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Abstract

The next generation of scientific experiments and studiesbaing carried out by
large collaborations of researchers distributed arouedntbrld engaged in analysis of
huge collections of data generated by scientific instrusigatid computing has emerged
as an enabler for such collaborations as it aids communmit&saring resources to achieve
common objectives. Data Grids provide services for acngsseplicating and managing
data collections in these collaborations. Applicationsdus such Grids are distributed
data-intensive, that is, they access and process digdhilatasets to generate results.
These applications need to transparently and efficientigssdistributed data and com-
putational resources. This thesis investigates propeofielata-intensive computing en-
vironments and presents a software framework and algosittemmapping distributed
data-oriented applications to Grid resources.

The thesis discusses the key concepts behind Data Grid®anzhces them with other
data sharing and distribution mechanisms such as contkvemyenetworks, peer-to-peer
networks and distributed databases. This thesis provioiepiehensive taxonomies that
cover various aspects of Data Grid architecture, data pi@atetion, data replication and
resource allocation and scheduling. The taxonomies argethfp various Data Grid
systems not only to validate the taxonomy but also to betteletstand their goals and
methodology.

The thesis concentrates on one of the areas delineated taxbromy — schedul-
ing distributed data-intensive applications on Grid reses. To this end, it presents the
design and implementation of a Grid resource broker thatiamesiaccess to distributed
computational and data resources running diverse middéewde broker is able to dis-
cover remote data repositories, interface with variougdieigdare services and select suit-
able resources in order to meet the application requiresnehihe use of the broker is
illustrated by a case study of scheduling a data-intensiglk énergy physics analysis
application on an Australia-wide Grid.

The broker provides the framework to realise scheduliretegies with differing ob-
jectives. One of the key aspects of any scheduling stratethyel mapping of jobs to the
appropriate resources to meet the objectives. This thessepts heuristics for mapping
jobs with data dependencies in an environment with hetexeges Grid resources and
multiple data replicas. These heuristics are then compaitbdperformance evaluation
metrics obtained through extensive simulations.
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Chapter 1

Introduction

This chapter introduces the context of the research to ksepted in this thesis. It starts
off with an introduction to the general area of Grid compgtand Data Grids, and dis-
cusses the motivation and challenges for schedulingbiig&d data-intensive applications
in such environments. Then, it presents a short overviewsuurce brokers and schedul-
ing, and presents the primary contributions of this redearthe chapter ends with a

discussion on the organisation of the rest of this thesis.

1.1 Grid Computing

The next generation of scientific applications in domaindieerse as high energy physics,
molecular modelling, and earth sciences involve the prdin®f large datasets from
simulations or large-scale experiments. Analysis of tliedasets and their dissemination
among researchers located over a wide geographic areaeedugh capacity resources
such as supercomputers, high bandwidth networks, and n@asges systems. Collec-
tively, these large scale applications are now part of e/®a [101], a discipline that
envisages using high-end computing, storage, networkidg/#eb technologies together
to facilitate collaborative and data-intensive scientibsearch. e-Science requires new
paradigms in Internet computing that address issues suofuldisdomain data sharing
applications, co-operation and co-ordination of resosii@ed operations across system
boundaries.

Grid computing [84] paradigm unites geographically-dstted and heterogeneous

1



2 Chapter 1. INTRODUCTION

computing, storage, and network resources and providesdngecure, and pervasive ac-
cess to their combined capabilities. Therefore, Grid ptats enable sharing, exchange,
discovery, selection, and aggregation of distributedrogiEneous resources such as com-
puters, databases, visualisation devices, and sciensficiments. Grid computing, there-
fore, leads to the creation of virtual organisations [88abgwing geographically-distributed
communities to pool resources in order to achieve commoectilsgs.

Grid computing has the potential to support different kidsapplications. They
include compute-intensive applications, data-intenspplications and applications re-
quiring distributed services. Various types of Grids haeerb developed to support
these applications and are categorized as Computationd$,@ata Grids and Service
Grids [123]. A large number of e-Science applications rexjaapabilities supported by
Data Grids. Realizing such Grids requires challenges to leecome in security, user
management, resource management, resource discovetgasipp scheduling, high-
speed network protocols, and data management. Howevar, tfre user’s perspective,
two important barriers that need to be overcome are the eoatplof developing Grid
applications and their scheduling on distributed resaircEehis thesis presents a soft-
ware framework for creating and composing distributed -dlaansive applications, and

scheduling algorithms for effectively deploying them oolggl Grids.

1.2 Data Grids and Application Scheduling

Data Grids [56, 106] primarily deal with providing servicasd infrastructure for dis-
tributed data-intensive applications that need to actesssfer and modify massive data-
sets stored in distributed storage resources. A Data Gmd & present the following
capabilities to its users: (a) ability to search through atons available datasets for the
required dataset and to discover suitable data resourcexd¢essing the data, (b) abil-
ity to transfer large-sized datasets between resourcesrnimimal time, (c) ability for
users to manage multiple copies of their data, (d) abilityatect suitable computational
resources and process data on them, and (e) ability to maagss permissions for
the data. Therefore, Data Grids aim to combine high-end coimgp technologies with

high-performance networking and wide-area storage maneagetechniques.
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To realise these abilities, a Data Grid needs to providesi@adrvices and APIs (Ap-
plication Programming Interfaces) for orchestratinga&odirative access to data and com-
putational resources. These include administration ttmreake it less cumbersome to
manage authenticating and authorising widely dispersedimes for accessing disparate
resources and data collections; data search tools to akk®nsuo discover datasets of
interest out of the hundreds and thousands that may be lleaiathin a collaboration;
intelligent data replication and caching services to em#luat the users can access the re-
quired datasets in the fastest and/or cheapest mannemdatgement tools and services
to allow users to upload data back into the collaboratioayigle useful descriptions for
other researchers and if required, enforce access cgraralsesource management ser-
vices and APIs to allow applications and users to utiliseitfi@structure effectively by
processing the data at idle resources that offer betteataumd times and reduced costs.
This thesis, however, concentrates on the challenges ditappn deployment on Data
Grids.

Scheduling and deployment of Grid applications is perfatimgresource brokerghat
hide the complexity of the underlying infrastructure byngsgorming users’ requirements
into Grid operations, that are then carried out withoutrtirgervention. Users describe
requirements such as the type of analysis, required eXglestalata dependencies, dead-
line for the execution and the maximum available budgetughosimple interfaces. The
resource broker creates jobs corresponding to the anabgisrements and discovers
suitable computational resources to execute the jobs gnypate data repositories for
accessing the data required for the jobs. It then deploysothe on selected Grid re-
sources, monitors their execution, and upon their congiettollates and presents the
results of the analysis to the users. By abstracting the émetldetails of dealing with
Grid resources, a resource broker helps its users focus signileg scenarios and ex-
periments that utilise the infrastructure thereby allapiinem to realise maximum utility

from their collaboration.

Figure 1.1 shows such a scenario that involves an applicatith distributed data
requirements. The data is generated by an instrument suglpagicle accelerator or a
telescope and is replicated at distributed locations. To&ds discovers the data repli-

cas by querying a directory such as Replica Location Ser{iReS) [55] and available
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Application
Services .
Y Grid PR »| Information
//' Resource Broker Services
Cataloguing ‘/
Services
3 | Globus Alchemi
Replica Collection WIII Ej e
Grid Node 1 Grid Node 2 Grid Node M

Figure 1.1: A Grid resource broker for Data Grids.

computational resources by querying information servgesh as Grid Index Informa-
tion Service (GIIS) [65]. Additionally, it may consult othenformation services such
as Grid Market Directory [221] for resource prices, reseuntonitoring services such
as Ganglia [178] for performance data, and applicationlegtees for information about
locations of applications. It then devises a schedule feceting the application taking
into consideration the computational performance, dataster requirements and costs
associated with resource usage.

In recent years, many resource brokers have been developéifférent applications
and to achieve different objectives [1, 12, 52, 74, 91, 183)wever, the needs of dis-
tributed data-intensive applications have not been takieraccount by these in either the
process of resource discovery or job scheduling. This sh@sisents the architecture and
design of a Grid resource broker that discovers suitable slatirces and computational
resources for a given distributed data-intensive applinatcenario; maps such jobs to
resources in order to achieve user-specified Quality ofi€&2fQ0S) metrics; deploys
and monitors job execution on selected resources; accgateBom local or remote data
sources during job execution; and collates and presentbises$ the execution to the user.

The execution of distributed data-intensive applicatiomslves requirements for dis-

covering, processing, storing and managing large digeibudatasets and is guided by
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factors such as cost and speed of accessing, transfermihgracessing data. There may
be multiple datasets involved in a computation, each raefdat at multiple locations that
are connected to one another and to the compute resourcestwygrks with varying
costs and capabilities. Consequently, this explosion ofcelsamakes it difficult to iden-
tify appropriate resources for retrieving and performihg tequired computation on the
selected datasets. This thesis, therefore, develops asdnis scheduling algorithms for

applications that require accessing massive datasetsatgal on multiple Grid resources.

1.3 Contributions

This thesis makes several contributions towards improWrggunderstanding of data-
intensive computing environments and towards advanciegatiea of scheduling dis-

tributed data-intensive applications on Grid resourcé®s€ are as follows:

1. This thesis discusses the key concepts behind Data Gritlsampares them with
content delivery networks, peer-to-peer networks andidiged databases. It pro-
vides a systematic characterisation of Data Grids and atigbr examination of
their differences with these distributed data-intensivechanisms. The objective
of this exercise is to delineate the uniqueness of Data Gmdisto identify tech-
nologies and algorithms developed in related areas thabeapplied to the target

research area.

2. This thesis provides comprehensive taxonomies that s@vus aspects of archi-
tecture, data transportation, data replication and regoalfocation and scheduling.
The proposed taxonomy is mapped to various Data Grid systetnsnly to vali-
date the taxonomy but also to better understand their goalsheeir methodology.

This also helps evaluate their applicability to similarlpeons.

3. This thesis presents the design and development of a €udirce broker for exe-
cuting distributed data-oriented applications on a Gride broker discovers com-
putational and data resources, schedules jobs based @\ nesprirements and re-
turns results back to the user. The broker follows a simpteeytensible object-

oriented model that is based on the strict separation of lagd data.
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4. This thesis presents a comprehensive resource andatppiienodel for the prob-
lem of scheduling distributed data intensive Bag of Taskiappbns on Data Grids.
The application can be split up or “decomposed” to obtainlkection of indepen-
dent jobs that each require multiple datasets that are eguticated on multiple
data repositories. The model takes into account the ecancwsis of processing a
job along with the execution time and the times for trangfigrthe required datasets

from different data hosts to the compute resource on whieloihwill be executed.

5. This thesis presents heuristics for mapping and schegldistributed data-intensive
jobs on Data Grid resources. It introduces a greedy hettlstit aims to minimise
either the total execution cost or time depending on the'suipeeference, subject
to the user’s deadline and budget constraints. It introslao®ther heuristic that is
based on a solution to the well-known Set Covering Problenesétare evaluated

both on real Grid testbeds and via extensive simulations.

1.4 Thesis Organisation

The rest of the thesis is organised as follows: Chapter 2 ptesa overview of Data
Grids and the comparison with other data distribution ammE@ssing technologies. This
is followed by Chapter 3 which proposes a taxonomy of Data €&search and classifies
some of the publications within this field accordingly. Tinedis then concentrates on
one of the areas delineated in the taxonomy - that of res@ll@eation and scheduling -
and introduces the design and architecture of the Gridbnlsebiin Chapter 4. Chapter 5
discusses the scheduling problem and also introduces dygheerristic for deadline and
budget constrained cost and time minimisation schedulfrtata-intensive applications.
Chapter 6 then discusses a graph-based approach towardsh#aikng problem and
presents a heuristic and its evaluation via simulation.aliinthe thesis concludes and
presents ideas for future work in Chapter 7.

The core chapters are derived from various articles putdisturing the course of the
Ph.D. candidature as detailed below:

Chapter 2andChapter 3are derived from:
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e Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao, “A Tax-
onomy of Data Grids for Distributed Data Sharing, Managenael Processing”,
ACM Computing Surveyd/ol. 38, No. 1, ACM Press, New York, USA, March
2006.

Chapter 4is partially derived from:

e Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid Service Broker
for Scheduling Distributed Data-Oriented Applications@lobal Grids”,Proceed-
ings of the 2nd International Workshop on Middleware for GZidmputing (MGC
04), Oct. 2004, Toronto, Canada, ACM Press, USA.

e Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid Service Broker
for Scheduling e-Science Applications on Global Data Grid3oncurrency and
Computation: Practice and Experiencéol. 18, No. 6, pp 685-699, Wiley Press,
New York, USA, May 2006.

¢ Krishna Nadiminti Srikumar Venugopal, Hussein Gibbins, and Rajkumar Buyya,

The Gridbus Grid Service Broker and Scheduler (2.0) Userd&uiechnical Re-
port, GRIDS-TR-2005-4, Grid Computing and Distributed Systdmaboratory,
University of Melbourne, Australia, April 22, 2005.

Comments: Krishna Nadiminti and Hussein Gibbins as members of thelfaisd
project have extended the Gridbus broker to operate witbntedevelopments in
low-level middleware and added various features requioegbfoduction Grid us-
age. Prior to their involvement, | was the primary developiethe broker and ap-
plied the same to many application studies including theeBdigh Energy Physics

application study reported in this thesis.
Chapter 5andChapter 6are partially derived from:

e Srikumar Venugopal and Rajkumar Buyya, “A Deadline and Budget Constrained
Scheduling Algorithm for eScience Applications on DatadStj Proceedings of
the 6th International Conference on Algorithms and Architezs for Parallel Pro-

cessingOct. 2005, Melbourne, Australia, Springer-Verlag, BertBermany.
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e Srikumar Venugopal and Rajkumar Buyya, “A Set Coverage-based Mapping Heuris-
tic for Scheduling Distributed Data-Intensive Applicatsoon Global Grids”Pro-
ceedings of the 7th IEEE/ACM International Conference on Guadnputing (Grid
2006) Sept. 2006, Barcelona, Spain, IEEE Computer Society PressAlamitos,

CA (accepted and in print).



Chapter 2

Data Grids: An Overview and

Comparison

This chapter provides a general overview of Data Grids tbaexs topics such as key
concepts, characteristics and a layered architectures CHapter presents an analysis of
the differences between Data Grids and other distributéal-idéensive paradigms such
as content delivery networks, peer-to-peer file-sharitgyorks and distributed databases.
It ends with a discussion on the convergence between theefoamd the latter and how

techniques in other data-intensive networks are findindgjegin in Data Grids.

2.1 Terms and Definitions

A data intensive computing environment consists of apptioa that produce, manipu-
late or analyse data in the range of hundreds of MegaBytes (bMBgtaBytes (PB) and
beyond [149]. The data is organised as collectiondaiasetsand are typically stored
on mass storage systems (also cahegositorie$ such as tape libraries or disk arrays.
The datasets are accessed by users in different locatioosnaly create local copies or
replicasof the datasets to reduce latencies involved in wide-ar&atdansfers and there-
fore, improve application performance. A replica may be mglete or a partial copy
of the original dataset. Aeplica management systesndata replication mechanisrmal-

lows users to create, register and manage replicas and s@aydate the replicas if the

9
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original datasets are modified. The system may also creglieas on its own guided by
replication strategieshat take into account current and future demand for thesdegalo-
cality of requests and storage capacity of the repositokiesadata or “data about data”,
is information that describes the datasets and could doofmttributes such as name,
time of creation, size on disk and time of last modificationetdlata may also con-
tain specific information such as details of the processpghaduced the data. feplica
catalogcontains information about locations of datasets and &ssakcreplicas and the
metadata associated with these datasets. Users querydlmgassing metadata attributes
to conduct operations such as locating the nearest regdle@articular dataset.

In the context of Grid computing, any hardware or softwargtyysuch as supercom-
puters, storage systems or applications that are sharegeetusers of a Grid is called
aresource However, for the rest of this thesis and unless otherwsed} the term re-
source means hardware such as computers or storage sy&esmirces are alswdes
in the network and hence, these terms are used interchdgpgddie network-enabled
capabilities of the resources that can be invoked by usppdications or other resources

are calledservices

2.2 Data Grids

A Data Grid provides services that help users discoverstemrand manipulate large
datasets stored in distributed repositories and alsojeciaad manage copies of these
datasets. At the minimum, a Data Grid provides two basictfanalities: a high perfor-
mance and reliable data transfer mechanism, and a scatgiliear discovery and man-
agement mechanism [56]. Depending on application req@nesn various other services
need to be provided. Examples of such services include stensy management for
replicas, metadata management and data filtering and redunechanism. All opera-
tions in a Data Grid are mediated by a security layer that lesraithentication of entities
and ensures conduct of only authorized operations.

Another aspect of a Data Grid is to maintain shared collestiof data distributed
across administrative domains. These collections aretaiagd independent of the un-

derlying storage systems and are able to include new sité®utimajor effort. More
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Figure 2.1: A High-Level view of a Data Grid.

importantly, it is required that the data and informatiosaesated with data such as
metadata, access controls and version changes be preseered the face of platform
changes. These requirements lead to the establishmernsidtpat archival storage [150].

Figure 2.1 shows a high-level view of a worldwide Data Gricigisting of computa-
tional and storage resources in different countries tretcannected by high speed net-
works. The thick lines show high bandwidth networks linkihg major centres and the
thinner lines are lower capacity networks that connectdtter to their subsidiary centres.
The data generated from an instrument, experiment or a mietwicsensors is stored in
its principal storage site and is transferred to the otheage sites around the world on
request through the data replication mechanism. Userg/ dheir local replica catalog
to locate datasets that they require. If they have beeneptdhe requisite rights and per-
missions, the data is fetched from the repository local &irtarea, if it is present there;
otherwise it is fetched from a remote repository. The datg beetransmitted to a compu-
tational site such as a cluster or a supercomputer facditpfocessing. After processing,
the results may be sent to a visualisation facility, a shegpdsitory or to the desktops of
the individual users.

A Data Grid, therefore, provides a platform through whicarssan access aggregated

computational, storage and networking resources to egdhatr data-intensive applica-
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tions on remote data. It promotes a rich environment foraiseanalyse data, share the
results with their collaborators and maintain state infation about the data seamlessly
across institutional and geographical boundaries. Ofted examples for Data Grids are
the ones being set up for analysing the huge amounts of datevihbe generated by the
CMS (Compact Muon Solenoid), ATLAS (A Toroidal LHC Appratu®).ICE (A Large
lon Collider Experiment) and LHCb (LHC beauty) experimentthatLarge Hadron Col-
lider (LHC) [131] at CERN when they will begin production in 200Vhese Data Grids
will involve thousands of physicists spread over hundredasiitutions worldwide and
will be replicating and analysing terabytes of data daily.

Resources in a Grid are heterogeneous in terms of operatunmgements, capability
and availability and are under the control of their own l@dhinistrative domains. These
domains are autonomous and retain the rights to grant useessto the resources under
their control. Therefore, Grids are concerned with issueh |s: sharing of resources,
authentication and authorization of entities, and resmoranagement and scheduling for
efficient and effective use of available resources. Ndiyiahta Grids share these general

concerns, but have their own unique set of characteristidshallenges listed below:

e Massive DatasetdData-intensive applications are characterised by theepresof
large datasets of the size of Gigabytes (GB) and beyond. Fongbe, the CMS
experiment at the LHC is expected to produce 1 PB(bytes) of RAW data and
2 PB of Event Summary Data (ESD) annually when it begins prtodn [104].
Resource management within Data Grids therefore extendsimining latencies
of bulk data transfers, creating replicas through appab@replication strategies

and managing storage resources.

e Shared Data CollectionResource sharing within Data Grids also includes, among
others, sharing distributed data collections. For exapga€icipants within a sci-
entific collaboration would want to use the same reposiagesources for data and

for storing the outputs of their analyses.

¢ Unified NamespaceThe data in a Data Grid share the same logical namespace in
which every data element has a unique logical filename. Tgedbfilename is

mapped to one or more physical filenames on various storageinees across a
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Data Grid.

e Access RestrictionstUsers might wish to ensure confidentiality of their data or
restrict distribution to close collaborators. Authentioca and authorization in Data

Grids involves coarse to fine-grained access controls dared data collections.

However, certain characteristics of Data Grids are spetifithe applications for
which they are created. For example, for astrophysics dn kigergy physics experi-
ments, the principal instrument such as a telescope or elpaaitcelerator is the single
site of data generation. This means that all data is writtensingle site, and then repli-
cated to other sites for read access. Updates to the sow@earagated to the replicas
either by the replication mechanism or by a separate cemsigtimanagement service.

A lot of challenges in Grid computing revolve around prowgliaccess to different
types of resources. Foster, Kesselman and Tuecke [88] rap®sed a Grid architec-
ture for resource sharing among different entities basedrar the concept offirtual
Organizations (VOs) A VO is formed when different organisations pool resouraed
collaborate in order to achieve a common goal. A VO definesdbeurces available for
the participants and the rules for accessing and using gwurees and the conditions
under which the resources may be used. Resources here imdtgest compute, stor-
age or network resources, they may also be software, daeintruments or business
data. A VO also provides protocols and mechanisms for agibics to determine the
suitability and accessibility of available resources. tagtical terms, a VO may be cre-
ated using mechanisms such as Certificate Authorities (CAsdrast chains for security,
replica management systems for data organisation anevaitend centralised scheduling
mechanisms for resource management.

The existence of VOs impacts the design of Data Grid archites in many ways. For
example, a VO may be stand alone or may be composed of a tigrafcegional, na-
tional and international VOs. In the latter case, the unyilegl Data Grid may have a cor-
responding hierarchy of repositories and the replica ¢sgoand management systems
will be structured accordingly. More importantly, sharimigdata collections is guided by
the relationships that exist between the VOs that own eateatollections. Subsequent

sections will discuss how Data Grids are differentiated loighsdesign choices and how
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APPLICATIONS APPLICATION

| High Energy Physics || Virtual Observatory | | Climate Modelling |

APPLICATION TOOLS

| Portals ” Collaboratories ” Remote Visualization | | Remote Instrumentation |

USER-LEVEL SERVICES DATA GRID SERVICES

| Replica Management ” Resource Brokering | | Virtual Organization Tools |

CORE SERVICES

| Replication || Discovery || Job Submission || Data Transfer Libraries |

COMMUNICATION

| File Transfer Protocols (FTP, GridFTP, etc.) | | Overlay Structures |

| Security Layer (GSI or Kerberos) |

| Internet Protocol |

SOFTWARE BASIC GRID FABRIC

| Operating Systems || Batch Job Systems ” Dist. File Systems | | Databases |

HARDWARE / PHYSICAL LAYER

| Clusters || Instruments || Networks || Disks || TapeArchivesl | SAN |

Figure 2.2: A Layered Architecture.

these affect underlying technologies.

2.2.1 Layered Architecture

The components of a Data Grid can be organised in a layerditeotre as shown in
Figure 2.2. This architecture follows from similar defiaits given by Foster et al. [88]
and Baker et al. [23]. Each layer builds on the services affésethe lower layer in ad-
dition to interacting and co-operating with components tnedsame level (eg. Resource

broker invoking VO tools). These layers can be describeah foottom to top as below:

1. Grid Fabric: Consists of the distributed computational resources t@isssuper-
computers), storage resources (RAID arrays, tape archawves)nstruments (tele-
scope, accelerators) connected by high-bandwidth nesvé&#ch of the resources

runs system software such as operating systems, job submesd management
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systems and relational database management systems (RDBMS).

2. Communication Consists of protocols used to query resources in the Gridid-ab
layer and to conduct data transfers between them. Thesecpistare built on
core communication protocols such as TCP/IP and autheioticatotocols such as
PKI (Public Key Infrastructure), passwords or SSL (Securek8ts Layer). The
cryptographic protocols allow verification of users’ idées and ensure security
and integrity of transferred data. These security mechanferm part of the Grid
Security Infrastructure (GSI) [87]. File transfer prott&euch as GridFTP (Grid
File Transfer Protocol), among others, provide servicegfitcient transfer of data
between two resources on the Data Grid. Application-smeoiferlay structures
provide efficient search and retrieval capabilities fotribsited data by maintaining

distributed indexes.

3. Data Grid ServicesProvides services for managing and processing data ina Dat
Grid. The core level services such as replication, dateodesy and job submis-
sion provide transparent access to distributed data anguation. User-level ser-
vices such as resource brokering and replica managemeind@rmmechanisms that
allow for efficient resource management hidden behind ithieicommands and
APIs (Application Programming Interfaces). VO tools pawieasy way to perform
functions such as adding new resources to a VO, queryingxiséng resources

and managing users’ access rights.

4. Applications Specific services cater to users by invoking services geaby the
layers below and customising them to suit the target donsink as high energy
physics, biology and climate modelling. Each domain presid familiar interface
and access to services such as visualisation. Portals drenteefaces that provide
single-point access to available VO services and domascip applications and
tools. Collaboratories [121] have similar intent and alsovpte applications that

allow users to conduct joint operations with their colleagu

The security layer and Data Grid services provide appbostuniform access to resources
in the Fabric layer while abstracting out much of the inhecemplexity and heterogene-

ity. Formation of VOs requires interoperability betweee tiesources and components
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that are provided by different participants. This motigatiee use of standard protocols
and service interfaces for information exchange among idiexn Service interfaces
themselves have to be separated from implementation sletad have to be described
in language- and platform-independent format. Realizadibthese requirements have
led the Grid computing research community, through forunthsas Global Grid Forum
(GGF), to adopt a new Open Grid Services Architecture (OG[BA) that is based on
the Web serviceparadigm. Web services are self-contained, stateless amuenps that
use standard mechanisms for representation and exchadg&ofOGSA builds on Web
service properties such as vendor and platform neutrailcgedefinition using XML (eX-
tensible Markup Language) [39] and standard communicatrotocols such as SOAP
(Simple Object Access Protocol) to cre&@ed services Grid services are standardized
Web service interfaces that provide Grid capabilities ir@use, reliable and stateful man-
ner. Grid services may also be potentially transient and@®@instances support service
lifetime management and state notification. OGSA utilizasdard Web service mecha-

nisms for discovering and invoking Grid services.

The OGSA Data Services [89] deal with accessing and manafgitegresources in a
Grid environment. Adata servicemplements one or more of a set of basic interfaces that
describe the data and provide operations to manipulatehie Same data can be repre-
sented in many ways by different data services that imple¢iéierent set of operations
and data attributes. This abstract view of data created layeasgrvice is termedhta vir-
tualisation Subsequent efforts through the Data Access and Integr&govices Working
Group (DAIS-WG) at GGF have produced a set of more concretelatds [18] for rep-
resenting data through services. These standards prinvedmnsumers of these services
the advantage of being isolated from the inner workings dal@zrids and therefore, be

able to develop complex applications that consume datdfereint ways.

2.2.2 Related Data-Intensive Research

Three related distributed data-intensive research atedsshare similar requirements,
functions and characteristics are described below. Thageleen chosen because of the

similar properties and requirements that they share witla Gaids.
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Content Delivery Network

A Content Delivery Network (CDN) [68, 71] consists of a “collemn of (non-origin)
servers that attempt to offload work from origin servers biwvdang content on their
behalf’ [124]. That is, within a CDN, client requests are Si#@id from other servers dis-
tributed around the Internet (also called edge servers)chehe the content originally
stored at the source (origin) server. A client request isuted from the main server to an
available server closest to the client likely to host thetentrequired [71]. This is done
by providing a DNS (Domain Name System) server that resalveslient DNS request
to the appropriate edge server. If the latter does not haveettjuested object then it re-
trieves the data from the origin server or another edge sefte primary aims of a CDN
are, therefore, load balancing to reduce effects of suddeges in requests, bandwidth
conservation for objects such as media clips and reduciagdund-trip time to serve
the content to the client. CDNs are generally employed by Waettent providers and
commercial providers such as Akamai Inc., Speedera InclraaliDNS Inc. have built
dedicated infrastructure to serve multiple clients. HosveDNs haven't gained wide
acceptance for data distribution because, currently CDidstifuctures are proprietary in

nature and owned completely by the providers.

Peer-to-Peer Network

Peer-to-peer (P2P) networks [156] are formed by ad hoc ggtjom of resources to form
a decentralised system within which each peer is autonomodisiepends on other peers
for resources, information and forwarding requests. Tlmamy aims of a P2P network
are: to ensure scalability and reliability by removing tleatralised authority, to ensure
redundancy, to share resources and to ensure anonymityntéy ia a P2P network can
join or leave anytime and therefore, algorithms and strasdgave to be designed keeping
in mind the volatility and requirements for scalability argiability. P2P networks have
been designed and implemented for many target areas sucimgsite resource sharing
(e.g. SETI@Home [15], Compute Power Market [47]), contet e sharing (Napster,
Gnutella, Kazaa [57]) and collaborative applications sashinstant messengers (Jab-

ber [112]). Milojicic et al. [145] present a detailed taxompand survey of peer-to-peer
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systems. The discussion here focuses mostly on contentlersthéiring P2P networks as
these involve data distribution. Such networks have mdmtysed on creating efficient
strategies to locate particular files within a group of pegrprovide reliable transfers of
such files in the face of high volatility and to manage highdleaused due to demand
for highly popular files. Currently, major P2P content shametworks do not provide an

integrated computation and data distribution environment

Distributed Databases

A distributed database (DDB) [53, 157] is a logically orgadisollection of data stored
at different sites of a computer network. Each site has aegegf autonomy, is capable
of executing a local application, and also participateshim éxecution of a global ap-
plication. A distributed database can be formed either kintaan existing single site
database and splitting it over different sites (top-dowprapch) or by federating existing
database management systems so that they can be accesseih taruniform interface
(bottom-up approach) [185]. The latter are also called ihathbase systems. Vary-
ing degrees of autonomy are possible within DDBs ranging ftigitly-coupled sites
to complete site independence. Distributed databasesdvaleed to serve the needs of
large organisations which need to remove the need for aaleseil computer centre, to
interconnect existing databases, to replicate databasesrease reliability, and to add
new databases as new organisational units are added. Thistegy is very robust and
provides distributed transaction processing, distridbugaery optimisation and efficient
management of resources. However, these systems cannotpbeyed in their current
form at the scale of Data Grids envisioned as they have streqgirements for ACID
(Atomicity, Consistency, Isolation and Durability) propies [99] to ensure that the state

of the database remains consistent and deterministic.

2.2.3 Analysis of Data-Intensive Networks

This section compares the data-intensive paradigms thescm the previous sections
with Data Grids in order to bring out the uniqueness of theefaby highlighting their

respective similarities and differences. Also, each of¢hareas have their own mature
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solutions which may be applicable to the same problems ia Baids either wholly or
with some modification. These properties are summarisedlte 2.1 and are explained
below:

Purpose- Considering the purpose of the network, it is generally skahP2P con-
tent sharing networks are vertically integrated solutiforsa single goal (for example,
file-sharing). CDNs are dedicated to caching web contentaactients are able to access
it faster. DDBs are used for integrating existing diverseadases to provide a uniform,
consistent interface for querying and/or replicating exgsdatabases for increasing relia-
bility or throughput. In contrast to these single purpodevoeks, Data Grids are primarily
created for enabling collaboration through sharing ofriigted resources including data
collections and support various activities including deaasfer and computation over the
same infrastructure. The overall goal is to bring togethéstimg disparate resources in
order to obtain benefits of aggregation.

Aggregation- All the networks are formed by aggregating individual nede form
a distributed system. The aggregation can be created thragd hocprocess wherein
nodes subscribe to the network without prior arrangementsspecificprocess where
they are brought together for a particular purpose. Theeaggion can bstableor dy-
namic P2P networks, by definition, are ad hoc in nature with nodésrimg and leaving
at will. A CDN provider creates the infrastructure by settung dedicated servers for
caching content. DDBs are created by either federatingiegistatabases or by estab-
lishing a tightly-coupled network of databases by a singgnisation. In the case of
a CDN or a DDB system, the entire network is managed by a singleyeéhat has the
authority to add or remove nodes and therefore, these hafée stonfigurations. Data
Grids are created by institutions forming VOs by poolingitimesources for achieving a
common goal. However, within a Data Grid, dynamic configorat are possible due to

introduction or removal of resources and services.

Organisation- The organisation of a CDN is hierarchical with the data flayirom
the origin to the edges. Data is cached at the various edgersdo exploit locality of

data requests. There are many models for organisation otBafént sharing network
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Table 2.1: Comparison between various data distributiowaordis.
Property P2P (Content CDN DDB Data Grids
sharing)
Purpose File sharing Reducing web | Integrating Analysis,
latency existing collaboration
databases,
Replicating
database for
reliability &
throughput
Aggregation | Ad hoc, Specific, Stable Specific, Stablg Specific,
Dynamic Dynamic
Organisation | Centralised, Hierarchical Centralised, Hierarchy,
two-level federation federation,
hierarchy, flat monadic,
hybrid
Data Access Mostly read with | Read only Equally read Mostly  read
Type frequent writes and write with rare writes
Data Discov-| Central directory,, HTTP Request| Relational Catalogues
ery Flooded requests Schemas
or document
routing
Latency Man-| Replication, Caching, Replication, Replication,
agement  &| Caching, Streaming Caching Caching,
Performance | Streaming Streaming,
Pre-staging,
Network tuning
Consistency | Weak Strong (read Strong Weak
Requirements only)
Transaction None None currently | Yes None currently
Support
Computa- None currently | None Transaction Data
tional Re- (Client-side) Processing Production
quirements and Analysis
Autonomy Operational, None Operational Access, Operat
Participation (Dedicated) (federated) tional, Partici-
pation
Heterogeneity| System, System System System, -
Structural Syntactic,
Structural,
Semantic
Management | Individual Single Single VO
Entity Organisation | Organisation
Security Anonymity Data Integrity | Authentication,| Authentication,
Requirements Authorisation, | Authorisation,

Data Integrity

Data Integrity
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and these are linked to the searching methods for files witleimetwork. Within Napster,
a peer has to connect to a centralised server and search Bwradable peer that has
the required file. The two peers then directly communicaté wach other. Gnutella
avoids the centralised directory by having a peer broadtsastquest to its neighbours
and so on until the peer with the required file is obtained. agaand FastTrack limit
the fan-out in Gnutella by restricting broadcasts to Super® who index a group of
peers. Freenet [59] uses content-based hashing, in whitdia &ssigned a hash based
on its contents and nearest neighbour search is used tofyddr@ required document.
Thus, three different models of organisation, viz. cerdedal, two-level hierarchy and flat
(structured and unstructured) can be seen in the exampdssmied above. Distributed
databases provide a relational database managemenaagtenfid are therefore organised
accordingly. Global relations are split into fragmentst taige allocated to either one or
many physical sites. In the latter case, replication ofrftagts is carried out to ensure
reliability of the database. While distribution transpangmay be achieved within top-
down databases, it may not be the case with federated detathed have varying degrees
of heterogeneity and autonomy. As will be shown in the taxapsection, there are 4
different kinds of organisation present in a Data Grid: nthoahierarchical, federated,

and hybrid combinations of these.

