our VM Execution Model using the load match-

ing workflows of openstack-gc. First, we enable the dedicated cores feature in Open-

Stack to pin each VM core to a dedicated server core, resulting in a static core allocation

for each deployed VM. Then, our load-matching workflows of openstack-gc take place.

Suppose an increased energy capacity signal arrives to openstack-gc. In that case, the

Green Cores Controller calculates and notifies on-node daemon services to set the re-

quired number of cores from the low power profile to the real-time power profile. If

a decreased energy capacity signal is provided to openstack-gc, the Green Cores Con-

troller pings APIs of the virtualization layer (openstack-gc uses Libvirt2) in each node to

obtain mappings of VM cores to server cores. Then, the Green Cores Controller calcu-

lates and triggers criticality-aware VM evictions by blocking API calls to the OpenStack.

Upon completion, the required cores are put to the low power profile using on-node

daemon services. Figure 4.7 illustrates the workflow for the decreased energy capac-

ity. In both cases, our modified Nova Compute, OpenStacks on-node compute service,

periodically polls the Green Cores Controller to obtain cores at the low power profile.

Afterwards, Nova Compute signals the control place to omit cores from VM scheduling

in the low power profile.

VM Packing Algorithm: We modify the OpenStack scheduler service to poll the Green

Cores Controller and obtain server inventory attributes of Green Cores for all server

nodes. To provide that, the Green Cores Controller pings virtualization layers of servers

to obtain core usage information and calculates server inventory attributes of Green

Cores. Our implementation of the proposed VM Packing Algorithm as a VM scheduling

algorithm in OpenStack consumes obtained Green Cores server attributes to make VM

placement decisions.

4.8 Performance Evaluation

We evaluate our core-level VM Execution Model and the server-level VM Packing Algo-

rithm using a multi-node openstack-gc prototype deployment. Further, we evaluate its

efficacy at scale using long-running production VM traces over a large-scale simulation

2https://www.libvirt.org

https://www.libvirt.org
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Table 4.4: Openstack-GC prototype: node specifications.

Attribute Description

Server Model ProLiant DL380 Gen10

CPU Intel(R) Xeon(R) Silver 4214

Physical Cores 12

Hyper Threading Disabled

Renewables-driven Cores 6

Real-time power profile C-state = POLL at 2699 MHz

Low power profile C-state = C6

Table 4.5: Openstack-GC prototype: VM specifications.

Attribute Description

Resources CPU: 6 Cores, RAM: 6GB

OS CentOS 7

Kernel Linux 3.10.0 + CERNs Real-Time patches

System Load Load test of RTEval [7]

Latency Monitoring Cyclictest [114]

testbed.

4.8.1 Experimental Setup

Openstack-GC prototype experiments: We deploy a prototype two-node openstack-gc

cloud on HPE ProLiant servers with 12-core Intel Xeon Silver CPUs. Table 4.4 outlines

its node specifications.

Workload: Table 4.5 outlines the VM specifications for our real-time workloads. We use

CentOS 7 VMs with CERNs real-time kernel patches [115] applied. We run the RTE-

val tool from the Linux foundation project, Real-Time Linux [7], to emulate a system

load. Alongside the load, RTEval continuously measures the VM kernels real-time per-
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formance via the Cyclictest tool [114]. Further, we synthesize 30-minute traces for VM

arrivals and renewables dynamics from Microsoft Azure’s VM packing trace [8] and

ELIA solar data [116].

Baseline: We use Harvest Virtual Machines (HVM): the existing VM execution model

over Renewables-driven cores [6] to evaluate advancements of our VM Execution Model.

We use Openstack’s default VM packing implementation in its nova scheduling service

[33] to evaluate advancements of our VM Packing Algorithm.

Metrics: We use Intels Running Average Power Limit (RAPL) [5] interface to capture

CPU metrics in the server every 0.5 seconds. We collect i) core residencies at the C6 sleep

state and ii) core operating frequency in MHz. Further, we use server power estimation

using the linear power model of CPU power that is shown over 90% accuracy [112]. For

that, we collect PkgWatt metric in RAPL (power consumption of the CPU socket [117])

as the server power metric (Figure 4.4 illustrate the verification of CPU power estimation

with RAPL for our system model). Inside VMs, we measure real-time performance with

the latency to wake up a real-time thread using the Cyclictest tool [114]. For VM packing

performance, we use the Eviction Incidents to count the number of eviction incidents

of best-effort and critical VMs. We use the Normalized Lifetime (nLT) to measure the

severity of an eviction incident. For each evicted VM, we normalize its lifetime from

the original lifetime in the trace. A lower nLT value implies increased severity. We

use scheduling overhead time to measure the same with packing algorithms. For that,

we analyze logs from OpenStack to identify the scheduling duration for VM creation

requests.

Trace-driven simulations at scale: We use 8K+ servers, each with 40 CPU cores, to match

the realistic similar values in Microsoft’s Azure’s cloud zones [103]. Existing fallback

mechanisms of Azure’s data center power delivery suggest that a 12% power overdraw

is manageable [101]. To operate within that, we add four cores in each server and use

them as Renewables-driven cores.

Workload: We use the full 14-day Azure VM packing trace [8], which contains request

arrivals, resource requirements, lifetime on Azure, and criticality. We use renewable

dynamics from ELIA solar data [116]. We normalize and scale the renewable dynamics

trace, so that the maximum renewable energy capacity can wake all Renewables-driven
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Figure 4.8: CPU package power of Intel’s RAPL interface [5] during load matching
of OpenStack-GC prototype. The proposed VM Execution Model conduct server load
matching: t < t1: server with two 6-core VMs, t = t1: energy loss triggers a VM eviction,
t = t2: VM eviction completes, and t = t3: unpinned cores enter deep sleep.

cores in a server.

Baselines: To evaluate the proposed VM packing algorithm, we use two comparison

baselines. The Best-Fit packing (best-fit) is a commonly used packing approach in pro-

duction clouds [103, 118] that packs VMs tightly in servers. We use it to evaluate our

advancements over a commonly used VM packing approach. The Criticality-Aware

packing (crt-aware) is a packing approach that reduces VM throttling incidents in power

over-subscribed data centers [101]. Similar to our problem context, it leverages VM crit-

icality to reduce VM performance impact incidents incurred from server load exceeding

available power capacity. We use it to evaluate our advancements over the state-of-the-

art.

Metrics: In addition to Eviction Incidents and Normalized Lifetime (nLT), we use the

Harvested Renewables to measure utilization of renewable energy capacity. Using deriva-

tions of Green Cores, we calculate it as ≡
∫ T

0 CGused(t)dt for a period of T.

4.8.2 Evaluation of Core-level VM Execution Model

We evaluate the proposed VM Execution Model’s ability to maintain the server load to

match available renewable energy capacity and its impact on the real-time performance

of VMs. Firstly, we signal openstack-gc prototype deployment with a 100% energy ca-

pacity to wake all Renewables-driven cores in the server. Then, we pin all cores by

deploying two 6-core VMs. In both VMs, we run the RTEval program for the duration

of the experiment to emulate a peak load. Then, we signal a 0% energy capacity.

Figure 4.8 shows the CPU package power observed throughout. We collect it via
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Intel’s Running Average Power Limit (RAPL) [5] interface. The CPU package draws up

to 75.79W at peak load with a relatively constant trend. t1 denotes the arrival of the

energy loss signal for 0% renewable energy capacity. openstack-gc’s response shows a

two-stage power reduction; t1 - t2 and t2 - t3. The former shows the power reduction

from evicting one of the VMs to unpin six cores. Latter shows the power reduction from

putting unpinned cores to deep sleep. After t3, CPU package power does not exceed

59W. It translates to a 22% reduction of the peak power draw. With the linear model

of CPU power to server power [96], our openstack-gc deployment shows a reduction of

22% of the server peak power in matching 100% to 0% loss of renewable energy capacity.

Figure 4.9 shows CPU core power characteristics. We capture operating frequency

and C6 deep sleep state residency (i.e. in a given measurement period, the percentage

that the core resided in the sleep state) of cores. We average it for the six cores that en-

ter deep sleep state after t3 (Renewables-driven cores), for the six cores that continue

to operate, and for overall. Until t2, openstack-gc maintains a constant 2700 MHz op-

erating frequency of cores with 0% residency in deep sleep, showing cores operating

at the real-time power profile. Afterwards, Renewable-driven cores mostly reside in a

deep sleep with 0 MHz operating frequency, showing their low power profile. It shows

that openstack-gc only changes power profiles after the VM eviction completion at t2.

Throughout the lifetimes of VMs, VM cores are allocated with physical cores in the real-

time power profile.

The spikes in maintaining the low power profile show the characteristics of control-

ling core power through Intel’s Power Optimization library that we use in openstack-gc.

Our prototype also has an overhead of running external services, including the Open-

Stack control plane services in the same server, which could be attributed to the spikes

shown. Despite that, the server power draw shows a 59W upper bound in figure 4.8,

showing openstack-gc can maintain a constant power reduction over the intermittent

spikes in the low power profile.

We then evaluate the superiority of our VM Execution Model’s static core allocation

shown in the load matching experiments by comparing that with baseline HVM’s ap-

proach of dynamic physical core allocation. HVMs approach is to change the number

of physical cores (pCPUs) allocated to the VM while preserving the number of virtual
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(a) CPU core C6 deep sleep state residency.

(b) CPU core operating frequency.

Figure 4.9: CPU core power of Intel’s RAPL [5] in server load matching of Openstack-
GC prototype.

cores (vCPUs). To evaluate its workload impact on real-time computing, we monitor the

real-time performance of an HVM over the dynamic allocation of pCPUs. Our experi-

mental HVM consists of 2 vCPUs. We set pCPUs to the real-time power profile. We then

execute the RTEval [7] program inside the HVM to measure the real-time performance.

We dynamically adjust the mapping of pCPUs through our virtualization management,

libvirt’s APIs3.

The results are illustrated in Figure 4.10. When the number of pCPUs ≥ to the num-

ber of vCPUs, the HVM sustains a consistent real-time latency performance, having both

mean and mean absolute deviation statistics consistent for all three cases of pCPUs ≥ 2.

The opposite shows increased latency variance inside the HVM. Compared to pCPUs

= 2−which maps to the performance of our VM Execution Model due to its static core

allocation−the case of pCPUs = 1 increases the mean latency by 30% alongside a 7.32×
increase of the mean absolute deviation of latency. In contrast, our VM Execution Model

can incur VM evictions. In the next experiment, we evaluate its impact on real-time

application performance.

3https://www.libvirt.org

https://www.libvirt.org
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Figure 4.10: Comparison of real-time latency performance over pCPU allocations for 2-
core HVM [6].

Next, we evaluate the impact of the proposed VM Execution Model at the applica-

tion layer. We use the Harvest VM (HVM) as a comparison baseline, the existing VM

execution model over Renewables-driven cores[6]. We use an experimental deployment

of OSM MANO [4], a Virtual Network Functions (VNF) orchestration and management

application layer, to match a real-time application layer having both critical and best-

effort components (see Table 4.2). In public clouds, server utilization is around 60%,

and the packing density (i.e. utilization of servers running at least one VM) is around

85% [103]. To match that, we use two 12-core servers and tightly pack one server with

two 6-core VMs while the other is left unused. MANO is a generic orchestration layer

where the exact time-bound requirements depend on the use case. Therefore, for VMs,

we measure the real-time latency of the VM kernel for a consistent real-time latency per-

formance independent of the use case. To match application-level reconfiguration over

component failures, we enable MANO’s auto-heal feature, which reconfigures itself via

VM redeployment. HVM executes VMs under resource variations. To match it’s worst-

case, we set the dynamics of Renewables-driven cores to sleep five cores in both servers,

such that HVM executes a VM with 6 VM cores allocated to one physical core. In con-

trast, the proposed approach evicts one of the VMs, triggering MANO to redeploy it in

the unused server. We obtain the time taken for reconfiguration via MANO’s event logs.

Figure 4.11 shows the real-time latency performance of the affected VM in both the

proposed and HVM approaches. In both methods, the remaining VM continues execut-

ing under the same core allocations without any performance impact since the server’s

physical core count is sufficient. Until the server core sleep event at time axis = 300, the

affected VM in both approaches shows the same mean real-time latency. Afterwards, the

core count reduces. With HVM, the affected VM’s mean real-time latency increases from
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Figure 4.11: Real-time performance comparison for different VM execution models with
OSM MANO [4] as the application layer. Mean real-time latency of RTEval [7] in affected
VMs is plotted over the experiment duration. The proposed model evicts VMs and HVM
reduces allocated physical cores.

8.13µs to 37.65µs. When comparing the coefficient of variation of the VM’s real-time la-

tency, it increases by 6.52×. With the proposed approach, the affected VM undergoes a

30-second service unavailability. However, when it resumes afterwards, the VM retains

the same real-time latency performance. The results show that, unlike the existing tem-

poral flexibility-based approach, the proposed VM Execution Model maintains intact

real-time latency performance. In doing so, it incurs brief service unavailability from

VM evictions as a trade-off. In the next section, we evaluate the role of our proposed

VM packing algorithm in reducing the impact of that on the application layer.

4.8.3 Evaluation of Server-level VM Packing Algorithm

We first evaluate the practical aspects of our VM Packing Algorithm with the openstack-

gc prototype over the default OpenStack. We focus on the scheduling overhead of our

implementation and the impact of service quality on renewables dynamics. Then, we re-

play long-running VM arrivals and renewable dynamics to evaluate renewables harvest

and long-term service quality impact with the large-scale simulation testbed.

We write a Python client to read VM arrivals in the Azure trace and make VM cre-

ation requests to openstack-gc deployment in real time. For each VM request, it spawns

a lifecycle management thread, which then waits in real-time and makes the VM cre-

ation request. Afterward, it periodically polls the deployment to check the deployed

VM status. Management thread completes if the VM has prematurely deleted, which

is then marked as an eviction incident, or the VM has lived to the lifetime provided in
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(a) Number of VM eviction incidents. (b) Distribution of normalized lifetimes (nLT) of
VMs with nLT CDF value ≤ 90%.

(c) Distribution of scheduling over-
head in VM deployment.

Figure 4.12: Performance of the proposed VM Packing Algorithm in VM packing exper-
iments of openstack-gc prototype.

the trace data, which then is deleted via a request made to the deployment. In parallel,

a separate client emulates renewables dynamics by reading the trace data. It emulates

a single peak renewables dynamics matching 24-hour solar availability by switching

Renewables-driven cores through openstack-gc APIs.

