
Meta Scheduling for Market-Oriented Grid and Utility Computing

by

Saurabh Kumar Garg

Submitted in total fulfilment of
the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

June 2010

Meta Scheduling for Market-Oriented Grid and Utility Computing

Saurabh Kumar Garg

Supervisor: Professor Rajkumar Buyya

Abstract

Grid computing enables the sharing and aggregation of autonomous IT resources to
deliver them as computing utilities to end users. The management of the Grid environ-
ment is a complex task as resources are geographically distributed, heterogeneous and
autonomous in nature, and their users are self-interested. In utility-oriented Grids, users
define their application requirements and compete to access the most efficient and cheap-
est resources. Traditional resource management systems and algorithms are based on
system-centric approaches which do not take into account individual requirements and
interests. To this end, market-oriented scheduling is an adequate way to solve the prob-
lem. But current market-oriented systems generally, either try to maximise one user’s
utility or one provider’s utility. Such approaches fail to solve the problem of contention
for cheap and efficient resources which may lead to unnecessary delays in job execution
and underutilisation of resources.

To address these problems, this thesis proposes a market-oriented meta-scheduler
called “Meta-Broker”, which not only coordinates the resource demand but also allocates
the best resources to users in terms of monetary and performance costs. The thesis results
demonstrate that considerable cost reduction and throughput can be gained by adopting
our proposed approach. The meta-broker has a semi-decentralised architecture, where
only scheduling decisions are made by the meta-broker while job submission, execution
and monitoring are delegated to user and provider middleware.

This thesis also investigates market-oriented meta-scheduling algorithms which aim
to maximise the utility of participants. The market-oriented algorithms consider Qual-
ity of Service (QoS) requirements of multiple users to map jobs against autonomous and
heterogeneous resources. This thesis also presents a novel Grid Market Exchange archi-
tecture which provides the flexibility to users in choosing their own negotiation protocol
for resource trading. The key research findings and contributions of this thesis are:

• The consideration of QoS requirements of all users is necessary for maximising
users’ utility and utilisation of resources. The uncoordinated scheduling of appli-
cations by personalised user-brokers leads to overloading of cheap and efficient
resources.

• It is important to exploit the heterogeneity between different resource sites/data
centers while scheduling jobs to maximise the provider’s utility. This consideration
not only reduce energy cost of computing infrastructure by 33% on average, but
also enhance the efficiency of resources in terms of carbon emissions.

• By considering both system metrics and market parameters, we can enable more ef-
fective scheduling which maximises the utility of both users and resource providers.

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps, bibliogra-
phies, appendices and footnotes.

Signature

Date

ACKNOWLEDGMENTS

This thesis is the story of a journey throughout which I received help from many people,
some of them helped me from outside and others gave me unforgettable internal motiva-
tion.

First, I would like to thank my supervisor, Professor Rajkumar Buyya for his intellec-
tual guidance and continuous encouragement which ensure the successful completion of
this thesis. He always gave me freedom to think broadly and deeply into my research. The
regular meetings conducted by him made me work more regularly and systematically. His
endless amount of energy is really an inspiration for me to do better research.

I am thankful to CLOUDS Lab group members including Srikumar Venugopal, Chee
Shin Yeo, Marcos Assuncao, Mukaddim Pathan, Marco Netto, Mustafizur Rahman, James
Broberg, Suraj Pandey, Adam Barker, Christian Vecchiola, William Voorsluys, Mohsen
Amini, and Rajiv Ranjan for their patience and tolerance in helping me. I am extremely
grateful to Chee Shin, Marco, Srikumar and Marcos for proof-reading, discussion and
their comments on my work. Their critical comments helped me to improve my writing
skills.

I would also like to thank my collaborators: Pramod Kumar Konugurthi (Indian Space
Research Organisation, Hyderabad, India), Arun Anandasivam (Universitt Karlsruhe, Ger-
many), and Professor Howard Jay Siegel (Colorado State University, USA). I would like
to thank Professor Rao Kotagiri for being my PhD committee member. I am grateful to
Dr. Jemal Abawajy for going through my thesis and giving many serious comments. I
would like to thank administrative staff members in the Computer Science and Software
Engineering (CSSE) Department especially Pinoo Bharucha for her support and help.

I thank sponsors of the CLOUDS Laboratory, in particular the Australian Research
Council (ARC), and Australian Department of Innovation, Industry, Science and Research
(DIISR) for funding the research in this thesis. Along with CLOUDS Lab, the CSSE de-
partment and Melbourne University provide the infrastructure for my research and travel
support to international conferences.

I would like to thank my friends particularly Chee Shin and XiaoFeng for tolerating
my long discussions on all type of topics. I am immensely grateful to my teachers for
their exemplary lives which always inspired me to become a responsible genuine intel-
lectual. Last but never the least, I would like to thank my family for their love, patience
and support at all times. Every week, my mother used to ask me when I will complete the
thesis and visit home.

Saurabh Kumar Garg
Melbourne, Australia
October 2010.

v

CONTENTS

1 Introduction 1
1.1 Grid and Utility Computing . 2
1.2 Limitations of Existing Scheduling Mechanisms 3
1.3 Problem Statement and Objectives . 5
1.4 Proposed Solution . 6
1.5 Thesis Contributions . 8
1.6 Thesis Organisation . 9

2 Taxonomy of Market-Oriented Scheduling Mechanisms 13
2.1 Overview of Utility Grids and Preliminaries 13
2.2 Requirements . 14

2.2.1 Consumer Requirements . 15
2.2.2 Resource Provider Requirements 16
2.2.3 Market Exchange (ME) Requirements 17

2.3 Utility Grid Infrastructural Components 19
2.4 Taxonomy of Market-Oriented Scheduling 21

2.4.1 Market Model . 21
2.4.2 Allocation Decision . 26
2.4.3 Participant Focus . 26
2.4.4 Application Type . 27
2.4.5 Allocation Objective . 27

2.5 Survey of Grid Resource Management Systems 28
2.5.1 Survey of Market-Oriented Systems 28
2.5.2 System-Oriented Schedulers . 36

2.6 Discussion and Gap analysis . 41
2.6.1 Scheduling Mechanisms . 42
2.6.2 Market-Oriented Systems . 43

2.7 Summary . 44

3 Market-Oriented Meta-Scheduler Architecture 45
3.1 Motivation . 45
3.2 Meta-Broker Architecture . 45

3.2.1 Architectural Components . 46
3.3 Resource Allocation by the Meta-Broker 50
3.4 Meta-Broker’s Internal Control Flow . 50
3.5 Comparison between Personalised and Meta-Broker 51
3.6 Performance Results . 53
3.7 Summary . 54

vii

4 Meta-Scheduling to Minimise User Spending 55
4.1 Problem Definition . 55

4.1.1 Problem Formulation . 56
4.2 Proposed Algorithms . 57

4.2.1 Linear Programming-based Algorithm for Scheduling MGN Jobs 57
4.2.2 Linear Programming-based Algorithm for Scheduling SGN Jobs . 58

4.3 Performance Evaluation . 62
4.3.1 Simulation Methodology . 62
4.3.2 Performance Results . 65

4.4 Related Work . 68
4.5 Summary . 69

5 Meta-Scheduling to Minimise Time and Cost for Users 71
5.1 Motivation . 71
5.2 Meta-Broker System . 71
5.3 Meta-Scheduling Algorithms . 72

5.3.1 Problem Statement . 72
5.3.2 Min-Min Cost Time Trade-off (MinCTT) Heuristics 74
5.3.3 Max-Min Cost Time Trade-off (MaxCTT Heuristics) 74
5.3.4 Sufferage Cost Time Tradeoff (SuffCTT Heuristics) 75
5.3.5 Time Complexity . 75

5.4 Simulation Setup . 76
5.5 Analysis of Results . 79

5.5.1 CASE 1: Trade-off Factor Set by Meta-broker 79
5.5.2 CASE 2: Trade-off Factor Set by User 81

5.6 Related Work . 86
5.7 Summary . 88

6 Meta-Scheduling to Maximise Provider’s Utility 91
6.1 Motivation . 91
6.2 Meta-scheduling Model . 93

6.2.1 Data Center Energy Model . 94
6.2.2 Relation between Execution Time and CPU Frequency 96
6.2.3 Problem Description . 96

6.3 Meta-Scheduling Policies . 99
6.3.1 Mapping Phase (Across Many Data Centers) 99
6.3.2 Scheduling Phase (Within a Data Center) 101
6.3.3 Lower Bound and Upper Bound 102

6.4 Performance Evaluation . 104
6.5 Analysis of Results . 107

6.5.1 Evaluation without Data Transfer Cost 107
6.5.2 Evaluation with Data Transfer Cost 116

6.6 Summary . 118

7 Meta-Scheduling to Enhance All Grid Players’ Utility 121
7.1 Motivation . 121
7.2 System Model . 122
7.3 Double Auction-Inspired Meta-scheduling (DAM) 122

7.3.1 Valuation Mechanism . 124
7.3.2 The Meta-Scheduling Algorithm 126
7.3.3 Queueing Theory Based Model for Meta-scheduling 128

