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Edge computing decentralizes computing resources, allowing for novel applications in
domains such as the Internet of Things (IoT) in healthcare and agriculture by reducing
latency and improving performance. This decentralization is achieved through the im-
plementation of micro-service architectures, which require low latencies to meet stringent
service level agreements (SLA) such as performance, reliability, and availability metrics.
While cloud computing offers the large data storage and computation resources neces-
sary to handle peak demands, a hybrid cloud and edge environment is required to ensure
SLA compliance. This is achieved by sophisticated orchestration strategies such as Ku-
bernetes, which help facilitate resource management. The orchestration strategies alone
do not guarantee SLA adherence due to the inherent delay of scaling resources. Exist-
ing auto-scaling algorithms have been proposed to address these challenges, but they
suffer from performance issues and configuration complexity. In this thesis, a novel auto-
scaling algorithm was proposed for SLA-constrained edge computing applications. This
approach combined a Machine Learning (ML) based proactive auto-scaling algorithm,
capable of predicting incoming resource requests to forecast demand, with a reactive
autoscaler which considered current resource utilization and SLA constraints for imme-
diate adjustments. The algorithm was integrated into Kubernetes as an extension and
its performance was evaluated through extensive experiments in an edge environment
with real applications. The results demonstrated that existing solutions had an SLA
violation rate of up to 23%, whereas the proposed hybrid solution outperformed the
baselines and had an SLA violation rate of 6%, ensuring stable SLA compliance across
various applications.

mailto:suhrid.gupta@student.unimelb.edu.au


Declaration of Authorship

I, Suhrid Gupta, declare that this thesis titled, “Enhanced SLA Compliance in Edge
Computing Applications through Hybrid Proactive-Reactive Autoscaling” and the work
presented in it are my own. I confirm that:

■ this thesis does not incorporate without acknowledgement any material previously
submitted for a degree or diploma in any university; and that to the best of my
knowledge and belief it does not contain any material previously published or
written by another person where due reference is not made in the text.

■ this thesis did not require clearance from the University’s ethics committee.

■ the thesis is approximately 24,000 words in length (excluding text in figures, tables,
code listings, bibliographies, and appendices).

Signed:

Date: June 2024

ii



Preface and Publications

Section 2.2.1 of the thesis which provides an overview of Kubernetes was modified from
the research proposal that was undertaken in partial fulfillment of the requirements of
the Master of Computer Science.

All work written by myself in support of this thesis was independently reviewed by my
supervisors, Dr. Tawfiq Islam and Prof. Rajkumar Buyya. Feedback was also received
from my supervisors throughout the creation of the thesis and was incorporated into the
final version.

Publications

Authors Title Venue

Suhrid Gupta,
Tawfiq Islam,
Rajkumar Buyya

SLA-Driven Hybrid Autoscaling for
Edge Computing: Foundations, Re-
view, and Future Directions

ACM Computing Sur-
veys (in submission)

A Hybrid Reactive-Proactive Au-
toscaling Approach for Microservice
Applications in Edge Computing
Environments

Journal of Systems and
Software (in submis-
sion)

iii



Acknowledgements

I wish to thank my primary supervisor, Dr. Tawfiq Islam for his generous and invalu-
able advice, feedback, patience, and guidance throughout the whole research process.
His continuous encouragement and insights, both personal and professional, has made
an immeasurably impact on me throughout my two semesters working under his super-
vision. I further wish to thank my co-supervisor Prof. Rajkumar Buyya. His guidance
in helping me to set up milestones as well as reviewing my research experiments and
thesis ensured I met my deadlines in a timely manner. I am grateful to have had them
both as my supervisors, and this research thesis would not have been possible without
their support.

Finally, I wish to thank my friends and family for their selfless and constant help through-
out my time here at The University of Melbourne, for always motivating me, and for
their endless support which has helped me complete this research project.

iv



Contents

Abstract i

Declaration of Authorship ii

Preface and Publications iii

Acknowledgements iv

List of Figures viii

List of Tables ix

List of Listings x

1 Introduction 1
1.1 Edge Computing Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Service Level Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Availability of Services . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Microservice Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Kubernetes Architecture . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1.1 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1.2 Data Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Auto-scaling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Autoscaling Using Custom Metrics . . . . . . . . . . . . . . . . . . 11

2.4 Time-Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Forecast Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17
3.1 Edge Computing Implementation . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Hierarchical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



Contents vi

3.1.2 Software-defined Model . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Edge Computing Issues and Challenges . . . . . . . . . . . . . . . . . . . 19

3.2.1 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Cold start problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 SLA Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Scheduling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Reactive Autoscaling Strategies . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Proactive Autoscaling Strategies . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Hybrid Autoscaling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Problem Formulation and Autoscaler Design 30
4.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Proposed Hybrid Autoscaler . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Autoscaler Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1.1 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1.2 Reactive Resource Provisioning . . . . . . . . . . . . . . . 41
4.2.1.3 Data Pre-Processor . . . . . . . . . . . . . . . . . . . . . 42
4.2.1.4 Proactive Forecaster . . . . . . . . . . . . . . . . . . . . . 43
4.2.1.5 Proactive Resource Provisioning . . . . . . . . . . . . . . 44
4.2.1.6 SLA Heuristic Feedback . . . . . . . . . . . . . . . . . . . 45

4.2.2 Computational Complexity Analysis . . . . . . . . . . . . . . . . . 46

5 System Implementation 49
5.1 Micro-service Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Hybrid Autoscaler Configuration . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Exporting Custom Metrics to Kubernetes . . . . . . . . . . . . . . 53
5.3.2 Reactive Autoscaler . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 Proactive Autoscaler . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.4 Autoscaler Controller . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Performance Evaluation 66
6.1 Assumptions and Virtual Machines Setup . . . . . . . . . . . . . . . . . . 66
6.2 Cluster Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Baseline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Experimental Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.6 Evaluation of Request Latency . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6.1 Default Kubernetes Autoscaler Baseline . . . . . . . . . . . . . . . 76
6.6.2 Reactive THPA Autoscaler Baseline . . . . . . . . . . . . . . . . . 78
6.6.3 Proactive PPA Autoscaler Baseline . . . . . . . . . . . . . . . . . . 80
6.6.4 Proposed Hybrid Autoscaler . . . . . . . . . . . . . . . . . . . . . . 82

6.7 Evaluation of CPU Workload Distribution . . . . . . . . . . . . . . . . . . 84
6.8 Evaluation of SLA Violation Rates . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusions and Future Directions 92
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents vii

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.2 Proposed Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.2.1 Alternative Auto-scaling Approaches . . . . . . . . . . . . 95
7.3.2.2 Multi-Variate Forecaster . . . . . . . . . . . . . . . . . . 96
7.3.2.3 Multi-SLA Constraints . . . . . . . . . . . . . . . . . . . 97

Bibliography 98



List of Figures

1.1 Overview of edge computing architecture . . . . . . . . . . . . . . . . . . 2

2.1 Overview of service level agreements . . . . . . . . . . . . . . . . . . . . . 5
2.2 Features of container orchestration . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Overview of Kubernetes architecture . . . . . . . . . . . . . . . . . . . . . 8
2.4 Custom autoscaler architecture overview. . . . . . . . . . . . . . . . . . . 11
2.5 Recurrent Neural Network architecture . . . . . . . . . . . . . . . . . . . . 12
2.6 LSTM cell architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Autoscaling problem overview . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Proposed hybrid architecture overview . . . . . . . . . . . . . . . . . . . . 38
4.3 Pre-processing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Social-Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 IoT data characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Example of generated historical workload . . . . . . . . . . . . . . . . . . 60
5.4 Example of pre-processed historical workload . . . . . . . . . . . . . . . . 61
5.5 Analysis of loss and RMSE in training . . . . . . . . . . . . . . . . . . . . 62
5.6 Analysis of bias and weights in training . . . . . . . . . . . . . . . . . . . 63
5.7 Historical workload paired with forecast workload . . . . . . . . . . . . . . 64

6.1 API trace for home-timeline-service and compose-post-service . . . . . . . 70
6.2 Total CPU usage for home-timeline-service . . . . . . . . . . . . . . . . . 73
6.3 Total CPU usage for compose-post-service . . . . . . . . . . . . . . . . . . 75
6.4 Kubernetes default sutoscaler latency for home-timeline-service . . . . . . 76
6.5 Kubernetes default autoscaler latency for compose-post-service . . . . . . 77
6.6 THPA reactive autoscaler latency for home-timeline-service . . . . . . . . 78
6.7 THPA reactive autoscaler latency for compose-post-service . . . . . . . . . 79
6.8 PPA proactive autoscaler latency for home-timeline-service . . . . . . . . 80
6.9 PPA proactive autoscaler latency for compose-post-service . . . . . . . . . 81
6.10 Hybrid autoscaler latency for home-timeline-service . . . . . . . . . . . . . 82
6.11 Hybrid autoscaler latency for compose-post-service . . . . . . . . . . . . . 83
6.12 Autoscaler CPU workload distribution for home-timeline-service . . . . . 85
6.13 Autoscaler CPU workload distribution for compose-post-service . . . . . . 86
6.14 SLA violation percentages for home-timeline-service . . . . . . . . . . . . 87
6.15 SLA violation percentages for compose-post-service . . . . . . . . . . . . . 89

viii



List of Tables

2.1 Summary of SLA availability . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Summary of reactive auto-scaling solutions . . . . . . . . . . . . . . . . . 22
3.2 Summary of proactive auto-scaling solutions . . . . . . . . . . . . . . . . . 25
3.3 Summary of hybrid auto-scaling solutions . . . . . . . . . . . . . . . . . . 27

4.1 Definition of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Overview of proactive forecaster layers. . . . . . . . . . . . . . . . . . . . . 60
5.2 Proactive forecaster hyper-parameter values. . . . . . . . . . . . . . . . . . 61

6.1 Cluster architectural layout . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Experimental SLA constraints . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 SLA violation counts for home-timeline-service . . . . . . . . . . . . . . . 89
6.4 SLA violation counts for compose-post-service . . . . . . . . . . . . . . . . 90

ix



List of Listings

5.1 Jaeger-Scraper implementation to retrieve jaeger metrics . . . . . . . . . . 54
5.2 Jaeger-Scraper service monitor for Prometheus . . . . . . . . . . . . . . . 55
5.3 Jaeger-Scraper metrics collector example . . . . . . . . . . . . . . . . . . . 56
5.4 Prometheus adapter configmap for avg_latency metric . . . . . . . . . . . 56
5.5 Custom metrics API example . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Reactive autoscaler cooldown configuration . . . . . . . . . . . . . . . . . 59
5.7 Prometheus adapter configmap for forecasted_cpu metric . . . . . . . . . 59

6.1 Social network installation using Helm . . . . . . . . . . . . . . . . . . . . 69
6.2 Generate Jaeger trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Update resources for bottlenecked deployments . . . . . . . . . . . . . . . 70

x



List of Algorithms

1 Scheduler algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 Reactive resource provisioning . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Proactive forecaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Proactive resource provisioning . . . . . . . . . . . . . . . . . . . . . . . . 44
5 SLA-based heuristic feedback . . . . . . . . . . . . . . . . . . . . . . . . . 45
6 IoT daily workload generation . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



Chapter 1

Introduction

In this chapter, a brief overview of the edge computing architecture paradigm, along

with its uses, benefits, and challenges with respect to resource scaling are provided in

Section 1.1. These challenges lead to the research gap and questions this thesis intends

to answer in Section 1.2.

1.1 Edge Computing Overview

Cloud computing architectures leverage the on-demand accessibility of the Internet.

The applications deployed here utilize the vast resources of the cloud to perform a

task and relinquish it once it is complete for the other sub-modules in the application

to request [1]. In the early days, a singular end-point would be used to access these

services, however nowadays the architecture is multi-regional allowing effortless access

from across the world. This was achieved through the use of content delivery networks

(CDN) located in several regions to allow for data to be quickly replicated and served

to clients. This architecture model allows for the processing of large-scale data in a near

real-time manner.

During the early twenty-first century, this architecture paradigm dominated the Infor-

mation Technology (IT) industry. Compared to traditional monolithic architectures,

the ease of deployment, and scalability, coupled with the economic benefits ensured its

dominance. The increasing popularity of hand-held devices as well as home appliances

has resulted in data being largely produced at the edge of the cloud network. Thus,

1



Introduction 2

processing this large amount of data solely on the cloud proved to be an inefficient solu-

tion due to the bandwidth limitations of the network [2]. To counteract this inefficiency,

edge computing paradigms were built on the previous foundation of CDNs [3]. Edge

computing architectures ensure data processing services and resources exist at the pe-

ripheries of the network [4]. The architecture extends and adapts the computing and

networking capabilities of the cloud to meet real-time, low latency, and high bandwidth

requirements of modern agile businesses.

Edge computing deploys several lightweight computing devices known as cloudlets to

form a “mini-cloud” and places them in close proximity to the end-user data [5]. This

reduces the latency in terms of client-server communication and data processing. Fig-

ure 1.1 shows a high-level overview of this architecture. Cloudlets can also be easily

scaled depending on the resource requirements per edge architecture [6]. However, due

to the dynamic resource requirements which may fluctuate from time to time, the re-

sources allocated to cloudlets must be dynamically scaled too. This dynamic scaling,

along with the inherent latency present between the cloud layer and the edge cloudlets,

poses a significant problem to real-time resource scaling [7].

Figure 1.1: Overview of edge computing architecture
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One method of mitigating this scaling latency is through the use of micro-service ap-

plications. By employing a micro-service architecture, the resources in a cloudlet are

distributed as a collection of smaller deployments that are both independent and loosely

coupled [8]. This loose coupling ensures that parts of the cloudlet can be scaled as re-

quired, further reducing the time required to scale resources as compared to scaling the

cloudlet monolithically.

The scaling of these micro-service resources is done automatically through a process

known as auto-scaling. While most container orchestration platforms come bundled with

default auto-scaling solutions, and these solutions are sufficient for most applications,

they fall apart when scaling resources for time-sensitive services processing real-time

data such as the ones used in healthcare require stringent compliance to service level

agreements (SLA) on metrics such as application latency. This has led to further research

on auto-scaling solutions for edge computing applications. These primarily fall into two

categories. Reactive auto-scaling solutions attempt to modify the micro-service resource

allocation once the required resources exceed the current allocation. These algorithms

are simple to develop and deploy, however, the time taken to scale resources leads to

a degradation of resource availability and violates SLA compliance [9]. To counteract

these pitfalls, proactive auto-scaling solutions attempt to model resource allocation over

time and effectively predict the resource requirements. By doing so, the micro-service

resources can be scaled in advance through a process known as “cold starting”. This

approach removes the latency inherent in scaling resources, however, the algorithms are

extremely complex to develop, train, and tune to specific edge applications [10].

1.2 Objectives and Thesis Structure

To tackle these challenges, this thesis proposes a hybrid approach that combines the

simplicity of using reactive autoscalers, while maintaining the resource availability ben-

efits of the proactive autoscalers. The algorithm involves a smaller-scale LSTM machine

learning model which can be quickly trained to recognize the key features of the resource

workload over a course of time. The autoscaler then uses the predictions from the LSTM

model to scale its resources in advance. A reactive autoscaler is used to maintain the

current resource requirements as the predictive model cannot provide fine-tuned predic-

tions. The accuracy of the prediction model is gauged by monitoring the SLA metrics,
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for example, the application latency. If it is observed that the predictive model is per-

forming poorly, the training parameters are automatically tuned for the next training

iteration.

Thus, this project aims to answer the following research questions:

• RQ1: Can we integrate reactive and proactive auto-scaling methods to develop a

tailored algorithm for edge computing that eliminates the requirement to fine-tune

hyper-parameters for each auto-scaling use case while being lightweight enough to

be deployed and run on cloudlets?

• RQ2: Can the hybrid auto-scaling solution achieve or exceed the SLA compliance

capabilities of state-of-the-art reactive and proactive auto-scaling solutions for edge

computing while minimizing the cost of deploying application resources?

The thesis structure was designed based on the general guidelines provided by Gruba

and Zobel [11]. In summary, the following contributions were made in this thesis:

• Propose a hybrid auto-scaling method that mitigates the challenges present in

reactive and proactive methods.

• The algorithm is implemented as an extension to Kubernetes.

• Deploy this algorithm in a real edge cluster prototype.

• Conduct extensive experiments using realistic daily workloads on the prototype

micro-service application.

• Compare the SLA violations of the cutting-edge reactive, proactive, and default

container orchestration autoscaler with the proposed hybrid algorithm for three

separate threshold categories.

• Propose future work and possible extensions to the algorithm.



Chapter 2

Background

In this chapter, a brief introduction to Service Level Agreements is provided in Sec-

tion 2.1, followed by an overview of micro-service architectures is provided in Section 2.2.

This includes a brief description of the architecture of Kubernetes, along with its schedul-

ing and auto-scaling algorithms in Section 2.3. Finally, a brief overview of time-series

analysis is conducted in Section 2.4, along with some of the popular algorithms used.

2.1 Service Level Agreements

Figure 2.1: Overview of service level agreements

Cloud computing generally exposes resource using a pay-as-you-go service. These lucra-

tive plans have led to the implementation of applications and hardwares being delivered

as Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as

a Service (IaaS). However, consumers of such services have demands which may vary

significantly, and it is impossible to fulfill all these expectations. Thus a balance needed

to be struck in order to commit to an agreement [12].

This commitment is known as a Service Level Agreement (SLA). This SLA defines the

expected services provided by the provider, and agreed to by the consumer. For example,

5
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Table 2.1: Summary of SLA availability

Availability % Monthly Downtime Yearly Downtime
90% 72 hours 36.5 days
99% 7.2 hours 3.65 days

99.9% 43.8 minutes 8.76 hours
99.99% 4.38 minutes 52.56 minutes

99.999% 25.9 seconds 5.26 minutes

one of the most common metric by which SLAs are negotiated between providers and

consumers is the availability of service.

2.1.1 Availability of Services

Availability is defined to ensure that the functional performance of the edge deployment is

maintained for an agreed period. SLAs mostly define either monthly or yearly downtime

in order to compute service credits for billing purposes [13]. The downtime can be

calculated using the formulae:

downtimemonthly =
100−Availability%

100 × 30× 24 (2.1)

downtimeyearly =
100−Availability%

100 × 365 (2.2)

Table 2.1 shows the expected down-times for several SLA availability percentages.

2.2 Microservice Architecture

Micro-service architectures involve decomposing an application into several loosely cou-

pled services, and deploying them on separate cloudlet servers known as “nodes”. These

services communicate with each other through a lightweight framework such as REST-

ful APIs [14]. Within these services, application data and commands are stored and

executed within “containers”. Typically, these architectures provide scalability, as well

as ease of deployment and modification. Availability however, remains an important

concern for such deployments. For a deployment to be classified as “highly available”, it
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must be accessible at least 99.999% of the time. For example, a highly available search

engine would only face 5 minutes of down time per year [15]. Therefore, an orches-

tration mechanism is required to manage the deployment and communication of these

containers.

