
Scheduling Distributed Data-Intensive Applications on Global Grids

by

Srikumar Venugopal

Submitted in total fulfilment of

the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

July 2006

Scheduling Distributed Data-Intensive Applications on Global Grids

Srikumar Venugopal

Supervisors: Dr. Rajkumar Buyya, Prof. Rao Kotagiri

Abstract

The next generation of scientific experiments and studies are being carried out by
large collaborations of researchers distributed around the world engaged in analysis of
huge collections of data generated by scientific instruments. Grid computing has emerged
as an enabler for such collaborations as it aids communitiesin sharing resources to achieve
common objectives. Data Grids provide services for accessing, replicating and managing
data collections in these collaborations. Applications used in such Grids are distributed
data-intensive, that is, they access and process distributed datasets to generate results.
These applications need to transparently and efficiently access distributed data and com-
putational resources. This thesis investigates properties of data-intensive computing en-
vironments and presents a software framework and algorithms for mapping distributed
data-oriented applications to Grid resources.

The thesis discusses the key concepts behind Data Grids and compares them with other
data sharing and distribution mechanisms such as content delivery networks, peer-to-peer
networks and distributed databases. This thesis provides comprehensive taxonomies that
cover various aspects of Data Grid architecture, data transportation, data replication and
resource allocation and scheduling. The taxonomies are mapped to various Data Grid
systems not only to validate the taxonomy but also to better understand their goals and
methodology.

The thesis concentrates on one of the areas delineated in thetaxonomy – schedul-
ing distributed data-intensive applications on Grid resources. To this end, it presents the
design and implementation of a Grid resource broker that mediates access to distributed
computational and data resources running diverse middleware. The broker is able to dis-
cover remote data repositories, interface with various middleware services and select suit-
able resources in order to meet the application requirements. The use of the broker is
illustrated by a case study of scheduling a data-intensive high energy physics analysis
application on an Australia-wide Grid.

The broker provides the framework to realise scheduling strategies with differing ob-
jectives. One of the key aspects of any scheduling strategy is the mapping of jobs to the
appropriate resources to meet the objectives. This thesis presents heuristics for mapping
jobs with data dependencies in an environment with heterogeneous Grid resources and
multiple data replicas. These heuristics are then comparedwith performance evaluation
metrics obtained through extensive simulations.

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps, bibliogra-

phies, appendices and footnotes.

Signature

Date

ACKNOWLEDGMENTS

This thesis is the culmination of a long journey throughout which I have received support
from many people whom I wish to acknowledge here. First and foremost, I am deeply
indebted to my principal supervisor, Rajkumar Buyya, for his advice and for being a
ceaseless motivator during the last four years. He has always encouraged me to keep an
open mind and to push the envelope at all times. I owe the progress made in my research
career to his tutelage, and to the peer interactions enabledwith his support.

I would like to express my gratitude towards Rao Kotagiri, my co-supervisor, for the
encouragement, support and advice that I have received fromhim during my candidature.
His questions and insights have often snapped me from acute tunnel vision and have led
to explorations into other areas of distributed systems. These have revealed interesting
ideas for the work in this thesis and for the future.

I would like to thank Lyle Winton (School of Physics, University of Melbourne) for
being a great source of ideas during the early days of my candidature. The principles
behind the Gridbus broker were shaped during discussions with him and his experience
with the Globus Toolkit proved invaluable during its development. Krishna Nadiminti
and Hussein Gibbins (GRIDS Laboratory, University of Melbourne) enthusiastically took
up the development of the broker and greatly improved its design and features. Their
irreverent attitude has made the GRIDS Lab a fun place to be in.I would also like to
express my gratitude to Choon Hoong Ding and Tianchi Ma (GRIDS Lab), Brett Beeson,
Glenn Moloney, and Martin Sevior (School of Physics), Benjamin Khoo (IBM, Singa-
pore), and students of the Cluster and Grid Computing subject with whom I have worked
and exchanged ideas over the years.

I would like to thank Reagan Moore (San Diego Supercomputing Center), Heinz
Stockinger (University of Vienna), Chris Mattman (JPL, NASA) and William Allcock
(Argonne National Lab) for their extensive comments on the taxonomy that has been in-
corporated into this thesis. I would also like to thank Sushil Prasad (Georgia State Univer-
sity) for his instructive comments on the scheduling heuristics in this thesis. I also would
like to express my gratitude towards Marcos Assuncao, Kyong-Hoon Kim and Marco
Netto (GRIDS Lab, University of Melbourne) for proof-reading this thesis and for their
extensive comments.

Chee Shin, Jia and Anthony have been my office-mates for most ofmy candidature.
I have received ready answers from them whether it be questions about Java, GridSim
or Chinese food and have had fun during long discussions aboutnothing in particular. I
would like to thank them for simply being good friends and CheeShin, in particular, for
being a good listener. Elan and Rajiv also have been good matesand the long trips that we
have all taken together have been the highest points of my Australian experience so far.
Shoaib deserves to be thanked for helping me adapt to Melbourne in the initial days after
my arrival. I would also like to thank other friends in the GRIDS Lab and the Department
for their support during my candidature.

v

I would like to thank the University of Melbourne and the Australian Government
for providing scholarships to pursue doctoral studies. Also, I would like to acknowledge
the support received from the ARC (Australian Research Council) Discovery Project and
StorageTek Fellowship grants at various times during my candidature. I would like to
express my gratitude to the Department for the infrastructural support and for the travel
scholarships that have helped me attend international conferences. In particular, I would
like to thank the administrative staff for being very helpful at all times.

I would like to thank Sreeraj, my (ex) housemate of nearly four years, for his friend-
ship, and for patiently enduring my tyranny in the kitchen. We started our PhD candi-
datures together and have shared many experiences that willbe cherished memories for
many years. I would like to thank John Kuruvilla and his family, Biju and Julie George,
and Hari and Indu for their support, and for the frequent meals that I have had at their
homes.

Last but never the least, I would like to thank my family for their love and support at
all times. My brother’s wry humor and wisecracks have never failed to uplift my mood.
My mother and father have been always optimistic about everything and their dogged
persistence has been a constant source of inspiration during my candidature. I am what I
am only due to their efforts.

Srikumar Venugopal
Melbourne, Australia
July 2006.

CONTENTS

1 Introduction 1
1.1 Grid Computing . 1
1.2 Data Grids and Application Scheduling 2
1.3 Contributions . 5
1.4 Thesis Organisation . 6

2 Data Grids: An Overview and Comparison 9
2.1 Terms and Definitions . 9
2.2 Data Grids . 10

2.2.1 Layered Architecture . 14
2.2.2 Related Data-Intensive Research 16
2.2.3 Analysis of Data-Intensive Networks 18

2.3 Discussion and Summary . 27

3 A Taxonomy of Data Grids 29
3.1 Taxonomy . 29

3.1.1 Data Grid Organization . 30
3.1.2 Data Transport . 34
3.1.3 Data Replication and Storage . 37
3.1.4 Resource Allocation and Scheduling42

3.2 Mapping of Taxonomy to Various Data Grid Systems 46
3.2.1 Data Grid Projects . 46
3.2.2 Data Transport Technologies . 49
3.2.3 Data Replication and Storage . 57
3.2.4 Resource Allocation and Scheduling63

3.3 Discussion and Summary . 68

4 A Grid Resource Broker for Data-Intensive Applications 73
4.1 Resource Brokers: Challenges . 73
4.2 Architecture of the Gridbus Broker 76

4.2.1 Interface Layer . 77
4.2.2 Core Layer . 78
4.2.3 Execution Layer . 79
4.2.4 Persistence Sub-system . 80

4.3 Design of the Gridbus Broker . 80
4.3.1 Entities . 81
4.3.2 Workers . 86
4.3.3 Design Considerations and Solutions92

4.4 Implementation . 97
4.4.1 Providing Input . 97

vii

4.4.2 Middleware Interface . 101
4.5 Related Work . 106

4.5.1 Condor-G . 106
4.5.2 AppLeS Parameter Sweep Template (APST) 107
4.5.3 Nimrod/G . 108
4.5.4 gLite . 109
4.5.5 Comparison . 110

4.6 A Case Study in High Energy Physics 113
4.6.1 The Belle Project . 113
4.6.2 The Application Model . 114
4.6.3 Experimental Setup . 116
4.6.4 Scheduling Belle Jobs on BADG 118
4.6.5 Evaluation . 120

4.7 Summary . 124

5 The Scheduling Model and Cost-Aware Algorithms 127
5.1 The Scheduling Problem . 128
5.2 Model . 131

5.2.1 Resource Model . 131
5.2.2 Application Model . 133
5.2.3 A Generic Scheduling Algorithm 137

5.3 Cost-based Scheduling for Data-Intensive Applications. 138
5.3.1 Objective Functions . 139
5.3.2 Cost and Time Minimisation Algorithms 140

5.4 Experiments and Results . 143
5.5 Summary . 150

6 A Set Coverage-based Scheduling Algorithm 153
6.1 A Graph-based Approach to the Matching Problem 154

6.1.1 Modelling the Minimum Resource Set as a Set Cover155
6.1.2 The SCP Tree Search Heuristic 157

6.2 Other Approaches to the Matching Problem 160
6.3 Scheduling Heuristics .161
6.4 Evaluation of Scheduling Algorithms 164

6.4.1 Simulated Resources . 165
6.4.2 Distribution of Data . 167
6.4.3 Application and Jobs . 168

6.5 Experimental Results . 169
6.5.1 Comparison between the Matching Heuristics 169
6.5.2 Comparison between MinMin and Sufferage 176

6.6 Related Work . 176
6.7 Summary . 178

7 Conclusion 179
7.1 Future Work . 181

7.1.1 Brokering of Grid Services . 181
7.1.2 Scheduling of Distributed Data-Intensive Workflows 182

7.1.3 Economic Mechanisms in Data Grids 183

A List of Published Articles 185

References 188

LIST OF FIGURES

1.1 A Grid resource broker for Data Grids. 4

2.1 A High-Level view of a Data Grid. .11
2.2 A Layered Architecture. 14

3.1 Data Grid Elements. 30
3.2 Data Grid Organization Taxonomy. 31
3.3 Possible models for organization of Data Grids. 31
3.4 Data Transport Taxonomy. 35
3.5 A Replica Management Architecture. 38
3.6 Replication Taxonomy. 38
3.7 Replica Architecture Taxonomy. .. 39
3.8 Replication Strategy Taxonomy. .. 41
3.9 Data Grid Scheduling Taxonomy. .. 43
3.10 Mapping of Data Grid Organization Taxonomy to Data GridProjects. . . 69
3.11 Mapping of Data Transport Taxonomy to Various Projects. 70
3.12 Mapping of Data Replication Architecture Taxonomy to Various Systems. 70
3.13 Mapping of Data Replication Strategy Taxonomy to Various Systems. . . 71
3.14 Mapping of Resource Allocation and Scheduling Taxonomyto Various

Systems. 72

4.1 Evolution of application development on Grids. 74
4.2 Gridbus broker architecture and its interaction with other Grid entities. . . 77
4.3 ApplicationContext, Tasks and Jobs. 81
4.4 State transition diagram for a job. 83
4.5 Service object hierarchy. .. 84
4.6 Credentials supported by the broker. 85
4.7 GridbusFarmingEngine and its associated entities. 86
4.8 Service monitoring sequence diagram. 87
4.9 Schedule sequence diagram. .88
4.10 Dispatch sequence diagram. .. 89
4.11 File transfer modes supported by the broker. 90
4.12 Job monitoring sequence diagram. 91
4.13 XPML Schema representation. .. 98
4.14 XPML Example. 99
4.15 Example of a compute service description. 100
4.16 The implementation ofService.discoverProperties() in Globus-

ComputeServer. 102
4.17 The implementation ofGlobusJobWrapper. 103
4.18 The implementation ofComputeServer.queryJobStatus() in

GlobusComputeServer. 105

xi

4.19 A histogram produced from Belle data analysis. 114
4.20 The infrastructure for the Belle Data Grid. 115
4.21 Australian Belle Analysis Data Grid testbed. 117
4.22 A Scheduling Algorithm for Belle Analysis jobs. 119
4.23 The decay chain used in Belle case study. 120
4.24 A XPML file for HEP analysis. 121
4.25 Total time taken for each scheduling strategy. 123
4.26 Comparison of resource performance under different scheduling strategies. 123
4.27 Available bandwidth from University of Adelaide to other resources in the

testbed. 124

5.1 The scheduler’s perspective of a Data Grid environment.. 128
5.2 Mapping Problem. 131
5.3 A data-intensive environment. .. . 132
5.4 Job Model. 134
5.5 Job Execution Stages and Times. .. 135
5.6 A Generic Scheduling Algorithm. .. 138
5.7 An Algorithm for Minimising Cost of Scheduling of Data Intensive Ap-

plications. 141
5.8 The Greedy Matching Heuristic. .. 142
5.9 Deadline and Budget Constrained Job Dispatch. 143
5.10 An Algorithm for Minimising Execution Time. 144
5.11 Distribution of file access. .. . 147
5.12 Cumulative number of jobs completed vs time for cost and time minimi-

sation scheduling. 148
5.13 Distribution of jobs against compute and data costs. 149
5.14 Distribution of jobs against execution time and data transfer time. 150

6.1 Graph-based approach to the matching problem. 155
6.2 Adjacency Matrix for the job example. 156
6.3 Solution Tree. 156
6.4 Listing of the SCP Tree Search Heuristic for the MRS problem. 158
6.5 Tableau. 159
6.6 The Compute-First Matching Heuristic. 160
6.7 The Exhaustive Search Matching Heuristic. 160
6.8 The MinMin Scheduling Heuristic extended for distributed data-intensive

applications. 162
6.9 Sufferage Algorithm. 163
6.10 EU DataGrid testbed . 165
6.11 Evaluation with increasing number of jobs. 171
6.12 Evaluation with increasing number of datasets per job.. 173
6.13 Evaluation with increasing computational size. 174

LIST OF TABLES

2.1 Comparison between various data distribution networks.. 20

3.1 Data Grid Projects around the world. 47
3.2 Comparison between various data transport technologies. 49
3.3 Comparison between various data replication mechanisms. 57
3.4 Comparison between replication strategies. 62
3.5 Comparison between scheduling strategies. 64

4.1 Comparison of different resource brokers. 111

5.1 Notations. 137
5.2 Resources within Belle testbed used for evaluation. 145
5.3 Avg. Available Bandwidth between Data Hosts and Compute Resources. . 146
5.4 Summary of Evaluation Results. .148

6.1 Resources within EDG testbed used for evaluation. 166
6.2 Summary of Simulation Results. .169
6.3 Summary of Comparison between MinMin and Sufferage. 176

xiii

Chapter 1

Introduction

This chapter introduces the context of the research to be presented in this thesis. It starts

off with an introduction to the general area of Grid computing and Data Grids, and dis-

cusses the motivation and challenges for scheduling distributed data-intensive applications

in such environments. Then, it presents a short overview of resource brokers and schedul-

ing, and presents the primary contributions of this research. The chapter ends with a

discussion on the organisation of the rest of this thesis.

1.1 Grid Computing

The next generation of scientific applications in domains asdiverse as high energy physics,

molecular modelling, and earth sciences involve the production of large datasets from

simulations or large-scale experiments. Analysis of thesedatasets and their dissemination

among researchers located over a wide geographic area requires high capacity resources

such as supercomputers, high bandwidth networks, and mass storage systems. Collec-

tively, these large scale applications are now part of e-Science [101], a discipline that

envisages using high-end computing, storage, networking and Web technologies together

to facilitate collaborative and data-intensive scientificresearch. e-Science requires new

paradigms in Internet computing that address issues such asmulti-domain data sharing

applications, co-operation and co-ordination of resources and operations across system

boundaries.

Grid computing [84] paradigm unites geographically-distributed and heterogeneous

1

2 Chapter 1. INTRODUCTION

computing, storage, and network resources and provide unified, secure, and pervasive ac-

cess to their combined capabilities. Therefore, Grid platforms enable sharing, exchange,

discovery, selection, and aggregation of distributed heterogeneous resources such as com-

puters, databases, visualisation devices, and scientific instruments. Grid computing, there-

fore, leads to the creation of virtual organisations [88] byallowing geographically-distributed

communities to pool resources in order to achieve common objectives.

Grid computing has the potential to support different kindsof applications. They

include compute-intensive applications, data-intensiveapplications and applications re-

quiring distributed services. Various types of Grids have been developed to support

these applications and are categorized as Computational Grids, Data Grids and Service

Grids [123]. A large number of e-Science applications require capabilities supported by

Data Grids. Realizing such Grids requires challenges to be overcome in security, user

management, resource management, resource discovery, application scheduling, high-

speed network protocols, and data management. However, from the user’s perspective,

two important barriers that need to be overcome are the complexity of developing Grid

applications and their scheduling on distributed resources. This thesis presents a soft-

ware framework for creating and composing distributed data-intensive applications, and

scheduling algorithms for effectively deploying them on global Grids.

1.2 Data Grids and Application Scheduling

Data Grids [56, 106] primarily deal with providing servicesand infrastructure for dis-

tributed data-intensive applications that need to access,transfer and modify massive data-

sets stored in distributed storage resources. A Data Grid aims to present the following

capabilities to its users: (a) ability to search through numerous available datasets for the

required dataset and to discover suitable data resources for accessing the data, (b) abil-

ity to transfer large-sized datasets between resources in aminimal time, (c) ability for

users to manage multiple copies of their data, (d) ability toselect suitable computational

resources and process data on them, and (e) ability to manageaccess permissions for

the data. Therefore, Data Grids aim to combine high-end computing technologies with

high-performance networking and wide-area storage management techniques.

1.2. DATA GRIDS AND APPLICATION SCHEDULING 3

To realise these abilities, a Data Grid needs to provide tools, services and APIs (Ap-

plication Programming Interfaces) for orchestrating collaborative access to data and com-

putational resources. These include administration toolsto make it less cumbersome to

manage authenticating and authorising widely dispersed members for accessing disparate

resources and data collections; data search tools to allow users to discover datasets of

interest out of the hundreds and thousands that may be available within a collaboration;

intelligent data replication and caching services to ensure that the users can access the re-

quired datasets in the fastest and/or cheapest manner; datamanagement tools and services

to allow users to upload data back into the collaboration, provide useful descriptions for

other researchers and if required, enforce access controls; and resource management ser-

vices and APIs to allow applications and users to utilise theinfrastructure effectively by

processing the data at idle resources that offer better turnaround times and reduced costs.

This thesis, however, concentrates on the challenges of application deployment on Data

Grids.

Scheduling and deployment of Grid applications is performed byresource brokersthat

hide the complexity of the underlying infrastructure by transforming users’ requirements

into Grid operations, that are then carried out without their intervention. Users describe

requirements such as the type of analysis, required executables, data dependencies, dead-

line for the execution and the maximum available budget through simple interfaces. The

resource broker creates jobs corresponding to the analysisrequirements and discovers

suitable computational resources to execute the jobs and appropriate data repositories for

accessing the data required for the jobs. It then deploys thejobs on selected Grid re-

sources, monitors their execution, and upon their completion, collates and presents the

results of the analysis to the users. By abstracting the low-level details of dealing with

Grid resources, a resource broker helps its users focus on designing scenarios and ex-

periments that utilise the infrastructure thereby allowing them to realise maximum utility

from their collaboration.

Figure 1.1 shows such a scenario that involves an application with distributed data

requirements. The data is generated by an instrument such asa particle accelerator or a

telescope and is replicated at distributed locations. The broker discovers the data repli-

cas by querying a directory such as Replica Location Services(RLS) [55] and available

4 Chapter 1. INTRODUCTION

Data Replication and
Mirroring
(GDMP)

Data
Source

Cataloguing
Services

Grid

Resource Broker

Application

Information
Services

Application
Services

Replica Collection …

Grid Node 1

Globus

Grid Node 2

PBS

Grid Node M

Alchemi

Figure 1.1: A Grid resource broker for Data Grids.

computational resources by querying information servicessuch as Grid Index Informa-

tion Service (GIIS) [65]. Additionally, it may consult other information services such

as Grid Market Directory [221] for resource prices, resource monitoring services such

as Ganglia [178] for performance data, and application catalogues for information about

locations of applications. It then devises a schedule for executing the application taking

into consideration the computational performance, data transfer requirements and costs

associated with resource usage.

In recent years, many resource brokers have been developed for different applications

and to achieve different objectives [1, 12, 52, 74, 91, 183].However, the needs of dis-

tributed data-intensive applications have not been taken into account by these in either the

process of resource discovery or job scheduling. This thesis presents the architecture and

design of a Grid resource broker that discovers suitable data sources and computational

resources for a given distributed data-intensive application scenario; maps such jobs to

resources in order to achieve user-specified Quality of Service (QoS) metrics; deploys

and monitors job execution on selected resources; accessesdata from local or remote data

sources during job execution; and collates and presents results of the execution to the user.

The execution of distributed data-intensive applicationsinvolves requirements for dis-

covering, processing, storing and managing large distributed datasets and is guided by

1.3. CONTRIBUTIONS 5

factors such as cost and speed of accessing, transferring and processing data. There may

be multiple datasets involved in a computation, each replicated at multiple locations that

are connected to one another and to the compute resources by networks with varying

costs and capabilities. Consequently, this explosion of choices makes it difficult to iden-

tify appropriate resources for retrieving and performing the required computation on the

selected datasets. This thesis, therefore, develops and presents scheduling algorithms for

applications that require accessing massive datasets replicated on multiple Grid resources.

1.3 Contributions

This thesis makes several contributions towards improvingthe understanding of data-

intensive computing environments and towards advancing the area of scheduling dis-

tributed data-intensive applications on Grid resources. These are as follows:

1. This thesis discusses the key concepts behind Data Grids and compares them with

content delivery networks, peer-to-peer networks and distributed databases. It pro-

vides a systematic characterisation of Data Grids and a thorough examination of

their differences with these distributed data-intensive mechanisms. The objective

of this exercise is to delineate the uniqueness of Data Gridsand to identify tech-

nologies and algorithms developed in related areas that canbe applied to the target

research area.

2. This thesis provides comprehensive taxonomies that cover various aspects of archi-

tecture, data transportation, data replication and resource allocation and scheduling.

The proposed taxonomy is mapped to various Data Grid systemsnot only to vali-

date the taxonomy but also to better understand their goals and their methodology.

This also helps evaluate their applicability to similar problems.

3. This thesis presents the design and development of a Grid resource broker for exe-

cuting distributed data-oriented applications on a Grid. The broker discovers com-

putational and data resources, schedules jobs based on users’ requirements and re-

turns results back to the user. The broker follows a simple yet extensible object-

oriented model that is based on the strict separation of logic and data.

6 Chapter 1. INTRODUCTION

4. This thesis presents a comprehensive resource and application model for the prob-

lem of scheduling distributed data intensive Bag of Task applications on Data Grids.

The application can be split up or “decomposed” to obtain a collection of indepen-

dent jobs that each require multiple datasets that are each replicated on multiple

data repositories. The model takes into account the economic costs of processing a

job along with the execution time and the times for transferring the required datasets

from different data hosts to the compute resource on which the job will be executed.

5. This thesis presents heuristics for mapping and scheduling distributed data-intensive

jobs on Data Grid resources. It introduces a greedy heuristic that aims to minimise

either the total execution cost or time depending on the user’s preference, subject

to the user’s deadline and budget constraints. It introduces another heuristic that is

based on a solution to the well-known Set Covering Problem. These are evaluated

both on real Grid testbeds and via extensive simulations.

1.4 Thesis Organisation

The rest of the thesis is organised as follows: Chapter 2 presents an overview of Data

Grids and the comparison with other data distribution and processing technologies. This

is followed by Chapter 3 which proposes a taxonomy of Data Gridresearch and classifies

some of the publications within this field accordingly. The thesis then concentrates on

one of the areas delineated in the taxonomy - that of resourceallocation and scheduling -

and introduces the design and architecture of the Gridbus broker in Chapter 4. Chapter 5

discusses the scheduling problem and also introduces a greedy heuristic for deadline and

budget constrained cost and time minimisation scheduling of data-intensive applications.

Chapter 6 then discusses a graph-based approach towards the scheduling problem and

presents a heuristic and its evaluation via simulation. Finally, the thesis concludes and

presents ideas for future work in Chapter 7.

The core chapters are derived from various articles published during the course of the

Ph.D. candidature as detailed below:

Chapter 2andChapter 3are derived from:

1.4. THESIS ORGANISATION 7

• Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao, “A Tax-

onomy of Data Grids for Distributed Data Sharing, Management and Processing”,

ACM Computing Surveys, Vol. 38, No. 1, ACM Press, New York, USA, March

2006.

Chapter 4is partially derived from:

• Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid Service Broker

for Scheduling Distributed Data-Oriented Applications onGlobal Grids”,Proceed-

ings of the 2nd International Workshop on Middleware for GridComputing (MGC

04), Oct. 2004, Toronto, Canada, ACM Press, USA.

• Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid Service Broker

for Scheduling e-Science Applications on Global Data Grids”, Concurrency and

Computation: Practice and Experience, Vol. 18, No. 6, pp 685-699, Wiley Press,

New York, USA, May 2006.

• Krishna Nadiminti,Srikumar Venugopal, Hussein Gibbins, and Rajkumar Buyya,

The Gridbus Grid Service Broker and Scheduler (2.0) User Guide, Technical Re-

port, GRIDS-TR-2005-4, Grid Computing and Distributed Systems Laboratory,

University of Melbourne, Australia, April 22, 2005.

Comments: Krishna Nadiminti and Hussein Gibbins as members of the Gridbus

project have extended the Gridbus broker to operate with recent developments in

low-level middleware and added various features required for production Grid us-

age. Prior to their involvement, I was the primary developerof the broker and ap-

plied the same to many application studies including the Belle High Energy Physics

application study reported in this thesis.

Chapter 5andChapter 6are partially derived from:

• Srikumar Venugopal and Rajkumar Buyya, “A Deadline and Budget Constrained

Scheduling Algorithm for eScience Applications on Data Grids”, Proceedings of

the 6th International Conference on Algorithms and Architectures for Parallel Pro-

cessing, Oct. 2005, Melbourne, Australia, Springer-Verlag, Berlin, Germany.

8 Chapter 1. INTRODUCTION

• Srikumar Venugopal and Rajkumar Buyya, “A Set Coverage-based Mapping Heuris-

tic for Scheduling Distributed Data-Intensive Applications on Global Grids”,Pro-

ceedings of the 7th IEEE/ACM International Conference on GridComputing (Grid

2006), Sept. 2006, Barcelona, Spain, IEEE Computer Society Press, Los Alamitos,

CA (accepted and in print).

Chapter 2

Data Grids: An Overview and

Comparison

This chapter provides a general overview of Data Grids that covers topics such as key

concepts, characteristics and a layered architecture. This chapter presents an analysis of

the differences between Data Grids and other distributed data-intensive paradigms such

as content delivery networks, peer-to-peer file-sharing networks and distributed databases.

It ends with a discussion on the convergence between the former and the latter and how

techniques in other data-intensive networks are finding application in Data Grids.

2.1 Terms and Definitions

A data intensive computing environment consists of applications that produce, manipu-

late or analyse data in the range of hundreds of MegaBytes (MB) to PetaBytes (PB) and

beyond [149]. The data is organised as collections ordatasetsand are typically stored

on mass storage systems (also calledrepositories) such as tape libraries or disk arrays.

The datasets are accessed by users in different locations who may create local copies or

replicasof the datasets to reduce latencies involved in wide-area data transfers and there-

fore, improve application performance. A replica may be a complete or a partial copy

of the original dataset. Areplica management systemor data replication mechanismal-

lows users to create, register and manage replicas and may also update the replicas if the

9

10 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

original datasets are modified. The system may also create replicas on its own guided by

replication strategiesthat take into account current and future demand for the datasets, lo-

cality of requests and storage capacity of the repositories. Metadata, or “data about data”,

is information that describes the datasets and could consist of attributes such as name,

time of creation, size on disk and time of last modification. Metadata may also con-

tain specific information such as details of the process thatproduced the data. Areplica

catalogcontains information about locations of datasets and associated replicas and the

metadata associated with these datasets. Users query the catalog using metadata attributes

to conduct operations such as locating the nearest replica of a particular dataset.

In the context of Grid computing, any hardware or software entity such as supercom-

puters, storage systems or applications that are shared between users of a Grid is called

a resource. However, for the rest of this thesis and unless otherwise stated, the term re-

source means hardware such as computers or storage systems.Resources are alsonodes

in the network and hence, these terms are used interchangeably. The network-enabled

capabilities of the resources that can be invoked by users, applications or other resources

are calledservices.

2.2 Data Grids

A Data Grid provides services that help users discover, transfer and manipulate large

datasets stored in distributed repositories and also, create and manage copies of these

datasets. At the minimum, a Data Grid provides two basic functionalities: a high perfor-

mance and reliable data transfer mechanism, and a scalable replica discovery and man-

agement mechanism [56]. Depending on application requirements, various other services

need to be provided. Examples of such services include consistency management for

replicas, metadata management and data filtering and reduction mechanism. All opera-

tions in a Data Grid are mediated by a security layer that handles authentication of entities

and ensures conduct of only authorized operations.

Another aspect of a Data Grid is to maintain shared collections of data distributed

across administrative domains. These collections are maintained independent of the un-

derlying storage systems and are able to include new sites without major effort. More

2.2. DATA GRIDS 11

Replica Catalog Replica Catalog

Compute Resource

Instruments

Storage Resource

User

Figure 2.1: A High-Level view of a Data Grid.

importantly, it is required that the data and information associated with data such as

metadata, access controls and version changes be preservedeven in the face of platform

changes. These requirements lead to the establishment of persistent archival storage [150].

Figure 2.1 shows a high-level view of a worldwide Data Grid consisting of computa-

tional and storage resources in different countries that are connected by high speed net-

works. The thick lines show high bandwidth networks linkingthe major centres and the

thinner lines are lower capacity networks that connect the latter to their subsidiary centres.

The data generated from an instrument, experiment or a network of sensors is stored in

its principal storage site and is transferred to the other storage sites around the world on

request through the data replication mechanism. Users query their local replica catalog

to locate datasets that they require. If they have been granted the requisite rights and per-

missions, the data is fetched from the repository local to their area, if it is present there;

otherwise it is fetched from a remote repository. The data may be transmitted to a compu-

tational site such as a cluster or a supercomputer facility for processing. After processing,

the results may be sent to a visualisation facility, a sharedrepository or to the desktops of

the individual users.

A Data Grid, therefore, provides a platform through which users can access aggregated

computational, storage and networking resources to execute their data-intensive applica-

12 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

tions on remote data. It promotes a rich environment for users to analyse data, share the

results with their collaborators and maintain state information about the data seamlessly

across institutional and geographical boundaries. Often cited examples for Data Grids are

the ones being set up for analysing the huge amounts of data that will be generated by the

CMS (Compact Muon Solenoid), ATLAS (A Toroidal LHC AppratuS),ALICE (A Large

Ion Collider Experiment) and LHCb (LHC beauty) experiments atthe Large Hadron Col-

lider (LHC) [131] at CERN when they will begin production in 2007. These Data Grids

will involve thousands of physicists spread over hundreds of institutions worldwide and

will be replicating and analysing terabytes of data daily.

Resources in a Grid are heterogeneous in terms of operating environments, capability

and availability and are under the control of their own localadministrative domains. These

domains are autonomous and retain the rights to grant users access to the resources under

their control. Therefore, Grids are concerned with issues such as: sharing of resources,

authentication and authorization of entities, and resource management and scheduling for

efficient and effective use of available resources. Naturally, Data Grids share these general

concerns, but have their own unique set of characteristics and challenges listed below:

• Massive Datasets:Data-intensive applications are characterised by the presence of

large datasets of the size of Gigabytes (GB) and beyond. For example, the CMS

experiment at the LHC is expected to produce 1 PB (1015 bytes) of RAW data and

2 PB of Event Summary Data (ESD) annually when it begins production [104].

Resource management within Data Grids therefore extends to minimizing latencies

of bulk data transfers, creating replicas through appropriate replication strategies

and managing storage resources.

• Shared Data Collections:Resource sharing within Data Grids also includes, among

others, sharing distributed data collections. For example, participants within a sci-

entific collaboration would want to use the same repositories as sources for data and

for storing the outputs of their analyses.

• Unified Namespace:The data in a Data Grid share the same logical namespace in

which every data element has a unique logical filename. The logical filename is

mapped to one or more physical filenames on various storage resources across a

2.2. DATA GRIDS 13

Data Grid.

• Access Restrictions:Users might wish to ensure confidentiality of their data or

restrict distribution to close collaborators. Authentication and authorization in Data

Grids involves coarse to fine-grained access controls over shared data collections.

However, certain characteristics of Data Grids are specificto the applications for

which they are created. For example, for astrophysics or high energy physics experi-

ments, the principal instrument such as a telescope or a particle accelerator is the single

site of data generation. This means that all data is written at a single site, and then repli-

cated to other sites for read access. Updates to the source are propagated to the replicas

either by the replication mechanism or by a separate consistency management service.

A lot of challenges in Grid computing revolve around providing access to different

types of resources. Foster, Kesselman and Tuecke [88] have proposed a Grid architec-

ture for resource sharing among different entities based around the concept ofVirtual

Organizations (VOs). A VO is formed when different organisations pool resourcesand

collaborate in order to achieve a common goal. A VO defines theresources available for

the participants and the rules for accessing and using the resources and the conditions

under which the resources may be used. Resources here includenot just compute, stor-

age or network resources, they may also be software, scientific instruments or business

data. A VO also provides protocols and mechanisms for applications to determine the

suitability and accessibility of available resources. In practical terms, a VO may be cre-

ated using mechanisms such as Certificate Authorities (CAs) and trust chains for security,

replica management systems for data organisation and retrieval and centralised scheduling

mechanisms for resource management.

The existence of VOs impacts the design of Data Grid architectures in many ways. For

example, a VO may be stand alone or may be composed of a hierarchy of regional, na-

tional and international VOs. In the latter case, the underlying Data Grid may have a cor-

responding hierarchy of repositories and the replica discovery and management systems

will be structured accordingly. More importantly, sharingof data collections is guided by

the relationships that exist between the VOs that own each ofthe collections. Subsequent

sections will discuss how Data Grids are differentiated by such design choices and how

14 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

Clusters SANNetworks DisksInstruments Tape Archives
HARDWARE / PHYSICAL LAYER

Operating Systems Batch Job Systems Dist. File Systems

SOFTWARE

.... Databases

Security Layer (GSI or Kerberos)

File Transfer Protocols (FTP, GridFTP, etc.)

Internet Protocol

Overlay Structures

Replication Discovery Job Submission Data Transfer Libraries

CORE SERVICES

Replica Management Resource Brokering Virtual Organization Tools....
USER-LEVEL SERVICES

Portals Collaboratories Remote Visualization Remote Instrumentation....
APPLICATION TOOLS

High Energy Physics Virtual Observatory Climate Modelling....
APPLICATIONS

BASIC GRID FABRIC

COMMUNICATION

DATA GRID SERVICES

APPLICATION

Figure 2.2: A Layered Architecture.

these affect underlying technologies.

2.2.1 Layered Architecture

The components of a Data Grid can be organised in a layered architecture as shown in

Figure 2.2. This architecture follows from similar definitions given by Foster et al. [88]

and Baker et al. [23]. Each layer builds on the services offered by the lower layer in ad-

dition to interacting and co-operating with components andthe same level (eg. Resource

broker invoking VO tools). These layers can be described from bottom to top as below:

1. Grid Fabric: Consists of the distributed computational resources (clusters, super-

computers), storage resources (RAID arrays, tape archives)and instruments (tele-

scope, accelerators) connected by high-bandwidth networks. Each of the resources

runs system software such as operating systems, job submission and management

2.2. DATA GRIDS 15

systems and relational database management systems (RDBMS).

2. Communication: Consists of protocols used to query resources in the Grid Fabric

layer and to conduct data transfers between them. These protocols are built on

core communication protocols such as TCP/IP and authentication protocols such as

PKI (Public Key Infrastructure), passwords or SSL (Secure Sockets Layer). The

cryptographic protocols allow verification of users’ identities and ensure security

and integrity of transferred data. These security mechanisms form part of the Grid

Security Infrastructure (GSI) [87]. File transfer protocols such as GridFTP (Grid

File Transfer Protocol), among others, provide services for efficient transfer of data

between two resources on the Data Grid. Application-specific overlay structures

provide efficient search and retrieval capabilities for distributed data by maintaining

distributed indexes.

3. Data Grid Services: Provides services for managing and processing data in a Data

Grid. The core level services such as replication, data discovery and job submis-

sion provide transparent access to distributed data and computation. User-level ser-

vices such as resource brokering and replica management provide mechanisms that

allow for efficient resource management hidden behind inituitive commands and

APIs (Application Programming Interfaces). VO tools provide easy way to perform

functions such as adding new resources to a VO, querying the existing resources

and managing users’ access rights.

4. Applications: Specific services cater to users by invoking services provided by the

layers below and customising them to suit the target domainssuch as high energy

physics, biology and climate modelling. Each domain provides a familiar interface

and access to services such as visualisation. Portals are web interfaces that provide

single-point access to available VO services and domain-specific applications and

tools. Collaboratories [121] have similar intent and also provide applications that

allow users to conduct joint operations with their colleagues.

The security layer and Data Grid services provide applications uniform access to resources

in the Fabric layer while abstracting out much of the inherent complexity and heterogene-

ity. Formation of VOs requires interoperability between the resources and components

16 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

that are provided by different participants. This motivates the use of standard protocols

and service interfaces for information exchange among VO entities. Service interfaces

themselves have to be separated from implementation details and have to be described

in language- and platform-independent format. Realizationof these requirements have

led the Grid computing research community, through forums such as Global Grid Forum

(GGF), to adopt a new Open Grid Services Architecture (OGSA)[86] that is based on

the Web servicesparadigm. Web services are self-contained, stateless components that

use standard mechanisms for representation and exchange ofdata. OGSA builds on Web

service properties such as vendor and platform neutral service definition using XML (eX-

tensible Markup Language) [39] and standard communicationprotocols such as SOAP

(Simple Object Access Protocol) to createGrid services. Grid services are standardized

Web service interfaces that provide Grid capabilities in a secure, reliable and stateful man-

ner. Grid services may also be potentially transient and service instances support service

lifetime management and state notification. OGSA utilizes standard Web service mecha-

nisms for discovering and invoking Grid services.

The OGSA Data Services [89] deal with accessing and managingdata resources in a

Grid environment. Adata serviceimplements one or more of a set of basic interfaces that

describe the data and provide operations to manipulate it. The same data can be repre-

sented in many ways by different data services that implement different set of operations

and data attributes. This abstract view of data created by a data service is termeddata vir-

tualisation. Subsequent efforts through the Data Access and Integration Services Working

Group (DAIS-WG) at GGF have produced a set of more concrete standards [18] for rep-

resenting data through services. These standards provide the consumers of these services

the advantage of being isolated from the inner workings of Data Grids and therefore, be

able to develop complex applications that consume data in different ways.

2.2.2 Related Data-Intensive Research

Three related distributed data-intensive research areas that share similar requirements,

functions and characteristics are described below. These have been chosen because of the

similar properties and requirements that they share with Data Grids.

2.2. DATA GRIDS 17

Content Delivery Network

A Content Delivery Network (CDN) [68, 71] consists of a “collection of (non-origin)

servers that attempt to offload work from origin servers by delivering content on their

behalf” [124]. That is, within a CDN, client requests are satisfied from other servers dis-

tributed around the Internet (also called edge servers) that cache the content originally

stored at the source (origin) server. A client request is rerouted from the main server to an

available server closest to the client likely to host the content required [71]. This is done

by providing a DNS (Domain Name System) server that resolvesthe client DNS request

to the appropriate edge server. If the latter does not have the requested object then it re-

trieves the data from the origin server or another edge server. The primary aims of a CDN

are, therefore, load balancing to reduce effects of sudden surges in requests, bandwidth

conservation for objects such as media clips and reducing the round-trip time to serve

the content to the client. CDNs are generally employed by Web content providers and

commercial providers such as Akamai Inc., Speedera Inc. andIntelliDNS Inc. have built

dedicated infrastructure to serve multiple clients. However, CDNs haven’t gained wide

acceptance for data distribution because, currently CDN infrastructures are proprietary in

nature and owned completely by the providers.

Peer-to-Peer Network

Peer-to-peer (P2P) networks [156] are formed by ad hoc aggregation of resources to form

a decentralised system within which each peer is autonomousand depends on other peers

for resources, information and forwarding requests. The primary aims of a P2P network

are: to ensure scalability and reliability by removing the centralised authority, to ensure

redundancy, to share resources and to ensure anonymity. An entity in a P2P network can

join or leave anytime and therefore, algorithms and strategies have to be designed keeping

in mind the volatility and requirements for scalability andreliability. P2P networks have

been designed and implemented for many target areas such as compute resource sharing

(e.g. SETI@Home [15], Compute Power Market [47]), content and file sharing (Napster,

Gnutella, Kazaa [57]) and collaborative applications suchas instant messengers (Jab-

ber [112]). Milojicic et al. [145] present a detailed taxonomy and survey of peer-to-peer

18 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

systems. The discussion here focuses mostly on content and file-sharing P2P networks as

these involve data distribution. Such networks have mainlyfocused on creating efficient

strategies to locate particular files within a group of peers, to provide reliable transfers of

such files in the face of high volatility and to manage high load caused due to demand

for highly popular files. Currently, major P2P content sharing networks do not provide an

integrated computation and data distribution environment.

Distributed Databases

A distributed database (DDB) [53, 157] is a logically organised collection of data stored

at different sites of a computer network. Each site has a degree of autonomy, is capable

of executing a local application, and also participates in the execution of a global ap-

plication. A distributed database can be formed either by taking an existing single site

database and splitting it over different sites (top-down approach) or by federating existing

database management systems so that they can be accessed through a uniform interface

(bottom-up approach) [185]. The latter are also called multidatabase systems. Vary-

ing degrees of autonomy are possible within DDBs ranging fromtightly-coupled sites

to complete site independence. Distributed databases haveevolved to serve the needs of

large organisations which need to remove the need for a centralised computer centre, to

interconnect existing databases, to replicate databases to increase reliability, and to add

new databases as new organisational units are added. This technology is very robust and

provides distributed transaction processing, distributed query optimisation and efficient

management of resources. However, these systems cannot be employed in their current

form at the scale of Data Grids envisioned as they have strongrequirements for ACID

(Atomicity, Consistency, Isolation and Durability) properties [99] to ensure that the state

of the database remains consistent and deterministic.

2.2.3 Analysis of Data-Intensive Networks

This section compares the data-intensive paradigms described in the previous sections

with Data Grids in order to bring out the uniqueness of the latter by highlighting their

respective similarities and differences. Also, each of these areas have their own mature

2.2. DATA GRIDS 19

solutions which may be applicable to the same problems in Data Grids either wholly or

with some modification. These properties are summarised in Table 2.1 and are explained

below:

Purpose- Considering the purpose of the network, it is generally seenthat P2P con-

tent sharing networks are vertically integrated solutionsfor a single goal (for example,

file-sharing). CDNs are dedicated to caching web content so that clients are able to access

it faster. DDBs are used for integrating existing diverse databases to provide a uniform,

consistent interface for querying and/or replicating existing databases for increasing relia-

bility or throughput. In contrast to these single purpose networks, Data Grids are primarily

created for enabling collaboration through sharing of distributed resources including data

collections and support various activities including datatransfer and computation over the

same infrastructure. The overall goal is to bring together existing disparate resources in

order to obtain benefits of aggregation.

Aggregation- All the networks are formed by aggregating individual nodes to form

a distributed system. The aggregation can be created through anad hocprocess wherein

nodes subscribe to the network without prior arrangements or a specificprocess where

they are brought together for a particular purpose. The aggregation can bestableor dy-

namic. P2P networks, by definition, are ad hoc in nature with nodes entering and leaving

at will. A CDN provider creates the infrastructure by settingup dedicated servers for

caching content. DDBs are created by either federating existing databases or by estab-

lishing a tightly-coupled network of databases by a single organisation. In the case of

a CDN or a DDB system, the entire network is managed by a single entity that has the

authority to add or remove nodes and therefore, these have stable configurations. Data

Grids are created by institutions forming VOs by pooling their resources for achieving a

common goal. However, within a Data Grid, dynamic configurations are possible due to

introduction or removal of resources and services.

Organisation- The organisation of a CDN is hierarchical with the data flowing from

the origin to the edges. Data is cached at the various edge servers to exploit locality of

data requests. There are many models for organisation of P2Pcontent sharing network

20 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

Table 2.1: Comparison between various data distribution networks.
Property P2P (Content

sharing)
CDN DDB Data Grids

Purpose File sharing Reducing web
latency

Integrating
existing
databases,
Replicating
database for
reliability &
throughput

Analysis,
collaboration

Aggregation Ad hoc,
Dynamic

Specific, Stable Specific, Stable Specific,
Dynamic

Organisation Centralised,
two-level
hierarchy, flat

Hierarchical Centralised,
federation

Hierarchy,
federation,
monadic,
hybrid

Data Access
Type

Mostly read with
frequent writes

Read only Equally read
and write

Mostly read
with rare writes

Data Discov-
ery

Central directory,
Flooded requests
or document
routing

HTTP Request Relational
Schemas

Catalogues

Latency Man-
agement &
Performance

Replication,
Caching,
Streaming

Caching,
Streaming

Replication,
Caching

Replication,
Caching,
Streaming,
Pre-staging,
Network tuning

Consistency
Requirements

Weak Strong (read
only)

Strong Weak

Transaction
Support

None None currently Yes None currently

Computa-
tional Re-
quirements

None currently None
(Client-side)

Transaction
Processing

Data
Production
and Analysis

Autonomy Operational,
Participation

None
(Dedicated)

Operational
(federated)

Access, Opera-
tional, Partici-
pation

Heterogeneity System,
Structural

System System System, -
Syntactic,
Structural,
Semantic

Management
Entity

Individual Single
Organisation

Single
Organisation

VO

Security
Requirements

Anonymity Data Integrity Authentication,
Authorisation,
Data Integrity

Authentication,
Authorisation,
Data Integrity

2.2. DATA GRIDS 21

and these are linked to the searching methods for files withinthe network. Within Napster,

a peer has to connect to a centralised server and search for anavailable peer that has

the required file. The two peers then directly communicate with each other. Gnutella

avoids the centralised directory by having a peer broadcastits request to its neighbours

and so on until the peer with the required file is obtained. Kazaa and FastTrack limit

the fan-out in Gnutella by restricting broadcasts to SuperPeers who index a group of

peers. Freenet [59] uses content-based hashing, in which a file is assigned a hash based

on its contents and nearest neighbour search is used to identify the required document.

