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Abstract

Large-scale scientific experiments are being conducted in collaboration with teams
that are dispersed globally. Each team shares its data and utilizes distributed resources
for conducting experiments. As a result, scientific data are replicated and cached at
distributed locations around the world. These data are part of application workflows,
which are designed for reducing the complexity of executing andmanaging ondistributed
computing environments. In order to execute these workflows in time and cost efficient
manner, a workflowmanagement systemmust take into account the presence of multiple
data sources in addition to distributed compute resources provided by platforms such as
Grids and Clouds.

Therefore, this thesis builds upon an existing workflow architecture and proposes
enhanced scheduling algorithms, specifically designed for managing data intensive ap-
plications. It begins with a comprehensive survey of scheduling techniques that formed
the core of Grid systems in the past. It proposes an architecture that incorporates data
management components and examines its practical feasibility by executing several real
world applications such as Functional Magnetic Resonance Imaging (fMRI), Evolution-
ary Multi-objective Optimization algorithms, and so forth, using distributed Grid and
Cloud resources. It then proposes several heuristics based algorithms that take into ac-
count time and cost incurred for transferring data frommultiple sourceswhile scheduling
tasks. All the heuristic proposed are based on multi-source-parallel-data-retrieval tech-
nique in contrast to retrieving data from a single best resource, as done in the past. In
addition to non-linear modeling approach, the thesis explores iterative techniques, such
as particle-swarm optimization, to obtain schedules quicker.

In summary, this thesis makes several contributions towards the scheduling and
management of data intensive application workflows. The major contributions are: (i)
enhanced the abstract workflow architecture by including components that handle multi-
source parallel data transfers; (ii) deployed several real-world application workflows
using the proposed architecture and tested the feasibility of the design on real testbeds; (iii)
proposed anon-linearmodel for schedulingworkflowswith anobjective tominimize both
execution time and execution cost; (iv) proposed static and dynamicworkflowscheduling
heuristic that leverages the presence of multiple data sources to minimize total execution
time; (v) designed and implemented a particle-swarm-optimization based heuristic that
provides feasible solutions to the workflow scheduling problem with good convergence;
(vi) implemented a prototype workflow management system that consists of a portal as
user-interface, a workflow engine that implements all the proposed scheduling heuristic
and the real-world application workflows, and plugins to communicate with Grid and
Cloud resources.
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1
Introduction

T
his chapter introduces a high-level description of thework presented in this thesis.
It starts off by elaborating the concepts behind data intensive applications and
workflow management systems in the context of Grid and Cloud computing. It

then presents motivational applications that are very relevant to the problem statement
and environment described subsequently. The chapter also describes the core contribu-
tions of this thesis. It finally concludes by giving an overview of its chapters, supported
by publications.

1.1 Background

Thefield of distributed computing has seen technologies rapidly grow from desktop com-
puting, through Grid computing, and now to Cloud computing. All these technologies
focus on delivering computing power to a large number of end-users in a reliable, efficient
and scalable manner. More or less, the trend has been to deliver the computing power
as a utility, much like how water and electricity is delivered to households these days.
This concept of utility computing can be backtracked to 1969, when Leonard Kleinrock,
one of the chief scientists of the original Advanced Research Projects Agency Network
(ARPANET)project, which seeded the Internet, said [74]: “As of now, computer networks are
still in their infancy, but as they grow up and become sophisticated, we will probably see the spread

of, ‘computer utilities’, which, like present electric and telephone utilities, will service individual

homes and offices across the country”. This vision of computing utilities, based on a service
provisioning model, has seen a massive transformation of the entire computing industry
in the 21st century, where computing services are available on demand.

1.1.1 Grid and Cloud computing Platforms

Grid computing vision started by aggregating distributed resources that were existing
under different administrative domains such that the end-users could transparently ac-
cess them for conducting large scientific data analysis. Some of the production Grids,
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• Based on ability to negotiate resource-sharing arrangements
• Coordinates independent resources
• Uses open standards and interfaces
• Allows for heterogeneity of computers
• Resources distributed across large geographical boundaries
• Loose coupling of computers and storage services
• Physical resource-sharing among large number of users 

usually limits dynamic provisioning and scalability within a 
single administrative domain

• Resources often leased from Cloud service providers 
on a pay-as-you-go (PAYG) basis

• Resources are managed in virtualised data centers
• Service provider uses virtualised resources that may be 

using services from multiple data centers  
• Service oriented
• Dynamically provisioned, elastic and highly scalable

Grid Computing Cloud ComputingParadigm Shift

Figure 1.1: Grid [22] and Cloud computing [25] platforms.

such as TeraGrid [30], have been using Grid computing to facilitate parallel executions
of both small and large scientific applications in domains, such as climate modeling,
astronomy, computational biology, and so forth. Most Grid services have been realized
by using standard Web services-based protocols. These services have been deployed in
order to facilitate the discovery, access, allocation, monitoring and accounting of compute
and storage resources. These requirements are specifically addressed by the Open Grid
Services Architecture (OGSA), which is a distributed interaction and computing architec-
ture based around services, assuring interoperability on heterogeneous systems so that
different types of resources can communicate and share information. It describes an ar-
chitecture for a service-oriented Grid computing environment for business and scientific
use. The Globus Toolkit [52], as an open-source toolkit for building computing Grids, has
implemented the OGSA, as well as the OGF (Open Grid Forum) defined protocols for
resource management (e.g. Grid Resource Allocation &Management Protocol – GRAM),
information services (e.g. Monitoring and Discovery Service – MDS), security services
(e.g. Grid Security Infrastructure – GSI) and data movement and management (e.g.
Global Access to Secondary Storage and GridFTP). A number of technologies have also
been developed to work together with the Globus Toolkit as a meta-scheduler (e.g. Nim-
rod, GridWay), service broker (e.g. Gridbus Broker), Quality of Service (QoS) monitoring
(e.g. Network Weather Service – NWS), and so forth.

Cloud computing, on the other hand, delivers infrastructure, platform, and software
(applications) as services, which are made available as subscription-based services in a
pay-as-you-go model to consumers. In industry, these services are referred to as Infras-
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tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS),
respectively.

Cloud computing means different things to different people. As a result, there are
several definitions and proposals [145]. Vaquero et al. [145] have propose a definition that
is centered around scalability, pay-per-use utility model and virtualization. According
to Garner, Cloud computing is a style of computing where service is provided across the
Internet using different models and layers of abstraction.

Armbrust et al. [7] observe that: “Cloud computing refers to both the applications
delivered as services over the Internet and the hardware and system software in the data
centers that provide those services”. This definition captures the real essence of this
new trend, where both software applications and hardware infrastructures are moved
from private environment to third parties data centers and made accessible through the
Internet. Buyya et al. [26] define a Cloud as a type of parallel and distributed system consisting
of a collection of interconnected and virtualized computers that are dynamically provisioned and

presented as one or more unified computing resources based on service-level agreements. This
definition puts Cloud computing into a market oriented perspective and stresses the
economic nature of this phenomenon.

Figure 1.1 provides a high-level distinction between Grid and Cloud computing plat-
forms. Clouds aim to power the next generation data centers by designing them as a
network of virtual services (hardware, database, user-interface, application logic) so that
users are able to access and deploy applications from anywhere in the world on demand
at competitive costs depending on users Quality of Service (QoS) requirements [26]. It
offers significant benefit to IT companies by freeing them from the low level tasks of
setting up basic hardware (servers) and software infrastructures and thus enabling them
to focus on innovation and creating business value for their services.

The key feature, emerging from the definition of Cloud given by Armbrust [7] and
Buyya [26], is the ability to deliver both infrastructure and software as services that are
consumed on a pay-per-use-basis. Previous trends, such as Grid computing, were limited
to a specific class of users, or specific kinds of IT resources that were mostly shared on
a volunteer basis. The approach of Cloud computing is global and encompasses the
entire computing stack. It provides services to the mass, ranging from the end-users
hosting their personal documents on the Internet to enterprises outsourcing their entire
IT infrastructure to external data centers. Service LevelAgreements (SLAs),which include
QoS requirements, are set up between customers and Cloud providers. An SLA specifies
the details of the service to be provided in terms of metrics agreed upon by all parties,
and penalties for violating the expectations. SLAs act as a warranty for users, who
can more comfortably move their business to the Cloud. As a result, enterprises can cut
downmaintenance and administrative costs by renting their IT infrastructure fromCloud
vendors. Similarly, end-users leverage the Cloud not only for accessing their personal
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data from everywhere, but also for carrying out activities without buying expensive
software and hardware.

1.1.2 Data Intensive Applications as Workflows

A data intensive computing environment consists of applications that produce, manipu-
late, or analyze data in the range of hundreds of megabytes (MB) to petabytes (PB) and
beyond [96]. According to Lee et al. [80], the field of data intensive computing constitute
“the technologies, the middleware services, and the architectures that are used to build
useful high-speed, wide area distributed systems”. A data intensive application work-
flow has comparatively higher data workloads to manage than its computational load.
In other words, the requirements of resource interconnection bandwidth for transferring
data outweigh the computational requirements for processing tasks. This, as a conse-
quence, demands more time to transfer and store data as compared to execution time for
tasks in the workflow. It is common to characterize the distinction between data intensive
and compute intensive by defining a threshold for the Computation to Communication
Ratio (CCR). Applications with lower values of this ratio are distinctly data intensive in
nature.

Standard application components of scientific data intensive applications can be com-
bined toprocess thedata in a structuredway in contrast to executingmonolithic codes [37].
The application is represented as a workow structure, which consists of tasks, data ele-
ments, control sequences and their dependencies. According to [177], scientific workow
management systems are engaged and applied to the following aspects of scientific com-
putations: 1) describing complex scientific procedures, 2) automating data derivation
processes, 3) high performance computing (HPC) to improve throughput and perfor-
mance, and 4) provenance management and query.

Many scientific applications in the field of astronomy, gravitational-physics, compu-
tational biology, climate modeling, and life-sciences have used workflow technology to
carry out large-scale experiments [4; 141; 142; 47; 27]. Some of these applications are
described as motivational examples in Section 1.2.

1.1.3 Workflow Scheduling and Management

In simple terms, a process of mapping of tasks in a workflow (or an entire workflow) to
compute resources for execution (preserving dependencies between tasks) is termed as
scheduling of workflows. Most applications can be represented in the form of a Directed
Acyclic Graph(DAG), where cycles and conditional dependencies are absent. Once the
workflow is instantiated in the form of a DAG, middleware technologies such as Pega-
sus [40], Gridbus WorkflowManagement System [166] and so forth, are used to schedule
the tasks in the DAG onto the distributed. The objectives of scheduling a workflow can
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vary from application to application. Most often, a data intensive application workflow
is scheduled to minimize total data-transfer time and/or cost, storage space used, total
execution time and/or a combination of these.

In order to schedule workflows, several related technologies are used in the schedul-
ingmiddleware. A resource broker, which is an intermediate entity that acts as amediator
between resources and end users, performs resource allocation and/or scheduling, and
manages execution of applications on behalf of one or multiple users. For instance, the
Grid Service Broker [152] developed as part of the Gridbus Project, mediates access to dis-
tributed resources by discovering resources, scheduling tasks, monitoring and collating
results. A user portal provides a user-friendly environment to the end-users (most often
scientists) to compose, submit and monitor workflow applications. A workflow editor
forms the graphical user-interface at the portal to facilitate the composition and visualiza-
tion of workflows. A workflow editor, a management portal, a scheduling middleware
together form a WorkflowManagement System (WfMS).

1.2 Motivation and Rationale

Scientific experiments like the Compact Muon Solenoid (CMS) experiment for the Large
Hadron Collider (LHC) at CERN1, the Laser Interferometer Gravitational-Wave Obser-
vatory’s (LIGO) science2, the projects at Grid Physics Network3 produce data in the scale
of peta-bytes. These experiments are usually represented using workflows, where tasks
are linked according to their data flow and compute dependencies. The workflow is clas-
sified as compute intensive when the computational needs of individual task are high.
Similarly, the workflow is classified as data intensive when the data requirements (e.g.
size of each data file, number of files, data storage etc.) are high.

Data intensive workflows can take advantage of the infrastructure provided by en-
vironments like data grids. Data Grids provide services such as low latency transport
protocols and data replication mechanisms to distribute data intensive applications that
need to access, process and transfer large data sets stored in distributed repositories [150].

Scientific applications are executed ondistributed resourceswith theprimary objective
of optimizing the total makespan of the application’s workflow. Makespan of a workflow
is defined as the total time taken for the completionof all the tasks in theworkflow. Besides
the makespan, cost of execution also forms one of the objective functions of scheduling
these scientific applications. The makespan depends on both the communication time
involved in staging the input and output files and the computation time to execute them.
Scheduling the tasks to optimize only one objective results in sub-optimal result as both

1http://lhc.web.cern.ch/lhc/LHC Experiments.htm
2http://www.ligo.caltech.edu/advLIGO/
3http://www.griphyn.org/
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the objectives affect each other.

Traditional scheduling algorithms focused on pull model. The algorithm required to
stage data towards the computation resources. They did not consider the location of data.
Ignoring locality of data incurs high bandwidth utilization cost. Locality of data cannot
be ignoredwhen size of data is huge. This demands a different model where the selection
of both data-host and compute-host should be made rather than selecting data-host first
and then compute-host or vice versa.

Figure 1.2: Tier-1 (red star) and Tier-2 (blue squares) sites worldwide in CMS (Image courtesy of James
Letts, http://cms.web.cern.ch, May 2008)

Case 1: The Compact Muon Solenoid Experiment (CMS) “still produces a huge
amount of data that must be analyzed, more than five petabytes per year when run-
ning at peak performance4”. It has large number of “Tier-2” analysis centers where
physics analysis are performed, as depicted in Figure 1.2. However, Tier-2 centers rely
upon Tier-1s for access to large datasets and secure storage of the new data they produce.
Tier-2 sites are responsible for the transfer, buffering and short-term caching of relevant
samples from Tier-1’s, and transfer of produced data to Tier-1’s for storage [11]. They
are required to import 5 TB/day of data from Tier-1 and other data replicated at T2, and
export 1 TB/day (This is based on ∼ 108 simulated events per year per Tier-2, multiplied
by the event size and divided by the number of working days). According to James Letts,
“The ability to move and analyze data is essential to any experiment, and so far the data
transfer system in CMS seems to be up to the challenge”.

Case 2: The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a facility
dedicated to the detection of cosmic gravitational waves and the harnessing of these

4http://cms.web.cern.ch/cms/Detector/Computing/index.html
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Figure 1.3: LIGO Data Grid (LDG) (courtesy:http://ligo.org.cn/testbeds.shtml)

waves for scientific research. The LIGO Scientific Collaboration (LSC), currently made up
of almost 700 scientists from over 60 institutions and 11 countriesworldwide, is a group of
scientists seeking to detect gravitational waves and use them to explore the fundamental
physics of gravity. The LIGO Data Grid (LDG), depicted in Figure 1.3, has laboratory
centers (Caltech, MIT, LHO and LLO) and LSC institutions (UWM, and 3 sites in the EU
managed by the GEO-600 collaboration) offering computational services, data storage
and Grid computing services. With the help of computer-coupled observatories, LIGO
has been analyzing data since 2002 in an effort to detect andmeasure cosmic gravitational
waves.

The LDG uses the LIGO Data Replicator (LDR) to store and distribute data. Input
data is common to the majority of analysis pipelines, and so is distributed to all LDG centers in

advance of task scheduling [104]. The analysis of data from gravitational-wave detectors
are represented as workflows. The workflow analyzes data looking for inspiral signals,
which can occur when two compact objects, such as neutron stars or black holes, form
binary systems. Using middleware technologies, such as workflow planning for grids
(Pegasus) andCondorDAGMan formanagement, the LDG continues tomanage complex
workflows for its growing number of users.

The LIGO Lab, the LIGO Scientific Collaboration (LSC), and international partners,
are proposing Advanced LIGO to improve the sensitivity by more than a factor of 10.
Since the volume of space that the instrument can see grows as the cube of the distance,
this means that the event rates will be more than 1,000 times greater. Advanced LIGO
will equal the 1 year integrated observation time of initial LIGO in roughly 3 hours. The
huge amount of data produced will be made available to all of its sites. The selection of
data source and compute-host will need to be done in an efficient manner such that the
cost and time of execution are minimized.
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Rationale: In Case 1, data is being shared via a central repository with its Tier-2
members and Tier-2 caches these data for short-term usage. In the three hypothetical
‘use cases’ presented in [11], scientists are continuously sharing the cached data for
repeated experiments and analysis. Therefore, the presence of these replicated/cached
data could be used for minimizing the transfer time, as compared to getting them from
Tier-1 directly every time: the need formulti-source data transfer. In addition, the results
obtained after analysis are transferred back to Tier-1, which would then be downloaded
by users from Tier-2. This back and forth transfer of data could also be minimized by
caching/transferring the output results to specific locations, where users are active: the
need for output data management.

Similarly, in Case 2, as input data is replicated at all LDG centers, complex workflows
could make use of these multiple data sources while transferring data. The intrinsic
characteristic that input data is common to majority of analysis pipelines justifies the
need for replication before application execution. This in-turn benefits any heuristic
using multi-source retrieval techniques. Similar to Case 1, the results obtained from Case
2 could also be managed/replicated at selected sites so that scientists can retrieve data
within short period of time from these sites.

1.3 Problem Description

Scientific application workflows listed in Section 1.2 are generally executed using dis-
tributed resources, where data required by the application can be retrieved from several
data-hosts as there exist replicas of data files. Data has to be staged to a compute resource
before any task associated with the data can be executed at that resource. At the end of
execution or during the execution, output data is produced that may also be of similar
sizes to the input data. These intermediate data should be stored for subsequent tasks
requiring them. The sites where the output data are stored could be potential sources of
data depending on the policy of retaining or deleting the output data. The total number of
data-hosts thus increases as the intermediate outputfiles are stored. This adds complexity
to the selection of data hosts.

The computation requirements of these tasks cannot be totally ignored. After the
set of candidate data-hosts is found, the tasks have to be assigned to compute-hosts for
execution. The mapping of the tasks to compute hosts depends on the objective function.
Scheduling of the tasks in the workflow primarily focuses on some of the objective
functions or combination of them: minimizing the totalmakespan,minimizing the overall
cost (economic cost) of execution and data transfer, executing within the deadline and
allocated budget. The mapping of the workflow tasks to minimize one of the objective
functions is a complex sub-problem of the general task scheduling problem. The problem
becomes complexwith the addition of replicated data sets with tasks requiringmore than
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Figure 1.4: Datahost and Compute host selection problem for a single task.

a single file. Figure 1.4 introduces the complexity of finding resource and data-hostmatch
for a single task.

In Figure 1.4, a ‘task’ requires n input files. These n input files are replicated on d data
hosts. This gives us nd possible sets of data hosts. If we have m compute hosts, the total
possible resource set combination would be mnd. A table alongside the figure tabulates
the total number of combinations possible for varying number of files with fixed number
of data hosts and compute hosts.

When the files are replicated and a single task requires more than a single file, the
number of comparisons needed to come to the best solution (a combination that gives
a set of datahosts and compute hosts) increases. When dependent tasks are present,
the problem of finding the combination of compute resources and data-host set becomes
a non-trivial problem. This basic problem becomes highly complex when there are
constraints involved, such as heterogeneous resources, network costs, storage constraints,
etc.

Before defining the problem statement, this chapter first presents a workflow model
and a resource model.

1.3.1 A WorkflowModel

A workflow is represented by a directed acyclic graph G = (V,E), where V = {t1, t2, ..., tn},
and E represent the vertices and edges of the graph, respectively. Each vertex represents
a task t and there are n tasks in the workflow. The edges maintain execution precedence
constraints. Having a directed edge from tx to ty, x, y ∈ N means that ty cannot start to
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execute until tx is completed. The components are described as follows:

1. A set of tasks T = {t1, t2, . . . , tn}
2. A set of files F = { f1, f2, . . . , fn}
3. A set of compute and data resources R = {r1, r2, . . . , rn}

A task tx requires a set of files Fx = { f1, f2, . . . , fn} to be staged in for execution. Each
file fx required by a task tx is hosted by multiple data-hosts. Partial segments of each
file dx ⊂ fx that need to be transferred for a task txr assigned to a resource r is denoted
by a set: data set = {{dx → r}txr ∀dx ⊂ fx, r ∈ R, |{dx}| ≤ |R|}. The index x establishes a
relationship between the set of files that the task needs and the task itself, in the set
containing numerous tasks and files.

1.3.2 Assumptions

Before defining the problem of scheduling andmanagement of data intensive workflows,
and presenting solutions, this thesis makes the following assumptions:

1. This thesis does not consider conditional and cycles in the workflow structure.
This leads to an assumption that the cycles and conditions in the workflow can
be represented in the form of a DAG for the scheduling system to execute them,
whenever necessary.

2. This thesis assumes that data required by workflow applications are replicated at
multiple sites distributed geographically around theworld. This would then enable
the data retrieval components to download data in parallel from these distributed
sources.

3.

These assumptions are practical and are based on themotivational examples presented
in Section 1.2.

1.3.3 Problem Definition

We now describe the problem of data host selection and tasks to resource mapping in the
presence of large number of replicated files for workflow applications [101].

Def1: DTSP(D,R,T, F,G, L,M) Given a set of resources R, a set of tasks T, a set of files F
(both input and output files of T), a graph G that represents the data flow dependencies between

tasks T, the Data-Task Scheduling Problem (DTSP) is a problem of finding assignments of tasks

to compute-hosts [task schedule = {txr }, tx ∈ T, r ∈ R], and the partial data set (data set = {txr })
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to be transferred from selected data-hosts to assigned compute hosts data set = {{dx → r}txr ∀dx ⊂
fx, r ∈ R, |{dx}| ≤ |R|} for each task, simultaneously, such that: total execution time (and cost)
at r and data transfer time (and cost) incurred by data transfers {dx → r} for all the tasks are
minimized.

This thesis assumes the following pre-conditions that are associated with De f1:

1. Data files are replicated across multiple data hosts

2. Each task requires more than one data file

3. Total time and cost are bounded by L andM, respectively, where L signifies deadline
andM denotes maximum money (real currency) that can be spent on executing all
the tasks in T of a workflow graph G

To simply the problem for understanding, it can be broken down to two stages. First,
a set of data-hosts that hosts the required files for the tasks in the workflow should be
found. The selection of the optimal set of data-hosts in the presence of large number of
replicated files for a single task is computationally intensive [150]. Venugopal et al. [150]
selected the data-hosts by using one of the solutions to the Set-Coverage problem [9].
This selection procedure is compute intensive.

Second, the mapping of tasks to compute-resources is an NP-complete problem in the
general form. The problem is NP-complete even in two simple cases: (1) scheduling tasks
with uniform weights to an arbitrary number of processors and (2) scheduling tasks with
weights equal to one or twounits to twoprocessors [144]. There are only three special cases
for which there exist optimal polynomial-time algorithms. These cases are (1) scheduling
tree-structured task graphs with uniform computation costs on an arbitrary number of
processors [64]; (2) scheduling arbitrary task graphs with uniform computation costs on
two processors [92]; and (3) scheduling an interval-ordered task graph [50]. However,
these solutions assume communication between tasks to take zero time.

Themappingof tasks in aworkflow to the resources in our case is significantlydifferent
than the general mapping problem. Given the replicated files and numerous data-hosts,
proper selection of data-hosts and compute-hosts should be made for every task in the
workflow such that the dependent tasks will benefit from selection set of its parents. The
best case is when each task gets the optimal data-host set and compute-host for execution
so that the makespan and cost are optimal. The naive case is when the resource set is
chosen irrespective of the dependencies for each task.

Figure 1.5 shows a simpleworkflowwith compute-hostsCanddata-hostsDh, assigned
to each task (the separation of data-hosts and compute-hosts are for clarity only). Letsfirst
consider the data-transfers occurring due to the selection of compute-host and data-host
for task a and task c. Since the tasks are mapped to two different compute-hostsC1 andC2,
the output files from task a need to be transferred from C1 to C2 with cost dtc12. Task a has
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Figure 1.5: Data-host and Compute-host Selection Problem.

cost dta and task c has cost dtc for transferring data fromDhs1 andDhs3, respectively. Now
the optimal solution would select a combination of C1, C2, Dhs1 and Dhs3 to minimize the
data transfer cost

∑
(dtc12 + dta + dtc) and execution time

∑
(C1 + C2)t. There are several

ways to select the data-hostsDhs1 andDhs3 and compute-hosts C1 and C2. To understand
the problem statement, we describe two techniques. The first method is by considering
the proximity of data-hosts in terms of network distance with the set of compute-hosts.
The secondmethod is by trying tomaximize the co-relation between two set of data-hosts,
depicted as rs12 in the figure, for some set of tasks that require same set of files.

Thefirstmethodalways searches the entire set of data-hosts and compute-hosts tofind
one combination that most closely satisfies the objective function. But it does not take into
account that tasks might be sharing the same set of files. Moreover, previous iterations
might have already found the data-host and compute-host set combination that can be
applied to subsequent set of tasks. For example tasks a and cmight be requiring same set
of files, so the compute intensive selection of candidate data-host sets and compute-host
can be avoided for the second task. The secondway would almost always select the same
set of data-hosts by trying to maximize their co-relation. This also restricts the compute-
host set to within the proximity of the co-related data-host set. In the latter case, when the
number of tasks increases, both the compute-host and data-host become overloaded, as
most of the tasks are mapped to these limited resources. This increasing waiting time of
all tasksmapped to these resources. Hence a proper selection algorithm should distribute
the load and satisfy the objective function.

1.3.4 Challenges

The problem of scheduling workflow, as defined in De f1 in Section 1.3.3, faces the fol-
lowing key challenges, which this thesis addresses as contributions in Section 1.4:
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• Scheduling Policy. A workflow’s makespan and overall cost depends on the se-
lection of data sources and mapping of tasks to resources. Selection of ‘best’ data
sources before irrespective of compute sources, as is done in existing scheduling
algorithms, does not give time and cost efficient schedules when the size of data
is comparatively larger than the computation time of tasks. Significant bandwidth
is required to stage-in and stage-out these data prior to the execution of the tasks
in a workflow. Similarly, if the data is to be re-used, the scheduling policy must
select nearer (in terms of network distance) compute resources as selecting them
affects the time/cost of transferring output data, and hence the overall execution
time/cost. If the compute host and data-host are closer in terms of network distance,
the transfer time is significantly reduced. The questions that needs to be answered
are:

1. How to select data hosts and compute hosts such that the task-resource map-
pings give a schedule that optimizes overall time and/or cost ?

2. How to calculate data-hosts and compute-hosts proximity in terms of network
distance dynamically?

3. How to estimate job execution time and data-transfer times ?

4. How to adjust task-resource mappings to fit the execution environment at
run-time?

5. How to make use of output (or temporary) data? Where to store execution
data?

• User QoS. Users’ Quality of Service (QoS) such as budget (cost payable for using
the services) and deadline (time taken for application execution), should also be
taken into account while scheduling workflows. The challenging questions are:

1. How to incorporate userQoS into scheduling policy so that either or both could
be optimized?

2. As optimizing both budget and deadline could be computationally challeng-
ing, which heuristics based algorithm to use to reduce the algorithm compu-
tation time?

• Fault Tolerance. If a task fails, the delay in execution affects the starting time of all
other dependent tasks in theworkflowunless an efficient fault tolerancemechanism
is in place. Generally, for data intensive application, most of the time is spent on
communicating data between tasks and resources. As a result, there is a high chance
of failures occurring during this phase. When any task fails to execute, based on
the scheduling policy, the tasks is either migrated to another host or re-inserted
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to be executed on the same host. If data transfer occurs due to rescheduling, the
migrated tasks may fail again at the new site. Before staging the task to the site,
an informed decision of its past execution, current state of resources available and
reliability issues must be taken into account. The questions are:

1. Which transfer mechanism to use to prevent data transfer failures?

2. How can data be transferred such that migration of workflow tasks to remote
hosts can be prevented?

3. How to manage the data provenance?

1.4 Contributions

This thesis makes several contributions towards management and scheduling of data
intensive application workflows on distributed resources. Driven by the motivation, the
problem statement, and the challenges described in previous sections of this Chapter, the
major contributions are:

1. A comprehensive survey on scheduling and management techniques for data

intensive applications.

This thesis provides a comprehensive survey of scheduling and management tech-
niques that have been proposed in the past for data intensive applicationworkflows.
The survey covers most of the work in the field of Grid computing and also adds
recent work on Cloud computing. These work are classified into groups and sub-
groups in relation to their proposed techniques, which in turn helps us identify their
strength andweaknesses. The classification of techniques helps researchers and sci-
entists working on workflow scheduling to correctly related scheduling algorithms
and techniques to their problem environment. It also aids them in choosing past
work for comparing against their techniques.

2. AWorkflowmanagement system for data intensive applications.

This thesis presents a workflow management system design that facilitates the
creation, scheduling, execution, andmonitoring of data intensive application work-
flowsonGrid andCloudenvironments. Specifically, it describes the implementation
of aworkflow editor, workflowmanagement portal, workflow engine, and resource
plug-in that all form the major components of the management system. The imple-
mented prototype system is then is used for executing two real-world applications
on Grid and Cloud platforms. The thesis also presents the results obtained after
the executions of these application to demonstrate its capability to handle large
applications.
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3. Workflow scheduling algorithms for data intensive applications.

Before proposing scheduling algorithms, this thesis begins by providing two mo-
tivational applications that are currently used in the real-world. It describes the
challenges that these applications face while in practice. It then formally defines
the workflow scheduling problem. Then it proceeds towards implementing the
workflowmanagement system to address these challenges.

The thesis proposes several workflow scheduling algorithms that are implemented
in the workflow management system. The scheduling algorithms are based on
multi-source data retrieval technique. It first describes a non-linear programming
(NLP)model based scheduling algorithm that produces near optimal results, which
would then be an ideal case for comparison against heuristics based approaches. It
shows that theNLP approach is computationally expensive for large data sizes. The
thesis then proposes heuristics based algorithms that are practically feasible when
used for scheduling data intensive applications. It proposes a static and a dynamic
scheduling heuristic that uses multi-source parallel data retrieval based scheduling
approach and compares it with existing static and dynamic algorithms. These algo-
rithms are used for minimizing the total execution time of workflow applications.
Observing that the dynamic version of the scheduling heuristic performs best for
data intensive application, the thesis then proposes a particle-swarm optimization
(PSO) based heuristic. The PSO based scheduling heuristic is designed to achieve
minimum cost of execution for data intensive application workflows. Due to its
fast convergence property, PSO based heuristic is shown to reduce significant cost
for sample application executed on Cloud platforms. The thesis compares the re-
sults obtained from these algorithms with existing ‘single-source’ retrieval based
heuristics in terms of total makespan and execution cost.

4. Real-world application workflows as case studies.

To demonstrate the proposed heuristics are generic and hence applicable for a range
of applications workflows, the thesis models, implements and executes real world
data intensive application workflows. They are: i) Image Registration procedure in
functional magnetic resonance imaging (fMRI) studies, ii) data mining process for
distributed intrusion detection, iii) parallel version of EvolutionaryMulti-Objective
Optimization (EMO), and iv) workflow structures similar to LIGO and Montage
applications. The thesis uses these applications when evaluating the proposed
algorithms on distributed resources.
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Figure 1.6: Thesis chapter organization and contribution.

1.5 Thesis Overview

Each chapter in this thesis has been derived from various publications during my PhD
candidature. Figure 1.6 depicts a pictorial representation of the organization of thesis,
which is described below in detail:

• Chapter 2: A Survey of Workflow Management Techniques for Data Intensive

Applications

This chapter surveys past work on management techniques of data intensive work-
flows. It classifies these techniques into groups and subgroups in accordance to
their task and data management techniques.

The chapter is derived from the following publication:

– Suraj Pandey, Rajkumar Buyya. Scheduling and Management Techniques for
Data-Intensive Application Workflows, Data Intensive Distributed Comput-
ing: Challenges and Solutions for Large-scale Information Management, T.
Kosar (ed), IGI Global, USA, 2011.

• Chapter 3: A WorkflowManagement System Design
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1.5. Thesis Overview

This chapter presents a workflow management system design and its describes its
components in detail. It also presents two real-world case studies that are executed
on real platforms using the proposed system.

The chapter is derived from the following publications:

– SurajPandey,WilliamVoorsluys,MustafizurRahman, RajkumarBuyya, James
Dobson, Kenneth Chiu, A Grid Workflow Environment for Brain Imaging
Analysis on Distributed Systems. Concurrency and Computation: Practice
and Experience, Volume 21, Number 16, Pages: 2118-2139, ISSN: 1532-0626,
Wiley Press, New York, USA, November 2009.

– SurajPandey,WilliamVoorsluys,MustafizurRahman, RajkumarBuyya, James
Dobson, Kenneth Chiu, Brain Image Registration Analysis Workflow for fMRI
Studies on Global Grids. In Proceedings of the 23rd IEEE International Con-
ference on Advanced Information Networking and Applications (AINA 09),
Bradford, UK, May 2009.

– Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya, High-Performance
Cloud Computing: A View of Scientific Applications, Proceedings of the 10th
International Symposium on Pervasive Systems, Algorithms and Networks (I-
SPAN 2009, IEEE CS Press, USA), Kaohsiung, Taiwan, December 14-16, 2009.

• Chapter 4: A Non-Linear Model for Optimisation of Workflow Scheduling
This chapter describes the formulation of a non-linear programming model to min-
imize the data retrieval and execution cost of data intensive workflows in Clouds.
Themodel retrieves data fromCloud storage resources such that the amount of data
transferred is inversely proportional to the communication cost. It also presents an
example of an intrusion detection application workflow and experiments on real
platforms.

The chapter is derived from the following publication:

– Suraj Pandey, Kapil Kumar Gupta, Adam Barker and Rajkumar Buyya, Mini-
mizing Execution Cost when using Globally Distributed Cloud Services, Pro-
ceedings of the 24th IEEE International Conference on Advanced Information
Networking andApplications (AINA2010), Perth, Australia, April 20-23, 2010.

• Chapter 5: Static and Dynamic Heuristics-Based Scheduling Algorithms
This chapter presents heuristics based scheduling algorithms that assigns inter-
dependent tasks to compute resources based on both multi-source parallel data
retrieval time and task-computation time. In addition to proposing both static and
dynamic algorithms, it also describes the application of Steiner tree for resource
selection.
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The chapter is derived from the following publications:

– Suraj Pandey and Rajkumar Buyya, Scheduling of Scientific Workflows on
Data Grids, TCSC Doctoral Symposium, Proceedings of the 8th IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid 2008, IEEE CS
Press, Los Alamitos, CA, USA), May 19-22, 2008, Lyon, France.

– Suraj Pandey, Scheduling Data Intensive Applications based on Multi-Source
Parallel Data Retrievals, Doctoral Research Showcase, ACM/IEEE Supercom-
puting Conference 2010 (SC10), November 13-19,2010 NewOrleans, LA, USA.

• Chapter 6 Particle Swarm Optimization Based Scheduling Heuristic

This chapter presents a Particle SwarmOptimization (PSO) based heuristic to sched-
ule workflow applications on Cloud resources. It demonstrates the advantages of
using PSO, such as faster convergence and lower computation time, for obtaining
better or similar solutions than existing algorithms.

The chapter is derived from the following publication:

– Suraj Pandey, Linlin Wu, Siddeswara Guru, and Rajkumar Buyya, A Particle
Swarm Optimization (PSO)-based Heuristic for Scheduling Workflow Appli-
cations inCloudComputing Environments, Proceedings of the 24th IEEE Inter-
national Conference on Advanced Information Networking and Applications
(AINA 2010), Perth, Australia, April 20-23, 2010. Best Paper Award

• Chapter 7 Conclusion and Future Directions
This chapter concludes the thesis by summarizing the contributions. It also provides
insights on future work that could be carried out based on the work presented in
this thesis.
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2
A Survey of Workflow Management

Techniques for Data Intensive Applications

T
his chapter presents a comprehensive survey of algorithms, techniques and frame-
works used for scheduling and management of data intensive application work-
flows. Many complex scientific experiments are expressed in the form of work-

flows for structured, repeatable, controlled, scalable and automated executions. This
chapter focuses on the survey of management techniques for the type of workflows
that have tasks processing huge amount of data, usually in the range from hundreds of
megabytes to petabytes. Scientists are already using distributed systems that schedule
these workflows onto globally distributed resources for optimizing various objectives:
minimize total makespan of the workflow, minimize cost and usage of network band-
width, minimize cost of computation and storage, meet the deadline of the application,
and so forth. This chapter classifies the techniques and presents a comprehensive survey.
A survey ofworkflowmanagement techniques is useful for understanding theworking of
the Grid and Cloud systems, providing insights on performance optimization of scientific
applications dealing with data intensive workloads.

2.1 Introduction

Scientists and researchers around theworld have been conducting simulations and experi-
ments as apart ofmediumtoultra large-scale studies inhigh-energyphysics, biomedicine,
climate modeling, astronomy and so forth. They are always seeking cutting-edge tech-
nologies to transfer, store andprocess the data in amore systematic and controlledmanner
as the data requirements of these applications range from megabytes to petabytes. Thus,
to help themmanage the complexity of execution, transfer and storage of results of these
large-scale applications, the use of a workflow management systems (WfMS) is in wide
practice [167].

Scheduling and management of computational tasks of a workflowwere the main fo-
cus ofWfMS in the past. With the emergence of globally distributed computing resources
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Chapter 2. Workflow Management Techniques for Data Intensive Applications

and increasing output data from scientific experiments, scientists began to realize the
necessity of handling data in conjunction with computational tasks. Scientific workflows
were thenmodeled taking into account theflow of data. However, evenwith a plethora of
techniques and systems, many challenges remain in the area of data management related
to workflow creation, execution, and result management [38; 58].

Some challenges for managing data intensive application workflows are:

• High throughput data transfer mechanisms
• Massive, cheap, green and low latency storage solutions and their interfaces
• Composition of scientific applications as workflows
• Multi-core technology and workflowmanagement systems
• Standards for interoperability between workflow systems
• Globally distributed data and computation resources

This chapter classifies and surveys techniques that have been used for managing and
scheduling data intensive application workflows to meet the challenges listed above.
The classification is based on techniques that take into account data, storage, platform
and application characteristics. It sub-divides each general heading into more specific
techniques. Then, it lists and describes several work under each sub-heading. Most sys-
tems use a combination of existing techniques to achieve the objectives of an application
workflow.

The chapter starts by presentingprevious studies that focusedmore on systems side of
Grid workflows and Data Grids along with their taxonomy. It then describes an abstract
model of aWfMS and its component responsible for data and computation management.
The rest of the chapter presents the survey. The chapter finally concludes by identifying
research issues in management of data intensive application workflows.