Figure 2.2: Features of container orchestration

Container orchestration allows the micro-service application to customize how the de-

ployment, monitoring, and controlling functions [16]. Figure 2.2 depicts the typical

features of container orchestration.

Scheduling defines the rules on the number of containers to be executed at any given

time. Scheduling also places containers on specific nodes based on availability and best

performance.

Load balancing distributes the resource usage among multiple micro-service nodes. By

default, a round-robin policy is implemented, although more complex policies may be

implemented at the discretion of the developer.

Health checks ensure that the container is still capable of responding to queries. Typ-

ically, these are done using a periodic light-weight HTTP request and verifying the

response.

Fault tolerance maintains several replicas of containers, a strategy commonly used to

achieve the high availability mentioned above. Health checks are used to ensure the

replicas are functioning, and they typically have strategies to ensure there is no mismatch

in data between two fault tolerant containers.

Autoscaling is the process of automatically adding or removing resources or containers.

Internal metrics such as CPU usage are typically used, however custom policies can also

be implemented at the discretion of the developer.
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2.2.1 Kubernetes Architecture

Kubernetes 1 is one of the most popular open-source container orchestration plat-

forms [17]. Initially referred to as “Borg”, the project was used internally at Google

to deploy the majority of their cloud applications before becoming an open-source ap-

plication [18]. Figure 2.3 shows the high-level architecture. The Kubernetes deployment

has a controller / worker architecture. The nodes in the Kubernetes cluster are split

into either control plane nodes and data plane nodes. The control plane nodes have a

collection of processes which help monitor and maintain the desired state of the deploy-

ment. The data plane nodes contain processes which run the containers doing the actual

work, and are managed by the control plane.

The smallest unit of work in a Kubernetes deployment is known as a pod [19]. This is

a collection of containers sharing an IP address and port. In summary, micro-service

architectures are said to be containerized and deployed on Kubernetes in the form of

pods [17].

Figure 2.3: Overview of Kubernetes architecture

1https://kubernetes.io/

https://kubernetes.io/
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2.2.1.1 Control Plane

The API Server is the primary communication endpoint for the entire deployment. Ev-

ery component in the architecture communicates through it to exchange information. It

is also used to update the current deployment state. The API Server is a simple RESTful

API implementation, exposing well-documented APIs for access by other components

as well as developers. Multiple replicas of this component are typically maintained to

ensure high availability.

The etcd is a data store which persists the deployment state in a key-value format. The

data is serialized unlike in the stateless API server. This data adheres the properties of

recovery and availability. Recovery ensures that any corruption of data is reverted using

a system of backups such as checkpoints. Availability ensures that the deployment is

reachable by the end-user regardless of the traffic being requested on the network.

Controller Manager implements the desired deployment state. During initial deploy-

ment, the controller manager inputs the required workload as the desired state, after

which it continually monitors the deployment state using a system of looping controls.

If the deployment requires modifications, they are achieved using the API server, and

the deployment is brought back into alignment with the desired state.

Finally, the scheduler decides the location where the pod will be deployed. The scheduler

runs a control loop which searches for unscheduled pods using the API server. It then

assigns the pods to a dataplane node based on several predicates and priorities such as

resource requirements and node affinity respectively.

2.2.1.2 Data Plane

The container runtime is a process which downloads or “pulls” the image for the required

container onto the node. Kubernetes supports a wide range of runtimes, but some of

the popular solutions are CRI-O 2, containerd 3, and Docker 4.
2https://cri-o.io/
3https://containerd.io/
4https://www.docker.com/

https://cri-o.io/
https://containerd.io/
https://www.docker.com/
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The most important process running on every data plane node is the kubelet. This

process executes the image assigned to the node via the container runtime, perform

health checks, and reports the node status to the control plane.

Another data plane process is the kube-proxy, which manages the rules for forwarding

requests to services, as well as the IP tables of nodes. If a service is added or removed,

kube-poxy updates the IP table accordingly.

2.3 Auto-scaling Overview

Apart from intelligently scheduling pods to data plane nodes, Kubernetes has the pro-

visions to dynamically respond to changes in resource requirements [20]. This process

of scaling nodes, pods, or other resources depending on requirements in an automated

manner is known as auto-scaling. Kubernetes supports three variations of auto-scaling.

Cluster auto-scaling modifies the number of nodes running in the entire deployment, or

cluster. Dynamically allocating nodes based on resource requirements helps to manage

the cost of running Kubernetes deployments on external platforms such as Amazon 5

or Google 6. The autoscaler works by looping through two tasks. The first watches

for unscheduled pods, the second checks if the current deployed pods (pods which are

running on the data plane) can be merged on a smaller number of nodes.

Vertical pod auto-scaling modifies the CPU and memory resources assigned to pods. By

default, the scheduler reserves a larger amount of these resources to pods than is usually

required. By performing vertical pod auto-scaling, the cluster can better manage its

over-provisioned resources in real-time.

Horizontal pod auto-scaling is the most commonly used auto-scaling strategy [21]. It

modifies the number of pods assigned to a task, based on the resources being requested.

Kubernetes implements this using a periodic control loop which runs every 15 seconds

by default. The control manager compares the actual resource utilization with the target

utilization defined by the deployment script, and scales the number of pods accordingly.
5https://docs.aws.amazon.com/eks/
6https://cloud.google.com/kubernetes-engine/

https://docs.aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine/
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2.3.1 Autoscaling Using Custom Metrics

Figure 2.4: Custom autoscaler architecture overview.

The default horizontal pod autoscaler uses pod CPU and memory utilization when

making its scaling decisions. However, these metrics may be too rigid when it comes

to scaling edge architecture resources [22]. The strict SLA constraints in place, along

with the lower amount of resources present in the edge layer as compared to the cloud

layer, make it imperative for custom metrics to be employed to autoscale resources as

efficiently as possible.

Figure 2.4 depicts the general architecture of the custom autoscaler. Typically, the

autoscaler queries metrics from the default metrics registry, which acts as a central store

for all metrics that are exposed to the developer. Three interfaces to this registry are

exposed:

• Resource metric API: This is used to access predefined metrics such as CPU

and memory resources of both pods as well as nodes.

• Custom metric API: This contains user-defined custom metrics associated with

all Kubernetes objects.

• External metrics API: This contains metrics of objects which are not associated

with Kubernetes.

For custom metric auto-scaling, the autoscaler must be configured in a way where the

metrics can be fetched from the custom metric API. This is done by configuring the
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custom metric server, several frameworks to simplify this process such as the Kubernetes

Instrumentation SIG 7 exist which simplify the server building process.

2.4 Time-Series Analysis

Several machine learning algorithms exist, however not all of them are suitable for time-

series analysis [23]. One of the most popular traditional models is the Convolutional

Neural Network (CNN), which is a form of deep learning that attempts to learn data

features through the process of filters being applied to the input at each convolutional

layer, and the output being passed to the next layer. However, while CNNs are excellent

when working with 3-dimensional data such as images, it does not perform well when

dealing with sequential inputs with interdependent data [24]. Due to this, another

machine learning subset known as Recurrent Neural Network (RNN) was conceptualized.

2.4.1 Architecture Overview

Recurrent Neural Networks store information about the past, and its future decisions

are based on this information. Thus, while RNNs have a similar training process as

CNNs, they remember features learned from prior inputs. RNNs are recurrent since

they perform the same computation for each data element in the sequence, with each

output being dependent on the previous computation. Figure 2.5 depicts this high-level

architecture of the RNN.

Figure 2.5: Recurrent Neural Network architecture

7https://github.com/kubernetes/community/tree/master/sig-instrumentation

https://github.com/kubernetes/community/tree/master/sig-instrumentation
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For the current RNN state, the formula can be written as follows:

ht = F(ht−1, xt) (2.3)

Where ht is the current state, ht−1 is the previous state, and xt is the current input

value. In the simplest form, the function F is the activation function. Thus using the

recurrent neuron weight Wh and input weight Wx, the equation can be re-written as:

ht = tanh(Whht−1 + Wxxt) (2.4)

Using this current state value, the output can be calculated using the equation:

yt = Wyht (2.5)

Where Wy is the output weight.

RNN also employs a back-propagation algorithm during training. However, the param-

eters are used by all the network states hi; i ∈ {1, 2, ..., n}. However, RNN training

encounters two big issues, namely the vanishing and exploding gradients, which hinder

the accuracy of predictions. If the training sequence is too long, the RNN has a diffi-

cult time carrying previous information from one training iteration to the next, due to

the exponential nature of the weight updates during back-propagation which causes its

values to become extremely small or large. To address this issue, an improved version

of RNNs was created, known as LSTM.

Long Short-Term Memory or LSTM is a deep learning model which is enhanced from

the traditional RNN architecture [25]. In an RNN function, the hidden state activation

is influenced by nearby activation functions. This is known as the “short-term” memory.

Meanwhile the overall network weights are influenced by the computations which occur

over the entire long data sequence.

LSTMs are designed in a way which avoids the long-term dependency problem by in-

tegrating a cell state into the architecture. The cell state acts as a conveyor belt of

information, allowing information to be passed along the different data sequences easily.
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Figure 2.6: LSTM cell architecture

Information is added to or removed from the cell state using structures known as gates.

These gates are created from a sigmoid layer, and a point-wise multiplication operation.

The LSTM architecture has three gates for performing cell state operations. These are

the Forget gate, Input gate, and Output gate. Figure 2.6 shows the structure of these

cell state operations.

The forget gate determines the amount of past information the LSTM should retain.

This decision is made through the use of a sigmoid function, and the gate output ft is

given through the equation:

ft = σ(Wf · [ht−1, xt] + bf ) (2.6)

Where W is the gate neuron weight, and bx is the gate bias.

The input gate determines how information is added to the cell state. This is done

through the following steps:

• Determine the values it to be added:

it = σ(Wi · [ht−1, xt] + bi) (2.7)
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• Create vector Ĉt of all the possible values that may be added:

Ĉt = tanh(WC · [ht−1, xt] + bC) (2.8)

• Use the computed value and vector, along with the previous cell state Ct−1 to

obtain the useful information which can be added to current cell state Ct:

Ct = ft × Ct−1 + it × Ĉt (2.9)

Finally, the output gate determines which portion of the current cell state is included in

the output. This is determined using three steps:

• Create vector ot which scales the cell state value between -1 and +1:

Ĉt = tanh(Ct) (2.10)

• Compute filter value ot which regulates which values from ot are included in the

output:

ot = σ(Wo · [ht−1, xt] + bo) (2.11)

• Multiply the vector and filter to get the output ht which also acts as the hidden

state of the next cell:

ht = ot × Ĉt (2.12)

2.4.2 Forecast Models

There are two major methods of using a time-series model to determine the predicted

outcomes, namely a one-step forecast model, and a multi-step forecast model.

In a One Step Forecast, the time-series model first extracts short-term characteristics

and correlations amongst the variables. It then feeds these into the various layers of

its architecture during the training process, and finally generates a point forecast. In

theory, such an approach would be more efficient, however it is heavily dependant on

the correct training specifications and hyper-parameter selections, and thus is difficult

to configure [26].
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In a Multi Step Forecast, the time-series model does the same training steps as the above

approach, but then it predicts several data points of output in one single shot. Such an

approach may take less time to make a prediction, and has less chances of inaccurate

predictions due to it being more robust to misspecifications in the model.



Chapter 3

Related Work

In this chapter, we discuss some of the common implementation strategies for edge

computing paradigms in Section 3.1 before discussing the inherent challenges and limi-

tations in Section 3.2. Then in Section 3.3 we review the resource scheduling solutions

which attempted to resolve these challenges. Building on this foundation, Sections 3.4

to 3.6 comprise of a detailed literature review of the state-of-the-art auto-scaling algo-

rithms used to mitigate these challenges, and a comparison of their performances and

drawbacks.

3.1 Edge Computing Implementation

Yu et al. [27] states when implementing edge computing architectures, researchers typ-

ically focus on two models, namely the hierarchical model, and the software-defined

model.

3.1.1 Hierarchical Model

Since edge and cloud servers are deployed at varied distances from the end users, it

makes sense that the edge architecture is to be divided into such a hierarchy, with each

layer defining the functions relative to resource availability and distance.

Smeliansky [28] gives an overview of such a hierarchical model. The bottom tier is usually

comprised of a geo-distributed servers which receive workload from mobile devices via

17
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wireless links. These servers are then connected to a higher tier level of servers which

comprise of the remote data centers. If the mobile workload received by a lower tier

server exceeds its computational capacity, it can offload this excess workload to a higher

tier server. In this way, the architecture can serve large load peaks.

Several research efforts exist for such a model. Tong et al. [29] proposed an edge cloud

hierarchy which could be used to serve high load demands from mobile users. In such a

model, the cloudlet servers were deployed at the edge layer, while the cloud established as

a tree hierarchy. By using such an implementation, the edge layer was able to aggregate

its servers resource abilities to better serve peak workloads.

Jarwah et al. [30] demonstrated a similar approach to a hierarchical model, which inte-

grated Mobile Edge Computers (MEC) servers and cloudlets. The mobile users obtained

specific services as per requested, and the MEC served the ability to deliver their com-

putational and storage requirements.

3.1.2 Software-defined Model

The number of end users and devices which connect to the edge architecture typically

numbers in the millions [27]. Thus, management of an application deployed on this

architecture can prove to be significantly challenging. To address these complexities,

Software Defined Networks (SDN) were proposed.

According to Wang et al. [31], SDNs distinguish themselves from conventional networking

approaches by decoupling the control plane from the data plane. The control plane is

constructed using a combination of dedicated controllers. These serve as the control

center of the SDN model, while the data-plane simply forwards data packets in the form

of a network switch. Such a decoupling makes the architecture highly flexible, as well

as simplifies network management [32]. However they have drawbacks which include

performance issues if not developed properly.

Despite these challenges, there have been a number of research efforts based on the SDN

model. Du and Nakao [33] presented an MEC model which was application specific. In

this model, the software-defined data plane acts as a Mobile Virtual Network Operator

(MVNO). The mechanism computes a hop-count based tethering as well as optimizes the
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process. Fairness among determining user resources is determined through regulating

concurrent TCP connections.

Similarly, Jaraweh et al. [34] proposed an SDN model which integrated its capabilities

to the MEC system. The management and administrative requirements for the entire

model could be reduced in this manner.

Finally, Salman et al. [35] demonstrated an integration of SDN, MEC, and a Network

Function Virtualization (NFV)m which was capable of achieving better MEC perfor-

mance in mobile networks than the other two works. Such a model could be further

extended to enable an IOT-capable deployment.

3.2 Edge Computing Issues and Challenges

3.2.1 Resource Allocation

Cao et al. [4] demonstrated the key differentiations traditional cloud computing archi-

tectures have compared to edge architectures, while asserting that edge deployments

remain an extension of the cloud. The aim of cloud computing infrastructures is to pro-

cess huge amounts of data from multi-regional zones, or in the best case, globally. This

is done so as to perform in-depth analysis in diverse fields such as health-care, robotics,

and business decision making. Traditionally, they also dealt with non-real-time data for

decision-making [36]. On the other hand, edge computing usually handles smaller scale

data, locally clustered and isolated in separate zones, and highly real-time in nature [37].

The data processed in traditional cloud computing environments are also generally done

using a high network bandwidth. This is due to the large distances data needs to be

transmitted over to reach the data centres and cloud servers. Such data transmission

places an enormous burden on the cloud network, and poses multiple security challenges

in ensuring that the data is not compromised in transit.

The real-time nature of edge computing applications necessitates a method of resource

allocation which ensures minimal cost of deployment, and maximum efficiency in terms

of performance. As mentioned in Section 1.1, micro-service container orchestration tech-

nologies are leveraged to achieve these aims. Kristiani et al. [38] demonstrated an edge

computing architecture, where the edge layer consists of Kubernetes nodes. Such a
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deployment increases the scalability, as well as maintains the ease of deployment, up-

grade, and removal of nodes in the edge layer. Scaling of resources through the means of

auto-scaling depending on the resource requirements is crucial to the architecture’s per-

formance. Default solutions such as the inbuilt autoscaler provided by Kubernetes, while

generally useful for cloud applications, are unsuitable for edge architectures according

to Phan et al. [39]. They note that due to the algorithm’s default nature to allocate

resources in a round-robin manner, they do not take into account which Kubernetes

nodes require priority resources allocation, violating edge architecture paradigms.

3.2.2 Cold start problem

To explain the cold start problem, we use the example of horizontal pod auto-scaling in

Kubernetes. When the control plane requests for a deployment replica to be scaled up,

Kubernetes adds more pods to the data plane nodes. Based on the internal workload,

the pod needs to be elastically scaled out [40]. Even though the pod start up time is

significantly quicker than, say, a traditional virtual machine, there is a latency inherent

to bootstrapping the container, preparing the pod environment based on the deployment

specification, and initialising the code present in the container image, and registering

the pod in a “ready” state to the Kubernetes control plane.

Several techniques exist to mitigate this resource latency. The Kubernetes container run-

time uses snapshots [41], lazy fetching of container images [42], and container queues [43].

However, these measures do not eliminate the issue of the inherent latency in installing

and registering the resource. Due to this, researchers looked into scaling resources in

a predictive manner, so as to ensure the micro-service application has enough time to

spool up resources before the actual demand comes in. This process, by which resources

are created and registered with the container orchestration before the expected workload

is known as resource cold start.

3.2.3 SLA Guarantees

There are several challenges posed in providing SLA guarantees in an edge deployment:

• Users queueing for large periods of time to use a service [44].



Related Work 21

• Degradation of application performance due to peak levels of workload, leading to

user dissatisfaction [45].

• Incorrect resources being allocated to the application, leading to either a degrada-

tion of availability, or large cost of application deployment [46].

Several strategies have been proposed to counteract these challenges. Linlin et al. [47]

proposed a customer-driven strategy to minimize the provisioning costs. The algorithm

considers the customer profiles as well as cloud providers’ quality parameters such as

response time to dynamically handle customer requests. Rajkumar et al. [48] proposed a

solution for alleviating the issue of delay in service allocation to users through the use of

a novel hierarchical scheduling algorithm. This algorithm increases the performance of

the scheduling algorithm, thus reducing the wastage of resources, and minimizing wait

times. Sakr et al. [45] introduced a novel approach to combat application performance

degradation by using a middleware between consumers and the cloud. This middleware

helps to facilitate dynamic provisioning of cloud databases based on consumer require-

ments, tailoring their needs and requirements to mitigate peak usages being hit often.

3.3 Scheduling Strategies

To counteract the limitations discussed in Section 3.2.1, several custom scheduling and

resource management algorithms have been proposed for edge architectures.

Skarlat et al. [49] demonstrated an algorithm for resource scheduling where the usage

of resources was formalized as an optimization problem. Thus, the authors attempted

to minimize the network delay when requesting computational resources. Based on this

work, Aazam and Huh [50] proposed another solution for resource management which

attempted to estimate the resources per service required, based on the user’s previous

behaviour as well as type of service being requested. By following such an approach,

the resource wastage was actively reduced in edge nodes. Another resource allocation

solution provided by Ni et al. [51] was based on priced timed Petri nets. The resources

in the edge nodes are divided into several groups. The users can then select resources as

per their requirements in an autonomous manner according to the price and time-cost

of the operation.
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Based on these initial proposals, Nguyen et al. [52] revealed ElasticFog, a resource provi-

sioning algorithm which operates on top of the Kubernetes architecture. The algorithm

provides real-time elastic scheduling for the resources on the edge nodes by monitoring

the traffic distribution on the network, thereby achieving a significantly higher through-

put and network efficiency in comparison to the default Kubernetes scheduler solution.