7.4 Performance Evaluation . 134
7.4.1 Experimental Configuration . 134
7.4.2 Analysis of Results . 137

7.5 Summary . 142

8 Market Exchange and Meta-Broker Implementation 143
8.1 Motivation . 143
8.2 Market Exchange Requirements . 144

8.2.1 Infrastructure Requirements . 144
8.2.2 Market Requirements . 145

8.3 Mandi Architecture and Design . 146
8.3.1 Design Considerations and Solutions 146
8.3.2 Architectural Components . 147
8.3.3 High Level Description . 149
8.3.4 User Interaction Phases . 150
8.3.5 Implementation Details . 151

8.4 Prototype and Performance Evaluation 155
8.4.1 System Details . 156
8.4.2 Performance Evaluation . 156
8.4.3 Discussion . 159

8.5 Summary . 160

9 Conclusions and Future Directions 161
9.1 Summary . 161
9.2 Lessons Learned and Significance . 162
9.3 Future Directions . 165

9.3.1 Resources with Different Pricing Models 165
9.3.2 Scheduling with Pre-emption . 165
9.3.3 Network and Data-Aware Application Meta-scheduling 166
9.3.4 SLA based Meta-Scheduling in Cloud Computing Environments . 166
9.3.5 Energy-efficient Meta-Scheduling 166
9.3.6 Scalable Meta-Broker Architecture 167
9.3.7 Mixed Application Model with QoS Requirements 167

References 168

LIST OF FIGURES

1.1 A view of market-oriented Grid pushing Grid into mainstream computing 3
1.2 Market-Oriented Meta-Scheduling Scenario 7
1.3 Thesis Organisation . 10

2.1 A Grid Market Exchange Managing Self-Interested Entities (Providers
and Consumers) . 14

2.2 Utility Grid Component . 20
2.3 Taxonomy of Market-based Mechanisms 22

3.1 Meta-Broker Architectural Components 46
3.2 Bag-of-Task Application Scheduling . 48
3.3 Parallel Application Scheduling . 48
3.4 Meta-Broker Protocol . 51
3.5 Effect of Tight Deadline on Users . 52
3.6 Effect of Medium Deadline on Users . 53
3.7 Effect of Relax Deadline on Users . 53

4.1 Effect on User Applications with Tight Deadline 66
4.2 Effect on User Applications with Medium Deadline 66
4.3 Effect on User applications with Relaxed Deadline 67
4.4 Comparison of Number of Iterations in HGA and LPGA 67

5.1 Overall Average Cost of Execution . 79
5.2 Overall Makespan . 80
5.3 Different ETC and Resource Pricing Configurations 82
5.4 User Application Distribution on Resources in Different Configurations . 84
5.5 Effect of Scheduling Interval in HICC Configuration 85
5.6 Effect of DTC on Cost and Time . 85
5.7 Effect of Change in Application Submitted on Cost 86
5.8 Effect of Change in Application Submitted on Overall Makespan 87

6.1 Computer Power Consumption Index (Source: [73]) 92
6.2 Effect of Mapping Policy and DVS . 108
6.3 Exploiting Local Minima in DVS . 110
6.4 Comparison of Lower Bound and Upper Bound 111
6.5 Impact of Urgency and Arrival Rate of Applications 112
6.6 Impact of Carbon Emission Rate . 113
6.7 Impact of Electricity Price . 115
6.8 Impact of Data Center Efficiency . 116
6.9 Impact of Data Transfer Cost . 117

7.1 Double Auction based Meta-Scheduling Protocol 123

xi

7.2 Comparison of Multiplicative and Additive forms of Valuation Metrics . . 125
7.3 Available Queue Slots . 126
7.4 Queuing Theory View of Meta-scheduling 129
7.5 Comparison of DAM with analytical results 137
7.6 Benefit for Users . 139
7.7 Variation in Load across Resources . 141

8.1 Mandi Architecture . 148
8.2 Mandi Class Design Diagram . 152
8.3 Registration Process . 154
8.4 Scheduling Sequence . 154
8.5 Reservation Process . 155
8.6 The Topology of Testbed . 157
8.7 Performance of Mandi for 50,000 clearance requests 158

LIST OF TABLES

2.1 Market-Oriented Scheduling Systems 32
2.2 System-Oriented Schedulers . 39

4.1 Total Cost Spent by Users for MGN Jobs 65

5.1 Lublin Workload Model Parameter Values 77
5.2 Simulated EDG Testbed Resources. 77

6.1 Comparison of Related Work . 93
6.2 Parameters of a Data Center i . 96
6.3 Characteristics of Data Centers . 105
6.4 Summary of Heuristics with Comparison Results 118

7.1 Workload Characteristics . 135
7.2 Simulated EDG Testbed Resources . 136

8.1 Overhead due to Interactions of Mandi 159

xiii

Chapter 1

Introduction

“As of now, computer networks are still in their infancy, but as they grow up and become
sophisticated, we will probably see the spread of computer utilities, which, like present
electric and telephone utilities, will service individual homes and offices across the coun-
try”.(Kleinrock 1969)

In 1969, Leonard Kleinrock, the chief scientist of the original Advanced Research
Project Agency (ARPA) project, predicted that the use of computer networks would be so
wide spread that computing would be used as a “utility” [99]. From 1969 till today, In-
formation and Communication Technology (ICT) has made key advances in various areas
to make this vision a reality [27]. The advances in high performance processors (such as
multi-core technology) and networked computing environments have transformed com-
puting to a model consisting of services that can be commoditised and delivered in a
manner similar to utilities such as water, electricity, gas, and telephony [26]. In the utility
model, users can access services on-demand based on their requirements, without regard
to where the services are hosted.

The utility computing model can offer great opportunities and benefits to Information
Technology (IT) users [65]. The most prominent advantage of the utility computing is the
reduction of IT-related operational costs and complexities. Users from different domains,
such as health care, life sciences, software development, digital media, manufacturing
and petroleum, no longer need to invest heavily or encounter difficulties in building and
maintaining IT infrastructure. Furthermore, the utility computing can benefit many small
businesses, which lack the working capital to purchase IT infrastructure required to meet
their business objectives. Hence, instead of maintaining expensive infrastructure them-
selves, companies will be able to submit their tasks to utility computing providers. In
short, utility computing promises to provide businesses with greater flexibility and re-
silience, and at the same time, more efficient utilisation of resources at lower operating
and maintenance costs.

1

2 Chapter 1. INTRODUCTION

Many computing paradigms [27] such as the Web, Data Centers, Service Comput-
ing/Web Services, Grid Computing, P2P Computing and Cloud Computing have emerged
to support such a utility model for IT services. Among these, Grid computing is one of
the most promising paradigms, which can supply computing as a utility, and thus provide
an on-demand service. Grids enable the sharing, selection, and aggregation of a wide
variety of autonomous and geographically distributed resources including supercomput-
ers, storage systems, data sources, and specialised devices. However, the management of
resources and applications; scheduling in such a large-scale distributed environment is a
complex undertaking. Grid users and resource providers have different goals, objectives,
strategies, and requirements, which need to be matched. Therefore, this thesis addresses
these resource management challenges in Grids using market-oriented approach.

In the following section, a brief introduction to Grid computing is presented, describ-
ing the motivation and challenges, in the context of resource allocation, that lead to the
evolution of utility-oriented Grids. The resource allocation in utility Grids will be dis-
cussed by identifying gaps in the existing research. In the end of this chapter, the core
contributions of this thesis are summarised and an outline of its organisation is presented.

1.1 Grid and Utility Computing

Grid computing infrastructure promises to provide us with the ability to dynamically
link together resources, as an ensemble to support the execution of large-scale, resource-
intensive, and distributed applications in science, engineering, and commerce [65]. Thus,
it offers a common, shared platform on which applications can be executed in a flexi-
ble way, facilitating more effective utilisation of computing resources across conventional
organisational and data center boundaries. Furthermore, this platform can be easily man-
aged and dynamically scaled using new on-demand utility services provided by a range
of industry suppliers [22]. The distributed infrastructure, such as TeraGrid [29] and LHC-
Grid [82], are the examples of Grids that are deployed around the world in both academic
and commercial settings.

The widespread interest in Grid computing from commercial organisations in recent
times is pushing it towards the mainstream, thus enhancing Grid services and enabling
them to become valuable economic commodities. Most of the leading IT service compa-
nies have announced initiatives in the area of utility computing services under different
business names. For example, Sun Microsoft has proposed the “Sun Grid Engine” [71],
while IBM is offering “On-demand business” [81]. Many Resource Management Sys-
tems (RMSs) and meta-schedulers, such as GridWay [85] and Gridbus broker [163], have
been extended to include market-oriented scheduling and resource allocation, and thus
contributing to the advancement of utility Grids.

1.2. LIMITATIONS OF EXISTING SCHEDULING MECHANISMS 3

The utility Grid environment can be considered as a market where competition occurs
between both consumers and providers. The main participants of this market are:

• Resource consumers who have varying resource requirements to run applications.

• Resource providers who lease resources such as CPUs and storage on-demand, in
exchange for some reward.

Each of these participants is interested in maximising his/her own utility. The cre-
ation of utility Grids requires the integration of scalable system architecture, resource
management and scheduling, and market models, as shown in Figure 1.1. In order to
enable the consumers to participate in the utility Grid, mechanisms for bidding and cost-
minimisation are required [39][122]. Similarly, many admission control and pricing po-
lices are required to enable resource providers to participate in the market [139][3].

Figure 1.1: A view of market-oriented Grid pushing Grid into mainstream computing

Several researchers have satisfied these requirements by providing infrastructure such
as Grid Information Service (GIS) [41] for the development of pricing [148] and market
mechanisms [127][121]. There are challenges at infrastructure level, but the key issue is
how to match buyers’ application requirements with sellers’ resources. More details on
the resource management and scheduling are discussed along with their limitations in the
following section.