Figure 4.12 illustrates our results. Our proposed algorithm outperforms OpenStack

nova regarding the severity of eviction incidents. Eviction incident counts in Figure

4.12a show our proposed algorithm reduces critical VM percentage from 0.205 to 0.195

while leveraging that with best-effort VM evictions. In Figure 4.12b, our proposed al-

gorithm reduces CDF value for the 90% of normalized lifetime of VMs from 27.14% to

23.81%. In return, Figure 4.12c illustrates the distribution of scheduling overhead in

VM requests. Note that OpenStack logs that we leverage for that have a granularity

of seconds. In measuring the overhead values, we disable the synchronization over-

head of openstack-gc for OpenStack nova. In return, results demonstrate the impact of

additional scheduling overhead in openstack-gc, where the overhead distribution con-
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(a) Accumulation of harvested renewable energy
capacity.

(b) The number of VM eviction incidents.

Figure 4.13: Joint optimization of renewables harvest and VM eviction incidents of the
proposed VM Packing Algorithm for the 14-day Azure VM trace [8].

centrates to 2 seconds from 1 second. Increased scheduling overhead can delay the VM

deployment, resulting in lesser optimized packing decisions. For example, servers may

increase critical VM eviction incidents with renewable dynamics due to the lack of best-

effort VMs. Most of the scheduling overhead is attributed to the synchronization imple-

mentation of openstack-gc prototype, where the controller polls each server to collect

information in calculating the server inventory of Green Cores. With that, the overhead

shown in the results can increase with the deployment size. However, apart from that,

the remaining algorithm implementation does not significantly increase the schedul-

ing overhead. We use OpenStack’s default filter scheduler and integrate our algorithm

with its existing iteration of servers, avoiding additional re-iterations. Nevertheless,

our synchronization implementation in the openstack-gc prototype can be improved

by applying scheduling optimization techniques. For instance, Azure’s production VM

scheduler, Protean [103], addresses a similar scaling problem in VM packing by imple-

menting an optimistic concurrency model. Collectively, the results of VM packing with

openstack-gc prototype highlight its potential in improving VM eviction severity and

opportunities to improve its scheduling overhead for production deployments. Next,

we evaluate the proposed VM packing algorithm at scale for renewables harvesting over

long-running experiments.

For that, we use a large-scale simulation test bed to evaluate our framework at the

data center scale. In the test bed, we first implement Renewables-driven cores with a

trace of renewable energy dynamics and then implement the proposed VM Execution
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Model. We expose the test bed to a 14-day Azure VM workload arrival trace. We use our

proposed VM packing algorithm and comparison baselines to determine VM allocations

across servers.

We first tune our algorithm by observing its performance over short-running exper-

iments. We aim to jointly optimize the reduction of VM eviction incidents and increase

renewable energy harvest. Once tuned, we conduct 14-day packing experiments. Figure

4.13 shows (a) harvested renewable energy and (b) the number of VM evictions. Values

for the former are normalized among the comparison baselines, and values for the latter

are expressed as a percentage of the total number of VM requests.

Both baselines show their inability to conduct joint optimization. The best-fit al-

gorithm is most effective in harnessing renewable energy yet evicts over 2% of VM re-

quests. It incurs the highest amount of critical VM evictions among the three algorithms.

The crit-aware, on the other hand, shows the most effectiveness in reducing VM eviction

incidents with 0.25% of total VMs evicted with a 1.703×10−4% of critical VM evictions,

the lowest amongst three algorithms. However, it shows the least harvested renew-

able energy with an 80% reduction from the best-fit algorithm. Our proposed algorithm

shows a joint optimization, a 34.83% increase over crit-aware in harvested renewable

energy and a 79.64% reduction of VM eviction incidents compared to best-fit. Our algo-

rithm reaches 50% of the renewable energy harvest performance of best-fit with a 26.09%

VM eviction incidents of best-fit, showing its joint optimization characteristic to favour

lesser eviction incidents. Figure 4.14 shows distributions of a normalized lifetime (nLT)

of evicted VMs. The proposed VM packing algorithm surpasses best-fit and approaches

crit-aware with the CDF value for nLT ≤ 90%.

Sensitivity analysis: We conduct a sensitivity analysis of our algorithms hyper-parameters.

In the proposed packing algorithm, we represent each server using a 2-dimensional fea-

ture vector ≡ (drnw, dsq): drnw quantifies renewable energy usage and dsq quantifies the

possibility of VM eviction incidents. Parameters of our algorithm are two instances of

this vector (called ideal points), one for each critical and best-effort VM type. For initial

values, we set critical VM ideal point to (1, 0.5) such that those VMs prefer servers with

the potential to reduce VM eviction incidents, and best-effort ideal point to (0.2, 0.0)

such that those VMs prefer servers with the potential to harvest renewable energy.
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Figure 4.14: Distribution of normalized lifetime (nLT) of evicted VMs during the 14-day
VM packing experiment.

(a) Accumulation of harvested renewable energy
capacity.

(b) The number of VM eviction incidents.

Figure 4.15: Sensitivity analysis performance of the proposed VM packing algorithm.
24 hours experiments are conducted as the distance between ideal point parameters
change.

In subsequent experiments, we move critical ideal point closer to the other and con-

duct 24-hour packing experiments in each step. Figure 4.15 illustrates our results. As

ideal points move closer, our proposed algorithm favours increasing renewable energy

harvest, surpassing the leading baseline best-fit at a distance of 0.05. Although this be-

haviour compromises eviction incidents, the number of incidents is still less than that of

the best-fit. In contrast, as ideal points deviate, our proposed algorithm favours decreas-

ing eviction incidents, surpassing the leading baseline crt-aware at distances of 0.9875

and 1.30.

4.8.4 Discussion

Our evaluations show the potential of our framework to manage server power using

Renewables-driven cores. Per-core application of low power profile demonstrates our
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framework can reduce the server power to match supply variations of renewable en-

ergy. CPU power metrics shown during that indicate that if a core pins to a VM, that

core’s power profile transition will not occur. Even if unused cores are insufficient, the

framework evicts the VM first before changing the power profile. As a result, our frame-

work guarantees a static compute allocation throughout a VM’s lifetime. Evaluation of

the real-time latency performance of VM kernels shows that the static compute alloca-

tion provided in our framework significantly outperforms existing workload temporal-

flexibility-based VM execution solutions.

Our approach shows two trade-offs. Firstly, a sustained core power profile until

the completion of VM evictions requires redundancies in the data center power deliv-

ery to support the short periods of server power overdraws. However, existing cloud

data centers can support similar requirements [101]. Therefore, our framework fits into

existing data center designs. Secondly, the static compute allocation requires VM evic-

tions if enough unused cores are unavailable to match the energy supply. However, an

application-specific middleware layer in clouds manages real-time VMs, which provides

fault tolerance over VM evictions [4, 17]. Therefore, VM evictions in our framework do

not incur application-level failures for real-time workloads. Moreover, large-scale pack-

ing experiments show that our framework can reduce the number of VM eviction in-

cidents by utilizing core availability across the servers, jointly optimizing that with the

utilization of renewable energy capacity. Our eviction-based approach exploits findings

of a previous study showing that cloud applications prefer VM evictions over continued

VM execution with performance degradation [101].

Performance of our framework improves with the presence of best-effort VMs. There-

fore, cloud operators need to tune our algorithm according to the workload variations.

Sensitivity analysis of our framework’s packing algorithm parameters shows the ability

to support that (see Section 4.8.3). The algorithm can be tuned to favour renewable en-

ergy harvesting for a deployment that expects an increased number of best-effort VMs.

Otherwise, it can be tuned down to reduce the number of VM eviction incidents. Our

framework design expects server utilization levels in typical data centers, where a slack

of unused capacity is available [103]. It allows the real-time application layer to recon-

figure in the events of VM evictions. If the data center utilization levels are much higher,
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the application layer may be unable to do so. In such cases, the algorithm tuning must

be adjusted to reduce eviction incidents.

4.9 Summary

In this chapter, we explored how to integrate intermittent renewable energy sources with

deterministic real-time cloud systems. To this end, we proposed a framework consist-

ing of a VM Execution Model and a VM Packing Algorithm, which guarantees real-time

power profiles for workload VMs and jointly optimizes renewable energy harvesting

and application service quality. We practically implemented the proposed framework

as openstack-gc by extending OpenStack with an on-node per-core CPU sleep man-

agement daemon and a controller at the control plane. We evaluated the framework’s

power management and VM packing by experimenting on a two-node openstack-gc

prototype. Furthermore, we conducted 14-day long-running experiments to capture

the framework’s performance in optimizing renewables harvesting and VM interrup-

tions. As evidenced by our experiments, the proposed framework demonstrated its su-

periority in real-time workload management by reducing the coefficient of variation of

real-time latency in VMs by 6.52× over the existing workload temporal-flexibility-based

solution. Additionally, it showcased the safe energy harvesting capability with a joint

79.64% reduction of VM eviction incidents and 34.83% increase of harvested renewable

energy over state-of-the-art baselines.

This chapter utilized renewables-driven cores to optimize carbon for temporally in-

flexible real-time cloud systems. The key idea behind renewables-driven cores is to

manage server performance for available energy capacity while isolating performance

degradations to specific CPU cores, such that the remaining cores can operate at the

nominal performance. We did not explore the core-level performance isolation with

renewable energy dynamics beyond the real-time workloads. In the next chapter, we

study core-level performance isolation with low-latency applications, another type of

temporal inflexible workload that is prominent in public clouds. We explore opportuni-

ties present in latency Service Level Objectives of low-latency applications through core

deep idling to accommodate them with multi-region renewable energy harvesting.



Chapter 5

Load Shifting for Low-latency
Applications with SMT Core Pooling

Low-latency applications in clouds are often overlooked in multi-region renewable energy har-

vesting approaches. Cloud regions are typically interconnected via inefficient Wide Area Networks

(WANs); thus, shifting and serving low-latency workloads over WANs can impact application la-

tency Service Level Objectives (SLOs). In this chapter, we focus on containing low-latency applica-

tions within their local region to avoid serving over WAN and propose a load-shifting technique based

on core-level server power management of Simultaneous Multi-threading (SMT) server pooling. Us-

ing a hardware-software co-design approach, our technique maintains a static set of logical cores

amidst renewable energy dynamics and efficiently utilizes that for co-scheduling low-latency and

best-effort applications. We practically implement our approach with OpenStack and Intel Hyper-

threading technology of Intel CPUs and evaluate against Azue VM traces. Our results demonstrate

that in comparison to the state-of-the-art baseline, our proposed technique achieves an 80% reduction

in offloading low-latency VMs and a 43.81% reduction in coefficient of variation of p90 end-user la-

tency while having a worst-case latency compromise of 11.97% due to SMT cores.

5.1 Introduction

Cloud data center fleets are often spatially distributed and powered by sources inte-

grated with intermittent renewables, emitting varying amounts of CO2 per kilowatt-

hour (kWh) [96]. As a result, carbon optimization in cloud computing infrastructures

This chapter is derived from:

• Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, and Rajkumar Buyya, ”A Technique
for Load Shifting Low-latency Applications in Multi-Region Renewables Harvesting via SMT Core
Pooling”, IEEE Transactions on Power Systems [Submitted, May 2025].
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predominantly relies on load shifting−shifting workloads across data center locations

via cloud Virtual Machine (VM) scheduling [95–97, 119, 120]−to chase availability of

renewables for workload execution. Adversely, network traffic among spatially dis-

tributed data centers can hop through Wide Area Networks (WAN) with high latency

variances [11], resulting in unpredictable end-user latency performances in VMs. For

instance, when aggregated network traffic of VMs reaches edge routers of WAN, traf-

fic management at the IP layer that is unaware of the aggregation can split them into

tunnels with different latency performances [11]. To avoid potential application per-

formance degradation from such unpredictable latency performances, cloud providers

often limit load shifting to best-effort workloads with flexible latency requirements, such

as scientific simulations, batch processing, and machine learning training [96]. To this

end, this chapter explores the opportunities in accommodating low-latency workloads

for cloud load shifting, emphasizing minimizing the high latency variance that VMs

experience during load shifting.

Use cases of cloud low-latency computing are emerging across various industries, in-

cluding healthcare, factories, automotive, and aviation [105]. According to recent fore-

casts, they are predicted to accommodate nearly 30% of the world’s data in the near

term [99]. Today, low-latency computing plays a vital role in content delivery networks,

streaming applications, and applications of recent AI-boom, such as serving genera-

tive AI models. Figure 5.2 illustrates a spectrum of such applications available in the

cloud according to their latency Service Level Objectives (SLOs). Preserving latency

SLOs is imperative to maintain application service quality, whereas accommodating the

growing low-latency applications in load shifting is equally important for the sustain-

able growth of clouds. The key challenge is the workload impact from cloud network

overheads. At renewables supply valleys, the data center’s workload must be migrated

to match the server’s reduced resource capacity. As migrations often move workloads

across WANs, workloads are then susceptible to WAN’s high latency variances. Exist-

ing techniques for load shifting either compromise latency performance with potential

server performance throttling [54] or do not consider opportunities in limiting workload

migration within the data center.

To address these gaps, we propose a technique that aims to contain low-latency ap-
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plications within the local cloud region. We leverage a hardware-software co-design

approach. At the hardware level, we tackle the server resource capacity reduction prob-

lem in renewable supply valleys. We apply an application-independent CPU core-level

power management mechanism with two heterogeneous server pools. CPUs in server

pools are physically the same, yet one enables simultaneous multi-threading (SMT) to

double the available server logical cores through hardware multi-threading. During

supply valleys, half of the CPU cores are set to deep idle and restored at the peaks.

In return, we maintain a static set of logical cores across the server pools. At supply

valleys, servers of the SMT pool exhibit the static set, whereas the servers of the non-

SMT pool exhibit the static set at supply peaks. At the software level, we dynamically

chase the static set of logical cores across the server pools for low-latency workloads. In

our technique, load shifting for low-latency workloads is mostly conducted within the

local cloud region using its fast network fabric, eliminating the communication over-

heads of WAN. Further, executing low-latency workloads in the SMT pool incurs only a

minimum performance overhead since SMT cores use hardware multi-threading, which

provides better performance.

We implement our technique with OpenStack and core-level power management

with CPU idle states. To evaluate, we use an experimental cloud region with SMT server

pooling and a local network fabric. We use an HP ProLiant server for each pool with a

12-core Intel Xeon silver CPU. We enable SMT through Intel Hyper-threading technol-

ogy. We use VM arrival data from Azure’s workload traces and renewable dynamics

from ELIA solar data. We measure low-latency performance inside VMs by running the

Cyclictest tool. The key contributions of our work are as follows:

(1) Propose a new technique for localized load shifting of low-latency workloads to in-

tegrate renewable energy, avoiding the latency compromises of workload shifting over

WANs across geographical regions.

(2) Implement the proposed technique in real cloud settings and conduct detailed exper-

iments using production VM and renewable energy data.

(3) Evaluate the proposed technique against state-of-the-art baselines, focusing on main-

taining low-latency performance. Our results show an 80% reduction in offloading low-

latency VMs, a 43.81% reduction in coefficient of variation of p90 end-user latency, and
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Table 5.1: Comparison of relevant works with our proposed technique for load shifting
with low-latency applications.