Thus, three different models of organisation, viz. centralised, two-level hierarchy and flat

(structured and unstructured) can be seen in the examples presented above. Distributed

databases provide a relational database management interface and are therefore organised

accordingly. Global relations are split into fragments that are allocated to either one or

many physical sites. In the latter case, replication of fragments is carried out to ensure

reliability of the database. While distribution transparency may be achieved within top-

down databases, it may not be the case with federated databases that have varying degrees

of heterogeneity and autonomy. As will be shown in the taxonomy section, there are 4

different kinds of organisation present in a Data Grid: monadic, hierarchical, federated,

and hybrid combinations of these.

Data Access Type- Access type distinguishes the type of data access operations con-

ducted within the network. P2P content sharing networks aremostly read-only environ-

ments and write operations occur when an entity introduces new data into the network or

creates copies of existing data. CDNs are almost exclusivelyread-only environments for

end-users and updating of data happens at the origin serversonly. In DDBs, data is both

read and written frequently. Data Grids are similar to P2P networks as they are mostly

read-only environments into which either data is introduced or existing data is replicated.

However, a key difference is that depending on application requirements, Data Grids may

also support updating of data replicas if the source is modified.

Data Discovery- Another distinguishing property is how the data is discovered within

the network. The three approaches for searching within P2P networks have been men-

tioned previously. Current research focuses on the documentrouting model and the

four algorithms proposed for this model: Chord [190], CAN [176], Pastry [177] and

22 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

Tapestry [222]. CDNs fetch data which has been requested by a browser through HTTP

(Hyper Text Transfer Protocol). DDBs are organised using thesame relational schema

paradigm as single-site databases and thus, data can be searched for and retrieved us-

ing SQL (Structured Query Language). Data in Data Grids are organised into catalogues

which map the logical description of data to the actual physical representation. One form

of these catalogues is the replica catalogue which containsa (possibly) one-to-many map-

ping from the logical (or device-independent) filename to the actual physical filenames of

the datasets. Data can be located by querying these catalogues and resolving the physical

locations of the logical datasets.

In addition to these mechanisms, the use of metadata for searching data is supported

by certain individual products in each of the four data-intensive networks. Data can be

queried for based on attributes such as description or content type. In Data Grids, metadata

catalogues offer another means for querying for data. In such cases, metadata has to be

curated properly as otherwise it would affect the efficiencyand accuracy of data discovery.

The role of metadata and catalogues will be looked at in detail in the next chapter.

Latency Management & Performance- A key element of performance in distributed

data-intensive networks is the manner in which they reduce the latency of data transfers.

Some of the techniques commonly used in this regard are replicating data close to the

point of consumption, caching of data, streaming data and pre-staging the data before the

application starts executing. Replication is different from caching as the former involves

creation and maintenance of copies of data at different places in the network depending

on access rates or other criteria while the latter involves creating just one copy of the data

close to the point of consumption. Replication is, therefore, done mostly from the source

of the data (provider side) and caching is done at the data consumer side. While both

replication and caching seek to increase performance by reducing latency, the former also

aims to increase reliability by creating multiple backup copies of data.

CDNs employ caching and streaming to enhance performance especially for deliver-

ing media content [182]. While several replication strategies have been suggested for a

CDN, Karlsson and Mahalingam [114] experimentally show thatcaching provides equiv-

alent or even better performance than replication. In the absence of requirements for

consistency or availability guarantees in CDNs, computationally expensive replication

2.2. DATA GRIDS 23

strategies do not offer much improvement over simple caching methods. P2P networks

also employ replication, caching and streaming of data in various degrees. Replication

and caching are used in distributed database systems for optimizing distributed query pro-

cessing [119].

In Data Grids, all of the techniques mentioned are implemented in one form or an-

other. However, additionally, Data Grids are differentiated by the requirement for transfer

of massive datasets. This is either absent in the other data-intensive networks or is not

considered while designing these networks. This motivatesuse of high-speed data trans-

fer mechanisms that have separation of data communication -that is, sending of control

messages happens separately from the actual data transfer.In addition, features such as

parallel and striped data transfers among others, are required to further reduce time of

data movement. Optimization methods to reduce the amount ofdata transfers, such as

accessing data close to the point of its consumption, are also employed within Data Grids.

Consistency- Consistency is an important property which determines how “fresh” the

data is. Grids and P2P networks generally do not provide strong consistency guarantees

because of the overhead of maintaining locks on huge volumesof data and the ad hoc

nature of the network respectively. Among the exceptions for Data Grids is the work of

Dullmann et al. [72] which discusses a consistency service for replication in Data Grids.

In P2P networks, Oceanstore [125] is a distributed file system that provides strong con-

sistency guarantees through expensive locking protocols.In CDNs, while the data in a

cache may go stale, the system always presents the latest version of the data when the

user requests it. Therefore, the consistency provided by a CDN is strong.

Distributed databases, as mentioned before, have strong requirements for satisfying

ACID properties. While these requirements can be relaxed in the case of unstable condi-

tions such as those found in mobile networks [163], even thenthe semantics for updating

are much stricter within distributed databases than in other distribution networks. Also,

updates are more frequent and can happen from within any sitein the network. These

updates have to be migrated to other sites in the network so that all the copies of the

data are synchronised. There are two methods for updating that are followed [98]:lazy,

in which the updates are asynchronously propagated andeager, in which the copies are

synchronously updated.

24 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

Transaction Support- A transaction is a set of operations (actions) such that allof

them succeed or none of them succeed. Transaction support implies the existence of

check-pointing and rollback mechanisms so that a database or data repository can be

returned to its previous consistent state in case of failure. It follows from the discussion of

the previous property that transaction support is essential for distributed databases. CDNs

have no requirements for transaction support as they only support read only access to data

to the end users. P2P Networks and Data Grids currently do nothave support for recovery

and rollback. However, efforts are on to provide transaction support within Data Grids to

provide fault tolerance for distributed transactions [207].

Computational Requirements- Computational requirements in data intensive environ-

ments originate from operations such as query processing, applying transformations to

data and processing data for analysis. CDNs are exclusively data-oriented environments

with a client accessing data from remote nodes and processing it at its own site. While

current P2P content sharing networks have no processing of the data, it is possible to in-

tegrate such requirements in the future. Computation withinDDBs involves transaction

processing which can be conducted in two ways: the requesteddata is transmitted to the

originating site of the transaction and the transaction is processed at that site, or the trans-

action is distributed among the different nodes which have the data. High volumes of

transactions can cause heavy computational load within DDBsand there are a variety of

optimisation techniques to deal with load balancing in parallel and distributed databases.

Data Grids have heavy computational requirements that are caused by workloads in-

volving analysis of datasets. Many operations in Data Grids, especially those involving

analysis, can take long intervals of time (measured in hoursor even days). This is in

contrast to the situation within DDBs where the turnaround time of requests is short and

for applications such as OLTP (On Line Transaction Processing), measured in millisec-

onds. High performance computing sites, that generally constitute existing Data Grids,

are shared facilities and are oversubscribed most of the time. Therefore, application exe-

cution within Data Grids has to take into account the time to be spent in queues at these

sites as well.

Autonomy- Autonomy deals with the degree of independence allowed to different

nodes within a network. However, there could be different types and different levels of

2.2. DATA GRIDS 25

autonomy provided [13, 185].Access autonomyallows a site or a node to decide whether

to grant access to a user or another node within the network.Operational autonomyrefers

to the ability of a node to conduct its own operations withoutbeing overridden by external

operations of the network.Participation autonomyimplies that a node has the ability

to decide the proportion of resources it donates to the network and the time it wants to

associate or disassociate from the network. Data Grid nodeshave all the three kinds of

autonomy to the fullest extent. While nodes in a P2P network donot have fine-grained

access controls against users, they have maximum independence in deciding how much

share will they contribute to the network. CDNs are dedicatednetworks and so, individual

nodes have no autonomy at all. Tightly coupled databases retain all control over the

individual sites whereas multidatabase systems retain control over local operations.

Heterogeneity- Network environments encompass heterogeneous hardware and soft-

ware configurations that potentially use different protocols. This impacts applications

which have to be engineered to work across multiple interfaces, multiple data formats and

multiple protocols wherever applicable. Interoperability of the system therefore, refers to

the degree of transparency a system provides for a user to access this information while

being unaware of the underlying complexity.

Heterogeneity can also be split into many types depending onthe differences at var-

ious levels of the network stack. Koutrika [120] has identified four different types of

heterogeneity in the case of data sources within digital libraries.

1. System heterogeneity- arises from different hardware platforms and operating sys-

tems.

2. Syntactic heterogeneity- arises from the presence of different protocols and encod-

ings used with the system.

3. Structural heterogeneity- originates from the data organised according to different

models and schemas.

4. Semantic heterogeneity- originates from different meanings given to the same data,

especially because of the use of different metadata schemasfor categorising the

data.

It can be seen from the definitions of the data-intensive networks that the same classifi-

26 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

cation is applicable in the current context. System heterogeneity is a feature of all the

data-intensive networks discussed here. Though P2P networks, CDNs and DDBs can si-

multaneously store data in different formats, they requirethe establishment of common

protocols within individual networks. CDNs and DDBs are also homogeneous when it

comes to structure of data as they enforce common schema (Webcontent schema for

CDNs and relational schema for DDBs). P2P networks offer structural and semantic het-

erogeneity as they unify data from various sources and allowthe user to query across all

of the available data.

The existence of different components including legacy andotherwise, that speak a

variety of protocols and store data in their own (sometimes proprietary) formats with

little common structure or consistent metadata information means that Data Grids contain

data that is syntactically, structurally and semanticallyheterogeneous. However, where

Data Grids truly differ from other data intensive networks in this regard is the level of

interoperability required. Users within a Data Grid expectto have an integrated view of

data which abstracts out the underlying complexity behind asimple interface. Through

this interface, they would require manipulating the data byapplying transformations or by

conducting analysis. The results of the analysis or transformation need to be viewed and

may provide feedback to conduct further operations. This means that not only should a

Data Grid provide interoperability between different protocols and systems, it should also

be able to extract meaningful information from the data according to users’ requirements.

This is different to P2P content sharing networks where the user only queries for datasets

matching a particular criterion and downloads them.

Management Entity- The management entity administers the tasks for maintaining

the aggregation. Generally, this entity is a collection of the stakeholders within the dis-

tribution network. While this body usually does not have control over individual nodes,

nevertheless, it provides services such as a common data directory for locating content

and an authentication service for the users of the network. For the Data Grid, the con-

cept of VOs has already been discussed in the previous section. Though entities in a P2P

network are independent, a central entity may provide directory service as in the case

of Napster. CDNs are owned and maintained by a corporation or asingle organisation.

Likewise, DDBs are also maintained by single organisations even though the constituent

2.3. DISCUSSION AND SUMMARY 27

databases may be independent.

Security Requirements- Security requirements differ depending on perspective. In a

data distribution network, security may have to be ensured against corruption of content

(data integrity), for safeguarding users’ privacy (anonymity), and for resources to verify

users’ identities (authentication). P2P Networks such as Freenet are more concerned with

preserving anonymity of the users as they may be breaking local censorship laws. A CDN

primarily has to verify data integrity as access for manipulating data is granted only to the

content provider. Users have to authenticate against a DDB for carrying out queries and

transactions and data integrity has to be maintained for deterministic operation.

Since Data Grids are multi-user environments with shared resources, the main security

concerns are authentication of both users and resources, and granting of permissions for

specific types of services to a user (authorisation). Data Grids resources are also spread

among various administrative entities and therefore, accepting security credentials of a

user also involves trusting the authority that issued the credentials in the first place. Many

VOs have adopted community-based authorization [6] where the VO itself provides the

credentials or certifies certain authorities as trusted andsets the access rights for the user.

While these are issues within Grids in general, Data Grids also need verification while

accessing data and need to guard against malicious operations on data while in transit.

Also, more elaborate access controls than those currently deployed in general Grids are

needed for safeguarding confidential data in Data Grids.

2.3 Discussion and Summary

Thus, it can be seen that though Data Grids share many characteristics with other types

of data intensive network computing technologies, they aredifferentiated by heavy com-

putational requirements, wider heterogeneity, higher autonomy of individual entities and

the presence of VOs. Most of the current Data Grid implementations focus on scientific

applications. Recent approaches have, however, explored the integration of the above-

mentioned technologies within Data Grids to take advantageof the strengths that they

offer in areas such as data discovery, storage management and data replication. This is

possible as Data Grids already encompass and build on diverse technologies. Foster and

28 Chapter 2. DATA GRIDS: AN OVERVIEW AND COMPARISON

Iamnitchi [81] discuss the convergence of P2P and Grid computing and contend that the

latter will be able to take advantage of the failure resistance and scalability offered by

the former which gains from the experience in managing diverse and powerful resources,

complex applications and the multitude of users with different requirements. Ledlie et al.

[132] present a similar view and discuss the areas of aggregation, algorithms and mainte-

nance where P2P research can be beneficial to Grids. Practical Grid technologies such as

Narada Brokering [90] have used P2P methods for delivering a scalable event-service.

Based on the detailed investigation conducted on the architecture of Data Grids, a

taxonomy has been developed and is discussed in the next chapter.

Chapter 3

A Taxonomy of Data Grids

The rapid emergence of Data Grids in scientific and commercial settings has led to a

variety of systems offering solutions for dealing with distributed data-intensive applica-

tions. Unfortunately, this has also led to difficulty in evaluating these solutions because of

the confusion in pinpointing their exact target areas. The taxonomy provided in Section

3.1 breaks down the overall research in Data Grids into specialised areas and categorizes

each of them in turn. The following section, Section 3.2 thensurveys some representative

projects and publications and classifies them according to the taxonomy.

3.1 Taxonomy

The properties of a Data Grid are determined by its underlying organization. The orga-

nizational attributes not only determine the placement, replication, and propagation of

data throughout a Data Grid but also the interaction of the users with the infrastructure.

The actual work of transferring, processing and managing data is done by the core mech-

anisms such as data transport, data replication and resource management. These core

mechanisms, therefore, define the capabilities of a Data Grid. Accordingly, this taxon-

omy is split into four sub-taxonomies as shown in Figure 3.1.The first sub-taxonomy

is from the point of view of Data Grid organization. This classifies ongoing scientific

Data Grid efforts worldwide. The next sub-taxonomy deals with the transport technolo-

gies used within Data Grids. This not only covers well-knownfile transfer protocols but

29

30 Chapter 3. A TAXONOMY OF DATA GRIDS

Data Grid
Elements

Transport
Data

Data
Replication

Organization

Scheduling

Figure 3.1: Data Grid Elements.

also includes other means of managing data transportation.A scalable, robust and intel-

ligent replication mechanism is crucial to the smooth operation of a Data Grid and the

sub-taxonomy presented next takes into account concerns ofGrid environments such as

metadata and the nature of data transfer mechanisms used. The last sub-taxonomy cate-

gorizes resource allocation and scheduling research and looks into issues such as locality

of data.

While each of the areas of data transport, replica managementand resource manage-

ment are independent fields of research and merit detailed investigations on their own, in

this chapter, these are studied from the point of view of the specific requirements of Data

Grid environments that have been provided in the previous chapter.

3.1.1 Data Grid Organization

Figure 3.2 shows a taxonomy based on the various organizational characteristics of Data

Grid projects. These characteristics are central to any Data Grid and manifest in different

ways in different systems.

Model - The model is the manner in which data sources are organised ina system.

A variety of models are in place for the operation of a Data Grid. These are dependent

on: the source of data, whether single or distributed, the size of data and the mode of

sharing. Four of the common models found in Data Grids are shown in Figure 3.3 and are

discussed as follows:

1. Monadic: This is the general form of a Data Grid in which all the data is gathered

at a central repository that then answers user queries and provides the data. The

data can be from many sources such as distributed instruments and sensor networks

and is made available through a centralised interface such as a web portal which

3.1. TAXONOMY 31

Data Grid
Organization
Taxonomy

Data
Sources

Virtual
Organization

Hierarchical

Federation

Collaborative

Regulated

Economic

Intradomain

Interdomain

Hybrid

Reputation−based

Transient

Stable

Autonomic

Monadic

Managed

Model

Scope

Management

Figure 3.2: Data Grid Organization Taxonomy.

Institution

Central Data
Repository

Local Data Repository

Sensors

Tape

Instruments

(a) Monadic (b) Hierarchy

Institution

Institution

Institution

Institution

Institution

Local Data Repository

(c) Federation

Institution InstitutionInstitution

Source

Distributor Distributor Distributor

(d) Hybrid

Figure 3.3: Possible models for organization of Data Grids.

32 Chapter 3. A TAXONOMY OF DATA GRIDS

also verifies users and checks for authorization. This modelis shown in Figure

3.3(a) and has been applied in the NEESgrid (Network for Earthquake Engineering

Simulation) project [161] in the United States.

The difference between this and other models of Data Grid organisation is that there

is only a single point for accessing the data. In contrast, within other models, the

data can be wholly or partially accessed at different pointswhere it is made available

through replication. The central repository may be replicated in this case for fault

tolerance but not for improving locality of data. Thus, thismodel serves better

in scenarios where the overhead of replication is not compensated by an increase

in efficiency of data access such as the case wherein all accesses are local to a

particular region.

2. Hierarchical: This model is used in Data Grids where there is a single sourcefor

data and the data has to be distributed across collaborations worldwide. For ex-

ample, the MONARC (Models of Networked Analysis at Regional Centres) group

within CERN has proposed a tiered infrastructure model for distribution of CMS

data [5]. This model is presented in Figure 3.3(b) and specifies requirements for

transfer of data from CERN to various groups of physicists around the world. The

first level is the compute and storage farm at CERN which stores the data generated

from the detector. This data is then distributed to sites, called Regional Centres

(RCs), located around the world. From the RCs, the data is then passed down-

stream to the national and institutional centres and finallyonto the physicists. A

Tier 1 (RC) or a Tier 2 (national) centre has to satisfy certain bandwidth, storage

and computational requirements as shown in the figure.

The massive amounts of data generated in these experiments motivate the need for

a robust data distribution mechanism. Also, researchers atparticipating institutions

may be interested only in subsets of the entire dataset that may be identified by

querying using metadata. One advantage of this model is thatmaintaining consis-

tency is much simpler as there is only one source for the data.

3. Federation:The federation model [171] is presented in Figure 3.3(c) andis preva-

lent in Data Grids created by institutions who wish to share data in already existing

3.1. TAXONOMY 33

databases. One example of a federated Data Grid is the BioInformatics Research

Network (BIRN) [35] in the United States. Researchers at a participating institu-

tion can request data from any one of the databases within thefederation as long

as they have the proper authentication. Each institution retains control over its lo-

cal database. Varying degrees of integration can be presentwithin a federated Data

Grid. For example, Moore et al. [148] discuss about 10 different types of feder-

ations that are possible using the Storage Resource Broker (SRB)[26] in various

configurations. The differences are based on the degree of autonomy of each site,

constraints on cross-registration of users, degree of replication of data and degree

of synchronization.

4. Hybrid: Hybrid models that combine the above models are beginning toemerge as

Data Grids mature and enter into production usage. These come out of the need for

researchers to collaborate and share products of their analysis. A hybrid model of a

hierarchical Data Grid with peer linkages at the edges is shown in Figure 3.3(d).

Scope -The scope of a Data Grid can vary depending on whether it is restricted to a

single domain (intradomain) or if it is a common infrastructure for various scientific areas

(interdomain). In the former case, the infrastructure is adapted to the particular needs

of that domain. For example, special analysis software may be made available to the

participants of a domain-specific Data Grid. In the latter case, the infrastructure provided

will be generic.

Virtual Organizations -Data Grids are formed by VOs and therefore, the design of

VOs reflects on the social organization of the Data Grid. A VO is collaborative if it

is created by entities who have come together to share resources and collaborate on a

single goal. Here, there is an implicit agreement between the participants on the us-

age of resources. AregulatedVO may be controlled by a single organization which

lays down rules for accessing and sharing resources. In aneconomy-basedVO, resource

providers enter into collaborations with consumers due to profit motive and the latter

select providers based on their advertised level of serviceand cost. In such cases, service-

level agreements dictate the rights of each of the participants. A reputation-basedVO

may be created by inviting entities to join a collaboration based on the level of services

34 Chapter 3. A TAXONOMY OF DATA GRIDS

that they are known to provide.

Data Sources -Data sources in a Data Grid may betransientor stable. A scenario for

a transient data source is a satellite which broadcasts dataonly at certain times of the day.

In such cases, applications need to be aware of the short lifeof the data stream. As will be

revealed later, most of the current Data Grid implementations have always-on data sources

such as mass storage systems or production databases. In future, with diversification, Data

Grids are also expected to handle transient data sources.

Management -The management of a Data Grid can beautonomicor managed. Present

day Data Grids require plenty of human intervention for tasks such as resource mon-

itoring, user authorization and data replication. However, research is leading to auto-

nomic [20, 158] or self-organizing, self-governing systems whose techniques may find

applications in future Data Grids.

3.1.2 Data Transport

The data transport mechanism is one of the fundamental technologies underlying a Data

Grid. Data transport involves not just movement of bits across resources but also other

aspects of data access such as security, access controls andmanagement of data transfers.

A taxonomy for data transport mechanisms within Data Grids is shown in Figure 3.4.

Functions - Data transport in Grids can be modelled as a three-tier structure that is

similar to the networking stacks such as the Open System Interconnection (OSI) reference

model. At the bottom is theTransfer Protocolthat specifies a common language for two

nodes in a network to initiate and control data transfers. This tier takes care of simple bit

movement between two hosts on a network. The most widely-used transport protocols

in Data Grids are FTP (File Transfer Protocol) [167] and GridFTP [10]. The second tier

is an optionalOverlay Networkthat takes care of routing the data. An overlay network

provides its own semantics over the Internet protocol to satisfy a particular purpose. In

P2P networks, overlays based on distributed hash tables provide a more efficient way of

locating and transferring files [14]. Overlay networks in Data Grids provide services such

as storage in the network, caching of data transfers for better reliability and the ability for

applications to manage transfer of large datasets. The topmost tier provides application-

3.1. TAXONOMY 35

Data Transport
Taxonomy

Fault
Tolerance

Transfer
Mode

Security

Function Overlay Network

Transfer Protocol

File I/O mechanism

Authentication

Restart Transmission

Resume Transmission

Cached Transfers

Block

Stream

Compressed

Bulk transfers

Authorization

Encryption

Cryptographic Keys

Passwords

Coarse−grained

Fine−grained

SSL

Unencrypted

Figure 3.4: Data Transport Taxonomy.

specific functions such asFile I/O. A file I/O mechanism allows an application to access

remote files as if they are locally available. This mechanismpresents to the application

a transparent interface through APIs that hide the complexity and the unreliability of the

networks. A data transport mechanism can therefore performone of these functions.

Security -Security is an important requirement while accessing or transferring files to

ensure proper authentication of users, file integrity and confidentiality. Transport security

can be divided into three main categories:authenticationandauthorizationof users and

encryptionof data transfer. Authentication can be based on eitherpasswordsor symmet-

ric or asymmetricpublic keycryptographic protocols such as Kerberos [153] or X.509

[107] mechanisms respectively. In the context of data movement, authorization of users

is enforced by mechanisms such as access controls on the datathat is to be transferred.

Coarse-grainedauthorization methods use traditional methods such as UNIXfile permis-

sions to restrict the number of files or collections that are accessible to the user. However,

expansion of Data Grids to fields such as medical research that have strict controls on the

distribution of data have led to requirements forfine-grainedauthorization. Such require-

ments include restricting the number of accesses even for authorised users, delegating

36 Chapter 3. A TAXONOMY OF DATA GRIDS

read and write access rights to particular files or collections and flexible ownership of

data [148]. Fine-grained access control methods that may beemployed to achieve these

requirements include time- and usage-limited tickets, Access Control Lists (ACLs), Role

Based Access Control (RBAC) methods [181] and Task-Based Authorization Controls

(TBAC) [206]. Data encryption may be present or absent withina transfer mechanism.

The most prevalent form of data encryption is through SSL (Secure Sockets Layer) [212].

Fault Tolerance -Fault tolerance is also an important feature that is required in a

Data Grid environment especially when transfers of large data files occur. Fault tolerance

can be subdivided into restarting over, resuming from interruption and providing caching.

Restartingthe transfer all over again means that the data transport mechanism does not

provide any failure tolerance. However, all data in transitwould be lost and there is a

slight overhead for setting up the connection again. Protocols such as GridFTP allow for

resumingtransfers from the last byte acknowledged. Overlay networks providecachingof

transfers via store-and-forward protocols. In this case, the receiver does not have to wait

until the connections are restored. However, caching reduces performance of the overall

data transfer and the amount of data that can be cached is dependent on the storage policies

at the intermediate network points.

Transfer Mode -The last category is the transfer modes supported by the mecha-

nism. Block, streamandcompressedmodes of data transfer have been available in tra-

ditional data transmission protocols such as FTP. However,it has been argued that trans-

fers of large datasets such as those that are anticipated within Data Grids are restricted

by vanilla FTP and underlying Internet protocols such as Transmission Control Protocol

(TCP) which were initially designed for low bandwidth, high latency networks. As such,

these are unable to take advantage of the capabilities of high bandwidth, optical fibre

networks that are available for Data Grid environments [134]. Therefore, several opti-

misations have been suggested for improving the performance of data transfers in Grid

environments by reducing latency and increasing transfer speed. Some of them are listed

below:

• Parallel data transfer - is the ability to use multiple data streams over the same

channel to transfer a file. This also saturates available bandwidth in a channel while

completing transfer.

3.1. TAXONOMY 37

• Striped data transfer -is the ability to use multiple data streams to simultaneously

access different blocks of a file that is partitioned among multiple storage nodes

(also calledstriping). This distributes the access load among the nodes and also

improves bandwidth utilisation.

• Auto-resizing of buffers -is the ability to automatically resize sender and receiver

TCP window and buffer sizes so that the available bandwidth can be more effec-

tively utilised.

• Container operations -is the ability to aggregate multiple files into one large dataset

that can be transferred or stored more efficiently. The efficiency gains come from

reducing the number of connections required to transfer thedata and also, by reduc-

ing the initial latency.

The first three are protocol-specific optimisations while the last one is applied to the trans-

fer mechanism. These enhancements are grouped under thebulk transfermode. A mecha-

nism may support more than one mode and its suitability for anapplication can be gauged

by the features it provides within each of the transfer modes.

3.1.3 Data Replication and Storage

A Data Grid is a geographically-distributed collaborationin which all members require

access to the datasets produced within the collaboration. Replication of the datasets is

therefore a key requirement to ensure scalability of the collaboration, reliability of data

access and to preserve bandwidth. Replication is bounded by the size of storage available

at different sites within the Data Grid and the bandwidth between these sites. A replica

management system therefore ensures access to the requireddata while managing the

underlying storage.

A replica management system, shown in Figure 3.5, consists of storage nodes which

are linked to each other via high-performance data transport protocols. The replica man-

ager directs the creation and management of replicas according to the demands of the

users and the availability of storage, and a catalog or a directory keeps track of the repli-

cas and their locations. The catalog can be queried by applications to discover the number

and the locations of available replicas of a particular dataset. In some systems, the man-

38 Chapter 3. A TAXONOMY OF DATA GRIDS

Replica Manager

UpdateUpdate

File B File A

Storage Node

File A

Storage Node

File CData Transfer Protocol

Replica Catalog

Figure 3.5: A Replica Management Architecture.

Replication Strategy Taxonomy

Replica Architecture Taxonomy
Replication Taxonomy

Figure 3.6: Replication Taxonomy.

ager and the catalog are merged into one entity. Client-side software generally consists of

a library that can be integrated into applications and a set of commands or GUI utilities

that are built on top of the libraries. The client libraries allow querying of the catalog to

discover datasets and to request replication of a particular dataset.

The important elements of a replication mechanism are therefore the architecture of

the system and the strategy followed for replication. The first categorization of Data Grid

replication is therefore, based on these properties as is shown in Figure 3.6. The archi-

tecture of a replication mechanism can be further subdivided into the categories shown in

Figure 3.7.

Model & Topology -The model followed by the system largely determines the way

in which the nodes are organized and the method of replication. A centralizedsystem

would have one master replica which is updated and the updates are propagated to the

other nodes. Adecentralizedor peer-to-peer mechanism would have many copies, all

of which need to be synchronized with each other. Nodes undera replica management

system can be organised in a variety of topologies which can be grouped chiefly into

three: Hierarchy, Flat and Hybrid. Hierarchical topologies have tree-like structure in

which updates propagate through definite paths. Flat topologies are found within P2P

3.1. TAXONOMY 39

Replica Architecture
Taxonomy

Storage
Integration

Transfer
Protocols

Catalog
Organization

Update
Propogation

Update
Type

Topology

Metadata

Model

Tightly−coupled

Intermediate

Loosely−coupled

Hybrid

Flat

Hierarchical

Open Protocols

Closed Protocols

Attributes

Asynchronous

Synchronous

Tree

Hash−based

DBMS

Decentralized

Centralized

Epidemic

On−demand

System

User−defined

Active

Passive

Figure 3.7: Replica Architecture Taxonomy.

systems and progression of updates is entirely dependent onthe arrangements between

the peers. These can be both structured and unstructured. Hybrid topologies can be

achieved in situations such as a hierarchy with peer connections at different levels as has

been discussed by Lamehamedi et al. [129].

Storage Integration -The relation of replication to storage is very important anddeter-

mines the scalability, robustness, adaptability and applicability of the replication mech-

anism. Tightly-coupledreplication mechanisms that exert fine-grained control over the

replication process are tied to the storage architecture onwhich they are implemented.

The replication system controls the filesystem and I/O mechanism of the local disk. The

replication is conducted at the level of processes and is often triggered by a read or write

request to a file at a remote location by a program. Such systems more or less try to

behave as a distributed file system such as NFS (Network File System) as they aim to

provide transparent access to remote files to applications.An example of such a mech-

40 Chapter 3. A TAXONOMY OF DATA GRIDS

anism is Gfarm [199].Intermediately-coupledreplication systems exert control over the

replication mechanism but not over the storage resources. The filesystems are hosted on

diverse storage architectures and are controlled by their respective systems. However,

the replication is still initiated and managed by the mechanism, and therefore it interacts

with the storage system at a very low-level. Such mechanismswork at the level of indi-

vidual applications and data transfer is handled by the system. While replication can be

conducted transparent to users and applications, it is alsopossible for the latter to direct

the mechanism, and thereby, control the replication process. Example of such a system

is the SRB.Loosely-coupledreplication mechanisms are superimposed over the existing

filesystems and storage systems. The mechanism exerts no control over the filesystem.

Replication is initiated and managed by applications and users. Such mechanisms inter-

act with the storage systems through standard file transfer protocols and at a high level.

The architecture is capable of complete heterogeneity.

Transfer Protocols -The data transport protocols used within replica management

systems is also a differentiating characteristic.Open protocolsfor data movement such

as GridFTP allow clients to transfer data independent of thereplica management system.

The replicated data is accessible outside of the replica management system. Systems

that follow closedor unpublished protocols restrict access to the replicas totheir client

libraries. Tightly-coupled replication systems are mostly closed in terms of data transfer.

RLS (Replica Location Service) [55] and GDMP (Grid Data Mirroring Pilot) [180] use

GridFTP as their primary transport mechanism. But the flip-side to having open protocols

is that the user or the application must take care of updatingthe replica locations in the

catalog if they transfer data without involving the replication management system.

Metadata -It is difficult, if not impossible, for users to identify particular datasets out

of hundreds and thousands that may be present in a large, distributed, collection. From

this perspective, having proper metadata about the replicated data aids users in querying

for datasets based on attributes that are more familiar to them. Metadata can have two

types of attributes: one issystem-dependentmetadata, which consists of file attributes

such as creation date, size on disk, physical location(s) and file checksum and the other is

user-definedattributes which consist of properties that depend on the experiment or VO

that the user is associated with. For example in a High-Energy Physics experiment, the

3.1. TAXONOMY 41

Replication Strategy
Taxonomy

Objective
Function

Method

Granularity

Static

Dynamic

File

Fragment

Dataset

Container

Economic

Update costs

Popularity

Locality

Preservation

Publication

Figure 3.8: Replication Strategy Taxonomy.

metadata could describe attributes such as experiment date, mode of production (simula-

tion or experimental) and event type. The metadata can beactivelyupdated by the replica

management system or else updatedpassivelyby the users when they create new replicas,

modify existing ones or add a new file to the catalog.

Replica Update Propagation -Within a Data Grid, data is generally updated at one site

and the updates are then propagated to the rest of its replicas. This can be insynchronous

or in asynchronousmodes. While synchronous updating is followed in databases,it is not

practiced in Data Grids because of the expensive wide-area locking protocols and the fre-

quent movement of massive data required. Asynchronous updating can be epidemic [103],

that is, the primary copy is changed and the updates are propagated to all the other repli-

cas or it can be on-demand as in Grid Data Mirroring Pilot (GDMP) [189] wherein replica

sites subscribe to update notifications at the primary site and decide themselves when to

update their copies.

Catalog Organization -A replica catalog can be distinguished on the basis of its or-

ganization. The catalog can be organized as atreeas in the case of LDAP (Lightweight

Directory Access Protocol) based catalogs such as the Globus Replica Catalog [7]. The

data can be catalogued on the basis ofdocument hashesas has been seen in P2P networks.

However, SRB and others follow the approach of storing the catalog within adatabase.

Replication strategies determine when and where to create a replica of the data. These

42 Chapter 3. A TAXONOMY OF DATA GRIDS

strategies are guided by factors such as demand for data, network conditions and cost of

transfer. The replication strategies can be categorized asshown in Figure 3.8.

Method -The first classification is based on whether the strategies are static or dy-

namic. Dynamic strategies adapt to changes in demand and bandwidth and storage avail-

ability but induce overhead due to larger number of operations that they undertake as

these are run at regular intervals or in response to events (for example, increase in de-

mand for a particular file). Dynamic strategies are able to recover from failures such as

network partitioning. However, frequent transfers of massive datasets that result due to

such strategies can lead to strain on the network resources.There may be little gain from

using dynamic strategies if the resource conditions are fairly stable in a Data Grid over a

long time. Therefore, in such cases, static strategies are applied for replication.

Granularity - The second classification relates to the level of subdivision of data that

the strategy works with. Replication strategies that deal with multiple files at the same

time work at the granularity ofdatasets. The next level of granularity is individualfiles

while there are some strategies that deal with smaller subdivisions of files such as objects

or fragments.

Objective Function -The third classification deals with the objective function of the

replication strategy. Possible objectives of a replication strategy are to maximise thelo-

cality or move data to the point of computation, to exploitpopularity by replicating the

most requested datasets, to minimize theupdate costsor to maximize someeconomic

objective such as profits gained by a particular site for hosting a particular dataset versus

the expense of leasing the dataset from some other site.Preservationdriven strategies

provide protection of data even in the case of failures such as corruption or obsolescence

of underlying storage media or software errors. Another possible objective function for a

replication strategy is to ensure effectivepublicationby propagating new files to interested

clients.

3.1.4 Resource Allocation and Scheduling

The requirements for large datasets and the presence of multiple replicas of these datasets

scattered at geographically-distributed locations makesscheduling of data-intensive jobs

3.1. TAXONOMY 43

Scheduling
Taxonomy

Application
Model

Data
Replication

Utility
Function

Scope

Locality

Independent Tasks

Process−Oriented

Workflows

Bag of Tasks

Individual

Community−based

Coupled

Decoupled

Makespan

Load balancing

Profit

Quality of Service

Temporal

Spatial

Figure 3.9: Data Grid Scheduling Taxonomy.

different from that of computational jobs. Schedulers haveto take into account the band-

width availability and the latency of transfer between a computational node to which a job

is going to be submitted and the storage resource(s) from which the data required is to be

retrieved. Therefore, the scheduler needs to be aware of anyreplicas close to the point of

computation and if the replication is coupled to the scheduling, then create a new copy

of the data. A taxonomy for scheduling of data-intensive applications is shown in Figure

3.9. The categories are explained as follows:

Application Model -Scheduling strategies can be classified by the application model

that they are targeted towards. Application models are defined in the manner in which

the application is composed or distributed for scheduling over Grid resources. These can

range from fine-grained levels such as processes to coarser levels such as individual tasks

to sets of tasks such as workflows. Here, a task is considered as the smallest independent

unit of computation. Each level has its own scheduling requirements.Process-oriented

applications are those in which the data is manipulated at the process level. Examples of

such applications are MPI (Message Passing Interface) programs that execute over global

Grids [82]. Independent taskshaving different objectives are scheduled individually and

it is ensured that each of them get their required share of resources. ABag-of-Tasks

44 Chapter 3. A TAXONOMY OF DATA GRIDS

(BoT) application consists of a set of independent tasks all of which must be executed

successfully subject to certain common constraints such asa deadline for the entire appli-

cation. Such applications arise in parameter studies [1] wherein a set of tasks is created

by running the same program on different inputs. In contrast, aworkflowis a sequence of

tasks in which each task is dependent on the results of its predecessor(s). The products

of the preceding tasks may be large datasets themselves (forexample, a simple two-step

workflow could be a data-intensive simulation task and the task for analysis of the results

of simulation). Therefore, scheduling of individual tasksin a workflow requires careful

analysis of the dependencies and the results to reduce the amount of data transfer.

Scope -Scope relates to the extent of application of the schedulingstrategy within

a Data Grid. If the scope isindividual, then the scheduling strategy is concerned only

with meeting the objectives from a user’s perspective. In a multi-user environment there-

fore, each scheduler would have its own independent view of the resources that it wants

to utilise. A scheduler is aware of fluctuations in resource availability caused by other

schedulers submitting their jobs to common resources and itstrives to schedule jobs on

the least-loaded resources that can meet its objectives. With the advent of VOs, efforts

have moved towardscommunity-basedscheduling in which schedulers follow policies

that are set at the VO level and enforced at the resource levelthrough service level agree-

ments and allocation quotas [73, 214].

Data Replication -The next classification relates to whether job scheduling iscoupled

to data replication or not. Assume a job is scheduled to be executed at a particular com-

pute node. When job scheduling is coupled to replication and the data has to be fetched

from remote storage, the scheduler creates a copy of the dataat the point of computation

so that future requests for the same file that come from the neighbourhood of the com-

pute node can be satisfied more quickly. Not only that, in the future, any job dealing

with that particular data will be scheduled at that compute node if available. However,

one requirement for a compute node is to have enough storage to store all the copies of

data. While storage management schemes such as LRU (Least Recently Used) and FIFO

(First In First Out) can be used to manage the copies, the selection of compute nodes is

prejudiced by this requirement. There is a possibility thatpromising computational re-

sources may be disregarded due to lack of storage space. Also, the process of creation

3.1. TAXONOMY 45

of the replica and registering it into a catalog adds furtheroverheads to job execution.

In a decoupled scheduler, the job is scheduled to a suitable computational resource and a

suitable replica location is identified to request the data required. The storage requirement

is transient, that is, disk space is required only for the duration of execution. A compari-

son of decoupled against coupled strategies by Ranganathan and Foster [173] has shown

that decoupled strategies promise increased performance and reduce the complexity of

designing algorithms for Data Grid environments.

Utility function - A job scheduling algorithm tries to minimize or maximize some

form of a utility function. The utility function can vary depending on the requirements

of the users and architecture of the distributed system thatthe algorithm is targeted at.

Traditionally, scheduling algorithms have aimed at reducing at the total time required for

computing all the jobs in a set, also called itsmakespan. Load balancingalgorithms try

to distribute load among the machines so that no machine is either idle or overburdened.

Scheduling algorithms with economic objectives try to maximize the users’ economic

utility usually expressed as someprofit function that takes into account economic costs of

executing the jobs on the Data Grid. Another possible objective is to meet theQuality-of-

Service (QoS)requirements specified by the user. QoS requirements that can be specified

include minimising the cost of computation, meeting a deadline, meeting strict security

requirements and/or meeting specific resource requirements [42].

Locality - Exploiting the locality of data has been a tried and tested technique for

scheduling and load-balancing in parallel programs [102, 144, 166] and in query process-

ing in databases [184, 191]. Similarly, data grid scheduling algorithms can be categorized

as whether they exploit thespatial or temporallocality of the data requests. Spatial lo-

cality is locating a job in such a way that all the data required for the job is available on

data hosts that are located close to the point of computation. Temporal locality exploits

the fact that if data required for a job is close to a compute node, subsequent jobs which

require the same data are scheduled to the same node. Spatiallocality can also be termed

as “moving computation to data” and temporal locality can becalled as “moving data to

computation”. It can be easily seen that schedulers which couple data replication to job

scheduling exploit the temporal locality of data requests.

46 Chapter 3. A TAXONOMY OF DATA GRIDS

3.2 Mapping of Taxonomy to Various Data Grid Systems

This section classifies various Data Grid research projectsaccording to the taxonomies

developed in Section 3.1. While the list of example systems isnot exhaustive, it is rep-

resentative of the classes that have been discussed. The projects in each category have

been chosen based on several factors such as broad coverage of application areas, project

support for one or more applications, scope and visibility,large-scale problem focus and

ready availability of documents from project web pages and other sources.

3.2.1 Data Grid Projects

This space studies and analyses the various Data Grid projects that have been developed

for various application domains around the world. While manyof these projects cover

aspects of Data Grid research such as middleware development, advanced networking

and storage management, however, here the focus is only on those projects which are

involved in setting up infrastructure. A list of these projects and a brief summary about

each of them is provided in Table 3.1. These are also classified according to the taxonomy

provided in Figure 3.2.

Some of the scientific domains that are making use of Data Grids are as follows:

High Energy Physics (HEP) The computational and storage requirements for HEP ex-

periments have already been covered in previous literature[41]. Other than the four

experiments at the LHC already mentioned, the Belle experiment at KEK, Japan,

the BaBar experiment at the Stanford Linear Accelerator Center(SLAC) and the

CDF and D0 experiments at Fermi National Laboratory, US are also adopting Data

Grid technologies for their computing infrastructure. There have been numerous

Grid projects around the world that are setting up the infrastructure for physicists to

process data from HEP experiments. Some of these are the LHC Computing Grid

(LCG) led by CERN, the Particle Physics Data Grid (PPDG) and GridPhysics Net-

work (GriPhyN) in the United States, GridPP in the UK and BelleAnalysis Data

Grid (BADG) in Australia. These projects have common features such as a tiered

model for distributing the data, shared facilities for computing and storage and per-

sonnel dedicated towards managing the infrastructure. Some of them are entering

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 47

Table 3.1: Data Grid Projects around the world.

Name Domain Grid Type Remarks Country /
Region

LCG [136] High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To create and maintain a
data movement and analy-
sis infrastructure for LHC
users.

Global

EGEE [76] High En-
ergy Physics,
Biomedical
Sciences

Hierarchical model,
Interdomain, Collabora-
tive VO, Stable Sources,
Managed

To create a seamless com-
mon Grid infrastructure to
support scientific research.

Global

BIRN [35] Bio-Informatics Federated model, Intra-
domain, Collaborative
VO, Stable Sources,
Managed

To foster collaboration
in biomedical science
through sharing of data.

United
States

NEESgrid
[161]

Earthquake En-
gineering

Monadic model, Intra-
domain, Collaborative
VO, Transient Sources,
Managed

To enable scientists to
carry out experiments in
distributed locations and
analyse data through a uni-
form interface.

United
States

GriPhyn [22] High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To create an infrastructure
integrating computational
and storage facilities for
high energy physics exper-
iments.

United
States

Grid3 [94] Physics, Biology Hierarchical model,
Interdomain, Collabora-
tive VO, Stable Sources,
Managed

To provide a uniform, scal-
able and managed grid in-
frastructure for science ap-
plications

United
States

BioGrid, Japan
[34]

Protein Simula-
tion, Brain Ac-
tivity Analysis

Federated model, Intra-
domain, Collaborative
VO, Stable Sources,
Managed

Grid infrastructure for
medical and biological
research.

Japan

Virtual
Observatories
[196]

Astronomy Federated model, Intra-
domain, Collaborative
VO, Stable Sources,
Managed

Infrastructure for access-
ing diverse astronomy
observation and simu-
lation archives through
integrated mechanisms.

Global

Earth System
Grid [9]

Climate Mod-
elling

Federated model, Intra-
domain, Collaborative
VO, Stable Sources,
Managed

Integrating computational
and analysis resources for
next generation climate re-
search.

United
States

GridPP [108] High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

Grid infrastructure for Par-
ticle Physics in the UK.

United
Kingdom

eDiaMoND
[37]

Breast Cancer
Treatment

Federated model, Intra-
domain, Collaborative
VO, Stable Sources,
Managed

To provide medical pro-
fessionals and researchers
access to distributed
databases of mammogram
images.

United
Kingdom

Belle Analysis
Data Grid [216]

High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

Grid infrastructure for
Australian physicists
involved in the Belle and
ATLAS experiments.

Australia

48 Chapter 3. A TAXONOMY OF DATA GRIDS

or are being tested for production usage.

Astronomy The community of astrophysicists around the globe are setting up Virtual

Observatories for accessing the data archives that has gathered by telescopes and in-

struments around the world. These include the National Virtual Observatory (NVO)

in the US, Australian Virtual Observatory, Astrophysical Virtual Observatory in Eu-

rope and AstroGrid in the UK [197]. The International Virtual Observatory Alliance

(IVOA) is coordinating these efforts around the world for ensuring interoperability.

Commonly, these projects provide uniform access to data repositories along with

access to software libraries and tools that may be required to analyse the data. Other

services that are provided include access to high-performance computing facilities

and visualization through desktop tools such as web browsers. Other astronomy

grid projects include those being constructed for the LIGO (Laser Interferometer

Gravitational-wave Observatory) [130] and SDSS (Sloan Digital Sky Survey) [187]

projects.

BioInformatics The increasing importance of realistic modeling and simulation of bio-

logical processes coupled with the need for accessing existing databases has led to

Data Grid solutions being adopted by bioinformatics researchers worldwide. These

projects involve federating existing databases and providing common data formats

for the information exchange. Examples of these projects are BioGrid project in

Japan for online brain activity analysis and protein folding simulation, the eDia-

MoND project in the UK for breast cancer treatment and the BioInformatics Re-

search Network (BIRN) for imaging of neurological disorders using data from fed-

erated databases.

Earth SciencesResearchers in disciplines such as earthquake engineering and climate

modeling and simulation are adopting Grids to solve their computational and data

requirements. NEESgrid is a project to link earthquake researchers with high per-

formance computing and sensor equipment so that they can collaborate on de-

signing and performing experiments. Earth Systems Grid aims to integrate high-

performance computational and data resources to study the petabytes of data result-

ing from climate modelling and simulation.