1.2 Limitations of Existing Scheduling Mechanisms

Resource management is a central and most challenging task in Grids. The basic re-
sponsibility of a RMS is to accept requests from users, match these requests to avail-
able resources for which the user has access and then schedule the execution using the
matched resources. Grid resources include compute cycles, network bandwidth and stor-
age systems. In Grids, users generally rely on meta-schedulers [85] [11] or personal
brokers [163], to ensure the satisfaction of their requirements by the discovery and reser-
vation of suitable resources across multiple autonomous sites.

4 Chapter 1. INTRODUCTION

The efficient resource management and scheduling in Grids continue to be a complex
and difficult undertaking [22]. One of the problems is dealing with geographically dis-
tributed autonomous resources with different usage policies, cost models, varying loads,
and availability patterns. The Grid service providers (resource owners) and consumers
(resource users) have different goals, objectives, strategies, and requirements. Resource
sharing becomes further complicated in utility Grids due to the self-interested nature of
users. The traditional resource management techniques for Grids focus on system-centric
metrics such as maximising throughput, minimising mean waiting time and slowdown. In
contrast, most of these resource management techniques need to be extended to include
the competitive nature of participants with conflicting Quality of Service (QoS) require-
ments in utility Grids.

The participants in a utility Grid are more interested in maximising their profit rather
than optimising performance metrics such as global resource utilisation, without receiving
any direct reward [16]. Thus, in a shared infrastructure such as Grids, the self-interested
nature of users can lead to problems, such as “Tragedy of Commons” [77], where every
user acquires as many resources as possible because there is no incentive for users to back
off during times of high demand. The self-interested users, in turn, over exploit the service
by degrading the system’s ability to deliver the required service to all users. Therefore,
in Grids, resource management and scheduling need to be market-oriented, which can
regulate the supply and demand of resources at peak usage time. The resource managers
and schedulers should also provide feedback in terms of economic incentives for both
Grid consumers and providers, and promote QoS-based resource allocation mechanisms
that differentiate resource requests based on their utilities.

In order to meet the above requirements, most researchers have proposed either mech-
anisms considering a one-sided market (involving one provider or consumer) such as
Vickery, First Price and Second Price auction [16]; or a two-sided market (involving mul-
tiple providers and consumers) such as Double auction. Most of these mechanisms are
inspired by the trading methodologies used in the real world markets [21], for instance,
auction mechanisms. The one-sided markets mostly aim to maximise the utility of one
participant, while the two-sided mechanisms aim to maximise the utility of both partici-
pants (i.e. consumers and providers).

The one-sided mechanisms overcome many limitations of traditional scheduling ap-
proaches by making users pay for their usage, but there are many unresolved issues in this
approach. In general, the one-sided markets favour monopolistic sellers or monopolistic
buyers. They assume a completely decentralised system where each user can negotiate
with any provider on a one-to-one basis. With respect to the applicability of markets in
Grids, Nakai et a. [117] have pointed out that a completely decentralised system is infea-
sible, and can lead to inefficiency and even underutilisation of resources. The competition

1.3. PROBLEM STATEMENT AND OBJECTIVES 5

among concurrent users with different requirements can exacerbate the contention for ef-
ficient and cheap resources. This contention can cause long delays in the scheduling of
user applications.

To overcome these shortcomings, market-based mechanisms such as proportional share
[104] have been proposed to allocate resources to bidders (Grid users) on the basis of rel-
ative share. While these approaches distribute resources fairly and reduce the response
time, they limit the ability of customers to express fine-grained preferences. Moreover,
these mechanisms can only be applied within a single resource site. In addition, the
self-interested and strategic nature of users makes the valuation of their requirements and
resources a challenging task.

Market mechanisms, such as combinatorial [179] and Double auction [92], have been
proposed to match multiple users and providers in order to maximise utility of all partici-
pants. However, the practical usage of these mechanisms has remained limited since they
select the auction winner based on user valuations (bids). This can lead to the starvation of
low budget user applications, and thus monopolisation of the market by the rich users. The
problem is critical since one user can buy all of the efficient resources, therefore resulting
in a scarcity of resources for other users. Furthermore, since the major commercial re-
source providers, such as Amazon [6] and Sun [71], have adopted the commodity market
model, these auction mechanisms cannot be applied practically in the current scenario.

Existing mechanisms [25][174][88] in the context of commodity markets also allo-
cate resources without taking into account the effect of one user’s requirements on other
users. Therefore, these mechanisms also end up in similar problems, where one accepted
transaction can affect more than just the immediate resource consumer or provider.

Thus, in order to schedule applications from competitive users while maximising
their utility, this thesis proposes a market-oriented meta-scheduler and mechanisms for
efficient, coordinated and cost-effective allocation of distributed computational Grid re-
sources, especially in the commodity market.

1.3 Problem Statement and Objectives

This thesis focuses on the following problem:

Designing algorithms for efficient and cost-effective scheduling of multiple applica-
tions from competing users in utility Grids to distributed and heterogeneous resources
under different autonomous administrative domains.

The previous section discussed many challenges in designing mechanisms which en-
sure efficient usage of available resources, and satisfy the requirements of multiple users.
First, users, through their personalised brokers [163], compete for cheap and efficient re-
sources, which can lead to disproportionate distribution of load. Moreover, Grid resources

6 Chapter 1. INTRODUCTION

are typically controlled within self-interested autonomous administrative domains. Thus,
the conflict of interests between users and providers is inevitable. This conflict between
competing parties needs to be reconciled in order to maximise the utility of all the partic-
ipants. Other than heterogeneity at the resource level, the challenge from the users is to
meet their complex requirements, which include both monetary and performance costs.
Finally, this is a combinatorial resource allocation problem which is well-known to be NP-
hard [118]. Therefore, in order to handle the resource demands from competing users, the
requirements of both users and resource providers need to be considered, when designing
efficient and cost-effective scheduling mechanisms.

Based on the issues described above, we identified the following objectives:

• To investigate the architectural model for market-oriented meta-scheduler to coor-
dinate resource demands.

• To design meta-scheduling algorithms and mechanisms that can reconcile resource
demands from users with conflicting requirements.

• To investigate how to reduce the impact on the utiity of all participants, while con-
sidering other system-centric metrics such as response time.

1.4 Proposed Solution

To solve the problem of allocating resources to competing users, this thesis proposes
a market-oriented meta-scheduler called “Meta-Broker”, which coordinates the resource
demand from users. The meta-broker facilitates the scheduling of multiple applications on
distributed autonomous resources using market-oriented techniques. To enable this, the
meta-broker (Figure 1.2) periodically interacts with user brokers and local schedulers of
resource sites. The meta-broker acts as a matchmaker, an information provider, a coordi-
nator, negotiator and aggregator. Its goal is to maximise the utilities of the participants i.e.
users and resource providers. The key difference between the architecture of meta-broker
and meta-schedulers such as GridWay [85] is that the meta-broker only deals with match-
making of jobs and resources, while the actual job submission is done by user brokers.
In terms of scheduling mechanisms, the key difference is that the meta-broker considers
both monetary and performance QoS requirements from all the applications in order to
decide resource allocations.

In utility Grids, there are three possible scenarios that can occur with regard to the
mapping of multiple user applications to multiple resource sites:

1. A community of users access multiple resources in utility Grids. In this scenario,
users are cooperative and providers are competitive. Thus, the meta-broker tries to
maximise users’ utility while satisfying their QoS requirements.

1.4. PROPOSED SOLUTION 7

Figure 1.2: Market-Oriented Meta-Scheduling Scenario

2. Multiple users try to access resources from the same provider. In this case, users
compete with each other to access the resources. The provider owns multiple re-
source centers, which are geographically distributed. The objective of the meta-
broker is to schedule the applications on multiple resource sites so that the provider’s
utility can be maximised.

3. Both users and providers are competitive and want to maximise their utilities. Thus,
the meta-broker aims to maximise both users’ and providers’ utility when mapping
user applications to resources.

In this thesis, we have designed market-oriented meta-scheduling allocation mechanisms
that resolves the conflicting requirements of users for each of these scenarios.

Comparing various algorithms in a utility Grid environment with different resource
configurations and user requirements is difficult or almost impossible since the effect
of other users in different administrative domains cannot be controlled. Therefore, to
evaluate the proposed market-oriented meta-scheduling algorithms in a controlled and re-
peatable environment, experiments are performed on a simulated utility Grid environment
using a discrete-event simulator called GridSim [24].

8 Chapter 1. INTRODUCTION

1.5 Thesis Contributions

This thesis contributes towards the advancement of market-based meta-scheduling of mul-
tiple user applications on resources in a utility Grid environment. The contributions are
as follows:

1. This thesis provides a comprehensive taxonomy of market-based scheduling mech-
anisms that cover various aspects, such as market model, application model, partic-
ipant focus, allocation decision and objectives. The taxonomy is intended to help
researchers to make cooperative efforts towards the goal of utility-oriented Grids,
by providing insights to key issues that are still outstanding. Based on the taxon-
omy, a survey of the most relevant market-oriented systems and traditional resource
management systems is presented with a comprehensive comparison. The survey
gives the insights which are helpful in extending and reusing components of exist-
ing Grid middleware. Therefore, the taxonomy and survey also highlight various
research gaps to enhance the state-of-the-art of market-oriented systems in utility
Grids.