Data Access TypeAccess type distinguishes the type of data access opesatom-
ducted within the network. P2P content sharing networksrasstly read-only environ-
ments and write operations occur when an entity introdueasdata into the network or
creates copies of existing data. CDNs are almost exclusrealg-only environments for
end-users and updating of data happens at the origin sembtsin DDBs, data is both
read and written frequently. Data Grids are similar to P2fvaiks as they are mostly
read-only environments into which either data is introduoeexisting data is replicated.
However, a key difference is that depending on applica@uirements, Data Grids may

also support updating of data replicas if the source is nexlifi

Data Discovery Another distinguishing property is how the data is disecedewithin
the network. The three approaches for searching within R2Rarks have been men-
tioned previously. Current research focuses on the documeening model and the
four algorithms proposed for this model: Chord [190], CAN [],7Bastry [177] and
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Tapestry [222]. CDNs fetch data which has been requested bgvesbr through HTTP

(Hyper Text Transfer Protocol). DDBs are organised usingstiree relational schema
paradigm as single-site databases and thus, data can lohestdor and retrieved us-
ing SQL (Structured Query Language). Data in Data Grids egarosed into catalogues
which map the logical description of data to the actual ptalsiepresentation. One form
of these catalogues is the replica catalogue which congajpsssibly) one-to-many map-
ping from the logical (or device-independent) filename ®dbtual physical filenames of
the datasets. Data can be located by querying these cat¢alagd resolving the physical

locations of the logical datasets.

In addition to these mechanisms, the use of metadata foctsagrdata is supported
by certain individual products in each of the four datafisiee networks. Data can be
queried for based on attributes such as description or obtyjge. In Data Grids, metadata
catalogues offer another means for querying for data. lh sases, metadata has to be
curated properly as otherwise it would affect the efficieagl accuracy of data discovery.

The role of metadata and catalogues will be looked at in detttie next chapter.

Latency Management & Performaned\ key element of performance in distributed
data-intensive networks is the manner in which they rednedatency of data transfers.
Some of the techniqgues commonly used in this regard arecedjplg data close to the
point of consumption, caching of data, streaming data aeetaging the data before the
application starts executing. Replication is differentfroaching as the former involves
creation and maintenance of copies of data at differenieglat the network depending
on access rates or other criteria while the latter involveating just one copy of the data
close to the point of consumption. Replication is, therefdmme mostly from the source
of the data (provider side) and caching is done at the dataucoer side. While both
replication and caching seek to increase performance lchegl latency, the former also

aims to increase reliability by creating multiple backupies of data.

CDNs employ caching and streaming to enhance performaneeiafip for deliver-
ing media content [182]. While several replication stragediave been suggested for a
CDN, Karlsson and Mahalingam [114] experimentally show taathing provides equiv-
alent or even better performance than replication. In treeate of requirements for

consistency or availability guarantees in CDNs, computaliy expensive replication
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strategies do not offer much improvement over simple cachethods. P2P networks
also employ replication, caching and streaming of data moua degrees. Replication
and caching are used in distributed database systems forinipy distributed query pro-

cessing [119].

In Data Grids, all of the techniques mentioned are impleexim one form or an-
other. However, additionally, Data Grids are differer@dby the requirement for transfer
of massive datasets. This is either absent in the otheridiasive networks or is not
considered while designing these networks. This motivasesof high-speed data trans-
fer mechanisms that have separation of data communicatiwat s, sending of control
messages happens separately from the actual data traimséetdition, features such as
parallel and striped data transfers among others, arersgfjto further reduce time of
data movement. Optimization methods to reduce the amoudéataf transfers, such as

accessing data close to the point of its consumption, aoeeatgployed within Data Grids.

Consistency Consistency is an important property which determines Hoesh” the
data is. Grids and P2P networks generally do not providengtoonsistency guarantees
because of the overhead of maintaining locks on huge volwhésata and the ad hoc
nature of the network respectively. Among the exceptionfata Grids is the work of
Dullmann et al. [72] which discusses a consistency senacedplication in Data Grids.
In P2P networks, Oceanstore [125] is a distributed file sydteat provides strong con-
sistency guarantees through expensive locking protodol€€DNSs, while the data in a
cache may go stale, the system always presents the latsgirvexf the data when the

user requests it. Therefore, the consistency provided byM iS[3trong.

Distributed databases, as mentioned before, have strougyeenents for satisfying
ACID properties. While these requirements can be relaxedarcéise of unstable condi-
tions such as those found in mobile networks [163], even thesemantics for updating
are much stricter within distributed databases than inradiggribution networks. Also,
updates are more frequent and can happen from within anynsitee network. These
updates have to be migrated to other sites in the network atoaththe copies of the
data are synchronised. There are two methods for updataigtk followed [98]:lazy,
in which the updates are asynchronously propagatedeagdy in which the copies are

synchronously updated.



24 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

Transaction Support A transaction is a set of operations (actions) such thadfall
them succeed or none of them succeed. Transaction suppaesnthe existence of
check-pointing and rollback mechanisms so that a databas@ta repository can be
returned to its previous consistent state in case of failtifellows from the discussion of
the previous property that transaction support is esdéatidistributed databases. CDNs
have no requirements for transaction support as they oplystiread only access to data
to the end users. P2P Networks and Data Grids currently dioavet support for recovery
and rollback. However, efforts are on to provide transacsiopport within Data Grids to

provide fault tolerance for distributed transactions [R07

Computational Requiremeri€€omputational requirements in data intensive environ-
ments originate from operations such as query processpayiag transformations to
data and processing data for analysis. CDNs are exclusiagfatiented environments
with a client accessing data from remote nodes and progegsat its own site. While
current P2P content sharing networks have no processirgafdta, it is possible to in-
tegrate such requirements in the future. Computation witHdBs involves transaction
processing which can be conducted in two ways: the requestiads transmitted to the
originating site of the transaction and the transactiomeg@ssed at that site, or the trans-
action is distributed among the different nodes which héneedata. High volumes of
transactions can cause heavy computational load within DidBisthere are a variety of

optimisation techniques to deal with load balancing in fparand distributed databases.

Data Grids have heavy computational requirements thataarsed by workloads in-
volving analysis of datasets. Many operations in Data Gegpecially those involving
analysis, can take long intervals of time (measured in hourmven days). This is in
contrast to the situation within DDBs where the turnarountetof requests is short and
for applications such as OLTP (On Line Transaction Proogdsmeasured in millisec-
onds. High performance computing sites, that generallystitore existing Data Grids,
are shared facilities and are oversubscribed most of the tirherefore, application exe-
cution within Data Grids has to take into account the timedapent in queues at these

sites as well.

Autonomy- Autonomy deals with the degree of independence allowedfterent

nodes within a network. However, there could be differepet/and different levels of
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autonomy provided [13, 185Access autononsllows a site or a node to decide whether
to grant access to a user or another node within the netv@pkrational autonomgefers
to the ability of a node to conduct its own operations witheeing overridden by external
operations of the networkParticipation autonomymplies that a node has the ability
to decide the proportion of resources it donates to the m&tand the time it wants to
associate or disassociate from the network. Data Grid nbdes all the three kinds of
autonomy to the fullest extent. While nodes in a P2P networkatchave fine-grained
access controls against users, they have maximum indepemde deciding how much
share will they contribute to the network. CDNSs are dedicaeta/orks and so, individual
nodes have no autonomy at all. Tightly coupled databasesratl control over the
individual sites whereas multidatabase systems retaitraaver local operations.

Heterogeneity Network environments encompass heterogeneous hardwdrsoét-
ware configurations that potentially use different protscorlhis impacts applications
which have to be engineered to work across multiple intedamultiple data formats and
multiple protocols wherever applicable. Interoperapitif the system therefore, refers to
the degree of transparency a system provides for a user és@tus information while
being unaware of the underlying complexity.

Heterogeneity can also be split into many types dependindp@wulifferences at var-
lous levels of the network stack. Koutrika [120] has ideatfifour different types of

heterogeneity in the case of data sources within digitahfibs.

1. System heterogeneityarises from different hardware platforms and operatirgg sy

tems.

2. Syntactic heterogeneityarises from the presence of different protocols and encod-

ings used with the system.

3. Structural heterogeneityoriginates from the data organised according to different

models and schemas.

4. Semantic heterogeneiyriginates from different meanings given to the same data,
especially because of the use of different metadata sché&nastegorising the

data.

It can be seen from the definitions of the data-intensive oddsvthat the same classifi-
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cation is applicable in the current context. System hetmedy is a feature of all the
data-intensive networks discussed here. Though P2P rnetwOGDNs and DDBs can si-
multaneously store data in different formats, they regtheeestablishment of common
protocols within individual networks. CDNs and DDBs are alsmlogeneous when it
comes to structure of data as they enforce common schema ¢@vebnt schema for
CDNs and relational schema for DDBs). P2P networks offer g&iratand semantic het-
erogeneity as they unify data from various sources and d@hewser to query across all

of the available data.

The existence of different components including legacy atferwise, that speak a
variety of protocols and store data in their own (sometimegpipetary) formats with
little common structure or consistent metadata infornmatieeans that Data Grids contain
data that is syntactically, structurally and semantichlyerogeneous. However, where
Data Grids truly differ from other data intensive networksthis regard is the level of
interoperability required. Users within a Data Grid expechave an integrated view of
data which abstracts out the underlying complexity behisthgle interface. Through
this interface, they would require manipulating the datapglying transformations or by
conducting analysis. The results of the analysis or transition need to be viewed and
may provide feedback to conduct further operations. Thiamaghat not only should a
Data Grid provide interoperability between different pails and systems, it should also
be able to extract meaningful information from the data atiog to users’ requirements.
This is different to P2P content sharing networks where #& anly queries for datasets

matching a particular criterion and downloads them.

Management Entity The management entity administers the tasks for maimtgini
the aggregation. Generally, this entity is a collectionha stakeholders within the dis-
tribution network. While this body usually does not have coinbver individual nodes,
nevertheless, it provides services such as a common datetaty for locating content
and an authentication service for the users of the netwodk.tlte Data Grid, the con-
cept of VOs has already been discussed in the previous sed@tmugh entities in a P2P
network are independent, a central entity may provide tbrgcservice as in the case
of Napster. CDNs are owned and maintained by a corporationsgrghe organisation.

Likewise, DDBs are also maintained by single organisatimes ¢hough the constituent
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databases may be independent.

Security RequirementsSecurity requirements differ depending on perspectivea |
data distribution network, security may have to be ensugaihat corruption of content
(data integrity), for safeguarding users’ privacy (anoityinand for resources to verify
users’ identities (authentication). P2P Networks suchrasrtet are more concerned with
preserving anonymity of the users as they may be breakirad éensorship laws. A CDN
primarily has to verify data integrity as access for maraping data is granted only to the
content provider. Users have to authenticate against a RDBdrrying out queries and
transactions and data integrity has to be maintained f@roheistic operation.

Since Data Grids are multi-user environments with shareolnees, the main security
concerns are authentication of both users and resourcggranting of permissions for
specific types of services to a user (authorisation). Datds@Gesources are also spread
among various administrative entities and therefore, @taug security credentials of a
user also involves trusting the authority that issued tedentials in the first place. Many
VOs have adopted community-based authorization [6] whege/O itself provides the
credentials or certifies certain authorities as trustedsatslithe access rights for the user.
While these are issues within Grids in general, Data Grids aéed verification while
accessing data and need to guard against malicious operatiodata while in transit.
Also, more elaborate access controls than those curreegioged in general Grids are

needed for safeguarding confidential data in Data Grids.

2.3 Discussion and Summary

Thus, it can be seen that though Data Grids share many ceeaséics with other types
of data intensive network computing technologies, theydiferentiated by heavy com-
putational requirements, wider heterogeneity, higheormay of individual entities and
the presence of VOs. Most of the current Data Grid implentemts focus on scientific
applications. Recent approaches have, however, exploesthttbgration of the above-
mentioned technologies within Data Grids to take advantdghe strengths that they
offer in areas such as data discovery, storage managememlada replication. This is

possible as Data Grids already encompass and build on ditechnologies. Foster and
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lamnitchi [81] discuss the convergence of P2P and Grid caimgpand contend that the
latter will be able to take advantage of the failure resistaand scalability offered by
the former which gains from the experience in managing d&@and powerful resources,
complex applications and the multitude of users with défgrrequirements. Ledlie et al.
[132] present a similar view and discuss the areas of agtjoegalgorithms and mainte-
nance where P2P research can be beneficial to Grids. Pt&gtiddechnologies such as
Narada Brokering [90] have used P2P methods for deliveriraggkakle event-service.
Based on the detailed investigation conducted on the aotbrte of Data Grids, a

taxonomy has been developed and is discussed in the nexechap
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A Taxonomy of Data Grids

The rapid emergence of Data Grids in scientific and commileseitings has led to a
variety of systems offering solutions for dealing with distited data-intensive applica-
tions. Unfortunately, this has also led to difficulty in avaling these solutions because of
the confusion in pinpointing their exact target areas. Ex@momy provided in Section
3.1 breaks down the overall research in Data Grids into apeed areas and categorizes
each of them in turn. The following section, Section 3.2 therveys some representative

projects and publications and classifies them accordinigetdeixonomy.

3.1 Taxonomy

The properties of a Data Grid are determined by its undeglpirganization. The orga-
nizational attributes not only determine the placementlication, and propagation of
data throughout a Data Grid but also the interaction of treuwith the infrastructure.
The actual work of transferring, processing and managing idalone by the core mech-
anisms such as data transport, data replication and resougoagement. These core
mechanisms, therefore, define the capabilities of a Datd. Gkccordingly, this taxon-
omy is split into four sub-taxonomies as shown in Figure 3The first sub-taxonomy
is from the point of view of Data Grid organization. This ddies ongoing scientific
Data Grid efforts worldwide. The next sub-taxonomy dealghwhe transport technolo-

gies used within Data Grids. This not only covers well-kndiatransfer protocols but

29
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Figure 3.1: Data Grid Elements.

also includes other means of managing data transportadi@talable, robust and intel-
ligent replication mechanism is crucial to the smooth openaof a Data Grid and the
sub-taxonomy presented next takes into account concer@sidfenvironments such as
metadata and the nature of data transfer mechanisms usedasitsub-taxonomy cate-
gorizes resource allocation and scheduling research afd lato issues such as locality
of data.

While each of the areas of data transport, replica manageaneintesource manage-
ment are independent fields of research and merit detaNedtigations on their own, in
this chapter, these are studied from the point of view of gez#ic requirements of Data

Grid environments that have been provided in the previoapten.

3.1.1 Data Grid Organization

Figure 3.2 shows a taxonomy based on the various orgamzhibaracteristics of Data
Grid projects. These characteristics are central to ang Baid and manifest in different
ways in different systems.

Model - The model is the manner in which data sources are organisadsystem.
A variety of models are in place for the operation of a DatadGiihese are dependent
on: the source of data, whether single or distributed, the sf data and the mode of
sharing. Four of the common models found in Data Grids are/shio Figure 3.3 and are

discussed as follows:

1. Monadic: This is the general form of a Data Grid in which all the dataathgred
at a central repository that then answers user queries avitlps the data. The
data can be from many sources such as distributed instrgraadtsensor networks

and is made available through a centralised interface ssiéhvaeb portal which
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Figure 3.2: Data Grid Organization Taxonomy.
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Figure 3.3: Possible models for organization of Data Grids.
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also verifies users and checks for authorization. This m@dshown in Figure
3.3(a) and has been applied in the NEESgrid (Network fortigarike Engineering
Simulation) project [161] in the United States.

The difference between this and other models of Data Gridrosation is that there
is only a single point for accessing the data. In contraghiwiother models, the
data can be wholly or partially accessed at different poiisre it is made available
through replication. The central repository may be repdidan this case for fault
tolerance but not for improving locality of data. Thus, thi®del serves better
in scenarios where the overhead of replication is not cosgted by an increase
in efficiency of data access such as the case wherein all sesese local to a

particular region.

. Hierarchical: This model is used in Data Grids where there is a single sdorce

data and the data has to be distributed across collabosatoridwide. For ex-
ample, the MONARC (Models of Networked Analysis at Regional i@&3) group
within CERN has proposed a tiered infrastructure model faribigtion of CMS
data [5]. This model is presented in Figure 3.3(b) and sgeciequirements for
transfer of data from CERN to various groups of physicists adahe world. The
first level is the compute and storage farm at CERN which stbeeddta generated
from the detector. This data is then distributed to siteedaRegional Centres
(RCs), located around the world. From the RCs, the data is thesegatown-
stream to the national and institutional centres and finatlio the physicists. A
Tier 1 (RC) or a Tier 2 (national) centre has to satisfy cert@ndwidth, storage

and computational requirements as shown in the figure.

The massive amounts of data generated in these experimetitata the need for
a robust data distribution mechanism. Also, researchgraréitipating institutions
may be interested only in subsets of the entire dataset thgtha identified by
guerying using metadata. One advantage of this model isnthattaining consis-

tency is much simpler as there is only one source for the data.

. Federation: The federation model [171] is presented in Figure 3.3(c)ianmteva-

lent in Data Grids created by institutions who wish to shatadh already existing
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databases. One example of a federated Data Grid is the Biolafiws Research
Network (BIRN) [35] in the United States. Researchers at a @pdiing institu-
tion can request data from any one of the databases withifetleration as long
as they have the proper authentication. Each institutitaing control over its lo-
cal database. Varying degrees of integration can be prestrin a federated Data
Grid. For example, Moore et al. [148] discuss about 10 dsffiertypes of feder-
ations that are possible using the Storage Resource Broker (BB various
configurations. The differences are based on the degreeafi@uy of each site,
constraints on cross-registration of users, degree oicedjuin of data and degree

of synchronization.

4. Hybrid: Hybrid models that combine the above models are beginniegierge as
Data Grids mature and enter into production usage. These ooirof the need for
researchers to collaborate and share products of theysasaf hybrid model of a

hierarchical Data Grid with peer linkages at the edges igvahn Figure 3.3(d).

Scope -The scope of a Data Grid can vary depending on whether it isctesl to a
single domainifgtradomain or if it is a common infrastructure for various scientifieas
(interdomair). In the former case, the infrastructure is adapted to thiecpéar needs
of that domain. For example, special analysis software neaynbde available to the
participants of a domain-specific Data Grid. In the latteyegdhe infrastructure provided
will be generic.

Virtual Organizations -Data Grids are formed by VOs and therefore, the design of
VOs reflects on the social organization of the Data Grid. A $@allaborativeif it
is created by entities who have come together to share =®and collaborate on a
single goal. Here, there is an implicit agreement betweenptrticipants on the us-
age of resources. AegulatedVO may be controlled by a single organization which
lays down rules for accessing and sharing resources. étanomy-basedO, resource
providers enter into collaborations with consumers duertditpmotive and the latter
select providers based on their advertised level of seancecost. In such cases, service-
level agreements dictate the rights of each of the partitgaA reputation-based/O

may be created by inviting entities to join a collaborati@séd on the level of services
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that they are known to provide.

Data Sources bata sources in a Data Grid may tbansientor stable A scenario for
a transient data source is a satellite which broadcastodéatat certain times of the day.
In such cases, applications need to be aware of the shoof life data stream. As will be
revealed later, most of the current Data Grid implementatitave always-on data sources
such as mass storage systems or production databasesiry ith diversification, Data
Grids are also expected to handle transient data sources.

Management The management of a Data Grid candaonomimr managedPresent
day Data Grids require plenty of human intervention for saskich as resource mon-
itoring, user authorization and data replication. Howgvesearch is leading to auto-
nomic [20, 158] or self-organizing, self-governing syssewhose techniques may find

applications in future Data Grids.

3.1.2 Data Transport

The data transport mechanism is one of the fundamental téafies underlying a Data
Grid. Data transport involves not just movement of bits asr@esources but also other
aspects of data access such as security, access controfaagement of data transfers.

A taxonomy for data transport mechanisms within Data Gsdshiown in Figure 3.4.

Functions - Data transport in Grids can be modelled as a three-tiertsireithat is
similar to the networking stacks such as the Open Systenthieection (OSI) reference
model. At the bottom is th&ransfer Protocothat specifies a common language for two
nodes in a network to initiate and control data transferss Tilr takes care of simple bit
movement between two hosts on a network. The most widelg-tremsport protocols
in Data Grids are FTP (File Transfer Protocol) [167] and GTig [10]. The second tier
Is an optionalOverlay Networkhat takes care of routing the data. An overlay network
provides its own semantics over the Internet protocol tsfyah particular purpose. In
P2P networks, overlays based on distributed hash tablegdpra more efficient way of
locating and transferring files [14]. Overlay networks in®&rids provide services such
as storage in the network, caching of data transfers foebegliability and the ability for

applications to manage transfer of large datasets. Thedsiptier provides application-
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Figure 3.4: Data Transport Taxonomy.

specific functions such dsle I/0. A file I/O mechanism allows an application to access
remote files as if they are locally available. This mechansesents to the application
a transparent interface through APIs that hide the comiglaxid the unreliability of the
networks. A data transport mechanism can therefore perbo@rof these functions.
Security -Security is an important requirement while accessing arsfiexring files to
ensure proper authentication of users, file integrity andidentiality. Transport security
can be divided into three main categoriasithenticationandauthorizationof users and
encryptionof data transfer. Authentication can be based on efthgsword®r symmet-
ric or asymmetriqoublic keycryptographic protocols such as Kerberos [153] or X.509
[107] mechanisms respectively. In the context of data m@reémauthorization of users
is enforced by mechanisms such as access controls on théhdata to be transferred.
Coarse-grainedauthorization methods use traditional methods such as UiNXermis-
sions to restrict the number of files or collections that @eeasible to the user. However,
expansion of Data Grids to fields such as medical researthaa strict controls on the
distribution of data have led to requirementsfiae-grainedauthorization. Such require-

ments include restricting the number of accesses even thoased users, delegating
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read and write access rights to particular files or collestiand flexible ownership of
data [148]. Fine-grained access control methods that mamoyed to achieve these
requirements include time- and usage-limited tickets,e&saControl Lists (ACLS), Role
Based Access Control (RBAC) methods [181] and Task-Based Aatitmn Controls

(TBAC) [206]. Data encryption may be present or absent withinansfer mechanism.
The most prevalent form of data encryption is through SSlcg&=Sockets Layer) [212].

Fault Tolerance -Fault tolerance is also an important feature that is reduinea
Data Grid environment especially when transfers of large fiees occur. Fault tolerance
can be subdivided into restarting over, resuming from if&tron and providing caching.
Restartingthe transfer all over again means that the data transporthaném does not
provide any failure tolerance. However, all data in tramguld be lost and there is a
slight overhead for setting up the connection again. Pod$¢oguch as GridFTP allow for
resumingransfers from the last byte acknowledged. Overlay neta/prividecachingof
transfers via store-and-forward protocols. In this cdse réceiver does not have to wait
until the connections are restored. However, caching resiperformance of the overall
data transfer and the amount of data that can be cached isdpen the storage policies
at the intermediate network points.

Transfer Mode -The last category is the transfer modes supported by the anech
nism. Block streamandcompresseanodes of data transfer have been available in tra-
ditional data transmission protocols such as FTP. Howéveas been argued that trans-
fers of large datasets such as those that are anticipatathvidata Grids are restricted
by vanilla FTP and underlying Internet protocols such as3in@ssion Control Protocol
(TCP) which were initially designed for low bandwidth, higltdncy networks. As such,
these are unable to take advantage of the capabilities of egdwidth, optical fibre
networks that are available for Data Grid environments [13herefore, several opti-
misations have been suggested for improving the perforsnahdata transfers in Grid
environments by reducing latency and increasing trangkeed. Some of them are listed

below:

e Parallel data transfer - is the ability to use multiple data streams over the same
channel to transfer a file. This also saturates availabldwalth in a channel while

completing transfer.
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e Striped data transfer 4s the ability to use multiple data streams to simultangousl|

access different blocks of a file that is partitioned amondtipla storage nodes

(also calledstriping). This distributes the access load among the nodes and also

improves bandwidth utilisation.

e Auto-resizing of buffers is the ability to automatically resize sender and receiver
TCP window and buffer sizes so that the available bandwidthbsamore effec-

tively utilised.

e Container operations is the ability to aggregate multiple files into one large data
that can be transferred or stored more efficiently. The efiicy gains come from
reducing the number of connections required to transfed#te and also, by reduc-

ing the initial latency.

The first three are protocol-specific optimisations whikeldst one is applied to the trans-
fer mechanism. These enhancements are grouped undrrkiteansfermode. A mecha-
nism may support more than one mode and its suitability fapgplication can be gauged

by the features it provides within each of the transfer modes

3.1.3 Data Replication and Storage

A Data Grid is a geographically-distributed collaboratiorwhich all members require
access to the datasets produced within the collaboratioplidagon of the datasets is
therefore a key requirement to ensure scalability of théabokation, reliability of data

access and to preserve bandwidth. Replication is bounddtklsize of storage available
at different sites within the Data Grid and the bandwidthaaetin these sites. A replica
management system therefore ensures access to the redateethile managing the
underlying storage.

A replica management system, shown in Figure 3.5, condist®mage nodes which
are linked to each other via high-performance data trangpotocols. The replica man-
ager directs the creation and management of replicas d@ngora the demands of the
users and the availability of storage, and a catalog or @ting keeps track of the repli-
cas and their locations. The catalog can be queried by apiolis to discover the number

and the locations of available replicas of a particular slettaln some systems, the man-
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Figure 3.5: A Replica Management Architecture.
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ager and the catalog are merged into one entity. Client-sifieare generally consists of
a library that can be integrated into applications and a sebmmands or GUI utilities
that are built on top of the libraries. The client librarié®wa querying of the catalog to

discover datasets and to request replication of a partidalaset.

The important elements of a replication mechanism are finere¢he architecture of
the system and the strategy followed for replication. Tret Gategorization of Data Grid
replication is therefore, based on these properties asoisrsin Figure 3.6. The archi-
tecture of a replication mechanism can be further subdivid® the categories shown in

Figure 3.7.

Model & Topology -The model followed by the system largely determines the way
in which the nodes are organized and the method of replitath centralizedsystem
would have one master replica which is updated and the up@aéepropagated to the
other nodes. Adecentralizedor peer-to-peer mechanism would have many copies, all
of which need to be synchronized with each other. Nodes uadeplica management
system can be organised in a variety of topologies which @grbuped chiefly into
three: Hierarchy, Flat and Hybrid. Hierarchical topologies have tree-like structure in

which updates propagate through definite paths. Flat tgpedoare found within P2P
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systems and progression of updates is entirely dependetiiecarrangements between
the peers. These can be both structured and unstructuretiridHppologies can be
achieved in situations such as a hierarchy with peer commmecat different levels as has

been discussed by Lamehamedi et al. [129].

Storage Integration The relation of replication to storage is very important deter-
mines the scalability, robustness, adaptability and appllity of the replication mech-
anism. Tightly-coupledreplication mechanisms that exert fine-grained control tive
replication process are tied to the storage architectur@tooh they are implemented.
The replication system controls the filesystem and I/O meisha of the local disk. The
replication is conducted at the level of processes and éndftggered by a read or write
request to a file at a remote location by a program. Such sgsteane or less try to
behave as a distributed file system such as NFS (Network kg&ef) as they aim to

provide transparent access to remote files to applicatiBnsexample of such a mech-
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anism is Gfarm [199]Intermediately-coupledeplication systems exert control over the
replication mechanism but not over the storage resourdes filesystems are hosted on
diverse storage architectures and are controlled by tlespective systems. However,
the replication is still initiated and managed by the medranand therefore it interacts
with the storage system at a very low-level. Such mechanigonk at the level of indi-
vidual applications and data transfer is handled by theegysiWWhile replication can be
conducted transparent to users and applications, it ispassible for the latter to direct
the mechanism, and thereby, control the replication pocEgample of such a system
is the SRB.Loosely-coupledeplication mechanisms are superimposed over the existing
filesystems and storage systems. The mechanism exerts trolaorer the filesystem.
Replication is initiated and managed by applications andsusguch mechanisms inter-
act with the storage systems through standard file transteognls and at a high level.

The architecture is capable of complete heterogeneity.

Transfer Protocols -The data transport protocols used within replica managéemen
systems is also a differentiating characterist@pen protocoldor data movement such
as GridFTP allow clients to transfer data independent ofépéca management system.
The replicated data is accessible outside of the replicaagement system. Systems
that follow closedor unpublished protocols restrict access to the replicabdw client
libraries. Tightly-coupled replication systems are mostbsed in terms of data transfer.
RLS (Replica Location Service) [55] and GDMP (Grid Data Mimgy Pilot) [180] use
GridFTP as their primary transport mechanism. But the flifg $0 having open protocols
is that the user or the application must take care of upddtiageplica locations in the

catalog if they transfer data without involving the reptioa management system.

Metadata -t is difficult, if not impossible, for users to identify patilar datasets out
of hundreds and thousands that may be present in a largabutiet, collection. From
this perspective, having proper metadata about the reptiadata aids users in querying
for datasets based on attributes that are more familiaremthMetadata can have two
types of attributes: one isystem-dependentetadata, which consists of file attributes
such as creation date, size on disk, physical location@fienchecksum and the other is
user-definedattributes which consist of properties that depend on tipe@xent or VO

that the user is associated with. For example in a High-BnBhysics experiment, the
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metadata could describe attributes such as experimentrdate of production (simula-
tion or experimental) and event type. The metadata cattieelyupdated by the replica
management system or else updgiadsivelyby the users when they create new replicas,

modify existing ones or add a new file to the catalog.

Replica Update PropagationWithin a Data Grid, data is generally updated at one site

and the updates are then propagated to the rest of its replibés can be isynchronous

or inasynchronousodes. While synchronous updating is followed in databatsissjot
practiced in Data Grids because of the expensive wide-aokanlg protocols and the fre-
guent movement of massive data required. Asynchronougingdzan be epidemic [103],
that is, the primary copy is changed and the updates are gatgxhto all the other repli-
cas or it can be on-demand as in Grid Data Mirroring Pilot (GB)NL89] wherein replica
sites subscribe to update notifications at the primary sitedecide themselves when to

update their copies.

Catalog Organization A replica catalog can be distinguished on the basis of its or-
ganization. The catalog can be organized &g@as in the case of LDAP (Lightweight
Directory Access Protocol) based catalogs such as the &lRebplica Catalog [7]. The
data can be catalogued on the basidafument hashess has been seen in P2P networks.

However, SRB and others follow the approach of storing thalogtwithin adatabase

Replication strategies determine when and where to creagiaa of the data. These
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strategies are guided by factors such as demand for dategmetonditions and cost of
transfer. The replication strategies can be categorizeti@sn in Figure 3.8.

Method -The first classification is based on whether the strategestatic or dy-
namic Dynamic strategies adapt to changes in demand and barndavidtstorage avail-
ability but induce overhead due to larger number of openatithat they undertake as
these are run at regular intervals or in response to evemtexmple, increase in de-
mand for a particular file). Dynamic strategies are able tover from failures such as
network partitioning. However, frequent transfers of masslatasets that result due to
such strategies can lead to strain on the network resoufrbese may be little gain from
using dynamic strategies if the resource conditions arly/fstiable in a Data Grid over a

long time. Therefore, in such cases, static strategiespuieed for replication.

Granularity - The second classification relates to the level of subdimisiodata that
the strategy works with. Replication strategies that deéh wiultiple files at the same
time work at the granularity oflatasets The next level of granularity is individudiles
while there are some strategies that deal with smaller sidins of files such as objects
or fragments

Objective Function The third classification deals with the objective functidrthe
replication strategy. Possible objectives of a replicastrategy are to maximise the-
cality or move data to the point of computation, to explaifpularity by replicating the
most requested datasets, to minimize tipelate cost®r to maximize someconomic
objective such as profits gained by a particular site forihgst particular dataset versus
the expense of leasing the dataset from some other Bieservationdriven strategies
provide protection of data even in the case of failures ssatparuption or obsolescence
of underlying storage media or software errors. Anothesjids objective function for a
replication strategy is to ensure effectmablicationby propagating new files to interested

clients.

3.1.4 Resource Allocation and Scheduling

The requirements for large datasets and the presence oplauéplicas of these datasets

scattered at geographically-distributed locations makégduling of data-intensive jobs
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different from that of computational jobs. Schedulers haviake into account the band-
width availability and the latency of transfer between a patational node to which a job
is going to be submitted and the storage resource(s) frormhwthe data required is to be
retrieved. Therefore, the scheduler needs to be aware akatigas close to the point of
computation and if the replication is coupled to the schedulthen create a new copy
of the data. A taxonomy for scheduling of data-intensiveliappons is shown in Figure

3.9. The categories are explained as follows:

Application Model -Scheduling strategies can be classified by the applicatmem
that they are targeted towards. Application models are é@éfin the manner in which
the application is composed or distributed for schedulivgy &rid resources. These can
range from fine-grained levels such as processes to coav&ds kuch as individual tasks
to sets of tasks such as workflows. Here, a task is considsrggeamallest independent
unit of computation. Each level has its own scheduling nesuents.Process-oriented
applications are those in which the data is manipulatedeaptbcess level. Examples of
such applications are MPI (Message Passing Interfaceygmgthat execute over global
Grids [82]. Independent tasksaving different objectives are scheduled individuallg an

it is ensured that each of them get their required share @iuress. ABag-of-Tasks
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(BoT) application consists of a set of independent tasks all otlwinmust be executed
successfully subject to certain common constraints sualdasdline for the entire appli-
cation. Such applications arise in parameter studies [Hraeih a set of tasks is created
by running the same program on different inputs. In contasbrkflowis a sequence of
tasks in which each task is dependent on the results of ittepessor(s). The products
of the preceding tasks may be large datasets themselvesx@orple, a simple two-step
workflow could be a data-intensive simulation task and tek tar analysis of the results
of simulation). Therefore, scheduling of individual tasksa workflow requires careful

analysis of the dependencies and the results to reduce thedof data transfer.

Scope -Scope relates to the extent of application of the schedwdiragegy within

a Data Grid. If the scope imdividual, then the scheduling strategy is concerned only
with meeting the objectives from a user’s perspective. Iruftiraser environment there-
fore, each scheduler would have its own independent viewefésources that it wants
to utilise. A scheduler is aware of fluctuations in resoureailability caused by other
schedulers submitting their jobs to common resources astrives to schedule jobs on
the least-loaded resources that can meet its objectiveth thé advent of VOs, efforts
have moved towardsommunity-basedcheduling in which schedulers follow policies
that are set at the VO level and enforced at the resourcetlaalgh service level agree-

ments and allocation quotas [73, 214].

Data Replication -The next classification relates to whether job schedulingigpled
to data replication or not. Assume a job is scheduled to beut&d at a particular com-
pute node. When job scheduling is coupled to replication Aeddata has to be fetched
from remote storage, the scheduler creates a copy of theatltita point of computation
so that future requests for the same file that come from thghbeurhood of the com-
pute node can be satisfied more quickly. Not only that, in tiiaré, any job dealing
with that particular data will be scheduled at that compudenif available. However,
one requirement for a compute node is to have enough stovagjere all the copies of
data. While storage management schemes such as LRU (LeasitiRéésed) and FIFO
(First In First Out) can be used to manage the copies, thetagieof compute nodes is
prejudiced by this requirement. There is a possibility {i@mising computational re-

sources may be disregarded due to lack of storage space, tAésprocess of creation
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of the replica and registering it into a catalog adds furtharheads to job execution.
In a decoupled scheduler, the job is scheduled to a suitainiggtational resource and a
suitable replica location is identified to request the datpired. The storage requirement
is transient, that is, disk space is required only for theation of execution. A compari-
son of decoupled against coupled strategies by Ranganatidafoster [173] has shown
that decoupled strategies promise increased performarnteeauce the complexity of

designing algorithms for Data Grid environments.