2.2 History of Workflow Management Systems

2.2.1 Taxonomy of Related Technologies

Over the last few years, we can find much work being done on data intensive environ-
ments and workflow management systems. We list taxonomies for Data Grid Systems
and Workflowmanagement Systems that present the grounds for our survey.

Venugopal, Buyya, & Ramamohanarao [151] proposed a comprehensive taxonomy of
Data Grids for distributed data sharing, management and processing. They characterize,
classify and describe various aspects of architecture, data transportation, data replication
and resource allocation, and scheduling for Data Grids systems. They list the similarities
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2.2. History of Workflow Management Systems

and differences between Data Grids and other distributed data intensive paradigms such
as content delivery networks, peer-to-peer networks, and distributed databases.

Yu & Buyya [167] proposed taxonomy of workflow management systems for Grid
computing. They characterize and classify different approaches for building and execut-
ing workflows on Grids. They present a survey of representative Grid workow systems
highlighting their features and pointing out the differences. Their taxonomy focuses on
workflow design, workflow scheduling, fault management, and data movement.

Bahsi, Ceyhan and Kosar [8] presented a survey and analysis on conditional work-
flow management. They studied workflow management systems and their support for
conditional structures such as if, switch, and while. With case studies on existing WfMS,
they listed the differences in implementation of common conditional structures. They
show that the same structure is implemented in completely different ways by different
WfMS. A system or a user can define explicit conditions in the structure of a workflow to
manage the data flow across resources and between tasks for data intensive application
workflows.

Yu, Buyya, & Ramamohanarao [169] listed and described several existing workflow
scheduling algorithms developed and deployed in various Grid environments. They
categorized the scheduling algorithms as either best effort based or Quality of Service
(QoS) constraint based scheduling. Under best-effort scheduling, they presented several
heuristics and meta-heuristics based algorithms, which intend to optimize workflow
execution times on communityGrids. UnderQoS constraint based scheduling algorithms,
they examined algorithms, which intend to solve performance optimization problems
based on twoQoS constraints, deadline and budged. They also list some of the techniques
we have explicitly described for data intensive workflows in this chapter.

Kwok & Ahmad [78] surveyed different static scheduling techniques for scheduling
application Directed Acyclic Graphs (DAGs) onto homogeneous platforms. In their
model, tasks are scheduled onto multiprocessor systems. The model also assumes that
communication is achieved solely bymessagepassingbetweenprocessingelements. They
proposed taxonomy that classified the scheduling algorithms based on their functionality.
Their survey also provides examples for each algorithm along with the overview of the
software tools for scheduling and mapping.

2.2.2 Abstract Model of a WorkflowManagement System

Anabstract model of aworkflowmanagement systemconsists of components that deliver
the functional characteristics to the system. It consists of user interface components,
middleware components, and resource plug-ins that complete the bidirectional flow from
a end-user to the distributed resources.

Figure 2.1 shows the architecture of aGridworkflowsystembasedon theworkflowref-
erencemodel [62] proposedbyWorkflowManagementCoalition (WfMC) (www.wfmc.org)
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Chapter 2. Workflow Management Techniques for Data Intensive Applications

in 1994. We have extended it to include components thatmanage data in addition to tasks.

Yu & Buyya [167] described the abstract model in detail, but without the data-centric
components. The build time and run time borders separate the functionality of the
design to define and execute tasks, respectively. At the core of the run time, we propose
components to actively process both data and tasks equally, different from the model
presented by Yu et al. [167], where data component was not managed by the scheduler
as it did for tasks.

The scheduler, which forms the core of the engine, handles data flow schedules on
top of task schedules. For example, if a workflow is modeled such that data transfer tasks
are separate from computation tasks, the scheduler may apply a different scheduling
policy to the data transfer tasks. Similarly, when there is no distinction between these
tasks, the scheduler may prioritize data transfers between certain tasks over computation
depending on the structure of the workflow, scheduling objectives, and so forth.

We propose to add a data provenance (also referred to as lineage and pedigree)
manager component to the architecture. It keeps the record of data entities associatedwith
the tasks in a workflow. The scheduler may interact with this component for determining
specific data flow paths between tasks and distributed resources. For example, when a
workflow is executed a number of times, previously produced data may exist that could
be reused. In such cases, intermediate data transfer may not be scheduled for some
tasks. Similarly, the scheduler may take reference of provenance data to create/delete
data transfer and data cleanup tasks for storage aware scheduling. Simmhan, Plale, &
Gannon [131] have surveyed and described systems using provenance for data intensive
environments in greater detail.

We envision each component in the core architecture to handle data as a first class
citizen as also proposed by Kosar & Livny [77]. Data movement component, in particular,
should be smart enough to overlapdata transfer taskswith computation so thatwait-times
for data-availability is minimized. Data-transfer tasks could be prioritized for different
tasks. Similarly, fault tolerance policies should be capable of handling frequent failures of
data transfer tasks. Scheduling steps heavily depend on the capability of data movement
and fault tolerance components for data intensive applications, as the repercussions of
failure of data transfer tasks can affect the performance of the entire workflow. Different
from generic WfMS models, a higher and more sophisticated coordination mechanism is
required between these components for handling data intensive application workflows.

Newmodels for IT service delivery (e.g. Clouds Computing) are emerging. Workflow
systems should be capable of interacting with these types of service oriented architectures
so that it can better utilize the storage and compute facilities provided by them for
optimized data delivery, storage and distributed access. Access and security policies may
differ from existing Grid policies when resources are from centralized data centers.
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Figure 2.1: An abstract model of a Workflow Management System

2.3 Classification of Management Techniques

This section characterizes and classifies key concepts and techniques used for scheduling
and management of data intensive application workflows. As shown in Figure 2.2,
the techniques can be classified into seven major categories: (a) data locality, (b) data
transfer, (b) data-footprint, (c) granularity, (d) model, (e) platform, and (f) miscellaneous
technologies. This section describes each of these categories and their branches citing
previous work done in the field.

2.3.1 Data Locality

In data intensive computing environments, the amount of data involved is comparatively
large for communication networks, such as the Internet, to handle in specified amount
of time with limited budget. Transferring of data between computing nodes takes sig-
nificant amount of time depending on the size of data and network capacity between
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Figure 2.2: Classification of management techniques for data intensive application workflows.

participating nodes. Hence, most scheduling techniques target on optimizing data trans-
fers by exploiting the locality of data. These techniques can be classified into: (a) Spatial
clustering, (b) Task clustering, and (c) worker centric.

Spatial Clustering

Spatial clustering creates a task workflow based on the spatial relationship of files in the
input data set. In spatial clustering, clusters of jobs are created based on spatial proximity,
each job then assigned to a cluster, each cluster to a grid site and during the execution of
the workflow, all jobs scheduled belonging to the cluster to the same site (Meyer, Annis,
Wilde, Mattoso, & Foster [94]). It improves data reuse and reduces total number of file
transfers by clustering together tasks with high input-set overlap. These clustered tasks
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are scheduled to the resource with the maximum overlap of input data. This reduction
benefits the Grid as a whole by reducing traffic between the sites. It also benefits the
application by improving its performance.

Meyer et al. [94] presented a generalized approach to planning spatial workflow
schedules for Grid execution based on the spatial proximity of files and the spatial range
of jobs. They proposed SPCL (for “spatial clustering”) algorithm that takes advantage of
data locality through the use of dynamic replication and schedules jobs in a manner that
reduces the number of replicas created and the number of file transfers performed when
executing a workflow. They evaluated their solution to the problem using the file access
pattern of an astronomy application that performs coaddition of images from the Sloan
Digital Sky Survey (SDSS)1.

Brandic, Pllana & Benkner [16] developed QoS-aware Grid Workflow Language
(QoWL), by extending the Business Process Execution Language (BPEL) that allows users
to define preferences regarding the execution location affinity for activities with specific
security and legal constraints. Use of QoS parameters that direct the WfMS to restrict the
movement of sensitive and proprietary data to only agreed domains is very important
for certain kinds of applications. A set of QoS-aware service-oriented components is pro-
vided for workflow planning to support automatic constraint-based service negotiation
and workflow optimization.

Task Clustering

With task clustering, small tasks are grouped together as one executable unit such that
the overhead of data movement can be eliminated. Task clustering groups tasks so that
the intermediate files produced by each task in the group remains in the same computing
node the grouped task was submitted to. Other tasks in the same group can now access
the file locally. This scheme reduces the need to transfer the intermediate output files in
case the tasks in the group were scheduled to different computing nodes. Clustering also
eliminates the overhead of running small tasks.

Singh, Kesselman, & Deelman [133] explored approaches for restructuring of work-
flows so that the dependencies in the workflow graph can be reduced. They group
independent jobs at the same level into clusters. Their task clustering does not imply that
the tasks in a group is scheduled to one processor or executed sequentially. They show
workflow performance using clustering with centralized (single submit host) and dis-
tributed (multiple submit hosts) job submission. In the centralized submission, the whole
workflow is submitted and executed using a single submit host. In order to increase the
dispatch rate of jobs for execution, their distributed job submission strategy has a central
manager, multiple submit hosts and worker nodes. The workflow is restructured with

1https://www.darkenergysurvey.org
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multiple clusters at each level. The number of clusters at each level is equal to the number
of submit hosts in the pool. The schedulers on the submit hosts then try to find suitable
nodes for the submitted jobs.

Pandey et al. [102] used task clustering to schedule data intensive tasks for a medical
application workflow. They clustered tasks based on their execution time, data transfer
and level. If tasks were having high deviation and value of average execution time, they
were executedwithout clustering. Taskswith lower deviation and value of execution time
were clustered together. They showed that clustering tasks for data intensive application
workflowshas bettermakespan than scheduling theworkflowwithout clustering, mainly
attributed to the decrease in file transfers between tasks in the same cluster.

Worker Centric

Worker centric approaches exploit locality of interest present in data intensive environ-
ments. Ko, Morales, & Gupta [75] presented an algorithm where one global scheduler,
upon receiving a request from aworker (computation node), calculates theweight of each
unscheduled task and chooses the best task to assign to the requestingworker. Theweight
calculation procedure takes into account the set of files already present at the worker site
and additional files required by the worker for the task. This scheme exploits locality
of file access, and thus minimizes both the number of files that need to be transferred
as well as prefers workers that accessed the same files in the past. They proposed both
deterministic and randomized metric that can be used with worker-centric scheduling
and found that metrics considering the number of file transfers generally gave better
performance over metrics considering the overlap between a task and a storage. They
experiment with traces of Coadd2.

2.3.2 Data Transfer

Researchers have proposed several mechanisms for transferring data so that data transfer
time is minimized. These techniques are: (a) data parallelism, (b) data streaming, and (c)
data throttling.

Data Parallelism

Data Parallelism denotes that a service is able to process several data fragments simul-
taneously with minimal performance loss. This capability involves the processing of
independent data on different computing resources. Glatard, Montagnat, Lingrand, &
Pennec [59] designed and implemented a workflow engine named MOTEUR. They pro-
pose algorithms that combine well-defined data composition strategies and fully parallel

2https://www.darkenergysurvey.org
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execution. They adopted the Simple Concept Unified Flow Language (SCUFL) as the
workflow description language for conveniently describing data flows. In their system,
tasks and data are scheduled such that most data sets are processed by independent
computing resources, but the precedence constraints are preserved. They evaluated
the system using a medical imaging application run on the EGEE (Enabling Grids for
E-Science EU IST project3) grid.

Data Streaming

In data streaming, real-time data generated through simulation or experiment is delivered
in an asynchronous, high-throughput, low-latency and robust way to data analysis and
storage machines. Bhat et al. [13; 14] investigated data streaming for executing scientific
workflows on the Grid. They proposed the design, implementation and experimental
evaluation of an application level self-managing data streaming service that enables
efficient data transport to support Grid-based scientific workflows. The system provides
adaptive buffer management mechanisms and proactive QoS management strategies
based onmodel-based online control and user-defined policies. They showed that online
data streaming can have significant impact on the performance and robustness of the
data intensive application workflow applications in Grids. They used a fusion simulation
workflow consisting of long-running coupled simulations to evaluate the data streaming
service and its self-managing behaviors.

Bhat, Parashar, & Klasky [13; 14] investigated reactive management strategies for
in-transit data manipulation for data intensive scientific and engineering workflows.
Their framework for in-transit manipulation consists of processing nodes in the data path
between the source and the destination. Each node is capable of processing, buffering and
forwarding the data. Each node processes the data depending on its capabilities and the
amount of processing still remaining. The data is dynamically buffered as itflows through
the node. Eventually the processed data is forwarded until it reaches the sink. The choice
between forwarding and further processing is dependent upon the network congestion.
They used application level online controllers for high throughput data streaming.

Korkhov et al. [76] & Afsarmanes et al. [1] proposed Grid-based Virtual Laboratory
AMsterdam (VLAM-G), a data-drivenWfMS. Their system uses Globus services (Globus
Project4) to allow data streams to be established efficiently and transparently between
remote processes composing a scientific workflow. The execution engine initiates ‘point-
to-point’ data streams betweenworkflow components allowing intermediate data to flow
along the workflow pipeline, without requiring local storage. They use unidirectional,
typed streams to ensure that proper connection can be established. Control and moni-
toring communication is not transmitted on such typed streams. They model the system

3http://www.eu-egee.org
4http://www.globus.org/
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such that all the resources needed for data stream driven distributed processing have to
bemade available (e.g. by advance reservation) simultaneously in contrast to the scenario
where Grid resources join and leave the system at anytime.

Data Throttling

Data throttling is a process of describing and controlling when and at what rate data is
transferred in contrast tomoving data from one location to another as early as possible. In
scientific workflows with data intensive workload, individual tasks may have to wait for
large amounts of data to be delivered or produced by other tasks. Instead of transferring
the data immediately to a task, it can be delayed or transferred using lower capacity links
so that the resources can be dedicated to serve other critical tasks.

Park & Humphrey [105] identified the limitation of current systems in that there is
no control available regarding the arrival time and rate of data transfer between nodes.
They designed and implemented new capabilities for higher efficiency and balance in
Grid workflows by creating a data-throttling framework that regulates the rate of data
transfers between theworkflow tasks via a specially createdQoS-enabledGridFTP server.
Their workflow planner constructs a schedule that both specifies when/where individual
tasks are executed, as well as when and at what rate data is to be transferred. The planner
allows aworkflowprogrammer/engine to specify the requirements on the datamovement
delay. This delay helps to keep a balance between execution time of workflow branches
by eliminating unnecessary bandwidth usage, resulting in more efficient execution.

DAGMan (Directed Acyclic Graph MANager)5 is a workflow engine under the Pe-
gasus [40] WfMS. It supports job and data throttling using parameters. Pegasus uses
DAGMan to run the executable workflow. In DAGMan a “prescript” and a “postscript”
step, associated with each workflow job, are responsible for transferring input files and
deleting output files, respectively. It controls the number of prescripts that can be concur-
rently (across all jobs) started using the MAXPRE parameter. This serves as a convenient
workflow-wide throttle on the data transfer load that the workflowmanager can impose
on the Grid from the submit host.

2.3.3 Data Footprint

Workflow systems adopt several mechanisms to track and utilize the data footprint of the
application. These mechanisms can be classified into: (a) cleaning jobs, (b) restructuring
of workflow, (c) data placement & replication.

5http://www.cs.wisc.edu/condor/dagman/

28



2.3. Classification of Management Techniques

Cleaning Jobs

Cleaning jobs are introduced in the workflow to remove the data from the resources once
its no longer needed. When applications require large amount of data storage, tasks in the
workflow can only be scheduled to those compute resources that can provide temporary
storage large enough to hold the input and output files the tasks need. Scheduling
decisions should take into consideration the storage capability of the compute resource
for all tasks with data intensive workloads.

Singh et al. [134] presented two algorithms for reducing the data footprint ofworkflow
type applications. The first algorithm adds a cleanup job for a data file when that file is no
longer required by other tasks in the workflow or when it has already been transferred to
permanent storage. Given the possibility of data being replicated on multiple resources,
the cleanup jobs are made on a per resource basis. The algorithm is applied after the
executable workflow has been created, but before it is executed. The second algorithm is
an improvement in terms of the number of cleanup jobs and dependencies it adds to the
workflow. As the workflow engine has to spend considerable amount of time managing
job execution for every added job or dependency, the authors design the algorithm to
reduce the number of cleanup tasks at the possible cost of workflow footprint. This
is achieved by adding at most one cleanup node per computational workflow task in
contrast to one cleanup job for every file required or produced by tasks mapped to the
resource as done in the first algorithm. It reduces data footprint but as a consequence
the workflow execution time increases as a result of the increased number of workflow
levels.

Ramakrishnan et al. [116] proposed an algorithm for scheduling data intensive ap-
plication workflows onto storage-constrained resources. Their algorithm first takes into
account disk space availability in resources and then prioritizes resources depending on
performance. The algorithm starts by identifying all resources that can accommodate the
data files needed for a task to be scheduled. If no resource is available that satisfies the
space requirement of any ready task, the algorithm halts. It then tries to allocate the task
to the resource that can achieve the earliest finish time (data transfer time and execution
time) for the task. Finally, it cleans up any unnecessary datafile remaining in the resource.

Restructuring of Workflows

The structure of the workflow defines the data footprint. Restructuring of workflows is
a transformation of the workflow structure such that it influences the way input/output
data is placed, deleted, transferred, or replicated during the execution of the workflow.
Task clustering and workflow partitioning are common ways to restructure workflows.
Tasks can be clustered and dependencies re-defined in such a way that data transfer
is minimized, data re-use is maximized, storage resources and compute resources have
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well-balanced load and so forth. Singh et al. (2007) defined workflow restructuring
as the ordering or sequencing of the execution of the tasks within the workflow. They
restructure the workflow primarily to reduce the data footprint of the workflow. They
introduce dependencies between stage-in tasks and the previous-level computational
tasks. This prevented multiple data transfers from occurring at the same time as soon as
tasks become ready.

Pegasus [40] has the capability to map and schedule only portions of the entire work-
flow at a given time, using partitioning techniques. Deelman et al. [40] demonstrate the
technique using level-based partitioning of the workflow. The levels refer to the depth
of the tasks in the workflow. In their Just-in-time planning algorithm [15], Pegasus waits
(using DAGMan) to map the dependent workflow until the preceding workflow finishes
its execution. Original dependencies are maintained even after partitioning. They also
investigate partition-level failure recovery. When resources fail during execution, the
entire task is retried and new partitions are not submitted to that resource.

Duan, Prodan, & Fahringer [43] proposed an algorithm for partitioning a scheduled
workflow for distributed coordination among several slave enactment engine services.
They incorporated the algorithm in the ASKALON [42] distributed workflow Enactment
Engine. Their purpose of workflow partitioning was to minimize the communication
between the master and the slave engines that coordinates the individual partitions of
the entire workflow. The partitioning algorithm is based on a graph transformation
theory. Partitioning reduced the number of workflow activities and, therefore, the job
submission and management latencies and eliminated the data dependencies within
partitions. However, the algorithm was used for compute intensive scientific workflows
with large numbers of small sized data dependencies. In contrast to Pegasus, which
partitions the workflow before the scheduling phase, they partition the workflow after
scheduling. This results in reduced overheads for job submissions and aggregated file
transfers.

Data Placement & Replication

Data placement techniques try to strategically manage placement of data before or during
the execution of a workflow. Data placement schedulers can either be coupled or decou-
pled from task schedulers. Replication of data onto distributed resources is a common
way to increase the availability of data. Replication also occurs when scientists download
and share the data for experimental purposes, in contrast to explicit replications done by
workflow systems. In data intensive applications, replication may or may not be feasible.
Schedulers make the decision of data placement and replication based on the objectives
to be optimized. If data analysis workloads have locality of reference, then it is feasible to
cache and replicate data at each individual compute node, as high initial data movement
costs can be offset by many subsequent data operations performed on cached data [115].
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Kosar et al. [77] presented Stork, a scheduler for data placement activities in the Grid.
They propose to make data placement activities a first class citizen in the Grid. In Stork,
data placement is a full-fledged job and decoupled from computational jobs. Users de-
scribe the data placement job explicitly in the classads. DAGMan, a workflow scheduler
for Condor, uses Stork for managing these data placement jobs. It manages the depen-
dencies between Condor and stork jobs as defined by the dependencies in a DAG [35].
Under Stork, data placement jobs are categorized into three types. Transfer jobs are for
transferring a complete or partial file from one physical location to another. Allocate jobs
are used for allocating storage space at the destination site, allocating networkbandwidth,
or establishing a light-path on the route from source to destination. Release jobs are used
for releasing the corresponding resource, which was allocated before.

Chervenak et al. [33] studied the relationship between data placement services and
workflow management systems for data intensive applications. They propose an asyn-
chronous mode of data placement in which data placement operations are performed as
data sets become available and according to the policies of the virtual organization and
not according to the directives of theWfMS. TheWfMS can however assist the placement
services on placement of data based on information collected during task executions and
data collection. Their approach is proactive as it examines current workflow needs to
make data placement decisions rather than depending on the popularity of data in the
past. They evaluated the benefits of pre-staging data using the data replication service
versus using the native data stage-in mechanisms of the Pegasus WfMS. Using the Mon-
tage astronomy example, they conclude that as the size of data sets increases, pre-staging
data increases the performance of the overall analysis.

Shankar & DeWitt [129] presented architecture for Condor in which the input, output
and executable files of jobs are cached on the local disks of machines in a cluster. Caching
can reduce the amount of pipeline and batch I/O that is transferred across the network.
This in turn significantly reduces the response time for workflows with data intensive
workloads. With caching enabled, data intensive applications can reuse the files and also
are able to compare old and newversions of the file. They presented a planning algorithm
that takes into account the location of cached data together with data dependencies
between jobs in a workflow. Their planning algorithm produces a schedule by comparing
the time saved by running jobs in parallel with the time taken for transferring data when
dependent jobs are scheduledondifferentmachines. By executing the BLAST6application
workflow they showed that storing files on the disks of compute nodes significantly
improves the performance of data intensive application workflows.

Ranganathan & Foster [120; 118; 119] conducted extensive studies for identifying dy-
namic replication strategies, asynchronous data placement, and job and data scheduling
algorithms for Data Grids. Their replication process at each site periodically generates

6http://blast.ncbi.nlm.nih.gov.gov/
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new replicas for popular datasets. For dataset placement scheduler they define three algo-
rithms: Data-DoNothing- no active replication takes place, DataRandom- popular datasets
are replicated to a random site on the Grid, DataLeastLoaded- popular datasets are repli-
cated to a least loaded neighboring site. They proposed to decouple data movement
from computation scheduling, which is also known as asynchronous data placement.
This provides opportunity for optimizing both data placement and scheduling decisions,
also simplifying the design and implementation of theData Grid system. They concluded
through simulations on independent jobs that scheduling jobs to locations that contain the
data they need and asynchronously replicating popular data sets to remote sites achieves
better performance than coupled systems.

2.3.4 Granularity

Workflow schedulers can make scheduling decisions based on either: (a) task level, or (b)
workflow level.

Task level

Task level schedulers map individual tasks to compute resources. The decision of re-
source selection and data movement is based on the characteristics of each task and its
dependencies with other tasks.

Workflow level

Workflow level schedulers map the entire workflow rather than a set of available tasks to
compute resources. Workflow compute and storage requirements guide the scheduler to
make a decision on resource selection and data movement.

Blythe et al. [15] compared several task-based and workflow-based approaches to
resource allocation for workflow applications. In their workflow-based approach, the
entire workflow is mapped a priori to the resources to minimize the makespan of the
whole workflow. The mapping is changed according to the changing environment, if
necessary. The mapping of the jobs does not imply scheduling all the jobs ahead of time.
They use a local search algorithm for workflow allocation based on generalized GRASP
procedure (greedy randomized adaptive search) [49]. Thefinal schedule is chosen after an
iterative and greedy comparison between alternative schedules. On each iteration, task is
mapped to resource based on theminimummargin of increase to the currentmakespan of
theworkflow if the taskwas allocated to that resource. This approach is based on themin-
min [18] heuristic. They noticed that during large file transfers, resources spent significant
time waiting for all the files to arrive before it could start executing the scheduled job.
They proposed a weighted min-min heuristic that takes into account the idle times of
all the resources if a job was scheduled to a resource. Based on the weighted sum of
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the idle times and estimated completion time, a job is mapped to the resource that gives
the minimum weighted sum. The step is repeated until all the jobs have been mapped.
Due to the pre-mapping, the workflow-based approach could pre-position the data to the
known destination by transferring a large file immediately after it is created. In the task-
based approach, transfers could not begin until the job is scheduledwhich happened only
after its parent was scheduled. They also simulated the impact of inaccurate estimates of
transfer times for data intensive application workflows. They show that the performance
of task-based approach degrades rapidly with increasing uncertainty in comparison to
workflow-based approach. Based on these facts, they conclude that workflow-based
approaches perform better for data intensive applications than task-based approaches.

2.3.5 Model

Workflow scheduling model depends on the way the tasks and data are composed and
handled. They can be classified into two categories: (a) task-based, and (b) service-based.

Task Based

Tasks based approaches mention data dependencies explicitly. The workflows are gen-
erally complex in structure. Optimizations used by most systems are simple in nature.
TheWfMS has greater control over the data flow as it can define data placement, cleanup
and transfer tasks separately from the workflow tasks. DAGMan, Pegasus, GridAnt [6],
GrADS [12], and GridFlow [28] are some of theworkflow systems that support task based
approaches. These have been described individually in preceding sections.

Service Based

Service based approaches, also referred to as meta computing, wrap application codes
into standard interfaces. Such services are hidden from the users and only invocation
interface is known. Various interfaces such asWeb Services [5] or gridRPC [97] have been
standardized [59]. In this model, the application is described separately from the data.
Data is declared as parameters to the service. In this approach, workflows are generally
simple in structure. In contrast to task based approaches, workflow systems use complex
optimizations. This model is useful when an application workflow is to be repeatedly
executed over a large number of varying data sets. Instead of replicating the task for each
data set, service basedmodel has the ability to define different data composition strategies
over the input data of a service. Kepler system [89], the Taverna workbench [98], and the
Triana workflow manager [140], are some of the service based workflow systems.

ThemyGrid project7 has developed a comprehensive loosely coupled suite of middle-
ware components specifically to support data intensive in-silico experiments represented

7http://www.mygrid.org.uk/
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as workflows, using distributed resources. The main tool is the Taverna Workbench [98].
Taverna allows for the automation of experimental methods through the integration of
various services, includingWSDL-based single operationweb services, intoworkflows. It
uses FreeFluo8 as aworkflow enactment engine that facilitates intermediate data transfers
and service invocations. Workflows are represented using the Simple Conceptual Uni-
fied Flow Language (SCUFL). A workflow graph consists of processors, each of which
transforms a set of data inputs into a set of data outputs. Using SCUFL, implicit iteration
over incoming data sets can be carried out based on user specified strategy. Users can use
the Thread property to specify the number of concurrent instances that can send parallel
requests to the iteration processor for handling simultaneous processing. This can help
reducing the service wait time as workflow engine can send data while the service is still
working on previously sent data.

Kepler [89] provides support for web service-based workflows. Using an extension of
PTOLEMY II [21], it uses an actor-oriented design approach for composing and execut-
ing scientific application workflows. Computational components are termed as actors,
which are linked together to form a workflow. A director represents the interaction
between these components. It specifies and mediates all inter-actor communication, sep-
arating workflow orchestration, and scheduling from individual actor execution. Two of
the directors (namely, Synchronous Data Flow (SDF) and Process Networks (PN)) work
primarily by controlling the sequencing of actors according to the data availability, to
preserve the order of execution of the workflow. TheWebService actor provides a simple
plug-in mechanism to execute any WSDL defined web service. An instantiation of the
actor acts as a proxy for the web service being executed and links to other actors through
its ports. Using this component, any application that can be deployed as a remote service,
can be used as a Kepler component [67].

Kalyanam et al. [70] proposed a web service-enabled distributed data-driven work-
flow system on top of the TeraGrid9 infrastructure. The workflow system is based on
an existing data management architecture that provides easy access to scientific data col-
lections via the TeraGrid network. It leverages JOpera [108], an open-source workflow
engine that integrates web services into a processing pipeline. Users can construct data-
driven workflows using local or TeraGrid data and computation resources. Their system
helps automate the operations such as data discovery, movement, filtering, computation-
ally intensive data processing, and so forth, by organizing them as a pipeline so that
researchers can execute applications with minimal user interaction.

Brandic, Pllana & Benkner [17] presented a service-oriented environment, named as
Amadeus, for QoS-aware Grid workflows. For data intensive application workflows,
QoS parameters may be defined for data-transfer time, reliability, storage requirements,

8http://freefluo.sourceforge.net/
9http://www.teragrid.org
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cost, and so forth. It allows users to specify QoS constraints at workflow composition,
planning, and execution stages. Various QoS-aware service components are provided
for workflow planning to support automatic constraint-based service negotiation and
workflow optimization.

2.3.6 Platform

Data intensive application workflows could be executed in different resource configura-
tion and environments (e.g. Cluster, Data Grids, Clouds etc.) depending on the require-
ments of the application. Clusters are generally composed of homogeneous processors
and are under a single domain. For data intensive applications, clusters provide a viable
platform for low cost and enhanced performance. When the data produced and stored
are local and not globally shared, cluster based platforms is more feasible than Grids or
Clouds.

Data Grids are globally distributed resources designed for data intensive computing.
Data is generated and/or used in research labs distributed globally, giving rise to shar-
ing and re-use. Data grids are feasible for large-scale experiments that are a result of
worldwide collaboration of resources and scientists.

Clouds are an emerging model for centralized but highly available and powerful
infrastructure. Large-scale storage and computation is provided by data centers. Com-
puting power is achieved by using virtualization technology. Data intensive applications
can highly benefit fromusing services provided byClouds as compared toData Grids and
Clusters when factors such as scalability, cost, performance, and reliability are important.

In the past, scientific workflows were generally executed on a shared infrastructure
such as TeraGrid, Open Science Grid10, and dedicated clusters. In such systems, the file
system is usually shared for easy data movement. However, this can be a bottleneck for
data intensive operations [177].

Deelman et al. [39] presented a simulation-based study of costs involved when ex-
ecuting scientific application workflows using Cloud services. They studied the cost
performance trade-off of different execution and resource provisioning plans, and stor-
age and communication fees of Amazon S3 in the context of an astronomy application
called Montage. They showed that for a data intensive application with a small computa-
tional granularity, the storage costswere insignificant as compared to theCPU costs. They
concluded that cloud computing is a cost-effective solution for data intensive applications.

Broberg, Buyya, & Tari [20] introduced MetaCDN, which uses ‘Storage Cloud’ re-
sources to deliver content to content creators at low cost but with high performance in
terms of throughput and response time. Data could be delivered to tasks in a workflow
using tools provided by CDN.

10http://www.opensciencegrid.org
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In our work with data intensive application workflows, we studied the performance
characteristics of a brain Image Registration workflow (IR) (Pandey et al., 2009). We exe-
cuted the application on an experimental Grid platform, Grid‘5000 [29], and profiled each
task execution and data flow. We were able to decrease the makespan of the workflow
significantly by using Grid resources. We also used partial data retrieval technique to re-
trieve data fromdistributed storage resourceswhile scheduling data intensive application
workflows (see Chapter 5). We proposed static and dynamic heuristics that incorporated
the retrieval techniques. We experimentedwith two synthetic and one real data intensive
application workflow (IRworkflow). Executionswere done using VirtualMachines (VM)
connected through a simulated network environment. Experimental results showed that
retrieving data from multiple sources significantly improves the time taken to download
data to the execution sites. Cumulative effect thus decreased the total makespan of all the
workflows.

Ramakrishnan & Reed [117] studied the impact of varying resource availability on
application performance. They applied performance analysis (i.e., a measure of the
system’s performance in the event of failures) at two levels - computational resources and
the network, to obtain the application workflow‘s overall execution time, given the failure
level of resources. They used these values to estimate task completion times during each
iteration of the workflow-scheduling algorithm. Their HYBRID approach, which takes
resource failure and repair into account, performs better than the approach that does not
take failures into account, when the failure-to-repair rates increase. Through simulation
results, they concluded that the joint analysis of performance and reliability can improve
dynamic workflow scheduling and fault tolerance strategies required for Grid and cloud
environments.

Juve & Deelman et al. [69] studied the performance and cost of using different storage
systems that could be used as data hosts during execution of scientific workflows on
Clouds. The storage systems they used for execution three workflow applications were:
Amazon S3, NFS [128], GlusterFS11, and PVFS [61]. They show the impact of type of
storage system used on the application’s runtime and cost. Specifically, they observed
that Amazon S3 provided improved performance due to the caching of data at the client
side, but performed poorly when the number of small files were large. In addition,
Amazonwould chargeper transaction for accessingfiles,whichmeant the total costwould
increase if Amazon alone was used as a storage server. In terms of performance benefit,
they observed that addition of more Cloud resources for use in workflow executions did
improve the performance, but only to a certain extent. In order to minimize total cost as
well as make use of Cloud resources, they proposed to provision a single virtual cluster
instead of large number of resources all at once, so that multiple workflows could be
executed in succession.

11http://www.gluster.org
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2.3.7 Miscellaneous

In this section, we list some technologies that have been used for enhancing the perfor-
mance of data intensive application workflows.

Semantic Technology

The myGrid project12 exploits semantic web technology to support data intensive bioin-
formatics experiments in a grid environment. The semantic description of services in RDF
and OWL is used for service discovery and matchmaking. Kepler [89] is a data-driven
workflowsystem (as describedunder the subheading “Service Based”workflows), which
allows semantic annotations of data and actors, and can support semantic transformation
of data.

Database Technology

GridDB [84] is a grid middleware based on a data centric model for representing work-
flows and their data. It uses database to store memory and process tables that store the
inputs and outputs of a program that has completed, and process state of executing pro-
grams, respectively. It provides functional data modeling language (FDM) for expressing
the relationship between programs and their inputs and outputs.

Shankar, Kini, DeWitt, & Naughton [130] have pointed out the advantages of tightly
coupling workflow management systems with data-manipulation for data intensive sci-
entific programs. They also presented a language for modeling workflows that is tightly
integrated with SQL. Data products from workflows are defined in relational format.
They use SQL for invocation and querying of programs.

2.4 Research Issues

Most workflow systems in the past focused on performance of tasks rather than data
management. The reasonmight havebeendue to clustermanagement systems and shared
storage space. But with globally distributed resources, it is a functional requirement that
these systems take into account the data flow management along with compute tasks.
Composition of workflows that enables distributed coordinated execution of globally
distributed scientific applications thus remains a challenge.

Requirements of data intensive applications can be specified using QoS parameters at
all levels of aWfMS. TomeetQoS requirements of users executing data intensive scientific
application workflows, we need to:

12http://www.mygrid.org.uk/
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• Define an architectural framework and principles for the development ofQoS-based
workflowmanagement systems,

• DevelopQoS-baseddata and tasks scheduling algorithms for scheduling e-Research
workflow applications,

• Develop efficient data transfer/retrieval mechanisms that enable parallel data trans-
fers for data intensive applications

• Integrate data aware scheduling algorithms, workflow management tools and dis-
tributed computing and storage resources seamlessly

With the advent of virtualization technologies, Cloud storage systems, content deliv-
ery networks (CDN) and so forth, it is likely that big scientific projects will start using
services provided by third parties for storing and processing application data. As com-
panies such as Amazon, IBM, and Google are proposing innovative ways to use their
huge data centers for commercial use as Cloud services, data intensive applications may
leverage their utilities and not depend on conventional, error-prone, costly and unreliable
solutions [26]. However, due to higher usage and access costs of these commercial ser-
vices, small-scale scientific projectsmay still need to rethink of deploying their application
on Clouds.

2.5 Conclusions

In this chapter, we classified and surveyed techniques for managing and scheduling data
intensive application workflows. Under each classification, there were several specific
techniques that workflow systemsuse for executing data intensive application workflows
on globally distributed resources. We listed and described each such work in detail. We
found that most systems focused on minimizing data transfers and optimally structuring
model of execution to subdue the effect of large data requirements of most scientific data
intensive applications. We also found that many systems used a combination of tech-
niques we listed to achieve higher scalability, fault tolerance, lower costs and increase
performance. A single technique alone would not suffice tominimize the effect on perfor-
mance and cost for increasing data processing requirements of scientific applications. Due
to the lack of standardization and interoperability, many of the systems were developed
in isolation. As a result, techniques for managing data for data intensive workflows were
mixed and duplicated. Nevertheless, scientific community has been able to successfully
achieve the goals of all scientific projects with promising results till date. However, as
the volume of data grows, new computing paradigms emerge, the scientific community
faces growing challenges in managing data within user specified budgets and deadlines.
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2.5. Conclusions

This chapter thus helps identify capabilities that are existing in current workflow
management systems and that should be added to enable them tomanage large scale data
intensive applications in distributed computing environments such as Grids and Clouds.
The subsequent chapters address these issues by presenting WfMS design, algorithms
and application case studies, all supported by real world scientific applications.
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3
AWorkflow Management System for Data

Intensive Applications

T
his chapter presents a workflow management system design. The first half of
the chapter describes the fundamental components of the system: the workflow
management portal, the workflow editor, the workflow engine and the workflow

monitor. It then describes the integration of the management tools with distributed
computing resources and platforms. The second half of the chapter studies two real-
world applications. It presents application characteristics and their performance analysis
on both Grid and Cloud resources.

3.1 Introduction

Scientific applications, in domains such as high-energy physics and life sciences, are
typically modeled as workflows and consist of tasks, data, control sequences and data
dependencies. The workflowmodels the underlying processes as a series of coordinated
steps that simplifies the complexity of execution and management of applications. Pro-
cessing and managing large amounts of data and tasks modeled by these workflows
require the use of a distributed collection of computation and storage facilities. Workflow
management systems are responsible for managing and executing these workflows.

According to Zhao et al. [115], scientific workflowmanagement systems are engaged
and applied to the following aspects of scientific computations: (a) describing complex
scientific procedures (using GUI tools, workflow specific languages), (b) automating data
derivation processes (data transfer components), (c) high performance computing (HPC)
to improve throughput and performance (distributed resources and their coordination),
and (d) provenance management and query (persistence components).

