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Abstract

T
he focus of this research is to provide an efficient approach to deal with computa-

tionally expensive Multiobjective Optimization Problems (MOP’s). Typically, ap-

proximation or surrogate based techniques are adopted to reduce the computational cost.

In such cases, the original expensive objective function is replaced by a cheaper mathe-

matical model, where this model mimics the behavior/input-output (i.e. design variable

– objective value) relationship. However, it is difficult to model an exact substitute of the

targeted objective function. Furthermore, if this kind of approach is used in an evolution-

ary search, literally, the number of function evaluations does not reduce (i.e. The number

of original function evaluation is replaced by the number of surrogate/approximate func-

tion evaluation). However, if a large number of individuals are considered, the surrogate

model fails to offer smaller computational cost.

To tackle this problem, we have reformulated the concept of surrogate modeling in

a different way, which is more suitable for the Multiobjective Evolutionary Algorithm

(MOEA) paradigm. In our approach, we do not approximate the objective function;

rather we model the input-output behavior of the underlying MOEA itself. The model

attempts to identify the search path (in both design-variable and objective spaces) and

from this trajectory the model is guaranteed to generate non-dominated solutions (es-

pecially, during the initial iterations of the underlying MOEA – with respect to the cur-

rent solutions) for the next iterations of the MOEA. Therefore, the MOEA can avoid re-

evaluating the dominated solutions and thus can save large amount of computational

cost due to expensive function evaluations. We have designed our approximation model

as a variation operator – that follows the trajectory of the fronts and can be “plugged-in”

to any kind of MOEA where non-domination based selection is used. Hence it is termed
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– the “Pareto-Following Variation Operator (PFVO)”. This approach also provides some

added advantage that we can still use the original objective function and thus the search

procedure becomes robust and suitable, especially for dynamic problems.

We have integrated the model into three base-line MOEA’s: “Non-dominated Sorting

Genetic Algorithm - II (NSGA-II)”, “Strength Pareto Evolutionary Algorithm - II (SPEA-

II)” and the recently proposed “Regularity Model Based Estimation of Distribution Al-

gorithm (RM-MEDA)”. We have also conducted an exhaustive simulation study using

several benchmark MOP’s. Detailed performance and statistical analysis reveals promis-

ing results. As an extension, we have implemented our idea for dynamic MOP’s. We

have also integrated PFVO into diffusion based/cellular MOEA in a distributed/Grid

environment. Most experimental results and analysis reveal that PFVO can be used as a

performance enhancement tool for any kind of MOEA.
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Chapter 1

Introduction

O
ver the past two decades, Multi-objective Evolutionary Algorithms (MOEA’s)

have become one of the major tools in Multidisciplinary Design Optimization

(MDO) and Operations Research (OR). MOEA’s are now a well established technique,

both in terms of methodologies and algorithm development [1], [2], [3]. However, one of

the major difficulties when applying evolutionary algorithms (EA’s) to real-world prob-

lems is the computational costs associated with the large number of function evaluations

necessary to obtain a range of acceptable solutions. A typical problem can be consid-

ered as high-fidelity engineering design [4], [5], [6]. Often in these problems, the function

evaluations are time-consuming and are obtained by solving a large number of numerical

calculations [7].

The use of distributed systems, where each fitness evaluation is performed on a sep-

arate processor, does offer one approach to reduce the computational time. Such models,

however, typically require a large number of networked computers (scaling in size from

local clusters to full Grid deployment) and an adequate parallelization of the numerical

code [8], [9], [10]. However, a parallel approach per se does not necessarily reduce the

number of function evaluations.

Recently the development of techniques enabling a reduction in the number of func-

tion evaluations, without reducing the solution quality, has sparked the interest in the

field of both Multi-objective and Single-objective Evolutionary Optimization [11], [12],

[13], [6], [14]. An on-going challenge, therefore, is to develop good approximate methods

or “acceleration” methods that can be used to solve multi-objective problems while con-

sidering the number of objectives and the possible interaction between them. Typically,

1
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these acceleration models known as “Surrogate” or “Meta-models” [15], employ a com-

putationally cheaper mathematical model which, replaces the actual expensive functions.

1.1 Motivation

When tackling real world problem, an important performance criterion is the conver-

gence speed. Although, EA’s are good at finding (near) optimal solutions, the quality of

the solutions is dependent on the execution cycle of the EA, generally termed as “genera-

tion”. As the number of generations increases for a given EA, we are likely to find better

result with respect to the previous generations. However, if each of these generational

cycles take a considerably long time to execute, the effectiveness of EA’s when tackling

real world problems is degraded. Hence, there is a need for “Surrogate/Meta-models”

or “Intelligent Operators”. The “Surrogate Model” replaces the original fitness function

with a cheaper mathematical model that has smaller computational cost than the origi-

nal one. On the other hand, “Intelligent Operators” guide the conventional EA in the

right direction with increased speed [16], [17]. The goal of employing such technique is

to speed up the normal convergence rate of an EA.

The motivation behind this research was to increase the normal convergence speed

of any Pareto based MOEA’s. In this thesis, we propose a novel “Variation Operator”

that utilizes the objective values in the existing Pareto-front1 to approximate the possi-

ble solutions for the next Pareto-front. Our model helps existing MOEA to follow the

next Pareto-front without wasting computational cost on redundant crossover/mutation

hence we call the model as “Pareto-Following Variation Operator”.

1.2 Aims and Objectives

1.2.1 Aim

The general aim of this research project is to design and develop a new approximation

based algorithm to speed up the normal convergence rate of existing Multi-objective Evo-

1The concept of Pareto-front and Pareto-optimality will be covered in chapter 2
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lutionary Algorithms (MOEA).

1.2.2 Objectives

The specific objectives of this project are outlined below -

• Design a novel approximation model, the “Pareto-Following Variation Operator

(PFVO)”, which can be plugged into any population and Pareto-based Evolution-

ary Algorithm.

• Integrate the PFVO with three well-known MOEA’s such as NSGA-II, SPEA-II and

RM-MEDA; compare the performance of the PFVO enhanced algorithm with re-

spect to different performance metrics, such as, Hypervolume and Epsilon indica-

tor. Here, we need to consider the speed up of the hosting optimizer, therefore we

have to compare the result with respect to the total number of function evaluations.

• Deploy the model on a Grid-based2 parallel system to test the efficacy of PFVO

with parallel MOEA’s to solve computationally expensive multiobjective optimiza-

tion problems.

1.3 Organization of The Thesis

The rest of the thesis is organized as follows. In chapter 2, we introduce the “Multi-

objective Optimization Problem” (MOP) and discuss how to solve such problems using

EA’s. In addition, we also discuss baseline algorithms found in the literature to solve

conventional MOP’s. In chapter 3, we review alternative acceleration models, typically

used with evolutionary algorithms. In the case of a typical “Surrogate Modeling”, the

original objective functions (generally computationally very expensive) are replaced by

cheaper mathematical models. However, in our case, we do not replace the original fit-

ness function, rather we use an “Intelligent Operator” based model that can increase

the convergence speed of the EA. In chapter 4, we introduce the “Pareto-Following

Variation Operator” (PFVO) – the main contribution of this thesis. Implementation de-

tails are provided as well as a description of the plugging architecture with alternative

2The concept of Grid computing will be covered in chapter 7
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“Multi-objective Evolutionary Algorithms (MOEA’s)”. Experimental results using sev-

eral benchmark problems are also presented in chapter 5. In chapter 6, the focus shifts

to dynamic MOP’s, where the fitness functions change with time. A modified version of

the PFVO is also implemented. Experimental results are presented as a proof of concept

behind PFVO. Chapter 7 discusses the implementation of PFVO for a parallel MOEA

algorithm, executed in a “Global Grid” environment. In chapter 8, we conclude the

dissertation providing a summary of key contributions, addressing some of its existing

limitations and identifying future research directions.

1.4 Contributions

The specific contribution of this project can be summarized as follows –

• Chapter 4: Development of the PFVO – the core contribution of this thesis. This

work appeared in [18]3. An extended version of this paper (integration mechanism

with SPEA-II and RM-MEDA) entitled “The Pareto-Following Variation Operator as

An Alternative Approximation Model and Analysis on Its Applicability Issues” is also

submitted in IEEE Congress on Evolutionary Computation 2009 (CEC-2009).

• Chapter 5: A modified implementation of the PFVO for dynamic multi-objective

problems. This part was published in [19].

• Chapter 7: To conduct an exhaustive performance test, we have also deployed

PFVO on parallel MOEA which will be executed on Global Grid environment. This

work will be a part of another paper which will be submitted in IEEE International

Conference on E-Science and Grid Computing 2009 (e-Science 2009).

• An abridged version of this thesis entitled “The Pareto-Following Variation Operator:

An Alternative Approximation Model for Evolutionary Multiobjective Optimization” is

also submitted in IEEE Transactions on Evolutionary Computation.

3This paper only describes the integration mechanism with NSGA-II.



Chapter 2

Evolutionary Multi-objective
Optimization

2.1 Basic Definitions

2.1.1 Global Optimization

G
lobal optimization is the process of finding the global optimum (or minimum,

since min{~f (x)} = max{−~f (x)}) within search space S . The single-objective

global optimization problem can be formally defined as follows [20] -

Given a function f : Ω ⊆ S = <n → <, Ω 6= ∅, for~x ∈ Ω the value f ∗
.
= f (~x∗) > −∞

is called a global minimum if and only if

∀~x ∈ Ω : f (~x∗) ≤ f (~x) (2.1)

Then, ~x∗ is the global minimum solution(s), f is the objective function, and the set Ω is

the feasible region (Ω ⊂ S).

2.1.2 Multi-objective Optimization

Multi-objective Optimization (also called multi-criteria optimization, multi-performance

or vector optimization problem) can then be defined as the problem of finding –

5
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Figure 2.1: Representation of the decision variable space and the corresponding objective
space

A vector of design variables (decision variables), which satisfies constraints and op-

timizes a vector function whose elements represent the objective functions. These

functions form a mathematical description of performance criteria which are usually

in conflict with each other. Hence, the term “optimize” means finding such a solution

which would give the values of all the objective functions acceptable to the decision

maker [21].

Design Variables

The Design Variables or Decision Variables are the numerical quantities for which val-

ues are chosen in an optimization problem. These quantities are denoted as xj, j =

1, 2, . . . , n.

The vector of n design variables ~x is represented by -

~x = [x1, x2, . . . , xn]
T (2.2)

Constraints

In most numerical optimization problems, there are restrictions imposed by the partic-

ular characteristics of the environment or resource available (e.g., physical limitations,

time restrictions, etc.). These restrictions must be satisfied in order to consider that a

certain solution is acceptable. Restrictions in general are called constraints, and they de-
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f2 (minimize)
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Figure 2.2: The concept of domination

scribe dependencies among design variables and constants (or parameters) involved in

the problem, These constraints are expressed in the form of mathematical inequalities -

gi(~x) ≥ 0 i = 1, 2, . . . , m (2.3)

or equalities -

hi(~x) = 0 i = 1, 2, . . . , p (2.4)

Note that p, the number of equality constraints, must be less than n, the number of

design variables, because if p ≥ n the problem is said to be over-constrained, since there

are no degrees of freedom left for optimizing (i.e., in other words, there would be more

unknowns than equations). The number of degrees of freedom is given by n− p. Also,

constraints can be explicit (i.e., given in algebraic form) or implicit, in which case the

formulation to compute gi(~x) (for any given vector ~x) must be known.

The Concept of domination

Most multi-objective optimization algorithms use the concept of domination [22] [23]

[24] [25]. In these algorithms, two solutions are compared on the basis of whether one

dominates the other or not. Any solution ~x(1) is said to dominate ~x(2) or ~x(1) is said to be

non-dominated by ~x(2) if the following conditions are true -
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1. ~x(1) is no worse than ~x(2) in all objectives.

2. ~x(1) is strictly better than ~x(2) in at least one objective.

Say, we have two objective functions f1 and f2, both to be minimized. In Figure 2.2,

we have 4 solutions and -

• Solution 4 dominates solutions 1, 2 and 3.

• Solutions 2 and 3 dominates solution 1.

If any of the two conditions mentioned above is violated, the solution ~x(1) does not

dominate ~x(2). Hence in Figure 2.2, neither of solutions 2 or 3 dominate each other; they

are non-dominated.

Multi-objective Optimization Problem

The general Multi-objective Optimization Problem (MOP) can now be defined as fol-

lows -

Find the vector, ~x∗ = [x1
∗, x2

∗ . . . xn
∗]T which satisfies m inequality and p equality

constraints:

gi(~x) ≥ 0 i = 1, 2 . . . m (2.5)

hi(~x) = 0 i = 1, 2 . . . p (2.6)

and optimizes the vector function

~f (~x) = [ f1(~x), f2(~x) . . . fk(~x)]T (2.7)

In other words, the aim is to determine from among the set of all values which satisfy

(2.5) and (2.6) the particular set x∗1, x∗2 . . . x∗n which yields the optimum values of all

the objective functions. In MOP’s there is no single solution rather we have to find all

compromising (Pareto-optimal) solutions. A solution ~x∗ ∈ Ω is Pareto-optimal if for

every ~x ∈ Ω and I = {1, 2 . . . k} either,

∀i∈I( fi(~x) = fi(~x
∗)) (2.8)
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Dominated Solution

Non Dominated Solution

Pareto Front

f2

f1

Figure 2.3: Dominated/Non-dominated solutions and the Pareto-front

or, there is at least one i ∈ I such that

fi(~x) > fi(~x
∗) (2.9)

The constraints given by (2.5) and (2.6) define the feasible region Ω and any point~x in Ω

defines a feasible solution. The vector function ~f (~x) is a function which maps the set Ω

into the set Λ which represents all possible values of the objective functions. Please refer

to Figure 2.1 for the concept of objective space and design variable space. For a given

MOP ~f (x), the Pareto-optimal Set (PS∗) is defined as

PS∗ := {x ∈ Ω|¬∃x′ ∈ Ω : ~f (x′) � ~f (x)} (2.10)

Here the sign � refers to Pareto-dominance. A vector ~u = (u1, u2 . . . uk) is said to dom-

inate ~v = (v1, v2 . . . vk) ( denoted by ~u � ~v ) if and only if ~u is partially less than ~v, i.e.

∀i ∈ {1, 2, . . . k} : ui ≤ vi ∧ ∃i ∈ {1, 2, . . . k} : ui < vi. The concept of Dominated/Non-

dominated solution and Pareto-front is illustrated in Figure 2.3.

Our goal is to find the set of all Pareto-optimal solutions and the corresponding ob-

jective values of this set is defined as Pareto-front. The Pareto-front (PF ∗) can be math-

ematically defined as,

PF ∗ := {~u = ~f = ( f1(x) . . . fk(x))|x ∈ PS∗} (2.11)
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Figure 2.4: Different Pareto-optimal solution sets, for the same objective space, depend-
ing on maximization or minimization problem

The Pareto-optimal solutions are those solutions within the search space whose cor-

responding objective vector components can not be improved simultaneously. These so-

lutions are also known as non-inferior, admissible or efficient solutions, with the entire set

represented by PS∗ or PStrue. Their corresponding vectors are known as non-dominated;

selecting a vector(s) from this vector set (the Pareto-front set PF ∗ or PF true) implicitly

indicates acceptable Pareto-optimal solutions. These are the set of all solutions whose

vectors are non-dominated; these solutions are classified based on their objective value ex-

pression. Their expression (the nondominated vectors), when plotted in criterion space,

is known as the Pareto-front [2], [1], [26]. In Figure 2.4, the left portion depicts a two

objective Pareto-front where both objectives needs to be minimized and in the right por-

tion, the Pareto-front is illustrated where f1 needs to be maximize and f2 needs to be

minimized.

Just as there are “global” and “local” optimal solutions in single-objective optimiza-

tion, there could be “global” and “local” Pareto-optimal fronts in MOP’s. The Globally

Pareto-optimal set is the non-dominated set of entire search space S . Since the solutions

of this set are not dominated by any feasible member of the search space, they are the

optimal solutions of MOP. On the other hand, a locally Pareto-optimal set can be defined

as -

If ∀~x ∈ PS ′, ∃~y ∈ PS and in the neighborhood of ~x, such that,

‖~x−~y‖∞ ≤ ε (2.12)
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Figure 2.5: Global and local Pareto-optimal fronts

where ε is a small positive number dominating any member of the set PS ′, then

solutions belonging to the set PS ′ constitute a locally Pareto-optimal set. In Figure 2.5,

the shorter bold curve represents a local Pareto-optimal front. None of its points have any

neighbor which dominate any member of the set. With these basic MOP definitions, we

are now ready to delve into the structure of MOP’s and the specifics of various MOEA’s.

2.2 Basic Techniques to Solve MOP’s

From the preceding discussions, we have seen that there is no single solution for a given

MOP. So, classical methods like Linear Programming (LP), Non-Linear Programming

(NLP), Quadratic Programming (QP) fail to provide a set of trade-off solutions. Al-

though, there are numerical techniques that have been proposed to solve MOP’s such

as Normal Boundary Intersection (NBI) [27] and Normal Constraint Method (NC) [28],

[29] etc., However, they are not capable of solving all types of MOP’s.

General search and optimization techniques are typically classified into three cate-

gories: enumerative, deterministic and stochastic (random) [2]. Although, an enumer-

ative search is deterministic; a distinction is made here as it employs no heuristics [30],

[31]. Figure 2.6 shows common examples of each type.

As in the case of single-objective optimization, MOP has also been studied exten-

sively. There exists many algorithms and application case studies involving multiple
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Figure 2.6: Global Optimization Approaches

objectives [32], [33]. The majority of these methods avoid the complexities involved in a

true multi-objective optimization problem and transform multiple objectives into a single

objective function by introducing user-defined parameters (see Figure 2.7). Thus, most

studies in classical multi-objective optimization do not treat MOP’s any differently to

single-objective optimization problem. In fact, MOP is considered as an application of

single objective optimization for handling multiple objectives. The studies seem to con-

centrate on various means of converting multiple objectives into a single objective. Many

studies involve comparing different conversion schemes and provide reasons in favor of

one conversion over another [1]. This is contrary to our intuitive realization that single-

objective optimization is a degenerate case of MOP and MOP is not a simple extension of

single-objective optimization.

It is true that most theories and algorithms for single-objective optimization are ap-

plicable to the optimization of multi-objective function. However, there is a fundamental

difference between single and multiple objective optimization, which is ignored when

we use transformation methods.
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Figure 2.7: Schematic of preference based multi-objective optimization procedure

To address this issue more clearly, we first describe what is an ideal multi-objective

optimization algorithm. According to [1], we found two basic requirements for an ideal

MOP algorithm (the basic idea is illustrated in figure 2.8) -

• Find multiple trade-off solutions with a wide range of values for objectives.

• Choose one of the obtained solutions using higher level information.

It is important to realize that the trade-off solution obtained by using this preference

based strategy is largely sensitive to the relative preference vector used in forming the

composite function. A change in this preference vector will result (hopefully) in a dif-

ferent trade-off solution. However, an arbitrary preference vector does not result in a

trade-off optimal solution to all problems. Besides this difficulty, it it trivial to realize that

finding an appropriate relative preference vector is highly subjective and not straight

forward. Classical MOP methods works according to this preference based strategy. So

unless a reliable and accurate preference vector is available, the optimal solution found

by such algorithms is highly subjective to the particular user. To solve this problem, we

actually need an optimizer that can handle multiple solutions with multiple-objectives,

simultaneously, so that it is possible to find all trade-off solutions.
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Figure 2.8: Schematic of an ideal multi-objective optimization procedure

2.3 Evolutionary Algorithms for MOP’s

In the previous section, we have seen that the classic methods to solve multi-objective op-

timization is to follow the preference based approach, where a relative preference vector

is used to scalarize multiple objectives. Since classical search and optimization methods

use a point-by-point approach, where one solution in each iteration is modified to a dif-

ferent (hopefully better) solution, the outcome of using a classical optimization method

is a single solution.

However, the field of search and optimization has changed over the last few years

by introduction of a number of non-classical, unorthodox and stochastic search and op-

timization algorithms. Of these, EA’s mimic nature’s evolutionary principles to drive

its search towards an optimal solution. One of the most striking differences to classical

approach is that EA’s use a population of solutions in each iteration, instead of single

solution. Since a population of solutions are processed in each iteration, the outcome of

an EA is also a population of solutions. If an optimization problem has a single optimum,

all EA population members can be expected to converge to that optimum solution. How-

ever, if an optimization problem has multiple optimum solutions, an EA can be used to

capture all Pareto-optimal solutions in its final population. Moreover, EA’s are also less

susceptible to the shape of Pareto-front (concave or convex).

This ability of an EA to find multiple optimal solutions in one single simulation run

makes EA’s unique in solving MOP’s. As we mentioned the basic schematics of an ideal

multi-objective optimizer, an EA’s population based approach can be suitably utilized to
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find a number of solutions in a single run. We assume that the readers have background

knowledge on basic EA mechanisms and entities (i.e. individual, population, genetic

operator, selection mechanism and “basic building block hypothesis/schema theorem”),

we are not going to discuss the details of EA. For the interested readers, the basic theories

on EA can be found in [34].

2.4 Rise of Multi-objective Evolutionary Algorithms

Early applications of EA’s to multi-objective optimization problems were mainly prefer-

ence based approaches, although the need for EA’s to find multiple trade-off solutions

was clearly stated. There are three methods typically used to solve MOP’s with EA -

• Preference based approach

• Population based approach

• Pareto based approach

We will briefly discuss each of them in following subsections -

2.4.1 Preference Based Approach

As discussed in section 2.2, the preference based approach is the most straight forward

techniques to solve MOP’s. In this case, an aggregating function from the k objectives

( f1, f2, . . . , fk) are designed with a set of user defined weights/preferences and EA’s are

deployed to solve the following problem -

min
k

∑
i=1

wi fi (2.13)

Where, wi ≥ 0 are the weighting coefficients representing the relative importance of the

objective function fi of the problem. It is usually assumed that -

k

∑
i=1

wi = 1 (2.14)
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Figure 2.9: Schematic of VEGA’s selection mechanism

Aggregating functions may be linear or non-linear [35] [36]. Aggregating functions have

been largely underestimated by MOEA researchers mainly because of the limitation of

linear aggregating functions (i.e. they can not generate non-convex portions of the Pareto-

front regardless of the weight combination used [37]). Note, however, that non-linear

aggregating functions do not necessarily present such limitation [2], and they have been

quite successful in multi-objective combinatorial optimization [38].