Work Multi-
cloud

Carbon Op-
timization

Load
Shifting

Uninterruptible
Execution

Low-
latency

Applica-
tions

Static
Resource
Capacity

Radovanovic’23
[96]

✓ ✓

Carbonscaler’23
[121]

✓ ✓ ✓

Zheng’20 [97] ✓ ✓ ✓
CDN-Shifter’24
[122]

✓ ✓ ✓ ✓

Our Proposed ✓ ✓ ✓ ✓ ✓

an 11.97% performance compromise due to SMT cores.

The rest of the chapter is organized as follows: Section 5.2 discusses related work.

Section 5.3 provides the background and motivation for our problem. Section 5.4 de-

tails our system model and problem formulation. Section 5.5 presents our technique

to accommodate low-latency applications for multi-region renewables harvesting using

SMT core pooling. Section 5.6 outlines our implementation of the proposed technique.

Section 5.7 presents the performance evaluation of the proposed technique, and finally,

Section 5.8 summarises the chapter.

5.2 Related Work

Integrating renewables in clouds: Many previous studies have explored integrating re-

newable energy into cloud data center operation. They commonly exploit load shifting

techniques in both space and time, such as geographical load balancing [96, 121, 122],

VM migrations [95–97, 119, 120], and workload admissions and capacity planing [96].

Most techniques are intended for flexible workloads that can tolerate delayed execu-

tion and responses. For instance, carbon optimization at Google [96] leverages internal

workloads that can withstand delays as long as 24 hours, such as machine learning, data

processing, and simulation. They employ virtual capacity curves across their geographi-
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cally dispersed data centers and employ temporal shifting to perform carbon-optimized

computing. Some works explore shifting workloads across locations over WAN, con-

sidering the impact of WAN’s dynamic traffic congestion towards the workloads [123].

However, they do not focus on low-latency applications and only focus migration cost

calculations for the energy cost of the transfer. In contrast, we explore geographical

load shifting to accommodate low-latency applications and provide a technique to bet-

ter manage server power over intermittent renewable energy while maintaining service

quality of low latency applications.

VM scheduling of dynamic inventories: Cloud VM scheduling for energy management

is a widely researched problem [103, 104]. Many aim to optimize VM scheduling to in-

crease energy efficiency for static inventories, where server resources remain static and

server power is managed through the workload management [124]. However, recent

works explore VM scheduling for dynamic inventories where available server resources

are adjusted to tolerate the changes in the data center power delivery. For instance, Mi-

crosoft increase utilization of their clouds via power oversubscription, where server are

provisioned to oversubscribe the power capacity [101] and power overdraw events are

managed by throttling the server compute capabilities. They leverage a dynamic VM

scheduling technique to reduce the workload impact, considering VM priority levels.

However, workload throttling in their approach can lead to non-deterministic applica-

tion performances. In our work, we employ a dynamic inventory to absorb renewable

intermittencies and conduct VM scheduling to leverage the idea of chasing static re-

sources within the datacenter for low-latency applications, providing better stability in

application performance.

5.3 Background and Motivation

In this section, we provide background on load shifting for the utilization of renewable

energy across geographically distributed cloud regions, introducing its dynamic server

resource scaling problem and challenges in accommodating low-latency applications.

We then detail our motivations for solving those.

Dynamic server resource scaling problem in utilizing intermittent renewable energy
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Figure 5.1: Average operational gross carbon emissions per unit of energy from the
power grid across Google cloud regions [9].

availability across cloud regions: Cloud providers provision data centers across geo-

graphical regions around the globe to cater to various requirements, such as end-user

latency and data privacy. [9]. Those regions are powered by electricity grids with vary-

ing carbon intensities in their supply, primarily due to the integration of intermittent

renewable energy sources such as solar and wind [121]. Recently, driven by 24/7 zero

emission goals [125], hyper-scale cloud providers increasingly utilize low-carbon com-

puting opportunities across their cloud regions [96]. Figure 5.1 illustrates grid carbon

intensity per unit of energy across Google cloud regions. In that, executing workloads

with lower carbon intensity is beneficial in reducing cloud providers’ carbon footprint.

In doing so, cloud platforms model carbon intensity as a resource for optimization. Since

the carbon intensity of cloud regions predominately depends on the supply dynamics of

renewable energy sources, it can be modeled as a dynamic server resource scaling prob-

lem, where server resource capacity scales up or down depending on the supply dy-

namics of clean energy. Recent examples of such can be seen in virtual capacity caurves

[96] and workload scaling for carbon-optimization [121]. The key approach in address-

ing dynamic server resource scaling is load shifting, where the execution of workloads

is either shifted in time or space across cloud regions.

Challenges in accommodating low-latency applications for load shifting: Low-latency
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Figure 5.2: Low-latency applications in cloud data centers [10].

Figure 5.3: Traffic management at IP layer splitting aggregated traffic flows of cloud
VMs when communicating over WAN [11].

applications require maintaining an upper bound in their end-user communication la-

tency. Figure 5.2 illustrates a spectrum of end-user latency for various low-latency appli-

cations in the cloud. Such applications are increasingly prevalent [99]; thus, their impact

on carbon-aware cloud computing is growing. However, low-latency applications are

not flexible in load shifting, primarily due to the complexities in maintaining their rigid

performance constraints amidst server resource down-scaling of renewable energy sup-

ply valleys. These applications cannot tolerate longer service unavailability in shifting

across time, and more importantly, they cannot tolerate shifting across space (i.e., shift-

ing among cloud regions) due to unpredictability in network performance connecting

the cloud regions. Figure 5.3 illustrates an example of that. Geographically distributed

cloud regions are connected using wide area networks (WAN). Each cloud region con-

nects to the WAN using an edge router and passes its network traffic flows to the WAN’s

traffic management. Recent studies show that WAN’s traffic management at the IP layer

is unable to distinguish aggregated traffic flows of a cloud virtual machine; thus, an ag-

gregated traffic flow can get split at the edge router, routed through different paths with

various latency performances before arriving at the destination [11]. The resulting ap-
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plication end-user latency is unpredictable and unfavorable to application users [101].

Further, increased latency performance may violate application service level agreements

(SLAs), which can incur costly penalties to the cloud provider.

Motivations: Therefore, to accommodate low-latency applications in load shifting, we

identify server resource down-scaling at renewable energy supply valleys as its ma-

jor bottleneck. Since load shifting must offload workload outside the local cloud re-

gion to match scaled-down server resource capacity, we hypothesize that maintaining a

static resource capacity amidst renewable supply valleys for low-latency applications

would enable load shifting to retain those within the local cloud regions, avoiding

costly communication overheads of WANs. In this context, we outline the following

research questions to draw our motivations for this chapter.

o1: Can we manage static server resource capacity amidst renewables valleys to yield an infras-

tructure favorable for low-latency applications?

o2: For a technique designed to achieve o1, what compromises are made, and more importantly,

can the compromises operate within the service level agreements (SLAs) of low-latency applica-

tions?

In order to address o1 and o2, we propose a load-shifting technique to accommodate

low-latency applications in carbon-aware cloud computing. Section 5.5 details its in-

ner workings, Section 5.6 describes our implementation of the proposed technique, and

Section 5.7 evaluates and discusses its performance over state-of-the-art baselines.

5.4 System Model and Problem Formulation

Figure 5.4 illustrates our system model. We consider a multi-region cloud deployment.

Each region integrates intermittent renewable energy in the data center power delivery.

As a result, data center servers in each cloud region undergo dynamic energy capac-

ity availability. In return, server compute capacity dynamically scales up and down.

We model that with the dynamic server resource scaling model. Workload schedulers

in cloud regions match their workload execution with the server resource availability

via load shifting both within the data center and data centers across regions via VM of-

floading over a Wide Area Network (WAN). Regions receive workloads as VM arrivals,
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Figure 5.4: System architecture of the proposed load shifting technique.

which are either VMs of low-latency applications or VMs of best-effort applications.

The WAN that connects regions offer network routes with varying latency performance,

which we model with the latency performance model. Using the derived models, we

then formulate our problem.

Server dynamic resource scaling model: We model server resource scaling from the

dynamic availability of renewable energy capacity through availability of CPU cores.

Given the energy capacity, server power is managed by enabling a sufficient amount of

CPU cores. The same technique has been commonly used as a core-level server power

management mechanism [6, 102].

A data center in our model integrates a mixed power delivery of both carbon-intensive

stable power sources, such as fossil fuel-based energy generation, and low-carbon-intensive

intermittent renewable energy sources, such as solar and wind. Stable sources provide

baseline energy capacity for the data center, whereas intermittent sources provide peaks

and valleys of low-carbon-intensive energy availability. Data center power consump-

tion is typically a combination of information and technology components (IT) such as

servers, cooling, and internal power conditioning systems [110]. Servers in our system

model facilitate CPU-intensive low-latency and best-effort workloads. Therefore, ma-

jority of dynamic power draw variations corresponds to CPU power. For such systems,

prior works show server power can be estimates as a linear function of CPU power with

90% accuracy [112]. Moreover, for multi-core CPUs, the cumulative sum of core power

becomes a close upper bound to the CPU power [113]. Combining both, we use the

following model to estimate server power.
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PS(t) = f (
N

∑
i=1

PCOREi(t)) (5.1)

where at time t = t, PS(t) is the server power, N is the number of homogeneous cores,

PCOREi(t) is the power consumption of the ith core, and f is a linear function.

We set server power capacity of the stable grid energy sources (Pgrid), such that grid

capacity is sufficient to support both non-IT power load and half of the peak IT power

load.

Pgrid = PSpeak /2

We set power capacity from the renewable sources (Prnw(t)) as a two level power

signal, where once sufficient capacity is available, renewable sources are able to provide

power to support peak server load.

Prnw(t) =

PSpeak /2, t = High renewables

0, t = Low renewables

With that, we define our dynamic server capacity scaling model (Pcap(t)) as,

Pcap(t) = Pgrid + Prnw(t)

WAN latency performance model: We model WAN latency performance based on the

traffic management characteristics of WANs connecting multi-region cloud deployments

[11]. In that, communication latency across WAN is unpredictable, thus changes over-

time. With that, we model WAN latency performance as follows.

For the duration of ∆T, the set of executed low-latency VMs (SVM) is,

SVM = {VM1, ..., VMm}

For SVM, we calculate WAN latency performance (Lat(SVM)) as,

Lat(SVM) =
1

∑m
i
∫ ∆T

t Li(t) dt
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where Li(t) is the end-user latency of the ith VM at time t.

Problem formulation: We formulate our problem as follows. Given an arbitrary time

period ∆T, maximize end-user latency performance of VMs while meeting the dynamic

capacity scaling of servers.

Maximize Lat(SVM) and ∀S ∈ Servers, PS(t) ≤ Pcap(t)

5.5 Load Shifting for Low-latency Applications with SMT Core
Pooling

In this section, we detail the design of our load shifting technique. Our technique ad-

dresses the research questions identified in Section 5.3 to accommodate low-latency ap-

plications in cloud load shifting. In Section 5.7 we showcase its superiority in delivering

improved latency performance for low-latency applications.

Figure 5.4 illustrates the system architecture of the hardware-software co-design of

the proposed technique. At the hardware level, we leverage heterogeneous server pools

of SMT cores to maintain a static CPU capacity amidst renewable supply dynamics. We

employ core-level power management to meet the dynamic resource scaling of servers

for renewable supply variations. In return, we maintain a static set of logical cores cores

across the server pools. We then exploit the static set at the software layer. Using a

novel VM scheduling algorithm, we efficiently manage low-latency application VMs

for the static set, lowering their possibilities of shifting over the WAN. Our approach

involve three steps: 1) Core-level power management to meet server resource scaling, 2)

SMT pooling to yield static resource availability, and 3) novel VM scheduling algorithm

to utilize SMT pooling for low-latency VMs. Collectively, we maximize retaining low-

latency VMs within the local region by exploiting the hardware multi-threading of SMT.

5.5.1 Hardware-level logical core management

Server power management: To cater to dynamic server resource scaling for the supply

dynamics of renewable energy, we employ per-core deep idling [126] to manage the
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server power draw. At t = Low Renewables, we set half of the server cores into the

deep sleep, such that the peak power draw of the server meets Pcap(t).

PS(t = Low Renewables) ≤ f (
N/2

∑
i=1

PCOREpeak)

where PCOREpeak is the peak power draw of each homogeneous core. Opposed to that, we

awake all cores to better utilize Pcap(t) at t = High Renewables.

PS(t = High Renewables) ≤ f (
N

∑
i=1

PCOREpeak)

We then leverage CPU Simultaneous Multi-threading (SMT) to exploit our server

power management to yield a static set of CPU resources.

SMT pooling: Simultaneous Multi-threading (SMT) in CPUs doubles the available num-

ber of logical cores [127] while providing better performance due to its hardware multi-

threading nature. To exploit our server power management with SMT, we maintain two

server pools where the servers in one of the pools enable SMT (i.e., SMT pool). The num-

ber of logical cores in servers of the SMT pool is double the amount of its physical CPU

cores. In combination with our server power management, which deep idles half of the

physical cores at renewable supply valleys, we realize a static set of logical cores across

the server pools, regardless of the renewable supply state. At supply valleys, servers in

the SMT pool provide the static set of logical cores, whereas, at supply peaks, servers

in the non-SMT pool provide that instead. An example of that is illustrated in Figure

5.4. In that example, N is set to 4. At supply peaks, the non-SMT pool exhibits four

logical cores, and the SMT pool exhibits eight logical cores. At supply valleys, the SMT

pool exhibits four logical cores. Collectively, a static set of four logical cores is present

in the local region at all times, which is a significant advantage over traditional server

power management, where the renewable energy integration often down scale resource

capacity of each server.

The primary reason for not enabling SMT in both pools is that core oversubscription

methods such as SMT can still impact the low-latency performance of VMs [29]. In our

system architecture, the static set of logical cores only rely on SMT cores during energy

supply valleys, thus the latency performance impact is further reduced. In the next
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Algorithm 4 Proposed VM Scheduling Algorithm for SMT Pooling
Input: v: Incoming VM request,
Ssmt: Set of servers in the SMT pool,
Snon-smt: Set of servers in the non-SMT pool,
P(t) ∈ {peak, valley}: Renewable supply state at time t,
P(t−) ∈ {peak, valley}: Renewable supply state at time t−

Output: Scheduling decisions for incoming VM placement and server pool manage-
ment

1: function HANDLEVMPLACEMENT(v, P(t))
2: if ISLOWLATENCY(v) then
3: if P(t) = peak then
4: PLACE(v, Snon-smt)
5: else
6: NOTADMIT(v)
7: else
8: if P(t) = peak then
9: PLACE(v, Ssmt)

10: else
11: PLACE(v, Ssmt ∪ Snon-smt)
12: function HANDLEPOWERTRANSITION(P(t−), P(t))
13: if P(t−) = peak and P(t) = valley then
14: OFFLOADBESTEFFORTVMS(Ssmt)
15: LIVEMIGRATE(v ∈ low-latency, Snon-smt, Ssmt)
16: else if P(t−) = valley and P(t) = peak then
17: OFFLOADBESTEFFORTVMS(Snon-smt)
18: LIVEMIGRATE(v ∈ low-latency, Ssmt, Snon-smt)
19: while SYSTEMISRUNNING do
20: if ISPOWERTRANSITION(t−, t) then
21: HANDLEPOWERTRANSITION(P(t−), P(t))
22: for all v arriving do
23: HANDLEVMPLACEMENT(v, P(t))

subsection, we efficiently utilize the static set of logical cores for low-latency applications

via a novel VM scheduling algorithm.