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 49

Table 3.2: Comparison between various data transport technologies.

Project Function Security Fault
Toler-
ance

Transfer
Mode

GASS File I/O PKI, Unencrypted,
Coarse-grained

Caching Block,
Stream
append

IBP Overlay
Mechanism

Password, Unen-
crypted, Coarse-
grained

Caching Block

FTP Transfer
Protocol

Password, Unen-
crypted, Coarse-
grained

Restart All

SFTP Transfer
Protocol

PKI, SSL, Coarse-
grained

Restart All

GridFTP Transfer
Protocol

PKI, SSL, Coarse-
grained

Resume All

Kangaroo Overlay
Mechanism

PKI, Unencrypted,
Coarse-grained

Caching Block

Legion File I/O PKI, Unencrypted,
Coarse-grained

Caching Block

SRB File I/O PKI, SSL, Fine-
grained

Restart Block,
Stream, Bulk
transfer

3.2.2 Data Transport Technologies

Within this subsection, various projects involved in data transport over Grids are discussed

and classified according to the taxonomy provided in Section3.1.2. The data transport

technologies studied here range from protocols such as FTP to overlay methods such as

Internet Backplane Protocol to file I/O mechanisms. Each technology has unique prop-

erties and is representative of the categories in which it isplaced. A summary of these

technologies and their categorization is provided in Table3.2.

GASS

Global Access to Secondary Storage (GASS) [33] is a data access mechanism provided

within the Globus toolkit for reading local data at remote machines and for writing data

to remote storage and moving it to a local disk. The goal of GASS is to provide a uni-

50 Chapter 3. A TAXONOMY OF DATA GRIDS

form remote I/O interface to applications running at remoteresources while keeping the

functionality demands on both the resources and the applications limited.

GASS conducts its operations via a file cache which is an area on the secondary stor-

age where the remote files are stored. When a remote file is requested by an application

for reading, GASS by default fetches the entire file into the cache from where it is opened

for reading as in a conventional file access. It is retained inthe cache as long as applica-

tions are accessing it. While writing to a remote file, the file is created or opened within

the cache where GASS keeps track of all the applications writing to it via reference count.

When the reference count is zero, the file is transferred to theremote machine. Therefore,

all operations on the remote file are conducted locally in thecache, which reduces demand

on bandwidth. A large file can beprestagedinto the cache, that is, fetched before an ap-

plication requests it for reading. Similarly, a file can be transferred out viapoststaging.

GASS operations also allow access to permitted disk areas other than the file cache and

are available through an API and also through Globus commands. GASS is integrated

with the Globus Resource Access and Monitoring (GRAM) service[64] and is used for

staging executables, staging in files and retrieving the standard output and error streams

of the jobs.

GASS provides a limited ability for data transfer between remote nodes. As it prefetches

the entire file into the cache, it is not suitable as a transfermechanism for large data files

(of GigaByte upwards) as the required cache capacity might not be available. Also, it does

not provide features such as file striping, third-party transfer, TCP tuning, etc. provided by

protocols such as GridFTP. However, because of its lightweight functionality, it is suitable

for applications where the overhead of setting up a GridFTP connection dominates.

IBP

Internet Backplane Protocol (IBP) [27, 164] allows applications to optimize data transfer

and storage operations by controlling data transfer explicitly by storing the data at in-

termediate locations. IBP uses a “store-and-forward” protocol to move data around the

network. Each of the IBP nodes has a temporary buffer into which data can be stored for

a fixed amount of time. Applications can manipulate these buffers so that data is moved

to locations close to where it is required.

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 51

IBP is modelled after the Internet Protocol. The data is handled in units of fixed-size

byte arrays which are analogous to IP datagrams or network packets. Just as IP datagrams

are independent of the data link layer, byte arrays are independent of the underlying stor-

age nodes. This means that applications can move data aroundwithout worrying about

managing storage on the individual nodes. IBP also provides aglobal addressing space

that is based on global IP addressing. Thus, any client within an IBP network can make

use of any IBP node.

IBP can also be thought of as a virtualisation layer or as an access layer built on top

of storage resources. IBP provides access to heterogeneous storage resources through a

global addressing space in terms of fixed block sizes thus making access to data indepen-

dent of the storage method and media. The storage buffers cangrow to any size, and thus

the byte arrays can also be thought of as files which live on thenetwork.

IBP also provides a client API and libraries that provide semantics similar to UNIX

system calls. A client connects to an IBP “depot”, or a server,and requests storage al-

location. In return, the server provides it threecapabilities: for reading from, writing to

and managing the allocation. Capabilities are cryptographically secure byte strings which

are generated by the server. Subsequent calls from the client must make use of the same

capabilities to perform the operations. Thus, capabilities provide a notion of security as a

client can only manipulate its own data. Capabilities can be exchanged between clients as

they are text. Higher-order aggregation of byte arrays is possible through exNodes which

are similar to UNIX inodes. exNodes allow uploading, replicating and managing of files

on a network with an IBP layer above the networking layer [165].

Beyond the use of capabilities, IBP does not have an address mechanism that keeps

track of every replica generated. There is no directory service that keeps track of ev-

ery replica and no information service that can return the IBPaddress of a replica once

queried. Though exNodes store metadata, IBP itself does not provide a metadata search-

ing service. Therefore, IBP is a low-level storage solution that functions just above the

networking layer.

52 Chapter 3. A TAXONOMY OF DATA GRIDS

FTP

FTP (File Transfer Protocol) [167] is one of the fundamentalprotocols for data movement

in the Internet. FTP is therefore ubiquitous and every operating system ships with an FTP

client.

FTP separates the process of data transfer into two channels, the control channel used

for sending commands and replies between a client and a server and the data channel

through which the actual transfer takes place. The FTP commands set up the data connec-

tion by specifying the parameters such as data port, mode of transfer, data representation

and structure. Once the connection is set up the server then initiates the data transfer

between itself and the client. The separation of control anddata channels also allows

third-party transfers to take place. A client can open two control channels to two servers

and direct them to start a data transfer between themselves bypassing the client. Data

can be transferred in three modes: stream, block and compressed. In the stream mode,

data is transmitted as is and it is the responsibility of the sending host to notify the end

of stream. In the block mode, data is transferred as a series of blocks preceded by header

bytes. In the compressed mode, a preceding byte denotes the number of replications of

the following byte and filler bytes are represented by a single byte.

Error recovery and restart within FTP does not cover corrupted data but takes care of

data lost due to loss of network or a host or of the FTP process itself. This requires the

sending host to insert markers at regular intervals within the data stream. A transmission

is restarted from the last marker sent by the sender before the previous transfer crashed.

However, restart is not available within the stream transfer mode. Security within FTP

is very minimal and limited to the control channel. The username and password are

transmitted as clear text and there is no facility for encrypting data while in transit within

the protocol. This limits the use of FTP for confidential transfers.

Numerous extensions to FTP have been proposed to offset its limitations. RFCs

2228 [105] and 2389 [100] propose security and features extensions to FTP respectively.

However, these are not implemented by popular FTP servers such as wu-ftpd. SSH File

Transfer Protocol (SFTP) [93] is a secure file transfer protocol that uses the Secure Shell

(SSH) Protocol for both authentication and data channel encryption. SFTP is designed to

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 53

be both a transfer protocol and a remote file system access protocol. However, it does not

support features required for high-performance data transfer such as parallel and striped

data transfer, resuming interrupted transmissions or tuning of TCP parameters.

GridFTP

GridFTP [8, 10] extends the default FTP protocol by providing features that are required

in a Data Grid environment. The aim of GridFTP is to provide secure, efficient, and

reliable data transfer in Grid environments.

GridFTP extends the FTP protocol by allowing GSI and Kerberos based authentica-

tion. GridFTP provides mechanisms for parallel and stripeddata transfers and supports

partial file transfer that is, the ability to access only partof a file. It allows changing the

sizes of the TCP buffers and congestion windows to improve transfer performance. Trans-

fer of massive data-sets is prone to failures as the network may exhibit transient behaviour

over long periods of time. GridFTP sends restart markers indicating a byte range that has

been successfully written by the receiver every 5 seconds over the control channel. In case

of a failure, transmission is resumed from the point indicated by the last restart marker

received by the sender.

GridFTP provides these features by extending the basic FTP protocol through new

commands, features and a new transfer mode. The Striped Passive(SPAS) command is an

extension to the FTP PASV command wherein the server presents a list of ports to connect

to rather than just a single port. This allows for multiple connections to download the same

file or for receiving multiple files in parallel. The ExtendedRetrieve (ERET) command

supports partial file transfer among other things. The Set Buffer (SBUF) and AutoNegoti-

ate Buffer (ABUF) extensions allow the resizing of TCP bufferson both client and server

sides. The Data Channel Authentication (DCAU) extension provides for encrypting of

data channels for confidential file transfer. DCAU is used onlywhen the control channel

is authenticated through RFC 2228 [105] mechanisms. Parallel and striped data transfers

are realised through a new transfer mode called the extendedblock mode (mode E). The

sender notifies the receiver of the number of data streams by using the End of Data (EOD)

and End of Data Count (EODC) codes. The EODC code signifies how many EOD codes

should be received to consider a transfer closed. An additional protocol is therefore re-

54 Chapter 3. A TAXONOMY OF DATA GRIDS

quired from the sender side to ensure that the receiver obtains the data correctly. GridFTP

implements RFC 2389 [100] for negotiation of feature sets between the client and the

server. Therefore, the sender first requests the features supported by the receiver and then

sets connection parameters accordingly. GridFTP also supports restart for stream mode

transfers which is not provided in the vanilla FTP protocol.

The only public implementation for the GridFTP server-sideprotocols is provided

in the Globus Toolkit [83]. The Globus GridFTP server is a modified wu-ftpd server

that supports most of GridFTP’s features except for stripeddata transfer and automatic

TCP buffer size negotiation. The Globus Toolkit provides libraries and APIs for clients

to connect to GridFTP servers. A command-line tool,globus-url-copy, developed using

these libraries, functions as a GridFTP client. Another examples of a GridFTP clients is

the UberFTP [152] client from NCSA.

Evaluation of GridFTP protocols alongside FTP has shown that using the additional

features of GridFTP increases performance of data transfer[75]. Particularly, the usage of

parallel threads dramatically improves the transfer speedover both loaded and unloaded

networks. Also, parallel transfers saturate the bandwidththus improving the link utilisa-

tion.

Kangaroo

Kangaroo [202] is an end-to-end data movement protocol thataims to improve the re-

sponsiveness and reliability of large data transfers within the Grid. The main idea in

Kangaroo is to conduct the data transfer as a background process so that failures due to

server crashes and network partitions are handled transparently by the process instead of

the application having to deal with them.

Kangaroo uses memory and disk storage as buffers to which data is written to by the

application and moved out by a background process. The transfer of data is performed

concurrently with CPU bursts thereby improving utilization. The transfer is conducted

throughhops, or stages where an intermediate server is introduced between the client and

the remote storage from which the data is to be read or written. Data received by the

intermediate stage is spooled into the disk from where it is copied to the next stage by a

background process called themover. This means that a client application writing data to

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 55

a remote storage is isolated from the effects of a network crash or slow-down as long as it

can keep writing to the disk spool. However, it is also possible for a client to write data to

the destination server directly over a TCP connection using the Kangaroo primitives.

Kangaroo services are provided through an interface which implements four simple

file semantics:get (non-blocking read),put(non-blocking write),commit (block until

writes have been delivered to the next stage) andpush (block until all writes are deliv-

ered to the final destination). However, this only provides weak consistency since it is

envisioned for grid applications in which data flow is primarily in one direction. As can

be seen, Kangaroo is an output-oriented protocol which primarily deals with reliability of

data transfer between a client and a server.

The design of Kangaroo is similar to that of IBP even though their aims are different.

Both of them use store-and-forward method as a means of transporting data. However,

while IBP allows applications to explicitly control data movement through a network,

Kangaroo aims to keep the data transfer hidden through the usage of background pro-

cesses. Also, IBP uses byte arrays whereas Kangaroo uses the default TCP/IP datagrams

for data transmission.

Legion I/O model

Legion [54] is a object-oriented grid middleware for providing a single system image

across a collection of distributed resources. The I/O mechanism within Legion [215] aims

to provide transparent access to files stored on distributedresources through APIs and

daemons that can be used by native and legacy applications alike.

Resources within the Legion system are represented by objects. BasicFileObjects

correspond to files in a conventional file system while ContextObjects correspond to di-

rectories. However, these are separated from the actual filesystem. A datafile is copied

to a BasicFileObject to be registered within the context space of Legion. The context

space provides location-independent identifiers which arebound to human-readable con-

text names. This presents a single address space and hierarchy from which users can

request files without worrying about their location. Also, the representation of Basic-

FileObject is system-independent, and therefore providesinteroperability between het-

erogeneous systems.

56 Chapter 3. A TAXONOMY OF DATA GRIDS

Access to a Legion file object is provided through various means. Command-line

utilities provide a familiar interface to the Legion context space. Application developers

can use APIs which closely mimic C and C++ file primitives and Unix system calls. For

legacy codes, a buffering interface is provided through which applications can operate

on local files copied from the Legion objects and the changes are copied back. Another

method is to use a modified NFS daemon that translates client request to appropriate

Legion invocations.

Security for file transfer is provided through means of X.509proxies which are del-

egated to the file access mechanisms [79]. Data itself is not encrypted while in transit.

Caching and prefetching is implemented for increasing performance and to ensure relia-

bility.

SRB I/O

The Storage Resource Broker (SRB) [26] developed at the San DiegoSupercomputing

Centre (SDSC) focuses on providing a uniform and transparent interface to heterogenous

storage systems that include disks, tape archives and databases. A study of SRB as a repli-

cation mechanism is provided in the following section, however, this description focuses

on the data transport mechanism within SRB.

Data transport within SRB provides features such as paralleldata transfers for per-

forming bulk data transfer operations across geographically distributed sites. If parallel

transfer is requested by a client, the SRB server creates a number of parallel streams de-

pending on bandwidth availability and speed of the storage medium. SRB also allows

streaming data transfer and supports bulk ingest operations in which multiple files are

sent using multiple streams to a storage resource. SRB I/O cantransfer multiple files

as containers and can stage files from tape or archival storage to disk storage for faster

access.

SRB provides for strong security mechanisms supported by fine-grained access con-

trols on data. Access security is provided through credentials such as passwords or public

key and private key pair which can be stored within MCAT itself. Controlled authoriza-

tion for read access is provided through tickets issued by users who have control privileges

on data. Tickets are time-limited or use-limited. Users canalso control access privileges

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 57

Table 3.3: Comparison between various data replication mechanisms.

Project Model Topology Storage
Integra-
tion

Data
Trans-
port

Meta-
data

Update Catalog

Gfarm Centralised Hierarchy Tightly-
coupled

Closed System,
Active

Async.,
epidemic

DBMS

RLS Centralised Hierarchy Loosely-
coupled

Open User-
defined,
Passive

Async.,
on-
demand

DBMS

GDMP Centralised Hierarchy Loosely-
coupled

Open User-
defined,
Passive

Async.,
on-
demand

DBMS

SRB Decentral-
ised

Flat Intermed-
iate

Closed User-
defined,
Passive

Async.,
on-
demand

DBMS

along a collection hierarchy.

SRB also provides support for remote procedures. These are operations which can be

performed on the data within SRB without having to move it. Remote procedures include

execution of SQL queries, filtering of data and metadata extraction. This also provides for

an additional level of access control as users can specify certain datasets or collections to

be accessible only through remote procedures.

3.2.3 Data Replication and Storage

In this subsection, four of the data replication mechanismsused within Data Grids are

studied in depth and classified according to the taxonomy given in Section 3.1.3. These

were chosen not only because of their wide usage but also because of the wide variations

in design and implementation represented by them. A summaryis given in Table 3.3.

Table 3.4 encapsulates the differences between the variousreplication mechanisms on the

basis of the replication strategies that they follow. Some of the replication strategies have

been only simulated and therefore, these are explained in a separate subsection.

58 Chapter 3. A TAXONOMY OF DATA GRIDS

Grid DataFarm

Grid Datafarm (Gfarm) [199] is an architecture that couplesstorage, I/O bandwidth and

processing to provide scalable computing to process petabytes (PB) of data. The architec-

ture consists of nodes that have a large disk space (in the order of terabytes (TB)) coupled

with computing power. These nodes are connected via a high speed interconnect such as

Myrinet or Fast Ethernet. Gfarm consists of the Gfarm filesystem, process scheduler and

the parallel I/O APIs.

The Gfarm filesystem is a parallel filesystem that unifies the file addressing space over

all the nodes. It provides scalable I/O bandwidth by integrating process scheduling with

data distribution. A Gfarm file is a large file that is stored throughout the filesystem on

multiple disks as fragments. Each fragment has arbitrary length and can be stored on

any node. Individual fragments can be replicated and the replicas are managed through

Gfarm metadata. Individual fragments may be replicated andthe replicas are managed

through the filesystem metadata and replica catalog. Metadata is updated at the end of

each operation on a file. A Gfarm file is write-once, that is, ifa file is modified and saved,

then internally it is versioned and a new file is created.

Gfarm targets data-intensive applications in which the same program is executed over

different data files and where the primary task is of reading alarge body of data. The data

is split up and stored as fragments on the nodes. While executing a program, the process

scheduler dispatches it to the node that has the segment of data that the program wants to

access. If the nodes that contain the data and its replicas are under heavy CPU load, then

the filesystem creates a replica of the requested fragment onanother node and assigns the

process to it. In this way, I/O bandwidth is gained by exploiting the access locality of

data. This process can also be controlled through the Gfarm APIs. It is also possible to

access the file using a local buffer cache instead of replication.

On the whole, Gfarm is a system that is tuned for high-speed data access within a

tightly-coupled yet large-scale architecture such as clusters consisting of hundreds of

nodes. It requires high-speed interconnects between the nodes so that bandwidth-intensive

tasks such as replication do not cause performance hits. This is evident through exper-

iments carried out over clusters and wide-area testbeds [200, 218]. The scheduling in

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 59

Gfarm is at the process level and applications have to use theAPI though a system call

trapping library is provided for inter-operating with legacy applications. Gfarm targets

applications such as High Energy Physics where the data is “write-once read-many”. For

applications where the data is constantly updated, there could be problems with managing

the consistency of the replicas and the metadata though an upcoming version aims to fix

them [201].

RLS

Giggle (GIGa-scale Global Location Engine) [55] is an architectural framework for a

Replica Location Service (RLS) that maintains information about physical locations of

copies of data. The main components of RLS are the Local ReplicaCatalog (LRC) which

maps the logical representation to the physical locations and the Replica Location Index

(RLI) which indexes the catalog itself.

The actual data is represented by alogical file name (LFN)and contain some informa-

tion such as the size of the file, its creation date and any other such metadata that might

help users to identify the files that they seek. A logical file has a mapping to the actual

physical location(s) of the data file and its replicas, if any. The physical location is iden-

tified by a uniquephysical file name (PFN)which is a URL (Uniform Resource Locator)

to the data file on storage. Therefore, a LRC provides the PFN corresponding to an LFN.

The LRC also supports authenticated queries that is, information about the data is not

available in the absence of proper credentials.

A data file may be replicated across several geographical andadministrative bound-

aries and information about its replicas may be present in several replica catalogs. An

RLI creates an index of replica catalogs as a set of logical filenames and a pointer to a

replica catalog entries. Therefore, it is possible to defineseveral configurations of replica

indexes, for example a hierarchical configuration or a central, single-indexed configura-

tion or a partitioned index configuration. Some of the possible configurations are listed

by Chervenak et al. [55]. The information within an RLI is periodically updated using

soft-state mechanisms similar to those used in Globus MDS (Monitoring and Discovery

System). In fact, the structure of the replica catalog is quite similar to that of MDS [65].

RLS is aimed at replicating data that is “write once read many”. Data from scientific

60 Chapter 3. A TAXONOMY OF DATA GRIDS

instruments that needs to be distributed around the world isfalls into this category. This

data is seldom updated and therefore, strict consistency management is not required. Soft-

state management is enough for such applications. RLS is alsoa standalone replication

service that is it does not handle file transfer or data replication itself. It provides only an

index for the replicated data.

GDMP

GDMP [180, 189] is a replication manager that aims to providesecure and high-speed

file transfer services for replicating large data files and object databases. GDMP provides

point-to-point replication capabilities by utilizing thecapabilities of other Data Grid tools

such as replica catalogs and GridFTP.

GDMP is based on the publish-subscribe model, wherein the server publishes the set

of new files that are added to the replica catalog and the client can request a copy of these

after making a secure connection to the server. GDMP uses GSIas its authentication and

authorization infrastructure. Clients first register with the server and receive notifications

about new data that are available which are then requested for replication. Failure during

replication is assumed to be handled by the client. For example, if the connection fails

while replicating a set of files, the client may reconnect with the server and request a

re-transfer. The file transfer is conducted through GridFTP.

GDMP deals with object databases created by High Energy Physics experiments. A

single file may contain up to a billion (109) objects and therefore, it is advantageous for

the replication mechanisms to deal with objects rather thanfiles. Objects requested by

a site are copied to a new file at the source. This file is then transferred to the recipient

and the database at the remote end is updated to include the new objects. The file is then

deleted at the origin. In this case, replication is static aschanging Grid conditions are not

taken into account by the source site. It is left up to the client site to determine the time

and the volume of replication.

GDMP was originally conceived for the CMS experiment at the LHC in which the

data is generated at one point and has to be replicated globally. Therefore, consistency

of replicas is not a big issue as there are no updates and all the notifications are in a

single direction. The data for this experiment was in the form of files containing objects

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 61

where each object represented a collision. GDMP can interact with the object database to

replicate specific groups of objects between sites.

SRB

The purpose of the SRB is to enable the creation of shared collections through manage-

ment of consistent state information, latency management,load leveling, logical resources

usage and multiple access interfaces [26, 170]. SRB also aimsto provide a unified view of

the data files stored in disparate media and locations by providing the capability to organ-

ise them into virtual collections independent of their physical location and organization.

It provides a large number of capabilities that are not only applicable to Data Grids but

also for collection building, digital libraries and persistent archival applications.

An SRB installation follows a three-tier architecture - the bottom tier is the actual stor-

age resource, the middleware lies in between and at the top isthe Application Program-

ming Interface (API) and the Metadata CATalog (MCAT). File systems and databases are

managed asphysical storage resources (PSRs)which are then combined intological stor-

age resources (LSRs). Data items in SRB are organised within a hierarchy of collections

and sub-collections that is analogous to the UNIX filesystemhierarchy. Collections are

implemented using LSRs while the data items within a collection can be located on any

PSR. Data items within SRB collections are associated with metadata which describe sys-

tem attributes such as access information and size, and descriptive attributes which record

properties deemed important by the users. The metadata is stored within MCAT which

also records attributes of the collections and the PSRs. Attribute-based access to the data

items is made possible by searching MCAT.

The middleware is made up of the SRB Master daemon and the SRB Agent processes.

The clients authenticate to the SRB Master and the latter starts an Agent process that

processes the client requests. An SRB agent interfaces with the MCAT and the storage

resources to execute a particular request. It is possible tocreate a federation of SRB

servers by interconnecting the masters. In a federation, a server acts as a client to another

server. A client request is handed over to the appropriate server depending on the location

determined by the MCAT service.

SRB implements transparency for data access and transfer by managing data as col-

62 Chapter 3. A TAXONOMY OF DATA GRIDS

Table 3.4: Comparison between replication strategies.

Project Method Granularity Objective Func-
tion

Grid Datafarm Static File, Fragment Locality
RLS Static Datasets, File Popularity, Publi-

cation
GDMP [189] Static Datasets, File, Fr-

agment
Popularity, Publi-
cation

SRB Static Containers,
Datasets, File

Preservation,
Publication

Lamehamedi et.
al ([129]; [128])

Dynamic File Update Costs

Bell et al. [30] Dynamic File Economic
Lee and Weissman
[133]

Dynamic File Popularity

Ranganathan et al.
[175]

Dynamic File Popularity

lections which own and manage all of the information required for describing the data

independent of the underlying storage system. The collection takes care of updating and

managing consistency of the data along with other state information such as timestamps

and audit trails. Consistency is managed by providing synchronisation mechanisms that

lock stale data against access and propagates updates throughout the environment until

global consistency is achieved.

SRB is one of the most widely used Data Grid technologies in various application

domains around the world including the UK eScience (eDiaMoND), BaBar, BIRN, IVOA

and the California Digital Library [168].

Other Replication Strategies

Lamehamedi, et. al [128, 129] study replication strategiesbased on the replica sites being

arranged in different topologies such as ring, tree or hybrid. Each site or node maintains

an index of the replicas it hosts and the other locations of these replicas that it knows.

Replication of a dataset is triggered when requests for it at asite exceed some threshold.

The replication strategy places a replica at a site that minimises the total access costs

including both read and write costs for the datasets. The write cost considers the cost of

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 63

updating all the replicas after a write at one of the replicas. They show through simulation

that the best results are achieved when the replication process is carried out closest to the

users.

Bell et al. [30] present an file replication strategy based on an economic model that

optimises the selection of sites for creating replicas. Replication is triggered by the num-

ber of requests received for a dataset. Access mediators receive these requests and start

auctions to determine the cheapest replicas. A Storage Broker (SB) participates in these

auctions by offering a price at which it will sell access to a replica if it is present. If

the replica is not present at the local storage element, thenthe broker starts an auction

to replicate the requested file onto its storage if it determines that having the dataset is

economically feasible. Other SBs then bid with the lowest price that they can offer for the

file. The lowest bidder wins the auction but is paid the amountbid by the second-lowest

bidder. This is a Vickrey second price auction [209] with descending bids.

Lee and Weissman [133] present an architecture for dynamic replication within a ser-

vice Grid. The replicas are created on the basis of each site evaluating whether its perfor-

mance can be improved by requesting one more replica. The most popular services are,

therefore, most replicated as this will entail a performance boost by lessening the load

requirements on a particular replica.

Ranganathan et al. [175] present a dynamic replication strategy that creates copies

based on trade-offs between the cost and the future benefits of creating a replica. The

strategy is designed for peer-peer environments where there is a high-degree of unrelia-

bility and hence, considers a minimum number of replicas that might be required given

the probability of a node being up and the accuracy of information possessed by a site in

a peer-peer network.

3.2.4 Resource Allocation and Scheduling

This subsection deals with the study of resource allocationand scheduling strategies

within Data Grids. While Grid scheduling has been a well-researched topic, this study

is limited to only those strategies that explicitly deal with transfer of data during process-

ing. Therefore, the focus here is on features such as adapting to environments with varied

64 Chapter 3. A TAXONOMY OF DATA GRIDS

data sources and scheduling jobs in order to minimise the movement of data. Table 3.5

summarises the scheduling strategies surveyed in this section and their classification.

Table 3.5: Comparison between scheduling strategies.

Work/Project Application
Model

Scope Data
Replica-
tion

Utility
Function

Locality

Casanova, et al.
[51]

Bag-of-
Tasks

Individual Coupled Makespan Temporal

GrADS [67] Process-level Individual Decoupled Makespan Spatial
Ranganathan &
Foster [173]

Independent
Tasks

Individual Decoupled Makespan Spatial

Kim and Weiss-
man [116]

Independent
Tasks

Individual Decoupled Makespan Spatial

Takefusa, et.
al [198]

Process-level Individual Coupled Makespan Temporal

Pegasus [69] Workflows Individual Decoupled Makespan Temporal
Thain et al. [203] Independent

Tasks
Community Coupled Makespan Both

Chameleon [160] Independent
Tasks

Individual Decoupled Makespan Spatial

SPHINX [110,
111]

Workflows Community Decoupled QoS Spatial

Scheduling strategies for data-intensive applications can be distinguished on the basis

of whether they couple data movement to job submission or not. As mentioned earlier

in Section 3.1.4, in the former case, the temporal locality of data requests is exploited.

Initial work focused on reuse of cached data. An example of this direction is the work

by Casanova et al. [51] who introduce heuristics for scheduling independent tasks shar-

ing common files, on a Grid composed of interconnected clusters. Here, the strategy is

to prefer nodes within clusters to which the data has alreadybeen transferred rather than

those clusters where the data is not present. The source of the data is considered to be the

client node, i.e., the machine which submits the jobs to the Grid. Later efforts looked at

extending this to data replication where copies of the data are maintained over a longer

term to benefit requests coming from future job submissions.Takefusa et al. [198] have

simulated job scheduling and data replication policies forcentral and tier model organi-

zation of Data Grids based on the Grid Datafarm [199] architecture. Out of the several

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 65

policies simulated, the authors establish that the combination of OwnerComputesstrat-

egy (job is executed on the resource that contains the data) for job scheduling along with

background replication policies based on number of accesses (LoadBound-Replicate) or

on the node with the maximum estimated performance (Aggressive-Replication) provides

the minimum execution time for a job.

Similar in intent, Thain et al. [203] describe a means of creating I/O communities

which are groups of CPU resources such as Condor pools clustered around a storage re-

source. The storage appliance satisfies the data requirements for jobs that are executed

on both the processes within and outside the community. The scheduling strategy in this

work allows for both the data to be staged to a community wherethe job is executed and

the job to migrate to a community where the data required is already staged. The deci-

sion is made by the user after comparing the overheads of either staging the application

or replicating the data. This is different to the policies previously mentioned wherein

the replication process is based on heuristics and requiresno user intervention. Again,

improving temporal locality of data by replicating it within a community improves the

performance. Later, this section looks at another coupled strategy proposed by Phan et al.

[162] that uses Genetic Algorithms as a scheduling heuristic.

Strategies that decouple job submission from data movementattempt to reduce the

data transfer time either by scheduling the job close to or atthe source of the data, or by

accessing the data from a replica site which is closest to thesite of computation. Here,

the term “close” refers to a site with minimum transfer time.Ranganathan and Foster

[173] propose a decoupled scheduling architecture for dataintensive applications which

consists of 3 components: the External Scheduler (ES) that decides to which node the

jobs must be submitted, the Local Scheduler (LS) on each nodethat decides the priority

of the jobs arriving at that node and the Dataset Scheduler (DS) that tracks the popularity

of the datasets and decides which datasets to replicate or delete. Through simulation, they

evaluate combinations of 4 job scheduling algorithms for the ES and 3 replication algo-

rithms for the DS. The results show that the worst performance is given by executing a job

at the source of data in the absence of replication. This is because a few sites which host

the data are overloaded in this case. The best performance isgiven by same job schedul-

ing strategy but with data replication. A similar strategy is proposed in Chameleon [160]

66 Chapter 3. A TAXONOMY OF DATA GRIDS

wherein a site on which the data has already been replicated is preferred for submitting a

job over one where the data is not present.

Most of the strategies studied try to reduce themakespanor the Minimum Completion

Time (MCT) of the task which is defined as the difference between the time when the job

was submitted to a computational resource and the time it completed. Makespan also in-

cludes the time taken to transfer the data to the point of computation if that is allowed by

the scheduling strategy. Takefusa et al. [198] and Grid Application Development Software

(GrADS) project [67] are makespan schedulers that operate at the system process level.

Scheduling within the latter is carried out in three phases:before the execution, there is

an initial matching of an application’s requirements to available resources based on its

performance model and this is calledlaunch-time scheduling; then, the initial schedule is

modified during the execution to take into account dynamic changes in the system avail-

ability which is calledrescheduling; finally, the co-ordination of all schedules is done

throughmeta-scheduling. Contracts [211] are formed to ensure guaranteed execution

performance. The mapping and search procedure presented byDail et al. [66] forms Can-

didate Machine Groups (CMG) consisting of available resources which are then pruned

to yield one suitable group per application. The mapper thenmaps the application data

to physical location for this group. Therefore, spatial locality is primarily exploited. The

scheduler is tightly integrated into the application and works at the process level. How-

ever, the algorithms are themselves independent of the application. Recent work however

has suggested extending the GrADS scheduling concept to workflow applications [61].

However, the treatment of data still remains the same.

Casanova et al. [51] extend three heuristics for reducing makespan —Min-Min, Max-

Min andSufferagethat were introduced by Maheswaran et al. [142] — to considerinput

and output data transfer times. Min-Min assigns tasks with the least makespan to those

nodes which will execute them the fastest whereas Max-Min assigns tasks with maximum

makespan to fastest executing nodes. Sufferage assigns tasks on the basis of how much

they would “suffer” if they are not assigned to a particular node. This “sufferage” value

is computed as the difference between the best MCT for a task ona particular node and

the second-best MCT on another node. Tasks with higher sufferage values receive more

priority. The authors introduce another heuristic,XSufferage, which is an extended version

3.2. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS 67

of Sufferage that takes into account file locality before scheduling jobs by considering

MCT on the cluster level. Within XSufferage, a job is scheduled to a cluster if the file

required for the job has been previously transferred to any node within the cluster.

Kim and Weissman [116] introduce a Genetic Algorithm (GA) based scheduler for

reducing makespan of Data Grid applications decomposable into independent tasks. The

scheduler targets an application model wherein a large dataset is split into multiple smaller

datasets and these are then processed in parallel on multiple “virtual sites”, where a virtual

site is considered to be a collection of compute resources and data servers. The solution

to the scheduling problem is represented as a chromosome in which each gene represents

a task allocated to a site. Each sub-gene is associated with avalue that represents the

fraction of a dataset assigned to the site and the whole gene is associated with a value

denoting capability of the site given the fraction of the datasets assigned, the time taken to

transfer these fractions and the execution time. The chromosomes are mutated to form the

next generation of chromosomes. At the end of an iteration, the chromosomes are ranked

according to an objective function and the iteration stops at a predefined condition. Since

the objective of the algorithm is to reduce the completion time, the iterations tend to favour

those tasks in which the data is processed close to or at the point of computation thereby

exploiting the spatial locality of datasets. Phan et al. [162] apply a similar GA based

strategy, but in their case, data movement is coupled to job submission. The chromosome

that they adopt represents job ordering, assignments of jobs to compute nodes and the

assignment of data to replica locations. At the end of a specified number of iterations

(100 in this case), the GA converges to a near-optimal solution that gives a job order

queue, job assignments and data assignments that minimize makespan.

While the strategies before have concentrated on independent tasks or BoT model of

Grid applications, Pegasus [69] concentrates on reducing makespan for workflow-based

applications. The strategy reduces anabstract workflowthat contains the order of exe-

cution of components into aconcrete workflowwhere the component is turned into an

executable job and the locations of the computational resources and the data are speci-

fied. The abstract workflow goes through a process ofreductionwhere the components

whose outputs have already been generated and entered into aReplica Location Service

are removed from the workflow and substituted with the physical location of the products.

68 Chapter 3. A TAXONOMY OF DATA GRIDS

The emphasis is therefore on the reuse of already produced data products. The planning

process selects a source of data at random, that is, neither the temporal nor the spatial

locality is exploited.

Other projects aim to achieve different scheduling objectives such as achieving a spe-

cific QoS demanded by the application. SPHINX (Scheduling inParallel for a Heteroge-

neous Independent NetworX) [110] is one such middleware project for scheduling data-

intensive applications on the Grid. Scheduling within SPHINX is based on a client-server

framework in which a scheduling client within a VO submits a meta-job as a Directed

Acyclic Graph (DAG) to one of the scheduling servers for the VO along with QoS re-

quirements such as number of CPUs required and deadline of execution. QoS privileges

that a user enjoys may vary with the groups he or she belongs to. The server is allocated

a portion of the VO resources and in turn, it reserves some of these for the job submitted

by the client based on the allocated QoS for the user and sendsthe client an estimate of

the completion time. The server also reduces the DAG by removing tasks whose out-

puts are already present. If the client accepts the completion time, then the server begins

execution of the reduced DAG. The scheduling strategy in SPHINX [111] considers VO

policies as a four dimensional space with the resource provider, resource properties, user

and time forming each of the dimensions. Policies are expressed in terms of quotas which

are tuples formed by values of each dimension.The optimal resource allocation for a user

request is provided by a linear programming solution which minimizes the usage of the

user quotas on the various resources.

3.3 Discussion and Summary

Figures 3.10 – 3.14 pictorially represent the mapping of thesystems that were analysed in

Section 3.2 to the taxonomy. Each of the boxes at the “leaves”of the taxonomy “branches”

contains those systems that exhibit the property at the leaf. A box containing “(All)”

implies that all the systems studied satisfy the property given by the corresponding leaf.

From the figures it can be seen that the taxonomy is shown to be complete with respect to

the systems studied as each of them can be fully described by the categories within this

taxonomy.

3.3. DISCUSSION AND SUMMARY 69

Managed

Monadic

Autonomic

Stable

Transient

Reputation-based

Hybrid

Interdomain

Intradomain

Economic

Regulated

Collaborative

Management

Scope

Model
Federation

Hierarchical

Organization
Virtual

Sources
Data

Taxonomy
Organization
Data Grid

LCG, EGEE, PPDG,GridPP,BADG

BIRN, BioGrid, ESG,UK eScience, IVOA

NEESGrid

(All)

NEESGrid

(All except NEESGrid)

(All)

EGEE, UK eScience

(All except EGEE,UK eScience)

Figure 3.10: Mapping of Data Grid Organization Taxonomy to Data Grid Projects.

Figure 3.10 shows the organizational taxonomy annotated with the Data Grid projects

that were studied in Section 3.2.1. As can be seen from the figure, current scientific Data

Grids mostly follow the hierarchical or the federated models of organization because the

data sources are few and well-established. These data sources are generally mass storage

systems from which data is transferred out as files or datasets to other repositories. From

a social point of view, such Data Grids are formed by establishing collaborations between

researchers from the same domain. In such cases, any new participants willing to join or

contribute have to be part of the particular scientific community to be inducted into the

collaboration.

The mapping of various Data Grid transport mechanisms studied in Section 3.2.2 to

the proposed taxonomy is shown in Figure 3.11. The requirement to transfer large datasets

has led to the development of high-speed, low latency transfer protocols such as GridFTP

which is rapidly becoming the default transfer protocol forall Data Grid projects. While

FTP is also used within certain projects for data with lessersize and security constraints,

and SRB I/O is applicable in any SRB installation, IBP and Kangaroo are not deployed in

existing Data Grids. This is due to the fact that the latter are research projects rather than

products and do not meet all requirements of a Data Grid environment.

Figures 3.12 and 3.13 show mapping of the data replication systems covered in Sec-

70 Chapter 3. A TAXONOMY OF DATA GRIDS

Unencrypted

SSL

Fine-grained

Coarse-grained

Passwords

Cryptographic Keys

Encryption

Authorization

Bulk transfers

Compressed

Stream

Block

Cached Transfers

Resume Transmission

Restart Transmission

Authentication

File I/O mechanism

Transfer Protocol

Overlay NetworkFunction

Security

Mode
Transfer

Tolerance
Fault

Taxonomy
Data Transport

GASS, Legion, SRB

IBP, Kangaroo

FTP, GridFTP

(All Others)

IBP, FTP

SFTP, GridFTP, SRB

(All Others)

(All Others)

SRB

FTP, SFTP, SRB

GridFTP

GASS, IBP, Kangaroo, Legion

(All)

GASS

FTP, SFTP, GridFTP

SRB

Figure 3.11: Mapping of Data Transport Taxonomy to Various Projects.

Passive

Active

User-defined

System

On-demand

Epidemic

Centralized

Decentralized

DBMS

Hash-based

Tree

Synchronous

Asynchronous

Attributes

Closed Protocols

Open Protocols

Hierarchical

Flat

Hybrid

Loosely-coupled

Intermediate

Tightly-coupled

Model

Metadata

Topology

Type
Update

Propogation
Update

Organization
Catalog

Protocols
Transfer

Integration
Storage

Taxonomy
Replica Architecture

Gfarm, RLS, GDMP

SRB

Gfarm, GDMP, RLS

SRB

Gfarm

SRB

RLS, GDMP

RLS, GDMP

Gfarm, SRB

Gfarm

SRB, GDMP, RLS

Gfarm

SRB, GDMP, RLS

Gfarm

SRB, GDMP, RLS

Gfarm, SRB, GDMP, RLS

Figure 3.12: Mapping of Data Replication Architecture Taxonomy to Various Systems.

3.3. DISCUSSION AND SUMMARY 71

Publication

Preservation

Locality

Popularity

Update costs

Economic

Container

Dataset

Fragment

File

Dynamic

Static

Granularity

Method

Function
Objective

Taxonomy
Replication Strategy

SRB, Gfarm, RLS, GDMP

Lamehamedi, Bell, Lee, Ranganathan

SRB

SRB, RLS, GDMP

(All)

Gfarm, GDMP

Gfarm

RLS, GDMP, Lee, Ranganathan

Lamehamedi

Bell

SRB

RLS, GDMP, SRB

Figure 3.13: Mapping of Data Replication Strategy Taxonomy to Various Systems.

tions 3.2.3 to the replica architecture and strategy taxonomy. The hierarchical model of

the HEP experiments in Figure 3.10 has motivated the development of tree-structured

replication mechanisms that are designed to be top-down in terms of organization and

data propagation. Many of the projects that have followed the federation model have used

SRB which offers more flexibility in the organization model ofreplica sites. SRB is also

used by many HEP experiments such as Belle and BaBar but configured as a hierarchy of

sites. Currently massive datasets are being replicated statically by project administrators

in select locations for all the projects, and intelligent and dynamic replication strategies

have not yet found a place in production Data Grids. The static replication strategy is

guided by the objective of increasing locality of datasets.

Figure 3.14 maps the Data Grid scheduling efforts discussedin the previous section

to the scheduling taxonomy. It can be inferred that almost all of these efforts have con-

centrated on reducing the makespan of the schedule. Mostly,the algorithms have been

developed to take care of individual jobs such as those submitted to job queueing sys-

tems. This corresponds with traditional workloads in scientific domains such as High

Energy Physics that consist of batch submission of analysisjobs.

However, the maturing of Grid services and Application Programming Interfaces (APIs)

is bringing about data-intensive Grid applications that work at the level of aggregated

tasks/jobs. These applications also require to satisfy more sophisticated objectives than

72 Chapter 3. A TAXONOMY OF DATA GRIDS

Spatial

Temporal

Quality of Service

Profit

Load balancing

Makespan

Decoupled

Coupled

Community-based

Individual

Bag of Tasks

Workflows

Process-Oriented

Independent Tasks

Locality

Scope

Function
Utility

Replication
Data

Model
Application

Taxonomy
Scheduling

GrADS, Takefusa

Ranganathan, Kim, Thain, Chameleon

Casanova

Pegasus, SPHINX

(All except Thain, SPHINX)

Thain, SPHINX

Casanova, Takefusa, Thain

GrADS, Ranganathan, Kim, Pegasus,

Chameleon, SPHINX

(All)

SPHINX

Casanova, Takefusa, Thain, Pegasus

GrADS, Ranganathan, Kim, Thain,

Chameleon, SPHINX

Figure 3.14: Mapping of Resource Allocation and Scheduling Taxonomy to Various Sys-
tems.

simple makespan reduction. The next chapter presents a software framework called a

resource broker that allows users to create data-intensiveGrid applications without know-

ing the underlying details of Grid services. The resource broker translates application

requirements to tasks that are then carried out by invoking the appropriate Grid services.

The broker also allows creation of schedulers with varied objectives such as deadline and

budget constrained scheduling of applications. A case study involving the scheduling of

a data-intensive High Energy Physics applications is also presented to illustrate the utility

of the broker.

Chapter 4

A Grid Resource Broker for

Data-Intensive Applications

This chapter presents the design and implementation of the Gridbus Grid resource broker

for distributed data-intensive applications. It first discusses the motivation for developing

a resource broker and the requirements that need to be satisfied by the broker, especially

for distributed data-intensive applications. Then, it discusses the architecture and design

of the broker in detail. Next, the implementation of the concepts within the design is

illustrated with several examples. The Gridbus broker is then compared to other Grid

brokers on the basis of several properties. Finally, this chapter presents a case study

involving a High Energy Physics (HEP) application called the Belle Analysis Software

Framework (BASF) deployed on resources around Australia, to illustrate the usage of the

broker for distributed data-intensive scheduling.

4.1 Resource Brokers: Challenges

The capabilities that need to be provided in order to realisea Grid environment include:

uniform authentication and authorisation; resource management and job submission; large-

scale data management and transfer; and resource allocation and scheduling. Software

tools and services that provide these capabilities are collectively calledGrid middleware,

and mediate between users and the underlying Grid fabric consisting of heterogeneous

73

74 Chapter 4. A GRID RESOURCE BROKER

computing and storage resources connected by networks of varying capabilities. Fig-

ure 4.1 shows the evolution of Grid application developmentusing Grid middleware.

Distributed Resources

Application Logic and
Load Balancing

Core Grid Middleware

(a)

Distributed Resources

Application Logic

Programming Libraries
Application Schedulers

Core Grid Middleware

(b)

Distributed Resources

Applications

Core Grid Middleware

Resource Brokers

(c)

Figure 4.1: Evolution of application development on Grids.(a) Direct to core middleware
(1995-). (b) Through programming libraries (1999-). (c) Using user-level middleware
(2000-).

The first set of Grid middleware aimed to present a secure and standard method of in-

vocation that abstracted the underlying heterogeneity of distributed resources. Thesecore

grid middlewaresuch as Globus [83] and Legion [54] (Figure 4.1(a)) providedservices

for performing low-level Grid functions such as data access, job submission and authori-

sation. Some of the early Grid applications directly invoked the functionalities presented

by thesecore middlewarethrough their APIs. However, they were still too complex and

low-level to become popular for general application development. These were followed

by programming libraries such as NetSolve [21], Ninf [151],Cactus [11] and GrADS [31]

(Figure 4.1(b)) that provided a software environment to create applications accessing dis-

tributed services in a transparent fashion. While these hid the problems of having to deal

with varying Grid conditions from the user, significant effort was required to develop

schedulers and task managers for each application. Projects such as AppLeS (Application

Level Schedulers) [32] produced some of the early work in this regard. The next step was

to move the scheduling algorithms to a generic framework that also provided capabili-

ties such as resource selection, job monitoring and data access to any application. Such

frameworks are calledresource brokers(Figure 4.1(c)) and some examples of these are

Nimrod/G [43], AppLeS Parameter Sweep Template (APST) [52], Condor-G [91] and the

Gridbus resource broker which is discussed in this thesis.

4.1. RESOURCE BROKERS: CHALLENGES 75

The creation of a generic resource broker framework for a data-intensive Grid appli-

cation runs into several challenges that arise out of the diversity inherent in Grid environ-

ments. These challenges are listed as follows:

Service Heterogeneity:With the introduction of the OGSA [88], Grids have progressed

from being aggregations of heterogeneous resources to collections of stateful ser-

vices. These services can be grouped into several categories such as job submission

and monitoring, information, data management and application deployment. Stan-

dardisation of service interfaces has been a recent development in Grid computing

and is still an ongoing process. Also, rapid developments inthis field have meant

that middleware itself changes frequently, and therefore service interface changes

are the norm rather than the exception. Due to this heterogeneity of services, sup-

porting diverse service semantics is still a serious challenge.

