
i 
 

A New Grid Portal for Managing and Monitoring Application 
Execution on Global Grids through Multiple Devices 

 
 
 
 
 
 

by 
 

Kwai Wah, Ho 

BSc (Hons) in Computer Science (De Montfort University) 

 

Under the Supervision of:  
 

Dr. Rajkumar Buyya 
 

 

A minor project thesis submitted in partial fulfillment 

of the requirement for the degree of 

Master of Information Technology 

 

Grid Computing and Distributed Systems Laboratory 

Department Computer Science and Software Engineering 

The University of Melbourne, Australia 

June 22, 2004 

 



   
 

ii 

Abstract 
 
Previous G-Monitor was developed in response to the need for Web-based portals that 

hide low-level details of accessing Grid services for deployment and execution 

management of applications which enabled the user to upload their experiment files, start 

experiments, collect results and authenticate the grid proxy. However, the previous 

framework doesn’t give access to grid services through handheld devices. In this paper, 

we purpose a new extensible framework and design methodology for grid access from 

any type of devices that based on Data Centric Model and Globalisation architecture 

where interaction was based on a combination of multiple modalities that are induced by 

different media and different navigation paradigms. This new portal was tested with 

Web-Based client, PDA client, and WAP phone client. In this paper, we have 

demonstrated that huge mode combinations in hypermedia can accommodate large user 

needs and tasks. Amongst such needs, that of accessibility holds pride of place. 

Accessibility isn’t just about serving groups of disabled users [10], the same standards also 

enable web access by phone and Personal Digital Assistants (PDA). Also, we will 

demonstrate how it impacts on accessing the Grid environment through Grid Broker. In 

this experiment, our new G-Monitor interface will interact with the Gridbus Resource 

Broker [2] , a part of Gridbus project [23].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

iii 

Acknowledgement 
 
I wish to express my deep gratitude to my supervisor and mentor Dr. Rajkumar Buyya. I 

thank him for his continuous encouragement, confidence and support, and for sharing 

with me his knowledge and experience. Moreover, I would like to thank my colleagues 

Martin Placek and Srikumar from Grid Computing and Distributed Systems (GRIDS) 

Laboratory. Martin Placek was the developer of the previous version of G-Monitor. He 

told me a lot of his past experiences on the previous G-Monitor, his valuable idea and 

skills he imparted through the collaboration. Besides that, I would like to thank Srikumar 

since he helped me to set up the testbed in his Grid Resource Broker that running in 

Sydney, Canberra, Adelaide and Melbourne University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

iv 

Contents: 
 
Abstract…………………………………………………………………………………….……....ii 
 
Acknowledgement………………………………………………………………………………...iii 
 
Chapter 1: Motivation 
1.1 Introduction……………………………………………………………………….…………1 
1.2 Related Works…………………………………………………………………….…………4 
1.3 Use Case Study……………………………………………………………………….……..5 
 
Chapter 2: Mobile Appliance on HCI 
2.1    Our Methodology for designing Mobile Appliance Application…………………..………..8 
2.2    Implication for Accessibility Guidelines for Navigation on Mobile Devices…………...…13 
 
Chapter 3: A new G-Monitor Architecture 
3.1    Previous Architecture…………………………………………………………….………...16 
3.2    New Framework with Globalisation capabilities……………………………………….….18 
3.2.1 Globalisation Architecture……………………………………………………….………20 
3.2.2 Web Server Tier……………………………………………………………………..…...22 
 
Chapter 4: Design 
4.1 Data Centric Model VS Design Centric Model……………………………………….…...24 
4.2 Identifying the Client’s Capabilities to serve the proper content………………..….……...28 
4.3 XML Cache Generator or Generating XML Content……………………...………..……..31 
 
Chapter 5: Implementation 
5.1 Cross-Technology Implementation 
5.1.1 JDBC-MYSQL……………………………………………………………….………….32 
5.1.2 Java Server Pages…………………………………………………………....…………..33 
5.1.3 XML…………………………………………………………………………...……...….34 
5.1.4 DTD……………………………………………………………..……………………….36 
5.1.5 XSLT…………………………………………………………….…..…………………...38 
5.1.6 Session State………………………………………………………..…………………....40 
5.1.7 Post-Processing for Output Customisation and Filtering…………...………………..…..41 
 
Chapter 6: Experimental Results 
6.1 Client Side…………………………………………………...……………………………..44 
6.1.1 Desktop Web Browser……………………………….…..…………………………...….45 
6.1.2 WAP Phone……………………………………………………………………………....46 
6.1.3 PDA Client…………………………………………………………………………...…..47 
 
Chapter 7: Conclusion and Future works……………………………………………………..…..48 
 
References……………………………………………………………………………………..….49 
 
 
 



1 
 

Chapter 1: Motivation 
 
1.1 Introduction 
 
Grids provide the infrastructure to harness a heterogeneous environment comprising of 

geographically distributed computer domains, to form a massive computing environment 

through which large scale problems can be solved. For this to be achieved, Grids need to 

accommodate various tools and technologies that can support: security, uniform access, 

resource management, scheduling, application composition, computational economy and 

accounting [3][4]. In addition, Grids need to provide a ubiquitous user-interface that hides 

complexities associated with the deployment and management of execution applicable to 

experiments using distributed resources under Globalisation architecture. Globalisation is 

not a feature – it is an architecture [25]. In the context of G-Monitor, Globalisation is a 

suitable design, services and procedures so that G-Monitor can provide multilingual 

information with culturally correctness (for example, date, time, currency and number 

formats) from the intended broker such as Gridbus Broker, Storage Resource Broker and 

etc. However, the current version of G-monitor [1] was created to provide the users with a 

pervasive interface that allows them to monitor and control the execution of their 

applications. Besides that, it also provides a multi-user environment where the users are 

able to deploy and collect experiment files, authenticate their grid proxy and analyze 

graphs illustrating experiment progress. Nevertheless, we belief today “Networked 

World”, all devices will require the ability to communicate with environment. This makes 

the terms of “Mobility” and “Roaming” become very important and necessity for 

everyone in their daily life. Hence, people wish to get information easily in any location 

and any time. 

 

Mobile application is considered a type of hypermedia application since it 

combines the flexibility of navigation based-access to information with typical use of 

hypertext and allows communication with multiple media. By the nature of hypermedia 

applications, it is supported with multimode interaction. In this thesis, we use the 1st 

version of G-Monitor as our case study in this thesis and provide a better framework and 



   
 

2 

methodology, which give access through different type of devices while hiding all the 

implementation details of the services, allowing it to be used independently of the 

hardware or software platform by having a framework that loosely coupled, component-

oriented, cross-technology implementations. It illustrated in Figure 1. 

 

 
Figure 1: How multiple type of devices use G-Monitor Portal. 

 

A sample wide-area Grid computing environment is shown in Figure 2. In this 

environment, the Grid consumers interact with GRBs (Grid Resource Brokers) such as 

Nimrod-G [7] responsible for scheduling applications on the distributed resources, based 

on their availability, cost, capability, and user-specified QoS (Quality of Service) 

requirements. 

 

 

 



   
 

3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A Sample Grid Computing Environment and key components 

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databaseR2
R3

RN

R1

R4

R5

R6

Grid Information Service

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databasedatabaseR2
R3

RN

R1

R4

R5

R6

Grid Information Service



   
 

4 

 
 
 

1.2 Related works 
 
In the context of design methodology for grid access from handheld devices, it is 

advisable to mention the Condor Grid Computing from Mobile Handheld Devices [12], 

which provides the technical issue, based on the hierarchical design methodology. 

However, in that paper they just provide the system overview design and its prototypes. 

In addition to that, basically they are only focusing on how their framework can be access 

from handheld devices. Besides that, they are a number of projects have explored 

development of toolkits for development of Grid portals and construction of application 

specific portals. Some representative efforts include GridPort [5] and HotPage [6] from an 

Diego Supercomputing Centre, GPDK (Grid Portal Development Kit) [7] from Lawrence 

Berkeley National Laboratory, Legion portal [8] from the University of Virginia, GRB 

portal [9] from University of Lecce, SGE (Sun Grid Engine) Technical Portal [10] from Sun 

Microsystems, and PBSWeb [11] from the University of Alberta. Unlike these systems, the 

unique core objective of G-Monitor is that it has been designed to provide access to high-

level Grid services (e.g., the Nimrod-G broker and Gridbus scheduler). As high-level 

Grid services (e.g., Nimrod-G) are in turn implemented using low-level Grid services 

(e.g., Globus), they hide issues related to the identification of resources that are suitable 

for running user applications and their aggregation. Conversely, in our new G-Monitor 

methodology, we combine the Computer Science discipline and Human Computer 

Interaction discipline to provide a feasible, flexible and extendable model to enhance our 

previous G-Monitor architecture for our future development. 