2. This thesis presents the design and development of a market-oriented meta-scheduler
i.e. “Meta-Broker”, which coordinates concurrent users and performs scheduling
on multiple resources. It investigates the benefit of central coordination over com-
pletely decentralised scheduling by personalised user brokers.

3. This thesis models the meta-scheduling problem to maximise users’ utility using a
Linear Programming/Integer Programming (LP/IP) model. It investigates the prob-
lem for two different types of users’ utility functions: a) minimisation of monetary
cost, and b) simultaneously minimisation of the monetary cost and response time.
In the first case, this thesis designed a hybrid meta-scheduling algorithm, which
combines the advantages of LP and genetic algorithms, for searching the cheapest
resource allocation. In the second case, users need to manage the trade-off between
the monetary and performance costs. Thus, this thesis analyses the problem using
a trade-off metric, and presented the heuristics to minimise both monetary cost and
response time.

4. This thesis investigates how to maximise provider’s profit (utility) while reducing
the carbon emissions by energy-aware meta-scheduling of applications on globally
distributed data centers. To achieve this objective, this thesis identifies various es-
sential factors such as energy cost, CO2 emission rate, compute-intensive workload,
and CPU power efficiency. A novel analytical model, with dual objectives of profit
and carbon emission, is presented based on these factors. The near-optimal energy-
efficient scheduling policies not only minimise the CO2 emissions and maximise

1.6. THESIS ORGANISATION 9

the profit of the provider, but also can be readily implemented without much infras-
tructure changes, such as the relocation of existing data centers.

5. This thesis investigates how market-based meta-scheduling can be used to max-
imise the utility of both the participants of Grid. It analyses the problem in terms
of system metrics, such as slowdown and waiting time, by using a queuing the-
ory based analytical model. It then presents a meta-scheduling mechanism which
takes advantages of both market based and system based approaches, in order to
maximise both users’ and resource providers’ utility. This is demonstrated via val-
uation metrics that commodify the resource share available and users’ application
requirements so that they can be compared and matched.

6. A single Grid market protocol for physical resources such as CPU and memory is
insufficient to ensure the successful adoption of Grid computing across organisa-
tional boundaries. Instead a set or catalogue of different market places is needed
to satisfy the diverse needs of different market segments. Thus, this thesis presents
the design and architecture of a market exchange, and its requirements to ensure the
simultaneous existence of various negotiation protocols similar to a real market.

1.6 Thesis Organisation

The rest of the thesis is organised (Figure 1.3) as follows: Chapter 2 presents the survey
and taxonomy of market-oriented scheduling systems and mechanisms. This chapter of-
fers the literature background for the remaining part of this thesis by highlighting research
gaps in the utility Grid area. Chapter 3 describes the architecture of our market-oriented
meta-scheduler (aka Meta-Broker) with the details of our system model which is used in
this thesis. In this chapter, we evaluate our proposed meta-broker architecture with per-
sonalised user brokers to show its benefits. Chapter 4 and 5 propose the meta-scheduling
algorithms in the context of the first scenario, i.e., to minimise users’ expenses. Chapter
4 presents the meta-scheduling algorithm to minimise the user spending in execution of
jobs with QoS constraints such as budget and deadline. Chapter 5 analyses the trade-off
between performance and monetary costs while scheduling the user applications in a util-
ity Grid environment. Chapter 6 describes how to model the meta-scheduling problem in
the second scenario. It presents meta-scheduling algorithms that maximise the provider’s
utility by reducing the energy cost of the infrastructure. This chapter also analyses the
performance of our algorithms in terms of its impact on global carbon emissions and
provider’s profit. Then, Chapter 7 discusses the meta-scheduling problem in the context
of the third scenario. In this chapter, we present an auction based meta-scheduling algo-
rithm which benefits both users and providers by maximising the number of scheduled

10 Chapter 1. INTRODUCTION

applications and balancing resource load respectively. Chapter 8 presents the implemen-
tation of our meta-broker, which is realised within a market exchange called “Mandi”.
Chapter 9 concludes and provides directions for future work. The publications resulted
from this thesis are:

Chapter 2

Taxonomy of Market-Oriented

Scheduling Mechanisms

Chapter 3:

Market-Oriented Meta-Scheduler

Architecture

Chapter 4

Meta-Scheduling to Minimise

Users Spending Chapter 6

Meta-Scheduling to Maximise

Chapter 7

Meta-Scheduling to Enhance Meta-Scheduling to Maximise

Provider’s Profit

Meta-Scheduling to Enhance

All Grid Players’ Utility
Chapter 5

Meta-Scheduling to Minimise

Time and Cost for Users

Chapter 8

Market Exchange and Meta-

Broker Implementation

Chapter 9

Conclusions and

Future Directions

Figure 1.3: Thesis Organisation

• Chapter 2 is derived from the following publication:

– Saurabh Kumar Garg and Rajkumar Buyya, Market-Oriented Resource Man-
agement and Scheduling: A Taxonomy and Survey, Cooperative Networking,
M. S. Obaidat and S. Misra (eds), Wiley Press, New York, USA, 2011.

• Chapter 3 and 4 is derived from the following publications:

– Saurabh Kumar Garg, Pramod Konugurthi, and Rajkumar Buyya, A Lin-
ear Programming Driven Genetic Algorithm for Meta-Scheduling on Utility
Grids, Proceedings of the 16th International Conference on Advanced Com-
puting and Communication (ADCOM 2008), Chennai, India, 2008. (Re-
ceived “Best Paper” Award)

1.6. THESIS ORGANISATION 11

– Saurabh Kumar Garg, Pramod Konugurthi, and Rajkumar Buyya, Genetic
Algorithms-based Heuristics for Meta-Scheduling on Utility Grids, Interna-
tional Journal of Parallel, Emergent and Distributed Systems, ISSN: 1744-
5760, Taylor & Francis Publication, UK, 2011.

• Chapter 5 is derived from the following publications:

– Saurabh Kumar Garg, Rajkumar Buyya, Howard Jay Siegel, Scheduling
Parallel Applications on Utility Grids: Time and Cost Trade-off Management,
Proceedings of the 32th Australasian Computer Science Conference (ACSC
2009), Wellington, New Zealand, 2009. (Received “Best Paper” and “Best
Student Paper” Award)

– Saurabh Kumar Garg, Rajkumar Buyya, and Howard Jay Siegel, Time and
Cost Trade-off Management for Scheduling Parallel Applications on Utility
Grids, Future Generation Computer Systems, vol-26, no. 8, ISSN: 0167-
739X, doi:10.1016/j.future.2009.07.003, Elsevier Science, Amsterdam, The
Netherlands, 2010.

• Chapter 6 is derived from the following publications:

– Saurabh Kumar Garg and Rajkumar Buyya, Exploiting Heterogeneity in
Grid Computing for Energy-Efficient Resource Allocation, Proceedings of the
17th International Conference on Advanced Computing and Communications
(ADCOM 2009), Bengaluru, India, 2009.

– Saurabh Kumar Garg, Chee Shin Yeo, Arun Anandasivam, and Rajkumar
Buyya, Environment-Conscious Scheduling of HPC Applications on Distributed
Cloud-oriented Data Centers, Journal of Parallel and Distributed Computing
(JPDC), ISSN: 0743-7315, doi:10.1016/j.jpdc.2010.04.004, Elsevier Press, Am-
sterdam, The Netherlands, 2010.

• Chapter 7 is derived from the following publications:

– Saurabh Kumar Garg, Srikumar Venugopal, James Broberg and Rajkumar
Buyya, Double Auction based Meta-Scheduling of Parallel Applications on
Global GridsTechnical Report, CLOUDS-TR-2009-9, Cloud Computing and
Distributed Systems Laboratory, The University of Melbourne, Australia, Sept.
3, 2009.

• Chapter 8 is derived from the following publication:

12 Chapter 1. INTRODUCTION

– Saurabh Kumar Garg, Christian Vecchiola, and Rajkumar Buyya, Mandi: A
Market Exchange for Trading Utility Computing Services, Technical Report,
CLOUDS-TR-2009-13, Cloud Computing and Distributed Systems Labora-
tory, The University of Melbourne, Australia, Nov. 17, 2009.

Chapter 2

Taxonomy of Market-Oriented
Scheduling Mechanisms

The shift of Grids from providing compute power on a sharing basis to commercial pur-
poses, even though it has not fully unfolded and it is still mostly limited to research, has
led to various technical advancements which have paved a way to make utility Grids a
reality. These advancements favour the application of market-oriented mechanisms for
Grid systems by providing various pre-requisites, such as hardware virtualisation, on the
technical and economic sides. This chapter summarises the recent advances toward the
vision of utility Grids. First, it specifies all the requirements of a utility Grid and presents
an abstract model to conceptualise essential infrastructure needed to support this vision.
Then, a taxonomy and survey of the current market-oriented and system-oriented sched-
ulers is provided, examining the contribution and the outstanding issues of each system
in terms of utility Grid’s requirements. This survey is intended to present the state-of-art
and identify strength and weakness in the field [175][23].