2.4.2 Population Based Approach

In this type of approach, the population of an EA is used to diversify the search, but

the concept of Pareto-dominance is not directly incorporated into the selection process.

The classical example of this sort of approach is the Vector Evaluated Genetic Algorithm

(VEGA) [39], [40]. VEGA basically consists of a simple genetic algorithm with a modified

selection mechanism. At each generation, a number of sub-populations are generated by

performing proportional selection according to each objective in-turn. Thus for a problem

with k objectives, k sub-populations of size M/k each are generated (assuming a total

population size of M). These sub-population are then shuffled together to obtain a new

population of size M, on which the genetic algorithm applies the crossover and mutation

operators. However VEGA has several problems, from which the most serious is that its

selection scheme is opposed to the concept of Pareto-dominance. The basic schematic of

a population based MOEA is depicted in Figure 2.9.



2.4 Rise of Multi-objective Evolutionary Algorithms 17

Non Dominated Solution

Dominated Solution

Genetic Operators

Pareto Front

f1

f2
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2.4.3 Pareto Based Approach

Under this category, we consider MOEA’s that incorporate the concept of Pareto-optimality

in their selection mechanism. A wide variety of Pareto-based MOEA’s have been pro-

posed in the last few years and it is not the intent of this section to provide a compre-

hensive survey of them since a review is available elsewhere [2], [1]. In contrast, this

section provides a brief discussion of a relatively small set of Pareto-based MOEA’s that

are representative of the research being conducted in this area.

A typical non-dominated sorting MOEA employing an elitist model has the following

functionality: Firstly, the algorithm starts with a randomly generated population Pt, and

then after evaluation, the individuals are sorted according to the non-domination criteria

and divided into φ fronts.

Pt := {Fφ,Fφ−1, . . . ,F1} (2.15)

Then, from the best front Fφ, mutation, crossover and other genetic operators are applied

to expand the population to the next best front φ + 1 to create the next population Pt+1.

Different algorithms uses different techniques to expand this population to the next front.

Generally, most of the Pareto-based algorithms follow the similar architecture as stated

above. Now, we briefly describe the popular algorithms that use this approach.
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Goldberg’s Pareto Ranking

Goldberg suggested moving the population toward PFtrue by using a selection mecha-

nism that favors solutions that are non-dominated with respect to the current population

[34]. He also suggested the use of fitness sharing and niching as a diversity maintenance

mechanism [41].

Multi-Objective Genetic Algorithm (MOGA)

Fonseca and Fleming [22] proposed a ranking approach different from Goldberg’s scheme.

In this case, each individual in the population is ranked based on how many other points

dominate them. All the non-dominated individuals in the population are assigned the

same rank and obtain the same fitness, so that they all have the same probability of being

selected. MOGA uses a niche-formation method in order to diversify the population, and

a relatively simple methodology is proposed to compute the similarity threshold (called

σshare) required to determine the radius of each niche.

Non-dominated Sorting Genetic Algorithm (NSGA)

NSGA [24] is based on several layers of classifications of the individuals as suggested

by Goldberg [34]. Before selection is performed, the population is ranked on the ba-

sis of non-domination: all non-dominated individuals are classified into one category

with a dummy fitness value, which is proportional to the population size, to provide an

equally productive potential for this individuals. To maintain the population diversity,

the classified individuals are shared with their dummy fitness values. Then this group

of classified individuals is ignored and another layer of non-dominated individuals is

considered. The process continues until all individuals in the population are classified.

Stochastic remainder proportionate selection is adopted for this technique. Since individ-

uals in the first front have the maximum fitness value, they always get more copies than

the rest of the population. An enhanced extended version of this algorithm, NSGA-II

[42], uses elitism and crowded comparison operator that ranks the population based on

both Pareto-dominance and region density. This crowded comparison operator makes
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the NSGA-II considerably faster than its predecessor while producing very good results.

Due its immense popularity, we are going to compare our algorithm with NSGA-II.

Niched Pareto Genetic Algorithm (NPGA)

This method employs an interesting form of tournament selection called Pareto-domination

tournaments. Two members of the population are chosen at random and they are each

compared to a subset of the population. If one is non-dominated and the other is not,

then the non-dominated one is selected. If there is a tie (both are either dominated or

non-dominated), then fitness sharing decides the tourney results [23].

Strength Pareto Evolutionary Algorithm (SPEA)

This method attempts to integrate different MOEAs [25]. The algorithm uses a “strength”

value that is computed in a similar way to the MOGA ranking system. Each member of

population is assigned a fitness value according to the strengths of all non-dominated so-

lutions that dominate it. Diversity is maintained through the use of a clustering technique

called the “Average Linkage Method”.

A revision of this method called SPEA-II [43], adjusts the fitness strategy slightly and

uses nearest neighbor techniques for clustering. In addition, archiving mechanism en-

hancements allow for the preservation of the boundary solutions that are missed with

SPEA.

Pareto Archived Evolution Strategy (PAES)

PAES [44], [45] uses a (1 + 1) evolution strategy, where each parent generates one off-

spring through mutation. The method uses an archive of non-dominated solutions to

compare with individuals in the current population. For diversity, the algorithm gener-

ates a grid overlaid on the search space and counts the number of solutions in each grid.

A disadvantage of this method is its performance on disconnected Pareto-fronts.
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2.5 Conclusion

In this chapter we discussed the basic theory behind MOP’s. We also identified that

an aggregate function approach does not meet the criteria for ideal multi-objective opti-

mization algorithm, whereas, Pareto-based approach meets the exact requirements. For

this reason, MOEA’s are most widely used in the field. Even though, MOEA’s are good

at finding a set of Pareto-optimal solutions, they still suffer from slow convergence and

their performance degrades as the complexity of the problems increases (i.e. increas-

ing number of design variables, objective functions and complex shape of Pareto-front).

So, the concept of “Approximation/Surrogate/Meta-model/Intelligent Operator” based

techniques come to the scene to help speeding up the convergence rate. In the next chap-

ter we illustrate different kind of “speeding up” techniques generally used in the MOEA

paradigm.



Chapter 3

Acceleration Models for Evolutionary
Algorithms

3.1 Introduction

M
ost numerical optimization problems require experiments and/or simulations

to evaluate design objectives and constraints. For many real world problems,

however, a single simulation can take a long time. As a result, routine tasks such as

design optimization, design space exploration, sensitivity analysis and what-if analysis

become impossible since they require thousands or even millions of simulations [5].

One way of alleviating this burden is to construct approximation models, known as

Surrogate Models, Response Surface Models, Meta Models or Emulators, that mimic

the behavior of the simulation model as closely as possible while being computationally

cheap(er) to evaluate. Surrogate models are typically constructed using a data-driven,

bottom-up approach [5]. The Response Surface Methodology (RSM) [15], on the other

hand, explores the relationships between several explanatory variables and one or more

response variables. In this chapter we review the aspects of these kind of approxima-

tion models. Generally, in the MOEA domain, approximation can be adopted in differ-

ent ways, not only as Surrogate or Response Surface models, approximation can also be

achieved by “Intelligent Operator”4 based models. Here, the “Intelligent Operator”

utilizes the search path in such a way that the original evolutionary algorithm can reach

the global optimum in smaller computational effort. In this chapter, we discuss these

4Most instances of “Intelligent Operator” uses the directional information from the previous search path
or identify the relationship between the objective values and design variables, so that the original EA can
avoid the redundant creation of infeasible solutions

21
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Figure 3.1: A polynomial surrogate to model the behavior of a Design of Experiments
Simulation

kind of models in detail along with exhaustive literature review.

The main idea of Surrogate/RSM is to use a set of designed experiments to obtain

an optimal response. In this case, the exact, inner working of the simulation code is not

assumed to be known (or even understood), solely the input-output behavior is impor-

tant. A model is constructed based on modeling the response of the simulator to a limited

number of intelligently chosen data points. This approach is also known as Behavioral

Modeling or Black-box Modeling [46], though the terminology is not always consistent

[47]. When only a single design variable is involved, the process is known as curve fitting

as illustrated in Figure 3.1.

An important distinction can be made between two different applications of surrogate

models. The first involves building small and simple surrogates for use in optimization.

Simple surrogates are used to guide the search towards a global optimum. Once the opti-

mum is found the surrogates are discarded [48]. In the second case, one is not interested

in finding the optimal parameter vector, but the interest is in determining the global be-

havior of the system. In such case, the surrogate is tuned to mimic the underlying model

over the complete design space. Such surrogates are a useful and a cheap way to gain

insight into the global behavior of the system. Optimization can still can be performed as

a post processing step [49].
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Figure 3.2: A basic flow chart for a surrogate based optimization

The challenge of surrogate modeling is the generation of an approximator that is as

accurate as possible, using as little simulation evaluations as possible. The process com-

prises three major steps, which may be interleaved iteratively:

1. Sample selection (also known as sequential design, optimal experimental design

(OED) or active learning)

2. Construction of the surrogate model and optimizing the model parameters (Bias-

Variance trade-off)

3. Validation of the accuracy of the surrogate

Surrogate modeling can be thus seen as a non-linear inverse problem with an aim to

determine a continuous function f (~x) of a set of design variables from a limited amount

of available data f(~x). The available data ‘f’ while deterministic in nature can represent

exact evaluations of the function f (~x) or noisy observations and in general cannot carry

sufficient information to uniquely identify f (~x) (multiple surrogates may be consistent

with the available data as illustrated in Figure 3.1). Thus, surrogate modeling deals with

the twin problems of: (a) constructing a model f̂ from the available data f(~x) (model

estimation), and (b) assessing the errors ‘ε’ attached to it (model validation). This idea

will be apparent from the flowchart presented in Figure 3.2. A general description of the

anatomy of inverse problems can be found in [50].

When using the surrogate modeling approach, the prediction of the simulation-based

model output is formulated as fp(~x) = f̂ (~x) + ε(~x): The predicted expected value and its

variance V( fp) are illustrated in Figure 3.3, with θ being a probability density function.

Note that in Figure 3.1 it is assumed that the expected value of ε(~x) is zero.
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Figure 3.3: The prediction expected value E( fp) and its variance V( fp)

Different model estimation and model appraisal components of the prediction have

been shown to be effective in the context of surrogate based analysis. In Table 3.1, we

summarize the different approximation techniques which are described in the following

sections.

Type Implementation Reference

Numerical Models

Quadratic Approximation [51]
Polynomial Regression [52], [53]
Stepwise Regression [54]
Gradient [55], [56], [57]
Directional Information [58], [59]

Radial Basis Function Models

RBF Surrogate [60], [61]
Local & Global RBF [11]
Max-min RBF [12]
RBF & Rough Set [62]

Artificial Neural Network Models
Informed Convergence Accelerator [63]
Inverse Mapping [64]
General ANN [65], [66], [7], [67]

Kriging/Response Surface Models

General Kriging [68]
Co-Kriging [69]
Gaussian Random Field(GRF) [70], [52], [71], [72]
Efficient Global Optimization (EGO) [73]
Response Surface [74], [14]

Intelligent Operator Models
Directed Variation [75]
Guided Mutation [76]
Extrapolation Directed Crossover [77]

Other Models
Principal Component Analysis [78], [79]
Weighting [80] [81]

Table 3.1: Summary of different approaches for high speed convergence techniques
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False Minimum

Figure 3.4: An example of a false minimum in the approximate model. Solid line denotes
the original fitness function, dashes line the approximate model and the dots the available
samples

3.2 Different Surrogate Models Applied to EA Domain

The rising trend of using time-consuming simulation in scientific and engineering works

has restricted the use of EA’s as a global optimization tool. To address this problem, it

has been a standard practice to use a computationally cheap approximation or surrogate

models in lieu of an exact model. In early research [82], [47], a function approximation

based surrogate model was introduced to Nonlinear Programming (NLP) methods. As

its applicability has been proved in general numerical optimization domain, naturally

it has become one of the central interests in the evolutionary computation community

[5], [83]. We also find some rigorous survey on meta-model assisted evolutionary search

techniques in [84], [85], [86], [4], [87].

The application of approximation models to evolutionary computation is not straight-

forward. There are two major concerns when using approximate models for the fitness

evaluation. First, it is necessary that the EA converges to the global optimum or a near-

optimum of the original fitness function. Second, the computational cost should be re-

duced as much as possible. One essential point is that it is very difficult to construct an

approximate model that is globally correct due to the high dimensionality, ill distribution

and limited number of training samples. It is found that if an approximate model is used

for fitness evaluation, it is very likely that the EA will converge to a false optimum. A

false optimum is an optimum of the approximate model, which is not one of the original

fitness function as shown in Figure 3.4 [84].
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Therefore, in most cases, it is essential that the approximate model should be used

together with the original fitness function. This can be regarded as the issue of model

management or evolution control. By evolution control, it is meant that in evolutionary

computation using approximate models, the original fitness function is used to evalu-

ate some of the individuals or all individuals in some generations [88]. An individual

that is evaluated using the original fitness function is called as the Controlled Individual.

Similarly, a generation in which all its individual are evaluated using the original fitness

function is called as the Controlled Generation [84].

Generally, model management in evolutionary computation can be divided into three

main approaches from the viewpoint of evolution control -

• No Evolution Control. Very often, the approximate model is assumed to be of

high-fidelity and therefore, the original fitness function is not used in evolutionary

computation.

• Fixed Evolution Control. The importance of using both the approximate model

and the original function for fitness evaluation has been recognized [89], [88], [83].

There are generally two approaches to evolution control, one is individual-based

and the other is generation-based.

• Adaptive Evolution Control. It is straightforward to imagine that the frequency

of evolution control should depend on the fidelity of the approximate model. A

method to adjust the frequency of evolution control based on the trust region frame-

work [90], [91] has been suggested in [60], in which the generation-based approach

is used. A framework for approximate model management has also been suggested

in [92].

The above mentioned approach to control the evolutionary process is illustrated in

Figures 3.5, 3.6 and 3.7
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With the advent of surrogate models in single-objective optimization problems, its

application to multi-objective problems has also became an interesting research topic in

MOEA. However in most of the cases, implementation strategies were very similar to

that of single-objective approaches.

Since in the case of MOP’s, the goal is to find a set of compromising solutions that sat-

isfy two or more objectives, the implementation of surrogate models are not as straight

forward as in single-objective EA’s. In the literature, we find different approaches to

handle this problem. The most trivial approach to handle this problem, is to design the
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approximation functions using direct implementation of surrogate models as in single-

objective EA’s. In this case, we must construct a number of surrogate models, one for

each of the objective functions [16]. Another approach is to decompose the multiple ob-

jectives into several scalar optimization problems [72] and thus construct the surrogate

model. In recent work [93], a multi-level surrogate model was presented, where a mul-

tiple approximation scheme was adopted in a two levels of optimization procedure. The

first level deals with RBF network for global optimization and the second level uses a

gradient method to perform local optimization. A detailed survey on surrogate models

in MOEA is presented in [17].

Based on a thorough survey, we found a number of limitations of conventional surro-

gate models for MOEA’s -

• Since MOP’s deal with more than one objective, we have to design different ap-

proximation models for different objective functions. If we are going to use a

computationally expensive method like Kriging/RBF network/Artificial Neural

Network5, the learning cost increases proportionally with the number of objective

functions.

• The main goal of an MOEA is to find all possible solutions in the Pareto-front.

However, the shape of Pareto-front may effect on the performance of the surrogate.

5These techniques will be described in coming sections
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Surrogate models are designed for continuous functions, so when a broken (not

connected) Pareto-front is encountered, the model may not work properly.

• Surrogate models are also error-prone to deceptive phenomenon and trapping into

the false optima in single objective optimization [85], [84]. The same problem exists

for MOP’s.

In the following sections, we will discuss the implementation of surrogate/approximation

models in EA’s and MOEA’s briefly.

3.3 Polynomial Regression Models

The most widely used polynomial approximation model is the second-order model which

has the following form:

f̂ (~x) = β0 +
n

∑
i=1

βixi +
n

∑
i=1

n

∑
j≤i

βijxixj (3.1)

where β0 and βi are the coefficients to be estimated, and the total number of terms in

the quadratic model is nt = (n + 1)(n + 2)/2, where n is the number of input variables.

To estimate the unknown coefficients of the polynomial model, both the Least Square

Method (LSM) and Gradient Method can be used:

3.3.1 Least Square Method

To generate a unique estimation of the coefficients using LSM, the number of samples

(N) drawn from the original function should be equal to or larger than the number of

coefficients nt. Let

~f (~x) =
[

f̂ 1(~x), f̂ 2(~x) . . . f̂ N(~x)
]T

(3.2)

and

X =











1 x1
1 x2

1 . . . (xn
1)

2

1 x1
2 x2

2 . . . (xn
2)

2

...
...

...
...

...

1 x1
N x2

N . . . (xn
N)

2











(3.3)



30 Acceleration Models for Evolutionary Algorithms

then this equation holds:

f(x) = XΘ (3.4)

where Θ is the parameters of equation 3.1 and approximated Θ̂ can be calculated

using LMS method -

Θ̂ = (XTX)−1XTf(x) (3.5)

here, equation 3.5 assumes that the rows of X are linearly independent. Details can be

found in [48].

3.3.2 Gradient Method

The main drawback of the least square method is that the computational expense be-

comes unacceptable as the dimensionality increases. To address this problem, the gradi-

ent method can be used. This approach defines the following square error function for

the sample k.

Ek = 0.5( f (~x)− f̂ k(~x))
2

(3.6)

where f̂ (·) is defined in equation 3.1 and it is straightforward to get the update rule

for the unknown coefficients β0, βi and βij.

∆β0 = −ξ · ( f (~x)− f̂ k(~x)) (3.7)

∆βi = −ξ · ( f (~x)− f̂ k(~x))xk
i (3.8)

∆βij = −ξ · ( f (~x)− f̂ k(~x))xk
i xk

j , 1 ≤ i ≤ j ≤ n (3.9)

The detailed implementation of this approach can be found in [94].

3.3.3 Polynomial Regression Models for Single-Objective Evolutionary
Algorithms

Generally, there are numerous ways to implement a surrogate model for a specific numer-

ical optimization problem, such as numerical function approximation, correlation anal-

ysis, gradient based computation. For example, in [13], the model was applied using
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correlation analysis, in [94] the proposed model uses gradient based response surface ap-

proximation and in [95], the authors propose a coupled model that uses both gradient

based surrogate and EA to optimize Learning Classifier System (LCS). In [52], the surro-

gate was designed using both polynomial regression model and gaussian random field

based approximation methods. In [53], the proposed model also uses linear estimation

methods for reducing the number of expensive evaluations.

In the case of numerical approximation methods, the model is generally built from

the previous search path of the algorithm. When using an EA, the search path is con-

structed using the previously visited points in the search space (best individuals found

so far). Once the model is built, then the next possible best solutions are approximated.

Methods, such as gradient or polynomial or least square models works reasonably well

for problems with smaller numbers of design variables. When the number of design

variable increases, the performance of such methods tends to be degraded.

3.3.4 Polynomial Regression Models for Multi-Objective Evolutionary
Algorithms

Similar to single-objective EA’s, in [6] a fitness estimation based surrogate model was

used. Here, a locally weighted regression (using QR factorization) was used to model

the surrogate. The proposed algorithm was applied to an internal-combustion engine

controller optimization problem. In other work [51], the surrogate model was built from

the Quadratic Approximation (QA) function. The study reports on the use of a number of

independent distributed EA’s run concurrently where each of them was used to optimize

one objective function. Along with this scheme, they have also used their own “Informed

Operator” [96] to generate new offsprings.

In other work [54], the response surface method (similar to Kriging, that will be dis-

cussed in section 3.6) with linear and quadratic basis functions was employed to formu-

late the objectives, in which optimal Latin hypercube sampling and stepwise regression

techniques were implemented.

Gradient based methods are also popular. In [55], the authors proposed the concept

of “Pareto-Descent Method (PDM)”. Where “Pareto-Descent Direction” is explained as
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Figure 3.8: Pareto-descent directions d: at a solution x of a 2-variable-2-objective problem

the descent directions to which no other descent directions are superior in improving all

objective functions. The work proposed a new Local Search (LS) method which finds

Pareto descent directions and moves solutions in those directions thereby improving all

objective functions simultaneously. The concept is illustrated in Figure 3.8. If a part or

all of them are infeasible, it finds feasible Pareto descent directions or descent directions

as appropriate. PDM finds these directions by simple linear programming. Experiments

have shown PDMs superiority over other existing methods. Similar approaches are also

described in [56], [57].

In [58], the authors developed a local framework for MOP by geometrically analyzing

the multi-objective concepts of descent, diversity and convergence/optimality. The study

also showed that locally optimal, multi-objective descent direction can be calculated in

such a way that it maximally reduces all the objectives (ensuring both diversity and con-

vergence). Their concept was to extend the idea of “Half-space” from single-objective

problems to MOP. More details on the theoretical analysis on “Half-space” and its exten-

sion for MOP’s can be found in [59]. In [97], directional information is also utilized to

speed up the convergence rate of “Non-dominated Sorting Genetic Algorithm (NSGA-

II)” [42]. NSGA-II is considered as one of the most popular algorithms in MOEA. The

authors have tested their models on several benchmark problems and it is also reported

that their model showed promising improvement with respect to NSGA-II.
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3.4 Radial Basis Function (RBF) Models

Radial basis functions have been developed for the interpolation of scattered multivari-

ate data. The method uses linear combinations of n radially symmetric functions, hi(~x);

based on Euclidean distance or other such metric, to approximate the response functions

as

fp(~x) =
n

∑
i=1

wihi(~x) + εi (3.10)

where ~w represents the coefficients of the linear combinations, hi(~x) the radial basis

functions and εi independent errors with variance σ2.

Radial basis functions are a special class of functions with their main feature being

that their response decreases (or increases) monotonically with distance from a central

point. The center, the distance scale, and the precise shape of the radial function are the

parameters of the model.