 

 

 

 

 

 

 



   
 

5 

 

 

1.3 Use Case Study 
 
Research carried out at The University of Melbourne, by the Experimental Particle 

Physics (EPP) group [13] and the GRIDS Lab, involves investigation into the development 

of Grid technologies for high energy physics. The EPP group is a member of the Belle 

collaboration, which consists of 400 physicists from 50 institutions around the world [14]. 

The Belle experiment, situated at the KEK B-factory in Japan, is operational and has been 

collecting data and producing results for a number of years. G-Monitor has been used in 

the Belle application analysis on global Grids demonstration at the 4th PRAGMA 

workshop [15] [16] held in June 2003, Monash University, in Melbourne, Australia. The 

demonstration involved the construction of a data grid test bed. The grid test bed was 

constructed within 9 days prior to the PRAGMA workshop and was made possible by the 

loan of high performance servers from IBM Asia Pacific. The demonstration setup 

depicting application deployment and access locations of various Grid entities is shown 

in Figure 3. Servers from around Australia were used to analyze data collected from the 

Belle simulations. During the demonstration G-Monitor was used to manage and monitor 

experiment progress at both application and job levels. An application jobs execution 

statistics plot from the experiment are shown in Figure 4 and this is on of those 

functionalities from the current G-Monitor that will be bring over to our new framework. 



   
 

6 

 

 

 

 

In our new framework, we will map and bring over all the functionality from the previous 

G-Monitor and provide some more other features to extend the core functionality of the 

G-Monitor itself to coup with the complexity of Grid Architecture and it’s usage. 

Moreover this new framework will serve the request not only from web browser only but 

even more, such as PDA, J2ME enabled device, WAP phone, Web Services and off-line 

browsing capabilities. These additional features are: 

° Customization of PDA screen output using parameters setting based on user or 

device preference. 

Figure 3: G-Monitor Usage during the HPC Challenge Demo @ SC 2002 

Figure 4: Sample of Graphs results generated by G-Monitor  



   
 

7 

° Ability to handle multiple languages and provide multilingual data, based on 

Globalisation Architecture with the use of Locale Model. 

° Support browsing from other handheld devices not only for web browsing. 

° Generate dynamic jobs information table based on screen size and user 

preference. 

° Sharing “Grid Proxy Authentication” Permission Security. 

° Graph generator using SVG (New XML standard) – Testing Phase. 

 

Below are those functionalities from the current G-Monitor that will be bring over to our 

new framework: 

1. Retrieve and set QoS (quality of service) parameters, such as Deadline, Budget 

and Optimisation preferences. 

2. Monitor/Control Jobs Information, such as Start, Stop, Grid node status and 

Execution time.  

3. Monitor Resource status, such as Server name, Host name, Service cost and 

Status. 

4. Monitor Experiment status, such as Deadline, Budget, Job status and Resource 

status. 

5. Multi-User Interface User login and User preferences relating to available brokers 

and interface. 

6. Real time graphs, Refer to Figure 3 

o Graphs of the experiment progress are provided throughout experiment 

execution. 

7. Start Experiment 

o Ability to upload experiment files using the G-Monitor interface and start 

experiments. 

8. Grid Authentication 

o Ability to update Grid Authentication, without the need to access the 

Nimrod Broker. 

9. Collect Experiment Files 

o Upon completion, experiment files with results can be collected. 



   
 

8 

Chapter 2: Mobile Appliance on HCI 
 

2.1 Our Methodology for designing Mobile Appliance 
Application. 

 
Grids enable the sharing, selection, and aggregation of a wide variety of resources 

including supercomputers, storage systems, data sources, and specialized devices that are 

geographically distributed and owned by different organizations for solving large-scale 

computational and data intensive problems in science, engineering, and commerce [24]. 

Hence, we come out with a new methodology and framework to overcome our previous 

G-Monitor. Moreover we apply the Human Computer Interaction principal in our context 

to enhance usability in our new G-Monitor Web-based portals that meant to hide low-

level details of accessing Grid services for deployment and execution management of 

applications. The reason behind of applying principal of HCI in our G-Monitor context is 

because we want to provide a uniform interface that can support not only expert user or 

technical person but also novice person. This uniform interface must map all our 

supported devices that can access to our G-Monitor portal. Today information retrieval is 

needed for 24 hours a day, 7 days a week, regardless of their location or activity at the 

moment. Therefore, we come out with a new framework that supports access through 

handheld devices such as PDA and cellular phones. Now scientists can access to our new 

G-Monitor portal anytime and anywhere. We studied and come out with a new 

methodology that uses HCI principal in our design discipline. 

 

Human-Computer Interaction (HCI) for mobile appliance is a discipline 

concerned with design of technological guidelines that are effective, efficient and 

satisfying to use in mobile context approaches. Mobile devices present HCI designers 

with five main challenges that were posted in the CHI conference in the year 2001. 

Today, they still remain the top challenges in Mobile HCI with reference to the CHI 

conference that was last held in September 2003. 

 

 

 



   
 

9 

Limited input/output facilities, Since the early eighties, much work was done on 

improving the readability and comprehension of information displayed on small screens 

such as those of cash machines (ATM).  Duchnicky, Kolers [17] and Dillon et al [18] 

discovered that users are able to read information that is displayed on very small screens 

comprising only a few lines of text without adversely affecting the ability to understand 

and compile information. Nowadays, however, most mobile users claim that mini screens 

are totally inadequate for information presentation and it is mainly because of their long-

term preferences (Desktop PC) quality rather than readability issues! Most handheld 

browsing often feels like browsing on a PC with a shrunken desktop. Over-reliance on 

scrolling is a big problem in current handheld browsers. Users are only able to view a 

small and limited portion of each page, which causes them to lose comprehension of the 

overall context. Also, in terms of usability users may feel lost in a large page and be 

forced to remember the locations of items as those items scroll out of view. According to 

Nielson “Experience from many other user interface platforms indicates that a bigger 

screen leads to better usability than a small screen and that a graphical user interface 

adds even more usability”[19] Currently, most researchers are focused on how to best use 

the limited area to present the increasing functionality of the devices as well as presenting 

complex information on these limited screens by using early research finding in the field 

of information visualisation. Certainly on a larger display surface, improvements in 

layout and font are desirable for the sake of readability and quality, but on a smaller 

display, the improvements must be evaluated to determine whether better readability is 

worth any sacrifice in the amount of text displayed. In general, portability tended to 

outweigh these problems when the texts were shorter and the reading shallower, more for 

the purpose of familiarization with the text. Research found that we could characterize 

on-screen reading practices on the handheld as converging on quick reading, skimming, 

and scanning to meet the needs of high time-constraints [20]. In this paper, we also 

addressed the fact that it was useful to utilise multiple modalities to access and interact 

with information services via any mobile devices. This can ensure that at least one 

mechanism is available for every person and situation. In particular, the combination of 

voice input together with graphical selections, as well as the combination of graphical 

and audio output, is very likely to become the predominant interaction paradigm for users 



   
 

10 

of tiny mobile devices. By using this multi-interface, the user can flexibly switch between 

several information display modes, including the display of text and graphics, audio 

display and effective combinations of multiple modes. During the designing stage, we 

can decide what display modes are the most functional based on available HCI guidelines 

detailing which media combinations are more appropriate considering a mobile user’s 

task and situation.  

 

Varying and incomplete context information, One of the most challenging issues 

is relatively on how to adhering Human Mental Model concurrent to design around the 

apparently, which conflicting goal of adapting to changes in a context. This problem 

needs to be dealt with carefully whereby the system should behave as the Human Mental 

Model and adhere to the principle of least astonishment.  Human mental models are 

generally simpler than reality since people build models of how the world works and that 

comes from the past experience, instruction and training. We use previous G-Monitor as 

a vehicle to explore this issue.  

 

Controls vary within context, target users and environment. The concept of 

control is another fuzzy decision that should be analysed in HCI studies since it needs to 

be considered whether or not it is best to provide the user with a high level of control 

with complex or arduous interaction or to provide high level control with limited choices. 

There are pros and cons in these issues. The advantage of a complex or arduous 

interaction is that users are enabled to dynamically change the context based on his/her 

preference, but novice users might find it is too daunting and would prefer a simpler 

approach such as a “single button for action or shortcut” which falls under limited choice 

control. The natural problem of information pulling is that users would forget the action 

required, in order to retrieve information using their device. This problem seemed to be a 

challenge for HCI studies because it wasn’t a simple interface design issue, but rather a 

problem to do with the human short-term memory issue whereby humans can hardly 

memorise all stuff at once. It wasn’t surprising that the information pushing mechanism 

may help in this issue since actual presentation of context-aware information is triggered 



   
 

11 

by contextual events (e.g. Alert user when their job finished). In this matter, HCI studies 

will help us to figure out the interesting variations on the ‘control’ issue concerns on how 

the system is perceived by the user within the environment; either system acts as a 

companion (Information Pull) or guardian (Information Push).  