2.1 Overview of Utility Grids and Preliminaries

A utility Grid imitates a market scenario consisting of the two key players (i.e. Grid
Service Consumers (GSCs) and Grid Service Providers (GSPs)). Each of these players
is generally self-interested and wants to maximise their utility (Figure 2.1). Consumers
are users who have resource requirements to execute their applications. The resource re-
quirement varies depending on the application model. For instance, parallel applications
demand multiple CPUs at the same time with equal configuration, and similar network
bandwidth between resources. The consumers are willing to compensate a providers
for using their resources in the form of real money or barter [16]. On the other hand,
providers are the owners of resources (i.e. disk, CPU) which satisfy consumer needs.

13

14 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

They can advertise their resources using other agents of the Grid such as Grid Market Di-
rectories [177]. It is the responsibility of resource providers to ensure user’s application
get executed according to Service Level Agreement (SLA) [42] signed with the consumer.

Figure 2.1: A Grid Market Exchange Managing Self-Interested Entities (Providers and
Consumers)

To ease and control the buying and selling process there are other players in the util-
ity Grid, such as Grid market place or Grid market exchange [121][127], which allow
various consumers and providers to publish their requirements and goods (compute power
or storage) respectively. The market exchange service provides a shared trading infras-
tructure designed to support different market-oriented systems. It provides transparent
message routing among participants, authenticated messages and logging of messages for
auditing. It can coordinate the users and lower the delay in acquiring resources. More-
over, it can help in price control and reduces the chances of the market being monopo-
lised. Personalised Brokers are another kind of middle agents which, based on users’
QoS requirements, peform the function of resource monitoring, resource discovery, and
job submission. These brokers hide all the complexity of Grids from users. Each of the
utility Grid players (i.e. consumer (or user agents such as personalised broker), provider,
market exchange) has different requirements and goals. These requirements are discussed
in detail, and summarised in the next section.

2.2 Requirements

In this section, we discuss the main bottlenecks or infrastructural enhancements required
for utility Grids. In general, consumers and providers need mechanisms and tools that

2.2. REQUIREMENTS 15

facilitate the description of their requirements and decision making to achieve their goals,
such as minimisation of monetary cost while meeting QoS requirements.

2.2.1 Consumer Requirements

User-centric Brokers: These brokers are user agents which discover and schedule jobs
on to resources according to the user priorities and application’s QoS requirements such
as budget, deadline, and number of CPU required [163]. These brokers hide the hetero-
geneity and complexity of resources available in the Grid. On behalf of users, user-centric
brokers provide functionalities such as application description, submission and schedul-
ing; resource discovery and matching; and job monitoring. The user broker can also per-
form negotiation and bidding in an auction conducted by a market exchange or provider
for acquiring resources.

Bidding/Valuation Mechanism: In the utility Grid, a variety of market models can
exist simultaneously such as a commodity and auction market. To participate in both of
the market model, users need to know the valuation of their applications in the form of
budget which estimates the user’s requirements. For example, in an auction market, users
need to bid in order to grab a resource, and in such cases, budget or valuation can help
brokers to bid on behalf of the users. In summary, consumers need utility models to allow
them to specify resource requirements and constraints.

Market-Oriented Scheduling Mechanisms: In traditional Grids, generally users want
to schedule their applications on the resources which can provide the minimum response
time, and satisfy other QoS requirements in terms of memory and bandwidth. In utility
Grids, one additional factor comes into the picture i.e. monetary cost, which requires new
mechanisms as a user may relax some of her other requirements to save on monetary cost.
Thus, one of the objectives of new scheduling mechanisms will be to execute the user
application on the cheapest resource which can satisfy the user’s QoS requirements. The
market-oriented mechanisms can vary depending on the market model, user’s objective
(such as reduce time or cost), and application model (require multiple types of resources).

Allocation of Multiple Resources: Depending on the application model, consumers
may want to run their applications on multiple resources, provided by more than one
resource provider. For example, scheduling of a large parameter sweep across a num-
ber of providers, performing distributed queries across multiple databases, or creating a
distributed multi-site workflow. Thus, brokers should have capabilities to schedule appli-
cations and obtain resources from multiple resource sites.

16 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

Estimation of Resource Usage: In general, due to the heterogeneity of hardware and
different input sizes, it is difficult to describe precisely execution time, and the require-
ment of an application which can vary drastically. In the traditional Grid, an important
research problem is how to profile the runtime of an application since execution time
can affect not only the resource utilisation but also cause delays for users. In the utility
Grid, this requirement becomes more critical as over estimation and under estimation of
resource requirements can lead to tangible loss in the form of real money. Currently, the
resource providers such as Amazon sell their compute resources in time blocks. In addi-
tion, if many users compete for the same resource, the resource availability, depending on
individual user’s requirement, can vary from minutes to days. Thus, users must estimate
their resource needs in advance. Thus, profiling tools and mechanisms are required for
efficient resource allocation in terms of utility.

2.2.2 Resource Provider Requirements

Resource Management Systems (RMSs): These systems interact with underline hard-
ware infrastructure and control the allocation of resources and job scheduling. In a
market-oriented system, the advance reservation function is required to allocate resources
in future, and also to track the availability of resources which can be advertised. Thus, the
reservation system should be able to provide the guaranteed resource usage time (based
on SLA) and support estimation of the future resource offers. Grid Middleware such as
Globus has components such as advance reservation, but to support the market-oriented
reservation and scheduling, they should be integrated with a module that supports various
market-oriented scheduling mechanisms and models.

Pricing/Valuation Mechanism: In utility Grids, a resource provider’s main objective
is to maximise their profit not just the efficiency of the system, thus mechanisms are
required to set the resource price based on the market supply and demand, and the current
level of resource utilisation. These prices can be static or can vary dynamically based on
the resource demand. For example, an academic user may require more resources due to
a conference deadline and, thus, is willing to pay more.

Admission Control and Negotiation Protocols: As stated before, in market-oriented
systems, all participants are self-interested and want to maximise their utility. Thus,
providers need to decide which user application they should accept or negotiate for. Since
there may be a chance of reservation cancellation by users, thus the mechanisms such as
resource over provisioning may be required. SLA is also needed to be formulated once a
user request is accepted for reservation. In addition, depending on how providers want to

2.2. REQUIREMENTS 17

lease their resources, they may choose different market model for negotiation. For exam-
ple, the simplest negotiation is required in the commodity models, while the bargaining
model requires more intelligent negotiation protocol.

Commoditization of the Resources: Unlike many other markets, commoditization of
the resources is one of the major difficult problems, which complicates the reservation and
allocation decisions. For instance, for a compute intensive application, it is meaningless to
just allocate CPUs without some memory. How much memory should be allocated when
hardware infrastructure contain shared memory? Even for storage some small CPU cycles
are required. Thus, intelligent resource partitioning techniques are required to overcome
the hardware difficulties.

2.2.3 Market Exchange (ME) Requirements

An Information and Market Directory is required for advertising participants, available
resources, and auctions. It should support heterogeneous resources, as well as provide
support for different resource specifications. This means that the market ought to offer
functionalities for providing, for instance, both storage and computation with different
qualities and sizes.

Support for Different Market Models: Multiple market models are needed to be de-
signed and deployed as resource providers and consumers have different goals, objectives,
strategies, and requirements that vary with time [121]. If there are multiple sellers for the
same good, a Double auction which aggregates supply and demand generally yields higher
efficiency. If there is only one seller (e.g. in a differentiated service market for complex
services), supporting single-sided auction protocols may be desirable. The negotiation
protocol also depends on the user application. For example, in the case applications with
soft deadlines, the large scheduling cycle helps in collecting a higher number of bids and
offers for auction. This may lead to more efficient allocation than clearing continuously,
since the allocation can be based on more resource information and has more degrees of
freedom in optimising efficiency (and/or other objectives). On the contrary, users having
urgent resource requirements may prefer an immediate allocation, thus the commodity
model will be better choice for negotiation. Consequently, the market exchange must
clearly support multiple negotiation protocols.

Reputation and Monitoring System: In general, it is assumed that after the scheduling
mechanism has determined the allocation and resultant pricing, the market participants ad-
here to the market’s decisions and promises. In reality, however, this does not happen due

18 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

to several reasons such as untruthful behaviour of participants, failure while communi-
cating the decision, and failure of resources. Consequently, there is a need for reputation
mechanisms that prevent such circumstances by removing distrustful participants. How-
ever, there is a strong need for monitoring systems that can detect any SLA violation
during execution. In Grids, the reason for a job failure or a corruption of results is hard
to detect since it can occur due to several reasons such as intentional misbehaviour of the
resource provider, or technical reasons which are neither controlled by the user nor the
provider. The monitoring systems should support reputation system for early detection
of violations and responsible participant. An important challenge is thus to design such
intelligent monitoring systems.

Banking System (Accounting, Billing, Payment Mechanism): In the market exchange,
an accounting system is necessary to record all the transactions between resource providers
and consumers. The accounting system especially records the resource usage and charges
the consumer as per the usage agreement between the consumer and provider.

Meta-Scheduling/Meta-Brokering: The market exchange provides the services such
as meta-scheduling of consumer applications on multiple resource providers in the case
several consumers require simultaneous access to resources. For instance, a large pa-
rameter sweep application requires resources across the number of providers, performing
distributed queries across multiple databases, or creating a distributed multi-site workflow.
Thus, the meta-scheduling service does two tasks for their clients (i.e. resource discovery
and efficiently scheduling applications according to client’s objectives). It can act as an
auctioneer in case a client wants to hold an auction.