Utility function - A job scheduling algorithm tries to minimize or maximize som
form of a utility function. The utility function can vary depding on the requirements
of the users and architecture of the distributed systemth®atlgorithm is targeted at.
Traditionally, scheduling algorithms have aimed at redgat the total time required for
computing all the jobs in a set, also calledntskespanLoad balancingalgorithms try
to distribute load among the machines so that no machin¢hsradle or overburdened.
Scheduling algorithms with economic objectives try to maixe the users’ economic
utility usually expressed as someofit function that takes into account economic costs of
executing the jobs on the Data Grid. Another possible oivect to meet th&uality-of-
Service (QoS)hequirements specified by the user. QoS requirements thdtecapecified
include minimising the cost of computation, meeting a die&dlmeeting strict security

requirements and/or meeting specific resource requirenfélL

Locality - Exploiting the locality of data has been a tried and testetirtejue for
scheduling and load-balancing in parallel programs [1@2, 166] and in query process-
ing in databases [184, 191]. Similarly, data grid schedpéilyorithms can be categorized
as whether they exploit thgpatial or temporallocality of the data requests. Spatial lo-
cality is locating a job in such a way that all the data reqliie the job is available on
data hosts that are located close to the point of computafiemporal locality exploits
the fact that if data required for a job is close to a compu@ensubsequent jobs which
require the same data are scheduled to the same node. Spatidy can also be termed
as “moving computation to data” and temporal locality carcdked as “moving data to
computation”. It can be easily seen that schedulers whicipleodata replication to job

scheduling exploit the temporal locality of data requests.
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3.2 Mapping of Taxonomy to Various Data Grid Systems

This section classifies various Data Grid research progaterding to the taxonomies
developed in Section 3.1. While the list of example systenmotseexhaustive, it is rep-

resentative of the classes that have been discussed. Tjeetprim each category have
been chosen based on several factors such as broad coveequpication areas, project
support for one or more applications, scope and visibiiasge-scale problem focus and

ready availability of documents from project web pages ahdrosources.

3.2.1 Data Grid Projects

This space studies and analyses the various Data Grid [sadjet have been developed
for various application domains around the world. While mahyhese projects cover

aspects of Data Grid research such as middleware develaparanced networking

and storage management, however, here the focus is onlyose firojects which are

involved in setting up infrastructure. A list of these pidgand a brief summary about
each of them is provided in Table 3.1. These are also clagsifeording to the taxonomy
provided in Figure 3.2.

Some of the scientific domains that are making use of DatasGuriel as follows:

High Energy Physics (HEP) The computational and storage requirements for HEP ex-
periments have already been covered in previous literfddie Other than the four
experiments at the LHC already mentioned, the Belle expetimeKEK, Japan,
the BaBar experiment at the Stanford Linear Accelerator C&ReAC) and the
CDF and DO experiments at Fermi National Laboratory, US ae atlopting Data
Grid technologies for their computing infrastructure. féhéave been numerous
Grid projects around the world that are setting up the itfuasure for physicists to
process data from HEP experiments. Some of these are the LH®@mg Grid
(LCG) led by CERN, the Particle Physics Data Grid (PPDG) and Bhigsics Net-
work (GriPhyN) in the United States, GridPP in the UK and Béllelysis Data
Grid (BADG) in Australia. These projects have common feadusuch as a tiered
model for distributing the data, shared facilities for cartipg and storage and per-

sonnel dedicated towards managing the infrastructure.eSafrthem are entering
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Table 3.1: Data Grid Projects around the world.
Name Domain Grid Type Remarks Country /
Region
LCG [136] High Energy | Hierarchical model, To create and maintain aGlobal
Physics Intradomain, Collabora; data movement and analy-
tive VO, Stable Sources, sis infrastructure for LHC
Managed users.
EGEE [76] High En- | Hierarchical model, To create a seamless com-Global
ergy  Physics, Interdomain, Collaborat mon Grid infrastructure tq
Biomedical tive VO, Stable Sources, support scientific research.
Sciences Managed
BIRN [35] Bio-Informatics | Federated model, Intra- To foster collaboration United
domain, Collaborative in biomedical science States
VO, Stable Sources, through sharing of data.
Managed
NEESgrid Earthquake En{ Monadic model, Intra- To enable scientists to United
[161] gineering domain, Collaborative carry out experiments in States
VO, Transient Sources, distributed locations and
Managed analyse data through a uni-
form interface.
GriPhyn [22] High Energy| Hierarchical model,| To create an infrastructure United
Physics Intradomain, Collabora; integrating computational States

tive VO, Stable Sources
Managed

and storage facilities for

high energy physics expe
iments.

Grid3 [94]

Physics, Biology

Hierarchical model,
Interdomain, Collabora
tive VO, Stable Sources

To provide a uniform, scal;

United

able and managed grid in- States

frastructure for science ap

Managed plications
BioGrid, Japan | Protein Simula-| Federated model, Intra- Grid infrastructure for| Japan
[34] tion, Brain Ac-| domain, Collaborative medical and biological
tivity Analysis VO, Stable Sources, research.
Managed
Virtual Astronomy Federated model, Intra- Infrastructure for access- Global
Observatories domain, Collaborativg ing diverse astronomy
[196] VO, Stable Sources|, observation and simur
Managed lation archives through
integrated mechanisms.
Earth System | Climate Mod-| Federated model, Intra- Integrating computational United
Grid [9] elling domain, Collaborative and analysis resources forStates
VO, Stable Sources, next generation climate re-
Managed search.
GridPP [108] High Energy | Hierarchical model,| Grid infrastructure for Par; United
Physics Intradomain, Collabora; ticle Physics in the UK. Kingdom
tive VO, Stable Sources,
Managed
eDiaMoND Breast Cancer Federated model, Intra- To provide medical proq{ United
[37] Treatment domain, Collaborative fessionals and researcheringdom
VO, Stable Sources, access to distributed
Managed databases of mammogram
images.
Belle Analysis | High Energy | Hierarchical model,| Grid infrastructure for| Australia
Data Grid [216] | Physics Intradomain, Collaborat Australian physicistg
tive VO, Stable Sources, involved in the Belle and
Managed ATLAS experiments.
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or are being tested for production usage.

Astronomy The community of astrophysicists around the globe arenggtip Virtual

Observatories for accessing the data archives that hasrgdthy telescopes and in-
struments around the world. These include the Nationali®i®bservatory (NVO)
in the US, Australian Virtual Observatory, Astrophysicait\al Observatory in Eu-
rope and AstroGrid in the UK [197]. The International Virt@bservatory Alliance
(IVOA) is coordinating these efforts around the world fosaring interoperability.
Commonly, these projects provide uniform access to datasiep@s along with
access to software libraries and tools that may be requiradalyse the data. Other
services that are provided include access to high-perfocenaomputing facilities
and visualization through desktop tools such as web br@vsBther astronomy
grid projects include those being constructed for the LIG@sér Interferometer
Gravitational-wave Observatory) [130] and SDSS (SloantBi&ky Survey) [187]

projects.

Biolnformatics The increasing importance of realistic modeling and sithaof bio-

logical processes coupled with the need for accessingrexidatabases has led to
Data Grid solutions being adopted by bioinformatics redeens worldwide. These
projects involve federating existing databases and pimogidommon data formats
for the information exchange. Examples of these projecsBanGrid project in
Japan for online brain activity analysis and protein fogdsimulation, the eDia-
MoND project in the UK for breast cancer treatment and the iBarimatics Re-
search Network (BIRN) for imaging of neurological disordesgng data from fed-

erated databases.

Earth SciencesResearchers in disciplines such as earthquake engineerthglianate

modeling and simulation are adopting Grids to solve theingotational and data
requirements. NEESgrid is a project to link earthquakeaeteers with high per-
formance computing and sensor equipment so that they cdabochte on de-
signing and performing experiments. Earth Systems Gridsdorintegrate high-
performance computational and data resources to studyetabyies of data result-

ing from climate modelling and simulation.
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Table 3.2: Comparison between various data transport témties.

Project Function Security Fault Transfer
Toler- Mode
ance

GASS File 1/0 PKI, Unencrypted, Caching | Block,

Coarse-grained Stream
append

IBP Overlay Password, Unen: Caching | Block

Mechanism | crypted, Coarser
grained
FTP Transfer Password, Unen- Restart | All
Protocol crypted, Coarset
grained
SFTP Transfer PKI, SSL, Coarse+ Restart | All
Protocol grained
GridFTP Transfer PKI, SSL, Coarse: Resume | All
Protocol grained
Kangaroo Overlay PKI, Unencrypted, Caching | Block
Mechanism | Coarse-grained
Legion File /0 PKI, Unencrypted, Caching | Block
Coarse-grained
SRB File /O PKIl, SSL, Fine-| Restart | Block,
grained Stream, Bulk
transfer

3.2.2 Data Transport Technologies

Within this subsection, various projects involved in dagasport over Grids are discussed
and classified according to the taxonomy provided in SecBoh2. The data transport
technologies studied here range from protocols such as &0Rerlay methods such as
Internet Backplane Protocol to file I/O mechanisms. Eachneldyy has unique prop-
erties and is representative of the categories in whichptased. A summary of these

technologies and their categorization is provided in Tauke

GASS

Global Access to Secondary Storage (GASS) [33] is a datassacnechanism provided
within the Globus toolkit for reading local data at remotecimaes and for writing data

to remote storage and moving it to a local disk. The goal of GASto provide a uni-
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form remote 1/O interface to applications running at remetources while keeping the
functionality demands on both the resources and the apiplsalimited.

GASS conducts its operations via a file cache which is an ar¢hesecondary stor-
age where the remote files are stored. When a remote file isstegliey an application
for reading, GASS by default fetches the entire file into thehe from where it is opened
for reading as in a conventional file access. It is retaingtiéncache as long as applica-
tions are accessing it. While writing to a remote file, the &lereated or opened within
the cache where GASS keeps track of all the applicationggttio it via reference count.
When the reference count is zero, the file is transferred tcettm@te machine. Therefore,
all operations on the remote file are conducted locally ircdehe, which reduces demand
on bandwidth. A large file can @estagednto the cache, that is, fetched before an ap-
plication requests it for reading. Similarly, a file can bensferred out vigoststaging
GASS operations also allow access to permitted disk aréees titan the file cache and
are available through an API and also through Globus commafiSS is integrated
with the Globus Resource Access and Monitoring (GRAM) ser{6éé and is used for
staging executables, staging in files and retrieving thedstiad output and error streams
of the jobs.

GASS provides a limited ability for data transfer betweenote nodes. As it prefetches
the entire file into the cache, it is not suitable as a transkechanism for large data files
(of GigaByte upwards) as the required cache capacity mighieavailable. Also, it does
not provide features such as file striping, third-party$fan TCP tuning, etc. provided by
protocols such as GridFTP. However, because of its liglgitdgunctionality, it is suitable

for applications where the overhead of setting up a GridFdihection dominates.

IBP

Internet Backplane Protocol (IBP) [27, 164] allows applicas to optimize data transfer
and storage operations by controlling data transfer elgliby storing the data at in-

termediate locations. IBP uses a “store-and-forward” maltto move data around the
network. Each of the IBP nodes has a temporary buffer into hvtiata can be stored for
a fixed amount of time. Applications can manipulate theséebsiso that data is moved

to locations close to where it is required.
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IBP is modelled after the Internet Protocol. The data is heahdl units of fixed-size
byte arrays which are analogous to IP datagrams or netwakepa Just as IP datagrams
are independent of the data link layer, byte arrays are iwggnt of the underlying stor-
age nodes. This means that applications can move data avathalit worrying about
managing storage on the individual nodes. IBP also providgistzal addressing space
that is based on global IP addressing. Thus, any client mvahi IBP network can make

use of any IBP node.

IBP can also be thought of as a virtualisation layer or as aasackayer built on top
of storage resources. IBP provides access to heterogenteoagesresources through a
global addressing space in terms of fixed block sizes thusngalccess to data indepen-
dent of the storage method and media. The storage buffergroanto any size, and thus

the byte arrays can also be thought of as files which live ométeork.

IBP also provides a client APl and libraries that provide setica similar to UNIX
system calls. A client connects to an IBP “depot”, or a serand requests storage al-
location. In return, the server provides it threggoabilities for reading from, writing to
and managing the allocation. Capabilities are cryptograglyi secure byte strings which
are generated by the server. Subsequent calls from the oliest make use of the same
capabilities to perform the operations. Thus, capalsliieovide a notion of security as a
client can only manipulate its own data. Capabilities candob@nged between clients as
they are text. Higher-order aggregation of byte arrays ssiixde through exNodes which
are similar to UNIX inodes. exNodes allow uploading, regiing and managing of files

on a network with an IBP layer above the networking layer [165]

Beyond the use of capabilities, IBP does not have an addredsamem that keeps
track of every replica generated. There is no directoryiserthat keeps track of ev-
ery replica and no information service that can return the #8Bress of a replica once
queried. Though exNodes store metadata, IBP itself doesrovide a metadata search-
ing service. Therefore, IBP is a low-level storage solutioat functions just above the

networking layer.
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FTP

FTP (File Transfer Protocol) [167] is one of the fundameptatocols for data movement
in the Internet. FTP is therefore ubiquitous and every dpegaystem ships with an FTP

client.

FTP separates the process of data transfer into two chatimelsontrol channel used
for sending commands and replies between a client and arsamdethe data channel
through which the actual transfer takes place. The FTP cardmset up the data connec-
tion by specifying the parameters such as data port, modamsfer, data representation
and structure. Once the connection is set up the server tigaiaes the data transfer
between itself and the client. The separation of control @aid channels also allows
third-party transfers to take place. A client can open twoatic channels to two servers
and direct them to start a data transfer between themsesss$sing the client. Data
can be transferred in three modes: stream, block and coesgatesn the stream mode,
data is transmitted as is and it is the responsibility of #medéng host to notify the end
of stream. In the block mode, data is transferred as a sdrldeaks preceded by header
bytes. In the compressed mode, a preceding byte denotesithigen of replications of

the following byte and filler bytes are represented by a sihgte.

Error recovery and restart within FTP does not cover coedplata but takes care of
data lost due to loss of network or a host or of the FTP prodssH.i This requires the
sending host to insert markers at regular intervals withendata stream. A transmission
Is restarted from the last marker sent by the sender beferprévious transfer crashed.
However, restart is not available within the stream transfede. Security within FTP
is very minimal and limited to the control channel. The usene and password are
transmitted as clear text and there is no facility for entingpdata while in transit within

the protocol. This limits the use of FTP for confidential s&ars.

Numerous extensions to FTP have been proposed to offsamitstions. RFCs
2228 [105] and 2389 [100] propose security and featuresisiies to FTP respectively.
However, these are not implemented by popular FTP servelsasiwu-ftpd. SSH File
Transfer Protocol (SFTP) [93] is a secure file transfer mrotthat uses the Secure Shell

(SSH) Protocol for both authentication and data channelyption. SFTP is designed to
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be both a transfer protocol and a remote file system accesxptoHowever, it does not
support features required for high-performance data teassich as parallel and striped

data transfer, resuming interrupted transmissions onguof TCP parameters.

GridFTP

GridFTP [8, 10] extends the default FTP protocol by providieatures that are required
in a Data Grid environment. The aim of GridFTP is to providewe, efficient, and
reliable data transfer in Grid environments.

GridFTP extends the FTP protocol by allowing GSI and Kerbdrased authentica-
tion. GridFTP provides mechanisms for parallel and strigath transfers and supports
partial file transfer that is, the ability to access only pHra file. It allows changing the
sizes of the TCP buffers and congestion windows to improvestea performance. Trans-
fer of massive data-sets is prone to failures as the netwagkaxhibit transient behaviour
over long periods of time. GridFTP sends restart markersatiehg a byte range that has
been successfully written by the receiver every 5 seconelstbe control channel. In case
of a failure, transmission is resumed from the point incidaby the last restart marker
received by the sender.

GridFTP provides these features by extending the basic Fof®gol through new
commands, features and a new transfer mode. The Stripeddé{&3\S) command is an
extension to the FTP PASV command wherein the server preadist of ports to connect
to rather than just a single port. This allows for multipl&nections to download the same
file or for receiving multiple files in parallel. The ExtendBetrieve (ERET) command
supports partial file transfer among other things. The SefeB(EBUF) and AutoNegoti-
ate Buffer (ABUF) extensions allow the resizing of TCP buffensboth client and server
sides. The Data Channel Authentication (DCAU) extension ides/for encrypting of
data channels for confidential file transfer. DCAU is used ovityen the control channel
is authenticated through RFC 2228 [105] mechanisms. Pbaaliestriped data transfers
are realised through a new transfer mode called the extdrdekd mode (mode E). The
sender notifies the receiver of the number of data streamsibyg the End of Data (EOD)
and End of Data Count (EODC) codes. The EODC code signifies haw B&D codes

should be received to consider a transfer closed. An additiprotocol is therefore re-
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quired from the sender side to ensure that the receiverrsbtiaé data correctly. GridFTP
implements RFC 2389 [100] for negotiation of feature setsvbenh the client and the
server. Therefore, the sender first requests the featupg®sead by the receiver and then
sets connection parameters accordingly. GridFTP alsoastgppestart for stream mode
transfers which is not provided in the vanilla FTP protocol.

The only public implementation for the GridFTP server-spietocols is provided
in the Globus Toolkit [83]. The Globus GridFTP server is a ified wu-ftpd server
that supports most of GridFTP’s features except for strigi@ich transfer and automatic
TCP buffer size negotiation. The Globus Toolkit providesdiiles and APIs for clients
to connect to GridFTP servers. A command-line tagpbbus-url-copy developed using
these libraries, functions as a GridFTP client. Anothemeplas of a GridFTP clients is
the UberFTP [152] client from NCSA.

Evaluation of GridFTP protocols alongside FTP has showhubkeng the additional
features of GridFTP increases performance of data trap@grParticularly, the usage of
parallel threads dramatically improves the transfer speed both loaded and unloaded
networks. Also, parallel transfers saturate the bandwiitis improving the link utilisa-

tion.

Kangaroo

Kangaroo [202] is an end-to-end data movement protocoldhmas to improve the re-
sponsiveness and reliability of large data transfers withe Grid. The main idea in
Kangaroo is to conduct the data transfer as a backgroun@égs@o that failures due to
server crashes and network partitions are handled tragrsihaby the process instead of
the application having to deal with them.

Kangaroo uses memory and disk storage as buffers to whiehiglatritten to by the
application and moved out by a background process. Theféraotdata is performed
concurrently with CPU bursts thereby improving utilizatiofhe transfer is conducted
throughhops or stages where an intermediate server is introduced ket client and
the remote storage from which the data is to be read or writi2ata received by the
intermediate stage is spooled into the disk from where ib@ed to the next stage by a

background process called thmver This means that a client application writing data to
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a remote storage is isolated from the effects of a networhooa slow-down as long as it
can keep writing to the disk spool. However, it is also pdsditr a client to write data to
the destination server directly over a TCP connection ugiadgdangaroo primitives.

Kangaroo services are provided through an interface whgilaments four simple
file semanticsget (non-blocking read)put (non-blocking write)comni t (block until
writes have been delivered to the next stage) amsh (block until all writes are deliv-
ered to the final destination). However, this only providesalvconsistency since it is
envisioned for grid applications in which data flow is priiham one direction. As can
be seen, Kangaroo is an output-oriented protocol whichamilyndeals with reliability of
data transfer between a client and a server.

The design of Kangaroo is similar to that of IBP even thouglir thiens are different.
Both of them use store-and-forward method as a means of vemgpdata. However,
while IBP allows applications to explicitly control data nesaent through a network,
Kangaroo aims to keep the data transfer hidden through thgeusf background pro-
cesses. Also, IBP uses byte arrays whereas Kangaroo usesfalodt @ CP/IP datagrams

for data transmission.

Legion I/O model

Legion [54] is a object-oriented grid middleware for prawg a single system image
across a collection of distributed resources. The I/O m@ishawithin Legion [215] aims
to provide transparent access to files stored on distribrgsdurces through APIs and
daemons that can be used by native and legacy applicatiées al

Resources within the Legion system are represented by ebjdasicFileObjects
correspond to files in a conventional file system while Co@éjcts correspond to di-
rectories. However, these are separated from the actualylem. A datafile is copied
to a BasicFileObject to be registered within the context spafcLegion. The context
space provides location-independent identifiers whictbatend to human-readable con-
text names. This presents a single address space and hyefesm which users can
request files without worrying about their location. Alsbetrepresentation of Basic-
FileObject is system-independent, and therefore providiesoperability between het-

erogeneous systems.
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Access to a Legion file object is provided through various meaCommand-line
utilities provide a familiar interface to the Legion contepace. Application developers
can use APIs which closely mimic C and C++ file primitives andXd.ystem calls. For
legacy codes, a buffering interface is provided throughcWhapplications can operate
on local files copied from the Legion objects and the changesa@pied back. Another
method is to use a modified NFS daemon that translates ckepiest to appropriate
Legion invocations.

Security for file transfer is provided through means of X.508xies which are del-
egated to the file access mechanisms [79]. Data itself ismoipted while in transit.
Caching and prefetching is implemented for increasing perdmce and to ensure relia-

bility.

SRB /0

The Storage Resource Broker (SRB) [26] developed at the San [Siegercomputing
Centre (SDSC) focuses on providing a uniform and transpanéface to heterogenous
storage systems that include disks, tape archives andagasibA study of SRB as a repli-
cation mechanism is provided in the following section, hesvethis description focuses
on the data transport mechanism within SRB.

Data transport within SRB provides features such as pamddits transfers for per-
forming bulk data transfer operations across geograghidatributed sites. If parallel
transfer is requested by a client, the SRB server creates herurhparallel streams de-
pending on bandwidth availability and speed of the storagdiom. SRB also allows
streaming data transfer and supports bulk ingest opesatiomhich multiple files are
sent using multiple streams to a storage resource. SRB |/Qraasfer multiple files
as containers and can stage files from tape or archival gdoadisk storage for faster
access.

SRB provides for strong security mechanisms supported bygfiamed access con-
trols on data. Access security is provided through credensiuch as passwords or public
key and private key pair which can be stored within MCAT itsé&bntrolled authoriza-
tion for read access is provided through tickets issued bysugho have control privileges

on data. Tickets are time-limited or use-limited. Users a0 control access privileges
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Table 3.3: Comparison between various data replication aresims.
Project | Model Topology | Storage | Data Meta- Update Catalog
Integra- | Trans- | data
tion port
Gfarm | Centralised | Hierarchy| Tightly- | Closed | System, | Async., DBMS
coupled Active epidemic
RLS Centralised | Hierarchy| Loosely- | Open User- Async., DBMS
coupled defined, | on-
Passive | demand
GDMP | Centralised | Hierarchy| Loosely- | Open User- Async., DBMS
coupled defined, | on-
Passive | demand
SRB Decentral- | Flat Intermed-| Closed | User- Async., DBMS
ised iate defined, | on-
Passive | demand

along a collection hierarchy.

SRB also provides support for remote procedures. These aratams which can be
performed on the data within SRB without having to move it. Renpwocedures include
execution of SQL queries, filtering of data and metadataeitn. This also provides for
an additional level of access control as users can spedaifgigalatasets or collections to

be accessible only through remote procedures.

3.2.3 Data Replication and Storage

In this subsection, four of the data replication mechanissedd within Data Grids are
studied in depth and classified according to the taxonomgmgin Section 3.1.3. These
were chosen not only because of their wide usage but alsabecd the wide variations
in design and implementation represented by them. A sumisagjven in Table 3.3.

Table 3.4 encapsulates the differences between the vagplisation mechanisms on the
basis of the replication strategies that they follow. Sorfntae replication strategies have

been only simulated and therefore, these are explainedapaate subsection.
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Grid DataFarm

Grid Datafarm (Gfarm) [199] is an architecture that cougtsage, 1/0 bandwidth and

processing to provide scalable computing to process pttalliyB) of data. The architec-
ture consists of nodes that have a large disk space (in tlee oftkerabytes (TB)) coupled

with computing power. These nodes are connected via a higgdsipterconnect such as
Myrinet or Fast Ethernet. Gfarm consists of the Gfarm filésys process scheduler and
the parallel I/0 APIs.

The Gfarm filesystem is a parallel filesystem that unifies teefldressing space over
all the nodes. It provides scalable I/O bandwidth by integgaprocess scheduling with
data distribution. A Gfarm file is a large file that is storedbtighout the filesystem on
multiple disks as fragments. Each fragment has arbitrargtfeand can be stored on
any node. Individual fragments can be replicated and thikcespare managed through
Gfarm metadata. Individual fragments may be replicatedthadeplicas are managed
through the filesystem metadata and replica catalog. M&tadaipdated at the end of
each operation on a file. A Gfarm file is write-once, that ig file is modified and saved,

then internally it is versioned and a new file is created.

Gfarm targets data-intensive applications in which theesprogram is executed over
different data files and where the primary task is of readitagge body of data. The data
is split up and stored as fragments on the nodes. While exgcatprogram, the process
scheduler dispatches it to the node that has the segmentieothdd the program wants to
access. If the nodes that contain the data and its replieasnaer heavy CPU load, then
the filesystem creates a replica of the requested fragmesmi@ther node and assigns the
process to it. In this way, 1/0 bandwidth is gained by exphgjtthe access locality of
data. This process can also be controlled through the Gfdpihs.Alt is also possible to

access the file using a local buffer cache instead of reitat

On the whole, Gfarm is a system that is tuned for high-spe¢al a@ecess within a
tightly-coupled yet large-scale architecture such astetssconsisting of hundreds of
nodes. It requires high-speed interconnects between thessrsw that bandwidth-intensive
tasks such as replication do not cause performance hits iFtavident through exper-

iments carried out over clusters and wide-area testbedy 208]. The scheduling in
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Gfarm is at the process level and applications have to us@m®tehough a system call
trapping library is provided for inter-operating with leyaapplications. Gfarm targets
applications such as High Energy Physics where the dataritge“@nce read-many”. For
applications where the data is constantly updated, therel t@ problems with managing
the consistency of the replicas and the metadata though@mipg version aims to fix
them [201].

RLS

Giggle (GlGa-scale Global Location Engine) [55] is an amttural framework for a
Replica Location Service (RLS) that maintains informatioowlphysical locations of
copies of data. The main components of RLS are the Local Repatalog (LRC) which

maps the logical representation to the physical locatiomstae Replica Location Index
(RLI) which indexes the catalog itself.

The actual data is represented bggical file name (LFNjand contain some informa-
tion such as the size of the file, its creation date and any silneh metadata that might
help users to identify the files that they seek. A logical fites lma mapping to the actual
physical location(s) of the data file and its replicas, if.ahlge physical location is iden-
tified by a uniquephysical file name (PFN)hich is a URL (Uniform Resource Locator)
to the data file on storage. Therefore, a LRC provides the Phsmonding to an LFN.
The LRC also supports authenticated queries that is, infiommabout the data is not
available in the absence of proper credentials.

A data file may be replicated across several geographicahdmdnistrative bound-
aries and information about its replicas may be presentuaraéreplica catalogs. An
RLI creates an index of replica catalogs as a set of logicah@ilmes and a pointer to a
replica catalog entries. Therefore, it is possible to dedgeeral configurations of replica
indexes, for example a hierarchical configuration or a egénsingle-indexed configura-
tion or a partitioned index configuration. Some of the pdsstlonfigurations are listed
by Chervenak et al. [55]. The information within an RLI is pelically updated using
soft-state mechanisms similar to those used in Globus MD&{tdring and Discovery
System). In fact, the structure of the replica catalog isegsimilar to that of MDS [65].

RLS is aimed at replicating data that is “write once read magdta from scientific
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instruments that needs to be distributed around the woftalssinto this category. This
data is seldom updated and therefore, strict consistenogg@ment is not required. Soft-
state management is enough for such applications. RLS isaadsandalone replication
service that is it does not handle file transfer or data rapba itself. It provides only an

index for the replicated data.

GDMP

GDMP [180, 189] is a replication manager that aims to proadeure and high-speed
file transfer services for replicating large data files angcidatabases. GDMP provides
point-to-point replication capabilities by utilizing tleapabilities of other Data Grid tools
such as replica catalogs and GridFTP.

GDMP is based on the publish-subscribe model, wherein tiveispublishes the set
of new files that are added to the replica catalog and thetademrequest a copy of these
after making a secure connection to the server. GDMP usea&i® authentication and
authorization infrastructure. Clients first register witle server and receive notifications
about new data that are available which are then requestedglication. Failure during
replication is assumed to be handled by the client. For el@nifthe connection fails
while replicating a set of files, the client may reconnecthwitie server and request a
re-transfer. The file transfer is conducted through GridFTP

GDMP deals with object databases created by High Energyi¢zhgsperiments. A
single file may contain up to a billion(°) objects and therefore, it is advantageous for
the replication mechanisms to deal with objects rather fil@s. Objects requested by
a site are copied to a new file at the source. This file is thaersteared to the recipient
and the database at the remote end is updated to includevhebjects. The file is then
deleted at the origin. In this case, replication is staticlenging Grid conditions are not
taken into account by the source site. It is left up to thentigte to determine the time
and the volume of replication.

GDMP was originally conceived for the CMS experiment at theQ_iH which the
data is generated at one point and has to be replicated loGdlerefore, consistency
of replicas is not a big issue as there are no updates andeafidtifications are in a

single direction. The data for this experiment was in thenforf files containing objects
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where each object represented a collision. GDMP can irten#it the object database to

replicate specific groups of objects between sites.

SRB

The purpose of the SRB is to enable the creation of sharedctolts through manage-
ment of consistent state information, latency managentad,leveling, logical resources
usage and multiple access interfaces [26, 170]. SRB alsctaiprsvide a unified view of
the data files stored in disparate media and locations byginagvthe capability to organ-
ise them into virtual collections independent of their pbgklocation and organization.
It provides a large number of capabilities that are not oplgliaable to Data Grids but
also for collection building, digital libraries and petsist archival applications.

An SRB installation follows a three-tier architecture - thogtbm tier is the actual stor-
age resource, the middleware lies in between and at the tbe i&pplication Program-
ming Interface (API) and the Metadata CATalog (MCAT). Fileteyss and databases are
managed aphysical storage resources (PSRd)ich are then combined intogical stor-
age resources (LSRspata items in SRB are organised within a hierarchy of cdthest
and sub-collections that is analogous to the UNIX filesyskeenarchy. Collections are
implemented using LSRs while the data items within a coltectian be located on any
PSR. Data items within SRB collections are associated witladata which describe sys-
tem attributes such as access information and size, anduteg&cattributes which record
properties deemed important by the users. The metadataredswithin MCAT which
also records attributes of the collections and the PSRsibAt&-based access to the data
items is made possible by searching MCAT.

The middleware is made up of the SRB Master daemon and the SR pgeeesses.
The clients authenticate to the SRB Master and the lattetsstar Agent process that
processes the client requests. An SRB agent interfaces watMCAT and the storage
resources to execute a particular request. It is possibtzetate a federation of SRB
servers by interconnecting the masters. In a federatioer\@sacts as a client to another
server. A client request is handed over to the appropriatesdepending on the location
determined by the MCAT service.

SRB implements transparency for data access and transfeabggimg data as col-



62 Chapter 3. A TAXONOMY OF DATA GRIDS

Table 3.4: Comparison between replication strategies.

Project Method Granularity Objective Func-
tion
Grid Datafarm Static File, Fragment | Locality
RLS Static Datasets, File Popularity, Publi-
cation
GDMP [189] Static Datasets, File, Fr+ Popularity, Publi-
agment cation
SRB Static Containers, Preservation,
Datasets, File Publication
Lamehamedi et Dynamic File Update Costs
al ([129]; [128])
Bell et al. [30] Dynamic File Economic
Lee and WeissmanDynamic File Popularity
[133]
Ranganathan et al.Dynamic File Popularity
[175]

lections which own and manage all of the information reqlii@ describing the data
independent of the underlying storage system. The cdledtikes care of updating and
managing consistency of the data along with other staterrdtion such as timestamps
and audit trails. Consistency is managed by providing syamikation mechanisms that
lock stale data against access and propagates updategttbubihe environment until
global consistency is achieved.

SRB is one of the most widely used Data Grid technologies imouarapplication
domains around the world including the UK eScience (eDiald@NBaBar, BIRN, IVOA
and the California Digital Library [168].

Other Replication Strategies

Lamehamedi, et. al [128, 129] study replication strateljased on the replica sites being
arranged in different topologies such as ring, tree or liyldgach site or node maintains
an index of the replicas it hosts and the other locations e$dtreplicas that it knows.

Replication of a dataset is triggered when requests for itsiteaexceed some threshold.
The replication strategy places a replica at a site thatrmsas the total access costs

including both read and write costs for the datasets. Theewadst considers the cost of
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updating all the replicas after a write at one of the repliddsey show through simulation
that the best results are achieved when the replicatiorepsas carried out closest to the

users.

Bell et al. [30] present an file replication strategy based mee@onomic model that
optimises the selection of sites for creating replicas. Rapbn is triggered by the num-
ber of requests received for a dataset. Access mediat@ivedhese requests and start
auctions to determine the cheapest replicas. A Storage B(SE) participates in these
auctions by offering a price at which it will sell access toeglrca if it is present. If
the replica is not present at the local storage element, ttieeibroker starts an auction
to replicate the requested file onto its storage if it deteawithat having the dataset is
economically feasible. Other SBs then bid with the lowestethat they can offer for the
file. The lowest bidder wins the auction but is paid the amdiehby the second-lowest
bidder. This is a Vickrey second price auction [209] withakeling bids.

Lee and Weissman [133] present an architecture for dynagpiecation within a ser-
vice Grid. The replicas are created on the basis of each\staaing whether its perfor-
mance can be improved by requesting one more replica. Thepopslar services are,
therefore, most replicated as this will entail a perfornehboost by lessening the load
requirements on a particular replica.

Ranganathan et al. [175] present a dynamic replicationegjyathat creates copies
based on trade-offs between the cost and the future benéfiteating a replica. The
strategy is designed for peer-peer environments where thex high-degree of unrelia-
bility and hence, considers a minimum number of replicas nhight be required given
the probability of a node being up and the accuracy of infelongpossessed by a site in

a peer-peer network.

3.2.4 Resource Allocation and Scheduling

This subsection deals with the study of resource allocatiotd scheduling strategies
within Data Grids. While Grid scheduling has been a well-aeskeed topic, this study
is limited to only those strategies that explicitly deallwitansfer of data during process-

ing. Therefore, the focus here is on features such as adaptanvironments with varied
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data sources and scheduling jobs in order to minimise theememnt of data. Table 3.5

summarises the scheduling strategies surveyed in thi®seotd their classification.

Table 3.5: Comparison between scheduling strategies.

Work/Project Application | Scope Data Utility Locality
Model Replica- | Function
tion
Casanova, et al. Bag-of- Individual | Coupled | Makespan| Tempora
[51] Tasks
GrADS [67] Process-leve| Individual | Decoupled Makespan| Spatial
Ranganathan & Independent| Individual | Decoupled Makespan| Spatial
Foster [173] Tasks
Kim and Weiss-| Independent| Individual | Decoupled Makespan| Spatial
man [116] Tasks
Takefusa, et| Process-leve| Individual | Coupled | Makespan| Tempora
al [198]
Pegasus [69] Workflows Individual | Decoupled Makespan| Tempora
Thain et al. [203] | Independent| Community| Coupled | Makespan| Both
Tasks
Chameleon [160]| Independent| Individual | Decoupled Makespan| Spatial
Tasks
SPHINX  [110,| Workflows Community| Decoupled QoS Spatial
111]

Scheduling strategies for data-intensive applicatiomsbeadistinguished on the basis
of whether they couple data movement to job submission ar Astmentioned earlier
in Section 3.1.4, in the former case, the temporal localftgaia requests is exploited.
Initial work focused on reuse of cached data. An example isfdirection is the work
by Casanova et al. [51] who introduce heuristics for scheduldependent tasks shar-
ing common files, on a Grid composed of interconnected disistdere, the strategy is
to prefer nodes within clusters to which the data has alrésey transferred rather than
those clusters where the data is not present. The source dath is considered to be the
client node, i.e., the machine which submits the jobs to thd.G.ater efforts looked at
extending this to data replication where copies of the dedaraintained over a longer
term to benefit requests coming from future job submissidiagefusa et al. [198] have
simulated job scheduling and data replication policiescimtral and tier model organi-

zation of Data Grids based on the Grid Datafarm [199] archire. Out of the several
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policies simulated, the authors establish that the conibimaf OwnerComputestrat-
egy (job is executed on the resource that contains the datglf scheduling along with
background replication policies based on number of acedesadBound-Replicajeor
on the node with the maximum estimated performarag(essive-ReplicatiQmprovides

the minimum execution time for a job.