Variety of Application Models: As was discussed in Chapter 3, Section 3.1.4, data-

intensive Grid applications tend to follow a variety of models such as bag of tasks,

workflows and independent jobs. However, these are still required to interact with

the same set of service interfaces. Enabling this interaction requires reconcilia-

tion between different application directives and constructs. Also, applications may

invoke services in a variety of ways. A brokering system mustavoid imposing con-

straints on applications as far as possible so as to not to limit its own applicability.

Multiple User Objectives: Applications and users may wish to satisfy different objec-

tives at the same time. Some possible objectives include receiving results in the

minimum possible time or within a set deadline, reducing theamount of data trans-

fer and duplication, or ensuring minimum expense for an execution or minimum

usage of allocated quota of resources. Different tasks within an application may

be associated with different objectives and different QoS (Quality of Service) re-

quirements. Examples of such requirements have been discussed in Chapter 3, Sec-

tion 3.1.4. A brokering system must, therefore, ensure thatdifferent scheduling

strategies meeting different objectives can be employed whenever required.

The discussion in previous chapters showed that one of the characteristics of a Data

Grid is the presence of replicated data that is potentially widely dispersed through-

76 Chapter 4. A GRID RESOURCE BROKER

out the network. Resource brokering for distributed data-intensive applications

should provide automatic discovery of data sources for a given dataset or a file,

scheduling of jobs with respect to location of data and late binding of data locations

to jobs so that the data resources can be assigned by taking into consideration the

current availability of the underlying network.

Interface Requirements: The interface presented to the user may take several forms.

Many scientists are comfortable with traditional command-line tools and require

that Grid tools be command line- and script-friendly as well. Web portals that allow

users to invoke Grid and application capabilities within one interface, have gained

popularity in recent times as they enable portability of working environments. Re-

cent applications are also able to seamlessly access Grid functions whenever re-

quired by invoking Grid/Web services or Grid middleware APIs. A resource broker

should be able to support as many of these interfaces as possible in order to be

useful to the largest community possible.

Infrastructural Concerns: The quintessential properties of Grid environments such as

absence of administrative control over resources, dynamicsystem availability and

high probabilities of failure have been described extensively in previous publica-

tions [23, 211]. A resource broker has to be able to handle these properties while

abstracting them as much as possible from the end-user. Thisis a significant chal-

lenge to developing any Grid middleware.

The following sections present the architecture, design and implementation of a Grid

resource broker that takes into account the challenges mentioned before in order to ab-

stract the vagaries of the environment from the end-user.

4.2 Architecture of the Gridbus Broker

The Gridbus broker follows an open and extensible object-oriented architecture designed

with the twin objectives offlexibility anddependabilityin mind. The architecture of the

Gridbus broker and its interaction with external entities is shown in Figure 4.2. The com-

ponents of the broker are grouped into three layers according to the level of abstraction

4.2. ARCHITECTURE OF THE GRIDBUS BROKER 77

Interface

Broker-node

Remote-node on the grid

Jobs

Core

Grid Information
Service

Resource
Catalog

Network
Information

Service

Scheduler

Execution

Application
interpreter

Service
Monitor

Dispatcher Job Monitor

Job status feedback

User Process

Agent
Remote Service

Query Job Status

Results /
Output

Secure access using
user’s credentials

Local Data
Local Data
Local Data

Remote Data
Eg: SRB,
GridFTP

E.g: Globus,
UNICORE,
Alchemi, Condor,
PBS

Application
Description

Service
Description

Persistence

Service
 Interpreter

Credential
interpreter

Data files

Data Catalog

Credentials

Input / Output data files

Remote-services
on the grid

Database

Services
(e.g.: Computation,

Data, and
Information)

Figure 4.2: Gridbus broker architecture and its interaction with other Grid entities.

they provide from the underlying Grid resources. Each layeris decoupled from its un-

derlying layer and their interaction is conducted through standard interfaces. The overall

flow of control is from top to bottom while any events and exceptions that occur during

execution being filtered by each layer from the bottom to the top. The layers are described

in detail as follows.

4.2.1 Interface Layer

Applications, web portals and other such interfaces external to the broker interact with the

components of the Interface layer. The inputs from the external entities are translated by

this layer to create the objects in the Core layer. Three kindsof inputs are provided to the

78 Chapter 4. A GRID RESOURCE BROKER

broker: a description of the application requirements, a list of services that can be utilised

for executing the application, and the list of credentials for accessing the services.

The application description provides details of the execution such as the location of

executables, description of task inputs including required remote data files and informa-

tion about task outputs. This description can be provided inone of the XML-based lan-

guages supported by the broker or be given programmaticallythrough the broker’s APIs.

Similarly, the set of services required for the user objectives can be provided through the

APIs or as an XML-based service description file containing information such as service

location, service type and specific details such as remote batch job submission systems

for computational services. The services can also be discovered by the broker at runtime

from remote information services such as the Grid Market Directory (GMD) [221] or Grid

Index Information Service (GIIS) [65] among others. The list of credentials is provided

in another file. File-based inputs are handled by the respective interpreters which convert

the descriptions to entities within the broker. The Application Interpreter converts the ap-

plication description file to Task objects while the ServiceInterpreter converts the service

description to Service objects. These objects are described as a part of the Core layer in

the following section.

4.2.2 Core Layer

This layer contains entities that represent the propertiesof the Grid infrastructure indepen-

dent of the middleware and the functionality of the broker itself. Therefore, it abstracts

the details of the actual interaction with the Grid resources performed by the Execution

layer. This interaction is driven by the decisions made by the functional components of

the broker present in the Core layer.

Tasks represent sets of activities to be carried out in the execution. Examples of such

activities include copying a file to the remote node, runningthe executable and storing

the output in a remote repository. Tasks are associated withinput parameters and may

have requirements that need to be fulfilled before their execution. The task specification

provides the template for creating jobs which are the actualunits of work sent to the

remote Grid resource. That is, a task is an abstraction of thework performed for executing

4.2. ARCHITECTURE OF THE GRIDBUS BROKER 79

the application. The conversion of task to jobs is scenario-dependent; for example, a

parameter sweep task is converted into a set of jobs, while a single, independent task

representing a simple application with a single function isconverted into one job.

It is possible to represent different types of services within the broker mirroring the

variety of services that are available in Grids. A computational service represents a com-

putational resource with properties such as architecture,operating system and available

job submission systems. Data services describe storage repositories and the details of the

data files stored within these. These details include attributes such as the path of the files

in the repository and the protocol used to access the files. The size and location of input

datasets for the application that are replicated on different repositories are also tracked by

the broker. Services that provide meta-information such asresource information services,

data catalogs and market directories are depicted as information services. Properties such

as bandwidth and economic cost of the network paths between the computational and data

resources are provided by network information services. Authorised access to all services

is mediated by user-supplied Credentials that are associated with one or more services.

The Service Monitor keeps track of the state of the services by querying them at regular

intervals to determine properties such as availability, current price and performance.

The Scheduler maps jobs to the appropriate services depending on the strategy em-

ployed. The Scheduler may also take into account the user’s QoS requirements such as

deadline and budget. The Scheduler makes use of the information gathered by the service

monitor to make its decisions.

4.2.3 Execution Layer

The actual task of dispatching the jobs is taken care of by theExecution layer which pro-

vides Dispatchers for various middleware. These dispatchers create middleware-specific

Agents from the jobs and are executed on the remote resources. If there are any data files

associated with the job, then the agents request them from the data repositories that have

been selected to access those files. During execution, the Job Monitor keeps track of the

job status - whether a job is queued, executing, has finished successfully or has failed on

the remote resource. On completion of job execution, the associated agent returns any

80 Chapter 4. A GRID RESOURCE BROKER

results to the broker and provides debugging information.

4.2.4 Persistence Sub-system

The persistence subsystem extends across the three layers described previously and main-

tains the state of the various entities within the broker. Itis primarily used to interface with

the database into which the state is stored at regular intervals. The persistence sub-system

satisfies two purposes: it allows for recovery in case of unexpected failure of the broker

and is also used as a medium of synchronisation among the components in the broker.

4.3 Design of the Gridbus Broker

The broker design is based on the architecture described above. Objects in the broker

can be broadly classified into two categories -entitiesandworkers. This terminology

is derived from the UML (Unified Modelling Language) Processfor Business Model-

ing [77]. Entities exist as information containers representing the properties, functions

and instantaneous states of the various architectural elements that are proxies for the ac-

tual Grid entities and constructs involved in the execution. Therefore, entities are stored

in the persistence database and are updated periodically. Workers represent the function-

ality of the broker, that is, they implement the actual logicand manipulate the entities in

order to achieve the application objectives. Therefore, workers can be considered as ac-

tive objects and the entities as passive objects. In Figure 4.2, workers are represented by

rectangles with rounded corners and entities by ovals. Examples of entities are Applica-

tionContext, Job, Service (eg: ComputeServer, DataHost, InformationService, Applica-

tionService) and DataFile. Workers within the broker include FarmingEngine, Scheduler,

Dispatcher, JobMonitor and ServiceMonitor. The followingsubsections take a closer look

at each of these objects. These are accompanied by UML 2.0 [36] diagrams that illustrate

the relationships between the various objects.

4.3. DESIGN OF THE GRIDBUS BROKER 81

Job

ApplicationContext

Qos

Task

TaskCommand

GridfileVariable

Variable

CopyCommand

ExecuteCommand

SubstituteCommand

UserCredential

ComputeServer

Figure 4.3: ApplicationContext, Tasks and Jobs.

4.3.1 Entities

Application Context and Tasks

Figure 4.3 shows the class diagram of the broker’s task structure and its associated enti-

ties. An ApplicationContext represents the attributes of a user’s application specification

such as its task specification, one or more credentials for accessing the services and QoS

requirements. The QoS requirements codify user expectations of the execution such as a

deadline by which the execution must be completed. Task specifications are represented

by Task objects. A Task is structured as a set of Commands whichdescribe the activities

to be undertaken. Three types of commands are available at present - CopyCommand,

ExecuteCommand, and SubstituteCommand. The CopyCommand instructs the broker to

copy a file from any resource in the Grid to any other resource.A number of file transfer

protocols are supported including GridFTP, GASS and SRB copy. An ExecuteCommand

specifies the application to be executed on the remote node. ASubstituteCommand is

used for substituting variables whose values are determined at runtime, in local files on

the broker. The task structure within the broker is based on and extended from the task

82 Chapter 4. A GRID RESOURCE BROKER

specification followed by Nimrod [2].

Jobs

A Job represents an instantiation of the task at the remote node and is therefore associated

with a single Task object that describes its function. A Job may be associated with one

or more Variable objects which describe its input data. A Variable is one of various

types including integer, string and float and is associated with a single value derived from

its domain. New types of variables can be introduced into thebroker by extending the

Variable class. For example, a Variable of type “gridfile” describes a file or a dataset

that is stored on a repository that is accessible through anyof the supported file transfer

protocols. A gridfile Variable is associated with a DataFileobject representing the remote

file in the broker.

A Job is also associated with a JobWrapper that represents theinterface for translat-

ing the user task specification to create an Agent that can be executed by the middleware

running on the designated compute resource. The JobWrapper is, therefore, necessarily

middleware-specific. The JobWrapper will be discussed in more detail in relation to the

Dispatcher. Other than these, the Job is associated with a set of Services and a UserCre-

dential.

In the course of its lifetime, a Job passes through many states as is outlined in Fig-

ure 4.4. A Job is an input to the Scheduler which allocates it to a set of resources

based on its requirements. The Job’s status is then changed to SCHEDULED. During

the STAGEIN state, input files and executables required for the job arestaged to the

remote resource. When this process is completed successfully and a handle is obtained,

then a job is considered to be SUBMITTED. The Job may be queued while waiting for an

available processor and its state changes to PENDING. When the Job starts its execution,

it is considered ACTIVE. After the job has finished executing,it enters the STAGEOUT

stage where its output files are transferred back to the broker. If all its outputs are received

and are as expected by the task requirements, then the job is considered as “DONE”. If

one of state transitions fails on the remote side or the job has completed on the remote

side but has not produced the expected result files, then it isconsidered FAILED and is

reset and marked for re-scheduling.

4.3. DESIGN OF THE GRIDBUS BROKER 83

Remote Execution

READY

DONE

SCHEDULED

STAGE_IN

SUBMITTED PENDING

ACTIVE

STAGE_OUT

FAILED

Job is mapped to a remote resource
Reset for re-scheduling

Job is completed successfully

Job starts running

Job is dispatched

to a remote resource

Job is queued

Job is queued

Finished copying inputs

Start copying outputs

Finished copying outputs

Start copying inputs

Job starts running

Figure 4.4: State transition diagram for a job.

Services

Services within the broker are represented in a hierarchy, shown in Figure 4.5 in which the

first tier is an abstract Service whose attributes are the Service ID and the location of the

service (hostname or URI). The next level groups the servicesinto categories depending

on the type of the service. Computational resources are represented by the abstract Com-

puteServer object, data repositories are represented by the abstract DataHost object and

information services are represented by abstract InformationService object. The lowest

tier then contains specific implementations of these services that provide the functions of

associated middleware. For example, interaction with a computational resource running

Globus middleware is implemented in the GlobusComputeServer class that extends the

84 Chapter 4. A GRID RESOURCE BROKER

abstract ComputeServer. However, it should be noted that these are not the only services

possible. The flexibility of the structure encourages the introduction of newer services as

the diversity of services increases. For example, Application Services could be introduced

to represent remotely hosted applications that can invokedusing through web services.

Service

DataHost I nformationService

AlchemiComputeServer

ForkComputeServer

GlobusComputeServer

PBSComputeServer

SGEComputeServer

ComputeServer

GridFTPDataHost

SrbDataHost

NetworkWeatherService

ReplicaCatalog

SrbMCAT

Figure 4.5: Service object hierarchy.

Each ComputeServer is associated with two active entities - aDispatcher for jobs

mapped to that service and a JobMonitor that monitors the jobs so dispatched. The abstract

ComputeServer has been implemented for different middleware and job managers such as

Globus, Alchemi [138], Unicore [78], PBS (Portable Batch Scheduler) [28], SGE (Sun

Grid Engine) [95], Condor [137] and XGrid [122]. The DataHosthas been implemented

for providing access to data stores running SRB and those enabled by GridFTP.

InformationServices are categorised depending on the typeof information they serve.

For example, ReplicaCatalog services such as Globus Replica Catalogue and SRB MCAT

provide information on different copies of required datasets that are stored on distributed

repositories. Information about network properties is gathered from the NetworkInfor-

mationService and is stored in data structures called NetworkLinks that keep track of the

changing network conditions between various resources.

4.3. DESIGN OF THE GRIDBUS BROKER 85

Credentials

UserCredential

KeyStoreCredential

LocalProxyCredential MyProxyCredential

ProxyCredential SimpleCredential

SrbGSI Credential

Figure 4.6: Credentials supported by the broker.

The Gridbus broker defines the concept of a UserCredential, representing an authenti-

cation token to access remote services. The base UserCredential object has been extended

to realise the different types of credentials that are accepted by different middleware. For

example, the LocalProxyCredential represents the Globus GSI (Grid Security Infrastruc-

ture) X.509 proxy object created on the client side. On the other hand, a SimpleCredential

is used for accessing resources that require a username and apassword for authentication

such as those enabled through SSH (Secure Shell).

The set of credentials available to the user is associated with his/her ApplicationCon-

text. Even though the credentials are passive objects, to ensure the security of users cre-

dentials, these are transient and are not saved in the persistence storage. This also means

that the user has to provide the broker with a fresh set of credentials when recovering from

a previously paused/failed run of a Grid application. Figure 4.6 shows the various types

of credentials supported by the broker.

4.3.2 Workers

GridbusFarmingEngine

The GridbusFarmingEngine is the first component to be initialised and is a container for

the other objects in the broker. It is responsible for managing the lifecycles of other

86 Chapter 4. A GRID RESOURCE BROKER

GridbusFarmingEngine

Scheduler

1

1

Dispatcher

1..*

1

BrokerStorage

1

1

JobMonitor

1..*

1

1

1

1

1..*
1..*

ServiceMonitor

1..*

1

1

1..*

IApplicationStore

<<interface>>
ICredentialStore

<<interface>>
IServiceStore

<<interface>>

AbstractApplicationParser ServiceParser CredentialParser

Figure 4.7: GridbusFarmingEngine and its associated entities.

active objects –the Scheduler, the Dispatchers, the JobMonitors and the ServiceMonitors–

from start-up to shutdown. It is also a front end to the persistent storage and therefore,

maintains the overall state of the broker by saving the stateof various passive entities.

The FarmingEngine and its associations with other entitieswithin the broker is shown in

Figure 4.7. In the figure, BrokerStorage is the frontend to thepersistence system and the

Store interfaces are used by the various interpreters to interact with the database.

ServiceMonitor

The ServiceMonitor component periodically checks the availability of the specified re-

mote services and discovers new services which may become available. The sequence of

operations in the ServiceMonitor is shown in Figure 4.8. Initially, it polls all available ser-

vices by invoking thediscoverProperties operation that is provided within each

Service entity. This operation does a search for service attributes that are specific to the

service and middleware type. If the operation is successful, the values that are so retrieved

are set within the Service object and the Monitor is notified that the service is available.

4.3. DESIGN OF THE GRIDBUS BROKER 87

discoverNetworkPropsloop

isRunningloop

ServiceMonitorBrokerStorage Service NetworkInfoService

1 : getAllServices()

2 : services
3 *[services] : discoverProperties()

4 *[services] : available

5 : getComputeServices()

6 : computeServices

7 : getDataServices()

8 : dataHosts

9 : queryNetworkLinkProperties()

10 : bandwidth, cost, etc.

11 : saveNetworkLink()

12

Figure 4.8: Service monitoring sequence diagram.

While running, the ServiceMonitor is also able to retrieve information from various Infor-

mationServices about the Grid environment. The example in Figure 4.8 shows how the

NetworkInformationService is polled for information about available bandwidth and cost

(if applicable) of the network links between various ComputeServers and DataHosts.This

information is stored into the database from where it is retrieved by the Scheduler for

making decisions.

Scheduler

The scheduling component is designed as two separate components running simultane-

ously: the Scheduler and the Dispatcher. The Scheduler matches the jobs individually to

the services and also, decides the order of execution of the jobs on the resources. Fig-

ure 4.9 shows the basic sequence of operations that is performed by the Scheduler. The

Scheduler gets the list of ready jobs from the persistent storage and a list of services, de-

pending on the strategy, that it is interested in. The mapping is an assignment of a job to

88 Chapter 4. A GRID RESOURCE BROKER

appropriate computational and data services. At the very least, the job has to be mapped

to a ComputeServer where it is to be executed. If the application specifies data files to

be processed, then the mapping also includes the assignmentof Data Hosts from which

each of the files should be accessed. The mapping is saved backto the database as an

attribute of the Job. At the same time, the state of the Job is changed from READY to

SCHEDULED.

Scheduler Looploop

for each jobloop

BrokerStorage Scheduler

1 : getJobsToSchedule()

2 : jobs

Next set of jobs

 to schedule

3 : getReadyServers()

4 : servers

5 : decideMapping()

<<create>>

6 : saveMapping()

Figure 4.9: Schedule sequence diagram.

The sequence of operations for the Dispatcher is shown in Figure 4.10. The Dispatcher

for each ComputeServer retrieves from the persistence database, the list of jobs that are in

the SCHEDULED state and have been mapped to that server. It checks the status of the

remote resource and available queue slots, if applicable. If the compute resource has an

available slot, then the Dispatcher creates a JobWrapper depending on the ComputeServer

selected for the job. The JobWrapper creates an Agent for the job that is specific to the

remote resource architecture and middleware type by converting the Task Commands to

middleware-specific invocations or system calls on the resource. It also performs job

4.3. DESIGN OF THE GRIDBUS BROKER 89

DispatcherLooploop

BrokerStorage Dispatcher ComputeServer

JobWrapper

JobWrapperFactory

1 : getJobsToDispatch()

2 : jobs

Set of jobs

 to dispatch and

server mappings

3 : submitJob() 4 : getJobWrapper()
5 : create()

<<create>>

6 7

8 : saveJob()

9
10 : commitJob()

11 : commit()

Two-phase

commit protocol

for job-submission

12 13
14 : saveJob()

15

Figure 4.10: Dispatch sequence diagram.

submission in accordance with the protocols followed by theremote middleware.

Prior to the actual submission of the job, the files required for the job such as input files

and executables are copied on to the remote resource. The files can be transferred on to the

resource by the broker (push model) or they can be requested and copied by the remote

resource (pull model). This allows a great deal of flexibility in implementing transfer

modes, three of which are illustrated in Figure 4.11. For example, many Grid resources

are behind firewalls that prohibit any connections to any port on the resource. In this

case, using the pull model has the advantage that a transfer program on the resource can

make an outbound connection through the firewall (Figure 4.11(b)). Another advantage

of the pull model is that the source of the files can be a file server that is separate from

the resource on which the broker is running thereby supporting a scenario in which the

broker is behind a firewall as well (Figure 4.11(c)). The resource manager is a middleware

component that is able to send and receive messages from the outside world through the

firewall. During this process, the Job state is changed to STAGE IN.

The JobWrapper then submits the Agent to the remote resource manager and waits for

confirmation of acceptance. This is obtained as a remote handle to the job that uniquely

identifies the job at the resource. The job state is changed toSUBMITTED and the job

90 Chapter 4. A GRID RESOURCE BROKER

Broker push(file1,..,fileN) RM

Resource

RM − Resource Manager

(a)

RM

Resource

Broker send(file1)

req(fileN)

send(fileN)

...

req(file1)

firewall

(b)

RM

Resource

Broker

File
Server

(c)

Figure 4.11: File transfer modes supported by the broker. (a) Push model of file transfer.
(b) Pull model of file transfer. (c) A file transfer using an intermediate server.

along with the handle is saved back to the persistent storage. The number of available

slots within the ComputeServer is decremented to reflect the submission and the server

also saved to the persistent storage. If the handle is not received, then the job is considered

as FAILED and is marked for re-scheduling.

The Dispatcher is also able to follow two-phase commit protocol for job submission

as described by Czajkowski et al. [63]. In the first phase, the stage-in of the files and

the job submission are performed and the dispatcher waits for an “agreement” message

from the remote resource in the form of the remote handle. After the remote handle is

received, the dispatcher sends a “commit” message to the remote resource which proceeds

with the job submission and sends an acknowledgement back. The job state is changed

to SUBMITTED only after the receipt of the acknowledgement. For resources running

middleware that do not support the two-phase protocol, the receipt of remote handle is

considered as acknowledgement of submission. In this case,if there is a network failure

before the handle is received at the broker, the job will be marked as failed though it may

have started execution at the remote node. In two phase protocol, the job is not processed

by the Grid resource until the broker sends a commit message.Thus, two-phase commits

ensure that job submission is carried out only once even in the face of network problems.

4.3. DESIGN OF THE GRIDBUS BROKER 91

Prior to passing control to the JobWrapper, the Dispatcher selects a credential from

the set of UserCredentials and binds it to the job just prior todispatching it to the remote

resource. This decision is based on the type of the middleware and the type of credential.

Alternatively, a user may specify mapping of credentials toresources. This feature aids

a user to seamlessly run jobs on different types of middleware, or even to use different

credentials for the same type of middleware, at the same time.

JobMonitor

JobMonitorloop

opt

BrokerStorage ComputeServer JobMonitor JobListener

This is any object

subscribed to

job status events1 : getJobsToMonitor()

2 : jobs

3 : queryJobStatus()

4 : status

5 : statusChangedEvent()

6

7 : updateJob()

8

Figure 4.12: Job monitoring sequence diagram.

The JobMonitor for each ComputeServer keeps track of a job’s progress after sub-

mission to that remote resource. As shown in Figure 4.12, theJobMonitor periodically

requests the list of jobs that are in the SUBMITTED state on a particular resource, from

the persistent storage. It uses the remote handle to query the status of the job using

middleware-specific functionality. The query is a blockingcall, and is therefore provided

with a timeout period after which the JobMonitor cancels thequery to proceed to the next

job. Failure to contact the job on the remote resource is not considered as a failure of the

job immediately. The JobMonitor tries to contact the job again for a set number of times

92 Chapter 4. A GRID RESOURCE BROKER

before giving up and marking the job as failed.

It is possible to implement JobListeners that will receive events from the JobMonitor

when a job status is changed. The listeners can be entities inside the broker such as an

event-driven scheduler, or outside the broker such as an applet within an application Web

portal using the Gridbus broker [96].

4.3.3 Design Considerations and Solutions

The primary aim of the Gridbus broker is to provide a generic resource discovery and

scheduling framework that abstracts the heterogeneous anddynamic nature of the Grid

infrastructure and allows users to achieve different objectives. In Section 4.1, some of the

challenges in achieving this aim are outlined. These challenges provide the requirements

against which the broker is designed. The broker meets theserequirements in the manner

outlined as follows.

Service Heterogeneity

The Gridbus broker tackles the problem of heterogeneous Grid resources and service in-

terfaces by adopting the principle ofminimal assumptions. This means that throughout

the broker, there are as few assumptions as possible about the nature of the environment

in which it operates. The relationship between the objects in the broker is generic and in-

dependent of interaction models followed by any middleware. The broker, therefore, does

not impose a particular configuration requirement on Grid resources and is thus able to use

as many resources as possible. For example, a resource running any Unix-based operating

system and with one of the supported middleware operationalwould be immediately use-

able by the broker as the latter requires only a POSIX-compliant shell environment that is

standard on such machines.

The three-layer architecture of the broker also helps in maintaining this independence.

For example, the assignment of jobs to resources is performed by the Scheduler which,

as a component of the Core layer, has a middleware-independent view of the resources,

while the Dispatcher dispatches the jobs to the resources. However, the actual interface

with the remote resource happens through the middleware-specific JobWrapper which is

4.3. DESIGN OF THE GRIDBUS BROKER 93

a part of the Execution layer.

The broker can also be made to interface to any new service or middleware by ex-

tending the appropriate classes. For example, support for anew middleware can be added

by extending the abstract ComputeServer and JobWrapper classes. The Scheduler will

then be able to immediately utilise any resource running that middleware. The interaction

with the remote middleware is also independent of the rest ofbroker. Using this method,

the broker has been extended to support a wide variety of bothcomputational and data

Grid middleware such as Globus, PBS and SRB among others [70, 117, 138]. With the

support for Alchemi [138], which is a .NET-based desktop Grid computing framework for

Windows platforms, and XGrid, a similar framework for Mac OSX, the Gridbus broker

can already schedule jobs across almost all of the platformsin use today. Similarly, new

information sources and data repositories can be supportedby extending the Information-

Service and the DataHost classes respectively.

Support for Different Application Models and User Interfaces

The components within the broker are designed to be modular and there is a clean separa-

tion on the basis of functionality. Particularly, the division between workers and entities

clearly delineates responsibilities among the componentsof the broker. Since the passive

entities are just holders of information, the logic within the workers can be changed with-

out affecting the former. It is also possible to introduce new workers that either use or

extend the existing entities in different ways or introducenew entities of their ownwith-

out structural or design changes to the rest of the broker. This loose coupling between

components provides a lot of flexibility and enables the realisation of different application

and system models [188].

The components within the Interface Layer convert the application, service and cre-

dential descriptions to broker entities and store them intothe persistence database through

the interfaces provided in the FarmingEngine. Thus, it is possible to support any form of

description by mapping it to the entities within the broker.At present, the broker supports

XML-based description of parameter sweep and bag-of-task applications and has a set of

XML-based files for describing services and credentials. These inputs can also be pro-

vided directly to the broker through its APIs. The APIs allowdirect manipulation of the

94 Chapter 4. A GRID RESOURCE BROKER

entities in the broker and thus, can be used to realise different application models.

The same mechanisms that allow the creation of application models also enable the

creation of different user interfaces for the broker. The broker can be interfaced through

command line, desktop clients or web portals. It is also possible to talk to the broker’s

persistence database directly through its APIs. This enables any component to retrieve

information about the broker entities through normal SQL (Structured Query Language)

queries. This ability is useful in scenarios such as an application Web portal requiring

information about an ongoing execution through a broker installed on a machine different

from the portal server.

Realisation of Different User Objectives

The broker allows for schedulers to be plugged-in, and henceis able to support new

scheduling algorithms and policies. This enables the broker to adapt to new user re-

quirements and objectives.The separation of the dispatch component from the scheduling

provides a lot of flexibility for implementing the scheduling logic. These two components

are also designed to be independent of the resource and middleware details. However,

a developer can still choose to create schedulers that may require certain middleware-

dependent services such as resource information services.

One of the main requirements of the design was the ability to execute generic data-

oriented applications that may require access to one or moredistributed datasets at the

same time. Data services, represented by DataHosts, have the same level of importance as

ComputeServers. Location of available replicas of a datasetcan be gathered by querying

the appropriate replica catalogs that are represented as InformationServices. Information

about current network conditions such as available bandwidth, are important when large

datasets are to be transferred. This is available through the NetworkLinks data structure as

are properties such as pricing, classes of service and availability. CopyCommands in the

Task allow the application to perform third-party (not involving the broker machine) point-

to-point data transfers on the Grid. The application interpreter allows users to specify

datasets as input parameters to their applications. In thiscase, the Interpreter will discover

all the data repositories that host these datasets and the Scheduler will select one of the

repositories for accessing the datasets. The data repositories are bound to the respective

4.3. DESIGN OF THE GRIDBUS BROKER 95

jobs just prior to their dispatch and therefore, these can bechanged at any time during

scheduling. More importantly, the combination of all thesefeatures enables the broker

to satisfy different requirements such as selecting data repositories for accessing datasets

on the basis of price and/or performance and selecting network links offering a particular

class of service. Examples of scheduling algorithms implemented in the broker that satisfy

such requirements will be discussed later in the case study and in the next chapter.

The Gridbus broker has been designed from the ground up to support the computa-

tional economy paradigm [44], and assigns costs to various services including compu-

tation, data storage, and information services. The default scheduling policy uses these

parameters to decide on an appropriate mapping strategy to schedule jobs on resources.

The design also allows the ability to plug-in a market directory [221] which offers in-

formation about various priced services, and a Grid bank [25] that manages users credit

in a Grid market. The ServiceMonitor is able to periodicallyrefresh pricing information

from market information services and therefore, provides the ability to make decisions in

a highly-volatile Grid economy. The Gridbus broker also extends the notion of computa-

tional economy to data-intensive applications and has the ability to keep up with dynamic

pricing and resource conditions.

The Gridbus broker is also able to support users who would like to use resources

spread across multiple VOs by natively managing multiple credentials for multiple re-

sources. This ability also allows users to access legacy data repositories that are not

“Grid-enabled” and follow their own authentication mechanism, rather than Grid proxies.

Infrastructure

Grid environments are dynamic in nature. As a result, transient behaviour is not only a

feature of the resources but also of the middleware itself. The broker design considers

various types of failures that may occur either on a remote resource to which a job is

submitted or on the broker machine itself during various stages of its operation. Remote

failures include failure during job submission, executionand monitoring, or retrieving

the outputs. These could be due to various reasons, such as incorrect configuration of

the remote resource, incorrect job descriptions, network problems, unavailable data files,

or usage policy restrictions on the resource. Local failures include unexpected system

96 Chapter 4. A GRID RESOURCE BROKER

crashes which lead to abrupt termination of the broker, unavailability of local input files

and invalid input parameters.

The broker applies different fault recovery methods in different cases of remote fail-

ure. A job is not considered completed until it is determinedthat each of its constituent

task activities have successfully exited. Thus, even if themiddleware on the remote re-

source has signalled a successful completion, the JobMonitor checks to see if the job has

generated required results and only then it is deemed successful. The JobMonitor may not

be able to contact an executing job in case of transient network conditions. In such cases,

the JobMonitor polls the job a set number of times, and if it isable to re-establish contact,

then check the job’s current status. In all other cases of jobfailure, the job is rescheduled

on another available resource. The current implementationof the broker focuses on ap-

plications that consist of independent tasks, and therefore it is assumed that the failure of

a job has no cascadng effect on the rest of the jobs that consitute the application.

The persistence system provides insurance against failureof the broker itself. At any

point in the execution, the state of the broker is completelydescribed by the contents of

the entities and therefore, only these need to be stored within the persistence database.

Any change in the status of a Job or a Service, as discovered bythe respective Monitors,

is immediately written back to the database so that the latter reflects the true state of the

broker. Workers have no state of their own and hence, can be resumed from the point at

which they failed by reading the entities from the persistent storage.

The broker tracks variations in resource availability by monitoring resource perfor-

mance locally. Nothing is required to be installed at the remote resources and dependen-

cies on metrics provided by the middleware are avoided by default. Thus, the broker is

able to compare resources in a heterogeneous environment based on metrics that are inde-

pendent of middleware and relative to the requirements of the current execution. However,

it is to be noted there is no mechanism in the broker to inhibitusage of external perfor-

mance monitors and other services if required.

4.4. IMPLEMENTATION 97

4.4 Implementation

The Gridbus broker has been implemented in Java so that it canbe deployed in Web-

enabled environments such as Tomcat [19]-driven portals and also be used from the com-

mand line. A typical operation flow of the broker is as follows: The user describes the

application in one of the supported input formats which is used to generate the Jobs. Jobs

can be generated in different ways depending on the application model. The user’s re-

source description generates a set of services, including ComputeServers, DataHosts, and

InformationServices. The FarmingEngine starts the Scheduler, the ScheduleDispatchers,

the JobMonitors and the ServiceMonitors. The Scheduler decides on a mapping of a Job

to the appropriate Services. The ScheduleDispatcher then submits the mapped job to the

chosen computational resource. Once the job is submitted tothe mapped ComputeServer,

its remote handle is provided to the JobMonitor for that service which uses it to query

the job’s execution status. When the job is done/failed, the results are collected and job

cleanup is initiated. This cycle continues till all the jobsare scheduled and are done or

failed.

This section illustrates the interaction of the broker withexternal entities using code

samples. External input to the broker is explained using an example of composing a

parameter sweep application. Interaction with remote middleware is explained using the

example of the broker’s operation with resources Grid-enabled using Globus Toolkit 2.4.3.

The aim of this discussion is to present some of the challenges that were encountered

during implementation and how they were handled.

4.4.1 Providing Input

Many scientific studies consist of repeating the same set of tasks for different scenarios. In

computational terms, this means executing the same set of applications for different sets of

data that are generated by different parameter values. Thismodel is called the “parameter

sweep model” of computation and offers a simple, yet powerful abstraction for creating

distributed applications. A parameter sweep application can be easily converted into a set

of independent jobs that are suited for deploying in Grid computing environments where

challenges such as load volatility and long response times of individual nodes make it

98 Chapter 4. A GRID RESOURCE BROKER

difficult to adopt an application model that favours tightly-coupled components. Conse-

quently, the parameter sweep model has proved to be very popular for Grid execution, and

is therefore considered as one of the “killer applications”for Grids [1].

xpml

description

QosType

qos

deadline

budget

optimisation

∞0..

ParameterType

parameter

single

range

enumeration

∞1..

list

∞1..

file

JobRequirementsType

job-requirements

∞0..

property

TaskType

task

∞1..

CopyCommandType

copy
source

destination

ExecuteCommandType

execute
command

∞0..

arg

substitute
source

destination

Figure 4.13: XPML Schema representation.

Parameter sweep applications are described in the broker using an XML-based declar-

ative format called the eXtended Parametric Modelling Language (XPML). The XPML

structure is shown in Figure 4.13 and consists of parameters, tasks and job requirements.

An XPML parameter represents a set of values and has a name, a type and a domain from

which the values are derived. An XPML task is a codification ofthe task specification as

has been described previously in Section 4.3. XPML job requirements are conditions that

need to be satisfied before a job is executed on a resource suchas a specification of a par-

4.4. IMPLEMENTATION 99

ticular machine architecture or minimum memory, bandwidthor disk space requirements.

An example of an XPML file is shown in Figure 4.14. This input file describes a set of re-

mote files, described through theinfile parameter, provided as an input to the “wc” (word

count) command on Unix systems. The output of the “wc” command is available through

a file called “output.$jobname” where “$jobname” is a variable that has the value of the

current job-id and is substituted at runtime.

<?xml version="1.0" encoding="UTF-8"?>
<xpml xmlns="http://schemas.gridbus.org/xpml/2006/01/xpml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.gridbus.org/xpml/2006/01/xpml
xml/schemas/XPMLSchema.xsd">
<qos>

<deadline value=""/>
<budget value="789.0" />
<optimisation value="TIME_DATA" />

</qos>

<parameter name="infile" type="gridfile" domain="file">
<file protocol="srb" url="srb://db*"/>

</parameter>

<task>
<copy>

<source location="remote" file="$infile"/>
<destination location="node" file="someFileName"/>

</copy>
<execute>

<command value="wc"/>
<arg value="someFileName"/>
<arg value=" > "/>
<arg value="output"/>

</execute>
<copy>

<source location="node" file="output"/>
<destination location="local" file="output.$jobname"/>

</copy>
</task>

</xpml>

Figure 4.14: XPML Example.

While XPML is based on the Nimrod “plan” file format [2], it introduces several new

extensions on its own. These include: 1) Dynamic parameters, 2) a new “file” parameter

that aids the parametrisation of data-intensive applications, 3) XPML job-requirements

which help in narrowing down the list of resources that are useful for the application, and

4) the integration of QoS parameters within the applicationspecification itself.

100 Chapter 4. A GRID RESOURCE BROKER

A dynamicparameter type has either an undefined or an unbounded domainwhose

definition or boundary conditions respectively, have to be established at runtime. In con-

trast, astatic parameter is a variable whose domain is well-defined either as a range of

values, as a single static value or as one among a set of values. One such dynamic pa-

rameter type is “gridfile” that describes a set of files over which the application has to be

executed. This set can be described as a wild card search within a physical or a logical

directory to be resolved at runtime. In the example XPML file shown in Figure 4.14, the

section highlighted within the inner box shows the declaration of a parameter variable of

type “gridfile” namedinfile which is described as a set of files with names starting with

“db” that are stored in an SRB repository. The SRB repository/repositories from which

information such as the individual filenames and locations of the files are available, have

to be provided within the service declaration. The XPMLParser module in the broker

queries the SRB MCAT (Metadata CATalog) service to resolve the parameter values. The

parameter is later used in the “copy” section as a file to be copied to the remote node.

<resource type="compute" id="r2">
<compute domain="remote">

<remote middleware="globus">
<globus hostname="belle.cs.mu.oz.au"

jobmanager="jobmanager-fork"
version="2.4">

</globus>
</remote>

</compute>
</resource>

Figure 4.15: Example of a compute service description.

Other than XPML, the broker also supports a subset of the standard GGF JSDL (Job

Submission Description Language) v.1.0 [17] to describe a single independent job. Mul-

tiple JSDLs can be combined to create Bag-of-Task applications. Details of available

services such as location, cost and middleware type can be provided to the broker via

another XML-based file. Figure 4.15 shows a description of a compute resource that

is Grid-enabled through the Globus Toolkit version 2.4. Credentials are described in a

separate file and are bound to the services based on the middleware type.

The XPMLParser converts the application description into aset of jobs that is then

4.4. IMPLEMENTATION 101

stored into the persistence database. Similarly, the service descriptions are converted

to service objects such as ComputeServers, DataHosts and InformationServices that are

stored in the database as well. The user credentials howeverare not stored in the database

to protect against exposure to inadvertent or deliberate access by other programs.

4.4.2 Middleware Interface

As mentioned previously in Section 4.3, the ComputeServers are subclassed depending on

the type of middleware to be supported. Each of the subclasses implements middleware-

specific functions for discovering properties, submittingjobs and monitoring them. The

broker’s interaction with resources running Globus Toolkit (GT) version 2.4 is presented

as an example here. The Gridbus broker interfaces to Globus 2.4 resources through the

Java Commodity Grids (CoG) Kit [210] that provides APIs for accessing Globus services

through the Java framework.

The paragraphs that follow present and discuss code fragments relating to the imple-

mentation of three functions – resource discovery, job submission and job monitoring –

for Globus Toolkit 2.4. The code fragments only highlight those features that illustrate

the implementation of design concepts presented in the previous section. The two classes

featured here are the GlobusComputeServer and the GlobusJobWrapper. The Globus-

ComputeServer extends the abstract ComputeServer and implements the functionality for

managing a Globus resource including discovering properties and monitoring jobs. The

GlobusJobWrapper provides the functions to create a Globus-specific job and submit it to

the remote resource.

Figure 4.16 shows a fragment ofService.discoverProperties() as imple-

mented in the GlobusComputeServer class. The ServiceMonitor (described in Section 4.3

) invokes this function on all the Service objects. In the case of Globus, the first verifi-

cation is whether the compute resource is alive and if so, is the provided UserCredential

valid for accessing it. Failure of this verification means the resource is unusable as either

the resource is not reachable or the user does not have the proper credentials for access-

ing it. Next, the Grid Resource Information Service (GRIS) on the remote resource is

queried to obtain resource attributes which are later set within the ComputeServer object.

102 Chapter 4. A GRID RESOURCE BROKER

/**
* Checks if the compute server is up, and sets all its attributes
* @return true if the properties have been discovered
*/
protected booleandiscoverProperties(UserCredential uc) {

try {
ProxyCredential pc = (ProxyCredential)uc;
// Check if server is alive and the user can access it
if (!checkPing(pc.getProxy())) {

logger.info("Could not ping " + this.getHostname());
return false;

}
// Building the query string
String filter = "(&(objectclass=MdsHost)(Mds-Host-hn="+this.getHostname()+"))";
// Querying the remote Globus Resource Information service
NamingEnumeration results=MDSUtil.search("ldap://"+this.getHostname()+":2135",

filter, HOST ATTRIBUTES);
if(results==null) {

logger.error("setValues() - Error in accessing MDS!!" ,null);
} else{

while(results.hasMore()) {
// Set the attributes in GlobusComputeServer

.

.
}

}
return true;

}

Figure 4.16: The implementation ofService.discoverProperties() in
GlobusComputeServer.

In the case of misconfigured GRIS services, it is possible thatthis query may block until

its timeout expires or may fail altogether. However, the resource itself is not considered

failed by the broker. The attributes are set to default values in the exception handler (not

shown in Figure 4.16) and the resource is still considered alive.

Figure 4.17 shows a fragment of the implementation of the JobWrapper interface for

Globus resources. The fragment shown in Figure 4.17 shows the workflow for a Globus

job submission and also, the implementation of the two phasecommit protocol for Globus.

The first phase of job submission is represented byexecute() function and the sec-

ond phase by thecommit() function. On the invocation of theexecute() function,

the JobWrapper creates the executable Agent for remote submission. Since Globus 2.4

is used to interface with resources running Unix and Unix-like (e.g. Solaris, HP-UX,

AIX, Linux, etc.) operating systems, the GlobusJobWrapper creates a generic POSIX

standards-compliant shell script that is supported by all Unix systems. The task com-

mands are translated into Unix system commands within the script. For example, the

4.4. IMPLEMENTATION 103

public classGlobusJobWrapper extendsJobWrapper {
...............
/** The 2-phase commit for GT2 has the following steps:

* phase 1: Entry point: execute()*/
protected voidexecute(Job job) throws Exception {

/* 1. Create RSL and job shell script.*/
GramAttributes rsl = newGramAttributes();
...............
/*a) Translate Task Commands to Job Script commands

*b) Set attributes within the Job RSL */
...............
rsl.setExecutable(shellFileOnStagingServer);
...............
rsl.set("twoPhase","yes");

/* 2. stageIn input files to an intermediate server*/
stageIn(job);

/* 3. Request Gram Job using RSL, get the job handle and set it in the job */
GramJob gramJob = newGramJob(rsl);
gramJob.setCredentials(proxy);
try {

gramJob.request(contactString, true);
} catch(WaitingForCommitException e) {
/* 4. Return: remote handle for job*/

job.setHandle(gramJob.getIDAsString());
...............

}

/** phase 2: Entry point: commit()*/
protected voidcommit(Job job) throws JobCommitException {

try {
/* Send a commit-request signal to GRAM, to start actual execution */
ProxyCredential pc = (ProxyCredential) job.getUserCredential();
GSSCredential proxy = pc.getProxy();
GramJob gramJob = newGramJob(proxy, "");
gramJob.setID(job.getHandle());
gramJob.signal(GramJob.SIGNAL COMMIT REQUEST);
/* Throw exception in case of failure*/

...............
}

Figure 4.17: The implementation ofGlobusJobWrapper.

Execute Command translates to an invocation of an executablealready provided by the

remote system or by the user. In the first case, the absolute path of the executable is ei-

ther discovered from the remote system path or provided by the user in the application

description or obtained from a remote application information service such as Grid Mar-

ket Directory. In the second case, the executable itself is provided by the user for which

the broker sets the relative path in the shell script. Dependencies on resource configura-

tions with particular system library and shell interpreterversions is avoided by using only

standard Unix system and shell commands.

After the creation of the script, the job itself is encoded asa Globus RSL (Resource

Specification Language) [83] specification. The Globus RSL allows different job at-

104 Chapter 4. A GRID RESOURCE BROKER

tributes to be provided including the location of the executable, minimum resource re-

quirements such as memory, and number of CPUs, and the preferred queue to which the

job may be submitted. The Globus RSL also supports the pull model of file transfer.

Therefore, it is possible to encode the location of the inputfiles to be staged, in the RSL

which will be parsed by the Globus Gatekeeper running on the remote node to stage-in

the required files onto the resource. The location is encodedas a GASS (Globus Access

to Secondary Storage) URL and hence, this also requires that there be a GASS server run-

ning on the machine where the input files are stored. Newer version of the RSL supplied

with Globus version 4.0 supports file transfers from GridFTPservers which are better

suited for transferring large-sized datasets. In a similarfashion, RSL also offers the abil-

ity to specify files that need to be transferred out of the resource on completion of the

execution. After the required RSL attributes are set (through the Java CoG helper class),

aGramJob is created which is then submitted in batch mode to the remoteresource. If

the request is successful, a string uniquely identifying the job on the remote resource is

obtained. This is set as the handle of the job.

As an aside, it should be mentioned that Globus allows both batch and interactive job

submission. In the latter mode, acallback handleris returned to the client. This can be

used to keep track of the remote job. However, a temporary network failure between the

client and the resource would not only mean the loss of the callback handler but also along

with it, loss of all contact with the job. Therefore, the interactive method was considered

not robust enough to be used in the broker.