Currency Management: For ensuring the fair and efficient sharing of resources, and
a successful market, a well-defined currency system is essential. Two kinds of currency
models are proposed i.e. virtual and real currency. Both of these currency models have ad-
vantages and disadvantages based on their managerial requirements. The virtual currency
is generally deployed [146] due to its low risk and low stakes in case of mismanagement
or abuse. However, virtual currency requires careful initial and ongoing management, and
lacks flexibility. For buying and selling resources in a real commercial environment, the
real currency is preferred due to several reasons. The most important reason is that the real
currency formats (e.g. USD, Euro, etc.) are universally recognised and are easily trans-
ferable and exchanged, and are managed outside the scope of a Grid market exchange, by
linked free markets and respective government policy.

Security and Legal System: To avoid spamming, there should be a security system for
user registration. All the services of the exchange must be accessed by authorised users.

2.3. UTILITY GRID INFRASTRUCTURAL COMPONENTS 19

Similarly, there is also a need for legal support that can resolve various conflicts between
providers and consumers, such as violations of SLA [42]. Thus, the legal support can be
build by the help of some authoritative agency such as a country’s government.

2.3 Utility Grid Infrastructural Components

Based on above requirements, in this section we discuss various infrastructure required
for a fully functional utility Grid. Figure 2.2 outlines an abstract model for utility Grid
that identifies essential components. This model can be used to explore how existing Grid
middleware such as user-centric brokers, meta-schedulers and RMSs can be leveraged and
extended to incorporate market-oriented mechanisms.

The utility Grid consists of multi-layer middleware for each participant: users (Grid
application, user level middleware), Grid exchange, and providers (core middleware and
Grid fabric). The architecture of each of the components should be generic enough to
accommodate different negotiation models for resource trading. Except for Grid exchange
and highlighted components, most of the components are also present in traditional Grids.

The lowest layer is the Grid fabric that consists of distributed resources such as com-
puters, networks, storage devices, and scientific instruments. These computational re-
sources are leased by providers, thus the resource usage is needed to be monitored pe-
riodically to inform the above layers about free resources which can be rented out. The
resource managers in this layer have the responsibility of scheduling applications.

The core middleware offers the interface for negotiation with Grid exchange and user-
level middleware. It offers services such as remote process management, co-allocation of
resources, storage access, information registration and discovery, security, and aspects of
QoS such as resource reservation and trading. These services hide the heterogeneity at the
fabric level. The support for accounting, market model and pricing mechanisms is vital for
resource providers since such support enables them to participate in the utility Grid. The
pricing mechanism decides how resource requests are charged. The pricing of resource
usage by consumers can depend on several variables such as submission time (peak/off-
peak), pricing rates (fixed/changing) or availability of resources (supply/demand). Pricing
serves in the utility Grid as an efficient and cost-effective medium for resource sharing.
The accounting mechanism maintains the actual usage of resources so that the final cost
can be computed and charged from the consumers. The market model defines the nego-
tiation protocol that can be used to serve different resource requests depending on their
effect on provider’s utility.

The user-level Grid middleware and applications also need to be enhanced to satisfy
the requirements discussed in the previous section. A new layer is needed in the brokers
to give users functionality of automatic bidding and negotiation. This layer also discovers

20 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

Grid applications:

Web Portals, Applications Grid
Applications

Resource management System

Grid programming environment and tools:

Languages, API, libraries, compilers, parallelization tools

User Level
Resource management System

Middleware

Bidding mechanism, market based scheduling and negotiation

Auctioneer and Clearing houseGrid

Grid Bank , Grid Market Directory, Information Service,
Security, Trading, Pricing, Accounting, Reputation System

Exchange

Job submission, info services, market model, trading,
Accounting, License management , pricing, negotiation

Core

Security Services:
Authentication, Single sign-on, secure communication

Core

Middleware

Grid resources:
Desktops, servers, clusters, networks, applications, storage,

devices + resource manager + monitor

Grid Fabric

Figure 2.2: Utility Grid Component

resources based on a user’s requirements such as deadline and budget. Automated negoti-
ation capabilities are needed to be added to allow brokers to interact with Grid exchange
and provider’s middleware, and maintain SLAs.

In traditional Grids, the users and providers generally interact on a one-to-one basis
rather than using third party services. Similar to other markets, in utility Grids, since ne-
gotiation with a provider is more complex due to the involvement of money and flexible
resource reservation, the third party services become essential. Thus, utility Grids require
Grid exchange middleware which can act as a buyer or seller on behalf of users and re-
source providers respectively. They require the capability of auctions and clearing house
to match user resource demand to available resources. This middleware needs infrastruc-

2.4. TAXONOMY OF MARKET-ORIENTED SCHEDULING 21

tures such as a meta-broker which matches of users and providers, Grid Market Directory
(GMD) that allows resource advertisements, negotiation protocols, a reputation system,
security and price control. Meta-broker is a key component of the market-exchange. It
acts as an auctioneer or clearing house, and thus schedules a user’s application on the
desired resources. More details on the meta-broker architecture used in this thesis are
discussed in the next chapter.

2.4 Taxonomy of Market-Oriented Scheduling

There are several proposed taxonomies for scheduling in distributed and heterogeneous
computing [175][5]. However, none of these taxonomies focus on the market-oriented
scheduling mechanism in Grids. Here, we present the taxonomy, which emphasises the
practical aspects of market-oriented scheduling in Grids and its difficulties which are vital
to achieve utility-based Grid computing in practice. We can understand works in market-
oriented scheduling (as shown in Figure 2.3) from five major perspectives, namely market
model, allocation decision, market objective, application model, and participant focus.

2.4.1 Market Model

The market model refers to the mechanism used for trading between consumers and
providers. Any particular market model cannot solve all the special requirements of dif-
ferent participants. Having different characteristics each model is the most profitable to
its participants depending on the Grid situation. For example, when the number of partic-
ipants in terms of consumers and providers is almost same, the Double auction is a much
better choice. Due to the differences in the applicability of auctions, various authors have
applied and analysed the efficiency achieved [121]. Various market models that can be
applied to market-oriented Grid computing, include the following:

Game Theory

If Grid participants only interact in the form of an allocation game with different payoffs
as a result of specific actions employing various strategies, a game theoretical setting can
be assumed. This approach is generally applied to ease the congestion of a common
resource or network which can lead to reduction in the overall utility of the system. There
are two types of solution approaches in this context:

1. To avoid excessive consumption of the resources one can use a game with self-
interested economic agents (non-cooperative games).

22 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

Market-Oriented Mechanism

Allocation
Decision

Market
Model

Application
Model

Participant
Focus

Objective

Profit
Based

System
based

Hybrid User
Centric

Resource
C t i

System
C t i

Local Global

Based b sed

Task Parallel Others,Workflow

Centric Centric Centric

Game Commodity Contract-netBargainingProportional Posted A i

Model Application
Others,

eg. Storage

Game
Theory

Commodity
Market

Contract-netBargainingProportional
Share

Posted
Price

Auction

Single Double CombinatorialSingle
Sided

Double
Auction

Combinatorial
Auction

Vickery
Auction

Dutch
Auction

English
Auction

First Price
Sealed Auction

Figure 2.3: Taxonomy of Market-based Mechanisms

2. To achieve a load balancing effect, the unselfish distribution of tasks over resources
can be achieved by using cooperative game agents.

The cooperative and non-cooperative games for resource sharing and allocation often
employ a “Nash bargaining” approach, where bargainers negotiate for a fair “contract
point” within feasible solution set [Nash 1950]. The application of game theory-based
approaches is not very common for resource allocation in Grids. Feldman et al. [59] in-
dicated in their analysis that the price-anticipating allocation scheme can result in higher
efficiency and fairness at equilibrium. In their approach, the resource price is estimated by
total bids placed on a machine. Kwok et al. [103] proposed a Nash equilibrium-oriented
allocation system with hierarchical organised game. They used a reputation index instead
of virtual budget or monetary unit for job acceptance decisions.

Proportional Share

The proportional share introduced and implemented in real cluster based systems such as
Tycoon [104]is to decrease the response time of jobs and to allocate them fairly. Neu-
mann et al. [153] proposed a similar approach such as proportional share where shares

2.4. TAXONOMY OF MARKET-ORIENTED SCHEDULING 23

of resources are distributed using a discriminatory pay-as-bid mechanism to increase the
efficiency of allocation and for the maximisation of resource provider profit. This model
makes an inherit assumption that resources are divisible, which is generally not the case
when a single CPU is needed to be allocated; a situation which is quite usual in coopera-
tive problem-solving environments such as clusters (in single administrative domain).

In the proportional share based market model, the percentage of resource share al-
located to an application is proportional to the bid value in comparison to other users’
bids. The users are allocated credits or tokens, which can be used for gaining access to
resources. The value of each credit depends on the resource demand and the value that
other users place on the resource at the time of usage. One major drawback of proportional
share is that users do not get any QoS guarantee.

Commodity Market Model

In this model, resource providers specify their resource price and charge users according
to the amount of resources they consume. The resource allocation mechanisms consist of
finding prices and allocations such that each economic participant maximises their utility.
One of the first evaluation work in Grids on commodity market was presented by Wolski
et al. [168] who analysed and compared commodity markets with other auction models.
Many commercial providers such as Amazon [6] are using commodity market models
with fixed and dynamic pricing.