Similar in intent, Thain et al. [203] describe a means of tngal/O communities
which are groups of CPU resources such as Condor pools cldstevand a storage re-
source. The storage appliance satisfies the data requitefoenobs that are executed
on both the processes within and outside the community. ¢heduling strategy in this
work allows for both the data to be staged to a community wtiexgob is executed and
the job to migrate to a community where the data requiredresadly staged. The deci-
sion is made by the user after comparing the overheads @resthging the application
or replicating the data. This is different to the policiegpously mentioned wherein
the replication process is based on heuristics and requoasser intervention. Again,
improving temporal locality of data by replicating it withee community improves the
performance. Later, this section looks at another couplateg)y proposed by Phan et al.

[162] that uses Genetic Algorithms as a scheduling hearisti

Strategies that decouple job submission from data moveat&rpt to reduce the
data transfer time either by scheduling the job close to tineasource of the data, or by
accessing the data from a replica site which is closest tgiteeof computation. Here,
the term “close” refers to a site with minimum transfer tinlRanganathan and Foster
[173] propose a decoupled scheduling architecture for idé¢asive applications which
consists of 3 components: the External Scheduler (ES) #atés to which node the
jobs must be submitted, the Local Scheduler (LS) on each timdalecides the priority
of the jobs arriving at that node and the Dataset Schedulsy {lEat tracks the popularity
of the datasets and decides which datasets to replicatéate d€Ehrough simulation, they
evaluate combinations of 4 job scheduling algorithms fer @5 and 3 replication algo-
rithms for the DS. The results show that the worst perforreamgiven by executing a job
at the source of data in the absence of replication. Thisaause a few sites which host
the data are overloaded in this case. The best performagoesis by same job schedul-

ing strategy but with data replication. A similar strategyroposed in Chameleon [160]
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wherein a site on which the data has already been replicataeierred for submitting a

job over one where the data is not present.

Most of the strategies studied try to reducenekesparor the Minimum Completion
Time (MCT) of the task which is defined as the difference betwtbe time when the job
was submitted to a computational resource and the time ipteied. Makespan also in-
cludes the time taken to transfer the data to the point of caation if that is allowed by
the scheduling strategy. Takefusa et al. [198] and Grid isptibn Development Software
(GrADS) project [67] are makespan schedulers that opetateeasystem process level.
Scheduling within the latter is carried out in three phasegore the execution, there is
an initial matching of an application’s requirements toide resources based on its
performance model and this is callledinch-time schedulinghen, the initial schedule is
modified during the execution to take into account dynamanges in the system avail-
ability which is calledrescheduling finally, the co-ordination of all schedules is done
through meta-scheduling Contracts [211] are formed to ensure guaranteed execution
performance. The mapping and search procedure presentadil®st al. [66] forms Can-
didate Machine Groups (CMG) consisting of available resesinghich are then pruned
to yield one suitable group per application. The mapper thaps the application data
to physical location for this group. Therefore, spatiadiity is primarily exploited. The
scheduler is tightly integrated into the application andksat the process level. How-
ever, the algorithms are themselves independent of thécaiph. Recent work however
has suggested extending the GrADS scheduling concept tkflaiwrapplications [61].

However, the treatment of data still remains the same.

Casanova et al. [51] extend three heuristics for reducingeskn —Min-Min, Max-
Min andSufferagdhat were introduced by Maheswaran et al. [142] — to consitjaut
and output data transfer times. Min-Min assigns tasks wiéhléast makespan to those
nodes which will execute them the fastest whereas Max-Migas tasks with maximum
makespan to fastest executing nodes. Sufferage assidtssaiaghe basis of how much
they would “suffer” if they are not assigned to a particulada. This “sufferage” value
Is computed as the difference between the best MCT for a taskparticular node and
the second-best MCT on another node. Tasks with higher sgievalues receive more

priority. The authors introduce another heurisk§ufferagewhich is an extended version
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of Sufferage that takes into account file locality beforeesttHing jobs by considering
MCT on the cluster level. Within XSufferage, a job is scheduie a cluster if the file

required for the job has been previously transferred to aaerwithin the cluster.

Kim and Weissman [116] introduce a Genetic Algorithm (GAséa scheduler for
reducing makespan of Data Grid applications decomposatdendependent tasks. The
scheduler targets an application model wherein a largesegitasplit into multiple smaller
datasets and these are then processed in parallel on mt\igilial sites”, where a virtual
site is considered to be a collection of compute resourcdslata servers. The solution
to the scheduling problem is represented as a chromosomigidh wach gene represents
a task allocated to a site. Each sub-gene is associated walua that represents the
fraction of a dataset assigned to the site and the whole geassobciated with a value
denoting capability of the site given the fraction of theada&ts assigned, the time taken to
transfer these fractions and the execution time. The chsomes are mutated to form the
next generation of chromosomes. At the end of an iteratfchromosomes are ranked
according to an objective function and the iteration std@s@edefined condition. Since
the objective of the algorithm is to reduce the completioretithe iterations tend to favour
those tasks in which the data is processed close to or at theqgd@womputation thereby
exploiting the spatial locality of datasets. Phan et al2]1&pply a similar GA based
strategy, but in their case, data movement is coupled toybmsssion. The chromosome
that they adopt represents job ordering, assignments sftmlzompute nodes and the
assignment of data to replica locations. At the end of a §ipdchumber of iterations
(100 in this case), the GA converges to a near-optimal swiufat gives a job order

queue, job assignments and data assignments that mininaizespan.

While the strategies before have concentrated on indepetakks or BoT model of
Grid applications, Pegasus [69] concentrates on reducadgsapan for workflow-based
applications. The strategy reducesabstract workflowthat contains the order of exe-
cution of components into eoncrete workflowwhere the component is turned into an
executable job and the locations of the computational ressuand the data are speci-
fied. The abstract workflow goes through a processdtictionwhere the components
whose outputs have already been generated and enteredRapliaa Location Service

are removed from the workflow and substituted with the ptaldacation of the products.
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The emphasis is therefore on the reuse of already produdagdaducts. The planning
process selects a source of data at random, that is, netdemporal nor the spatial
locality is exploited.

Other projects aim to achieve different scheduling obyestisuch as achieving a spe-
cific QoS demanded by the application. SPHINX (Schedulingarallel for a Heteroge-
neous Independent NetworX) [110] is one such middlewargptdor scheduling data-
intensive applications on the Grid. Scheduling within SRMIis based on a client-server
framework in which a scheduling client within a VO submits atezjob as a Directed
Acyclic Graph (DAG) to one of the scheduling servers for th@ ®long with QoS re-
quirements such as number of CPUs required and deadline ofitexe. QoS privileges
that a user enjoys may vary with the groups he or she belong&hmserver is allocated
a portion of the VO resources and in turn, it reserves somieeasfe for the job submitted
by the client based on the allocated QoS for the user and skaddient an estimate of
the completion time. The server also reduces the DAG by ramaasks whose out-
puts are already present. If the client accepts the coropléine, then the server begins
execution of the reduced DAG. The scheduling strategy inISIRH111] considers VO
policies as a four dimensional space with the resource geoviesource properties, user
and time forming each of the dimensions. Policies are espres terms of quotas which
are tuples formed by values of each dimension.The optinsalnee allocation for a user
request is provided by a linear programming solution whicghimizes the usage of the

user quotas on the various resources.

3.3 Discussion and Summary

Figures 3.10 — 3.14 pictorially represent the mapping ofstems that were analysed in
Section 3.2 to the taxonomy. Each of the boxes at the “leaMdbe taxonomy “branches”
contains those systems that exhibit the property at the I18abox containing “(All)”
implies that all the systems studied satisfy the propengmby the corresponding leaf.
From the figures it can be seen that the taxonomy is shown torbplete with respect to
the systems studied as each of them can be fully describeldebyategories within this

taxonomy.
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Figure 3.10: Mapping of Data Grid Organization Taxonomy tidGrid Projects.

Figure 3.10 shows the organizational taxonomy annotattdtive Data Grid projects
that were studied in Section 3.2.1. As can be seen from theefigurrent scientific Data
Grids mostly follow the hierarchical or the federated med#l organization because the
data sources are few and well-established. These dataescane generally mass storage
systems from which data is transferred out as files or daaseither repositories. From
a social point of view, such Data Grids are formed by esthinlgscollaborations between
researchers from the same domain. In such cases, any neggaants willing to join or
contribute have to be part of the particular scientific comityuto be inducted into the

collaboration.

The mapping of various Data Grid transport mechanisms etiith Section 3.2.2 to
the proposed taxonomy is shown in Figure 3.11. The requinétodransfer large datasets
has led to the development of high-speed, low latency teaiqsbtocols such as GridFTP
which is rapidly becoming the default transfer protocoldtirData Grid projects. While
FTP is also used within certain projects for data with lesssx and security constraints,
and SRB I/O is applicable in any SRB installation, IBP and Kaagare not deployed in
existing Data Grids. This is due to the fact that the latterrasearch projects rather than

products and do not meet all requirements of a Data Grid emment.

Figures 3.12 and 3.13 show mapping of the data replicatistesys covered in Sec-
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tions 3.2.3 to the replica architecture and strategy tamgnorhe hierarchical model of

the HEP experiments in Figure 3.10 has motivated the deredap of tree-structured

replication mechanisms that are designed to be top-dowaring of organization and

data propagation. Many of the projects that have followedéderation model have used
SRB which offers more flexibility in the organization modelreplica sites. SRB is also

used by many HEP experiments such as Belle and BaBar but corfigsiig hierarchy of

sites. Currently massive datasets are being replicatedabaty project administrators

in select locations for all the projects, and intelligent @ynamic replication strategies
have not yet found a place in production Data Grids. Thecstaplication strategy is

guided by the objective of increasing locality of datasets.

Figure 3.14 maps the Data Grid scheduling efforts discusséie previous section
to the scheduling taxonomy. It can be inferred that almdstfahese efforts have con-
centrated on reducing the makespan of the schedule. Mds#lyalgorithms have been
developed to take care of individual jobs such as those dtdahiio job queueing sys-
tems. This corresponds with traditional workloads in stifendomains such as High
Energy Physics that consist of batch submission of anglylss

However, the maturing of Grid services and Application Pangming Interfaces (APIS)
is bringing about data-intensive Grid applications thatkvat the level of aggregated

tasks/jobs. These applications also require to satisfyersophisticated objectives than
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simple makespan reduction. The next chapter presents wasefframework called a
resource broker that allows users to create data-inte@sigeapplications without know-
ing the underlying details of Grid services. The resourazkér translates application
requirements to tasks that are then carried out by invokiegappropriate Grid services.
The broker also allows creation of schedulers with varigéailves such as deadline and
budget constrained scheduling of applications. A caseystwlving the scheduling of
a data-intensive High Energy Physics applications is alesgnted to illustrate the utility

of the broker.



Chapter 4

A Grid Resource Broker for

Data-Intensive Applications

This chapter presents the design and implementation of titk@ Grid resource broker
for distributed data-intensive applications. It first disses the motivation for developing
a resource broker and the requirements that need to beesditisfithe broker, especially
for distributed data-intensive applications. Then, icdsses the architecture and design
of the broker in detail. Next, the implementation of the cgpts within the design is
illustrated with several examples. The Gridbus broker entbompared to other Grid
brokers on the basis of several properties. Finally, theptér presents a case study
involving a High Energy Physics (HEP) application called Belle Analysis Software
Framework (BASF) deployed on resources around Australigiustrate the usage of the

broker for distributed data-intensive scheduling.

4.1 Resource Brokers: Challenges

The capabilities that need to be provided in order to reai&id environment include:
uniform authentication and authorisation; resource mamegt and job submission; large-
scale data management and transfer; and resource allb@attbscheduling. Software
tools and services that provide these capabilities arecolkely calledGrid middleware

and mediate between users and the underlying Grid fabrisistimg of heterogeneous

73
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computing and storage resources connected by networksrgihgacapabilities. Fig-

ure 4.1 shows the evolution of Grid application developnusitig Grid middleware.

. . Application Logic Applications
Application Logic and

Load Balancin —_ — — — —
J Programming Libraries Resource Brokers

Application Schedulers

Core Grid Middleware Core Grid Middleware Core Grid Middleware

Distributed Resources Distributed Resources Distributed Resources

@) (b) ()

Figure 4.1: Evolution of application development on Gri@g.Direct to core middleware
(1995-). (b) Through programming libraries (1999-). (c)indsuser-level middleware
(2000-).

The first set of Grid middleware aimed to present a securetandard method of in-
vocation that abstracted the underlying heterogeneitystfibduted resources. Thesere
grid middlewaresuch as Globus [83] and Legion [54] (Figure 4.1(a)) providedrices
for performing low-level Grid functions such as data accgss submission and authori-
sation. Some of the early Grid applications directly inwbkiee functionalities presented
by thesecore middlewarghrough their APIls. However, they were still too complex and
low-level to become popular for general application depeient. These were followed
by programming libraries such as NetSolve [21], Ninf [1834ctus [11] and GrADS [31]
(Figure 4.1(b)) that provided a software environment tatapplications accessing dis-
tributed services in a transparent fashion. While theseh@gtoblems of having to deal
with varying Grid conditions from the user, significant effevas required to develop
schedulers and task managers for each application. Psajech as AppLeS (Application
Level Schedulers) [32] produced some of the early work is tegard. The next step was
to move the scheduling algorithms to a generic framework &h&o provided capabili-
ties such as resource selection, job monitoring and daesado any application. Such
frameworks are callecesource brokergFigure 4.1(c)) and some examples of these are
Nimrod/G [43], AppLeS Parameter Sweep Template (APST),[62hdor-G [91] and the

Gridbus resource broker which is discussed in this thesis.
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The creation of a generic resource broker framework for a-gdensive Grid appli-
cation runs into several challenges that arise out of therslity inherent in Grid environ-

ments. These challenges are listed as follows:

Service Heterogeneity: With the introduction of the OGSA [88], Grids have progrekse
from being aggregations of heterogeneous resources tectolhs of stateful ser-
vices. These services can be grouped into several categoich as job submission
and monitoring, information, data management and appicateployment. Stan-
dardisation of service interfaces has been a recent dewelopin Grid computing
and is still an ongoing process. Also, rapid developmentkigfield have meant
that middleware itself changes frequently, and therefergise interface changes
are the norm rather than the exception. Due to this hetesityeof services, sup-

porting diverse service semantics is still a serious chghe

Variety of Application Models: As was discussed in Chapter 3, Section 3.1.4, data-
intensive Grid applications tend to follow a variety of mtslsuch as bag of tasks,
workflows and independent jobs. However, these are stillired to interact with
the same set of service interfaces. Enabling this intemaatquires reconcilia-
tion between different application directives and corgguAlso, applications may
invoke services in a variety of ways. A brokering system nawsid imposing con-

straints on applications as far as possible so as to not tbitsyown applicability.

Multiple User Objectives: Applications and users may wish to satisfy different objec-
tives at the same time. Some possible objectives includaviag results in the
minimum possible time or within a set deadline, reducingatmunt of data trans-
fer and duplication, or ensuring minimum expense for an @ec or minimum
usage of allocated quota of resources. Different tasksinvdh application may
be associated with different objectives and different QQ84(ity of Service) re-
quirements. Examples of such requirements have been destusChapter 3, Sec-
tion 3.1.4. A brokering system must, therefore, ensure difégrent scheduling

strategies meeting different objectives can be employezhever required.

The discussion in previous chapters showed that one of dracteristics of a Data

Grid is the presence of replicated data that is potentiaitiely dispersed through-
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out the network. Resource brokering for distributed datansive applications
should provide automatic discovery of data sources for argataset or a file,
scheduling of jobs with respect to location of data and latdibg of data locations
to jobs so that the data resources can be assigned by takingansideration the

current availability of the underlying network.

Interface Requirements: The interface presented to the user may take several forms.
Many scientists are comfortable with traditional commadind-tools and require
that Grid tools be command line- and script-friendly as waléb portals that allow
users to invoke Grid and application capabilities withire amterface, have gained
popularity in recent times as they enable portability of king environments. Re-
cent applications are also able to seamlessly access Grafidns whenever re-
quired by invoking Grid/Web services or Grid middleware APA resource broker
should be able to support as many of these interfaces asbfgssiorder to be

useful to the largest community possible.

Infrastructural Concerns: The quintessential properties of Grid environments such as
absence of administrative control over resources, dynagstem availability and
high probabilities of failure have been described extexigiin previous publica-
tions [23, 211]. A resource broker has to be able to handieetipeoperties while
abstracting them as much as possible from the end-user.isTaisignificant chal-

lenge to developing any Grid middleware.

The following sections present the architecture, desighiaaplementation of a Grid
resource broker that takes into account the challengesionedt before in order to ab-

stract the vagaries of the environment from the end-user.

4.2 Architecture of the Gridbus Broker

The Gridbus broker follows an open and extensible objeietrted architecture designed
with the twin objectives oflexibility anddependabilityin mind. The architecture of the
Gridbus broker and its interaction with external entiteshown in Figure 4.2. The com-

ponents of the broker are grouped into three layers acaptditthe level of abstraction
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Figure 4.2: Gridbus broker architecture and its interactiith other Grid entities.

they provide from the underlying Grid resources. Each layetecoupled from its un-
derlying layer and their interaction is conducted througimdard interfaces. The overall
flow of control is from top to bottom while any events and exaaps that occur during
execution being filtered by each layer from the bottom to dipe The layers are described

in detail as follows.

4.2.1 Interface Layer

Applications, web portals and other such interfaces eateéathe broker interact with the
components of the Interface layer. The inputs from the exslezntities are translated by

this layer to create the objects in the Core layer. Three kofidsputs are provided to the
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broker: a description of the application requirementssted services that can be utilised

for executing the application, and the list of credentialssiccessing the services.

The application description provides details of the execusuch as the location of
executables, description of task inputs including reguiemote data files and informa-
tion about task outputs. This description can be provideohia of the XML-based lan-
guages supported by the broker or be given programmatitaltyigh the broker’s APIs.
Similarly, the set of services required for the user obyestican be provided through the
APIs or as an XML-based service description file containifgrimation such as service
location, service type and specific details such as remdtd hab submission systems
for computational services. The services can also be disedvby the broker at runtime
from remote information services such as the Grid Markee¢@ory (GMD) [221] or Grid
Index Information Service (GIIS) [65] among others. The ¢éifcredentials is provided
in another file. File-based inputs are handled by the resgeiaterpreters which convert
the descriptions to entities within the broker. The Apgiiza Interpreter converts the ap-
plication description file to Task objects while the Senditierpreter converts the service
description to Service objects. These objects are destabea part of the Core layer in

the following section.

4.2.2 Core Layer

This layer contains entities that represent the propesfidse Grid infrastructure indepen-
dent of the middleware and the functionality of the brokeelit Therefore, it abstracts
the details of the actual interaction with the Grid resosrnperformed by the Execution
layer. This interaction is driven by the decisions made lgyftimctional components of

the broker present in the Core layer.

Tasks represent sets of activities to be carried out in teewtion. Examples of such
activities include copying a file to the remote node, runrtimg executable and storing
the output in a remote repository. Tasks are associatedimpiit parameters and may
have requirements that need to be fulfilled before their @x@c. The task specification
provides the template for creating jobs which are the aatuék of work sent to the

remote Grid resource. Thatis, a task is an abstraction afitik performed for executing
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the application. The conversion of task to jobs is scendependent; for example, a
parameter sweep task is converted into a set of jobs, whilaghes independent task

representing a simple application with a single functiooasverted into one job.

It is possible to represent different types of services withe broker mirroring the
variety of services that are available in Grids. A compotadi service represents a com-
putational resource with properties such as architecaperating system and available
job submission systems. Data services describe storagsitees and the details of the
data files stored within these. These details include atgtsuch as the path of the files
in the repository and the protocol used to access the files.side and location of input
datasets for the application that are replicated on difterepositories are also tracked by
the broker. Services that provide meta-information suaessurce information services,
data catalogs and market directories are depicted as iatmmservices. Properties such
as bandwidth and economic cost of the network paths betvinearomputational and data
resources are provided by network information serviceshéwsed access to all services
is mediated by user-supplied Credentials that are assdawte one or more services.
The Service Monitor keeps track of the state of the servigeguerying them at regular
intervals to determine properties such as availabilityrent price and performance.

The Scheduler maps jobs to the appropriate services demendithe strategy em-
ployed. The Scheduler may also take into account the us&% r®quirements such as
deadline and budget. The Scheduler makes use of the infomgdthered by the service

monitor to make its decisions.

4.2.3 Execution Layer

The actual task of dispatching the jobs is taken care of b§#ezution layer which pro-
vides Dispatchers for various middleware. These dispatatreate middleware-specific
Agents from the jobs and are executed on the remote resouftiesre are any data files
associated with the job, then the agents request them frerddta repositories that have
been selected to access those files. During execution, thsldnitor keeps track of the
job status - whether a job is queued, executing, has finisheckessfully or has failed on

the remote resource. On completion of job execution, thecis®d agent returns any
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results to the broker and provides debugging information.

4.2.4 Persistence Sub-system

The persistence subsystem extends across the three lagergéd previously and main-
tains the state of the various entities within the brokes primarily used to interface with
the database into which the state is stored at regular sdterVhe persistence sub-system
satisfies two purposes: it allows for recovery in case of peeted failure of the broker

and is also used as a medium of synchronisation among thear@nts in the broker.

4.3 Design of the Gridbus Broker

The broker design is based on the architecture describecealdbjects in the broker
can be broadly classified into two categoriesntitiesandworkers This terminology
is derived from the UML (Unified Modelling Language) Procdss Business Model-
ing [77]. Entities exist as information containers represg the properties, functions
and instantaneous states of the various architecturalesiesnthat are proxies for the ac-
tual Grid entities and constructs involved in the executibherefore, entities are stored
in the persistence database and are updated periodicalikevg represent the function-
ality of the broker, that is, they implement the actual logi@l manipulate the entities in
order to achieve the application objectives. Thereforakets can be considered as ac-
tive objects and the entities as passive objects. In Figwrewbrkers are represented by
rectangles with rounded corners and entities by ovals. plesrof entities are Applica-
tionContext, Job, Service (eg: ComputeServer, DataHosirrmdtionService, Applica-
tionService) and DataFile. Workers within the broker imidu-armingEngine, Scheduler,
Dispatcher, JobMonitor and ServiceMonitor. The followswubsections take a closer look
at each of these objects. These are accompanied by UML 2Z.digg§rams that illustrate

the relationships between the various objects.
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Figure 4.3: ApplicationContext, Tasks and Jobs.

4.3.1 Entities
Application Context and Tasks

Figure 4.3 shows the class diagram of the broker’s tasktstrei@nd its associated enti-
ties. An ApplicationContext represents the attributes o$er's application specification
such as its task specification, one or more credentials fssing the services and QoS
requirements. The QoS requirements codify user expentatibthe execution such as a
deadline by which the execution must be completed. Taskifsgsimns are represented
by Task objects. A Task is structured as a set of Commands wieistribe the activities
to be undertaken. Three types of commands are availables¢mir- CopyCommand,
ExecuteCommand, and SubstituteCommand. The CopyCommanacisdtne broker to
copy a file from any resource in the Grid to any other resoufceumber of file transfer
protocols are supported including GridFTP, GASS and SRB.caApyeExecuteCommand
specifies the application to be executed on the remote nodBub&tituteCommand is
used for substituting variables whose values are detedraheuntime, in local files on

the broker. The task structure within the broker is basednshextended from the task
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specification followed by Nimrod [2].

Jobs

A Job represents an instantiation of the task at the remate and is therefore associated
with a single Task object that describes its function. A Jayre associated with one
or more Variable objects which describe its input data. Aiakde is one of various
types including integer, string and float and is associatédasingle value derived from
its domain. New types of variables can be introduced intobtteder by extending the
Variable class. For example, a Variable of type “gridfile’sdebes a file or a dataset
that is stored on a repository that is accessible throughoatiye supported file transfer
protocols. A gridfile Variable is associated with a Dataleibgect representing the remote
file in the broker.

A Job is also associated with a JobWrapper that represenisténtace for translat-
ing the user task specification to create an Agent that camdmiged by the middleware
running on the designated compute resource. The JobWrappberefore, necessarily
middleware-specific. The JobWrapper will be discussed inendietail in relation to the
Dispatcher. Other than these, the Job is associated withad Services and a UserCre-
dential.

In the course of its lifetime, a Job passes through manyssteas outlined in Fig-
ure 4.4. A Job is an input to the Scheduler which allocates ia tset of resources
based on its requirements. The Job’s status is then chang@@HEDULED. During
the STAGEIN state, input files and executables required for the jobstaiged to the
remote resource. When this process is completed succgsafdla handle is obtained,
then a job is considered to be SUBMITTED. The Job may be quetdd waiting for an
available processor and its state changes to PENDING. Wieejothstarts its execution,
it is considered ACTIVE. After the job has finished executimgnters the STAGEOUT
stage where its output files are transferred back to the briladl its outputs are received
and are as expected by the task requirements, then the joissdered as “DONE”. If
one of state transitions fails on the remote side or the jabdaoampleted on the remote
side but has not produced the expected result files, thercdrisidered FAILED and is

reset and marked for re-scheduling.
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Figure 4.4: State transition diagram for a job.

Services

Services within the broker are represented in a hierartioyys in Figure 4.5 in which the

first tier is an abstract Service whose attributes are thei@elD and the location of the

service (hostname or URI). The next level groups the serwitescategories depending
on the type of the service. Computational resources aresepted by the abstract Com-
puteServer object, data repositories are representedebghisiract DataHost object and
information services are represented by abstract Infoom&ervice object. The lowest
tier then contains specific implementations of these sesuicat provide the functions of
associated middleware. For example, interaction with aptdgational resource running

Globus middleware is implemented in the GlobusCompute$&tass that extends the



84 Chapter 4. A GRID RESOURCE BROKER

abstract ComputeServer. However, it should be noted thaetaee not the only services
possible. The flexibility of the structure encourages thutuction of newer services as
the diversity of services increases. For example, Appboabervices could be introduced

to represent remotely hosted applications that can invakedy through web services.

Service
ComputeServer DataHost InformationService
AlchemiComputeServer L GridFTPDataHost NetworkWeatherService —
ForkComputeServer SrbDataHost SrbMCAT -
GlobusComputeServer | | ReplicaCatalog ]
PBSComputeServer
SGEComputeServer

Figure 4.5: Service object hierarchy.

Each ComputeServer is associated with two active entitie®ispatcher for jobs
mapped to that service and a JobMonitor that monitors thegolalispatched. The abstract
ComputeServer has been implemented for different middiewad job managers such as
Globus, Alchemi [138], Unicore [78], PBS (Portable Batch Sther) [28], SGE (Sun
Grid Engine) [95], Condor [137] and XGrid [122]. The DataHbss been implemented
for providing access to data stores running SRB and thosdezhbp GridFTP.

InformationServices are categorised depending on thedy/pdormation they serve.
For example, ReplicaCatalog services such as Globus RepliadoGa¢ and SRB MCAT
provide information on different copies of required datagbkat are stored on distributed
repositories. Information about network properties ishgegd from the NetworkInfor-
mationService and is stored in data structures called N&tirks that keep track of the

changing network conditions between various resources.
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Figure 4.6: Credentials supported by the broker.

The Gridbus broker defines the concept of a UserCredentaksenting an authenti-
cation token to access remote services. The base UserGedaddiect has been extended
to realise the different types of credentials that are aecklpy different middleware. For
example, the LocalProxyCredential represents the Globug@#%®i Security Infrastruc-
ture) X.509 proxy object created on the client side. On thewohand, a SimpleCredential
is used for accessing resources that require a usernamepasg\waord for authentication
such as those enabled through SSH (Secure Shell).

The set of credentials available to the user is associatddhig/her ApplicationCon-
text. Even though the credentials are passive objects,darerthe security of users cre-
dentials, these are transient and are not saved in the teeisgsstorage. This also means
that the user has to provide the broker with a fresh set okeoigals when recovering from
a previously paused/failed run of a Grid application. Fegdr6 shows the various types

of credentials supported by the broker.

4.3.2 Workers
GridbusFarmingEngine

The GridbusFarmingEngine is the first component to be irggd and is a container for

the other objects in the broker. It is responsible for mamgdhe lifecycles of other
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Figure 4.7: GridbusFarmingEngine and its associatedestit

active objects —the Scheduler, the Dispatchers, the JolitMsmand the ServiceMonitors—
from start-up to shutdown. It is also a front end to the pégsisstorage and therefore,
maintains the overall state of the broker by saving the sihtearious passive entities.
The FarmingEngine and its associations with other entitidsin the broker is shown in
Figure 4.7. In the figure, BrokerStorage is the frontend topibrsistence system and the

Store interfaces are used by the various interpretersecact with the database.

ServiceMonitor

The ServiceMonitor component periodically checks thelatbdity of the specified re-
mote services and discovers new services which may becoarala@e. The sequence of
operations in the ServiceMonitor is shown in Figure 4.8tidtly, it polls all available ser-
vices by invoking thedi scover Properti es operation that is provided within each
Service entity. This operation does a search for servicbates that are specific to the
service and middleware type. If the operation is succes$feivalues that are so retrieved

are set within the Service object and the Monitor is notifteat the service is available.
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Figure 4.8: Service monitoring sequence diagram.

While running, the ServiceMonitor is also able to retrievermation from various Infor-
mationServices about the Grid environment. The examplegarg 4.8 shows how the
NetworkInformationService is polled for information alh@vailable bandwidth and cost
(if applicable) of the network links between various Com@#erers and DataHosts.This
information is stored into the database from where it isieeéd by the Scheduler for

making decisions.

Scheduler

The scheduling component is designed as two separate cemigomnning simultane-
ously: the Scheduler and the Dispatcher. The Schedulehestbe jobs individually to
the services and also, decides the order of execution obthegn the resources. Fig-
ure 4.9 shows the basic sequence of operations that is pexfbby the Scheduler. The
Scheduler gets the list of ready jobs from the persistemag®and a list of services, de-

pending on the strategy, that it is interested in. The mapj@an assignment of a job to
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appropriate computational and data services. At the verstj¢he job has to be mapped
to a ComputeServer where it is to be executed. If the apphicatpecifies data files to
be processed, then the mapping also includes the assigmibata Hosts from which
each of the files should be accessed. The mapping is saveddé#uk database as an
attribute of the Job. At the same time, the state of the Jobasged from READY to
SCHEDULED.

BrokerStorage Scheduler

loop Scheduler Loop )
|

|
1 : getlobsToSchedule() Next set of jobs
-, toschedule

loop foq each job /

E 3 : getReadyServers()
,,,,,,,,,,,,,,,,,,,,,,,,,,>4

4 : servers |
| <Create>>

: decideMapping()

6 : saveMapping()

Figure 4.9: Schedule sequence diagram.

The sequence of operations for the Dispatcher is shown ur&ig 10. The Dispatcher
for each ComputeServer retrieves from the persistenceaksdathe list of jobs that are in
the SCHEDULED state and have been mapped to that server. dkshige status of the
remote resource and available queue slots, if applicabkaelcompute resource has an
available slot, then the Dispatcher creates a JobWrappendepy on the ComputeServer
selected for the job. The JobWrapper creates an Agent foothéhpt is specific to the
remote resource architecture and middleware type by congahe Task Commands to

middleware-specific invocations or system calls on theuesn It also performs job
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Figure 4.10: Dispatch sequence diagram.

submission in accordance with the protocols followed byrémote middleware.

Prior to the actual submission of the job, the files requicedte job such as input files
and executables are copied on to the remote resource. Thedide transferred on to the
resource by the broker (push model) or they can be requestedapied by the remote
resource (pull model). This allows a great deal of flexipilih implementing transfer
modes, three of which are illustrated in Figure 4.11. FongXa, many Grid resources
are behind firewalls that prohibit any connections to anyt parthe resource. In this
case, using the pull model has the advantage that a transigram on the resource can
make an outbound connection through the firewall (Figuré(@®)). Another advantage
of the pull model is that the source of the files can be a fileegethvat is separate from
the resource on which the broker is running thereby supppdi scenario in which the
broker is behind a firewall as well (Figure 4.11(c)). The tese manager is a middleware
component that is able to send and receive messages fromtideoworld through the
firewall. During this process, the Job state is changed toGEHAMN.

The JobWrapper then submits the Agent to the remote resowacager and waits for
confirmation of acceptance. This is obtained as a remoteldamdhe job that uniquely
identifies the job at the resource. The job state is chang&I®BMITTED and the job
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Figure 4.11: File transfer modes supported by the brokgPah model of file transfer.
(b) Pull model of file transfer. (c) A file transfer using anenmhediate server.

along with the handle is saved back to the persistent stordge number of available

slots within the ComputeServer is decremented to reflectubenssion and the server
also saved to the persistent storage. If the handle is neitvext; then the job is considered
as FAILED and is marked for re-scheduling.

The Dispatcher is also able to follow two-phase commit prokdor job submission
as described by Czajkowski et al. [63]. In the first phase, thgesin of the files and
the job submission are performed and the dispatcher waitarfdagreement” message
from the remote resource in the form of the remote handleerAfie remote handle is
received, the dispatcher sends a “commit” message to theteamsource which proceeds
with the job submission and sends an acknowledgement bdw.job state is changed
to SUBMITTED only after the receipt of the acknowledgementr Fesources running
middleware that do not support the two-phase protocol, ¢ceipt of remote handle is
considered as acknowledgement of submission. In this dabere is a network failure
before the handle is received at the broker, the job will bekethas failed though it may
have started execution at the remote node. In two phasecoifptbe job is not processed
by the Grid resource until the broker sends a commit mesddges, two-phase commits

ensure that job submission is carried out only once evereitfieite of network problems.
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Prior to passing control to the JobWrapper, the Dispatchectsea credential from
the set of UserCredentials and binds it to the job just priaispatching it to the remote
resource. This decision is based on the type of the middeeesad the type of credential.
Alternatively, a user may specify mapping of credentialsetgources. This feature aids
a user to seamlessly run jobs on different types of middlewar even to use different

credentials for the same type of middleware, at the same time

JobMonitor

BrokerStorage ComputeServer JobMonitor JobListener

T

|

|

l
loop JobMonitor J
[r 1: get]obsToMonitor();

This is any object
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job status events

|
|
|
|
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‘ ‘ ‘
7 : updateJob() | |
777777777777777 L7777777777777>l |
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Figure 4.12: Job monitoring sequence diagram.

The JobMonitor for each ComputeServer keeps track of a jalwgrpss after sub-
mission to that remote resource. As shown in Figure 4.12JddMonitor periodically
requests the list of jobs that are in the SUBMITTED state onréiquéar resource, from
the persistent storage. It uses the remote handle to quergt#tus of the job using
middleware-specific functionality. The query is a blockoail, and is therefore provided
with a timeout period after which the JobMonitor cancelsdbery to proceed to the next
job. Failure to contact the job on the remote resource is ms$idered as a failure of the

job immediately. The JobMonitor tries to contact the jobiadar a set number of times
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before giving up and marking the job as failed.

It is possible to implement JobListeners that will receiverdgs from the JobMonitor
when a job status is changed. The listeners can be entiseteithe broker such as an
event-driven scheduler, or outside the broker such as detapiphin an application Web

portal using the Gridbus broker [96].