This chapter presents a workflow management system [102] that consists of compo-
nents that are responsible for handling tasks, data and resources taking into account users‘
QoS requirements. Its design is depicted in Figure 3.1. The architecture consists of three
major sections: (a) the user interface, (b) the core and, (c) plug-ins. The user-interface
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allows end-users toworkwithworkflowcomposition,workflowexecutionplanning, sub-
mission, and monitoring. These features are delivered through a web portal (or through
a stand-alone application that is installed at the user‘s end). Workflow composition is
done using an XML based Workflow Language (xWFL). Users define task properties and
link them based on their data dependencies. Multiple tasks can be constructed using
copy-paste functions that are a part of standard graphical interfaces. The components
within the core are responsible for managing the execution of workflows. They facilitate
in the translation of high-level workflow descriptions (defined at the user-interface using
XML) to task and data objects. These objects are then used by the execution subsystem.
The scheduling component applies user-selected scheduling policies and plans to work-
flows at various stages in their execution. The tasks and data dispatchers interact with the
resource interface plug-ins to continuously submit and monitor tasks in the workflow.
These components form the core part of the workflow engine. The Plug-ins support
workflow executions on different environments and platforms. Our system has plug-ins
for querying task and data characteristics (e.g. queryingMeta-data Services, reading from
trace files), transferring data to and from resources (e.g. transfer protocol implementa-
tions, and storage and replication services), monitoring the execution status of tasks and
applications (e.g. real-time monitoring, logs of execution, and the scheduled retrieval of
task status). The resources are at the bottom layer of the architecture and include Clus-
ters, global Grids and Clouds. The WfMS has plug-in components for interacting with
various resource management systems present at the front end of distributed resources.
Currently, the WfMS supports Aneka, PBS, Globus and fork-based middleware.

The recent progress in virtualization technologies and the rapid growth of Cloud
computing services have opened a new paradigm in distributed computing for utilizing
existing (and often cheaper) resource pools for on-demand and scalable scientific com-
puting. In order to leverage the benefits of Cloud services, our workflow management
system has tools to communicate and use this new paradigm. At the plug-in layer of
the design depicted in Figure 3.1, the resource managers may communicate with the
market maker, scalable application manager and InterCloud services for global resource
management [149].

3.2 A Workflow Management System Design

This thesis extends the workflow engine [166], an abstract model of which is given
in Figure 2.1, by implementing components and algorithms to support data intensive
workflow applications on both Grid and Cloud computing environments. In this section,
we first describe each component of the WfMS, then relate the components to a typical
life cycle of an application workflow.
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3.2.1 Components of WfMS

Figure 3.1 depicts the components of WfMS that are grouped into three layers. At the
top layer, there are user interface components. The middle layer groups the middleware
logic behind scheduling and management, and the bottom layer depicts the resources.

(a)

(b)

Figure 3.2: A workflow management portal. (a) Layered architecture of the workflow portal. (b) Activities
the portal supports.

Web-based Portal

Our WfMS provides a Web Portal as a primary interface for managing workflows. Fol-
lowing are the major functionalities that the portal supports:
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1. A workflow editor, which enables users to compose new workflows and modify
existing ones.

2. A submission page, throughwhich users can upload all necessary input files to run
a workflow including the workflow description file, credentials, and services files
(Figure 3.3 (a)) to the system.

3. Amonitoring andoutput visualizationpage,which allowsusers tomonitormultiple
workflow executions in progress. Themost commonmonitoring activity consists of
keeping track the status of each task through theworkflowmonitor, which provides
a real-time updated graphical representation of workflow tasks. The application’s
output is usually presented in the form of images (Figure 3.3 (d), 3.12 (d)), where
possible.

4. A resource information page, which shows the characteristics of all available dis-
tributed resources.

5. An application specific page, which in the current implementation provides genera-
tion of two workflow description files for two applications: Image Registration (see
Section 3.3.1) and Evolutionary Multi-objective Optimisation (see Section 3.3.2).

Although the current version of the Portal implements support for direct creation
of few applications, our design is generic to support any workflow application. Apart
from few parts of the output visualization page and the application specific page that
generates application specific output, the portal infrastructure is generic enough to allow
the porting of almost any workflow application into the portal.

Figure 3.2(a) shows a layered architecture of the WfMS portal. In the top layer,
a set of Java Server Faces (JSF) pages enable actions such as creating, submitting and
monitoring aworkflowexecution. In themiddle layer, a set of sessionbeansmanageusers’
requests, which are in turn forwarded to the back-end (bottom) layer. The infrastructure
layer handles persistence of workflow description and input files and their submission
for execution via the resource plug-in (Gridbus Broker interface shown in the Figure).
Figure 3.2(b) depicts possible user activities and their flow through the layered portal
architecture. A typical activity consists of workflow design by means of the workflow
editor, which generates a workflow description XML file. Subsequently, the description
file is loaded on the submission page, which requests the user to upload all input files
referenced in the description file. Once all files are uploaded, the submission page allows
the user to submit the workflow and subsequently monitor its progress.
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The following sub-sections describe the workflow editor, the workflow monitor, and
the workflow engine.

Workflow Editor

Figure 3.4: The workflow editor showing the Image Registration application workflow and its parameters.

The workflow editor provides a Graphical User Interface (GUI) that allows users to
create new workflow and modify existing ones utilizing the drag and drop facilities of
the interface. Figure 3.4 depicts the editor interface that displays an application workflow
and its parameters. In the editor, workflows are created graphically as a Directed Acyclic
Graph (DAG). Each node represents the computational activities of a particular task in the
workflowand a link is used to specify thedataflowbetween two tasks. Theworkflows are
based on an XML-based workflow language (xWFL). Using the editor, users can design
and create workflows for complex scientific procedures following the specifications of the
workflow language and the nature of application, starting from an XML then porting it
to the editor for visualization. Primitive users can reuse XML-based workflow files and
visualize it or edit it using the editor.

The first version of the xWFLwas proposed by Yu et al. [165] as part of her PhD thesis,
as shown in Figure 3.5(a). This thesis enhances the language by adding QoS parameters
such as: deadline and budget, as depicted in Figure 3.5(b) The deadline is specified in
seconds and the budget using real values. It also adds an option for optimization type
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(a)

(b)

Figure 3.5: (a)The extended version of the xWFL schema. (b) The schema for QoS definition.

while scheduling tasks, so that users can choose between time and cost or let the system
decide when none is specified. Our current implementation facilitates the user to specify
the QoS parameters for each task separately. The scheduling system grants preferences
(based on the scheduling policy used) to the values provided by the user than the values
generated by the algorithm at run-time. This separation becomes effective when user
themselves identify the critical tasks in the workflow before submission for execution.

Figure 3.6 shows the schema of task and link definition using xWFL. < task > repre-
sents a node in the workflow, which is a set of instructions to be executed in a resource.
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<?xml version="1.0" encoding="UTF-8"?>
<workflow xmlns="http://schemas.cloudbus.org/xwfl/2009/03/xwfl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.cloudbus.org/xwfl/2009/03/xwfl">
<tasks>

<task name="bet1" paramsweep="false">
<paras>

<para name="X" type="integer" domain="range">
<range from="1" to="1" type="step" interval="1" />

</para>
</paras>
<executable>

<name value="bet1" I_OModel="many_many" />
<service serviceID="a1" />
<input>

<port number="0" type="file" value="$Xhires.img" arg="false" />
<port number="1" type="file" value="$Xhires.hdr" arg="true" />
<port number="2" type="msg" value="$Xbhires" arg="true" />
<port number="3" type="msg" value="-R" arg="true" />
<port number="4" type="file" value="$Xhires.hdr" arg="false" />

</input>
<output>

<port number="5" type="file" value="$Xbhires.hdr" />
<port number="6" type="file" value="$Xbhires.img" />

</output>
</executable>

</task>
<task name="fslmaths1" paramsweep="false">

<paras>
<para name="X" type="integer" domain="range">

<range from="1" to="1" type="step" interval="1" />
</para>

</paras>
<executable>

<name value="fslmaths1" I_OModel="many_many" />
<service serviceID="a2" />
<input>

<port number="0" type="msg" value="$Xbhires" arg="true" />
<port number="1" type="msg" value="$Xbhires" arg="true" />
<port number="2" type="msg" value="-odt" arg="true" />
<port number="3" type="msg" value="short" arg="true" />
<port number="4" type="file" value="$Xbhires.hdr" arg="false" />
<port number="5" type="file" value="$Xbhires.img" arg="false" />

</input>
<output>

<port number="6" type="file" value="$Xbhires.hdr" />
<port number="7" type="file" value="$Xbhires.img" />

</output>
</executable>

</task>
</tasks>

<links>
<link>

<from task="bet1" port="5" />
<to task="fslmaths1" port="4" />

</link>
<link>

<from task="bet1" port="6" />
<to task="fslmaths1" port="5" />

</link>
<link>

<from task="fslmaths1" port="6" />
<to task="makeaheader1" port="0" />

</link>
<link>

<from task="fslmaths1" port="7" />
<to task="makeaheader1" port="8" />

</link>
<link>

<from task="makeaheader1" port="9" />
<to task="alignlinear1" port="5" />

</link>
<link>

<from task="makeaheader1" port="10" />
<to task="alignlinear1" port="6" />

</link>
<link>

<from task="alignlinear1" port="7" />
<to task="definecommonair" port="6" />

</link>
<link>

<from task="alignlinear1" port="8" />
<to task="definecommonair" port="7" />

</link>
<link>

<from task="alignlinear1" port="9" />
<to task="definecommonair" port="8" />

</link>
</links>

</workflow>

(a) (b)

Figure 3.6: Defining task and links in an IRworkflow using xWFL. (a) A task definition. (b) Definition for
links to define data precedence between tasks. TheDAG of this workflow description is given in AppendixA.

The element < executable > is used to define the information about the task, correspond-
ing I/O model as well as the input and output data. xWFL supports both abstract and
concrete workflows. For defining concrete workflows, the users can specify the location
of a particular compute service that provides the required application executable using
< service > element. For defining abstract workflows, users can use a service category
to direct the engine to identify providers dynamically at run-time. The < input > and
< output > elements are used to define the input and output data of a task, respectively.
Each data is associated with a unique port number of that task. These port numbers are
used for linking the output of one task to the input of their children tasks. Input values
can be both file and message. The element < links > is a set of definitions that define the
dependencies between tasks in a workflow. Each < link > defines a source task using the
f rom tag and the destination task using the to tag. If there are multiple file dependencies,
the port number is used to distinguish each file from another.

The workflow editor provides the following advantages to the users:

Portal-based editor: As the workflow editor is embedded as an online tool in the
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workflow portal, users do not have to download or install any client side components.
Users can create, edit and save their workflows in the server and can access them from
anywhere and whenever required. Moreover, the interface is compatible with all Internet
browsers that support Java, which enables users to access the interface even using mobile
devices.

Hiding complexity: The underlying structure of workflows is represented using XML,
which is parsed by the workflow engine. However, representing workflows in XML
description demands advanced skill from workflow designers which involves thorough
understating of the workflow language e.g. xWFL, and expertise of managing XML files
from various namespaces. The workflow editor hides these complexities from scientists
and researchers by providing a GUI. Users only need to draw boxes for tasks and lines for
connecting them, and specify their properties for every task and links. The editor compiles
the graphical representation and generates the XML description of the workflow in the
background. Advanced users can use both the graphical interface and the XML code to
manipulate the workflow definition.

Ease of use: Theworkfloweditor provides adraganddrop facility todraw theworkflow
using boxes and lines. The common edit operations such as cut, copy, paste are applicable
for all tasks and links. This means, whenever users need to replicate parts of a complex
workflow, they just need to select the desired part, copy and paste it on the same editor
window. The editor also supports usual file operations such as create, open and save.
Furthermore, users can check the executable services as a list, as shown in Figure 3.4.
There is also a functionality to save the graphical representation of the workflow as an
image for use in presentation slides.

Interoperability: The editor can generate the graphical representation of the workflow,
as a DAG, from a XML description file that follows the xWFL schema. Thus, if any user
creates a workflow and saves it as XML file, any other user can reuse that by opening it
using the workflow editor or other XML editors, and modify according to their needs.

WorkflowMonitor

Theworkflowmonitor provides a GUI for viewing the status of each task in theworkflow.
Users can easily view the ready, executing, stage-in, and completed tasks as depicted in
Figure 3.7. Themonitor is being implemented as aportal based tool aswell as a standalone
application. Task status is represented using different colors codes: blue represents
completed task, green represents task are in execution, yellow represents input files are
staged, and cyan represents the task is ready for submission for execution. Users can also
view the site of execution of each task, the number of tasks being executed (in case of
a parameter sweep type of application) and the failure history of each task by hovering
the mouse pointer on top of the task of interest. This information is displayed on a
rectangular window with the task name as the title, the server where it is executing, and
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(a) (b)

Figure 3.7: (a)A portal based workflow monitor showing the status of tasks of the IR workflow application.
(b) A workflow monitor standalone application.

its execution status as shown in Figure 3.7 for the task f slmaths2. The workflow structure
is made editable for users such that they can drag tasks and group or separate tasks of
interest into blocks. This is very useful when there are numerous tasks in the workflow.
Users can also use the zoom-in and zoom-out functions to visualize each task or the entire
workflow.

The monitor interacts with the workflow engine using an event mechanism by using
the tuple space model. In the back-end, a database server stores the states of each task for
each application workflow. Whenever any task changes state, the monitoring interface
is notified and the status values are displayed at run-time. This enables multiple users
to access the monitoring interface using different computers from several locations either
using a portal or the standalone application. The monitoring interface does not have
support for deletion and insertion of individual tasks at run-time.

Workflow Engine

Scientific application portals submit task definitions along with their dependencies in the
form of the workflow language to the Workflow Engine (WE). Then the WE schedules
the tasks in the workflow application through the middleware services and manages the
execution of tasks on distributed resources. The key components of theWE are: workflow
submission, workflow language parser, resource discovery, dispatchers, data movement
and workflow scheduler.

The workflow engine is designed to support an XML-based WorkFlow Language
(xWFL). This facilitates user level planning at the submission time. The workflow lan-
guage parser converts workflow description from XML format to objects such as: Tasks,
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Parameters, Data Constraint (workflow dependency), etc., that can be accessed by the
workflow scheduler. The resource discovery component queries the information services
such as Globus MDS, directory service, market directory, and replica catalogs, to locate
suitable resources for execution of the tasks in the workflow by coordinating with mid-
dleware technologies such as Gridbus Broker [152]. Our WE uses the Gridbus Broker as
one of the middleware technologies for deploying and managing task execution on var-
ious other middleware. Gridbus Broker as a middleware mediates access to distributed
resources by (a) discovering resources, (b) deploying andmonitoring task executionon se-
lected resources, (c) accessing data from local or remote data source during task execution,
and (d) collating and presenting results.

The WE has been significantly enhanced to support interaction with web-services
hosted by Cloud computing service providers such as Amazon. It also has plug-ins
for interacting with Aneka [147]. Figure 3.8 depicts the interaction of WE with Aneka
using Simple Object Access Protocol (SOAP). Aneka exposes its task submission interface
service using its web services. The WE encapsulates a workflow task inside a SOAP
request and submits it to Aneka. Aneka manages these tasks on its own set of resources
using its own scheduling algorithm. However, the choosing of the tasks for submission
is based on the scheduling algorithm implemented in the he WE.
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Figure 3.8: The workflow engine interacting with Aneka web services using SOAP request/response.

The workflow engine is designed to be loosely-coupled and flexible by using a tuple
spaces model, event-driven mechanism, and subscription/notification approach in the
workflow scheduler, which is managed by the workflow coordinator component. The
workflowexecutor is the central component inWE.With the help fromdispatcher compo-
nent it interactswith the resourcediscovery component tofind suitable compute resources
at run time, submits a task to resources, and controls input data transfer between task
execution nodes.

The basic functionality of submitting workflow tasks to distributed resources was
developed by Jia Yu [165] as part of her PhD thesis. Previously, all workflow tasks were
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executed inside a single workflow coordinator. The threadmodel that existed in previous
version of the WE could not handle increasingly large number of workflow tasks. In
addition, when tasks required large size data to be staged-in, tasks would time-out and
got resubmitted. Fault tolerance of theworkflowwas limited to only the tasks. This thesis
enhances the WE design by making the following changes:

1. Addition of thread pooling for handling large number of tasks when using both
single and multiple workflows.

2. Robust failure handling when transferring large sized input/output data files for
every task.

3. Implementedmultiple transfer protocolswhen transferringdatabetweendistributed
resources such as SFTP, GridFTP and HTTP.

4. Mechanism to transfer outputfiles of every task to a storage resource that is different
than the compute resource where the task was executed.

The addition of thread pooling enabled queuing of tasks in the workflow as opposed
to a suspended thread that existed in the previous design. Queuing of tasks does not
consume memory and are thus manageable for large number of tasks. Whereas, creating
execution threads for every task and keeping their state in memory proved to be memory
inefficient for large number of tasks, which resulted in frequent ‘out of memory’ errors.
The pooled threads limited the number of tasks being submitted for scheduling based on
the number of resources available to the WE. The threshold for a thread pool that limited
the number of tasks pooled for scheduling, is determined at run-time by the WE. As a
result, there exists several pools for each application workflow handled by the WE, as
shown by the layers inside the workflow scheduler component in Figure 3.1.

Any task in a data intensive workflowmay handle large sized data files at both input
and output stages of its execution. In order to prevent premature task failure due to time-
outs during data transfers between resources, we implemented a fail-safe mechanism that
accounts and keeps track of data transfers. In case of failure, our mechanism re-transfers
the segments that failed to transfer in the past. As all the scheduling algorithm imple-
mented in the WE are based on partial data transfers from multiple data sources, record
keepingof data segment transferswas implementedby thedata provenance recorder. The
data movement component of WE enables data transfers between distributed resources
by using SFTP, GridFTP or HTTP protocols.

We have a mechanism to specify the location to store the intermediate output data
for every task in a workflow. For data intensive applications, data may not be stored
in the compute nodes where the task finished execution due to their size. So we store
them in storage locations specified by the user. For those applications that do not need
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tertiary storage, the compute node that executes the tasks may store the data locally
until the workflow finishes execution. Depending on the user’s requirements, data can
then be either migrated to a centralized server after the execution or deleted from the
compute nodes entirely. This configuration is also set by the user before the workflow
starts executing. The data provenance recorder handles the transfer and indexing of these
data in case they are stored in tertiary storage resources.

In our current implementation, we handle failures by resubmitting the tasks to re-
sources that do not have failure history for those tasks. Task resubmission and task
duplication have been one of the commonly used techniques for handling failures.

Algorithm 1 Just-In-Time Scheduler
1: for each root task ti ∈ Troots do
2: Assign ti to an available compute resource ck
3: end for
4: repeat
5: for all ti ∈ Tnonroots do
6: Assign ready task ti to any available compute resource ck
7: end for
8: Dispatch all the mapped tasks
9: Wait for POLLING TIME
10: Update the ready task list
11: until there are unscheduled tasks in the ready list

As basic scheduling policy, theWEhas a just-in-time scheduler that allows the resource
allocation decision to be made at the time of task submission. Algorithm 1 lists the
scheduling algorithm. Tasks at the top level (that have no parent) are assigned to first
available resources (that have not exceeded their job limit and are accepting tasks for
execution). Tasks become ready as a result of their parents finishing execution and
producing valid data. A list is formed to store all tasks. This list is updated during
the polling time. The scheduler then assigns these ready tasks to resources based on
the availability of each resource. The optimum choice for polling time depends on the
number of tasks in the application, resource management policies, scheduler overhead
etc, which is configurable by the user before executing any workflow application. In
addition to the just-in-time scheduler, the WE also implements a random and round-
robin scheduling policies as basic policies. All other scheduling policies that are designed
for data intensive applications (and are major contributions of this thesis) are described
in subsequent chapters.

The next subsection describes a process of constructing and executing an application
workflow relating to the set of tools described above.
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Figure 3.9: A workflow deployment cycle.

3.2.2 Workflow Deployment Cycle

A scientific application needs to be modeled in the form of a workflow before it can take
the advantage of coordinated executions on distributed resources. There are a series of
steps a workflow designer follows, which we term as the “life cycle” of deployment of
the workflow.

The life cycle of deployment of a workflow is depicted in Figure 3.9. In the input
phase, scientists provide the designer input data, batch scripts for execution, sample
output files, and application requirements in a form they have been using at their end.
In order to run the application on distributed heterogeneous resources, the executables
are required to be compiled and installed (can be submitted at runtime) at both remote
and local sites. This step involves linking the bash scripts to related libraries for different
platforms and installing dependent utilities. After the application has been installed,
the initial results verification step involves the testing of conformance of the execution
with that of the sample results provided by the scientists. Once the initial results are
verified for correctness, the workflow structure and its details are ready for composition
in the designing phase. The design phase involves constructing the workflow structure
by grouping tasks, linking them based on data dependencies and labeling input/output
data for data provenance. Usually, after the structure has been finalized, an automated
generation tool is used for generating the workflow structure as both an XML document
and graphical structure.

In the Execution phase of the life cycle, the designer sets up the distributed resources
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used during the large scale deployment of the application, very similar to the initial com-
pilation and installation done during the input phase. The resource list, its credentials
and the services provided by each resource need to be inserted into the system catalog
for the workflow engine’s use. When experiments are conducted repeatedly over time,
resource availability and conditions will have changed. This requires services and cre-
dentials list to be generated for each execution with the help of the catalog. Once the
resources and catalog are setup, the application is ready for execution on the available
resources. Usually debugging and testing is donewhile the application is being executed,
but this depends on the software development process being used at the production site.
Depending on the analysis of the results from the output phase, the workflow design is
further optimized based on the requirements and feedback from the user. These are the
basic steps involved in constructing most of the scientific workflows.

The workflow management system depicted in Figure 3.1 facilitates a workflow de-
signer at every stage of the deployment life cycle. After the designer gets hold of the
application and its data, the workflow editor helps him to construct the workflow, edit it
and automate it as per the requirements. The editor’s DAG to XML conversion feature
helps in automating the construction of the workflow. The portal based workflow cre-
ation, service entries, submission, monitoring and output visualization aids in the design,
execution, verification and optimization of the workflow.

3.2.3 Integrating Workflow Engine with Grids and Clouds

Figure 3.10 presents a high-level architectural view of a workflow management system
utilizing local and Cloud resources to drive the execution of a scientific workflow appli-
cation.

Local and Grid resources are physical resources that are usually shared among its
users and are accessed by using the local resource management system. However, Cloud
services vary in the levels of abstraction, and hence the type of service they present to
application users. Infrastructure virtualization enables providers such as Amazon to
offer virtual hardware for use in compute and data intensive workflow applications.
Platform-as-a-Service (PaaS) expose a higher-level development and runtime environ-
ment for building and deploying workflow applications on Cloud infrastructures. Such
services may also expose domain specific concepts for rapid-application development.
Further up in the Cloud stack are Software-as-a-Service providers who offer end-users
with standardized software solutions that could be integrated into existing workflows.

User applications could only use Cloud services or use Cloud together with existing
Grid/cluster based solutions. Figure 3.10 depicts two scenarios, one where the Aneka
platform is used in its entirety to provide the workflow compute and storage resources,
and the other where Amazon EC2 is used to supplement a local cluster when there are
insufficient resources to meet the QoS requirements of the application. Aneka [147], is a
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Platform-as-a-Service Cloud and can be run on a corporate network, a dedicated cluster
or hosted entirely on an IaaS Cloud. Given limited resources in local networks, Aneka
is capable of transparently provisioning additional resources by acquiring new resources
in third party Cloud services such as Amazon EC2 to meet application demands. This
relieves the WfMS from the responsibility of managing and allocating resources directly
by simply negotiating the required resources with Aneka. Aneka also provides a set
of web services for service negotiation, job submission and job monitoring. The WfMS
would orchestrate the workflow execution by scheduling jobs in the right sequence to the
aneka web services.

The typical flow of events when executing an application workflow on Aneka would
begin with the WfMS staging in all required data for each job onto a remote storage
resource, such as Amazon S3 or an FTP server. In this case, the data would take the form
of a set of files, including the application binaries. This data can be uploaded by the user
prior to execution, and stored in storage facilities offered by Cloud services for future
use. The WfMS then forwards workflow tasks to Aneka‘s scheduler via the web service
interface. These tasks are subsequently examined for requiredfiles and the storage service
is instructed to stage them in from the remote storage server, so that they are accessible
by the internal network of execution nodes. The execution begins by scheduling tasks
to available execution nodes (also known as worker nodes). The workers download any
required files for each task they execute from the storage server, execute the application,
and upload all output files as a result of the execution back to the storage server. These
files are then staged out to the remote storage server so that they are accessible by other
tasks in the workflowmanaged by the WfMS. This process continues until the workflow
application is complete.

The second scenario describes a situation in which the WfMS has greater control over
the compute resources and provisioning policies for executing workflow applications.
Based on user specified QoS requirements, the WfMS schedules workflow tasks to re-
sources that are located at the local cluster and in the Cloud. Typical parameters that
drive the scheduling decisions in such a scenario include deadline (time) and budget
(cost) [103; 168]. For instance, a policy for scheduling an application workflow at mini-
mum execution cost would utilize local resources and then augment them with cheaper
Cloud resources if needed, than using high-end butmore expensiveCloud resources from
start. On the contrary, a policy that scheduled workflows to achieve minimum execution
time would always use high-end cluster and Cloud resources, irrespective of costs. The
resource provisioning policy determines the extent of additional resources to be provi-
sioned on the public Clouds. In this second scenario, the WfMS interacts directly with
the resources provisioned. When using Aneka, however, all interaction takes place via
the web service interface.
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Figure 3.10: Integration of workflow engine with Grids and Cloud

Tools for Utilizing Cloud Services

As the WfMS is broken down into components to be hosted across multiple Cloud re-
sources, we need a mechanism to access, transfer and store data, enable and monitor
executions that can utilize this approach of scalable distribution of components. The
Cloud service provider may provide APIs and tools for discovering the VM instances
that are associated to a user’s account. As various types of instances can be dynamically
created, their characteristics such as CPU capacity, amount ofmemory available, etc., are a
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part of the Cloud service provider’s specifications. Similarly, for data storage and access,
a Cloud may provide data sharing, data movement and access rights management capa-
bilities to user’s applications. Cloudmeasurement toolsmay be in place to account for the
amount of data and computing power used, so that users are charged on the pay-per-use
basis. AWfMS now needs to access these tools to discover and characterize the resources
available in the Cloud. It also needs to interpret the access rights (e.g. Access Control
Lists provided by Amazon), use the data movement APIs and sharing mechanisms be-
tween VMs to fully utilize the benefits of moving to Clouds. In other words, traditional
catalog services such as the GlobusMonitoring andDiscovery Service (MDS) [51], Replica
Location Services, Storage Resource Brokers, Network Weather Service [155], etc, could
be easily replaced by more user-friendly and scalable tools and APIs associated with a
Cloud service provider.

Figure 3.11: The workflow system utilizing various Cloud services.

The range of tools and services offered by Cloud providers play an important role in
integrating WfMSs with Clouds. Such services can facilitate in the deployment, scaling,
execution and monitoring of workflow systems. This section discusses some of the tools
and services offered by various service providers that can complement and support the
WfMS.

The WfMS manages dynamic provisioning of compute and storage resources in the
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Cloud with the help of tools and APIs provided by service providers. The provisioning
service is required to dynamically scale out/in according to application requirements.
For instance, data intensive workflow applications may require large amount of disk
space for storage. The WfMS could provision dynamic volumes of large capacity that
could be shared across all instances of VMs (similar to snapshots and volumes provided
by Amazon). Similarly, for compute intensive tasks in a workflow, the WfMS could
provision specific instances that would help accelerate the execution of these compute-
intensive tasks.

A persistence mechanism is often important in workflow management systems, for
managing meta-data such as available resources, job queues, job status, and user data
including large input and outputfiles. Technologies such asAmazon S3, Googles BigTable
and the Windows Azure Storage Services can support most storage requirements for
workflow systems, while also being scalable, reliable and secure.

The current version of the WfMS implements dynamic provisioning of compute re-
sources in the Amazon Cloud using Amazon’s APIs. This provisioning rule depends on
several factors: the application being scheduled, the number of VM instances running,
user’s QoS, and so forth. Hence, it is implemented within the scheduling component of
the WE. The persistence of data is handled using Amazon S3, where data can be stored
as binary files inside buckets.

Most Cloud service providers also offer services and APIs for tracking resource usage
and the costs incurred. This can complement our workflow system that support budget
based scheduling by utilizing real time data on the resources used, the duration and the
expenditure. This information can be used for both, making scheduling decisions on
subsequent jobs and billing the user at the completion of the workflow application .

Cloud services such as Google App Engine and Windows Azure provide platforms
for building scalable interactive web applications. This makes it relatively easy to port
the graphical components of a workflow management system to such platforms while
benefiting from their inherent scalability and reduced administration. For instance, such
components deployed on Google App Engine can utilize the same scalable systems that
drive Google applications, including technologies such as BigTable [31] and GFS [57].

3.3 CaseStudies: ExecutingReal-WorldApplicationsusingWfMS

Nowadays many scientific experiments such as climate modeling, structural biology
and chemistry, neuroscience data analysis, and disaster recovery are conducted through
complex and distributed scientific computations that are represented and structured as
scientific workflows [58]. Representing these application in the form of a workflow
highly simplifies the layout of individual or a group of components of the application as
compared to the raw form (usually scripts).
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Scientific workflows usually need to process a huge amount of data and are computa-
tionally intensive activities. Neuroscience data analysis is one such application that has
been a focus of much research in recent years (NIFTI, BIRN). With the use of the addi-
tional capacity offered by distributed resources and suitable middleware technologies,
we can achieve much shorter execution time, distribute compute and storage load, and
add greater flexibility to the execution of these scientific applications than we could ever
achieve in a single compute resource.

This section describes two real-world applications that are used as a case study to
demonstrate the functionality ofWfMS and also test it on real platforms. The applications
are: Image Registration (IR) for Functional Magnetic Resonance Imaging (fMRI) and
distributed Evolutionary Multi-objective Optimization.

First,we present the processing of IR for fMRI studies. We characterize the application,
list its requirements and then transform it to a workflow. We use the WfMS for executing
the neuroscience application on Grid’5000 platform and present extensive performance
results. We show that the IR application can have 1) significantly improved makespan, 2)
distribution of compute and storage load among resources used, and 3) flexibility when
executing multiple times on Grid resources. Then we execute the same application using
Cloud resources and compare the time and cost of execution onGrid andCloud resources,
in turn.

Second, we present a distributed version of the Evolutionary Multi-objective Opti-
mization algorithm bymodeling it as a workflow. UsingWfMS as the workflowmanager
and Aneka as Cloud platform, we parallelize the computation of the workflow using
Amazon EC2 resources. We also present experiments where compute resources are dy-
namically provisioned to handle increasing number of tasks for every added iteration
cycle.

3.3.1 Image Registration for fMRI Applications

The neuroscience data analysis application, we present in this subsection, has several
tasks that need to be structured according to their data dependencies for correct execution.
Both the data and computation requirements are very high, depending on the number
of subjects analyzed. Given the typically large number of subjects’ data being analyzed,
it takes significant amount of time for this application to produce results when executed
as a sequential process on limited resources. Moreover, scientists may need to re-run the
applicationbyvarying run-timeparameters. Often researchers andusers around the globe
may share the results produced. To facilitate these requirements such as high compute
power, repeated experiments, sharing of data and results, this application may leverage
the power of distributed resources presented by platforms such as Grids. By executing
this application on distributed resources execution time can be minimized, repeated
executions can be performedwith little overhead, reliability of execution can be increased,
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and resource usage can be distributed. It is a very demanding task for researchers to
handle these complex applications directly on Global Grids without proper management
systems, interfaces, and utilities. Therefore, user friendly systems are increasingly being
developed to enable e-scientists to integrate, structure and orchestrate various local or
remotedata and service resources to performscientific experiments to produce interesting
scientific discoveries.

A scientific workflowmanagement system is one of the popular approaches that pro-
vide an environment for managing scientific experiments, which have data dependent
tasks, by hiding the orchestration and integration details inherent while executing work-
flows on distributed resources. Our WfMS is one such workflow management system
that aids users (scientists) by enabling their applications to be represented as a workflow
and then execute on the Grid from a higher level of abstraction. The WfMS provides
an easy-to-use workflow editor for application composition, an XML-based workflow
language for structured representation, and a user-friendly portal with discovery, mon-
itoring, and scheduling components that enables users to select resources, upload files
and keep track of the application’s progress, as described earlier in this chapter.

Our main contributions when executing this application are as follows:

1. representation of a brain imaging application in the form of a workflow.

2. characterization of the tasks of brain imaging application workflow in terms of data
and computational requirements.

3. design and implement a tool set to manage a complete life cycle of the IR workflow
and execute it on distributed resources using the WfMS.

4. a performance evaluation of the workflow execution on the Grid’5000 and Cloud
computing platforms.

5. present performance results that could directly assist neuro scientists using brain
imaging technology in clinical areas such as epilepsy, stroke, brain trauma and
mental health.

A Scenario and Requirements

Image registration is a brain imaging technique. We describe the Image Registration
(IR) procedure as a Scientific Workflow Application. We construct the IR workflow and
describe each of its tasks, and then tabulate the requirements of executing each task in
the workflow.

fMRI and IR: fMRI attempts to determine which parts of the brain are active in
response to some given stimulus. For instance, a person (referred as subject in this thesis),
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(a) Berkeley's 4T fMRI scanner. (b) Subject's Brain Image before IR (c) Subject's Brain Image after IR

(d) Comparison of Image fit with the Standard Image(e) Further fMRI analysis 

Figure 3.12: Image Registration process under fMRI studies.

in the Magnetic Resonance (MR) scanner, would be asked to perform some tasks, e.g.,
finger-tap at regular intervals. As the subject performs the task, researchers effectively
take 3-DMR images of his brain. The goal is to identify those parts of the brain responsible
for processing the information the stimulus provides. This enables doctors and medical
scientists to carry on further analysis of the brain or spinal cord of humans or other
animals across multiple datasets acquired with different protocols and MR scanners.

IR is ubiquitous in fMRI analysis, especially in the case of multi-subject studies. IR is
the process of estimating an optimal transformation between two images, also known as
“Spatial Normalization” in functional neuroimaging [110]. When registering images we
are determining a geometric transformation, which aligns one image to fit another. The
aim is to establish a one-to-one continuous correspondence between the brain images of
different individuals. The transformation will reduce the anatomical variability between
high-resolution anatomical brain images from different subjects. This enables analysts to
compute a single activation map representing the entire group of subjects or to compare
the brain activation between two different groups of subjects.

The IR procedure and its relation to fMRI is depicted in Figure 3.12. The scanner
acquires high-resolution images of each subject’s brain. Due to subject movements, the
images can be oriented in different positions at the time of scanning. One such image of
a subject before registration is shown in Figure 3.12 (b). The registration process ensures
that all the images of different subjects are normalized against a standard image and in
a common 3D space. The normalized image of the subject is shown in Figure 3.12 (c).
After normalization, the subject’s normalized image is compared with the atlas (reference
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image) for the quality of fit. This comparison is shown in Figure 3.12 (d). The workflow
studied in this section, first produces the atlas, then produces the comparison image
(Figure 3.12 (d)) as output for each subject.
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Figure 3.13: Image Registration Workflow.

Application Description: The IR procedure, expressed as a scientific workflow is
shown in Figure 3.13. The tasks are linked according to their data dependencies. Indi-
vidual tasks that form the workflow are described below1 [135].

BET: (Brain Extraction Tool) deletes non-brain tissue from an image of the whole head
and extracts brain’s image.

1http://bishopw.loni.ucla.edu/AIR5/index.html
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FSLMATHS: allows mathematical manipulation of images.

MAKEAHEADER: generates a header (.hdr) file based on the parameters (type, x-y-z
dimensions and size).

ALIGNLINEAR: is a general linear intra modality registration tool. Any image can
be aligned to a representative with a transformation model using alignlinear. It
generates .air files that can be used to reslice the specified reslice data set to match
the specified standard data set. We use affine 12-parameter full-afine model.

DEFINECOMMONAIR: defines new .air files with a new standard file that defines the
“average” position, size and shape of the various reslice files.

RESLICE: takes a .air file and uses the information that it contains to load the corre-
sponding image file and generate a new, realigned file.

SOFTMEAN: averages together a series of files.

ALIGN WARP: compares the reference image to determine how the new image should
be warped, i.e. the position and shape of the image adjusted, to match the reference
image. It is a nonlinear registration tool that generates a .warp file that can be used
to reslice the specified reslice data set to match the specified standard data set.

RESLICE WARP: takes a .warp file and uses the information that it contains to load the
corresponding image file and generate a new, realigned file.

FLIRT: performs affine registration. It produces an output volume, where the transform
is applied to the input volume to align it with the reference volume (atlas created in
previous steps).

SLICER: takes 3D image and produces 2D pictures of slices.

PNGAPPEND: processes addition/subtraction of .png images.

Application Requirements: According to Zhao et.al [176], in a typical year the
Dartmouth Brain Imaging Center about 60 researchers pre-process and analyze data from
about 20 concurrent studies. The raw fMRI data for a typical study would consist of
three subject groups with 20 subjects per group, five experimental runs per subject, and
300 volume images per run, yielding 90,000 volumes and over 60 GB of data. Intensive
analysis begins once the images are processed. IR forms a part of the image pre-processing
step using only the high-resolution data, which represents a minor portion of the entire
workflow’s execution time.

Table 3.1 summarizes the characteristics of each task in the IR workflow. It lists each
task, its input files and sizes, its average computation time (w̄i) on a single machine,
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Table 3.1: Characteristics of tasks for a single subject’s IR.
note: X = hires, ‘–’ = not applicable (depends on #of subjects),
taskname(*) = same task but different execution instance, N = subject index (N ∈ Z)
# Task Name Input Files Source Tasks Size of i/p (MB) w̄i(sec) σ
1 bet(1) X.{hdr,img} Staging

server
16 45 11.91

2 fslmaths bX.{hdr,img} bet(1) 16 1 0.42
3 makeaheader bX.{hdr,img} fslmaths 16 � 1 –
4 alignlinear(1) bX.{hdr,img} fslmaths 16 2 0.47
5 definecommonairX.air,

bX.{hdr,img}
alignlinear(1) 16 94 –

6 reslice X.air.aircommon,
bX.{hdr,img}

definecommonair 16 5 0.5

7 softmean(1) X-
reslice.{hdr,img}

reslice 20 140 –

8 alignwarp(1) atlas-
linear.{hdr,img},
X-
reslice.{hdr,img}

softmean(1) 40 971 620.17

9 reslicewarp(1) atlas-
linear.{hdr,img},
X-
reslice.{hdr,img,warp}

alignwarp(1) 40 9 1.88

10 softmean(2) X-reslice-
warp.{hdr,img}

reslicewarp(1) 20 111 –

11 bet(2) atlas.{hdr,img} softmean(2) 20 11 1.5
12 alignlinear(2) bX.{hdr,img}, at-

las.{hdr,img}
definecommonair,
softmean(2)

36 23 10.25

13 alignwarp(2) X.air, at-
las.{hdr,img},
bX.{hdr,img}

alignlinear(2) 36 2656 1501

14 reslicewarp(2) bX.{hdr,img,warp} alignwarp(2) 16 9 1.88
15 bet(3) nX.{hdr,img} reslicewarp(2) 16 15 1.3
16 flirt batlas.{hdr,img},

nbX.{hdr,img}
bet(2), bet(3) 56 6 0.44

17 slicer(1) batlas.{hdr,img},
N-fit.{hdr,img}

bet(2), flirt 80 8 0.44

18 pngappend(1) {sla,slb,...,slk,sll}.pngslicer(1) 0.3 4 0.51
19 slicer(2) batlas.{hdr,img},

N-fit.{hdr,img}
bet(2), flirt 80 8 0.44

20 pngappend(2) {sla,slb,...,slk,sll}.pngslicer(2) 0.3 4 0.28
21 pngappend(3) {N-fit1, N-

fit2}.png
pngappend(1),
pngap-
pend(2)

0.8 4 0.28

22 OUTPUT N-fit.png pngappend(3) (o/p size) 0.8
Average data volume and computation time: 558.2 MB ∼69min

and standard deviation (σ) computed over 40 subjects on a set of 10 random machines
in Grid’5000 [29]. The random machines chosen did not vary much in their processing
powers. The high values of standard deviation (σ) for certain tasks can be explained by
examining the nature of the operation of that task. In this application, tasks having longer
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execution time have higher values of deviation. The execution time also depends on the
orientation of the image to be aligned.