The determination of the equilibrium price is very crucial since it act as a great tool
in resource allocation decisions. The prices depend on various factors such as invest-
ment and management cost of resource provider, current demand and supply, and future
markets [148][3]. According to the prices, users can adopt any strategy to decrease their
spending while getting satisfactory QoS level [140][151]. Various systems have been de-
signed to automate this process; such as Dornemann et al. [47] designed and implemented
of a workflow system based on a Business Process Execution Language (BPEL) to support
on-demand resource provisioning. Ernemann et al. [52] presented an economic schedul-
ing system for Grid environments. HA-JES (Kang et al. [91]) presented an algorithm to
increase revenue for providers whose resources are underutilised, by ensuring high avail-
ability to users. To determine the equilibrium price, Stuer et al. [154] presented a strategy
for commodity resource pricing in dynamic computational Grids. They proposed some
refinements to the application of Smale’s method for finding price equilibria in such a
Grid market for price stability, allocative efficiency, and fairness.

Contract-Net

In the contract-net protocol, users advertise their demand and invite resource owners to
submit bids [149][171] [90]. Resource owners check these advertisements with respect to

24 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

their requirements. If the advertisement is favourable, the resource owners respond with
bids. The user consolidates all the bids, compares them, and selects the most favourable
bids. The bidding process has only two outcomes: the bid is accepted or rejected in its
entirety.

Bargaining

Bargaining models are employed in bi-lateral negotiations between providers and con-
sumers, and do not rely on 3rd parties to mediate the negotiation. During the negoti-
ation, each player applies concessions until mutual agreement is reached by alternating
offers [162]. Li and Yahyapour [107] proposed a concurrent bilateral negotiation model
for Grid resource management. The bargaining problem in Grid resource management is
difficult because while attempting to optimise utility, negotiation agents need to: (i) nego-
tiate for simultaneous access to multiple resources, (ii) consider the (market) dynamics of
a computational Grid, and (iii) be highly successful in acquiring resources to reduce delay
overhead in waiting for resources.

Posted Price

It is similar to the commodity market model. In this model, providers may also make
special offers such as discounts for new clients; differentiate prices across peak and off-
peak hours. Prices do not vary relative to the current supply and demand but are fixed
over a period of time.

Auction

An Auction is a process of trading resources by offering them up for bidding, and selling
the items to the highest bidder. In economic terms, it is also a method to determine the
value of a resource whose price is unknown. An auction is organised by an auctioneer,
who distributes Grid resources from the providers to the users. Thus, the mechanism
consists of determining the winner and setting the price. The auctions can be divided into
three types based on participants and commodity exchanged: a) Single-sided auction, b)
Double-sided auction, and c) Combinatorial auctions.

• Single-sided Auction

Single-sided auctions are mechanisms, where only buyers or sellers can submit bids
or asks. Even though the single-sided auction is the most widely applied market
model, it often leads to inefficient allocation [143]. The most prominent single
sided auctions are Vickrey Auction, Dutch Auction, First Price Sealed Bid (FPSB),
and English Auction.

2.4. TAXONOMY OF MARKET-ORIENTED SCHEDULING 25

1. English Auction

In the English auction, the auctioneer begins the auction with a reserve price
(lowest acceptable price) [43]. Auction continues in rounds with increasing
bid prices, until there is no price increase. The item is then sold to the highest
bidder.

2. Dutch Auction

In the Dutch auction the auctioneer begins with a high asking price which
is lowered until some participant is willing to accept the auctioneer’s price
or a predetermined minimum price is reached. That participant pays the last
announced price. This type of auction is convenient when it is important to
auction resources quickly, since a sale never requires more than one bid.

3. Vickrey Auction

A Vickrey auction is a sealed-bid auction, where bidders submit sealed bids.
The highest bidder wins, paying the price of the second highest bid. This
gives bidders incentives to bid their true value. When multiple identical units
are auctioned, one obvious generalisation is to have all bidders pay the amount
of the highest non-winning bid.

4. First Price Sealed Bid (FPSB) Auction

In this type of auction, all bidders simultaneously submit bids so that no bidder
knows the bid of any other participant [43]. The highest bidder pays the price
they submitted. In this case, the bid strategy is a function of one’s private
value and the prior belief of other bidders’ valuations. The best strategy is to
bid less than its true valuation and it might still win the bid, but it all depends
on what the others bid.

• Double-Sided Auction

In a Double auction, both providers and users submit bids which are then ranked
(from the highest to the lowest) to generate demand and supply profiles. From the
profiles, the maximum quantity exchanged can be determined by matching selling
offers (starting with the lowest price and moving up) with demand bids (starting
with the highest price and moving down). This format allows users to make of-
fers and providers to accept those offers at any particular moment. In the Double
auction, the winner determination depends on different aspects such as aggregation,
resource divisibility, and goods which can be homogeneous or heterogeneous. Ag-
gregation can come from the supplier side or from the buyer side. If no aggregation
is allowed then each bid can be exactly matched to one ask. Divisible goods can
be allocated partially. In the case that the bidder wants the entire good or nothing

26 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

then its bid is considered indivisible. Kant et al. [92] proposed and compared vari-
ous types of Double auctions to investigate its efficiency for resource allocation in
Grid. In addition, Tan et al. [156] proposed the stable continuous Double auction to
overcome the problem of high volatility.

• Combinatorial Auctions

The Grid users may require a combination of multiple resources such as CPUs,
memory, and bandwidth. Combinatorial auction allows users and providers to trade
a bundle of multiple resources. It is advantageous to users as they do not need
to participate in multiple negotiations with providers for each resource required.
Moreover, in some cases it also leads to cost benefits. In combinatorial auction,
users express their preferences as bundles of resources that need to be matched. The
providers submit their asks and the auctioneer solves the optimisation problem of
allocation. The only drawback of combinatorial auction is the NP-hardness [118]
of the matching problem, which makes it inapplicable for large scale settings. A
number of variants of combinatorial auction are proposed in the literature to allocate
computational resources among Grid users [94][142].

2.4.2 Allocation Decision

In Grids, the resource allocation to users can be done at two points. It can be initiated
either by an individual provider (local) or a middleman such as meta-scheduler or auc-
tioneer (global). In ‘local’, the trading decisions are based on the information provided
by one resource provider. Generally in this case, users approach the resource provider
directly to buy or bid for a resource bundle advertised. For instance, to buy compute re-
sources of Amazon [6], users can directly negotiate with Amazon service [6]. Most of the
single-sided auctions fall into this category.

In ‘global’, the trading decisions are based on the global information of multiple
providers. Users utilise the services of a an auctioneer in the market exchange to get
the required resources. Thus, the auctioneer makes the decision on behalf of the users to
buy resources from providers. The two-sided auctions fall into this category.

The local decision point is more scalable but can lead to contention. While the global
decision point is more optimised and coordinates demand fairly.

2.4.3 Participant Focus

The two major parties in Grid computing, namely, resource consumers who submit vari-
ous applications, and resources providers who share their resources, usually have different

2.4. TAXONOMY OF MARKET-ORIENTED SCHEDULING 27

motivations when they join the Grid. The participant focus identifies the market side for
which market oriented systems or mechanisms are explicitly designed to achieve benefit.

Application-centric: In the application centric, mechanisms are designed such that an
application can be executed on resources, which meet the user requirements within his/her
budget or deadline.

Resource-centric: Similarly, a resource-centric mechanism focuses mainly on resource
providers by fulfilling their desired utility goal in terms of resource utilisation and profit.

System-centric: In the market scenario, there may be middlemen such as meta-brokers
or meta-schedulers that coordinate and negotiate the resource allocations between users
and producers. They try to maximise the utility for both users and providers. Thus, the
resource allocation decision involves multiple users and providers.

In utility Grids, mechanisms are required that can cater to the needs of both sides of
the market. For instance, they should be able to satisfy end-users’ demand for resources
while giving enough incentive to resource providers to join the market. Moreover, the spe-
cific requirements of participants should not be neglected. It is also possible for market-
oriented RMSs to have multiple participants focus such as in Double auctions.

2.4.4 Application Type

Market-oriented resource allocation mechanisms need to take into account job attributes
to ensure that different job types with distinct requirements can be fulfilled successfully.
The application model affects not only the scheduling mechanism but also other aspect of
the utility Grid such as resource offerings by providers, negotiation with providers, and
formation of SLAs and their monitoring. For applications consisting of independent tasks,
all the tasks can be distributed across multiple providers and thus optimisation of the user’s
utility is easier. For the parallel application model, all tasks are needed to be mapped on
a single resource site. In the workflow type of application, there is a precedence order
existing in tasks; that is, a task cannot start until all its parent tasks are done. This will
require coordination between multiple providers, and the scheduling problem needs to be
fault tolerant since single failure may result in a large utility loss.

2.4.5 Allocation Objective

The market-oriented mechanisms can be used to achieve different objectives both in utility
Grids and traditional Grids. The allocation objective of mechanism can be profit-oriented,

28 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

system-oriented, or hybrid of both of them. The objectives of various participants decide
the trading relationship between them. The profit based objective in terms of monetary
gains, in general, encourages competition between participants. Thus, each participant
tries to maximise their own utility without considering other consumers.

The objective of market-oriented scheduling mechanisms could be to achieve optimi-
sation of system metrics such as utilisation, fairness, load balancing, and response time.
This application of market-oriented mechanism, categorised in taxonomy as “system-
oriented objective”, is quite common. For example, OurGrid [7] uses a resource exchange
mechanism termed network of favours which is used to share resources among distributed
users. Bellagio [9] is another system deployed on PlanetLab for increasing system utilisa-
tion on non peak time. The objective of market-oriented scheduling mechanism can be of
hybrid type. For example, a user may simultaneously want to minimise the response time
and the cost of application execution. A provider may accept a less profitable application
to increase resource utilisation rather than waiting for more profitable jobs.