4.3.3 Design Considerations and Solutions

The primary aim of the Gridbus broker is to provide a genegwource discovery and
scheduling framework that abstracts the heterogeneoushyaramic nature of the Grid

infrastructure and allows users to achieve different dhjes. In Section 4.1, some of the
challenges in achieving this aim are outlined. These chgéle provide the requirements
against which the broker is designed. The broker meets tegsgrements in the manner

outlined as follows.

Service Heterogeneity

The Gridbus broker tackles the problem of heterogeneou$@sources and service in-
terfaces by adopting the principle ofinimal assumptionsThis means that throughout
the broker, there are as few assumptions as possible ateonathre of the environment
in which it operates. The relationship between the objectke broker is generic and in-
dependent of interaction models followed by any middlewates broker, therefore, does
notimpose a particular configuration requirement on Grsgueces and is thus able to use
as many resources as possible. For example, a resourcaguamy Unix-based operating
system and with one of the supported middleware operatisoald be immediately use-
able by the broker as the latter requires only a POSIX-campghell environment that is
standard on such machines.

The three-layer architecture of the broker also helps imtaaiing this independence.
For example, the assignment of jobs to resources is pertbbpehe Scheduler which,
as a component of the Core layer, has a middleware-indepeni@anof the resources,
while the Dispatcher dispatches the jobs to the resourcescelkr, the actual interface

with the remote resource happens through the middlewageifgpJobWrapper which is
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a part of the Execution layer.

The broker can also be made to interface to any new servicedteware by ex-
tending the appropriate classes. For example, supportfewamiddleware can be added
by extending the abstract ComputeServer and JobWrappeesla3sie Scheduler will
then be able to immediately utilise any resource runningrthiddleware. The interaction
with the remote middleware is also independent of the rebtaker. Using this method,
the broker has been extended to support a wide variety of dmtiputational and data
Grid middleware such as Globus, PBS and SRB among others [70,1B8]. With the
support for Alchemi [138], which is a .NET-based desktopd@omputing framework for
Windows platforms, and XGrid, a similar framework for Mac GSthe Gridbus broker
can already schedule jobs across almost all of the platfarase today. Similarly, new
information sources and data repositories can be supploytegtending the Information-

Service and the DataHost classes respectively.

Support for Different Application Models and User Interfaces

The components within the broker are designed to be modunthtieere is a clean separa-
tion on the basis of functionality. Particularly, the dieis between workers and entities
clearly delineates responsibilities among the compor@rttse broker. Since the passive
entities are just holders of information, the logic withiretworkers can be changed with-
out affecting the former. It is also possible to introducevmeorkers that either use or
extend the existing entities in different ways or introduesv entities of their ownvith-
out structural or design changes to the rest of the broKenis loose coupling between
components provides a lot of flexibility and enables theisatibn of different application
and system models [188].

The components within the Interface Layer convert the appbtin, service and cre-
dential descriptions to broker entities and store themtimeersistence database through
the interfaces provided in the FarmingEngine. Thus, it ssgge to support any form of
description by mapping it to the entities within the brok&trpresent, the broker supports
XML-based description of parameter sweep and bag-of-tapkaations and has a set of
XML-based files for describing services and credentialsesehinputs can also be pro-

vided directly to the broker through its APIs. The APIs alldikect manipulation of the
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entities in the broker and thus, can be used to realise diffeaapplication models.

The same mechanisms that allow the creation of applicatiodefs also enable the
creation of different user interfaces for the broker. Thekkr can be interfaced through
command line, desktop clients or web portals. It is also iptesso talk to the broker’s
persistence database directly through its APIs. This esadnhy component to retrieve
information about the broker entities through normal SQuy&ured Query Language)
queries. This ability is useful in scenarios such as an egidin Web portal requiring
information about an ongoing execution through a brokeaitexl on a machine different

from the portal server.

Realisation of Different User Objectives

The broker allows for schedulers to be plugged-in, and hésn@ble to support new
scheduling algorithms and policies. This enables the brtkeadapt to new user re-
guirements and objectives.The separation of the dispateciponent from the scheduling
provides a lot of flexibility for implementing the schedudifogic. These two components
are also designed to be independent of the resource andewal@ details. However,
a developer can still choose to create schedulers that nuayreecertain middleware-
dependent services such as resource information services.

One of the main requirements of the design was the abilitykez@te generic data-
oriented applications that may require access to one or glistebuted datasets at the
same time. Data services, represented by DataHosts, rasaitte level of importance as
ComputeServers. Location of available replicas of a datzsebe gathered by querying
the appropriate replica catalogs that are representedasiationServices. Information
about current network conditions such as available bartiwate important when large
datasets are to be transferred. This is available througNétworkLinks data structure as
are properties such as pricing, classes of service andaauay. CopyCommands in the
Task allow the application to perform third-party (not itwiag the broker machine) point-
to-point data transfers on the Grid. The application imetgr allows users to specify
datasets as input parameters to their applications. Irc#ésis, the Interpreter will discover
all the data repositories that host these datasets and bezl@er will select one of the

repositories for accessing the datasets. The data repesitre bound to the respective
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jobs just prior to their dispatch and therefore, these canHamged at any time during
scheduling. More importantly, the combination of all thésatures enables the broker
to satisfy different requirements such as selecting dgtesitories for accessing datasets
on the basis of price and/or performance and selecting mktinis offering a particular
class of service. Examples of scheduling algorithms implated in the broker that satisfy
such requirements will be discussed later in the case studlynathe next chapter.

The Gridbus broker has been designed from the ground up fwostufhe computa-
tional economy paradigm [44], and assigns costs to variendgces including compu-
tation, data storage, and information services. The desableduling policy uses these
parameters to decide on an appropriate mapping strateghémsle jobs on resources.
The design also allows the ability to plug-in a market dioegt{221] which offers in-
formation about various priced services, and a Grid bankf2& manages users credit
in a Grid market. The ServiceMonitor is able to periodica#i§resh pricing information
from market information services and therefore, providhesability to make decisions in
a highly-volatile Grid economy. The Gridbus broker alsceexts the notion of computa-
tional economy to data-intensive applications and hashiiigyato keep up with dynamic
pricing and resource conditions.

The Gridbus broker is also able to support users who wouls tiikkuse resources
spread across multiple VOs by natively managing multipkdentials for multiple re-
sources. This ability also allows users to access legacy @gtositories that are not

“Grid-enabled” and follow their own authentication mectsam, rather than Grid proxies.

Infrastructure

Grid environments are dynamic in nature. As a result, teariddbehaviour is not only a
feature of the resources but also of the middleware itseffe Broker design considers
various types of failures that may occur either on a remateure to which a job is
submitted or on the broker machine itself during variougeseof its operation. Remote
failures include failure during job submission, executamd monitoring, or retrieving
the outputs. These could be due to various reasons, suclt@sect configuration of
the remote resource, incorrect job descriptions, netwoosklpms, unavailable data files,

or usage policy restrictions on the resource. Local fadurelude unexpected system
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crashes which lead to abrupt termination of the broker, aifevility of local input files

and invalid input parameters.

The broker applies different fault recovery methods inadi#ht cases of remote fail-
ure. A job is not considered completed until it is determitieat each of its constituent
task activities have successfully exited. Thus, even ifrtiiddleware on the remote re-
source has signalled a successful completion, the Jobbtartiecks to see if the job has
generated required results and only then it is deemed stfoteEhe JobMonitor may not
be able to contact an executing job in case of transient nkteanditions. In such cases,
the JobMonitor polls the job a set number of times, and if @b to re-establish contact,
then check the job’s current status. In all other cases ofgitlre, the job is rescheduled
on another available resource. The current implementatidhe broker focuses on ap-
plications that consist of independent tasks, and thezefas assumed that the failure of

a job has no cascadng effect on the rest of the jobs that ate#ite application.

The persistence system provides insurance against faifuhe broker itself. At any
point in the execution, the state of the broker is completielgcribed by the contents of
the entities and therefore, only these need to be storednvthle persistence database.
Any change in the status of a Job or a Service, as discoverdtelygspective Monitors,
is immediately written back to the database so that therlegfiects the true state of the
broker. Workers have no state of their own and hence, candoened from the point at

which they failed by reading the entities from the persisgtorage.

The broker tracks variations in resource availability bynimaring resource perfor-
mance locally. Nothing is required to be installed at theotsmesources and dependen-
cies on metrics provided by the middleware are avoided bsudef Thus, the broker is
able to compare resources in a heterogeneous environmssd ba metrics that are inde-
pendent of middleware and relative to the requirementseottinrent execution. However,
it is to be noted there is no mechanism in the broker to inhib#tge of external perfor-

mance monitors and other services if required.
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4.4 Implementation

The Gridbus broker has been implemented in Java so that ibeateployed in Web-
enabled environments such as Tomcat [19]-driven portalsaéso be used from the com-
mand line. A typical operation flow of the broker is as followlhe user describes the
application in one of the supported input formats which isdu® generate the Jobs. Jobs
can be generated in different ways depending on the appiicatodel. The user’s re-
source description generates a set of services, includingpGteServers, DataHosts, and
InformationServices. The FarmingEngine starts the Sdeedhe ScheduleDispatchers,
the JobMonitors and the ServiceMonitors. The Scheduledds®n a mapping of a Job
to the appropriate Services. The ScheduleDispatcher tifemits the mapped job to the
chosen computational resource. Once the job is submittdwtmapped ComputeServer,
its remote handle is provided to the JobMonitor for that merwhich uses it to query
the job’s execution status. When the job is done/failed, &selts are collected and job
cleanup is initiated. This cycle continues till all the jodn® scheduled and are done or
failed.

This section illustrates the interaction of the broker vattternal entities using code
samples. External input to the broker is explained using>xamgle of composing a
parameter sweep application. Interaction with remote feiddre is explained using the
example of the broker’s operation with resources Grid-&thbsing Globus Toolkit 2.4.3.
The aim of this discussion is to present some of the chalketigat were encountered

during implementation and how they were handled.

4.4.1 Providing Input

Many scientific studies consist of repeating the same sas@stfor different scenarios. In
computational terms, this means executing the same sepb¢atons for different sets of
data that are generated by different parameter values.niduel is called the “parameter
sweep model” of computation and offers a simple, yet powetthstraction for creating
distributed applications. A parameter sweep applicatanhpe easily converted into a set
of independent jobs that are suited for deploying in Grid patimg environments where

challenges such as load volatility and long response tinieisdavidual nodes make it
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difficult to adopt an application model that favours tightiyupled components. Conse-
guently, the parameter sweep model has proved to be verygrdpuGrid execution, and

is therefore considered as one of the “killer applicatidios Grids [1].
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Figure 4.13: XPML Schema representation.

Parameter sweep applications are described in the brokey ais XML-based declar-
ative format called the eXtended Parametric Modelling Leagge (XPML). The XPML
structure is shown in Figure 4.13 and consists of parame#eis and job requirements.
An XPML parameter represents a set of values and has a nagpe arid a domain from
which the values are derived. An XPML task is a codificatiothaf task specification as
has been described previously in Section 4.3. XPML job mequents are conditions that

need to be satisfied before a job is executed on a resourcesuacspecification of a par-
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ticular machine architecture or minimum memory, bandwattdisk space requirements.
An example of an XPML file is shown in Figure 4.14. This input filescribes a set of re-
mote files, described through thdile parameter, provided as an input to the “wc” (word
count) command on Unix systems. The output of the “wc” comaiaravailable through
a file called “output.$jobname” where “$jobname” is a valiathat has the value of the

current job-id and is substituted at runtime.

<?xm version="1.0" encodi ng="UTF-8"7?>
<xpm xm ns="http://schenas. gri dbus. org/ xpm / 2006/ 01/ xpm "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schermalLocati on="http://schemas. gri dbus. or g/ xpm / 2006/ 01/ xpm
xm / schermas/ XPM_.Schena. xsd" >
<gos>
<deadl i ne val ue=""/>
<budget val ue="789.0" />
<optim sation val ue="TI ME_DATA" />
</ qos>
<paraneter name="infile" type="gridfile" domain="file">
<file protocol ="srb" url="srb://db*"/>
</ par anet er >
<t ask>
<Copy>
<source location="renpte" file="$infile"/>
<destination | ocation="node" fil e="soneFil| eNane"/>
</ copy>
<execut e>
<command val ue="wc"/ >
<arg val ue="soneFi | eNane"/ >
<arg val ue=" > "/>
<arg val ue="out put"/>
</ execut e>
<Copy>
<source | ocation="node" file="output"/>
<destination location="local" file="output.$jobnane"/>
</ copy>
</ task>
</ xpm >

Figure 4.14: XPML Example.

While XPML is based on the Nimrod “plan” file format [2], it idduces several new
extensions on its own. These include: 1) Dynamic parame2gs new “file” parameter
that aids the parametrisation of data-intensive appbaati 3) XPML job-requirements
which help in narrowing down the list of resources that aefuidor the application, and

4) the integration of QoS parameters within the applicasipecification itself.
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A dynamicparameter type has either an undefined or an unbounded devhase
definition or boundary conditions respectively, have to $talgished at runtime. In con-
trast, astatic parameter is a variable whose domain is well-defined eitbex mnge of
values, as a single static value or as one among a set of values such dynamic pa-
rameter type is “gridfile” that describes a set of files overotihe application has to be
executed. This set can be described as a wild card searcim\aitphysical or a logical
directory to be resolved at runtime. In the example XPML fitewn in Figure 4.14, the
section highlighted within the inner box shows the declarabf a parameter variable of
type “gridfile” namedinfile which is described as a set of files with names starting with
“db” that are stored in an SRB repository. The SRB repositepgsitories from which
information such as the individual filenames and locatidrite files are available, have
to be provided within the service declaration. The XPMLBamodule in the broker
gueries the SRB MCAT (Metadata CATalog) service to resolve #rarpeter values. The

parameter is later used in the “copy” section as a file to béecdje the remote node.

<resource type="conpute" id="r2">
<conput e domai n="renot e" >
<renot e m ddl ewar e="gl obus" >
<gl obus host nanme="bel | e. cs. nu. oz. au”
j obmanager ="j obrmanager - f or k"
version="2.4">
</ gl obus>
</ r enot e>
</ comput e>
</resource>

Figure 4.15: Example of a compute service description.

Other than XPML, the broker also supports a subset of thelatdnGGF JSDL (Job
Submission Description Language) v.1.0 [17] to describegls independent job. Mul-
tiple JSDLs can be combined to create Bag-of-Task applicstidDetails of available
services such as location, cost and middleware type candwdpd to the broker via
another XML-based file. Figure 4.15 shows a description obmpute resource that
is Grid-enabled through the Globus Toolkit version 2.4. @redhls are described in a
separate file and are bound to the services based on the métdleype.

The XPMLParser converts the application description insegof jobs that is then
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stored into the persistence database. Similarly, the @emescriptions are converted
to service objects such as ComputeServers, DataHosts amthationServices that are
stored in the database as well. The user credentials hoasyewot stored in the database

to protect against exposure to inadvertent or deliberatesacby other programs.

4.4.2 Middleware Interface

As mentioned previously in Section 4.3, the ComputeServersubclassed depending on
the type of middleware to be supported. Each of the subdasgdements middleware-
specific functions for discovering properties, submittjolgs and monitoring them. The
broker’s interaction with resources running Globus Taol&T) version 2.4 is presented
as an example here. The Gridbus broker interfaces to Gloduse&ources through the
Java Commodity Grids (CoG) Kit [210] that provides APIs foregsing Globus services

through the Java framework.

The paragraphs that follow present and discuss code fragmaating to the imple-
mentation of three functions — resource discovery, job ssfion and job monitoring —
for Globus Toolkit 2.4. The code fragments only highlighbgk features that illustrate
the implementation of design concepts presented in thequegection. The two classes
featured here are the GlobusComputeServer and the Glodsdpper. The Globus-
ComputeServer extends the abstract ComputeServer and iemgieithe functionality for
managing a Globus resource including discovering progednd monitoring jobs. The
GlobusJobWrapper provides the functions to create a GlspasHic job and submit it to

the remote resource.

Figure 4.16 shows a fragment 8ér vi ce. di scover Properti es() asimple-
mented in the GlobusComputeServer class. The ServiceMdmiescribed in Section 4.3
) invokes this function on all the Service objects. In theecaEGlobus, the first verifi-
cation is whether the compute resource is alive and if stnaptovided UserCredential
valid for accessing it. Failure of this verification means thsource is unusable as either
the resource is not reachable or the user does not have therpm@dentials for access-
ing it. Next, the Grid Resource Information Service (GRIS) ba temote resource is

gueried to obtain resource attributes which are later shimihe ComputeServer object.
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[x*

* Checks if the compute server is up, and sets all its attebut
* @return true if the properties have been discovered
*
/
protected booleandi scover Properties(User Credential uc) {
try {
ProxyCredential pc = (ProxyCredential)uc;
/I Check if server is alive and the user can access it
if (! checkPi ng(pc.getProxy())) {
I ogger.info("Could not ping " + this. get Host name());
return f al se;

/I Building the query string
String filter = "(& objectclass=MisHost) ( Mis- Host - hn=" +this. get Host name() +"))";
/I Querying the remote Globus Resource Information service
Nam ngEnuner ation results=MDSUti|.search("| dap://" +this. get Host name() +": 2135",
filter, HOST_ATTRI BUTES);

if(results==null) {

| ogger.error("setValues() - Error in accessing MDS!'!" ,null);
} else{

while(resul ts. hasMre()) {

/I Set the attributes in GlobusComputeServer

return tr ue;

Figure 4.16: The implementation dber vi ce. di scover Properties() in
GlobusComputeServer.

In the case of misconfigured GRIS services, it is possiblethigtguery may block until
its timeout expires or may fail altogether. However, theotgse itself is not considered
failed by the broker. The attributes are set to default \&@loghe exception handler (not

shown in Figure 4.16) and the resource is still considerizé al

Figure 4.17 shows a fragment of the implementation of th&\dalpper interface for
Globus resources. The fragment shown in Figure 4.17 shasva/dinkflow for a Globus
job submission and also, the implementation of the two pbasenit protocol for Globus.
The first phase of job submission is representecdbgcut e() function and the sec-
ond phase by theomm t () function. On the invocation of thexecut e() function,
the JobWrapper creates the executable Agent for remote ssiomi Since Globus 2.4
is used to interface with resources running Unix and Urke-lfe.g. Solaris, HP-UX,
AlX, Linux, etc.) operating systems, the GlobusJobWrappeaies a generic POSIX
standards-compliant shell script that is supported by aikl$ystems. The task com-

mands are translated into Unix system commands within thptscFor example, the
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public class@ obusJobW apper extendsJobW apper {
/** The 2-phase commit for GT2 has the following steps:
* phase 1: Entry point: execute()*/
protected voidexecut e( Job j ob) throws Exception {

/* 1. Create RSL and job shell script.*/

GamAttributes rsl = newGamAttributes();

/*a) Translate Task Commands to Job Script commands
*b) Set attributes within the Job RSL */

rsl.set("twoPhase", "yes");

/* 2. stageln input files to an intermediate server*/
st agel n(j ob);

/* 3. Request Gram Job using RSL, get the job handle and setheijob */
Gramjob gramiob = newG amJob(rsl);
gramjob. set Credenti al s(proxy);
try {
gramlob. request (contact String, true);
} catch(Wai ti ngFor Commi t Exception e) {
/* 4. Return: remote handle for job*/
j ob. set Handl e(gramlob. get | DAsString());

/** phase 2: Entry point: commit()*/
protected voidcommi t (Job j ob) throws JobCommi t Exception {
try {

/* Send a commit-request signal to GRAM, to start actual etien */
ProxyCredential pc = (ProxyCredential) job.getUserCredential();
GSSCredenti al proxy = pc.getProxy();
GramJob gramjob = newG amJob( proxy, "");
gramjob. set | D(j ob. get Handl e() ) ;
gr amlob. si gnal (G amJob. SI GNAL_COVWM T_REQUEST) ;
[* Throw exception in case of failure*/

Figure 4.17: The implementation & obusJobW apper .

Execute Command translates to an invocation of an execusdiglady provided by the
remote system or by the user. In the first case, the absoltiteop#he executable is ei-
ther discovered from the remote system path or provided éy#er in the application
description or obtained from a remote application infolioraservice such as Grid Mar-
ket Directory. In the second case, the executable itselfagiged by the user for which
the broker sets the relative path in the shell script. Deppai@s on resource configura-
tions with particular system library and shell interpretersions is avoided by using only

standard Unix system and shell commands.

After the creation of the script, the job itself is encodeddSlobus RSL (Resource

Specification Language) [83] specification. The Globus R3awa different job at-
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tributes to be provided including the location of the exablg, minimum resource re-
guirements such as memory, and number of CPUs, and the gefgueue to which the
job may be submitted. The Globus RSL also supports the pulleinoifile transfer.
Therefore, it is possible to encode the location of the irijhes to be staged, in the RSL
which will be parsed by the Globus Gatekeeper running onéhste node to stage-in
the required files onto the resource. The location is encadel GASS (Globus Access
to Secondary Storage) URL and hence, this also requirediia be a GASS server run-
ning on the machine where the input files are stored. Newsiareof the RSL supplied
with Globus version 4.0 supports file transfers from GridFSEPvers which are better
suited for transferring large-sized datasets. In a sinfélshion, RSL also offers the abil-
ity to specify files that need to be transferred out of the wes® on completion of the
execution. After the required RSL attributes are set (thinaihg Java CoG helper class),
aG amlob is created which is then submitted in batch mode to the renesteurce. If
the request is successful, a string uniquely identifyirgjtb on the remote resource is

obtained. This is set as the handle of the job.

As an aside, it should be mentioned that Globus allows bdithkend interactive job
submission. In the latter mode callback handleris returned to the client. This can be
used to keep track of the remote job. However, a temporasyarktfailure between the
client and the resource would not only mean the loss of tHbawgt handler but also along
with it, loss of all contact with the job. Therefore, the irgtetive method was considered

not robust enough to be used in the broker.

The receipt of the job handle ends the first phase of submisBiat, at the remote end,
the job has not been processed yet. The ScheduleDispatemeinvokes theonmi t ()
function in the JobWrapper to signal the remote Gatekeepgotahead with the job.
Acknowledgement of this request from the Gatekeeper mdwatighe job submission is
completed. The lifecycle of the JobWrapper comes to an endamttol over the job now

passes onto the JobMonitor.

The JobMonitor invokes theuer yJobSt at us() function in the middleware-specific
implementation of the ComputeServer abstract class. Fd&shows the implementa-
tion of quer yJobSt at us() for Globus resources. For querying, a temporary Gramjob

is created with the same handle as that was received aftenritsimg the job. Globus it-
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public int quer yJobSt at us(Job job) {
int count er =3;
I Create a short-lived Globus Gram Job
/I with the same handle as the job to query
GSSCredential proxy =
((ProxyCredential)job.getUserCredential ()).getProxy();
GramJob granjob = newG amlob(proxy,"");
gr anj ob. set I D(j ob. get Handl e());

while (counter-- > 0){
try {
/I Query remote job
Gram j obSt at us(granj ob) ;
switch (granj ob. get Status()){
/I Handle various Globus statuses and map to broker’s Jotusta

caseGr amlob. STATUS_FAI LED:

st at us=JobSt at us. FAI LED;
break;
caseGr amJob. STATUS_DONE:

st at us=JobSt at us. STAGE_QUT;
break;

}catch( GranException ge) {
if (ge. get Error Code() ==G anExcept i on. ERROR.CONTACT| NG.JOB_.MANAGER) {

if(counter! =0) {
/I'If first attempt at contacting job is unsuccessful
/I try 3 more times.
continue;

Jelse{
/[Assume the job is completed initially

/ICheck the error output later.

status = JobSt at us. STAGE_.QUT;

return st at us;

Figure 4.18: The implementation @onput eSer ver . queryJobSt at us() in
GlobusComputeServer.

self has a set of job states that are mapped to potentiafigréift job states within the
broker because of the different state transitions withche# the systems. For example,
when the status of a Globus job (or GramJob) is “DONE”, it hemeans that the ex-
ecution finished with a zero exit status on the remote resourowever, this does not
mean that the job has successfully completed. Successisrdeed by the broker on the
basis of whether the job has completed all of its constittesk activities. Therefore, on
GramJob.STATUSONE, the status of the job within the broker is set to STAGET
which signals the JobMonitor to retrieve the standard dufpudout ) and error §t d-

er r) files from the remote resource through a separate procéssh are then examined

to determined the actual job completion status.
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While the job is polled at regular intervals, it may completetbe remote resource
or fail in between job queries. The remote Globus Gatekeaigercloses down the Job-
Manager responsible for the job to conserve memory and CPgeu3édis means that the
next query from the JobMonitor will throw an exception agigd to contact the closed
JobManager. In this case, the JobMonitor persists with tweerattempts to rule out pos-
sibilities such as a temporary network failure. After thiissssumes that the job has had a
success or a failure at the remote node and proceeds to ge@iaprocess to examine

the outputs. A failure to obtain the output files is consideas a failure of the job itself.

4.5 Related Work

The challenges presented in Section 4.1 have motivatedetredapment of a large num-
ber of Grid resource brokering and application deploymgstesns. Examples of such
systems are Nimrod/G [43], Condor-G [91], APST [50, 52] andBataGrid Broker [16]

(later succeeded by the gLite). These are chosen for détzolmparison against the Grid-
bus broker as their objectives and approaches are simitaat@f the broker. These are
compared to the broker against the manner in which they bahdl challenges outlined

in Section 4.1.

45.1 Condor-G

Condor-G is a computational management system that alloets us manage multi-
domain, heterogeneous resources running Globus [85] andaComddleware, as if they
belong to a single domain. It combines the harnessing ofiress in a single administra-
tive domain provided by Condor with the resource discovespurce access and security
protocols provided by the Globus Toolkit. At the user siden@w-G provides API and
command line tools to submit jobs, cancel them, query thafus, and to access log files.
A new Grid Manager daemon is created for each job requestwhén submits the job to
the remote Globus gatekeeper that starts a new JobManagssgr Condor-G provides
“execute once” semantics by using a two phase commit prbfocgb submission and
completion. Fault tolerance is provided on the submissida By a persistent job queue

and on the remote side by keeping persistent state of theegaohki within the JobManager.
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Jobs are executed on the remote resource withnmokile sandboxhat traps system calls
issued by the task back to the originating system and arekpbeded periodically using
Condor mechanisms. This technology called Condor Glidelecétfely treats a collec-
tion of Grid resources as a Condor pool. Resource brokeringisged by matching user
requirements with information available from servicessas GRIS and GIIS through the
ClassAds [172] mechanism. Condor-G is a part of many projects as EGEE, VDT,
UK e-Science and Grid2003 among others, and is used by warkflmhagement systems

such as Pegasus [69].

Condor-G operates in a Globus and Condor-only environmenirestalls a virtual-
ization layer at each node at runtime that traps system aatisprovides checkpointing
facilities. Condor can utilise batch queueing systems sadi&&, PBS and NQE but only
through Globus GRAM protocols. Condor-G provides strongtfiérance mechanisms
as a result of its close integration with the low-level Grididieware. It implements the
two-phase commit protocol for Globus job submission forueimg that the job is exe-
cuted only once. Through the Glideln mechanism, it is ablertwide libraries that per-
form checkpointing and job migration and maintains a p&sisqueue to guard against

local failures.

Though Condor-G by itself does not provide any data accesgiuns, it can inter-
face to services such as Kangaroo [202] and Stork [118] thedble it to mediate access
to remote files and manage data transfers. Condor-G allonsdation of applications
belonging to different models such as workflows and suppmbiffesrent scheduling strate-
gies. However, it does not natively support resource caxishas no functions for opti-

misations based on pricing.

4.5.2 AppLeS Parameter Sweep Template (APST)

APST is an environment for scheduling and deploying laigmesparameter sweep ap-
plications (PSAs) on Grid platforms. APST provides mechians for deploying applica-

tions on different Grid middleware and schedulers that tate@account PSAs with data
requirements. APST consists of two processes: the daentoch dWeploys and manages

applications and the client, which is a console for the useenter their input. The input
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iIs XML-based and no modification of the application is regdifor it to be deployed on
Grid resources. The APST Scheduler allocates resources basseveral parameters in-
cluding predictions of resource performance, expectedor&tbandwidths and historical
data. Examples of scheduling strategies include algosttirat take into account PSAs
with shared input files [51] and Divisible Load Schedulirgsbd algorithms [219]. The
scheduler uses a Data Manager and a Compute Manager to dagloyoaitor data trans-
fers and computations respectively. These in turn use Aatsio talk to the various Grid
middleware. A Metadata Manager talks to different infonimatsources such as Net-
work Weather Service (NWS) [217] and the Globus Monitoring &iscovery Service
(MDS) [65] and supplies the gathered data to the scheduler.

APST supports different low-level Grid middleware througk use of Actuators and
also allows for different scheduling algorithms to be inmpénted. However, it is focused
towards parameter sweep applications. APST provides titigydb specify data reposi-
tories of different types in the input file and has a separata thanager to manage data
transfers. However, it does not seem to consider the pdégsiti multiple sources for
any datafile other than those created by replication of tie filas during the execution

of an application.

45.3 Nimrod/G

Nimrod/G [1, 43] is a tool for automated scheduling and ekieouof parameter sweep
applications on Grids. It provides a declarative pararmoetrodelling language through
which the task specifications can be provided for an “expenithor execution of an
application. Scheduling within Nimrod/G follows an ecoriormodel in which the re-
sources have costs associated with them and the users haxpend their budgets in
order to execute their jobs on the resources [45]. The usealsa specify Quality of
Service (QoS) requirements such as a deadline for finishmgxperiment and an option
for choosing between a faster yet more expensive execuseavis a slower but cheaper
process. Architecture-wise, Nimrod/G consists of a Taskieg Engine (TFE) for man-
aging an execution, a Scheduler that talks to various irdtion services and decides on

resource allocations, and a Dispatcher that creates Agadtsends them to remote nodes
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for execution. An Agent can manage more than one job at a eegitat

Nimrod/G works with UNIX-based resources enabled throudgbbGs middleware
only. At the time of writing, Nimrod/G does not take into acob location of data dur-
ing scheduling and does not have parametric representati@n application’s data re-
quirements. It does, however, have the ability to specifya dansfers from the client
node to the remote resource and back. Nimrod/G follows tmepcational economy
paradigm and provides four algorithms [45jme optimisationcost optimisationcost-
time optimisatiorand conservative time optimisationfor scheduling parameter sweep

computationally-intensive applications.

45.4 gLite

gLite is an integrated middleware package for the EGEE ptdjeat consists of mod-
ules for security, information and management, data andnjabagement services. Here
the focus is on the gLite’s WMS (Workload Management Systeackpge that provides
access to resources running various middleware such asu§l@wondor and Storage
Resource Manager (SRM) [186]. gLite treats resources as Ceniflaments (CE) or
Storage Elements (SEs) depending on whether they are catiqmatl or data resources
respectively. Jobs are generally non-interactive andhbaiented. The gLite Workload
Management System (WMS) handles job scheduling and resaliomation and uses
Condor-G for job dispatch and management. The WMS accepteppkests and stores
them in its Task Queue. A Matchmaker sub-component mataiesequests against
resource information stored in an Information Super Mafk&M) sub-component, us-
ing the Condor ClassAds mechanism. The WMS uses both eageruticige@iobs are
'pushed’ to the resource) and lazy scheduling (resourcés’mr requests for jobs). Data
required by a job scheduled at a CE is replicated to the negEest

gLite works within a standardised Grid environment runnf§EE middleware and
has a standardised client configuration that requires radteservices such as R-GMA
(Relational Grid Monitoring Architecture) Information Sgm [60]. gLite is installed
on a dedicated machine and accepts job requests from lodaleamote clients. Thus,

it is a centralised resource brokering system and thergdiiffers considerably from the
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other resource brokers which are primarily user-direatédnt-focused resource broker-
ing mechanisms.

gLite automatically schedules replication of the requideta for a job to the closest
Storage Element to the Compute Element where the job has lbeedwded. But, the
locations of the data are not taken into account during thezgen of Compute Element
itself. That is, gLite does not perform any optimisationifeducing the amount of data to
be transferred for an execution. gLite interfaces with andAmting module that enables it
to keep track of usage and charge users. However, it doesaotip any economy-based

scheduling of Grid applications.

4.5.5 Comparison

Table 4.1 compares the Gridbus broker and the related wedusised previously against
characteristics derived from the challenges listed at #griming of this chapter. While
it may seem unfair to compare the other brokers againstremeints that they were not
designed for, this comparison is only a discussion of hovd#segn of the Gridbus broker
is different and not a measure of the applicability of thekiers to any situation.

From the table, it can be seen that the design of the Gridlmisebwas motivated by
different considerations than that of the other brokerse fidtus of the Gridbus broker
has been on scheduling and executing distributed datasies applications on poten-
tially heterogenous Grid resources. This is in contrast tadoo-G and gLite, that are
primarily job management systems, or Nimrod/G, that fosume computationally in-
tensive parameter sweep applications. APST schedules@hs to reuse data that has
already been transferred but the initial location of theadatthe client machine or the
machine on which the broker is executing. Also, the Gridlwagér has been designed to
enable economy-based strategies for Grid schedulinggdmgond the resource pricing
provided by Nimrod-G, by supporting services such as madkettories and resource
accounting. The Gridbus broker is a single user system, application execution re-
quires a different instantiation of the broker. This is elifint to systems such as gLite

which is a centralised resource broker that handles meiltipérs.

One of the design principles that differentiate the Gridbusker from the other re-
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Table 4.1: Comparison of different resource brokers.
Characteristics Condor-G APST Nimrod/G | gLite Gridbus
| Service Heterogeneity
a. Support for different lowq Through Yes Through Only Yes
level computational mid{ Globus and Globus EGEE
dleware Condor
b. Support for different Data Through Yes No Only Yes
Grid middleware Stork EGEE
c. Equality of different service No No No No Yes
types
Il Support for Application
Models
a. Basic application model | Single Job | Parameter Parameter| Single Job | Independ-
Sweep Sweep ent Tasks
b. Internal support for worky None None None None Available
flows
c. Allow internal entities to bg No Unknown | Yes No Yes
accessed through APIs
Il Realisation of Different
User Objectives
a. Job scheduling based on lp-No Yes No No Yes
cation of data
b. Third-party data transfers | Through No No Data Repli-| Yes
Stork cation
c. Late binding of data locar Through No No No Yes
tions to jobs Stork and
Kangaroo
d. Access to dynamic network No Yes No Yes Yes
information
e. Resource pricing and cost-No No Yes No Yes
based scheduling
f.  Managing multiple creden; No No No No Yes
tials across VOs
IV Fault tolerance
a. Checkpointing of jobs Yes No No Through No
Condor-G
b. Execute-once semantics | Yes No No Yes Yes
c. Local persistent store Yes Yes Yes Yes Yes
d. Dependencies on remote in-No No Yes Yes No
formation services
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source brokers is the support for different Grid middlewaEsxcept APST, the others
work with only Globus services, or in the case of gLite, widsaources running only
EGEE middleware. This decoupling in the Gridbus broker heenbachieved by limiting
all middleware dependencies to the Execution layer and bpsguming the presence of
specific services or libraries on the remote resources. &heflt of this loose coupling of
the broker to low-level Grid middleware is that it can udlia greater number and range
of resources. The object-oriented nature of the broker malkes it easy to support any
low-level Grid middleware, if required. For example, fomgpute Grid middleware, all
that is required is to extend the ComputeServer and the Jolpairapasses. However,
this approach has its disadvantages as well. As mentionedebe&ondor-G is able to
provide stronger fault tolerance semantics due to its clogration with Globus and
because it is able to install a virtualisation layer thataip@ints jobs on the resources.
Such a feature would require the broker to assume the aiayladf certain libraries on

the resources.