 

Aiming on common users, Normally users will not have any idea or probable 

training on the application or even device, so the application interface should be designed 

as “one suits all”. Time is valuable for users, they will not want to read help manuals and 

have to learn how to use the application. Their expectations are to be able to spend time 

on the system accomplishing their goals with little or no frustration. In practice, task and 

user analysis are the most difficult jobs in HCI, acquired because it requires a deep 

understanding of the users, rather than the design of the functionality itself as the system 

interface must match target users’ skills, expectation and needs. In the real world, users 

are extremely diverse, “The design is satisfactory to one, doesn’t mean it will be 

satisfactory to others”. In this case, we should study the entire targeted users and come 

out with a superset of interface that nearly satisfies all users based on HCI guidelines. 

Exploiting the user’s prior knowledge by making interface objects seem like objects that 

the user is familiar with can reduce user feeling of complexity to the system. There are a 

few distinct gold guidelines that were raised by the well-known graphic designer, 

Clement Mok and the Usability engineer, Jakob Neilson in the year 2000 CHI 

conference. 

 

Clement Mok claims “ good is about clarity of communication, or good is about usability 

or good is about performance, when in fact a good product should nuances of grey in 

between ” [21] 

 

Jakob Neilson claims, “ Feel always dominate more than Look! ” [21] 

 

 

 



   
 

12 

Mobility and Multitasking, In practice, people often buy a specific mobile device to 

encourage a specific interaction and mobility. It may be a pioneering conversation piece 

with a style they consider attractive, or it may be a device, which supports an active role-

playing where the user interacts with others people around him or her. With the advent of 

GPRS, aimed at increasing the data rate to 115 kbps as well as other emerging high-

bandwidth bearers such as Wi-Fi, 3G and later 4G, the reality of access speeds equivalent 

or higher to that of a fixed-line scenario become evermore believable. This makes the 

terms of “Mobility” and “Roaming” become very important and necessary for everyone in 

their daily lives. Now people wish to obtain information easily in any location and at any 

time - this is the reason the term Mobility shows a tendency to become an important issue 

in our context of G-Monitor. In the future “Networked World”, all devices will require the 

ability to communicate in a pervasive environment. In terms of usability studies, users 

will be transparent to the network protocol and systems will be designed in such a way 

that it is enabled to carry out network migration on its own without user intervention. 

However, in HCI there weren’t any appropriate guidelines to deal with network 

transparency for users. In terms of Multitasking, mobile devices should be designed to 

enable them to accept input events at all times, even while executing commands. The 

successful desktop design, which enables multitasking capabilities, can be used as a 

guideline on designing mobile systems. A good example of multitasking that is currently 

supported in mobile devices is its “call waiting” capabilities. 

 

 
 

 
 
 
 
 
 
 
 
 



   
 

13 

2.2 Implication for Accessibility Guidelines for Navigation on 
Mobile Devices. 

 
There is growing amount of legislation and guidelines relating to accessibility on the 

Web, which include the World Wide Web Consortium (W3C) and its Web Accessibility 

Initiative (WAI). However, most of the guidelines are difficult to apply in a mobile 

context since it is either too general or too specific (HTML) so that a wide range of 

products is not supported. In an ideal world, a mobile application or site needs to be 

designed to be informative, attractive and accessible from anywhere and anytime. To be 

able to deal with those issues, we need to involve an in-depth knowledge of how people 

interact with information by navigating through sites.  

 

When designing mobile-enabled application such as the G-Monitor portal we 

should minimize the adaptation of the users existing mental model to reduce volatility 

when using the application. In practice, most people design applications in such way that 

users need to navigate by scrolling or paging since there is a huge amount of data being 

displayed. However, there are still a number of people designing mobile applications in a 

way that summarises text as well as selects keywords and reduces the amount of images. 

With this method, users can generally navigate for more information if they request. In 

general navigation will affect user experience and it is based on context as well as user 

needs. The issue of navigation will be discussed now… 

 
Reflections on Small Screen Devices Since the display size of mobile devices such as the 

PDA is much smaller than that of desktop computers, the amount of information that is 

visible at one time is dramatically reduced. As a result, this will increase the number of 

pages, therefore making it necessary that content be reorganized or modified in order to 

suit small screen devices. Jones et al (1999) found that path lengths were shorter for small 

screen users than users who used the normal sized computer screens. Besides that, we 

found that small screens with short lines slow down the speed of reading by disrupting 

the normal pattern of eye movements. Moreover, since the amount of information that 

can be displayed on the screen at one time is limited, much time is spent manually 



   
 

14 

scrolling or paging the text. Also, we found that the organisation of the content and the 

purpose of the service are key issues in determining the usability of mobile services such 

as in G-Monitor. From the previous implementation of G-Monitor, we argued that we 

should reduce the amount of information and to make the content more focused based on 

the “Value-Focused” approach, whereby we should provide main core navigation based 

on user wishes, concerns, problems, and values in mobile applications. When we redesign 

our G-Monitor layout, we found that constantly visible navigation bars require too much 

display space and reduce the amount of space for context. Inside the article “End of Web 

Design”, Jakob Neilson also claims that we shouldn’t spend screen space on navigation 

except when absolutely necessary. We do agree with his approach, but from our point of 

view, although context is the main priority for mobile devices we still need to spend time 

investigating how to make a reusable, shortcut and meaning navigation for users in 

mobile devices without spending extra screen space. We found many research groups 

trying to use transparent widgets, separate navigation layers, and rapid serial visual 

presentation RSVP of text techniques to implement navigation for browsing on small 

displays. This is a good sign in the Mobile Device arena. 

 
Accessibility Guidelines on Navigation Refer to Web Accessibility Guidelines for Navigation 

section, we summarized the important issues into 3 sub categories, X Be sure that all 

links indicate that they are links. Y Be sure that all links clearly indicate their 

destinations.Z Provide a search facility or index for direct access to content. In the real 

world, users prefer an easy way rather than a hard way for navigation, since humans are 

mostly lazy and they prefer all devices to work as in their mental model without having to 

relearn. Navigation in the context of mobile devices is the activity by which users move 

or navigate around the facilities that are provided on the mobile devices. Ease of 

navigation is the second most important usability issue of websites (2nd priority) [1], after 

performance. However, for mobile device guidelines, I argued that it should be 

categorised as the 1st priority since a well-designed application or site should allow users 

to navigate quickly and efficiently to the content. This makes it easy for users to figure 

out where to find a specific piece of information without getting lost or sidetracked. 

Although Context is important for users in mobile environment, but without a proper 



   
 

15 

form of navigation, context will be hidden in user perspective. Having good navigation 

can improve user experience on the product. A good interface of navigation will help 

users build a mental map of the screen structure of the application or site. This will 

provide ease-of-use paradigm on the application itself and reduce the amount of time 

users spend on navigation when using the application. 



   
 

16 

Chapter 3: A new G-Monitor Architecture 

3.1 Previous Architecture. 
 
The advent of the previous version of G-Monitor was to overcome problems and 

limitations associated in using interfaces with heavy bandwidth requirement. It was host 

by Apache web server and programmed using Perl that called by Apache’s CGI module. 

Therefore, it only supports access through web browser only. In addition to that, the 

current implementation is based on Design Centric Model. It was fully tested with the 

Nimrod-G server and Gridbus Broker whereby the transport modules were implemented 

using IO-Socket module, Net-FTP-Common module, and Net-Telnet module. Besides 

that, previous version stores information locally on the G-Monitor server as a normal 

plain text format to remembers user preferences and we always encounter data integrity 

problem. Hence, in the our new framework, we stores every single user information and 

their preferences in MYSQL databases since it store information in more secure manner 

and provides SQL facilities. The previous implementation, take the advantage of Perl 

scripting since it provide a free GD graphics library to generate graphs in Portable 

Network Graphics, PNG format and open source Telnet and FTP Module. In our new 

framework, we provide access through different type of devices while maintaining the 

capability of lightweight interface and provide multilingual capabilities. The previous G-

Monitor framework is shown in figure 5. 