5.5.2 Software-level VM scheduling algorithm

In this section, we propose a software-level VM scheduling algorithm to utilize the

hardware-level logical cores provided by SMT pooling. Algorithm 4 outlines our VM
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scheduling algorithm. It takes incoming VM placement requests and the state of the re-

newable energy supply (i.e., peak or valley) as inputs. It then determines VM placement

decisions and handles server pool management for renewable energy dynamics.

The pseudo-code for VM placement is outlined in the subroutine HANDLEVMPLACE-

MENT (line 1). It first identifies the criticality of the VM as either low-latency or best-

effort (line 2). For low-latency VM placement requests at peak renewable energy supply,

requests are admitted to the cloud region for placement and deployed in the non-SMT

pool. Since CPU cores of the non-SMT pool do not have the performance overhead

of having hardware multi-threading, the placement decision aims for maximum CPU

performance. Conversely, requests will not be admitted to the cloud region if the renew-

able energy supply is at a valley (line 5). At that stage, available cores in the non-SMT

pool are reserved to restore the performance of already deployed low-latency VMs at

renewable energy peaks. We provide inner details of the server pool management in

the next paragraph. In the case of best-effort VM placement requests (line 7), we admit

and deploy those regardless of the renewable energy supply state, with the exception of

limiting their deployment to the SMT pool during supply peaks (line 9).

The pseudo-code for server pool management is outlined in the subroutine HAN-

DLEPOWERTRANSITION (line 12). It takes two input parameters: the state of the renew-

able energy supply at times t and immediately before (t−). In case of a transition from

supply peak to a valley, we first offload best-effort VMs in the SMT pool from the cloud

region (line 14) and internally live migrate low-latency VMs to the SMT pool from the

non-SMT pool. Here, offloaded VMs are handled similarly to standard load shifting

across cloud regions, which places those VMs outside the local cloud region. Our ap-

proach exploits the best-effort nature of VMs to relax constraints in offloading. In the

case of a transition from supply valley to a peak, we first offload best-effort VMs from

the non-SMT pool and live migrate VMs from the SMT pool to the non-SMT pool (line

16). Overall, through live migrations, server pool management maintains deployed low-

latency VMs inside the data center. Migrations cause minimum disruption to the appli-

cation execution, and most importantly, end-user latency performance is kept intact by

keeping VMs in the same cloud region throughout. We make room for the low-latency

VMs via offloading best-effort VMs, aiming for a minimum impact from geographical
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load shifting towards the application service quality.

Our algorithm’s collective management of VM placement and server pool manage-

ment is designed to improve the service quality of the cloud region’s already admitted

low-latency VMs. It improves the utilization of SMT pooling and the server power man-

agement’s approach of halving the number of available physical cores, guaranteeing a

fixed resource capacity for low-latency VMs through their live migrations and offload-

ing best-effort VMs.

5.6 Implementation

We implement our proposed technique in a real experimental cloud environment. We

implement core-level power management of servers via the CPU idle states feature [128]

and SMT pooling using the same feature present in server CPUs [129], both for Intel

CPUs. We implement our proposed VM scheduling algorithm at the cloud resource

management layer using OpenStack [118].

First, we implement core-level power management of the server by deploying a dae-

mon service in each server [130]. The daemon service wraps the Intel power optimiza-

tion library that provides low-level API control of the CPU C-States in each CPU core.

We then expose high-level RESTful APIs to the deep idle half of the CPU cores. As a

result, upon receiving a core deep idle request, the daemon service overrides the de-

fault kernel’s behavior of CPU idle states and maintains half of the CPU cores at the

deepest C-State. Conversely, a wake request will restore the deep idle state. We write

the daemon service in golang. Secondly, we select the set of servers for the SMT pool

and enable CPU hyper-threading through their BIOS settings. Finally, we deploy Open-

Stack to manage the servers. We modify its default server filter in the VM scheduling

workflow to omit specific server pools for certain VM types (see Algorithm 4). We as-

sume VM placement requests that are unsuccessful in finding a scheduling decision will

be offloaded from the cloud region. Further, we implement a Golang controller in the

OpenStack control plane for server pool management. It is driven by the events from

the renewable energy supply, for which we expose a high-level API. Upon triggering,

it conducts live migrations between servers and emulates VM offloading by conducting
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VM evictions through OpenStack APIs (see Algorithm 4).

5.7 Performance Evaluation

In this section, we evaluate the performance of our proposed technique. We outline our

experimental design and setup, compare our results with the state-of-the-art baseline,

and analyze them in detail.

5.7.1 Experimental design and setup

We conduct evaluation experiments in a real prototype multi-node cloud region. We

model the multi-region characteristics for our experiments using real measured data

from production cloud regions [11]. In our prototype cloud, we allocate an identical HP

ProLiant server to each SMT and non-SMT pool. Each server has an Intel Xeon CPU

with 12 physical cores. For the SMT pool, we enable Intel Hyper-threading through its

bios settings. Both servers are part of a research server cluster in a private network and

share a fast network fabric. We install OpenStack in both servers, marking one as the

control plane. We deploy our Golang daemon service on both servers and the Golang

controller on the server marked for OpenStack’s control plane.

Baselines:

We compare our proposed technique with state-of-the-art Space-Shifting. Space-shifting

is the predominantly used load shifting technique [96, 122]. It aims to manage the cloud

region’s power draw by shifting its flexible workloads across space to other cloud re-

gions based on energy availability. We use space-shifting to compare the superiority of

our proposed technique in accommodating low-latency workloads.

Workloads:

We use Microsoft Azure’s VM packing data [8] to expose our testbed to realistic VM

requests in production clouds. We scale Azure’s data to match our experimental de-
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ployment by sampling and synthesizing VM arrival traces using the data. For renew-

able energy supply dynamics, we use solar dynamics data from the ELIA dataset [116].

Further, we use real latency variation data measured for cloud regions [11] in our exper-

imental setup to evaluate VM latency impact from shifting.

Metrics:

To measure the latency performance, we use two latency metrics. We use application

latency performance to measure the performance impact inside the low-latency VM. We

use end-user latency to measure the impact of shifting VMs across the WAN. To mea-

sure application latency performance, rather than measuring the latency performance

of specific cloud applications, we monitor the latency performance of the VM’s guest

operating system. For that, we use the cyclictest tool [114]. For end-user latency, we use

WAN latency data. For that, we measure latency for the duration of the VM’s lifetime

provided by the trace data. Using a statistical model we build from WAN latency data,

we sample a latency value for each time step and get the aggregated value. To mea-

sure the scheduling performance, we monitor the number of Retained, Offloaded, and

Not Admitted VMs in the cloud region. Retained VMs complete their lifetime inside the

cloud region, offloaded VMs are interrupted at mid-life to get shifted over WAN, and

not-admitted VMs are diverted to a different cloud region at admittance.

5.7.2 Results and Analysis

We evaluate the performance of our proposed technique using a two-fold approach.

Firstly, we evaluate the performance impact of executing VMs on the heterogeneous

server pools. Secondly, we evaluate the performance impact of various placement deci-

sions made due to the load-shifting approach.

Application latency performance with SMT pooling: Due to SMT pooling, VMs in our

technique can be deployed on either SMT or non-SMT cores. To evaluate application

latency performance, we measure the latency performance of the guest operating system

for various core allocation configurations. Since SMT cores share CPU components, our

experiment is designed to measure the performance impact as resource contention in
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Figure 5.5: Comparison of mean application latency performance of heterogeneous
server pools as resource contention increases.

the CPU increases. We first allocate VMs to occupy a portion of the CPU cores available

in a server of each pool. Then, we execute a system load in the VM to emulate a utilized

application and measure the latency performance of the guest operating system. We

then repeat the experiment for different allocated CPU core portions until it reaches

100%. Our experiment measures the low-latency application impact of deploying a VM

in a server for different packing levels across the server pools. Figure 5.5 illustrates the

results. It shows the mean latency value measured for the guest operating system over

the utilization of the server’s virtual CPU cores (vCPU) across both SMT and non-SMT

pools.

The results show that the impact of application latency from deploying a VM on a

specific server pool significantly depends on CPU utilization. For both 33% and 67%

of the vCPU utilization, the mean latency performance of VMs on SMT and Non-SMT

pools is around 8 microseconds. However, as utilization increases to 100%, there is

a significant increase in the VM mean latency, where packing on SMT cores increases

from 8 to 10 microseconds. Packing on non-SMT cores increases from 8 to only about

9 microseconds. In comparison, packing on SMT cores increases the mean latency by

11.97%. In this context, the application latency impact of placing a VM across hetero-

geneous server pools depends on the service quality of the application. For instance,

server pooling will primarily impact an application sensitive to 1-microsecond perfor-

mance degradation. In contrast, low-latency applications that can tolerate larger latency

penalties will not exhibit degradation in their service quality.



5.7 Performance Evaluation 131

(a) Comparison for Best-effort VMs. (b) Comparison for Low-latency VMs.

Figure 5.6: Comparison of VM scheduling performance in the experimental cloud re-
gion.

Scheduling impact of low-latency VMs: In this experiment, we measure the scheduling

impact of retaining deployed VMs inside the cloud region during its lifetime, offloading

VMs in mid-life to other cloud regions, and VM admittance to the cloud region. We

replay VM request arrivals of the Azure trace and 24-hour renewable supply change

dynamics. We define a threshold in the renewable energy supply to define peaks and

valleys. Afterward, we conduct the same experiment for our proposed technique and

the baseline. Figure 5.6a and 5.6b illustrates the results for each best-effort and low-

latency VM types. It shows the number of VMs in each category of the x-axis.

The results show that the proposed technique significantly surpasses Space-Shift in

reduced offloaded events for low-latency VMs with an 80% reduction. In comparison,

it increases the best-effort VM offloading. In admitting VM requests for deployment,

the proposed technique is closely the same, with a slightly decreasing number of not-

admitting events for both best-effort and low-latency VM types. The Space-Shift ap-

proach performs better in retaining both low-latency and best-effort VM types. Collec-

tively, the behavior of the proposed technique shows its superiority in managing low-

latency VMs. This is because prior studies show that even with relatively degraded

performance, users favor a deterministic application performance [101]. In that regard,

offloading events incur the most disruption to low-latency applications since offload-

ing can introduce latency overheads from the wide area network’s performance. The

proposed technique shows the minimum offloading events and compromises in not ad-

mitting VMs. Although not admitting does shift the VM across WAN, end-user service
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Figure 5.7: Comparison of p90 end-user latency distribution of Low-latency VMs.

quality would indicate the degraded performance since deployment rather than show-

ing mid-life.

End-user latency impact of low-latency VMs: We measure the impact of end-user la-

tency in our scheduling impact experiments to evaluate the impact of shifting VMs

across WAN. Using probabilistic models, we generate data from real inter-cloud-region

latency over WAN. We sample a distribution of latency values for each VM for the life-

time and calculate its p90 value. WAN latency does not impact retained VMs, which

complete their entire lifetime inside the local cloud region. However, WAN latency does

impact the not-admitted VMs and has a partial impact on offloaded VMs. Figure 5.7

illustrates the results. It compares the distributions of p90 latencies of VMs.

The results show the superiority of the proposed technique in reducing the p90 la-

tency variance. Although there are several outliers, the latency performance of VMs

with the proposed technique primarily concentrates around 40 milliseconds with a coef-

ficient of variation of 0.62. In contrast, with Space-Shift, the p90 latency value disperses

around 20 milliseconds with a coefficient of variation of 1.10. The proposed technique re-

duces the coefficient of variation of p90 latency by 43.81%. Therefore, the results indicate

that VMs managed with the Space-Shift technique will most likely deliver unpredictable

end-user performance compared to the proposed approach, which is unfavorable for the

service quality [101].
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5.8 Summary

In this chapter we explored how maintaining static resources amidst renewable energy

supply dynamics enable accommodating temporal inflexible low-latency applications

for multi-region renewables harvesting. To this end we proposed a technique to em-

ploy a hardware-software co-design for maintaining a static set of logical cores in CPUs.

Firstly, at the hardware level, we conducted core-level server power management by

deep idling and awakening half of the physical CPU cores to match renewable valleys

and peaks, respectively. We employed two server pools, with one enabling Simultane-

ous Multi-threading (SMT) in the CPU, doubling the available logic cores. As a result,

we realize a static set of logical cores that is always present in one of the SMT or non-SMT

server pools. Secondly, at the software level, we leveraged a novel VM scheduling algo-

rithm to efficiently utilize the static logical core set for low-latency application VMs. We

implemented our technique with OpenStack for Inter CPUs and evaluated using Azure

VM traces on a practical two-node prototype. As evidenced by our results, the pro-

posed technique surpassed state-of-the-art baseline with an 80% reduction in offloading

low-latency VMs, 43.81% reduction in coefficient of variation of end-user latency, and

worst-case latency compromise of 11.97% due to SMT cores.

So far, thesis chapters explored techniques to optimize the operational carbon foot-

print of prominent latency-sensitive cloud computing environments. In the next chapter,

we study how to optimize the infrastructure embodied carbon footprint. In particular,

we focus on rapidly growing Large Language Model (LLM) inference clusters. LLM

inference clusters exhibit significant embodied carbon accumulation rates due to their

shorter hardware refresh lifecycle. We explore opportunities to extend the amortization

of procured embodied carbon in LLM inference clusters by slowing the aging effects of

their hardware components through efficient resource management.





Chapter 6

Embodied Carbon Amortization for
Low-latency LLM Inference Clusters

Broad adoption of Large Language Models (LLM) demands rapid expansions of cloud LLM in-

ference clusters, leading to the accumulation of embodied carbon that mostly concentrates on the

inference server CPU. In this chapter, we study the amortization of CPU embodied carbon in in-

ference clusters and propose an aging-aware CPU core management technique to further amortize

embodied carbon over an extended lifespan. We uncover CPU underutilization patterns in LLM

inference and exploit those using core deep idling to slow down CPU aging effects. We conduct ex-

tensive simulation-based experiments using real-world trace data with an extended simulator from

a public cloud provider. When compared with state-of-the-art baselines, our results demonstrate an

estimated 37.67% reduction in yearly embodied carbon emissions through p99 performance of man-

aging CPU aging effects, a 77% reduction in CPU underutilization, and less than 10% impact on

the inference service quality.