The receipt of the job handle ends the first phase of submission. But, at the remote end,

the job has not been processed yet. The ScheduleDispatcher then invokes thecommit()

function in the JobWrapper to signal the remote Gatekeeper togo ahead with the job.

Acknowledgement of this request from the Gatekeeper means that the job submission is

completed. The lifecycle of the JobWrapper comes to an end andcontrol over the job now

passes onto the JobMonitor.

The JobMonitor invokes thequeryJobStatus() function in the middleware-specific

implementation of the ComputeServer abstract class. Figure4.18 shows the implementa-

tion ofqueryJobStatus() for Globus resources. For querying, a temporary Gramjob

is created with the same handle as that was received after submitting the job. Globus it-

4.4. IMPLEMENTATION 105

public int queryJobStatus(Job job) {
int counter=3;
// Create a short-lived Globus Gram Job
// with the same handle as the job to query
GSSCredential proxy =

((ProxyCredential)job.getUserCredential()).getProxy();
GramJob gramjob = newGramJob(proxy,"");
gramjob.setID(job.getHandle());

while (counter-- > 0){
try {

// Query remote job
Gram.jobStatus(gramjob);
switch (gramjob.getStatus()){
// Handle various Globus statuses and map to broker’s Job status
.....................
.....................
caseGramJob.STATUS FAILED:

status=JobStatus.FAILED;
break;
caseGramJob.STATUS DONE:

status=JobStatus.STAGE OUT;
break;

}
}catch(GramException ge){

if (ge.getErrorCode()==GramException.ERROR CONTACTING JOB MANAGER){
if(counter!=0){

// If first attempt at contacting job is unsuccessful
// try 3 more times.
continue;

}else{
//Assume the job is completed initially

//Check the error output later.
status = JobStatus.STAGE OUT;

}
....................
....................

}
return status;

}

Figure 4.18: The implementation ofComputeServer.queryJobStatus() in
GlobusComputeServer.

self has a set of job states that are mapped to potentially different job states within the

broker because of the different state transitions within each of the systems. For example,

when the status of a Globus job (or GramJob) is “DONE”, it merely means that the ex-

ecution finished with a zero exit status on the remote resource. However, this does not

mean that the job has successfully completed. Success is determined by the broker on the

basis of whether the job has completed all of its constituenttask activities. Therefore, on

GramJob.STATUSDONE, the status of the job within the broker is set to STAGEOUT

which signals the JobMonitor to retrieve the standard output (stdout) and error (std-

err) files from the remote resource through a separate process, which are then examined

to determined the actual job completion status.

106 Chapter 4. A GRID RESOURCE BROKER

While the job is polled at regular intervals, it may complete on the remote resource

or fail in between job queries. The remote Globus Gatekeeperalso closes down the Job-

Manager responsible for the job to conserve memory and CPU usage. This means that the

next query from the JobMonitor will throw an exception as it tries to contact the closed

JobManager. In this case, the JobMonitor persists with two more attempts to rule out pos-

sibilities such as a temporary network failure. After this,it assumes that the job has had a

success or a failure at the remote node and proceeds to the stage out process to examine

the outputs. A failure to obtain the output files is considered as a failure of the job itself.

4.5 Related Work

The challenges presented in Section 4.1 have motivated the development of a large num-

ber of Grid resource brokering and application deployment systems. Examples of such

systems are Nimrod/G [43], Condor-G [91], APST [50, 52] and EU-DataGrid Broker [16]

(later succeeded by the gLite). These are chosen for detailed comparison against the Grid-

bus broker as their objectives and approaches are similar tothat of the broker. These are

compared to the broker against the manner in which they handle the challenges outlined

in Section 4.1.

4.5.1 Condor-G

Condor-G is a computational management system that allows users to manage multi-

domain, heterogeneous resources running Globus [85] and Condor middleware, as if they

belong to a single domain. It combines the harnessing of resources in a single administra-

tive domain provided by Condor with the resource discovery, resource access and security

protocols provided by the Globus Toolkit. At the user side, Condor-G provides API and

command line tools to submit jobs, cancel them, query their status, and to access log files.

A new Grid Manager daemon is created for each job request which then submits the job to

the remote Globus gatekeeper that starts a new JobManager process. Condor-G provides

“execute once” semantics by using a two phase commit protocol for job submission and

completion. Fault tolerance is provided on the submission side by a persistent job queue

and on the remote side by keeping persistent state of the active job within the JobManager.

4.5. RELATED WORK 107

Jobs are executed on the remote resource within amobile sandboxthat traps system calls

issued by the task back to the originating system and are checkpointed periodically using

Condor mechanisms. This technology called Condor GlideIn effectively treats a collec-

tion of Grid resources as a Condor pool. Resource brokering is provided by matching user

requirements with information available from services such as GRIS and GIIS through the

ClassAds [172] mechanism. Condor-G is a part of many projects such as EGEE, VDT,

UK e-Science and Grid2003 among others, and is used by workflow management systems

such as Pegasus [69].

Condor-G operates in a Globus and Condor-only environment andinstalls a virtual-

ization layer at each node at runtime that traps system callsand provides checkpointing

facilities. Condor can utilise batch queueing systems such as LSF, PBS and NQE but only

through Globus GRAM protocols. Condor-G provides strong fault tolerance mechanisms

as a result of its close integration with the low-level Grid middleware. It implements the

two-phase commit protocol for Globus job submission for ensuring that the job is exe-

cuted only once. Through the GlideIn mechanism, it is able toprovide libraries that per-

form checkpointing and job migration and maintains a persistent queue to guard against

local failures.

Though Condor-G by itself does not provide any data access functions, it can inter-

face to services such as Kangaroo [202] and Stork [118] that enable it to mediate access

to remote files and manage data transfers. Condor-G allows forcreation of applications

belonging to different models such as workflows and supportsdifferent scheduling strate-

gies. However, it does not natively support resource costs and has no functions for opti-

misations based on pricing.

4.5.2 AppLeS Parameter Sweep Template (APST)

APST is an environment for scheduling and deploying large-scale parameter sweep ap-

plications (PSAs) on Grid platforms. APST provides mechanisms for deploying applica-

tions on different Grid middleware and schedulers that takeinto account PSAs with data

requirements. APST consists of two processes: the daemon, which deploys and manages

applications and the client, which is a console for the usersto enter their input. The input

108 Chapter 4. A GRID RESOURCE BROKER

is XML-based and no modification of the application is required for it to be deployed on

Grid resources. The APST Scheduler allocates resources based on several parameters in-

cluding predictions of resource performance, expected network bandwidths and historical

data. Examples of scheduling strategies include algorithms that take into account PSAs

with shared input files [51] and Divisible Load Scheduling-based algorithms [219]. The

scheduler uses a Data Manager and a Compute Manager to deploy and monitor data trans-

fers and computations respectively. These in turn use Actuators to talk to the various Grid

middleware. A Metadata Manager talks to different information sources such as Net-

work Weather Service (NWS) [217] and the Globus Monitoring and Discovery Service

(MDS) [65] and supplies the gathered data to the scheduler.

APST supports different low-level Grid middleware throughthe use of Actuators and

also allows for different scheduling algorithms to be implemented. However, it is focused

towards parameter sweep applications. APST provides the ability to specify data reposi-

tories of different types in the input file and has a separate data manager to manage data

transfers. However, it does not seem to consider the possibility of multiple sources for

any datafile other than those created by replication of the data files during the execution

of an application.

4.5.3 Nimrod/G

Nimrod/G [1, 43] is a tool for automated scheduling and execution of parameter sweep

applications on Grids. It provides a declarative parametric modelling language through

which the task specifications can be provided for an “experiment” or execution of an

application. Scheduling within Nimrod/G follows an economic model in which the re-

sources have costs associated with them and the users have toexpend their budgets in

order to execute their jobs on the resources [45]. The user can also specify Quality of

Service (QoS) requirements such as a deadline for finishing the experiment and an option

for choosing between a faster yet more expensive execution vis-a-vis a slower but cheaper

process. Architecture-wise, Nimrod/G consists of a Task Farming Engine (TFE) for man-

aging an execution, a Scheduler that talks to various information services and decides on

resource allocations, and a Dispatcher that creates Agentsand sends them to remote nodes

4.5. RELATED WORK 109

for execution. An Agent can manage more than one job at a remote site.

Nimrod/G works with UNIX-based resources enabled through Globus middleware

only. At the time of writing, Nimrod/G does not take into account location of data dur-

ing scheduling and does not have parametric representationfor an application’s data re-

quirements. It does, however, have the ability to specify data transfers from the client

node to the remote resource and back. Nimrod/G follows the computational economy

paradigm and provides four algorithms [45] -time optimisation, cost optimisation, cost-

time optimisationandconservative time optimisation- for scheduling parameter sweep

computationally-intensive applications.

4.5.4 gLite

gLite is an integrated middleware package for the EGEE project that consists of mod-

ules for security, information and management, data and jobmanagement services. Here

the focus is on the gLite’s WMS (Workload Management System) package that provides

access to resources running various middleware such as Globus, Condor and Storage

Resource Manager (SRM) [186]. gLite treats resources as Compute Elements (CE) or

Storage Elements (SEs) depending on whether they are computational or data resources

respectively. Jobs are generally non-interactive and batch oriented. The gLite Workload

Management System (WMS) handles job scheduling and resourceallocation and uses

Condor-G for job dispatch and management. The WMS accepts job requests and stores

them in its Task Queue. A Matchmaker sub-component matches job requests against

resource information stored in an Information Super Market(ISM) sub-component, us-

ing the Condor ClassAds mechanism. The WMS uses both eager scheduling (jobs are

’pushed’ to the resource) and lazy scheduling (resource ’pulls’ or requests for jobs). Data

required by a job scheduled at a CE is replicated to the nearestSE.

gLite works within a standardised Grid environment runningEGEE middleware and

has a standardised client configuration that requires external services such as R-GMA

(Relational Grid Monitoring Architecture) Information System [60]. gLite is installed

on a dedicated machine and accepts job requests from local and remote clients. Thus,

it is a centralised resource brokering system and therefore, differs considerably from the

110 Chapter 4. A GRID RESOURCE BROKER

other resource brokers which are primarily user-directed,client-focused resource broker-

ing mechanisms.

gLite automatically schedules replication of the requireddata for a job to the closest

Storage Element to the Compute Element where the job has been scheduled. But, the

locations of the data are not taken into account during the selection of Compute Element

itself. That is, gLite does not perform any optimisation forreducing the amount of data to

be transferred for an execution. gLite interfaces with an Accounting module that enables it

to keep track of usage and charge users. However, it does not provide any economy-based

scheduling of Grid applications.

4.5.5 Comparison

Table 4.1 compares the Gridbus broker and the related work discussed previously against

characteristics derived from the challenges listed at the beginning of this chapter. While

it may seem unfair to compare the other brokers against requirements that they were not

designed for, this comparison is only a discussion of how thedesign of the Gridbus broker

is different and not a measure of the applicability of the brokers to any situation.

From the table, it can be seen that the design of the Gridbus broker was motivated by

different considerations than that of the other brokers. The focus of the Gridbus broker

has been on scheduling and executing distributed data-intensive applications on poten-

tially heterogenous Grid resources. This is in contrast to Condor-G and gLite, that are

primarily job management systems, or Nimrod/G, that focuses on computationally in-

tensive parameter sweep applications. APST schedules jobsso as to reuse data that has

already been transferred but the initial location of the data is the client machine or the

machine on which the broker is executing. Also, the Gridbus broker has been designed to

enable economy-based strategies for Grid scheduling, going beyond the resource pricing

provided by Nimrod-G, by supporting services such as marketdirectories and resource

accounting. The Gridbus broker is a single user system, eachapplication execution re-

quires a different instantiation of the broker. This is different to systems such as gLite

which is a centralised resource broker that handles multiple users.

One of the design principles that differentiate the Gridbusbroker from the other re-

4.5. RELATED WORK 111

Table 4.1: Comparison of different resource brokers.
Characteristics Condor-G APST Nimrod/G gLite Gridbus
I Service Heterogeneity
a. Support for different low-

level computational mid-
dleware

Through
Globus and
Condor

Yes Through
Globus

Only
EGEE

Yes

b. Support for different Data
Grid middleware

Through
Stork

Yes No Only
EGEE

Yes

c. Equality of different service
types

No No No No Yes

II Support for Application
Models

a. Basic application model Single Job Parameter
Sweep

Parameter
Sweep

Single Job Independ-
ent Tasks

b. Internal support for work-
flows

None None None None Available

c. Allow internal entities to be
accessed through APIs

No Unknown Yes No Yes

III Realisation of Different
User Objectives

a. Job scheduling based on lo-
cation of data

No Yes No No Yes

b. Third-party data transfers Through
Stork

No No Data Repli-
cation

Yes

c. Late binding of data loca-
tions to jobs

Through
Stork and
Kangaroo

No No No Yes

d. Access to dynamic network
information

No Yes No Yes Yes

e. Resource pricing and cost-
based scheduling

No No Yes No Yes

f. Managing multiple creden-
tials across VOs

No No No No Yes

IV Fault tolerance
a. Checkpointing of jobs Yes No No Through

Condor-G
No

b. Execute-once semantics Yes No No Yes Yes
c. Local persistent store Yes Yes Yes Yes Yes
d. Dependencies on remote in-

formation services
No No Yes Yes No

112 Chapter 4. A GRID RESOURCE BROKER

source brokers is the support for different Grid middleware. Except APST, the others

work with only Globus services, or in the case of gLite, with resources running only

EGEE middleware. This decoupling in the Gridbus broker has been achieved by limiting

all middleware dependencies to the Execution layer and by not assuming the presence of

specific services or libraries on the remote resources. The benefit of this loose coupling of

the broker to low-level Grid middleware is that it can utilize a greater number and range

of resources. The object-oriented nature of the broker alsomakes it easy to support any

low-level Grid middleware, if required. For example, for compute Grid middleware, all

that is required is to extend the ComputeServer and the JobWrapper classes. However,

this approach has its disadvantages as well. As mentioned before, Condor-G is able to

provide stronger fault tolerance semantics due to its closeintegration with Globus and

because it is able to install a virtualisation layer that checkpoints jobs on the resources.

Such a feature would require the broker to assume the availability of certain libraries on

the resources.

Another distinctive design feature of the Gridbus broker isthe equality of all types of

services, whether they are compute, data or information services. That is, all the Grid ser-

vices are treated as first-class citizens. This enables the broker to achieve different kinds

of strategies such as those which give more prominence to data rather than computational

requirements. The other brokers, with the exception of APST, focus on the computational

aspect of the jobs. While these handle data in different ways -for example, Condor-G

presents the data requirements of an application to Stork tohandle while gLite simply

replicates it on demand - they do not generally have strategies to choose a specific data

repository at runtime based on current network conditions.The Gridbus broker has been

designed to provision for such requirements.

The next section describes a case study on using the Gridbus broker to create and

deploy a distributed data-intensive High Energy Physics application on Grid resources

where many of the above-mentioned features were utilised. It also illustrates how jobs

were scheduled with respect to the location of required dataand how this approach led to

better turnaround times than strategies that do not take data location into account.

4.6. A CASE STUDY IN HIGH ENERGY PHYSICS 113

4.6 A Case Study in High Energy Physics

High Energy Physics (HEP) is a fundamental science studyingmatter at the very smallest

scales. Experiments in HEP involve studying collisions between fundamental particles

and are conducted at particle accelerators that are built and manned by large collaborations

involving thousands of physicists from institutes around the world. Accelerators record

millions of collisions (also called events) per second thatare then filtered on-site to limit

data output to “interesting” events. The filtered data is then distributed to the members of

collaborations for analysis.

Computing resource requirements for HEP are increasing exponentially because of

advancements in the efficiencies of particle accelerators and the increasing size of collab-

orations. The CERN Large Hadron Collider will generate events at the rate of PetaBytes

per sec (PB/sec) which will be filtered to create a data stream of 100 MB/sec. The CMS

and ATLAS experiments have the largest collaborations among the experiments at LHC,

each consisting of 2000 members from 150 institutions from 30 countries worldwide who

have to be provided access to the data that is generated at theLHC. The CERN LHC par-

ticle accelerator is therefore, frequently cited as a justification for the need for Data Grids

in experimental high energy physics [41, 106].

4.6.1 The Belle Project

Charge-Parity (CP) violation was first observed in 1964, by studying the decays of K-

mesons. Briefly C is the symmetry operation of particle - antiparticle inversion, and P

that of space inversion. The issue today is whether the Standard Model (SM) of Physics

offers a complete description of CP violation, or, more importantly, whether new physics

is needed to explain it. Answering this question requires very detailed study of this subtle

effect.

The Belle experiment, built and operated by a collaboration of 400 researchers across

50 institutes from 10 countries, is probing CP-violation by studying the decay of the

B-mesons produced in the KEKB accelerator at the Japanese High Energy Accelerator

Research Organization (KEK) in Tsukuba. The increasing efficiencies of the KEKB ac-

celerator have led to an increase in the rate of data production from the Belle experiment.

114 Chapter 4. A GRID RESOURCE BROKER

The current experiment and simulation data set is tens of terabytes in size. While this in-

crease is extremely desirable for the study of B-meson decays, it begins to pose problems

for the processing and access of data at geographically remote institutions, such as those

within Australia. Hence, it is important for Data Grid techniques to be applied in this

experiment [216].

4.6.2 The Application Model

Figure 4.19: A histogram produced from Belle data analysis.

A typical analysis workload in the Belle experiment is split into two streams: data

and simulation. Raw data is recorded from various sensors within a detector and stored

as separate measurements or “events”. Simulated or Monte-Carlo data involves the gen-

eration of events and then detailed detector simulation. From this point on, the analysis

streams are very similar. The data is reconstructed, which involves the correlation of sen-

sor information. Data summaries are generated for ease of analysis. Adachi, et. al [4]

report that the size of raw data for each event is 35 kB which increases to 60 kB after

reconstruction. For user analyses, this is reduced to 12 kB. However, since millions of

events are recorded, the aggregate size of the data is still quite large. As an example,

within the Belle experiment, 10 TB of data summary information exists at present. These

are “skimmed” to produce subsets of the data of most interestto each physicist’s analysis.

4.6. A CASE STUDY IN HIGH ENERGY PHYSICS 115

These are around 100 GB in size for Belle users. These are then analysed to generate

plots and histograms and can then be used for statistical analysis by applying further cuts.

A histogram that is produced from data analysis is shown in Figure 4.19. For simulated

data, this process is repeated until the analysis is perfected. The simulated data can then

be used for systematic error analysis. The same analysis process is performed on data to

obtain a result, provided there are no large differences between data and simulation.

The Belle computing effort within Australia is spearheaded by groups at the University

of Melbourne and University of Sydney. This effort involvesboth generation of data from

simulation and analysis of simulated and actual event data.The former is very CPU-

intensive while the latter is both CPU and I/O-intensive. Theevent data is obtained from

the Storage Facility at KEK while the simulated data and the results of the analysis should

be made available to entire collaboration. This results in heavy network requirements for

the collaboration both into and out of Australia.

Figure 4.20: The infrastructure for the Belle Data Grid.

The computing, storage and networking requirements for theAustralian side of the

Belle collaboration have resulted in the Data Grid infrastructure shown in Figure 4.20 [127].

116 Chapter 4. A GRID RESOURCE BROKER

The storage middleware used throughout the Belle collaboration is the Storage Resource

Broker (SRB). The main SRB repository in Australia is at the Australian National Uni-

versity Storage Facility (ANUSF) which is federated with the SRB repository at KEK.

The required experimental data is downloaded from KEK to ANUSF via SRB protocols.

This data is accessed by analysis jobs which are scheduled onto the High Performance

Computing (HPC) resources around Australia. The results of the analysis are stored back

into ANUSF by the jobs. Similarly, data generated by simulation jobs is also stored back

to ANUSF. This data is then retrieved by members of the Belle collaboration at other sites

around the world. However, the export and to a certain extent, the import of large data

is limited by the expense involved in international transfers from and to Australia. Data

transfers in terabytes are still conducted through airmail[147].

The Australian HPC resources are shared between users from all educational insti-

tutions in the country belonging to several application domains. Therefore, scheduling

of Belle jobs must take into account variations in resource availability and job queueing

time due to the varying load on these resources. Data transfer requirements must also be

taken into account for analysis jobs. Specifically, data should be accessed from the storage

repository nearest to the point of computation to reduce data transfer time and network

usage. Transferred data must also be reused, if possible, bysuccessive jobs. These re-

quirements for selecting computational and data resourcesmotivate the use of a resource

broker for scheduling analysis jobs on the Grid resources. The following sections discuss

in detail the use of the Gridbus broker for scheduling Belle analysis jobs on an Australian

Grid testbed.

4.6.3 Experimental Setup

The experiment was conducted using the Belle Analysis Data Grid (BADG) [205] testbed

that was set up in Australia in collaboration with IBM. The resources in the testbed and

their configurations (circa early 2004) is shown in Figure 4.21. The testbed resources are

located in Sydney (Dept. of Physics, University of Sydney),Canberra (Australian Na-

tional University), Melbourne (School of Physics and the Dept. of Computer Science,

University of Melbourne) and Adelaide (Dept. of Computer Science, University of Ade-

4.6. A CASE STUDY IN HIGH ENERGY PHYSICS 117

laide). At the time of the experiment, all the nodes in the testbed, except for the one in

Adelaide, were connected via GrangeNet (Grid And Next Generation Network) [155].

GrangeNet is a three year program to install, develop and operate a multi-gigabit network

supporting Grid and advanced communications services across Australia. Hence, there

was a higher bandwidth between the Melbourne, Canberra and Sydney resources. Two

of these resources (Adelaide and Sydney) were effectively functioning as single proces-

sor machines as the Symmetric Multi-Processing (SMP) Linuxkernel was not running on

them.

Figure 4.21: Australian Belle Analysis Data Grid testbed.

All the resources in this testbed were Grid-enabled throughGlobus Toolkit v. 2.4.3.

Network conditions between the resources were monitored through the Network Weather

Service (NWS) [217]. An NWS sensor was started on each of the resources which re-

ported to the NWS name server located in Melbourne. An NWS activity for monitoring

bandwidth was defined at the name server within which a cliquecontaining all the re-

sources on the testbed was created. Members of the clique conduct pairwise experiments

one at a time to determine network conditions between them. Querying the name server at

any point provides the bandwidth and latency between any 2 members of the clique. Data

that was produced on one site in BADG had to be shared with the other sites. For this

purpose, a Data Catalog was set up for the Belle Data Grid by the School of Physics using

118 Chapter 4. A GRID RESOURCE BROKER

the Globus Replica Catalog (RC) mechanism [216]. The Globus RC is described in Chap-

ter 3, Section 3.2.3. The Gridbus broker itself was deployedon the Melbourne Computer

Science machine and broker agents were dispatched at runtime to the other resources for

executing jobs and initiating data transfers.

The Belle experiment uses a software framework, called the Belle AnalySis Frame-

work (BASF) [4] and written in C++ and FORTRAN, for the entire event processing work-

flow from simulation and event filtering to user analysis. Programs can be written to pro-

vide specific functionality and can be defined in scripts as modules to be loaded dynami-

cally at runtime. BASF has been extended to access data from SRB and GridFTP-enabled

data repositories through one such module, developed at theSchool of Physics [216].

This extension also enables it to access streaming data thusreducing considerably the de-

lay that is incurred before the data is completely availableon the executing node. This

application was installed prior to the execution on all the nodes of the testbed.

4.6.4 Scheduling Belle Jobs on BADG

Figure 4.22 lists the algorithm developed for scheduling Belle analysis jobs on the BADG

testbed. The “network proximity” of a compute resource to a data host is a measure of

the available bandwidth between the resources. Some of the data resources also have

computation facilities, in which case the data transfer time is assumed to be zero as the

data host and the compute resource reside at the same site. The scheduler minimises

the amount of data transfer involved for executing a job by dispatching jobs to compute

servers which are close to the source of data. A naı̈ve way of achieving this is to run the

jobs only on those machines that contain their data. But, the data hosts may not have the

best computational resources. Therefore, this algorithm considers both the computation

time for the job and the data transfer time.

The most important measure in this evaluation was the completion time of the jobs.

From multiple runs, it was determined that the Belle analysisjobs had similar computation

times even with different datasets. Therefore, the scheduler used the simple measure of

the job completion ratio - the ratio of the number of jobs completed to the number of jobs

allocated - to evaluate the performance of the computational resources. At every regular

4.6. A CASE STUDY IN HIGH ENERGY PHYSICS 119

I NITIALISATION

1. Identify characteristics, configuration, capability, and suitability of compute resources using the
Grid information services (GIS). From the task definition, obtain the data query parameters.

2. Resolve the data query parameter to obtain the list of Logical Data Files (LDFs) from the Data
Catalog

3. For each LDF, get the data sources or Data Hosts that store the LDF by querying the Data Catalog.

SCHEDULING

Repeat while there exist unprocessed jobs(This step is triggered for each scheduling event. The event
period is a function of job processing time, rescheduling overhead, resource share variation, etc.)

1. For eachcompute resource

(a) Predict and establish the job consumption rate or the available resource share through the
measure and extrapolation strategy taking into account thetime taken to process previous
jobs.

(b) Use this estimate along with its current commitment to determine expected job completion
time.

2. If any of the compute resource has jobs that are yet to be dispatched for execution
and there is variation in resource availability in the Grid,then move such jobs to the
Unassigned-Jobs-List.

3. Repeat untilall unassigned jobs are scheduled or all compute resources have reached their max-
imum job limit

(a) Select the next job from the Unassigned-Jobs-List.

(b) Identify all Data Hosts that contain the LDF associated with the job.

(c) Create a Data-ComputeResource-List for the selected job: ” For each data host, identify
a compute resource that can complete the job earliest given its current commitment, job
completion rate, and data transfer time using current available bandwidth estimates.

(d) Select a Data Host and compute resource pair with the earliest job completion time from
the Data- ComputeResource-List.

(e) If there exists such a resource pair, then assign the job to the compute resource and remove
it from the Unassigned-Jobs-List.

4. End of Scheduling Loop.

Figure 4.22: A Scheduling Algorithm for Belle Analysis jobs.

polling interval, the scheduler evaluated the progress of job completion for each compute

resource in the following manner:

rS =
JC

JQ

whererS was the job completion ratio for a particular resource,JC is the number of jobs

that were completed on that particular resource in the previous polling interval andJQ is

the number of jobs that were queued on that resource in the previous allocation.

The scheduler then calculated the average job completion ratio, RS at theN th polling

120 Chapter 4. A GRID RESOURCE BROKER

interval as:

RS = R′
S ∗ (1−

1

N
) +

rS

N

whereR′
S was the average job completion ratio for the(N − 1)th polling interval. The

averaging of the ratio provides a measure of the resource performance from the beginning

of the scheduling process and can be considered as an approximate indicator of the future

performance of that resource.

Each resource was assigned ajob limit, the maximum number of jobs that can be

allocated out of current list of jobs waiting for execution,proportional to its average job

completion ratio. The scheduler then iterates through the list of unassigned jobs one at

a time. For each job, it first selects the data host that contains the file required for the

job and then, selects a compute resource that has the highestavailable bandwidth to that

data host. If this allocation plus previously allocated jobs and current running jobs on

the resource exceeds the job limit for that resource, then the scheduler looks for the next

available nearest compute resource.

4.6.5 Evaluation

Trial Dataset

Figure 4.23: TheB0 → D∗+D∗−Ks decay chain.

For validating the broker, a simulation of a “decay chain” ofparticles has been used.

A decay chain occurs when an unstable particle decays into another and so on until a

stable particle state is reached. This is typical of the events in a particle accelerator. The

experiment consists of 2 parts, both of which involve execution over the Grid. In the

4.6. A CASE STUDY IN HIGH ENERGY PHYSICS 121

first part, 100,000 events of the decay chainB0 → D∗+D∗−Ks shown in Figure 4.23 are

simulated via distributed generation and this data is entered into the replica catalog. In

the analysis part, the replica catalog is queried for the generated data and this is analysed

over the Belle Data Grid. The histograms resulting from this analysis are then returned as

output. Here only the results of the analysis are discussed as it involved accessing remote

data.

<parameter name="INFILE" type="gridfile" domain="file" >
<file protocol="lfn"

url="lfn:/users/winton/fsimddks/fsimdata*.mdst" />
</parameter>
<job-requirements>

<property name="minmemory" value="500"/>
</job-requirements>
<task>

<copy>
<source location="local" file="ddks_ana.so" />
<destination location="node" file="ddks_ana.so" />

</copy>
<copy>

<source location="local" file="libanalyser.so" />
<destination location="node" file="libanalyser.so" />

</copy>
<copy>

<source location="local" file="libbase_analyser.so" />
<destination location="node" file="libbase_analyser.so" />

</copy>
.............................
<execute>

<command value="./runme.ddksana" />
<arg value="$INFILE" />
<arg value="$jobname" />

</execute>
<copy>

<source location="node" file="ddks-$jobname.hbook" />
<destination location="local" file="ddks-$jobname.hbook" />

</copy>
</task>

Figure 4.24: A XPML file for HEP analysis.

An XPML file describing requirements for the analysis is shown in Figure 4.24. The

parameter$INFILE describes a logical file location, listed in Globus Replica Catalog,

that can be either a directory or a collection of files. The broker resolves the logical file

location to the actual filenames and their physical locations. The XPML file also instructs

122 Chapter 4. A GRID RESOURCE BROKER

copying of user defined analysis modules and configuration files to the remote sites before

any execution is started. The main task involves executing auser-defined shell script

(runme.ddksana) at the remote site which has 2 input parameters: the full network

path to the data file and the name of the job itself. The shell script invokes BASF at the

remote site to conduct the analysis over the data file and produce histograms (*.hbook).

The histograms are then copied over to the broker host machine.

The Logical file name in this particular experiment resolvedto 100 Monte Carlo sim-

ulation data files. Therefore, the experiment set consistedof 100 jobs, each dealing with

the analysis of one data file using BASF. Each of these input data files was 30 MB in size.

The entire data set was equally distributed among the five data hosts i.e. each of them has

20 data files each. The data was also not replicated between the resources, therefore, the

dataset on each resource remained unique to it.

Results of Evaluation

Three scheduling scenarios were evaluated: (1) schedulingwith computation limited to

only those resources with data, (2) scheduling without considering location of data, and

(3) the adaptive scheduling (presented in Figure 4.22) thatoptimises computation based on

the location of data. The experiments were carried out on April 19th, 2004 between 18:00

and 23:00 AEST. At that time, the Globus gatekeeper service on the Adelaide machine

was down and so, it could not be used as a computational resource. However, it was

possible to obtain data from it through GridFTP. Hence, jobsthat depended on data hosted

on the Adelaide server were able to be executed on other machines in the second and third

strategies. A graph depicting the comparison of the total time taken for each strategy to

execute all the jobs is shown in Figure 4.25 and another comparing resource performance

for different scheduling strategies is shown in Figure 4.26.

In the first strategy (scheduling limited to resources with the data for the job), jobs

were executed only on those resources which hosted the data files related to those jobs. No

data transfers were involved in this scenario. As is displayed in the graph in Figure 4.26,

all of the resources except the one in Adelaide were able to execute 20 jobs each. The jobs

that were scheduled on that resource failed, as its computational service was unavailable.

Hence, Figure 4.25 shows the total time taken for only 80 successful jobs out of 100.

4.6. A CASE STUDY IN HIGH ENERGY PHYSICS 123

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

With Data optimisationWithout Data optimisationLimited to Resources with Data (80)

T
im

e
(in

 m
in

)

Strategy

Figure 4.25: Total time taken for each scheduling strategy.

 0

 5

 10

 15

 20

 25

 30

 35

Sydney PhysicsANU CanberraMelbourne CSMelbourne Physics

N
o.

 o
f J

ob
s

C
om

pl
et

ed

Compute Resources

Scheduling Limited to Resources with Data
Scheduling without any Data optimisation
Scheduling with Data optimisation

Figure 4.26: Comparison of resource performance under different scheduling strategies.

However, this time also includes the time taken by the scheduler to conclude that the

remaining 20 jobs have failed. In this setup, the related data was exclusively located on

that resource and hence, these jobs were not reassigned to other compute resources. Thus,

a major disadvantage of this scheduling strategy was exposed.

In the second strategy (scheduling without any data optimisation), the jobs were exe-

cuted on those nodes that have the most available computational resources. That is, there

was no optimisation based on location of data within this policy. The Adelaide server was

considered a failed resource and was not given any jobs. However, the jobs that utilised

data files hosted on this machine were executed on other resources. This strategy involves

the maximum amount of data transfer which makes it unsuitable for applications involving

large data transfers and utilising resources connected by slow networks.

124 Chapter 4. A GRID RESOURCE BROKER

The last evaluation was carried out using the adaptive scheduling algorithm presented

in Figure 4.22. In this case, as there were no multiple data hosts for the same data, the

policy was reduced to dispatching jobs to the best availablecompute resource that had the

best available bandwidth to the host for the related data. Itcan be seen from Figure 4.26

that most of the jobs that accessed data present on the Adelaide resource were scheduled

on the Melbourne Physics and CS resources because the latter had consistently higher

available bandwidth to the former. This is shown in the plot of the available bandwidth

from the University of Adelaide to other resources within the testbed measured during

the execution, given in Figure 4.27. The NWS name server was polled every scheduling

interval for the bandwidth measurements. As can be seen fromFigure 4.25, this strategy

took the least time of all three.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

A
va

ila
bl

e
B

an
dw

id
th

 (
in

 M
bp

s)

Time (in min)

Melbourne Physics
Melbourne CS

ANU Canberra
Sydney Physics

Figure 4.27: Available bandwidth from University of Adelaide to other resources in the
testbed.

4.7 Summary

While Grids provide users access to distributed resources ina secure and unified manner,

the problems of application composition for Grid environments, selection of appropriate

4.7. SUMMARY 125

resources and heterogeneity of infrastructure present significant barriers to widespread

usage of Grids for problem solving. Therefore, resource brokers have been developed

to bridge the gap between users and Grid computing environments. However, resource

brokers developed so far have either not taken into account or given less importance to

factors such as location of data, available bandwidth or cost of data transfer that come into

picture while scheduling distributed data-intensive applications on Grid resources. Such

applications are common in scientific domains where the workload consists of analysing

experimental data to produce results.

This chapter presented one such Grid resource broker that was designed with the aim

of dealing with the afore mentioned issues as well as allowing users to achieve multiple

scheduling objectives. The broker is designed as a collection of loosely-coupled compo-

nents that are assigned definite roles and interact through standard interfaces. The design

enables any of the components to be extended without affecting the rest of the broker.

This, therefore, enables creation of different application models and schedulers that are

able to achieve different objectives without design changes to the broker and allows ex-

tending the broker to support any middleware interfaces required.

The use of the broker to schedule data intensive applications is shown through a case

study of Grid-based analysis of Belle experimental data. This case study introduced an

adaptive scheduling algorithm that considered the time of data transfer along with the

time taken for computation while scheduling a job on to a compute resource. Experimen-

tal evaluation showed that this algorithm performed betterthan scheduling jobs without

regard to location of data.

The positive results from this experiment encourage further exploration into schedul-

ing distributed data-intensive applications. The next chapter presents a formal model for

this problem that takes into account both time and economic cost (expense) of job exe-

cution. This model is then applied to develop deadline and budget constrained cost and

time minimization algorithms for the scheduling problem. The broker’s ability to support

multiple objective functions is then illustrated by its usage in evaluating the performance

of these algorithms on a Grid testbed.

Chapter 5

The Scheduling Model and Cost-Aware

Algorithms

Distributed data-intensive applications commonly process datasets, which may be each

replicated on various storage repositories that are connected to each other and to the com-

putational sites through networks of varying capability. Also, the datasets are generally

large enough (of the order of GigaBytes (GB) and higher) that transferring them from

storage resources to the eventual point of execution produces a noticeable impact on the

execution time of the application. There may be costs involved in the usage of vari-

ous computational, storage and networking resources for activities such as transferring

data and executing jobs. This chapter defines the problem of scheduling distributed data-

intensive applications on to Grid resources and presents a formal resource and application

model for the problem.

The model is then applied to present an algorithm for scheduling a Bag-of-Tasks (BoT)

application on a set of geographically distributed, heterogeneous compute and data re-

sources. Each of the tasks within the application depends onmultiple datasets that may

be distributed anywhere within the Grid. The algorithm aimsto minimise either the over-

all cost or the time of execution depending on the user’s preference subject to two user-

defined constraints - the deadline by which the processing must be completed and the

overall budget for performing the computation. This algorithm is then evaluated on a real

Grid testbed through the Gridbus broker and the results of the experiments are presented.

127

128 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

5.1 The Scheduling Problem

Section 4.6 of Chapter 4 discussed the scheduling of a High Energy Physics (HEP) appli-

cation on Grid resources involving simultaneous selectionof computational and storage

resources. The jobs created for this application were data-intensive and processed one

dataset that was fetched from a remote repository if required. It was also shown how

adaptive scheduling with regard to the location of data is able to offer better performance.

This scenario motivates exploration of scheduling of data-intensive applications on

Grid resources. As discussed in Chapter 3, Section 3.2.1, HEPis only one of the scien-

tific domains that is making use of Data Grids. Other areas such as Astronomy, Climate

Modeling and BioInformatics have computational and data requirements similar to that of

HEP.

File B

File B

Resource Broker

Job

Update

QueryReply

Job Submit

Data Request

Data Transfer

File A

File A

File A

$

$

Data Host

Data Host

Data Host

Compute Resource

Update

Update

Resource Information

 Service

Reply
Query

Job Results

(1) (2)

(3)

(4)

(5)

(6)

(7)

(8)

File C

File C

Update

Compute Resource
and a Dat a Host

Data Catalog

Main Storage

Replicate

Figure 5.1: The scheduler’s perspective of a Data Grid environment.

Based on application deployment experiences and on the scenarios drawn up for users

of the production Data Grid projects such as LHC Grid [106], it is possible to arrive at

the picture of a typical Data Grid environment as shown in Fig. 5.1. This environment is

composed mainly of storage resources, ordata hosts, which store the data and compute

resources which run the jobs that execute upon the data. It ispossible that the same

resource may contain both storage and computation capabilities. For example, it could be

5.1. THE SCHEDULING PROBLEM 129

a supercomputing centre which has a Mass Storage Facility attached to it.

Initially, data generated by an experiment or through simulation may be stored at a

few masterdata hosts asdatasetsand made available to the members of the scientific

collaboration. Examples of such master repositories are the Tier 0 and Tier 1 centres in

the MONARC model for the LHC Grid (see Chapter 3, Section 3.1.1). Over the course of

time and after several user requests, the datasets may be replicated on several repositories

in the Data Grid. This replication can also occur due to the access and storage policies of

the Virtual Organisation (VO) for the collaboration that are guided by various criteria such

as minimum bandwidth, storage and computational requirements, data security and access

restrictions and data locality issues. Information about the datasets and their replicas

are registered into a Data Catalog such as the Globus Replica Catalog [208] or the SRB

Metadata Catalog [26] that can be queried by members of the collaboration.

A data-intensive computing environment can also be perceived as a real-world eco-

nomic system wherein there are producers and consumers of data distributed geograph-

ically across multiple organisations. Producers are entities which generate the data and

control its distribution via mirroring at various replica locations around the globe. The

consumers in this system would be the users or, by proxy, their applications which need

to analyse this data to produce meaningful results. The users may want to investigate

specific datasets out of a set of hundreds and thousands and may have specific applica-

tion requirements that need not be fulfilled at every computational site. In such large

collaborations, there can be a lot of pressure on the data infrastructure (i.e., network

and storage elements). The pressure becomes more acute whena nontrivial percentage

of the users are interested in the same datasets simultaneously, thus causing appearance

of “network hotspots”. Such an effect is commonly observed in the Internet and the

World Wide Web [140]. While a robust and adaptive replicationmechanism can alle-

viate some of the above problems, the same problems of data access and transfer costs

affect the effectiveness and efficiency of such a mechanism.Pricing resources to reflect

supply and demand in order to regulate their usage has been explored in previous publi-

cations [42, 154, 191, 213]. Therefore, in such an economy-based system, there are costs

or expenses associated with accessing, processing and transferring data.

On the consumer side, a scientist who wants to analyse some ofthe available datasets

130 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

specifies his requirements to the Resource Broker. These requirements may take the form

of data specifications such as date of generation, experiment type and data type; applica-

tion specifications such as a particular version; resource specifications such as architec-

ture, minimum walltime required and queue type; and Qualityof Service (QoS) specifi-

cations such as the deadline for the analysis job, the budgetavailable and preference, if

any, for the cheapest or the fastest processing according toneeds and priorities. The step-

by-step procedure for executing the analysis is shown in Figure 5.1. The Resource Broker

gathers information about the available computational resources through a resource in-

formation service (1) and about the datasets through the Data Catalog (2). Here, only

resources that meet the specifications and minimum requirements such as minimum free

memory and storage threshold are considered as suitable candidates for job execution. It

then creates the jobs according to the application description provided by the user. The

scheduler within the broker then makes decision on where to submit a job based on the

availability and cost of the computational resource, the minimisation preference and the

location, access and transfer costs of the data required forthe job (3). The job is dis-

patched to the selected remote computational resource (4) where it requests the data from

the replica location selected by the scheduler (5 & 6). Afterthe job has finished process-

ing (7), the results are sent back to the Resource Broker or another storage resource which

then updates the data catalog (8). This process is repeated until all the jobs within the set

have completed.

Chapter 3, Section 3.1.4 has classified data-intensive Grid applications as belonging to

either process-oriented, independent jobs, bag-of-tasksor workflow models. This thesis

primarily deals with applications that belong to the bag-of-tasks paradigm wherein each

application can be “decomposed” into a set of non-interdependent (or independent) tasks.

The tasks are indivisible and therefore, each task is translated into a job that is scheduled

onto a computational resource (or acompute resource) and requests datasets from the

storage resources (ordata hosts). Each of these datasets may be replicated at several

locations that are connected to each other and to the computeresources through networks

of varying capability. Therefore, there is an “explosion ofchoices” for selecting resources

to execute a job and to access the datasets it requires. The scheduler within the resource

broker has to make decisions at two levels. At the level of an individual job, the scheduling

5.2. MODEL 131

strategy has to navigate through the multitude of choices toselect a compute resource for

executing the job and a subset of data hosts such that each dataset required for the job can

be obtained from one of the data hosts in the set. This scenario is illustrated in Figure 5.2.

This is termed asmatchingor allocation of resources to jobs. The entire set of jobs must

be scheduled in such a manner that the user objectives, that is common to the entire set,

must be met. This problem therefore becomes one oforderingor assigning the set of jobs

that have already been matched to the resources previously.

...
.

Data Hosts
...

.
...

.

...
.

...
.

...
.

Compute Jobs Datasets

<<submit>> <<requires>>

<<replicated>>

f1

f2

fk
j

d1

d2

dP

Figure 5.2: Mapping Problem.

5.2 Model

5.2.1 Resource Model

A data-intensive computing environment, as described previously, can be considered to

consist of a set ofM compute resources, R = {r1, r2, . . . , rM} and a set ofP data hosts,

D = {d1, d2, . . . , dP}. Within production Grids, a compute resource is commonly a high

performance computing platform such as a cluster consisting of processing nodes that are

connected in a private local area network and are managed by abatch job submission sys-

tem hosted at the “head” or “front-end” node connected to thepublic Internet. However, it

is possible to have other types of compute resources as well as symmetric multi-processing

systems such as the testbed resources used in the HEP case study in Chapter 4.

A data hostcan be a dedicated storage resource such as a Mass Storage Facility con-

132 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

nected to the Internet. At the very least, it may be a storage device attached to a compute

resource in which case it inherits the network properties ofthe latter. It is important to

note that even in the second case, the data host is consideredas a separate entity from the

compute resource. Figure 5.3 shows a simplified data-intensive computing environment

consisting of four compute resources and an equal number of data hosts connected by

links of different bandwidths.

d2

d1

r1

r2

f
3

f
1

f
2

f
1

r4

f
3

d3

f
2

r3d4

4

8

7
3

3 66

5

4

9

Figure 5.3: A data-intensive environment.

The physical network between the resources consists of entities such as routers, swit-

ches, links and hubs. However, the model in this thesis abstracts the physical network

to consider the logical network topology wherein each compute resource is connected to

every other data host by a distinct network link as shown in Figure 5.3. This logical link

is denoted byLink(rm, dp), rm ∈ R, dp ∈ D. The bandwidth of the logical link between

two resources is the bottleneck bandwidth of the actual physical network between the

resources and is given byBW (Link(rm, dp)). This information is available from various

information sources such as the Network Weather Service [217]. The numbers alongside

the links in Figure 5.3 depict the bandwidths of the various logical links in the network.

The time taken by a compute resource to access a dataset located on the storage re-

source at the same site is limited only by the intra-site bandwidth if the storage is a sep-

arate physical machine or by the bandwidth between the hard disk and other peripherals

if the storage is on the compute machine itself. In both cases, it is considered to be an

5.2. MODEL 133

order of magnitude lower than the time taken to access a dataset through the Internet from

other sites as there is contention for bandwidth among the various sites. Therefore, for

the purpose of this study, only the bandwidth between different physical sites is taken into

account.

Data is organised in the form of datasets. A dataset can be an aggregated set of files,

a set of records or even a part of a large file. Datasets are replicated on the data hosts

by a separate replication process that follows a strategy such as one of those described in

Chapter 3, Section 3.1.3 which takes into consideration various factors such as locality of

access, load on the data host and available storage space. Information about the datasets

and their location is available through a catalog such as theStorage Resource Broker

Metadata Catalog [169].

5.2.2 Application Model

The application is composed of a set ofN jobs,J = {j1, j2, . . . , jN}, without interdepen-

dencies. Typically,N ≫M , the number of compute resources. Also, a job is the smallest

unit of computation, that is, it is not possible to divide a job into smaller sub-units. It is

also associated with a set ofK ′ datasets,F = {f1, f2, . . . , fK′}, which are distributed on

members ofD. Specifically, for a datasetfk ∈ F , Dfk
⊆ D is the set of data hosts on

whichfk is replicated and from which it is available. Also,Df1
andDf2

need not be pair-

wise disjoint for everyf1, f2 ∈ F . In other words, a data host can serve multiple datasets

at a time.

A job j ∈ J processes a subset ofF of sizeK denoted byF j. Each job requires

one processor in a compute resource for executing the job andone data host each for

accessing each of theK datasets required by the job. The compute resource and the

data hosts thus selected are collectively referred to as theresource setassociated with

the job and is denoted bySj = {Rj, Dj} whereRj ⊆ R is a singleton representing the

compute resource selected for executing the job andDj is anL-sized set of data hosts

chosen for accessing the datasets required by the job. Therefore, Rj = {r}, r ∈ R and

Dj =
⋃

Df , f ∈ F j. Since multiple datasets can be retrieved from a single datahost,

L ≤ K, the number of datasets required for the job. Figure 5.4 shows an example of such

134 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

a jobj that requires resources shown in Figure 5.3.

f
1

f
2

f
3

d2

d1

r2

r3

r4

r1

d3

d4

j

Figure 5.4: Job Model.