 



   
 

17 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Previous G-Monitor’s Architecture 



   
 

18 

 
 

3.2 New Framework with Globalisation capabilities. 
 

In our new framework of G-Monitor, we decided to keep the existing Apache web server 

since it provide the Apache SOAP module for the Web Services functionality. Since, our 

new framework switch from pure Perl language to Java and X-Family technologies such 

as XML, XSL and XPath, we have to use Tomcat server resides behind Apache Web 

server to deploy JSP pages as the web module in server side. In testing stage, we are 

using Tomcat version 3.2.3 rather than Tomcat 5 because it easy to check error from the 

server console. Once we finalise our framework and everything, we will deploy our 

whole portal under Tomcat 5, known as production server. Figure 6 shown how this new 

framework being divided into component level and how these components interact 

among themselves. The first level is front-tier level since it consists all type of devices 

that are able to use our portal services. In this stage, we currently only targeted on PDA, 

Web Browser, WAP phone and J2ME enabled devices. Our next target client is .NET 

Web Services enabled application since we wish to provide services that enable any 

applications to use our API through Web Services call. Our Web Services will accepts all 

requests from others systems across the Internet or an Intranet or mediated by lightweight 

application. This will allows any network-enabled system interact with our backend Web 

Services module for our structured XML data generated by MiddleNet Module which 

extracting information from Gridbus Broker. Eventually system integration through Web 

Services will happen dynamically at runtime but now Just-in-time integration will herald 

a new era of B2B integration over Internet. This is why we need to deploy Web Services 

component inside our current framework. Besides that we have a Multilingual Content 

Transformation module to transform our information into the targeted devices that 

defined in front-tier. In session 3.2.2, we will explain all the Business & Communication 

Logic Component and Server-Side Components. 

 
 
 
 
 
 



   
 

19 

��� ��� � ����� 	 �


�� ��
�� � � � � � 	
��� ��� � �

� � � � � � � � � 	���� � � � �

������ �!��"
�� � � � �

��� � ��� � #�� ����� ��� � �


�� ��$�� � %&	 � �
'�� 	 ( � � ) *�+ � , ��- 
.��/


�� ��$�� � %&	 � �
* '�!

* � � ( � � *  !&) ) � � � � � � � ,
 �01��� ��� � �

2���� � � � � �
'�� � � � � 	
3 4���2

5�� � �6��� 	 � � � � ��$�� � ( � �

3 � ��7 , 8 � � ��� � � � ,


�� � � � ��7 , 8 � � ��� � � � ,

�9� 	 � � � � �
7 , 8 � � ��� � � � ,

#9� ��� � ��5 * � � � � � � � -��� * 9� ����� , � � � � � � ,

* � � 	 � , � � � � � ,�/ � :�� ��-
�� ����� � � � ��; 3 
 * 2�, :�� , � <

!&� � + � , � � � � � � � ,���� ��� � �

=

$�� � ( � ��>�	 � ��7 , � � � 8 � � �

5�� � �6��� 	 � � � � �6? 5�� � �6�9� 	 � � � � ��4 5�� � �6��� 	 � � � � ��#

��� 	 �
!&� � + � , � � � � � � � ,; 
�� � � � � � @ <

!9) � � + ��
A� ��
�� � � � �

!9) � � + ��
���! *

��� � , 	 8 � � ��� � � � ,�/ � : � �

��� � � � � � , :�� � �  &� , � � , �
��� � , 	 8 � � ��� � � � ,

����� * !�: � , ��'�� � � � � � � ,

B C D B C D B C DE�E�E�E�E

'�� � � � ��'�� � � � � � � ,�/ � : � �

F���/� 9� � + ��5�� , � � � � � �

G H G G H G G H GE�E�E

B I�D

J K L M N K
O P Q L K R�S T U L P

C N V W K U T X
Y S Z [�\ N X

] Z N K
O P Q L K R�S T U L P

^�K S _ [
^ N P N K S T L K ` a b ^

^�K S _ [
^ N P N K S T L K ` C c ^

d L e e N V T f U e N Z

g N Z L W K V N
O P Q L K R�S T U L P

^ N T h L i
O P Q L K R�S T U L P

C T S K T j k _ N K U R�N P T

$�� 	 � , � 	 	�l
 9� ����� , � � � � � � ,

/ � :�� �

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: New G-Monitor Architecture 



   
 

20 

3.2.1 Globalisation Architecture. 
 
How can globalization features enhance the users experience customer when using G-

Monitor portal? The intention of G-Monitor was to provide a ubiquitous user-interface 

that hide low-level details of accessing Grid services for deployment and execution 

management of applications. In general, scientists or researcher as a group in all around 

the world with different language background are much more likely to visit and use this 

portal if they can read its contents easily. Hence, this portal should serve multiple 

languages and providing users with globally enabled portal, as it is not use by English 

like people only. In order for us to implement multilingual for G-Monitor portal, we 

decided to use the Unicode technology to encode XML data to enable Java’s capabilities 

for multilingual support, since it is the universal character-encoding scheme for written 

characters and text in a consistent way for handling multilingual text interchange 

internationally. At the very least, this portal must be able to: 

 

� Provide jobs, resources, brokers information and registration form in the user's 

language and cultural setting (for example, date format or currency symbol), 

based on the browser's setting or the user's selection. 

� Accept input in the user's language and cultural setting. 

� Users can choose language and cultural preferences. 

� Information should be store and display on the user’s own language and intended 

format (for example, name and address). 

 

In globalisation the word “locale” was borrowed by software engineering from 

geography to indicate that the distribution of human cultural expectations of computer 

behavior fall into clusters that can be grouped together, most commonly by language and 

country or region [25]. We used the concept of “locale” to classify different cluster to 

different language specification and cultural specification. Moreover, we have to study 

how to handle numbers in different cultural or locale even if the decimal system (base 10) 

is used in almost every country of the world but we found number format vary 

considerably and in some important context, traditional (non-decimal) numbering 

systems still in used. In our context, currency format becoming an important issue for us 



   
 

21 

to handle and different countries or regions have different formats and rules for currency, 

for example in Europe is called Egyptian Pound, US is called US Dollar, China is called 

Yuan Renminbi, Malaysia is called Ringgit Malaysia. Besides the currency format, we 

found that there are currency separators rules that we need to follows, for example Pound 

used apostrophe for thousand separator while US, China and Malaysia used comma for 

their thousand separator. In globalization point of view, input and output of multilingual 

data is an important issue but in our context we only emphasize on output since we have 

no interest on handle complex input, especially Chinese. The reason behind is we do not 

want to spend time on researching on language aspect and come out with some grammar 

checking capabilities in our portal to verify user input. Currently we are in the progress of 

researching how to fully utilize the ICU libraries that maintained by IBM for the benefit 

of IBM and its customers. This library makes us easy to add robust Unicode and 

internationalization support to various aspects in our context. We are planning to use: 

 

� Calendar support 

� Character set conversions 

� Number and currency formatting 

� Date and time formatting 

� Time zones 

 

For more information on ICU4J, please refer to http://oss.software.ibm.com/icu4j/ and for 

ICU4C, please refer to http://oss.software.ibm.com/icu/ 

 

 
 
 
 
 
 
 
 
 
 
 
 



   
 

22 

3.2.2 Web Server Tier. 
 
Below describes all components inside our framework and its details description. Table 1 

describes all Business & Communication Logic Component. While, Table 2 describes all 

Server-Side Components reside in our framework. 

Table 1: Business & Communication Logic Component 

Business & Communication 
Logic Component 

Description 

Authentication Responsible for Grid Proxy Authentication, telnet 
remote broker and issue grid-proxy-init commands 
based on user specification 

Start Experiment Provides the user with the functionality to start 
experiments on the broker using existing files or upload 
on real time from those supported G-Monitor interfaces. 

Collect Files Upon completion of experiment the user is able to 
download their resultant experiment files from the 
broker. 

Get Job Information List all the job status and description to the user. 
Resource Information Lists all the available resources to the user. 
Graph Generator, PNG 
(Existing) - Currently act as 
the default graph generator. 

Runs constantly on the actively monitored experiment 
and any experiments the user wishes to monitor in the 
background. The scripts responsible poll the Broker for 
the current experiment status at user specified interval 
and log it in a file. This file is then used to generate 
experiment graphs.  

Graph Generator, SVG Generate graph based on the job status and resource 
status at requested time in Scalable Vector Graphics 
(SVG) format. This is another application of XML that 
designed to create two-dimensional graphics using 
XML. SVG 1.1 received the W3C recommendation 
status on Jan 2003 and SVG 1.2 is currently in the 
Working Draft status. Since SVG 1.1 is so new in W3C, 
only mozilla browser supported with the plug-in. In 
order to view SVG graphs on unsupported browser, you 
have to download SVG Viewer from Adobe Web Site 
[22].  Currently, we still testing on the capabilities and 
usefulness on the SVG Graph Generator. 