6.1 Introduction

The proliferation of applications driven by cloud-based generative Large Language Model

(LLM) inference is seen across diverse domains, such as conversational agents [16], ed-

ucation [18], and coding assistance [131]. As the popularity of such applications scales

their user base to billions [132], cloud service providers continue to expand LLM in-

This chapter is derived from:

• Tharindu B. Hewage, Shashikant Ilager, Maria Rodriguez Read, and Rajkumar Buyya, ”Aging-
aware CPU Core Management for Embodied Carbon Amortization in Cloud LLM Inference”, Pro-
ceedings of the 16th ACM International Conference on Future and Sustainable Energy Systems (E-ENERGY),
Rotterdam, Netherlands, June 17-20, 2025 [Accepted].
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Figure 6.1: Carbon footprint of A100x4 GPU server running per second inference appli-
cation when powered by energy sources with different carbon intensity [12].

ference clusters towards the GigaWatt scale to support the growing demand [133]. Re-

cently, Meta announced its plans to build a brand new data center targeting AI work-

loads [134], and xAI plans to expand their AI cluster from 100K to 1 million GPUs [135].

LLM Inference clusters deploy and serve pre-trained LLMs [14]. In inference, a user

request (i.e. prompt query) is split into a set of input tokens. Input tokens are then fed

to the model (i.e. forward pass) to generate the first output token and an intermedi-

ate context called KV-cache. KV-cache and the first token are then fed for the second

forward pass, and the process is repeated until a stopping condition is met [14]. In re-

turn, a single request can incur many forward passes. To reduce the latency in that,

clusters employ parallel model computation via GPU accelerators [136]. Due to mem-

ory constraints, each server typically utilizes several GPUs to support modern LLMs

with billions of parameters [137]. In return, LLM inference becomes both memory and

compute-intensive [138]. When serving LLMs at scale, inference clusters employ many

inference optimization techniques to better utilize underlying resources, such as phase

splitting [14] and iteration-level scheduling [139]. As a result, LLM inference at scale

results in a complex set of CPU tasks (i.e. inference tasks), such as facilitating steps of

optimization techniques [14, 139], request scheduling [138], and tokenization [12].

Growth of LLM inference clusters also increases cloud infrastructure carbon foot-

print [15, 133, 134]. It combines two aspects: direct carbon emissions owing to energy

sources (i.e. operational), and indirect carbon emissions results from business activities

such as manufacturing, shipping and recycling IT assets (i.e. embodied) [21, 22]. To-

day, as cloud service providers invest in renewable energy generation to meet net-zero

emission goals [134, 140], renewable energy sources with lesser carbon intensity [141]
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continue to penetrate power grids [15], diminishing the effect of operational carbon over

the embodied. Microsoft, a hyper-scale cloud provider reported that over the past four

years, its operational carbon was reduced by 6.3 percent while embodied increased by

30.9 percent [23]. In LLM inference clusters, most of its embodied carbon accounts for

CPU components, including the die and mainboard [12]. Therefore, optimizing CPU

embodied becomes paramount for sustainable growth of LLM inference clusters. Figure

6.1 illustrates that. With lesser carbon intensive renewable energy sources, CPU embod-

ied becomes the dominant carbon aspect in inference servers.

We study the problem of optimizing CPU embodied in LLM inference clusters. In-

ference clusters amortize CPU embodied over it’s lifetime. Therefore, extending CPU

life further amortize its embodied carbon. CPU life extensions are typically achieved

through extending its hardware refresh cycle [69]. CPU hardware refresh cycle replaces

CPUs with newer hardware generations. Its aim is to gain performance-per-watt im-

provements [69] and avoid reliability risks of silicon aging [69, 142, 143]. However,

CPU performance gains in that are minimal for inference clusters. This is because CPU

tasks in inference clusters carry-out GPU-accelerated LLM inference and these inference

tasks mostly benefits from single core performance, which has plateaued in recent years

[144]. As a result, the sole aim from maintaining a standard hardware refresh cycle is

to avoid silicon aging. In this context, extending CPU hardware refresh cycle requires

efficient management of CPU to delay silicon aging effects. It is worth noting that this

is not the case for GPU, for which the embodied carbon footprint is smaller and perfor-

mance gains of newer hardware generation is significant [12]. Many works exploring

silicon aging management in CPU employ efficient aging-aware workload management

[67, 142, 145, 146]. They leverage task scheduling among CPU cores to even-out core

aging and in return, slow down the aging rate of the overall CPU [67, 142, 143, 145].

However, leveraging the opportunities present in CPU usage patterns of cloud LLM

inference is yet to be explored.

To this end, we propose an aging-aware CPU core management technique to extend

the CPU life in inference clusters. In return, cluster embodied carbon is further amor-

tized over the increased lifespan. We design our technique for CPU usage patterns in

cloud llm inference. Using production inference traces, we uncover that LLM inference
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clusters mostly underutilize CPU cores with occasional usage bursts. To exploit that, we

design a dynamic working set of cores where the cores in the set remain active while

others deep idle [128]. We then design online algorithms that (1) identify and adjust

the working set based on usage bursts, and (2) assign inference tasks inside the working

set to even-out aging across cores. Collectively, our approach achieves age-halting and

reduced underutilization of cores. The working set however, can lead inference tasks to

oversubscribe the CPU if not scaled in-time. The online algorithms we propose are also

designed to mitigate that.

We implement our approach by extending splitwise-sim, a high-fidelity LLM cluster

simulator from Microsoft [14]. We use production LLM inference traces generated with

data collected from LLM inference services in Azure [14] and use state-of-the-art CPU

core management techniques as baselines. Results for our experimental cluster show;

estimated 37.67% reduction in yearly embodied carbon emissions through p99 perfor-

mance of managing CPU aging effects and reduction of CPU core underutilization by

77%, all while maintaining CPU oversubscription below 10%. The key contributions of

our work are as follows:

1. An investigation into the role of the CPU in state-of-art LLM inference clusters and

uncovering CPU underutilization patterns using production traces.

2. A new technique for age-aware CPU core management using dynamic age-halting

of deep idling CPU cores is proposed.

3. Implement the proposed technique in a simulated environment and conduct ex-

tensive experiments using production inference traces.

4. An evaluation of our proposed technique against state-of-the-art CPU core man-

agement baselines, focusing on its efficiency in managing CPU core aging, reduc-

ing yearly embodied carbon, and controlling task-related CPU oversubscription.

The rest of the chapter is organized as follows. In Section 6.2 we discuss the related

literature. Section 6.3 provides background and motivation. Section 6.4 provides the

system model and its essential components, and the problem formulation. In Section

6.5 we present our proposed aging-aware CPU core management technique. Section
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Table 6.1: Comparison of relevant works with our proposed technique for embodied
carbon optimization through CPU aging management.

Work Even-Out
Core Aging

Process
Variation

Aware

Avoid CPU
Profiling

Dynamic
Age-halting

Facelift08 [143] ✓ ✓
Hyat15 [142] ✓ ✓
Tamer’21 [147] ✓
Shoulao23 [145] ✓ ✓
Zhao23 [67] ✓ ✓
Our Proposed ✓ ✓ ✓ ✓

6.6 outline our implementation in the simulated environment and implication on im-

plementing our proposed technique in practice. Section 6.7 describes the performance

evaluation and experimental results. Finally, Section 6.8 summarises the chapter.

6.2 Related Work

The environmental impact of embodied carbon in growing LLM inference clusters has

caught attention in recent years [12, 15, 140, 148, 149]. As an early research area, these

works model embodied carbon in LLM inference and advocate for potential directions

to reduce that [12, 22, 149]. Further, some outline CPU GPU asymmetric optimization

opportunities of heterogeneous energy, performance, and inference application patterns

[12, 22], and accounting carbon footprint for a given inference request on specific hard-

ware settings [150]. In contrast, to actively optimize embodied carbon, some works

propose system-level techniques. These include controlling LLM token generation [151]

and disaggregation of specific compute onto older hardware [152]. Building on studies

of embodied carbon optimization in CPU GPU asymmetric lifetimes, we explore system-

level solutions for fine-grain CPU-aging management by leveraging request-level pat-

terns in cloud LLM inference clusters.

A plethora of works investigate mitigating CPU aging effects through workload

management [67, 142, 143, 145, 147]. Their predominant approach is even-outing tasks

across the cores to reduce uneven aging. These include utilizing CPU profiling [142,
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143, 145, 147], and addressing manufacturing process variations in CPU [142, 143, 145].

However, not many consider the efficacy of the proposed techniques in cloud settings.

For example, conducting CPU profiling in clouds with large server fleets is difficult.

Nevertheless, few recent works consider cloud-efficient techniques, such as workload

management at the resource management level to reduce severe exercising of specific

cores [67]. In addition to even-outing aging, age halting is an efficient approach to slow

down CPU aging. Age halting has been used in the literature to leverage dark silicon

in CPU for age management [142]. However, their age-halting is static since the age-

halting adjustments are only done after a relatively longer epoch. In contrast, we study

age management for cloud LLM inference with even-outing aging and dynamic age-

halting [153].

6.3 Background and Motivation

In this section, we provide background on embodied carbon amortization in cloud servers

and optimizing it by extending CPU life. We then outline our investigations on applying

that in cloud LLM inference clusters. We highlight key takeaways from where we draw

our motivations for this chapter.

6.3.1 Background: Embodied Carbon Amortization in Cloud Servers through
CPU Age Management

In managing the carbon footprint of cloud data centers, Green House Gas (GHG) pro-

tocol, a global standard formed to manage GHG emissions [32] defines three scopes.

Scopes 1 and 2 represent the operational carbon, typically owing to the carbon intensity

of the data center’s energy sources. Scope 3 represents embodied carbon: carbon emis-

sions that indirectly result from manufacturing and shipping of servers and other IT

assets that have already been built and installed in data center [21]. Unlike operational

carbon, which can be optimized by adopting less carbon-intensive energy sources, em-

bodied carbon needs to be amortized over the asset’s lifespan. Here, amortization is a

way to account for embodied carbon. For example, if a server with a 4-year operational



6.3 Background and Motivation 141

lifetime causes 1000 kgCO2eq of Scope 3 emissions, then amortization accounts for a 250

kgCO2eq of embodied carbon emissions per year.

Recent studies of embodied carbon optimization outline three tenets of environmen-

tal design: reduce, reuse, and recycle [69]. Out of that, this chapter focuses on recycling,

more specifically enabling a second life of the CPU by improving its reliability to extend

the lifetime [69]. Primary reason for CPU reliability degradation is the silicon aging of

its transistors beyond the rated life [143]. Many works studying silicon aging in CPU

[142, 143, 147] model that with Negative Bias Temperature Instability (NBTI). NBTI is

an aging mechanism that affects PMOS transistors in CPU [146]. It is caused by the stress

of workload execution. During workload execution, transistors in the CPU continue to

switch, applying stress on transistors and releasing them back. When stress is applied,

NBTI shifts the transistor’s threshold voltage (∆Vth) but leaves a residual shift when the

stress is removed. That incurs a slight increase in the ∆Vth, accumulating over time. As

a result, critical path delay in the circuit increases, reducing the maximum operating

frequency of the CPU (i.e., CPU Aging). Since NBTI aging results from workload execu-

tion, workload management techniques can mitigate that for improved CPU reliability

[142, 143, 145, 147]. In return, embodied carbon is further amortized through a second

life of the CPU.

6.3.2 Motivation: Impact of CPUs on Embodied Carbon in LLM Inference
Clusters

Servers in LLM inference clusters serve generative AI requests via low-latency model

computation through GPU accelerators. Therefore, most of the inference server’s ther-

mal design power (TDP) comes from the GPU. In return, GPU dominates the server’s

operational carbon footprint [12]. Nevertheless, the electrical grids powering inference

clusters continue to integrate low-emission renewable energy sources [93]. As a result,

the operational carbon intensity of inference servers continue to diminish, whilst em-

bodied carbon accounting for the majority of the server’s carbon footprint (see Figure

6.1).

The embodied carbon of an inference server consists of two categories: CPU embod-

ied and GPU embodied. GPU embodied is attributed to a combination of components
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Figure 6.2: Distributions of running inference tasks in an LLM inference cluster of 22
H100 machines.

such as SoC, PCB, Heatsink, etc [12]. GPU is packaged into an independent hardware

unit and installed using a standard interface such as PCIe. In return, it is loosely cou-

pled from the server and straightforward to replace [154]. In contrast, the CPU is in-

stalled as a tightly coupled component with many other associated components, such as

the CPU chassis, mainboard, cooling, etc [12]. In between, CPU components have strict

compatibility requirements, making them increasingly complex to replace individually.

For instance, the CPU die must be compatible with the mainboard’s socket type and its

chipset generation [155]. In cloud platforms, replacing individual CPU components has

become increasingly unsustainable. Firstly, maintaining a continuous supply of spare

components with fine-grained compatibility requirements is difficult to procure due to

the poor availability of repair parts [156]. Secondly, recent technology trends in data cen-

ters, such as utilizing liquid cooling, significantly increase the time and effort required to

repair servers at the component level [157]. Therefore, upon a CPU component failure,

cloud providers often replace the CPU and the associated components as a whole [158].

In this context, the CPU embodied of an inference server is attributed to the embodied

carbon footprint of the CPU and its associated components [12].

Refined carbon modeling studies in LLM inference clusters show a substantial im-

pact from CPU embodied towards cluster’s embodied carbon footprint [12]. In an Azure

T4 inference server, GPU embodied calculates to only 41.8 kgCO2eq emissions for its to-

tal lifetime. However, CPU embodied accounts for 278.3 kgCO2eq emissions, whilst
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54% of that attributes to CPU die, CPU chassis, and the mainboard alone [12]. There-

fore, cloud providers are challenged with lowering the rate of accumulation of CPU

embodied and achieving extended amortization of procured CPU embodied.

Inference clusters acquire CPU embodied faster than it can amortize through its

hardware refresh life cycle. A hardware refresh cycle aims to gain performance im-

provements of newer CPU hardware generations and avoid reliability concerns of aging

CPU [69]. Recent studies show that LLM inference clusters may not gain significant per-

formance benefits from newer CPU hardware generations. CPUs in inference clusters

execute tasks (i.e., inference tasks) facilitating the inference workflows, such as phase

splitting, request scheduling, batching, and tokenization [12, 14]. These typically benefit

from the single-core performance, yet the yearly single-core performance of newer CPU

hardware generations has been mostly the same [144]. That leaves avoiding reliability

concerns of CPU aging as the sole benefit of the CPU hardware refresh cycle.

It’s important to note that the reliability concerns of aging are significant in the CPU,

whereas its associated components, such as the mainboard, pose minimal risks. For in-

stance, long-term failure analysis of servers shows mainboard failure rates have dropped

over time [158]. Further, many associated components, such as storage and memory, al-

ready implement error correction mechanisms for aging hardware, such as Error Correc-

tion Codes (ECC) [159]. In contrast, erroneous computations of unreliable aging CPUs

are extremely difficult to correct through preventive mechanisms [159] and have become

increasingly frequent in hyper-scale cluster deployments [159, 160].