Job Execution Time Model

The job execution time model followed here is extended from that presented by Mah-

eswaran, et. al [142]. Consider a jobj that has been submitted for execution to a compute

resourcer. The time spent in waiting in the queue on the compute resource is denoted

by Tw(j, r) and the expected execution time of the job is given byTe(j, r). Tw increases

with increasing load on the resource. Likewise,Te is the time spent in purely computa-

tional operations and depends on the processing speed of theindividual nodes within the

compute resource. For each datasetf ∈ F j, the time required to transferf from df to r

is given by

Tt(f, df , r) = Response time(df) + Size(f)/BW (Link(df , r))

Response time(df) is the difference between the time when the request was made to df

and the time when the first byte of the datasetf is received atr. This is a measure of the

latency of the response and is therefore, an increasing function of the load on the data host.

Theestimated completion timefor the job,Tct(j), is the wallclock time taken for the job

from submission till eventual completion and is a function of these three times. Figure 5.5

shows two examples of data-intensive jobs with times involved in various stages shown

5.2. MODEL 135

along a horizontal time-axis. In this figure, for convenience, the time for transferring

f1, f2, . . . , fk is denoted byTf1
, Tf2

, . . . , Tfk
respectively.

Tw

Tf2

Tfk

Te

Tf1

...

Time

(a)

Tw

f1T

Te

f3T

fkT

f2T

...

Time

(b)

Figure 5.5: Job Execution Stages and Times (Gray areas denote overlaps between the
computation and data operations).

The impact of the transfer time of the datasets is dependent on the manner in which

the dataset is processed by the job. For example, Figure 5.5(a) shows a common scenario

in which Grid applications request and receive the requireddatasets in parallel before

starting computation. In this case,

Tct(j) = Tw(j, r) + max
f∈F j

(Tt(f, df , r)) + Te(j, r)

However, the number of simultaneous transfers on a link determines the bandwidth avail-

able for each transfer and therefore, theTt.

Figure 5.5(b) shows a more generic data processing approachin which some of the

datasets are transferred completely prior to execution andthe rest are accessed as streams

during the execution. The grey areas show the overlap of computation and communica-

tion. A restricted form of this model was applied in the case study of the Belle application

in the previous chapter where only one file was accessed as a stream during the execution

of the application. In this case, the transfer time of the streamed data is masked by the

computation time of the application. However, data access still affects the performance

of the application. If there is a latency associated with accessing the data, the application

may still have to wait until the first byte of the data is received at the compute resource.

The thesis focuses on the application models of the first type, that is, applications that

require all the datasets to be transferred to the actual compute resource (or its associated

136 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

data host) before execution. This is the most common model followed by data-intensive

applications [173]. Also, the impact of data transfer time is the highest in this model.

However, it is possible that lessons learnt from schedulingthese type of applications may

also be applicable to the other types of data-intensive applications.

Economic Cost Model

In an economy-based system, there are costs associated withthe access, transfer and pro-

cessing of data. The processing cost is levied upon by the computational service provider,

while the transfer cost comes on account of the access cost for the data host and the cost

of transferring datasets from the data host to the compute resource through the network.

The economic cost of executing the jobj on the compute resourcer is denoted by

Ce(j, r) and the cost of transferring the datasetf ∈ F j from df ∈ Df to r by Ct(f, df , r)

where

Ct(f, df , r) = Access cost(df) + Size(f)× Cost(Link(df , r))

Here,Access cost(df) is the cost of requesting a dataset which is levied by the datahost.

It can be an increasing function on either the size of the requested dataset or the load on

the data host or both. This cost regulates the size of the dataset being requested and the

load which the data host can handle.Cost(Link(df , r)) is the cost of transferring a unit

size (eg. 1 MB or GB) of the requested dataset through the network link between the

data host and the compute resource. The cost of the link may increase with the Quality

of Service (QoS) being provided by the network. For example,in a network supporting

different channels with different Quality of Services as described by Hui, et al. [109], the

channel with a higher QoS may be more expensive but the data may be transferred faster.

Hence, the file is transferred faster but at a higher expense.All traffic within a Local Area

Network (LAN) is considered to be essentially free, that is,no cost is levied upon them.

Therefore, the total execution cost for jobj, C(j) is given by

C(j) = Ce(j, r) +
∑

f∈F j

Ct(f, df , r)

The notations that have been presented till now are summarised in Table 5.1.

5.2. MODEL 137

Table 5.1: Notations.

Symbol Definition
R = {rm}

M
m=1 Set ofM compute resources

D = {dp}
P
p=1 Set ofP data hosts

Link(r, d) Logical link betweenr ∈ R andd ∈ D

BW (Link(r, d)) Available bandwidth ofLink(r, d). It is the bottleneck band-
width of the actual physical network betweenr andd

Cost(Link(r, d)) Price of moving a unit size of data (in MB or GB) through
Link(r, d)

F = {fk}
K′

k=1
Set ofK ′ datasets required by the application

Df Subset ofD on whichf is replicated
J = {jn}

N
n=1 Set ofN jobs created for the application

F j Set ofK datasets required byj ∈ J

Rj Singleton set representing the compute resource executingj ∈
J

Dj For a jobj, the set ofL data hosts from which theK datasets
are retrieved,L ≤ K

Sj Resource set associated withj ∈ J

Tw(j, r) Expected waiting time for jobj in the batch queue atr
Tt(f, df , r) Expected time for transferringf ∈ F j from df ∈ Df to r

Te(j, r) Expected execution time for jobj on resourcer
Tct(j) Expected completion time for jobj
Ce(j, r) Expected execution cost for jobj on r

Ct(f, df , r) Expected cost of transferring datasetf ∈ F j from df ∈ Df to
r ∈ Sj

C(j) Expected total cost of executingj

5.2.3 A Generic Scheduling Algorithm

The scheduling paradigm followed in this thesis is that ofofflineor batch modeschedul-

ing of a set of independent tasks [142]. (Note: Since each task is translated into a job,

tasks and jobs are used interchangeably throughout the restof this thesis). The general

problem of creating a schedule for a set of jobs to run on distributed resources is calledlist

schedulingand is considered to beNP-complete [38]. Many approximate heuristics have

been devised for this problem and a short survey of these havebeen presented by Braun,

et al. [38]. Figure 5.6 shows a general scheduling algorithmfor batch mode scheduling of

a set of jobs based on the skeleton presented by Casanova, et al. [51].

As described in Chapter 4, the resource broker is able to identify resources that meet

138 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

while there exists unsubmitted jobsdo
Update the resource performance data based on job scheduledin previous
intervals
Update network data between resources based on current conditions
foreachunsubmitted jobdo

Matchthe job to a resource set to satisfy the objective function atthe job
level
Order the jobs depending on the overall objective

end
repeat

Assignmapped jobs to each compute resource heuristically
until all jobs are submitted or no more jobs can be submitted
Wait until the next scheduling event

end
Figure 5.6: A Generic Scheduling Algorithm.

minimum requirements of the application such as architecture (instruction set), operating

system, storage threshold and data access permissions and present these as suitable can-

didates for job execution to the scheduler. The scheduling is carried out at time intervals

calledscheduling events[141]. These events can be determined to either run at regular

intervals (poll-based) or in response to certain conditions (event-based).

There are two parts in a scheduling strategy: mapping and dispatching. The jobs

have to bematchedto a set of resources and ordered depending on the objective function

(mapping) and then sent to remote resources for execution (dispatching). Each of the

parts can be implemented independently of each other and therefore, many strategies are

possible. The rest of this thesis focuses on the mapping problem. In particular, this and

the next chapter introduce heuristics for matching jobs to distributed resources where the

selection of computational and data resources are interdependent on each other.

5.3 Cost-based Scheduling for Data-Intensive Applications

The previous section outlined the economic costs involved in executing a data-intensive

job on Grid resources that have prices associated with theirusage. Additionally, a user

may expect some specific QoS conditions to be fulfilled for theoverall application exe-

cution. Previous work in computational Grid scheduling by Buyya [42] introduced two

QoS constraints that have to be fulfilled simultaneously: one, to finish the application

5.3. COST-BASED SCHEDULING FOR DATA-INTENSIVE APPLICATIONS 139

execution by a user-specifieddeadlineand the other, to keep the cost of execution within

the maximumbudgetthat the user has for the execution. Based on the model presented

so far, the deadline for the application (denoted byTDeadline) can be expressed in terms of

job execution time asmaxj∈J Tct(j) ≤ TDeadline. The budget constraint can be expressed

as
∑

J C(j) ≤ Budget.

The pricing of goods in a real world economy is determined by the laws of supply and

demand [143]. In a Grid based on computational economy, it isexpected that the same

mechanism will apply to pricing of Grid resources [44]. Resources that are in demand due

to their higher capabilities are expected to be more expensive than others. It follows that

using cheaper (and less capable) resources will minimise the cost while using more expen-

sive (and more capable) resources will result in faster application execution. Evaluations

have shown the applicability of these assumptions to computational Grid resources [45]

where the resources can be compared on the basis of CPU share that they provide to the

jobs.

For a data-intensive application, however, the selection of resources must take into

account requirements for transferring and processing large datasets as well. This means

that mapping a job to a computational resource must not only consider the cost and time

for executing a job on that resource but also the cost and timeof transferring data to that

resource from the selected compute resources as well. The following sections present an

algorithm that takes into account these factors for scheduling data-intensive jobs in a Data

Grid environment with resource costs.

5.3.1 Objective Functions

Depending on the user-provided deadline, budget and scheduling preference, two objec-

tive functions can be defined, viz:

• Cost minimisation: The objective is to produce a schedule that causes least ex-

pense while keeping the execution time within the deadline provided.

• Time minimisation: Here, the jobs are executed in the fastest time possible with

the budget for the execution acting as the constraint.

140 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

Here, the same heuristic is applied to achieve either of the objective functions but while

considering the appropriate variables.

5.3.2 Cost and Time Minimisation Algorithms

Figure 5.7 lists the algorithm for cost minimisation scheduling of data-intensive applica-

tions. The scheduling loop is invoked at regular polling intervals until all the jobs are

completed or until either the deadline or the budget is exceeded. At every polling interval,

the performance data of the compute resources is updated by taking into account status

of the jobs allocated to and those completed by the resource in the previous intervals and

information from external performance monitors, if any (line 3). This is used to calculate

the limit of allocation (number of available job slots) of the resource for the current polling

interval. Also queried are market information services forlatest information on instanta-

neous resource prices. For each data resource, the cost and available bandwidth between

itself and the computational resources is refreshed by querying the network information

services (line 6). Then, for each data host, a sorted list of available compute resources

is created based on the cost of transmitting a unit of data between the data host and the

compute resource (line 7). This is followed by the mapping loop (lines 8-24) wherein

each job is mapped to a set of resources. After the jobs are mapped, the dispatch function

is invoked (line 25) and the jobs are submitted to the selected resources while taking into

consideration deadline and budget constraints specified bythe user.

Mapping: The aim of the mapping loop is to match each job to a resource set and

then assign the jobs to the selected resources. For each job,the loop starts off with an

empty resource setSj which itself is a set of the empty singletonRj and the empty set of

datahostsDj. For each dataset associated with the job, another setU is created consisting

of ordered pairs, each of which has one data host that contains the dataset and a compute

resource such that the cost of transfer for that dataset is minimum (line 13). The compute

resource is the first element of the sorted set of compute resources (Rd) that has been

created for each data host in line 7. The ordered pair(df , r) that provides the smallest

cost is then selected out of all the pairs inU . The compute resource from the ordered pair

is then assigned toRj while the corresponding data host is added toDj. Rj
temp is another

5.3. COST-BASED SCHEDULING FOR DATA-INTENSIVE APPLICATIONS 141

while J 6= φ OR Tcurrent < TDeadline OR Budget spent < Budget do1.

foreach r ∈ R do2.

Calculate performance data on the basis of resource performance in the previous3.

polling interval
end4.

foreachd ∈ D do5.

Update the network information6.

Let Rd ← {rm|rm ≺ rm+1 if Cost(Link(d, rm)) < Cost(Link(d, rm+1))7.

∀ rm ∈ R, 1 ≤ m ≤M}

end8.

//Mapping Begins
foreach j ∈ J do9.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ10.

Let Rj
temp ← φ //A temporary variable11.

foreachf ∈ F j do12.

Let U ← {(df , r)}df∈Df
wherer is the first element of ordered setRdf

13.

Find (df , r) such thatCt(f, df , r) + Ce(j, r) is minimum overU14.

if Sj = {φ, φ} then15.

Rj ← {r}, Dj ← {df}, R
j
temp ← {r}16.

end17.

else18.

Rj ← {r}, Dj ∪ {df}19.

end20.

Sj ← min{{Rj , Dj}, {Rj
temp, D

j}}21.

Rj
temp ← Rj22.

end23.

end24.

//Mapping Ends
Dispatch(J , TDeadline, Budget)25.

Wait until next polling interval26.

UpdateBudget spent by taking into account jobs completed in the last interval27.

end28.

Figure 5.7:An Algorithm for Minimising Cost of Scheduling of Data Intensive Applica-
tions.

singleton which has the compute resource selected in the previous iteration of the loop.

A comparison is then made between the resource set with the current compute resource

({Rj, Dj}) and the one with the previous compute resource ({Rj
temp, D

j}) and the one

which provides the least cost is then selected as the resource set for the next iteration of

the dataset loop.

The matching heuristic is therefore, essentially a greedy strategy with a choice step

to improve the resource set being selected in every iteration. For a job that requires a

142 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

Figure 5.8: The Greedy Matching Heuristic.

single dataset, this is a straightforward greedy choice. For a job with multiple datasets,

the process involved is shown pictorially in Figure 5.8. Foreach dataset, a pair of compute

resource and data host is selected such that it ensures the best metrics for the job if only

that dataset were involved. This is then merged with the resource set that has been built

up previously to derive two resource sets, one with the compute resource selected in the

previous iteration and the other with the current compute resource. The one that provides

the least cost is then selected as the input for the next iteration. The idea behind this

heuristic is, therefore, to ensure that adding every pair ofa compute resource and a data

host produces a better resource set at the end of each iteration than that was produced by

the previous iteration.

Dispatching: The job dispatch function is listed in Figure 5.9. The allocated jobs are

sorted in the ascending order of their expected costs for their respective resource sets.

Then, starting with the job with the least cost, each job is submitted to its compute resource

selected in the mapping step if the allocation for that resource has not been exhausted by

previous assignments. For cost minimisation, it is determined whether the deadline is

violated by checking whether the current time (TCurrent) plus the expected completion

time exceedsTDeadline (line 7). If so, the job goes back into the unsubmitted list inthe

expectation that the next iteration of the mapping loop willproduce a better resource set

for that job. IfBudget is exceeded by the current job, then the dispatching is halted and

5.4. EXPERIMENTS AND RESULTS 143

Dispatch(J , TDeadline, Budget, Min)1.

SortJ in the ascending order ofC(j),∀j ∈ J2.

Expected Budget← Budget spent3.

foreach j ∈ J do4.

Take the next jobj ∈ J in sorted order5.

if r ∈ Rj can be allocated more jobsthen6.

if (TCurrent + Tct(j) < TDeadline then7.

if (Expected Budget + C(j)) ≤ Budget then8.

submitj to r9.

elsestop dispatching and exit to main loop10.

end11.

Expected Budget = Expected Budget + ej12.

Removej from J13.

end14.

end15.

Figure 5.9:Deadline and Budget Constrained Job Dispatch.

the functions returns to the main loop as the rest of the jobs in the list will have a higher

cost than the current job (line 8). If these two constraints are not violated, then the job is

submitted to the compute resource and removed from the list of unsubmitted jobs.

Time minimisation can be achieved with the same algorithm but with time-specific

variables as shown in Figure 5.10. The mapping function sorts the compute resources for

each data host based on the time for transferring unit data. That is, the termCost(Link(r, d))

in line 7 in Figure 5.7 is replaced by1/BW (Link(r, d)). Line 14 will haveTt(f, df , r) +

Te(j, r) instead of the cost metric and line 21 selects a resource set based on total comple-

tion time instead of cost. The dispatch function also changes as the deadline and budget

checks are swapped between lines 7 and 8. For time minimisation, if the budget spent

(including the budget for all the jobs previously submittedin current iteration) plus the

budget for the current job exceedsBudget then the function proceeds to the next job.

However, if the deadline is violated by the current job, thenthe dispatch function returns

to the main loop.

5.4 Experiments and Results

The cost-aware deadline and budget-constrained scheduling algorithm presented in the

previous section, was implemented in the Gridbus broker andwas evaluated on a testbed

144 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

while J 6= φ OR Tcurrent < TDeadline OR Budget spent < Budget do1.

foreach r ∈ R do2.

Calculate performance data on the basis of resource performance in the previous3.

polling interval
end4.

foreachd ∈ D do5.

Update the network information6.

Let Rd ← {rm|rm ≺ rm+1 if 1/BW (Link(d, rm)) < 1/BW (Link(d, rm+1))7.

∀ rm ∈ R, 1 ≤ m ≤M}

end8.

//Mapping Begins
foreach j ∈ J do9.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ10.

Let Rj
temp ← φ //A temporary variable11.

foreachf ∈ F j do12.

Let U ← {(df , r)}df∈Df
wherer is the first element of ordered setRdf

13.

Find (df , r) such thatTt(f, df , r) + Te(j, r) is minimum overU14.

if Sj = {φ, φ} then15.

Rj ← {r}, Dj ← {df}, R
j
temp ← {r}16.

end17.

else18.

Rj ← {r}, Dj ∪ {df}19.

end20.

Sj ← min{{Rj , Dj}, {Rj
temp, D

j}}21.

Rj
temp ← Rj22.

end23.

end24.

//Mapping Ends
Dispatch(J , TDeadline, Budget)25.

Wait until next polling interval26.

UpdateBudget spent by taking into account jobs completed in the last interval27.

end28.

Figure 5.10:An Algorithm for Minimising Execution Time.

slightly extended from the Belle testbed used in the case study in the previous chapter.

Details of the resources including configuration, role and price are provided in Table 5.2.

A new resource from the Victorian Partnership for Advanced Computing (VPAC), Mel-

bourne was added to the testbed for this evaluation. Also, the machines in School of

Physics, University of Melbourne, and Computer Science, University of Adelaide were

only used as data sources (data hosts) and no jobs were executed on them. The machines

functioning as compute resources were assigned rates for executing jobs in Grid Dollars

(G$) [45] per CPU second used. Grid Dollars is a synthetic unitof currency that mod-

5.4. EXPERIMENTS AND RESULTS 145

els the role of actual currencies such as Australian dollarsin real world economies.The

resources functioning as pure data hosts were not assigned any prices.

Table 5.2: Resources within Belle testbed used for evaluation.

Organisation Resource details Role Rate
(G$)

Total
Jobs
Time Cost

Computer
Science,
University of
Melbourne

belle.cs.mu.oz.au
4 Intel 2.6 GHz CPU, 2
GB RAM, 70 GB HD,
Linux

Broker Host,
Data Host,
Compute
resource,
NWS Server

6 94 2

School of
Physics,
University of
Melbourne

fleagle.ph.unimelb.edu.au
1 Intel 2.6 Ghz CPU, 512
MB RAM, 70 GB HD,
Linux

Replica
Catalog host,
Data host,
NWS sensor

N.A.∗ – –

Computer
Science,
University of
Adelaide

belle.cs.adelaide.edu.au
4 Intel 2.6 GHz CPU, 2
GB RAM, 70 GB HD,
Linux

Data host,
NWS sensor

N.A. ∗ – –

Australian
National
University,
Canberra

belle.anu.edu.au
4 Intel 2.6 GHz CPU, 2
GB RAM, 70 GB HD,
Linux

Data Host,
Compute
resource,
NWS sensor

6 2 4

Dept. of
Physics,
University of
Sydney

belle.physics.usyd.edu.au
4 Intel 2.6 GHz CPU(1
avail), 2 GB RAM, 70
GB HD, Linux

Data Host,
Compute
resource,
NWS sensor

2 2 119

VPAC,
Melbourne

brecca-2.vpac.org
180 node cluster (only
head node utilised)

Compute
resource,
NWS sensor

4 27 0

∗

N.A. - Not Applicable. Resource not used as a compute resourcebut only as a data host

Information about the network conditions were obtained through the same Network

Weather Service (NWS) set up used in the previous chapter. An NWS sensor was also

started on the VPAC resource which was added to the testbed clique. In this evaluation,

however, data transmission costs were also assigned to the network links between the re-

sources. These costs were in the form of G$ per MB (MegaByte) ofdata transmitted. The

146 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

available bandwidth, reported as an average of the measurements throughout the evalua-

tion, is given in Table 5.3. Alongside the bandwidth data, the cost assigned to the network

is also given inside the parentheses. The network between a compute resource and a

data host located at the same site is assigned a high available bandwidth (1000 Mbps, not

shown in the table) and zero cost.

In this evaluation, the costs have been artificially assigned to the resources. However,

these can be linked to real world costs that will occur once the economic paradigm is

adopted by all the participants within the Grid. Network users already pay Internet Ser-

vice Providers (ISPs) for usage based on volume of data or as aregular subscription fee.

Computational services are being offered by corporations such as Sun Microsystems as

utilities that are charged on the basis of time of usage [195].

Table 5.3: Avg. Available Bandwidth between Data Hosts and Compute Resources as
reported by NWS(in Mbps) and Network Costs between Data Hosts and Compute Re-
sources (G$/MB) in parentheses.

Compute Resources
Data Hosts UniMelb CS ANU UniSyd VPAC
ANU 6.99 (34.0) 1000 (0) 10.24 (31.0) 6.33 (38.0)
Adelaide 3.45 (36.0) 1.68 (34.0) 2.29 (31.0) 6.05 (33.0)
UniMelb
Physics

41.05 (40.0) 6.53 (32.0) 2.65 (39.0) 20.57 (35.0)

UniMelb CS 1000 (0) 6.96 (30.0) 4.77 (36.0) 36.03 (33.0)
UniSyd 4.78 (33.0) 12.57 (35.0) 1000 (0) 2.98 (37.0)

A synthetic data-intensive program was created for the purpose of evaluating differ-

ent data-intensive applications. This program would request K datasets located on dis-

tributed data sources and process them to produce a small output file (of the order of

KiloBytes (KB)). The bag-of-task data-intensive application being evaluated here is a

parameter-sweep application consisting of 125 jobs, each job being an instance of the

program requiring 3 files (that is,K = 3 for all the jobs in this evaluation). The execu-

tion times for the jobs (excluding data transfer times) wererandomly distributed within

60-120 seconds. Each of the jobs would request 3 files at random from the set of 100

files (distributed equally among the data hosts listed in Table 5.2) that was used in the

Belle case study presented in the previous chapter. Each of these files are 30 MB is size.

5.4. EXPERIMENTS AND RESULTS 147

100

25

125

25

100

0

20

40

60

80

100

120

140

UniMelb CS ANU
Adelaide

UniMelb Phy
UniSyd

Data Hosts

N
u
m

b
e
r

o
f

R
e
q
u
e
s
ts

Figure 5.11: Distribution of file access.

These files are specified as Logical File Names (LFNs) and resolved to the actual physical

locations by the broker at runtime by querying the Globus replica catalog located at the

UniMelb Physics resource (fleagle.ph.unimelb.edu.au). Figure 5.11 gives the distribution

of the number of requests for data made by the total set of jobsagainst each data host.

The distributed application was run under both cost and timeminimisation. The min-

imisation algorithms were evaluated and compared against two measures of performance:

the first is the relative usage of the computational resources under cost and time minimi-

sation which indicates the impact of the choice of minimisation criteria on resource selec-

tion, and the second is the distribution of jobs with respectto the computational and data

transfer costs and times incurred within each minimisation, which indicates the effective-

ness of the algorithm in producing the cheapest or the fastest schedule. The experiments

were carried out on 29th November 2004 between 6:00 p.m. and 10:00 p.m. AEDT. The

deadline and budget values for both cost and time minimization were 2 hours and 500,000

G$ respectively. Table 5.4 shows the summary of the results that were obtained. The total

time is the wall clock time taken from the start of the scheduling procedure up to the com-

pletion of the last job. All the jobs completed successfullyin both the experiments. The

average costs per job incurred during cost and time minimisation are 562.6 G$ and 959

G$ with standard deviations of 113 and 115 respectively. Mean wall clock time taken per

job (including computation and data transfer time) was 167 secs. for cost minimisation

and 135 secs for time minimisation with standard deviations16.7 and 19 respectively.

As expected, cost minimisation scheduling produces minimum computation and data

transfer expenses whereas time minimisation completes theexperiments in the least time.

148 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

Table 5.4: Summary of Evaluation Results.

Minimization Total Time
(min.)

Compute
Cost (G$)

Data Cost
(G$)

Total
Cost (G$)

Cost 80 31198.27 39126.65 70324.93
Time 54 76054.90 43821.64 119876.55

The graphs in Figures 5.12(a) and 5.12(b) show the number of jobs completed versus time

for the two scheduling strategies presented. Since the computation time was dominant,

within cost minimisation, the jobs were executed on the least economically expensive

compute resource. This can be seen in Figure 5.12(a) where the compute resource with

the least cost per second, the resource at University of Sydney, was chosen to execute

95% of the jobs. Since a very relaxed deadline was given, no other compute resource was

engaged by the scheduler as it was confident that the least expensive resource alone would

be able to complete the jobs within the given time.

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Polling Interval (every 40s)

N
u

m
b

e
r

o
f

jo
b

s

UniMelb CS
ANU
UniSyd
VPAC

(a) cost minimisation scheduling

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Polling Interval (every 40s)

N
u

m
b

e
r

o
f

jo
b

s

UniMelb CS
ANU
UniSyd
VPAC

(b) time minimisation scheduling

Figure 5.12: Cumulative number of jobs completed vs time for cost and time minimisation
scheduling.

Within time minimisation, the jobs were dispatched to the compute resources which

promised the least execution time even if they were expensive as long as the expected

cost for the job was less than the budget per job. Initially, the scheduler utilised two

of the faster resources, the University of Melbourne Computer Science (UniMelb CS)

resource and the VPAC resource (Figure 5.12(a)). However, as seen from Figure 5.11,

26.67% of the requests for datasets were directed to the UniMelb CS resource. A further

5.4. EXPERIMENTS AND RESULTS 149

6.67% were directed to the resource in UniMelb Physics. Hence, any jobs requiring one

of the datasets located on either of the above resources werescheduled at the UniMelb

CS resource because of the resultant low transfer time. Also,the UniMelb CS resource

had more processors. Hence, a majority of the jobs were dispatched to it within time

minimization.

2
0

1
0

0

1
8

0

2
6

0

3
4

0

4
2

0

5
0

0

5
8

0

6
6

0

7
4

0

8
2

0

9
0

0

9
8

0

20

180

340

500

660

820

980

0

5

10

15

20

25

30

35

N
u

m
b

e
r

o
f

J
o

b
s

Compute Cost(G$)

D
a
ta

C
o

s
t(

G
$
)

(a) cost minimisation scheduling

2
0

1
0

0

1
8

0

2
6

0

3
4

0

4
2

0

5
0

0

5
8

0

6
6

0

7
4

0

8
2

0

9
0

0

9
8

0

20

200

380

560

740

920

0

5

10

15

20

25

30

35

40

N
u

m
b

e
r

o
f

jo
b

s

Compute Cost(G$)

D
a
ta

C
o

s
t

(G
$
)

(b) time minimisation scheduling

Figure 5.13: Distribution of jobs against compute and data costs.

Figures 5.13(a) and 5.13(b) show the distribution of the jobs with respect to the com-

pute and data costs respectively. For cost minimisation, 95% of the jobs have compute

costs less than or equal to 400 G$ and data costs between 250 G$to 350 G$. In contrast,

within time minimization, 91% of the jobs are in the region ofcompute costs between 500

G$ to 700 G$ and data costs between 300 G$ to 400 G$. Hence, in time minimization,

more jobs are in the region of high compute costs and medium data costs. Thus, it can

be inferred that the broker utilized the more expensive compute and network resources to

transfer data and execute the jobs within time minimization.

Figures 5.14(a) and 5.14(b) show the distribution of the jobs with respect to the total

execution time and the total data transfer time for cost minimisation and time minimisation

respectively. The execution time excludes the time taken for data transfer. It can be

seen that within time minimisation (Figure 5.14(b)), the maximum data transfer time was

35s as compared to 75s for cost minimisation. Also, there aremore jobs within time

minimisation that have had transfer time less than 10s whichimplies that the jobs were

scheduled close to the source of the data.

150 Chapter 5. SCHEDULING MODEL AND ALGORITHMS

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

0

40

80

120

160

200

240

0

5

10

15

20

25

30

35

N
u

m
b

e
r

o
f

J
o

b
s

Execution Time (secs)
T

o
ta

l
T

ra
n

s
fe

r
T

im
e

(s
e
c
s
)

(a) cost minimisation scheduling

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

0

40

80

120

160

200

240

0

5

10

15

20

25

N
u

m
b

e
r

o
f

jo
b

s

Execution time(secs)

T
o

ta
l
tr

a
n

s
fe

r
ti

m
e
(s

e
c
s
)

(b) time minimisation scheduling

Figure 5.14: Distribution of jobs against execution time and data transfer time.

The results of the empirical evaluation show that the algorithms presented in this chap-

ter are able to minimize the objective function for upto 90% of the input set of jobs. Also,

cost minimization gave more preference to reducing cost of computation than the cost of

data transfer. This can be seen by the smaller difference between the data costs for both

cost and time minimization as compared to the compute costs in Table 5.4. Time mini-

mization, however, attempted to reduce both the execution and the data transfer times as

can be seen by comparing Figures 5.14(a) and 5.14(b). This, however, lead to an increase

of only 11% in the data costs over cost minimization (Table 5.4).

5.5 Summary

Typical Data Grid environments consist of heterogeneous computational, storage and net-

working resources that are shared among the users and may have expenses associated with

their usage. A scheduler operating in such environments must not only take into account

the variations of availabilities, capabilities and costs among the resources but also should

consider application requirements that may include multiple large-sized datasets, each

replicated on multiple resources. This chapter models thisproblem formally and applies

it to cost-based scheduling of distributed data-intensiveapplications.

An interesting result gathered from the empirical evaluation is that time minimization

preferred scheduling jobs close to the source of data. That is, it exploited the locality

5.5. SUMMARY 151

of datasets more effectively. This result is used as the basis for the investigation in the

next chapter, where the problem of resource selection is modelled using graph theoretic

concepts. A heuristic based on an instance of the Set CoveringProblem is then proposed to

exploit access locality of jobs. The proposed heuristic is evaluated against others including

the Greedy matching heuristic presented in this chapter through simulation. This allows

investigation of impact of different variables such as degree of replication, size of datasets

and larger number of resources on the performance of the heuristics.

Chapter 6

A Set Coverage-based Scheduling

Algorithm

The previous chapter defined themappingproblem of matching a set of resources to a

job and ordering the set of jobs for allocation. The mapping must minimise the objective

function not only for a single job but also for the overall setof jobs that constitutes the

entire application. Previous work in scheduling of distributed data-intensive Grid appli-

cations (see Chapter 3, Section 3.2) and evaluations in Chapters 4 and 5 have provided

various solutions for successful mapping of such jobs to Grid resources. Some of them

are listed below:

1. Scheduling job execution “close” to the point of locationof data or exploiting the

spatial locality of data access.

2. Reusing existing data replicas or exploiting the temporallocality.

3. Giving weightage to the computational requirements of the jobs while creating data

replicas if necessary.

4. Meeting users’ requirements such as shortest makespan, expense minimisation within

deadline or time minimisation within budget.

These solutions may seem to conflict with each other, especially in the case of jobs that

require multiple datasets that are each available from multiple sources. However, it is

also possible for them to complement one another as well. Forexample, a job may be

153

154 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

scheduled to a compute resource that is closest to the data host that contains the maximum

number of the set of datasets required by the job. Other datasets may be staged to that data

host and may be used as replica sources for later jobs. This also reduces the number of

remote data transfers thereby reducing both the time and cost of total data movement.

The selection of the computational resource, however, should not only be based on

the proximity of the data but also on its availability and performance as well. In case of

data-intensive jobs that are computationally heavy as well, this choice may have a higher

impact on the realisation of the objective than the selection of data resources. Therefore,

the selection of resources depends on the interrelationship between the computational and

data components of the performance metrics.

This chapter focuses on the resource selection or thematchingproblem for jobs which

require multiple datasets that are each replicated on multiple data hosts. First, the problem

is modelled as an instance of the well-known Set Covering Problem. Based on this, a tree

search heuristic for the matching problem is detailed. Thisheuristic, along with other

known heuristics, is then evaluated through extensive simulations.

6.1 A Graph-based Approach to the Matching Problem

This chapter follows the same notations that were provided in Table 5.1 in the previous

chapter. For a jobj ∈ J , consider a graphGj = (V,E) whereV = (
⋃

f∈F j{Df}) ∪ F j

andE is the set of all directed edges{d, f} such thatd ∈ Df . Figure 6.1(a) shows an

example of a jobj that requires 3 datasetsf1, f2 andf3 that are replicated on data host

sets{d1, d2}, {d2, d3} and{d1, d4} respectively. The graph of data sets and data resources

for job j is shown in Figure 6.1(b).

As mentioned before, it is required to find the minimum numberof data hosts that

can serve the required datasets to minimise the amount of data transfer involved. In terms

of the graph model presented, this can be considered as the minimal setH of data hosts

such that there exists an edge from a member ofH to f for everyf ∈ F j in Gj. Fig-

ure 6.1(c) shows a possible minimal set for the graph of datasets and data hosts shown in

Figure 6.1(b). However, it is possible that more than one minimal set of data hosts exists

for a graph. Also, one minimal set of data hosts can be combined with each compute

6.1. A GRAPH-BASED APPROACH TO THE MATCHING PROBLEM 155

f
2

f
3

f
1

j

(a)

f
1

f
2

f
3

d1

d2

d3

d4

(b)

f
1

f
2

f
3

d1

d2

d3

d4

(c)

Figure 6.1: Graph-based approach to the matching problem. (a)Jobj dependent on 3
datasets. (b) Directed graph of data resources and data setsfor job j. (c) A minimal set
for the data graph.

resource inR to produceM resource sets (whereM is the number of resources) with

different values of total completion time or execution cost. The goal here is, therefore, to

find a combination of a minimal set of data hosts and a compute resource such that the

total completion time or execution cost forj is minimised. This problem is defined and

referred to hereafter as theM inimum ResourceSet (MRS) problem.

The following section presents a heuristic for the MRS problem based on an algorithm

to solve the Set Covering Problem [24]. The heuristic generates set covers of data hosts

and combines them with the list of compute resources to produce candidate resource sets

that are then compared to produce the resource set giving thesmallest value of the objec-

tive function for a job. The termminimal setsare used hereafter to refer to minimal sets

of data hosts.

6.1.1 Modelling the Minimum Resource Set as a Set Cover

For a graphGj such as that shown in Figure 6.1(b), a reduced adjacency matrix A =

[aik], 1 ≤ i ≤ P, 1 ≤ k ≤ K can be constructed whereinaik = 1 if data hostdi ∈ Dfk

for a datasetfk. Such an adjacency matrix is shown in Figure 6.2. The rows that contain

a 1 in a particular column are said to “cover” the column. The problem of finding the

minimal set of data hosts forGj is now equivalent to finding the sets of the least number

of rows such that every column is covered, that is, every column contains an entry of 1

in at least one of the rows. In other words, if each data host can be considered as a set

156 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

of datasets, then finding the minimal set of data hosts is equivalent to finding the least

number of such sets of datasets such that all datasets are covered. This problem has been

studied extensively as theSet Covering Problem (SCP)[24].

f1 f2 f3

d1 1 0 1
d2 1 1 0
d3 0 1 0
d4 0 0 1

Figure 6.2: Adjacency Matrix for the job example.

The SCP is anNP -completeproblem and the most common approximation algorithm

applied to the SCP is the greedy strategy [62]. It is possible to derive a set cover for the

datasets by following the greedy strategy as outlined below:

Step 1.Repeat until all the datasets have been covered

Step 2. →֒ Pick the data host that has the maximum number of uncovered datasets and

add it to the current candidate set.

f
1

f
3

f
2

, ,)(

} }, ,{ d d d2 2 4

},{ { , ,d d d2 2 1},{ { , ,d d d1 2 1

, ,{ d d d3 11

0 0 0

1 0 1 1 1 0 0 0 10 1 0
{ d }1 }{ d { d }{ d2 3 4}

1 1 1

} }

1 1 1 1 1 1
{ { , , } }

1 1 1
{ { , , } }d d d d d d1 3 1 2 2 4

Figure 6.3: Solution Tree.

It is also possible to arrive at a depth first search procedurethat generates all the covers

by repeating the same greedy strategy with every data host (not just the ones with the

maximum number of datasets). The possible minimal sets for the graph in Figure 6.1(b)

can be enumerated in this manner and presented as a tree structure shown in Figure 6.3.

It can be seen that the greedy set covering strategy will produce only one of the possible

minimal sets. For example, starting off withd1, the greedy strategy is likely to end up

with {d1, d2, d1} as the solution. This, however, excludes the other candidate sets from

6.1. A GRAPH-BASED APPROACH TO THE MATCHING PROBLEM 157

consideration. On the other hand, doing a depth-first searchon the entire solution tree is

going to be computationally-intensive and can lead to repeat generation of some of the

candidate sets. This can be seen in the branches ford3 andd4 in Figure 6.3.

The next section details a heuristic that identifies the region of the tree where the

solution is most likely to be found and then augments the greedy search through a depth-

first search in that region. But, before applying that algorithm, it is possible to reduce the

size of the problem by taking advantage of the nature of the SCP. These reductions are:

• If a dataset required for a job is present on only one data host, then that data host is

part of any solution. Therefore, the problem can be reduced by assigning the dataset

to that data host and removing the dataset from later consideration.

• For f1, f2 ∈ F j, if Df1
⊆ Df2

, thenf2 can be removed from consideration as any

solution that coversf1 must also coverf2.

6.1.2 The SCP Tree Search Heuristic

This heuristic is listed in Figure 6.4 and is based on the approximate tree search algorithm

provided by Christofides [58] for the SCP. There are three distinct phases in this heuristic:

initialisation, execution and termination. These are described in the following paragraphs.

Initialisation (Lines 1-3)

The initialisation starts off with the creation of the adjacency matrixA for a job. The rows

of this matrix (that is, the data hosts) are then sorted in thedescending order of number

of 1’s per column (or, the number of datasets contained). This sorted matrix is used to

create an augmented matrix that is henceforth referred to asthe tableauand is shown in

Figure 6.5. The tableauT consists ofK blocks of rows, whereK is the size ofF j and

the kth(1 ≤ k ≤ K) block consists of rows corresponding to data hosts that contain

fk, fk ∈ F j. The tableau is constructed in such a manner that the rows within each block

are in the same sorted order as the rows in the sorted adjacency matrix. At any stage of

execution, the set of data hostsB keeps track of the current solution set of datahosts, the

setE contains the datasets already covered by the solution set and the variablez keeps

track of the minimum value of the objective function offeredby the current solution set.

158 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

Begin Main
For a jobj, create the adjacency matrixA with data hosts forming the rows and datasets1.

forming the columns.
Sort the rows ofA in the descending order of the number of 1’s in a row.2.

Create the tableauT from sortedA and begin with initial solution setBfinal = φ,3.

B = φ, E = φ andz =∞
Search(Bfinal, B, T, E, z)4.

Sj ← {{r}, Bfinal} wherer ∈ R such thatMinVal (Bfinal) is minimum5.

End Main

Search(Bfinal, B, T, E, z)
Find the minimumk, such thatfk /∈ E. Let Tk be the block of rows inT corresponding6.

to fk. Set a pointerq to the top ofTk.
while q does not reach the end ofTk do7.

FT ← {fi|tqi = 1, 1 ≤ i ≤ K}8.

B ← B ∪ {dk
q}, E ← E ∪ FT9.

if E = F j then10.

if z > MinVal (B) then11.

Bfinal ← B, z ← MinVal (B)12.

elseSearch(Bfinal, B, T, E, z)13.

B ← B − {dk
q}, E ← E − FT14.

Incrementq15.

end16.

MinVal(B)
Find r ∈ R such that the value of the objective function is minimum for the resource set17.

Sj = {{r}, B} and return value

Figure 6.4:Listing of the SCP Tree Search Heuristic for the MRS problem.

The final solution set is the stored inBfinal. The procedure begins with the partial solution

setB = φ, E = φ, z =∞.

Execution (Lines 6-16)

During execution, the blocks are searched sequentially starting from thekth block in T

wherek is the smallest index,1 ≤ k ≤ K such thatfk /∈ E. Within thekth block, let

dk
q mark the data host under consideration whereq is a row pointer within blockk. The

data hostdk
q is added toB and all the datasets for which the corresponding row contains

1 are added toE as they are already covered bydk
q . These datasets are removed from

consideration and the process then moves to the next uncovered block untilE = F j,

that is, all the datasets have been covered. At this point,B represents the corresponding

minimal set of data hosts that covers all the datasets. The functionMinVal(B) computes

6.1. A GRAPH-BASED APPROACH TO THE MATCHING PROBLEM 159

f1 f2 f3

d1 1 0 1
d2 1 1 0
− − − −
d2 1 1 0
d3 0 1 0
− − − −
d1 1 0 1
d4 0 0 1

Figure 6.5: Tableau.

the expected value of the objective function for each compute resource combined withB

and returns with the minimum of the values so found. If this islower than the existing

value inz, then the solution set is replaced with the current minimal set andz is assigned

the returned value.

Whenever the heuristic enters a block that is not yet covered,it branches out within the

block by a recursive call that passes along the incomplete solution set (line 13). The final

solution set is returned in the variableBfinal through normal pass-by-reference methods.

At the end of each loop, the heuristic backtracks to try the next data host in the block and

repeat the branching with that host (line 14).

Termination (Line 5)

Through the recursive procedure outlined in the listing, the heuristic then backtracks and

discovers other minimal sets. The solution set that guarantees minimum makespan is then

chosen as the final minimal set. The compute resource that provides the minimum value

of objective function is then combined with the minimal set to obtain the minimal resource

set for the job.

To reduce the scope of the tree traversal, the heuristic terminates when the first block

is exhausted. The data hosts with the maximum number of datasets appear at the top of

the tableau due to the initialisation process. Therefore, most of the minimal sets will be

covered by the search function by starting at the rows in the first block.

160 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

6.2 Other Approaches to the Matching Problem

Compute-First - In this mapping strategy, shown in Figure 6.6, a compute resource that

ensures minimum value of the computational component of theobjective function is se-

lected first for the job. For example, in case of reducing the completion time (Tct) for a

job, the compute resource that gives the least execution time is selected first. This step is

followed by choosing data hosts such that the data componentof the objective function

is reduced. For the example of reducing the completion time,this would be selecting the

data hosts that have the highest bandwidths (and therefore,the lowest transfer times) to

the selected compute resource. The running time of this heuristic isO(MKP).

foreach j ∈ J do1.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ2.

Let Rj ← {rfinal} such thatTe(j, rfinal) is minimum for allr ∈ R3.

foreachf ∈ F j do4.

Dj ← Dj ∪ {df} whereTt(f, df , rfinal) is minimum for alldf ∈ Df5.

end6.

end7.

Figure 6.6:The Compute-First Matching Heuristic.

Exhaustive Search- In this case, all the possible resource sets for a particular job are

generated and the one guaranteeing the least value of the objective function is chosen for

the job. While this heuristic guarantees that the resource set selected will be the best for

the job, it searches throughMPK resource sets at a time. This leads to unreasonably large

search spaces for higher values ofK. For example, for a job requiring 5 datasets with 20

possible data hosts and 20 available compute resources, thesearch space will consist of

(20 ∗ 205) = 64 ∗ 106 resource sets. This algorithm is listed in Figure 6.7.

foreach j ∈ J do1.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ2.

Let U ← R×Df1
×Df2

× . . .×DfK
wheref1, f2, . . . , fK ∈ F j3.

Findu ∈ U such thatTct(j) is minimum4.

end5.

Figure 6.7:The Exhaustive Search Matching Heuristic.

Greedy - This is the heuristic that was presented in the previous chapter for deadline

and budget constrained cost and time minimisation scheduling of data-intensive applica-

6.3. SCHEDULING HEURISTICS 161

tions. This heuristic builds the resource set by iterating through the list of datasets and

making a greedy choice for the data host for accessing each dataset, followed by choos-

ing the best compute resource for that data host. At the end ofeach iteration, it checks

whether the compute resource so selected is better than the one selected in previous itera-

tion when the data hosts selected in previous iterations areconsidered. The running time

of this heuristic isO(MKP).

6.3 Scheduling Heuristics

The mapping heuristic finds a resource set such that the objective function is minimised

for a single job. However, the goal here is to produce a schedule such that the objective

function is minimised over the entire set of jobs. Many algorithms have been proposed for

the problem of scheduling a set of independent jobs [38] and two well-known heuristics

are theMinMin and theSufferageheuristics proposed by Maheswaran, et al. [142] for

dynamic scheduling of jobs on heterogeneous computing resources. These are extended

to take into account the distributed data requirements of the target application model.

The extended MinMin scheduling heuristic is listed in Figure 6.8. The basic idea

of this heuristic is to find the job that has the minimum value of the objective function

and allocate it to the resource set that achieves it. The intuition behind this is that such

an allocation over all the jobs will minimize the overall objective function. The term

JU denotes the set of jobs that have not been allocated to any resource set yet. In the

beginning, it matches all the jobs to a resource set that guarantees minimum value of

the objective function for that job (line 4). This is produced through matching heuristics

such as the SCP Tree Search, Greedy, Compute-First or Exhaustive Search, that have

been presented in previous sections. Then, the job that has achieved the minimum value

of the objective function in the present allocation, is allocated to its chosen resource set

(line 7). Allocation means that the job is mapped to an available processor or a queue slot

on the remote computational node. If the available slots on the resource have already been

allocated to previous jobs, the job is assigned provisionally to the compute resource by

storing it in a local queue corresponding to that resource. This is done even if there were

other available resources as the matching function and MinMin would have taken those

162 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

into consideration while mapping the job. This job is then removed from the unallocated

job set. As allocation changes the availability of the resource with respect to the number

of available slots, the resource information is updated andthe process is repeated until all

the jobs inJU have been allocated to some resource set.

repeat1.