Another distinctive design feature of the Gridbus brokeheequality of all types of
services, whether they are compute, data or informationces. That is, all the Grid ser-
vices are treated as first-class citizens. This enablesrtkebto achieve different kinds
of strategies such as those which give more prominence &ordtiter than computational
requirements. The other brokers, with the exception of AR&US on the computational
aspect of the jobs. While these handle data in different wdgs example, Condor-G
presents the data requirements of an application to Stohamalle while gLite simply
replicates it on demand - they do not generally have stradetgi choose a specific data
repository at runtime based on current network conditidre Gridbus broker has been

designed to provision for such requirements.

The next section describes a case study on using the Gridblsrhto create and
deploy a distributed data-intensive High Energy Physiqdieation on Grid resources
where many of the above-mentioned features were utilisedlso illustrates how jobs
were scheduled with respect to the location of required aatehow this approach led to

better turnaround times than strategies that do not takeldeation into account.
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4.6 A Case Study in High Energy Physics

High Energy Physics (HEP) is a fundamental science studyiaiger at the very smallest
scales. Experiments in HEP involve studying collisionsaleetn fundamental particles
and are conducted at particle accelerators that are bdilreamned by large collaborations
involving thousands of physicists from institutes arouhe world. Accelerators record
millions of collisions (also called events) per second tratthen filtered on-site to limit

data output to “interesting” events. The filtered data ismttistributed to the members of
collaborations for analysis.

Computing resource requirements for HEP are increasingrexyially because of
advancements in the efficiencies of particle acceleratmidtze increasing size of collab-
orations. The CERN Large Hadron Collider will generate eventsearate of PetaBytes
per sec (PB/sec) which will be filtered to create a data strdat®@@ MB/sec. The CMS
and ATLAS experiments have the largest collaborations antle experiments at LHC,
each consisting of 2000 members from 150 institutions fr@md@untries worldwide who
have to be provided access to the data that is generatedldt@erhe CERN LHC par-
ticle accelerator is therefore, frequently cited as afjgstiion for the need for Data Grids

in experimental high energy physics [41, 106].

4.6.1 The Belle Project

Charge-Parity (CP) violation was first observed in 1964, bylyahg the decays of K-
mesons. Briefly C is the symmetry operation of particle - attiple inversion, and P
that of space inversion. The issue today is whether the Stdridodel (SM) of Physics
offers a complete description of CP violation, or, more int@otly, whether new physics
is needed to explain it. Answering this question requirey detailed study of this subtle
effect.

The Belle experiment, built and operated by a collaboratiof00 researchers across
50 institutes from 10 countries, is probing CP-violation bydying the decay of the
B-mesons produced in the KEKB accelerator at the JapaneseHigrgy Accelerator
Research Organization (KEK) in Tsukuba. The increasingieffaes of the KEKB ac-

celerator have led to an increase in the rate of data pragufthm the Belle experiment.
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The current experiment and simulation data set is tens abyges in size. While this in-

crease is extremely desirable for the study of B-meson dettdyegins to pose problems
for the processing and access of data at geographicallyteeimstitutions, such as those
within Australia. Hence, it is important for Data Grid tedtpes to be applied in this

experiment [216].

4.6.2 The Application Model
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Figure 4.19: A histogram produced from Belle data analysis.

A typical analysis workload in the Belle experiment is spfita two streams: data
and simulation. Raw data is recorded from various sensofsmaét detector and stored
as separate measurements or “events”. Simulated or Monte-@&a involves the gen-
eration of events and then detailed detector simulationomfhis point on, the analysis
streams are very similar. The data is reconstructed, whiablves the correlation of sen-
sor information. Data summaries are generated for easeabjsas. Adachi, et. al [4]
report that the size of raw data for each event is 35 kB whicheises to 60 kB after
reconstruction. For user analyses, this is reduced to 12 kiieder, since millions of
events are recorded, the aggregate size of the data isstdl large. As an example,
within the Belle experiment, 10 TB of data summary informaxists at present. These

are “skimmed” to produce subsets of the data of most intévessich physicist’s analysis.
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These are around 100 GB in size for Belle users. These are tta@ysad to generate
plots and histograms and can then be used for statistichisamay applying further cuts.
A histogram that is produced from data analysis is shown gufé 4.19. For simulated
data, this process is repeated until the analysis is pededthe simulated data can then
be used for systematic error analysis. The same analysiegsas performed on data to
obtain a result, provided there are no large differencesdxst data and simulation.

The Belle computing effort within Australia is spearheadgdioups at the University
of Melbourne and University of Sydney. This effort involvasth generation of data from
simulation and analysis of simulated and actual event date former is very CPU-
intensive while the latter is both CPU and I/O-intensive. €kent data is obtained from
the Storage Facility at KEK while the simulated data and éselits of the analysis should
be made available to entire collaboration. This resultsiaMy network requirements for

the collaboration both into and out of Australia.

Belle Detector B

Figure 4.20: The infrastructure for the Belle Data Grid.

The computing, storage and networking requirements forAtingtralian side of the

Belle collaboration have resulted in the Data Grid infrastinee shown in Figure 4.20 [127].
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The storage middleware used throughout the Belle collalooré&t the Storage Resource
Broker (SRB). The main SRB repository in Australia is at the Aals&n National Uni-
versity Storage Facility (ANUSF) which is federated witle tSRB repository at KEK.
The required experimental data is downloaded from KEK to A¥ia SRB protocols.
This data is accessed by analysis jobs which are schedutedion High Performance
Computing (HPC) resources around Australia. The resultseocétialysis are stored back
into ANUSF by the jobs. Similarly, data generated by simalajobs is also stored back
to ANUSF. This data is then retrieved by members of the Bellaloration at other sites
around the world. However, the export and to a certain extetimport of large data
is limited by the expense involved in international transfieom and to Australia. Data

transfers in terabytes are still conducted through airfadir].

The Australian HPC resources are shared between users fra@duaational insti-
tutions in the country belonging to several application dors. Therefore, scheduling
of Belle jobs must take into account variations in resourcelability and job queueing
time due to the varying load on these resources. Data traregfairements must also be
taken into account for analysis jobs. Specifically, dataikhbe accessed from the storage
repository nearest to the point of computation to reduca ttansfer time and network
usage. Transferred data must also be reused, if possibleyduessive jobs. These re-
guirements for selecting computational and data resouncgsate the use of a resource
broker for scheduling analysis jobs on the Grid resourcés.fdllowing sections discuss
in detail the use of the Gridbus broker for scheduling Bellalysis jobs on an Australian
Grid testbed.

4.6.3 Experimental Setup

The experiment was conducted using the Belle Analysis Dath(BADG) [205] testbed
that was set up in Australia in collaboration with IBM. Theaerces in the testbed and
their configurations (circa early 2004) is shown in Figur2l4.The testbed resources are
located in Sydney (Dept. of Physics, University of Sydné&yanberra (Australian Na-
tional University), Melbourne (School of Physics and thepDeof Computer Science,

University of Melbourne) and Adelaide (Dept. of Computerebcie, University of Ade-
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laide). At the time of the experiment, all the nodes in thebed, except for the one in
Adelaide, were connected via GrangeNet (Grid And Next Gaier Network) [155].
GrangeNet is a three year program to install, develop anchtga multi-gigabit network
supporting Grid and advanced communications servicessdastralia. Hence, there
was a higher bandwidth between the Melbourne, Canberra atide$yesources. Two
of these resources (Adelaide and Sydney) were effectivelgtioning as single proces-
sor machines as the Symmetric Multi-Processing (SMP) Lkarmel was not running on
them.
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Figure 4.21: Australian Belle Analysis Data Grid testbed.

All the resources in this testbed were Grid-enabled thra@tgibus Toolkit v. 2.4.3.
Network conditions between the resources were monitomr@digih the Network Weather
Service (NWS) [217]. An NWS sensor was started on each of thmuress which re-
ported to the NWS name server located in Melbourne. An NWS iacfior monitoring
bandwidth was defined at the name server within which a clopreaining all the re-
sources on the testbed was created. Members of the cliquieicopairwise experiments
one at a time to determine network conditions between themerying the name server at
any point provides the bandwidth and latency between anyribmees of the clique. Data
that was produced on one site in BADG had to be shared with tther gites. For this

purpose, a Data Catalog was set up for the Belle Data Grid bydhedbof Physics using
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the Globus Replica Catalog (RC) mechanism [216]. The Globus Ré&sizritbed in Chap-
ter 3, Section 3.2.3. The Gridbus broker itself was deplayethe Melbourne Computer
Science machine and broker agents were dispatched at mutdithe other resources for

executing jobs and initiating data transfers.

The Belle experiment uses a software framework, called thke BelalySis Frame-
work (BASF) [4] and written in C++ and FORTRAN, for the entireee processing work-
flow from simulation and event filtering to user analysis.dPams can be written to pro-
vide specific functionality and can be defined in scripts adutes to be loaded dynami-
cally at runtime. BASF has been extended to access data fRiBre8d GridFTP-enabled
data repositories through one such module, developed a@a¢heol of Physics [216].
This extension also enables it to access streaming datagtiusing considerably the de-
lay that is incurred before the data is completely availaviehe executing node. This

application was installed prior to the execution on all tbees of the testbed.

4.6.4 Scheduling Belle Jobs on BADG

Figure 4.22 lists the algorithm developed for schedulingeBahalysis jobs on the BADG
testbed. The “network proximity” of a compute resource taagachost is a measure of
the available bandwidth between the resources. Some ofédteerdsources also have
computation facilities, in which case the data transfeetimassumed to be zero as the
data host and the compute resource reside at the same sieeschbduler minimises
the amount of data transfer involved for executing a job Ippdiching jobs to compute
servers which are close to the source of data. Axenavay of achieving this is to run the
jobs only on those machines that contain their data. But, éit@ ldosts may not have the
best computational resources. Therefore, this algoritbnsiders both the computation

time for the job and the data transfer time.

The most important measure in this evaluation was the cdropléme of the jobs.
From multiple runs, it was determined that the Belle analydis had similar computation
times even with different datasets. Therefore, the scleedigded the simple measure of
the job completion ratio - the ratio of the number of jobs ctetgx to the number of jobs

allocated - to evaluate the performance of the computdti@saurces. At every regular
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INITIALISATION

1. Identify characteristics, configuration, capabilitgdasuitability of compute resources using the
Grid information services (GIS). From the task definitiobtain the data query parameters.

2. Resolve the data query parameter to obtain the list ofdadddata Files (LDFs) from the Dat
Catalog

3. Foreach LDF, get the data sources or Data Hosts that btéX- by querying the Data Catalog.

j9))

SCHEDULING
Repeat while there exist unprocessed jhsis step is triggered for each scheduling event. The eyent
period is a function of job processing time, reschedulingrbead, resource share variation, etc.)

1. For eacltompute resource

(a) Predict and establish the job consumption rate or thiéaée resource share through the
measure and extrapolation strategy taking into accourtirtieetaken to process previous
jobs.

(b) Use this estimate along with its current commitment tedeine expected job completio
time.

>

2. If any of the compute resource has jobs that are yet to bpattised for executio
and there is variation in resource availability in the Grithen move such jobs to th
Unassi gned- Jobs- Li st .

3. Repeat untiéll unassigned jobs are scheduled or all compute resourags heached their max
imum job limit

[}

(a) Select the next job from the Unassigned-Jobs-List.

(b) Identify all Data Hosts that contain the LDF associatétth the job.

(c) Create a Data-ComputeResource-List for the selected’j&or each data host, identify
a compute resource that can complete the job earliest gisequirent commitment, jol
completion rate, and data transfer time using currentabkblbandwidth estimates.

(d) Select a Data Host and compute resource pair with theestjbb completion time from
the Data- ComputeResource-List.

(e) Ifthere exists such a resource pair, then assign thejtitetcompute resource and remave
it from the Unassigned-Jobs-List.

4. End of Scheduling Loop.

Figure 4.22: A Scheduling Algorithm for Belle Analysis jobs.

polling interval, the scheduler evaluated the progresslmtpmpletion for each compute

resource in the following manner:
Jo

rs =
Jo

whererg was the job completion ratio for a particular resouréejs the number of jobs
that were completed on that particular resource in the pusvpolling interval and, is

the number of jobs that were queued on that resource in tivéopeeallocation.

The scheduler then calculated the average job complettim f&; at the N*" polling



120 Chapter 4. A GRID RESOURCE BROKER

interval as:

1 rs
Rs=R.%(1——)4+ =2
s = Rgx( N)+N

where R; was the average job completion ratio for th€ — 1) polling interval. The
averaging of the ratio provides a measure of the resourdéerpgance from the beginning
of the scheduling process and can be considered as an apptexndicator of the future
performance of that resource.

Each resource was assignegba limit, the maximum number of jobs that can be
allocated out of current list of jobs waiting for executigumoportional to its average job
completion ratio. The scheduler then iterates throughitteof unassigned jobs one at
a time. For each job, it first selects the data host that cosntdie file required for the
job and then, selects a compute resource that has the hmfselstble bandwidth to that
data host. If this allocation plus previously allocatedg@mnd current running jobs on
the resource exceeds the job limit for that resource, thes¢heduler looks for the next

available nearest compute resource.

4.6.5 Evaluation

Trial Dataset

Figure 4.23: TheB” — D** D*~ K, decay chain.

For validating the broker, a simulation of a “decay chain’pafticles has been used.
A decay chain occurs when an unstable particle decays irdthanand so on until a
stable particle state is reached. This is typical of the &viena particle accelerator. The

experiment consists of 2 parts, both of which involve execubver the Grid. In the



4.6. A CASE STUDY IN HIGH ENERGY PHYSICS

121

first part, 100,000 events of the decay chBth— D** D*~ K, shown in Figure 4.23 are

simulated via distributed generation and this data is edtarto the replica catalog. In

the analysis part, the replica catalog is queried for thegead data and this is analysed

over the Belle Data Grid. The histograms resulting from thislgsis are then returned as

output. Here only the results of the analysis are discussé&dra/olved accessing remote

data.

<par anet er nane="I|NFI LE" type="gridfile"” domain="file" >
<file protocol ="Ifn"
url ="1fn:/users/w nton/fsinddks/fsindatax. ndst" />
</ par anet er >
<j ob-requi renment s>
<property name="m nnenory" val ue="500"/>
</j ob-requirenent s>

<command val ue="./runne. ddksana" />
<arg val ue="$I NFI LE" />
<arg val ue="$j obnane" />
</ execut e>
<C0py>
<source | ocation="node" fil e="ddks-$j obnane. hbook" />

</ copy>
</task>

<t ask>

<C0py>
<source | ocation="local" file="ddks_ana.so" />
<destination | ocati on="node" file="ddks_ana.so" />

</ copy>

<Copy>
<source location="local" file="libanal yser.so" />
<destination | ocation="node" file="Iibanal yser.so" />

</ copy>

<Copy>
<source location="local" file="libbase_anal yser.so" />
<destination |ocation="node" file="Iibbase anal yser.so"

</ copy>

<execut e>

<destination location="local" file="ddks-$j obnane. hbook"

/>

/>

Figure 4.24: A XPML file for HEP analysis.

An XPML file describing requirements for the analysis is show Figure 4.24. The

paramete$INFILE describes a logical file location, listed in Globus Replicaaltay,

that can be either a directory or a collection of files. Thekbraesolves the logical file

location to the actual filenames and their physical locatidrine XPML file also instructs
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copying of user defined analysis modules and configuraties tid the remote sites before
any execution is started. The main task involves executingea-defined shell script
(runne. ddksana) at the remote site which has 2 input parameters: the fullowekt
path to the data file and the name of the job itself. The shajptsivokes BASF at the
remote site to conduct the analysis over the data file andupsoldistograms+(. hbook).
The histograms are then copied over to the broker host machin

The Logical file name in this particular experiment resolted00 Monte Carlo sim-
ulation data files. Therefore, the experiment set consistd®0 jobs, each dealing with
the analysis of one data file using BASF. Each of these inpatfdas was 30 MB in size.
The entire data set was equally distributed among the fiveliadts i.e. each of them has
20 data files each. The data was also not replicated betweearsburces, therefore, the

dataset on each resource remained unique to it.

Results of Evaluation

Three scheduling scenarios were evaluated: (1) schedwiihgcomputation limited to
only those resources with data, (2) scheduling without icklemsg location of data, and
(3) the adaptive scheduling (presented in Figure 4.22bi@tises computation based on
the location of data. The experiments were carried out ol Apth, 2004 between 18:00
and 23:00 AEST. At that time, the Globus gatekeeper servicthe Adelaide machine
was down and so, it could not be used as a computational @soltowever, it was
possible to obtain data from it through GridFTP. Hence, jblas depended on data hosted
on the Adelaide server were able to be executed on other nescim the second and third
strategies. A graph depicting the comparison of the totaé tiaken for each strategy to
execute all the jobs is shown in Figure 4.25 and another cangpeesource performance
for different scheduling strategies is shown in Figure 4.26

In the first strategy (scheduling limited to resources wité tlata for the job), jobs
were executed only on those resources which hosted the léatesfiated to those jobs. No
data transfers were involved in this scenario. As is disggdiaiy the graph in Figure 4.26,
all of the resources except the one in Adelaide were abledout® 20 jobs each. The jobs
that were scheduled on that resource failed, as its compu#hiservice was unavailable.

Hence, Figure 4.25 shows the total time taken for only 80 es&fal jobs out of 100.
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Figure 4.26: Comparison of resource performance undereifiescheduling strategies.

However, this time also includes the time taken by the scleeda conclude that the
remaining 20 jobs have failed. In this setup, the related dats exclusively located on
that resource and hence, these jobs were not reassigndwtaompute resources. Thus,

a major disadvantage of this scheduling strategy was exlpose

In the second strategy (scheduling without any data opditiois), the jobs were exe-
cuted on those nodes that have the most available commaatesources. That is, there
was no optimisation based on location of data within thisgyolThe Adelaide server was
considered a failed resource and was not given any jobs. awine jobs that utilised
data files hosted on this machine were executed on otherreesor his strategy involves
the maximum amount of data transfer which makes it unsutiolapplications involving

large data transfers and utilising resources connectetblyretworks.
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The last evaluation was carried out using the adaptive sdimgdalgorithm presented
in Figure 4.22. In this case, as there were no multiple dastshior the same data, the
policy was reduced to dispatching jobs to the best availedmepute resource that had the
best available bandwidth to the host for the related datearitbe seen from Figure 4.26
that most of the jobs that accessed data present on the Adeksource were scheduled
on the Melbourne Physics and CS resources because the latterohsistently higher
available bandwidth to the former. This is shown in the pliothe available bandwidth
from the University of Adelaide to other resources withie tiestbed measured during
the execution, given in Figure 4.27. The NWS name server whadpevery scheduling
interval for the bandwidth measurements. As can be seenFigare 4.25, this strategy

took the least time of all three.
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Figure 4.27: Available bandwidth from University of Adedaito other resources in the
testbed.

4.7 Summary

While Grids provide users access to distributed resourcasécture and unified manner,

the problems of application composition for Grid enviromtsg selection of appropriate
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resources and heterogeneity of infrastructure presentfisignt barriers to widespread
usage of Grids for problem solving. Therefore, resourcé&dm® have been developed
to bridge the gap between users and Grid computing envirotsnddowever, resource
brokers developed so far have either not taken into accaugiven less importance to
factors such as location of data, available bandwidth darafa$ata transfer that come into
picture while scheduling distributed data-intensive agapions on Grid resources. Such
applications are common in scientific domains where the l@arkconsists of analysing
experimental data to produce results.

This chapter presented one such Grid resource broker tlsati@gagned with the aim
of dealing with the afore mentioned issues as well as allgwisers to achieve multiple
scheduling objectives. The broker is designed as a calledi loosely-coupled compo-
nents that are assigned definite roles and interact thraagdard interfaces. The design
enables any of the components to be extended without aftethie rest of the broker.
This, therefore, enables creation of different applicatimodels and schedulers that are
able to achieve different objectives without design chargethe broker and allows ex-
tending the broker to support any middleware interfacesired.

The use of the broker to schedule data intensive applicatgoshown through a case
study of Grid-based analysis of Belle experimental datas Tase study introduced an
adaptive scheduling algorithm that considered the timeadh dransfer along with the
time taken for computation while scheduling a job on to a cot@pesource. Experimen-
tal evaluation showed that this algorithm performed betian scheduling jobs without
regard to location of data.

The positive results from this experiment encourage furéxeloration into schedul-
ing distributed data-intensive applications. The nexjptliapresents a formal model for
this problem that takes into account both time and econowst @xpense) of job exe-
cution. This model is then applied to develop deadline ardfjbticonstrained cost and
time minimization algorithms for the scheduling problenmeToroker’s ability to support
multiple objective functions is then illustrated by its gean evaluating the performance

of these algorithms on a Grid testbed.






Chapter 5

The Scheduling Model and Cost-Aware
Algorithms

Distributed data-intensive applications commonly precgatasets, which may be each
replicated on various storage repositories that are caedéc each other and to the com-
putational sites through networks of varying capabilitys@ the datasets are generally
large enough (of the order of GigaBytes (GB) and higher) traatdierring them from
storage resources to the eventual point of execution pesdaaoticeable impact on the
execution time of the application. There may be costs irelin the usage of vari-
ous computational, storage and networking resources toitaes such as transferring
data and executing jobs. This chapter defines the problerwheidsiling distributed data-
intensive applications on to Grid resources and presemisyaat resource and application

model for the problem.

The model is then applied to present an algorithm for sclieglalBag-of-Tasks (BoT)
application on a set of geographically distributed, hejereeous compute and data re-
sources. Each of the tasks within the application dependaufiple datasets that may
be distributed anywhere within the Grid. The algorithm atmsinimise either the over-
all cost or the time of execution depending on the user'sgpegice subject to two user-
defined constraints - the deadline by which the processingt inel completed and the
overall budget for performing the computation. This algon is then evaluated on a real

Grid testbed through the Gridbus broker and the resultseoéiperiments are presented.

127
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5.1 The Scheduling Problem

Section 4.6 of Chapter 4 discussed the scheduling of a Highgihysics (HEP) appli-
cation on Grid resources involving simultaneous seleatibcomputational and storage
resources. The jobs created for this application were itié¢aisive and processed one
dataset that was fetched from a remote repository if reduilé was also shown how
adaptive scheduling with regard to the location of data Is &boffer better performance.

This scenario motivates exploration of scheduling of datensive applications on
Grid resources. As discussed in Chapter 3, Section 3.2.1,i81BRly one of the scien-
tific domains that is making use of Data Grids. Other areak agcAstronomy, Climate
Modeling and Biolnformatics have computational and datairegnents similar to that of
HEP.
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Figure 5.1: The scheduler’s perspective of a Data Grid envirent.

Based on application deployment experiences and on therszedaawn up for users
of the production Data Grid projects such as LHC Grid [106js ipossible to arrive at
the picture of a typical Data Grid environment as shown in Bid. This environment is
composed mainly of storage resourcesgata hostswhich store the data and compute
resources which run the jobs that execute upon the data. pibssible that the same

resource may contain both storage and computation caediliFor example, it could be
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a supercomputing centre which has a Mass Storage Factigtesd to it.

Initially, data generated by an experiment or through satioh may be stored at a
few masterdata hosts adatasetsand made available to the members of the scientific
collaboration. Examples of such master repositories aditér 0 and Tier 1 centres in
the MONARC model for the LHC Grid (see Chapter 3, Section 3.1Qver the course of
time and after several user requests, the datasets maylioateg on several repositories
in the Data Grid. This replication can also occur due to theeas and storage policies of
the Virtual Organisation (VO) for the collaboration thag guided by various criteria such
as minimum bandwidth, storage and computational requinésndata security and access
restrictions and data locality issues. Information abdet datasets and their replicas
are registered into a Data Catalog such as the Globus ReplieédoG4208] or the SRB
Metadata Catalog [26] that can be queried by members of thebowhtion.

A data-intensive computing environment can also be pesdeas a real-world eco-
nomic system wherein there are producers and consumersaticéributed geograph-
ically across multiple organisations. Producers areiestivhich generate the data and
control its distribution via mirroring at various replicacations around the globe. The
consumers in this system would be the users or, by proxy, #pglications which need
to analyse this data to produce meaningful results. Thesusay want to investigate
specific datasets out of a set of hundreds and thousands anawa specific applica-
tion requirements that need not be fulfilled at every confpanal site. In such large
collaborations, there can be a lot of pressure on the datastnficture (i.e., network
and storage elements). The pressure becomes more acuteawloerrivial percentage
of the users are interested in the same datasets simul&pethws causing appearance
of “network hotspots”. Such an effect is commonly observedhe Internet and the
World Wide Web [140]. While a robust and adaptive replicatinachanism can alle-
viate some of the above problems, the same problems of de¢éssand transfer costs
affect the effectiveness and efficiency of such a mechankmeing resources to reflect
supply and demand in order to regulate their usage has beéoredt in previous publi-
cations [42, 154, 191, 213]. Therefore, in such an econoasgth system, there are costs

or expenses associated with accessing, processing astetramy data.

On the consumer side, a scientist who wants to analyse sothe afailable datasets
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specifies his requirements to the Resource Broker. Thesaeergnts may take the form
of data specifications such as date of generation, experityye® and data type; applica-
tion specifications such as a particular version; resoypeeiications such as architec-
ture, minimum walltime required and queue type; and Qualit$ervice (QoS) specifi-

cations such as the deadline for the analysis job, the bualgétble and preference, if
any, for the cheapest or the fastest processing accordimggids and priorities. The step-
by-step procedure for executing the analysis is shown inrei§.1. The Resource Broker
gathers information about the available computationabusses through a resource in-
formation service (1) and about the datasets through tha Datalog (2). Here, only

resources that meet the specifications and minimum regammensuch as minimum free
memory and storage threshold are considered as suitaldeleses for job execution. It

then creates the jobs according to the application desmmiptrovided by the user. The
scheduler within the broker then makes decision on whereliong a job based on the
availability and cost of the computational resource, theimisation preference and the
location, access and transfer costs of the data requirethéojob (3). The job is dis-

patched to the selected remote computational resourcehi@ent requests the data from
the replica location selected by the scheduler (5 & 6). Attberjob has finished process-
ing (7), the results are sent back to the Resource Broker ohanstiorage resource which
then updates the data catalog (8). This process is repeuatikdlLthe jobs within the set

have completed.

Chapter 3, Section 3.1.4 has classified data-intensive @plications as belonging to
either process-oriented, independent jobs, bag-of-tasksrkflow models. This thesis
primarily deals with applications that belong to the bagastks paradigm wherein each
application can be “decomposed” into a set of non-interddpet (or independent) tasks.
The tasks are indivisible and therefore, each task is taggwiinto a job that is scheduled
onto a computational resource (orcampute resourgeand requests datasets from the
storage resources (olata hosts Each of these datasets may be replicated at several
locations that are connected to each other and to the comgsdarces through networks
of varying capability. Therefore, there is an “explosiorchbices” for selecting resources
to execute a job and to access the datasets it requires. haduwer within the resource

broker has to make decisions at two levels. At the level ohdividual job, the scheduling
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strategy has to navigate through the multitude of choiceglkect a compute resource for
executing the job and a subset of data hosts such that eaadetdetquired for the job can
be obtained from one of the data hosts in the set. This s@eisaliustrated in Figure 5.2.
This is termed amatchingor allocation of resources to jobs. The entire set of jobstmus
be scheduled in such a manner that the user objectivessthatrimon to the entire set,
must be met. This problem therefore becomes oreagringor assigning the set of jobs

that have already been matched to the resources previously.

Compute Jobs Datasets Data Hosts
<<replicated>> >

L

S /
<<submit>> <<requires>>
- f, - < >
fi -
Figure 5.2: Mapping Problem.
5.2 Model

5.2.1 Resource Model

A data-intensive computing environment, as describedigusly, can be considered to
consist of a set o/ compute resources? = {ry,r9,...,ry} and a set of? data hosts

D = {dy,d,,...,dp}. Within production Grids, a compute resource is commonljga h
performance computing platform such as a cluster congisfiprocessing nodes that are
connected in a private local area network and are managet&tgh job submission sys-
tem hosted at the “head” or “front-end” node connected ttligic Internet. However, it
is possible to have other types of compute resources ass\@lhametric multi-processing
systems such as the testbed resources used in the HEP ahsm<Dhapter 4.

A data hostcan be a dedicated storage resource such as a Mass Stordife ¢t
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nected to the Internet. At the very least, it may be a storaged attached to a compute
resource in which case it inherits the network propertietheflatter. It is important to

note that even in the second case, the data host is consaeeeseparate entity from the
compute resource. Figure 5.3 shows a simplified data-iMee®mputing environment
consisting of four compute resources and an equal numbeataf ftbsts connected by

links of different bandwidths.

Figure 5.3: A data-intensive environment.

The physical network between the resources consists dissguch as routers, swit-
ches, links and hubs. However, the model in this thesis attstthe physical network
to consider the logical network topology wherein each compesource is connected to
every other data host by a distinct network link as shown gufé 5.3. This logical link
is denoted byLink(r,,, d,), rm € R,d, € D. The bandwidth of the logical link between
two resources is the bottleneck bandwidth of the actual iphysetwork between the
resources and is given lyW (Link(r,,, d,)). This information is available from various
information sources such as the Network Weather Servicg|[Zhe numbers alongside
the links in Figure 5.3 depict the bandwidths of the variagidal links in the network.

The time taken by a compute resource to access a dataseidamathe storage re-
source at the same site is limited only by the intra-site ladiith if the storage is a sep-
arate physical machine or by the bandwidth between the hakdatid other peripherals

if the storage is on the compute machine itself. In both cases considered to be an
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order of magnitude lower than the time taken to access aatdtasugh the Internet from
other sites as there is contention for bandwidth among theussites. Therefore, for
the purpose of this study, only the bandwidth between diffephysical sites is taken into

account.

Data is organised in the form of datasets. A dataset can bggegated set of files,
a set of records or even a part of a large file. Datasets arieatgd on the data hosts
by a separate replication process that follows a strategy as one of those described in
Chapter 3, Section 3.1.3 which takes into consideratiorouarfactors such as locality of
access, load on the data host and available storage sp&mendtion about the datasets
and their location is available through a catalog such asStoeage Resource Broker
Metadata Catalog [169].

5.2.2 Application Model

The application is composed of a setdfobs,J = {ji, jo, . . ., jn }, Without interdepen-
dencies. Typically)N > M, the number of compute resources. Also, a job is the smallest
unit of computation, that is, it is not possible to divide & joto smaller sub-units. It is
also associated with a set &f datasetsF’ = {fi, fo, ..., fx'}, Which are distributed on
members ofD. Specifically, for a dataseff, € F', Dy, C D is the set of data hosts on
which f;, is replicated and from which it is available. Alsb,, andD/, need not be pair-
wise disjoint for everyf;, fo € F. In other words, a data host can serve multiple datasets

at atime.

A job j € J processes a subset 6f of size K denoted byF7. Each job requires
one processor in a compute resource for executing the joloaadiata host each for
accessing each of th& datasets required by the job. The compute resource and the
data hosts thus selected are collectively referred to asegmurce seissociated with
the job and is denoted b§/ = {R7, D’} where R/ C R is a singleton representing the
compute resource selected for executing the job Ahds an L-sized set of data hosts
chosen for accessing the datasets required by the job. foher& = {r},r € R and
D’ = UDy, f € Fi. Since multiple datasets can be retrieved from a single liags

L < K, the number of datasets required for the job. Figure 5.4 slaawexample of such
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a jobj that requires resources shown in Figure 5.3.

Figure 5.4: Job Model.

Job Execution Time Model

The job execution time model followed here is extended frbat presented by Mah-
eswaran, et. al [142]. Consider a jpkthat has been submitted for execution to a compute
resourcer. The time spent in waiting in the queue on the compute resoisrdenoted

by T.,(j,r) and the expected execution time of the job is giver¥by, r). T, increases
with increasing load on the resource. Likewigeg,is the time spent in purely computa-
tional operations and depends on the processing speed iodikiElual nodes within the
compute resource. For each datgéet F7, the time required to transfgrfrom d; to r

Is given by

T,(f,ds, ) = Response_time(dy) + Size(f)/BW (Link(ds, 1))

Response_time(dy) is the difference between the time when the request was matje t
and the time when the first byte of the datageés received at. This is a measure of the
latency of the response and is therefore, an increasingiumnaf the load on the data host.
Theestimated completion tinfer the job,7..(7), is the wallclock time taken for the job
from submission till eventual completion and is a functibthese three times. Figure 5.5

shows two examples of data-intensive jobs with times ir@dlin various stages shown
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along a horizontal time-axis. In this figure, for convenienthe time for transferring

f1, f2...., frisdenoted byl';, , T, , ..., T, respectively.

T
T, L

I . |

T ‘ . | T
— %
T —
[— B
) E— L —

1 W —
Time Time
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Figure 5.5: Job Execution Stages and Times (Gray areasealenetlaps between the
computation and data operations).

The impact of the transfer time of the datasets is dependettiemanner in which
the dataset is processed by the job. For example, Figura)sbows a common scenario
in which Grid applications request and receive the requdathsets in parallel before

starting computation. In this case,

T. (]) - Tw(j’ T) + ?é%}]{(ﬂ(fv df7r)) + Te(j7r)

However, the number of simultaneous transfers on a linkrgetes the bandwidth avail-
able for each transfer and therefore, e

Figure 5.5(b) shows a more generic data processing appmachich some of the
datasets are transferred completely prior to executiorttacest are accessed as streams
during the execution. The grey areas show the overlap of atatipn and communica-
tion. A restricted form of this model was applied in the caselg of the Belle application
in the previous chapter where only one file was accessed esaarstiuring the execution
of the application. In this case, the transfer time of theastred data is masked by the
computation time of the application. However, data acceéésafects the performance
of the application. If there is a latency associated witheasimg the data, the application
may still have to wait until the first byte of the data is reeehat the compute resource.

The thesis focuses on the application models of the first tyyae is, applications that

require all the datasets to be transferred to the actual atampsource (or its associated



136 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

data host) before execution. This is the most common modieixfed by data-intensive
applications [173]. Also, the impact of data transfer tirmeéhe highest in this model.
However, it is possible that lessons learnt from scheduhege type of applications may

also be applicable to the other types of data-intensive@gins.

Economic Cost Model

In an economy-based system, there are costs associatetthevabcess, transfer and pro-
cessing of data. The processing cost is levied upon by th@etational service provider,
while the transfer cost comes on account of the access aostdalata host and the cost

of transferring datasets from the data host to the compstauree through the network.

The economic cost of executing the jglbn the compute resourgeis denoted by
C.(j,r) and the cost of transferring the dataget £’ fromd; € Dy tor by Cy(f,d;, )
where

Ci(f,dys,r) = Access_cost(dy) + Size(f) x Cost(Link(dy,r))

Here, Access_cost(dy) is the cost of requesting a dataset which is levied by theluzga

It can be an increasing function on either the size of theestgad dataset or the load on
the data host or both. This cost regulates the size of theseldb@ing requested and the
load which the data host can handt€ost(Link(dy,r)) is the cost of transferring a unit
size (eg. 1 MB or GB) of the requested dataset through the metlivik between the
data host and the compute resource. The cost of the link ntagase with the Quality
of Service (Qo0S) being provided by the network. For examiple, network supporting
different channels with different Quality of Services asa&ed by Hui, et al. [109], the
channel with a higher QoS may be more expensive but the datdenaansferred faster.
Hence, the file is transferred faster but at a higher expexstaffic within a Local Area
Network (LAN) is considered to be essentially free, thahis,cost is levied upon them.

Therefore, the total execution cost for j¢pC'(j) is given by

C(j) = Celd,r) + D Cilfrdy,r)

feFi

The notations that have been presented till now are sumedansTable 5.1.
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Table 5.1: Notations.