As discussed in Section 6.3.1, an efficient aging-aware workload management tech-

nique can mitigate CPU reliability concerns, which also translates to an extension to the

CPU hardware refresh cycle, allowing the cluster to further amortize its CPU embodied.

Takeaways: Extended amortization of CPU embodied significantly reduces the carbon footprint

of inference clusters. However, it is constrained by the reliability concerns of CPU aging. Hence,

there is an opportunity for an effective aging-aware CPU management technique to optimize

that.

CPU Utilization Patterns in LLM Inference Clusters: To design an efficient aging-

aware CPU management technique, it is important to understand CPU utilization pat-

terns in cloud LLM inference. For that, we monitor and analyze CPU utilization patterns
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in a high-fidelity simulated LLM inference cluster environment that infer real workload

traces.

We use a LLM cluster simulator from Microsoft’s [14] and extend it to model CPU

in cloud LLM inference. We then replay production inference traces from Azure and

observe cluster CPU utilization. In that, we allocate each CPU task to a dedicated core.

Our cluster settings closely match that in production. In Section 6.6, We discuss our

experimental setup in detail. Figure 6.2 illustrates our results. Each subplot maps to

a different throughput level and shows the distribution of concurrent inference tasks

executed in each cluster machine. The x-axis denotes the machine number, and the y-

axis denotes the inference task count. We make two key observations in that.

• O1: Cores are mostly underutilized, as indicated by the lower mean values in the violin

plots.

• O2: There are occasional bursts of running tasks as indicated by the maximum values of

the violin plots, which justifies having CPUs with higher core counts.

In our simulation, our key finding is that underutilized CPU cores are available to

the machine operating system to schedule system tasks apart from the inference serv-

ing platform. Therefore, these cores can actively execute system tasks in a time-shared

manner [153]. In return, all cores can actively execute instructions regardless of be-

ing allocated to an inference task, thus continuing to age due to the transistor stress of

workload execution. In this context, we identify an opportunity to halt aging in the un-

derutilized cores. We hypothesize to reduce the available cores to match the number of

running tasks of the inference platform. In return, we can put the remaining cores to

deep idle, which turns off the clock and power gate the CPU cores [153, 161], stopping

the transistor switching and halting the core aging. However, doing so can introduce

a new set of challenges. As shown in Figure 6.2, the number of concurrent inference

tasks can dynamically change. Therefore, limiting the available cores can lead inference

tasks to oversubscribe the CPU unless the number of available cores is scaled in time.

Moreover, a reduced set of available cores can introduce core affinity, which can increase

failure risks of individual CPU cores due to uneven core aging [67].
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Figure 6.3: High-Level system diagram of aging-aware CPU core management in LLM
inference clusters.

Takeaways: Underutilized cores in cloud LLM inference provide the opportunity to halt CPU

aging through deep idling unused cores. However, it presents new challenges, including timely

switching of core idle states to reduce CPU oversubscription, and efficient use of the available

cores to avoid uneven core aging.

6.4 System Model and Problem Formulation

This section presents the system model, its components, and the formulation of the prob-

lem.

6.4.1 System Model

Figure 6.3 provides a high-level view of our system model. We model a high-performance

LLM inference cluster deployment with inference-optimized servers. Our deployment

matches similar production cluster deployments where cluster resources, such as servers

with GPU accelerators, are designed for LLM inference [14]. Firstly, the inference re-

quests from end-user applications reach the cluster’s inference service. Each request

is then scheduled to servers by the cluster-level scheduler. Inference servers run vir-

tualized worker instances, which conduct request batching, queuing, model loading,
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and finally execute the request leveraging an inference backend, such as vLLM [162].

Inference backend efficiently utilizes CPU and GPU resources and may leverage high-

bandwidth InfiniBand interconnections between GPUs, such as sharing intermediate

KV-cache in phase splitting [14]. Our system architecture matches that of production

deployments, such as the NVIDIA Triton server inference architecture on Kubernetes

[162].

In return, the server-level worker instance of the inference service executes many

CPU tasks (i.e., inference tasks). For each inference task, we allocate a dedicated CPU

core. If the cores are insufficient, we assume that inference tasks oversubscribe the CPU.

We introduce a new component to conduct aging-aware CPU core management. It over-

sees assigning cores to inference tasks and controlling the idle states of CPU cores. A

CPU core in our system model can switch between either active or deep idle states [128].

Being in the active state gradually ages the CPU cores. In contrast, deep idling halts

cores from aging. However, cores that deep idle become unavailable for inference task

execution. Cores in the active state are available for task execution, yet allocating a task

accelerates core aging. In Section 6.4.2, we provide in-depth details about the silicon

aging behavior with our aging model. CPU cores in the host are isolated and pinned to

worker instance CPU cores, such that task mapping and idle state changes directly re-

flect on the physical core. Overall, the combination of inference task execution and deep

idling control the CPU aging rate, where a lower value further amortizes its embodied

carbon through the increased lifespan [67].

6.4.2 Aging Model

We model aging of CPU cores due to execution of system and inference tasks. In that

regard, Negative-bias Temperature Instability (NBTI) is a major aging mechanism [142,

146] for CPU. In this work, we model NBTI-induced core aging. Similar to previous

works [146], we use a reaction-diffusion based aging model to calculate CPU core fre-

quency degradation due to NBTI-induced aging.

f (t) = f0 × (1− ∆Vth

Vdd −Vth
) (6.1)



6.4 System Model and Problem Formulation 147

Figure 6.4: Changes in Operating temperature when 6 out of 12 cores set to deep idle in
an Intel Xeon CPU. If awake, cores are 100% utilized.

where f (t) is the frequency at time t and f0 is the initial frequency of the core. Pre-

vious works show that f0 can deviate from the nominal value due to variations in the

manufacturing process [142, 163]. To accommodate that, we use the following model to

calculate f0.

f0 = K′ min
k,l∈SCP

(
1

pkl

)
.

where K′ is a technology-dependent constant, and SCP represents the sections of the core

containing critical paths. In order to calculate f0, we first divide the chip area into an

Nchip × Nchip grid and assume that critical paths are contained entirely within the grid

cells. Then, we assign each grid cell with a gaussian random variable ( pkl). In order

to calculate the spatial correlation between the random variables, we use the following

formula [163].

ρij,kl = e−α
√

(i−k)2+(j−l)2 ∀ i, j, k, l ∈ [1, Nchip].

where α decides how quickly spatial correlations die out. For our experiments, we set

Nchip to 10 and K′ to 1. Then, we set the mean of random variables by solving for a

scenario where if a core does not exhibit process variation, f0 should equal the nominal

value. We set the remaining parameters similar to the calculation of a previous work

[163].

After f0, we calculate ∆Vth in the Equation 6.1, which is the shift in the threshold

voltage. CPU cores in our system can undergo time intervals in different idle states. In

order to calculate ∆Vth in those, we calculate ∆Vth using the following recursive equation
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Table 6.2: Temperature modelling for different core states.

Idle-state C-state [128] Inference Task Temperature (◦C)

Active C0 Allocated 54

Active C0 Unallocated 51.08

Deep Idle C6 N/A 48

[164].

∆Vth(tp) = ADFp

(∆Vth(tp−1)

ADFp

) 1
n

+ τp

n

where Vth(tp) is the value at pth time interval, and τp is the length of the pth time interval.

ADF is a time-independent factor for each time interval, which we calculate using the

following equation.

ADF(T, Vdd, Y) = K · exp
(
− E0

kBT

)
· exp

( B Vdd

tox kBT

)
·Yn (6.2)

where Y is the stress from the executing task. We assume each task in our system incur

the worst case by setting it to 1.0. T is the operating temperature of the CPU core. In

order to create a realistic temperature model, we conduct an experiment by running a

high utilization task in a server-grade CPU and switching its cores between active and

deep idle states. During the experiment, we monitor the changes in core temperatures.

Figure 6.4 illustrates our observations. Table 6.2 denotes the temperature model we

derive from that. We set the rest of the parameters in equation 6.2 as follows. K is a

fitting parameter. To calculate its value, we use CPU aging data from a previous work,

which states that for 22nm CPU technology, the worst-case frequency reduction due to

aging for a lifetime of 10-years can reach 30% [146]. We set values of our model to match

this scenario and solve the ∆Vth equation to find the value for K. All parameters that

were not explicitly mentioned are set similar to a previous work matching for the 22nm

CPU technology [146].
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6.4.3 Embodied Carbon Model

Our carbon modeling is based on our findings in the section 6.3.2. We model the em-

bodied carbon of the CPU and its associated components in LLM inference servers to

accurately measure the carbon amortization optimizations of our proposed technique.

We use recent fine-grained carbon modeling [12], encompassing different configurations

and components of multi-GPU inference servers, such as the peripheral components for

cooling and power delivery. With that, the yearly CPU embodied carbon footprint of an

LLM inference server (CFemb,cpu) is modeled as,

CFemb,cpu =
1

LT

(
NrKr + ∑

k
CFk

)
where k ∈ {CPU Die, CPU Chassis, Mainboard, DRAM, PDN, etc.}, CFk is the carbon

footprint of associated component k, LT is the lifetime in years, and NrKr is the packing

carbon footprint. Inner details of CFk calculations are based on a recent prior work [12].

In section 6.7, we use our yearly CPU embodied carbon model to quantify the re-

sulting carbon savings of the proposed technique. In that, we use concrete values of

CPU embodied carbon footprint calculated using our carbon model for the Azure T4

inference server with 16GB GDDR6 denoted by the VM flavor Standard NC4as T4 v3

[12, 165].

6.4.4 Problem Formulation

This chapter considers a cluster of LLM inference servers managed by an inference ser-

vice. It serves inference requests arriving from cloud users.

At the server level, the GPU-accelerated inference requests results in a dynamic num-

ber of concurrent CPU tasks (i.e., inference tasks). They are handled by a multi-core

CPU. Due to manufacturing process variations, each CPU core exhibits a maximum fre-

quency value that deviates from the nominal value, degrading over time with workload

execution due to core aging. Depending on the task allocation and management of core

idle states, the rate of frequency degradation among the cores can differ. Over time, the

multi-core CPU exhibits a distribution of degraded frequencies among its cores, increas-
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ing their failure risks [67]. In addition, the service quality of serving inference tasks can

be impacted if active cores are insufficient to facilitate the running inference tasks. In

this context, we formulate our problem as follows.

Our multi-core CPU contains an N number of CPU cores. We denote the number of

deep idling cores at time t with Nidle(t), the number of executing tasks with T(t), and

the frequency of the core i with fcorei(t). For the duration of ∆T, the following equation

calculates the reduction of core frequency due to core aging ( fredi(∆T)) for the ith core.

fredi(∆T) = fcore,i(t)− fcore,i(t + ∆T) i ∈ N

Similarly, the following equation calculates the variance in the CPU core frequency

distribution ( fvar(∆T)).

fvar(∆T) = Var(F) where F =
{

fcore,i
(
t + ∆T

)
: i ∈ N

}
Finally, the following equation quantifies service quality impact from inference serv-

ing due to core deep idling (Toversub(∆T)).

Toversub(∆T) =
∫ t+∆T

t
u(T(t)− (N − Nidle(t)))

×(T(t)− (N − Nidle(t)))

Where u is the unit step function. The goal of our problem is to extend amortizing CPU

embodied carbon through increasing its operating lifespan by mitigating CPU aging

effects. For that, both per-core and uneven aging effects across cores must be reduced.

Moreover, the impact on the service quality of inference tasks must also be reduced.

With that, we state our problem,

Min. fredi(∆T) ∀i

Min. fvar(∆T)

Min. Toversub(∆T)
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Algorithm 5 Proposed Task-to-Core Mapping Algorithm.
Input:
cpu cores: working set of cores.

task: Inference task assigned (or None if no task)
last idle durations: Recent idle durations.

Output: The selected core to run the inference task.
1: selected core← None
2: selected idle score← 0.0
3: for all core in cpu cores do
4: if core.task ̸= None then
5: continue
6: idle score← ∑(core.last idle durations)
7: if (selected core = None) or (idle score > selected idle score) then
8: selected core← core
9: selected idle score← idle score

return selected core

6.5 Embodied Carbon Amortization through CPU Aging Man-
agement

In this section, we provide the design and inner workings of our proposed aging-aware

CPU core management technique. Our design is based on our findings in Section 6.3.2.

We evaluate the performance of the proposed technique in Section 6.7, showcasing its

potential to reduce yearly embodied carbon emissions of inference clusters.

Figure 6.3 illustrates the design of the proposed technique. We optimize CPU core

aging at the server level to extend CPU lifetime, matching the CPU GPU asymmetric

lifetime. To implement our proposed aging-aware core management, we introduce two

main mechanisms: (1) Task to Core Mapping, and (2) Selective Core Idling. Task to Core

Mapping runs an algorithm to decide the mapping of each inference task to a CPU core.

It aims to mitigate uneven aging among available CPU cores. Whereas Selective Core

Idling runs an algorithm to determine a working set of cores to match current inference

throughput. It halts aging of cores in the non-working set by setting them to deep idle.

Apart from age halting, it further complements uneven core aging by selecting cores to

deep idle in an aging-aware manner.

Together, the proposed technique reduces overall aging rate of the CPU in two as-

pects. Both Task-to-Core Mapping and Selective Core Idling even-out aging across cores,
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preventing early effects of premature aging in specific cores. Selective Core Idling halts

aging in cores, when the inference throughput provide opportunities to do so. It delays

aging effects in cores.

6.5.1 Task-to-Core Mapping

The primary goal of the Task-to-Core Mapping is to reduce the age variance among CPU

cores. To achieve that, it distributes the stress of inference tasks favoring lesser-aged

cores. As a result, older cores age slower, delaying overall aging effects.

Algorithm 5 outlines the proposed algorithm for Task-to-Core Mapping. It takes the

set of active cores (i.e., working set) as the input and selects a core to run an inference task.

Therefore, each new inference task executes the algorithm 5 once. To reduce the execu-

tion time in that, we design the algorithm to leverage an age estimation approach for its

selection logic, rather than obtaining CPU micro-architectural attributes to calculate an

accurate value. To achieve that, each core in the input working set provides two addi-

tional attributes: task assigned status, and its idle history. Using a core’s idle history, we

calculate an estimation for it’s age. We maintain a core’s last eight idle durations, similar

to that of the Linux governor algorithm [128]. At execution, we create placeholders for

both the selected core and its idle score (line 1). Then, we iteratively evaluate each core

in the working set. We calculate an idle score for each core that has not been assigned a

task yet (line 6). Idle score accumulate all idle durations in the provided history. Here,

the insight is that if a core mostly remained idle, its aging rate is lower than that of a less

idle core. We then use the idle score to conduct a relative comparison among the cores to

filter the core with the most idle score (line 7). As a result, the core with the least aging

estimation is selected to execute the next inference task.