Wojciechowski et al. [53] proposed a similar extension to the Kubernetes scheduler which

deployed traffic-aware provisioning of resources. The extension worked alongside the

Istio Service Mesh 1 to collect dynamic network metrics for the scheduling of resources.

The algorithm was shown to have highly efficient uses for edge deployments such as the

5G network.

While these proposals improved the scheduling and resource provisioning of edge de-

ployments, they did not address key limitations addressed above such as the need for

dynamic resource scaling so as to face the challenges of real-time data processing and

SLA compliance. Due to these issues, several auto-scaling algorithms extending the de-

sign principles of these resource scheduling algorithms were proposed to address them.

3.4 Reactive Autoscaling Strategies

Nunes et al. [61] stated that horizontal pod auto-scaling using a reactive strategy remains

the most popular auto-scaling technique, as well as research topic. These strategies,

despite having limitations such as a reliance on predetermined resource thresholds and a

delay in resource scaling, have been popular in research articles. Dogani et al. [62] stated
1https://istio.io/latest/about/service-mesh/

Table 3.1: Summary of reactive auto-scaling solutions

Features Reactive algorithms
[39] [54] [55] [56] [57] [58] [59] [60]

Simple deployment ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Simple parameter tuning ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗

Custom metrics ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Light-weight deployment ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Edge architecture compliant ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SLA-compliant ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Minimizes deployment cost ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

https://istio.io/latest/about/service-mesh/
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that this was due to the simplicity and user-friendliness in developing them. Table 3.1

summarizes the reactive auto-scaling algorithms discussed below:

Kampars and Pinka [54] proposed a reactive auto-scaling algorithm for edge architectures

based on open-source technologies. The algorithm scales in a non-standard approach,

considering real-time adjustments in the application logic to determine the strategy of

scaling, resulting in several improvements in performance. This logic however is complex,

while the challenging metric selection and integration procedure make it unsuitable for

deployment on an edge architecture.

Zhang et al. [55] presented an algorithm for determining edge elasticity through container-

based auto-scaling. The authors posit that elasticity is a key factor of how an edge

deployment as well as the lightweight containers which make up the edge layer perform.

The framework not only autoscales container resources, but also monitors resource us-

age. They were able to show experimentally that to balance system stability with a

decent elasticity required careful tuning of parameters such as the cooldown periods of

scaling. However the lack of addressal of the cold start problem discussed above results

in a delay in scaling resources, violating SLA-compliance.

Srirama et al. [56] investigated an container-aware auto-scaling solution which deploys

applications to containers which it deems “best-fit”. The algorithm also uses a rule-

based policy to minimize the deployment time, thus mitigating the issue of cold-start.

Finally, a dynamic bin-packing sub-algorithm ensures that the applications are deployed

on the least required physical servers, thus minimizing wastage of computing resources.

The authors experimentally demonstrated that this algorithm minimized the processing

time, cost, and resource utilization. However the complex and user-intensive parameter

tuning make it difficult to adapt to generalized use-cases.

Hoenisch et al. [57] implemented a four-fold auto-scaling strategy for containerised appli-

cations which asks if the containers or servers can be autoscaled horizontally or vertically.

This question is formalized as a multi-objective optimization problem, and the approach

used reduced the cost of each request by more than 20%. The drawback is the heavy

performance and resource overhead when running in edge deployments, leading to a

degredation in application performance.
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Santos et al. [58] implemented a quality of experience based auto-scaling of containerized

edge deployments. The algorithm can autoscale both horizontally and vertically on a

set of quality metrics which can be customized by the end-user. While the authors

explained that the experimental results displayed a performance comparable to other

reactive solutions, further research demonstrated that the algorithm is unable to scale

well on highly dynamic workloads.

Sheganaku et al. [59] devised an container-based auto-scaling solution which allocates

resources in a four-fold manner similar to Hoenisch et al. [57]. The authors formulated

the problem as a multi-objective optimization problem and applied a Mixed-Integer

Linear Programming (MILP) approach to allocate resources to containers. Such an

approach demonstratively reduced costs while maintaining SLA constraints. However,

this came at a cost as the solution is too time consuming and computationally expensive

for edge deployments.

Taherizadeh and Stankovski [60] proposed a multi-level auto-scaling solution using a

rule-based approach. The algorithm uses dynamically changing thresholds based on both

the container infrastructure as well as application, resulting in improved performance as

compared to other reactive approaches, however such a multi-level solution is difficult

to tune and optimize, making it unsuitable for dynamic and custom workloads.

Phan et al. [39] proposed a reactive auto-scaling solution for edge deployments for IoT de-

vices which dynamically allocates resources based on incoming traffic. This traffic-aware

horizontal pod autoscaler (THPA) operates on top of the underlying Kubernetes archi-

tecture. As discussed above, the default Kubernetes horizontal pod autoscaler scales

resources in a round-robin manner, not taking into context which nodes are receiving

the highest resource requests. THPA alleviates this issue by modelling the resource

requests per Kubernetes nodes. It then intelligently allocates pods to the nodes with

higher number of requests. The authors were able to experimentally demonstrate that

following such an approach provided a 150% improvement in response time and through-

put. However the algorithm is not SLA compliant due to the delay in scaling resources

in a reactive manner.
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Table 3.2: Summary of proactive auto-scaling solutions

Features Proactive algorithms
[63] [64] [65] [66] [67] [68]

Simple deployment ✗ ✓ ✓ ✓ ✓ ✓

Simple parameter tuning ✗ ✗ ✗ ✓ ✗ ✗

Custom metrics ✓ ✓ ✗ ✗ ✗ ✗

Light-weight deployment ✗ ✗ ✗ ✓ ✗ ✗

Edge architecture compliant ✓ ✗ ✗ ✗ ✗ ✗

SLA-compliant ✗ ✓ ✓ ✓ ✗ ✗

Minimizes deployment cost ✗ ✗ ✓ ✗ ✗ ✗

3.5 Proactive Autoscaling Strategies

Lorido et al. [69] showed that compared to reactive algorithms, proactive algorithms

achieved better resource allocation once they had been carefully optimized. Machine

learning (ML) techniques such as auto-regressive integrated moving averages (ARIMA)

and long short-term memory (LSTM) have gained populary in time-series analysis due to

their relative ease of building and efficiency compared to other ML models. Through the

careful use of these models, linear patterns in the data can be automatically identified in

a short amount of time with relatively constrained resources. There are however several

challenges when implementing a proactive algorithm. Time-series analysis models may

struggle when dealing with highly complex and non-linear data [62]. The development

of a generalised algorithm for several edge architectures remains a costly process. One of

the biggest challenges is the initial lack of training data. Another issue is the exploding

or vanishing gradient problem [70], though modern algorithms ensure that they avoid

this pitfall [71]. Despite these challenges, their application in scaling of resources with

semi-predictable data series remain valuable. Table 3.2 summarizes the proactive auto-

scaling algorithms discussed below:

Ju et al. [63] presented a proactive horizontal pod auto-scaling solution for edge comput-

ing paradigms. The algorithm, known as Proactive Pod Autoscaler (PPA) was designed

to predict resource requests on multiple user-defined metrics, such as CPU request and

I/O traffic requests. The algorithm does not use any specific machine learning model

for the time-series analysis, instead the model is to be inputted by the user. This model

agnostic architecture allows for a very high level of customization. The user can deploy
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an ARIMA, LSTM, or even Bayesian confidence models. In a confidence model, the au-

toscaler will only deploy resources if the confidence value is seen to be above a specified

user-defined threshold. The authors validated their findings by testing the architecture

using LSTM and ARIMA models, the results concluded that this algorithm significantly

outperformed both the default Kubernetes autoscaler, as well as existing reactive auto-

scaling solutions. However, such customizability leads to a complex deployment and

hyper-parameter tuning process. This, along with a lack of initial training data causes

erroneous predictions before the model corrects itself.

Meng et al. [64] created a proactive auto-scaling algorithm for forecasting the Kubernetes

CPU usage of containers using a time-series prediction. They achieved this using the

ARIMA model. The time-series was split into a training and validation set using a

5:1 ratio before being passed to the deep learning model. The authors were able to

demonstrate experimentally that such an architecture reduced the forecast errors to

6.5%, as compared to the baseline of 17%. This showed a high prediction accuracy,

however the cost of training this model was prohibitively high, making it unsuitable for

edge deployments.

Imdoukh et al. [65] proposed a proactive auto-scaling solution using an LSTM model,

designed for edge computing architectures. The algorithm uses an LSTM neural net-

work to predict future network traffic workload to determine the resources to assign to

edge nodes ahead of time (cold-start). The authors experimentally demonstrated that

their algorithm was as accurate as existing ARIMA-based proactive solutions, but theirs

significantly reduced the prediction time, as well as computed the minimum resource al-

location required to handle future workload. However, this algorithm also suffers from

the problems related to a lack of initial training data encountered by Ju et al. [63]

Messias et al. [66] created a proactive autoscaler using genetic algorithms (GA). The

genetic algorithm combines several time-series forecasting models, while having the ben-

efit of not requiring a training phase as the model adapts to the incoming data. The

experimental results concluded that this approach produces results comparable to sev-

eral state-of-the-art proactive models, and can adapt to various time series models. The

initial state of the genetic algorithm is however set randomly [72], this causes the initial

forecasting to contain a significant amount of errors, and the algorithm can take an

arbitrarily large amount of time to converge to an acceptable forecast result.



Related Work 27

Abdulla et al. [67] devised an auto-scaling solution which is capable of detecting sudden

bursts in dynamic workloads. The algorithm achieves this through a method of workload

and resource prediction to make a scaling decision. Experimenting on several burst-

heavy workloads, the autoscaler demonstrated significant improvements compared to

other state-of-the-art methods. The XGBoost algorithm used to forecast these burts is

quite rigid however, and thus is incapable of capturing several other workload patterns.

Alidoost et al. [68] proposed a workload classification model using a Support Vector Ma-

chine (SVM). The algorithm extracts the user’s workload characteristics, and then trains

the SVM on it. The authors demonstrated a 10% forecast error reduction compared to

other machine learning proactive forecast approaches. The SVM however struggles to

identify boundaries for complex data, making this algorithm unsuitable for non-linear

workload patterns.

3.6 Hybrid Autoscaling Strategies

All the approaches mentioned in Sections 3.4 and 3.5 have their benefits and drawbacks.

Thus, hybrid solutions which merge multiple auto-scaling methods were proposed [78].

While hybrid algorithms for cloud-based deployments exist, integrating them into edge

architectures pose several challenges due to the lower data storage and computational

capacity of the edge layer. Furthermore, extracting the proactive time-series analysis

to the cloud layer poses further challenges due to the inherent latency present between

the two layers. Despite this, exploring these solutions provides a solid template for the

approach used in this paper, Table 3.3 shows an overview of the proposals discussed

below:

Table 3.3: Summary of hybrid auto-scaling solutions

Features Hybrid algorithms Proposed solution
[73] [74] [75] [76] [77]

Simple deployment ✓ ✓ ✓ ✓ ✓ ✓

Simple parameter tuning ✓ ✓ ✓ ✗ ✗ ✓

Custom metrics ✓ ✗ ✗ ✓ ✓ ✓

Light-weight deployment ✓ ✗ ✓ ✗ ✗ ✓

Edge architecture compliant ✗ ✗ ✗ ✗ ✗ ✓

SLA-compliant ✗ ✗ ✓ ✓ ✓ ✓

Minimizes deployment cost ✗ ✗ ✗ ✗ ✓ ✓
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In 2007, one of the first hybrid algorithms for a distributed deployment was proposed

by Jing et al. [73]. This algorithm combined rule-based fuzzy inference with machine

learning forecasting for dynamic resource allocation. The authors experimentally veri-

fied their algorithm through a prototype to demonstrate that it can reduce the resource

consumption on resource management systems compared to their default resource allo-

cation algorithms.

Based on this work, Lama and Zhou [74] proposed a resource provisioning algorithm for

multi-cluster set ups using a hybrid autoscaler. The autoscaler comprised of a combi-

nation of fixed fuzzy rule-based logic and a self adaptive algorithm which dynamically

tuned the scaling factor. The authors tested this algorithm on a simulation to demon-

strate performance benefits compared to existing approaches. This however was a limited

experiment, not comprising of tests on a production environment.

A hybrid approach for cloud computing architectures was proposed by Rampérez et

al. [75]. The algorithm which was called Forecasted Load Auto-scaling (FLAS), com-

bines a predictive model for forecasting time-series resources, while the reactive model

estimates other high-level metrics and delegates for the proactive model, reducing the

potential forecast error when encountering previously unseen workloads. The approach

was shown to demonstrate efficient resource allocation as compared to other state-of-

the-art solutions. FThe linear regression forecaster was however too simplistic to predict

complex time-series, leading to erroneous results.

Biswas et al. [76] presented a hybrid algorithm designed for cloud computing deployments

with service level agreements. The proactive algorithm involves a machine-learning based

approach using an SVM model, alongside the reactive algorithm to dynamically allocate

resources. The algorithm was experimentally shown to perform better than a pure

reactive or proactive solution in most cases. Such an SVM-based model is expensive to

train however, making it infeasible to deploy on edge deployments due to the resource

and latency constraints discussed above.

Finally, another cloud computing based autoscaler with SLA-constraints was proposed

by Singh et al. [77]. The robust hybrid autoscaler (RHAS) was designed particularly

for web applications. The reactive rule-based autoscaler deals with current workload

requirements, while the proactive model attempts to predict incoming resource work-

loads. The proactive forecaster uses a modification of the ARIMA machine learning
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model, known as the Technocrat ARIMA and SVR Model (TASM) [79]. The authors

tested their algorithm on two data-sets belonging to ClarkNet and NASA. The tech-

nique was demonstrated to both reduce cloud deployment cost and SLA violations while

giving consistent CPU utilization. However, the TASM forecaster was too complex

and resource intensive to be deployed on a scarce resource padadigm such as the edge

layer. This resource intensiveness increased the training times drastically too, making

it infeasible for conforming to SLA constraints on an edge architecture paradigm.

The above algorithm by Singh et al. [77] provided the best approach to be used when

creating a hybrid autoscaler. Therefore, while implementing the autoscaler presented

in this thesis, the generalized architecture of the RHAS deployment was further ex-

tended to streamline both the reactive and proactive autoscalers, while choosing a more

efficient and cost-effective forecasting model so as to make it SLA-compliant on edge

architectures, and eliminating the costly and time-consuming hyper-parameter tuning

process.



Chapter 4

Problem Formulation and

Autoscaler Design

Based on the overview of and challenges faced by edge computing paradigms in conform-

ing to SLA constraints, the stated research questions, and the related works discussed

above, a hybrid auto-scaling algorithm to answer these questions was proposed during

the course of this research project.

In this chapter, Section 4.1 will discuss and formulate the problem of auto-scaling re-

sources on the edge architecture in an SLA-compliant manner. Section 4.2 will then

detail the high-level overview of the proposed hybrid autoscaler, the objectives of the

various algorithm subsystems, the challenges it faces, and an analysis of the algorithm’s

space and time complexity.

4.1 Problem Overview

Edge architectures are split into three layers [80]. The cloud layer is similar to cloud-

computing paradigms, wherein it manages the entire network architecture and stores

large scale data. The edge layer consists of smaller scale user data storage and commu-

nication with user devices. Finally, the device layer consists of all the user devices that

will interact with the edge architecture.

30
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Figure 4.1: Autoscaling problem overview
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The cloud layer has the most amount of resources allocated to it, which it requires

when managing the entire network, computing the intensive processing of large-scale

data, and coordinating the resource allocation of the edge layer. However, the primary

drawback is the distance between the user and the cloud layer which results in significant

latency, making it unsuitable for serving real-time user requests. Thus only system-

critical applications such as the controller orchestration control plane are deployed on

this layer. The edge layer has far fewer resources than the cloud layer, but its proximity

to the users results in lower network latency, making it ideal for resource scaling. For this

reason, the edge layer consists of the orchestration tool’s worker nodes and the micro-

service which receives and serves user data. These worker nodes allocate resources to

the micro-service deployments dynamically according to user requirements through the

process known as auto-scaling.

Figure 4.1 shows the auto-scaling process. The users in the device layer send requests

and receive responses to the micro-service deployment in the edge layer. The time

taken to receive this response is considered to be the SLA latency metric negotiated

between the edge deployment provider and the customer. Using the number of requests

being received by the user layer, the edge layer micro-service autoscaler computes the

total resource requirements to serve the customer. Based on its findings, the edge layer

requests the container orchestration in the cloud layer to either downscale or upscale its

resources. The container orchestration then computes the required resource allocation

as well as the nodes on which to allocate them and sends its response back to the edge

layer.
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Table 4.1: Definition of Symbols

Symbol Definition
Sc(t) SLA constraint metric value at time t

∆ Max SLA metric threshold agreed by the cloud provider & customer
V Number of SLA violations for the chosen metric
Ct “Cold start” time taken to scale resource replicas

reqRT (t) Round trip latency of user request to edge layer
Kt Constant latency present between edge and device layers
U(t) Latency of deployment with unitary resource replica
D Total resources in micro-service deployment
pi Resource pod i of deployment D where i = {1, 2, ..N}
α Cost per unit resource for cloud provider
L Maximum allowed deployment cost assigned by the user

R(t) Time taken to scale replica resources

4.1.1 Problem Formulation

Cloud deployments provide several Quality of Service (QoS) metrics when considering

SLA negotiations [81]. These can be broadly classified into the following four categories:

• Performance: These are metrics such as the response time which computes the

total time taken for a user request to be processed, or the throughput, which shows

the cloud scalability.

• Availability: These include the abandon rate which shows the ratio of dropped

service requests to the total user requests, and the use rate which calculates the

amount of time a cloud service was used. Furthermore, certain performance metrics

such as response time exceeding their thresholds can be considered availability

metrics as well.

• Reliability: This includes metrics such as the mean failure time which calculates

the predicted time between service failures, and the mean recovery time which is

the average time it takes for the service to recover from said failure.

• Cost: This includes financial costs of deploying or using a cloud service, as well

as energy costs which compute the carbon footprint of running a cloud service.

For this research, we utilize the performance metric response time of the user requests

as the SLA constraint metric. This metric was chosen due to it being affected the most
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by intelligently auto-scaling cloud services. Reliability and cost metrics such as energy

do not correlate well to auto-scaling, while availability metrics such as abandon rate are

too vague in their reading, showing a binary value of the request either being dropped,

or processed. By using this metric, the cloud deployment guaranteed that all requests

would be served under a certain threshold.