Symbol Definition

R={r}M_, Set of M compute resources

D = {d,}} Set of P data hosts

Link(r, d) Logical link between € R andd € D

BW ((Link(r,d)) | Available bandwidth ofLink(r,d). Itis the bottleneck band-
width of the actual physical network betweeandd

Cost(Link(r,d)) | Price of moving a unit size of data (in MB or GB) through
Link(r,d)

F={fi, Set of K’ datasets required by the application

Dy Subset ofD on which f is replicated

J={jn N, Set of NV jobs created for the application

Fi Set of K datasets required bye J

R Singleton set representing the compute resource exeguting
J

DJ For a jobj, the set ofL data hosts from which th& datasets
are retrieved] < K

S Resource set associated wjtke .J

Tw(j,7) Expected waiting time for job in the batch queue at

Ti(f,ds, 1) Expected time for transferring € F7 fromd; € Dytor

T.(j,7) Expected execution time for jopbon resource

Tet(7) Expected completion time for jop

Ce(4,7) Expected execution cost for jgbonr

Cy(f,ds,m) Expected cost of transferring dataget F7 fromd; € Dy to
re S

C(J) Expected total cost of executing

5.2.3 A Generic Scheduling Algorithm

The scheduling paradigm followed in this thesis is thadififne or batch modeschedul-
ing of a set of independent tasks [142]. (Note: Since eadbisasanslated into a job,
tasks and jobs are used interchangeably throughout thefrésis thesis). The general
problem of creating a schedule for a set of jobs to run onidiged resources is calldidt
schedulingand is considered to BéP-complete [38]. Many approximate heuristics have
been devised for this problem and a short survey of these e presented by Braun,
et al. [38]. Figure 5.6 shows a general scheduling algorithmbatch mode scheduling of

a set of jobs based on the skeleton presented by Casanovg5bdi al

As described in Chapter 4, the resource broker is able toifgeasources that meet
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while there exists unsubmitted jods
Update the resource performance data based on job schedylexvious
intervals
Update network data between resources based on currenticoad
foreach unsubmitted joldo
Matchthe job to a resource set to satisfy the objective functidheajob
level

Order the jobs depending on the overall objective
end

repeat
Assignmapped jobs to each compute resource heuristically
until all jobs are submitted or no more jobs can be submitted

Wait until the next scheduling event
end

Figure 5.6: A Generic Scheduling Algorithm.

minimum requirements of the application such as architedinstruction set), operating
system, storage threshold and data access permissionsemghpthese as suitable can-
didates for job execution to the scheduler. The schedusirogiiried out at time intervals
calledscheduling eventd41]. These events can be determined to either run at negula
intervals poll-based or in response to certain conditiorevént-baseqd

There are two parts in a scheduling strategy: mapping armhtiiing. The jobs
have to banatchedo a set of resources and ordered depending on the objeatieéidn
(mapping and then sent to remote resources for executibspatching. Each of the
parts can be implemented independently of each other aneftihe, many strategies are
possible. The rest of this thesis focuses on the mappindgobin particular, this and
the next chapter introduce heuristics for matching jobsdtriduted resources where the

selection of computational and data resources are interdimt on each other.

5.3 Cost-based Scheduling for Data-Intensive Applications

The previous section outlined the economic costs involveelkecuting a data-intensive
job on Grid resources that have prices associated with tiseige. Additionally, a user
may expect some specific QoS conditions to be fulfilled fordwerall application exe-
cution. Previous work in computational Grid scheduling byyai[42] introduced two

QoS constraints that have to be fulfilled simultaneouslye,do finish the application
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execution by a user-specifieigadlineand the other, to keep the cost of execution within
the maximumbudgetthat the user has for the execution. Based on the model pessent
so far, the deadline for the application (denoted by, 4:».) can be expressed in terms of
job execution time asax;c; 7.4(7) < Tpeaqiine- The budget constraint can be expressed
as); C(j) < Budget.

The pricing of goods in a real world economy is determinedigiaws of supply and
demand [143]. In a Grid based on computational economy,egkjgected that the same
mechanism will apply to pricing of Grid resources [44]. Resas that are in demand due
to their higher capabilities are expected to be more experisan others. It follows that
using cheaper (and less capable) resources will minimesedst while using more expen-
sive (and more capable) resources will result in fasterieg@ipbn execution. Evaluations
have shown the applicability of these assumptions to coatioual Grid resources [45]
where the resources can be compared on the basis of CPU shatieeyh provide to the
jobs.

For a data-intensive application, however, the selectioresources must take into
account requirements for transferring and processing ldedasets as well. This means
that mapping a job to a computational resource must not amgider the cost and time
for executing a job on that resource but also the cost anddinmansferring data to that
resource from the selected compute resources as well. Tlheifog sections present an
algorithm that takes into account these factors for scliegldiata-intensive jobs in a Data

Grid environment with resource costs.

5.3.1 Objective Functions

Depending on the user-provided deadline, budget and sthgdweference, two objec-

tive functions can be defined, viz:
e Cost minimisation: The objective is to produce a schedule that causes least ex-
pense while keeping the execution time within the deadlnogiged.

e Time minimisation: Here, the jobs are executed in the fastest time possible with

the budget for the execution acting as the constraint.
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Here, the same heuristic is applied to achieve either of bpective functions but while

considering the appropriate variables.

5.3.2 Cost and Time Minimisation Algorithms

Figure 5.7 lists the algorithm for cost minimisation schiedyof data-intensive applica-
tions. The scheduling loop is invoked at regular pollingemals until all the jobs are
completed or until either the deadline or the budget is exegeAt every polling interval,
the performance data of the compute resources is updateakingtinto account status
of the jobs allocated to and those completed by the resonrteiprevious intervals and
information from external performance monitors, if anyéli3). This is used to calculate
the limit of allocation (number of available job slots) oétresource for the current polling
interval. Also queried are market information servicesl&est information on instanta-
neous resource prices. For each data resource, the costaitadbie bandwidth between
itself and the computational resources is refreshed byyngethe network information
services (line 6). Then, for each data host, a sorted lisvailable compute resources
is created based on the cost of transmitting a unit of datadset the data host and the
compute resource (line 7). This is followed by the mappingpldlines 8-24) wherein
each job is mapped to a set of resources. After the jobs arpedaphe dispatch function
is invoked (line 25) and the jobs are submitted to the sealiea@sources while taking into

consideration deadline and budget constraints specifiedebyser.

Mapping:  The aim of the mapping loop is to match each job to a resourcarse
then assign the jobs to the selected resources. For eacth@iop starts off with an
empty resource s&’ which itself is a set of the empty singletdii and the empty set of
datahost9)’. For each dataset associated with the job, anothér &etreated consisting
of ordered pairs, each of which has one data host that cenfaendataset and a compute
resource such that the cost of transfer for that datasetigsmam (line 13). The compute
resource is the first element of the sorted set of computauress ;) that has been
created for each data host in line 7. The ordered @&irr) that provides the smallest
cost is then selected out of all the pairdin The compute resource from the ordered pair

is then assigned t&’ while the corresponding data host is addedto R?.,_ is another

temp
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1. while J # ¢ OR Teyrrent < Theadiine OR Budget_spent < Budget do
2. foreachr € R do

3. Calculate performance data on the basis of resource performance iretheaugsr
polling interval

4. end

5. foreachd € D do

6. Update the network information

7. Let Ry «— {rm|rm < rm41 If Cost(Link(d,ry,)) < Cost(Link(d,rm+1))

Vrm€R,1<m< M}
8. end
/IMapping Begins
9. foreachj € J do

10. LetS/ «— {R/, DI}, R « ¢, DV «— ¢

11. Let R{emp — ¢ I/IAtemporary variable

12. foreach f € F7 do

13. LetU «— {(dy, ’I")}dfepf wherer is the first element of ordered s&f;,
14. Find (d¢,r) such thatCy(f,ds,r) + Ce(4,r) is minimum overJ
15. if S7 ={¢,¢}then

16. R/ {r}, DI — {ds}, R}, — {r}

17. end

18. else

19. RI — {r}, D7 u{d;}

20. end

21. S/ — min{{R/, D7}, {R},,.,, D }}

22. R}, — R

23, end

24. end

/IMapping Ends
25, Di spat ch( J, Tpeadiine, Budget)
26. Wait until next polling interval
27. UpdateBudget_spent by taking into account jobs completed in the last interval

28. end

Figure 5.7:An Algorithm for Minimising Cost of Scheduling of Data Intensive Applica-
tions.

singleton which has the compute resource selected in theopeeiteration of the loop.
A comparison is then made between the resource set with thentilcompute resource
({17, D’}) and the one with the previous compute resoufde/(,,,, D’}) and the one
which provides the least cost is then selected as the ressetdor the next iteration of

the dataset loop.

The matching heuristic is therefore, essentially a gred¢dtegyy with a choice step

to improve the resource set being selected in every iteratior a job that requires a
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For each dataset f; do :

Resource Set (= Best C_:om_pute/Data
forf Eij Eij + combination for
k-1 current dataset giving
: T 1 S ] Tew  Ji least cost/time
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Among the two,
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L . r .
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[ Ej YEj Ej} that set

fi S Ji

Figure 5.8: The Greedy Matching Heuristic.

single dataset, this is a straightforward greedy choice.aHob with multiple datasets,
the process involved is shown pictorially in Figure 5.8. €ach dataset, a pair of compute
resource and data host is selected such that it ensuresghmétics for the job if only
that dataset were involved. This is then merged with theuresoset that has been built
up previously to derive two resource sets, one with the caenpsource selected in the
previous iteration and the other with the current compuseuece. The one that provides
the least cost is then selected as the input for the nextidaraThe idea behind this
heuristic is, therefore, to ensure that adding every pa& cdmpute resource and a data
host produces a better resource set at the end of eachatetiaéin that was produced by

the previous iteration.

Dispatching: The job dispatch function is listed in Figure 5.9. The allechjobs are
sorted in the ascending order of their expected costs far tegpective resource sets.
Then, starting with the job with the least cost, each job Issitted to its compute resource
selected in the mapping step if the allocation for that res®tas not been exhausted by
previous assignments. For cost minimisation, it is deteeaiiwhether the deadline is
violated by checking whether the current tim&-(,,..;) plus the expected completion
time exceedq p..aiine (Iine 7). If so, the job goes back into the unsubmitted listha
expectation that the next iteration of the mapping loop midlduce a better resource set

for that job. If Budget is exceeded by the current job, then the dispatching isdhalbel
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1. Di spat ch( J, Tpeadiine, Budget, Min)

2. SortJ in the ascending order &f(j),Vj € J

3. Expected_Budget « Budget_spent

4. foreachj € J do

5. Take the next joly € J in sorted order

6. if » € R7 can be allocated more jokhen

7. if (TCurrent + Tct (]) < TDeadline then

8. if (Expected_Budget + C(j)) < Budget then
9. submitj tor

10. elsestop dispatching and exit to main loop
11. end

12. Expected_Budget = Expected_Budget + e;
13. Removej from J

14. end

15. end

Figure 5.9:Deadline and Budget Constrained Job Dispatch.

the functions returns to the main loop as the rest of the jolbse list will have a higher
cost than the current job (line 8). If these two constraingsreot violated, then the job is
submitted to the compute resource and removed from theflisisubmitted jobs.

Time minimisation can be achieved with the same algorithinwath time-specific
variables as shown in Figure 5.10. The mapping functiorssbdg compute resources for
each data host based on the time for transferring unit déiat i3, the tern®'ost(Link(r, d))
inline 7 in Figure 5.7 is replaced by BW (Link(r, d)). Line 14 will haveT;(f,ds,r) +
T.(j,r) instead of the cost metric and line 21 selects a resourcasetlon total comple-
tion time instead of cost. The dispatch function also charagethe deadline and budget
checks are swapped between lines 7 and 8. For time minimmsatithe budget spent
(including the budget for all the jobs previously submittecturrent iteration) plus the
budget for the current job exceedr:dget then the function proceeds to the next job.
However, if the deadline is violated by the current job, themdispatch function returns

to the main loop.

5.4 Experiments and Results

The cost-aware deadline and budget-constrained schgdalljorithm presented in the

previous section, was implemented in the Gridbus brokenveaslevaluated on a testbed
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=

while J 7£ ¢ OR Teurrent < TDeadline OR BUdgetfspent < BUdQEt do
foreachr € R do
Calculate performance data on the basis of resource performance iretiaus
polling interval
end
foreachd € D do
Update the network information
Let Ry — {rm|rm < rm41 if 1/BW (Link(d,ry,)) < 1/BW (Link(d, rm+1))
Vrm€R,1<m< M}
8. end
/IMapping Begins
0. foreachj € J do

w N

N oo o &

10. LetS/ «— {R/, DI}, R « ¢, DV «— ¢

11. Let R{emp — ¢ [/IAtemporary variable

12. foreach f € F7 do

13. LetU « {(df,’l”)}dfepf wherer is the first element of ordered s&f;,
14. Find (d¢,r) such thatl;(f,ds,r) + Te(j, ) is minimum over/
15. if S7 ={¢,¢}then

16, R {r}, DI — {ds}, R}, < {7}

17. end

18. else

19. RI — {r}, D7 Uu{d;}

20. end

21. S/ — min{{R’, D7}, {R},,.,, D }}

22. R}, — R/

23, end

24. end

/IMapping Ends
25, Di spat ch( J, Tpeadiine, Budget)
26. Wait until next polling interval
27. UpdateBudget_spent by taking into account jobs completed in the last interval

28. end

Figure 5.10:An Algorithm for Minimising Execution Time.

slightly extended from the Belle testbed used in the caseystuthe previous chapter.
Details of the resources including configuration, role aridepare provided in Table 5.2.
A new resource from the Victorian Partnership for Advancedn@oting (VPAC), Mel-
bourne was added to the testbed for this evaluation. Al nhchines in School of
Physics, University of Melbourne, and Computer Scienceyéisity of Adelaide were
only used as data sources (data hosts) and no jobs were exe@cuthem. The machines
functioning as compute resources were assigned ratesdouemng jobs in Grid Dollars
(G$) [45] per CPU second used. Grid Dollars is a synthetic oihdurrency that mod-
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els the role of actual currencies such as Australian doifareal world economies.The

resources functioning as pure data hosts were not assigyqutiaes.

Table 5.2: Resources within Belle testbed used for evaluation

Organisation | Resource details Role Rate | Total
(G$) | Jobs
Time | Cost
Computer belle.cs.mu.oz.au Broker Host, 6 94 2
Science, 4 Intel 2.6 GHz CPU, 2 | Data Host,
University of | GB RAM, 70 GB HD, Compute
Melbourne | Linux resource,
NWS Server

School of fleagle.ph.unimelb.edu.auReplica N.A.* - -
Physics, 1 Intel 2.6 Ghz CPU, 512 Catalog host,
University of | MB RAM, 70 GB HD, Data host,
Melbourne | Linux NWS sensor
Computer belle.cs.adelaide.edu.au| Data host, N.A. * - -
Science, 4 Intel 2.6 GHz CPU, 2 | NWS sensor ¥
University of | GB RAM, 70 GB HD,
Adelaide Linux
Australian belle.anu.edu.au Data Host, 6 2 4
National 4 Intel 2.6 GHz CPU, 2 | Compute
University, GB RAM, 70 GB HD, resource,
Canberra Linux NWS sensor
Dept. of belle.physics.usyd.edu.guData Host, 2 2 119
Physics, 4 Intel 2.6 GHz CPU(1 | Compute
University of | avail), 2 GB RAM, 70 resource,
Sydney GB HD, Linux NWS sensor
VPAC, brecca-2.vpac.org Compute 4 27 0
Melbourne | 180 node cluster (only | resource,

head node utilised) NWS sensor

N.A. - Not Applicable. Resource not used as a compute resduutcenly as a data host

Information about the network conditions were obtainedulgh the same Network
Weather Service (NWS) set up used in the previous chapter. VA% Idensor was also
started on the VPAC resource which was added to the testimpdeclin this evaluation,
however, data transmission costs were also assigned tethvernk links between the re-

sources. These costs were in the form of G$ per MB (MegaBytéataf transmitted. The
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available bandwidth, reported as an average of the measutsrthroughout the evalua-
tion, is given in Table 5.3. Alongside the bandwidth data,¢bst assigned to the network
is also given inside the parentheses. The network betweemauwte resource and a
data host located at the same site is assigned a high aedilabtwidth (1000 Mbps, not

shown in the table) and zero cost.

In this evaluation, the costs have been artificially assignahe resources. However,
these can be linked to real world costs that will occur oneedgbonomic paradigm is
adopted by all the participants within the Grid. Networkrgsaready pay Internet Ser-
vice Providers (ISPs) for usage based on volume of data oreguéar subscription fee.
Computational services are being offered by corporatioshk si3 Sun Microsystems as

utilities that are charged on the basis of time of usage [195]

Table 5.3: Avg. Available Bandwidth between Data Hosts and Qg Resources as
reported by NWS(in Mbps) and Network Costs between Data HostsCompute Re-
sources (G$/MB) in parentheses.

Compute Resources
Data Hosts UniMelb CS ANU UniSyd VPAC
ANU 6.99 (34.0) 1000 (0) 10.24 (31.0) 6.33 (38.0)
Adelaide 3.45 (36.0) 1.68 (34.0) 2.29 (31.0) 6.05 (33.0)
UniMelb 41.05 (40.0) 6.53 (32.0) 2.65 (39.0) 20.57 (35.0
Physics
UniMelb CS 1000 (0) 6.96 (30.0) 4.77 (36.0) 36.03 (33.0
UniSyd 4.78 (33.0) 12.57 (35.0) 1000 (0) 2.98 (37.0)

A synthetic data-intensive program was created for the ggef evaluating differ-
ent data-intensive applications. This program would retiie datasets located on dis-
tributed data sources and process them to produce a smplitdie (of the order of
KiloBytes (KB)). The bag-of-task data-intensive applicatioeing evaluated here is a
parameter-sweep application consisting of 125 jobs, ealotbging an instance of the
program requiring 3 files (that idy’ = 3 for all the jobs in this evaluation). The execu-
tion times for the jobs (excluding data transfer times) waredomly distributed within
60-120 seconds. Each of the jobs would request 3 files at marfctom the set of 100
files (distributed equally among the data hosts listed in€r&k?) that was used in the

Belle case study presented in the previous chapter. Eaclesé files are 30 MB is size.
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Figure 5.11: Distribution of file access.

These files are specified as Logical File Names (LFNs) andvesdto the actual physical
locations by the broker at runtime by querying the Globudicapatalog located at the
UniMelb Physics resourcédléagle.ph.unimelb.edu.guFigure 5.11 gives the distribution
of the number of requests for data made by the total set ofgghsist each data host.
The distributed application was run under both cost and tmremisation. The min-
imisation algorithms were evaluated and compared agaistrteasures of performance:
the first is the relative usage of the computational reseuoeler cost and time minimi-
sation which indicates the impact of the choice of minim@actriteria on resource selec-
tion, and the second is the distribution of jobs with respet¢he computational and data
transfer costs and times incurred within each minimisatidmch indicates the effective-
ness of the algorithm in producing the cheapest or the fastbgdule. The experiments
were carried out on 29th November 2004 between 6:00 p.m. @ b.m. AEDT. The
deadline and budget values for both cost and time mininaratiere 2 hours and 500,000
G$ respectively. Table 5.4 shows the summary of the redtssere obtained. The total
time is the wall clock time taken from the start of the schedpprocedure up to the com-
pletion of the last job. All the jobs completed successfullypoth the experiments. The
average costs per job incurred during cost and time mintinisare 562.6 G$ and 959
G$ with standard deviations of 113 and 115 respectively.riMeall clock time taken per
job (including computation and data transfer time) was 163%s for cost minimisation

and 135 secs for time minimisation with standard deviatithi§ and 19 respectively.
As expected, cost minimisation scheduling produces mimmiamputation and data

transfer expenses whereas time minimisation completes<beriments in the least time.
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Table 5.4: Summary of Evaluation Results.
Minimization | Total Time | Compute Data Cost | Total
(min.) Cost (G$) (G9) Cost (G%)
Cost 80 31198.27 39126.65 70324.93
Time 54 76054.90 43821.64 119876.55

The graphs in Figures 5.12(a) and 5.12(b) show the numbebefjompleted versus time
for the two scheduling strategies presented. Since the otatipn time was dominant,
within cost minimisation, the jobs were executed on thetleasnomically expensive
compute resource. This can be seen in Figure 5.12(a) whereothpute resource with
the least cost per second, the resource at University of &ydmas chosen to execute
95% of the jobs. Since a very relaxed deadline was given, mer@ompute resource was
engaged by the scheduler as it was confident that the leastgivp resource alone would

be able to complete the jobs within the given time.
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(a) cost minimisation scheduling (b) time minimisation scheduling

Figure 5.12: Cumulative number of jobs completed vs time ést and time minimisation
scheduling.

Within time minimisation, the jobs were dispatched to thenpate resources which
promised the least execution time even if they were expersiviong as the expected
cost for the job was less than the budget per job. Initiathg $cheduler utilised two
of the faster resources, the University of Melbourne Comp8t@ence (UniMelb CS)
resource and the VPAC resource (Figure 5.12(a)). Howegesean from Figure 5.11,

26.67% of the requests for datasets were directed to the &lhilIS resource. A further
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6.67% were directed to the resource in UniMelb Physics. Hgangy jobs requiring one
of the datasets located on either of the above resourcessebesluled at the UniMelb
CS resource because of the resultant low transfer time. &lsoJniMelb CS resource
had more processors. Hence, a majority of the jobs were tdispe to it within time

minimization.

Number of Jobs
Number of jobs

(a) cost minimisation scheduling (b) time minimisation scheduling

Figure 5.13: Distribution of jobs against compute and das&is

Figures 5.13(a) and 5.13(b) show the distribution of thes joith respect to the com-
pute and data costs respectively. For cost minimisatiofp 8bthe jobs have compute
costs less than or equal to 400 G$ and data costs between 280356 G$. In contrast,
within time minimization, 91% of the jobs are in the regiorcofnpute costs between 500
G$ to 700 G$ and data costs between 300 G$ to 400 G$. Henceyemtinimization,
more jobs are in the region of high compute costs and mediumatsts. Thus, it can
be inferred that the broker utilized the more expensive agmpnd network resources to
transfer data and execute the jobs within time minimization

Figures 5.14(a) and 5.14(b) show the distribution of thes jaith respect to the total
execution time and the total data transfer time for costmisation and time minimisation
respectively. The execution time excludes the time takerd&ta transfer. It can be
seen that within time minimisation (Figure 5.14(b)), thexmaum data transfer time was
35s as compared to 75s for cost minimisation. Also, therenayee jobs within time
minimisation that have had transfer time less than 10s winiglies that the jobs were

scheduled close to the source of the data.
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Figure 5.14: Distribution of jobs against execution time @ata transfer time.

The results of the empirical evaluation show that the atgors presented in this chap-
ter are able to minimize the objective function for upto 90R&he input set of jobs. Also,
cost minimization gave more preference to reducing cosbofputation than the cost of
data transfer. This can be seen by the smaller differeneeclest the data costs for both
cost and time minimization as compared to the compute cosiable 5.4. Time mini-
mization, however, attempted to reduce both the executidrtize data transfer times as
can be seen by comparing Figures 5.14(a) and 5.14(b). Tdws\rer, lead to an increase

of only 11% in the data costs over cost minimization (Tab{g.5.

5.5 Summary

Typical Data Grid environments consist of heterogeneougpttational, storage and net-
working resources that are shared among the users and magi@enses associated with
their usage. A scheduler operating in such environments noinly take into account
the variations of availabilities, capabilities and costeag the resources but also should
consider application requirements that may include migltiprge-sized datasets, each
replicated on multiple resources. This chapter modelsgitablem formally and applies
it to cost-based scheduling of distributed data-intenapglications.

An interesting result gathered from the empirical evatuats that time minimization

preferred scheduling jobs close to the source of data. Ehat exploited the locality
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of datasets more effectively. This result is used as thesldasithe investigation in the
next chapter, where the problem of resource selection isttemtiusing graph theoretic
concepts. A heuristic based on an instance of the Set Coverofilem is then proposed to
exploit access locality of jobs. The proposed heuristizédieated against others including
the Greedy matching heuristic presented in this chapteugir simulation. This allows
investigation of impact of different variables such as eéegyf replication, size of datasets

and larger number of resources on the performance of theskiesr






Chapter 6

A Set Coverage-based Scheduling
Algorithm

The previous chapter defined theappingproblem of matching a set of resources to a
job and ordering the set of jobs for allocation. The mappingiminimise the objective
function not only for a single job but also for the overall séjobs that constitutes the
entire application. Previous work in scheduling of disitdxl data-intensive Grid appli-
cations (see Chapter 3, Section 3.2) and evaluations in Gisapi@nd 5 have provided
various solutions for successful mapping of such jobs tal Gsources. Some of them

are listed below:
1. Scheduling job execution “close” to the point of locatmidata or exploiting the
spatial locality of data access.
2. Reusing existing data replicas or exploiting the temploclity.

3. Giving weightage to the computational requirements efjtibs while creating data

replicas if necessary.

4. Meeting users’ requirements such as shortest makesganse minimisation within

deadline or time minimisation within budget.

These solutions may seem to conflict with each other, edperiahe case of jobs that
require multiple datasets that are each available fromiptelsources. However, it is

also possible for them to complement one another as well.ekample, a job may be

153



154 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

scheduled to a compute resource that is closest to the dsttthlbcontains the maximum

number of the set of datasets required by the job. Otherelstagy be staged to that data
host and may be used as replica sources for later jobs. TSoga@dluces the number of

remote data transfers thereby reducing both the time aricbttstal data movement.

The selection of the computational resource, however, ldhaat only be based on
the proximity of the data but also on its availability andfpemance as well. In case of
data-intensive jobs that are computationally heavy as, we#l choice may have a higher
impact on the realisation of the objective than the selaabiodata resources. Therefore,
the selection of resources depends on the interrelatiphgtiveen the computational and
data components of the performance metrics.

This chapter focuses on the resource selection amétehingproblem for jobs which
require multiple datasets that are each replicated on pheiltiata hosts. First, the problem
is modelled as an instance of the well-known Set CoveringlBnobBased on this, a tree
search heuristic for the matching problem is detailed. Haisristic, along with other

known heuristics, is then evaluated through extensive lsitions.

6.1 A Graph-based Approach to the Matching Problem

This chapter follows the same notations that were providethble 5.1 in the previous
chapter. For ajolj € J, consider a grapt’ = (V, E) whereV = (U {Dy}) U FY
and £ is the set of all directed edgdd, f} such thail € D;. Figure 6.1(a) shows an
example of a joly that requires 3 datasefs, f> and f; that are replicated on data host
sets{dy, d»}, {ds, d3} and{d,, d4} respectively. The graph of data sets and data resources
for job j is shown in Figure 6.1(b).

As mentioned before, it is required to find the minimum numdbledata hosts that
can serve the required datasets to minimise the amountatmeisfer involved. In terms
of the graph model presented, this can be considered as thmahisetH of data hosts
such that there exists an edge from a membel db f for every f € F7 in G7. Fig-
ure 6.1(c) shows a possible minimal set for the graph of d&dasnd data hosts shown in
Figure 6.1(b). However, it is possible that more than onemmahset of data hosts exists

for a graph. Also, one minimal set of data hosts can be cordbivith each compute
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(b)

Figure 6.1: Graph-based approach to the matching probledol§; dependent on 3
datasets. (b) Directed graph of data resources and datbos@ib j. (c) A minimal set
for the data graph.

resource inR to produceM resource sets (wher&/ is the number of resources) with
different values of total completion time or execution cddte goal here is, therefore, to
find a combination of a minimal set of data hosts and a compmsgeurce such that the
total completion time or execution cost fplis minimised. This problem is defined and
referred to hereafter as tiinimum ResourceSet (MRS) problem.

The following section presents a heuristic for the MRS probiesed on an algorithm
to solve the Set Covering Problem [24]. The heuristic gersraét covers of data hosts
and combines them with the list of compute resources to m®dandidate resource sets
that are then compared to produce the resource set givirgnthitest value of the objec-
tive function for a job. The terrminimal setsare used hereafter to refer to minimal sets

of data hosts.

6.1.1 Modelling the Minimum Resource Set as a Set Cover

For a graphG’ such as that shown in Figure 6.1(b), a reduced adjacencyxmate=
laix],1 < i < P/ 1 < k < K can be constructed whereir), = 1 if data hostd; € Dy,

for a datasef;,. Such an adjacency matrix is shown in Figure 6.2. The rowtsctbretain

a 1 in a particular column are said to “cover” the column. Thebfem of finding the
minimal set of data hosts fa@#’ is now equivalent to finding the sets of the least number
of rows such that every column is covered, that is, everymalgontains an entry of 1

in at least one of the rows. In other words, if each data hastbeaconsidered as a set
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of datasets, then finding the minimal set of data hosts isvatgnt to finding the least
number of such sets of datasets such that all datasets aeedov his problem has been

studied extensively as ti&et Covering Problem (SCIP4].

i o 3
d/1 0 1
d] 1 1 0
ds| 0 1 O
d,\0 0 1

Figure 6.2: Adjacency Matrix for the job example.

The SCP is amV P-completgoroblem and the most common approximation algorithm
applied to the SCP is the greedy strategy [62]. It is possibletive a set cover for the
datasets by following the greedy strategy as outlined below
Step 1.Repeat until all the datasets have been covered
Step 2.— Pick the data host that has the maximum number of uncoveradeata and

add it to the current candidate set.

Figure 6.3: Solution Tree.

Itis also possible to arrive at a depth first search procetthategenerates all the covers
by repeating the same greedy strategy with every data hosjyst the ones with the
maximum number of datasets). The possible minimal seth#ogtaph in Figure 6.1(b)
can be enumerated in this manner and presented as a tre@rgrstvown in Figure 6.3.
It can be seen that the greedy set covering strategy willyg@adnly one of the possible
minimal sets. For example, starting off with, the greedy strategy is likely to end up

with {d;, d>,d;} as the solution. This, however, excludes the other caralisietls from
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consideration. On the other hand, doing a depth-first seardhe entire solution tree is
going to be computationally-intensive and can lead to regeaeration of some of the
candidate sets. This can be seen in the branches fomdd, in Figure 6.3.

The next section details a heuristic that identifies theoregif the tree where the
solution is most likely to be found and then augments thedyrsearch through a depth-
first search in that region. But, before applying that aldponitit is possible to reduce the

size of the problem by taking advantage of the nature of the $d#%e reductions are:

¢ If a dataset required for a job is present on only one data tieest that data host is
part of any solution. Therefore, the problem can be redugesbigning the dataset

to that data host and removing the dataset from later coragide.

e For fi, fo € FY,if Dy, C Dy,, thenf, can be removed from consideration as any

solution that coverg; must also coveys.

6.1.2 The SCP Tree Search Heuristic

This heuristic is listed in Figure 6.4 and is based on the@pprate tree search algorithm
provided by Christofides [58] for the SCP. There are threerdisphases in this heuristic:

initialisation, execution and termination. These are dbsed in the following paragraphs.

Initialisation (Lines 1-3)

The initialisation starts off with the creation of the addacy matrixA for a job. The rows

of this matrix (that is, the data hosts) are then sorted irddgsxending order of number
of 1's per column (or, the number of datasets contained)s $brted matrix is used to
create an augmented matrix that is henceforth referred tioediableauand is shown in
Figure 6.5. The tableall consists ofK blocks of rows, wheréx is the size ofF’ and

the k*(1 < k < K) block consists of rows corresponding to data hosts thatagont
fr, [ € FJ. The tableau is constructed in such a manner that the rovgvéitich block
are in the same sorted order as the rows in the sorted adjanstax. At any stage of
execution, the set of data hodéskeeps track of the current solution set of datahosts, the
set I/ contains the datasets already covered by the solution dethanvariable: keeps

track of the minimum value of the objective function offeteglthe current solution set.
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Begin Main
1. For ajobj, create the adjacency matrkwith data hosts forming the rows and datasets
forming the columns.
2. Sort the rows of4 in the descending order of the number of 1's in a row.
3. Create the tableali from sortedA and begin with initial solution s&B ;.. = ¢,
B=¢, F=¢andz = x
4. Sear ch( Byina, B, T,E, 2
5. 87— {{r}, Byina} Wherer € R such thaM nVal (Byiq) is minimum
End Main

Sear ch( Byina, B, T,E, 2

6. Find the minimumk, such thatf;, ¢ E. LetT} be the block of rows iff” corresponding
to fi. Set a pointey to the top of7}.

7. while ¢ does not reach the end 6§ do

8. FT<_{fz|tq7,:1u1§Z§K}

. B« BU{d},E—EUFr

10. if £ = FJthen

11. if z > M nVal (B)then

12. Btinal <+ B,z < M nVal (B)

13. elseSear ch( Byina, B, T, E, 2

1. B<—B-{d},E—E-Fr

15. Incrementy

16. end

M nVal ( B)
17. Findr € R such that the value of the objective function is minimum for the resource set
SJ = {{r}, B} and return value

Figure 6.4:Listing of the SCP Tree Search Heuristic for the MRS problem.

The final solution set is the stored #y;,,,;. The procedure begins with the partial solution

setB =¢, F = ¢, z = .

Execution (Lines 6-16)

During execution, the blocks are searched sequentialiyirsjafrom thek!” block in T
wherek is the smallest index, < k& < K such thatf, ¢ E. Within the k" block, let
d’; mark the data host under consideration wheirg a row pointer within block:. The
data hostl; is added taB and all the datasets for which the corresponding row cositain
1 are added td as they are already covered blgl. These datasets are removed from
consideration and the process then moves to the next urezbwdock untilE = F7,
that is, all the datasets have been covered. At this pBimgpresents the corresponding

minimal set of data hosts that covers all the datasets. TiinM nVal (B) computes
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ho o fs
di /1 0 1
[ 1 1 0
| 1 1 0
;] 0 1 0
il 1 0 1
d\0 0 1

Figure 6.5: Tableau.

the expected value of the objective function for each compegsource combined with
and returns with the minimum of the values so found. If thitoger than the existing
value inz, then the solution set is replaced with the current minireélbsidz is assigned

the returned value.

Whenever the heuristic enters a block that is not yet covérlergnches out within the
block by a recursive call that passes along the incomplétrigo set (line 13). The final
solution set is returned in the varialblg;,,; through normal pass-by-reference methods.
At the end of each loop, the heuristic backtracks to try the data host in the block and
repeat the branching with that host (line 14).

Termination (Line 5)

Through the recursive procedure outlined in the listing, heuristic then backtracks and
discovers other minimal sets. The solution set that guaeshinimum makespan is then
chosen as the final minimal set. The compute resource theidesothe minimum value

of objective function is then combined with the minimal sebbtain the minimal resource

set for the job.

To reduce the scope of the tree traversal, the heuristidriates when the first block
Is exhausted. The data hosts with the maximum number ofetatappear at the top of
the tableau due to the initialisation process. Thereforstrof the minimal sets will be

covered by the search function by starting at the rows in teeldlock.
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6.2 Other Approaches to the Matching Problem

Compute-First - In this mapping strategy, shown in Figure 6.6, a computeue that
ensures minimum value of the computational component obHjective function is se-
lected first for the job. For example, in case of reducing thmmetion time () for a
job, the compute resource that gives the least executianisrselected first. This step is
followed by choosing data hosts such that the data compaiehe objective function
is reduced. For the example of reducing the completion ttiie, would be selecting the
data hosts that have the highest bandwidths (and there¢f@mdowest transfer times) to

the selected compute resource. The running time of thisstevis O(M K P).