Overall, the algorithm estimates the age of each core using a rolling idle duration

window and distributes the stress of executing inference tasks in a least-aged-first man-

ner. In return, the aging effects of cores take a prolonged time to appear, i.e., slowing

down the CPU aging rate. Our age estimation approach avoid the overhead in calculat-

ing an accurate aging value. Since Task-to-Core Mapping is executed quite frequently in

the cloud environments, a minimum execution overhead ensures reduced latency im-
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Algorithm 6 Proposed Selective Core Idling Algorithm.
Input:
cpu cores: List of available cores,
oversub tasks: Number of CPU oversubscribing tasks,
Output: Adjusted core idle states: deep idle or active.

1: N ← get total core count(cpu cores)
2: active cores← get active core count(cpu cores)
3: normal tasks← get assigned task count(cpu cores)
4: CSLPt ← N − active cores
5: Tt ← normal tasks + oversub tasks
6: Tt ← min(N, Tt)
7: et ←

(
N − CSLPt − Tt

)
8: et prd ← et

9: et prd ←
et prd

N
10: if et prd ≥ 0 then
11: F(et prd)← tan

(
0.785 · et prd

)
12: else
13: F(et prd)← arctan

(
1.55 · et prd

)
14: et corr ← N × F(et prd)
15: et corr ← int(et corr)
16: δcores ← | et corr|
17: if et corr > 0 then
18: put cores idle(δcores, cpu cores)
19: else if et corr < 0 then
20: put cores active(δcores, cpu cores)

pact on inference request serving.

6.5.2 Selective Core Idling

In addition to the aging rate reduction of Task-to-Core Mapping, we provide a core-level

optimization mechanism to halt aging, called Selective Core Idling. It contributes to the

overall aging reduction in the CPU by dynamically halting core aging, whenever the

inference task execution is able to tolerate that.

The main idea behind Selective Core Idling is to leverage the unused CPU cores in

cloud LLM inference for deep idling (see Section 6.3.2). We do that by dynamically

adjusting the size of the working set of cores, and using the remaining cores for deep

idling. The key challenge here is to match the size of the working set to the number
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of running inference tasks. If the working set is smaller then inference tasks begin to

oversubscribe the CPU, whereas a larger working set leave a portion of unused cores in

the active state which otherwise would have been utilized for deep idling. To address

that, we design an algorithm for Selective Core Idling. The main part of our algorithm

is a module called a reaction function. The reaction function decides the algorithm’s

sensitivity on adjusting the size of the working set. We periodically execute the Selective

Core Idling algorithm to adjust the working set to match the inference throughput.

Algorithm 6 outlines the proposed algorithm for Selective Core Idling. It takes two

inputs: the set of available cores, and the number of inference tasks that are oversub-

scribing the CPU. Once executed, it adjusts the working set by selectively setting the idle

states of available cores to either deep idle or active. Firstly, the algorithm process the

set of available cores to obtain the number of total cores, number of cores that are in

the active state, and the number of inference tasks that are allocated with a dedicated

core (line 1). Using them, the algorithm calculates the number of cores that are currently

deep idling (line 4), as well as the total number of tasks. Here, we cap the total number

of tasks at the total number of CPU cores (line 6). This is done to obtain a normalized

error term (et prd), which we are calculating next (line 9). The error term indicates the

severity of CPU oversubscription of the inference tasks. We then use the error term as

the input to the part of our algorithm which carry out the reaction function (line 10 to

line 13). The output of the reaction function is then scaled back (line 14) and used to

determine the cores to set either active or deep idle. When putting cores to deep idle,

we do that in the order of most aged first. When putting cores to active, we do it in the

order of least aged first. That way, we complement even-out core aging of Task to Core

Mapping when deep idling the cores.

Reaction Function: The reaction function is designed to be independent from the num-

ber of CPU cores. It takes the normalized error term (et prd) in Algorithm 6 (line 9) as

the input. It returns a normalized output between −1 and +1. Here a positive output

indicates CPU underutilization, requiring to set cores from active to deep idle. Whereas

a negative output indicates CPU oversubscription, requiring to set cores from deep idle

to active. In the inference cluster, CPU oversubscription impact inference latency of user

requests, which is a short term effect requiring immediate action. Whereas CPU un-
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Figure 6.5: Behavior of the piecewise Reaction Function (F) for utilization of the CPU.

derutilization leads to aging of cores, which is a long-term effect since aging is a slow

process. To balance this trade-off, we design the reaction function to react slower for

CPU underutilization and faster for the CPU oversubscription. Figure 6.5 illustrates the

behavior of our reaction function. Algorithm 6 denotes the equation and the values we

used for that (line 10 to line 13).

6.6 Implementation

We implement our proposed technique in a simulated environment. We use splitwise-

sim [14], an event-driven, high-fidelity LLM cluster simulator from Microsoft. It em-

ploys Splitwise, a state-of-the-art phase splitting LLM serving technique [14]. Compared

to vanilla request level scheduling, Splitwise increases CPU load due to the facilitation

of additional tasks of phase splitting. As a result, our simulation environment enables

exposing our technique to realistic CPU stress levels present in state-of-the-art cloud

LLM inference clusters.

First, we extend the simulator to model the inference tasks that run on the CPU. Table

6.3 outlines the tasks we modeled. We model the CPU load of the executor component

that facilitates the inference workflow, worker instance tasks that handle memory and

iterative-level scheduling, and the tasks of interconnects. For that, we merge each class

function with APIs of a new processor subclass we implemented for the CPU. Inside the

CPU class, we manage the state of CPU cores. Using the models we outlined in Section

6.4, we maintain core temperatures, idle states, and the shift in threshold voltage. Each



156 Embodied Carbon Amortization for Low-latency LLM Inference Clusters

Table 6.3: Tasks modeled as inference tasks in the extended splitwise-sim [14] simulator.

Task Name Class/Function

finish flow Executor.finish flow

finish request Executor.finish request

finish task Executor.finish task

submit Executor.submit

submit chain Executor.submit chain

submit flow Executor.submit flow

submit task Executor.submit task

alloc memory Instance.alloc memory

free memory Instance.free memory

start iteration ORCAInstance.start iteration

flow completion Link.flow completion

class function call outlined in Table 6.3 invokes assign_core_to_cpu_task API of

the CPU class. It then provide inputs and invoke the Algorithm 5. In return, we deter-

mined a CPU core to cater the function call. We update the idle states and temperature of

the core to match the task execution. Further, we update the shift in the threshold volt-

age and the resulting operating frequency of the core. The execution time of the calling

function in the simulator is then adjusted according to the operating frequency. In paral-

lel to that, we periodically invoke the adjust_sleeping_cores API of the CPU class

to conduct Selective Core Idling. It retrieves the system state and execute the Algorithm

6. In return, the algorithm set the idle state of a number of CPU cores to either active or

deep idle. Since the periodic execution of the algorithm 6 does not add an overhead to

inference request latency, we use it as an opportunity to accurately calculate degraded

core frequency due to aging. We assume that data is provided by the core-level aging

sensors [142] with an additional overhead.

In practice, the performances of implementations of our proposed technique could

depend on the underlying CPU hardware. For instance, the selective core idling in our
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proposed technique is supported across CPU vendors via the CPU idle states feature

[166]. Since their specific hardware implementations could differ [153, 167], CPU age

halting would be more effective depending on the number of CPU components get de-

activated at the deepest sleep state [153]. In return, deeper sleep states introduce longer

transition latencies [166]. Although those typically stay at the microsecond-scale [153],

depending on the inference task throughput, CPU oversubscription may increase due

to longer wake times of idle cores. Practical implementations could also inherit certain

operational latency overheads. Although selective core idling and task-to-core mapping

mechanisms do not incur coordination latency in between due to their independent ex-

ecution, they can exhibit latency overhead within their workflows. For instance, the

implementation of the task-to-core mapping mechanism could introduce a latency over-

head in algorithm execution. We reduce the impact of that through low-complexity

algorithm design. Implementation of selective core idling could also introduce a com-

munication latency overhead when retrieving data from core-level aging sensors. We

reduce the impact of that by executing its algorithm periodically rather than executing

it for each inference task scheduling event.

6.7 Performance Evaluation

In this section, we evaluate the performance of our proposed CPU core management

for amortizing embodied carbon in LLM clusters. We provide our experimental design

and setup, and compare our results with state-of-the-art baselines and analyze them in

detail.

6.7.1 Experiment Design and Setup

We conduct evaluation experiments in the simulated environment that we modeled and

implemented with an LLM cluster simulator from Microsoft. We describe inner details

of our implementation in Section 6.6. We model a cluster of 22 GPU-optimized Nvidia

H100 machines with 5 prompt instances and 17 token instances of phase splitting [14].

Our cluster design is an iso-throughput, power-optimized cluster design for cloud LLM
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inference [14]. We use it to create a realistic cloud inference cluster. Each server in the

cluster runs a worker instance. For the worker instance CPU counts, we use CPU core

counts of 40 and 80 to match public VM offerings in Azure for Nvidia H100 machines

[168].

Baselines:

As discussed in section 6.3.1, our problem context requires extended embodied carbon

amortization through an efficient CPU age management technique. However, not many

works focus on CPU age management in the cloud settings for LLM inference. In that

regard, we use two state-of-the-art baselines. We use linux to compare the performance

of our technique with state-of-the-art inference serving systems [14], and we use least-

aged to compare the performance of our technique with state-of-the-art CPU age man-

agement techniques designed for cloud settings that cater CPU tasks similar to inference

tasks used in our system model. We further detail our baselines as follows:

linux: It represents executing the servers with the task to CPU core allocation of Linux

LLM inference servers. To implement that, we use CPU data from a LLM inference

server, captured while executing inference requests [169]. Using the data, we build a

probabilistic model to generate inference task to CPU core mappings.

least-aged [67]: It is an aging-aware task-serving idea proposed for cloud servers. Un-

like most works, least-aged proposes the idea of assigning the tasks away from aged cores

using executed work as an aging estimate, without requiring frequent CPU profiling. Al-

though least-aged was designed for cloud CPU tasks in general, the task characteristics it

uses for aging apply to the inference tasks that we model.

Workloads:

We use LLM inference traces generated by Microsoft using real Azure inference data

[14]. Each request in the trace is characterized with the number of input tokens and the

number of output tokes generated. It does not provide the actual query that was used in

the public cloud environment due to privacy requirements. For our performance metrics

that we outline next, the actual query does not make an impact, rather the execution
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times resulted from processing input and output tokens.

Metrics:

To measure the CPU aging effects, we use the coefficient of variation (CV) of the dis-

tribution of frequencies among CPU cores in each inference server after the experiment.

We then calculate the percentile values of that across the cluster. The resulting frequency

CVs reflect how well the technique could even out the aging effects among the cores in

the cluster machines. To measure the application impact, we calculate the distribution of

the number of idle CPU cores in inference servers during the experiments. The resulting

data reflect the impact of CPU oversubscription across the cluster servers.

6.7.2 Results and Analysis

We carry out the performance evaluation as follows. We sample a set of initial core

frequencies for each inference server CPU according to the process variation model de-

scribed in Section 6.4.2. We then replay LLM inference traces on the cluster. We conduct

repeated experiments for different throughput levels of LLM inference traces, for each

baseline, and for our proposed technique. At the end of the experiments, we calculate

the degradation of initial CPU core frequencies through our metrics to evaluate how

each baseline and our proposed technique managed cores across the cluster to reduce

CPU aging effects and to minimize the application impact. We further estimate the re-

duction of yearly embodied carbon emissions of the cluster, resulting from the CPU

aging management.

Management of core aging effects: Based on our aging model described in Section 6.4.2,

the initial frequency of each CPU core deviates from the nominal value due to process

variation. Due to the execution of inference tasks, initial frequencies degrade over time,

resulting a frequency distribution across CPU cores. Figure 6.6 illustrates the results

of that. Its subplot, figure 6.6a illustrates the performance of managing the coefficient

of variation (CV) of the core frequency distribution. The performance value decreases

when frequency CV increases, and vice versa. It also illustrates the performance of man-

aging the mean frequency degradation. The performance value in that decreases when
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(a) Comparison of 40 VM cores (b) Comparison of 80 VM cores

Figure 6.6: Comparison of managing aging effects in CPU.

the mean frequency degradation increases, and vice versa. Both performances are for

the VM with 40 cores. Figure 6.6b illustrates the same for the VM core count of 80. All

plots share the x axis, which is the throughput of inference traces.

The results show that in both VM core types, the reduction of frequency variance

among cores with least-aged is better than the linux. It shows the effectiveness of assign-

ing inference tasks away from the aged cores to improve aging imbalance across cores

in least-aged. However, the proposed technique significantly outperforms both baselines

in that. It showcase the superiority of core age even-out behavior across the both Task

to core mapping and Selective Core Idling mechanisms in the proposed technique. The re-

sults of managing mean frequency degradation performance shows that both baselines

exhibit quite similar performances. In both Figure 6.6a and 6.6b, frequency performance

values for baselines show the same for request rates from 40 to 80, and deviates slights at

request rate of 100. Whereas our proposed technique consistently surpasses both across

all evaluated request rates. It shows the effectiveness of the age halting behavior of

the proposed technique. Frequency performance, which is the aging effect of our aging

model, shows sustained performance further in-time than the baselines. The discussed

performance patterns are consistent across changing VM core sizes.

Reduction of yearly CPU-embodied carbon emissions: Delayed CPU aging effects al-

low cloud operators to extend CPU lifespan by increasing the hardware refresh lifecycle.

We apply the same with our results of managing core aging effects. We take the hard-

ware refresh cycle of a typical linux-based LLM inference server as 3 years [12] and its
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Figure 6.7: Comparison of estimated yearly CPU embodied carbon reduction in the
cluster through management of CPU aging effects.

CPU embodied carbon during this lifespan as 278.3 kgCO2eq [12]. We then compare

the reduction of the mean core frequency of other techniques to linux and estimate an

increase in lifecycle extension using a linear model. Using the carbon and lifespan ex-

pansion data, we calculate yearly embodied carbon emissions for baselines and the pro-

posed technique. Figure 6.7 presents our results. It shows yearly CPU-embodied carbon

emissions of the cluster for the age management performance of different throughput

levels.

The results show that yearly CPU-embodied carbon savings with the least-aged is

minimal when compared to linux. This is due to the similar performance of the mean

frequency degradation that we discussed previously. In contrast, a cluster managed with

our proposed technique shows significant carbon savings in CPU embodied. When es-

timated with p99 mean frequency performance, our proposed method reduces yearly

CPU embodied emissions in our experimental inference cluster by 37.67%. It further

increases to 49.01% for p50 mean frequency performance. The observed results are due

to superiority of mean frequency performance of our proposed technique. It showcase

achieving CPU embodied carbon reduction through effective age management. Its im-

portant to note that advantage for carbon reductions with least-aged over linux may im-

prove with the experiment duration. However, goal of our experiments is to evaluate ad-

vantage of our proposed technique, which we show within the evaluated experiments.