A typical radial function is the Gaussian which, in the case of a scalar input, is ex-

pressed as

hi(~x) = exp

(

(~x−~c)2

δ2

)

(3.11)

The parameters are its center ~c and its radius δ (See Figure 3.9). Note that the response

of the Gaussian radial basis function decreases monotonically with the distance from

the center, giving a significant response only in the center neighborhood. Given a set of

N input/output pairs (sample data) a radial basis function model can be expressed in

matrix form as,

f = Hw (3.12)

where H is a matrix given by,

H =











h1(x1) h2(x1) . . . hn(x1)

h1(x2) h2(x2) . . . hn(x2)
...

...
...

...

h1(xN) h2(xN) . . . hn(xN)











(3.13)

Similar to the polynomial regression method, by solving equation 3.12 the optimal weights
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Figure 3.9: A multiquadric radial basis function

(in the least squares sense) can be found to be

ŵ = A−1HTf (3.14)

where A−1 is a matrix given by,

A−1 = (HTH)
−1

(3.15)

The RBF model estimate for a new set input values is given by,

f̂ (x) = hTŵ (3.16)

where, h is a column vector with the radial basis functions evaluations,

h = [h1(x), h2(x) . . . , hn(x)]T (3.17)

The function represented in equation 3.11 is known as Radial Basis Kernel. Typical

choices for the kernel include linear splines, cubic splines, multi-quadrics, thin-plate

splines, and Gaussian functions [98]. The structure of some commonly used radial basis

kernels and their parameterizations are shown in Table 3.2. Given a suitable kernel, the

weight vector can be computed by solving the linear algebraic system of equations as

described in equation 3.14. [99] provides the detailed approximation of this approach.
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Type Definition

Linear Splines ‖r‖

Thin Plate Splines ‖r‖2m+1ln‖r‖

Cubic Splines ‖r‖3

Multiquadric Splines

√

1 + ε‖r‖2

Gaussian Splines e−(ε‖r‖)2

Table 3.2: Radial Basis Functions, Where r = (~x−~c)2/δ2

3.4.1 RBF Models for Single-Objective Evolutionary Algorithms

To construct the RBF based meta-model for single-objective EA’s, we have to consider the

previously visited design points as its learning parameters [60], [100]. This is similar to

the numerical approach (polynomial regression, gradient based approach ) in the sense

that it also uses previous experience of the hosting search algorithms as the building

block. As an example, let us consider the problem of optimizing an expensive function

f (~x), which is defined as

Minimize f (~x) (3.18)

Subject to xl ≤ xi ≤ xm (3.19)

A conventional EA first starts by creating a set of random ~x and uses genetic operators

(crossover, mutation) and selection to generate new design variables. Once a good de-

sign variable is found, the algorithm stores it in an external population for modeling

the surrogate. Once there are enough visited points in the external population, surro-

gate models will be created from those points. To illustrate this more clearly, the points

stored in the external population are considered as ~x in equation 3.11. This equation has

a special property, that is, its response hi(~x) is monotonically increasing (or decreasing)

with respect to the distance of ~x from the central point c (Figure 3.9). This property will

help to approximate the next best design variable ~x from the existing points without re-

evaluating the newly generated population using the expensive objective function f (~x).

RBF based surrogate models usually exhibits better approximation of the search path

when combined with the hosting optimization algorithm than other general numerical
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Figure 3.10: RBF algorithm, which uses the NSGA-II to optimize the meta-model

approach (i.e. polynomial, quadratic or gradient based surrogate models). The improve-

ment is typically greater for optimizing larger number of design variables [11], [12], [100].

3.4.2 RBF Models for Multi-Objective Evolutionary Algorithms

In the case of MOEA’s, the approach is similar to single-objective approaches. One can

design RBF networks for individual objective functions for MOEA population or differ-

ent models for different sub-populations. We have found several methods describing

implementation of RBF networks for MOEA’s. In [101], the population was divided into

several clusters and each of the clusters is used to design different RBF network mod-

els. The authors compared their model with NSGA-II on five benchmark MOP’s and

significant improvement was reported.

In [62], the model was also integrated with NSGA-II to enhance its convergence

speed. In that paper, it was reported that the spread of solutions in the Pareto-front

was not always satisfactory, if a RBF network was only used. Consequently, the authors

integrated a “Rough Set” based approach for enhancement. Moreover, in the MOP do-

main, convergence is not the only criteria to be achieved. To find all satisfactory solutions,

we must generate the Pareto-front with a “good spread” [1], [2]. Therefore, the authors

used the notion of “Rough-Set Theory” to ensure this criteria. They tested their model

on several popular benchmark MOP’s and found promising results. The model used in

[62] is presented in Figure 3.10. More details on the use of RBF networks for MOEA’s are

provided in [61].
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3.5 Artificial Neural Network (ANN) Models

Neural networks have been shown to be effective tools for function approximation. Given

their good approximation and adaptive ability, they have been widely used in the field of

dynamic system identification and automatic control [102], [103]. However, when they

are applied in numerical optimization problems as a surrogate model, the ANN is used

in the sense that the hosting optimization algorithm is also considered as a “dynamic sys-

tem” that takes some real values (design variables) as input signal and generates some

real values (objective functions) as output response. In the case of ANN, both Feed-

Forward Multi-Layer Perceptrons (MLP) and Radial Basis Function (RBF) networks have

widely been used. A MLP with one input layer, two hidden layers and one output neuron

can be described by the following equation (see Figure 3.11):

f (~x) =
K

∑
k=1

vk ϕ

(
M

∑
j=1

wjk ϕ

(
N

∑
i=1

wijxi

))

(3.20)

where, n is the input number, K and L are the number of hidden nodes, and ϕ(·) is

called activation function, which usually is the logistic function

ϕ(z) =
1

1 + e−az
(3.21)

Figure 3.11 shows a typical ANN architecture. More details on ANN as a surrogate

model, can be referred from [104], [105], [106], [66].

3.5.1 ANN Models for Single-Objective Evolutionary Algorithms

ANN based models are one of the most popular approximation techniques implemented

in EA paradigm [104], [66], [107]. In this case, first, an ANN with random weights re-

places the expensive original functions. Then, the EA starts its optimization with a set of

randomly generated individuals. After the evaluation of the individuals by the original

functions. The ANN is trained with each of the individuals and their objective values. It

is trivial that the design variables of the individuals are considered as input to the ANN

and the weight of the ANN are adjusted according to their respective objective functions.



38 Acceleration Models for Evolutionary Algorithms

Output Layer

Hidden Layer

Input Layer

Figure 3.11: A simple artificial neural network

Different algorithms uses different schemes to replace the original expensive function

with the trained ANN.

Although ANN are popular models for speeding up the convergence rate of single

objective optimizers [63], [64], [65], they have also some shortcomings as stated below -

• Building and training an ANN for a specific input/output pattern of a dynamic

system itself is a very difficult problem. Subsequently, determining a good ANN

model (as a surrogate) may not lead to an efficient approximation model for most

problems. For more insight to this issue is presented in [108], [109].

• The prediction accuracy and adaptability of a typical ANN inherently depends

on its architecture, i.e. number of hidden layers along with their complex inter-

connections. So it is very hard to construct an accurate ANN that replaces the

original expensive function. To handle this situation, in [110], we find a Genetic

Algorithm/Genetic Programming based approach to optimize the structure and

weight of an ANN for particular surrogate model.

• Training an ANN is also a computationally expensive task, so if the training cost

becomes larger than the function evaluation, the motivation of ANN as surrogate

is demised.
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3.5.2 ANN Models for Multi-Objective Evolutionary Algorithms

The early work on ANN based approximation models for MOEA can be found in [7].

For local optimization, an iterative Gaussian Random Field based model was also used.

The paper reports insights into general guidelines on how to use ANN based surrogate

models for MOEA’s.

In [67], [111], the author presented a generic procedure to combine a evolutionary

optimization technique with the approximation technique. The focus of that study was

to use a “successive approximation” – “Coarse-to-Fine Grain” optimization. Figure 3.12

(Left Side) depicts this procedure. The figure shows a hypothetical one-dimensional ob-

jective function for minimization in a solid line. Since the problem may have a number

of local minimum solutions, it would be a difficult problem for any optimization tech-

nique. Figure 3.12 also shows a coarsely approximated function in the entire range of the

function with a dashed line.

The objective functions can be evaluated exactly by a few pre-specified solutions in

the entire range of the decision variables. Thereafter, an approximating function was fit-

ted through these function values using an ANN. After the optimization, it is likely that

an evolutionary optimizer will proceed in the right direction. Since the population di-

versity will be reduced while approximating the first approximated function, the second

approximating function need not be defined over the whole range of the decision vari-

ables, as shown in Figure 3.12. Since the approximating function will be defined over a

smaller search region, more local details can appear in successive approximations. This

process was continued until no further approximation results in an improvement in the

function value. Figure 3.12 (Right Side) outlines a schematic of a plausible plan for the

generic procedure. The study also reports that the total number of function evaluation

were reduced by 32%. Another similar example can be found in [112].

There is another class of ANN based models termed “Inverse Neural Network”6

[113], [64], [63], [114]. The term “Inverse Mapping” actually defines the technique where

we reverse map the design variables from the objective functions to the design space. This

6The most interesting approach regarding our research methodology. Since our model also performs
“Inverse Mapping”, however in a slightly different way.
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Figure 3.13: An inverse ANN for 3 objectives and 5 design variables problem

idea has a special influence in the case of MOP’s since if we could some how extrapolate

the next (future) Pareto-front from the existing (present) ones, the “Reverse Mapping”

technique will help us to approximate those design variables that would make up the

future Pareto-front. To implement this idea of “Reverse Mapping”, we consider the op-

timizer as a “Dynamic System” that takes “Design Variables” as “Inputs” and “Objec-

tive Functions” as “Outputs”. Under this assumption, the ANN mimics this “Dynamic

System” or “Optimizer”. The Figure 3.13 illustrates the “Reverse Mapping” process-

ing using an ANN. Although, ANN based models have been used successfully in some

circumstances, we found some implementation limitations -

• It is very difficult to design the most appropriate ANN structure (both in terms of
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accurate weights and neuron connections) that will exactly mimic the behavior of

original expensive fitness function/evolutionary optimizer (in the case of “Inverse

Mapping”).

• ANN have a corresponding huge computational cost due to learning. A good ANN

may help us to design an efficient approximator, however the improvement has

typically a large computational cost.

• Specially for the “Reverse Mapping” procedure, if the total number of objective is

smaller than its design variables (the usual situation), it is very difficult to design

an efficient ANN model. Given the fact that, the number of output neurons will

have to be smaller than the number of input neurons.

3.6 Kriging Models

The “Kriging” model is named after the pioneering work of D.G. Krige and its formal

development was first reported in [115]. The Kriging (also known as “Response Sur-

face Methodology” [116], [117]) method in its basic formulation estimates the value of

a function (response) at some un-sampled location as the sum of two components: the

linear model (e.g., polynomial trend) and a systematic departure representing low (large

scale) and high frequency (small scale) variation components, respectively. The system-

atic departure component represents the fluctuations around the trend, with the basic

assumption being that these are correlated and the correlation depends only on the dis-

tance between the locations under consideration. More precisely, it is represented by a

zero mean, second-order, stationary process (mean and variance constant with a correla-

tion depending on a distance) as described by a correlation model. Hence, these models

(Ordinary Kriging) suggest estimating deterministic functions as

f̂ (~x) = µ + ε(~x), E(ε) = 0, (3.22)

cov(ε(xi), ε(xj)) 6= 0, ∀i, j (3.23)

where µ is the mean of the response at sampled design points, and ε is the error with
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zero expected value, and with a correlation structure that is a function of a generalized

distance between the sample data points. A possible correlation structure [115] is given

by

cov(ε(xi), ε(xj)) = σ2 exp

(
n

∑
k=1

φk(xi
k − x

j
k)

2
)

(3.24)

where n denotes the number of dimensions in the set of design variables x; σ; identi-

fies the standard deviation of the response at sampled design points, and, φk is a param-

eter which is a measure of the degree of correlation among the data along the direction

k. Specifically, given a set of N input/output pairs (x, f), the parameters, µ, σ; and φ are

estimated such that a likelihood function is maximized [115]. Given a probability dis-

tribution and the corresponding parameters, the likelihood function is a measure of the

probability of the sample data being drawn from it. The model estimated at un-sampled

points is -

E( f̂ (x)) = µ̄ + rTR−1(f− 1µ̄) (3.25)

where the bar above the letters denotes estimates, r identifies the correlation vector

between the set of prediction points and the points used to construct the model, R is the

correlation matrix among the N sample points, and 1 denotes an N-vector of ones. On

the other hand, the estimation variance at un-sampled design points is given by

V( f̂ (x)) = σ2

[

1− rTR−1r +
1− 1TR−1r

1TR−11

]

(3.26)

The stationary covariance process (also known as “Kriging Kernel”) expressed in equa-

tion 3.24, is known as “Gaussian Correlation Function” [118] since the construction of

the model starts with assumption that the probability distribution of random noise ‘ε(~x)’

is also Gaussian. There are several ways to select the “Kriging Kernel”; the most popu-

lar kernels are illustrated in Table 3.3. For more insight into theories regarding Kriging

models, the readers are referred to [116], [117], [119], [46].

Most systems can be approximated with models of varying degrees of accuracy or “fi-

delity”. Everything else being equal, it would be desirable to work with the most accurate

model. But highly accurate models may take days to compute, making optimization dif-
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Type Definition

Linear Correlation max(1− φr, 0)
Exponential Correlation e−φr

Gaussian Correlation e−φr2

Table 3.3: Kriging Kernel Functions, Where r = xi − xj

ficult for almost any algorithm. On the other hand, switching to a very fast, low-fidelity

model may entail an intolerable loss of accuracy. Rather than searching for the optimal

intermediate degree of accuracy, the best approach is to use both low and high fidelity

models. So a more appealing approach, from the conceptual point of view, would be to

treat the outputs of the low and high fidelity models as correlated dependent variables

in a multivariate surrogate model. In the mathematical geology literature, this approach

is known as “Co-Kriging”. Other “Kriging” and “Co-Kriging” based optimization ap-

proaches can be found in [120], [121], [49].

On the other hand, Gaussian Random Field (GRF) [122], [123], another well-known

approach to surrogate modeling, can be shown to provide identical expressions for the

prediction and prediction variance to those provided by Kriging, under the strong as-

sumption that the available data (model responses) is a sample of a multivariate normal

distribution [124].

3.6.1 Kriging Models for Single-Objective Evolutionary Algorithms

Generally, the incorporation of a a Kriging based meta-model into a conventional EA is

similar to the previous approach as discussed in RBF and ANN based models. The model

is built using the initial random population of the EA. After the model construction, the

hybrid algorithm replaces the expensive original functions with the Kriging model and

the evaluation mechanism can be implemented in various ways.

However, the main computational cost involved in constructing Kriging models oc-

curs in the maximum likelihood estimation phase. Here, a nonlinear optimization tech-

nique must be employed to estimate the parameters (µ, σ; and φ in equation 3.24) by

maximizing a likelihood function. Evaluation of the likelihood function requires factor-
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ization of the correlation matrix R which scales as O(n3). For this reason, constructing

a Kriging model for cases with more than two thousand points can be computationally

very expensive. As an aside, in [125], we find a data parallel approach which is possible

to apply Kriging to dataset with tens of thousands of points. “Kriging” based surrogate

models and their diverse implementations can be found in [68], [69], [89]. Moreover, in

[70], [52] we find some experiments on Gaussian Random Field Metamodel to speed up

a conventional EA.

The Kriging based “Efficient Global Optimization (EGO)” model is introduced in [46].

The prediction performance of EGO was reported better than other surrogate models7.

Moreover, in [73], we find rigorous analysis on the performance of EGO coupled with

conventional EA. The algorithm was tested on several benchmark single objective func-

tions and it was proved that the incorporation of EGO in conventional EA increased the

performance by 50 - 250 times.

3.6.2 Kriging Models for Multi-Objective Evolutionary Algorithms

When applying Kriging models in MOEA’s, the design of an accurate approximator is

crucial. However, to achieve this goal, we have to spend a large amount of computa-

tional effort [74]. In [14], we see that the model was utilized to generate a good ap-

proximation from a roughly estimated samples, the authors termed the approximator a

“Pseudo-Response Surface”. Under the new framework, the “Pseudo Response Surface”

is constructed for each design objective. An important distinguishing feature of the new

framework was that the response surfaces for all the design objectives were constructed

simultaneously in a mutually dependent fashion, in a way that identifies Pareto regions

for the multi-objective problem. Figure 3.14 illustrates this basic idea. This pseudo re-

sponse surface has the unique property of being highly accurate in Pareto-optimal re-

gions, while it is intentionally allowed to be inaccurate in other regions. In short, the

response surface for each design objective is accurate only where it matters. It was re-

ported that the computational cost of construction is dramatically reduced.

7Specifically, EGO uses the concept of “Design and Analysis of Computer Experiments (DACE)” model
[116], [117].
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Figure 3.14: A response surface based approximation schematic in design variable space

In [71], the authors proposes a Gaussian Random Field (GRF) based approximation

model that could predict objective function values for new candidate solutions by ex-

ploiting information recorded during previous evaluations. Moreover, GRF are able to

provide estimates of the confidence interval of their (candidate solutions’) predictions.

The model selects the promising members in each generation and carries out exact and

costly evaluations only for them. The extensive use of the uncertainty information of

predictions for screening the candidate solutions made it possible to significantly reduce

the computational cost of single and multi-objective EA’s.

We also find a similar approach in [73], where the author proposes an Efficient Global

Optimization (EGO)[46] based model to reduce the total number of expensive function

evaluations. It was also reported that the proposed model generally outperformed NSGA-

II [42] on some hard benchmark functions, at both 100 and 250 function evaluations [126],

especially when the worst-case performance was measured. It was also suggested that

the model may offer a more effective search on problems where only one function evalu-

ation can be performed at a time. Although its performance was satisfactory on the tested

functions, the paper reports some potential drawbacks of the current version.

• Normalization of the cost space [46] relies on knowledge of the cost limits.

• The use of uniformly random scalarizing vectors [46] does not necessarily result in
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the best distribution of non-dominated points. Some parts of the Pareto front may

be far easier to find than others, which may lead to a poor approximation.

A similar approach is presented in [72], where the performance was analyzed and

compared on several test problems, which shows a promising perspective on Kriging.

For more insight into this method, the readers are encouraged to refer to [127].

3.7 “Intelligent Operator” Based Models

There are also alternative approaches to speed up the normal convergence rate of an

EA. Typically, these kind of models are implemented using some sort of “Intelligent”

variation operator, that uses the information from the local search space to generate more

promising solutions for the next generation of an EA, so that the conventional EA can

bypass the extra function evaluations to reach the global optimum with more speed. So,

in that sense, these kind of techniques are not generally regarded as “Surrogate” models,

rather they are known as “Informed/Intelligent Genetic Operators”8.

Moreover, there is also another class of algorithms that only uses the “Intelligent

Variation Operator” in place of conventional crossover and mutation, which is known

as the “Estimation of Distribution Algorithm (EDA)” [128], [73]. Generally, in the case

of EDA, it explicitly extracts globally statistical information from the selected solutions

and build a posterior probability distribution model of promising solutions, based on the

extracted information. A recent algorithm in which we integrate the proposed model in

this thesis, RM-MEDA [79], can be considered as a candidate of EDA’s. More details on

EDA’s can be referred from [129], [130].

In [96], the author presents a new concept of “Informed Operator”. During mutation,

instead of generating one individual from just one random flip; they generate several in-

dividuals, rank them using a surrogate model, then take the best to be the result of the

mutation. The proposed method is particularly suitable for search spaces with expen-

sive evaluation functions. The authors used the technique to optimize the aerodynamic

structure of supersonic missile and found a significant degree of speed up.

8This idea has a special relevance to this thesis since our model also exhibits some similarity with this
notion of “Intelligent Operator”.
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The concept of “Directed Evolution” is presented in [75], which is taken from the

self-organization evolutionary theory. The model was tested with a (µ, λ) Evolutionary

Strategy using several benchmark single-objective optimization problems and reported

to be achieved good results in terms of total number of function evaluation, i.e. achiev-

ing good results with comparative small computational cost. In other work [76], the

concept of “Guided Mutation” was presented. This new mutation operator was specif-

ically designed for the EDA that uses the probability model from the local search space

and creates new offspring such that a good portion of them will always lie in the promis-

ing region of the search space. The new scheme was tested on the “Maximum Clique

Problem (MCP)” and it was also reported that it shows improvement with respect to con-

ventional EDA’s. In [131], the Angular Distance Dependant Alteration (ADDA) model

was introduced, where all offspring, generated by crossover operations, will be clustered

by corresponding parents based on the angular distance metric and then, the offsprings

were transposed from the parent. This operator was used with the multi-parental Uni-

modal Normal Distribution Crossover (UNDX-m) [132], [133, 134]. The ADDA model

shows good performance on some typical benchmark problems.

In [77], the model uses extrapolation directed crossover that uses numerical extrapo-

lation technique to relax the bias created by conventional real-value crossover operators.

Sometimes, the conventional crossover operator [132], [135], [136], [137] generates new

offspring with the Probability Density Function towards the parents’ distribution in the

search space, which is not desirable. It was also reported that extrapolation directed

crossover shows significant improvement with respect to the total number of function

evaluation in entire EA run.

In [138], the author proposed a new crossover operator that uses linear interpolation

on the search path and from this approximated search path, new promising offspring

are created. Moreover, Kalman filter based approximation model [139], Rough Set based

model [140] and Meme based model [141] can also be found in the literature.
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3.8 Other Models

In the case of MOEA’s, we also see other related techniques for guiding the solutions to-

wards the Pareto-front such as Scatter Search, Weighting [80], [81] and Bayesian Inference

based guiding scheme in MOEA’s.

A Principal Component Analysis (PCA) based model was proposed in [78]. The work

proposed a model-based evolutionary algorithm (M-MOEA) for bi-objective optimiza-

tion problems. Inspired by the ideas from EDA’s [128], M-MOEA uses a probability

model to capture the regularity of the distribution of the Pareto-optimal solutions. The

Local Principal Component Analysis (Local PCA) and the least-squares method were em-

ployed for building the model. New solutions are sampled from the model. At alternate

generations, M-MOEA uses crossover and mutation to produce new solutions. The selec-

tion in M-MOEA was the same as in NSGA-II [42]. Therefore, MOEA can be regarded as

a combination of EDA and NSGA-II. The preliminary experimental results showed that

M-MOEA performs better than NSGA-II.