A complete execution of the workflow of 40 subjects on a single CPU with single
core (without local load) takes two and a half days to complete. The total storage space
needed for the complete execution of 40 subjects exceeds 20GB on a single machine
when the intermediate files are retained. Moreover, the computation time and storage
requirements limit the number of subjects that can be used for execution at one time on a
single machine.

When the application is executed on distributed resources with no resource scarcity
the application should take as much time to execute all the subjects as a single machine
would take to execute a single subject workflow without local load. However, the real
execution time is higher than the ideal case (∼69 minutes) for 1 subject as shown in Table
3.1, due to the significant amount of time taken to transfer the intermediate files from
one resource to another. We can decrease the transfer time by allowing multiple tasks to
run on a single machine (grouping of tasks). Also, the synchronizing tasks take longer to
execute when there are more subjects. The coordination time taken by the middleware
also adds to the overall increase in total execution time.

Application to End-users and Challenges: In an effort to improve the quality of
image registration and toprovide clean, high-resolution images for 3Ddisplay, researchers
have been collecting multiple T1-weighted structural MRI volumes. Recent projects have
used up to four of these volumes per subject. The resulting average volume can then
be combined with the larger subject population in order to produce the probabilistic
atlas. In additional to these anatomically derived processes researchers have begun
experimenting with the use of methods that will use functional information to register
data collected in a time-series. The introduction of new protocols and the acquisition
of multiple high-resolution volumes have increased both the time to acquire and pre-
process a typical study. In order to facilitate these new methods imaging centers will
need to provide additional data storage and compute capacity. These centers will most
likely need to create a shared database of subjects, along with the increased variety of
imaging modalities collected, and to expose to individual investigators themethods used
to calculate average structural volumes.

Typical fMRI experiments have between twenty and thirty subjects with some having
over fifty subjects. A number are removed from the analysis, often due to excessive
head movement that image registration algorithms are unable to correct for. While the
image registration application described in this chapter makes use of only a single high-
resolution volume per subject, the addition of several more volumes would be trivial.
Doing such would enable both a cleaner volume for the subject as well as a tighter fit
to the atlas. Processes such as these are often repeated many times with spot checks at
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critical points, such as during the first average. In the case of a poor fit to the atlas, or
an outlier distorting the overall registration, modifications can be made to the workflow.
These modifications might include to the rejection of a subject or a change in application
parameters.

Experimental Evaluation

The IR application together with WfMS was demonstrated at the First IEEE International
Scalable Computing Challenge (SCALE 2008) in conjunction with CCGrid 2008, May
19-22, 2008, using resources provided by SUNY at Binghamton and the University of
Melbourne. The application was also demonstrated at the Fourth IEEE International
Conference on e-Science, December 10-12, 2008. The results presented in this section are
from the executions of the application onGrid’5000 [29]. We nowdescribe the experiment
setup, results obtained, and observations.

Table 3.2: Grid’5000 sites used; # cores (n), # tasks (t) executed and average computation time (C̄) (in
seconds) taken on each site for each experimental group.

Site
Name

10Sub 10Sub (G) 20Sub 20Sub (G) 40Sub 40Sub (G)
#n #t C̄ #n #t C̄ #n #t C̄ #n #t C̄ #n #t C̄ #n #t C̄

bordeaux 32 19 189 16 10 83 20 58 141 0 0 0 20 114 235 62 76 306
lille 16 22 267 12 14 586 64 76 187 16 45 383 20 121 282 44 105 297
lyon 6 12 17 6 8 443 24 43 226 8 22 672 6 62 226 6 18 626
nancy 10 31 120 0 0 0 14 70 126 0 0 0 10 88 131 0 0 0
orsay 10 36 26 8 16 337 0 0 0 4 10 54 10 79 289 20 83 431
rennes 10 13 38 0 0 0 14 57 97 0 0 0 0 0 0 0 0 0
sophia 12 24 121 40 24 137 0 0 0 28 58 174 20 135 178 28 121 468
toulouse 20 27 219 12 12 639 20 60 249 20 29 586 20 125 374 0 0 0
TOTAL 116 184 94 84 156 364 76 164 106 724 160 403

Experiment Setup

Workflow Configuration: We executed the IR workflow using 40, 20, 10, and 2
subjects. By varying the number of subjects used, we calculated the makespan of the
workflow, total storage space required for execution, and parallelism that can be achieved.
We grouped the tasks when there was more than a single sequential task between two
synchronizing tasks, as depicted in Figure 3.13. Grouping tasks implicitly demandsmore
than one task to be executed at the same site where it is submitted, unlike the ungrouped
version where all tasks would be distributed.

Resource Configuration: We used the resources provided by Grid’5000 as depicted
in Figure 3.16. The Grid’5000 project provides a highly reconfigurable, controllable, and
monitorable experimental Grid platform gathering 9 sites geographically distributed in
France featuring a total of 5000 processors [29]. Table 3.2 lists the Grid’5000 sites used
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Figure 3.14: (a) Comparison of makespan of workflow according to the number of subjects used. (b) Data
size according to the number of subjects used. (c) Comparison of makespan between grouped and ungrouped
tasks (see Figure 3.13 for grouping of tasks).

for the experiment. The resources were reserved for the duration of the experiment. The
reservation ensured that the Grid resources were dedicated to our experiment. We used
resourceswith the ‘x86 64’ CPU architecture withAMDOpteron Processors-246, 248, 250,
252, and 275. We used 8 out of the 9 sites (excluding Grenoble). The distributed resources
across 8 sites have varying network interconnection bandwidth, number of cores per
CPU, CPU frequency, memory, and storage space available [29].

The characteristics of Grid’5000 resources does not vary across 9 sites so much to
abruptly affect our application performance. Also, Grid’5000 mandates the users to
reserve the necessary nodes before execution. This scenario led us to use a basic level
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Figure 3.15: Number of tasks executed in time: Parallelism that was achieved in the system. (a) Number
of tasks executed in time for 40 subjects. (b) Number of tasks executed in time for 20 subjects. (c) Number
of tasks executed in time for 10 subjects. (d) Number of tasks executed in time for 2 subjects.

scheduling algorithm as listed in Algorithm 1.

Performance Metrics: As a measure of performance, we used average makespan as
the primary. Makespan of each workflow is measured by taking the difference between
the submission time of the first submitted task and the output arrival time of the last exit
task to be executed on the system. Makespan also includes the staging-in of the input
files to the entry tasks and the staging-out of the results from the exit tasks.

Results and Observations

Table 3.2 lists the number of cores used at each site, the number of tasks submitted to
the site and the average computation time used at the site for each experiment group.
Figure 3.14 depicts the total makespan for different subjects, comparison of makespan
between grouped and un-grouped tasks of the workflow and the size of data produced
during the execution. Figure 3.15 depicts parallelism of tasks executed in time by the
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Figure 3.16: Grid’5000 Network [29].

workflow engine for 40, 20, 10 and 2 subjects.

Execution of the IRworkflow on the Grid showed significant advantages over a single
machine. The total makespan of the workflow decreased considerably from 2.5 days in
a single machine to approximately 3 hours on the Grid. The storage requirements were
distributed among the resources used. As the number of subjects used was increased,
the makespan increased slightly. This can be attributed to the increase in execution time
of synchronizing tasks and the coordination time required by the system for additional
tasks. The main point to be noted is that as the number of subjects was increased, the
average makespan remained within similar bounds and did not increase exponentially,
as can be seen for 40, 20, and 10 subjects in Figure 3.14 (a). By inference for more than 40
subjects the makespan should not increase by more than double the difference between
the 40 subject and 20 subject makespan.

Grouping of tasks reduced the transmission of data between individual tasks as they
were executed on the same machine the group was submitted to. Also, no coordina-
tion was required for the individual tasks in the group. This contributed to the reduced
makespan in the case of grouped tasks. Figure 3.14(c) shows that the grouping of tasks
that have higher value of standard deviation of execution did not yield an optimized
makespan. Not grouping tasks with higher execution time and a higher standard devi-
ation value gave lower makespan than the grouped version (center of the graph) of that
set of tasks. Tasks with lower execution time and lower standard deviation value had
lower makespan value when grouped than when not grouped.

The size of data produced during the execution of the workflow increased when the
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number of subjects was increased. The input data size (16MB per subject) was low in
comparison to the total data produced during the execution as shown in Figure 3.14(b).

Due to the use of highly available resources, almost all theworkflow’s ready taskswere
executed in parallel, as depicted in Figure 3.14. The graph shows the plot of tasks that
finished execution versus time. At a certain interval in the beginning of executionmost of
the tasksfinished execution at the same time showing the parallelism of executionof tasks.
Most of the grouped tasks finished execution at the beginning of the execution interval
unlike ungrouped tasks. This early execution behavior helped reduce the makespan of
the whole workflow as the grouped tasks executed more than one task at a time through
a bash script, which is seen as a single task by the resource. In the case of not grouped
tasks, each task needed to be mapped onto a resource and as the resource approached
its maximum job limit, no more tasks could be submitted to it. This is also the reason
that fewer grouped tasks were executed on the system than ungrouped tasks after 100
seconds.

Weused a just-in-time scheduling algorithm to schedule tasks in theworkflow,as listed
in Algorithm 1. As the tasks became ready the scheduler was able to find the available
resource and then submitted the task to it for execution. Failure of tasks was handled on
a per task basis. When tasks failed, they were re-submitted to another resource, which
did not have a failure history for those tasks. Although some tasks failed to execute and
were rescheduled, their total count was very small. Tasks can fail due to many reasons.
In our experiment, failures occurred when a task finishes execution without throwing
any errors but the data produced by the task is not complete. In such cases, the child
tasks that depend on that data always fail. We can resolve this fault by resubmitting the
immediate parent task and all its child tasks for execution.

The workflow was executed multiple times by changing the parameters of the work-
flowwith the help of the portal. This feature provided flexibility while executing grouped
and not grouped versions of theworkflow for each of the 40,20,10 and 2 subjects. Without
this feature, orchestrating the whole experiment would have taken a longer amount of
time than executing the application on a single machine.

Moving from Grid to Cloud Environment

TheCloud computing paradigm is emerging and is being adopted at a rapid rate. Gartner
ranks it at the top of the hype cycle for the year 2010. As the technology is being adoptedby
practitioners industry wide, there are numerous challenges to overcome. However, these
challenges could be addressed via a realistic vision of the Cloud computing models as
proposed by several software and service giants such as Google, Amazon and Microsoft.
They own large data centers for providing a variety of Cloud services to customers.
These independent and disparate initiatives would eventually lead to an interconnection
model where users can choose a combination of services from different providers in their

72



3.3. Case Studies: Executing Real-World Applications using WfMS

applications.

Our system design provides an entity responsible for brokerage of resources across
different Cloud providers, termed as the Market Maker [149]. These Inter-Cloud envi-
ronments would then facilitate executions of workflow applications at distributed data
centers. Large scientific experiments would then be able to use Inter-Cloud resources,
brokered through the Market Maker.

The essence of using Cloud services is to be able to dynamically scale the applications
running on top of it. Automating resource provisioning and VM instance management in
Clouds based on multi-objectives (cost, time and other QoS parameters) can help achieve
this goal. The automation process should be transparent to the end users who would just
be interested in running workflow applications under their time and budget constraints.
Users would specify either flexible or tight deadline for the cost they pay for using Cloud
services. It becomes the responsibility of the workflow engine running in the Cloud to
dynamically scale the application to satisfy multiple users request.

In order to facilitate fair but competitive use of Cloud resources for workflow ap-
plications, a service negotiation module must be in place. This entity would negotiate
with multiple service providers to match users’ requirements to a service provider‘s ca-
pabilities. Once a match is found, required resources can then be allocated to the user
application. The Cloud market directory service maintains a catalog of services from
various Cloud service providers, as depicted in Figure 3.1.

Data and their communication play a vital role in any data intensive workflow ap-
plication. When running such applications on Clouds, storage and transfer costs needs
to be taken into account in addition to the execution cost. The right choice of compute
location and storage service provider would result in minimizing the total cost billed to
a user. A Cloud Market Maker could handle these task and communication issues at the
time of negotiation between various Cloud service providers.

In view of the paradigm shift towards Cloud computing, it is interesting to compare
the performance analysis of scientific applications on Grids and Cloud platforms. This
section presents the experimental results obtained by executing the IR application using
Amazon Cloud resources and compares with the results obtained in the previous section,
which was primarily based on Grid resources.

The experiment results presented in this section are a part of the experiment that was
conducted during the Second IEEE International Scalable Computing Challenge (SCALE
2009) held at CCGrid 2009 conference in Shanghai, China. The software demo was one
of the two winners of the competition.

The system deployed to run the experiments was completely hosted within the Ama-
zon Cloud infrastructure. The execution of the workflowwas managed by the Workflow
Engine that handled the execution of tasks in the workflow depicted in Figure 3.13. The
experiment has been repeated with 2, 10 and 20 subjects and executed on the Amazon
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Cloud by using EC2 as a provider of computing resources and S3 for the storage of input
data. The results of the execution have been compared with the execution of the same
workflow in Grid’5000, in which each compute node in the network served as both stor-
age and compute resource. The metrics used to compare the results of the two executions
is the makespan (difference between the submission time of the first submitted task and
the output arrival time of the last exit task to be executed on the system) and execution
cost of the workflow. The execution cost in Grid5000 is assumed to be zero.
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Figure 3.17: Makespan comparison between EC2 and Grid’5000 setups.

Figure 3.17 compares the makespan of the workflow when the number of subjects
used is varied. We observe that for large number of subjects, the makespan decreases
when using EC2. For 2 subjects, the change in the makespan is not significant. This
difference in makespan is mainly due to the shortening of the data-transfer time between
the virtual nodes in EC2 as compared to the transfer between multiple physical sites in
Grid’5000. For a large workflow (20 subjects) individual file transfer time gets cumulated,
resulting in a significant difference in total makespan when compared to the results of
Grid5000.

Figure 3.18 compares the change in makespan versus the EC2 usage cost. The data
transfer and the storage cost during execution were very minimal as the compute nodes
were part of a Cloud datacenter. As the number of execution nodes is increased from 2 to
20 EC2 nodes, the makespan decreases significantly from 391 minutes to 107 minutes for
a workflow analyzing 20 subjects. The cost of usage of Cloud nodes rose from 5.2to14.28.
However, the ratio between the cost and the number of EC2 nodes used shows that: the
total cost of computation of a large workflow (20 subjects) using 20 EC2 nodes would
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Figure 3.18: Comparison of execution time and cost when using Cloud resources.

be $0.714/machine, as opposed to $2.6 when executing the same workflow using only 2
EC2 nodes. The average cost of usage per machine decreases as the number of resources
provisioned increases from 2 to 20. Consequently, the overall application execution cost
increased by notmore than three times with a decrease in execution time by similar factor.

From our experiments, we conclude that large high performance applications can
benefit fromon-demand access and scalability of compute and storage resources provided
by public Clouds. Hence, the increase in cost is subdued by the significant reduction in
application execution time by making use of abundance of Cloud resources, which can
be provisioned on demand. The experiments performed showed that the effective use of
Cloud resources was important and a trade-off between cost and performance have to be
carefully evaluated.

3.3.2 Evolutionary Multi-Objective Optimizations

This section presents a scientific application workflow based on an iterative technique for
optimizing multiple search objectives, known as Evolutionary Multi-objective Optimiza-
tion (EMO) [148]. EMO is a technique based on genetic algorithms. Genetic algorithms
are search algorithms used for finding optimal solutions in a large space where determin-
istic or functional approaches are not viable. Genetic algorithms use heuristics to find an
optimal solution that is acceptable within a reasonable amount of time. In the presence of
many variables and complex heuristic functions, the time consumed in finding even an
acceptable solution can be too large. However, whenmultiple instances are run in parallel
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in a distributed setting using different variables, the required time for computation can
be drastically reduced.

The following are the objectives for modeling and executing an EMO workflow on
Clouds:

1. Design an executionmodel for EMO, expressed in the form of a workflow, such that
multiple distributed resources can be utilized.

2. Parallelize the execution of EMO tasks for reducing the total completion time.

3. Dynamically provision compute resources needed for timely completion of the
application when the number of tasks increase.

4. Repeatedly carry out similar experiments as and when required.

5. Manage application execution, handle faults, and store the final results for analysis
using the WfMS.

A detailed description of the EMO application, its workflow model and a sample
output is given in Appendix A.

Deployment and Results

EMO Application: In our experiments, we carry out 10 iterations within a branch
for 5 different topologies. We merge and split the results of each of these branches 10
times. For this scenario, the workflow constituted of a total of 6010 tasks. We varied the
tasks by changing the number of merges from 5 to 10. In doing so, the structure and the
characteristics of the tasks in the workflow would remain unchanged. This is necessary
for comparing the execution time when the number of task increases from 1600 to 6000
when we alter the number of merges from 5 to 10.

Compute Resource: We used 40 Amazon EC2 compute resources for executing the
EMO application. 20 resources were instantiated at US-east-1a and 20 were instantiated
at US-east-1d. Among these resources, 1 was used for the workflow engine, 1 for Aneka‘s
master node and the rest were worker nodes. The characteristics of these resources are
listed in Table 3.3.

The workflow engine, along with a database for persistence, the IBM TSpace [82]
based co-ordination server, and the Tomcat web container was instantiated on a medium
instance VM.
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Table 3.3: Characteristics of Amazon compute resources (EC2) used in our experiment
Characteristics Aneka Master/Worker Workflow Engine
Platform Windows 2000 Server Linux
CPU (type) 1 EC2 Compute Units1 (small) 5 EC2 Compute Units2 (medium)
Memory 1.7 GB 1.7 GB

Instance Storage 160 GB 350GB
Instance Location US-east-1a (19) US-east-1b(20) US-east-1a
Number of Instances 39 1
Price per hour $US 0.12 $US 0.17

1Small Instance (Default) 1.7 GB of memory, 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit),
160 GB of instance storage, 32-bit platform
2High-CPU Medium Instance 1.7 GB of memory, 5 EC2 Compute Units (2 virtual cores with 2.5 EC2
Compute Units each), 350 GB of instance storage, 32-bit platform (Source: Amazon)

Experimental Results when using Clouds

As the EMOworkflow is an iterative approach, increasing the number of iterationswould
increase the quality of optimization in the results. Analogously, the more the number of
tasks completing in the workflow, the more the number of iterations, hence the better is
the optimization. As the iterations can be carried out for an arbitrarily large number of
times, it is usually a best practice to limit the time for the overall calculation. Thus, in our
experiment we set the deadline to be 95 minutes. We then analyze the number of tasks
completing within the first 95 minutes in two classes of experiments:

Experiment 1 : 7 additional EC2 instanceswere added In this experiment,we started
executing the tasks in theEMOworkflow initially using 20 EC2 compute resources (1 node
forWorkflow engine, 1 node for Anekamaster, 18 Aneka worker nodes). We instantiate 7
more small instances to increase the total number of resources to 25. They were available
for use after 25 minutes of execution. At the end of 95 minutes, a total of 1612 tasks were
completed.

Experiment 2 : 20 additional EC2 instances were added In this experiment, we
started executing the tasks in the EMOworkflowusing 20 EC2 compute resources, similar
to Experiment 1. We instantiated 20 more EC2 instances after noticing the linear increase
in task completion rate. These instances however were available for use after 40 minutes
of execution. At the end of 95 minutes, a total of 3221 tasks were completed.

Analysis of the results : In both the experiments, the initial task completion rate
increased linearly until we started more instances, as depicted in Figure 3.19 . As the
number of resources was increased, the rate of task completing increased drastically. This
is due to the submission of queued tasks in Aneka to the newly available resources, which
would have remained queued if resources were not added.

As depicted in Figure 3.19, the completion rate curve rises up to a point until when
all the queued tasks are submitted. The curve then rises gradually due to the fact that
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Figure 3.19: Number of tasks completing in time as the number of compute resources provisioned were
increased at run-time

the EMO application is a workflow. Tasks in the workflow get submitted gradually as
their parents finish executions. Hence, the completion rate has similar slope as the initial
rate, even after increasing the number of resources (from 30 to 45 minutes for Experiment
1; from 45 to 70 minutes for Experiment 2). When more tasks began completing as a
result of adding new resources, the workflow engine was able to submit additional tasks
for execution. As a result, tasks started competing for resources and hence were being
queued by Aneka. Due to this queuing at Aneka‘s scheduler, the curve flattens after 45
minutes for Experiment 1 and after 70 minutes for Experiment 2, respectively.

The most important benefit of increasing the resources dynamically at run time is the
increase in the total number of tasks completing, and hence the quality of final result. This
is evident from the two graphs depicted in Figure 3.19. If a total of 25 resourceswere used,
Experiment 1 would complete 1612 tasks by the end of the 95 minutes deadline. Where
as, Experiment 2 would complete executing nearly 3300 tasks within the same deadline
if 20 additional resources were added. The quality of results would be twice as better for
Experiment 2 than for Experiment 1. However, if a user wants to have the same quality
of output as in Experiment 1 but in much shorter time, he should increase the number of
resources used well before the deadline. A line just above 1600 in Figure 3.19 depicts the
cut-off point where the user could terminate all the VM instances and obtain the same
quality of results as Experiment 1 would have obtained by running for 95minutes. It took
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45 minutes less time for Experiment 2 to execute the same number of tasks as Experiment
1. This drastic reduction in time was seen even when both the experiments initially
started with the same number of resources. In terms of cost of provisioning additional
resources, Experiment 2 is cheaper as there are fewer overheads in time spent queuing
and managing task submissions, as the tasks would be submitted as soon as they arrive
at Anekas master node. If Amazon were to charge EC2 usage cost per minute rather than
per hour, Experiment 2 would save 45 minutes of execution time at the cost of 20 more
resources.

3.4 Related Work

Over the recent past, a considerable body of work has been done on the use of workflow
systems for scientific applications. Some of them have investigated workflow technology
with respect to our target applications (fMRI and EMO) andworkflowmanagement. This
section briefly describes these work.

Workflow Management Systems: Some of the popular workflow systems for sci-
entific applications include DAGMan (Directed Acyclic Graph MANager), Pegasus [40],
Kepler [89], and Taverna workbench [98]. DAGMan is a workflow engine under the
Pegasus workflow management system. Pegasus uses DAGMan to run the executable
workflow. Kepler provides support for Web Service based workflows. It uses an actor-
oriented design approach for composing and executing scientific application workflows.
The computational components are called actors, and are linked together to form a work-
flow. The Taverna workbench enables the automation of experimental methods through
the integration of various services, includingWSDL-based single operationWeb Services,
into workflows. Yu et al. [167] provided a comprehensive taxonomy of workflow man-
agement systems based on workflow design, workflow scheduling, fault management,
and data movement. They characterized and classified different approaches for building
and executing workflows on Grids. They also studied existing Grid workflow systems
highlighting key features and differences.

Deelman et al. [37] have done considerable work on planning, mapping and data-
reuse in the area of workflow scheduling. They propose Pegasus [40], which is a frame-
work thatmaps complex scientific workflows onto distributed resources such as the Grid.
DAGMan, together with Pegasus, schedules tasks to Condor system. With the integra-
tion of Chimera [53] and Pegasus based [37] mapping, it can execute complex workflows
based on pre-planning.

The Taverna project [98] developed a tool for the composition and enactment of
bioinformatics workflows for the life science community. This tool provides a graphical
user interface for the composition of workflows. Other well-known projects onworkflow
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systems include GridFlow [28], Unicore [123], ICENI [55], GridAnt [6] and Triana [139].

In contrast to existing workflowmanagement systems, the design of WfMS presented
in this chapter integrates not only local compute resources, but compute and storage
resources leased from Cloud service providers. This results in the system being able to
schedule applications workflow across multiple hosts taking into account their differing
characteristics in computing time and cost. In addition to making the system highly
available, the WfMS also provides user-friendly environment for editing, submitting,
executing, and monitoring workflow applications. The workflow engine is capable of
integrating scheduling algorithms as plug-in components. Using this feature, any new
algorithms can be used with the engine to schedule workflow applications in distributed
environments.

Workflow on Clouds: Scientific workflows are commonly executed on shared in-
frastructure such as Tera-Grid, Open Science Grid , and dedicated clusters [73]. Existing
workflow systems tend to utilize these global Grid resources that are made available
through prior agreements and typically at no cost. The notion of leveraging virtualized
resources was new and the idea of using resources as a utility [22; 23] was limited to
academic papers and was not implemented in practice. With the advent of Cloud com-
puting paradigm, economy based utility computing is gaining widespread adoption in
the industry.

Deelman et al. [39] presented a simulation-based study on the costs involved when
executing scientific application workflows using Cloud services. They studied the cost
performance tradeoffs of different execution and resource provisioning plans, and the
storage and communication fees of Amazon S3 in the context of an astronomy application
known as Montage [37; 39]. They conclude that Cloud computing is a cost-effective
solution for data intensive applications.

The Cloudbus toolkit [25] is one of the initiatives towards providing viable solutions
for using Cloud infrastructures. It proposed a wider vision that incorporates an inter-
cloud architecture and a market-oriented utility computing model.

Distributed Execution of Scientific Applications: Olbarriaga et al. [99] presented
the Virtual Laboratory for fMRI (VL-fMRI) project, whose goal is to provide an IT infras-
tructure to facilitate management, analysis, and sharing of data in neuroimaging research
with a focus on functional MRI. The workflow system design presented in this chapter
share a common objective to facilitate the data logistics andmanagement in fMRI analysis
via workflow automation. Their system could use our workflowmanagement system as
a pluggable component.

Neurobase [45] used grid technology for the integration and sharing of heterogeneous
sources of information in neuroimaging from both data and computing aspects.
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Buyya et al. [24] studied instrumentation and distribution analysis of brain activity
data on global grids. They presented the design anddevelopment ofMagnetoencephalog-
raphy (MEG) data analysis system. They described the composition of the neuroscience
application as parameter-sweep application and its on-demand deployment on Global
Grids.

Ellis et al. [44] executed their IR algorithm by registering several couples of T1 MRI
images coming from different subjects in 5 minutes on a Grid consisting of 15 2GHz
Pentium IV PCs linked through a 1Gigabit/s network. This is an example where the
capabilities of Grid have been used to speedup brain imaging applications.

The LONI Pipeline [121] was developed to facilitate ease of workflow construction,
validation and execution likemany similar workflowenvironments, primarily used in the
context of neuroimaging. This initiative, whichwas as early as 2003, clearly demonstrated
that workflow technology could be used and is viable for neuroimaging applications.

The NIMH Neuroimaging Informatics Technology Initiative (NIFTI2) was formed to
aid in the development and enhancement of informatics tools for neuroimaging. Like-
wise, the Biomedical Informatics Research Network (BIRN3) is another high profile effort
working to develop standards (eg. LONI) among its consortia membership. Such efforts
are contributing more towards standards, efficiency, interoperability and integration of
tools.

Distributed execution of population based metaheuristics has been investigated by in
greater detail by Enrique Alba [2]. In particular, their work on parallel execution models
of parallel genetic algorithms [3] using heterogeneous computing concluded that these
algorithms benefited from the computational resources offered by modern LANs and by
Internet. Specifically, there is a specific class of genetic algorithms that provides better
performance with near optimal results only when applied to large populations. These
algorithms are those that best benefit from distributed infrastructure because population
partitioning techniques can be applied. EMO is one of such application that is suitable
for demonstrating the usefulness of distributed computing.

Theworkflowengine [102], presented in this chapter, scales outworkflowapplications
on Clouds using market-oriented principles. It has been used for demonstrating the
scalability of e-Science applications from biomedical, astrophysics, and engineering at
the IEEE International Scalable Computing Challenge (SCALE) several times.

3.5 Conclusions

This chapter presented a workflow management system design and described its core
components. It also presented a comprehensive description of using workflow engine

2http://nifti.nimh.nih.gov
3http://nbhirn.net
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in Grid and Cloud computing environments. By focusing the limitations of existing
workflow management systems when handling data intensive applications, it proposed
changes that needed to be incorporated in the system design when moving from Grids
to new distributed platforms, such as Clouds. This was supported by the inclusion of
Cloud tools that could help applications use Cloud services.

This chapter also presented the processing of two compute and data intensive applica-
tions: brain imaging application and distributed evolutionary algorithms, as case studies.
These applications used theworkflowmanagement systemas amiddleware to access and
leverage the power of distributed resources. It modeled both of these applications as a
workflow, listed their execution characteristics, and deployed them on Grids and Cloud
platforms. Specifically, the IR application was experimented on the Grid’5000 platform.
To demonstrate a practical scenario of deploying the workflow engine in Clouds, the
EMO application was experimented using Amazon Cloud services. By modeling real-
world data and compute intensive application in the form of a workflow, this chapter
presented experimental results that demonstrated an order of magnitude improvement
in the application run-time. Thousands of tasks completed in a short period of time as
resources were provisioned and managed by the proposedWfMS.

In contrast to Grid services, Cloud services charge users based on the resource us-
age. Due to this fact, although Clouds offer many benefits, they can not and will not
replace Grids. Clouds will augment Grids. Users will use Cloud services together with
their in-house solutions (cluster/Enterprise Grids) to enhance the performance of their
applications as and when needed. In this regard, the proposedWfMS provides a flexible
environment to that users can use to access distributed computing platforms such as
Grids and Clouds.

The WfMS system design presented in this chapter has been extended substantially
from its abstract model given by Yu et al. [165] as part of her PhD thesis. These extensions
have been put in place so that the systemcan integrate bothGrid andCloud resources and
execute data intensive applications. The XML based workflow language was extended to
supportQoSparameters andmultiple datafiles for a single task. Theworkflowscheduling
algorithms implementedweredesigned to support replicateddatafiles and their retrievals
from multiple data sources. The WfMS is also now capable of connecting to Cloud
resource providers such as Amazon EC2 and Cloud platform services such as Aneka.
The integration of a workflow editor, a monitor into the web-based management portal
makes WfMS a complete system. All these characteristics present in one system is a clear
distinction of WfMS from existing systems such as Kepler [89], Taverna workbench [98],
GridFlow [28], Unicore [123], ICENI [55], GridAnt [6] ,and Triana [139]. Most of the
existing systems are either a GUI based toolkit to construct and model a workflow or
execution engines supporting Grid and cluster resources. WfMS integrates these two
features into one systemand adds capabilities that reach emerging distributed paradigms
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such as Clouds. As WfMS uses XML to represent its workflow applications, it has the
capability of interacting with existing workflow systems for submitting workflow tasks.
For e.g. Kepler too uses XML to represent its applications to be submitted to its processing
components (actors). WfMS could use a schema compliant to Kepler’s actor model and
transform its XMLworkflows to represent a workflow that Kepler could execute. Hence,
interoperability and connectivity can be easily achieved between WfMS and existing
workflow systems using XML based workflow application definitions.

In conclusion, the experiments performed on the two case studies demonstrated the
feasibility of the WfMS in practical environments. Based on the results obtained when
usingGrid andCloud services, this chapter concludes that large applications can certainly
benefit in terms of decreased run-time; on-demand resource provisioning; and ease of
resource management.
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4
A Non-Linear Model for Optimisation of

Workflow Scheduling

C
loud computing is an emerging technology that allows users toutilize on-demand
computation, storage,data and services fromaround theworld. However,Cloud
service providers charge users for these services. Specifically, to access data from

their globally distributed storage edge servers, providers charge users depending on the
user’s location and the amount of data transferred. When deploying data intensive
applications in a Cloud computing environment, optimizing the cost of transferring
data to and from these edge servers is a priority, as data play the dominant role in the
application’s execution.

In this chapter, we formulate a non-linear programming model to minimize the data
retrieval and execution cost of data intensive workflows in Clouds. Our model retrieves
data from Cloud storage resources such that the amount of data transferred is inversely
proportional to the communication cost. We take an example of an ‘intrusion detection’
application workflow, where the data logs are made available from globally distributed
Cloud storage servers. We construct the application as a workflow and experiment with
Cloud based storage and compute resources. We compare the cost of multiple executions
of the workflow given by a solution of our non-linear program against that given by
Amazon CloudFront’s ‘nearest’ single data source selection. Our results show a savings
of three-quarters of total cost using our model.

4.1 Introduction

Scientific and commercial applications are leveraging the power of distributed computing
and storage resources [39; 174]. These resources are available either as part of general
purpose computing infrastructure such as Clusters and Grids, or through commercially
hosted services such as Clouds [7]. Clouds have been defined to be a type of parallel and
distributed system consisting of inter-connected and virtualized computers. These com-
puters can be dynamically provisioned as per users’ requirements [26]. Thus, to achieve
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better performance and scalability, applications could be managed using commercial
services provided by Clouds, such as Amazon AWS, Google AppEngine, and Microsoft
Azure. Some of these cloud service providers also have data distribution services, such as
Amazon CloudFront1. However, the cost of computing, storage and communication over
these resources could be very high for compute intensive and data intensive applications.

Data mining is an example application domain that comprises of data intensive ap-
plications often with large distributed data and compute intensive tasks. Examples of
data mining applications are: checking bank account lists with lists of suspected crim-
inals (Watch List Compliance), checking for duplication of customer data in financial
marketing, using catalogue data in astrophysical image analysis or detecting the spread
of Internet worms using intrusion detection systems. Detecting the spread of Internet
worms is an example of a data mining application. This scenario will be revisited in
Section 4.2.

The data to be mined may be widely distributed depending on the nature of the ap-
plication. As the size of these data-sets increases over time, the analysis of distributed
data-sets on computing resources by multiple users (repeated executions) has the follow-
ing challenges:

• Awell-designed applicationworkflow: Large number of data-sets andmining tasks
make the application complex.

• Minimization of communication and storage costs: Large size and number of dis-
tributed data-sets make the application data intensive.

• Minimization of repeated data mining costs: Cost of computing (classification/-
knowledgediscovery) and transferring ofdata increases as thenumberof iterations/data-
sets increase.

In this chapter, we address the challenges listed above for data intensive workflows
by making the following three contributions:

1. We take Intrusion detection as a data mining application which will be referenced
throughout the remainder of this chapter. This application has all the features as
listed in the previous paragraph when executing commercially [174]. We design the
application as a workflow that simplifies the basic steps of data mining into blocks.

2. We model the cost of execution of an intrusion detection workflow on Cloud re-
sources using a Non-Linear Programming (NLP) model. The NLP-model retrieves
data partially frommultiple data sources based on the cost of transferring data from
those sources to a compute resource, so that the total cost of data-transfer and com-
putation cost on that compute resource is minimized. The solver gives a solution

1http://aws.amazon.com/cloudfront/
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that chooses data sources and compute sites for multi-source partial data retrievals
and computation proportional to the cost of communication and computation, re-
spectively.

3. We then apply the NLP-model on the intrusion detection application to minimize
repeated execution costs when using commercial compute and storage resources.
As an example, we compare the costs between ourmodel and Amazon CloudFront.

The remainder of the chapter is organized as follows: wepresent an intrusiondetection
application and its workflowdesign in Section 4.2; cost minimization problem usingNLP
model in Section 4.3; the NLP-model and its use for the intrusion detection application in
Section 4.4; experimental setup in Section 4.5 and analysis in Section 4.6; related work in
Section 4.7. Finally, we conclude in Section 4.8.

4.2 IntrusionDetectionUsingData fromDistributedDataSources

First, we describe a use-case for Internet worm detection. Then, we describe the process
of intrusion detection in general and present aworkflowdesign for executing datamining
steps over distributed intrusion data logs.

Distributed Data 
Centers in Clouds

X

X X

X

X X

VISA MasterCardMasterCard

data logs

data logs data logs

data logs

data logsdata logs

Analyst 1

Analyst 2
Analyst 4

Analyst N

Network A

Network B Network C

Network D

Network ENetwork N

Figure 4.1: Global Intrusion Detection scenario

4.2.1 Intrusion detection scenario

Intrusiondetection asdefinedby the SysAdmin,Audit,Networking, andSecurity (SANS2)
institute is the act of detecting actions that attempt to compromise the confidentiality, in-

2http://www.sans.org/security-resources/
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tegrity or availability of a resource. We take an example of detecting the spread of a
malicious worm over the Internet.

In practice, a large number of independentnetworks spanning throughout the Internet
share their network logs to detect such an outbreak. The logs from each individual
network are continuously fed to the Amazon Cloud storage (or some other services),
which distributes them to globally distributed edge servers.

The aim of the intrusion detection system (or the analyst) is to analyze these combined
logs to detect an outbreak of a worm. Such analysts can be located at multiple locations
close to some of the data sources but at a large network distance from a majority of the
other data sources.

Assuming that every intrusion detection system (or analyst) follows the same data
mining process,whichwedescribe later in the chapter, theNaive approach is to separately
aggregate the log data from all independent networks for every analyst. It is not hard to
visualize the redundancy in the data transfer (for each individual network) and hence the
cost associated with such massive amount of data transfers.

Using the distributed edge servers, we can minimize the cost of data transfer to each
individual intrusion detection system (analyst). We represent this scenario in Figure 4.1.
With an aim to minimize the cost of data transfer, we develop a non linear programming
based approach, described later in the chapter, and compare it with the standard nearest
source approach adopted byCloudFront and observe that ourmodel achieves a significant
savings of three-quarters of the total cost.