Application impact of aging-aware core management: Figure 6.8 illustrates the results

of idle cores availability in the cluster servers during inference task execution. The x-axis

in all figures shows normalized idle CPU cores, in which a positive value indicates core

underutilization and a negative value indicates core oversubscription, whereas, y-axis
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(a) Comparison for 40 VM cores

(b) Comparison for 80 VM cores

Figure 6.8: Comparison of utilization of available cores for running tasks. X-axis denotes
normalized idle CPU cores (a negative indicates CPU oversubscription and a positive
indicates CPU underutilization).

to denote the measurement distribution.

The results show that both baselines do not incur core oversubscription but under-

utilize cores, yielding positive values of idle CPU cores. p1 to p90 percentiles in both

baselines reside closer to 1.0, with a higher VM count increasing the closeness. In con-

trast, the proposed technique outperforms both baselines in CPU underutilization. Its

p90 percentile is at least 77.8% better in both VM core counts. However, its p1 percentile

being negative indicates that the proposed technique does result in CPU oversubscrip-

tion. The severity of that improves with the VM core count, showing a smaller P1 value.

We observe consistent idle core distributions across different inference throughout rates.

Additionally, results show that p1 of the proposed technique is at least less than -0.1,

which means the proposed technique maintain the CPU oversubscription below 10%.

In summary, we observe core aging even-out behavior of our proposed technique

surpassing baselines in reducing frequency CVs. Alongside, age halting behavior in

our technique showcases its superiority in delaying mean frequency degradation. Both

frequency CV and mean frequency performance are metrics of CPU aging effects in our

system model. We then estimate yearly CPU embodied emissions in the experimental

inference cluster, based on the mean frequency performance. Results highlight efficacy

of our proposed method to reduce CPU embodied through managing its aging effects.
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In return, our proposed method show CPU oversubscription, which can impact service

quality of the inference tasks. Yet, results show that our proposed technique is able to

maintain its severity.

6.8 Summary

In this chapter, we proposed an aging-aware CPU core management technique, show-

casing its potential to extend cloud LLM inference cluster embodied carbon amortization

through increasing CPU lifespan. Exploiting CPU underutilization patterns that we un-

covered, the proposed technique not only even-out silicon aging across cores but also

harnesses the opportunities of age halting using core deep idling. Our empirical simu-

lations demonstrated the superiority of the proposed technique over existing methods

with an estimated 37.67% reduction in yearly embodied carbon emissions through p99

performance of managing CPU aging effects, a 77% reduction in CPU underutilization,

and less than 10% impact to the inference service quality. Our technique enables LLM

inference to reduce embodied carbon through the CPU and improve performance with

the GPU via the CPU GPU’s asymmetric lifetime.





Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis by summarizing its works and key contributions. Further, it

highlights key future directions to continue advancing carbon efficiency in latency-sensitive cloud

computing environments.

7.1 Summary of Contributions

The deeper integration of cloud computing with modern society has led to the adoption

of cloud-based serving of latency-sensitive services. Today, various paradigms, such as

the Internet of Things (IoT), leverage cloud-based deployments to deliver low-latency

application response times. Further, time-bounded real-time applications of Industry

4.0, transport, and healthcare have started their transition to the cloud. Recently, the

low-latency application use cases of the Artificial Intelligence (AI) boom heavily rely on

the cloud for their deployments. Most of these latency-sensitive use cases rely on the

cloud due to their cost-effectiveness in delivering on-demand, managed infrastructure

wrapped in a pay-as-you-go model. As a result, latency-sensitive cloud computing to-

day creates significant business value for hyper-scale cloud providers. In delivering la-

tency service level objectives (SLO), cloud providers maintain heterogeneous infrastruc-

tures for latency-sensitive use cases that are quite different from traditional centralized

hyper-scale data centers. A key characteristic in such deployments is that their applica-

tion and hardware layers are often tightly coupled and often applications-specific. Such

an intertwined nature of the application and the hardware layers provide lesser control

in managing application performance and hardware lifecycle. Unlike traditional clouds

which often have segregated application and hardware layers, these infrastructures pro-

165
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vide limited opportunities for the cloud provider to manage its resources efficiently.

As a result, achieving carbon efficiency in latency-sensitive cloud computing envi-

ronments has been increasingly difficult. Today, the majority of the focus on carbon-

aware resource management in clouds favors traditional hyper-scale cloud infrastruc-

ture. Application management in those environments provides much flexibility in com-

promising the performance over carbon efficiency. Carbon optimization in clouds in-

volves both operational and embodied carbon optimizations. Operational carbon is

commonly optimized through the integration of variable-available renewable energy

sources, in which application performance compromises to account for energy supply

intermittency. Embodied carbon is typically optimized through efficient management

of the hardware lifecycle, such as component re-purposing and recycling, in which

the cloud provider’s control over the hardware lifecycle is paramount. Therefore, the

sustainable growth of latency-sensitive cloud computing environments requires uncov-

ering opportunities among the tight coupling of application and hardware layers in

application-specific cloud deployments. In this thesis, we investigated dynamic ap-

proaches for handling several key resource management processes, including schedul-

ing, provisioning, power delivery, and hardware management, to the satisfaction of the

application latency performance and carbon efficiency of both operational and embod-

ied aspects.

Chapter 1 introduced the increasingly prevailing latency-sensitive cloud comput-

ing environments and their unique resource management challenges due to the limited

provider control. Next, the adverse impact of those challenges on the infrastructure car-

bon footprint was presented, discussing the detrimental impact of climate impact from

cloud carbon emissions and highlighting the challenges related to achieving carbon ef-

ficiency in latency-sensitive cloud computing environments. Further, it presented the

identified research questions and summarized the thesis contributions.

Chapter 2 investigated the existing carbon-aware resource management techniques

in latency-sensitive cloud computing environments, encompassing both operational and

embodied carbon optimizations. Next, a detailed taxonomy of the resource manage-

ment aspects for both operational and embodied carbon optimizations was presented.

Further, relevant recent literature was reviewed according to the taxonomy, and com-
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prehensive discussions on the identified key research gaps were presented.

Chapter 3 proposed an approach to realize a dynamic power budget and a decen-

tralized task scheduling algorithm for power-constrained distributed Micro-Cloud de-

ployments using on-site renewable energy integration. The proposed dynamic power

budget locally relaxes Micro-Cloud power constraints using the provisioning flexibility

of on-site renewable energy sources, without introducing significant hardware changes

through the existing underutilization opportunities present in the power delivery sys-

tem. The proposed decentralized task scheduling algorithm utilizes the dynamic power

budget across the multi-region Micro-Clouds to deliver jointly optimized relaxation of

power constraints and application low-latency performances.

Chapter 4 proposed a framework to integrate renewable energy with real-time cloud

systems without compromising its deterministic nature of application execution. The

two-fold framework presented in this work utilized renewable-driven cores as a power

management technique over renewable energy dynamics and implemented a VM ex-

ecution model to ensure deterministic application execution exploiting fault tolerance

provided in real-time cloud systems. Next, it introduced the concept of Green Cores to

translate energy dynamics into packing inventory attributes and leveraged that to pro-

pose an efficient server-level VM packing algorithm to jointly optimize for renewable

energy harvesting and to reduce impact from fault-tolerance exploitation. This work

also entailed an open-sourced implementation of the proposed framework.

Chapter 5 proposed a load shifting technique to accommodate low-latency applica-

tions in multi-region renewable energy harvesting in cloud platforms. The proposed

technique was designed around local retention of low-latency applications, to which si-

multaneous multi-threading (SMT) pooling was used. An efficient task scheduling algo-

rithm was designed to leverage server pools of SMT to maintain a static set of compute

resources inside the local cloud region for low-latency applications and to co-locate them

with best-effort applications, shifting the workload efficiently across the cloud regions.

Chapter 6 proposed an aging-aware CPU core management technique for Large Lan-

guage Model (LLM) inference cloud deployments to reduce its embodied carbon impact.

By investigating CPU components in inference servers, this work uncovered its CPU

underutilization patterns to develop a task scheduling technique coupled with dynamic
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core deep idling to slow down the CPU aging effects and even out the individual aging

of cores. The proposed technique aims to improve CPU underutilization in the short

term and prolonged CPU usage in the long term, allowing cloud providers to further

amortize the cluster’s embodied carbon over the extended lifetime. This work also pre-

sented an open-sourced implementation of an extended simulator from a production

cloud provider to effectively evaluate CPU aging effects.

Collectively, these chapters proposed multiple algorithms, power delivery manage-

ment techniques, and effective hardware management approaches for carbon-aware re-

source management in latency-sensitive cloud environments, which is a timely contri-

bution to the state-of-the-art. The outcomes of this study emphasize the effectiveness

of carbon optimization in the broader view of both operational and embodied aspects,

highlighting the potential for the overall sustainable growth of latency-sensitive cloud

infrastructures.

7.2 Future Research Directions

Based on the research works presented in this thesis, we propose potential future di-

rections for carbon-aware resource management in latency-sensitive cloud computing

environments.

7.2.1 Carbon Fault Tolerance

The research works of this thesis often faced challenges in absorbing the energy sup-

ply variations of renewable energy sources to deliver application latency performance,

in which, we exploited existing fault-tolerance mechanisms presented in the applica-

tion layer. In contrast, application management can significantly benefit from first-party

fault tolerance features defined for carbon efficiency. In that, abstractions of energy dy-

namics are presented to cloud users in the form of predictive infrastructure unreliability

patterns. Cloud users are then invited to implement fault tolerance for such dynamics.

The carbon fault tolerance we propose closely resembles spot instances present in cloud

offerings today, in which infrastructure underutilization is presented to cloud users with

an incentive of reduced usage cost. Given the tightening carbon policies enforced upon
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cloud providers, similar incentives can be offered to cloud users for rapid adoption of

carbon fault tolerance. Further, limiting the carbon footprint is a key aspect of business

growth today. Thus, the carbon fault tolerance adoption incentive may not be monetary

but rather be presented as a carbon incentive. In implementing carbon fault tolerance,

cloud providers unlock new dimensions in latency-sensitive application layer flexibility

for carbon optimization, which can be effectively integrated into its resource manage-

ment aspects.

7.2.2 Renewables-powered CPU Cores

Driving CPU core availability with renewable energy supply dynamics is an effective

method for server power management over intermittent renewable energy integrations.

However, it requires efficient management of CPU cores at the cloud virtualization layer.

In contrast, combined optimization of CPU architecture and cloud resource management

can be advanced for renewables-powered CPU cores, where CPU core sets are physi-

cally powered with renewable energy. Analogous to big.LITTLE CPU core architectures

present today, in which a particular set of cores are designed for low-powered opera-

tions, a renewables-powered CPU core set can be reserved for application execution with

performance dynamics of energy supply. However, these cores can be operated at peak

performance profiles at energy supply peaks rather than being limited to low-powered

execution such as in big.LITTLE. In return, cloud resource management presents better

application management opportunities. Renewables-powered CPU cores can be utilized

to execute components of the application layer that provide throttling opportunities,

whereas the critical components are executed with the rest of the cores. Further, the per-

formance patterns of such cores can be matched with application performance patterns,

uncovering efficient utilization opportunities for renewable energy without affecting ap-

plication latency performance.

7.2.3 Application Component-level Latency SLOs

Latency-sensitive cloud applications typically define application-wide latency service

level objectives (SLOs), leading to inefficient carbon efficiency in the infrastructure that

caters to tight latency performance requirements. However, modern applications of-
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ten consist of many components, and those components may exhibit different latency

SLOs individually. Defining such fine-grained component-level SLOs enables cloud

providers to efficiently manage their resources for better carbon efficiency. For instance,

the VM execution model introduced in Chapter 4 of this thesis can significantly benefit

from component-level latency SLOs in scheduling VMs over renewables-driven cores,

enabling deeper utilization of renewable energy with lesser application performance

impacts.

7.2.4 Thermal Management for Hardware Degradation

This thesis investigated silicon aging in Chapter 6 towards hardware degradation, which

enabled the optimization of embodied carbon in the computing cluster. In that, temper-

ature variations played a significant role. Similarly, the thermal load of the comput-

ing hardware can play an important role in hardware degradation. Latency-sensitive

cloud environments often involve hardware tuned to high performance, which results

in higher thermal loads. In our experiments carried out during this thesis, we observed

that CPU power management techniques, such as deep idling, can be effective in dy-

namic control of the thermal load. Similar techniques can be utilized for other hardware

components, such as GPU-specific techniques, to allow the resource management layer

to observe the thermal load and optimize that for application latency performance and

hardware longevity, enabling improved cloud infrastructure embodied carbon emis-

sions.

7.2.5 Sustainable Performance Profiles

In specific latency-sensitive cloud computing environments, such as real-time cloud sys-

tems, hardware must be tuned to specific performance profiles. These involve main-

taining peak hardware performance at all times, increasing the possibility of prema-

ture hardware failures through component degradation. In contrast, enabling the cloud

provider to either dynamically or periodically opt for sustainable performance profiles

of reduced performance allow to deliver a balance between hardware degradation and

application performance. Cloud providers can exploit specific application usage pat-
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terns and manage the performance profile switching at the resource management layer

to increase hardware residency time with sustainable performance profiles, which even-

tually contributes to slowing down the accumulation of embodied carbon emissions

through better hardware longevity. Furthermore, dynamic management of sustainable

performance profiles has the potential to be leveraged to optimize supply-demand in-

teractions with the energy grid. In that, the characteristics of the power grid can be

fed into the cloud infrastructure as an additional input signal for performance profile

management at the resource management layer.

7.3 Final Remarks

Latency-sensitive cloud computing environments have emerged as a growing subset of

cloud infrastructures for various application use cases, including the Internet of Things,

Industry 4.0, and the adoption of Artificial Intelligence-based cloud applications. In

delivering the stingiest latency performances, these environments exhibit intertwined

application and hardware layers, limiting the cloud provider’s control over its appli-

cation performance management and hardware lifecycle. Adversely, that limits the

opportunity to achieve operational and embodied carbon optimization through com-

promising application performance, such as integrating intermittent renewable energy

and optimizing hardware lifecycle. With the growing climate crisis concerns, improving

carbon efficiency in latency-sensitive cloud computing environments is critical. In this

thesis, we explored the tight coupling of application and hardware layers in application-

specific latency-sensitive cloud computing environments to improve its carbon efficiency

through efficient resource management. The algorithms, models, power delivery archi-

tectures, and hardware management approaches presented in this thesis achieve better

carbon efficiency of both operational and embodied aspects while maintaining adequate

application latency performances. Furthermore, the research outcomes of this thesis

identify opportunities to continue advancing carbon efficiency in latency-sensitive cloud

computing environments.
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