In [142], the authors proposed a multi-objective evolutionary algorithm based on de-

composition (MOEA/D). It decomposes a multi-objective optimization problem into a

number of scalar optimization subproblems and optimizes them simultaneously. Each

subproblem was optimized by using information from its several neighboring subprob-

lems. It was claimed that at each generation MOEA/D has lower computational com-

plexity than NSGA-II. Experimental results indicates that MOEA/D with simple decom-

position methods (i.e. Weighted-Sum [143], Tchebycheff [143] and Boundary Intersection

approach [27]) outperforms or performs similarly to NSGA-II on multi-objective 01 knap-

sack problems and continuous multi-objective optimization problems.

In [144], we also find another model that uses Bayesian inference technique to speed

up the convergence rate of general EDA’s. Other local search and scatter search methods

to fulfil the same objective can be found in [145], [146], [147], [148].
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3.9 Conclusion

In this chapter, we briefly reviewed different approximation techniques used to speed up

the convergence rate of a typical MOEA. However, no clear conclusions related to the

advantages and disadvantages of the different approximation models have been drawn9.

This is reasonable not only because the performance may depend on the problem to be

addressed, but also because more than one criterion needs to be considered. The most im-

portant factors are accuracy, both on training data and test data, computational complex-

ity and transparency. It has been found in [85] that an approximate model may introduce

false optima, although it has very good performance on the training data. This is more

harmful than a lower approximation accuracy if the model is used in global optimization

procedures such as evolutionary optimization. Methods to prevent an ANN model from

generating false minima have been suggested in [85], which are very effective for lower

dimensional problems.

In the next chapter we introduce our acceleration model – Pareto-following Variation

Operator – that utilizes some of the ideas introduced in this chapter.

9For more insight on the comparative analysis on different approximation/surrogate/intelligent operator
based models, readers are referred to [5], [47], [49], [120].





Chapter 4

The Pareto-Following Variation
Operator

4.1 Introduction

I
n this chapter we describe the core contribution of this thesis – the Pareto-following

Variation Operator (PFVO). The most interesting and novel aspect of our model is

that it does not model the objective functions directly, rather it works on the basis of the

input/output relationship of the underlying MOEA. Here the term “input/output” refers

to the “design-variables/objective values” relationship.

As we have seen before, in the case of a typical MOEA, an initial perturbation of the

available design variables (of the current front) generates new (hopefully promising) so-

lutions10, the algorithm then selects the best solutions with respect to their corresponding

objective values and thus expand the search direction towards true Pareto-front.

If we reformulate this idea in a slightly different way, we can assume that the MOEA

is a “dynamic system” that takes “design variables” as “input” and generates “objective

values” as “output”. Given that the above assumption is valid, it is possible to identify

the parameters of the dynamic system. So, if we could identify the input-output behavior

of a dynamic system (the parameters of the dynamic system)11, we can then predict the

design variables (i.e. input) of the next front, given that the guessed objective values (i.e.

output) of the next front are provided to the (inverse) dynamic system as input. This

notion is the key concept of our algorithm.

10The perturbation (crossover/mutation) does not always guarantee the creation of good solutions.
11In another sense, the parameters of the stochastic search procedure – More details of this concept will be

discussed in coming sections

51
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Typically, ANN based systems are widely used in the field of Dynamic System Iden-

tification (DSI) [102], [103] to achieve similar goals. However, a significant disadvantage

of the ANN approach is the computational cost. In our approach, we extend this idea

of modeling the input-output behavior of an stochastic search procedure. We have used

QR Factorization or Singular Value Decomposition (SVD) [149], [150] to implement this

idea. However, in the case of MOP’s, the applicability of DSI theory is not straight for-

ward since DSI is mainly concerned with the modeling of a physical system [149], [150].

Moreover, the concept of “high level of accuracy” is not crucial in the case of MOEA.

Since the approximation of a good Pareto-front from the existing ones needs to be just

“fair enough” to bypass the extra computation for evolutionary optimizer [63]. More-

over, to maintain the accuracy of the approximation12, we are not going to substitute the

original fitness function, rather we will use the same objective function and PFVO will

try to help the hosting optimizer13 to reduce the computational cost by skipping function

evaluations for non-promising individuals. In the next section, we introduce some useful

notations that will be used to describe this model throughout the chapter. After that, we

will describe our algorithms in detail along with integration mechanism with different

base-line popular MOEA’s.

4.2 Useful Notations

In any typical non-dominated sorting MOEA, a number of individuals are generated

randomly, evaluated and then sorted according to non-domination criteria. Figure 4.1

provides a schematic view of the individuals in the objective space and design variable

space after sorting.

Here, we consider M individuals with n design variables and k objectives. Suppose,

x
p
i (φ) and f

p
j (φ) denote the design variable i and the objective value j of an individual

p in front Fφ. If we sort the individuals in every front with respect to one objective, we

can also assume that a specific individual p of each front is the same individual moving

12Please note that we are not interested in accuracy of the approximation of objective function, rather we
put stress only on the accurate behavior modeling of the stochastic search procedure.

13Here “Hosting Optimizer” refers to any kind of MOEA that uses non-domination based sorting on the
population before selection process. It is considered as the “Base MOEA” for our experiment.
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Space
Design Variable 

Objective

Space

xi
p(φ + 1)

fj
p(φ + 1)

fj
p(φ− 2)

x1

x2
f2

f1

Fφ

Fφ+1

Fφ+1

Fφ−1
Fφ−1

Fφ

Fφ−2

Fφ−2
xi

p(φ− 2)

Figure 4.1: After non-dominated sorting, individuals in each front are sorted with respect
to one objective. For modeling purposes, (•) is considered as the same individual moving
from front Fφ−2 to front Fφ

towards front Fφ from front Fφ−2 (Refer to Figure 4.1). Here, decreasing values of φ

represent a worse front14. Now if we could somehow extrapolate the trajectory of p, we

can infer that this individual will eventually reach the next front Fφ+1 (Refer to Figure

4.1). Moreover, if the distance between two consecutive fronts is small, then we can also

assume that this trajectory is piece-wise linear.

Considering only one individual p, we can also say that this search algorithm takes

x
p
i (φ− 1) as input and generates x

p
i (φ) as output. Instead of considering the search algo-

rithm as a “procedure” per se, let us consider it as a “Dynamic System” [149], [150] (with

transfer function H), which takes the series

{x
p
i (φ), x

p
i (φ− 1), x

p
i (φ− 2) . . .} (4.1)

as input and generates

{ f
p
j (φ), f

p
j (φ− 1), f

p
j (φ− 2) . . .} (4.2)

as output (Refer to Figure 4.2). Again, if we consider an inverse system (with transfer

function H−1), then it will generate

{x
p
i (φ), x

p
i (φ− 1), x

p
i (φ− 2) . . .} (4.3)

14Here, the fronts Fφ,Fφ−1, . . . ,F1 are generated in a single generation, i.e. Fφ and Fφ−i are not from two
consecutive generations.
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System with

Inverse Dynamic

Dynamic System 

Transfer Function H
with 

Transfer Function H−1

fj(φ), fj(φ− 1), fj(φ− 2) . . .xi(φ), xi(φ− 1), xi(φ− 2) . . .

fj(φ), fj(φ− 1), fj(φ− 2) . . . xi(φ), xi(φ− 1), xi(φ− 2) . . .

Figure 4.2: The forward and inverse dynamic system

as output when

{ f
p
j (φ), f

p
j (φ− 1), f

p
j (φ− 2) . . .} (4.4)

is input. Therefore, if we could somehow approximate the system’s parameters, then we

can easily approximate the design variable of the next front x
p
i (φ + 1) (when f

p
j (φ + 1)

is given as input). The concept of “Forward” and “Inverse” system is depicted in Figure

4.2.

Our next task is to generate the so-called “Mirage Solutions”15 f
p
j (φ + 1). Approxima-

tion of f
p
j (φ + 1) is quite straight-forward since in any type of MOP, we have to maximize

(or minimize) multiple objectives. In the case of a minimization problem, the objective

value in the next front Fφ+1 will be smaller than that of the current front Fφ by some

amount ∆ f . So for a minimization problem,

f
p
j (φ + 1) = f

p
j (φ)− ∆ f (4.5)

The preceding discussions dictate that PFVO depends on the following formulations:

• approximating the parameters of the dynamic system

• approximating f
p
j (φ + 1) from f

p
j (φ) by choosing a suitable ∆ f value

• from f
p
j (φ + 1), approximate the design variable x

p
i (φ + 1) of the next front Fφ+1

15“Mirage Solutions” or “Projected Solutions” means the objective values of the next (future) front that are
approximated from current design variables, for more details please see [63], [64]
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4.3 Model Formulation

Before describing the model formulation in detail, first we construct a simple linear sys-

tem for the design variable i and objective j:

xi(φ) + a0xi(φ− 1) = b0 f j(φ) + b1 f j(φ− 1) + ε(φ) (4.6)

Here, f j are input and xi are considered as output. Therefore,

xi(φ) =
[

−xi(φ− 1) f j(φ) f j(φ− 1)
]








a0

b0

b1








+ ε(φ) (4.7)

Now, we can adopt a matrix formation:














xi(φ)

xi(φ− 1)

xi(φ− 2)
...

xi(2)














︸ ︷︷ ︸

y

=














xi(φ− 1) f j(φ) f j(φ− 1)

xi(φ− 2) f j(φ− 1) f j(φ− 2)

xi(φ− 3) f j(φ− 2) f j(φ− 3)
...

...
...

xi(1) f j(2) f j(1)














︸ ︷︷ ︸

Φ

·








a0

b0

b1








︸ ︷︷ ︸

βij

+














ε(φ)

ε(φ− 1)

ε(φ− 2)
...

ε(2)














︸ ︷︷ ︸

ε

Or we can rewrite

y = Φ · βij + ε (4.8)

Here, matrix βij denotes parameter of the dynamic system for the design variable i and

objective j. βij can be approximated using Least Squares. Let us denote β̂ij as approxi-

mated βij:

β̂ij = (Φ
T

Φ)−1
Φ

T

︸ ︷︷ ︸

pseudo-inverse

y (4.9)

So,

xi(φ) =
[

−xi(φ− 1) f j(φ) f j(φ− 1)
]

· β̂ij (4.10)
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Figure 4.3: Calculation of ∆ f from existing fronts

Now we have β̂ij. From equations 4.5 and 4.10, now we can easily approximate the ith

design variable of the next front Fφ+1 -

xi(φ + 1) =
[

−xi(φ) f j(φ + 1) f j(φ)
]

· β̂ij (4.11)

=
[

−xi(φ) f j(φ)− ∆ f f j(φ)
]

· β̂ij (4.12)

4.3.1 Calculation of ∆ f

The critical portion of the algorithm is to calculate the approximate objective values of

the next front. In the initial implementation of PFVO we have assigned the value of ∆ f

from empirical experimentations. In the previous implementations, the value of ∆ f was

calculated based on the difference in nadir and utopia objective values [1]. However, the

performance was not identical for all problems/host algorithms. So, in the later imple-

mentation, we have adopted an adaptive calculation of ∆ f based on the average ∆ f of

the previous points. Since, PFVO does not necessarily need exact predicted values of

the next front, we have found that a “informed guess” is feasible enough when approx-
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imating the design variables for the next front16. Moreover, it is also necessary to limit

the computational complexity of the whole procedure. The calculation is conducted as

follows for two objectives problem (see Figure 4.3) -

For first objective f1, ∆ f1 = rφ cos θφ (4.13)

For second objective f2, ∆ f2 = rφ sin θφ (4.14)

where, rφ =
1

∑
i=φ−1

ri

N
and θφ =

1

∑
i=φ−1

θi

N
(4.15)

16Please note that PFVO is not for exact prediction, it will be used to generate an approximate objective
values of the next front so that the host optimizer can explore the search space in the right way. This concept
is further explained in section 5.6 of chapter 5
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4.4 The Algorithm

The algorithm for PFVO is listed in Algorithm 1. Readers can review the schematics

illustrated in Figure 4.4 and 4.5 for better understanding of the functionality.

Algorithm 1 Pareto Following Variation Operator(Pt,∆ f )

Require: Parent population Pt is sorted with respect to non domination.

Pt := {Fφ,Fφ−1, . . . ,F1}

and individuals in Fφ,Fφ−1, . . . ,F1 are sorted again with respect to one objective.

Each front Fi has size mi and Fφ is the best front. ∆ f is the objective distance from

current best front to next approximating front.

Ensure: Creates kmφ number of approximated individuals of the front Fφ+1

1: for all objectives j such that 1 ≤ j ≤ k do

2: for all individuals p such that 1 ≤ p ≤ mφ do

3: for all design variables i such that 1 ≤ i ≤ n do

4: Construct matrix y from the individual p from every front Fφ,Fφ−1, . . . ,F1

5: Construct matrix Φ from the individual p from every front Fφ,Fφ−1, . . . ,F1

6: Calculate β̂ij := (Φ
T

Φ)−1
Φ

Ty

7: Approximate f
p
j (φ + 1) := f

p
j (φ)− ∆ f

8: xi(φ + 1) :=
[

−xi(φ) f j(φ)− ∆ f f j(φ)
]

· β̂ij

9: xi(φ + 1) is the design variable i of the new approximated individual Iz, where

z = p + (j− 1)mφ.

10: So, x
p+(j−1)mφ

i (φ + 1) := xi(φ + 1)

11: end for

12: end for

13: end for

14: Returns new approximated population Fφ+1 with population size kmφ
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Figure 4.4: Working steps of the Pareto-following Variation Operator

A basic flowchart for the mathematical operations are illustrated in Figure 4.5. This

figure represents the schematic of PFVO for a scenario where the problem has three de-

sign variables and two objectives. After non-dominated sorting, three fronts are created.

The approximated population has kmφ individuals.

Design Variable (Next Front)

������������������������

Design Variable

of The Next FrontObjective Value
of The Next Front

Objective (Existing Fronts)Design Variable (Existing Fronts)

x3x1 x2

Size: kmφ
Fφ+1

β11

f2f1x3x2

Fφ−2

Fφ−1

Fφ

x1

Φ

x1(φ + 1)

f1(φ + 1)−∆f

~y

Figure 4.5: Mathematical steps in the Pareto-following Variation Operator. Here the op-
eration is illustrated for objective function f1 and design variable x1
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4.5 Complexity Analysis

We now provide the complexity analysis of our algorithm. To find the pseudo inverse in

equation 13, we have used QR factorization with the aid of the Householder transforma-

tion [151]. The complexity of the algorithm largely depends on the size of the matrix Φ

in equation 4.8. Here we denote this time (or front) steps as t and the initial “guess” of

the dynamic model starts with 2 time (or front) steps in equation 4.7. We are applying

QR factorization on matrix Φ whose dimension is (|φ| − 1)× t. Here |φ| is the size of the

best front Fφ
17. This operation requires 2(|φ| − 1)t2 − 2/3t3 computations. So it has a

computational complexity of O(2(|φ| − 1)t2 − 2/3t3).

After applying QR factorization, the upper triangular matrix R has a dimension of

t× t and the orthogonal matrix Q has a dimension of (|φ| − 1) × t. In the next step, we

are solving the systems parameter βij in equation 4.9. This requires one inversion on

the upper triangular matrix R, one multiplication on QTy and another multiplication on

R−1QTy. So equation 4.9 and 4.12 have an overall complexity of:

O(2(|φ| − 1)t2 − 2/3t3) +O((|φ| − 1)t)

+O(t3) +O((|φ| − 1)2t) +O(t2)

≈ O(2|φ|2t2)

Here, |φ| � t

From line 1 to 12 in Algorithm 1, βij is evaluated for nk|φ| times. So the overall com-

plexity of the variation operator will be O(2nk|φ|3t2). Where n is the number of design

variables, k is the number of objectives.

If we consider the complexity with N individuals in the worst case, there will be only

two fronts, where the best front has N − 1 individuals and worst one has only 1. In that

case, |φ| = N − 1. So the overall worst case complexity will be O(2nk(N − 1)3t2) ≈

O(nkN3t2). Moreover, in our experiment t = 3, and obviously in the worst case |φ| � t,

so the variation operator has the complexity of O(nkN3), which largely depends on the

population size. Actually, this added complexity will not increase the overall running

17Both |φ| and mφ (in Algorithm 1) denotes the size of the best front Fφ
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time of the host optimizer, since this operator can save extra objective evaluation of the

hosting optimizer by approximate mapping of the future Pareto front to future design

variables. In this experiment we have used the Linear Algebra package Meschach 1.2b,

[152] for matrix operations.

4.6 Integration Mechanism

The PFVO can be integrated with any kind of evolutionary optimizer where Pareto-based

selection is applied. In our experiments, we have tested the performance of PFVO with

the “Non-dominated Sorting Genetic Algorithm - II (NSGA-II)” [42] and the “Strength

Pareto Evolutionary Algorithm - II (SPEA-II)” [43]. Moreover, we have also tested with

a recently proposed algorithm known as “Regularity Model Based Multi-objective Es-

timation of Distribution Algorithm (RM-MEDA)” [79]. In the following sections, we

discuss the detailed implementations of the integration mechanism.

4.6.1 Integration with NSGA-II

In the case of NSGA-II, after applying the non-dominated sorting procedure on the mixed

population Rt, we apply the Pareto following variation operator to create the individu-

als from the next approximated front Fφ+1. These new individuals are then combined

with the newly created individuals in the parent population Pt (Refer to line 6 and 7

of the Algorithm 2). For the original pseudo code of NSGA-II, readers are referred to

[42]. We have integrated PFVO with original implementation of NSGA-II available at

http://www.iitk.ac.in/kangal/index.shtml . Detailed experimental results are

provided in chapter 5.
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Algorithm 2 NSGA-II with Pareto Following Variation Operator

Require: Randomly generated parent population Pt at generation t with population size
M.

Ensure: After tmax number of iteration, population Ptmax will represent solution of the
problem.

1: while t ≤ tmax do

2: Start with child population, Qt := ∅

3: Create mixed population, Rt := Pt ∪Qt

4: F :=Apply Non-dominated Sort on Rt, create φ number of fronts.
i.e. F := {Fφ,Fφ−1 . . .F1}

5: if φ > 1 then

6: Fφ+1 :=Pareto Following Variation(Rt,∆ f )
|Fφ+1| = kmφ

7: Insert newly approximated population to Rt, Rt := Rt ∪ Fφ+1

8: F :=Apply Non-dominated Sort on Rt, create φ number of fronts.
i.e. F := {Fφ,Fφ−1 . . .F1}

9: end if

10: Pt := ∅ and i := 1
11: repeat
12: Assign crowding distance on Fi

13: Pt+1 := Pt+1 ∪ Fi

14: i := i + 1
15: until |Pt+1|+ |Fi| ≤ M
16: Apply crowding distance sorting on Fi

17: Choose the first (M− |Pt+1|) individuals of Fi

18: Use selection, crossover and mutation to create child population Qt+1 from Pt+1

19: end while

4.6.2 Integration with SPEA-II

We have also integrated PFVO with SPEA-II. In this case we, have applied PFVO on the

external archive before the original variation in SPEA-II occurs (see line 15 of Algorithm

3). The overall procedure of this integration scheme is illustrated in Algorithm 3. For the

original pseudo code of SPEA-II, please refer to [43]. We have used the original SPEA-II

code available at http://www.tik.ee.ethz.ch/sop/pisa/ . Detailed experimental

results are provided in chapter 5.
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Algorithm 3 SPEA-II with Pareto Following Variation Operator

Require: Randomly generated parent population Pt at generation t with population size
N and an archive of external population Pt with size N

Ensure: After tmax number of iteration, population Ptmax will represent solution of the
problem.

1: Start with initial population, P0 := ∅ and an empty archive (external set) P0 := ∅

2: set t = 0
3: while t ≤ tmax do
4: Calculate fitness values of Pt and Pt

5: F :=Apply Non-dominated Sort on Pt, create φ number of fronts.
i.e. F := {Fφ,Fφ−1 . . .F1}

6: F :=Apply Non-dominated Sort on Pt, create φ number of fronts.
i.e. F := {F φ,F φ−1 . . .F1}

7: Apply environmental selection. Copy all non-dominated individuals from Pt and
Pt to Pt+1

8: if |Pt+1| > N then

9: Truncate individuals from Pt+1 using clustering algorithm
10: else

11: Fill Pt+1 with dominated individuals from Pt and Pt

12: end if

13: Again apply non-dominated sort on Pt+1 and create φ number of fronts.
i.e. F := {F φ,F φ−1 . . .F1}

14: if φ > 1 then

15: F φ+1 :=Pareto Following Variation(Pt+1,∆ f )

|F φ+1| = kmφ

16: Insert newly approximated population to Pt+1, Pt+1 := Pt+1 ∪ F φ+1

17: end if

18: Perform binary tournament selection with replacement on Pt+1 to fill the mating
pool.

19: Apply crossover and mutation on individuals in Pt+1 and copy them to Pt+1

20: set t := t + 1
21: end while

4.6.3 Integration with RM-MEDA

The “Regularity Model Based Multi-objective Estimation of Distribution Algorithm

(RM-MEDA)” is a recent development reported in [79]. This algorithm provides a special

interest to our experiment since it does not fall into the general MOEA categories. This

algorithm is an instance of so called “Estimation of Distributed Algorithm (EDA)”.
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Algorithm 4 RM-MEDA with Pareto Following Variation Operator

Require: Randomly generated parent population Pt at generation t with population size
N

Ensure: After tmax number of iteration, population Ptmax will represent solution of the
problem.