4.2.2 Intrusion detection process as a workflow

Networkmonitoring, as a part of intrusion detection, is a common process carried out by
network administrators in order to observe the activities in a particular network. As it is
a continuous process, the size of data that must be monitored varies with the bandwidth
and latency of the network, which can be in several Gigabits per second. This makes the
application data intensive. Furthermore, networks are not restricted to a small room or a
building and can spread throughout the globe. In such a distributed setting, it becomes
critical to optimize the cost of data transfer from distributed sources in order to perform
very frequent network monitoring. The situation becomes more challenging when the
raw data, which can be used to detect such attacks are globally distributed. Hence, in this
chapter, we focus on minimizing the cost of such distributed analysis.

Data mining techniques have become prominent in detecting intrusions [81; 60].
Detecting intrusions can be considered as finding the outliers (or unusual activities)
and, hence, data mining can be easily applied to perform this task.

Wemodeled the intrusion detection process as a workflow as illustrated by Figure 4.3.
The figure separates the training, testing, and real-time processes into blocks as Block A,
Block B and Block C, respectively. The first step for training is to collect some training
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Figure 4.2: Intrusion Detection Process
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Figure 4.3: Intrusion Detection workflow

data, which can be the contents of IP packets, web server logs, etc.. Collected data are
pre-processed (normalization, adding missing values, etc), represented in a format that
is supported by the data mining tool (in our case it is .arff format), and pruned to contain
a small set of features that are significant to improve the performance and accuracy of
the system. The feature selection is the attribute selection (AS) in the figure. Applying
these selected features on the training data is the Filter (F) process. Finally, with the
reduced training data, we apply different algorithms to train corresponding models. In
our experiments,we selectedwell knownmethods fordatamining and intrusiondetection
such as Naive Bayes (NB), Decision Trees (DT) and Support Vector Machines (SVM). For
SVM, we used Sequential minimal optimization (SMO), an algorithm for solving the
optimization problem which arises during the training of support vector machine.

To evaluate the effectiveness of the trained models, we perform the testing on the test
data (Block B in the figure). We repeat the same steps as in Block A on the test data, except
the AS. We then use the trained model to generate output using the test data. Finally,
we select the best performing model based on the accuracy of classification of individual
models, denoted as (A) in the figure. This model, which is the most accurate, is then used
on the real-time data from distributed data sources (Block C in the figure). Real-time data
is filtered (F), then the best model applied (B) and the output (O) is generated.

The advantage of Naive Bayes and Decision Trees is that they are highly efficient and
generally result in good classification. Support Vector Machines are high quality systems
and have good classification accuracy. We must also remember that our objective is not
to discover the best model for intrusion detection rather it is to minimize the cost of data
transfer and computation when using data from distributed Cloud storage servers for
any analysis of intrusion detection in Clouds.

The input data for Block A are the training data, Block B are the testing data and Block
C are the real-time data. The output data from each task are labels. At the end of Block
A’s execution, three models (nb.model, dt.model & smo.model) files are created, which
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then becomes input for Block B. Block B’s execution generates of the most accurate model
(best.model) as input for Block C. Block C then applies the model for the real-time data
logs to obtain the intrusion classification.

Table 4.1: Accuracy of intrusion detection using SMO
Correctly Classified Instances 407214 99.3115 %
Incorrectly Classified Instances 2823 0.6885 %
Total Number of Instances 410037

In Table 4.1, we give the accuracy of the best performingmodel (SMO). Othermethods
(Naive Bayes & Decision Trees) had lower accuracy. We see that, using SMO, about 99%
of instances are correctly classified. Hence, when this system is deployed in real-time
environment, we can expect similar accuracy of classification.

In Table 4.2, we present the classification using the SMO with the help of a confusion
matrixwhich lists the classificationper class (number of correctly and incorrectly classified
instances for each class of intrusion). For example, in row 3, we see that 3018 instances
are correctly classified as probes while 371 probes are incorrectly classified as normal,
53 probes are incorrectly classified as Denial of Service (DoS), 0 probes are incorrectly
classified asunauthorized access froma remotemachine (R2L) and0probes are incorrectly
classified as unauthorized access to root (U2R).

4.3 Cost Minimization using Non-Linear Programming Model

4.3.1 Notations and problem

We denote an application workflow using a Directed Acyclic Graph (DAG) by G=(V,E),
where V={T1, ...,Tn} is the set of tasks, and E represents the data dependencies between
these tasks, that is, tdatak = (Tj,Tk) ∈ E is the data produced by Tj and consumed by Tk.

We have a set of storage sites S = {1, ..., i}, a set of compute sites P = {1, ..., j}, and a
set of tasks T = {1, ..., k}. We assume the ‘average’ computation time of a task Tk on a
compute resource Pj for a certain size of input is known. Then, the cost of computation of
a task on a compute host is inversely proportional to the time it takes for computation on
that resource. We also assume the cost of unit data access txcosti, j from a storage resource

Table 4.2: Classification of data using SMO model
a b c d e classified as

80255 43 12 85 4 a = normal
2083 323128 0 0 0 b = DoS
371 53 3018 0 0 c = probe
148 0 0 796 3 d = R2L
10 0 0 11 17 e = U2R
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Si to a compute resource Pj is known. The transfer cost is fixed by the service provider
(e.g. Amazon CloudFront) or can be calculated according to the bandwidth between the
sites. We assume that these costs are non-negative, symmetric, and satisfy the triangle
inequality: that is, txcosti, j = txcostj,i for all i, j ∈ N, and txcosti, j + txcostj,k ≥ txcosti,k for all
i, j, k ∈ N. These relations can be expressed as:

ecost ∝ 1/{execution time or capability o f resource}
txcost ∝ bandwidth OR = (tx cost/unit data)/site
total cost o f computation :

C ≤ ecost ∗ etime + txcost ∗ data + overheads

The cost-optimization problem is: Find a feasible set of ‘partial’ data-sets {dki, j} that must
be transferred from storage host Si to compute host Pj for each task (Tk ∈ V) such that the total
retrieval cost and computation cost of the task on Pj is minimal, for all the tasks in the workflow

(not violating dependencies) .

4.3.2 Non-linear model

Here, we try to get the minimum cost by formulating a non-linear program for the cost-
optimization problem, as depicted in Figure 4.4. The formulation uses two variables y, d
and pre-computed values txcost, ecost, txtime, etime as listed below:

• y characterizes where each task is processed. ykj = 1 iff task Tk is processed on
processor Pj.

• d characterizes the amount of data to be transferred to a site. e.g. dki, j = 50.2 denotes
50.2 units of data are to be transferred from Si ⇒ Pj for task Tk.

• txcost characterizes the cost of data transfer for a link per data unit. e.g. txcosti, j = 10
denotes the cost of data transfer from Si ⇒ Pj. It is added to the overall cost iff
dki, j > 0 & y

k
j = 1.

• ecost characterizes the cost of computation (usage time) of a processor. e.g. ecostj = 1
denotes the cost of using a processor Pj. It is added to the overall cost iff ykj = 1.

• txtime characterizes the average time for transferring unit data between two sites.
e.g. txtimei, j = 50 denotes the time for transferring unit data from Si ⇒ Pj. It is
added to the Execution Time (ET) for every task iff dki, j > 0 & y

k
j = 1.

• etime characterizes the computation time of a task averaged over a set of known and
dedicated resources. e.g. etimekj = 20 denotes the time for executing a task Tk on a
processor Pj. It is added to ET iff ykj = 1.

The constraints can be described as follows:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Minimize total Cost (C)
C =
∑

i∈S, j∈P,k∈T
dki, j ∗ txcosti, j ∗ ykj + ecostj ∗ etimekj ∗ ykj

Subject to :
(a) ∀k ∈ T, j ∈ P ykj ≥ 0
(b) ∀i ∈ S, j ∈ P, k ∈ T dki, j ≥ 0
(c) ∀k ∈ T tdatak ≥ 0
(d) ∀i ∈ S, j ∈ P txcosti, j ≥ 0
(e) ∀i ∈ S, j ∈ P txtimei, j ≥ 0
( f ) ∀k ∈ T, j ∈ P ecostj ≥ 0
(g) ∀k ∈ T, j ∈ P etimekj ≥ 0

(h)
∑

j∈P
ykj = 1

(i)
∑

i∈S, j∈P
ykj ∗ dki, j = tdatak

( j)
∑

i∈S, j∈P,k∈T
ykj ∗ dki, j =

∑

k∈T
tdatak

Execution time o f task k (ETk)
ETk =

∑

i∈S, j∈P,k∈T
(dki, j ∗ txtimei, j ∗ ykj) + etimekj ∗ ykj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4.4: NLP model

• (a) & (h) ensure that each task k ∈ T is computed only once at processor j ∈ Pwhen
the variable ykj > 0. For partial values of y

k
j , we round up/down to the nearest

integer (0 or 1). Tasks are not partitioned or migrated.

• (b) & (c) ensure that partial data transferred and total data required by a task cannot
be negative.

• (d), (e), (f) and (g) ensure that cost and time values are all positive.
• (i), (a) & (b) ensure that partial-data are transferred only to the resource where a
task is executed. For all such transfers, the sum of data transferred should equal to
the data required by the task, which is tdatak.

• (j) ensures that the total data transfer for all the tasks are bounded by the sum of
data required by each task. This is important for the solvers to relate (h), (i) & (j),

• (i) & (j) combined ensure that whenever partial-data dki, j is transferred to a compute
host Pj, then a compute host must have been selected at j (ykj = 1), and that total
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data transfer never exceeds the bound tdatak for each task and in total.

To get an absolute minimum cost, we map the tasks in the workflow onto resources
based only on cost optimization (not time). This eliminates the time dependencies
between tasks. However, the task to compute-resource mappings and data-source to
compute-resource mappings minimizes the cost of execution but not the makespan. The
execution time of a task (ETk) is calculated based on the cost-minimized mappings given
by the solver. The total:

∑
k∈T(ETk + waiting time) is the makespan of the workflow with

the minimum cost, where the waiting time denotes the minimum time a task has to wait
before its parents finish execution.

4.4 Cost Minimization for The Intrusion Detection Application

In this section, we describe the method we used to solve the non-linear program formu-
lated in Section 4.3. We then describe how we applied the solution for minimizing the
total cost of execution to the intrusion detection application workflow.

NLP-solver: We wrote a program using the Modeling Language for Mathematical Pro-
gramming (AMPL) [54] for solving our NLP-model. We usedDONLP2[137], a non-linear
program solver, to solve the model. The computation time of the solver to reach a solu-
tion (for a maximum of 2000 iterations) was less than 2 seconds, which is insignificant as
compared to the data-transfer time in our experiments.

Partial-data retrieval and task-to-resource mapping: Based on the integer values of ykj
given by DONLP2, we statically mapped the tasks in the intrusion detection application
workflow to each compute resource Pj. Data retrievals are also fixed for each ready task
from each S based on the value of dki, j and y

k
j = 1. The steps ofmapping and data retrievals

are given in Algorithm 4.4. The heuristic computes the values for task mapping ykj and
dki, j for all the tasks in the beginning according to the solution given by a NLP-solver. As
all the tasks in the workflow are mapped initially, the for loop preserves the dependencies
of the tasks by dispatching only the ready tasks to the resources. For dispatched tasks,
partial data retrievals to the assigned compute resource occur from chosen resources. All
child tasks wait for their parents to complete, after which they appear in the ready list for
dispatching. The scheduling cycle completes after all the tasks aredispatched successfully.
The output data of each completed task is staged back to the Cloud storage as part of
the task’s execution. The Cloud storage should ensure that the files are distributed to
the edge-servers within certain time bound such that child tasks do not have to wait for
availability of data longer than downloading directly from the Cloud’s central server.

An example model, data and the program used for obtaining a solution to the NLP
model is given in Appendix B.
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Algorithm 2 Scheduling heuristic using the NLP model

1: Compute ykj & d
k
i, j for all tasks by solving the NLP

2: repeat
3: Get all the ‘ready’ tasks in the workflow
4: for each task tk ∈ Tready do
5: Assign tk to the compute resource P for which ykj = 1

6: Fix partial data transfers dki, j from Si to the compute resourcePj for which y
k
j = 1

7: end for
8: Dispatch all the mapped tasks for execution
9: Wait for POLLING TIME
10: Update the ready task list
11: (Upload output files of completed tasks to the storage central for distribution)
12: until there are unscheduled tasks in the ready list

4.5 Experimental Setup

In this Section, we describe Intrusion Detection data and tools, the experimental setup,
and the results.

4.5.1 Intrusion detection application data and tools

Data: For our experiments, we used part of the benchmark KDD’99 intrusion data
set3. This database contains a standard set of data to be audited, which includes a wide
variety of intrusions simulated in a military network environment. We use 10 percent of
the total training data and 10 percent of the test data (with corrected labels), which are
provided separately. Each record in the data set represents a connection between two IP
addresses, starting and ending at defined times and protocol. Furthermore, every record
is representedby 41 different features. Each record represents a separate connection and is
hence considered to be independent of any other record. Training data are either labeled
as normal or as one of the 24 different types of attack. These 24 attacks can be grouped
into four classes; Probing, Denial of Service (DoS), unauthorized access from a remote
machine (R2L) and unauthorized access to root (U2R). Similarly, test data are also labeled
as either normal or as one of the attacks belonging to the four attack groups.

To perform data mining we used algorithms implemented in an open source WEKA
library [154]. We used three types of probabilistic classification models: Naive Bayes,
decision tree and Sequential Minimal Optimization (SMO), from the WEKA library. The
commands are depicted in Figure 4.5. The number of log-data analysis for detecting
intrusion varies depending on the characteristics of the log data. To reflect all types of
scenarios, we perform the real-time log-data analysis for 10 times. We interpolate the cost
for 10,000 times execution by multiplying the cost of 10 executions multiplied by 1000.

3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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Selection

Preprocessing

Transformation

Data Mining

Interpretation/
Evaluation

weka.attributeSelection.CfsSubsetEval -S 
weka.attributeSelection.BestFirst -I 

Select data logs from distributed sites for 
analysis

weka.filters.unsupervised.attribute.Remov
e -R

weka.classifiers.bayes.NaiveBayes -no-cv 
-v -o -t $1 -d bayes.model

weka.classifiers.bayes.NaiveBayes -no-cv 
-v -o -T $1 -l bayes.model

Sample data for training/testing

Figure 4.5: Data mining using WEKA library

The total data used by the intrusion detection workflow (Figure 4.3) is divided into
30MB, 60MB, 90MB and 120MB. This was be achieved by filtering the training, testing
and real-time data by random sampling.

All datamining was performed usingWEKA classes as described in Figure 4.2. Weka,
is one of the most commonly used tool for performing data mining and machine learning
tasks. The advantage of using Weka is that it implements a large number of mining
algorithms and can be rapidly used to compare differentmethods. It can be used either as
a command line tool or with the GUI to perform standard machine learning tasks such as
data preparation, data pre-processing, feature or attribute selection, training and testing
and evaluation of results. Hence, we used this tool as described in Figure 4.2.

4.5.2 Middleware and tools

We used Workflow Engine [102] for scheduling and managing workflow executions on
Cloud resources. The engine together with the application broker are part of the Cloud-
bus Toolkit [25]. We use the scheduling heuristic listed in Algorithm 4.4. Both, multi-site
partial downloads and CloudFront downloads were carried out over HTTP using JPar-
tialDownloader tool4. HTTP/1.1 range requests allow a client to request portions of a
resource.

4http://jpd.sourceforge.net/
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4.5.3 Distributed compute and storage resources

For selecting the nearest storage location of a file relative to a compute resource, we
use the functionality of Amazon CloudFront. CloudFront fetches data to a compute
resource from the nearest edge-server. The data transfer cost (per GB) from the edge
locations is presented in Table 4.3. The data transfer cost (DTx cost) from the CloudFront
to the execution sites is based on the edge location through which the content is served.
We assume the data transfer cost to and from a storage location to be equal in all our
experiments. This simplifies the model for the selection of storage sites for partial data
retrievals and data upload. For partial data retrievals, all the resources listed in Table 4.3
also served as storage resources. For our experiments, we ignored the data storage cost
on Clouds, which could easily be added to the overall execution cost as a constant (e.g.
$0.150 per GB for the first 50 TB /month of storage used5).

We used compute resources from US, Europe and Asia as listed in Table 4.3. The
execution cost (Ex cost) on each CPU is calculated based on the number of cores (cost is
similar to Amazon EC2 instances) available.

4.6 Analysis

We now present results obtained by executing the intrusion detection application work-
flow using globally distributed resources as listed in Table 4.3.

4.6.1 Experiment objectives

We conduct the following two classes of experiments:

1. Measure total cost when using commercial Cloud as content distribution and pub-
licly available compute resources for execution (ecostj = 0, txcosti, j > 0).

2. Measure total cost of execution when using commercial Cloud for content storage,
distribution and execution (ecost > 0, txcosti, j > 0)

The first experiment (subsection 4.6.2) measures the cost of data transfer if Cloud
resources were used only for data distribution and tasks executed on publicly available
compute resources. In this scenario, the compute resources in Table 4.3 served both as
storage (mimicking distributed Cloud storage) and compute resources. We use a solution
to our model for determining quantity of partial data transfers from the distributed
storage such that the transfer cost is minimized. The tasks are mapped to the compute
resources such that the partial transfers have minimum cost.

The second experiment (subsection 4.6.2) measures the cost of executing the appli-
cation on Cloud resources, with non-zero data transfer and computation costs. In this

5http://aws.amazon.com/s3/#pricing
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scenario, ourmodel gives a solution forminimizingbothpartial data transfers and compu-
tation costs, with tasks mapped to resources accordingly. Here too, the compute-servers
in Table 4.3 serve as distributed Cloud storage and compute resources.

We compare the costs obtained from each of the above experiments against the cost
incurred when using data-transfers from nearest (with respect to the compute resource
where the task is assigned) Cloud storage resource. Wemeasure the total cost incurred for
transferring data from nearest location by making compute-resource cost: zero (relating
to publicly available resources) and non-zero (relating to commercial Cloud resources),
consecutively.

We finally compare the cost savings when using NLP based task+data resource selec-
tion against CloudFront’s data resource selection.

4.6.2 Results

The results obtained are an average of 15 executions. The cost values in Figures 4.6 and 4.7
are for executing a single instance of the intrusion detection workflow. The cost values in
Figure 4.8 are the result of executing the workflow 10,000 times (the cost of 10 executions
multiplied by 1000).
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Figure 4.6: Comparison of transfer cost with no execution cost.

Scenario 1: Data in Cloud and execution on public compute resources

Figure 4.6 compares the cost of transferring data to compute resources between NLP-
solver based source selection and single source selection given by CloudFront. We set the
execution cost to zero for comparing only the transfer cost. The results show that the total
data transfer cost is minimized when usingNLP-solver based storage host selection for all
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size of data. As the size of data increases from 30MB to 120MB, the benefit of transferring
data using NLP compared with CloudFront increases. For the total size of 120MB data,
using the CloudFront would cost $0.025, whereas using NLP the cost decreases to $0.020.
The difference in cost is huge for large experiments, as analyzed later in subsection 4.6.2.

The reason for the decrease in cost is NLP-solver transfers partial data in proportion
to the cost of communication, as the data transfer cost is divided among all the cheapest
links. CloudFront selects the a single best source for data transfer. Transferring data using
CloudFront becomes more expensive as the size of these data increases.
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Figure 4.7: Comparison of total cost when both computation and transfer costs are non-zero.

Scenario 2: Data and execution on Cloud resources

Figure 4.7 depicts the total cost of executing the intrusion detection workflow on Cloud
resourceswhen usingNLP-solver based task-resourcemapping and (a) NLP-solver based
data source selection (labelled as NLP in the figure), (b) CloudFront based data source
selection (labeled as CloudFront in the figure). The NLP based task-resource mapping
was used to make a fair comparison on data transfer cost between our approach and
CloudFront. In this case, the NLP-model embeds the minimization of both the execution
costs and data transfer costs into one objective function to be minimized, as listed in
Figure 4.4. As two costs were involved, the total cost increased when compared to only
the data transfer cost depicted in Figure 4.6. Nevertheless, partial data transfers based on
NLP-based data source selection incurred the minimal cost for all range of data sizes.

Even when the task-resource mapping was based on NLP, the total cost savings for
120MB of data processed was $0.02 on average for 1 execution. If both task-resource
mapping and data retrievals were based on existing heuristics (earliest finish time for
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Table 4.3: Distributed compute resources used for evaluating NLP model based scheduling heuristic

Physical Compute Nodes cores
Ex cost
$/hr

DTx cost
$/GB

Nearest
Region

rotegg.dps.uibk.ac.at 1 $0.10 $0.170 Europe
aquila.dacya.ucm.es 1 $0.10 $0.170 Europe
tsukuba000.intrigger.omni.hpcc.jp 8 $0.80 $0.221 Japan
omii2.crown-grid.org 4 $0.40 $0.210 China
snowball.cs.gsu.edu 8 $0.80 $0.170 US
node00.cs.binghamton.edu 4 $0.40 $0.170 US
belle.csse.unimelb.edu.au 4 $0.40 $0.221 Japan
manjra.csse.unimelb.edu.au 4 $0.40 $0.221 Japan

compute and best resource for data), our approach would have had more savings.
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Figure 4.8: Comparison of total execution cost betweenNLP basedmappings,with andwithoutCloudFront
(round-robin based mapping is used for comparison of the upper-bound only).

Total cost savings

Figure 4.8 depicts the cost of executing the real-time analysis section, depicted as Block C
in Figure 4.3), 10,000 times (Blocks A and B are usually computed only once for each set
of data). The cost values for each data group were derived from the cost of 10 executions
multiplied by 1000. The most costly approach was when using round-robin based task-
resource mapping algorithm and nearest source data retrievals. This value should be
interpreted as an upper bound for comparison purposes only. This cost was reduced by
77.8% ($466.8) when we used the NLP-solver based mapping and multi-source partial
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Figure 4.9: Comparison of execution time between NLP based mapping and Round-Robin based mapping.

data retrieval; and by 76.2% ($457.2) when we used NLP-solver based mapping and data
retrieval from CloudFront’s best source. This would amount to savings of three-quarters
of the total expenditure if intrusion detection systems were to be executed on Clouds
using our model. When the costs obtained by using NLP based approach was compared
to CloudFront’s, NLP was able to reduce the cost by $7.1 on average. This cost savings
would cumulate to be higher for larger data and repeated experiments. Thus, for all
scenarios, the total cost incurred when using NLP-solver is lower than the cost incurred
when using Amazon’s CloudFront based data retrieval.

Workflow computation time: We measured the time taken for computing (excluding
data transfer time) the workflow under two scenarios:(a) when cost is minimized using
our NLP-model, and (b) when time is minimized by a simple round-robin based selection
of resources, depicted in Figure 4.9. When compared against a simple task mapping
algorithm such as round-robin, NLP-model based heuristic takes additional time, which
increases as the size of the data-set increases as evident from Figure 4.9. Figure 4.9 also
depicts the maximum and minimum values of execution time for various data sizes.
When the compute resource list was randomized, the deviation for the NLP-mapping
(mainly due to CPU load) was lower than the RR-mapping (change in type of CPU). The
computation time can be reduced by increasing the number of compute resources used,
while still using Clouds for data storage and distribution.

We tabulated the cost of computation and data transfer according toAmazon’s current
pricing policy in Table 4.3. The highest computation cost of Amazon Cloud resources
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is more than the highest data transfer cost6. Armbrust et al. [7] have compared the
normalized cost of computing resources and WAN bandwidth between 2008 and 2003.
Their data clearly shows that the cost/performance improvement is 2.7 times and 16
times for WAN bandwidth and CPU hours, respectively. This trend hints to the fact
that data transfer costs are not decreasing as much as computation cost. Hence, for data
intensive applications, total cost savings on communication is a necessity as compared to
computation cost.

4.7 Related Work

Armbrust et al. [7] described the benefits of moving to Cloud computing. These benefits
include lower operating costs, physical space savings, energy savings and increased
availability.

Deelman et al. [39] presented a case study for examining the cost-performance trade-
offs of different workflow execution modes and provisioning plans for Cloud resources.
They concluded that data intensive applications can be executed cost-effectively using
Cloud computing infrastructure. In contrast to their work, we focus on the minimization
of communication cost using globally distributedCloud edge-servers and compute nodes.

Amazon CloudFront uses edge locations in United States, Europe, and Asia to cache
copies of the content for faster delivery to end users. It provides users address in the form
of a HTTP/HTTPS uniform resource locator (URL) . When a user requests one of these
data from any site, Amazon CloudFront decideswhich edge location is ‘best’ able to serve
the request to that user’s location. However, users do not have control over the amount
of data to get from each edge servers, to minimize cost, unless they access the URL from
a different geographic location. We compare our approach with Amazon’s ‘best’ location
approach.

Wu et al. [158] presented the design and implementation of Collaborative Intrusion
Detection System (CIDS) for efficient intrusion detection in a distributed system. They
used a manager framework for aggregating alarms from different detectors to provide a
combined alarm for an intrusion. They claim that aggregate information is more accurate
than elementary data for intrusion detection. Zeller et al. [174] presented the advantages
of using Cloud computing for data mining applications, especially when the size of data
is huge and globally distributed. These application scenarios add to the necessity for
executing intrusion detection algorithms at multiple locations, which in turn produces
data at multiple computing sites facilitating data retrieval and scheduling algorithms
such as the one presented in this chapter.

Broberg et al. [20] introduced MetaCDN, which uses ‘Storage Cloud’ resources to
deliver content to content creators at low cost but with high performance (in terms of

6assuming transferring 1GB from Amazon takes 1 hour of CPU time
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throughput and response time). This work also adds credibility to our assumption that
data can be indeed replicated and hence downloaded from multiple locations, including
from storage clouds. MetaCDN presented the delivery mechanism but did not address
the cost optimization problem for application or the client side. This chapter presented
one algorithm to minimize the cost of distributed data retrieval.

Microsoft has aWindowsWorkflowFoundation for defining,managing and executing
workflow as part of its .NET services. With the .NET services, workflows can be hosted
on Clouds for users to access it from anywhere [95]. The service facilitates transparent
scalability for persistence stores and distribution of load between hosts. At the time of
writing this thesis, their services did not address cost optimization. Hence, this chapter
addresses the cost optimization problem by modeling the problem and solving it.

A number of work in Grid computing, especially those related to Data Grids, have
focused onoptimal selection of data sourceswhile scheduling applications [151; 93]. Also,
some existing workflow systems [46; 56; 91] use a variety of optimization metrics such
as the execution time, efficiency, economical cost, or any user-defined QoS parameter for
scheduling workflow applications. In Grids, users were not able to provision required
type of resources at specified locations as demanded by applications. In Clouds, how-
ever, users can first choose the set of compute and storage resources they want for their
application and then use our model for minimizing the total cost. The initial selection
may be based on user’s budget allocated for executing the application in Clouds.

4.8 Conclusions

In this chapter, we presented the execution of an intrusion detection applicationworkflow
using Cloud resources, with an objective of minimizing the total execution cost. We
modeled the cost minimization problem and solved it using a non-linear program solver.
Based on the solution, we retrieved data from multiple data sources to the compute
resourcewhere a taskwasmapped, unlike previous approaches, where datawas retrieved
from the ‘best’ data source. Using our NLP-model we achieved savings of three-quarters
of the total cost as compared to using CloudFront’s ‘best’ data source selection, when
retrieving data.

We conclude that by dividing data retrievals to distributed data centers or storage
Clouds in proportion to their access cost (as laid out in our model), users can achieve
significant cost savings than when using existing techniques.

The NLP produced near optimal results in terms of task to resource mapping and
multi source data retrievals. However, the computation time for obtaining the near
optimal result increased as we increased the size of input data. NLP model would
be highly suitable for moderate size mapping problems, where the comparisons as a
result of fewer resources and data files. It would not be practically feasible for a large
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problem, where number and size of data files are significantly larger. In the latter case,
the computation time of NLP would significantly outweigh the benefits of obtaining
near optimal schedules. In order to avoid such problems, we propose heuristics based
algorithms in the following chapters where performance and optimality is balanced for
both small and large sized problems.
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5
Static and Dynamic Heuristics-Based

Scheduling Algorithms

M
any large-scale scientific experiments collaborate with researchers and labora-
tories located around theworld so that they can leverage high-tech infrastruc-
tures present at those locations and collectively perform experiments quicker.

Data produced by these experiments are thus replicated and cached inadvertently at mul-
tiple geographic locations. This necessitates new techniques for selection of both data
and compute resources so that executions of applications are time and cost efficient when
using distributed resources. Existing heuristics based techniques select ‘best’ data source
for retrieving data to a compute resource and then carry out task-resource assignment.
But, this approach of scheduling based only on single source data retrieval may not give
time (and cost) efficient schedules when: 1) tasks are interdependent on data (workflow),
2) average size of data processed by every task is large, and 3) data transfer time exceeds
task computation time by at least an order of magnitude. To achieve time efficient sched-
ules, we leverage the presence of replicated data sources to retrieve data in parallel from
multiple sources and incorporate this in our scheduling heuristic. In this chapter, we pro-
pose multi-source data retrieval based scheduling heuristic that assign interdependent
tasks to compute resources based on both multi-source parallel data retrieval time and
task-computation time. Hence, with a combination of data retrieval and task-resource
mapping technique, we show that our heuristic can achieve time-efficient schedules that
are better than existing heuristic based techniques, for scheduling application workflows.

5.1 Introduction

Selecting compute and storage nodes based on their location in the network is a basic
building block formany distributed systems [156]. Applications that require only a hand-
ful of resources and storage space, are not significantly affected in terms of performance
by the locality of nodes. However, for large scale scientific experiments such as the Com-
pact Muon Solenoid (CMS) experiment for the Large Hadron Collider (LHC) at CERN,
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the Laser Interferometer Gravitational-Wave Observatory’s (LIGO) science runs, projects
at Grid Physics Network etc., selecting compute and data sources based on locality is
critical to their performance.

Multiple data sources are created at various locations around the world as a result
of scientists carrying out repeated experiments. When scheduling and managing the
executions of these applications, an application scheduler should be able to select these
data sources and parallelize the transfer of data to a compute host to optimize the transfer
time. Similarly, the selection of the compute host, in relation to the selected set of data
hosts, should be such that the execution time is minimized. We thus focus on these two
aspects – data host and compute host selection while scheduling data intensive scientific
application workflows.

Different approaches such as the replica selection in theGlobusDataGrid [146], Giggle
framework [32] and combinations of these methods are used to resolve replicas in data
intensive applications. However, these replica selection services primarily select one
‘best’ replica per task that gives the minimum transfer time to a compute host. But for
applications that have tasks with data-dependencies and multiple input files per task,
selecting one ‘best’ replica may not always give the optimal transfer time [48; 178].

Storage and distribution services provided by storage service providers such as Nir-
vanix Storage Delivery Network (http://www.nirvanix.com), Cloud Storage [Amazon
Simple Storage Services (S3), (http://www.amazon.com)], are enabling users and scien-
tists to store and access content from edge servers distributed globally. These content
distribution network can be used by data intensive applications for storage and distri-
bution. Users can then retrieve data from these multiple data hosts or edge servers ( in
contrast to single ‘best’ storage resource) in parallel tominimize the total transfer time. As
data are transferred in segments, the transfer process is carried out in parallel when using
multiple data sources. This is termed as ‘multi-source parallel-data-retrieval (MSPDR)’ in
this chapter. In addition to selecting data hosts, we also need to choose a resource where
the data is transferred for execution of application tasks.

In this chapter, we present two scheduling heuristic that leveragemulti-source parallel
data-retrieval techniques. We experiment with existing (a) probe-based[178], (b) greedy
[178], and (c) randomsite selection baseddata retrieval techniques for retrieving data from
selected data-hosts while scheduling tasks in a workflow. We also propose a tree based
approach for selecting multiple data sources during the scheduling process. We then
study the effect of using MSPDR based heuristics on the makespan (i.e., the length of the
schedule – data transfer and execution time) of representative data intensive application
workflows. Finally, we compare the makespan obtained by using MSPDR-heuristics
against single ‘best’ data source based heuristics.
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5.2 Scheduling Heuristic

In this section,wefirst describe a static schedulingheuristic (also knownas offline schedul-
ing) assuming the scheduler has advance information of the environment. For dynamic
environments, where the estimates are not used,we propose a Steiner Tree based resource
selection method. Using this tree, we then describe a dynamic scheduling heuristic (also
knownas online scheduling)where the schedulermakes scheduling decisions at run-time.

5.2.1 Static Scheduling Heuristic

We propose an Enhanced Static Mapping Heuristics (ESMH) assuming the scheduling
system has advance information of tasks, compute and storage resources and network
statistics at the time of scheduling and prior to execution, as listed below:

• Number of tasks to be scheduled

• Estimated execution time of every task on a set of dedicated resources

• Maximum execution time of a task (used for task preemptions in a priority queue
based resource management system)

• Size of data handled by each task

• Earliest start time for an unscheduled task on any given resource

• Resource characteristics: CPU MHz, memory, cache

• Average network bandwidth available between resources at the time of scheduling
(based on prediction)

Data-Resource Matrix: Every task tk ∈ T processes a set of input to produce output
files, all in the set { f1, ..., fn}tk ∀ fi ∈ F. A data-resourcematrix for a task tk stores the average
time required for each file fi, or a set of files { fi}, to be transferred to a resource (rj) at a
location mij. The mij values must be calculated/estimated in advance by using partial file
transfer mechanisms, e.g. probe, random or greedy.

In static mapping heuristics (e.g. HEFT, HBMCT), it is a common practice to compute
or estimate these transfer times using access logs, prediction models or real-executions.
This matrix is similar to a meta-data catalog that provides transfer times of files between
resources. Our approach is different than the meta-data catalogs as data is transferred
frommultiple locations in parallel using either probe or greedy based retrieval technique.

Resource Selection: We select compute resources based on the Earliest Finish Time
(EFT) value we calculate for a task on a resource. This EFT value is calculated by adding
the estimated computation time of a task on a resource avg comp(ti,Rk) ∀ti ∈ T;Rk ∈ R and
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the estimated transfer time of total data to the resource tr({ f }ti ,Rk). To select the resource
that has the minimum EFT for a task, we rely on external information, usually obtained
by using an Estimated Time to Compute (ETC) matrix, user supplied information, task
profiling, analytical benchmarking, as mentioned by Siegel et al. [19].

Algorithm 3 Enhanced Static Mapping Heuristics (ESMH)
1: for each task starting from the root do
2: Form resource set {R} that has min(tr({ fi}, ri ∈ R)) for each file fi required by task ti
3: Mark Rk ∈ {R} that has min. computation time for ti
4: EFTmin avg = min avg comp(ti,Rk) + tr({ f }ti,Rk)
5: for each resource ri ∈ {R} do
6: EFTrelative = avg comp(ti, ri) + tr({ f }ti, ri)
7: if [EFTrelative] < [EFTmin avg] then
8: Map ti to ri; break;
9: end if

10: end for

11: if ti not assigned then
12: Mark Rm � {R} that has minimum tr time for the largest file required by task ti
13: EFTf ile = min avg comp(ti,Rm) + tr({ f }ti,Rm)
14: if [EFTf ile] ≤ [EFTmin avg] then
15: Map ti to Rm
16: elseMap ti to Rk /* last option */
17: end if

18: end if

19: Update resource availability information based on the mapping of tasks
20: end for

Heuristics: Algorithm 3 lists the ESMH. We start task-resource mapping by selecting
tasks in a workflow on a level-by-level basis. The DAG representation of a workflow is
divided into levels to form a tree using breadth-first-search (BFS). The BFS begins at the
root node and explores all the neighboring nodes. Then, for each of those neighboring
nodes, we explore their unexplored neighbors and so on, until we have explored all the
tasks in the DAG. Each search step defines a new level until we reach the leaf nodes.

For each task, we first form a set of compute resources {R} by selecting only those
resources that haveMinimum Transfer Time (MTT)min(tr({ fi}, ri ∈ {R})) for each input file
fi of a task ti. The transfer time value tr({ fi}, resource) = mij = m[ f ile, resource] is obtained
from the data-resourcematrix for all the resources. We then forma compute resource set {R}
that contains resources having MTT for each input file for all the tasks in the workflow.
Among these resources, we mark a resource Rk ∈ {R} that has minimum computation
time for the task ti. Next, we estimate the Earliest Finish Time (EFT) value of the task
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(EFTmin avg) by adding the average of the minimum Execution Time (ET) given a resource
for the task and the transfer time of all inputfiles required by the task to that resource. This
EFT value is an average value since we take the average of all the minimum computation
time (min avg comp) of tasks on that resource. We assume the minimum computation
time of every task varies on a resource as the size of input files vary.

Next, we calculate the EFT value of the task ti for all the resources in the resource
set {R}. This EFT given by each resource is termed as EFTrelative. EFTrelative is different
than EFTmin avg as the EFT value is relatively dependent (convolution relationship) on
data transfer and on average computation, unlike EFTmin avg which is dominated by the
minimum value of execution time given by a resource. We then compare the EFTmin avg
value against the EFTrelative. If we find a resource that has the EFTrelative value lesser than
the EFTmin avg, then we assign the task to the resource that gives this lesser EFTrelative.

If none of the resources in the set {R}have EFTvalue lower thanEFTmin avg, we compute
the EFT based on the file size. We choose a resource Rm such that it has minimum transfer
time value for the largest input file of the task ti. We then compute the EFTf ile based on
this resource Rm. The task is then assigned to the resource that has minimum EFT value
(either Rm or Rk). We could search for optimal EFTrelative, but it would be computationally
not feasible for large resource set {R}.

Rationale: The formation of a bounded compute resource set {R} ensures that only
limited, but right candidate resources are selected from a pool of large number of re-
sources. The resources in this set are selected based on the transfer time of input files of
each task. As we are considering data intensive workflows, we focus on minimizing data
transfer time (i.e. EFTrelative,EFTf ile) over task computation time (i.e. EFTmin avg). Thus,
the heuristic maps tasks to resources based on the size of data. If all the input files of a
task have higher values of transfer time than its averaged minimum computation time,
the task is assigned to the resource that has minimum EFTrelative value. If only some of
the input files of a task have higher values of transfer time than computing time, the task
is assigned to the resource that has minimum EFTf ile value. If the averaged minimum
computation time of a task outweighs the transfer time of input files, the task is assigned
to the resource that gives minimum EFTmin avg value. Hence, in a workflow, all the tasks
get equal share of resources depending on their data and computation requirements.