Begin Mapping
repeat2.

foreach j ∈ JU do3.

Find the least value of the objective function forj and find the resource set4.

that achieves the value
end5.

Find the jobj ∈ JU with the minimum value of the objective function6.

Allocatej to its resource set that was selected previously7.

Removej from JU8.

Update the resource availability based on the allocation performed in the9.

previous step
until JU is empty10.

End Mapping
Dispatch the mapped jobs to the selected resources such that the job allocationlimit11.

of each resource is not exceeded
Wait until the next scheduling event12.

foreach job completed in the previous intervaldo13.

For each dataset that has been transferred from a remote data host for the job,14.

add its eventual destination (compute resource) as a future source of thedataset
for the jobs remaining inJU

end15.

For each resource, revise its capability estimates (job allocation limit or available16.

queue slots) depending on various information sources such as external performance
monitors or the jobs completed in the previous interval

until all jobs are completed17.

Figure 6.8: The MinMin Scheduling Heuristic extended for distributed data-intensive
applications.

The dispatching function cycles through the set of compute resources and submits the

jobs that were allocated to available slots on the remote resource. The jobs that were

stored on the local queues are returned back to the unallocated jobs list. The scheduler

then waits for the specified polling interval or for a specificevent to resume.

When a job is scheduled for execution on a compute resource, all the datasets that

are required for the job and are not available local to the resource, are transferred to the

resource prior to execution. These datasets become replicas that can be used by following

jobs. Here, this is taken into account by registering the compute resource in question (or

6.3. SCHEDULING HEURISTICS 163

its associated data host) as a source of the transferred datasets for succeeding allocation

loops (line 14). This enables the exploitation of both temporal and spatial locality of data

access.

Begin Mapping
repeat1.

foreach j ∈ JU do2.

Find the best (least) value of the objective function forj and find the resource set3.

that achieves the value
Find the second best value of the objective function forj4.

sufferage value = second best value - best value5.

end6.

Find the jobj ∈ JU with the maximum sufferage value7.

Assignj to the resource set that was selected for it originally8.

Removej from JU9.

Update the resource availability based on the allocation performed in the previous10.

step
until JU is empty11.

End Mapping
Figure 6.9:Sufferage Algorithm.

The motivation behind the Sufferage heuristic (listed in Figure 6.9) is to allocate a

resource set to a job that would be disadvantaged the most (or“suffer” the most) if

that resource set were not allocated to it. This is determined through a sufferage value

computed as the difference between the second best and the best value of the objective

function for the job.

For each job, the resource set that offers the least value of the objective function is

determined through the same mechanisms as that in MinMin. Then the compute resource

in that resource set is removed from consideration and the matching function is rerun to

provide another minimal resource set with the next best value for the objective function.

The selection of the compute resource determines both the execution metrics and the data

transfer metrics. Therefore, removing it from consideration will produce the maximum

impact on the value of the objective function. After determining the sufferage value for

each job, the job with the largest sufferage value is then selected and assigned to its chosen

resource set. The rest of the heuristic including dispatching and updating of compute

resource and data host information proceeds in the same manner as MinMin.

164 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

6.4 Evaluation of Scheduling Algorithms

Effective evaluation of scheduling algorithms requires the study of their performance

under different scenarios such as different user inputs andvarying resource conditions.

Within Grid environments, resource loads and the number of users vary continuously and

the spread of resources among different administrative domains makes it nearly impos-

sible to control the environment to provide a stable configuration for evaluation. Fur-

thermore, the network plays a large role in the performance of scheduling algorithms for

data-intensive applications and it is impossible to createconsistent conditions over public

networks. The scale of the evaluation is also limited by the number of Grid resources that

can be accessed.

Therefore, it was decided to evaluate the performance of algorithms on a simulated

Grid environment to ensure a stable and repeatable configuration. Simulation has been

used extensively for modelling and evaluation of distributed computing systems and the

popularity of this methodology for evaluation of Grid scheduling algorithms have led to

the availability of several Grid simulation packages [194]. Some of the simulation systems

available for data-intensive computing environments suchas Data Grids include Grid-

Sim [46], MONARC simulator [135], OptorSim [29], ChicSim [174] and SimGrid [49].

GridSim enables modelling and simulation of heterogeneousGrid resources with time-

shared and space-shared node allocation and different economic costs; Grid networks

with different routing topologies and QoS classes [193]; and Data Grid replica catalogs

that can be connected in different configurations [192]. Also, it presents itself as a toolkit

that allows creation of different applications such as resource brokers having schedul-

ing algorithms with different objectives. Most importantly, the Grid model followed by

GridSim is the closest, among all others, to that followed inthis thesis. Hence, GridSim

was used as the simulation system for evaluating the scheduling algorithms for distributed

data-intensive applications.

Evaluation of the scheduling algorithms in GridSim required modelling of Grid re-

sources, their interconnections and the data-intensive applications. The sections that fol-

low describe in detail how each of these were modelled.

6.4. EVALUATION OF SCHEDULING ALGORITHMS 165

6.4.1 Simulated Resources

The testbed modelled in this evaluation is shown in Figure 6.10 and is based on a subset of

the European Union DataGrid Testbed [92]. The modelled testbed contains 11 resources

spread across 6 countries connected via high capacity network links. Each resource, ex-

cept the one at CERN (Geneva), was used both as a compute resource and as a data host.

The resource at CERN was used as a pure data source (data host) inthe evaluation and

therefore, no jobs were submitted to it for execution.

Imperial College

RAL

Lyon

 NorduGrid

NIKHEF

CERN

 Milano

 Torino

Catania

Padova
Bologna

45Mb/s

45Mb/s

100Mb/s

100Mb/s

155Mb/s

10Gb/s

10Gb/s

10Gb/s
10Gb/s

10Gb/s

155Mb/s

10Gb/s

155Mb/s

2.5Gb/s

2.5Gb/s 2.5Gb/s

622Mb/s

155Mb/s

2.5Gb/s

2.5Gb/s

1Gb/s

1Gb/s

2.5Gb/s

- Router

- Site

Figure 6.10: European Union DataGrid testbed model used in simulation.

The resources in the actual testbed have gone through several configuration changes,

not all of which are publicly available, and hence it was impossible to model their layout

and CPU capability accurately. Instead, it was decided to create a configuration for each

resource such that the modelled testbed, in whole, would reflect the heterogeneity of plat-

forms and capabilities that is normally the characteristicof Grids. All the resources were

simulated as clusters of single CPU nodes or Processing Elements (PEs) with a batch job

management system using space-shared policy. This modelled real world Grid resources

that are generally high performance clusters in which each job is allocated to a processing

node through a job submission queue. The processing capabilities of the PEs were rated

in terms of Million Instructions Per Sec (MIPS) so that the application requirements can

166 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

Table 6.1: Resources within EDG testbed used for evaluation.

Resource Name
(Location)

No. of Nodes Single PE
Rating
(MIPS)

Storage (TB) Mean
Load

RAL (UK) 41 1140 2.75 0.9
Imperial College
(UK)

52 1330 1.80 0.95

NorduGrid
(Norway)

17 1176 1.00 0.9

NIKHEF
(Netherlands)

18 1166 0.50 0.9

Lyon (France) 12 1320 1.35 0.8
CERN (Switzerland) – – 12 –
Milano (Italy) 7 1000 0.35 0.5
Torino (Italy) 4 1330 0.10 0.5
Catania (Italy) 5 1200 0.25 0.6
Padova (Italy) 13 1000 0.05 0.4
Bologna (Italy) 20 1140 5.00 0.8

be modelled in Million Instructions (MI). The configurationassigned to the resources in

the testbed for the simulation are listed in Table 6.1.

To model resource contention caused by multiple users submitting jobs simultane-

ously and the resultant variation in resource availability, a load factorwas associated with

each resource. The load factor is simply the ratio of the number of PEs that are occupied to

the total number of PEs available in a resource. During simulation, the instantaneous load

(or number of PEs occupied) for each resource was derived from a Gaussian distribution

centered around its mean load factor shown in Table 6.1.

Storage at the resources was modelled as the total disk capacity available at the site.

Site access latencies such as disk read time were ignored as these are less than the network

delays by an order of magnitude. The network between the resources were modelled as

the set of routers and links shown in Figure 6.10. Variationsof the available network band-

width are simulated by associating a link load factor, whichis the ratio of the available

bandwidth to the total bandwidth for a network link. During simulation, the instantaneous

measure of the link load is derived from another Gaussian distribution centered around a

mean load assigned at random, at the start of the simulation,to each of the links.

6.4. EVALUATION OF SCHEDULING ALGORITHMS 167

It was possible to keep track of the various load variations through information ser-

vices built into the simulation entities. For example, it was possible to query the instanta-

neous bandwidth of the network link between any two resources. It was also possible to

determine resource availability information by querying the resource for its instantaneous

load and number of PEs available.

6.4.2 Distribution of Data

A universal set of 1000 datasets was used for this evaluation. Studies of similar environ-

ments [159] have shown that the size of the datasets follow a heavy-tailed distribution in

which there are larger numbers of smaller size files and vice versa. Therefore, the set

of datasets are generated with sizes distributed accordingto the logarithmic distribution

in the interval[1GB, 6GB]. The distribution of datasets in a Data Grid depends on many

factors including variations in popularity, the replication strategy employed and the nature

of the Grid fabric. To model this distribution, at the start of the simulation, each of the

datasets were replicated on one or more of the data hosts according to a preset pattern of

file distribution. Two common patterns of file distribution considered in this evaluation

are given below:

• Uniform : Here, the distribution of datasets is modelled on a uniform random prob-

ability distribution. Here, each file is equally likely to bereplicated at any site.

• Zipf : Zipf-like distributions follow a power law model in which the probability

of occurrence of theith ranked file in a list of files is inversely proportional toi−a

wherea ≤ 1. In other words, a few files are distributed widely whereas most of files

are found in one or two places. This models a scenario where the files are replicated

on the basis of popularity. It has been shown that Zipf-like distributions holds true

in cases such as requests for pages in World Wide Web where a few of the sites are

visited the most [40]. This scenario has been evaluated for aData Grid environment

in related publications [48].

Henceforth, the distribution applied is described by the variableDist. The distribution of

datasets was also controlled through a parameter called thedegree of replicationwhich is

the maximum possible number of replicas of any dataset present in the Data Grid at the

168 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

beginning of the simulation. For example, a degree of replication of 3 means there can be

up to 3 copies of any dataset on the Grid resources. However, not all datasets are replicated

to the limit of the degree of replication. In a uniform distribution, a higher percentage of

the datasets are replicated up to the maximum limit than in the Zipf distribution. The

degree of replication in this evaluation is 5.

6.4.3 Application and Jobs

The simulated application models a Bag-of-Task applicationthat can be converted into

a set of independent jobs. The size of the application was determined by the number of

jobs in the set (orN). Each job translates to a Gridlet object which is the smallest unit

of execution in GridSim. The computational size of a job or the job length, described by

the termSize, is expressed in terms of the time taken to run the job on a standard PE

with a MIPS rating of 1000. That is, a job with length 100,000 MI runs for 100 seconds

on a standard resource. Each job requires as input, a pre-determined number of datasets

(or K datasets) selected at random from the universal set of datasets. For the purpose

of comparison,K is kept a constant among all the jobs in a set although this is not a

condition imposed on the heuristic itself.

An experiment is an execution of the all the heuristics for anapplication while keep-

ing the values for these parameters constant, and is therefore described by the tuple

(N,K, Size,Dist). At the beginning of each experiment, the set of datasets, their distri-

bution among the resources, and the set of jobs are generated. This configuration is then

kept constant while each of the scheduling heuristics are evaluated in turn. To keep the

resource and network conditions repeatable among evaluations, a random number gener-

ator is used with a constant seed. The evaluation is conducted with different values for

N,K, Size andDist to study the performance under different input conditions.

6.5. EXPERIMENTAL RESULTS 169

6.5 Experimental Results

6.5.1 Comparison between the Matching Heuristics

The performances of the matching heuristics discussed in the previous section were com-

pared with each other by pairing each of them with the MinMin heuristic and conducting

50 simulation experiments with different values forN , K, Size andDist. Throughout

this section,SCPrefers to the SCP Tree Search heuristic presented in the previous sec-

tion. The objective of this evaluation was to reduce themakespan[142] of the application

which is the total wallclock time between the submission of the first job to the completion

of the last job in the set.

Table 6.2: Summary of Simulation Results.

Mapping
Heuristic

Geometric
Mean

Avg. deg. (SD) Avg. rank (SD)

Compute-First 37593.71 69.01 (19.4) 3.63 (0.48)
Greedy 36927.44 71.86 (50.55) 3.23 (0.71)
SCP 24011.17 7.68 (10.42) 1.67 (0.6)
Exhaustive
Search

23218.49 3.87 (6.46) 1.47 (0.58)

The results of the experiments are summarised in Table 6.2 and are based on the

methodology provided by Casanova, et. al [51]. For each matching heuristic, the table

contains three values:

1. Geometric Meanof the makespans: The geometric mean is used as the makespans

vary in orders of magnitude depending on parameters such as number of jobs per

application set, number of files per job and the size of each job. The lower the

geometric mean, the better the performance of the heuristic.

2. Average degradation (Avg. deg.) from the best heuristic: In an experiment, the

degradation of a heuristic is the difference between its makespan and the makespan

of the best heuristic for that experiment and is expressed asa percentage of the

latter measure. The average degradation is computed as an arithmetic mean over all

experiments and the standard deviation of the population isgiven in the parentheses

170 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

next to the means in the table. This is a measure of how far a heuristic is away from

the best heuristic for an experiment. A lower number for a heuristic certainly means

that on an average that heuristic is better than the others.

3. Average rank (Avg. rank) of each heuristic in an experiment: The ranking is in the

ascending order of makespans produced by the heuristics foreach experiment, that

is, the lower the makespan, the lower the rank of the heuristic. The average rank is

calculated over all the experiments and the standard deviation is provided alongside

the averages in parantheses.

The three values together provide a consolidated view of theperformance of each

heuristic. For example, it can be seen that on average Compute-First and Greedy both

perform worse than either SCP or Exhaustive Search. However,the standard deviation of

the population is much higher in the case of Greedy than that of Compute-First. Therefore,

Compute-First can be expected to perform as the worst heuristic most of time. Indeed,

in a few of the experiments, Greedy performed as good or even better than SCP while

Compute-First never came close to the performance of the other heuristics.

As expected, between SCP and Exhaustive Search, the latter provides the better results

by having a consistently lower score than the former. However, the nature of Exhaustive

Search means that as the number of datasets per job increases, the number of resource sets

that need to be considered by the heuristic increases dramatically. The geometric mean

and average rank of SCP is close to that of Exhaustive Search heuristic. The average rank

is less than 2 for both heuristics which implies that in many scenarios, SCP provides a

better performance than Exhaustive Search.

Impact of Data Transfer on Performance

Figures 6.11-6.13 show a more fine-grained view of the experimental evaluation by show-

ing the effect of varying one of the variables (N , K, Size, Dist), all others kept constant.

Essentially, these are snapshots of the experimental results that contributed to the sum-

mary data in Table 6.2. Along with the makespan, two more measures of performance are

considered within these figures. These are:

1. Mean percentage of data time: For each job in an experiment, the share of the data

6.5. EXPERIMENTAL RESULTS 171

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(S

im
. U

ni
ts

)

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(S

im
. U

ni
ts

)
No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(a) Makespan vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 D
at

a
T

im
e

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 D
at

a
T

im
e

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(b) Data Time vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(c) Locality vs. No. of Jobs

Figure 6.11: Evaluation with increasing number of jobs (Size=300000 MI,K=3, Left:
Dist=Uniform, Right:Dist=Zipf).

172 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

transfer time is calculated as a percentage of the total execution time for that job.

The average of this measure over all the jobs then representsthe mean impact of the

data transfer time on the set of jobs or the application as a whole. A lower number

is better as one of the aims of the scheduling algorithms presented so far has been

to reduce the data transfer time.

2. Mean locality of access: For each job, the ratio of the number of datasets accessed

from the local disk storage of the compute resource to the total number of datasets

accessed by the job from all resources is calculated as a percentage of the latter and

is termed as thelocal access ratio. Since by design, each of the jobs in an exper-

iment accessed the same number of datasets, the average of the local access ratio

over all the jobs becomes a measure of locality exploited by each of the algorithms.

In this case, a higher number is better as increased local access decreases the impact

of remote data transfer on the performance.

These two measures represent two slightly different perspectives on the data access

performed by the jobs. Consider a job that requires one dataset of size 6 GB and two

datasets of size 1 GB each. The job may be scheduled such that the larger-sized dataset

is accessed locally, whereas the smaller-sized datasets may be accessed from remote data

hosts. In this case, the data transfer component is small butthe locality of access is low as

well. However, when the sizes of the datasets are more or lessequal, the locality of access

becomes an important factor. These two measures, therefore, give an indication of the im-

portance given by the algorithms to the location of data. These can be correlated with the

makespan to judge the impact of the selection made by an algorithm on its performance.

Figure 6.11 shows the impact of the number of jobs on the performance of the algo-

rithm. It can be seen that as the number of jobs increases, themakespan of Compute-First

and Greedy heuristic rise more steeply than the other two. The impact of data time is

lower for SCP and Exhaustive Search than it is for Compute Firstand is a factor in their

improved performance. Locality of access is also higher forthe former two algorithms

and it increases as the number of jobs in the set increases. This is because the probability

of datasets being shared increases with more jobs accessingthe same global set of datasets

as was the case in this evaluation. This means that there is a greater chance for transferred

6.5. EXPERIMENTAL RESULTS 173

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5

T
im

e
(S

im
. U

ni
ts

)

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5

T
im

e
(S

im
. U

ni
ts

)
No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

(a) Makespan vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 D
at

a
T

im
e

No. of Datasets Per Job

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 D
at

a
T

im
e

No. of Datasets Per Job

Compute-First
Greedy

SCP
Exhaustive Search

(b) Data Time vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

(c) Locality vs. No. of Jobs

Figure 6.12: Evaluation with increasing number of datasetsper job (N=600,
Size=300000 MI, Left:Dist=Uniform, Right:Dist=Zipf).

174 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100000 200000 300000 400000 500000 600000

T
im

e
(S

im
. U

ni
ts

)

Gridlet Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000 200000 300000 400000 500000 600000

T
im

e
(S

im
. U

ni
ts

)

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(a) Makespan vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 D
at

a
T

im
e

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 D
at

a
T

im
e

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(b) Data Time vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 L
oc

al
 A

cc
es

s

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 L
oc

al
 A

cc
es

s

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(c) Locality vs. No. of Jobs

Figure 6.13: Evaluation with increasing computational size (N=600, Dist=Uniform,
Left: K=3, Right:K=5).

6.5. EXPERIMENTAL RESULTS 175

datasets to be reused with a higher number of jobs. In case of Zipf distribution (right

column), the locality is lower than in the case of Uniform distribution which means that

a job submitted to a compute resource is less likely to find itsrequired datasets locally.

This can be attributed to the rarer availability of datasetsin Zipf distribution than in the

Uniform distribution.

An interesting result here is that even with a high locality of access, the Greedy heuris-

tic performs significantly worse than Compute-First for Uniform distribution (left column)

while it performs better than the latter when the datasets are replicated according to Zipf

distribution. In the second case, there is a lower number of choices than in the first and

thus, the greedy strategy has a better probability of forming minimal resource sets. In

this case, it can be seen that the performance of Greedy comesclose to or in some cases,

becomes as competitive as SCP mirroring the results of Table 6.2. With a higher number

of choices, the greedy strategy has a lower probability of arriving at the best compute

resource for a job and its performance is degraded.

Figure 6.12 shows the impact of changing only the number of datasets per job. Some

of the trends in the previous graphs are also reflected here. With only one dataset per job,

all algorithms except for Compute-First are able to produce schedules with zero data time

and full locality of access. With the jobs per dataset increasing, the impact of data transfer

time increases at a faster rate for Greedy than for SCP and Exhaustive Search. Also, the

locality reduces more steeply in the Zipf distribution thanin the Uniform distribution,

because there are fewer data hosts for each file. Finally, Figure 6.13 shows the impact

of the computation time on the performance of data-orientedscheduling algorithms. The

locality remains almost constant throughout the experiments. However, as expected, the

impact of data transfer is steadily reduced with increasingsize of computation.

An interesting result here is that the performance of Exhaustive Search is worse than

that of SCP in certain cases. This runs contrary to expectations that Exhaustive Search

will produce the best results in every case. This is due to thefact that MinMin itself is not

guaranteed to give the best schedules in every case [142]. The assignment of resources to

a job impacts the selection of resources for jobs that are yetto be assigned. This leads to

variations in performance of the Exhaustive Search algorithm.

176 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

6.5.2 Comparison between MinMin and Sufferage

Table 6.3: Summary of Comparison between MinMin and Sufferage.

Heuristic Geometric
Mean

Avg. deg Avg. rank

MinMin
Compute-First 19604.73 18.7 (12.84) 4.93 (1.0)
Greedy 25782.28 57.93 (28.51) 6.33 (1.45)
SCP 17353.87 5.2 (13.58) 1.73 (1.44)
Exhaustive
Search

18481.26 11.83 (11.39) 3.47 (1.41)

Sufferage
Compute-First 60631.56 269.31 (57.81) 8.0 (0)
Greedy 18558.61 12.06 (8.45) 4.2 (1.72)
SCP 17353.87 5.2 (13.58) 1.73 (1.44)
Exhaustive
Search

18584.88 12.47 (11.53) 3.67 (1.53)

Each of the matching heuristics were paired with both MinMinand Sufferage schedul-

ing algorithms and evaluated to determine if the latter provided a better performance than

the former. The results of the experiments carried out within this evaluation is summarised

using the same metrics as in the previous section and are listed in Table 6.3. It can be seen

that there is little difference in the performance of both SCPand Exhaustive Search heuris-

tics when coupled with either MinMin or Sufferage scheduling algorithms. Also, there is

only a slight improvement in the performance for Greedy whencoupled with the Suffer-

age algorithm. However, the performance for Compute-First is significantly degraded by

coupling it with the Sufferage algorithm. On average, it is about 2 1/2 times as worse as

the best heuristic in any experiment. Also, the Compute-First-Sufferage pair is ranked 8th

in terms of performance in all experiments (standard deviation is zero). In other words, it

gives the worst performance in every case.

6.6 Related Work

On the basis of the taxonomy presented in Chapter 3, the algorithms presented in this

thesis can be classified as follows:Bag-of-Tasksapplication model,individual in scope,

6.6. RELATED WORK 177

decoupledfrom replication, withmakespanandQoSutility functions and exploiting both

temporalandspatial locality. Chapter 3, Section 3.2.4 provided a brief survey ofsome of

the related scheduling algorithms for data intensive applications on Grid resources.

Some of the publications [29, 160, 173] that were surveyed inChapter 3, Section 3.2.4

tackle the problem of replicating the data for a single job depending on the site where the

job is scheduled. However, the application model applied inthis thesis is closer to that

of Casanova, et.al [51] who investigate scheduling algorithms for a set of independent

tasks that share files. They extend the MinMin and Sufferage algorithms to consider data

requirements of the tasks and introduce the XSufferage algorithm to take advantage of file

locality. However, in their article, the source of all the files for the tasks is the resource

that dispatches the jobs. This work is extended by Giersch, et. al [97] to consider the

general problem of scheduling tasks that share multiple files, each available from multiple

sources. They focus on developing routing algorithms for staging the input files through

the network links on to data resources, close to the selectedcompute resources, such

that the total execution time is minimised. Khanna, et al. [115] propose a hypergraph-

based approach for scheduling a set of independent tasks with a view to minimise the I/O

overhead by considering the sharing of files between the tasks. However, they do not take

into account the aspect of data replication as the files have only single sources.

The scheduling model considered in this thesis is distinct from those mentioned pre-

viously because it considers: a) the problem of selecting a resource set for a job requiring

multiple datasets in an environment where the data is available from multiple sources due

to prior replication and b) the selection of computational and data resources in such a

resource set to be interconnected. This chapter also extends MinMin and Sufferage algo-

rithms similar to that done by Casanova, et al. [51] and Giersch, et al. [97]. However, in

the algorithms presented in this thesis, the focus of the effort remains on matching or se-

lection of resources which is not given adequate weightage in related work. The matching

algorithms aim to select a resource set such that both the computational and data transfer

components of the execution time are reduced simultaneously. This is different from the

approach, followed by most of the Data Grid scheduling algorithms studied in Chapter 3,

Section 3.2.4, of scheduling the jobs onto a compute resource based on minimum compu-

tation time, and then replicating the data to minimise the access time. The latter approach

178 Chapter 6. A SET COVERAGE-BASED SCHEDULING ALGORITHM

was generalised and extended to support the multiple datasets model in the previous sec-

tions, and was evaluated as the Compute-First heuristic. Simulation results show that

Compute-First produces worse schedules when compared to a strategy giving weightage

to both computational and data factors such as the SCP Tree Search algorithm.

Mohamed and Epema [146] present a Close-to-Files algorithm for a similar applica-

tion model, though restricted to one dataset per job, that searches the entire solution space

for a combination of computational and storage resources tominimise execution time.

This strategy, extended to support multiple datasets per job and evaluated as Exhaustive

Search in the previous section, produces good schedules butbecomes unmanageable for

large solution spaces that occur when more than one dataset is considered per job.

Jain, et al. [113] proposed a set of heuristics for scheduling I/O operations so as to

avoid transfer bottlenecks in parallel systems. However, these heuristics do not consider

the problem of scheduling computational operations and also, the problem of selecting

data sources in case of data replication. Other publications in parallel I/O optimisation [3,

179, 204] pay attention to improving performance through techniques such as interleaving

and disk striping. However, such optimisation techniques are not the focus of this thesis.

6.7 Summary

A crucial step in the scheduling of jobs to distributed resources is that of matching the

jobs to appropriate resources. This chapter models the problem of matching distributed

data-intensive jobs to computational and data resources asan instance of the SCP and

proposes a tree-search heuristic based on a solution to the SCP. This is then combined

with the MinMin and Sufferage algorithms for scheduling sets of independent jobs and

evaluated through simulation against other matching heuristics such as Compute-First,

Greedy and Exhaustive Search. Experiments show that the SCP Tree Search and the

Exhaustive Search heuristics provide the best performanceamong all the four heuristics

mainly because they exploit the locality of datasets, and thereby reduce the amount of data

transferred during execution. However, the high computational complexity of Exhaustive

Search means that it will search through large spaces that may become infeasible for jobs

requiring large number of datasets. Also, there is no gain inperformance by applying the

Sufferage heuristic in place of MinMin for scheduling the entire set of jobs.

Chapter 7

Conclusion

This thesis began by studying, characterising and categorising several aspects of Data

Grid systems. Data Grids have several unique features such as presence of applications

with heavy computing requirements, geographically-distributed and heterogeneous re-

sources under different administrative domains, and largenumber of users sharing these

resources and wanting to collaborate with each other. This thesis then enumerated several

characteristics where Data Grids are similar to and are different from other distributed

data-intensive paradigms such as content delivery networks, peer-to-peer networks and

distributed databases.

Further on, the thesis focused on the architecture of the Data Grids and the funda-

mental requirements of data transport mechanism, data replication systems, and resource

allocation and job scheduling. Taxonomies for each of theseareas were developed to clas-

sify the common approaches and to provide a basis for comparison of Data Grid systems

and technologies. Then, some of the representative systemsin each of these areas were

compared and categorised according to the respective taxonomies. This exercise presented

an insight into the architectures, strategies and practises that are currently adopted within

Data Grids. Thus, the taxonomy chapter laid down a comprehensive classification frame-

work that not only serves as a tool to understanding this complex area but also presents a

reference to which future efforts can be mapped.

The lessons learnt from the study of Data Grid environments provided the basis for

the design of the Gridbus Grid resource broker. The requirements of the broker were to

179

180 Chapter 7. CONCLUSION

provide a software framework that: (a) abstracted the heterogeneity of the environment,

(b) supported multiple application types, (c) allowed different types of user objectives,

(d) supported multiple user interfaces, and (e) handled Grid characteristics such as job

failure and dynamic availability. The architectural separation of interface and core layers

enabled support for multiple user interfaces such as command line interfaces and web

portals. The separation of core and execution layers allowed the broker to support different

implementations of Grid services in a standard manner as is shown by the support for a

large number of computational and data Grid middleware. Thedesign of the core layer

as a collection of passive entities enabled the creation of different application models

that implemented different active logical components to manipulate the same entities in

different ways. Fault-tolerance on the broker side is provided by a persistent database to

which the state of the passive components is saved periodically.

The broker allowed the creation of schedulers that can have avariety of objectives

and can take into account various factors such as presence ofdata and costs of resource

usage. Data aware scheduling was demonstrated through a case study of Grid-enabling

a data-intensive analysis application for the Belle particle physics experiment. The case

study discussed the motivation for using Grid techniques inthe Belle experiment and the

methodology adopted for Grid-enabling the analysis application. It also evaluated the de-

ployment of the application on a set of Grid resources withinAustralia. The empirical

results indicated that considering both the presence of data and the availability of compu-

tational resources led to an improvement in the performanceof the application scheduling

by improving the job turnaround time.

This exercise motivated further research into the scheduling of distributed data inten-

sive applications on Grid resources. This thesis introduced a generic model of a data

intensive application that consists of a set of independenttasks, each of which required

one or more datasets available from one or more storage repositories or data hosts in a

Grid. For each task, and depending on the objective function, the scheduler is required to

select a resource set consisting of one compute resource to execute the task and one data

host each for each dataset that needs to be accessed for the task. The model also took into

account the economic costs of using the Grid resources. Thismodel was applied to present

a greedy algorithm for deadline and budget constrained costand time minimisation-based

7.1. FUTURE WORK 181

scheduling of the target distributed data-intensive applications. Empirical results of eval-

uating this algorithm on a set of Grid resources show that thealgorithm is able to reduce

either the execution and the data transfer time or the cost ofcomputation and data transfer

depending on the chosen objective.

Further on, this thesis concentrates on the matching of jobsto resources and models it

as an instance of the well-known Set Covering Problem. An approximate heuristic based

on tree search is presented and evaluated via simulation against the popular Compute-First

strategy, the Greedy strategy proposed previously, and theExhaustive Search strategy that

returns the best match for any job. The results show that the proposed heuristic is better

than Compute-First and Greedy approaches and leads to schedules that are competitive

with the Exhaustive Search.

7.1 Future Work

This thesis improves the understanding of data intensive Grid computing environments

and advances the state-of the art through its contributions. Its investigation has revealed

areas in Data Grids where much work remains to be done. Also, the contributions of this

thesis have led to new questions that need to be addressed through further research. This

section briefly describes some of these questions within each of the areas explored in this

thesis.

7.1.1 Brokering of Grid Services

The Gridbus broker has been shown to be effective for executing scientific applications

that are sets of independent tasks such as Bag-of-Task or parameter sweep applications, on

Grid resources. The broker is currently under heavy development and much of the work

is devoted to extending it to support other application models such as process-oriented

applications [188]. However, there is still the question ofwhether newer application mod-

els that will emerge in the future can be accommodated by the current architecture of the

broker.

Chapter 2, Section 2.2 discussed the Open Grid Service Architecture (OGSA) and its

vision of enabling a service-oriented architecture for Grid computing. The Grid commu-

182 Chapter 7. CONCLUSION

nity has recently standardised on the Web Services Resource Framework (WSRF) [80]

to realise the OGSA. To be able to function in a service-oriented environment, the Grid

broker has to be able to compose services based on their attributes and create service ag-

gregations to achieve users’ utility functions. Grid services present a highly abstracted

view of the underlying infrastructure and disruption of an invoked service should be man-

aged by quickly switching to similar services in order to maintain a transparent view of

infrastructure. These requirements place demands for intelligent fault management within

the broker and motivate the development of new scheduling mechanisms.

7.1.2 Scheduling of Distributed Data-Intensive Workflows

This thesis has explored the scheduling of applications that require multiple datasets each

replicated on multiple data repositories on the Grid. The scheduling algorithms proposed

in this thesis explicitly take into account the availability of data replicas on distributed

resources. The taxonomy in Chapter 3, Section 3.1 introducedfour bulk transfer modes

- parallel transfers, striped transfers, auto-resizing ofbuffers and container operations -

that may be adopted by Data Grid applications for optimal utilisation of available net-

work capacity. While container operations and parallel transfers can be accommodated

in the single location transfer model, it remains an open question whether striped trans-

fers, which require accessing the same file from multiple nodes at the same time, can be

handled by the scheduling algorithms proposed in this thesis.

The scheduling algorithms proposed in this thesis apply to the Bag of Task model of

applications. However, this thesis has only explored the MinMin and Sufferage schedul-

ing algorithms within the space of scheduling algorithms for sets of independent tasks.

It would be interesting to explore the applicability of the matching heuristics proposed

in this thesis within some of the other known scheduling techniques such as Genetic

Algorithms. It would also be interesting to investigate theapplicability of the match-

ing heuristics to other task models such as Directed AcyclicGraphs (DAGs) which are

used to model workflows [220] and process-oriented parallelapplications. An immediate

follow-up work would be to implement the matching heuristics within well-known DAG

scheduling algorithms such as the Dynamic Critical Path (DCP)[126] algorithm.

7.1. FUTURE WORK 183

7.1.3 Economic Mechanisms in Data Grids

This thesis has investigated the properties that are uniqueto Data Grids. Currently, the

utility of Data Grids is limited to scientific collaborations that need to manage volumes of

shared data. However, some of the tools developed within Data Grids may find applicabil-

ity to areas outside of scientific computing such as in enterprises with similar requirements

for resource sharing and data access. This would require taking into account more strict

reliability and security requirements. Another challengewould be to extend existing Data

Grid techniques to work with technologies within enterprises such as databases [139].

Present-day Data Grids are based on the notion of sharing resources within virtual

organisations. However, as the dependence on Data Grids increases, there will be higher

demands for reliability and resource share. Service providers may not be able to fulfil

these without investing economically in the infrastructure and would expect returns on

their investment. Service consumers will require quality of service guarantees enforced

through Service Level Agreements (SLAs). Therefore, a wider exploration of economic

aspects of Data Grid computing requires investigation of the utility functions of the par-

ticipants, SLAs and market mechanisms.

Appendix A

List of Articles Published during the

Candidature

Book Chapters

1. P. Asadzadeh, R. Buyya, C. L. Kei, D. Nayar, andS. Venugopal, Global Grids and
Software Toolkits: A Study of Four Grid Middleware Technologies, High Perfor-
mance Computing: Paradigm and Infrastructure, L. Yang and M. Guo (eds), Wiley
Press, USA, June 2005.

2. A. Luther, R. Buyya, R. Ranjan, andS. Venugopal, Peer-to-Peer Grid Computing
and a .NET-based Alchemi Framework,High Performance Computing: Paradigm
and Infrastructure, L. Yang and M. Guo (eds), Wiley Press, USA, June 2005.

3. C. S. Yeo, M. Dias de Assuno, J. Yu, A. Sulistio,S. Venugopal, M. Placek, and R.
Buyya,Utility Computing and Global Grids, Hossein Bidgoli (ed), The Handbook of
Computer Networks, Wiley Press, USA, (accepted in April 2006and in print).

Journals

1. S. Venugopal, R. Buyya, and K. Ramamohanarao, “A Taxonomy of Data Grids for
Distributed Data Sharing, Management and Processing”,ACM Computing Surveys,
38(1):1-53, ACM Press.

2. S. Venugopal, R. Buyya and L. Winton, “A Grid Service Broker for Scheduling e-
Science Applications on Global Data Grids”,Concurrency and Computation: Prac-
tice and Experience, 18(6):685-699, Wiley Press, UK.

3. J. Yu,S. Venugopaland R. Buyya, “A Market-Oriented Grid Directory Service for
Publication and Discovery of Grid Service Providers and their Services”,Journal of
Supercomputing,36(1):17-31, Springer Science+Business Media, Berlin, Germany.

4. R. Buyya, S. Date, Y. Mizuno-Matsumoto,S. Venugopaland D. Abramson, “Neuro-
science Instrumentation and Distributed Analysis of Brain Activity Data: A Case for

185

186 Appendix A. LIST OF PUBLISHED ARTICLES

eScience on Global Grids”,Concurrency and Computation: Practice and Experience
(CCPE), 17(15):1783 - 1798, Wiley Press, U.K.

5. R. Buyya, M. Murshed, D. Abramson andS. Venugopal, “Scheduling Parameter
Sweep Applications on Global Grids: A Deadline and Budget Constrained Cost-Time
Optimisation Algorithm”,Software: Practice and Experience (SPE), 35(5):491 -
512, Wiley Press, UK.

6. R. Buyya, D. Abramson andS. Venugopal,“The Grid Economy”,Proceedings of the
IEEE, M. Parashar and C. Lee (editors), 93(3):698-714, IEEE Press, USA.

Refereed Conference Papers

1. S. Venugopaland R. Buyya, “A Set Coverage-based Mapping Heuristic for Schedul-
ing Distributed Data-Intensive Applications on Global Grids”, Proceedings of the 7th
International Conference on Grid Computing (GRID 06), Barcelona, Spain, Sept.
28-29, 2006, IEEE CS Press, Los Alamitos, CA, USA.

2. M. Dias de Assuncao, K. Nadiminti,S. Venugopal, T. Ma, and R. Buyya, An Inte-
gration of Global and Enterprise Grid Computing: Gridbus Broker and Xgrid Per-
spective,Proceedings of the 4th International Conference on Grid and Cooperative
Computing (GCC 2005), Beijing, China, Dec. 2005, Springer-Verlag, Germany.

3. S. Venugopaland R. Buyya, “A Deadline and Budget Constrained Scheduling Algo-
rithm for eScience Applications on Data Grids”,Proceedings of the 6th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP-2005),
Oct. 2005, Melbourne, Australia, Springer-Verlag, Berlin,Germany.

4. N. Muthuvelu, J. Liu, N. L. Soe,S. Venugopal, A. Sulistio and R. Buyya, “A Dy-
namic Job Grouping-Based Scheduling for Deploying Applications with Fine-Grained
Tasks on Global Grids”,Proceedings of the 3rd Australasian Workshop on Grid Com-
puting and e-Research (AusGrid 2005), Feb. 2005, Newcastle, Australia, Australian
Computing Society (ACS).

5. B. Beeson, S. Melnikoff,S. Venugopaland D.G. Barnes, “A Portal for Grid-enabled
Physics”,Proceedings of the 3rd Australasian Workshop on Grid Computing and e-
Research (AusGrid2005), Feb. 2005, Newcastle, Australia, ACS.

6. B. Hughes,S. Venugopaland R. Buyya, “Grid-based Indexing of a Newswire Cor-
pus”,Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID 2004), Nov. 2004, Pittsburgh, USA, IEEE CS Press, USA.

7. S. Venugopal, R. Buyya, and L. Winton, “A Grid Service Broker for Scheduling
Distributed Data-Oriented Applications on Global Grids”,Proceedings of the 2nd
International Workshop on Middleware for Grid Computing (MGC04), Oct. 2004,
Toronto, Canada, ACM Press, USA.

8. R. Buyya andS. Venugopal, “The Gridbus Toolkit for Service Oriented Grid and
Utility Computing: An Overview and Status Report”,Proceedings of the 1st IEEE
International Workshop on Grid Economics and Business Models (GECON 04), Apr.
2004, Seoul, Korea, IEEE Press, USA.

9. R. Buyya, S. Date, Y. Mizuno-Matsumoto,S. Venugopal, and D. Abramson, “Com-
position of Distributed Brain Activity Analysis and its On-Demand Deployment on

187

Global Grids”, Proceedings of the 10th International Conference on High Perfor-
mance Computing (HiPC 2003) Workshops, Dec. 2003, Hyderabad, India.

Posters and Magazine Articles

1. S. Venugopaland R. Buyya, “Cost-based Scheduling for Data-Intensive Applica-
tions on Global Grids”,Proceedings of the 14th IEEE International Symposium on
High Performance Distributed Computing (HPDC-14), Poster, July 2005, Research
Triangle Park, North Carolina, USA. IEEE CS Press, USA.

2. R. Buyya andS. Venugopal,“A Gentle Introduction to Grid Computing and Tech-
nologies”,CSI Communications, Vol.29, No.1, pp9-19, Computer Society of India
(CSI) Publication, July 2005.

REFERENCES

[1] Abramson, D., Giddy, J., and Kotler, L. (2000). High Performance Parametric Model-
ing with Nimrod/G: Killer Application for the Global Grid? In Proceedings of the 14th
International Parallel and Distributed Processing Symposium (IPDPS 2000), Cancun,
Mexico. IEEE CS Press, Los Alamitos, CA, USA.

[2] Abramson, D., Sosic, R., Giddy, J., and Hall, B. (1995). Nimrod: a tool for perform-
ing parametrised simulations using distributed workstations. InProceedings of the
Fourth IEEE International Symposium on High Performance Distributed Computing
(HPDC ’95), Pentagon City, VA, USA. IEEE CS Press , Los Alamitos, CA, USA.

[3] Acharya, A., Uysal, M., Bennett, R., Mendelson, A., Beynon,M., Hollingsworth, J.,
Saltz, J., and Sussman, A. (1996). Tuning the performance ofi/o-intensive parallel
applications. InProceedings of the fourth workshop on I/O in parallel and distributed
systems (IOPADS ’96), Philadelphia, PA, USA. ACM Press.

[4] Adachi, I. et al. (2004). Belle computing system.Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 534(1-2):53–58.

[5] Aderholz, M. et al. (2000). MONARC Project Phase2 Report. Technical report,
CERN.

[6] Alfieri, R. et al. (2005). From gridmap-file to VOMS: managing authorization in a
Grid environment.Future Gener. Comput. Syst., 21(4):549–558.

[7] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C., Meder,
S., Nefedova, V., Quesnel, D., and Tuecke, S. (2001a). Secure, efficient data transport
and replica management for high-performance data-intensive computing. InProceed-
ings of IEEE Mass Storage Conference, San Diego, USA. IEEE CS Press, Los Alami-
tos, CA, USA.

[8] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., and Tuecke, S. (2002).Data management and
transfer in high-performance computational grid environments. Parallel Computing,
28(5):749–771.

[9] Allcock, B., Foster, I., Nefedova, V., Chervenak, A., Deelman, E., Kesselman, C.,
Lee, J., Sim, A., Shoshani, A., Drach, B., and Williams, D. (2001b). High-performance
remote access to climate simulation data: a challenge problem for data grid technolo-
gies. InProceedings of the 2001 ACM/IEEE conference on Supercomputing (SC ’01),
Denver, CO, USA. ACM Press, New York, NY, USA.

[10] Allcock, W. (2003). GridFTP Protocol Specification. (Global Grid Forum Recom-
mendation GFD.20).

189

190 REFERENCES

[11] Allen, G., Benger, W., Goodale, T., Hege, H.-C., Lanfermann, G., Merzky, A.,
Radke, T., Seidel, E., and Shalf, J. (2000). The Cactus Code: A Problem Solving
Environment for the Grid. InProceedings of the 9th International Symposium on High
Performance Distributed Computing (HPDC-9), Pittsburgh, USA. IEEE CS Press, Los
Alamitos, CA, USA.

[12] Aloisio, G. and Cafaro, M. (2002). Web-based access to the Grid using the Grid
Resource Broker portal.Concurrency and Computation: Practice and Experience,
14(13-15):1145–1160.

[13] Alonso, R. and Barbara, D. (1989). Negotiating data access in federated database
systems. InProceedings of the 5th International Conference on Data Engineering,
pages 56–65, Los Angeles, CA, USA. IEEE CS Press, Los Alamitos,CA, USA.

[14] Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris, R. (2001). Resilient
overlay networks. InProceedings of the 18th ACM symposium on Operating systems
principles(SOSP ’01), pages 131–145, Banff, Alberta, Canada. ACM Press, New York,
NY, USA.

[15] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., andWerthimer, D. (2002).
SETI@home: an experiment in public-resource computing.Communications of the
ACM, 45(11):56–61.

[16] Anglano, C. et al. (2001). Integrating GRID tools to builda computing resource bro-
ker: activities of DataGrid WP1. InProceedings of the 2001 International Conference
on Computing in High Energy and Nuclear Physics (CHEP), Beijing, China.

[17] Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D.,Ly, A., McGough, S., Pul-
sipher, D., and Savva, A. (2005). Job Submission Description Language (JSDL) Spec-
ification, Version 1.0. Technical report, Global Grid Forum.

[18] Antonioletti, M. et al. (2005). Web Services Data Access and Integration (WS-DAI).
Technical report, GGF DAIS Working Group. Informational Document.

[19] Apache Software Foundation (2006). Apache Tomcat.http://tomcat.
apache.org/. Accessed Jun 2006.

[20] Ardaiz, O., Artigas, P., Eymann, T., Freitag, F., Navarro, L., and Reinicke, M.
(2003). Self-organizing resource allocation for autonomic networks. InProceedings
of the 1st International Workshop on Autonomic Computing Systems, Prague, Czech
Republic. IEEE CS Press, Los Alamitos, CA, USA.

[21] Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Seymour, K.,
Sagi, K., Shi, Z., and Vadhiyar, S. (2002). Users’ Guide to NetSolve V1.4.1. In-
novative Computing Dept. Technical Report ICL-UT-02-05, University of Tennessee,
Knoxville, TN.

[22] Avery, P. and Foster, I. (2001). The GriPhyN Project: Towards Petascale Virtual-
Data Grids. Technical Report GriPhyN 2001-14, The GriPhyN Collaboration.

REFERENCES 191

[23] Baker, M., Buyya, R., and Laforenza, D. (2002). Grids and Grid Technologies for
Wide-Area Distributed Computing.Software: Practice and Experience, 32(15):1437–
1466. Wiley Press, USA.

[24] Balas, E. and Padberg, M. W. (1972). On the Set-Covering Problem. Operations
Research, 20(6):1152–1161.

[25] Barmouta, A. and Buyya, R. (2003). GridBank: A Grid Accounting Services Ar-
chitecture (GASA) for Distributed Systems Sharing and Integration. InProceedings of
Workshop on Internet Computing and E-Commerce : 17th Annual International Par-
allel and Distributed Processing Symposium (IPDPS 2003), Nice, France. IEEE CS
Press, Los Alamitos, CA, USA.

[26] Baru, C., Moore, R., Rajasekar, A., and Wan, M. (1998). The SDSC Storage Re-
source Broker. InProceedings of CASCON’98, Toronto, Canada. IBM Press.

[27] Bassi, A., Beck, M., Fagg, G., Moore, T., Plank, J., Swany,M., and Wolski, R.
(2002). The Internet Backplane Protocol: A Study in Resource Sharing. InProceedings
of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID 2002), Berlin, Germany. IEEE CS Press, Los Alamitos, CA, USA.