1: Start with initial population, P0 := ∅

2: set t = 0
3: while t ≤ tmax do
4: Calculate fitness values of Pt

5: set t := t + 1
6: Build the probability model for the distribution of the solutions in Pt using Local

Principal Component Analysis (Local-PCA).
7: Generate new solution set Q from the built probability model.
8: Evaluate fitness values of individuals in Q
9: Select N individuals from Pt and Q and create new population Pt+1

i.e. Pt+1 = Pt ∪Q
10: F :=Apply Non-dominated Sort on Pt+1, create φ number of fronts.

i.e. F := {Fφ,Fφ−1 . . .F1}
11: if φ > 1 then
12: Fφ+1 :=Pareto Following Variation(Pt+1,∆ f )

|Fφ+1| = kmφ

13: Insert newly approximated population to Pt+1, Pt+1 := Pt+1 ∪ Fφ+1

14: Retain the size of population in Pt+1 to N. If it exceeds this limit, just remove the
individuals from the worst front.

15: end if

16: set t := t + 1
17: end while

In EDA’s, normal genetic operators, such as mutation/crossover are not applied,

rather probabilistic modeling or “Intelligent Variation Operator” based techniques are

adopted.

The working principle of RM-MEDA is mainly derived from the regularity prop-

erty defined by the Karush-Kuhn-Tucker condition [2]. This condition suggests that

the Pareto set, in the decision space, of a continuous multi-objective optimization prob-

lem is a piecewise continuous (m − 1)D manifold [31], where m is the number of ob-

jectives. Based on this regularity property, RM-MEDA models a promising area in the

decision space by a probability distribution whose centroid is a (m − 1)D piecewise

continuous manifold [30], [153]. The local “Principal Component Analysis (PCA)” al-

gorithm was used for building such a model. New trial solutions were sampled from the
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model thus built. A non-dominated sorting-based selection is used for choosing solutions

for the next generation. The study suggests that RM-MEDA exhibits promising results

with respect to NSGA-II. Detailed experimentation will be covered in chapter 5. Algo-

rithm 4 illustrates the integration mechanism with RM-MEDA. We have used the original

RM-MEDA source code available at http://privatewww.essex.ac.uk/ ˜ azhou/

publication.htm .

4.7 Conclusion

In this chapter we have discussed the architecture of the proposed model in detail and

its integration with different base algorithms. In the next chapter we present the experi-

mental details along with performance measurement techniques and analysis.





Chapter 5

Experimental Results and Analysis

5.1 Introduction

I
n this chapter we introduce the benchmark problems typically used to test the per-

formance of MOEA’s and the definition of different metrics used to measure their

performance. We will also illustrate the detailed experimental results using the bench-

mark problems and their corresponding statistical analysis.

There have been several attempts to define test suites or toolkits for building test

suites. However, existing multiobjective test problems do not test a wide range of char-

acteristics, and often have design flaws. Typical defects include not being scalable or

being susceptible to simple search strategies. However we have chosen two types bench-

mark problem sets known as “ZDT” [33] and “DTLZ” [154] test suite. We now review

those problems.

5.1.1 ZDT Test Problem Suite

The ZDT test suite was first proposed in [33]. The ZDT test suites are confined to only two

objective problems and do not consider maximization or mixed minimization/maximization

problems. The problems range from linear/nonlinear, connected/disconnected, con-

cave/convex etc. Each of the test functions defined in Table 5.1 is structured in the same

67
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manner and consists of three functions f1, g and h :

Minimize T (x) = ( f1(x1), f2(~x))

subject to f2(x) = g(x2, . . . , xm)h( f1(x1), g(x2, . . . , xm))

where ~x = (x1, x2, . . . , xm)

The function f1 is a function of the first decision variable only, g is a function of the re-

maining m − 1 variables, and the parameters of h are the function values of f1 and g.

The test functions differ in these three functions as well as in the number of variables

m and in the values the variables may take. There are total 6 problems defined in ZDT

suite, among them ZDT5 is an instance of combinatorial optimization problem. Since,

our model is well matched to numerical problems, we did not include ZDT5 in our ex-

periments. For More detailed empirical analysis on ZDT test suite can be found in [155].

In Table 5.1 the definition of ZDT test suite problems are provided.

The ZDT Test Problem Suite
Problem Definition Parameter Domains

ZDT1
f1 = y1

g = 1 + 9 ∑
k
i=1 zi/k [0,1]

h = 1−
√

f1/g

ZDT2 as ZDT1, except h = 1− ( f1/g)2 [0, 1]

ZDT3 as ZDT1, except h = 1−
√

( f1/g)− ( f1/g) sin(10π f1) [0, 1]

ZDT4
as ZDT1, except g = 1 + 10k + ∑

k
i=1(z2

i − 10 cos(4πzi)) y1 ∈ [0, 1]
z1, z2, . . . , zk ∈ [−5, 5]

ZDT6
f1 = 1− exp(−4y1)sin6(6πy1)

g = 1 + 9(∑
k
i=1 zi/k)0.25 [0,1]

h = 1− ( f1/g)2

Table 5.1: The five real-valued ZDT two objective problems. The second objective is
f2(~y,~z) = g(~z)h( f1(~y), g(~z)), where both objectives are to be minimized
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5.1.2 DTLZ Test Problem Suite

The DTLZ suite of benchmark problems, proposed in [154], is unlike the majority of

multi-objective test problems in the sense that the problems are scalable to any number

of objectives. This is an important characteristic that has facilitated several recent inves-

tigations into what are commonly called “many” objective problems18.

Nine test problems are included in the DTLZ test suite, of which the first seven are

shown in Table 5.2. DTLZ8 and DTLZ9 have side constraints, hence their omission from

this research. More empirical analysis on DTLZ test suite can be found in [155].

The DTLZ Test Problem Suite
Problem Definition Parameter Domains

DTLZ1

f1 = (1 + g)0.5 ∏
M−1
i=1 yi [0,1]

fm=2:M−1 = (1 + g)0.5(∏
M−m
i=1 yi)(1− yM−m+1)

fM = (1 + g)0.5(1− y1)

g = 100[k + ∑
k
i=1((zi − 0.5)2 − cos(20π(zi − 0.5)))]

DTLZ2

f1 = (1 + g)0.5 ∏
M−1
i=1 cos(yiπ/2) [0,1]

fm=2:M−1 = (1 + g)0.5(∏
M−m
i=1 cos(yiπ/2)) sin(yM−m+1π/2)

fM = (1 + g) sin(y1π/2)

g = ∑
k
i=1 (zi − 0.5)2

DTLZ3 as DTLZ2, except the equation for g is replaced by the one from DTLZ1 [0, 1]

DTLZ4 as DTLZ2, except all yi ∈ ~y are replaced by yα
i , where α > 0 [0, 1]

DTLZ5 as DTLZ2, except all y2, . . . , yM−1 ∈ ~y are replaced by
1+2gyi
2(1+g)

[0, 1]

DTLZ6 as DTLZ5, except the equation for g is replaced by g = ∑
k
i=1 z0.1

i [0, 1]

DTLZ7
fm=1:M−1 = ym [0, 1]

fM = (1 + g)(M−∑
M−1
i=1 [ f i

1+g (1 + sin(3π fi))])

g = 1 + 9 ∑
k
i=1 zi/k

Table 5.2: Seven of the nine DTLZ many objective problems. All objectives are to be
minimized

18Please note that, we have tested our model on 2 objective instances of DTLZ test suite, this issue is
further discussed in section 5.7
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5.2 Parameter Settings

Parameter settings is the one of the most important aspect for any MOEA. The parameters

include the population size, external archive size, crossover/mutation rates etc. Differ-

ent algorithms use different approaches to solve the same problem and their respective

parameters are dependant on the algorithms’ basic working principle.

NSGA-II [42], [24] uses “Simulated Binary Crossover (SBX)” [135] and “Polynomial

Mutation (PM)” [136] that depends on the probability distribution indices ηc and ηm re-

spectively. We have also kept the original values of mutation and crossover probability

(Pc and Pm) for all problems. For SPEA-II [43], we have also used the same parameters

for “Individual Mutation (PI
m) and Crossover (PI

c ) Probability”, “Variable Mutation (Pv
m),

Crossover (Pv
c ) and Swap (Pv

s ) Probability”. Also the same values for ηm and ηc as original

implementation of SPEA-II. On the other hand, RM-MEDA [79] normalizes the values of

(any range) design variables to a specific amount of working boundary, namely, [0, 1]

and this specified by “Variable Tolerance” and “Objective Tolerance”. It also uses “Par-

ent Centric Recombination (PCX)” [156] [137] along with SBX [136] and PM. We have also

kept the same values as original code.

The summary of parameter settings are illustrated in Table 5.3, 5.4 and 5.5 for integra-

tion with NSGA-II, SPEA-II and RM-MEDA respectively -

Problem Set |Pt| tmax Pc Pm ηc ηm ∆ f

ZDT1, ZDT2, ZDT3 200 200 0.9 0.033 15 20 Adaptive

ZDT4 200 200 0.9 0.1 15 20 Adaptive

ZDT6 200 400 0.9 0.1 15 20 Adaptive

All DTLZ problems 200 400 0.9 0.033 15 20 Adaptive

Table 5.3: Parameter Settings for NSGA-II. Same values of random seeds were used for
both NSGA-II and NSGA-II with PFVO (different random seeds in distinct runs). |Pt| is
the size of population Pt and tmax defines the total number of generations.
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Problem Set |Pt| tmax PI
c PI

m ηc ηm Pv
c Pv

m Pv
s ∆ f

All ZDT problems 200 200 1.0 1.0 15 20 1.0 1.0 0.5 Adaptive

All DTLZ problems 200 200 1.0 1.0 15 20 1.0 1.0 0.5 Adaptive

Table 5.4: Parameter Settings for SPEA-II. Same values of random seeds were used for
both SPEA-II and SPEA-II with PFVO (different random seeds in distinct runs). |Pt| is
the size of population Pt and tmax defines the total number of generations.

Problem |Pt| tmax Number of Training Extension Objective Variable
Set Clusters Steps for Ratio Tolerance Tolerance

Local PCA

All ZDT 200 200 5 50 0.25 1.0e−5 1.0e−5

Problems

All DTLZ 200 200 5 50 0.25 1.0e−5 1.0e−5

Problems

Table 5.5: Parameter Settings for RM-MEDA. Same values of random seeds were used for
both RM-MEDA and RM-MEDA with PFVO (different random seeds in distinct runs).
|Pt| is the size of population Pt and tmax defines the total number of generations. Here,
∆ f is adaptively calculated for all problems.

5.3 Simulation Results: Generational Snapshots

In this section we illustrate the simulation results in detail. First, we will present the

generational snapshots19 for every algorithms for the two test suites. For visual clarity

of the plots, in the next page, we will present only 3 plots NSGA-II (along with PFVO

enhanced NSGA-II) on problem ZDT1. We then provide the rest of the plots in a smaller

size for all algorithms (on every problem) to accommodate the space restriction. Here

“PFVO + Host Optimizer” indicates “Host Optimizer”(i.e. in our case, NSGA-II, SPEA-II

or RM-MEDA) integrated with PFVO. The solutions found by the “Host Optimizer” are

presented using (+) and solutions found by the “Host Optimizer + PFVO” are presented

in (×).

19These snapshots show which algorithm reaches to the true Pareto-front within how many function eval-
uations (FE). For example, in the Figure (a), at FE 800, the solutions generated by both algorithms are
similar. However, after 2200 FE (at FE 2600, Figure (b)) solutions generated by PFVO enhanced NSGA-II
converged better than the original algorithm. More details about these snapshots can be found online at
http://khaled.ahsan.talukder.googlepages.com . Please note that FE values for all plots are not
consistent, since the number of iterations for a specific MOEA is problem dependent and we have chosen
those snapshots where the differences in convergence are prominent.
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(k) NSGA-II and “NSGA-II + PFVO”on DTLZ4 (at FE 1574, 3114 and 4052)
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(n) NSGA-II and “NSGA-II + PFVO”on DTLZ7 (at FE 1728, 5534 and 11548)
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(a) SPEA-II and “SPEA-II + PFVO” on ZDT1 (at FE 544, 2752 and 6668)
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(b) SPEA-II and “SPEA-II + PFVO” on ZDT2 (at FE 534, 3146 and 6344)
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(c) SPEA-II and “SPEA-II + PFVO” on ZDT3 (at FE 532, 2684 and 6560)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

f2

f1

SPEA-II SPEA-II+PFVO

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

f2

f1

SPEA-II SPEA-II+PFVO

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

SPEA-II SPEA-II+PFVO

(d) SPEA-II and “SPEA-II + PFVO” on ZDT4 (at FE 636, 1774 and 39208)
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(e) SPEA-II and “SPEA-II + PFVO” on ZDT6 (at FE 910, 2676 and 7438)
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(f) SPEA-II and “SPEA-II + PFVO” on DTLZ1 (at FE 234, 1270 and 3080)
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(g) SPEA-II and “SPEA-II + PFVO” on DTLZ2 (at FE 100, 2686 and 13676)
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(h) SPEA-II and “SPEA-II + PFVO” on DTLZ3 (at FE 674, 2968 and 6104)
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(i) SPEA-II and “SPEA-II + PFVO” on DTLZ4 (at FE 1380, 2832 and 6974)



5.3 Simulation Results: Generational Snapshots 77

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5  6  7  8  9

f2

f1

SPEA-II SPEA-II+PFVO

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6  7  8  9

f2

f1

SPEA-II SPEA-II+PFVO

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5  6  7  8  9

f2

f1

SPEA-II SPEA-II+PFVO

(j) SPEA-II and “SPEA-II + PFVO” on DTLZ5 (at FE 230, 5086 and 17358)
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(k) SPEA-II and “SPEA-II + PFVO” on DTLZ6 (at FE 490, 5574 and 44548)
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(l) SPEA-II and “SPEA-II + PFVO” on DTLZ7 (at FE 644, 1330 and 4196)
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(a) RM-MEDA(+) and “RM-MEDA + PFVO”(×) on ZDT1 (at FE 2088, 6424 and 14836)
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(b) RM-MEDA and “RM-MEDA + PFVO” on ZDT2 (at FE 11612, 14388 and 29496)
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(c) RM-MEDA and “RM-MEDA + PFVO” on ZDT3 (at FE 5908, 30542 and 72144)
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(d) RM-MEDA and “RM-MEDA + PFVO” on ZDT4 (at FE 4784, 6990 and 43668)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

RM-MEDA RM-MEDA+PFVO

 1

 2

 3

 4

 5

 6

 7

 8

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

RM-MEDA RM-MEDA+PFVO

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

RM-MEDA RM-MEDA+PFVO

(e) RM-MEDA and “RM-MEDA + PFVO” on ZDT6 (at FE 3320, 11578 and 69758)
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(f) RM-MEDA and “RM-MEDA + PFVO” on DTLZ1 (at FE 200, 20000 and 58600)
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(g) RM-MEDA and “RM-MEDA + PFVO” on DTLZ2 (at FE 468, 3036 and 7342)
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(h) RM-MEDA and “RM-MEDA + PFVO” on DTLZ3 (at FE 644, 11940 and 15938)
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(i) RM-MEDA and “RM-MEDA + PFVO” on DTLZ4 (at FE 7720, 10618 and 14748)
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(j) RM-MEDA and “RM-MEDA + PFVO” on DTLZ5 (at FE 710, 3242 and 6154)
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(k) RM-MEDA and “RM-MEDA + PFVO” on DTLZ6 (at FE 3182, 9146 and 15554)
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(l) RM-MEDA and “RM-MEDA + PFVO” on DTLZ7 (at FE 1066, 15220 and 51978)
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5.3.1 Analysis

From these scatter plots, we see that the “Host Optimizer” combined with PFVO con-

verges to the Pareto-front within a smaller number of generations compared to its normal

convergence rate. Specially for ZDT problem sets, the gain is substantial. As an exam-

ple, in Figure (b) in previous section, we see three generational snapshots of the problem

ZDT2 at function evaluation 400, 5200 and 9600 respectively (from left to right). At func-

tion evaluation 400, we see both of them show similar distribution, after that, at 5200, the

convergence is totally different. PFVO enhanced NSGA-II reaches the true Pareto-front

at function evaluation 9600 where only NSGA-II is still converging. For the DTLZ sets,

this speed up is promising specially for DTLZ4, DTLZ5, DLTZ6 and DTLZ7 (for almost

all algorithms). In other cases, the improvement were small. However, from these gen-

erational snapshots, the actual performance gain can not be explicitly identified. For this

purpose we need to measure the performance and conduct detailed statistical analysis

using different indicators.

5.4 Performance Indicators

It was previously mentioned that there are two distinct goals in MOP: (i) discover so-

lutions as close to the Pareto-optimal front as possible, and (ii) find solutions as diverse

as possible in the obtained non-dominated front. In some aspects, these two goals are

orthogonal to each other. The first goal requires search towards the Pareto-optimal region,

while the second goal requires search along the Pareto-optimal front (refer to Figure 5.1)

[1]. In this thesis, a diverse set of solutions is meant to represent a set of solutions cov-

ering the entire Pareto-optimal region uniformly. The measure of diversity can also be

separated in two different measures of extent (i.e. the spread of extreme solutions) and

distribution (i.e. relative distance among solutions) [2].

For analysis purposes, we have chosen two performance indicators used in the litera-

ture, known as “Hypervolume Indicator” [157], “Epsilon Indicator” [158]. We have also

provided “Attainment Surface Plot” [159] for every algorithm. In the following sections

we discuss the role of these metrics when measuring the performance.
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ConvergenceDiversity

Pareto Front

f2

f1

Figure 5.1: The aspect of MOEA performance metrics: diversity and convergence

5.4.1 Hypervolume Indicator

“Hypervolume” measures both diversity and convergence of an MOEA. This concept

was first proposed in [157]. This indicator measures the hypervolume of that portion of

the objective space that is weakly dominated by an approximation set A, and is to be

maximized (refer to Figure 5.2). In order to measure this quantity, the objective space

must be bounded. If it is not, then a bounding reference point that is (at least weakly)

dominated by all points should be used, as shown asW in the Figure 5.2.

Note that, one can also consider hypervolume difference to a reference set R, this is

referred as I−H . Given an approximation set A, the corresponding hypervolume is defined

as -

I−H(A) = IH(R)− IH(A) (5.1)

Where, for each solution i ∈ A, a hypercube vi is constructed with a bounding pointW

(refer to Figure 5.2) and the solution i as the diagonal corners of the hypercube. Thus the

hypervolume of a set A is calculated as -

IH(A) = volume(
|A|
⋃

i=1

vi) (5.2)

The lower value of I−H(A) indicates that the set R does not have better convergence

and distribution along the Pareto-front than the set R. In our experiment, we have con-
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Figure 5.2: Difference of hypervolume from set A to R

sidered the Pareto-front generated by the hosting algorithm as A and the front generated

by the PFVO integrated hosting optimizer as B (i.e. if the value of IH(B) is lower than

IH(A), it will indicate the performance gain of the hosting optimizer due to integration

of PFVO. Details related to this indicator can be found in [157], [159].

5.4.2 Epsilon Indicator

There are two ways in which the hypervolume indicator, used on its own, can be mislead-

ing. First, there is no way, from looking at IH values in isolation, of inferring whether one

set is actually better than another in a strict sense. Second, the choice of bounding point

W is rather arbitrary, and this can affect the ordering of some pairs of sets. A method

that avoids these particular difficulties is the “Additive Binary Epsilon Indicator” [158].

This takes a pair of non-dominated sets A and B and returns a pair of numbers (Iε+(A),

Iε+(B)).

Iε+(A) = Iε+[A, B] = inf
ε∈<
{∀z2 ∈ B, ∃z1 ∈ A : z1 �ε+ z2} (5.3)

Iε+(B) = Iε+[B, A] = inf
ε∈<
{∀z2 ∈ A, ∃z1 ∈ B : z1 �ε+ z2} (5.4)
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Figure 5.3: Two incomparable set A and B. Under the hypervolume B is better. But
under epsilon indicator, A is better with respect to the reference set (the two (�) points
are connected by the bold line), since Iε+(A) = 1 and Iε+(B) > 1. This discrepancy
indicates hat the two sets must be incomparable.

Where, z1 �ε+ z2 iff ∀j ∈ {1, 2, . . . k} : z1
i ≤ ε + z2

i , assuming minimization. (Note,

z1 �ε+ z2 is read as z1 ε-dominates z2). A pair of numbers (Iε+(A) ≤ 0, Iε+(B) > 0)

indicates that A is strictly better than B [158]. A pair of numbers (Iε+(A) > 0, Iε+(B) > 0)

indicates that neither set is strictly better than the other – they are incomparable [158].

However, if Iε+(A) is less than Iε+(B), then in a weaker sense, it is better because the

minimum ε value needed so that approximation set A “ε-dominates” B is smaller than

the value needed for to B “ε-dominates” A. There is also a “multiplicative” version of

this indicator, here we have discussed the “additive” version that calculates the value of

ε which should be “added” to make the two sets identical. In the case of “multiplicative”

version, ε value would be “multiplied” to make the two sets identical. We have used

both version in our experiments. More detailed analysis of this indicator can be found in

[159]. We have used the PISA performance assessment library (http://www.tik.ee.

ethz.ch/sop/pisa/ ) for our experiments.

5.4.3 Attainment Surface Plot

An “Attainment Surface” is the surface uniquely determined by a set of non-dominated

points that divides the objective space into the region dominated by the set and the

region that is not dominated by it [159]. Given n runs of an algorithm, it would be
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f2

f1

Figure 5.4: Five attainment surfaces are shown, representing the output of five runs of
an optimizer. The two diagonal lines intersect the five surfaces at various points; in both
cases, the circle indicates the intersection that weakly dominates at least 5− 3 + 1 = 3
surfaces and is also weakly dominated by at least three surfaces. Therefore, these two
points both lie on the third summary attainment surface.

nice to summarize the results of the attainment surfaces obtained, using only one or

two summary surfaces. Such summary attainment surfaces can be defined by imagin-

ing a diagonal line in the direction of increasing objective values cutting through the

n results attainment surfaces (see Figure 5.4). The intersection on this line that weakly

dominates at least n − p + 1 of the surfaces and is weakly dominated by at least of

them, defines one point on the “p summary attainment surface”. This surface is the

union of all the goals that have been attained in at least p runs (independently). More

details of the Attainment Surface Plot can be found in [73], [159], [160], [161]. For

attainment surface plot, we have used the free software library available at: http:

//dbkgroup.org/knowles/plot_attainments/ .