ESMH is different thanHEFT,HBMCT and existing static heuristics as: (a) it evaluates
task schedules based on multi-source file transfer times to a resource (b) manages task to
resource mapping based on both data-transfer and computation requirements, (c) uses
only selected resources in contrast to all available resources, and (d) balances tasks to
resource mappings based on both transfer time and computation time.
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Tasks R1 R2 R3
1 8 23 40
2 8 41 43
3 12 4 21
4 29 39 49
5 35 8 22
6 2 27 16
7 26 43 29
8 3 4 12

Files R1 R2 R3
F0 10 341 1438
F1 376 1351 1344
F2 401 45 108
F3 375 243 942
F4 1005 158 1022
F5 845 379 105
F6 256 240 12
F7 475 1315 639
F8 1441 1259 727
F9 1435 443 701

Tasks R1 R2 R3 start finish
1 - 680 - 0 680
2 384 - - 680 1064
3 - - 4224 680 4904
4 4266 - - 1064 5330
5 510 - - 5330 5840
6 8698 - - 5850 14538
7 - 12145 - 5840 17985
8 - 20833 - 17985 38818

Makespan = 38818
c) A schedule generated by using ESMH

Figure 5.1: An example workflow, matrices with estimated values, and a schedule generated by ESMH.
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Example Workflow

Figure 5.1 shows an example of a workflow with input and output files and data de-
pendencies between tasks. This workflow resembles a search for periodic Gravitational
Waves (GW) from Sco X-1, led by Dr. Melatos at The University of Melbourne. Sco X-1
is the low-mass X-ray binary with the strongest X-ray emission. In Sco X-1, strong X-ray
bursts occur frequently, and GWs can be emitted along with the X-ray bursts. Gravi-
tational waves are ripples thought to occur in the fabric of space-time that result from
interstellar collisions, explosions, or movement of large and extremely dense objects such
as neutron stars. Those ripples can then pass through the space-time that Earth occu-
pies, causing a distortion which Advanced LIGO is meant to pick up. Currently, several
interferometric Gravitational Wave detectors around the world such as LIGO, VIRGO,
GEO600, TAMA300 have been collecting data that could then be used by scientists for
searching GWs.

The size and quantity of data produced by the workflow depicted in Figure 5.1 are
substantive. For e.g. 10 days of fake data created withMakefakedata (using LAL software
suite), produces files of 142 KB (each 1800 second Short-time Fourier Transforms in time)
and there are 480 of such in a continuous 10 day stretch of data for a single source. This
amounts to over 66MB. The ComputeFStatistic and CombSearch, which are processes under
the LIGO search, each produces over 77MB data after processing the data created from
Makefakedata. Depending on the input parameters, the plot resulting after plotting the
points (the task t8) also needs further processing to produce an image file (e.g. png, eps,
etc.) for visualization. The processing time taken by ComputeFStatistic and CombSearch
depends on the stretch of data, starting frequency, and band of search. Based on this
scenario, the matrices in Figure 5.1 list the execution and data retrieval times for the
example application.

The table in Figure 5.1c shows the schedule length produced by using ESMH listed
in Algorithm 3. In this example, ESMH uses values from pre-computed matrices. These
matrices are: a) one that stores values of average computation time of each task on each
resource (Figure 5.1a) and b) one that stores values of average transfer time of each data-
file from distributed data-centers to each resource (Figure 5.1c) based on probe-based
multi-source parallel retrieval technique. As ESMH is an offline heuristic, these matrices
are computed before the heuristic operates.

In this example, we have three resources {R1,R2,R3} and eight tasks t1 to t8. Each task
operates on several input files to produce output files. We take the example of mapping
of task t3. The schedule given by each resource R1, R2 and R3 is (12+3917), (4+2571) and
(21+3184) seconds, respectively. As resource R2’s available time is after task t1 finishes
execution, the minimum EFT is given by resource R3, hence the mapping.
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Limitations of Static Heuristic

The static heuristic we have proposed would be most appropriate if all of our assump-
tions listed in sub-section 5.2.1 could be realized in practice. However, in distributed
environment where resources are shared among a large number of users, the estimates
recorded in the matrices, as described above, will have large deviations compared to
the values at the time of task execution. Hence the static estimates of computation and
communication time cannot be relied upon for time efficient scheduling of applications
that have long-running tasks with large data-sets to process. This limitation prevents us
from forming the initial resource set {R} in Algorithm 3. To circumvent this limitation,
we propose a Steiner Tree based resource selection and apply it for online scheduling, as
described in the following section.

5.2.2 A Steiner Tree

Definition: A Steiner Tree problem can be defined as: Given a weighted undirected graph

G = (V,E), and a set S subset of V, find theMinimum-Cost tree that spans the nodes in S.
G = (V,E) denotes a finite graph with a set V of vertices and the set E of edges. A

weight w defines a number w(e) ∈ R+0 associated with each edge e, i.e, w : E → R+0 . In
particular, the weight d : E → R+0 , and c : E → R+0 represent the delay and the cost of the
link, respectively. A path is a finite sequence of non-repeated nodes p = (v0, v1, · · · , vi),
such that, 0 < i ≤ k, k = |V|, there exists a link from vi to v(i + 1) ∈ E. A link e ∈ p
means that path p passes through link e. The delay and cost of a path p are thus given by:
d(p) =

∑
e∈p d(e), and c(p) =

∑
e∈p c(e).

A spanning tree T of a graph Gwith length, which is the shortest among all spanning
trees, is called a minimum spanning tree for G. An Steiner-Minimal-Tree (SMT) for a
set of points is a minimum spanning tree, where a finite set of additional vertices VA is
introduced into the space in order to achieve a minimal solution for the length of the path
p.

In order to approximate the length of the path p, we assume the delay and cost of a
path are in metric space and can be combined with the a distance function ρ.

Let (X, ρ) be ametric space. That means: X is a nonempty set of points and ρ : X2 → �
is a real-valued function, called a metric, satisfying:

1. ρ(x, y) ≥ 0 for any x, y in X; whereby equality holds if and only if x = y;
2. ρ(x, y) = ρ(y, x) for any x, y in X; and

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z in X (triangle inequality).

G = (V,E) is embedded in (X, ρ) in such a way that V is a set of points in X and E is
a set of unordered pairs vv′ of points v, v′ ∈ V. For each edge vv′ a length is given by
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ρ(v, v′). Hence, we define the length of the graph G in (X, ρ) as the total length of G:

L(G) = L(X, ρ)(G) =
∑

vv′∈E
ρ(v, v′). (5.1)

Thus, the SMT is a tree that connects vertices in Vwith additional verticesVA to lower
the path length ρ. Even though Internet can be regarded as a non-metric space, where
the network flow is constantly changing in time and the triangle inequality may not hold,
the assumption that ρ is in metric space highly simplifies the problem of constructing the
tree and hence selecting vertices as compared to when using ρ in a non-metric space.

Forming a Steiner Tree

The SMT problem is NP-hard, so polynomial-time heuristics are desired [41]. The
Bounded Shortest Multicast Algorithm (BSMA) is a very well-known delay-constrained
minimum-cost multicast routing algorithm that shows excellent performance in terms of
generated tree cost, but suffers from high time complexity [126]. In this chapter, we use
the incremental optimization heuristic developed by Dreyer et al. [41]. Even though it does
not give an optimal solution, we get a feasible solution at any point in time 1.

The time complexity of constructing SMTwith minimal length for a finite set of points
N in the metric space (X, ρ) depends on n = |N| and, the time taken to compute ρ(x, y) for
any point (x, y) ∈ V of the space. The definition of the distance function in terms of the
delay and cost of a path p is:

ρ(v, v′) = w1d(p) + w2c(p) (5.2)

The weightsw1,w2 are considered as a measure of the significance of each objective in
the distance function of Equation 5.2. We could have obtained a Pareto optimal solution
by choosing the right combination of w1 and w2, which minimizes the distance. But, we
are interested in reducing the time complexity of the overall process. Hence, we leave
the values of these weights (delay and cost) to the user to select at runtime. Moreover,
even a random choice (but within acceptable bounds) of delay values (keeping the cost a
constant in this article) help achieve the objective of our problem as compared to using a
single source.

The primary objective of constructing a Steiner Tree is to identify neighbors connected
to a node and not to find shortest paths between nodes. Finding shortest path in-terms
of network distance and latency in a distributed setting is a difficult and time consuming
task, the results of which may not be valid for long running applications. However, for
short intervals, traceroute, which is a network tool formeasuring the route path and transit
times of packets across an Internet Protocol network, has been used. In the next section,

1http://www.nirarebakun.com/graph/emsteinercli.html
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we show that there is a high degree of similarity between nodes’ geographic locations and
their connectivity with the practical deployment of network clusters in the real world.

5.2.3 Steiner Tree Based Resource Selection and Multi-source Data retrieval

b) Grid 5000 Network

c) Distributed Compute Resources (Hybrid Cloud)

a) Planet Lab Nodes in US (under our slice)

Lille Luxembourg

Bordeaux
Lyon

Grenoble

Rennes
Paris

Nancy

Marsille

Toulouse Nice 
US East                       US West

Valence

Poitiers

Melbourne, Australia 

Tokyo, Japan 
Madrid, Spain 

Innsbruck, Austria
Ireland

North California

Atlanta, Georgia

North Virginia

Indiana, Pennsylvania

Binghamton, NY

Lyon, France

Physical Compute ResourceLabel

Shortest Path between Resources

Resource Site

New Vertex added by Steiner Tree

Taiwan

EC2 Amazon EC2 Nodes (Virtual Machines)

Figure 5.2: A Steiner Tree constructed for PlanetLab nodes, Grid’5000 network and distributed resources
available for our experiment

The problem of selecting multiple data sources can be handled by forming a SMT.
In our formulation of the Steiner tree problem, the vertices V represent both data D and
compute R sources and the links E represent the network connection between them in
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the graph G. The additional vertices VA represent nodes around V that are not data or
compute sources, but would minimize the path length if the communication network
connects through them.

In order to validate our implementation of the Steiner tree based resource selection
method, we constructed the tree on three independent networks: PlanetLab nodes in US
under our slice, the Grid’5000 network, and a distributed compute resources similar to
CMS resources in Figure 1.2. These trees are shown in Figure 5.2. The trees are SMTs
constructedout of vertices scattered in an euclidean plane – the coordinates of thesepoints
on the plane are the latitudes and longitudes of the cities where resources are present. A
tree connect the verticeswith lines such that the distance between the points in the plane is
minimal. If there are vertices which fall on theminimal path, the tree routes through them
without the need of additional vertices, as in the planet lab network (boxeswith amarked
dot). Additional vertices are added (boxeswithout a marked dot) where nodes do not fall
in the path of the tree, as in the other two networks. The trees, drawn using the Euclidean
plane, are close enough to the real-world network connections between the resources (e.g.
Grid’5000), thus validating our implementation of Steiner trees. In addition to validation
tests,we use the distributed compute resources depicted in Figure 5.2(c) when conducting
real experiments, as described further in Section 5.3.

In Figure 5.2, there are vertices (existing and added) which have in-degree (ind: the
number of edges coming into a vertex in a graph) of two and three. Higher value of ind
signifies the number of connections a vertex can make for parallel data retrieval. For e.g.,
if a vertex v ∈ V has ind = 3 with vertices v1, v2, v3 ∈ V, a resource located at/nearby v can
retrieve data from these three data sources with minimal path length:

L(X, ρ) =
i=3∑

i=1,viv∈E
ρ(vi, v)

In the PlanetLab network, there are several nodes (dots with square) that have an
in-degree of three. In the case of Grid’5000 network, Paris, Marsille possess compute
nodes that are each connected to 3 other sites around them. If Poitiers and Valence were
to host compute nodes, these sites would also have an in-degree of three.

Thus, we first construct a Steiner tree on a network and select resources that have the
highest value of in-degree ind. This selection procedure will then be used for dynamic
mapping heuristics.

5.2.4 Dynamic Mapping Heuristic

In this section, we describe the Enhanced Dynamic Mapping Heuristic (EDMH) using
the Steiner tree based resource selection as described in Sub-section 5.2.2. The EDMH is
listed in Algorithm 4.
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Algorithm 4 Enhanced Dynamic Mapping Heuristic (EDMH)
1: Construct a Steiner tree using all available resources
2: Get N compute resources {R}N with highest value of ind
3: for each task ti starting from the root do
4: Set minimum Start Time (minST) = ∞
5: for each resource ri ∈ {R}N do
6: Probe each connected neighbor rneighbori of ri for calculating instantaneous band-
width (max of ind probes)

7: Split input files based on probe values: { f split−1, · · · , f split−ind }ti ∈ { f }ti
8: Estimate total transfer time tr({ f }ti, ri) for transferring split files { f split}ti from
each rneighbori to ri

9: StartTime(ST) = EST(ti, ri) + tr({ f }ti, ri)
10: if (ST ≤ minST) then
11: minST = ST, minCR = ri
12: end if

13: end for

14: Assign ti to the minCR⇒ the ri that gives minimum ST

15: Wait for polling time
16: Update the ready task list
17: Distribute output data of task ti to resources that host the files required by succes-

sors of ti
18: end for

EDMH is an online heuristic where tasks are assigned to resources based on resource
load and network latency values available at runtime. Unlike static heuristics (or offline
heuristics), EDMH does not estimate or use average computation time of tasks, instead
relies on theEarliest Start Time provided/forecast by resources. In addition, EDMHselects
initial pool of resources based on the Steiner Tree based selection method.

Pre-Scheduling:

We construct a Steiner tree using all the available resources. The tree helps us identify
resources that are well connected and thus have high ind. These resources form a set of
candidate resources {R}N, which are later chosen for executing tasks. We construct the
tree using a metric space (X, ρ)2.

Scheduling: EDMH is a list-based scheduling heuristic. We maintain a ready-list,
where tasks are added as they become available for scheduling. In dependent-task
scheduling, child tasks become ‘ready’ only when their parents have successfully com-
pleted execution. The ready-list is filled by the scheduling loop, starting from the root

2using a non-metric space also validates our heuristic as long as we can define the distance function
ρ(v, v′) and the path length L(G)
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task, as tasks are scheduled and get completed.

Initially, every ready task’s Start Time (ST) is set to a high value (e.g. ∞). This time
will be set to a wall-clock time later as tasks are assigned to available resources. Before
any task can start execution, we assume data required by the task must be available at
the assigned resource. The downloading of a task’s input data to a resource depends on
the total time it takes for multi-source parallel retrieval of data. To determine this time,
we use probe-based approach to estimate the instantaneous bandwidth between connected
resources and hence estimate approximate time it would take to download input data
from multiple resources for every task.

Grid 5000 Network

Toulouse Nice 

Marsille

Valence

10Gbps

2Gbps

10Gbps

Total Instantaneous BW = 22 Gbps
Proportional Share of BW: 10/22, 10/22, 2/22 (45.5%, 45.5%, 9%) 
Total Input File Size for a task t_i : 2000 MB
Consider Task t_i  is at site:  Marsille

fsplit-toulouse = 45.5% of 2000 MB = 910 MB
fsplit-nice        = 45.5% of 2000 MB = 910 MB
fsplit-valence  = 9.0%   of 2000 MB = 180 MB

Minimum Transfer Time (for the largest segment 910 MB): 0.71 secs 

Calculation of Partial Downloads

ti

2000MB

Figure 5.3: An example showing the partitioning of input files in proportion to the available instantaneous
bandwidth.

As each resource ri ∈ {R}N is connected with multiple neighboring nodes {rneighbori } in
the network (the Steiner tree helps identify these connections based on the ind), we probe
these neighboring nodes to determine instantaneous bandwidth available. Based on this
value, we split each input file among the nd resources connected to ri in proportion as:
{ f split−1, · · · , f split−ind }ti ∈ { f }ti. This split will enable parallel download of the respective
segments from each of the connected neighbors to the resource where a task is scheduled.
For example, in Figure 5.3, if a task tiwere to be scheduled at Marsille, input files of total
size 2000MB is split into three segments (as nd = 3 forMarsille): fsplit-toulouse, fsplit-nice,
and fsplit-valence. These segments will then be downloaded to Marsille in parallel from
the three neighboring sites. In this example, entire input files can be downloaded from
all the three sites. The minimum transfer time of 0.71 seconds depends on the size of the
largest segment (910MB in the example). While this segment is being downloaded, we
assume the smaller segmentswill havefinisheddownloading, so thatwe can approximate
the value of ST. We take this minimum time as the total transfer time tr({ f }ti, ri) and add it
to the Earliest Start Time (EST) of the task EST(ti, ri) to obtain the value of ST. The transfer
time function tr({ f }ti, ri) is analogous to the path length L(G) of the metric Steiner tree.
Similarly, the value of instantaneous bandwidth resembles the distance function ρ(v, v′)
(see Section 5.2.2).

We assign a task ti to the resource (minCR) that projects the minimum start time
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(minST) based on our estimations. The scheduler then waits for a duration defined by
the delay: polling time. In online scheduling, polling is necessary as the scheduler needs
to update the status of completed/failed tasks so that, after this delay, it can update and
schedule ready tasks.

We partition and distribute the output files produced by each task to those sites that
host files needed by the immediate successors of the task producing the output. This
distribution step ensures that these output files can be downloaded from multiple sites
which are also hosting the input files of the child tasks. This distribution should ensure
that neighboring hosts of the candidate resources {R}N have all the segments to complete
the entire file when downloaded at a resource, using any replication algorithm [113].

While scheduling workflows there exists more than one task that can be scheduled
independently of one another. Since our workflows are data intensive in nature, the
transfer time are dominant as compared to the computation time. This gives rise to the
possibility that majority of tasks are assigned to a single or only few compute resources.
This occurs only when tasks have more than one input file in common and these files are
only available from selected few resources. In such cases, grouping these tasks to form a
batch task and submitting to a resource reduces data-transfer time.

5.3 Performance Evaluation

We have evaluated proposed heuristic by two methods: 1) using emulation, where the
network was virtualized, and 2) real environment. First we describe the performance
metric, application workflows and data locality, which are common to both the experi-
ments.

5.3.1 Performance Metric

We used average makespan as a metric to compare the performance of the heuristic based
approaches on the network topology and workload distribution for both emulation and
real environment. Average makespan for every heuristic is computed by taking an average
of all the makespan produced by the heuristic for an application workflow, under a
setting. The smaller the value of the average makespan, the better the heuristic performs
in terms of executing the application in time scale.

5.3.2 Application Workflows

We used three types of workflows: pipelined, complex and hybrid, as depicted in Figure
5.4. Figure 5.4-Montage depicts a workflow similar to theMontageWorkflow [66]. In this
type of workflow structure, tasks are symmetrically distributed in the graph and can be
easily partitioned/separated into levels according to their dependencies. Figure 5.4-LIGO
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Figure 5.4: ApplicationWorkflow types: Balanced (Montage), complex (LIGO) and hybrid (IR) workflows

represents a complex workflow similar to a subset of the workflow used to analyze data
from the second LIGO science run for binary inspirals [141]. In this type of workflows,
tasks cannot be partitioned into levels easily as they have linked (data dependencies)
to/from tasks across levels. Figure 5.4-IR represents a real application workflow used for
Image Registration (IR) for fMRI applications [102]. This type of workflows have both
balanced and complex structures: group of pipelined tasks form a balanced structure that
can be easily partitioned into levels (upper half of the workflow), whereas some parts
are complex (lower half of the workflow). In all these workflows, each task requires at
least two files as input and produces at least one file as output (similar to the example
workflow depicted in Figure 5.1). In this chapter, we label the Montage, LIGO and IR
workflows asWF 1,WF 2, andWF 3, respectively.

For the IR workflow depicted in Figure 5.4, we recorded estimates of execution time
and data transfer time of each task on compute resources provided by Grid’5000. This
work is also explained in Chapter 3 and Appendix A, where we focus on IR experiment
[102] on Grid’5000. However, for Montage and LIGO workflows, we used random
execution time and data size. The execution times of each task on every machine were
randomly generated from a uniform distribution in the interval [10, 50] seconds. To
maintain higher values of communication-to-computation ratio, we chose each file size
in the interval [1, 1000] Mb. Each task for the two workflows were dummy computation
that remained in execution until its assigned execution time expired. The files associated
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with each task were generated by writing blocks of random characters until the file was
of required size. These random values, once computed, remained fixed throughout the
experiment. However, using random execution times and data sizes may break the
symmetry of execution times of the Montage workflow, still keeping the dependency
hierarchy intact.

In contrast to parallel tasks, where there are no data dependencies, makespan of
a workflow is highly dependent on the structure of the workflow (data-dependencies
between tasks). Random selection of data-sources at any level will increase the data
transfer time, delaying the start time of child tasks which in-turn increases the makespan.
Thus, by choosing three different types of workflows, we are interested in measuring the
multi-source data retrieval times and their relationship to task execution times at compute
resources.

We experimentally recorded the makespan for all the three types of workflows to
determine: a) if the makespan and the workflow structures were related, and b) the
effect of multi-source retrieval technique based scheduling on decreasing the makespan
of all workflow structures. We also checked if static scheduling or dynamic scheduling
approach produced better makespan when using multi-source data retrieval technique.

5.3.3 Data Locality

For experimenting greedy retrieval technique, we segmented each file and distributed
them uniformly to the number of resources used. The maximum and minimum file
segment size for our experiment varied between 0.5MB to 500MB. We tracked progress of
file downloads by segment number. Wemanually configured at least 30% of the resources
to have all the segments of 50% of thefiles, for eachworkflow type. For experimenting the
probe-based retrieval, we distributed all the files without segmenting to all the resources.
This is because the size of a file to be downloaded depended on the value calculated by
probing (as described in Sub-Section 5.2.4).

5.3.4 Emulation based Evaluation

Here, we list the intrinsic components of our emulation setup: the network topology,
compute and storage resources, and the design of the emulation platform. Then, we
present the results.

Emulation Setup

We used NS-23 as the emulation tool. For simulating the network connecting resources,
we constructed a dense network topology by interconnecting ns nodes. As an emulator,

3http://www.isi.edu/nsnam/ns
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we injected workflow execution traffic into the simulator and emitted packets on to
live network using NS-2’s real-time scheduler. Figure 5.5 depicts the architecture of
our emulation platform. The virtual network is connecting a set of User-mode Linux
(UML [63]) Virtual Machines (VMs), all running on a single physical machine. VMs
are connected via an Ethernet bridge in the host machine using a virtual interface. The
network bridge is configured such that it blocks all the packets forwarded through it,
and passes the traffic through the network defined in NS-2. We mapped each VM to a
ns node using NS-2’s network objects and tap agents, by using the correspondence between
the Ethernet addresses of the VMs and the network layer addresses of the NS-2 nodes
[90].
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Figure 5.5: Experiment design using NS-2 based emulation

Cappello et al. [114] have compared 4 virtual machine technologies (Vserver, Xen,
UML and VMware) in the context of large scale emulation. We used UML based virtual-
ization mainly for its low CPU and network overheads and ease of integrationwith NS-2,
which was application even when 100 VMs were running on a single host. Hence, the
20 virtual nodes running on a single machine had minimal impact on the performance
of the applications. We used our Workflow Engine (WFE) [102; 166] as a workflow ex-
ecution and scheduling engine for executing the workflows depicted in Figure 5.4. All
the scheduling heuristic are implemented in WFE. We dedicated one VM for running
the WFE and another for hosting the NWS nameserver and memory. We used NWS for
monitoring the network’s bandwidth and latency.

By using virtual machines alone, we would not be able to control the traffic flow
between the VMs. In order to maintain traffic and noise levels according to the traffic
and noise model of our choice, we needed a platform that would connect these VMs and
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enable us to emulate the network. NS-2 provided us the right kind of environment for
this purpose.

Network Topology

We used the GT-ITM4 internetwork topology generator to generate random graphs. GT-
ITM is a topology modeling package that produces graphs that look like wide-area Inter-
net. We used the Transit-Stub network model, where hierarchical graphs are generated
by composing interconnected transit and stub domains (see [173] for more details).

We attached our VM to one node in the hierarchical network, such that the node was
in a stub domain. We fixed the number of ns nodes to 100, with average node degree at
3.5 and 50% asymmetry in the network links.

 Montage Workflow LIGO Workflow IR Workflow 
Workflow Balanced Complex Hybrid 
Number of tasks 200 200 164  

(20 Subjects, grouped tasks) 
Execution 
Time/Task 

[10, 50] sec [10, 50] sec [1, 2656] sec 

File Size/Task [1, 1000] MB [1, 1000] MB [0.8, 80] MB 
Storage 
Resources 

20 20 20 

Compute 
Resources 

< 30 < 30 < 30 

Number of Data 
hosts containing 
100% of file  

6 (greedy) 
20 (probe, random) 

6 (greedy) 
20 (probe, random) 

6 (greedy) 
20 (probe, random) 

Synthetic Traffic  UDP + Exponential UDP + Exponential UDP + Exponential 
Network Loss 
Model 

Normally 
distributed 

Normally 
distributed 

Normally distributed 

Figure 5.6: A table summarizing parameters used in the NS-2 based emulation

Storage and Compute Resources

Modeling of storage resources is a challenge. However, emerging technologies like Cloud
storage systems, asmentioned in Section 5.4, are addressing storage services fromahigher
level. Since we are not concerned about sub-millisecond response times, usually in the
case of transactional processing systemsandnot in scientificworkflows,we have assumed
our data centers to have characteristics similar to that of an Internet based storage service
provider. In our experiment, the data passes through the Internet and suffers delays as
any other normal traffic. This delay is incorporated in the network topology modeled
using NS-2 using the synthetic traffic and loss model.

4http://www.cc.gatech.edu/projects/gtitm
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We created synthetic non-real traffic in NS-2 using UDP constant bit rate (CBR) and
exponential traffic generators. The real-time traffic from the VMs passed through the
simulated network and suffered from mixing with non-real time traffic in the links to
create congestion. All links had a delay of 10ms. In order to produce losses, we attached a
loss model based on a normal distribution to each link between stub domains. However,
we did not load the VMs with additional workload, besides the executing workflows.

For our emulation, we used UML based VMs for both compute resources and storage
servers. All VMs used the network defined in NS-2. The total number of VMs running
at one instance was limited to 50, half the size as experimented by Cappello [114]. We
assigned 20 of these VMs as storage resources and remaining as compute resources. The
number of storage nodes remained fixed while the number of compute nodes running
was changed based on the workflow (Montage, LIGO or IR) being executed. Figure 5.6
summarizes all the parameters used for our emulation.

Experimental Results
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Figure 5.7: Comparison of transfer time and error margins between single-source and multi-source data
retrieval techniques using data files of different sizes (files are from IR Workflow experiment only) (Bézier
curve fitting used)

Comparision of Retrieval Techniques: Data can be retrieved from multiple sources
using: greedy, probe, or random, retrieval techniques. To choose between one of these
technologies, we compared the data transfer time (excluding the processing time) of files
of different sizes using each technique, as depicted in Figure 5.7. The average data transfer
times obtained using these techniques were close to the results listed by Zhou et al.[178].
As the size of files were increased, random method gave the worst and the greedy gave
the best transfer times on our emulated network topology. However, greedy method of

123



Chapter 5. Static and Dynamic Heuristics-Based Scheduling Algorithms

retrieval suffered from high processing time.
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Figure 5.8: Average data transfer and segment-processing times of all files using random, greedy and
probe-based retrieval techniques for three workflow (WF 1, WF 2 and WF 3 corresponding to Montage,
LIGO and IR workflows in Figure 5.4)

To compare the processing times of these techniques, we computed the ratio of the
processing time over transfer time, depicted as a percentage in Figure 5.8 (upper half). By
processing time, we mean the total time spent for (a) numerous repeated connections to
hosts due to large number of segments per file, (b) overheads in maintaining the transfer
threads for each segment, (c) repeated retrievals of data segments due to intermittent
failures (significant factor), and (d) time taken to combine segments to form a single data
file. Our results showed that the overall time taken when using probe-based retrieval
technique was less than the greedy-based retrieval even though the latter gave better
transfer time. Also, the probe method gave lower transfer-time than random/single-
source based retrieval, in addition to the lower overheads than greedy-based retrieval.
We obtained the the total transfer time (T) and overheads (processing time (P)) for the
retrieval methods on all the three types of workflows, as depicted in Figure 5.8.

As the workflow structure becomes complex (WF 1→WF 3), both the transfer time
and the processing time increased for greedy and random based retrievals, as depicted
in Figure 5.8 (upper half). However, probe-based retrieval had minimum overheads as
compared to the other twomethods but gave higher transfer time (T), which in-turnmade
its ratio P/T lower. This experiment demonstrated that both transfer time and overheads
needed consideration before choosing a retrieval method for complex workflows. Thus,
using probe-based data retrieval for complex workflows (with large number of files) was
better in terms of time and complexity than using greedy/random/single-source retrievals.
Hence, we used probe-based data retrieval technique in our heuristic for its advantage

124



5.3. Performance Evaluation

over greedy and random techniques.

Comparison of Heuristic Approaches: We compared the static and dynamic ap-
proaches in turn.

Static Approaches: We executed the workflows on our emulated platform, based on the
static mappings given by our heuristic, to obtain the actual makespans. The makespans
for real execution had higher values than their corresponding static estimates, as the
estimated transfer time was lower than the actual transfer time on the emulated network.
As the network was subjected to synthetic non-real traffic load (CBR and exponential
traffic generators) during the executions of the workflows, the total data transfer time
varied considerably than their estimates at the time of scheduling. We depict the static
estimates of the makespan generated by all the static heuristic as the lower bound of
the vertical lines in Figures 5.9 and 5.10. Each makespan is the addition of data transfer
time, task execution time, and overheads. For all the three types of workflows, ESMH
estimated minimum makespan (lower value of the vertical lines). When executed on our
emulated environment, the actual makespan recorded for ESMH was lower than HEFT
and HBMCT algorithms.

Dynamic Approaches: In Figures 5.9 and 5.10, we also depict the makespans gener-
ated by each dynamic mapping heuristic. EDMH confirms its superiority in generating
minimum makespan as compared to the ‘dynamic’ versions of the HEFT and HBMCT
algorithms for all the three types ofworkflows. However, dynamic heuristic showsmixed
results when compared to the makespans given by their corresponding static heuristic.

For symmetric workflows (Figure 5.4-Montage), the makespans generated by static
heuristic are similar to that generated by their correspondingdynamicmapping heuristic.
This is mainly due to the structure of the workflow: in Figure 5.4-Montage there are only
two tasks that download output files from more than one parent, while other tasks can
download the files from their immediate parent. As a result, both the scheduling heuristic
try to schedule the pipelined tasks to the same resource to avoid file transfers between
resources. This resulted in similar transfer time for both the static and dynamic heuristic
as depicted by the data transfer time components of the makespan in Figures 5.9 for
workflowWF 1 (Montage).

However, for both complex and hybrid workflows (Figure 5.4-LIGO, IR), makespans
generated by dynamic mapping heuristics were at least 5% less than that generated
by their corresponding static heuristic. This is entirely due to the reduction in total
transfer time when using dynamic scheduling approach. As static approach estimated
the bandwidth between resources at the scheduling time (not at the run-time) for all the
tasks, it was lower than the actual makespan recorded after execution. The dynamic
approach scheduled each task at runtime by probing bandwidth right before dispatching
the task to resources for execution. This difference can be easily seen when comparing
the data transfer time component of makespan in Figures 5.9 and 5.10 for workflow WF

125



Chapter 5. Static and Dynamic Heuristics-Based Scheduling Algorithms

0

1440

2880

4320

5760

7200

Data Transfer  Execution Overheads Makespan

T
im

e 
(s

ec
)

Static Heuristic - Workflow Type 1

ESMH
HEFT

HBMCT

0

1440

2880

4320

5760

7200

Data Transfer Execution Overheads Makespan

T
im

e 
(s

ec
)

Dynamic Heuristic - Workflow Type 1

EDMH
D-HEFT

D-HBMCT

(a) Type 1 workflow (e.g. Montage)

0

1440

2880

4320

5760

7200

8640

Data Transfer Execution Overheads Makespan

T
im

e 
(s

ec
)

Static Heuristic - Workflow Type 2

ESMH
HEFT

HBMCT

0

1440

2880

4320

5760

7200

8640

Data Transfer Execution Overheads Makespan

T
im

e 
(s

ec
)

Dynamic Heuristic - Workflow Type 2

EDMH
D-HEFT

D-HBMCT

(b) Type 2 workflow (e.g. LIGO)

Figure 5.9: Makespan of Montage and LIGO (WF 1 andWF 2) workflows when using static and dynamic
scheduling heuristic.
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Figure 5.10: Makespan of IR workflow (WF 3) using static and dynamic heuristic.

2 (LIGO) and WF 3 (IR).

Dynamic heuristic performed better even when we considered resource load to be
fairly constant as compared to changing network bandwidth. In cases when resource
usage changes randomly, static scheduling approaches may perform even worse than
dynamic approaches.

In Figures 5.9 and 5.10, in addition to the overall makespan, we also compared the
individual components of the schedule, namely the data transfer time, task execution time
and the processing time of the scheduling approaches. With the use of the multi-source
data retrieval technique, both ESMH and EDMH achieved minimum data transfer times
for all the types of workflows as compared to other heuristic. However, both ESMH and
EDMHperformedpoorlywhen scheduling tasks to resourcesbasedon task execution time
alone. HEFT and HBMCT performed better than our heuristic in terms of execution time,
with HBMCT giving better results on average. As HBMCT tries to schedule independent
tasks to optimize minimum completion time, it has better estimates for task executions.
The average scheduling overhead of HBMCT was higher than all other static heuristic
for all the three types of workflows. ESMH and HEFT were comparable in scheduling
overhead. In the case of dynamic heuristics, EDMH gave better makespans than both D-
HEFT andD-HBMCT even though it suffered from higher scheduling overheads. Clearly,
dynamic approaches produced better makespans for all the three types of workflows; IR
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workflow benefiting the most in terms of total data-transfer time.

However, when the data transfer time was added into the makespan, ESMH and
EDMH produced lower makespans than all the other static and dynamic approaches
HEFT, HBMCT, and D-HEFT, D-HBMCT, respectively.

5.3.5 Real Experiment based Evaluation

In this section,wepresent the results obtainedusing a real testbeddepicted inFigure 5.2(c).
This testbed was selected to match the resource distribution shown in the motivation
section in Figure 1.2.

Experiment Setup

We formed an experimental testbed consisting of compute resources from worldwide
research labs and Amazon EC2, as depicted in Figure 5.2(c). These resources were a
combination of real compute nodes and virtual machines (VM) (Amazon EC2 nodes),
similar to a hybrid Cloud. The Figure 5.2(b),(c) labels each resource by the name of
the city where it is located. We chose to distribute these resources worldwide so that we
could study the effect of locality of data on the total transfer timewhen usingmulti-source
parallel retrievals. As we are interested in data intensive applications, the location of the
resources is of primary concern to us than their compute power.

We reserved two nodes at each location; 24 compute nodes in total, all running Linux.
Each physical node had at least a dual-core 2 GHz CPU, 1GB memory and 20GB free disk
space. Each Amazon VMwas a large instance with 4 EC2 Compute units (2 virtual cores
with 2 EC2 compute units each), 7.5GB memory and 850GB local storage. We used the IR
application workflow for our real experiment, with data distribution same as described
in sub-subsection 5.3.3.

The nodes were all connected via Internet. In order to approximate the network
topology, we used each node’s location (latitudes and longitudes) and constructed the
Steiner tree (Figure 5.2(c) ). Using the Steiner tree, we could identify the in-degrees of each
node: nodes at Lyon and Taiwan were having in-degree of three; nodes at Atlanta, North
Virginia, Indiana, Binghamton, Ireland, and Innsbruck had in-degrees of two. Thus,
these nodes were the candidate resource set {R}N in EDMH (Algorithm 2) with value of
ind ≥ 3, ind ≥ 2, respectively.

Experimental Results

We executed the IR workflow consisting of 20 subjects on the reserved compute resources
using the EDMH. Typically, when the input file size is 16MB per task, the total size of
data handled by a 20-subject IR workflow exceeds 12GB [102]. We varied the input file
size for each task from 16KB to 640MB and iterated the experiment for eight times for
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Figure 5.11: Determining the benefit of using multi-source parallel data retrieval by comparing the ratio
of makespan for IR workflow (WF type three) in real environment

each input size (Figure 5.11) using D-HEFT and EDMH, in turns. We then calculated the
ratio of makespan given by dynamic heuristic when using single source (D-HEFT) and
multi-source parallel data retrieval (EDMH) techniques, as given by Equation 5.3:

MakespanRatio =
(MakespanD−HEFT)
(MakespanEDMH)

(5.3)

Figure 5.11 plots themeanvalues of the ratio fromEquation 5.3 for varying file sizes for
the IR workflow. It also plots the standard error5 about the mean values. Based on eight
measurements, the ratio was 0.25 ± 0.02 and 1.25 ± 0.92 for 16KB and 640MB of data per
task, respectively. Positive values of the ratio clearly showed that the makespan given by
EDMHwas smaller than that given by D-HEFT. However, the ratio became positive only
for file sizes 128MB and above, clearly indicating the relationship of retrieval technique
to data sizes.

The results obtained in Figure 5.11 is in conformitywith that obtained in the emulation.
When the size of data was small (16KB � 128MB), the overheads of using multi-source
parallel retrievals resulted in higher values of makespan for EDMH. However, when size

5The standard error is calculated by dividing the standard deviation by the square root of number of
measurements
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of data was increased (≥ 128MB), the EDMH started producing better makespan than
D-HEFT. This was because the transfer time for large amount of data was significantly
higher than the overheads and EDMH reduced the transfer time than the D-HEFT.

The change in bandwidth between the resources and intermittent failures caused
higher than expecteddeviation in the real experiment results as compared to the emulated
version. This resulted in higher values of standard error, as reported in Figure 5.11. Also,
the break-even point (the intersection of the two lines) in Figure 5.11 occurred for file sizes
much higher in value (≥ 128MB) than the results we obtained in our emulation. This can
be attributed to the largely distributed settings of our experimental platform. However,
both the experiments showed that multi-source retrieval technique reduces the total data
transfer time, and hence makespan, for data intensive workflow applications.

5.4 Related Work

In this section, we survey past work on replica selection in relation to data retrieval and
workflow scheduling algorithms.

Replica Selection and Retrieval: Vazhkudai et al. [146] presented design and im-
plementation of high-level replica selection service in the Globus data Grid. Chervenak
et al. [32] defined a replica location service (RLS) that maintains and provides access to
information about the physical locations of copies. Hu et al. [65] proposed the Instance-
Based-Learning (IBL) algorithm for replica selection where only limited data sources are
available. Their results show that IBL performs well for data intensive Grid applications.
Zhou et al. [178] analyzed various algorithms for replica retrieval and concluded that
probe-based retrieval is the best approach, providing twice the transfer rate of the ‘best’
replica server. Feng et al. [48] proposed rFTP that improves the data transfer rate and
reliability on Grids by utilizing multiple replica sources concurrently. Their NWS Dy-
namic algorithm depends on Network Weather Service (NWS) [155] deployment at all
participating Grid nodes, andNoObserve or SelfObserve does not use NWS. In these work,
the replica selection system seeks one ‘best’ replica among all available replicas. Retriev-
ing data from the best source may result in poor performance and degraded reliability
as noted by Zhou et al. [178] and Feng et al. [48]. Our work leverages these retrieval
techniques, namely the greedy and bandwidth proportional partitioned retrieval by Feng
et al [48].