For real-time applications, the auto-scaling should adhere to the SLA metric as much

as possible, and try to minimize the number of violations. An SLA constraint Sc(t) is

defined as a metric value not exceeding above a threshold ∆ agreed by both the cloud

provider and the customer.

Sc(t) > ∆ (4.1)

The threshold ∆ shown in Equation 4.1 varies from application to application. Hussain

et al. [82] provided a framework wherein multiple SLA thresholds were configured by

the cloud provider and customer, so as to apply them for a variety of use cases, and to

ensure differing responses based on the severity of the violation. For a response time

latency based metric, these thresholds can broadly be classified into three categories.

• Flexible: This is typically the highest allowed violation threshold for the appli-

cation. Flexible SLA metrics are used to gauge the availability of the deployment.

Most IoT applications employ this threshold.

• Moderate: This threshold is a trade-off between flexible and stricter SLA thresh-

olds. This threshold is used by applications to ensure a real-time capability such

as traffic light scheduling in railways.

• Strict: This is the lowest allowed violation threshold in the application. This

threshold is significantly challenging to maintain and is used by extremely time-

critical applications such as remote-controlled tools for medical surgeries.

The auto-scaling will thus use a resource metric to scale its resources up or down. The

autoscaler will check to see if the micro-service metric exceeds the threshold for a certain

time period, and if so, autoscale resources accordingly. A problem arises in the time it
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takes to scale these resources, however. This time to increase the number of resource

replicas R, which we define as the cold start time C(t) which can be defined as:

C(t) = Rdownload(t) +Rdeploy(t) +Rregister(t) (4.2)

Here, the cold start time C(t) is defined as the summation of the time taken for the replica

R to be downloaded, deployed on the data plane, and registered with the control plane for

scheduling and accepting user requests. The replica image is typically downloaded from

a public repository. This download time is usually a one-time delay due to optimizations

done on modern container orchestration software, and can be ignored for SLA latency

calculations. Using this information, we can reduce this equation to the following:

C(t) ≈ Rdeploy(t) +Rregister(t) (4.3)

Here, the time to deploy and register the replica to the container orchestration cloud

layer cannot be avoided. Furthermore, it can be shown that the number of SLA viola-

tions V ∝ C(t) due to the correlation between cold-start delay and the lack of available

resources [83].

Thus, when computing the SLA constraint value for a latency metric, the SLA latency

can be re-written as the sum of the cold-start time and the round-trip time taken for

the request.

Sc(t) = C(t) + reqRT (t) (4.4)

This round-trip time reqRT (t) is the combined sum of the inherent delay present in the

network layer latencyN/W (t), and the time taken for the edge application to process the

request processingapp(t).

reqRT (t) = 2× latencyN/W (t) + processingapp(t) (4.5)

The network delay can be reduced by investing in higher network bandwidths, but such

improvements have a maximum physical limit, which would not solve the cold start issue.
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Here we consider this latency to be a constant K(t). Furthermore, processingapp(t) is

inversely proportional to the available resources to the application D, since increasing

the number of resource replicas helps spread out the user request workload thus reducing

the chances of a bottleneck. Using this information, reqRT (t) can be approximated as:

reqRT (t) ≈ K(t) +
U(t)
D

(4.6)

Where U(t) is the maximum latency of a unitary resource deployment. For horizontal

pod auto-scaling, the resources here are the number of pods in deployment resources D

such that D = ∑
i pi, where i represents the current number of active pods. These pods

are the smallest unit of resource for auto-scaling purposes that process the user requests.

The final SLA equation can be re-written as follows:

Sc(t) = C(t) +
U(t)∑

i pi
+K(t) (4.7)

Thus, the primary aim of the autoscaler is to significantly reduce or even eliminate the

cold start, while also increasing the number of resources assigned to the deployment to

minimize the application latency. By doing so, the autoscaler aims to reduce the SLA

latency below the agreed threshold ∆ thus minimizing the number of SLA violations V.

From the above equation, it is clear that lim∑
i

pi→∞
U(t)∑

i pi
= 0.

Thus, the equation incentivizes ignoring intelligently auto-scaling altogether and simply

allocate the maximum number of pods to the deployment. However, there are drawbacks

to doing so.

Most cloud providers such as Amazon Web Services and Google Cloud Platform allocate

a cost for each resource assignment to the deployment. If the maximum number of pods

that can be deployed is N , the cost is calculated as follows.

cost = α×
∑

i

pi ; i ≤ N (4.8)



Problem Formulation and Autoscaler Design 36

Where α is the unitary resource cost which may vary depending on the cloud provider.

Thus, simply scaling all resources to the maximum amount may result in substantial and

infeasibly high deployment costs. Based on this additional information, the auto-scaling

SLA Equation 4.7 and the cost Equation 4.8 can be merged to form an optimization

problem P.

P = x× Sc(t) + y × cost (4.9)

The objective of the autoscaler is to assign resources in a way that minimizes both the

latency, as well as the cost, thus minimizing P. The parameters x and y dictate how

important cost and latency are relative to each other when considering auto-scaling. For

this research, we will configure these values as x = y = 0.5, implying both are equally

important. Furthermore, the customer will have a maximum “budget” L which the

deployment must not exceed. Maximizing the value of the resources in D while limiting

the cost below the threshold L to reduce the SLA constraint metric Sc below the agreed

threshold is akin to the famous Knapsack Problem [84]. This problem is proven to be

NP-Hard, and as such no known algorithm can determine the best value in polynomial

time as demonstrated by Kellerer et al. [85]. However, an approximation close to this

best value can be computed instead, and this can be done in polynomial time. Due

to this, most autoscalers rely on a reactive rule-based or proactive machine-learning

technique to compute such close approximations.

A problem however arises in the amount of resources it takes to train a proactive model.

Not only does the training process consume a significant amount of CPU and memory

resources, but it also requires a large time-series dataset. This dataset is necessary to

generate a sufficient number of training windows. Without enough training windows, the

model will produce erroneous results. While hybrid models help to mitigate the initial

errors via the reactive auto-scaling component, the questions regarding the proactive

model’s resource usage remain an open issue [86].

Another issue in a purely proactive autoscaler is the amount of time it takes to both

train the model, as well as generate the predictions. Torres et al. [87] have demonstrated

that time-series forecasters such as LSTM and ARIMA are known to typically have

incredibly complex deep neural networks with thousands of neurons in several layers.
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They demonstrated that even when running such a deep neural network on a cloud

architecture, with the aid of 6 cores of CPU and 16 GB of memory resources, and

additional parallelization through the use of modern graphical processing units (GPU),

this can result in the training process taking upwards of an hour. A large training

time makes it incredibly difficult to actively tune the hyper-parameters of the model

based on the perceived accuracy, as adapting these values too frequently would result

in several hours of training per day, during which the model is unable to predict new

values. Once again, a hybrid architecture is typically used to mitigate this issue, as

when the proactive model is training, the reactive autoscaler takes over. However, this

approach is not feasible for an SLA-constrained architecture, as the reactive component

is not SLA-compliant due to its inability to mitigate the cold start problem.

In most proactive autoscalers, the forecaster attempts to accurately model the time-

series curve to allocate resources effectively. Even in the hybrid algorithms that have

been proposed in Section 3.6, the proactive modules of the autoscalers are generally

unmodified proactive forecasters bundled together with a reactive component. This

strategy of attempting to perfectly forecast the curve is what takes such large amounts

of resources.

Hence, the autoscaler proposed in this thesis will not attempt to predict the exact re-

source workload. Instead, the time-series graph is heavily simplified using a noise filtering

method and then inputted to the machine learning model. Furthermore, the time-series

forecaster only attempts to predict the exact timestamp when resource requirements

start to increase. Every other requirement, such as the stable resource utilization, as

well as the drop-off in non-peak time periods can be handled by the reactive autoscaler,

thus heavily simplifying the forecaster architecture. This drastically reduces the fore-

caster training time to a few minutes. The simplified forecaster has the additional benefit

of not requiring incredibly lengthy amounts of time-series data to be stored for it to make

accurate predictions, thus this data can also be kept in the edge layer. This makes the

autoscaler extremely lightweight, responsive, and most importantly SLA-compliant, thus

making it capable of being deployed in an edge environment.
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Figure 4.2: Proposed hybrid architecture overview
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4.2 Proposed Hybrid Autoscaler

An overview of the hybrid autoscaler architecture is shown in Figure 4.2. The overall

architecture is formulated using a hierarchical model as described in Section 3.1. The

edge node consists of three main sections. The first is the reactive auto-scaling subsys-

tem, which has the resource provisioning module, and the configuration which dictates

the cooldown logic for scaling up and down. As Zhang et al. [55] demonstrated, the

micro-service system stability is directly related to the careful selection of cool-down

parameters. Thus, these must be available to the user in a configuration setting.

The second subsystem is the proactive autoscaler. From a high-level perspective, there

are three main components. The resource provisioning module is similar to that of the

reactive autoscaler, however, it also consists of a forecaster using a deep-learning-based

machine learning model, and a data pre-processing algorithm. The data pre-processing

algorithm removes any noise present in the time series data, and smoothens the data

curves, making it easier for the forecaster to make predictions in a low-cost manner. A

detailed implementation of the forecaster logic itself will be discussed in Section 5.3.3.
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Finally, the auto-scaling controller determines which auto-scaling logic will be applied

to the replicas, and also keeps track of any SLA violations. It also hosts the time-series

metric data and has a feedback loop with the proactive autoscaler. If it detects any

SLA violations were caused after auto-scaling during a configured time window, it au-

tomatically adjusts the hyper-parameters of the proactive forecaster in an attempt to

predict from the time-series data more accurately during the next training iteration.

Correspondingly, a lack of SLA violations during a specific time window period reverts

the autoscaler parameters back to the original values, in an attempt to streamline the

training process further. Such a heuristic method allows for the freeing up of the com-

plex hyper-parameter tuning process seen in most proactive models from the autoscaler

deployment process. This is a key part of the architecture which is essential in answering

the research questions outlined in the thesis.

4.2.1 Autoscaler Subsystems

At a high level, a container orchestration’s default horizontal pod autoscaler operates

on the ratio between the current and desired metric values, which can be written as:

replicasdesired = ⌈replicascurrent ×
metriccurrent

metricdesired
⌉ (4.10)

For example, for a given deployment with a current replica count as 1, if the desired

metric value is 50 resource units, and the current value is 100, then the number of desired

replicas will be ⌈1 ×
100
50 ⌉ = 2. There are three other important parameters that are

key to controlling the process of horizontal pod scaling, namely “tolerance”, “scale up

cooldown”, and “scaledown cooldown”.

The tolerance is a constant which informs the autoscaler when to skip calculating new

replicas. The tolerance ratio can be calculated as:

tolerance =

∣∣∣∣∣∣∣
metricdesired −metriccurrent

metricdesired

∣∣∣∣∣∣∣ (4.11)
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For example, if the current metric is 60, and the desired metric is 50, the tolerance is

calculated as tolerance =

∣∣∣∣∣∣∣
60− 50

60

∣∣∣∣∣∣∣ = 0.167. By default, if the tolerance value is below

0.1, autoscaling is skipped for that control loop, however, this can be configured by the

user.

The scale-up and scale-down cooldowns control how quickly auto-scaling occurs. The

default approach which is set by the container orchestration can be concisely stated as

“Scale up as quickly as possible, while scaling down very gradually.” Therefore, the

default scale-up cooldown is set to 0 seconds, meaning that the moment the desired

replica value increases, the autoscaling will be initiated. However, the default cooldown

is set to 300 seconds, meaning that if the desired replica value is decreased, it must

remain decreased for 300 seconds (or 20 control loops) before the resources are scaled

down.

A cooldown value that is too low would cause a repetitive scaling up and scaling down of

the resources, leading to significant stress on the system as well as wastage of resources.

Meanwhile, a large value would render the autoscaler unable to assign resources quickly

enough to ensure SLA latency compliance. Thus, for the proposed autoscaler, the de-

fault values are modified to ensure that a moderate cooldown value was chosen to ensure

the best system stability and SLA compliance. This cooldown configuration would be

applied to both the proactive and reactive auto-scaling subsystems to maintain consis-

tency.

For auto-scaling proactively, a custom metric metricforecast is used, which defines the

future CPU workload expected to be exerted on the micro-service application T seconds

in the future, where T can be configured during the autoscaler deployment process.

This metricforecast value will be sent to the auto-scaling controller by the proactive

autoscaler.

4.2.1.1 Scheduler

The autoscaler controller consists of a scheduling logic module which handles when

to switch between proactive and reactive auto-scaling. Algorithm 1 explains how the

hybrid scheduling logic determines which auto-scaling subsystem to employ. The hybrid
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scheduler takes four inputs, namely the replicascurrent, metriccurrent, metricdesired, and

metricforecast variables discussed above. It outputs one value, the replicasdesired.

The autoscaler computes two replica values, one for the proactive forecaster which de-

termines the replicas after T seconds, and one for the reactive forecaster, which de-

termines the current resource requirements. By computing the future requirements

replicasforecast using Equation 4.10, if it is found that this requirement is higher than

the current resource requirement replicascurrent, then the hybrid scheduler outputs the

forecaster replica count as the desired replicas. Otherwise, the hybrid scheduler deter-

mines that the utilization is either stabilizing or about to decline. Due to this, it makes

a decision that the reactive replica count replicasreactive is the desired number. The

hybrid scheduler then sends this value to the container orchestration controller plane

to autoscale the replicas accordingly using either the reactive or proactive sub-system’s

resource provisioning modules.

Algorithm 1 Scheduler algorithm
Input: replicascurrent, metriccurrent, metricdesired, metricforecast

Output: replicasdesired

replicasforecast ← ⌈replicascurrent ×
metricforecast

metricdesired
⌉

replicasreactive ← ⌈replicascurrent ×
metriccurrent

metricdesired
⌉

if replicasforecast > replicasreactive then
replicasdesired ← replicasforecast

else
replicasdesired ← replicasreactive

end if
return replicasdesired

4.2.1.2 Reactive Resource Provisioning

The reactive autoscaler subsystem is responsible for determining whether or not auto-

scaling should proceed based on the given configuration. The reactive algorithm’s re-

source provisioning is built on top of the default horizontal pod autoscaler deployed by

the Kubernetes container orchestration platform. The autoscaler is modified in such a

way that it has its cooldown parameters set to a moderate value to ensure adaptability

to SLA-constrained scenarios, while also maintaining system stability. The workflow is

shown below in Algorithm 2. The algorithm takes the current metric value as an input,

as well as the desired metric value, and outputs the decision to autoscale or not. It does
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this by computing the tolerance value as shown in Equation 4.11. If this tolerance is

above the configured threshold, the autoscaler will modify the replicas, otherwise, it will

ignore the current auto-scaling request.

Algorithm 2 Reactive resource provisioning
Input: metriccurrent, metricdesired

Output: autoscale

tolerance←
∣∣∣∣∣metricdesired −metriccurrent

metricdesired

∣∣∣∣∣
if tolerance > γ then

autoscale← Y es
else

autoscale← No
end if
return autoscale

4.2.1.3 Data Pre-Processor

Figure 4.3: Pre-processing of data, source: [88]

To speed up the forecast process even further and reduce the resource and time require-

ments, the time-series data can be pre-processed to smoothen it. Doing so makes it

easier for the deep learning model to extract patterns, and reduces the training and

validation loss. Figure 4.3 shows a graph containing raw input (shown in black), and a

smoothened data curve (shown in red). While the red curve contains all the requisite

information of the data (such as the slope of the curve, maximum and minimum value,

etc.), it removes the noise, reducing the overall loss, and reducing the length of the

training window data sequence the LSTM requires to accurately predict future data.
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4.2.1.4 Proactive Forecaster

The forecaster portion of the autoscaler is used to generate this metricforecast value.

The autoscaler controller periodically scrapes the windowed data stored in the cloud

database to keep a form of cached time-series workload. It combines this workload with

the future workload metricforecast. To do so, the controller requests the metricforecast

value for a specified time T from the proactive forecaster, and the forecaster then sends

this value back after pre-processing the scraped data and training the forecaster model.

Several time series forecaster algorithms exist, with the two prominent ones being the

more modern deep learning algorithm LSTM, and the traditional deep learning algo-

rithm ARIMA. Siami-Namini et al. [89] demonstrated that LSTM implementations out-

performed ARIMA, reducing error rates by over 80%. Furthermore, they were able to

demonstrate that the number of deep learning “epochs”, or the total amount of train-

ing time required for LSTM did not need to be set to a high value. In fact, setting

a significantly higher value than required was shown to degrade performance due to

over-fitting. The authors posited that LSTM worked so well due to the “rolling up-

dates” being performed on the model. The LSTM weights are only set once when the

forecaster is deployed, after which they are always updated on every call of the training

algorithm, meaning there is a continuous improvement to the prediction results.

Based on the investigations above, it was determined that LSTM time-series forecasters

would be ideally suited for a proactive autoscaler designed for the hybrid autoscaler

architecture. Algorithm 3 shows the implementation of such a forecaster. The autoscaler

controller implements a control loop every P seconds, where it requests the latest time-

series metric prediction from the forecaster. As input, the algorithm takes the variable

lookback, which is the number of data points it should use as a window to train, the

training iteration count epochs, and the learning_rate, which determines the step size

per each training iteration moving towards the minimum loss value. The forecaster

then pre-processes this data to remove the noise as shown above in Section 4.2.1.3, and

performs a training iteration using the configured hyper-parameters. It then computes

the validation loss, and accepts this model as the most accurate one if it has a lower

validation loss than the previous training iterations. Otherwise, the current model is

rejected and the forecaster uses the older model instead. Finally, the model predicts the
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future metric and returns it to the autoscaler controller for determining the auto-scaling

based on Algorithm 1.

Algorithm 3 Proactive forecaster
Input: lookback ≥ 0, 0 ≤ epochs ≤ 100, 0 ≤ learning_rate ≤ 1
Output: metricforecast

lstm_model← lstm.initialize()
time_series← get_latest_data()
lstm_input← get_input(time_series_data, lookback)
lstm_input← preprocess_data(lstm_input)
new_model← train(lstm_input, epochs, learning_rate)
if validation_loss(new_model) < validation_loss(lstm_model) then

lstm_model← new_model
end if
metricforecast ← lstm_model.predict(lstm_input)
return metricforecast

4.2.1.5 Proactive Resource Provisioning

The proactive subsystem’s resource provisioning module works in a similar manner to

the reactive autoscaler. If the autoscaler controller’s scheduling logic determines that

a proactive auto-scaling must take place, it requests the cloud layer to proceed with

auto-scaling using the proactive subsystem’s resource provisioning, which is shown in

Algorithm 4. The algorithm takes the desired and forecast metric values as input and

outputs the decision to autoscale or not. It does this by computing the tolerance value

as shown in Equation 4.11. If this tolerance is above the configured threshold, the

autoscaler will modify the replicas, otherwise, it will ignore the current auto-scaling

request.