5.4.4 Statistical Analysis

As we are dealing with a pair of algorithms (original optimizer and PFVO integrated

optimizer), it is not always possible to infer that the modified algorithm is performing

better than the original one. Even when the modified algorithm visually suggests a better

performance measure. To make a stronger claim, we need to conduct statistical inference

tests. There are numerous ways to perform such tests, however, it is another challenge

to pick the best statistical inference methods. As suggested in [159], when we wish to
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compare multiple algorithms with multiple performance indicators, the Kruskal-Wallis

test is appropriate. In our experiments, we have run each pair of the algorithms for 30

times and we have collected the value of Hypervolume and Epsilon (both additive and

multiplicative) indicators at every generation (function evaluations) and conducted the

Kruskal-Wallis test. This test implements a non-parametric test for differences between

multiple independent samples. If and only if a first test for significance of any differences

between the samples is passed, at the given α value (we have chosen α = 0.05), then the

output will be the one-tailed p-values for each pair-wise combination. For more details

on statistical inference test, readers are referred to [162]. We have also used PISA statistics

package (http://www.tik.ee.ethz.ch/sop/pisa/ ) for this purpose.

5.5 Performance Results: Hypervolume and Epsilon Indicators

In this section we present Hypervolume (IH) and Additive Epsilon (Iε+) indicator results

of each algorithm (both stand alone and integrated version) on all problems. We have

executed the algorithm pairs using same set of random seeds20 for 30 times and the in-

dicator values were averaged. The indicator values are presented with respect to the

number of exact function evaluations (FE) so that we can make clear idea about the con-

vergence gain. Please note that lower values of IH indicates better front, so the algorithm

which shows a lower value of IH in a smaller number of FE is considered to be better.

On the other hand, Iε+(PFVO, HostOptimizer) ≤ 0, Iε+(HostOptimizer, PFVO) > 0 in-

dicates “Host Optimizer + PFVO” is better than “Host Optimizer” (and vice-versa). If

Iε+(PFVO, HostOptimizer) > 0, Iε+(HostOptimizer, PFVO) > 0 ; they are incompara-

ble. We have also included the box plots and multiplicative Epsilon indicator plots in

Appendix A. In every plot, (+) represent the values found from “Host Optimizer” and

(×) represent the values found from “Host Optimizer + PFVO”.

20We have used the same pair of random seeds for the original algorithm and the PFVO enhanced algo-
rithm. But the pair of seeds were different at 30 distinct runs
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5.5.1 NSGA-II
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(a) IH(NSGA-II) and IH(NSGA-II + PFVO) on ZDT1(Left) and ZDT2(Right)
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(b) IH(NSGA-II) and IH(NSGA-II + PFVO) on ZDT3(Left and ZDT4(Right))
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(c) IH(NSGA-II) and IH(NSGA-II + PFVO) on ZDT6 (Left) and DTLZ1 (Right)
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5.5.2 SPEA-II
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5.5.3 RM-MEDA
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5.5.4 Analysis

The IH indicator plots provide us a clearer estimation of the convergence gain of the host-

ing optimizer. Specifically, in the case of “NSGA-II + PFVO” on the ZDT test suite, the

convergence is significantly better (smaller IH values in less function evaluations), on

DTLZ3, DTLZ4, DTLZ5 and DTLZ7, we see same extent of improvement. For “SPEA-II

+ PFVO”, the improvement is more promising, for most of the problems (except DTLZ2,

DTLZ4 and DTLZ5) the convergence speed is significantly improved. For “RM-MEDA

+ PFVO”, the result is similar to “NSGA-II + PFVO”, the integration improve the per-

formance on ZDT test suite. On the other hand, for DTLZ6 and DTLZ7, we also found

significant improvement. On DTLZ5, IH indicator starts to fluctuate very frequently after

7500 function evaluation. On DTLZ2, the integrated version shows better IH until 24000

function evaluations and after that it gets worse.

For “NSGA-II + PFVO”, the performance on DTLZ1 and DTLZ6 was not good in

terms of IH however the Iε indicator value suggests that the integrated version perform-

ing better. For “SPEA-II + PFVO” we do not find such a discrepancy, its performance is

not better in case of DTLZ2, DTLZ4 and DTLZ5 (same as IH indicator value). For “RM-

MEDA + PFVO” the Iε+ reflects similar performances on DTLZ1, DTLZ2, DTLZ3 and

DTLZ5 as IH.

For statistical analysis, we have executed each pair of algorithms on every problems

for 30 times and the IH and Iε+ values were collected for every generation. From these

values, we have conducted the Kruskal-Wallis [162] test by setting α values at 0.05 (i.e.

95% significance). The detailed p-value results are provided in Appendix - A.

5.6 Approximation Accuracy

An important point should be taken into account when an approximation scheme is used

for any kind of numerical optimization algorithm ; that is the notion of “approximation

accuracy”. “Approximation Accuracy” means the distance from the predicted values on

the future Pareto-front and the values calculated by original fitness function. We have

seen that PFVO can generate new promising solutions (fitness values in objective space)



96 Experimental Results and Analysis
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Figure 5.5: After integration of PFVO, the hosting optimizer can skip the intermediate
fronts to reach the Pareto-front, thus the rate of convergence is increased.

in such a way that most of the predicted/re-calculated solutions lie on the next Pareto-

front (i.e. most of the calculated solutions by PFVO are non-dominated to the previous

front). In the case of PFVO, the approximation accuracy is not as good compared to ANN

based models. However, the fact is that, for single objective optimization, the accuracy

of the approximation scheme is a crucial concern, whereas, for MOEA, it is not so im-

portant. Since MOEA deals with a multiple number of solutions ; so, if we (somehow)

could get a “rough” estimation of the promising solutions of the next (future) front from

the existing ones, the hosting optimizer can utilize them to explore further (in a right di-

rection). Subsequently, the hosting optimizer can skip the evaluation of solutions from

some of the intermediate fronts in order to reach the Pareto-optimal. We think this is the

possible explanation for the reported “gain in convergence speed”.

Moreover, if the hosting optimizer is capable of exploring more promising solutions

from the given estimated set, we think the use of highly complex approximation model

(i.e. ANN) is not necessary. To clarify this issue, please refer to Figure 5.5. However,

if the hosting optimizer lacks the ability to sample multiple number of good solutions

by dividing them in to “Fronts”, PFVO may not lead to an increased convergence rate21.

However, the approximation accuracy plot (from a snapshot of a specific generation) for

NSGA-II with PFVO on ZDT1 is presented in Figure 5.6.

21In our experiment we have also integrated PFVO with “Pareto Archived Evolutionary Strategy (PAES)”
[44], [45] but we have found no significant difference with the original algorithm and the PFVO enhanced
model. PAES is actually an “Evolutionary Strategy (ES)” based model and its working scheme is totally
different from NSGA-II or SPEA-II.
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5.7 Limitations

Although PFVO can successfully speed up the convergence rate of an MOEA, it has some

shortcomings as described below -

5.7.1 Singular Matrix

Since we are using QR factorization to calculate the parameters of dynamic system (Opti-

mizer) βij, sometimes it becomes impossible to calculate this value due to the formation

of singular/non-invertible matrix. In such cases, we had to discard the matrix Φ and y

and start with the next set of Φ and y. To solve this problem, a more stable method such

as “Singular Value Decomposition (SVD)” could be used.

5.7.2 Scalability

Readers have already noted that we are conducting all our experiments on only bi-

objective problems. The fact is that PFVO can not be directly applied to problems with

any number of objectives (i.e. more than two). If we are going to consider more than two
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objectives, we have to apply PFVO on pair-wise combinations of objectives22. So, it will

increase the computational cost with a scale of




k

2



O(nkN3).

5.8 Conclusion

In this chapter, we have tested our model with three popular MOEA’s in the literature.

We have also conducted extensive performance measure and corresponding statistical

analysis. We have found that PFVO can increase the convergence rate of NSGA-II, SPEA-

II and RM-MEDA. In the next chapter apply the PFVO on “Dynamic MOP”. In the case

of dynamic MOP, the Pareto-front changes with respect to time (or some other variable)

to make hard for any MOEA to track correct Pareto-optimal front. Since our claim is that

PFVO can increase the convergence rate of a MOEA, we suggest that it will also be able

to track the change in Pareto-front more promptly than other algorithms.

22More precisely, we have to make combination of two objectives from k ( i.e.

(
k
2

)

ways ) and apply

PFVO on every pair.



Chapter 6

The Pareto Following Variation
Operator for Dynamic MOP

6.1 Introduction

I
n the previous chapter, we have seen how the Pareto Following Variation Opera-

tor can improve the convergence speed of typical MOEA. Although, PFVO seems to

work for MOP’s, however to investigate further, we have also applied PFVO for dynamic

MOP’s (DMOP). In the case of DMOP’s, the Pareto-front is not stable; rather it changes

with respect to another variable (generally time or generation cycle count). Our claim is

that it is possible to reach the Pareto-front with better speed using PFVO. This raises the

question; is it possible to track the changes in Pareto-front more promptly (specially in

dynamic/uncertain environment).

In this chapter we focus on this issue. Recently optimization in dynamic/uncertain/noisy

environment has become a “hot” topic due to its wide spread applicability (e.g. real

time optimal control, on-line scheduling problems etc.). Although there have been many

successful studies of static multi-objective problems, the number of papers focussed on

dynamic problems is relatively small (for example, see [163], [164], [165], [166], [167],

[168]). Inspired by the success of evolutionary algorithms when tackling dynamic scalar

optimization problems [169], [170], [171], [172], a number of researchers have proposed

and evaluated evolutionary algorithms for multi-objective optimization in dynamic and

noisy environments [173], [174], [175]. Many algorithms for dynamic MOP’s are exten-

sions of algorithms designed for static problems. The key difference is that the dynamic

counterparts simply tries to “re-start” and search for the new global optimum when there

99
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is a change in the fitness function(s) [163], [168]. Moreover, the incorporation of “forecast-

ing models” into the dynamic algorithms has also been the subject of investigations [164],

[166]23.

When a broad range of both static and dynamic MOP’s are considered, there is no

single algorithm that can work well for both of the problem classes. Clearly, the design

and effectiveness of the variation operators are pivotal to the success of any evolutionary

algorithm. In the case of static problems, specific variation operators (SBX [135], UNDX

[132] and EDX [133]) have been designed to meet the constraint functions imposed by a

particular problem. However, they typically do not have a “Pareto Following” property.

Although there have been a few attempts to incorporate this property [56], [58], [55], [75],

these models are only applicable to problems with differentiable objective functions.

6.2 Dynamic Multiobjective Optimization Problems (DMOP)

In the previous chapters we have already seen the basic formulation of MOP’s. As in

the case of MOP’s, the benchmark DMOP’s have not been extensively studied. Some

trivial concepts on generating benchmark DMOP’s are discussed in [176], however the

simplicity of problems in [176] did not encourage us to investigate further. Rather we

have chosen the benchmark problems provided in [177].

In the case of DMOP’s, the objective vector f(x), the constraints, gi(x) and hi(x) will

vary with respect to another variable t (generally t is time). Thus, the objective and the

constraints are replaced by f(x, t), gi(x, t) and hi(x, t) respectively. For such problems, the

goal is to find all non-dominated fronts which vary with time. In the case of DMOP there

are four possible ways a problem can demonstrate a time-varying change [177].

• Type I) The optimal design variables PS changes, whereas the optimal objective

values PF does not change.

• Type II) Both and change.

• Type III) PS does not change, whereas PF changes.

• Type IV) Both PS and PF do not change, although the problem can change.

23It is interesting to note that [164] uses ANN for forecasting.
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As we have discussed in previous chapter, PFVO is capable of approximating the

design variables of the next front from the current and previous objective values. As a

consequence, PFVO is suitable for Type-III problems, where the optimal design variable

PS does not change with t.

6.3 Modeling the PFVO for Dynamic MOP’s

The concept of dynamic system identification only works on “Linear Time Invariant

System (LTI)” [149], [150], [178]. “Linearity” suggests that input and the output of the

system satisfies the superposition property. If the input to the system is the sum of two

component signals (we are using the same notations described in chapter 4) -

xp(φ) = cix
p
i (φ) + ci+1x

p
i+1(φ) + . . . (6.1)

Then output of the system will be

f p(φ) = cj f
p
j (φ) + cj+1x

p
j+1(φ) + . . . (6.2)

Where ci and cj are arbitrary constants. Generally during the evolutionary search,

the distance (i.e. convergence step) between the solutions24 in cartesian co–ordinate (X–

Y–Z co–ordinate system) are small, hence we can assume that the position of the design

variables (input) and corresponding objective values (output) in different fronts during

exploration are piece-wise linear. So the above condition holds for a specific values of the

constants ci and cj.

On the other hand, “Time Invariance” means that whenever we apply an input to

the “system” (i.e. “optimizer”) now or T seconds from now (i.e. current front or T fronts

from the current front), the output will be identical, except for a time delay of the T

seconds (i.e. T front gap). If the output due to input x
p
i (φ) is f

p
j (φ), then the output due

to input x
p
i (φ− T) is y

p
j (φ− T). More specifically, an input affected by a time delay (i.e.

front gap) should cause a corresponding time delay (i.e. front gap) in the output, hence

24More specifically, the distance of the fronts generated by the single pass of the non-dominated sorting.
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Figure 6.1: Analogy between “Optimizer” and “System”: concept of frequency domain
and time domain interchange. hij(φ)/Hij( f ) denotes transfer function of the optimizer
for design variable i and objective j

time-invariant. It is trivial that for a specific values of ci and cj this assumption is true for

any optimizer (i.e. “LTI system”).

If the above conditions hold, then an optimizer (EA) can be replaced by an LTI system

that takes design variables as input and generates objective values as output. The fun-

damental result in LTI system theory is that any LTI system can be characterized entirely

by a single function called the system’s Impulse Response/Transfer Function (which is

denoted by h(t) in time domain and H( f ) in frequency domain). The output of the sys-

tem is simply the convolution (“∗” operator) of the input to the system with the system’s

Impulse Response/Transfer Function h(t) (or h(φ) in front domain).

Equivalently, any LTI system can be characterized in the frequency domain by the

system’s transfer function, which is the Laplace Transform or Fourier Transform of the

system’s impulse response h(t) (or Discrete Fourier/Laplace transform in the case of

discrete-time systems). As a result of the properties of these transforms, the output of the
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system in the frequency domain is the product of the transfer function and the transform

of the input. In other words, convolution in the time domain is equivalent to multiplica-

tion in the frequency domain. This concept is depicted in Figure 6.1.

As described in chapter 4, the remaining concepts are similar – once we know the

transfer function h(φ) (or H( f )) of the optimizer, the inverse realization of the transfer

function H−1( f ) can be used to “inverse-map” the approximated objective functions to

corresponding design variables. This procedure can be applied to any number of objec-

tives/design variable combinations. Now we can devise the algorithm as follows -

Algorithm 5 Approximate([x
p
i (φ), x

p
i (φ− 1), . . . , x

p
i (1)], [ f

p
j (φ), f

p
j (φ− 1), . . . , f

p
j (1)], ∆ f )

Require: Design variable i and objective values j of the current and past fronts:

[x
p
i (φ), x

p
i (φ− 1), . . . , x

p
i (1)] and [ f

p
j (φ), f

p
j (φ− 1), . . . , f

p
j (1)] respectively.

Ensure: Calculates the design variable i of the next front x
p
i (φ + 1)

1: Find Xi( f ) from [x
p
i (φ), x

p
i (φ − 1), . . . , x

p
i (1)] using forward Fourier Transform,

[x
p
i (φ), x

p
i (φ− 1), . . . , x

p
i (1)]→ Xi( f )

2: Find Fj( f ) from [ f
p
j (φ), f

p
j (φ − 1), . . . , f

p
j (1)] using forward Fourier Transform,

[ f
p
j (φ), f

p
j (φ− 1), . . . , f

p
j (1)]→ Fj( f )

3: Find the transfer function Hij( f ) =
F j( f )

Xi( f ) . Since Fj( f ) = Hij( f ) · Xi( f ).

4: Approximate the next front f
p
i (φ + 1) = f

p
i (φ)−∆ f using adaptive ∆ f calculation as

described in chapter 4.

5: Find F ′ j( f ) from [ f
p
j (φ + 1), f

p
j (φ), . . . , f

p
j (2)] using forward Fourier Transform

6: Find X ′ i( f ), X ′ i( f ) =
F ′ j( f )

Hij( f )

7: Apply inverse Fourier Transform, [x
p
i (φ + 1), x

p
i (φ), . . . , x

p
i (2)]← X ′i( f )

8: Returns new approximated design variable i: x
p
i (φ + 1)

6.3.1 Integration Mechanism

For integration, we have chosen the modified NSGA-II-A as the “Host Optimizer” [163].

In the case of modified NSGA-II-A, the algorithm undergo a second fitness evaluation

process whenever there is a change in ‘t’. Typically, 10% of the parent population is

chosen randomly and they are evaluated and replaced. However, we did not apply the
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second phase of fitness evaluation since PFVO itself is able to tackle the change in PF

automatically. Due to the fact that the PFVO predicts the next front from the existing

ones, expensive fitness function evaluation is not required every time ‘t’ changes. Thus,

PFVO can save on computational cost due to “restart” of the algorithm.

6.4 Benchmark DMOP’s

The benchmark DMOP’s that we have used in our experiments are listed in Table 6.1 and

Table 6.2 – FDA problem suite.

The FDA Test Problem Suite

Problem Definition Parameter Domains Type

FDA1

f1(xI) = x1 xI = (x1) ∈ [0, 1] I

g(xI I) = 1 + ∑xi∈xI I
(xi − G(t))2 xI I = (x2, . . . , xn) ∈ [−1, 1]

h( f1, g) = 1−
√

f1
g

G(t) = sin(0.5πt), t = 1
nt
b τ

τT
c

FDA2

f1(xI) = x1 xI = (x1) ∈ [0, 1] III

g(xI I) = 1 + ∑xi∈xI I
xi

2 xI I = (x2, . . . , xn) ∈ [−1, 1]

h(xI I I , f1, g) =
(

1− f1
g

)
(

H(t)+∑xi∈xI I I
(xi−H(t))2

)−1

xI I I = (x2, . . . , xn) ∈ [−1, 1]

H(t) = 0.75 + 0.7 sin(πt), t = 1
nt
b τ

τT
c

FDA3

f1(xI) = ∑xi∈xI
xi

F(t) xI = (x1) ∈ [0, 1] II

g(xI I) = 1 + G(t) + ∑xi∈xI I
(xi − G(t))2 xI I = (x2, . . . , xn) ∈ [−1, 1]

h( f1, g) = 1−
√

f1
g

G(t) = ‖ sin(0.5πt)‖

F(t) = 102 sin(0.5πt), t = 1
nt
b τ

τT
c

Table 6.1: Three of the five FDA DMOP’s. All objectives are to be minimized
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The FDA Test Problem Suite

Problem Definition Parameter Domains Type

FDA4

f1(x) = (1 + g(xI I)) ∏
M−1
i=1 cos( xiπ

2 ) xi ∈ [0, 1] i = 1 : n I

fk(x) = (1 + g(xI I))
(

∏
M−k
i=1 cos( xiπ

2 )
)

sin(
xM−k+1π

2 ) xI I = (xM, . . . , xn)

fM(x) = (1 + g(xI I)) sin( xiπ
2 ) k = 2 : M− 1

g(xI I) = ∑xi∈xI I
(xi − G(t))2

G(t) = ‖sin(0.5πt)‖, t = 1
nt
b τ

τT
c

FDA5

f1(x) = (1 + g(xI I)) ∏
M−1
j=1 cos(

y jπ

2 ) xi ∈ [0, 1] i = 1 : n II

fk(x) = (1 + g(xI I))
(

∏
M−k
j=1 cos(

y jπ

2 )
)

sin(
yM−k+1π

2 ) xI I = (xM, . . . , xn)

fM(x) = (1 + g(xI I)) sin( y1π
2 ) k = 2 : M− 1

g(xI I) = G(t) + ∑xi∈xI I
(xi − G(t))2

yj = xj
F(t) for j = 1, . . . , (M− 1)

G(t) = ‖sin(0.5πt)‖

F(t) = 1 + 100 sin4(0.5πt), t = 1
nt
b τ

τT
c

Table 6.2: Rest of the five FDA DMOP’s. All objectives are to be minimized

From these problems we have chosen FDA2, FDA3 and FDA5. We have modified

FDA3 and FDA5 slightly to convert them into Type-III problems. For FDA3, we have

replaced g(xI I) with g(xI I ) = 1 + G(t) + ∑xi∈xI I
x2

i and for FDA5, we have replaced g(xI I)

with g(xI I) = G(t) + ∑xi∈xI I
x2

i . Here τ is the generation counter, τT is the number of

generations for which t remains fixed, and nt is the number of distinct steps in t. We have

used the same parameter values: n = 2, τT = 5 and nt = 10 as listed in [177].

6.5 Simulation Results: Generational Snapshots

From the generational snapshots, it becomes evident that this new version of PFVO can

track the moving optima. Here in each plot the x-axis refers to objective f1 and y-axis
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Figure 6.2: Generational snapshots of different problems

refers to objective f2. The obtained fronts are the Pareto-front found at different time

stamps t. For example, in the case of FDA2, our algorithm finds the same PF , f2 =

1−
√

f1 every time there is a change in ‘t’. The plot for FDA2 (Figure 6.2(a)) shows 20

different Pareto-fronts in different values of ‘t’.

6.6 Performance Measure: Generational Distance

and Hypervolume Ratio

For performance measures, we have used the “Ratio of Hypervolume (HVR)” indica-

tor. The HVR or IHR defines the ratio of Hypervolume (IH) found from two different

algorithms to address the comparative performance. As there are no established perfor-

mance metrics for dynamic MOEA, we have chosen this indicator from [168]. We have
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measured the IHR performance of our algorithm at every time step where the front is

stationary. IHR at time step t is calculated as followed -

IHR(t) =
IH(PF true(t))

IH(PF (t))
(6.3)

The definition of Hypervolume (IH) was presented in chapter 4. Here we are considering

PF true as the objective values found by modified NSGA-II-A and PF as those found by

PFVO integrated algorithm. So, at generation t, if IHR(t) > 1, then it can be inferred that

PFVO integrated algorithm is showing better performance, since a lower value of IHR

indicates a better front. We include the IHR results in Figure 6.3 below.
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6.6.1 Analysis

From the results provided in Figure 6.2, we can see that PFVO is actually able to track the

moving optima, where each of the lines represent different Pareto-front obtained by the

algorithm at different time stamps. From Figure 6.3, we can also infer that the approxi-

mation accuracy and convergence speed gain by PFVO is promising. For problem FDA2

(Figure 6.3(a)), we can see that our approach performs better between generation 150 and

250. For FDA3(Type III), our algorithm performs better most of the time (Figure 6.3(b)).

Significantly, our approach is always better than modified NSGA-II-A (Figure 6.3(c)) for

FDA5(Type III).