Whendata are partitioned anddistributedat various locationswithout full replication,
a set of data-hosts that complete the required data files should be found. The selection of
the optimal set of data-hosts in the presence of large number of replicated files for a single
job is computationally intensive. Venugopal et al. [150] selected the data-hosts by using
one of the solutions to the Set-Coverage problem [9]. In ourwork,we assume that data are
fully replicated and hence set-coverage is guaranteed by every data source. In addition,
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we leverage the presence of replicated data for scheduling workflow applications in time
efficient manner.

Some work on transport protocols have focused on receiver based flow contention
management. Rodriguez et al. [122] proposed a dynamic-parallel access to replicated
content from multiple servers or caches in content delivery networks. They showed
that users experience significant speedups and very consistent response times when
using multiple parallel transfers. Similarly, Wu et al. [157] proposed Group Transport
Protocol (GTP) and a receiver based rate allocation scheme to manage multi-source data
transmissions. They also showed that GTP outperforms other point-to-point protocol for
multiple-to-point transmission.

Multi-source parallel data transfers can be much more efficient than single source
transfers. It can reduce access times by transferring data from several replicas in parallel.
This has been studied in detail by Yang et al. [161] and Feng andHumphrey [48]. GridFTP
and rFTP [48] are existing tools which support these types of transfers.

Static andDynamicWorkflowScheduling:We focus on list based scheduling heuris-
tics for computing static schedules (offline); and task partitioning and iterative reschedul-
ing for computing dynamic schedules (online).

Topcuouglu et al. [143] designed the HEFT algorithm based on list scheduling. HEFT
is a static scheduling algorithm which attempts to schedule tasks on heterogeneous re-
sources to get minimum execution time. It assigns ranks to the tasks according to esti-
mated communication and computation costs andpreserves the job executionprecedence.
However, the communication and task computation values are average estimates. In our
work, we calculate the instantaneous value for bandwidth and assign the weights to
communication channels.

Sakellariou and Zhou et al. [124] investigated the performance of the HEFT algorithm
produced by different approximation methods. They concluded that the mean value
method is not the most efficient choice, and the performance could differ significantly
fromone application to another. They also proposed ahybrid heuristics that uses standard
list scheduling approach to rank the nodes of the Directed Acyclic Graph (DAG) and then
uses this ranking to form group of tasks which can be scheduled independently. Their
BalancedMinimumCompletionTime (BMCT) is for scheduling independent tasks formed
by using the hybrid heuristic. BMCT algorithm tries to minimizes the execution time in
the initial allocation, and again tries to minimize the overall time by swapping tasks
between machines. We take the Hybrid and BMCT algorithms (HBMCT) for comparing
with our static scheduling heuristic proposed in this chapter.

Deelman et al. [40] partitioned aworkflow intomultiple sub-workflows and allocated
resources to tasks of one sub-workflow at a time based on real-time information. Shankar
and Deelman et al. [129] proposed a planner that uses a file location table to determine the
locations of cached or replicated files for scheduling data intensive workflows using the
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Pegasus framework. However, this their work data was not partitioned when retrieving.
In our work, we partition the data and download it from multiple sources in parallel.

Iterative re-computing technique keeps applying the scheduling algorithm on the
yet-to-be-scheduled tasks of a workflow in execution. Sakellariou and Zhou et al. [125]
proposed a low-cost Selective Rescheduling (SR) policy by recomputing a schedule only
when the delay of a carefully selected task impacts the schedule of the entire workflow.
Thiswork is orthogonal to ourworkwhich also tries tominimize cost of total computation.
Even thoughwe do not carry out SR, we do achieve significant savings on total execution
time by applying parallel data retrieval technique.

Several work have explored static and dynamic scheduling strategies for workflow
execution that focused on: user quality of service and location affinity [16; 13; 10], iterative
calls of static algorithms [112; 86; 171], dynamic programming [111] and so forth. Lopez
et al. [86] explored several static and dynamic approaches for scheduling workflows and
concluded that list-based heuristics significantly outperform non-list based heuristics.
Yu et al. [169] have described the strategies involved in scheduling workflows for Grid
computing environments, in much detail.

Many past work on scheduling workflows focused primarily on compute intensive
workflows. Most of these scheduling algorithms could make use of multi-source data
retrieval technique while also scheduling tasks on compute resources. However, the
challenge is to use a retrieval technique while scheduling workflow applications. To the
best of our knowledge, this problem has not been explored in detail in the past. Our work
addressed this challenge using heuristics based algorithms and showed experimentally
thatmulti-source parallel data retrieval technique can significantly enhance the schedules
of data intensive application workflows.

5.5 Conclusions

In this chapter, we presented two workflow scheduling heuristic that leverages multi-
source parallel data-retrieval techniques. We showed that probe-based data retrieval
from as many resources (multi-source) produces better transfer times and hence better
makespan for data intensive workflows than selecting one ‘best’ storage resource for
both static and dynamic scheduling methods. In static scheduling heuristic, we used
probe based approach to select candidate sources, whereas in dynamic scheduling, we
applied Steiner tree based multiple resource selection technique to enable multi-source
parallel retrievals. We compared the makespans produced by our heuristic against that
produced by both static and dynamic versions of HEFT and HBMCT algorithms for three
different types of workflows in an emulated network environment. To determine the
feasibility of our approach, we also carried out experiments using a real testbed. The
results obtained from both emulation and real experiments consistently showed that
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makespan of workflows can be decreased significantly when using multi-source parallel
data retrieval technique while scheduling workflow. From our experimental results, we
also conclude that, on average, EnhancedDynamicMappingHeuristic (EDMH) produces
time-efficientmakespan thanHEFT,HBMCT,D-HEFT andD-HBMCT algorithms fordata
intensiveworkflows.

In this chapter, we focused on minimizing total execution time. In the following
chapter, we minimize the total cost of execution using particle swarm optimization based
heuristic.
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6
Particle Swarm Optimization Based

Scheduling Heuristic

C
loud computing environments facilitate applications by providing virtualized
resources that can be provisioned dynamically. However, users are charged
on a pay-per-use basis. User applications may incur large data retrieval and

execution costs when they are scheduled taking into account only the ‘execution time’.
In addition to optimizing execution time, the cost arising from data transfers between
resources as well as execution costs must also be taken into account.

In this chapter, we present a particle swarm optimization (PSO) based heuristic to
schedule applications to Cloud resources that takes into account both computation cost
and data transmission cost. We experiment with a workflow application by varying its
computation and communication costs. We compare the cost savings when using PSO
and existing ‘Best Resource Selection’ (BRS) algorithm. Our results show that PSO can
achieve: a) as much as 3 times cost savings as compared to BRS, and b) good distribution
of workload onto resources.

6.1 Introduction

Modern collaborative scientific experiments in domains such as structural biology, high-
energy physics and neuroscience involve the use of distributed data sources. As a result,
analysis of their datasets is represented and structured as scientific workflows [58]. These
scientific workflows usually need to process huge amount of data and computationally
intensive activities, as also described as motivational applications in Chapter 1. A scien-
tific workflow management system [102], such as the one we designed (see Chapter 3),
is used for managing these scientific experiments by hiding the orchestration and inte-
gration details inherent while executing workflows on distributed resources provided by
Cloud service providers.

Cloud computing is a new paradigm for distributed computing that delivers infras-
tructure, platform, and software (application) as services. These services are made avail-
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able as subscription-based services in a pay-as-you-gomodel to consumers [25; 7]. Cloud
computing helps user applications dynamically provision as many compute resources at
specified locations (US east1a-d for Amazon1) as per their requirements. Also, applica-
tions can choose the storage locations to host their data (Amazon S32) at global locations.
In order to efficiently and cost effectively schedule the tasks and data of applications onto
these Cloud computing environments, application schedulers have different policies that
vary according to the objective function: minimize total execution time, minimize total
cost to execute, balance the load on resources usedwhile meeting the deadline constraints
of the application, and so forth. In this chapter, we focus on minimizing the total execu-
tion cost of applications on these resources provided by Cloud service providers, such as
Amazon and GoGrid3. We achieve this by using a meta-heuristics method called Particle
Swarm Optimization (PSO).

Particle SwarmOptimization (PSO) is a self-adaptive global search based optimization
technique introduced by Kennedy and Eberhart [72]. The algorithm is similar to other
population-based algorithms likeGenetic algorithmsbut, there is nodirect re-combination
of individuals of the population. Instead, it relies on the social behavior of the particles. In
every generation, each particle adjusts its trajectory based on its best position (local best)
and the position of the best particle (global best) of the entire population. This concept
increases the stochastic nature of the particle and converge quickly to a global minima
with a reasonable good solution.

PSO has become popular due to its simplicity and its effectiveness in wide range of
applicationwith low computational cost. Some of the applications that have usedPSOare:
the reactive voltage control problem [163], data mining [136], chemical engineering [100],
pattern recognition [87] and environmental engineering [88]. The PSO has also been
applied to solveNP-Hardproblems like Scheduling [171; 83] and task allocation [162; 172].

Our main contributions in this chapter are as follows:

• We formulate a model for task-resource mapping to minimize the overall cost of
execution

• We design a heuristic that uses PSO to solve task-resource mappings based on the
proposed model

The rest of the chapter is organized as follows: Section 6.5 presents related work. In
Section 6.2, we describe the task-resource scheduling problem and its formulation with
the help of an example workflow. In Section 6.3, we present our scheduling heuristic
that uses PSO and introduce the PSO algorithm. Section 6.4 presents an experimental
evaluation of the performance our heuristic. Section 6.6 concludes the chapter.

1http://aws.amazon.com
2http://aws.amazon.com/s3/
3http://www.gogrid.com
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6.2 Task-Resource Scheduling Problem Formulation

The mapping of tasks of an application workflow to distributed resources can have
several objectives. We focus onminimizing the total cost of computation of an application
workflow.

We denote an application workflow as a Directed Acyclic Graph (DAG) represented
byG=(V,E), whereV={T1, ...,Tn} is the set of tasks, andE represents the data dependencies
between these tasks, that is, f j,k = (Tj,Tk) ∈ E is the data produced by Tj and consumed
by Tk. We have a set of storage sites S = {1, ..., i}, a set of compute sites PC = {1, ..., j}, and
a set of tasks T = {1, ..., k}. We assume the ‘average’ computation time of a task Tk on a
compute resource PCj for a certain size of input is known. Then, the cost of computation
of a task on a compute host is inversely proportional to the time it takes for computation
on that resource. We also assume the cost of unit data access di, j from a resource i to a
resource j is known. The access cost is fixed by the service provider. The transfer cost
can be calculated according to the data transferred between the sites, without any time
constraints. But, data could then be transferred without any regard to the time taken.
Therefore, to value the link between sites and the time taken for transferring data, we have
used the cost for transferring unit data between sites, per second. We assume that these
costs are non-negative, symmetric, and satisfy the triangle inequality: that is, di, j = dj,i for
all i, j ∈ N, and di, j + dj,k ≥ di,k for all i, j, k ∈ N.
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2
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Figure 6.1: An example workflow, compute nodes (PC) & storage (S).

Figure 6.1 depicts a workflow structure with five tasks, which are represented as
nodes. The dependencies between tasks are represented as arrows. This workflow
is similar in structure to our version of the Evolutionary Multi-objective Optimization
(EMO) application [148]. The root task may have an input file (e.g. f.in) and the last
task produces the output file (e.g. f.out). Each task generates output data after it has
completed ( f12, f13, ..., f45). These data are used by the task’s children, if any. The numeric
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values for these data is the edge-weight (ek1,k2) between two tasks k1 ∈ T and k2 ∈ T. The
figure also depicts three compute resources (PC1,PC2,PC3) interconnected with varying
bandwidth and having its own storage unit (S1, S2, S3). The goal is to assign theworkflow
tasks to the compute resources such that the total cost of computation is minimized.

The problem can be stated as: “Find a task-resource mapping instance M, such that when
estimating the total cost incurred using each compute resource PCj, the highest cost among all the

compute resources is minimized.”

Let Cexe(M) j be the total cost of all the tasks assigned to a compute resource PCj (Eq.
6.1). This value is computed by adding all the node weights (the cost of execution of a
task k on compute resource j) of all tasks assigned to each resource in the mapping M.
Let Ctx(M) j be the total access cost (including transfer cost) between tasks assigned to a
compute resource PCj and those that are not assigned to that resource in the mapping
M (Eq. 6.2). This value is the product of the output file size (given by the edge weight
ek1,k2) from a task k1 ∈ k to task k2 ∈ k and the cost of communication from the resource
where k1 is mapped (M(k1)) to another resourcewhere k2 is mapped (M(k2)). The average
cost of communication of unit data between two resources is given by dM(k1),M(k2). The
cost of communication is applicable only when two tasks have file dependency between
them, that is when ek1,k2 > 0. For two or more tasks executing on the same resource, the
communication cost is zero.

Cexe(M) j =
∑

k

wkj ∀M(k) = j (6.1)

Ctx(M) j =
∑

k1∈T

∑

k2∈T
dM(k1),M(k2)ek1,k2

∀M(k1) = j and M(k2) � j (6.2)

Ctotal(M) j = Cexe(M) j + Ctx(M) j (6.3)

Cost(M) = max(Ctotal(M) j) ∀ j ∈ P (6.4)

Minimize(Cost(M) ∀M) (6.5)

Equation 6.4 ensures that all the tasks are not mapped to a single compute resource.
Initial cost maximization will distribute tasks to all resources. Subsequent minimization
of the overall cost (Equation 6.5) ensures that the total cost is minimal even after initial
distribution. For a given assignment M, the total cost Ctotal(M) j for a compute resource
PCj is the sum of execution cost and access cost (Eq. 6.3). When estimating the total cost
for all the resources, the largest cost for all the resources is minimized (Eq. 6.5). This
indirectly ensures that the tasks are not mapped to a single resources and there will be a
distribution of cost among the resources.
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6.3 Scheduling based on Particle Swarm Optimization

In this section, we present a scheduling heuristic for dynamically scheduling workflow
applications. The heuristic optimizes the cost of task-resource mapping based on the
solution given by particle swarm optimization technique. The optimization process uses
two components: a) the scheduling heuristic as listed in Algorithm 5, and b) the PSO
steps for task-resource mapping optimization as listed in Algorithm 6. First, we will give
a brief description of PSO algorithm.

vk+1i = ωvki + c1rand1 × (pbesti − xki ) +
c2rand2 × (gbest − xki ), (6.6)

xk+1i = xki + v
k+1
i , (6.7)

where:
vki velocity of particle i at iteration k
vk+1i velocity of particle i at iteration k + 1
ω inertia weight
cj acceleration coefficients; j = 1, 2
randi random number between 0 and 1; i = 1, 2
xki current position of particle i at iteration k
pbesti best position of particle i
gbest position of best particle in a population
xk+1i position of the particle i at iteration k + 1.

6.3.1 Particle Swarm Optimization

Particle Swarm Optimisation (PSO) is a swarm-based intelligence algorithm [72] influ-
enced by the social behavior of animals such as a flock of birds finding a food source or
a school of fish protecting themselves from a predator. A particle in PSO is analogous
to a bird or fish flying through a search (problem) space. The movement of each particle
is co-ordinated by a velocity which has both magnitude and direction. Each particle
position at any instance of time is influenced by its best position and the position of the
best particle in a problem space. The performance of a particle is measured by a fitness
value, which is problem specific.

The PSO algorithm is similar to other evolutionary algorithms. In PSO, the population
is the number of particles in a problem space. Particles are initialized randomly. Each
particle will have a fitness value, which will be evaluated by a fitness function to be
optimized in each generation. Each particle knows its best position pbest and the best
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position so far among the entire group of particles gbest. The pbest of a particle is the best
result (fitness value) so far reached by the particle, whereas gbest is the best particle in
terms of fitness in an entire population. In each generation the velocity and the position
of particles will be updated as in Eq 6.6 and 6.7, respectively.

PSO algorithm provide a mapping of all the tasks to a set of given resources based on
the model described in Section 6.2.

Algorithm 5 PSO based scheduling heuristic.
1: Calculate average computation cost of all tasks in all compute resources
2: Calculate average cost of (communication/size of data) between resources
3: Set task node weight wkj as average computation cost
4: Set edge weight ek1,k2 as size of file transferred between tasks
5: Compute PSO({ti}) /* a set of all tasks i ∈ k*/
6: repeat
7: for all “ready” tasks {ti} ∈ T do
8: Assign tasks {ti} to resources {pj} according to the solution provided by PSO
9: end for
10: Dispatch all the mapped tasks
11: Wait for polling time
12: Update the ready task list
13: Update the average cost of communication between resources according to the

current network load
14: Compute PSO({ti})
15: until there are unscheduled tasks

SchedulingHeuristic: We calculate the average computation cost (assigned as node
weight in Figure 6.1) of all tasks on all the compute resources. This cost can be calcu-
lated for any application by executing each task of an application on a series of known
resources. It is represented as TPmatrix in Table 6.1. As the computation cost is inversely
proportional to the computation time, the cost is higher for those resources that complete
the task quicker. Similarly, we store the average value of communication cost between
resources per unit data, represented by PP matrix in Table 6.1, described later in the
chapter. The cost of communication is inversely proportional to the time taken. We also
assume we know the size of input and output data of each task (assigned as edge weight
ek1,k2 in Figure 6.1). In addition, we consider this cost is for the transfer per second (unlike
Amazon CloudFront which does not specify time for transferring).

The initial step is to compute the mapping of all tasks in the workflow, irrespective
of their dependencies (Compute PSO(ti)). This mapping optimizes the overall cost of
computing the workflow application. To validate the dependencies between the tasks,
the algorithm assigns the “ready” tasks to resources according to the mapping given by
PSO. By “ready” tasks, we mean those tasks whose parents have completed execution
and have provided the files necessary for the tasks’ execution. After dispatching the tasks
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to resources for execution, the scheduler waits for polling time. This time is for acquiring
the status of tasks, which is middleware and application dependent. The main drawback
of polling is that newly submitted tasks may wait in the queue upto the polling time,
before being scheduled. However, the system must rely on the polling time as it cannot
accurately predict the completion time of tasks on every compute resource. The polling
time is, however, adjustable if the scheduling system is aware of the application execution
times, which may be derived from historic executions. Generally, a scheduling system
(such as PBS) assumes it may not have this information as users can submit any number
and type of tasks to the system for execution.

Depending on the number of tasks completed, the ready list is updated, which will
now contain the tasks whose parents have completed execution. We then update the
average values for communication between resources according to the current network
load. As the communication costswouldhave changed,we recompute thePSOmappings.
Also, when remote resource management systems are not able to assign task to resources
according to our mappings due to resource unavailability, the recomputation of PSO
makes the heuristic dynamically balances other tasks’ mappings (online scheduling).
Based on the recomputed PSO mappings, we assign the ready tasks to the compute
resources. These steps are repeated until all the tasks in the workflow are scheduled.

Algorithm 6 PSO algorithm.
1: Set particle dimension as equal to the size of ready tasks in {ti} ∈ T
2: Initialize particles position randomly from PC = 1, ..., j and velocity vi randomly.
3: For each particle, calculate its fitness value as in Equation 6.4.
4: If the fitness value is better than the previous best pbest, set the current fitness value
as the new pbest.

5: After Steps 3 and 4 for all particles, select the best particle as gbest.
6: For all particles, calculate velocity using Equation 6.6 and update their positions using
Equation 6.7.

7: If the stopping criteria or maximum iteration is not satisfied, repeat from Step 3.

The algorithm is dynamic (online) as it updates the communication costs (based
on average communication time between resources) in every scheduling loop. It also
recomputes the task-resourcemapping so that it optimizes the cost of computation, based
on the current network and resource conditions.

PSO: The steps in the PSO algorithm are listed in Algorithm 6. The algorithm starts
with random initialization of particle’s position and velocity. In this problem, the particles
are the task to be assigned and the dimension of the particles are the number of tasks in
a workflow.

The value assigned to a each dimension of a particles are the computing resources
indices. Thus the particle represent a mapping of resource to a task. In our workflow
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(depicted in Figure 6.1) each particle is 5-D because of 5 tasks and the content of each
dimension of the particles is the compute resource assigned to that task. For example a
sample particle could be represented as depicted in Figure 6.2.

The evaluation of each particle is perform by the fitness function given in Eq. 6.5.
The particles calculate their velocity using Eq. 6.6 and update their position according
to Eq. 6.7. The evaluation is carried out until the specified number of iterations (user-
specified stopping criteria).

PC1 PC3 PC2 PC3 PC1

Task1 Task2 Task3 Task4 Task5

Figure 6.2: A sample particle for the workflow shown in Figure 6.1 .

6.4 Experimental Evaluation

In this section, we present themetric of comparison, the experiment setup and the results.

6.4.1 Performance metric

As a measure of performance, we used cost for complete execution of application as a
metric. We computed the total cost of execution of a workflow using two heuristics: PSO
based cost optimization (Algorithm 5), and best resource selection (based on minimum
completion time by selecting a resource with maximum cost).

6.4.2 Data and Implementation

Wehave used threematrices that store the values for: a) average computation cost of each
task on each resource (TP-matrix), b) average communication cost per unit data between
compute resources (PP-matrix), and c) input/output Data Size of each task (DS-matrix),
as depicted in Table 6.1.

The values for PP-matrix resemble the cost of unit data transfer between resources
given by Amazon CloudFront4. We assume PC1 to be in US, PC2 in HongKong (HK) and
PC3 in Japan (JP), respectively. We randomly choose the values in the matrix for every
repeated experiment, but keep these values constant during the PSO iterations.

The values for TP-matrix varies for two classes of experiments. While varying the
size of data, we choose the TP-matrix values to resemble the EvolutionaryMulti-objective
Optimization (EMO) [148] application. While varying the processing cost, we use the
Amazon EC2’s5 pricing policy for different classes of virtual machine instances. E.g.

4http://aws.amazon.com/cloudfront/
5http://aws.amazon.com/ec2/
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Table 6.1: The TP-matrix, PP-matrix and DS-matrix. The values shown are an example of 1 instance of
the experiment run.

TP[5 × 3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PC1 PC2 PC3
T1 1.23 1.12 1.15
T2 1.17 1.17 1.28
T3 1.13 1.11 1.11
T4 1.26 1.12 1.14
T5 1.19 1.14 1.22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TP[i, j] = Cost o f execution o f Ti at PCj
(EC2 price o f resources f or High CPU instance)

(Example matrix values are in the range $1.1 − $1.28/hr)

PP[3 × 3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PC1 PC2 PC3
PC1 0 0.17 0.21
PC2 0.17 0 0.22
PC3 0.21 0.22 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PP[i, j] = Cost o f communication between PCi &PCj
(Values in $/MB/second)

DST2,T3,T4[2 × 2] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

totaldata
i/p 10
o/p 10

⎤⎥⎥⎥⎥⎥⎥⎥⎦

DST5[2 × 2] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

totaldata
i/p 30
o/p 60

⎤⎥⎥⎥⎥⎥⎥⎥⎦

row1 = i/p data size(MB), row2 = o/p data size(MB)

if we were to use small+medium instances of Linux machines in both US and Europe,
the TP-matrix would have values between $0.1-$0.3/hr, assuming all the tasks complete
within 1 hour.

As each task has its own DS-matrix, the sum of all the values in the matrix varies
according to the size of data we experiment (64-1024 MB). The total data is divided
among tasks such that if x is the output data size of T1, then tasks T2,T3,&T4 each receive
x data as input and produce x data as output. Finally, task T5 consumes 3x data and
produces 6x data.

Weused the JSwarm6 package to conduct our simulation experiments in PSO. Table 6.2
gives the experimental setup of the PSO algorithm. The number of executions represent
the number of independent experiments done in order to calculate theConfidence Interval

6http://jswarm-pso.sourceforge.net/
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(CI) of the results.

Table 6.2: Statistics of PSO executions.
Number of particles = 25
Number of iterations = 45
Number of executions = 30

6.4.3 Experiments and Results

We evaluated the scheduling heuristic using the workflow depicted in Figure 6.1. Each
task in the workflow has input and output files of varying sizes. Also, the execution cost
of each task varies among all the compute resources used (in our case PC1 − PC3). We
analyze the performance of our heuristic by varying each of these in turn.

We plot the graphs by averaging the results obtained after 30 independent executions.
In every execution, the x-axis parameters such as total data size (e.g. 1024MB), range
of computation cost (e.g. 1.1-1.3 $/hour) remain unchanged, while the particle’s velocity
and position change. The graphs also depict the value of the plotted points together with
the CI (represented as “+/-” value).

Variation in Total Data Size of a Workflow

We varied the size of total data processed by the workflow in the range 64-1024 MB.
By varying the data size, we compared the variance in total cost of execution and the
distribution of workload on resources, for the two algorithms as depicted in Figure 6.3
and Figure 6.4, respectively. We fixed the compute resource cost in the range 1.1− 1.3$/hr
for the experiments in the sub-section 6.4.3 and sub-section 6.4.3.

Total Cost of Execution: Figure 6.3 plots the total cost of computation of the workflow
(in the log scale) with the increase in the total data processed by the workflow. The graph
also plots 95% Confidence Interval (CI) for each data point.

The cost obtained by PSO based task-resource mapping increases much slower than
the BRS algorithm. PSO achieves at least three times lower cost for 1024MB of total data
processed than the BRS algorithm. Also, the value of CI in cost given by PSO algorithm
is +/- 8.24, which is much lower as compared to the BRS algorithm (+/- 253.04), for 1024
MB of data processed by the workflow.

The main reason for PSO to perform better than the ‘best resource’ selection is the
way it takes into account communication costs of all the tasks, including dependencies
between them. When calculating the cost of execution of a child task on a resource, it
adds the data transfer cost for transferring the output from its parent tasks’ execution
node to that node. This calculation is done for all the tasks in the workflow to find the
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Figure 6.3: Comparison of total cost between PSO based resource selection and best resource selection
algorithms when varying total data size of a workflow.

near optimal scheduling of task to resources. However, the BRS algorithm calculates the
cost for a single task at a time, which does not take into account the mapping of other
tasks in the workflow. This results in PSO based algorithm giving lower cost of execution
as compared to BRS based algorithm.

If this cost of mapping to the current resource is higher than previous best, PSO does
not map the task to this resource. Hence, a global minima is found that ensures all
tasks’ mapping is near optimal. As the mappings are based on global values, they do
not change significantly for PSO, which explains the lower deviation values in Figure
6.3. The deviation is quite large in case of ‘best selection’ as the algorithm just calculates
the local minima for each task which changes for every change in values of PP-matrix
(communication cost).

Distribution of Load: We calculated the distribution of workflow tasks onto available
resources for various size of total data processed, depicted in Figure 6.4. This evaluation
is necessary as algorithms may choose to submit all the tasks to few resources to avoid
communication between resources as the size of data increases, thusminimizing commu-
nication cost to zero. In our formulation, equation 6.4 restricts all tasks being mapped
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Figure 6.4: Distribution of workflow tasks on available processors.

to the same resource, so that tasks can execute in parallel for increased time-efficiency.
In Figure 6.4, The X-axis represents the total size of data processed by the workflow and
the Y-axis the average number of tasks (expressed as percentage) executed by a compute
resource for various size of data.

The figure shows that PSO distributes tasks to resources according to the size of data.
When the total size of data is small (for 64-126 MB), PSO distributed tasks proportionally
to all the resources (PC1 − PC3). However, when the size of data increased to (and over)
256MB, more tasks were allocated to PC1 and PC3.

As the cost of compute resources was fixed for this part of experiment, the BRS
algorithm does not vary task-resource mapping. Also, it is indifferent to the size of data.
Hence, BRS’s load distribution is a straight line as depicted in Figure 6.4, with PC1, PC2
and PC3 receiving 20%, 40% and 40% of the total tasks, respectively.

The distribution of tasks to all the available resources in proportion to their usage
costs, ensured that hotspots (resource overloading) were avoided. Our heuristic could
minimize the total cost of execution and balance the load on available resources.

Variation in Compute Resource Cost

We experimented the performance of PSO by varying the cost of computation of all
compute resources. This variation is practically justifiable as different Cloud service
providers (e.g. Amazon, GOGRID) can have varying pricing policies depending on the
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type and capabilities of their resources (virtual machines).

Figure 6.5 depicts the change in total cost of computation of applications for different
range of compute resource prices (price range are similar to Amazon EC2 instances in US
and Europe combined). The plotted values are an average of 30 executions. We use curve
fitting to plot the lines along the points to show the trend: rise in cost in comparison to
rise in compute resource cost for the two algorithms. The workflow processed a total of
128MB of data.

Clearly, PSO based mapping has much lower cost (at least 10 times) and CI values
(lower than 0.3) as compared to that given BRS based mapping. In addition, the slope
of the trend line shows that PSO based mapping increases the cost linearly, whereas BRS
increases exponentially.

Figure 6.5: Comparison of total cost between PSO based resource selection and best resource selection
algorithms when varying computation cost of all the resources ( for 128MB of data).

The reason for PSO’s improvement over BRS is due to PSO’s ability to find a near
optimal solutions for mapping all tasks in the workflow to the given set of compute
resources. The linear increase in PSO’s cost also suggest that it takes both computation
and communication cost into account. However, BRS simply maps a task to the resource
that has minimum completion time (a resource with higher frequency, lower load and
thus having higher cost). As the resource costs increase, the use of BRS leads to more
costs due to the affinity towards better resource, irrespective to the size of data. Whereas,
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PSO minimizes the maximum total cost of assigning all tasks to resources.

Convergence of PSO

Figure 6.6 plots the convergence of total cost computed by PSO over the number of
iterations for different sizes of total data processed by theworkflow in Figure 6.1. Initially,
the particles are randomly initialized. Therefore, the inital total cost is always high. This
initial cost corresponds to the 0th iteration. As the algorithm progresses, the convergence
is drastic and it finds a global minima very quickly. The number of iterations needed for
the convergence is seen to be 20-30, for our application environment.

We use PSO as it has a faster convergence rate than GA. Also, it has fewer primitive
mathematical operators than in GA (e.g. reproduction, crossover, mutation), making
applications less dependenton parameterfine-tuning. Moreover, using discrete numbers,
we can easily correlate particle’s position to task-resource mappings. Thus, when the
systemhas a large number of tasks and/or large number of resources, the computing time
of PSO algorithm is significantly lower than existing iterative techniques, such as GA and
SA (Simulated Annealing) [106; 138].

Figure 6.6: The trend of convergence of PSO with the number of iterations for different size of data.
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6.5 Related Work

Workflow applications are commonly represented as a directed acyclic graph. The map-
ping of jobs to the compute-resources is anNP-complete problem in the general form [144].
The problem is NP-complete even in two simple cases: (1) scheduling jobs with uniform
weights to an arbitrary number of processors and (2) scheduling jobs with weights equal
to one or two units to two processors [144]. So, past work have proposedmany heuristics
based approach to scheduling workflow applications. Data intensive workflow applica-
tions are a special class of workflows, where the size and/or quantity of data is large. As
a result, the transfer of data from one compute node to another takes longer time. This
incurs higher transmission and storage cost than computing cost running on these data.

Deelman et al. [40] have done considerable work on planning, mapping and data-
reuse in the area of workflow scheduling. They have proposed Pegasus [40], which is
a framework that maps complex scientific workflows onto distributed resources such as
the Grid. DAGMan, together with Pegasus, schedules tasks to Condor system. Deelman
et al. [39] investigated the cost of computing in the Cloud taking Montage workflow as a
case study. They experimentally show that the cost of running an application on a cloud
depends on the compute, storage and communication resources, which may be different
for different execution plans of the same application. By provisioning the right amount of
storage and compute resources, their results showed that cost can be significantly reduced
with no significant impact on application performance.

Yu et al. [170] also addressed cost-based scheduling of scientific applications. They
proposed a cost-based workflow scheduling algorithm that minimized the cost of exe-
cution while meeting the deadline. They used Markov Decision Process approach to
schedule sequential workflow task execution. That resulted in the algorithm finding
the optimal path among services to execute tasks and transfer data. However, they did
not take into account the presence of replicated data that can be retrieved from multiple
distributed resources.

Other well-known projects on workflow systems include GridFlow [28], ICENI [55],
GridAnt [6], Triana [140] and Kepler [89]. Most of these works schedule tasks based on
earliest finish time, earliest starting time or the high processing capabilities of computing
resources. We term these as “best resource selection” (BRS) approach, where a resource
is selected based on its performance and not cost. In our work, we took into account
compute resource usage cost and data transfer cost while making scheduling decisions.

Since task scheduling is a NP-Complete problem, Genetic Algorithm (GA) has been
used for scheduling workflows [169]. However, GA may not be the best approach.
Salman et al. [127] have shown that the performance of PSO algorithm is faster than
GA in solving static task assignment problem for homogeneous distributed computing
systems based on their test cases. Lei et al. [175] have shown that the PSO algorithm
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is able to get better schedule than GA based on their simulated experiments for Grid
computing. In addition, the results presented by Tasgetiren et al. [138] have provided
evidence that PSO algorithm was able to improve 57 out of 90 best known solutions
provided by other well known algorithms to solve the sequencing problems.

As PSO is an iterative technique for optimizing multi-objective problems, it can also
be used for optimizing other metrics such as: application execution time, storage cost,
communication cost, data flow, and so forth [138; 164; 127; 83].

6.6 Conclusions

This chapter presented a scheduling heuristic based on Particle Swarm Optimization
(PSO). It described a heuristic to minimize the total cost of execution of application work-
flows on Cloud computing environments. By varying the communication cost between
resources and the execution cost of compute resources, the heuristic calculated the aver-
age cost of execution. When comparing the results obtained by the PSO heuristic against
“Best Resource Selection” (BRS) heuristic, we found that PSO based task-resource map-
ping could achieve at least three times cost savings as compared to BRS based mapping
for our application workflow. In addition, PSO balances the load on compute resources
by distributing tasks to available resources. The heuristic we proposed is generic as it can
be used for any number of tasks and resources by simply increasing the dimension of the
particles and the number of resources, respectively.
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7
Conclusions and Future Directions

7.1 Summary

I
n this thesis, we addressed the problemof scheduling data and tasks for data intensive
application in Grid and Cloud environments. We proposed several scheduling
algorithms that manages workflow applications on distributed resources with an

objective to minimize execution time and cost. All the scheduling algorithms were based
on multi-source parallel data retrieval technique, which is a novel way of retrieving
data and scheduling applications. This method is in contrast to using only one ‘best’
resource for data retrievals, based on which applications were subsequently scheduled
in the past. Through real-experiments, we obtained near-optimal as well as approximate
solutions using the proposed algorithms. We also presented several real-world scientific
applications that could benefit in terms ofminimized execution time and cost when using
our proposed algorithms. We demonstrated the execution of the applications on both
Grid and Cloud computing environments. Below is the list of major contributions:

• Presented survey of scheduling andmanagement techniques of data intensivework-
flow applications on distributed platforms

• Designed and implemented aworkflowmanagement system for executing scientific
applications

• Proposed NLP model based scheduling algorithm for minimizing total time and
cost of execution of workflow applications

• Proposed and implemented enhanced static and dynamic heuristics that usesmulti-
source parallel data retrieval technique to obtain time efficient schedules for work-
flow applications

• Proposed a fast converging PSO algorithm that also uses multi-source parallel data
retrieval technique to schedule workflow applications and minimize total cost of
execution on distributed resources
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• Executed several real-world scientific workflow applications on Grids and Cloud
platforms using the proposed scheduling algorithms to demonstrate the feasibility
of both WfMS and algorithms

7.2 Conclusions

The work presented in this thesis thus encompasses multi-source parallel data retrieval
based scheduling algorithms implemented on a workflowmanagement system and sup-
ported by scientific workflow applications. It demonstrated the applicability of well-
designed algorithms on real-world scientific applications and made significant contribu-
tions towards the advancement of the field.

This thesis described two real-world applications (CMS, LIGO) that are producing,
using and sharing data in large quantities across the globe (see Chapter 1). Based on
their requirements and execution environment, it listed several challenges that needs to
be addressed in order to make the execution of applications on distributed resources time
and cost efficient. It then formally defined and described the scheduling problem in the
context of data intensive scientific workflows. This study helped identify the problem
scenario and clearly defined the path for the thesis.

Following the problem definition based on motivational examples, this thesis pre-
sented state of the art work on scheduling and management techniques applied on data
intensive workflow applications (see Chapter 2). It classified the techniques into cate-
gories according to data locality, data transfer, data footprint, granularity of tasks, exe-
cution model, and scheduling platforms; described several works under each category
and identified their contributions and shortcomings. This survey provides comprehen-
sive summary of the past work, which can be used by new techniques when conducting
comparative performance analysis or making enhancements on algorithms.

In order to address the inadequacy of existing systems to handle data intensive appli-
cations, this thesis presented aworkflowmanagement systemdesign (see Chapter 3). The
WfMS leveraged the existing abstract workflow model [166] and added software com-
ponents and scheduling algorithms specifically designed for managing data intensive
applications. It described the components: workflow editor, the monitoring interface,
resource provisioning interface, and interfaces for scientific applications that form the
integral part of the workflow portal. It presented the design of workflow engine and
its integration within Grid and Cloud computing platforms. The design was supported
by two application case studies that used the WfMS when running on global Grids and
Cloud resources. The study of WfMS design together with scientific applications proved
to be very useful for testing the system performance and demonstrating the feasibility
of the design on real platforms. This chapter formed a base where formulation and
implementation of core scheduling algorithms could be possible.
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This thesis then formulated a non-linear program based model to produce near-
optimal schedules for the workflow scheduling problem described in Chapter 1 (see
Chapter 4). It used AMPL to model the problem, and used a non-linear program solver
to produce near-optimal results. It also demonstrated the need for new techniques for
scheduling data intensive workflow applications by showing significant time and cost
savings when using optimized scheduling heuristic. Although, the NLP-model based
scheduling algorithm provided near-optimal solutions, it was computation intensive to
converge to such solutions. Hence, it provided a base line results for comparison pur-
poses. This study emphasizes and also experimentally demonstrates the fact that any
WfMS should select multiple data hosts and specific compute resources while scheduling
data intensive workflow applications on distributed resources. It also provides a math-
ematical model of the scheduling problem, which can be used for further enhancements
of scheduling algorithms.