Algorithm 4 Proactive resource provisioning
Input: metricforecast, metricdesired

Output: autoscale

tolerance←
∣∣∣∣∣metricdesired −metricforecast

metricdesired

∣∣∣∣∣
if tolerance > γ then

autoscale← Y es
else

autoscale← No
end if
return autoscale
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4.2.1.6 SLA Heuristic Feedback

Finally, the last hybrid autoscaler module is the autoscaler controller’s SLA-based heuris-

tic feedback loop, which assists the proactive forecaster in increasing its prediction accu-

racy. The autoscaler constantly checks for SLA violations in the edge deployment using a

control loop. Typically, the SLA checks are done for a sufficiently lengthy period of time

such as one day. If an SLA violation is found, it is concluded that the application was

unable to autoscale quickly enough to avoid the cold start problem. This could be due

to a number of causes, such as insufficient training data, or the LSTM hyper-parameters

being too conservative. To temporarily boost learning, the controller then decreases the

learning rate to increase the probability of the model escaping from the local minima to

find the global one, increases the batch size to reduce under-fitting, and increases the

number of epochs to reduce loss. All these parameters have a threshold, as increasing or

decreasing certain parameters by a large amount may lead to issues such as over-fitting

or infeasibly lengthy training times.

Algorithm 5 SLA-based heuristic feedback
Input: V, learning_rate, batch_size, epochs
Output: hyperparametersmodified

initial_rate← learning_rate
initial_batch← batch_size
initial_epochs← epochs
if V > 0 then

batch_size←MAX(batch_size + α,A)
learning_rate←MIN(learning_rate− β,B)
epochs←MIN(epochs− λ,L)

else
epochs← initial_epochs
learning_rate← initial_rate
batch_size← initial_batch

end if
hyperparametersmodified ← (learning_rate, batch_size, epochs)
return hyperparametersmodified

Finally, if the feedback control loop discovers that no SLA-violations occurred dur-

ing the time-period, it concludes that the LSTM has sufficiently learned the primary

characteristics of the time-series. As discussed by Siami-Namini et al. [89], the “rolling-

updates” feature of LSTM allows the autoscaler to safely reset the hyper-parameters of

the model, while preserving the learning and weights of the previous rounds of training.

Algorithm 5 shows how the heuristic feedback is set up. The algorithm takes the three
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hyper-parameters of the LSTM, namely learning_rate, batch_size, and epochs, along

with the V which stores the number of SLA violations that occurred during a specified

time window. Using these parameters, the algorithm computes the new LSTM hyper-

parameters and outputs them to the proactive forecaster to use in the next training

cycle.

4.2.2 Computational Complexity Analysis

To analyze the space and time complexity of the auto-scaling architecture, some simpli-

fying assumptions must be made. Firstly, the complexities will be for one control loop

of the container orchestration platform. By default, controller orchestration platforms

have control loops which are executed every 15 seconds. During each of these loops,

auto-scaling is assessed and implemented. Thus we will ignore the complexities involved

in the control loop itself, and focus only on the autoscaler.

Secondly, for the proactive forecaster, the complexities of the LSTM are simplified to

the basic multiplicative steps involved in the training step. Other internal logic such as

the σ function is assumed to have O(1) space and time complexity.

Finally, assuming the hybrid autoscaler H takes a time-series data of length N , it stores

this data in an array data structure. The rest of the inputs can be considered as single

variables. The forecaster’s LSTM weights are assumed to be a two-dimensional matrix

of size A× B. Thus the space complexity can be easily computed for this information.

The variables each have a space complexity of O(1). Meanwhile, the time-series array

has a complexity of O(N), and the weights are of complexity O(N2). Thus, the space

complexity can be written as the sum of the two values and simplified.

Complexityspace(H) = O(N2) +O(N) +O(1)

⇒ Complexityspace(H) = O(N2) (4.12)

The time complexity is a more complex calculation. The complexities of the reactive

autoscaler, proactive autoscaler, and autoscaler controller need to be computed. The
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autoscaler controller only stores the time-series array and computes the new hyper-

parameters in Algorithm 5. Both of these operations can be completed in constant

time, thus the time complexity for the controller is as follows:

Complexitytime(controller) = O(1) (4.13)

Similarly, the reactive autoscaler only computes the tolerance value, which is also a

constant operation independent of data size, thus the time complexity can be written

as:

Complexitytime(reactive) = O(1) (4.14)

For the proactive autoscaler, the forecaster internally computes matrix multiplications,

such as of the various LSTM weights and vectors. For example, Equation 2.7 can be

rewritten as follows.

it = σ(Wi(x) · xt + Wi(h) · ht−1 + bi) (4.15)

In the above equation, we assume the dimension of the variables as follows:

• Wi(x) ∈ Rm×n

• xt ∈ Rn

• Wi(h) ∈ Rm×m

• bi ∈ Rm

• ht−1 ∈ Rm

Using these values, the time complexity of each of the individual multiplicative and

additive operations can be computed.

Complexitytime(Wi(x) · xt) = O(mn)
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Complexitytime(Wi(h) · ht−1) = O(m2)

Complexitytime(Wi · [xt, ht−1] + bi) = O(mn + m2 + m) (4.16)

Therefore the complexity of the proactive component can be written as:

Complexitytime(proactive) = O(mn + m2 + m)

⇒ Complexitytime(proactive) = O(m× (m + n + 1))

⇒ Complexitytime(proactive) = O(N2) (4.17)

This is the value of one training epoch. For an LSTM training process with τ training

epochs, the complexity becomes O(τN2). However, it is important to note that the

value of τ is a constant, thus the final proactive complexity can be reduced back to

O(N2).

Combining the time complexities of all three hybrid components, the final complexity

for the hybrid autoscaler H can be re-written as:

Complexitytime(H) = O(1) +O(1) +O(N2)

⇒ Complexitytime(H) = O(N2) (4.18)

From the results in Equation 4.18, it is clear that the hybrid algorithm performs ex-

tremely well in a polynomial time complexity. Even though it is shown that no math-

ematically certain decision can be computed in a polynomial time due to the NP-Hard

nature of the problem statement, the hybrid algorithm is proven to provide an alter-

native that is able to approximate a high accuracy auto-scaling decision in polynomial

time.



Chapter 5

System Implementation

Based on the previous high-level overview of the architectures and algorithms involved,

in this chapter we will first discuss the micro-service application architecture used to

test the auto-scaling on, along with its features in Section 5.1. With this background,

Section 5.2 will give an explanation of the workload generator bundled along with the

micro-service deployment, and how that was used to generate the time-series workload

typically seen in edge deployments. Finally, we will discuss the technical configurations of

the hybrid autoscaler itself in Section 5.3. This will involve how the workload information

is communicated between cloud and edge layers, how the autoscaler parameters for both

reactive and proactive subsystems are configured, and how the forecaster is configured

to use the time-series data to generate forecast values for a sufficiently large time-period

to minimize training times even further. Finally, the hyper-parameter tuning configured

by the autoscaler controller will be further elaborated.

5.1 Micro-service Overview

The container orchestration used for deploying the micro-service deployment, custom

hybrid autoscaler, as well as all the additional telemtry tools was Kubernetes. Ku-

bernetes offered the highest configurability for such a project, and combined with its

ease-of-use, made it ideal for stress testing auto-scaling. DeathStarBench 1, a social

network micro-service implementation developed by Y. Gan et al. [90] was purpose-built
1https://github.com/delimitrou/DeathStarBench/tree/master/socialNetwork
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for conducting benchmarks on edge architectures with constraints such as SLA agree-

ments, and was thus deployed on the Kubernetes platform. The application mimics

a typical large-scale social network application and supports common actions such as

registering and login for user credentials, creating user posts on their timeline, reading

other user timelines, receiving follower recommendations, following and unfollowing of

other users, and searching for users or posts. Figure 5.1 shows the detailed architecture

of the micro-service.

Figure 5.1: Social-Network architecture, source: [90]

The end-to-end service implementation depicts a social network with a broadcast style

approach. The user or client sends requests using HTTP to the front-end layer. These

requests are processed using NGINX 2, which is an open-source load balancer implemen-

tation. NGINX then specifies the web server that has been selected, and communicates

with the micro-services in the logic layer, which are responsible for composing and dis-

playing the user and timeline posts. The logic layer also consists of micro-services for

serving advertisements, search engines, and other capabilities commonly found in large

scale applications. The search and advertisement engines are machine learning plugins

capable of serving recommendations based on user interactions. The logic layer is ca-

pable of handling posts containing text, links, and media. Users can also mark other

user’s posts as favourites, re-post them, and reply to them privately or publicly. Users

can also follow, unfollow, or block others. All these interaction results are stored in the

storage layer, which uses memcached for caching results, and MongoDB for storing user

profiles, posts, media, and recommendations in a persistent manner.
2https://nginx.org/en/

https://nginx.org/en/
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Users can sign in to the application website by connecting to the user interface deploy-

ment, which can be assigned a DNS address. For simplicity, in this experiment the DNS

configuration was skipped in favour of exposing the Kubernetes cluster IP address of

the front-end deployment, along with the social media application port. For example,

an API request for reading user timelines will look as follows:

http://<app-IP>:<app-port>/wrk2-api/user-timeline/read

5.2 Data Generation

The social media deployment also comes with an HTTP workload generator, which was

leveraged to create a realistic simulation of a typical day of workload for the micro-

service application. The generator, known as wrk2, is an open-loop load generator.

HTTP requests are sent out according to the user configuration, regardless of whether

or not the responses of the previous requests have been received. This avoids issues

such as queuing delays in the server, helping to maintain an even load throughout the

generation process which aids in benchmark process. The workload generator supports

a variety of load generation use-cases, as well as different APIs. For example, a POST

request with a total load generation of 8 requests per second, using 2 parallel threads,

with 5 open HTTP connections, and for a duration of 30 seconds looks as follows:

$ wrk2 -t2 -c5 -d30 -R8 http://<app-IP>:<app-port>/wrk2-api/post/compose

A typical IoT application in the edge has a semi-predictable workload pattern. What

this means is that while the exact workloads may vary from day to day, the overall

pattern of when the workloads peak and drop mostly remain constant from day to day.

Tadakamalla and Menascé [91] demonstrated this through a survey of three popular

IoT datasets. Their results demonstrated that IoT application workloads can be well

approximated using a lognormal distribution. Furthermore, the authors also observed

that the daily routines of the users greatly affected the workload patterns in the dataset.

This information is used to inform our own workload generation, to inject predictable

patterns in the hourly data.

In this experiment, it is assumed that the workload peaks in the morning and evening,

while seeing moderate usage during the afternoon. The workload is lowest at night,
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Figure 5.2: IoT data characteristics, source: [91]

maintaining a low usage throughout. The workload simulator was modified to intro-

duce an element of randomness to mimic realistic weekly workloads, which can vary on

occasions such as weekends and public holidays.

To achieve this, an IoT workload algorithm was created for leveraging the wrk2 generator

to achieve this time-series. This is explained in Algorithm 6. A constant light workload

is set for night time consisting of six hours between 12:00am and 06:00 am, while different

workloads for the rest of the 18 hours of the day are manually set, with peaks set in the

morning and evening, and dips in the afternoon. The algorithm also contains a small

random “offset” variable to depict the randomness inherent in the workload. This is

depicted using the function F , where F(0, 1) returns a random number between 0 and

1. This workload is then executed using the wrk2 generator to apply the HTTP load on

the micro-service.

Algorithm 6 IoT daily workload generation
Input: offset, night_workload, day_workload
Output: workload

for ηi ← night_workload do
workload← generate(ηi + F(−offset, offset)

end for
for δi ← day_workload do

workload← generate(δi + F(−offset, offset)
end for
return workload
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5.3 Hybrid Autoscaler Configuration

With the Kubernetes container orchestration now installed on the servers, and the micro-

service social network deployment set up on the orchestration platform, the hybrid au-

toscaler could be configured on the orchestration tool to read data from both Kubernetes

and the micro-service to scale resources.

The default Kubernetes autoscaler has built-in API services to communicate with the

micro-service deployments, along with any other telemetry deployed on the platform.

These include built-in default metrics such as CPU and memory usages of the deploy-

ment. However, the proposed hybrid autoscaler must have these services custom de-

ployed. Furthermore, to keep a track of custom metrics such as the SLA latency of

various micro-service deployment modules, these metrics need to be extracted from the

social-network in a time-series compliant manner. Thus, before describing the autoscaler

configuration, a brief explanation of how the micro-service metrics are exported to Ku-

bernetes in a manner in which they can be consumed by all other systems is discussed.

Once that is explained, and the deployment is shown, the technical configurations, along

with code-snippets of the various autoscaler subsystems can be laid out and discussed

thoroughly.

5.3.1 Exporting Custom Metrics to Kubernetes

The social media application comes bundled with a deployment known as Jaeger 3.

Jaeger is an open-source distributed tracing platform, capable of tracking several appli-

cation metrics of each network request and per-micro-service request. It then stores these

metrics in a centralized database. One such metric which is critical for the functioning

of the autoscaler is the details of API latency for the application. The latency informa-

tion is extremely detailed, and is broken down per each component in the social media

architecture layers as defined by Figure 5.1. Alongside the latency breakdown, Jaeger

can automatically generate graphs of the various components which are utilized to serve

the API requests. This is particularly useful for identifying deployment bottlenecks in

the architecture which are prime targets for auto-scaling.
3https://www.jaegertracing.io/

https://www.jaegertracing.io/
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Before this latency information can be useful in the auto-scaling solution, it must be

imported to Kubernetes in a readable format. This was achieved through the use of a

tool called Prometheus. Prometheus 4 is an open-source deployment used for monitoring

micro-services and their applications. Prometheus consists of a multi-dimensional data

model for storing time-series data through the use of key/value pairs, a custom built

querying language known as PromQL which is used to leverage and search through

this data model, and a graphing and dashboard user interface to aid in visualization.

Prometheus allows for complex queries to be run on the real-time data, however due to

the resource intensive nature of the deployment, Prometheus must be deployed on the

cloud layer. That is the approach this experiment took, and Prometheus acted as the

central database from which the autoscaler controller would periodically scrape social

network metric data from for use by the auto-scaling components.

Listing 5.1: Jaeger-Scraper implementation to retrieve jaeger metrics
1 const avg_counter = new Gauge ({
2 name: 'avg_latency ',
3 help: 'Jaeger average post API latency (ms)'
4 });
5
6 get ('/ metrics ', async (req , res) => {
7 let url = process .env. JAEGER_URL ;
8 const data = await axios.get(url );
9 let avg_duration = 0;

10
11 let durations = data.map( components => {
12 let duration = components . duration ;
13 return duration ;
14 });
15
16 avg_duration = durations . reduce ( (a,b) => a+b ) / durations . length ;
17 avg_counter .set( avg_duration );
18
19 result .set('Content -Type ', avg_counter );
20 });

To facilitate the export of Jaeger metrics to Prometheus, a custom deployment was

created which scrapes these metrics at periodic and frequent time intervals, and pushes

it to Prometheus. The deployment, which was named Jaeger-Scraper, was a JavaScript

express server set up on Kubernetes using Docker, and the server code was implemented
4https://prometheus.io/docs/introduction/overview/

https://prometheus.io/docs/introduction/overview/
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as shown in Listing 5.1. The server uses the open source NPM library prom-client5 to

create a Prometheus Gauge. A gauge is an extension of the Prometheus metric counter,

the primary difference being that it can be both increased or decreased, whereas the

counter can only be incremented. When Kubernetes requests metric data from the

Jaeger-Scraper API endpoint, the scraper gets the latest Jaeger metrics within a fixed

window in milliseconds (ms), and calculates the average latency of the time period. This

value is then ready to be pushed to the Prometheus database.

Once this server is deployed on the Kubernetes cloud layer, a service-monitor tool for

Prometheus is written, which tells Kubernetes to invoke the GET request to the API

this server exposes at a set interval of time. It is through this API call that the latency

value gets pushed to the Prometheus database. By default, the service-monitor calls

the /metrics endpoint, which is what the Jaeger-Scraper is configured with. For this

thesis, this interval was set at 15 seconds, and the configuration is shown in Listing 5.2.

Listing 5.2: Jaeger-Scraper service monitor for Prometheus
1 apiVersion : monitoring . coreos .com/v1
2 kind: ServiceMonitor
3 metadata :
4 labels :
5 app: jaeger - scraper
6 name: jaeger -scraper -svc - monitor
7 spec:
8 endpoints :
9 - interval : 15s

10 port: http
11 selector :
12 matchLabels :
13 app: jaeger - scraper

With the service-monitor deployed, the scraped values were now visible when querying

the metrics endpoint, and Listing 5.3 below shows an example of how the metrics were

displayed. In a similar manner, these metrics could easily be queried on the Prometheus

user interface using PromQL. However, while the latency metrics were now present in

Prometheus, the next step was to import these metrics to the Kubernetes custom metrics

server.
5https://github.com/siimon/prom-client

https://github.com/siimon/prom-client
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Listing 5.3: Jaeger-Scraper metrics collector example
1 $ curl $( kubectl get service jaeger - scraper --template \
2 '{{. spec. clusterIP }} '):8081/ metrics
3 # HELP avg_latency Jaeger average post API latency (ms)
4 # TYPE avg_latency gauge
5 avg_latency 42.0

As mentioned above, the Kubernetes autoscaler is able to scale resources based on CPU

and memory utilization. However, for more complex use-cases, more metrics need to

be taken into account to make such decisions. To aid in this process, the Prometheus

Adapter 6 was created to leverage the metrics collected and stored by the Prometheus

deployment, and feed them to Kubernetes. These metrics were exposed via an API

service and were consumed by the hybrid autoscaler for decision making.

Listing 5.4: Prometheus adapter configmap for avg_latency metric
1 apiVersion : v1
2 kind: ConfigMap
3 metadata :
4 name: custom -metrics -prometheus - adapter
5 data:
6 config .yaml: |
7 rules:
8 - seriesQuery : avg_latency { namespace !=""}
9 resources :

10 template : <<.Resource >>
11 name:
12 as: ${1}
13 matches : ^(.*)
14 metricsQuery : <<.Series >>

The prometheus adapter requires a configuration map (ConfigMap) to translate Prometheus

metrics to Kubernetes custom metrics. The adapter does so in four steps.

• Discovery: The adapter discovers the metrics available in Prometheus.

• Association: It then figures out the association between each metric and Kuber-

netes resource.
6https://github.com/kubernetes-sigs/prometheus-adapter

https://github.com/kubernetes-sigs/prometheus-adapter
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• Naming: A name is then assigned to these resources through which the custom

metrics API can expose them.

• Querying: Finally, the Prometheus deployment is queried to get the actual metric

values.

The hybrid autoscaler requires the default CPU metric, as well as the custom latency

metric. Thus we define this additional metric for configuring in Kubernetes. Listing 5.4

shows the discovery, association, naming, and querying steps to extract the average API

latency. In the code snippet, the seriesQuery corresponds to discovery, resources to

association, name to naming, and metricsQuery to querying.

Now, the Kubernetes custom metrics API exposes the following additional APIs under

the resources pods, services and namespaces as shown in Listing 5.5. Alongside this,

querying individual metrics gives resource values which will be used for autoscaling

purposes.