 
 
 
 
 



   
 

23 

Table 2: Server-Side Components 

Server-Side Components Description 
Device Detection Logic - 
HTTP Agent Detection Tier 

Detect the supported MIME type and forward it to 
Transformation Logic module. Please refer to details 
explanation at “Identifying the client's capabilities to 
serve the proper content” in Web Server Tier section. 

Transformation Logic – 
Multilingual Content 
Transformation Tier 

Content all the design of presentation tier for supported 
client in XSL format. Moreover, it is a bean that due 
with the issue of Globalisation and usage of locale 
model. 

Presentation Logic - Facilities 
Tier 

This tier provide interface to Grid Resource Broker by 
given Facilities for users to invoke! 

Presentation Tier or Web 
Module 

Is a presentation tier for client! This tier is sub divided 
into 3 sub tier that contains HTTP Agent Detection Tier, 
Multilingual Content Transformation Tier and Facilities 
Tier 

XML Cache Generator This tier only generate XML content that response from 
Grid Resource Broker when user invoke functionality in 
facilities tier. Please refer to details explanation at 
“XML Cache Generator or Generating XML content” in 
Web Server Tier section. 

Web Services Module Provide Web Services interface to Grid Resource Broker 
via MiddleNet bean. This services use by C# .NET 
Mobile Web Services Application or any type of Web 
Services Client. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

24 

Chapter 4: Design 
 

4.1 Data Centric Model VS Design Centric Model. 
 
 

 
 
 
Problem: 

Combination of design code (for example, HTML, WML and etc) + Script provides no 

separation of logic and presentation. Previous G-Monitor Implementation was design 

based on Design Centric Model, which shown in figure 7. 

 

 

 

 

Most of the web site written in these technologies (Perl, PHP & etc) will have problem in 

developing website that serve one content for multiple different type of client or design. Since 

these technologies need to be code in such way that business logic, content (data) and design 

(style) of the document need to be mixing together (Design Centric Model). The previous 

implementation of G-Monitor is the example of problem that we encountered since it developed 

using Perl scripting language whereby it mixes the presentation tags with content. Based on 

previous implementation, if we going to develop the portal to be able to access from different 

type of devices which illustrated in Figure 8 or even multilingual portal which followed the 

Design Centric Model, we have to write 3 pieces of code that combine logic, data and design. 



   
 

25 

Moreover, it needs more times to do separation between data and design when doing maintenance 

or re-design the portal. Besides that, encapsulate the data from the site is very hard and can be 

costly if the complexity increase. Hence, this will duplicate our work and effort when develop 

such a portal that support accessing from different type of devices, that illustrated in figure 9.  

 

 

 

Solution: With the use of XML, XSLT & JSP technology is capable of overcome the problem on 

designing site that can support different type of devices that follows Data Centric Model 

paradigm rather than Design Centric Model. Java technology, Java Beans enables the creation of 

platform-independent business logic modules in backend and JSP enables to act as a controller in 

MVC model, while XML complements java by enabling the creation of platform-independent 

business data that can be encoding in Unicode, UTF-8, Big5 and etc. Since Java technology and 

XML are built on Unicode, programs and data can be fully internationalised. Besides that, both 

technology enable software design based on loose coupling where by reduces restrictions and 

eliminates similarity requirement between cooperating system and avoids problems that occurs as 

a result of foreseeable changes to the software. In addition to that, XML is the best technology to 

fit with Globalisation architecture.  

 



   
 

26 

 

 

Our design methodology, “XML, XSL & JSP” model shown in figure 10 follows the Model-

View-Controller model which allows web sites to be highly structured and well-designed, 

reducing duplication efforts and site management costs by allowing different presentations of the 

same data depending on the requesting client (HTML clients, PDF clients, WML clients) and 

separating out different contexts with different requirements, skills and capacities. Our 

framework is based on separation of: 

 

1. Content 

o Information of the real content 

2. Style 

o Presentation, look & feel 

3. Logic 

o Business Logic 

 

This Model is similar to Model-View-Controller (MVC) model, whereby XML document acts as 

the Model, and the JSP in the Web Server Tier as the Controller, and the XSL file is the View. 

Then, by changing only the XSL file, different views can be generated. Besides that it follows 

pure Data Centric Model rather than Design Centric Model. Benefit of our “XML, XSL & JSP” 

model that shown in figure 10 is easily extend to support Globalisation capabilities by providing 

same set of content or model in different language and different set of style or view based on 

cultural needs on supported locales, as shown in figure 11. The difference from previous 

implementation of G-Monitor is that cultural and language-independent program code calls 

cultural and language-dependent information at runtime, thereby greatly reducing the expenditure 

of cost and effort otherwise invested throughout the product life cycle. 



   
 

27 

 

 

 
 
 
 



   
 

28 

4.2 Identifying the Client’s Capabilities to serve the proper 
content. 

 
The content dynamically generated by the JSP in facilities module or in Presentation 

Logic must be in a format supported by the requesting client. In our case, our G-Monitor 

portal is able to access from different type of clients (for example: Desktop Web 

Browser, PDA Browser, WAP Phone and J2ME). Hence, our “HTTP Agent 

Detection” is responsible to identify the capabilities of a requesting client in order to 

respond in a proper format. The selection of the proper content type is made according to 

a configuration table (MIMETypeMap.properties) that maps a given category of 

clients to a particular MIME type. This MIME type is used as the response content type. 

The two steps are:  

 

1. Identify the client and its capabilities. 

The identification of the capabilities of a requesting client is based on the values of 

both fields of the HTTP request header: User-Agent and Accept. According to the 

specifications of HTTP 1.1, the User-Agent field can contain product tokens (i.e., 

product names and versions) and comments identifying the requesting client. While 

Accept field in the header contains the lists of MIME types accepted by the client. All 

of the below results are taken in the testing stage of our new G-Monitor portal. For 

example, when issuing a request from Internet Explorer 6.1, Mozilla 1.5 and Nokia 

5100, the User-Agent field is respectively: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UserAgent (Internet Explorer 6.1):  

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322) 

 

UserAgent (Mozilla 1.5):  

Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.5) Gecko/20030925 

 

UserAgent (Nokia 5100):  

Nokia5100/2.0 Profile/MIDP-1.0 Configuration/CLDC-1.0 



   
 

29 

For example, when issuing a request from Internet Explorer 6.1, Mozilla 1.5 and 

Nokia 5100, the Accept field in the header is respectively:  

* The token */* stands for any MIME type 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. Map the client to a MIME type. 

We design the framework in order to for the configuration file 

MIMETypeMap.properties able to add more supported MIME types in the 

development time without recompile the our “HTTP Agent Detection” class or 

even recoding. This configurable file contains user agent categories with its 

associated MIME types, which located externally from the “HTTP Agent 

Detection” bean. This technique allows the definition of generic and specific 

mapping rules, starting with the most specific and ending with the most generic. The 

process of mapping the client to a MIME type as follows and shown as UML 

Sequence Diagram in figure 12 and 13: 

1. “HTTP Agent Detection” retrieves the value of the User-Agent header field 

from the request. 

2. For each product token, “HTTP Agent Detection” extracts the fully qualified 

product name (i.e., the product name and its version) and the product name by 

itself. 

3. “HTTP Agent Detection” looks up the corresponding MIME type in the 

configuration file MIMETypeMap.properties, starting with the fully qualified 

name. If this fails, it proceeds with the product name; if this fails it iterates again 

on the next product tokens 

Accept (Internet Explorer 6.1):  

*/* 

Accept (Mozilla 1.5):  

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,i

mage/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1 

 

Accept (Nokia 5100):  
text/vnd.wap.wml, application/vnd.wap.wmlscriptc, application/vnd.wap.xhtml+xml, 

application/xhtml+xml, application/java 



   
 

30 

4. If none of the product tokens can be mapped to a MIME type, it gets the value of 

the Accept header field from the request. Then, for each advertised accepted 

MIME type, it looks up the corresponding MIME type in the map. Ultimately, it 

returns the default MIME type: text/html 

5. The return of the response MIME type will be forward to “Multilingual Content 

Transformation” bean to further process on the transformation. 

 

 

 
 

 



   
 

31 

 

4.3 XML Cache Generator or Generating XML Content. 
 
In our application, XML Cache Generator that resides in MiddleNet bean is used only to 

generate the XML response content from Grid Resource Broker. The XML content for 

each response is generated: 

1. By constructing the corresponding DOM (Document Object Model) tree according to 

the corresponding DTD (Document Type Definitions). 

2. By serializing it to generate the XML stream or output as XML file type. 

 

This approach ensures a clean generated document without having problem of unclosed 

tags when writing a java program to generate XML stream or file. Furthermore, having 

the XML documents represented internally as a DOM tree allows for more effective post-

processing, in our case is applying style sheet. MiddleNet bean will generate the DOM 

trees when the results return from the Grid Resource Broker using the Nimrod-G protocol 

by calling its data2XML (String inputStream, String type) method. Once 

a DOM tree is created, it is serialized on the response output stream to generate the actual 

response that apply with appropriate style sheet. The whole scenario is illustrated in 

figure 13. 