To circumvent the problem of algorithm computation time, this thesis presented
heuristics based scheduling algorithms (see Chapter 5). In contrast to obtaining com-
putationally expensive solutions (i.e. solution to NLP-model in Chapter 4), this chapter
proposed list-based scheduling algorithms that provided approximate solutions to the
workflow scheduling problem. It proposed enhanced static and dynamic heuristic that
leveraged the multi-source parallel data retrieval technique while scheduling data and
tasks of a workflow. The enhanced static mapping heuristic (ESMH) produced time-
efficient schedules as compared to existing heuristics as it leveragedmulti-source parallel
data retrievals. For dynamic scheduling heuristic, it proposed to use Steiner tree based
distributed data host selection approach. Using real scientific applications, it presented
performance results that was carried out using emulation as well as real experiments
on distributed resources. This study experimentally demonstrates the positive impact of
using multi-source parallel data retrievals combined with dynamic scheduling heuristic,
on data intensive scientific workflow applications. The result is time-efficient schedules
as compared to existing algorithms that uses single best source for retrieving data.

Taking further enhancements in computation time and convergence to solutions, this
thesis presenteda particle swarmoptimization based scheduling heuristic (seeChapter 6).
The work modeled the scheduling problem using particles as tasks and their positions as
task-resource mappings. It also used the multi-source parallel data retrieval technique
for transferring data across distributed computing resources. The scheduling heuris-
tic converged to the approximate solutions quicker than other heuristic and produced
schedules that minimized total cost of executionwhen using Clouds. It demonstrated the
tolerance and adaptability of the scheduling heuristic in producing cost-efficient sched-
ules under changing execution and communication costs. This study focuses on further
enhancing heuristics-based scheduling algorithms in terms of time complexity and ac-
curacy. Building on the WfMS designed in Chapter 3, and the scheduling algorithms
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implemented in subsequent chapters, this chapter presents a generic and novel approach
formanaging data and tasks of data intensive application workflows in Cloud computing
environments.

7.3 Future Directions

Cloud computing introduces many challenges for system and application developers,
engineers, system administrators, and service providers [7; 26; 34]. In this section, we
will discuss some of these challenges related to the management and scheduling of data
intensive application workflows on Clouds.

Energy Effic
iency

Service Level Agreements and 
Quality of Service

Data/Compute Security, Privacy and Trust

VM Image and data 

Management

Data Intensive 
Applications on Clouds

Figure 7.1: Challenges for data intensive applications in Cloud environment.

7.3.1 Scheduling Applications based on Security, Privacy and Trust

One of the major concerns when moving to Clouds is related to security, privacy, and
trust. Security in particular, affects the entire Cloud computing stack [109]. The Cloud
computing model promotes massive use of third party services and infrastructures to
host important data or to perform critical operations. In this scenario, the trust towards
providers is fundamental to ensure the desired level of privacy for applications hosted in
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the Cloud. The obvious questions are:

• How to schedule tasks and data on the VMs managed by multiple Cloud service
providers such that the flow of private data is restricted to only trusted resources
through trusted networks?

• How to track the provenance of data and tasks in a virtualized environment? How
can scheduling components use this information to apply filters and scanners that
restrict security violations? [153]

One of the major concerns for the end users of Cloud computing services is the risk
of leakage of data deployed to Cloud computing services. The VM nodes in a data center
are managed by a virtual machine manager/resource allocator. As these virtual nodes are
deployed on top of physical hardware, there is always a super user (privileged user) from
the provider’s side who has access to the VM state and the physical node. Any accidental
or intentional access/leak of data processed by the VMs cannot be completely ruled out.
Both data and computations are susceptible to attacks resulting from any intruder’s VM
inspection, unauthorizedVMmigrations to anyphysical nodes. In addition, many service
providers engage in sharing of resources to offload part of its responsibilities (monitoring,
identifying and accounting) to third party application vendors. In such cases, a customer‘s
privacy is directly or indirectly affected by the functionality and terms of operation of
those tertiary units.Thus the possibility of exposure and sharing of data should be taken
into account while scheduling tasks and data on Cloud resources. The challenge is the
introduction of these constraints into the scheduling of data and tasks while mapping
tasks to resources in the Cloud.

Besides security, there are legal and regulatory issues that need to be taken care of
before scheduling sensitive applications in the Cloud. When moving applications and
data to the Cloud, the providers may choose to locate them in any of their data centers
around the world. The physical location of data centers and clusters determines the set of
laws that can be applied to the management of data. For example, specific cryptography
techniques could not be used because they are not allowed in some countries. Simply,
specific classes of users, such as banks, would not be comfortable to put their sensitive
data into the Cloud, in order to protect their customers and their business. At present,
a conservative approach is taken for hosting sensitive data. An interesting initiative is
the concept of availability zones promoted by Amazon EC2. Availability zones identify
a set of resources that have a specific geographic location. Although this initiative is
mostly concerned with providing of better services in terms of isolation from failures,
network latency, and service down-time, it limits the scheduling system from choosing
compute resources and underlying network when making scheduling decisions for large
applications which have data distributed at various locations.
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7.3.2 Service Level Agreements and Quality of Service

Service Level Agreements define the functional and non-functional characteristics of
Cloud services that is agreed by both the customer and the provider. The common
parameters that define a SLA are: pricing model, usagemodel, resourcemetering, billing,
and monitoring. In most cases, the desired level of security is also established within a
SLA. When a service provider is unable to meet the terms stated in the SLA, a violation
occurs. For example, an IaaS Cloud service providermay guarantee aminimum response
time from a VM, minimum storage space, reliability of data, etc. However, if a customer
does not get the desired response time, runs out of virtual disk space or suffers from
frequent service disruptions, the SLA is violated. The SLA also defines a penalty model
to compensate the customer in case of violations. At present, the adopted solution
for pricing falls into the “pay-as-you-go” model, where users are charged according to
the usage of the Cloud services. With constant changing of customer requirements,
scheduling algorithms need to address the following challenges:

• How tomake scheduling decisions such that Cloud service providers can guarantee
QoS satisfactions and prevent SLA violations?

The notion of QoS satisfaction varies across customers as every user has its own
requirements. Some general metrics from users’ prospective are: amount of aggregate
CPU power for the VMs instantiated, minimum bandwidth available, number and size
of input/output devices (e.g. storage volumes, virtual hardware, etc.), average response
time, etc. Typically, a customer is more inclined to request a statistical bound on most
of these parameters than an average [160]. At the moment, no Cloud service providers
are guaranteeing the minimum QoS for any of these metrics. From a provider‘s point of
view, it still remains a challenge to provision, manage and predict the use of its Cloud
services in the long run. That difficulty obstructs it to state concrete SLA terms (in
writing) with its customers. With the increasing number of users, most violations are
likely to happen during load fluctuations due to the lack of either sufficient resources or
weakness in managing VMs at the providers side. In this direction, Patel et al. [107] have
proposed a mechanism for managing SLAs in a Cloud computing environment using
the Web Service Level Framework (WSLF) [71]. They propose using dynamic schedulers
for measuring parameters, enabling measurements through third parties, and modeling
penalties as financial compensations (moderated via a third party), to adapt web SLA to
a Cloud environment. The complexity of enabling a SLA is higher in a multi-tenancy
environment [159], wheremany businesses (i.e. tenants) have varying QoS requirements.

On one hand, there are technological challenges; on the other, there are issues with
balancing usage cost and services delivered. Cloud service providers are already tussling
by advertising attractive pricing policies for luring users of all kinds to use their services
(e.g. Amazon, SalesForce, Google, etc.). As the market condition is determined through
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tough competitions between vendors, dynamic negotiations and SLA management will
play a major role in determining the amount of revenue to be generated for service
providers. Similarly, users will be able to choose better services that fit their requirements
and budget. They will be evaluating services based on their level of QoS satisfaction, so
that they get the right value for the price paid.

7.3.3 Scheduling based on Energy Efficiency

Data centers are expensive to operate as they consume huge amount of power [85]. For
instance, the combined energy consumption of all data centers worldwide is equivalent
to the power consumption of Czech Republic. As a result, their carbon footprint on
the environment is rapidly increasing. In order to address these issues, energy efficient
resource allocation and algorithms need to be developed. The challenges are as follows:

• How to balance energy consumption and performance of data centerswhenmaking
scheduling decisions?

• How to choose locality of data centers so that data security, operation cost, and
energy consumption meet the terms in the SLA signed with users?

The performance of data centers depends on the provisioning and usage of its hard-
ware devices by the VMmanagement software depending on user needs. As more CPUs
are used, the temperature of the hardware increases. This requires cooling of the data
center. Hence, performance of the data center and energy consumption are directly re-
lated to each other. As the price for commodity hardware and network equipments for
a data center is already getting cheaper, significant part of the total cost of operating
Cloud services in industrial scale is determined by the amount of energy consumed by
the data center. To conserve energy and save cooling costs, data centers could adopt
energy efficient scheduling policies. Application schedulers could make use of statisti-
cal information obtained from sensors when submitting tasks and data for computation
across VMs.

7.3.4 Management of VM Images and data as Workflows

Virtualization enables consolidation of servers for hosting one or more services on inde-
pendent virtual machines in a multi-tenancy manner. When a large number of VMs are
created they need to be effectively managed to ensure that services are able to deliver
quality expectations of users. That means, VMs need to be migrated to suitable servers
to ensure the desired QoS and later get consolidated dynamically to a fewer number of
physical servers. Migration thus involves transferring of large amount of data across
servers. The migration tasks themselves can overload the system when the migrations

157



Chapter 7. Conclusions and Future Directions

happen or are forced regularly in a large data center. In order to prioritize themigrations,
maintain a smooth transition of VMswithout disrupting the service and also maintaining
the user QoS, migration of tasks and data could be well represented as a workflow. These
capabilities draw challenging questions:

• How do service providers process migration of VMs and large amount of data?

It is a customary practice not to disclose the amount of compute/storage resources a
service provider has to its customers. On this setting, a customermay choose a particular
provider solely based on its reputation and advertised capabilities. When the service
provider gets large number of requests, it may have to overload its hardware to fulfill
these requests. The challenge here is the capability to manage a sheer number of requests
for VMs and the load on the infrastructure [132]. In order to handle these scenarios,
providers scale out, replicate VMs [79], migrate VMs to under utilized resources, etc.
However, there are software and hardware barriers when trying to instantiate large
number of VMs in a data center [68]. Representing this complex process as a workflow
and scheduling them is a challenge.

7.3.5 Data Intensive Applications on Clouds

At present there are numerous real-world applications that are running on distributed
clusters around the world. However, only a few of them would be able to utilize Cloud
resources with minor modifications. This is due to the fact that legacy applications were
designed to operate on physical hardware with heavy optimizations targeting storage,
input/output, communication etc. Cloud computing offers a different paradigm where
traditional assumptions on hardware devices and softwaremodelsmay not always work.
Input/output throughput, for example, may be different depending upon the location of
the VM instance allocated for an application and the storage hardware used. Similarly,
other attributes of an application such as: user experience, distribution,maintenance have
new issues when applications are moved to Clouds. The questions that are important to
ask before moving applications to Clouds are:

• How to map application attributes to Cloud attributes [36]?

Application attributes, such as data storage requirements, platform, network, dis-
tribution, security etc., may be related to different layers of the Cloud stack. These
requirements could be satisfied by combining services from multiple Cloud vendors.
But, combining different service providers brings along higher cost, risks, managerial
difficulties and interoperability issues.

Market oriented computing in industry is getting real as evidenced by the plethora of
vendors that provide Cloud computing services. For example, Amazon EC2 started with
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flat pricing then moved to pricing based on service difference and recently introduced
auction based models. In the next two decades, service-oriented distributed computing
will emerge as a dominant factor in shaping the industry, changing the way business
is conducted and how services are delivered and managed. This paradigm is expected
to have a major impact on service economy, which contributes significantly towards
GDP of many countries. The service sector includes health services (e-health), financial
services and government services. With the increased demand for delivering services to a
larger number of users, providers are looking for novel ways of hosting their application
services in Clouds at lower cost while meeting the users quality of service expectations.
With increased dependencies on ICT technologies in their realization, major advances are
required in Cloud computing to support elastic applications offering services to millions
of users, simultaneously.

Software licensing will be a major hurdle for vendors of Cloud services when pro-
prietary software technologies have to be made available to millions of users via public
virtual appliances (e.g. customized images of OS and applications). Overwhelming use
of such customized software would lead to seamless integration of enterprise Clouds
with public Clouds for service scalability and greater outreach to customers. More and
more enterprises would be interested in moving to Clouds for cooperative sharing. In
such scenarios, security and privacy of corporate data could be of paramount concern to
these huge conglomerates. One of the solutions would be to establish a globally accred-
ited Cloud service regulatory body that would act under a common statute for certifying
Cloud service providers, standardizing data formats, enforcing service level agreements,
handling trust certificates and so forth.
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[53] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao, “Chimera: Avirtual data sys-
tem for representing, querying, and automating data derivation,” in SSDBM ’02:
Proceedings of the 14th International Conference on Scientific and Statistical Database
Management, 2002.

[54] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathe-
matical Programming. Duxbury Press, November 2002.

[55] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, “ICENI: an
open grid service architecture implemented with Jini,” in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, ser. Supercomputing ’02. Los Alamitos,
CA, USA: IEEE, 2002, pp. 1–10.

[56] A.Geppert,M.Kradolfer, andD.Tombros, “Market-basedworkflowmanagement,”
International Journal of Cooperative Information Systems, World Scientific Publishing Co,
vol. 7, 1997.

[57] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[58] Y.Gil, E.Deelman,M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,M. Livny,
L. Moreau, and J. Myers, “Examining the Challenges of Scientific Workflows,”
Computer, vol. 40, no. 12, pp. 24–32, 2007.

[59] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and Efficient Work-
flow Deployment of Data-Intensive Applications On Grids With MOTEUR,” In-
ternational Journal of High Performance Computing Applications, vol. 22, no. 3, pp.
347–360, 2008.

165



REFERENCES

[60] K. Gupta, B. Nath, and R. Kotagiri, “LayeredApproach Using Conditional Random
Fields for Intrusion Detection,” Dependable and Secure Computing, IEEE Transactions
on, vol. 7, no. 1, pp. 35 –49, 2010.

[61] I. F. Haddad, “PVFS: A Parallel Virtual File System for Linux Clusters,” Linux
Journal, vol. 2000, November 2000.

[62] D. Hollingsworth, “The Workflow Reference Model,” Workflow Management
Coalition, Tech. Rep. TCOO- 1003, 1994.

[63] H.-J. Hoxer, K. Buchacker, and V. Sieh, “Implementing a User-Mode Linux with
Minimal Changes from Original Kernel,” in Linux-Kongress ’02: Proceedings of the
9th International Linux System Technology Conference, Cologne, Germany, September
2002, pp. 72–82.

[64] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations Research,
vol. 9, no. 3, 1961.

[65] Y.Hu and J. Schopf, “IBL forReplica Selection inData-IntensiveGridApplications,”
The University of Chicago, Tech. Rep. TR-2004-03, 2004.

[66] J. Jacob, D. Katz, T. Prince, G. Berriman, J. Good, and A. Laity, “The Montage
Architecture for Grid-Enabled Science Processing of Large, Distributed Datasets,”
in ESTC ’04: Fourth Annual Earth Science Technology Conference, 2004.

[67] E. Jaeger, I. Altintas, J. Zhang, B. Ludäscher, D. Pennington, and W. Michener,
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A
Case Studies of Scientific Applications

Appendix A lists the implementation code of the three scientific applications that this
thesis has used in the experiments. The codes are limited to application logic and corre-
sponding workflow representation only.

A.1 fMRI Image Registration Application

The bash code that is used to normalize the fMRI images is given in listing A.1. This code
was obtained from the Dartmouth Brain Imaging Center at the Dartmouth College, the
University of Chicago.

Listing A.1: Bash code for fMRI Image Registration application

# ! / b in / bash −x
TARGET= ‘ l s −1 ∗ /ANATOMY/ h i re s . hdr | head −1 ‘
t a r g e t d i r = ‘ dirname $TARGET‘

rm − r f AIR && mkdir AIR
rm − r f RESLICED && mkdir RESLICED
rm − r f ATLAS && mkdir ATLAS
rm ∗ /ANATOMY/ bhires ∗
#
echo ”BEGIN : ‘ date ‘ ”
#
for SOURCE in ‘ l s −1 ∗ /ANATOMY/ h i re s . hdr ‘ ; do
sub j e c t d i r = ‘dirname $SOURCE‘
sub j e c t = ‘dirname $sub j e c t d i r ‘
bet $ {SOURCE } $ { sub j e c t d i r } / bhires −R
fs lmaths $ { sub j e c t d i r } / bhires $ { sub j e c t d i r } / bhires −odt short
makeaheader $ { sub j e c t d i r } / bhires . hdr 3 256 256 124 .9375 .9375 1 . 2
a l i gn l i n e a r $ { t a r g e t d i r } / bhires . hdr $ { sub j e c t d i r } / bhires . hdr \

AIR / $ { sub j e c t } . a i r −m 12
done
#
cd AIR
definecommon air nul l nul l nul l . aircommon y ∗ . a i r
cd . .

for SOURCE in ‘ l s −1 ∗ /ANATOMY/ bhires . hdr ‘ ; do
sub j e c t d i r = ‘dirname $SOURCE‘
sub j e c t = ‘dirname $sub j e c t d i r ‘
r e s l i c e AIR / $ { sub j e c t } . a i r . aircommon RESLICED / $ { sub j e c t }− r e s l i c e −a $ {SOURCE}

done
#
cd RESLICED
softmean a t l a s − l i n e a r y nul l ∗ r e s l i c e . img
#
for SOURCE in ‘ l s ∗ . hdr ‘ ; do
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sub j e c t = ‘basename $SOURCE . hdr ‘
al ign warp a t l a s − l i n e a r $SOURCE $ { sub j e c t } . warp −m 6 −q
re s l i c e warp $ { sub j e c t } . warp $ { sub j e c t }−warp
done

softmean . . /ATLAS/ a t l a s y nul l ∗ r e s l i c e −warp . img
cd . .

TARGET=ATLAS/ a t l a s . hdr
for SOURCE in ‘ l s −1 ∗ /ANATOMY/ bhires . hdr ‘ ; do
sub j e c t d i r = ‘dirname $SOURCE‘
a l i gn l i n e a r $ {TARGET} $ {SOURCE } $ { sub j e c t d i r } / h i re s . a i r −m 12 \

− t 1 1000 − t 2 1000 −s 81 3 3
align warp $ {TARGET} $ {SOURCE } $ { sub j e c t d i r } / h i re s . warp −m 12 \

− f $ { sub j e c t d i r } / h i re s . a i r − t 1 1000 − t 2 1000 −s 81 3 3 −q
re s l i c e warp $ { sub j e c t d i r } / h i re s . warp $ { sub j e c t d i r } / nhires

done

#
# de t e rm in e q u a l i t y o f f i t t o a t l a s
#

bet . . / . . / ATLAS/ a t l a s . . / . . / ATLAS/ ba t l a s
bet nh ires nbhires

f l i r t −r e f . . / . . / ATLAS/ ba t l a s . hdr − in nbhires . hdr −out s u b j e c t 0 1 f i t −applyxfm
s l i c e r s u b j e c t 0 1 f i t . . / . . / ATLAS/ ba t l a s . hdr −s 2 −x 0 . 35 s l a . png −x 0 . 45 \

s lb . png −x 0 . 5 s l c . png −x 0 . 65 s ld . png −y 0 . 35 s l e . png −y 0 . 45 \
s l f . png −y 0 . 55 s lg . png −y 0 . 65 s lh . png −z 0 . 35 s l i . png −z 0 . 45 \
s l j . png −z 0 . 55 s lk . png −z 0 . 65 s l l . png

pngappend s l a . png + s lb . png + s l c . png + s ld . png + s l e . png + s l f . png \
+ s lg . png + s lh . png + s l i . png + s l j . png + s lk . png + s l l . png \
s u b j e c t 0 1 f i t 1 . png

s l i c e r . . / . . / ATLAS/ ba t l a s . hdr s u b j e c t 0 1 f i t −s 2 −x 0 . 35 s l a . png −x 0 . 45 \
s lb . png −x 0 . 5 s l c . png −x 0 . 65 s ld . png −y 0 . 35 s l e . png −y 0 . 45 s l f . png \
−y 0 . 55 s lg . png −y 0 . 65 s lh . png −z 0 . 35 s l i . png −z 0 . 45 s l j . png −z 0 . 55 \
s lk . png −z 0 . 65 s l l . png

pngappend s l a . png + s lb . png + s l c . png + s ld . png + s l e . png + s l f . png + \
s lg . png + s lh . png + s l i . png + s l j . png + s lk . png + \
s l l . png s u b j e c t 0 1 f i t 2 . png

pngappend su b j e c t 0 1 f i t 1 . png − s u b j e c t 0 1 f i t 2 . png s u b j e c t 0 1 f i t . png

echo ”DONE: ‘ date ‘ ”

This thesis designed a workflow using the above application code. This workflow is
depicted in Figure A.1 as a series of tasks interlinked according to the data dependencies.
An elaborate version of the same workflow is given in Figure 3.13.

Theworkflowdepicted as a DAG in FigureA.1 is formed using XMLwhen submitting
to the workflow management system. This XML is formed using the xWfl described in
Chapter 3. Listing A.2 presents the XML code for a task as an example. When adding
more subjects to the workflow, we can add tasks for each additional subject at each level.
For example, “GroupI1” and “GroupI2” are tasks at thefirst level. An additional task for a
new subject would be named “Group13” added alongside these two tasks. However, the
synchronizing tasks (a task that accepts the outputs from several tasks) do not get added
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Figure A.1: Image Registration application as a workflow.

for changing number of subjects (e.g. definecommonair). However, for every addition of
subject, these synchronizing tasks accept one additional file as input that was produced
by the added task.

Listing A.2: XML code for fMRI Image Registration using xWfl schema

<task name=”GroupI1” paramsweep=” f a l s e ”>
<paras>

<para name=”X” type=” in t ege r ” domain=”range”>
<range from=”1” to=”1” type=” step” i n t e r v a l=”1” />

< / para>
< / paras>
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<executab le>
<name value=”GroupI1” I OModel=”many many” />
<s e rv i c e service ID=”a1” />
<input>

<port number=”0” type=” f i l e ” value=”$Xhires . img” arg=” f a l s e ” />
<port number=”1” type=” f i l e ” value=”$Xhires . hdr” arg=” true ” />
<port number=”2” type=”msg” value=”$Xbhires ” arg=” true ” />
<port number=”3” type=”msg” value=”$X . a i r ” arg=” true ” />

< / input>
<output>

<port number=”4” type=” f i l e ” value=”$X . a i r ” />
<port number=”5” type=” f i l e ” value=”$Xbhires . hdr” />
<port number=”6” type=” f i l e ” value=”$Xbhires . img” />

< / output>
< / executab le>

< / task>

A.2 Intrusion Detection Application
The intrusion detection application performs datamining tasks on three sets of user sup-
plied data: training set, testing set and the real-time data set. These operations are carried
out with the help of Weka library for Java. The command line code is given in the
listing A.3.

Listing A.3: Command line code for Intrusion Detection application

Step 1 :
j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \

weka . a t t r i b u t e S e l e c t i on . CfsSubsetEval \
−S weka . a t t r i b u t e S e l e c t i o n . Exhaust iveSearch − I data / t r a i n . a r f f

Step 2 :
j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \

weka . f i l t e r s . unsupervised . a t t r i b u t e . Remove \
−R 2−3 − I data / t r a i n . a r f f > data / f i l t e r e d t r a i n . a r f f

j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ”
weka . f i l t e r s . unsupervised . a t t r i b u t e . Remove \
−R 2−3 − I data / t e s t . a r f f > data / f i l t e r e d t e s t . a r f f

Step 3a :
j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \

weka . c l a s s i f i e r s . bayes . NaiveBayes \
−no−cv −v −o − t data / f i l t e r e d t r a i n . a r f f −d bayes . model

Step 4a :
j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \

weka . c l a s s i f i e r s . bayes . NaiveBayes \
−no−cv −v −o −T data / f i l t e r e d t e s t . a r f f − l bayes . model

Step 3b :
j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \

weka . c l a s s i f i e r s . t r e e s . J48 −no−cv −v \
−o − t data / f i l t e r e d t r a i n . a r f f −d de c i s i on t r e e s . model

Step 4b :

j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \
weka . c l a s s i f i e r s . t r e e s . J48 −no−cv −v \
−o −T data / f i l t e r e d t e s t . a r f f − l d e c i s i on t r e e s . model

Step 3c :
j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \

weka . c l a s s i f i e r s . funct ions .SMO −no−cv −v \
−o − t data / f i l t e r e d t r a i n . a r f f −d supportvectormachines . model

Step 4c :
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j ava −Xmx1024M −c l a s spa th ” . /weka . j a r ” \
weka . c l a s s i f i e r s . funct ions .SMO −no−cv −v \
−o −T data / f i l t e r e d t e s t . a r f f − l supportvectormachines . model

Tes t ing Phase :

/ / sample 5% of the da t ase t supervised
java −Xmx1024M −cp weka . j a r \

weka . f i l t e r s . supervised . in s t ance . Resample \
− i data / t r a i n . a r f f −o t ra in −5%. a r f f −c l a s t −Z 5

/ / random se l e c t i on
java −cp weka . j a r −Xmx2048M \

weka . f i l t e r s . unsupervised . in s t ance . Resample \
− i data / t r a i n . a r f f −o t ra in −random−5pc . a r f f −Z 5

In this thesis,wedesigned aworkflow that uses the above code forprocessing intrusion
detection code. This workflow represented as a DAG is depicted in Figure 4.3. Similar
to the fMRI workflow described above, the intrusion detection workflow could well be
expanded to include multiple training, testing and real-time log files by adding branches
of code in the same level. This process is made lot simpler using the workflow editor
described in Chapter 3.

A.3 Distributed Evolutionary Multi-Objective Algorithms

An example execution code for processing the distributed evolutionary multi-objective
algorithm is given in listing A.4.

Listing A.4: Command line code for EMO application

emo − t : 2 −g : 100 − i : 100 −oa : 1 . arch ive
emo − t : 2 −g : 100 − i : 100 −oa : 2 . arch ive
emo − t : 2 −g : 100 − i : 100 −oa : 3 . arch ive
emo − t : 2 −g : 100 − i : 100 −oa : 4 . arch ive
emomerge − t : 2 − i : pops1 . in −o:%d . out −n : 4
emo − t : 2 −g : 100 − i : 100 −oa : 2 1 . arch ive −ip : 0 . out
emo − t : 2 −g : 100 − i : 100 −oa : 2 2 . arch ive −ip : 1 . out
emo − t : 2 −g : 100 − i : 100 −oa : 2 3 . arch ive −ip : 2 . out
emo − t : 2 −g : 100 − i : 100 −oa : 2 4 . arch ive −ip : 3 . out
emomerge − t : 2 − i : pops2 . in −o : f i n a l . out − f : f a l se −n : 1
emo − t : 2 − i : 100 −g : 100 −oa : f i n a l . arch ive −ip : f i n a l . out
# The f i l e pops1 . in c on t a i n s t h e l i s t o f inpu t f i l e s
1 . arch ive
2 . arch ive
3 . arch ive
4 . arch ive

# The f i l e pops2 . in c on t a i n s t h e l i s t o f inpu t f i l e s
21 . arch ive
22 . arch ive
23 . arch ive
24 . arch ive

The above code only depicts a three level iteration. The number of iterations and
divisions after each merge operation depends upon the user’s application requirements.
In this thesis, we constructed a workflow using the above code as depicted in Figure A.2.
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Similar to the fMRI and IntrusionDetection applications, thisworkflowwas also designed
using the xWfl language described in Chapter 3.

Ite
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Topology 2Topology 1

Figure A.2: EMO workflow structure (boxes represent task, arrows represent data-dependencies between
tasks)

In order to parallelize the execution of EMO, we construct a workflow model for
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systematically executing the tasks. A typical workflowstructure is depicted in FigureA.2.
In our case study, the EMO application consists of 5 different topologies, upon which

the iteration is done. These topologies are defined in 5 different binary files. Each file
becomes the input files for the top level tasks (A0emo1, A0emo, . . . ). We create a separate
branch for each topology file. In the Figure A.2, there are two branches, which get
merged on level 6. The tasks at the root level operate on the topologies to create new
population, which is then merged by the task named “emomerge”. In Figure A.2, we
see two “emomerge” tasks in the second level; 1 task in the 6th level that merges two
branches and then splits the population to 2 branches again; 2 on 8th and 10th level and
the final task on 12th level. In the example figure, each topology is iterated 2 times in a
branch before getting merged. The merged population is then split. This split is done
two times in the figure. The tasks labeled B0e, B1e is the start of 2nd iteration.
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Figure A.3: A graph that plots the pareto-front obtained after executing EMO for ZTD2 test problem

We use ZDT2 [148] as a test function for the objective function. After executing the
EMO workflow, we expect to see optimized values for the two objectives given by the
ZDT2 test function. Figure A.3 depicts the graph that plots the front obtained after
iterating the EMO workflow depicted in Figure A.2.At the zeroth iteration (level 2) as
depicted in Figure A.3, the front does not give the optimal values. After the first iteration
is complete, the front approaches the optimized values. Iteration 2 does not significantly
change the front, hence the data overlaps for Iteration 1 and 2.

183





B
Non-linear Programming

Appendix B lists the routines in the Modeling Language for Mathematical Programming
(AMPL) [54] that was used for solving our NLP-model listed in Chapter 4.

Listing B.1: AMPL Model for solving the NLP problem

se t S ;
se t P ;
se t T ;

var y {k in T , j in P } >=0;
var d { i in S , j in P , k in T } >=0;
param ecos t {k in T , j in P } >=0;
param etime {k in T , j in P } >=0;
param tdata { k in T } > 0 ;

param t x co s t { i in S , j in P } >=0;
param txt ime { i in S , j in P } >=0;

minimize To t a l c o s t : sum { i in S , j in P , k in T } ( d [ i , j , k ] ∗ t x co s t [ i , j ] ∗ y [ k , j ]
+ ecos t [ k , j ] ∗ etime [k , j ] ∗ y [k , j ] ) ;

#Ob j e c t i v e f o r c o n s i d e r a t i o n
#min imize T o t a l t im e : sum { i in S , j in P , k in T } ( d [ i , j , k ] ∗ t x t ime [ i , j ] ∗ y [ k , j ]

+ etime [k , j ] ∗ y [ k , j ] ) ;

#
# y d e n o t e s i f a t a s k k i s e x e c u t e d in p r o c e s s o r j .
#
sub j e c t to t a sks execu t ion {k in T } : sum { j in P } y [ k , j ] = 1 ;

#
# t d a t a i s t h e t o t a l d a t a e a ch t a s k n e e d s .
#
sub j e c t to da t a pe r t a sk {k in T } : sum { i in S , j in P } y [ k , j ] ∗d[ i , j , k ] = tdata [ k ] ;
sub j e c t to t o t a l t x : sum { i in S , j in P , k in T } y [ k , j ] ∗d[ i , j , k ] = sum {k in T } tdata [ k ] ;
#e x t e n s i o n s
#s u b j e c t t o t x d a t a { i in S , k in T , j in P } : y [ k , j ] ∗ d [ i , j , k ] <= t d a t a [ k ] ;
#s u b j e c t t o t x p r o c e s s { k in T , i in S , j in P } : ( d [ i , j , k ] ∗ y [ k , j ] ) >=0;

Themodel represented in listing B.1 uses the data distribution presented in listing B.2.

Listing B.2: Example data distribution used by AMPL model for solving the NLP problem

se t S := rotegg aqui la tsukuba omii snowball node b e l l e manjra ;
se t P:= roteggp aquilap tsukubap omiip snowballp nodep be l l ep manjrap ;
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se t T:= as f t r a i n nbt ra in d t t r a i n ;

param ecos t : roteggp aquilap tsukubap omiip snowballp nodep be l l ep manjrap :=

as 0 .0016 0 .0016 0 .013 0 .006 0 .013 0 .006 0 .006 0 .006
f t r a i n 0 .0016 0 .0016 0 .013 0 .006 0 .013 0 .006 0 .006 0 .006
nbt ra in 0 .0016 0 .0016 0 .013 0 .006 0 .013 0 .006 0 .006 0 .006
d t t r a i n 0 .0016 0 .0016 0 .013 0 .006 0 .013 0 .006 0 .006 0 .006 ;

param etime : roteggp aquilap tsukubap omiip snowballp nodep be l l ep manjrap :=

as 25 30 15 20 14 21 22 18
f t r a i n 110 120 70 55 30 50 58 33
nbt ra in 115 122 75 57 36 56 65 35
d t t r a i n 185 190 150 130 122 125 144 120 ;

param t x co s t : roteggp aquilap tsukubap omiip snowballp nodep be l l ep manjrap :=

rotegg 0 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1
aqui la 0 . 1 0 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1
tsukuba 0 . 1 0 . 1 0 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1
omii 0 . 1 0 . 1 0 . 1 0 0 . 1 0 . 1 0 . 1 0 . 1
snowball 0 . 1 0 . 1 0 . 1 0 . 1 0 0 . 1 0 . 1 0 . 1
node 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 0 . 1 0 . 1
b e l l e 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 0 . 1
manjra 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 ;

param txt ime : aup jpp usp :=

au 10 500 400
jp 50 10 200
us 250 200 10 ;

param tdata :=
as 100
f t r a i n 100
nbt ra in 100
d t t r a i n 100 ;

The model and the data can now be executed using the code presented in listing B.3

Listing B.3: Code for executing the AMPL model for solving the NLP problem

model m− t 1 . t x t
data d−id1 . t x t
opt ion so lve r donlp2 ;
opt ion donlp2 opt ions ”maxit=4000” ;
so lve ;
expand ;

d isp lay y ;
d isp lay d ;

d isp lay y > l o c a t i on s . t x t ;
d isp lay d > pa r t i a l d a t a . t x t ;

d isp lay To t a l c o s t ;
d isp lay Tota l t ime ;

Following the execution of the listing B.3, the mapping of tasks (listing B.4) and
mapping of partial data (listing B.5) can be obtained.
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Listing B.4: Locations of task given by a solution to the NLP problem

y [ ∗ , ∗ ] ( t r )
: as d t t r a i n f t r a i n nbt ra in :=
aquilap 1 .74865 e−15 1 .61296 e−15 0 6 .63495 e−15
be l l ep 0 0 0 3 .27613 e−15
manjrap 5 .12944 e−15 9 .52004 e−15 0 0
nodep 4.0911 e−15 0 7 .68236 e−15 0
omiip 4 .62698 e−15 6 .18761 e−15 0 0
roteggp 1 1 1 1
snowballp 3 .82849 e−15 0 8 .64125 e−16 0
tsukubap 0 4 .84344 e−15 2 .1808 e−15 0
;

Listing B.5: Partial data retrievals given by a solution to the NLP problem

d [ ∗ , ∗ , as ]
: aquilap be l l ep manjrap nodep omiip roteggp snowballp tsukubap
:=
aqui la 12 .9344 12 .5013 12 .4989 12 .4993 12 .4996 0 12 .5011 12 .5031
b e l l e 12 .4388 12 .5076 12 .4989 12 .4993 12 .4996 0 12 .5011 12 .5031
manjra 12 .4388 12 .5013 12 .5111 12 .4993 12 .4996 0 12 .5011 12 .5031
node 12 .4388 12 .5013 12 .4989 12 .5064 12 .4996 0 12 .5011 12 .5031
omii 12 .4388 12 .5013 12 .4989 12 .4993 12 .5079 0 12 .5011 12 .5031
rotegg 12 .4388 12 .5013 12 .4989 12 .4993 12 .4996 100 12 .5011 12 .5031
snowball 12 .4388 12 .5013 12 .4989 12 .4993 12 .4996 0 12 .5037 12 .5031
tsukuba 12 .4388 12 .5013 12 .4989 12 .4993 12 .4996 0 12 .5011 12 .5056

[ ∗ , ∗ , d t t r a i n ]
: aquilap be l l ep manjrap nodep omiip roteggp snowballp tsukubap
:=
aqui la 12 .947 12 .5006 12 .4961 12 .4977 12 .4979 0 12 . 5 12 .4999
b e l l e 12 .437 12 .5025 12 .4961 12 .4977 12 .4979 0 12 . 5 12 .4999
manjra 12 .437 12 .5006 12 .4991 12 .4977 12 .4979 0 12 . 5 12 .4999
node 12 .437 12 .5006 12 .4961 12 .5004 12 .4979 0 12 . 5 12 .4999
omii 12 .437 12 .5006 12 .4961 12 .4977 12 .5004 0 12 . 5 12 .4999
rotegg 12 .437 12 .5006 12 .4961 12 .4977 12 .4979 100 12 . 5 12 .4999
snowball 12 .437 12 .5006 12 .4961 12 .4977 12 .4979 0 12 .5003 12 .4999
tsukuba 12 .437 12 .5006 12 .4961 12 .4977 12 .4979 0 12 . 5 12 .5001

[ ∗ , ∗ , f t r a i n ]
: aquilap be l l ep manjrap nodep omiip roteggp snowballp tsukubap
:=
aqui la 12 .7282 12 .5023 12 .4891 12 .4999 12 .5006 0 12 .5032 12 .5011
b e l l e 12 .4666 12 .5052 12 .4891 12 .4999 12 .5006 0 12 .5032 12 .5011
manjra 12 .4666 12 .5023 12 .5772 12 .4999 12 .5006 0 12 .5032 12 .5011
node 12 .4666 12 .5023 12 .4891 12 .505 12 .5006 0 12 .5033 12 .5011
omii 12 .4666 12 .5023 12 .4891 12 .4999 12 .5038 0 12 .5032 12 .5011
rotegg 12 .4666 12 .5023 12 .4891 12 .4999 12 .5006 100 12 .5032 12 .5011
snowball 12 .4666 12 .5023 12 .4891 12 .4999 12 .5006 0 12 .5057 12 .5011
tsukuba 12 .4666 12 .5023 12 .4891 12 .4999 12 .5006 0 12 .5033 12 .5016

[ ∗ , ∗ , nb t ra in ]
: aquilap be l l ep manjrap nodep omiip roteggp snowballp tsukubap
:=
aqui la 12 .844 12 .504 12 .4927 12 .4996 12 .4994 0 12 .4986 12 .5003
b e l l e 12 .4491 12 .5066 12 .4927 12 .4996 12 .4994 0 12 .4986 12 .5003
manjra 12 .4491 12 .504 12 .5528 12 .4996 12 .4994 0 12 .4986 12 .5003
node 12 .4491 12 .5039 12 .4927 12 .5031 12 .4994 0 12 .4986 12 .5003
omii 12 .4491 12 .504 12 .4927 12 .4996 12 .5027 0 12 .4986 12 .5003
rotegg 12 .4491 12 .504 12 .4927 12 .4996 12 .4994 100 12 .4986 12 .5003
snowball 12 .4491 12 .5039 12 .4927 12 .4996 12 .4994 0 12 .5005 12 .5003
tsukuba 12 .4491 12 .504 12 .4927 12 .4996 12 .4994 0 12 .4986 12 .5009
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