[28] Bayucan, A., Henderson, R. L., Lesiak, C., Mann, B., Proett,T., and Tweten, D.
(1999). Portable Batch System: External reference specification. Technical report,
MRJ Technology Solutions.

[29] Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P., Stockinger, K., and Zini, F.
(2002). Simulation of Dynamic Grid Replication Strategies in OptorSim. InProceed-
ings of the 3rd International Workshop on Grid Computing(GRID 02), pages 46–57,
Baltimore,MD,USA. Springer-Verlag, Berlin, Germany.

[30] Bell, W. H., Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Stockinger, K.,
and Zini, F. (2003). Evaluation of an Economy-Based File Replication Strategy for a
Data Grid. InProceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2003), Tokyo, Japan. IEEE CS Press, Los Alamitos,
CA, USA.

[31] Berman, F. et al. (2001). The grads project: Software support for high-level grid
application development.Int. J. High Perform. Comput. Appl., 15(4):327–344.

[32] Berman, F. and Wolski, R. (1997). The AppLeS Project: A Status Report. InPro-
ceedings of the 8th NEC Research Symposium, Berlin, Germany.

[33] Bester, J., Foster, I., Kesselman, C., Tedesco, J., and Tuecke, S. (1999). GASS: A
Data Movement and Access Service for Wide Area Computing Systems. InProceed-
ings of the 6th Workshop on I/O in Parallel and Distributed Systems, Atlanta, USA.
ACM Press, New York, NY, USA.

[34] BioGrid Project, Japan (2005).http://www.biogrid.jp/.

[35] Biomedical Informatics Research Network (BIRN) (2005).http://www.
nbirn.net.

192 REFERENCES

[36] Björkander, M. and Kobryn, C. (2003). Architecting Systems with UML 2.0. IEEE
Software, 20(4):57–61.

[37] Brady, M., Gavaghan, D., Simpson, A., Parada, M. M., and Highnam, R. (2003).
Grid Computing: Making the Global Infrastructure a Reality, chapter eDiamond: A
Grid-Enabled Federated Database of Annotated Mammograms,pages 923–943. Wiley
Press, London, UK.

[38] Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther, A. I.,
Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., and Freund, R. F. (2001). A com-
parison of eleven static heuristics for mapping a class of independent tasks onto het-
erogeneous distributed computing systems.Journal of Parallel and Distributed Com-
puting, 61(6):810–837.

[39] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (2004).
Extensible Markup Language (XML) 1.0 (3rd Edition). W3C Recommendation.

[40] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and
zipf-like distributions: evidence and implications. InProceedings of the 18th Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
’99.), New York, NY, USA.

[41] Bunn, J. and Newman, H. (2003).Grid Computing: Making the Global Infrastruc-
ture a Reality, chapter Data Intensive Grids for High Energy Physics. Wiley Press,
London, UK.

[42] Buyya, R. (2002).Economic-based Distributed Resource Management and Schedul-
ing for Grid Computing. PhD thesis, Monash University, Australia.

[43] Buyya, R., Abramson, D., and Giddy, J. (2000a). Nimrod/G:An Architecture for
a Resource Management and Scheduling System in a Global Computational Grid. In
Proceedings of the 4th International Conference on High Performance Computing in
Asia-Pacific Region (HPC Asia 2000), Beijing, China. IEEE Computer Society Press,
USA.

[44] Buyya, R., Abramson, D., Giddy, J., and Stockinger, H. (2002). Economic models
for resource management and scheduling in grid computing.The Journal of Concur-
rency and Computation: Practice and Experience (CCPE), 14(13-15):1507–1542.

[45] Buyya, R., Giddy, J., and Abramson, D. (2000b). An Evaluation of Economy-based
Resource Trading and Scheduling on Computational Power Gridsfor Parameter Sweep
Applications. InProceedings of the 2nd Workshop on Active Middleware Services
(AMS 2000), Pittsburgh, USA. IEEE CS Press , Los Alamitos, CA, USA.

[46] Buyya, R. and Murshed, M. (2002). GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for Grid Computing.
Concurrency and Computation: Practice and Experience (CCPE), 14(13-15):1175–
1220.

REFERENCES 193

[47] Buyya, R. and Vazhkudai, S. (2001). Compute Power Market: Towards a Market-
Oriented Grid. InProceedings of the 1st International Symposium on Cluster Comput-
ing and the Grid (CCGRID ’01), page 574, Brisbane, Australia. IEEE CS Press, Los
Alamitos, CA, USA.

[48] Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Nicholson, C., Stockinger,
K., and Zini, F. (2003). Evaluating Scheduling and Replica Optimisation Strategies
in OptorSim. InProceedings of the 4th International Workshop on Grid Computing
(Grid2003), Phoenix, AZ, USA. IEEE CS Press, Los Alamitos, CA, USA.

[49] Casanova, H. (2001). Simgrid: A Toolkit for the Simulation of Application Schedul-
ing. In Proceedings of the 1st International Symposium on Cluster Computing and the
Grid (CCGRID ’01), Brisbane, Australia. IEEE CS Press , Los Alamitos, CA, USA.

[50] Casanova, H. and Berman, F. (2003).Grid Computing, chapter Parameter Sweeps
on the Grid with APST, pages 773–787. Wiley Press, London, UK.

[51] Casanova, H., Legrand, A., Zagorodnov, D., and Berman, F.(2000a). Heuristics for
Scheduling Parameter Sweep Applications in Grid environments. In Proceedings of
the 9th Heterogeneous Computing Systems Workshop (HCW 2000), Cancun, Mexico.
IEEE CS Press, Los Alamitos, CA, USA.

[52] Casanova, H., Obertelli, G., Berman, F., and Wolski, R. (2000b). The AppLeS
parameter sweep template: User-level middleware for the grid. In Proceedings of
the 2000 ACM/IEEE conference on Supercomputing (SC’00), Dallas, TX, USA. IEEE
Computer Society.

[53] Ceri, S. and Pelagatti, G. (1984).Distributed databases : principles and systems.
McGraw-Hill, New York, USA.

[54] Chapin, S., Karpovich, J., and Grimshaw, A. (1999). The Legion resource manage-
ment system. InProceedings of the 5th Workshop on Job Scheduling Strategies for
Parallel Processing, San Juan, Puerto Rico. IEEE CS Press, Los Alamitos, CA, USA.

[55] Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kessel-
man, C., Kunst, P., Ripeanu, M., Schwartzkopf, B., Stockinger,H., Stockinger, K., and
Tierney, B. (2002). Giggle: A framework for constructing scalable replica location
services. InProceedings of the 2002 IEEE/ACM Conference on Supercomputing (SC
’02), Baltimore,USA.

[56] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and Tuecke, S. (2000). The
Data Grid: Towards an architecture for the distributed management and analysis of
large scientific datasets.Journal of Network and Computer Applications, 23(3):187–
200.

[57] Choon-Hoong, D., Nutanong, S., and Buyya, R. (2005).Peer-to-Peer Computing:
Evolution of a Disruptive Technology, chapter Peer-to-Peer Networks for Content Shar-
ing, pages 28–65. Idea Group Publishers, Hershey, PA, USA.

194 REFERENCES

[58] Christofides, N. (1975).Graph Theory: An Algorithmic Approach, chapter Inde-
pendent and Dominating Sets – The Set Covering Problem, pages30 – 57. Academic
Publishers, London, UK. ISBN 012 1743350 0.

[59] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2001). Freenet: a distributed
anonymous information storage and retrieval system. InProceedings of International
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA.
Springer-Verlag, Berlin, Germany.

[60] Cooke, A. et al. (2003). R-GMA: An Information Integration System for Grid Mon-
itoring. Lecture Notes in Computer Science, 2888:462 – 481.

[61] Cooper, K., Dasgupata, A., Kennedy, K., Koelbel, C., Mandal, A., Marin, G., Maz-
ina, M., Mellor-Crummey, J., Berman, F., Casanova, H., Chien, A., Dail, H., Liu, X.,
Olugbile, A., Sievert, O., Xia, H., Johnsson, L., Liu, B., Patel, M., Reed, D., Deng,
W., Mendes, C., Shi, Z., YarKhan, A., and Dongarra, J. (2004).New Grid Scheduling
and Rescheduling Methods in the GrADS Project. InProceedings of NSF Next Genera-
tion Software Workshop:International Parallel and Distributed Processing Symposium,
Santa Fe, NM, USA. IEEE CS Press, Los Alamitos, CA, USA.

[62] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to
Algorithms. McGraw-Hill Higher Education.

[63] Czajkowski, K., Foster, I., and Kesselman, C. (1999). Resource co-allocation in
computational grids. InProceedings of the Eighth IEEE International Symposium on
High Performance Distributed Computing (HPDC ’99), Redondo Beach, CA, USA.
IEEE CS Press , Los Alamitos, CA, USA.

[64] Czajkowski, K., Foster, I. T., Karonis, N. T., Kesselman, C., Martin, S., Smith, W.,
and Tuecke, S. (1998). A Resource Management Architecture for Metacomputing Sys-
tems. InProceedings of the Workshop on Job Scheduling Strategies for Parallel Pro-
cessing(IPPS/SPDP ’98), Orlando, Florida, USA. Springer-Verlag, Berlin, Germany.

[65] Czajkowski, K., Kesselman, C., Fitzgerald, S., and Foster, I. (2001). Grid infor-
mation services for distributed resource sharing. InProceedings of the 10th IEEE
International Symposium on High Performance Distributed Computing (HPDC-10),
San Francisco, CA. IEEE CS Press, Los Alamitos, CA, USA.

[66] Dail, H., Casanova, H., and Berman, F. (2002). A DecoupledScheduling Approach
for the GrADS Environment. InProceedings of the 2002 IEEE/ACM Conference on
Supercomputing (SC’02), Baltimore, USA. IEEE CS Press, Los Alamitos, CA, USA.

[67] Dail, H., Sievert, O., Berman, F., Casanova, H., YarKhan,A., Vadhiyar, S., Don-
garra, J., Liu, C., Yang, L., Angulo, D., and Foster, I. (2004). Grid resource man-
agement: state of the art and future trends, chapter Scheduling in the Grid application
development software project, pages 73–98. Kluwer Academic Publishers, Cambridge,
MA, USA.

[68] Davison, B. D. (2001). A web caching primer.IEEE Internet Computing, 5(4):38–
45.

REFERENCES 195

[69] Deelman, E., Blythe, J., Gil, Y., and Kesselman, C. (2003). Grid Resource Manage-
ment: State of the Art and Future Trends, chapter Workflow Management in GriPhyN,
pages 99–117. Kluwer Academic Publishers, Cambridge, MA, USA.

[70] Dias de Assuncao, M., Nadiminti, K., Venugopal, S., Ma,T., and Buyya, R. (2005).
An integration of global and enterprise grid computing: Gridbus broker and xgrid per-
spective. InProceedings of the 4th International Conference on Grid and Cooperative
Computing (GCC 2005), LNCS, Beijing, China. Springer-Verlag, Berlin, Germany.

[71] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. (2002).
Globally distributed content delivery.IEEE Internet Computing, 6(5):50– 58.

[72] Dullmann, D., Hoschek, W., Jaen-Martinez, J., Segal, B., Samar, A., Stockinger,
H., and Stockinger, K. (2001). Models for Replica Synchronisation and Consistency
in a Data Grid. InProceedings of the 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10), San Francisco, CA. IEEE CS Press,
Los Alamitos, CA, USA.

[73] Dumitrescu, C. and Foster, I. (2004). Usage Policy-BasedCPU Sharing in Virtual
Organizations. InProceedings of the 5th IEEE/ACM International Workshop on Grid
Computing (GRID’04), Pittsburgh, PA, USA. IEEE CS Press, Los Alamitos, CA, USA.

[74] Dumitrescu, C., Raicu, I., and Foster, I. (2005). Di-gruber: A distributed approach
to grid resource brokering. InProceedings of the 2005 ACM/IEEE conference on Su-
percomputing (SC’05), page 38, Seattle, WA, USA. IEEE CS Press,Los Alamitos, CA,
USA.

[75] Ellert, M., Konstantinov, A., Konya, B., Smirnova, O., and Waananen, A. (2002).
Performance Evaluation of GridFTP within the NorduGrid Project. Technical Report
cs.DC/0205023, NorduGrid Project.

[76] Enabling Grids for E-SciencE (EGEE) (2005).http://public.eu-egee.
org/.

[77] Eriksson, H.-E. and Penker, M. (2000).Business modeling with UML : business
patterns at work. Wiley Press, New York, USA.

[78] Erwin, D. W. and Snelling, D. F. (2001). UNICORE: A Grid Computing Envi-
ronment. InProceedings of the 7th International Euro-Par Conference onParallel
Processing (Euro-Par ’01), Manchester, UK. Springer-Verlag, Berlin, Germany.

[79] Ferrari, A., Knabe, F., Humphrey, M., Chapin, S. J., and Grimshaw, A. S. (1999). A
Flexible Security System for Metacomputing Environments.In Proceedings of the 7th
International Conference on High-Performance Computing andNetworking (HPCN
’99), pages 370–380, Amsterdam, The Netherlands. Springer-Verlag, Berlin, Germany.

[80] Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling,
D., and Tuecke, S. (2005). Modeling and managing State in distributed systems: the
role of OGSI and WSRF.Proceedings of the IEEE, 93(3):604– 612.

196 REFERENCES

[81] Foster, I. and Iamnitchi, A. (2003). On death, taxes, and the convergence of peer-
to-peer and grid computing. InProceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS), volume 2735 ofLecture Notes in Computer Science,
pages 118 – 128, Berkeley, CA, USA. Springer-Verlag, Berlin, Germany.

[82] Foster, I. and Karonis, N. (1998). A Grid-Enabled MPI: Message Passing in Het-
erogeneous Distributed Computing Systems. InProceedings of the IEEE/ACM Su-
perComputing Conference 1998 (SC’98), San Jose, CA, USA. IEEE CS Press, Los
Alamitos, CA, USA.

[83] Foster, I. and Kesselman, C. (1998). The Globus Project:A Status Report. In
Proceedings of IPPS/SPDP’98 Heterogeneous Computing Workshop, pages 4–18, Or-
lando, FL, USA. IEEE CS Press , Los Alamitos, CA, USA.

[84] Foster, I. and Kesselman, C. (1999a).The Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann Publishers, San Francisco, USA.

[85] Foster, I. and Kesselman, C. (1999b).The Grid: Blueprint for a new computing
infrastructure, chapter The Globus toolkit, pages 259–278. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1 edition.

[86] Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S. (2002). Grid services for
distributed system integration.Computer, 35(6):37–46.

[87] Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. (1998). A security architecture
for computational grids. InProc. 5th ACM Conference on Computer and Communi-
cations Security Conference, San Francisco, CA, USA. ACM Press, New York, NY,
USA.

[88] Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid: Enabling
scalable virtual organizations.International Journal of High Performance Computing
Applications, 15(3):200–222.

[89] Foster, I., Tuecke, S., and Unger, J. (2003). OGSA Data Services. Global Grid
Forum 9.

[90] Fox, G. and Pallickara, S. (2002). The Narada Event Brokering System: Overview
and Extensions. InProceedings of the International Conference on Parallel andDis-
tributed Processing Techniques and Applications (PDPTA ’02), pages 353–359, Las
Vegas, USA. CSREA Press.

[91] Frey, J., Tannenbaum, T., Livny, M., Foster, I., and Tuecke, S. (2002). Condor-G:
A Computation Management Agent for Multi-Institutional Grids. Cluster Computing,
5(3):237–246.

[92] Gagliardi, F., Jones, B., Reale, M., and Burke, S. (2002). European DataGrid
Project: Experiences of Deploying a Large Scale Testbed forE-science Applications.
In Proceedings of Performance Evaluation of Complex Systems: Techniques and Tools,
Performance 2002, Tutorial Lectures, number 2459 in Lecture Notes in Computer Sci-
ence, pages 480–500. Springer-Verlag, Berlin, Germany.

REFERENCES 197

[93] Galbraith, J., Saarenmaa, O., Ylonen, T., and Lehtinen, S. (2005). SSH File Transfer
Protocol (SFTP). Internet Draft. Valid upto September 2005.

[94] Gardner, R. et al. (2004). The Grid2003 Production Grid:Principles and Practice.
In Proceedings of the 13th Symposium on High Performance Distributed Computing
(HPDC 13), Honolulu, HI, USA. IEEE CS Press, Los Alamitos, CA, USA.

[95] Gentzsch, W. (2001). Sun Grid Engine: Towards Creating aCompute Power Grid.
In Proceedings of the 1st International Symposium on Cluster Computing and the Grid
(CCGRID ’01), Brisbane, Australia. IEEE CS Press , Los Alamitos, CA, USA.

[96] Gibbins, H., Nadiminti, K., Beeson, B., Chhabra, R. K., Smith, B., and Buyya, R.
(2005). The Australian BioGrid Portal: Empowering the Molecular Docking Research
Community. InProceedings of the 3rd APAC Conference and Exhibition on Advanced
Computing, Grid Applications and eResearch (APAC 2005), Gold Coast, Australia.

[97] Giersch, A., Robert, Y., and Vivien, F. (2004). Scheduling tasks sharing files from
distributed repositories. InProceedings of the 10th International Euro-Par Conference
(EuroPar ’04), Pisa, Italy. Springer-Verlag, Berlin, Germany.

[98] Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996). The dangers of replication
and a solution. InProceedings of the 1996 ACM SIGMOD international conference
on Management of data (SIGMOD ’96), pages 173–182, Montreal, Quebec, Canada.
ACM Press, New York, NY, USA.

[99] Gray, J. and Reuter, A. (1993).Transaction processing : concepts and techniques.
Morgan Kaufmann Publishers, San Mateo, Calif.

[100] Hethmon, P. and Elz, R. (1998). RFC 2389: Feature negotiation mechanism for the
File Transfer Protocol. Proposed Standard.

[101] Hey, T. and Trefethen, A. E. (2002). The UK e-Science Core Programme and the
Grid. Journal of Future Generation Computer Systems (FGCS), 18(8):1017–1031.

[102] Hockauf, R., Karl, W., Leberecht, M., Oberhuber, M., and Wagner, M. (1998).
Exploiting Spatial and Temporal Locality of Accesses: A NewHardware-Based Mon-
itoring Approach for DSM Systems. InProceedings of the 4th International Euro-Par
Conference on Parallel Processing (Euro-Par ’98), volume 1470 ofLecture Notes in
Computer Science, pages 206 – 215, Southhampton, UK. Springer-Verlag, Berlin, Ger-
many.

[103] Holliday, J., Agrawal, D., and Abbadi, A. E. (2000). Database replication using
epidemic updates. Technical Report TRCS00-01, University of California at Santa
Barbara.

[104] Holtman, K. et al. (2001). CMS Requirements for the Grid.In Proceedings of
2001 Conference on Computing in High Energy Physics (CHEP 2001), Beijing, China.
Science Press.

[105] Horowitz, M. and Lunt, S. (1997). RFC 2228: FTP securityextensions. Proposed
Standard.

198 REFERENCES

[106] Hoschek, W., Jaen-Martinez, F. J., Samar, A., Stockinger, H., and Stockinger, K.
(2000). Data Management in an International Data Grid Project. In Proceedings of the
1st IEEE/ACM International Workshop on Grid Computing (GRID ’00), Bangalore,
India. Springer-Verlag, Berlin, Germany.

[107] Housley, R., Polk, W., Ford, W., and Solo, D. (2002). RFC 3280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List Profile. STAN-
DARD.

[108] Huffman, B. T., McNulty, R., Shears, T., Denis, R. S., and Waters, D.
(2002). The CDF/D0 UK GridPP Project.http://www.gridpp.ac.uk/
datamanagement/metadata/SubGroups/UseCases/docs/cdf5858.
ps.gz. CDF Internal Note.

[109] Hui, T. and Tham, C. (2003). Reinforcement learning-based dynamic bandwidth
provisioning for quality of service in differentiated services networks. InProceed-
ings of the 2003 IEEE International Conference on Networks (ICON2003), Sydney,
Australia.

[110] In, J.-U., Arbree, A., Avery, P., Cavanaugh, R., Katageri, S., and Ranka, S. (2003).
Sphinx: A Scheduling Middleware for Data Intensive Applications on a Grid. Techni-
cal Report GriPhyN 2003-17, GriPhyn (Grid Physics Network).

[111] In, J.-U., Avery, P., Cavanaugh, R., and Ranka, S. (2004).Policy based scheduling
for simple quality of service in grid computing. InProceedings of the 18th Interna-
tional Parallel and Distributed Processing Symposium 2004(IPDPS ’04)., Santa Fe,
NM, USA. IEEE CS Press, Los Alamitos, CA, USA.

[112] Jabber Project (2005). Jabber Protocols. Available at http://www.jabber.
org/protocol/.

[113] Jain, R., Somalwar, K., Werth, J., and Browne, J. C. (1997). Heuristics for Schedul-
ing I/O Operations.IEEE Transactions on Parallel and Distributed Systems, 8(3):310–
320.

[114] Karlsson, M. and Mahalingam, M. (2002). Do we need replica placement algo-
rithms in content delivery networks? InProceedings of the 2002 Web Content Caching
and Distribution Conference (WCW ’02), Boulder, Colorado. http://www.iwcw.org/.

[115] Khanna, G., Vydyanathan, N., Kurc, T., Catalyurek, U.,Wyckoff, P., Saltz, J., and
Sadayappan, P. (2005). A hypergraph partitioning-based approach for scheduling of
tasks with batch-shared I/O. InProceedings of the 2005 IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2005), Cardiff, UK. IEEE CS Press.

[116] Kim, S. and Weissman, J. (2003). A GA-based Approach for Scheduling Decom-
posable Data Grid Applications. InProceedings of the 2004 International Conference
on Parallel Processing (ICPP 04), Montreal, Canada. IEEE CS Press, Los Alamitos,
CA, USA.

REFERENCES 199

[117] Kolbe, S., Ma, T., Liu, W., Soh, W. S., Buyya, R., and Egan,G. (2005). A Platform
for Distributed Analysis of Neuroimaging Data on Global Grids. In Proceedings of
the 1st IEEE International Conference on e-Science and Grid Computing (e-Science
2005), Melbourne, Australia. IEEE CS Press , Los Alamitos, CA, USA.

[118] Kosar, T. and Livny, M. (2004). Stork: Making data placement a first class citi-
zen in the grid. InProceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04), Tokyo, Japan. IEEE CS Press, Los Alamitos, CA,
USA.

[119] Kossmann, D. (2000). The state of the art in distributed query processing.ACM
Computing Surveys, 32(4):422–469.

[120] Koutrika, G. (2005). Heterogeneity in digital libraries: Two sides of the same coin.
DELOS Newsletter.

[121] Kouzes, R. T., Myers, J. D., and Wulf, W. A. (1996). Collaboratories: Doing
science on the internet.IEEE Computer, 29(8):40–46.

[122] Kramer, D. and MacInnis, M. (2004). Utilization of a Local Grid of Mac OS X-
Based Computers using Xgrid. InProceedings of the 13th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC ’04), Honolulu, HI, USA.
IEEE CS Press , Los Alamitos, CA, USA.

[123] Krauter, K., Buyya, R., and Maheswaran, M. (2002). A taxonomy and survey of
grid resource management systems for distributed computing. Software: Practice and
Experience (SPE), 32(2):135–164.

[124] Krishnamurthy, B., Wills, C., and Zhang, Y. (2001). On the use and performance
of content distribution networks. InProceedings of the 1st ACM SIGCOMM Workshop
on Internet Measurement (IMW ’01), pages 169–182, San Francisco, CA, USA. ACM
Press, New York, NY, USA.

[125] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-
madi, R., Rhea, S., Weatherspoon, H., Wells, C., and Zhao, B. (2000). OceanStore:
an architecture for global-scale persistent storage. InProceedings of the 9th interna-
tional conference on Architectural support for programming languages and operating
systems (ASPLOS-IX), pages 190–201, Cambridge, MA, USA. ACM Press, New York,
NY, USA.

[126] Kwok, Y.-K. and Ahmad, I. (1996). Dynamic Critical-Path Scheduling: An Effec-
tive Technique for Allocating Task Graphs to Multiprocessors. IEEE Trans. Parallel
Distrib. Syst., 7(5):506–521.

[127] La Rosa, M., Moloney, G., and Winton, L. (2005). Towardsbelle monte carlo
production on the apac national grid infrastructure. InProceedings of the 2005 APAC
Conference and Exhibition on Advanced Computing, Grid Applications and eResearch
(APAC 05), Gold Coast, QLD, Australia. Australian Partnership for Advanced Com-
puting.

200 REFERENCES

[128] Lamehamedi, H., Shentu, Z., Szymanski, B., and Deelman, E. (2003). Simulation
of Dynamic Data Replication Strategies in Data Grids. InProceedings of the 17th
International Symposium on Parallel and Distributed Processing (IPDPS ’03), Nice,
France. IEEE CS Press, Los Alamitos, CA, USA.

[129] Lamehamedi, H., Szymanski, B., Shentu, Z., and Deelman, E. (2002). Data repli-
cation strategies in grid environments. InProceedings of the 5th International Confer-
ence on Algorithms and Architectures for Parallel Processing (ICA3PP’02), Beijing,
China. IEEE CS Press, Los Alamitos, CA, USA.

[130] Laser Interferometer Gravitational Wave Observatory (2005). http://www.
ligo.caltech.edu/.

[131] Lebrun, P. (1999). The Large Hadron Collider, A Megascience Project. InPro-
ceedings of the 38th INFN Eloisatron Project Workshop on Superconducting Materials
for High Energy Colliders, Erice, Italy.

[132] Ledlie, J., Shneidman, J., Seltzer, M., and Huth, J. (2003). Scooped, again. In
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS 2003),
volume 2735 ofLecture Notes in Computer Science, Berkeley, CA, USA,. Springer-
Verlag, Berlin, Germany.

[133] Lee, B.-D. and Weissman, J. B. (2001). Dynamic Replica Management in the
Service Grid. InProceedings of the 10th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC-10’), San Francisco, CA. IEEE CS Press,Los
Alamitos, CA, USA.

[134] Lee, J., Gunter, D., Tierney, B., Allcock, B., Bester, J.,Bresnahan, J., and Tuecke,
S. (2001). Applied techniques for high bandwidth data transfers across wide area net-
works. InProceedings of International Conference on Computing in HighEnergy and
Nuclear Physics, Beijing, China.

[135] Legrand, I. C. and Newman, H. B. (2000). The MONARC toolsetfor simulat-
ing large network-distributed processing systems. InProceedings of the 32nd Winter
Simulation Conference (WSC ’00), Orlando, FL. Society for Computer Simulation In-
ternational, San Diego, CA.

[136] LHC Computing Grid (2005).http://lcg.web.cern.ch/LCG/.

[137] Litzkow, M., Livny, M., and Mutka, M. W. (1988). Condor -a hunter of idle
workstations. InProceedings of the 8th Int’l Conference of Distributed Computing
Systems, Los Alamitos, CA, USA. IEEE CS Press.

[138] Luther, A., Buyya, R., Ranjan, R., and Venugopal, S. (2005). High Performance
Computing: Paradigm and Infrastructure, chapter Peer-to-Peer Grid Computing and a
.NET-based Alchemi Framework. Wiley Press, USA.

[139] Magowan, J. (2003). A view on relational data on the Grid. In Proceedings of
the 17th International Symposium on Parallel and Distributed Processing(IPDPS ’03),
Nice, France. IEEE CS Press,Los Alamitos, CA, USA.

REFERENCES 201

[140] Mahajan, R., Bellovin, S. M., Floyd, S., Ioannidis, J., Paxson, V., and Shenker, S.
(2002). Controlling High Bandwidth Aggregates in the Network. Computer Commu-
nications Review, 32(3):62–73.

[141] Maheshwaran, M., Ali, S., Siegel, H. J., Hengsen, D., and Freund, R. F. (1999). Dy-
namic Matching and Scheduling of a Class of Independent Tasksonto Heterogeneous
Computing Systems. In8th Heterogeneous Computing Systems Workshop (HCW ’99),
San Juan, Puerto Rico.

[142] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., and Freund, R. F. (1999).
Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous Computing
Systems.Journal of Parallel and Distributed Computing, 59:107–131.

[143] Marshall, A. (1890).The Principles of Economics. History of Economic Thought
Books. McMaster University.

[144] McKinley, K. S., Carr, S., and Tseng, C.-W. (1996). Improving data locality with
loop transformations.ACM Transactions on Programmming Languages and Systems,
18(4):424–453.

[145] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., and Xu, Z. (2002). Peer-to-peer computing. Technical Report HPL-2002-
57, HP Labs, Palo Alto, CA, USA.

[146] Mohamed, H. and Epema, D. (2004). An evaluation of the close-to-files processor
and data co-allocation policy in multiclusters. InProceedings of the 2004 IEEE Inter-
national Conference on Cluster Computing, San Diego, CA, USA. IEEE CS Press,Los
Alamitos, CA, USA.

[147] Moloney, G. (2006). Data Transfer Requirements for High Energy
Physics. Presentation at the 21st meeting of Asia-Pacific Advanced Network
(APAN), Tokyo, Japan. http://www.apan.net/meetings/tokyo2006/
presentation/GlennMoloney HEPDataTransfers apan06.pdf.

[148] Moore, R., Jagatheesan, A., Rajasekar, A., Wan, M., and Schroeder, W. (2004).
Data Grid Management Systems. InProceedings of the 12th NASA Goddard, 21st
IEEE Conference on Mass Storage Systems and Technologies, College Park, MD, USA.
IEEE CS Press, Los Alamitos, CA, USA.

[149] Moore, R., Prince, T. A., and Ellisman, M. (1998). Data-intensive computing and
digital libraries.Communications of the ACM, 41(11):56–62.

[150] Moore, R., Rajasekar, A., and Wan, M. (2005). Data Grids,Digital Libraries and
Persistent Archives: An Integrated Approach to Publishing, Sharing and Archiving
Datas.Proceedings of the IEEE (Special Issue on Grid Computing), 93(3).

[151] Nakada, H., Sato, M., and Sekiguchi, S. (1999). Designand implementations of
Ninf: Towards a global computing infrastructure.Future Generation Computing Sys-
tems, 15(5-6):649–658.

202 REFERENCES

[152] NCSA GridFTP Client (2005). http://dims.ncsa.uiuc.edu/set/
uberftp/.

[153] Neuman, B. C. and Ts’o, T. (1994). Kerberos: An authentication service for com-
puter networks.IEEE Communications, 32(9):33–38.

[154] Nielsen, N. R. (1970). The allocation of computer resources: Is pricing the answer?
Communications of the ACM, 13(8):467–474.

[155] O’Callaghan, J. (2002). An Introduction to GrangeNet.Telecommunication Jour-
nal of Australia, 52(1):11–15.

[156] Oram, A. (2001).Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly & Associates, Inc., Sebastopol,CA,USA.

[157] Ozsu, M. T. and Valduriez, P. (1999).Principles of distributed database systems.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2nd edition.

[158] Parashar, M. and Hariri, S. (2004). Autonomic grid computing. InProceedings of
the 2004 International Conference on Autonomic Computing (ICAC ’04), New York,
USA. IEEE CS Press, Los Alamitos, CA, USA. Tutorial.

[159] Park, K., Kim, G., and Crovella, M. (1996). On the relationship between file sizes,
transport protocols, and self-similar network traffic. InProceedings of the 1996 Inter-
national Conference on Network Protocols (ICNP ’96), Atlanta, GA, USA. IEEE CS
Press.

[160] Park, S.-M. and Kim, J.-H. (2003). Chameleon: A ResourceScheduler in a Data
Grid Environment. InProceedings of the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid 2003), Tokyo, Japan. IEEE CS Press, Los
Alamitos, CA, USA.

[161] Pearlman, L., Kesselman, C., Gullapalli, S., Spencer Jr., B., Futrelle, J., Kathleen,
R., Foster, I., Hubbard, P., and Severance, C. (2004). Distributed hybrid earthquake
engineering experiments: Experiences with a ground-shaking grid application. InPro-
ceedings of the 13th IEEE Symposium on High Performance Distributed Computing
(HPDC-13), Honolulu, HI, USA. IEEE CS Press, Los Alamitos, CA, USA.

[162] Phan, T., Ranganathan, K., and Sion, R. (2005). Evolvingtoward the perfect sched-
ule: Co-scheduling job assignments and data replication in wide-area systems using a
genetic algorithm. InProceedings of the 11th Workshop on Job Scheduling Strategies
for Parallel Processing, Cambridge, MA. Springer-Verlag, Berlin, Germany.

[163] Pitoura, E. and Bhargava, B. (1999). Data consistency inintermittently con-
nected distributed systems.IEEE Transactions on Knowledge and Data Engineering,
11(6):896–915.

[164] Plank, J., Beck, M., Elwasif, W. R., Moore, T., Swany, M.,and Wolski, R. (1999).
The Internet Backplane Protocol: Storage in the Network. InProceedings of the
1999 Network Storage Symposium (NetStore99), Seattle, WA, USA. University of Ten-
nessee, Knoxville.http://loci.cs.utk.edu/dsi/netstore99/.

REFERENCES 203

[165] Plank, J. S., Moore, T., and Beck, M. (2002). Scalable Sharing of Wide Area
Storage Resource. Technical Report CS-02-475, University of Tennessee, Knoxville,
TN, USA.

[166] Polychronopoulos, C. D. and Kuck, D. J. (1987). Guided self-scheduling: A practi-
cal scheduling scheme for parallel supercomputers.IEEE Transactions on Computers,
36(12):1425–1439.

[167] Postel, J. and Reynolds, J. K. (1985). RFC 959: File transfer protocol. STAN-
DARD.

[168] Rajasekar, A., Moore, R., Ludascher, B., and Zaslavsky, I. (2002). The GRID
Adventures: SDSC’S Storage Resource Broker and Web Services inDigital Library
Applications. InProceedings of the 4th All-Russian Scientific Conference (RCDL’02)
Digital Libraries: Advanced Methods and Technologies, Digital Collections.

[169] Rajasekar, A., Wan, M., and Moore, R. (2002). MySRB & SRB: Components
of a Data Grid. InProceedings of the 11 th IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), Edinburgh, UK. IEEE CS Press,Los
Alamitos, CA, USA.

[170] Rajasekar, A., Wan, M., Moore, R., Kremenek, G., and Guptil, T. (2003). Data
Grids, Collections, and Grid Bricks. InProceedings of the 20 th IEEE/11 th NASA
Goddard Conference on Mass Storage Systems and Technologies(MSS’03), San Diego,
CA, USA. IEEE CS Press, Los Alamitos, CA, USA.

[171] Rajasekar, A., Wan, M., Moore, R., and Schroeder, W. (2004). Data Grid Federa-
tion. In Proceedings of the 11th International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2004), Las Vegas, USA. CSREA
Press.

[172] Raman, R., Livny, M., and Solomon, M. (1999). Matchmaking: An extensible
framework for distributed resource management.Cluster Computing, 2(2):129–138.

[173] Ranganathan, K. and Foster, I. (2002). Decoupling Computation and Data Schedul-
ing in Distributed Data-Intensive Applications. InProceedings of the 11th IEEE Sym-
posium on High Performance Distributed Computing (HPDC), Edinburgh, UK. IEEE
CS Press, Los Alamitos, CA, USA.

[174] Ranganathan, K. and Foster, I. (2003). Simulation studies of computation and data
scheduling algorithms for data grids.Journal of Grid Computing, 1(1):53–62.

[175] Ranganathan, K., Iamnitchi, A., and Foster, I. (2002).Improving data availability
through dynamic model-driven replication in large peer-to-peer communities. InPro-
ceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID’02), Berlin, Germany. IEEE CS Press, Los Alamitos, CA, USA.

[176] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. (2001). A
scalable content-addressable network. InProceedings of the 2001 conference on Ap-
plications, technologies, architectures, and protocols for computer communications

204 REFERENCES

(SIGCOMM ’01), pages 161–172, San Diego, CA, USA. ACM Press, New York, NY,
USA.

[177] Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. InProceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware
2001), pages 329–350, Heidelberg, Germany. Springer-Verlag, London, UK.

[178] Sacerdoti, F., Katz, M., Massie, M., and Culler, D. (2003). Wide area cluster
monitoring with Ganglia. InProceedings of the 2003 IEEE International Conference
on Cluster Computing, 2003 (Cluster ’03), Hong Kong. IEEE CS Press , Los Alamitos,
CA, USA.

[179] Salem, K. and Garcia-Molina, H. (1986). Disk striping. In Proceedings of the
Second International Conference on Data Engineering (ICDE-86), Los Angeles, USA.
IEEE CS Press , Los Alamitos, CA, USA.

[180] Samar, A. and Stockinger, H. (2001). Grid Data Management Pilot (GDMP): A
Tool for Wide Area Replication. InProceedings of the IASTED International Con-
ference on Applied Informatics (AI2001), Innsbruck, Austria. ACTA Press, Calgary,
Canada.

[181] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,C. E. (1996). Role-based
access control models.Computer, 29(2):38–47.

[182] Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., and Levy, H. M. (2002).
An analysis of internet content delivery systems.SIGOPS Operating Systems Review,
36:315–327.

[183] Seidel, E., Allen, G., Merzky, A., and Nabrzyski, J. (2002). GridLab: a grid appli-
cation toolkit and testbed.Future Gener. Comput. Syst., 18(8):1143–1153.

[184] Shatdal, A., Kant, C., and Naughton, J. F. (1994). Cache conscious algorithms for
relational query processing. InProceedings of the 20th International Conference on
Very Large Data Bases (VLDB ’94), pages 510–521, Santiago, Chile. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

[185] Sheth, A. P. and Larson, J. A. (1990). Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183–236.

[186] Shoshani, A., Sim, A., and Gu, J. (2002). Storage Resource Managers: Middleware
Components for Grid Storage. InProceedings of the Nineteenth IEEE Symposium on
Mass Storage Systems (MSS ’02).

[187] Sloan Digital Sky Survey (2005).http://www.sdss.org/.

[188] Soh, H., Haque, S., Liao, W., Nadiminti, K., and Buyya, R.(2005). GTPE: A thread
programming environment for the grid. InProceedings of the 13th International Con-
ference on Advanced Computing and Communications (ADCOM 2005), Coimbatore,
India.

REFERENCES 205

[189] Stockinger, H., Samar, A., Allcock, B., Foster, I., Holtman, K., and Tierney, B.
(2001). File and object replication in data grids. InProceedings of the 10th IEEE Sym-
posium on High Performance and Distributed Computing (HPDC-10), San Francisco,
USA. IEEE CS Press, Los Alamitos, CA, USA.

[190] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R.,Kaashoek, M. F., Dabek,
F., and Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for
internet applications.IEEE/ACM Transactions on Networking, 11(1):17–32.

[191] Stonebraker, M., Devine, R., Kornacker, M., Litwin, W., Pfeffer, A., Sah, A., and
Staelin, C. (1994). An Economic Paradigm for Query Processing and Data Migration in
Mariposa. InProceedings of 3rd International Conference on Parallel andDistributed
Information Systems, Austin, TX, USA. IEEE CS Press, Los Alamitos, CA, USA.

[192] Sulistio, A., Cibej, U., Robic, B., and Buyya, R. (2005). A Tool for Modelling and
Simulation of Data Grids with Integration of Data Storage, Replication and Analysis.
Technical Report GRIDS-TR-2005-13, University of Melbourne,Australia.

[193] Sulistio, A., Poduval, G., Buyya, R., and Tham, C.-K. (2006). On Incorporating
Differentiated Network Service into GridSim. Technical Report GRIDS-TR-2006-5,
The University of Melbourne, Australia.

[194] Sulistio, A., Yeo, C. S., and Buyya, R. (2004). A taxonomy of computer-based sim-
ulations and its mapping to parallel and distributed systems simulation tools.Software:
Practice and Experience (SPE), 34(7):653–673.

[195] Sun Microsystems Inc. (2006). Sun Grid Compute Utility. http://www.
network.com. Accessed May 2006.

[196] Szalay, A. and Gray, J. (2001). The World-Wide Telescope. Science,
293(5537):2037–2040.

[197] Szalay, A. S., editor (2002).Proceedings of SPIE Conference on Virtual Observa-
tories, volume 4846, Waikoloa, HI, USA. SPIE.

[198] Takefusa, A., Tatebe, O., Matsuoka, S., and Morita, Y.(2003). Performance Analy-
sis of Scheduling and Replication Algorithms on Grid Datafarm Architecture for High-
Energy Physics Applications. InProceedings of the 12th IEEE international Sympo-
sium on High Performance Distributed Computing (HPDC-12), Seattle, USA. IEEE
CS Press, Los Alamitos, CA, USA.

[199] Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., and Sekiguchi, S. (2002). Grid
Datafarm Architecture for Petascale Data Intensive Computing. InProceedings of the
2nd IEEE/ACM International Symposium on Cluster Computing andthe Grid (CCGrid
2002), Berlin, Germany. IEEE CS Press, Los Alamitos, CA, USA.

[200] Tatebe, O., Ogawa, H., Kodama, Y., Kudoh, T., Sekiguchi, S., Matsuoka, S., Aida,
K., Boku, T., Sato, M., Morita, Y., Kitatsuji, Y., Williams, J., and Hicks, J. (2004a). The
Second Trans-Pacific Grid Datafarm Testbed and Experimentsfor SC2003. InProceed-
ings of 2004 International Symposium on Applications and the Internet - Workshops
(SAINT 2004 Workshops), Tokyo, Japan. IEEE CS Press, Los Alamitos, CA, USA.

206 REFERENCES

[201] Tatebe, O., Soda, N., Morita, Y., Matsuoka, S., and Sekiguchi, S. (2004b). Gfarm
v2: A Grid file system that supports high-performance distributed and parallel data
computing. InProceedings of the 2004 Computing in High Energy and Nuclear
Physics (CHEP04) Conference, Interlaken, Switzerland.

[202] Thain, D., Basney, J., Son, S.-C., and Livny, M. (2001a).The Kangaroo Approach
to Data Movement on the Grid. InProc. of the 10th IEEE Symposium on High Per-
formance Distributed Computing (HPDC10), San Francisco, CA. IEEE CS Press, Los
Alamitos, CA, USA.

[203] Thain, D., Bent, J., Arpaci-Dusseau, A., Arpaci-Dusseau, R., and Livny, M.
(2001b). Gathering at the well: Creating communities for grid I/O. In Proceedings
of Supercomputing 2001, Denver, Colorado. IEEE CS Press, Los Alamitos, CA, USA.

[204] Thakur, R., Choudhary, A., Bordawekar, R., More, S., and Kuditipudi, S. (1996).
Passion: Optimized I/O for Parallel Applications.Computer, 29(6):70–78.

[205] The Belle Analysis Data Grid (BADG) Project (2006).http://epp.ph.
unimelb.edu.au/epp/grid/badg/about.php3.

[206] Thomas, R. K. and Sandhu, R. K. (1997). Task-Based Authorization Controls
(TBAC): A Family of Models for Active and Enterprise-Oriented Authorization Man-
agement. InProceedings of the IFIP TC11 WG11.3 11th International Conference on
Database Securty XI, pages 166–181, Lake Tahoe, CA, USA. Chapman & Hall, Ltd.,
London, UK.

[207] Transaction Management Research Group (GGF) (2005).http://www.
data-grid.org/tm-rg-charter.html.

[208] Vazhkudai, S., Tuecke, S., and Foster, I. (2001). Replica Selection in the Globus
Data Grid. InProceedings of the 1st IEEE/ACM International Conference on Cluster
Computing and the Grid (CCGRID 2001), Brisbane, Australia.

[209] Vickrey, W. (1961). Counter-speculation, auctions, and competitive sealed tenders.
Journal of Finance, 16(1):9 – 37.

[210] von Laszewski, G., Foster, I., Gawor, J., and Lane, P. (2001). A Java commodity
Grid kit. Concurrency and Computation-Practice and Experience, 13(8-9):645–662.

[211] Vraalsen, F., Aydt, R., Mendes, C., and Reed, D. (2001). Performance Contracts:
Predicting and Monitoring Grid Application Behavior. InProceedings of the 2nd Inter-
national Workshop on Grid Computing (GRID 2001), volume 2242 ofLecture Notes
in Computer Science, Denver, CO. Springer-Verlag, Berlin, Germany.

[212] Wagner, D. and Schneier, B. (1996). Analysis of the SSL 3.0 Protocol. InPro-
ceedings of the 2nd USENIX Workshop on Electronic Commerce, Berkeley, CA, USA.
USENIX Press.

[213] Waldspurger, C. A., Hogg, T., Huberman, B. A., Kephart, J. O., and Stornetta,
W. S. (1992). Spawn: A Distributed Computational Economy.IEEE Transactions on
Software Engineering, 18(2):103–117.

REFERENCES 207

[214] Wasson, G. and Humphrey, M. (2003). Policy and enforcement in virtual organiza-
tions. InProceedings of the 4th International Workshop on Grid Computing, Phoenix,
AZ, USA. IEEE CS Press,Los Alamitos, CA, USA.

[215] White, B. S., Grimshaw, A. S., and Nguyen-Tuong, A. (2000). Grid-Based File Ac-
cess: The Legion I/O Model. InProceedings of the 9th IEEE International Symposium
on High Performance Distributed Computing (HPDC’00), Pittsburgh, USA. IEEE CS
Press,Los Alamitos, CA, USA.

[216] Winton, L. (2003). Data grids and high energy physics -A Melbourne perspective.
Space Science Reviews, 107(1–2):523–540.

[217] Wolski, R., Spring, N., and Hayes, J. (1999). The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing.Journal of
Future Generation Computing Systems, 15:757–768.

[218] Yamamoto, N., Tatebe, O., and Sekiguchi, S. (2004). Parallel and Distributed As-
tronomical Data Analysis on Grid Datafarm. InProceedings of 5th IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid 2004), Pittsburgh, USA. IEEE CS Press,Los
Alamitos, CA, USA.

[219] Yang, Y. and Casanova, H. (2003). UMR: A Multi-Round Algorithm for Schedul-
ing Divisible Workloads. InProceedings of the 17th International Symposium on Par-
allel and Distributed Processing (IPDPS ’03), Nice, France. IEEE CS Press , Los
Alamitos, CA, USA.

[220] Yu, J. and Buyya, R. (2005). A Taxonomy of Workflow Management Systems for
Grid Computing.Journal of Grid Computing, 3(3-4):171–200.

[221] Yu, J., Venugopal, S., and Buyya, R. (2006). A market-oriented grid directory ser-
vice for publication and discovery of grid service providers and their services.Journal
of Supercomputing, 16(1).

[222] Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D. (2001). Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Technical Report CSD-01-1141,
University of California at Berkeley, USA.