   
 

32 

Chapter 5: Implementation 
 

5.1 Cross-Technology Implementation. 
 
5.1.1 JDBC-MYSQL. 
 
In this framework, we using MYSQL database to store sensitive information such as 

broker details and user information in backend system rather than just flat file. Hence, we 

using JDBC native driver to communicate with MYSQL database since the backend 

framework was programmed in Java. The following are the functionalities that we chose 

to used to optimise the communication between JDBC native driver with MYSQL 

database: 

1. Prepared Statement 

- In Most Cases, SQL Statement will be sent to DBMS right away, where it will be 

compiled. As a result, the PreparedStatement object contains not just a SQL 

Statement, but also an SQL statement that has been precompiled. This means that 

when the PreparedStatement is executed, the DBMS can just run the 

PreparedStatement’s SQL statement without having to compile first. 

- It reduce execution time even if my backend java code execute Statement object 

many times 

2. Using Transactions 

- It allows SQL statements to be group together for execution as a unit and helps to 

preserve the integrity of the data in a table. 

- We use transactions when we need to add entry simultaneously for “brokers” and 

“usersbrokers” table. 

 



   
 

33 

5.1.2 Java Server Pages. 
 

Java Server Pages, JSP technology is an open, freely available specification developed 

by Sun Microsystems. JSP pages use JavaBeans technology as the component 

architecture to enable the separation between presentation tier and business tier. 

Moreover, it provides a number of capabilities that ideally suited for working with XML 

since it can use the full power of the Java platform to access programming language 

objects to parse and transform XML messages and documents.  Below shown how we 

use JSP to import the XML parser and XSLT transformation engine inside my code: 

 
 
 
 
 
Furthermore, JSP technology provides an abstraction mechanism to encapsulate 

functionality for ease of use within a JSP page. JavaBeans is a portable, platform-

independent java component model that lets us write components and reuse them 

everywhere in our framework. In this framework, we using JavaBeans as server side 

component to augment JSP pages because: 

� Since this project is work for GRIDS Laboratory and Resource Broker [2] 

developed by Srikumar was programmed in JAVA. It makes system easy to integrate 

and able to reuse code. 

� It allows separation of business logic and presentation logic. Thus, you can alter 

the way data is displayed without affecting business logic.  

� As reusable components since it allows us to reuse the components in other 

application in within the framework. 

� Protecting the framework intellectual property by keeping source code secure.  

 

 
 
 
 

<%@ page import="javax.xml.transform.*"%> 
<%@ page import="javax.xml.transform.stream.*"%> 
 



   
 

34 

5.1.3 XML 
 

XML stands for the eXtensible Markup Language and developed by W3C (World Wide 

Web Consortium) as a subset of SGML, primarily to overcome limitations in HTML. 

HTML has more than 100 tags and supported by thousands of application including 

email, editor, browser and more. Even though HTML was so important and successful in 

Internet arena but it has some shortcomings and it has turned into a maintenance 

nightmare for W3C. HTML tags serve primarily purpose of describing how to display a 

data item, conversely XML enabled heterogeneous computing environment to share 

information over World Wide Web since XML tags describe the data itself or self-

describing and it can be semantically independent or dependent. Hence it possible for 

program to interpret data in many ways, can filter the document based upon its content, 

can restructure it to suit the application’s needs and so forth. The other advantage is XML 

concentrates on the structure of the document and this makes it independent of the 

delivery medium. In this way XML brings the same cross-platform benefits to 

information exchange as the Java programming language has for processing. Moreover, 

User-defined tags is another key advantage on developing new language based on XML 

standard, the good examples are WML and SOAP.   

 

Below is example of how XML represents structure and semantic of a login page: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Structure for “ Login.xml ” 
 
<?xml version="1.0" encoding="utf-8"?> 
<Login> 
 <form validate="mainMemberProcess.jsp" method="post"> 
   <input-element> 
    <content>Member ID</content> 
    <input type="text" name="frmMemberID"/> 
   </input-element> 
   <input-element> 
    <content>Member Password</content> 
    <input type="password" name="frmMemberPassword"/> 
   </input-element> 
 </form> 
</Login> 



   
 

35 

Besides that, XML is used to represent the information or message given by Resource 

Broker via TCP communication channel or it is a data format that represents data in 

serialized form that can be transported over network from one endpoint to another: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example of “ <session_id>-getjobinfo.xml ” 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE NimrodG_Command SYSTEM "Common-SingleInfo.dtd"> 
<NimrodG_Command> 
  <getjobinfo> 
    <jobID>j45</jobID> 
    <status>ready</status> 
    <host>none</host> 
    <server>s3</server> 
    <time>none</time> 
  </getjobinfo> 
</NimrodG_Command> 



   
 

36 

5.1.4 DTD 
 
DTD stands for the Document Type Descriptor (or an equivalent to XML Schema) and it 

is a schema for a set of XML Documents and used to describe the structure of XML 

documents.  An XML document is valid if a DTD or XML schema is associated with it 

and if the document complies with that DTD or X-Schema. Without DTDs or their 

equivalent, XML will never reach its full potential because a tagged document is not very 

useful without some agreement among inter-operating applications as to what the tags 

mean. We use DTDs in our framework to check the validity of the XML data generated 

by MiddleNet module when ever it communicate with Grid Resource Broker using 

Nimrod-G (Broker User Interface or API).  

 

For example when MiddleNet send a Nimrod-G command “getdonejobs” to Grid 

Resource Broker via TCP communication channel: 

 

 
 
 
 
 
 
 
 
Generated XML result must conform the Nimrod-G protocol using DTD as below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example of issuing Nimrod-G Command “getdonejobs” 
 

Processing Command: getdonejobs 
Return results: j115 j139 j73 j155 j135 j31 j58 j81 j18 j145 j187 
Nimrod-G Protocol: <job_0>whitespace<job_1>whitespace...<job_N> 

 

“Common-SingleInfo.dtd” 
 

<!ELEMENT NimrodG_Command (getjobinfo|getserverinfo)> 
<!ELEMENT getjobinfo (jobID,status,host,server,time)> 
<!ELEMENT getserverinfo (serverID,host,user,status)> 
<!ELEMENT jobID (#PCDATA)> 
<!ELEMENT status (#PCDATA)> 
<!ELEMENT host (#PCDATA)> 
<!ELEMENT server (#PCDATA)> 
<!ELEMENT time (#PCDATA)> 
<!ELEMENT serverID (#PCDATA)> 
<!ELEMENT user (#PCDATA)> 



   
 

37 

 
 

 

 

 

 

 

 

“Common-Jobs.dtd” 
 

<!ELEMENT NimrodG_Command 
(getdonejobs|getexecjobs|getfailjobs|getreadyjobs|getjobs)> 
<!ELEMENT getdonejobs (jobID*)> 
<!ELEMENT getexecjobs (jobID*)> 
<!ELEMENT getfailjobs (jobID*)> 
<!ELEMENT getreadyjobs (jobID*)> 
<!ELEMENT getjobs (jobID*)> 
<!ELEMENT jobID (#PCDATA)> 



   
 

38 

5.1.5 XSLT 
 

XSLT stands for the eXtensible Stylesheet Language Transformation and it is a 

mechanism to convert an XML document from one schema to another. A stylesheet 

specifies a number of template-matching rules and applies them in a recursive tree-

traversal similar to the Document Object Model (DOM) paradigm. An XSLT engine can 

use this stylesheet to transform XML documents to another format (such as WML, SVG, 

PDF and etc) depending on what kind of client made the request. For example, if a 

request coming from a web browser, it might be returned in XHTML or HTML format, 

while the same request coming from a wireless device, it might be returned in WML. An 

XSLT stylesheet’s syntax is very expressive and contains a full repertoire of loops, 

conditionals and mathematical expressions, along with function-like constructs and the 

concepts of scope and recursion. In our implementation, we used the following nodes of 

an XSLT stylesheet: 

� <xsl:stylesheet> 

� <xsl:template match=”” name=””> 

� <xsl:element name=””> 

� <xsl:attribute name=””> 

� <xsl:apply-template select=””> 

� <xsl:text> 

� <xsl:value-of select=””> 

� <xsl:for-each select=””> 

� <xsl:call-template name=””> 

� <xsl:if test=””> 

� <xsl:choose> 

� <xsl:when test=””> 

� <xsl:otherwise> 

� <xsl:sort> 

 