5.3.2 Reactive Autoscaler

With the custom metrics now being exposed by Kubernetes, all the tools required for

the reactive auto-scaling subsystem were in place. This would be built as an extension

of the default Kubernetes horizontal pod autoscaler.

As discussed in Section 4.2.1, the reactive autoscaler cool-down parameters must be

set to a value that is not too small or large. For this experiment, the parameters of

the autoscaler were modified by setting both the scale up and scale down cooldown

values to 15 seconds (equivalent to one control loop for the autoscaler controller), and

maintain the toleration value at the default of 0.1. This means that if the controller

sees that the autoscaler is requesting resource scaling for two consecutive control loops,

it will proceed with the auto-scaling procedure. This ensures that reactive auto-scaling

occurs as quickly as possible, to minimize SLA violations, while decreasing the chances

of resources constantly being scaled up and down in an oscillating manner [92], which

leads to unavailability of resources and drives up resource costs. Listing 5.6 shows the

configuration snippet of the reactive autoscaler provisioning tool to achieve this.
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Listing 5.5: Custom metrics API example
1 $ kubectl get --raw /apis/ custom . metrics .k8s.io/ v1beta1 | jq .
2 {
3 " groupVersion ": " custom . metrics .k8s.io/ v1beta1 ",
4 " resources ": [
5 {
6 "name ": " services / avg_latency ",
7 ...
8 },
9 {

10 "name ": "pods/ avg_latency ",
11 ...
12 },
13 {
14 "name ": " namespaces / avg_latency ",
15 ...
16 }
17 ]
18 }
19 $ kubectl get --raw \
20 /apis/ custom . metrics .k8s.io/ v1beta1 / namespaces / default \
21 / services /*/ avg_latency | jq .
22 {
23 "kind ": " MetricValueList ",
24 " apiVersion ": " custom . metrics .k8s.io/ v1beta1 ",
25 "items ": [
26 {
27 " metricName ": " avg_latency ",
28 "value ": "42.0"
29 ...
30 }
31 ]
32 }

While these parameters are configurable by other users, experimental results showed

that for SLA-compliant applications, these parameters were capable of producing the

best results for a wide array of use-cases. Higher cooldown windows lead to SLA-

violations due to the time taken to scale resources, while smaller windows caused the

constant scaling up and down of resources on small variations, leading to a loss of

resource availability and increased deployment costs for the entire architecture.



System Implementation 59

Listing 5.6: Reactive autoscaler cooldown configuration
1 spec:
2 behavior :
3 scaleDown :
4 policies :
5 - periodSeconds : 15
6 type: Pods
7 stabilizationWindowSeconds : 15
8 scaleUp :
9 policies :

10 - periodSeconds : 15
11 type: Pods
12 stabilizationWindowSeconds : 15

5.3.3 Proactive Autoscaler

The proactive autoscaler resource provisioning subsystem has a Kubernetes configuration

that is similar to the reactive one shown in Listing 5.6. The same cooldown values of 15

seconds are applied here as well, to keep it consistent with the reactive solution.

The proactive Algorithm 3 was deployed on Kubernetes using the same method as the

Jaeger-Scraper, and was accessible in the edge network by invoking a GET request to

the API. However, to capture the metricforecast value returned by the forecaster in the

custom API, the Prometheus Adapter configuration map required to be modified to

append the value, as shown in Listing 5.7. In this experiment, the metricforecast value

was represented by the variable forecasted_cpu. With this addition, the proactive

autoscaler was able to receive predicted CPU workloads.

Listing 5.7: Prometheus adapter configmap for forecasted_cpu metric
1 - metricsQuery : <<.Series >>
2 name:
3 as: ${1}
4 matches : ^(.*)
5 resources :
6 template : <<.Resource >>
7 seriesQuery : forecasted_cpu { namespace !=""}

The proactive forecaster was a deep-learning machine learning model configured with a

multi step forecast output as discussed in Section 2.4.2. The model consisted of three
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Table 5.1: Overview of proactive forecaster layers.

Layer Details Output Shape Parameter Count
LSTM1 (10, 50) 10400

Dropout1 (10, 50) 0
LSTM2 (10, 50) 20200

Dropout2 (10, 50) 0
LSTM3 (50) 20200

Dropout3 (50) 0
Dense1 (540) 27540

LSTM layers, alternated with two dropout layers. These dropout layers were used to

prevent over-fitting of data during the training process. Finally, the last layer was a

densely connected neural-network which generated the forecaster output in the required

shape. For this experiment, the output was 540 data points, which was approximately

the amount of data required to forecast 24 hours of workload. By doing so, the forecaster

only needed to be run once a day, vastly reducing total training time. This was only

possible due to the data pre-processing done before training. Table 5.1 shows the detailed

information about the forecaster model layers.

The step-by-step forecast procedure was done as follows. The data which was generated

by the workload Algorithm 6 and stored in Prometheus was periodically queried and

stored by the autoscaler controller. An example of how this data may look over a period

of four days is shown in Figure 5.3.

Figure 5.3: Example of generated historical workload
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This data has two major peaks during the morning and evening, with one smaller peak in

the afternoon. The night time workload is consistently minimal. Due to the randomness

included in the algorithm, each of the peaks are never the exact same, which helps mimic
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Table 5.2: Proactive forecaster hyper-parameter values.

Hyper-parameter Value
learning_rate 0.005

epochs 75
batch_size 100
optimizer Adam

the real data an edge architecture would experience. However, this data has several

abrupt changes every few minutes, for example the utilization could be 100% at 5:00pm,

then suddenly drop down to 75% at 5:10pm, before coming back up to 110% at 5:20pm.

These abrupt changes makes it difficult for the LSTM to be able to accurately predict

the future workloads, and requires a much larger input window sequence to reduce model

loss, which can significantly drive up training times to an unfeasible amount.

To get around this issue, the proactive autoscaler introduced a data pre-processing

component. This involved the use of noise reduction and data smoothing algorithm.

This was done through a popular algorithm known as the Savitzky-Golay filter [93].

This filter takes N points in a given time-series, with a filter width w, and calculates

a polynomial average of order o [94]. The resulting time-series data which can be seen

in Figure 5.4 has considerably less deviations between consecutive points, and devoid of

noise.

Figure 5.4: Example of pre-processed historical workload
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The filtered data was then normalized to further remove the impact of scale between

different applications, which helps generalize the autoscaler. The data was then ready to

be used to train the model. Alongside the architecture configured in Table 5.1, the LSTM

model contained the following default hyper-parameter values depicted in Table 5.2.
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It was experimentally discovered that a learning rate higher than the configured value

reduced the prediction accuracy drastically, as the model was unable to find the optimal

loss value during training, becoming stuck in a local minima. Furthermore, attempting

to alleviate this issue by increasing training epochs to over 200 resulted in severe over-

fitting, devaluing the algorithm for generalized workloads. Thus the hyper-parameters

were chosen in such a way that they minimized training time and over-fitting, while

maximizing prediction accuracy within the constraints of limited edge layer resources. To

further reduce over-fitting, an additional function known as early-stop was defined which

halted the training of the model if the loss did not decrease for 10 consecutive training

epoch iterations. Lastly, an Adaptive Moment Estimation (Adam) optimizer [95] was

used in an attempt to generate the highest accuracy in the least amount of time. These

parameters were determined based on the research experiments conducted by Siami-

Namini et al. [89].

Figure 5.5: Analysis of loss and RMSE in training
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Figures 5.5a and 5.5b show how the loss and root mean squared error of the model

decreased with respect to the training epochs. The loss dropped drastically for the first

25 epochs, before reducing gradually until the 65th epoch. From there on until the end of

training, the loss value plateaued, and even spiked in certain epochs, making the limited

gains too costly in terms of training time. From this, the choice of 75 epochs for the

model training was justified.

A similar trend was seen in the weights and biases of the LSTM. In the first epoch, the

biases were uniformly distributed, but slowly converge to a smaller value. Similarly, the

dense layer weights were able to converge to the values with least loss in the final epoch.

Figures 5.6a and 5.6b show how these values for the final dense layer changed over each

epoch.
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Figure 5.6: Analysis of bias and weights in training
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The model training, validation and error comparison with previous model performances

took approximately 3 minutes, after which the model predicted the subsequent day’s

forecast in under 10 seconds. Figure 5.7 shows how this looked. The forecaster accurately

depicted the initial peaks for the entire day, including the morning, afternoon, and

evening. It is clear however, that the rest of the data points may not be as accurate. This

is not a significant drawback for the hybrid model, as the reactive algorithm is capable

of making minor adjustments to the resources, ensuring that the SLA compliance is

maintained.
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Figure 5.7: Historical workload paired with forecast workload
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5.3.4 Autoscaler Controller

The autoscaler controller stored a maximum of seven days of data for use by the proactive

forecaster. Data that is too old is not particularly useful for a time-series model training

on semi-predictable data, and only increases training time without adding much to the

accuracy [96]. This data was refreshed once every day to ensure that the latest data

was always available to the hybrid autoscalers before training. Since training only took

place once a day, the costly metric scraping operations done by the controller from the

cloud layer could be reduced, thereby reducing the overall load on the network.

The controller sent a training request to the proactive autoscaler once every night.

The time is chosen so that, due to the comparatively low amounts of user requests,

the training process would be able to claim as much of the edge resources as possible

without affecting the network availability. However, before sending the request, the

controller computed whether or not an SLA violation took place in the past 24 hours.

If it detected a violation, it assumed that the forecaster had not learnt enough of the

time-series features to make an accurate prediction. This could be due to a variety of

reasons such as lack of training data or conservative parameter values. To counteract

this, the controller performed the following corrections:

• learning_rate was decreased by 0.0005, to a minimum value of 0.002.

• epochs was increased by 5, to a maximum of 100.

• batch_size was increased by 10, to a maximum of 200.

• early_stop threshold was increased by 5, to a maximum of 25.
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The assumption here was that the training accuracy could be jump started by sacrificing

short training times for one duration to better learn the time series features and thus

reduce SLA violations. As long as SLA violations occur, these modifications keep being

performed up until their configured limits. Experimental testing demonstrated that,

at the most extreme hyper-parameter configuration, the training time increased to 10

minutes. Once no SLA violations were detected during a 24 hour time window, the

hyper-parameters were reverted back to the default values. Doing so did not cause the

model to lose any previous optimizations or reduce prediction accuracy, but had the

added benefit of reducing training time and resources once again.



Chapter 6

Performance Evaluation

In this chapter, we begin by discussing the underlying server hardware configuration,

and the assumptions made before beginning the auto-scaling experiments in Section 6.1.

The cluster configuration, which involves the resource divisions between servers, overall

cluster architecture, and deployment resources is discussed in Section 6.2. The exper-

imental setup which details the SLA categories, its latency values, and an overview of

the two experiments to be conducted are discussed in Section 6.3. After this, Section 6.4

contains an overview of the three baseline algorithms which were used to compare the

performance of the proposed hybrid autoscaler. Section 6.5 follows this with an overview

of the workload which was generated to test the two experimental conditions, along with

a brief analysis of the latency graph. Finally, the experimental results are shown and

discussed in Sections 6.6 to 6.8.

6.1 Assumptions and Virtual Machines Setup

For the underlying virtual machine (VM) setup, servers in the Melbourne Research

Cloud 1 were leveraged to deploy micro-services on. The setup consisted of 6 VMs,

using a total of 24 CPU cores and 80GB of memory. These servers were separated into

a cloud and an edge layer. The servers on the cloud layer have a substantially higher

amount of CPU cores and memory assigned compared to the servers in the edge layer,

to simulate the scarcity of resources in the edge layer. The cloud layer also contained a
1https://docs.cloud.unimelb.edu.au/

66

https://docs.cloud.unimelb.edu.au/
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200GB persistent storage volume, while the edge layer did not. This allowed the cloud

layer to hold all the Prometheus data, while the edge layer had to store the time series

in the RAM to depict the scarcity of resources further. Finally, a simulated latency

was added between inter-layer server communication to mimic the perceived distance

between edge nodes and large data centres.

Each server consists of an Ubuntu 22.04 2 operating system. Kubernetes v1.28.2 3 is

used as the container orchestration technology behind the experimental micro service

setup. CRI-O was installed on the Kubernetes nodes as the container runtime of choice

for running resource nodes. Finally, for inter-pod communication on the cluster to occur,

an open-source project known as Flannel 4 was deployed.

For maximum flexibility in modifying and monitoring the underlying architecture, a

bare-metal implementation of Kubernetes was used, instead of ready-made solutions

available from Amazon or Google. The control plane was deployed on the cloud layer,

while the data plane was on the edge layer. Furthermore, several assumptions were made

before proceeding with the experimentation:

• The only auto-scaling performed would be horizontal pod auto-scaling. Vertical

and cluster auto-scaling were out of the scope of this project.

• The pods on which auto-scaling is not applied would have the maximum possible

resource allocation, so as to remove the chances of bottleneck.

• At no point in the experiment would a node be taken down, or new node be added.

• The autoscaler assumes that every node in the edge layer is an equally likely

candidate for scheduling pods on.

6.2 Cluster Configurations

The VMs were divided into the cloud and edge layer as depicted in Table 6.1. The

control plane was further divided into two servers, one for handling the Kubernetes

control plane scheduling, API service, and etcd deployments, and the other for storing
2https://releases.ubuntu.com/jammy/
3https://kubernetes.io/releases/
4https://github.com/flannel-io/flannel

https://releases.ubuntu.com/jammy/
https://kubernetes.io/releases/
https://github.com/flannel-io/flannel
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Table 6.1: Cluster architectural layout

Node Layer CPU (cores) Memory (GB)
Control-Plane-K8s Cloud 8 32
Control-Plane-DB Cloud 8 32

Data-Plane-1 Edge 2 4
Data-Plane-2 Edge 2 4
Data-Plane-3 Edge 2 4
Data-Plane-4 Edge 2 4

the Prometheus database, along with the micro-service Jaeger metrics collection. The

edge layer consisted of four servers with far substantially fewer resources, to depict

the difference in computing power. The network layer between the edge and cloud

deployments also contained a simulated latency to denote the perceived geographical

distance between them.

The cloud and edge nodes were differentiated through Kubernetes through the internal

labeling system. A key type with the value either cloud or edge was added to each

node. This would enable the scheduler to consider restricting the deployment of pods to

particular nodes automatically. For example, the Prometheus deployment would only

be deployed on the node of the type cloud. This process is known as node affinity [97].

There were several options to deploy the social media application to Kubernetes. Manu-

ally cloning them from the repository, creating the custom resource definitions (CRDs),

and deploying the YAML files was an option that gave maximum flexibility, but was dif-

ficult to debug if things went wrong. Due to this, the Kubernetes package manager Helm

was used. Helm 5 is another open-source project whose primary goal involves stream-

lining the installation, maintenance, and removal of Kubernetes deployments. This is

achieved through the use of a Helm chart, which details the configuration of the project,

and how to update and access it.

Therefore, the social media application was the first to be deployed on Kubernetes.

However, before deploying the application, the primary deployments to be tested need

to be configured. Based on the wrk2 benchmark that was discussed above, two APIs

were identified. One was a GET call to the user’s home timeline, and the other was a

POST request made by the user to create a post.
5https://helm.sh/

https://helm.sh/
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First, the social network with default configuration values was installed using the helm

command below:

Listing 6.1: Social network installation using Helm
1 $ helm install social -media \
2 / DeathStarBench / socialNetwork /helm -chart/Chart.yaml -n default

With the social media network now deployed, a workload for both GET and POST

requests was invoked to generate the latency trace on Jaeger, as depicted in Listing 6.2.

Listing 6.2: Generate Jaeger trace
1 $ WRK2="/ DeathStarBench /wrk2/wrk -D exp -t 1 -c 1 -d 1 -L -s -R 1"
2 $ HT =./ wrk2/ scripts /social - network /read -home - timeline .lua
3 $ CS =./ wrk2/ scripts /social - network /compose -post.lua
4 $ IP=$( kubectl get svc nginx - thrift --template '{{. spec. clusterIP }} ')
5 $ PORT =8080
6 $ $WRK2 $HT http :// $IP:$PORT/wrk2 -api/home - timeline /read
7 $ $WRK2 $HT http :// $IP:$PORT/wrk2 -api/post/ compose

With the traces generated, the deployments that require auto-scaling could be identi-

fied for each. From the Jaeger traces generated in Figure 6.1, it was clear that the

two deployments highlighted in pink, namely home-timeline-service, and compose-post-

service, were the major bottlenecks in GET and POST request processing respectively,

having to serve multiple child deployments simultaneously. This made them the most

important deployments for auto-scaling. Therefore, the helm deployment was updated

to assign auto-scaling resource limits to them. The resources were assigned in a realis-

tic manner consistent with edge deployments and based on the number of components

each deployment answered to. Listing 6.3 shows the CPU resources assigned to both

deployments.
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Listing 6.3: Update resources for bottlenecked deployments
1 $ helm upgrade social -media \
2 / DeathStarBench / socialNetwork /helm -chart/Chart.yaml -n default \
3 --set - string home -timeline - service . container . resources =" requests :
4 cpu: "15m"
5 limits :
6 cpu: "15m"" \
7 --set - string compose -post - service . container . resources =" requests :
8 cpu: "30m"
9 limits :

10 cpu: "30m""
11

Figure 6.1: API trace for home-timeline-service and compose-post-service

6.3 Experiment Setup

Two independent experiments were conducted to validate the performance of the hybrid

autoscaler. The social media application was first tested using the GET request to

the API to autoscale the home-timeline-service deployment. Then, a more demanding

as well as challenging workload was applied to the POST request for auto-scaling the

compose-post-service deployment. For both these experiments, the workload generation

algorithm was used to create realistic daily workloads and tested over a period of five

days.

According to Nilsson and Yngwe [98], their research concluded that user experience

was negatively affected by higher API latency. This leads to a cascading issue of lower
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Table 6.2: Experimental SLA constraints

SLA Type GET latency(ms) POST latency(ms)
Flexible 150 1000

Moderate 125 900
Strict 100 800

revenue growth and profit. Their research found three latency brackets where the user

experience changes.

• A response time of at least 100 milliseconds was considered by the user to be

instantaneous. This is the best case scenario.

• A response time of up to 1 second was noticed by the user as a slight delay, however

their user experience was not significantly interrupted.

• A response time exceeding 10 seconds was deemed to cause the user to lose focus,

and thus disrupted their user experience.

Based on this research, it was determined that for both the experiments, the flexible,

moderate, and strict SLA constraints explained in Section 4.1.1 would be bound within

the values SLA(c) ∈ [100ms, 1000ms].

The flexible SLA constraint was the primary focus of the experiment. This threshold was

chosen as it is the most common threshold used for IoT applications, and thus provide

a good benchmark for application performance. However, a moderate and strict SLA

constraint would also be chosen and tested to compute the SLA violation rates for the

algorithm. The SLA values are shown in Table 6.2.