1. foreachj € J do

2 Let S/ « {RI, DI}, RI « ¢, DI «— ¢

3 Let R «— {rfina} Such thatl, (5, r fina) is minimum for allr € R
4, foreach f € F7 do

5 DI — DIiu{ds} whereTy(f,ds, 7 fina) is minimum for alld; € Dy
6 end
7. end

Figure 6.6:The Compute-First Matching Heuristic.

Exhaustive Search In this case, all the possible resource sets for a partiguiteare
generated and the one guaranteeing the least value of thetigbjfunction is chosen for
the job. While this heuristic guarantees that the resourceedected will be the best for
the job, it searches throughf P¥ resource sets at a time. This leads to unreasonably large
search spaces for higher valuesiof For example, for a job requiring 5 datasets with 20
possible data hosts and 20 available compute resourcese#éneh space will consist of

(20 % 20°) = 64 * 10° resource sets. This algorithm is listed in Figure 6.7.

1. foreachj € J do

2. LetS/ «— {R/, D7}, R} « ¢, DV «— ¢

3. LetU «— R x ‘Dfl X Df2 X ... X DfK wherefy, fo,..., fK € Fi
4. Findu € U such thatl;;(j) is minimum

5. end

Figure 6.7:The Exhaustive Search Matching Heuristic.

Greedy - This is the heuristic that was presented in the previouptendor deadline

and budget constrained cost and time minimisation schagloli data-intensive applica-
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tions. This heuristic builds the resource set by iteratmgugh the list of datasets and
making a greedy choice for the data host for accessing edabetafollowed by choos-
ing the best compute resource for that data host. At the er@di iteration, it checks
whether the compute resource so selected is better thaméhsetected in previous itera-
tion when the data hosts selected in previous iterations@rsidered. The running time

of this heuristic isO(M K P).

6.3 Scheduling Heuristics

The mapping heuristic finds a resource set such that thetolgdunction is minimised
for a single job. However, the goal here is to produce a sdeeslich that the objective
function is minimised over the entire set of jobs. Many aiions have been proposed for
the problem of scheduling a set of independent jobs [38] awdvwell-known heuristics
are theMinMin and theSufferageheuristics proposed by Maheswaran, et al. [142] for
dynamic scheduling of jobs on heterogeneous computingiress. These are extended
to take into account the distributed data requirementsefalget application model.

The extended MinMin scheduling heuristic is listed in Fey@.8. The basic idea
of this heuristic is to find the job that has the minimum valdiehe objective function
and allocate it to the resource set that achieves it. Théionuehind this is that such
an allocation over all the jobs will minimize the overall ebjive function. The term
Jy denotes the set of jobs that have not been allocated to aoyroesset yet. In the
beginning, it matches all the jobs to a resource set thatagtees minimum value of
the objective function for that job (line 4). This is prodddirough matching heuristics
such as the SCP Tree Search, Greedy, Compute-First or Extea&starch, that have
been presented in previous sections. Then, the job thatdmesvad the minimum value
of the objective function in the present allocation, is edited to its chosen resource set
(line 7). Allocation means that the job is mapped to an alélarocessor or a queue slot
on the remote computational node. If the available slothiemésource have already been
allocated to previous jobs, the job is assigned provislgrialthe compute resource by
storing it in a local queue corresponding to that resourtes iE done even if there were

other available resources as the matching function and Minkbuld have taken those
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into consideration while mapping the job. This job is themoged from the unallocated
job set. As allocation changes the availability of the resewvith respect to the number
of available slots, the resource information is updatedthagrocess is repeated until all

the jobs inJ;; have been allocated to some resource set.

1. repeat
Begin Mapping
2, repeat
3. foreachj € Jy do
4. Find the least value of the objective function foand find the resource set
that achieves the value
5. end
6. Find the jobj € Jy with the minimum value of the objective function
7. Allocatej to its resource set that was selected previously
8. Removej from Jy
9. Update the resource availability based on the allocation performed in the
previous step
10. until Jyy is empty
End Mapping
11. Dispatch the mapped jobs to the selected resources such that the job allboation
of each resource is not exceeded
12. Wait until the next scheduling event
13. foreachjob completed in the previous intervad
14, For each dataset that has been transferred from a remote datarttbstjfib,
add its eventual destination (compute resource) as a future sourcedafttset
for the jobs remaining iy
15. end
16. For each resource, revise its capability estimates (job allocation limit or available
gueue slots) depending on various information sources such as éxteritamance
monitors or the jobs completed in the previous interval
17. until all jobs are completed

Figure 6.8: The MinMin Scheduling Heuristic extended for distributed data-intensive
applications.

The dispatching function cycles through the set of compegeurces and submits the
jobs that were allocated to available slots on the remoteures. The jobs that were
stored on the local queues are returned back to the unalbgalds list. The scheduler
then waits for the specified polling interval or for a speagi@nt to resume.

When a job is scheduled for execution on a compute resourctheatlatasets that
are required for the job and are not available local to theues, are transferred to the
resource prior to execution. These datasets become refitigacan be used by following

jobs. Here, this is taken into account by registering themate resource in question (or
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its associated data host) as a source of the transferresetiafar succeeding allocation
loops (line 14). This enables the exploitation of both terapand spatial locality of data

access.

Begin Mapping

1. repeat

2. foreachj € Jy do

3. Find the best (least) value of the objective functionf@nd find the resource set

that achieves the value

4, Find the second best value of the objective functionjfor

5. sufferage value = second best value - best value

6. end

7. Find the jobj € Jy with the maximum sufferage value

8. Assignj to the resource set that was selected for it originally

9. Removej from Jy

10. Update the resource availability based on the allocation performed in theysev

step

11. until Jy is empty

End Mapping

Figure 6.9:Sufferage Algorithm.

The motivation behind the Sufferage heuristic (listed igufe 6.9) is to allocate a
resource set to a job that would be disadvantaged the mossijéier” the most ) if
that resource set were not allocated to it. This is deterththeough a sufferage value
computed as the difference between the second best andghedhee of the objective

function for the job.

For each job, the resource set that offers the least valueeobbjective function is
determined through the same mechanisms as that in MinMien Tlie compute resource
in that resource set is removed from consideration and trehimg function is rerun to
provide another minimal resource set with the next besteviduthe objective function.
The selection of the compute resource determines both #eiBan metrics and the data
transfer metrics. Therefore, removing it from considemtvill produce the maximum
impact on the value of the objective function. After detaring the sufferage value for
each job, the job with the largest sufferage value is theecsedl and assigned to its chosen
resource set. The rest of the heuristic including dispatglaind updating of compute

resource and data host information proceeds in the sameemasMinMin.
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6.4 Evaluation of Scheduling Algorithms

Effective evaluation of scheduling algorithms requires #tudy of their performance
under different scenarios such as different user inputsvanging resource conditions.
Within Grid environments, resource loads and the numbesefsuvary continuously and
the spread of resources among different administrativeagltsrmakes it nearly impos-
sible to control the environment to provide a stable configan for evaluation. Fur-

thermore, the network plays a large role in the performamceloeduling algorithms for

data-intensive applications and it is impossible to createsistent conditions over public
networks. The scale of the evaluation is also limited by tiv@lber of Grid resources that

can be accessed.

Therefore, it was decided to evaluate the performance afrithgns on a simulated
Grid environment to ensure a stable and repeatable contigoraSimulation has been
used extensively for modelling and evaluation of distialitomputing systems and the
popularity of this methodology for evaluation of Grid schiédg algorithms have led to
the availability of several Grid simulation packages [1®ldme of the simulation systems
available for data-intensive computing environments sagtata Grids include Grid-
Sim [46], MONARC simulator [135], OptorSim [29], ChicSim [1]fdnd SimGrid [49].
GridSim enables modelling and simulation of heterogendaid resources with time-
shared and space-shared node allocation and differenbegorcosts; Grid networks
with different routing topologies and QoS classes [193]] &ata Grid replica catalogs
that can be connected in different configurations [192] oAispresents itself as a toolkit
that allows creation of different applications such as wes®e brokers having schedul-
ing algorithms with different objectives. Most importantthe Grid model followed by
GridSim is the closest, among all others, to that followethis thesis. Hence, GridSim
was used as the simulation system for evaluating the sdngdalforithms for distributed

data-intensive applications.

Evaluation of the scheduling algorithms in GridSim regdiraodelling of Grid re-
sources, their interconnections and the data-intensigkcagions. The sections that fol-

low describe in detail how each of these were modelled.
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6.4.1 Simulated Resources

The testbed modelled in this evaluation is shown in Figut® &nd is based on a subset of
the European Union DataGrid Testbed [92]. The modelledbéeistontains 11 resources
spread across 6 countries connected via high capacity rletinks. Each resource, ex-
cept the one at CERN (Geneva), was used both as a compute esaodras a data host.
The resource at CERN was used as a pure data source (data hbst)ewvaluation and

therefore, no jobs were submitted to it for execution.

4 <
- Router i Gbis Padova poloana
-
E - Site

|

CERN

Figure 6.10: European Union DataGrid testbed model useidnulation.

The resources in the actual testbed have gone through keweafmuration changes,
not all of which are publicly available, and hence it was irsgible to model their layout
and CPU capability accurately. Instead, it was decided tatera configuration for each
resource such that the modelled testbed, in whole, wouleatefie heterogeneity of plat-
forms and capabilities that is normally the characteristiGrids. All the resources were
simulated as clusters of single CPU nodes or Processing Btsr{feEs) with a batch job
management system using space-shared policy. This mdaetéworld Grid resources
that are generally high performance clusters in which ealglsjallocated to a processing
node through a job submission queue. The processing cajeshilf the PEs were rated

in terms of Million Instructions Per Sec (MIPS) so that th@lagation requirements can
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Table 6.1: Resources within EDG testbed used for evaluation.

Resource Name No. of Nodes| Single PE | Storage (TB) | Mean

(Location) Rating Load
(MIPS)

RAL (UK) 41 1140 2.75 0.9

Imperial College 52 1330 1.80 0.95

(UK)

NorduGrid 17 1176 1.00 0.9

(Norway)

NIKHEF 18 1166 0.50 0.9

(Netherlands)

Lyon (France) 12 1320 1.35 0.8

CERN (Switzerland) - - 12 -

Milano (Italy) 7 1000 0.35 0.5

Torino (Italy) 4 1330 0.10 0.5

Catania (Italy) 5 1200 0.25 0.6

Padova (Italy) 13 1000 0.05 0.4

Bologna (Italy) 20 1140 5.00 0.8

be modelled in Million Instructions (Ml). The configurati@ssigned to the resources in

the testbed for the simulation are listed in Table 6.1.

To model resource contention caused by multiple users gtibghjobs simultane-
ously and the resultant variation in resource availabiitpad factorwas associated with
each resource. The load factor is simply the ratio of the remobPESs that are occupied to
the total number of PEs available in a resource. During satran, the instantaneous load
(or number of PEs occupied) for each resource was derived &rGaussian distribution

centered around its mean load factor shown in Table 6.1.

Storage at the resources was modelled as the total diskitapeailable at the site.
Site access latencies such as disk read time were ignoredsasdre less than the network
delays by an order of magnitude. The network between theairess were modelled as
the set of routers and links shown in Figure 6.10. Variatmfrtee available network band-
width are simulated by associating a link load factor, whigkhe ratio of the available
bandwidth to the total bandwidth for a network link. Duringnslation, the instantaneous
measure of the link load is derived from another Gaussianlalision centered around a

mean load assigned at random, at the start of the simulati@ach of the links.



6.4. EVALUATION OF SCHEDULING ALGORITHMS 167

It was possible to keep track of the various load variatitmeugh information ser-
vices built into the simulation entities. For example, itsyBossible to query the instanta-
neous bandwidth of the network link between any two resaurttevas also possible to
determine resource availability information by queryihg tesource for its instantaneous

load and number of PEs available.

6.4.2 Distribution of Data

A universal set of 1000 datasets was used for this evaluaBtrdies of similar environ-
ments [159] have shown that the size of the datasets folloaasyhrtailed distribution in
which there are larger numbers of smaller size files and vizeav Therefore, the set
of datasets are generated with sizes distributed accotditige logarithmic distribution

in the interval[1G B, 6G B]. The distribution of datasets in a Data Grid depends on many
factors including variations in popularity, the replicatistrategy employed and the nature
of the Grid fabric. To model this distribution, at the stafttloe simulation, each of the
datasets were replicated on one or more of the data hostedaag®o a preset pattern of
file distribution. Two common patterns of file distributionressidered in this evaluation

are given below:

e Uniform : Here, the distribution of datasets is modelled on a unifandom prob-

ability distribution. Here, each file is equally likely to beplicated at any site.

e Zipf : Zipf-like distributions follow a power law model in which e¢hprobability
of occurrence of the!” ranked file in a list of files is inversely proportional o
wherea < 1. In other words, a few files are distributed widely whereastobfiles
are found in one or two places. This models a scenario wheriéis are replicated
on the basis of popularity. It has been shown that Zipf-lilsributions holds true
in cases such as requests for pages in World Wide Web wheve @t the sites are
visited the most [40]. This scenario has been evaluated@@ta Grid environment

in related publications [48].

Henceforth, the distribution applied is described by thealde Dist. The distribution of
datasets was also controlled through a parameter calletktiree of replicationvhich is

the maximum possible number of replicas of any dataset ptése¢he Data Grid at the
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beginning of the simulation. For example, a degree of rapba of 3 means there can be
up to 3 copies of any dataset on the Grid resources. Howeseallldatasets are replicated
to the limit of the degree of replication. In a uniform dibution, a higher percentage of
the datasets are replicated up to the maximum limit than enzipf distribution. The

degree of replication in this evaluation is 5.

6.4.3 Application and Jobs

The simulated application models a Bag-of-Task applicati@t can be converted into
a set of independent jobs. The size of the application wasrigted by the number of
jobs in the set (orV). Each job translates to a Gridlet object which is the srsalimit
of execution in GridSim. The computational size of a job @ jibb length, described by
the termSize, is expressed in terms of the time taken to run the job on adatdnPE
with a MIPS rating of 1000. That is, a job with length 100,000rMns for 100 seconds
on a standard resource. Each job requires as input, a peesdeed number of datasets
(or K datasets) selected at random from the universal set ofetataBor the purpose
of comparison,K is kept a constant among all the jobs in a set although thi®tisan

condition imposed on the heuristic itself.

An experiment is an execution of the all the heuristics foapplication while keep-
ing the values for these parameters constant, and is tmerdi&scribed by the tuple
(N, K, Size, Dist). At the beginning of each experiment, the set of datasetg, distri-
bution among the resources, and the set of jobs are genefidiedconfiguration is then
kept constant while each of the scheduling heuristics aatuated in turn. To keep the
resource and network conditions repeatable among evaihsata random number gener-
ator is used with a constant seed. The evaluation is condlwaté different values for

N, K, Size and Dist to study the performance under different input conditions.
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6.5 Experimental Results

6.5.1 Comparison between the Matching Heuristics

The performances of the matching heuristics discusseciprvious section were com-
pared with each other by pairing each of them with the MinMamitistic and conducting
50 simulation experiments with different values f§r K, Size and Dist. Throughout
this section, SCPrefers to the SCP Tree Search heuristic presented in theopsesec-
tion. The objective of this evaluation was to reducerttakespafl42] of the application
which is the total wallclock time between the submissioreffirst job to the completion

of the last job in the set.

Table 6.2: Summary of Simulation Results.

Mapping Geometric Avg. deg. (SD)| Avg. rank (SD)
Heuristic Mean

Compute-First|| 37593.71 69.01 (19.4) 3.63(0.48)
Greedy 36927.44 71.86 (50.55) 3.23(0.71)
SCP 24011.17 7.68 (10.42) 1.67 (0.6)
Exhaustive 23218.49 3.87 (6.46) 1.47 (0.58)
Search

The results of the experiments are summarised in Table Gl2aesm based on the
methodology provided by Casanova, et. al [51]. For each nrajdmeuristic, the table

contains three values:

1. Geometric Mearof the makespans: The geometric mean is used as the makespans
vary in orders of magnitude depending on parameters suchraber of jobs per
application set, number of files per job and the size of eabh jbhe lower the

geometric mean, the better the performance of the heuristic

2. Average degradatiorA¢g. deg. from the best heuristic: In an experiment, the
degradation of a heuristic is the difference between itsespéin and the makespan
of the best heuristic for that experiment and is expressedl parcentage of the
latter measure. The average degradation is computed aglanetic mean over all

experiments and the standard deviation of the populatigivés in the parentheses
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next to the means in the table. This is a measure of how far iéstieus away from
the best heuristic for an experiment. A lower number for aiséa certainly means

that on an average that heuristic is better than the others.

3. Average rankAvg. rank of each heuristic in an experiment: The ranking is in the
ascending order of makespans produced by the heuristieaédr experiment, that
is, the lower the makespan, the lower the rank of the hecaristie average rank is
calculated over all the experiments and the standard dewvistprovided alongside

the averages in parantheses.

The three values together provide a consolidated view ofpt#réormance of each
heuristic. For example, it can be seen that on average Corijinsteand Greedy both
perform worse than either SCP or Exhaustive Search. Howeaeestandard deviation of
the population is much higher in the case of Greedy than fif@mpute-First. Therefore,
Compute-First can be expected to perform as the worst hieumstst of time. Indeed,
in a few of the experiments, Greedy performed as good or eedmrithan SCP while
Compute-First never came close to the performance of the béeistics.

As expected, between SCP and Exhaustive Search, the laitédes the better results
by having a consistently lower score than the former. Howete nature of Exhaustive
Search means that as the number of datasets per job ingrémesesmber of resource sets
that need to be considered by the heuristic increases dcaiiat The geometric mean
and average rank of SCP is close to that of Exhaustive Seawlsti@ The average rank
Is less than 2 for both heuristics which implies that in maognarios, SCP provides a

better performance than Exhaustive Search.

Impact of Data Transfer on Performance

Figures 6.11-6.13 show a more fine-grained view of the erpartal evaluation by show-
ing the effect of varying one of the variableS (K, Size, Dist), all others kept constant.
Essentially, these are snapshots of the experimentaltseabialt contributed to the sum-
mary data in Table 6.2. Along with the makespan, two more omesof performance are

considered within these figures. These are:

1. Mean percentage of data timEor each job in an experiment, the share of the data
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Figure 6.11: Evaluation with increasing number of jol§$2£=300000 MI, K=3, Left:
Dist=Uniform, Right: Dist=Zipf).
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transfer time is calculated as a percentage of the totaluéixectime for that job.
The average of this measure over all the jobs then repregentsean impact of the
data transfer time on the set of jobs or the application as@ewvi lower number
is better as one of the aims of the scheduling algorithmsepted so far has been

to reduce the data transfer time.

2. Mean locality of accesd~or each job, the ratio of the number of datasets accessed
from the local disk storage of the compute resource to tta mimber of datasets
accessed by the job from all resources is calculated as amgage of the latter and
is termed as théocal access ratio Since by design, each of the jobs in an exper-
iment accessed the same number of datasets, the averagelotahaccess ratio
over all the jobs becomes a measure of locality exploiteddap @f the algorithms.

In this case, a higher number is better as increased locasadecreases the impact

of remote data transfer on the performance.

These two measures represent two slightly different petses on the data access
performed by the jobs. Consider a job that requires one datdseze 6 GB and two
datasets of size 1 GB each. The job may be scheduled suclihéhitrger-sized dataset
is accessed locally, whereas the smaller-sized datasgtbersccessed from remote data
hosts. In this case, the data transfer component is smahélbcality of access is low as
well. However, when the sizes of the datasets are more oetpsa, the locality of access
becomes an important factor. These two measures, thergfeeean indication of the im-
portance given by the algorithms to the location of data.séhmn be correlated with the
makespan to judge the impact of the selection made by anithigoon its performance.

Figure 6.11 shows the impact of the number of jobs on the padace of the algo-
rithm. It can be seen that as the number of jobs increases)dakespan of Compute-First
and Greedy heuristic rise more steeply than the other twee ifipact of data time is
lower for SCP and Exhaustive Search than it is for Compute &irgtis a factor in their
improved performance. Locality of access is also highettierformer two algorithms
and it increases as the number of jobs in the set increasesisTdecause the probability
of datasets being shared increases with more jobs accélssiagme global set of datasets

as was the case in this evaluation. This means that thereéagegchance for transferred
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datasets to be reused with a higher number of jobs. In cas@bditribution (right
column), the locality is lower than in the case of Uniformtdisution which means that
a job submitted to a compute resource is less likely to findeitgired datasets locally.
This can be attributed to the rarer availability of datagetBipf distribution than in the

Uniform distribution.

An interesting result here is that even with a high localitpecess, the Greedy heuris-
tic performs significantly worse than Compute-First for Wnih distribution (left column)
while it performs better than the latter when the datasetseplicated according to Zipf
distribution. In the second case, there is a lower numbehoices than in the first and
thus, the greedy strategy has a better probability of fognmmnimal resource sets. In
this case, it can be seen that the performance of Greedy cdosEsto or in some cases,
becomes as competitive as SCP mirroring the results of Table/ith a higher number
of choices, the greedy strategy has a lower probability o¥iag at the best compute

resource for a job and its performance is degraded.

Figure 6.12 shows the impact of changing only the number tafs#ais per job. Some
of the trends in the previous graphs are also reflected hath.0My one dataset per job,
all algorithms except for Compute-First are able to produtedules with zero data time
and full locality of access. With the jobs per dataset insireg the impact of data transfer
time increases at a faster rate for Greedy than for SCP anduBtiia Search. Also, the
locality reduces more steeply in the Zipf distribution tharthe Uniform distribution,
because there are fewer data hosts for each file. Finallyr&i§.13 shows the impact
of the computation time on the performance of data-oriestédduling algorithms. The
locality remains almost constant throughout the expertmedowever, as expected, the

impact of data transfer is steadily reduced with increasing of computation.

An interesting result here is that the performance of ExtinaiSearch is worse than
that of SCP in certain cases. This runs contrary to expeotativat Exhaustive Search
will produce the best results in every case. This is due tdetttethat MinMin itself is not
guaranteed to give the best schedules in every case [14@Jag3ignment of resources to
a job impacts the selection of resources for jobs that aréoylee assigned. This leads to

variations in performance of the Exhaustive Search algorit
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6.5.2 Comparison between MinMin and Sufferage

Table 6.3: Summary of Comparison between MinMin and Sufferag

Heuristic Geometric Avg. deg Avg. rank
Mean
MinMin
Compute-First|| 19604.73 18.7(12.84) | 4.93(1.0)
Greedy 25782.28 57.93 (28.51)| 6.33 (1.45)
SCP 17353.87 5.2(13.58) | 1.73(1.44)
Exhaustive 18481.26 11.83(11.39)| 3.47 (1.41)
Search
Sufferage
Compute-First|| 60631.56 269.31 (57.81) 8.0(0)
Greedy 18558.61 12.06 (8.45) | 4.2(1.72)
SCP 17353.87 5.2(13.58) | 1.73(1.44)
Exhaustive 18584.88 12.47 (11.53) | 3.67 (1.53)
Search

Each of the matching heuristics were paired with both Minktia Sufferage schedul-
ing algorithms and evaluated to determine if the latter jgted a better performance than
the former. The results of the experiments carried out withis evaluation is summarised
using the same metrics as in the previous section and aed IisiTable 6.3. It can be seen
that there is little difference in the performance of both SG Exhaustive Search heuris-
tics when coupled with either MinMin or Sufferage schedglaigorithms. Also, there is
only a slight improvement in the performance for Greedy wbempled with the Suffer-
age algorithm. However, the performance for Compute-Fsrstgnificantly degraded by
coupling it with the Sufferage algorithm. On average, ith®at 2 1/2 times as worse as
the best heuristic in any experiment. Also, the ComputeHStdgferage pair is ranked 8th
in terms of performance in all experiments (standard deras zero). In other words, it

gives the worst performance in every case.

6.6 Related Work

On the basis of the taxonomy presented in Chapter 3, the tdgwipresented in this

thesis can be classified as followBag-of-Task@application modelindividual in scope,
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decoupledrom replication, withmakesparmandQoSutility functions and exploiting both
temporalandspatiallocality. Chapter 3, Section 3.2.4 provided a brief survegahe of

the related scheduling algorithms for data intensive appbns on Grid resources.

Some of the publications [29, 160, 173] that were surveyd&thapter 3, Section 3.2.4
tackle the problem of replicating the data for a single jopedaling on the site where the
job is scheduled. However, the application model appliethis thesis is closer to that
of Casanova, et.al [51] who investigate scheduling algoritior a set of independent
tasks that share files. They extend the MinMin and Sufferéggighms to consider data
requirements of the tasks and introduce the XSufferageitigoto take advantage of file
locality. However, in their article, the source of all thes§lfor the tasks is the resource
that dispatches the jobs. This work is extended by Gierdchalg97] to consider the
general problem of scheduling tasks that share multiple, fdach available from multiple
sources. They focus on developing routing algorithms fagisig the input files through
the network links on to data resources, close to the selemiatpute resources, such
that the total execution time is minimised. Khanna, et al5]lpropose a hypergraph-
based approach for scheduling a set of independent tagks&wiew to minimise the 1/0
overhead by considering the sharing of files between thest&sbwever, they do not take

into account the aspect of data replication as the files halyesingle sources.

The scheduling model considered in this thesis is distimehfthose mentioned pre-
viously because it considers: a) the problem of selectirggaurce set for a job requiring
multiple datasets in an environment where the data is dtaifeom multiple sources due
to prior replication and b) the selection of computationadl aata resources in such a
resource set to be interconnected. This chapter also extdimdMin and Sufferage algo-
rithms similar to that done by Casanova, et al. [51] and Gierstal. [97]. However, in
the algorithms presented in this thesis, the focus of therta@mains on matching or se-
lection of resources which is not given adequate weightagelated work. The matching
algorithms aim to select a resource set such that both thpuiational and data transfer
components of the execution time are reduced simultangotilis is different from the
approach, followed by most of the Data Grid scheduling algors studied in Chapter 3,
Section 3.2.4, of scheduling the jobs onto a compute rescaased on minimum compu-

tation time, and then replicating the data to minimise treeas time. The latter approach
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was generalised and extended to support the multiple datasalel in the previous sec-
tions, and was evaluated as the Compute-First heuristic.ul&tian results show that
Compute-First produces worse schedules when compared tat@gst giving weightage
to both computational and data factors such as the SCP TreehSagorithm.

Mohamed and Epema [146] present a Close-to-Files algoritdmra similar applica-
tion model, though restricted to one dataset per job, ttaatkes the entire solution space
for a combination of computational and storage resourcesitdmise execution time.
This strategy, extended to support multiple datasets freaful evaluated as Exhaustive
Search in the previous section, produces good scheduldsebatnes unmanageable for
large solution spaces that occur when more than one dasasatsidered per job.

Jain, et al. [113] proposed a set of heuristics for scheduli@ operations so as to
avoid transfer bottlenecks in parallel systems. Howevese heuristics do not consider
the problem of scheduling computational operations ana, alee problem of selecting
data sources in case of data replication. Other publicaiioparallel 1/O optimisation [3,
179, 204] pay attention to improving performance throughitéques such as interleaving

and disk striping. However, such optimisation technigueswat the focus of this thesis.

6.7 Summary

A crucial step in the scheduling of jobs to distributed reses is that of matching the
jobs to appropriate resources. This chapter models thdgmmobf matching distributed
data-intensive jobs to computational and data resources asstance of the SCP and
proposes a tree-search heuristic based on a solution toGRe This is then combined
with the MinMin and Sufferage algorithms for schedulingsset independent jobs and
evaluated through simulation against other matching becsi such as Compute-First,
Greedy and Exhaustive Search. Experiments show that the $&PSkarch and the
Exhaustive Search heuristics provide the best performammng all the four heuristics
mainly because they exploit the locality of datasets, aackty reduce the amount of data
transferred during execution. However, the high compomati complexity of Exhaustive
Search means that it will search through large spaces thabe@me infeasible for jobs
requiring large number of datasets. Also, there is no gapeifiormance by applying the

Sufferage heuristic in place of MinMin for scheduling theienset of jobs.
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Conclusion

This thesis began by studying, characterising and cat@ggrseveral aspects of Data
Grid systems. Data Grids have several unique features supheaence of applications
with heavy computing requirements, geographically-theted and heterogeneous re-
sources under different administrative domains, and latgeber of users sharing these
resources and wanting to collaborate with each other. Teisi$ then enumerated several
characteristics where Data Grids are similar to and arermifft from other distributed

data-intensive paradigms such as content delivery nesyqé&er-to-peer networks and

distributed databases.

Further on, the thesis focused on the architecture of the Batds and the funda-
mental requirements of data transport mechanism, dateaiph systems, and resource
allocation and job scheduling. Taxonomies for each of tlesas were developed to clas-
sify the common approaches and to provide a basis for cosgradf Data Grid systems
and technologies. Then, some of the representative systeeash of these areas were
compared and categorised according to the respectivedaxen. This exercise presented
an insight into the architectures, strategies and practisg are currently adopted within
Data Grids. Thus, the taxonomy chapter laid down a compteclassification frame-
work that not only serves as a tool to understanding this ¢exgrea but also presents a

reference to which future efforts can be mapped.

The lessons learnt from the study of Data Grid environmerdsiged the basis for

the design of the Gridbus Grid resource broker. The requargsnof the broker were to

179
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provide a software framework that: (a) abstracted the bgaareity of the environment,
(b) supported multiple application types, (c) allowed eliffint types of user objectives,
(d) supported multiple user interfaces, and (e) handled Ghmaracteristics such as job
failure and dynamic availability. The architectural segtem of interface and core layers
enabled support for multiple user interfaces such as cordrhiae interfaces and web
portals. The separation of core and execution layers atldtwebroker to support different
implementations of Grid services in a standard manner asoisrs by the support for a
large number of computational and data Grid middleware. ddsgn of the core layer
as a collection of passive entities enabled the creationffd@rent application models
that implemented different active logical components toipalate the same entities in
different ways. Fault-tolerance on the broker side is mtediby a persistent database to

which the state of the passive components is saved peritydica

The broker allowed the creation of schedulers that can haxagiaty of objectives
and can take into account various factors such as presemtaafnd costs of resource
usage. Data aware scheduling was demonstrated througle atcaly of Grid-enabling
a data-intensive analysis application for the Belle pataysics experiment. The case
study discussed the motivation for using Grid techniqudbeéBelle experiment and the
methodology adopted for Grid-enabling the analysis appbo. It also evaluated the de-
ployment of the application on a set of Grid resources withustralia. The empirical
results indicated that considering both the presence afatad the availability of compu-
tational resources led to an improvement in the performahtiee application scheduling

by improving the job turnaround time.

This exercise motivated further research into the schedulf distributed data inten-
sive applications on Grid resources. This thesis introdueeeneric model of a data
intensive application that consists of a set of indepenthsks, each of which required
one or more datasets available from one or more storageitepes or data hosts in a
Grid. For each task, and depending on the objective functimnscheduler is required to
select a resource set consisting of one compute resourgedate the task and one data
host each for each dataset that needs to be accessed fakh&la model also took into
account the economic costs of using the Grid resources.nidael was applied to present

a greedy algorithm for deadline and budget constrainedaswktime minimisation-based
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scheduling of the target distributed data-intensive apgibns. Empirical results of eval-
uating this algorithm on a set of Grid resources show thaatyerithm is able to reduce
either the execution and the data transfer time or the casiroputation and data transfer
depending on the chosen objective.

Further on, this thesis concentrates on the matching oftmlssources and models it
as an instance of the well-known Set Covering Problem. Anapprate heuristic based
on tree search is presented and evaluated via simulatiamsatjze popular Compute-First
strategy, the Greedy strategy proposed previously, anBxhaustive Search strategy that
returns the best match for any job. The results show thatrhyeosed heuristic is better
than Compute-First and Greedy approaches and leads to sebdldat are competitive

with the Exhaustive Search.

7.1 Future Work

This thesis improves the understanding of data intensivé @&mputing environments
and advances the state-of the art through its contributiissnvestigation has revealed
areas in Data Grids where much work remains to be done. Alsa;dntributions of this

thesis have led to new questions that need to be addressegithiurther research. This
section briefly describes some of these questions withih ebthe areas explored in this

thesis.

7.1.1 Brokering of Grid Services

The Gridbus broker has been shown to be effective for exegitientific applications
that are sets of independent tasks such as Bag-of-Task anegmasweep applications, on
Grid resources. The broker is currently under heavy devedéopt and much of the work
Is devoted to extending it to support other application n®dech as process-oriented
applications [188]. However, there is still the questionvbiether newer application mod-
els that will emerge in the future can be accommodated byuheiat architecture of the
broker.

Chapter 2, Section 2.2 discussed the Open Grid Service Auathie (OGSA) and its

vision of enabling a service-oriented architecture ford@omputing. The Grid commu-
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nity has recently standardised on the Web Services Resouaceework (WSRF) [80]
to realise the OGSA. To be able to function in a service-¢e@renvironment, the Grid
broker has to be able to compose services based on thdiugsiand create service ag-
gregations to achieve users’ utility functions. Grid seed present a highly abstracted
view of the underlying infrastructure and disruption of amaked service should be man-
aged by quickly switching to similar services in order to ntain a transparent view of
infrastructure. These requirements place demands fdligatet fault management within

the broker and motivate the development of new schedulinchar@sms.

7.1.2 Scheduling of Distributed Data-Intensive Workflows

This thesis has explored the scheduling of applicationsrétpire multiple datasets each
replicated on multiple data repositories on the Grid. Theedaling algorithms proposed
in this thesis explicitly take into account the availalyildf data replicas on distributed
resources. The taxonomy in Chapter 3, Section 3.1 introdtaxgdoulk transfer modes

- parallel transfers, striped transfers, auto-resizingufers and container operations -
that may be adopted by Data Grid applications for optimdisation of available net-

work capacity. While container operations and paralleldfers can be accommodated
in the single location transfer model, it remains an operstjole whether striped trans-
fers, which require accessing the same file from multipleasaat the same time, can be

handled by the scheduling algorithms proposed in this shesi

The scheduling algorithms proposed in this thesis applnédag of Task model of
applications. However, this thesis has only explored theNWin and Sufferage schedul-
ing algorithms within the space of scheduling algorithmsdets of independent tasks.
It would be interesting to explore the applicability of thetrhing heuristics proposed
in this thesis within some of the other known scheduling méghes such as Genetic
Algorithms. It would also be interesting to investigate #ygplicability of the match-
ing heuristics to other task models such as Directed Acygliaphs (DAGs) which are
used to model workflows [220] and process-oriented parafiplications. An immediate
follow-up work would be to implement the matching heuristwithin well-known DAG

scheduling algorithms such as the Dynamic Critical Path (OCP§] algorithm.
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7.1.3 Economic Mechanisms in Data Grids

This thesis has investigated the properties that are unaata Grids. Currently, the
utility of Data Grids is limited to scientific collaboratisnthat need to manage volumes of
shared data. However, some of the tools developed withia B&ts may find applicabil-
ity to areas outside of scientific computing such as in eniggp with similar requirements
for resource sharing and data access. This would requimregtékto account more strict
reliability and security requirements. Another challemgrild be to extend existing Data
Grid techniques to work with technologies within enterpsisuch as databases [139].
Present-day Data Grids are based on the notion of sharieginees within virtual
organisations. However, as the dependence on Data Grigsases, there will be higher
demands for reliability and resource share. Service pessidnay not be able to fulfil
these without investing economically in the infrastruetand would expect returns on
their investment. Service consumers will require qualitgervice guarantees enforced
through Service Level Agreements (SLAsS). Therefore, a mag@loration of economic
aspects of Data Grid computing requires investigation eftitility functions of the par-

ticipants, SLAs and market mechanisms.
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