In this framework, we used Java API for XML Processing (JAXP), which enables 

applications to parse and transform XML documents using an API that is independent of 

particular XML processor implementation. Below is part of the code that we extracted 



   
 

39 

from the framework. The first line shown how we create an instance of the 

TransformerFactory class and used it to create a Transformer Object that reads the 

XSLT stylesheet and convert the templates within it into a Templates object: 

 

 

 
 
 
 
 
 
 
Below is one of the XSL that apply in this framework that works as Parameter Builder 

and Form Handler: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<?xml version="1.0" encoding="utf-8" ?> 
<xsl:stylesheet version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 
 <!-- ******* Parameter Builder ******** --> 
 <xsl:template name="paramBuilder"> 
   <xsl:param name="name" /> 
   <xsl:param name="value" /> 
   <xsl:if test="string-length($value)>0"> 
            <xsl:value-of select="$name" />=<xsl:value-of  
             select="$value" />, 
        </xsl:if> 
 </xsl:template> 
 <!-- ******* Form Handler ********* --> 
 <xsl:template name="formText"> 
   <xsl:param name="size" select="’20’" /> 
   <xsl:param name="name" /> 
   <xsl:param name="value" /> 
     <input type="text" name="{$name}" size="{$size}"> 
   <xsl:attribute name="value"> 
   <xsl:value-of select="$value" /> 
   </xsl:attribute> 
     </input> 
 </xsl:template> 
 <xsl:template name="formTextArea"> 
  <xsl:param name="rows" select="’5’" /> 
  <xsl:param name="cols" select="’40’" /> 
  <xsl:param name="name" /> 
  <xsl:param name="value" /> 
  <textarea name="{$name}" rows="{$rows}" cols="{$cols}"> 
   <xsl:value-of select="$value" /> 
  </textarea> 
 </xsl:template> 
       ..... More 
</xsl:stylesheet> 

// XML Transformation inside JSP 
 
TransformerFactory tFactory = TransformerFactory.newInstance(); 
 
Transformer transformer = tFactory.newTransformer(new 
StreamSource(xslFile)); 
 
transformer.transform(new StreamSource(xmlFile), new 
StreamResult(out)); 
 



   
 

40 

5.1.6 Session State 
 
We implement session state component to keeps track the session between users and the 

portal since it consists of caches and session information associated with a particular 

session initiated by user when the login to the portal. This technique enables the portal to 

identify a user across more than one page request or visit to the portal. The current 

implementation of session between HTTP client and HTTP server contains information 

about environment cache, a credentials cache, session ID, member information and 

device type which can be added using interface that provided by JSP or Servlet container. 

This information is important when setup user environment with portal environment 

since access to any G-Monitor functionality, including the credentials file is controlled by 

a session ID generated by JSP runtime-code. Moreover, bind objects to sessions allowing 

user information to persist across multiple user connections. The session will valid as 

long as users keep using the same terminal or browsers when using the services after they 

logged in. The session ID is large numeric sequence of random numbers that is extremely 

hard to falsify. The current implementation of session ID is constructed by function that 

provided inside java.lang.String package that called getId(). The identifier is 

assigned by the servlet container and returns a string containing the unique identifier 

assigned to this session. If any time, the session ID from the browser doesn’t match the 

saved session ID, the session is terminated. Thus, a user’s session can be compromised 

only if he/she communicates his session ID to an intruder and keeps the session valid by 

interacting with the portal. 

 
 
 
 

 



   
 

41 

5.1.7 Post-Processing for Output Customisation and Filtering 
 
This portal was designed based on selective data dissemination where specific XML data 

is selectively generate directly from the response of Grid Resource Broker or relayed to a 

large number of distributed clients. This XML data will share by heterogeneous medium 

thus transformation between medium-specific XML formats are necessary. Therefore, we 

used XSLT stylesheet to transform entire XML stream or document from one medium 

format into another and uses XPath Query to control the part of the XML tree to be 

transform. Moreover, we also use XPath Query to customise the XML and filtering 

multiple XML data for later post-processing (such as medium design transformation, data 

for business logic processing and data from Web Services Querying) since XPath was 

proposed by W3C as a standard for addressing parts of XML and as a filter specification 

language. XPath enables us to refer to specific section of XML documents since it get its 

name from its use of path notation as in URLs for navigating through the hierarchical 

structure of an XML document. In XPath language, paths can be specified as absolute 

paths from the root of the document tree or as relative paths from a known location. A 

query path expression consists of sequence of one or more location steps. The 

hierarchical relationship between the nodes are specified in the query using parent-child 

“/” operators and ancestor-descendant “//” operators. For example the below XPath query 

is taken out from one of the XSL transformation files that addresses all jobID element 

descendants of all getfailjobs elements that are direct children of 

NimrodG_Command (root) element in the document ($documentName1): 

 

 

This powerful language also allows the use of a wildcard operator “*” that matches any 

element name at a location step in a query. Moreover, it allows us to include one or more 

filters to further improve the selected set of nodes. Each filter is a predicate that is applied 

to the element(s) addressed at that location step and all filters at a location step have to be 

evaluated as TRUE in order for the evaluation to be continue to the descendant location 

steps. For example, consider the query that extract from below figure: 

 
 

select=’document($documentName1)/NimrodG_Command/getfailjobs//jobID 

test="$pageNumber &lt;= $PCounter and $pageNumber &gt; 0" 



   
 

42 

 
This query will return TRUE if the variable pageNumber is less or equal to variable 

PCounter and variable pageNumber must greater than 0. For another example, consider 

the query of:  

 

 
 
 
This query will selects all jobID elements where jobID greater than 20. 

 

The advantage of XPath in XSLT implementation allows us to easily implement 

customisation and filtering capabilities on top of our Grid-Monitor framework. This 

customisation and filtering allows us to post information to multiple devices based on the 

devices information retrieval capabilities. Besides that we can easily transform the 

unstructured data from Grid Resource Broker into devices based oriented structured data. 

The meaning of devices based oriented structured data in our context is structure-based 

information that based on the constraints of the devices itself. For example, our portal 

will filter all unnecessary information before post the customise information to mobile 

devices in order for them to render it. The below code “XPath Query – Dynamic Job 

Table Generator” is one of this portal’s code that exemplified the power of the XPath 

language and XSLT language in our context. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

//NimrodG_Command/getfailjobs/jobID > 20 



   
 

43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“XPath Query – Dynamic Job Table Generator” 
 
<xsl:template name="tableGenerating"> 
 <xsl:param name="TCounter" /><xsl:param name="PCounter" /> 
 <xsl:param name="JobType" /><xsl:param name="size" /> 
 <xsl:param name="NoColumn" /> 
 
  <xsl:if test="$pageNumber &lt;= $PCounter and $pageNumber &gt; 0" > 
  ... 
    <xsl:for-each select="jobID"> 
     <xsl:sort order="ascending" data-type="number" /> 
      <xsl:if test="position() &lt;= ($TCounter * $pageNumber) and position()  
       &gt; (($pageNumber - 1) * $TCounter)" > 
      <xsl:choose> 
        <xsl:when test="position() mod $NoColumn = 0" > 
   ... 
          <xsl:value-of select="substring(substring- 
           before(substring($JobType,4,string-length($JobType)),’Jobs’),- 
           ((string-length(substring-before(substring($JobType,4,string- 
           length($JobType)),’Jobs’))-2)),string-length(substring- 
           before(substring($JobType,4,string-length($JobType)),’Jobs’)))" /> 
   ... 
         <xsl:if test="position() != ($TCounter * $pageNumber)" > 
          ... 
         </xsl:if> 
        </xsl:when> 
        <xsl:otherwise> 
   ... 
   <xsl:value-of select="substring(substring- 
           before(substring($JobType,4,string-length($JobType)),’Jobs’),- 
          ((string-length(substring-before(substring($JobType,4,string- 
           length($JobType)),’Jobs’))-2)),string-length(substring- 
           before(substring($JobType,4,string-length($JobType)),’Jobs’)))" /> 
   ... 
         <xsl:if test="position() = $size" > 
            <xsl:call-template name="TDGenerator"> 
       <xsl:with-param name="PCounter" select="$NoColumn - ($size mod  
              $NoColumn)" /> 
              <xsl:with-param name="temp" select="1"/> 
            </xsl:call-template> 
         </xsl:if> 
        </xsl:otherwise> 
      </xsl:choose> 
      </xsl:if> 
    </xsl:for-each> 
   ...  
  </xsl:if> 
</xsl:template> 
 
<xsl:template name="TDGenerator"> 
 <xsl:param name="PCounter"/> 
 <xsl:param name="temp"/> 
   <xsl:if test="$temp != ($PCounter + 1)"> 
 ... 
    &#160; x &#160; 
 ... 
 <xsl:call-template name="TDGenerator"> 
     <xsl:with-param name="PCounter" select="$PCounter" /> 
            <xsl:with-param name="temp" select="$temp + 1"/> 
 </xsl:call-template> 
   </xsl:if> 
</xsl:template> 
 