For the proposed hybrid algorithm to achieve these auto-scaling goals within the SLA

constraints, the auto-scaling subsystems were configured as follows. The reactive au-

toscaler would check if the CPU utilization of the deployment was exceeding the auto-

scaling threshold. This threshold would vary for each of the experiments as required. If

this threshold was breached, it would scale up based on the cooldowns and tolerations

set. The proactive autoscaler on the other hand would check if the forecasted CPU uti-

lization in the next 20 minutes was going to breach the auto-scaling threshold, and if so,

would autoscale with the same configured parameters as the reactive one. The controller

would store the total CPU utilization of the deployment as a time-series for a maximum
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of seven days, and constantly check for SLA violations to tweak the hyper-parameters

of the forecaster as discussed above in Section 5.3.4.

6.4 Baseline Algorithms

To measure the effectiveness of the hybrid autoscaler, three baseline algorithms were

chosen for comparison. All three would autoscale at the same CPU auto-scaling thresh-

old to maintain consistency. Furthermore, these algorithms would be implementations

based on the ones discussed in Sections 3.4 and 3.5.

1. Default Kubernetes Horizontal Pod Autoscaler: No modifications to the

configuration are made, thus the scale-up cooldown is 0 seconds, while the scale-

down is 300 seconds. Additionally, the autoscaler has no knowledge of the workload

distribution or SLA violations on the edge nodes.

2. Traffic Aware Horizontal Pod Autoscaler: This is an implementation of the

reactive THPA algorithm created by Phan et al. [39]. This autoscaler scheduler will

compute the ratio of workloads being exerted on the different edge nodes with the

deployment pods. Once it does so, it will scale these resources in a commensurate

proportion.

3. Proactive Pod Autoscaler: This is an implementation of the PPA algorithm

devised by Ju et al. [63]. This algorithm was an open-ended implementation that

enabled the user to plugin a deep learning model of their choice. The PPA archi-

tecture consists of three sub-sections, the formulator, evaluator, and updater. An

LSTM model is injected into the autoscaler as the model file. This LSTM imple-

mentation is similar to the one used in the hybrid autoscaler, however, it differs

in two key elements. First, the LSTM does not expect pre-processed data without

noise and thus deals with more complex time-series data. Secondly, due to this

additional computation, the LSTM contains a deeper architecture layer with more

neural network units. This is required as the algorithm has to correctly predict the

complete future workload since there is no reactive autoscaler to fall back on. Over

a fixed interval, the algorithm continuously loops through the time-series data and

saves the forecast result to a metrics file. The evaluator takes these outputs from
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the metrics file, along with the LSTM from the model file to predict the number

of pods to assign in advance, and requests the Kubernetes scheduler for scaling

through the API Service. A second loop, known as the update loop, then updates

the LSTM model using the latest forecast, and clears the metrics file. The hyper-

parameters are carefully tuned to ensure that the model does not underperform.

Finally, the PPA architecture does not take into account SLA compliance, and

thus SLA metrics are not provided as feedback for hyper-parameter tuning.

6.5 Experimental Workload

In the first experiment, the IoT workload generation algorithm was configured to create

a workload aimed at mimicking GET requests. By doing so, the home-timeline-service

deployment became the bottleneck receiving all of the requests and thus could be tested

using the proposed hybrid autoscaler, as well as the three baseline algorithms. As

explained above, the auto-scaling threshold for all four algorithms was set to 50% total

CPU utilization on the deployment, and the SLA latency threshold was set to the flexible

threshold of 150 milliseconds.

Figure 6.2: Total CPU usage for home-timeline-service
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Figure 6.2 shows the total CPU workload that was generated by Algorithm 6 on the

home-timeline-service deployment. The data was generated for a total of five days.

Throughout the five days, approximately 2,550,000 requests in total were sent to the edge

deployment. The daily peak remained at approximately the same percentage but then

increased significantly in the last two days. This could be interpreted as a depiction of



Performance Evaluation 74

how social network requests may look on the weekends. The total CPU utilization never

exceeded 95% of the total allocated resources shown in Listing 6.3. This is expected of a

GET request, as while the deployment has to open a connection to the sub-deployments

to receive the response, a GET request is typically a database SELECT statement, which

takes a comparatively less amount of time as opposed to other operations. This means

that the deployment can quickly receive the response from its child components, send

the response up to the requester, and then close the connection. Once the connection is

closed, all the resources associated with it are freed. Because this operation is so quick,

multiple concurrent connections are typically not open, and thus the CPU utilization is

not significant.

For the second experiment, the focus was on a more difficult auto-scaling task. The IoT

workload generation Algorithm 6 was reconfigured to simulate a realistic workload for

social network users writing user timeline posts, which at a low level, involved sending

POST requests to the edge deployment. Doing so meant that the compose-post-service

would be sending all these POST requests to its sub-components for writing media or

text. The workflow for a POST request to the API goes as follows. The user sends

a POST request with the body containing the data to be written. This is sent to the

compose-post-service deployment which opens an ephemeral connection with the user.

Simultaneously while doing so, the deployment sends the contents of the POST body to

one of its sub-components. These components house the database for user posts, and the

operation is performed using an INSERT or UPDATE statement. The sub-component

then sends its response back to the compose-post-service informing it whether or not

this operation succeeded or failed. The deployment sends this information back up to

the user and closes the connection.
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Figure 6.3: Total CPU usage for compose-post-service
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While the SELECT statement used underneath the GET request was a fairly quick

operation, the INSERT and UPDATE statements may take significantly longer, due to

the idempotent nature of the database [99]. The social network will ensure that user

posts are in the correct order, and perform other background checks before committing

the data. Due to this, the connections on the compose-post-service can remain open

for a significantly longer amount of time, resulting in far more resources being used.

Figure 6.3 shows this in action. The algorithm was generated for a total of 5 days,

similar to the first experiment. Even though the workload generation algorithm was

sending the same amount of POST requests as it did GET requests, approximately

2,550,000 requests in total, the total CPU workload in the second experiment peaked at

approximately 175%, and at some points even reached 200% of the total CPU resources

assigned to a unitary deployment pod. This varied per day in a realistic manner similar

to what could commonly be seen in social networks.

To resolve this CPU bottleneck, the auto-scaling threshold was set to 60% of the CPU

workload. In addition, the SLA latency threshold was set to the flexible threshold of

1000 milliseconds. Using these configurations, the three baseline algorithms along with

the proposed hybrid autoscaler was tested.
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6.6 Evaluation of Request Latency

6.6.1 Default Kubernetes Autoscaler Baseline

Figure 6.4: Kubernetes default sutoscaler latency for home-timeline-service
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For both the workloads discussed above, a near 100% CPU utilization on a solitary

deployment pod would lead to significant delays. This can be seen when using the

default Kubernetes Horizontal Pod Autoscaler in the first experiment, as depicted in

Figure 6.4. The autoscaler was merely a primitive reactive implementation with no

knowledge of which edge nodes were experiencing heavy traffic, and which ones were

not. Thus, it blindly assigned pods to the nodes in a round-robin manner. Additionally,

the autoscaler required a significant amount of time to register the new pods to the

Kubernetes control plane, thus falling victim to the cold start problem. This results in

significant latency spikes before the resources are adjusted. In the figure, it can be seen

that the latency exceeds 300 milliseconds at some points, which would be significantly

large enough to degrade the user experience. Additionally, by the end of the fifth day of

testing, the cumulative average latency of the social-network was nearly 50 milliseconds.
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Figure 6.5: Kubernetes default autoscaler latency for compose-post-service
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Similar to the results in the first experiment, the shortcomings of this auto-scaling ap-

proach were exposed even more so by the increased demands of the POST request work-

load in the second experiment. Figure 6.5 shows the latency metrics of the autoscaler.

During the daily workload spikes, the autoscaler would regularly breach the 1000 mil-

lisecond threshold, with values peaking at almost 1450 milliseconds. This is more than

45% above the allowed threshold, which would cause general system instability. Further-

more, the average latency of the autoscaler hovered at around the 400-millisecond mark

throughout the experiment, which was quite a high value when taking into account the

large periods of non-peak workload in the test.

Upon further investigation, it was discovered that the high latency was caused due to

three issues. One was the cold start problem, which added a constant latency to the

non-proactive algorithms which could not be solved by any reactive solutions. The

second one was the avalanche effect which was caused by resources not being available

in a timely manner, and was related to the cold start. Before the Kubernetes control

plane could register all resources, the compose-post-service deployment may have had a

CPU utilization at or near 100%. When this happened, the deployment already had all

available resources being utilized to open connections, this caused additional connection

requests to be dropped. The user does not see this happen and instead waits the default

60 seconds before displaying a “time-out” message. This 60 seconds was taken into

account when measuring the latency and was what drove up the latency to such an

extent. Finally, the Kubernetes default autoscaler had no information on which edge

nodes were receiving the most number of requests. It only saw CPU utilization metrics

as a totality. As a result of this, it scheduled new resources in a round-robin manner,
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meaning that some deployment pods received a lot of requests, while others may have

received none. This uneven distribution of requests to the resources also drove up latency.

Based on these experimental results which showed that connections were being dropped,

it meant that the social network was becoming unavailable at certain points in time

during the day. This happening during peak hours was especially critical and violated

SLA constraints. Due to this, the default Kubernetes autoscaler could not be considered

viable for auto-scaling an edge deployment.

6.6.2 Reactive THPA Autoscaler Baseline

Figure 6.6: THPA reactive autoscaler latency for home-timeline-service
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Unlike the default Kubernetes autoscaler, THPA kept track of which edge node was

receiving a significant number of requests and assigned pods to the nodes accordingly.

This strategy resulted in a significantly improved latency graph for the first experiment,

as can be seen in Figure 6.6.

While the algorithm still suffered from the cold start problem, the more intelligent as-

signment of resources resulted in fewer availability issues, ensuring that the latency

spikes that were seen were not as drastic as the ones in the default implementation.

However, due to the cold start problem, the SLA threshold of 150 millisecond was still

regularly breached, resulting in several violations and degraded the user experience.

However these breaches never exceeded the 200 millisecond mark, and thus the drop

in user experience quality was not as noticeable as the approach using the default Ku-

bernetes baseline. Furthermore, the average latency over the experimental time frame
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was lower than what was seen in the default implementation, hovering at around 25-30

milliseconds.

Figure 6.7: THPA reactive autoscaler latency for compose-post-service
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Figure 6.7 shows how the THPA algorithm performed on the POST request workload for

the second experiment. As expected, the request-aware architecture of this autoscaler

allowed it to eliminate the issues with dropped requests seen in the Kubernetes autoscaler

implementation. This was due to the autoscaler assigning resource pods to the edge

nodes which were experiencing a high number of POST requests. This ensured that

on average, the latency values were kept lower. Furthermore, the avalanche effect seen

above was somewhat mitigated due to the more intelligent resource deployment model.

However, the cold start problem was not eliminated, which caused spikes in the la-

tency when the autoscaler could not handle assigning resources in time. While this was

less common in this implementation than in the default one, it nevertheless resulted

in latency spiking above the SLA threshold for lengthy amounts of time on multiple

occasions. On one occasion, the latency nearly hit 1400 milliseconds for several minutes

before coming back down when the resource registration was completed.

These issues were not as severe as the ones seen in the default autoscaler however, and

would not cause complete system unavailability. Furthermore, the cumulative average

latency throughout the testing period was substantially lower than the default Kuber-

netes baseline, averaging at around 200 milliseconds. Despite this, SLA agreements were

still being violated regularly, and thus while the autoscaler could be considered a suitable

algorithm for native cloud deployments, it was deemed unsuitable for edge deployments

with SLA constraints.
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6.6.3 Proactive PPA Autoscaler Baseline

Unlike the previous two baseline algorithms, the Proactive Pod Autoscaler algorithm

attempted to predict the workload before it was requested, thus eliminating the cold

start issue. In ideal conditions, this would result in the SLA threshold not being violated,

and it being a viable solution for edge paradigms. However, experimental results showed

otherwise.

Figure 6.8: PPA proactive autoscaler latency for home-timeline-service
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Because the autoscaler was purely proactive, it must be a deep LSTM model with several

layers and large training epochs. This deep model took more than 50 minutes to properly

train and validate for it to predict 24 hours of data, similar to the length of data that

our proposed hybrid solution predicted. This is due to the edge architecture’s lack of

resources and storage compared to the cloud layer. Figure 6.8 shows this in action

for the first experiment. Initially, it was observed that the latency continually spiked,

causing a large amount of SLA violations, more than what the reactive autoscaler caused.

However, after a few days of training, the rolling update structure of the LSTM weights

took over, reducing the training time by taking advantage of the early stopping callback

in the LSTM model, and managing to stabilize the latency. However, this effect did not

always manage to stem the latency overflow, as was shown when the same algorithm

was tested using the POST request in Section 6.6.3.

While the SLA violations were not as severe as the ones seen in the Default autoscaler

baseline, they were comparatively greater than the reactive approach, with the latency

exceeding 200 milliseconds for several minutes during the day, which would cause a
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noticeable delay. The average latency was almost as large as what was seen in the

default autoscaler baseline, approaching 50 milliseconds due to the issues inherent in

attempting to forecast the entire time-series data curve.

Figure 6.9: PPA proactive autoscaler latency for compose-post-service
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Figure 6.9 shows the full latency graph for the social network for the second experiment.

As can be seen from the data, the latency initially spiked to above 1200 milliseconds,

before stabilizing below the SLA threshold. However, one more spike occurred on the

last day. Finally, the average latency of the autoscaler performed well, having a value

of around 200 milliseconds which was similar to the reactive baseline.

Further investigations were conducted in an attempt to explain why these spikes oc-

curred. It was deduced that the first latency spike occurred due to a shortage of train-

ing data. The LSTM used by the PPA architecture is extremely complex. Furthermore,

apart from data normalization, no other data pre-processing was done such as passing

it through the Savitsky-Golay smoothing algorithm. These issues make it more difficult

for the forecaster to correctly predict data curves early on in its life cycle. This issue

was resolved as more data was added to the training time-series input, however, after

a certain point, a threshold was reached where the data was so large, it took a signifi-

cantly large amount of time for the autoscaler to forecast the workload. This issue led to

the latency spike on the final day leading to SLA violations, lasting for several minutes

before the autoscaler corrected itself.

From these investigations, it can be seen that the proactive auto-scaling approach worked

significantly better than the default Kubernetes autoscaler, but performed similarly to

the reactive approach. While the social network POST requests were never dropped
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which would lead to complete system unavailability, the SLA constraints were nonethe-

less breached, due to the lack of edge layer resources and large training times for the

proactive model. Due to issues such as this, the algorithm could not be deemed suitable

for edge deployments that were reliant on SLA constraints.

6.6.4 Proposed Hybrid Autoscaler

Figure 6.10: Hybrid autoscaler latency for home-timeline-service
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Finally, with the baselines being established in a default, reactive, and proactive ap-

proach, the hybrid algorithm was tested on the five days of generated workload. This

approach demonstrated how it could mitigate the issues seen in both reactive and proac-

tive auto-scaling approaches. The autoscaler was extremely lightweight, and easy to

configure since there was no hyper-parameter tuning required. Building on top of this

lightweight, the proactive forecaster was able to forecast the beginning of the workload

spike accurately, thus leading to it eliminating the issue of a cold start. The forecaster

could not accurately predict the middle and end of the daily workloads, however, this

was not an issue, since the reactive algorithm was capable of taking over the auto-scaling

process and maintaining the necessary resources to avoid SLA violations. Figure 6.10

shows the complete latency graph for the GET request experiment.

From the graph, it is clear that for the GET request experiment, no SLA violations

were present for the duration of the five-day workload. Thus, in this case, the autoscaler

controller did not intervene in the LSTM training procedure and modify the hyper-

parameters of the forecaster. The average latency experienced by the social network was

also comparatively low, achieving results similar to the THPA reactive implementation
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with the value hovering at around 30 milliseconds. This performance was a significant

improvement over the baseline algorithms and demonstrated the efficacy of such a model

in an edge architecture deployment.

Figure 6.11: Hybrid autoscaler latency for compose-post-service
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Figure 6.11 shows the latency metrics for the five-day workload simulation period for

the second POST request experiment. From the graph, it can be clearly seen that only

one SLA violation took place on the first day. This was a result of the lack of training

data causing an erroneous prediction, an issue faced by the proactive baseline algorithm

as well. However, what set this algorithm apart from that baseline was that the reactive

autoscaler subsystem was capable of taking over from the proactive subsystem and

scaling the resources accordingly. Due to this, the SLA threshold was only breached

slightly, peaking at around 1020 milliseconds.

After the SLA violation, the autoscaler controller deduced that the training process

needed to be kick-started through hyper-parameter tuning. This was done in the next

training cycle when the controller provided the forecaster new hyper-parameter values,

and as a result, it can be seen that no SLA violations took place on the next day. As

a result, the autoscaler controller resets the hyper-parameters to speed up the training

process, and even though the latency approached 990 milliseconds on the third day, no

further violations took place for the rest of the simulation. The average latency of the

whole experiment was also kept below 200 milliseconds, performing slightly better than

its reactive and proactive baseline counterparts, and significantly better than the default

Kubernetes approach.
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From these tests, it was clear that the hybrid approach had nearly eliminated the cold

start problem very early on in the experiment. The initial difficulties in correctly fore-

casting the workload peaks were quickly resolved by the autoscaler controller’s correc-

tive instructions. All this was done with no user intervention, making the autoscaler

extremely autonomous. Furthermore, the algorithm was capable of completing the train-

ing within a few minutes, allowing it to finish resource registration quickly. This meant

that the CPU utilization of each pod on the nodes never exceeded 100%, and thus no

user API requests were dropped, allowing for full system availability.

Based on these results, it was experimentally demonstrated that the proposed hybrid

autoscaler performed far better than the baseline algorithms, breaching the SLA thresh-

old in a negligible amount while causing no system unavailability. Thus, the suitability

of this hybrid approach for an edge deployment under SLA constraints was proven.

6.7 Evaluation of CPU Workload Distribution

The distribution of CPU workload across the deployment pods was another important

metric to factor into the analysis. As a reminder, the goal of the autoscaler was to

maximize deployment resources while minimizing deployment costs. Considering the

equal importance to be given to both SLA latency and optimization costs as explained

in Section 4.1.1, and with an autoscaler threshold being set at A, ideally, the distributed

workload should hover at
A
2 . When this workload distribution value approaches the

value A, it means that not enough pods are being deployed. This results in most if not

all active pod resources in the deployment being utilized at full capacity, meaning new

requests would need to be queued or even dropped, driving up latency. On the other

hand, when workload tends towards the value 0, it means too many pods have been

assigned to the deployment, and thus has been over-scaled. The returns when it comes

to latency reduction for such a scaling scenario are extremely low, while the number of

idle resource pods being active in the deployment is increasing significantly. This in turn

increases the cost of running the underlying edge architecture, making this autoscaler

an unprofitable alternative.
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Figure 6.12: Autoscaler CPU workload distribution for home-timeline-service
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For the first experiment, Figure 6.12 shows the average CPU utilization workload values

of all the deployment pods for the three baseline algorithms and the proposed hybrid

solution. As expected, the default Kubernetes horizontal pod autoscaler performs the

worst, with the average utilization hovering around 35%. The proactive forecaster has

utilization of approximately 33%, with it being held back by the forecaster’s complex-

ity and resource-intensive training. The reactive approach was the most lightweight

autoscaler, and thus performed well with a CPU utilization of around 30%. Finally,

the hybrid autoscaler performed the best of the four compared algorithms, with the

utilization of approximately 26%.