6.7 Conclusion

In this chapter we have discussed the idea of implementing the PFVO in different way.

The purpose of this extension of the PFVO was not aimed to design a new algorithm,

rather we have conducted this experiment to illustrate the notion of “inverse mapping”

using dynamic system identification procedures. Moreover, this new implementation of

PFVO is not confined to only differentiable objective functions and can be extended to

many objective problems as well.



Chapter 7

Integration of PFVO into Parallel
MOEA

7.1 Introduction

In this chapter, we present a parallel multiobjective evolutionary algorithm enhanced

with PFVO. In the previous chapters, it was shown that PFVO enhanced algorithms con-

verge to the true Pareto-front within a smaller number of evaluations. However, to fur-

ther strengthen our claim, we performed additional experiments using a distributed ar-

chitecture. From the past two decades, as the popularity of the development of different

MOEA’s are significantly gaining importance, the desire to reduce their execution time

and resource expenditure naturally leads to the consideration of parallel and distributed

processing in MOEA’s [8].

Developing efficient MOEA’s that can be deployed in distributed environment is

highly advantageous in solving complex MOP’s [179] [180] [181]. For this reason, the

idea of providing support for distributed execution of MOEA’s has been investigated by

many researchers [10] [182]. In particular, this topic has been thoroughly investigated for

MOEA’s and their different parallel execution models.

However, there are also some examples for surrogate enhanced parallel models [183]

[114]. In this chapter we explore PFVO’s capability of finding better solutions in a given

number of function evaluations in a parallel environment.

109
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7.2 Grid Oriented Technologies for Parallel EA Models

To test the efficacy of the PFVO assisted parallel model, we have used Grid enabled tech-

nologies for our implementation. Grid is a type of parallel and distributed system that

enables the sharing, exchange, selection and aggregation of geographically distributed

“autonomous” resources. Due to the space constraints, we are not going to elaborate the

concepts behind Grid computing paradigm. For interested readers, please refer to [184]

for more details on Grid computing paradigm.

Different Grid based middleware and frameworks are now available for research con-

cerning robust optimization algorithms. For example, Nimrod/O [185] is a tool allowing

running distributed optimization problems by using any Nimrod based system, such

as Nimrod/G [186], as distribution infrastructure. Nimrod/O allows users to take ad-

vantage of different optimization algorithms (BGFS, Simplex, Divide and Conquer, and

Simulated Annealing). It requires users to specify the structure of the problem and the

variable that needs to be optimized.

ParadisEO-MOEO [187] is an object oriented framework that provides a full featured

object model for implementing distributed meta-heuristics, by focusing on code reuse

and efficiency. It supports MPI, Condor-G, and Globus as distributing middleware tech-

nologies.

DREAM (Distributed Resource Evolutionary Algorithm Machine) [188] provides a

software infrastructure and a technology for the automatic distribution of evolutionary

algorithm processing. DREAM is based on a virtual machine that uses a P2P mobile agent

system for distributing the computation.

There are also other grid based framework for evolutionary design experiments that

drew immense attention of the communities. For example the GOLEM project [189] and

the Polyworld project [190], where the research goal was to deploying parallel applica-

tions that will harness idle CPU power across the Internet25 to perform massively dis-

tributed evolutionary computation to artificially evolve complex life forms in 3D envi-

ronment.

25The framework was a variant of peer-to-peer application and in our experiment we have also used
similar framework known as Offspring
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Figure 7.1: Different Parallel Models for MOEA

7.3 Parallel Models for Evolutionary Algorithms

Although parallel models can be implemented in different ways, their implementations

have evolved into three basic architectures [8]. Collated from a thorough survey on the

existing literatures, our study is summarized as follows -

7.3.1 Master-Slave Models

The Master-Slave [191] [192] [193] paradigm is easy to visualize from an algorithmic

management perspective. Objective function evaluations are distributed among sev-

eral slave processers while a master processor executes evolutionary operators and other

miscellaneous overhead functions (e.g., computing the current Pareto front, distribut-

ing/collecting subpopulations, etc.). This paradigm is fairly simple to implement; its

search-space exploration is conceptually identical to that of an MOEA executing on a se-

rial processor. In other words, the number of processors being used is independent of

the particular solutions being evaluated, but does affect execution time. This paradigm

is illustrated in Figure 7.1(a).
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7.3.2 Island Models

The Island [9] [194] [195] model is based on the phenomenon of natural populations evolv-

ing in relative isolation, such as those that might occur within some ocean island chain

with limited migration. This model also called “distributed”, as they are sometimes im-

plemented on distributed memory computers; they are also called multiple-population

or multiple-deme. Finally, this paradigm is sometimes termed coarse-grained parallelism

because each island (processor) contains a large number of individual solutions. The

generic island paradigm is illustrated in Figure 7.1(b).

7.3.3 Diffusion Models

Like the master-slave, the Diffusion [8] paradigm deals with one conceptual population,

however each processor holds only one to a few individuals. This leads some to refer to

it as fine-grained parallelism. Figure 7.1(c) illustrates the individual distribution on a dif-

fusion model. Genetic operations (crossover/mutaion) occur only within these (possibly

overlapping) neighborhoods whose geometry can be a square, rectangle, cube, or other

shape depending upon the number of dimensions associated with the model’s topolog-

ical design. As “good” solutions arise in different areas of the local topology, they then

spread or slowly diffuse throughout the entire population due to the overlapping or dy-

namically changing neighborhoods. It should be noted that the host parallel optimizer

that we have enhanced with PFVO in this experiment is also a candidate of Diffusion

model.

7.4 The Host Parallel Optimizer:Complex Network-Based MOEA

The host algorithm that we have used in this experiment is based on complex networks

[196] [197] [198]. A complex network defines diffusion pattern of the underlying individ-

uals. A network can be modeled as a graph G(V, E) where V is a finite set of vertices and

E a finite set of edges (links) such that each edge is associated with a pair of nodes i and

j.
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(d)(c)(b)(a)

Figure 7.2: Different Diffusion Models applied in this experiment. (a) Regular 2D lattice,
(b) Small-world, (c)Random, and (d)Scale-free

The degree ki of a vertex i defines the total number of edges between vertex i and all

other vertices. The “importance” of a vertex is characterized by the total number of edges

connected to it. The vertex degree distribution function P(k) defines the probability of

randomly selected vertex has exactly k edges.

According to [196], we have also used four different network architectures in this

study (see Figure 7.2): (a) the regular network defined as a nearest neighbor coupled net-

work (lattice) in which every vertex in the network is joined by a few of its neighbors;

(b) the random network created by specifying that each pair of vertices is connected by

an edge with uniform probability p; (c) the small-world network created by randomly

re-wiring each edge with some probability p � 1; and (d) the scale-free network charac-

terized by the distinctive connectivity distributions – the probability that a node selected

uniformly at random has a certain number of links (degree) follows a power law gov-

erned by the relationship P(k) ∼ k−γ. The scale free networks were generated using the

preferential attachment model in which we specified the initial number of nodes (b) and

the number of edges per node added (e).

7.4.1 The Algorithm

The complex network-based MOEA used in this study is an enhanced cellular evolution-

ary algorithm [199] [200] [201]. A key component of the model is the communication

topology determined by the network architecture.

Here, the individuals are mapped to the nodes of alternative complex networks and
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interact in their local neighborhood. An important feature of the model is the variation in

local neighborhood size between networks – and within particular networks. Typically,

the number of neighbors is not constant across the whole network. That is, the size of

the local neighborhood is determined by the degree ki of the current vertex i. This in

turn means that the selection pressure will also vary. The exception to this rule is when

a 2D regular lattice with Moore neighborhood is used for which each individual has 8

neighbors.

In the selection phase, a relative non-dominance ranking mechanism is used to gen-

erate a pool of potential mates from the local neighborhood. A crowding measure is then

used to rank individuals in the mating pool. Here, the least crowed individual is viewed

as better. This selection regime results in the identification of a “best” mate, j, for the

current individual i. After the recombination stage, the resulting offspring are mutated.

The parent occupying vertex i and the resultant offspring are then compared using the

dominance ranking mechanism. The nondominated individual is then copied into the

auxiliary population.

In the event of a tie, one of the children or parent is selected randomly to enter the

auxiliary population. all nodes in the network have been processed, the auxiliary popu-

lation is copied to the main population and the evolutionary cycle continues. An external

archive is maintained using the ε-dominance mechanism described in [202].

7.4.2 Integration of PFVO into Parallel Model

The integration mechanism is similar to the approach adopted for other sequential host

algorithms in chapter 4. After the creation of the child population from the complex

network, we apply PFVO on the auxiliary population. Due to this operation, the auxiliary

population will contain approximated solutions for the next front. During the archive

updating phase, the host algorithm again samples the best individuals from the auxiliary

population (found by PFVO) to the complex network for the next generation. An overall

schematic is presented in Algorithm 6.
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Algorithm 6 Complex Network Based MOEA

Require: Randomly generated parent population Pt at generation t with population size N and

an archive of external population Rt

Ensure: After tmax number of iteration, population Rtmax will represent solution of the problem.

1: Set t = 0

2: Start with initial population, Pt := ∅ Rt := ∅

3: Evaluate Pt

4: Update the archive Rt using ε-dominance

5: Create an auxiliary population A

6: while t ≤ tmax do

7: Distribute the population Pt on the complex network

8: for all Individual i (vertex) in network do

9: in parallel

10: Find the best neighbor of i, which is j

11: Apply genetic operators on individual i, j and create o∗

12: Evaluate o∗

13: Compare the individuals i and o∗ w.r.t. non-domination and set the winner to w

14: Add w to the auxiliary population A

15: end for

16: Set t := t + 1

17: Apply PFVO on the auxiliary population A

18: Update the archive Rt from A

19: Copy Pt := A

20: end while

7.5 Deployment on Aneka Desktop Grid: Utilizing Offspring

The deployment of the PFVO enhanced complex network MOEA is done with a recently

developed framework known as Offspring . Offspring is a plug-in based software en-

vironment that allows rapid deployment and execution of evolutionary algorithms on

distributed computing environments such as Enterprise Grid. Offspring provides a more

general approach and an extensible platform for creating distributed evolutionary algo-

rithms. With Offspring researchers can define either the structure of the distributed algo-
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rithm or the single computation performed on each of the nodes. These tasks cannot be

performed with Nimrod/O that simply provides a technique for partitioning the prob-

lem space and distribute the computation. For these reasons, Offspring is more similar to

DREAM since it provides a distribution engine making the development of distributed

evolutionary algorithms straightforward. The approach used by DREAM to distribute

the computation is based on mobile multi-agent systems, while Offspring relies on the

Enterprise Grid.

Offspring relies on Aneka [203] to distribute the computation of applications. Initially

Aneka developed as a third generation grid technology in .NET environments. The re-

cent advancement of Aneka introduced several new Cloud computing [204] capabilities,

such as SLA oriented resource allocation and the MapReduce [205] programming model.

The main features of the platform are: a configurable service container hosting pluggable

services for discovering, scheduling, and balancing workload; a flexible and extensible

framework/API supporting a variety of programming models such as threading, batch

processing, MPI, MapReduce, and dataflow. These features allow the system adminis-

trator to fine tune the installation of the Aneka by carefully selecting the resources to use

on each computational node. From the developer point of view, Aneka provides a rich

programming interface that allows quickly enable applications with support for Cloud

computing. Developers can choose between different execution models and select the

abstraction that better fit their needs. Although we have also found other implementa-

tions of distributed MOEA in P2P environment [206] [192], the main advantage of using

Aneka is its flexibility and robustness that can not be obtainable using Globus [207] or

XtremWeb [208] middleware alone.

7.5.1 Implementation Details

Specifically, the original implementation is a hybrid approach that utilizes the notions

from Master-Slave, Island and Diffusion models. In our case, the complex network based

algorithm is executed on different computational nodes with different network topolo-

gies. These computational nodes are controlled by the Slave processes. The system also

includes similar migration policies as Island models (i.e. promising populations are mi-
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Figure 7.3: The deployment on the grid

grated from one computational node to other). The overall coordination model is con-

trolled by a Master node. For this reason, this computational architecture can be re-

garded as “Hierarchical Model” [209] where a Master-Slave model residing on the top

of Island model and the Island model coordinates different Diffusion models on different

Slave nodes. An overview of the model is illustrated in Figure 7.3.

Here, in each island, we have deployed different complex network topologies for the

evolutionary search, as stated in [200], the search power of an diffusion based evolution-

ary algorithm depends on the underlying network structure. In our case, we have used

10 different computing nodes26 that are remotely connected with and managed by the

Aneka enterprise Grid environment. The Offspring framework manages the task of the

master node that distribute the populations to different working nodes. Each working

26Please note that each of the computing nodes contains only one instance of the different complex net-
work topologies (i.e. random, mesh, scale free etc.). Since according to [199,200], the search capability of the
diffusion genetic algorithm largely depends on the underlying network topology. Moreover, in the case of
MOP, we should consider both convergence and diversity of solutions, for this reason, we have used differ-
ent network topologies in different computing nodes to facilitate the diversity in searching. Here, each of the
computing (slave) nodes was a single Intel Pentium IV (3.4 GHz) Windows XP (SP 2 and .NET 2.0) machine
with 1.5 GB of RAM. The Master/Aneka Scheduler node was a Intel Pentium IV (3.0 GHz) Windows XP (SP2
and .NET 2.0) machine with 3.25 GB of RAM.
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Figure 7.4: Deployment of distributed MOEA on Aneka enterprize grid using Offspring

nodes contain equal size of population to be evolved on different network topologies.

After each generation, the worker nodes send the best solutions to the master and the

master updates the archive from the collected solutions (i.e. archive is maintained by the

master node). After the archiving, it again randomly distribute the population to differ-

ent workers for the next iteration. A high-level view of the deployment of the distributed

MOEA using Aneka and Offspring is depicted in Figure 7.4.

7.6 Experiments

Here our experimentation goal was to analyze how PFVO interacts with parallel model

for 2 test problems, ZDT1 and ZDT2. We also provide the generational snapshots and

performance measure (IH and Iε+ indicators) at every generation (function evaluations).

7.6.1 Generational Snapshots

In this section we provide the generational snapshots of the two algorithms, the Parallel

diffusion model and its PFVO enhanced version. The parallel model is denoted by the

name “EMO” and PFVO enhanced version is denoted by “EMO+PFVO”. The presenta-

tion of the snapshots are same as described in chapter 5.
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Figure 7.5: Generational snapshots of both algorithms on ZDT1 problem
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Figure 7.6: Generational snapshots of both algorithms on ZDT2 problem

7.6.2 Performance Results

For performance measure, we have also used Hypervolume (IH) and Epsilon (Iε+) indi-

cator values with respect to exact number of function evaluations. We have also provided

both average and box plot of the performance results.
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7.6.3 Analysis

From these plots, we can see that PFVO enhanced parallel model has a better convergence

gain with respect to the original parallel algorithm, especially for ZDT1 problem. How-

ever, for ZDT2, this gain is not as good as ZDT1. For Iε indicator, an interesting aspect

should be noted that, up to function evaluation 22500 (approximately), the PFVO en-

hanced model generates better solution than the original one. However, its performance

shows to be degraded after 22500 function evaluations. In some experiments (in chap-

ter 5), we can see similar results. The possible reason behind this phenomenon is that the

total number of distinct fronts is reduced as the solutions become close to the true Pareto-

front. Since PFVO always try to generate dominated solutions from the available solu-

tions on the distinct non-dominated fronts, when the number of non-dominated fronts

are reduced (at the proximity of the true Pareto-front), the approximation capability of

PFVO is degraded. So, our suggestion is to use the PFVO during the initial generations

of the host optimizer, as the solutions reach to the proximity of the true Pareto-front, the

PFVO operation can be stopped. The rest of the search process can be carried out by the

host optimizer itself.

7.7 Conclusion

In this chapter, we have shown that PFVO can be equally useful in Parallel model as well

as in serial algorithms. However, some important considerations should be taken into

account when integrating the PFVO into diffusion model. The diffusion model depends

on the distribution of individuals on the complex network, and this distribution of in-

dividuals is gradually developed during the course of the evolutionary run. Therefore,

if this distribution of solutions are suddenly perturbed during a generation, the perfor-

mance of the diffusion will be affected. In our case, in Algorithm 6, when we generate

new approximated individuals using PFVO, they are scattered randomly on the original

complex network. If we could replace this procedure with more intelligent replacement,

the performance would be much better compared to the current implementation.



Chapter 8

Conclusion

8.1 Introduction

L
et us begin by recalling the research problems that we have addressed in this the-

sis, and our contribution towards solving those problems. While other existing

MOEA’s, such as NSGA-II, SPEA-II and RM-MEDA, provide a good spread and conver-

gence of solutions, however for complex problems, most general base-line algorithms

require a substantial amount of function evaluations to reach the true Pareto-front. To

alleviate this problem, there has been a large number of “Approximation/Surrogate”

models adopted to speed up the normal convergence rate. However, the basic principle

of this kind of approach is to model the “input-output” relation of the “objective func-

tion” and to replace it with a cheaper mathematical substitute. In order to support this

notion, most Approximation/Surrogate models consider the approximation problem as

an instance of “Multi-dimensional Curve-fitting” or “Regression”.

In this thesis, our aim has been to treat this problem from a different perspective. Our

goal was to establish the idea that modeling the input-output behavior of the “stochastic

optimizer” can be more effective than modeling the “objective function” to speed up the

convergence rate. We have borrowed techniques from “Dynamic System Identification

(DSI)” to build the model. More specifically, we have considered the “stochastic opti-

mizer” as a “Dynamic System” that takes “design variables” as “input” and generates

“objective values” as “output”. Then from this input-output relation, we have modeled

the behavior of the stochastic optimizer using QR-Factorization.

Previous implementations (a somewhat similar approach, in a sense) were mostly

123
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based on “Inverse Artificial Neural Networks”. In all MOP’s, the number of objective is

typically smaller than the number of design variables. For this reason, it is always hard to

find a good ANN structure that can exactly mimic the behavior of the objective function.

So, in the case of inverse ANN, the number of input nodes needs to be smaller than that

of output nodes, which is an infeasible way to model the behavior of a dynamic system.

Moreover, to apply inverse ANN, the ANN should be trained during the initial itera-

tions27 of the stochastic optimizer before starting the approximation procedure, which

is also computationally expensive. To replace this idea, we have proposed a novel tech-

nique – the “Pareto-Following Variation Operator” that does not suffers from the above

noted bottlenecks. This model needs smaller amount of learning compared to other ex-

isting surrogate models, it can identify the behavior of the optimizer from a single pass,

since it utilizes the objective values/design variables from different fronts and tries to

find out the possible trajectory that can be inferred from the distribution of the fronts

in current generation (i.e. considers the solutions in the current worst front are tend to

converge to the current best front). Moreover, as we did not replace the original objective

function, our model is free from the limitations of other conventional surrogate models

(described in section 3.2 in chapter 3). Even though, PFVO uses the original expensive

functions to re-evaluate the individuals, it does not slow down the overall performance

of the host optimizer. Since, PFVO is guaranteed to generate non-dominated solutions

from the current dominated ones for the next iteration28, this helps the host optimizer to

skip redundant function evaluations on a large number of non-promising solutions.

We have integrated PFVO into several popular implementations of MOEA’s found

in the literature. Moreover, we have designed our algorithm in such a way that it can be

plugged into any kind of population based stochastic optimizer, that uses non-domination

based ranking to solve MOP’s. As PFVO always generates promising solutions for the

next iteration, it can also be considered as a variation operator – that follows the trajectory

of the fronts. Hence it is termed – the “Pareto-Following Variation Operator (PFVO)”.

We have also conducted an exhaustive simulation experiments using several bench-

27In some cases, this training phase may be needed to be applied throughout the entire itera-
tions/generations of the host evolutionary optimizer to enhance the performance of the surrogate.

28Please note that, this gain is prominent during the initial phase of the host-stochastic optimizer. See
sub-section 8.2.3
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mark MOP’s and elaborate statistical analysis. The results clearly shows that PFVO can

significantly improve the convergence rate of the underlying host MOEA.

To strengthen our hypothesis, we have also implemented PFVO in the “Fourier Do-

main” for dynamic MOP’s. Since in the case of dynamic MOP’s, the Pareto-front changes

with respect to another variable (generally time t). If our claim is true, then the PFVO

should help the host MOEA to track the changing Pareto-front more promptly. After

applying PFVO on several dynamic MOP’s, we have found that it improves the per-

formance of the host MOEA. Moreover, according to the DSI theory, a system can be

modeled in both spatial/time and frequency domain. As our claim was to prove that

the behavior of a stochastic optimizer can be modeled using DSI technique, this second

implementation of PFVO reinforces our hypothesis.

The final contribution of our research was to integrate the PFVO into a diffusion based

MOEA in a distributed environment. We have used the Aneka Enterprize Grid environ-

ment for our implementation. We have used the Offspring plug-in to deploy the parallel

model on the Grid. Since diffusion/cellular based MOEA’s work in a different way to

panmictic EA’s, we were initially skeptic about the performance of the PFVO. However,

after extensive simulation using different diffusion models, we came to the conclusion

that PFVO performs surprisingly well in a parallel environment. Parallel enumerative

search is generally applied to find the true Pareto-front29 of benchmark problems, which

is computationally very expensive. Our suggestion is that PFVO could be used to speed

up the enumerative search.

In summary, the experimental results presented in this thesis demonstrate that the

PFVO can help to solve complex and computationally intensive MOP’s in smaller num-

ber of function evaluations. For this reason, PFVO can be used as a support tool for

general MOEA’s to solve computationally expensive real world multiobjective problems,

especially, where real time solution and decision making have the highest priority.