   
 

44 

Chapter 6: Experimental Results 
 

6.1 Client Side. 
 
Our portal can be used on any type devices that supporting mark-up language such as 

HTML, XHTML, WML, XML and SVG. Plus in future, it also supports Web Services 

client (C# application client) and J2ME client. After we study on HCI approach, we came 

out with a design that suits all type of user including expert and novice user. Moreover, 

since our framework is based on Globalisation architecture, our client will receive the 

appropriate type output based on cultural, location, time and language. Rather than that, 

the user can change their user preferences and customise the interface portal. Figure 14 is 

shown the sample of Web Browser portal user interface. Besides that, our portal also 

supports WAP Client and tested with Nokia 5210 SDK, which developed by Nokia. The 

limitation of mobile screen size makes PDA widely used. Therefore, our portal can be 

access through PDA browser or PDA client application. In our current framework, PDA 

client application meant to be the Client version of Web Services application and it is still 

under research. Figure 16 shown the screen shot of the PDA user interface when 

accessing portal services. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

45 

 
6.1.1 Desktop Web Browser. 
 

  
 
 

  
 
 

  
 
 
 
 
 
 
 
 

Figure 14: Screen shot from Desktop Web Browser 



   
 

46 

6.1.2 WAP Phone 
 
We tested on Nokia 5100 SDK which running on Windows 2000. This SDK is provides 

full Nokia WAP phone API. This SDK is meant for developer like us to use in testing 

stage. More details specification of the Nokia Developer Toolkit, please refer to Nokia 

Forum: http://www.forum.nokia.com [29] 

 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Screen shot from Nokia 5100 SDK 



   
 

47 

6.1.3 PDA Client 
 
We tested on Compaq iPAQ H3900 Series which running on Windows CE 4.20. 

.    
 

   
 

   
Figure 16: Sample of PDA User Interface taken by digital camera 



   
 

48 

Chapter 7: Conclusion and Future works. 
 

In this paper, we have proposed a Globalisation Framework (G-Monitor) for Managing 

and Monitoring Application Execution on Global Grids through “Multiple Devices”. 

Moreover, we also came out our methodology for Mobile Appliance that based on 

Human Computer Interaction discipline. All of these researches that we carried out was 

to improve the previous version of G-Monitor Architecture and came out with a more 

robust architecture that can coup the changes of the current technology. However, we are 

still in the earlier stage of having a full version of globalization portal due to the language 

barrier problem but our designed architecture was based on globalisation point of view. 

As the result of our effort, our portal can be access through most of the handheld devices 

and in the future we are targeting for more type of users and even Agent based 

application. The below are some of the future plan for our portal: 

 

� Supporting Client based Web Services. 

� 100% globalisation based portal.  

� Support more language such as French and Japanese. 

� Real-Time statistic report from the grid resource broker. 

� Support Push message mechanism, send SMS or email to user when requested 

experiment is finished. 

� Provide namespace for all the XML elements that we used. This will prevent 

duplication of same XML element name using by other people. 

 
 
 
 



   
 

49 

References: 
 
[1] Martin Placek, and Rajkumar Buyya “G-Monitor Enhanced: A Web Portal for Managing and  
    Monitoring Application Execution on Global Grids”, Proceedings of the Internasional  
    Workshop on Challenges of Large Applications in Distributed Environment (CLADE 2002), In  
    conjunction with the 12th International Symposium on High Performance Distributed  
    Computing (HPDC 2003), June 21-24, 2003 Seattle, USA 
[2] Srikumar Venugopal, Rajkumar Buyya and Lyle Winton “A Grid Resource Broker for  
    Scheduling Distributed Data-Oriented Application on Global Grids”, IEEE Supercomputing  
    Conference (SC 2004), NOV 2004, Pittsburgh USA. 
[3] I. Foster and C. Kesselman (editors), “The Grid: Blueprint for a future Computing  
    Infrastructure”, published by Morgan Kaufmann, USA 1999” 
[4] R. Buyya, D. Abramson, and J. Giddy, “An Economy Driven Resource Management  
    Architecture for Global” Computational Power Grids, Proceedings of the 2000 International  
    Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA     
    2000), Las Vegas, USA., June 2000.  
[5] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K. Mueller, D. Sutton, “The GridPort Toolkit  
    Architecture for Building Grid Portals”, Proceedings of the 10th IEEE International Symposium 
    on High Performance Distributed Computing, Aug 2001. 
[6]   NPACI HotPage - https://hotpage.npaci.edu/ 
[7]  J. Novotny, “The Grid Portal Development Kit”, Journal of Concurrency and Computation: 
    Practice and Experience (CCPE), Volume 14, Issue 13-15, Wiley Press, Nov-Dec 2002. 
[8]  A. Natrajan, A. Nguyen-Tuong, M. Humphrey, M. Herrick, B. Clarke, and A. Grimshaw,  
    “The Legion Grid Portal”, Journal of Concurrency and Computation: Practice and Experience  
   (CCPE), Volume 14, Issue 13-15, Wiley Press, Nov.-Dec., 2002. 
[9]  G. Aloisio, M. Cafaro, P. Falabella, C. Kesselman, R. Williams, “Grid Computing on the Web  
    using the Globus Toolkit”, Proceedings of the 8th International Conference on. High  
    Performance Computing and Networking Europe (HPCN Europe 2000), Amsterdam,  
    Netherlands, May 2000.  
[10]  Sun, “Sun Grid Engine Portal”, http://www.sun.com/solutions/hpc/pdfs/TCP-final.pdf 
[11]  Sun, “Sun Grid Engine Portal”, NPACI HotPage - https://hotpage.npaci.edu/ 
[12]  Francisco J. Gonzalez, Javier Vales, Miron Livny, Enrique Costa and Luis Anido, “Condor  
     Grid Computing from Mobile Handheld Devices”, Mobile Computing and Communication  
     Review, Volume 6, Number 2. 
[13]  Experiment Particle Physics group, The University of Melbourne,  
     http://epp.ph.unimelb.edu.au/epp/  
[14]  Grid Computing prototype demonstrated in Melbourne, The Age, June 5, 2003 
     http://www.theage.com.au/articles/2003/06/05/1054700318561.html 
[15]  PRAGMA Demonstration, http://epp.ph.unimelb.edu.au/epp/grid/pragma.html 
[16]  PRAGMA, Pacific Rim Applications and Grid Middleware Assembly, The 4th Workshop,  
     June 5-6, 2003, http://www1.qpsf.edu.au/pragma/index.html 
[17] Duchnicky, R L & Kolers, P A (1983) “Readability of text scrolled on visual display terminals   
     as a function of window size,” Human Factors, 25:683–692 
[18] Dillon, A, Richardson, J & McKnight, C (1990) “The Effect of Display Size and Text Splitting  
     on Reading Lengthy Text from the Screen,” Behaviour and Information Technology, 
[19] Nielsen, J (1999). “Graceful degradation of scalable internet services, WAP: wrong 
approach to portability,” Alertbox 31/10/1999 
     http://www.useit.com/alertbox/991031.html 
[20] Catherine C. Marshall and Christine Ruotolo, “A Study of Reading on Small Form Factor  
     Devices” ACM paper year 2002. 



   
 

50 

[21]  Conversation with Clement Mok and Jakob Neilsen on CHI 99 to addressed “ Web design  
     limit to HCI” 
[22] Download SVG Viewer from Adobe Web Site  
     http://www.adobe.com/svg/viewer/install/main.html 
 [23]  Grid Computing and Distributed Systems (GRIDS) Laboratory Project,      
     http://www.gridbus.org 
[24] Mark Baker, Rajkumar Buyya and Domenico Laforenza, “Grids and Grid 
technologies for  
     wide-area distributed computing” Software – Practice and Experience (SP&E), 2002 in press. 
[25] Xiao hui Zhu, Ming Zhu Cui, Bei Shu, Yi Zhen Xu, Xia Li, Ming Li, Fei Qu “e-business  
     Globalization Solution Design” ibm.com/redbooks  
[26] Unicode Home Page  
     http://www.unicode.org  
[27] Web Services Internationalization Usage Scenarios 
     http://www.w3c.org/TR/ws-i18n-scenarios/ 
[28] XPath 1.0 specification and 2.0 requirement. 
     http://www.w3c.org/TR/xpath/ 
     http://www.w3c.org/TR/xpath20req/ 
[29] Nokia Developer Forum 
     http://www.forum.nokia.com/main.html/ 
 
 
 
 
 

 
 
 