In the second experiment with the heavier POST request, the auto-scaling threshold of

the experiment A was set to 60%. Thus the ideal distributed workload achieved by the

autoscaler should be half of the threshold, as calculated in the first experiment. Hence,

the distributed workload for this experiment should be
60
2 = 30%
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Figure 6.13: Autoscaler CPU workload distribution for compose-post-service

Day 1 Day 2 Day 3 Day 4 Day 5
0

15

30

45

60

75

Time (Days)

C
PU

U
sa

ge
(%

)

Default Reactive Proactive Hybrid Ideal CPU Usage

Figure 6.13 shows the average CPU utilization of the pods for the second experiment,

being scaled in the deployment by the three baseline algorithms, along with the proposed

hybrid solution. As shown above in Section 6.6.1, the default Kubernetes autoscaler

faced issues with system unavailability, with user requests being dropped. This was

caused by high CPU usage on the pods, with this being demonstrated by the graph.

The average utilization peaked at around 70% before stabilizing at around 50% for all the

resource pods. However, it is important to note that these resources were not distributed

equitably, and thus while some pods had close to 100% utilization, others had near 0%.

The baseline proactive PPA algorithm performed better than the default Kubernetes

autoscaler. While its CPU utilization stabilized fairly quickly to a value of approximately

45%, this was still far higher than the ideal distributed workload. This was most likely

caused by the time it took for the algorithm to forecast data due to the complexity of

the LSTM model, which resulted in resources lacking for certain periods of time.

The reactive THPA algorithm performed better than the proactive approach, with an

average CPU utilization of approximately 42%. This was achieved due to the intelligent

placement of pods in the edge nodes through its traffic-aware algorithm. However, the

autoscaler was still prone to the cold start problem, and thus there were several occasions

where the CPU workload would peak before the appropriate resources could be assigned.

Due to this, the average workload was still far higher than the ideal value.

Finally, it can be seen from the graph that the hybrid autoscaler performed better than

all three of the baseline algorithms. Its proactive subsystem allowed it to nearly eliminate

the cold start problem, while its short training times, and reactive subsystem, allowed
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the efficient placement of resource pods on the deployment. The average CPU workload

quickly stabilized to approximately 35%, which is far lower than the averages we have

seen above for the baseline algorithms, and close to the ideal value of 30%.

Through this comparison, it was clearly demonstrated that for multiple use cases, the

hybrid autoscaler managed to scale resources in a manner that both mitigated SLA

violations, while doing so in a manner that was both light-weight enough for edge de-

ployments, and inexpensive too.

6.8 Evaluation of SLA Violation Rates

As demonstrated above, the hybrid autoscaler performed significantly better than the

baseline approaches. However, this was only compared using the flexible SLA thresh-

olds. As a reminder, this was the most lenient threshold possible. For a more thorough

demonstration, the algorithms needed to be tested on the other possible latency thresh-

olds.

To achieve this, all four algorithms were tested again on the moderate and strict SLA

violation thresholds for the GET request experiment, as displayed in Table 6.2. The IoT

workload generation algorithm was once again used to generate this, however, this time

the workload was run for five days, but auto-scaling was performed only for the last

two days. This was done to get the best possible results for all autoscalers regardless of

training data length. This resulted in the SLA violation percentage for approximately

1,020,000 GET requests.

Figure 6.14: SLA violation percentages for home-timeline-service
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Figure 6.14 shows the SLA violations for the three different categories done on the GET

request experiment. The flexible percentages were taken from the data taken from the

five-day experiment using the 150 millisecond threshold, while the other two threshold

values were extracted from the two-day experiments conducted for each. The default

Kubernetes autoscaler performed the worst, with 5.55% of all requests being above the

SLA threshold. The proactive PPA algorithm came next with a violation rate of 2.36%,

with the number of violations being increased due to the complexity of the training

model. The reactive THPA algorithm performed well, the low resource deployment,

combined with the low overhead of GET requests ensured that it only violated the SLA

thresholds of 1.25% of requests. Finally, as seen above, the hybrid autoscaler performed

the best out of the four algorithms, being able to serve all the requests with a 0% SLA

violation rate. This would qualify the hybrid architecture for a “highly available” SLA

deployment.

While the flexible SLA threshold showed impressive results for three out of the four

algorithms, the moderate threshold of 125 milliseconds was a more difficult constraint

to maintain. The importance of mitigating or eliminating the cold start problem when

it came to SLA latency was exposed in this threshold, as the default Kubernetes im-

plementation and the reactive THPA autoscaler showed similarly poor results, violating

8.74% and 7.76% of requests respectively. On the contrary, the slower proactive PPA

approach was able to demonstrate how mitigating the cold start problem while not being

able to eliminate it completely could still have benefits, with the algorithm violating just

2.91% of requests. Finally, the hybrid autoscaler still achieved the best results. There

were violations at the beginning of the experiment, resulting in 0.42% of requests being

above the SLA threshold. However, this was quickly counteracted by the autoscaler

controller, which modified the hyper-parameters to stabilize the latency. Once this was

achieved, the hyper-parameters were dropped back down to the default values, and the

auto-scaling continued as normal.

Finally, the strict SLA threshold of 100 milliseconds was tested, which proved extremely

difficult to comply with. Once again, the default and reactive autoscalers performed

significantly poorly, with 14.8% and 12.76% of requests not meeting the SLA threshold

respectively. The proactive algorithm distinguished itself from the reactive ones, clearly

showing the importance of the cold start problem, by only violating 5.41% of the re-

quests. However, in this scenario as well, the hybrid algorithm performed substantially
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Table 6.3: SLA violation counts for home-timeline-service

Request Counts Flexible Moderate Strict
Total Requests 2,550,000 1,220,000 1,220,000

Default Violations 141,525 106,628 180,560
Reactive Violations 31,875 94,672 155,672
Proactive Violations 60,180 35,502 66,002
Hybrid Violations 0 5124 20,252

better with only 1.66% of violations. Even though the algorithm would occasionally

violate the threshold, the combined approach, along with the controller’s heuristic feed-

back was able to control the violation rate far better than the three baseline approaches.

The total number of requests, along with the number of violations is provided in the

Table 6.3.

Figure 6.15: SLA violation percentages for compose-post-service
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Figure 6.15 depicts the SLA violations for all four algorithms for the three SLA cate-

gories done on the POST request experiment. Once again, the flexible percentages were

derived from the data taken during the five-day experiment using the 1000 millisecond

threshold, while the moderate (900 milliseconds) and strict (800 milliseconds) violations

were derived from the two-day workload above.

As seen above, for the flexible category, the default Kubernetes autoscaler performed

the worst, with 3.61% of the total requests resulting in an SLA violation. This also

includes the requests which resulted in an error due to being dropped by the social net-

work. The reactive and proactive algorithms performed comparatively similarly to each

other, achieving a 0.56% and 0.61% violation rate respectively. The lenient threshold

means that the proactive algorithm is unable to display its benefits when it comes to
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Table 6.4: SLA violation counts for compose-post-service

Request Counts Flexible Moderate Strict
Total Requests 2,550,000 1,220,000 1,220,000

Default Violations 92,055 150,060 273,036
Reactive Violations 14,280 116,876 229,360
Proactive Violations 15,555 88,084 121,268
Hybrid Violations 3315 40,748 66,002

mitigating the cold start problem as compared to the reactive approach. Finally, the

hybrid approach achieved a 0.13% SLA violation rate. This results in approximately

99.9% availability for the system, indicating that even for a difficult auto-scaling task

such as for the POST request scenario, the hybrid algorithm is capable of achieving near

“high availability”.

The moderate SLA threshold proved far more difficult for all the algorithms to adhere to.

Once again, the default Kubernetes autoscaler performed the worst of all four, failing to

adhere to the SLA constraint for 12.3% of the requests. Here, the proactive autoscaler

was able to demonstrate the importance of mitigating the issue of cold start. It was

able to achieve a 7.22% of SLA violations, which was far lower than the 9.58% seen for

the reactive autoscaler. However, once again, the hybrid solution proved to be the most

capable of auto-scaling in this scenario, achieving an SLA violation rate of just 3.34%.

Finally, the extremely challenging strict threshold was tested. The default Kubernetes

autoscaler was unable to cope with such a threshold, violating this threshold for over one-

fourth of the requests, with a 22.38% violation rate. Once again, the proactive algorithm

outperformed the reactive one, achieving a 9.94% violation rate as compared to the 18.8%

of the reactive algorithm. Finally, the hybrid algorithm performed significantly better

than all three baselines yet again, with a violation rate of just 5.41%.

This meant that over the two experiments and three SLA thresholds, the hybrid approach

served a minimum of 94.5% of all requests in an SLA-compliant manner in the worst-

case scenario while serving 100% of them in the best case. Through this thorough

testing and experimentation, the algorithm displayed its robustness and adaptability

while requiring little to no customization by the user to achieve excellent results. The

total number of requests, along with the number of request violations for the second

experiment is displayed in Table 6.4.



Performance Evaluation 91

Thus for the two experiments, and on three different SLA thresholds, it can be com-

prehensively concluded that the hybrid approach proved to be the best autoscaler when

it came to an edge deployment with minimal resources available. Furthermore, the al-

gorithm was adaptable and able to display considerably improved performance in com-

parison with other reactive and proactive approaches. It was able to achieve this with

minimal parameter configurations required by the user, and minimizing the cost of de-

ploying and maintaining the edge architecture.



Chapter 7

Conclusions and Future

Directions

7.1 Overview

In conclusion, the thesis provides a novel, lightweight, and SLA-compliant approach to

autoscale resources on a micro-service deployed on an edge architecture. In comparison

to other state-of-the-art autoscalers, the algorithm performs considerably better in terms

of SLA violation as well as resource usage.

The autoscaler architecture is constructed using open source subsystems, and provides

a framework to further develop more sophisticated auto-scaling solutions. These exten-

sions will be discussed in Section 7.3.2.

Furthermore, the outcome of this thesis is being used to develop two publications. The

first is a research paper titled “SLA-Driven Hybrid Autoscaling for Edge Computing:

Foundations, Re- view, and Future Directions”, which is aimed to be published in the

ACM Computing Survey 1. The paper will focus on the cloud-edge layer deployment

of Kubernetes, how the hybrid autoscaler fits into this architecture to provide SLA-

compliance, as well as the mathematical modeling of the problem along with the per-

formance evaluation.
1https://dl.acm.org/journal/csur

92

https://dl.acm.org/journal/csur
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The second is an implementation framework publication titled “A Hybrid Reactive-

Proactive Autoscaling Approach for Microservice Applications in Edge Computing En-

vironments”, which is aimed to be published in the Journal of Systems and Software 2.

The autoscaler will be presented as an extendable framework on top of Kubernetes.

The publication will discuss the modifications made to the autoscaler to make it SLA-

compliant, and the methods by which users can develop their own auto-scaling policies

using the hybrid autoscaler as a plug-in.

7.2 Contributions

The contributions of this thesis can be broken down into three main segments: identi-

fying the major bottlenecks of auto-scaling on an edge deployment in comparison to a

typical cloud architecture, designing a novel hybrid auto-scaling architecture which is

built specifically for edge architecture paradigms, and streamlining the forecaster used

by the hybrid autoscaler, thus making it capable of running on resource-limited edge

deployments in a cost-effective manner.

Through the extensive literature review conducted in Chapter 3, the key aspects which

make the typical cloud-based hybrid autoscalers infeasible for edge deployments were

identified, this being a lack of computing and storage resources in the edge layer as com-

pared to the cloud layer, the difficulty in hyper-parameter tuning, and the complexity of

the forecast models driving up the model training time. With these issues identified, a

hybrid auto-scaling architecture was proposed which addressed all the reported bottle-

necks, and was capable of scaling resources in the edge environment in an SLA-compliant

manner.

Based on the investigation of existing hybrid autoscalers conducted in Section 3.6, all

existing autoscalers were not suitable for edge deployments, as they were too resource

intensive, or not SLA-compliant, or both. Thus the hybrid architecture proposed in this

thesis was a novel approach which maintained SLA compliance and ease-of-deployment

on edge paradigms. It did so by combining a reactive autoscaler with a streamlined

proactive model built using LSTM. To eliminate the difficult hyper-parameter tuning
2https://www.journals.elsevier.com/journal-of-systems-and-software

https://www.journals.elsevier.com/journal-of-systems-and-software
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process, the autoscaler was built with a heuristic approach in mind, where the parameters

were automatically fine-tuned in case any SLA violations were seen in the data.

Finally, the autoscaler was tested on a production-ready social network micro-service

deployment, and the results were compared with other cutting-edge autoscalers. The re-

sults showed that the proposed autoscaler has a maximum SLA violation rate of 5.41%,

as compared to the violation rate of 18.8 − 22.38% for the other state-of-the-art au-

toscalers.

The tests were further able to demonstrate that the autoscaler was capable of signifi-

cantly reducing SLA violations while also keeping the overall cost related to deploying

the container orchestration resources on a cloud provider as low as possible. It does so

by assigning resources in a manner which keeps the utilized resources at approximately

half of the configured auto-scaling threshold.

Based on the work done in this thesis, the research questions stated in Section 1.2 can

be conclusively answered.

• RQ1: The work done in this thesis successfully integrated reactive and proactive

auto-scaling algorithms to develop a hybrid autoscaler tailored for edge computing

architectures. The autoscaler was both light weight, allowing it to be run on the

edge layer, while also eliminating the requirement for tedious and complicated

hyper-parameter tuning seen in most proactive auto-scaling solutions.

• RQ2: The work done in this thesis successfully demonstrated that the autoscaler

exceeded the SLA compliance capabilities of state-of-the-art reactive and proactive

auto-scaling solutions for edge computing, while minimizing the cost of deploying

the application.

7.3 Future Work

7.3.1 Current Limitations

Several assumptions have been made when conducting the experiments, the primary

ones being that only a single SLA metric was used to design the heuristic model, the

auto-scaling approach was limited to horizontally scaling resources, and the forecaster
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used a simple LSTM machine learning model using a single parameter. In this section,

some extensions to improve the robustness of the hybrid autoscaler is proposed, along

with some approaches to improve the efficiency and accuracy of its forecasts.

7.3.2 Proposed Extensions

7.3.2.1 Alternative Auto-scaling Approaches

The proposed hybrid model autoscales resources in a strictly horizontal manner. One of

the underlying assumptions was that no other auto-scaling was to take place while the

micro-service deployments were being stress tested. This meant that only the number

of deployment replicas were either increased or decreased, keeping all other parameters

untouched.

A future extension to this thesis would be to configure the algorithm such that it can at-

tempt other forms of auto-scaling too. For example, the hybrid model may be configured

as a Vertical Pod Autoscaler (VPA) instead. In this approach, the reactive autoscaler

will modify the CPU reservations for the deployments, while leaving the number of de-

ployment replicas untouched. Similarly, the proactive forecaster will attempt to predict

the future CPU workload, and autoscale beforehand accordingly. The benefit of such

an approach is that the forecaster already works in a similar manner, predicting future

CPU workloads, and thus only minor modifications would be required to configure the

hybrid HPA into a VPA.

A more challenging extension would be to transform the hybrid model into a Cluster

Autoscaler. In the cluster autoscaler, the container orchestration platform will adjust

the size of the cluster (edge nodes) when one of the following conditions holds:

• There are deployment replicas in the cluster which are currently un-assigned to

any node due to insufficient resources.

• There are nodes in the cluster that have not had sufficient utilization of resources

for a configured period of time, and as such, their active deployment replicas can

be re-scheduled on to other nodes, after which the node can be decommissioned

to free up resources.
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While converting this autoscaler architecture for cloud computing is a straightforward

process, due to the inherent homogeneity of the paradigm, it is much more difficult

for an edge computing approach. Since different resource workloads are exerted on the

various edge nodes, care needs to be taken when re-scheduling deployment replicas to

other nodes, as well as decommissioning nodes. This process needs to be done in an

intelligent manner such that the overall latency of the micro-service does not increase

due to an added distance between the end user and the modified edge layer architecture.

Therefore the auto-scaling controller must be modified in a way such that it can identify

nodes nearby to it such that it can re-assign replicas.

7.3.2.2 Multi-Variate Forecaster

The forecaster used in the hybrid autoscaler is a uni-variate LSTM model. This means

that at any given time, only one variable is changing. Therefore the input is a one-

dimensional array. An extension can be made to the forecaster to convert it into a

multi-variate model. In this approach, multiple variables are being modified at a given

time, thus the input to the model is a more complex two-dimensional array.

The benefit of a multi-variate approach is that a more holistic auto-scaling decision can

be made using this. For example, in the VPA algorithm discussed in Section 7.3.2.1,

the reactive and proactive auto-scaling subsystems can be modified to autoscale on both

CPU and memory utilization. The forecaster can then take the CPU and memory time-

series data as input, and output the forecast for both. Through this, the autoscaler

can form a better picture of the resource utilization of the micro-service, identifying

bottlenecks and mitigating them.

The drawback of such an approach is that the proactive forecaster training times will

significantly increase due to two reasons. The first one is the additional complexity of

the input as well as output. Due to the multiple variables needing to be trained and

validated on, more epochs are required, along with each epoch taking longer to evaluate.

Furthermore the validation process will take longer as well. The second cause is due to

the memory time-series not being as predictable as the CPU utilization. In the CPU

utilization graphs of the deployments as seen in Figure 5.3, the workload forms clear and

identifiable patterns which can be easily recognized by the model. Memory is far more

variable, with sudden peaks and falls depending on several of the processes running in
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the deployment. Thus the autoscaler must concomitantly be made as complex, with far

larger and deeper neural network architectures.

Due to this drawback, further research is required to verify the feasibility of using a

multi-variate machine learning model to forecast workloads, and to confirm whether or

not it is suitable for an edge deployment.

7.3.2.3 Multi-SLA Constraints

Another modification which can be made to the hybrid autoscaler is to support the use

of multiple SLA constraints. Currently, the autoscaler only takes into account a single

metric, and bases its heuristic feedback algorithm on it. By modifying this into a multi-

parameter model, the autoscaler can keep a track of several metrics, and if a violation

occurs on any one of them, can tune the auto-scaling process accordingly.

Such a modification opens up several other possibilities too. Each SLA metric can

be given its own weight to denote importance. The current hybrid autoscaler only

considers a single action of tuning the forecaster hyper-parameter variables on SLA

violation occurrences. By making it a multi-SLA model with different weights attached,

the hybrid autoscaler can intelligently decide what actions to take when on different

scenarios such as urgent and mild SLA violations.

This adds further complexity to the autoscaler however, and the constant tuning of

forecast parameters may cause issues such as a drop in prediction accuracy and under-

fitting / over-fitting. Thus a balance needs to be struck in the actions to be taken on

SLA constraints being violated, and additional cooldowns need to be implemented on

the frequency of such actions being implemented.
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