29As a tool to test the performance of new MOEA’s



126 Conclusion

8.2 Future Directions

In this section we outline some interesting directions for future research that can be un-

dertaken in the context of solving complex MOP’s, based on the contributions in this

thesis.

8.2.1 Development of A Stand-Alone MOEA

Currently, PFVO is developed as an add-on tool for existing MOEA’s. However, it is pos-

sible to design a stand-alone MOEA that uses PFVO, instead of the crossover/mutaion

operator. To enhance the search capability of the stand-alone MOEA, it is also possible to

adopt crowding and niche based selection schemes.

8.2.2 Using Singular Value Decomposition(SVD)

The current implementation of PFVO depends on the QR-Factorization technique to

model the behavior of the optimizer. However, QR-Factorization is not always capable

of finding pseudo-inverse. For singular matrix, QR-Factorization fails. To alleviate this

problem, a more general and stable technique such as “Singular Value Decomposition

(SVD)” can be used.

8.2.3 Controlling the PFVO

In most cases, PFVO performs better during the initial generations of the MOEA. As

generations pass, the total number of distinct fronts are reduced, which leads to unsuc-

cessful approximation. So, our suggestion is to apply PFVO during the initial iterations

of MOEA and its invocation should be reduced as the solutions converges to the near

Pareto-optimal front. This improvement can be added as an automated proceudre to the

future version of PFVO.



Appendix A

Detailed Results

A.1 Attainment Surface Plot

In this section we have included the median attainment surface plot for every algorithm

on two test suites described in chapter 4. Due to space constraints, we are unable to

provide every generational snapshots, so similar to scatter plot in chapter 4, we are going

to present only three generational snapshots for every algorithm (on each problem) -
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(j) NSGA-II and “NSGA-II + PFVO”on DTLZ5 (at FE 914, 1966 and 4122)
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(k) NSGA-II and “NSGA-II + PFVO”on DTLZ6 (at FE 470, 4746 and 42446)
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(b) SPEA-II and “SPEA-II + PFVO” on ZDT2 (at FE 534, 3146 and 6344)
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(c) SPEA-II and “SPEA-II + PFVO” on ZDT3 (at FE 532, 2684 and 6560)
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(d) SPEA-II and “SPEA-II + PFVO” on ZDT4 (at FE 636, 1774 and 39208)
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(e) SPEA-II and “SPEA-II + PFVO” on ZDT6 (at FE 910, 2676 and 7438)
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(f) SPEA-II and “SPEA-II + PFVO” on DTLZ1 (at FE 234, 1270 and 3080)
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(g) SPEA-II and “SPEA-II + PFVO” on DTLZ2 (at FE 100, 2686 and 13676)
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(h) SPEA-II and “SPEA-II + PFVO” on DTLZ3 (at FE 674, 2968 and 6104)
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(i) SPEA-II and “SPEA-II + PFVO” on DTLZ4 (at FE 1380, 2832 and 6974)
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(j) SPEA-II and “SPEA-II + PFVO” on DTLZ5 (at FE 230, 5086 and 17358)
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(l) SPEA-II and “SPEA-II + PFVO” on DTLZ7 (at FE 644, 1330 and 4196)
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(a) RM-MEDA(+) and “RM-MEDA + PFVO”(×) on ZDT1 (at FE 2088, 6424 and 14836)
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(b) RM-MEDA and “RM-MEDA + PFVO” on ZDT2 (at FE 11612, 14388 and 29496)



A.1 Attainment Surface Plot 133

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

RM-MEDA RM-MEDA+PFVO

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

f2

f1

RM-MEDA RM-MEDA+PFVO

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

f2

f1

RM-MEDA RM-MEDA+PFVO

(c) RM-MEDA and “RM-MEDA + PFVO” on ZDT3 (at FE 5908, 30542 and 72144)
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(d) RM-MEDA and “RM-MEDA + PFVO” on ZDT4 (at FE 4784, 6990 and 43668)
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(e) RM-MEDA and “RM-MEDA + PFVO” on ZDT6 (at FE 3320, 11578 and 69758)
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(f) RM-MEDA and “RM-MEDA + PFVO” on DTLZ1 (at FE 200, 20000 and 58600)
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(g) RM-MEDA and “RM-MEDA + PFVO” on DTLZ2 (at FE 468, 3036 and 7342)
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(h) RM-MEDA and “RM-MEDA + PFVO” on DTLZ3 (at FE 644, 11940 and 15938)
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(i) RM-MEDA and “RM-MEDA + PFVO” on DTLZ4 (at FE 7720, 10618 and 14748)
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(j) RM-MEDA and “RM-MEDA + PFVO” on DTLZ5 (at FE 710, 3242 and 6154)
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(k) RM-MEDA and “RM-MEDA + PFVO” on DTLZ6 (at FE 3182, 9146 and 15554)
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(l) RM-MEDA and “RM-MEDA + PFVO” on DTLZ7 (at FE 1066, 15220 and 51978)
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A.2 Performance Results: Multiplicative Epsilon Indicators

Here we provide the multiplicative epsilon indicator results. From these plots we can see

that the multiplicative epsilon results are similar to additive version. We have used the

source code provided in PISA performance assessment library (http://www.tik.ee.

ethz.ch/sop/pisa/ ).
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A.2.2 SPEA-II
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A.3 Performance Results: Box-plots

In this section we illustrate the box-plots of the indicator values provided so far. We have

run each pair of the algorithms (“Host Optimizer” and “Host Optimizer + PFVO”) for 30

times (with same random seed for a pair of algorithm but different seeds in 30 distinct

runs) and indicator values are collected. From these box plots, we can get more explana-

tory illustration of the performance gain by PFVO. For the space constraints, we are not

going to include the box plot results for multiplicative Iε indicator. Interested readers are

encouraged to refer to http:\\khaled.ahsan.talukder.googlepages.com .
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A.3.2 SPEA-II
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A.3.3 RM-MEDA
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A.4 Statistical Analysis: Kruskal-Wallis Test Results

For statistical analysis, we have executed each pair of algorithms on every problems for

30 times and the IH and Iε+ values were collected for every generation. From these val-

ues, we have conducted the Kruskal-Wallis [162] test by setting α values at 0.05 (i.e. 95%

significance). Due to the space constraints, we are not able to provide the results for

every generations. So, to maintain the consistency with the generational snapshots, we

present only the p-values at the function evaluations (FE) same as the generational snap-

shots (i.e. at only three generational steps). Please note that the two algorithms (original

MOEA and PFVO enhanced MOEA) having the same performance is considered as the

null-hypothesis (H0). When H0 is rejected, we find a p-value, otherwise not. Details can

be found in http://khaled.ahsan.talukder.googlepages.com .
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A.4.1 Kruskal-Wallis Test on IH Indicator Values

Problem Function Evaluation p-value (NSGA-II) p-value (NSGA-II+PFVO) Remark

ZDT1

800 1.0 4.55e-13 NSGA-II+PFVO wins

2600 1.0 2.58e-13 NSGA-II+PFVO wins

5200 1.0 2.58e-13 NSGA-II+PFVO wins

ZDT2

400 1.0 1.22e-10 NSGA-II+PFVO wins

5200 1.0 2.58e-13 NSGA-II+PFVO wins

9600 1.0 2.58e-13 NSGA-II+PFVO wins

ZDT3

600 0.999865 0.00013 NSGA-II+PFVO wins

4800 1.0 2.58e-13 NSGA-II+PFVO wins

6600 1.0 2.58e-13 NSGA-II+PFVO wins

ZDT4

800 1.0 3.75e-07 NSGA-II+PFVO wins

22600 1.0 3.75e-07 NSGA-II+PFVO wins

24800 1.0 3.75e-07 NSGA-II+PFVO wins

ZDT6

1280 1.0 1.53e-09 NSGA-II+PFVO wins

8448 1.0 2.58e-13 NSGA-II+PFVO wins

20992 1.0 2.58e-13 NSGA-II+PFVO wins

DTLZ1

650 – – Incomparable

9320 – – Incomparable

11514 0.998371 0.001629 NSGA-II+PFVO wins

DTLZ2

912 1.0 2.58e-13 NSGA-II+PFVO wins

2058 1.0 2.58e-13 NSGA-II+PFVO wins

3996 1.0 2.58e-13 NSGA-II+PFVO wins

DTLZ3

1304 0.999997 2.65e-06 NSGA-II+PFVO wins

10188 1.0 3.67e-07 NSGA-II+PFVO wins

18322 1.0 4.52e-08 NSGA-II+PFVO wins

DTLZ4

1574 – – Incomparable

3114 – – Incomparable

4052 – – Incomparable

DTLZ5

914 1.0 3.75e-07 NSGA-II+PFVO wins

1966 1.0 3.75e-07 NSGA-II+PFVO wins

4122 1.0 3.75e-07 NSGA-II+PFVO wins

DTLZ6

470 1.0 3.75e-07 NSGA-II+PFVO wins

4746 1.0 3.75e-07 NSGA-II+PFVO wins

42446 0.999987 1.26e-05 NSGA-II+PFVO wins

DTLZ7

1728 1.0 1.49e-11 NSGA-II+PFVO wins

5534 1.0 2.58e-13 NSGA-II+PFVO wins

11548 1.0 2.58e-13 NSGA-II+PFVO wins

Table A.1: p-values of the IH indicator results for NSGA-II and NSGA-II+PFVO
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Problem Function Evaluation p-value (SPEA-II) p-value (SPEA-II+PFVO) Remark

ZDT1

544 1.0 2.56e-13 SPEA-II+PFVO wins

2752 1.0 2.56e-13 SPEA-II+PFVO wins

6668 1.0 2.56e-13 SPEA-II+PFVO wins

ZDT2

534 1.0 2.74e-16 SPEA-II+PFVO wins

3146 0.999958 4.17e-05 SPEA-II+PFVO wins

6344 – – SPEA-II wins

ZDT3

532 1.0 2.56e-13 SPEA-II+PFVO wins

2684 1.0 2.56e-13 SPEA-II+PFVO wins

6560 1.0 2.56e-13 SPEA-II+PFVO wins

ZDT4

636 1.0 2.28e-09 SPEA-II+PFVO wins

1774 1.0 2.43e-07 SPEA-II+PFVO wins

39208 1.0 2.43e-07 SPEA-II+PFVO wins

ZDT6

910 1.0 2.56e-13 SPEA-II+PFVO wins

2676 1.0 2.56e-13 SPEA-II+PFVO wins

7438 1.0 2.56e-13 SPEA-II+PFVO wins

DTLZ1

234 1.0 2.76e-07 SPEA-II+PFVO wins

1270 1.0 2.56e-07 SPEA-II+PFVO wins

3080 1.0 2.56e-07 SPEA-II+PFVO wins

DTLZ2

100 – – Incomparable

2686 – – Incomparable

13676 3.75e-07 1.0 SPEA-II wins

DTLZ3

674 – – Incomparable

2968 – – Incomparable

6104 – – Incomparable

DTLZ4

1380 – – Incomparable

2832 – – Incomparable

6974 – – Incomparable

DTLZ5

230 – – Incomparable

5086 0.000446753 0.999553 SPEA-II wins

17358 1.06e-06 0.999999 SPEA-II wins

DTLZ6

490 1.0 3.75e-07 SPEA-II+PFVO wins

5574 1.0 3.75e-07 SPEA-II+PFVO wins

44548 1.0 3.75e-07 SPEA-II+PFVO wins

DTLZ7

644 1.0 3.75e-07 SPEA-II+PFVO wins

1330 1.0 3.75e-07 SPEA-II+PFVO wins

4196 1.0 3.75e-07 SPEA-II+PFVO wins

Table A.2: p-values of the IH indicator results for SPEA-II and SPEA-II+PFVO
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Problem Function Evaluation p-value (RM-MEDA) p-value (RM-MEDA+PFVO) Remark

ZDT1

2088 1.0 2.58e-13 RM-MEDA+PFVO wins

6424 1.0 2.58e-13 RM-MEDA+PFVO wins

14836 1.0 2.58e-13 RM-MEDA+PFVO wins

ZDT2

11612 1.0 2.58e-13 RM-MEDA+PFVO wins

14388 1.0 2.58e-13 RM-MEDA+PFVO wins

29496 1.0 2.58e-13 RM-MEDA+PFVO wins

ZDT3

5908 1.0 2.58e-13 RM-MEDA+PFVO wins

30542 1.0 2.58e-13 RM-MEDA+PFVO wins

72144 1.0 2.58e-13 RM-MEDA+PFVO wins

ZDT4

4784 1.0 3.75e-07 RM-MEDA+PFVO wins

6990 1.0 3.75e-07 RM-MEDA+PFVO wins

43668 1.0 3.75e-07 RM-MEDA+PFVO wins

ZDT6

3320 1.0 2.58e-13 RM-MEDA+PFVO wins

11578 1.0 2.58e-13 RM-MEDA+PFVO wins

69758 1.0 2.58e-13 RM-MEDA+PFVO wins

DTLZ1

200 – – Incomparable

20000 – – Incomparable

58600 – – Incomparable

DTLZ2

468 0.999212 0.000788392 RM-MEDA wins

3036 1.0 3.75157e-07 RM-MEDA+PFVO wins

7342 1.0 3.75157e-07 RM-MEDA+PFVO wins

DTLZ3

644 – – Incomparable

11940 – – Incomparable

15938 – – Incomparable

DTLZ4

7720 1.0 3.75e-07 RM-MEDA+PFVO wins

10618 – – Incomparable

14748 – – Incomparable

DTLZ5

710 1.0 1.26e-05 RM-MEDA+PFVO wins

3242 1.0 3.75e-07 RM-MEDA+PFVO wins

6154 0.000346721 0.999653 RM-MEDA wins

DTLZ6

3182 0.999997 2.65e-06 RM-MEDA+PFVO wins

9146 0.999987 1.26e-05 RM-MEDA+PFVO wins

15554 0.999987 1.26e-05 RM-MEDA+PFVO wins

DTLZ7

1066 1.0 3.75e-07 RM-MEDA+PFVO wins

15220 1.0 3.75e-07 RM-MEDA+PFVO wins

51978 1.0 3.75e-07 RM-MEDA+PFVO wins

Table A.3: p-values of the IH indicator results for RM-MEDA and RM-MEDA+PFVO
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A.4.2 Kruskal-Wallis Test on Iε+ Indicator Values

Problem Function Evaluation p-value (NSGA-II) p-value (NSGA-II+PFVO) Remark

ZDT1

800 1.0 2.58e-13 NSGA-II+PFVO wins

2600 1.0 2.58e-13 NSGA-II+PFVO wins

5200 1.0 2.58e-13 NSGA-II+PFVO wins

ZDT2

400 1.0 4.55e-13 NSGA-II+PFVO wins

5200 1.0 2.58e-13 NSGA-II+PFVO wins

9600 1.0 2.57e-13 NSGA-II+PFVO wins

ZDT3

600 1.0 4.55e-13 NSGA-II+PFVO wins

4800 1.0 2.58e-13 NSGA-II+PFVO wins

6600 1.0 2.58e-13 NSGA-II+PFVO wins

ZDT4

800 1.0 3.75e-07 NSGA-II+PFVO wins

22600 1.0 2.28e-09 NSGA-II+PFVO wins

24800 1.0 2.28e-09 NSGA-II+PFVO wins

ZDT6

1280 1.0 2.23e-12 NSGA-II+PFVO wins

8448 1.0 5.82e-18 NSGA-II+PFVO wins

20992 1.0 5.82e-18 NSGA-II+PFVO wins

DTLZ1

650 – – Incomparable

9320 0.99978 0.000220324 NSGA-II+PFVO wins

11514 0.999473 0.000526611 NSGA-II+PFVO wins

DTLZ2

912 1.0 2.58e-13 NSGA-II+PFVO wins

2058 1.0 2.58e-13 NSGA-II+PFVO wins

3996 1.0 2.58e-13 NSGA-II+PFVO wins

DTLZ3

1304 0.999999 1.06e-06 NSGA-II+PFVO wins

10188 1.0 2.43e-07 NSGA-II+PFVO wins

18322 1.0 3.45e-07 NSGA-II+PFVO wins

DTLZ4

1574 – – Incomparable

3114 – – Incomparable

4052 – – Incomparable

DTLZ5

914 1.0 3.75e-07 NSGA-II+PFVO wins

1966 1.0 3.75e-07 NSGA-II+PFVO wins

4122 1.0 3.75e-07 NSGA-II+PFVO wins

DTLZ6

470 0.999987 1.26e-05 NSGA-II+PFVO wins

4746 1.0 3.75e-07 NSGA-II+PFVO wins

42446 0.999987 1.26e-05 NSGA-II+PFVO wins

DTLZ7

1728 1.0 2.58e-13 NSGA-II+PFVO wins

5534 1.0 2.58e-13 NSGA-II+PFVO wins

11548 1.0 2.58e-13 NSGA-II+PFVO wins

Table A.4: p-values of the Iε+ indicator results for NSGA-II and NSGA-II+PFVO
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Problem Function Evaluation p-value (SPEA-II) p-value (SPEA-II+PFVO) Remark

ZDT1

544 1.0 2.56e-13 SPEA-II+PFVO wins

2752 1.0 2.40e-13 SPEA-II+PFVO wins

6668 1.0 2.56e-13 SPEA-II+PFVO wins

ZDT2

534 1.0 2.56e-13 SPEA-II+PFVO wins

3146 1.0 5.18e-15 SPEA-II+PFVO wins

6344 0.999718 0.000281941 SPEA-II+PFVO wins

ZDT3

532 1.0 2.56e-13 SPEA-II+PFVO wins

2684 1.0 2.49e-13 SPEA-II+PFVO wins

6560 1.0 2.39e-15 SPEA-II+PFVO wins

ZDT4

636 1.0 3.75e-07 SPEA-II+PFVO wins

1774 1.0 3.38e-07 SPEA-II+PFVO wins

39208 1.0 2.28e-09 SPEA-II+PFVO wins

ZDT6

910 1.0 2.56e-13 SPEA-II+PFVO wins

2676 1.0 2.54e-13 SPEA-II+PFVO wins

7438 1.0 2.24e-13 SPEA-II+PFVO wins

DTLZ1

234 1.0 2.28e-09 SPEA-II+PFVO wins

1270 1.0 3.75e-07 SPEA-II+PFVO wins

3080 1.0 3.75e-07 SPEA-II+PFVO wins

DTLZ2

100 – – Incomparable

2686 3.75e-07 1.0 SPEA-II wins

13676 3.75e-07 1.0 SPEA-II wins

DTLZ3

674 1.0 3.75e-07 SPEA-II+PFVO wins

2968 1.0 3.75e-07 SPEA-II+PFVO wins

6104 1.0 3.75e-07 SPEA-II+PFVO wins

DTLZ4

1380 – – Incomparable

2832 – – Incomparable

6974 – – Incomparable

DTLZ5

230 1.0 2.28e-09 Incomparable

5086 3.04e-07 1.0 SPEA-II wins

17358 3.75e-07 1.0 SPEA-II wins

DTLZ6

490 1.0 3.75e-07 SPEA-II+PFVO wins

5574 1.0 3.75e-07 SPEA-II+PFVO wins

44548 1.0 3.75e-07 SPEA-II+PFVO wins

DTLZ7

644 1.0 3.75e-07 SPEA-II+PFVO wins

1330 1.0 3.75e-07 SPEA-II+PFVO wins

4196 1.0 1.44e-08 SPEA-II+PFVO wins

Table A.5: p-values of the Iε+ indicator results for SPEA-II and SPEA-II+PFVO



156 Detailed Results

Problem Function Evaluation p-value (RM-MEDA) p-value (RM-MEDA+PFVO) Remark

ZDT1

2088 1.0 2.58e-13 RM-MEDA+PFVO wins

6424 1.0 2.58e-13 RM-MEDA+PFVO wins

14836 1.0 2.58e-13 RM-MEDA+PFVO wins

ZDT2

11612 1.0 2.58e-13 RM-MEDA+PFVO wins

14388 1.0 2.57e-13 RM-MEDA+PFVO wins

29496 – – Incomparable

ZDT3

5908 1.0 2.58e-13 RM-MEDA+PFVO wins

30542 1.0 2.58e-13 RM-MEDA+PFVO wins

72144 1.0 2.58e-13 RM-MEDA+PFVO wins

ZDT4

4784 1.0 3.75e-07 RM-MEDA+PFVO wins

6990 1.0 3.75e-07 RM-MEDA+PFVO wins

43668 1.0 3.75e-07 RM-MEDA+PFVO wins

ZDT6

3320 1.0 2.56e-13 RM-MEDA+PFVO wins

11578 1.0 2.54e-13 RM-MEDA+PFVO wins

69758 1.0 2.57e-13 RM-MEDA+PFVO wins

DTLZ1

200 – – Incomparable

20000 – – Incomparable

58600 – – Incomparable

DTLZ2

468 0.99978 0.000220324 RM-MEDA wins

3036 1.0 3.75e-07 RM-MEDA+PFVO wins

7342 0.999987 1.26e-05 RM-MEDA+PFVO wins

DTLZ3

644 0.999212 0.000788392 RM-MEDA+PFVO wins

11940 0.99992 8.023e-05 RM-MEDA+PFVO wins

15938 0.998371 0.00162872 RM-MEDA+PFVO wins

DTLZ4

7720 1.0 3.75e-07 RM-MEDA+PFVO wins

10618 0.99773 0.00227035 RM-MEDA+PFVO wins

14748 – – Incomparable

DTLZ5

710 0.99992 8.02e-05 RM-MEDA+PFVO wins

3242 1.0 3.75e-07 RM-MEDA+PFVO wins

6154 – – Incomparable

DTLZ6

3182 1.0 3.75e-07 RM-MEDA+PFVO wins

9146 1.0 3.75e-07 RM-MEDA+PFVO wins

15554 1.0 3.75e-07 RM-MEDA+PFVO wins

DTLZ7

1066 1.0 3.75e-07 RM-MEDA+PFVO wins

15220 1.0 3.75e-07 RM-MEDA+PFVO wins

51978 1.0 3.75e-07 RM-MEDA+PFVO wins

Table A.6: p-values of the Iε indicator results for RM-MEDA and RM-MEDA+PFVO
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