2.5 Survey of Grid Resource Management Systems

Grid RMSs chosen for the survey can be classified into two broad categories: market-
oriented or system-oriented (presented in the following sections). Since this survey fo-
cuses on utility computing, market-oriented RMSs are surveyed to understand current
technological advances and identify outstanding issues that are yet to be explored so that
more practical RMSs can be implemented in future. On the other hand, surveying system-
oriented RMSs allow analysing and examining the applicability, and suitability of these
systems for supporting utility Grids in practice. This in turn helps us to identify possible
strengths of these systems that may be leveraged for utility computing environments. In
traditional Grids, a user accesses the Grid services either through User Brokers (UB) or
Local Resource Managers (LRM). These systems schedule the jobs using system-centric
approaches which optimise the metrics such as response time and utilisation. We call such
schedulers as “System-Oriented Schedulers” to differentiate them from the schedulers in
market-oriented Grids (or utility Grids).

2.5.1 Survey of Market-Oriented Systems

Table 2.1 shows a summary listing of the existing market-oriented RMSs and brokers
that have been proposed by researchers for various computing platforms. In the market-
oriented Grid, there are also three entities which participate in scheduling. One is the
user broker that provides access to users on multiple resources. The resource providers
are other entities who also have resource brokers that facilitate the admission control,

2.5. SURVEY OF GRID RESOURCE MANAGEMENT SYSTEMS 29

pricing, and negotiation with user brokers. The negotiation between users and resource
providers can be on one-to-one basis or through third entity i.e. market exchange. The
market exchange also provide other services such as resource discovery, banking, buying
and selling compute services.

Gridbus Broker

Gridbus broker [163] is a single user resource broker that supports access to both com-
putational and data Grids. It transparently interacts with multiple types of computational
resources which are exposed by various local Grid middleware’s such as Globus, Al-
chemi, Unicore and Amazon EC2, and scheduling systems such as PBS and Condor. By
default, it implements two scheduling strategies that take into account budget and deadline
of applications. Additionally, the design of the broker allows the integration of custom
scheduling algorithms. Job-monitoring and status-reporting features are provided. Grid-
bus broker supports two application models, i.e., parametric-sweep and workflow.

Nimrod/G

Nimrod/G is an automated and specialised resource management system, which allows
execution of parameter sweep applications on Grid to scientists and other types of users.
Nimrod/G follows mainly the commodity market model and provides four budget and
deadline based algorithms [25] for computationally-intensive applications. Each resource
provider is compensated for sharing their resources by the users. The users can vary their
QoS requirement based on their urgency and execution expense. Nimrod/G consists of
a Task Farming Engine (TFE) for managing an execution, a Scheduler that talks to vari-
ous information services and decides resource allocations, and a Dispatcher that creates
Agents and sends them to remote nodes for execution. It is widely used by scientific
community for their computation-intensive simulations in the areas of bio-informatics,
operations research, ecological modelling, and Business Process Simulation.

Tycoon

Tycoon [104] is a market-based distributed resource allocation system based on Propor-
tional Share scheduling algorithm. The user request with the highest bid is allocated
the processor time slice. The bid is computed as the pricing rate that the user pays for
the required processor time. Tycoon allocates the resources to the self-interested users
in environments where service hosts are unreliable because of frequent changes in the
availability. Tycoon distinguishes itself from other systems by separating the allocation
mechanism (which provides incentives) from the agent strategy (which interprets prefer-
ences). This simplifies the system and allows specialisation of agent strategies for dif-

30 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

ferent applications while providing incentives for applications to use resources efficiently
and resource providers to provide valuable resources. A host self-manages its local se-
lection of applications, thus maintaining decentralised resource management. Hosts are
heterogeneous since they are installed in various administrative domains and owned by
different owners. Tycoon’s distributed market allows the system to be fault tolerant and
to allocate resources with low latency.

Spawn

Spawn [95] uses sealed-bid second-price auctions for market-oriented resource allocation
in a network of heterogeneous computer nodes. Users place bids to purchase CPU re-
sources for executing hierarchy-based concurrent programs in auctions held privately by
each computer node and are not aware of other users’ bids. The concurrent applications
are then represented using a tree structure where a hierarchy of tasks expand or shrink in
size depending on the resource cost. This mechanism limits the ability of customers to
express fine-grained preferences for services.

Java Market

Java Market [173] is one of the oldest market-oriented systems developed by John Hop-
kins Univ. It is an Internet-wide meta-computing system that brings together people who
have applications to execute and people who have spare computing resources. One can
sell CPU cycles by pointing a Java-enabled browser to a portal and allow execution of
Applets in a QoS-based computational market. The goal of Java Market is to make it pos-
sible to transfer jobs to any participating machine. In addition, in Java Market, a resource
provider receives payment or award based on the execution time of a job and the amount
of work done.

Mariposa

Mariposa [152] is a distributed database system developed at the University of California.
It supports query processing and storage management based on budget. Users submit
queries with time-dependent budgets to brokers who then select servers for executing
the queries based on two protocols. One protocol is expensive as it solicits bids from
all servers, requiring many communication messages. The expensive protocol adopts a
greedy algorithm that aims to minimise cost to schedule sub-queries so as to select the
cheapest server for the user. The other protocol is cheaper since it selects specific server
based on the historical information. In Mariposa, bids on queries are based on local and
selfish optimisation of each user.

2.5. SURVEY OF GRID RESOURCE MANAGEMENT SYSTEMS 31

N
A

M
E

A
rc

hi
te

ct
ur

e
E

co
no

m
ic

M
od

el
M

ec
ha

ni
sm

Tr
ad

ed
C

om
m

od
ity

Pr
ic

in
g

Ta
rg

et
Pl

at
fo

rm
A

pp
lic

at
io

n
M

od
el

U
se

r
R

ol
e

G
ri

db
us

(U
B

)

N
ot

A
p-

pl
ic

ab
le

(N
A

)

C
om

m
od

ity
M

ar
ke

t

Ti
m

e
an

d
B

ud
ge

t
ba

se
d

A
lg

o-
ri

th
m

C
om

pu
te

an
d

St
or

ag
e

N
A

C
om

m
er

ci
al

Pr
ov

id
er

s
B

ag
-o

f-
Ta

sk
an

d
W

or
kF

lo
w

B
ud

ge
ta

nd
Ti

m
e

N
im

ro
d/

G
(U

B
)

C
en

tr
al

is
ed

C
om

m
od

ity
M

ar
ke

t,
Sp

ot
M

ar
ke

t,
an

d
C

on
tr

ac
t-

N
et

fo
r

pr
ic

e
es

ta
bl

is
hm

en
t

D
ea

dl
in

e
an

d
B

ud
ge

t
C

on
st

ra
in

ed
A

lg
or

ith
m

s

C
PU

C
yc

le
s

an
d

St
or

ag
e

Fi
xe

d
pr

ic
in

g

W
or

ld
W

id
e

G
ri

d
(r

es
ou

rc
es

G
ri

d
en

ab
le

d
us

in
g

G
lo

bu
s

m
id

dl
ew

ar
e)

In
de

pe
nd

en
tm

ul
tip

le
ta

sk
s

an
d

da
ta

pa
ra

l-
le

la
pp

lic
at

io
ns

Ti
m

e
an

d
B

ud
ge

t

Ty
co

on
(R

M
S)

D
is

tr
ib

ut
ed

,
C

en
tr

al
is

ed
Pr

op
or

tio
na

l
Sh

ar
e

Pr
op

or
tio

na
l

Sh
ar

e
C

PU
cy

cl
es

Pr
ic

in
g

ba
se

d
on

bi
ds

C
lu

st
er

s,
G

ri
ds

Ta
sk

A
llo

ca
tio

n
D

is
cr

et
e

bi
d

Sp
aw

n
(R

M
S)

D
ec

en
tr

al
is

ed
A

uc
tio

n
V

ic
ke

ry
A

uc
tio

n
C

PU
tim

e
Se

co
nd

pr
ic

e
C

lu
st

er
Ta

sk
al

lo
ca

tio
n

D
is

cr
et

e
bi

d

Ja
va

M
ar

ke
t

(M
E

)
C

en
tr

al
is

ed
C

om
m

od
ity

M
ar

ke
t

C
os

t
ba

se
d

G
re

ed
y

C
om

pu
te

Fi
xe

d
W

W
W

Ja
va

pr
og

ra
m

B
id

di
ng

do
ne

by
re

so
ur

ce
s

M
ar

ip
os

a
(R

M
S)

C
en

tr
al

is
ed

C
om

m
od

ity
M

ar
ke

t
C

os
t

m
in

-
im

is
at

io
n

St
or

ag
e

Pr
ic

in
g

ba
se

d
on

lo
ad

an
d

hi
st

or
ic

al
in

fo
.

D
is

tr
ib

ut
ed

da
ta

ba
se

D
at

a
B

ud
ge

t
an

d
qu

er
ie

s

G
R

IA
(R

M
S)

P2
P

C
on

tr
ac

t-
ba

se
d

N
ot

Sp
ec

i-
fie

d
C

om
pu

te

T
hr

ou
gh

ne
go

tia
tio

n
be

tw
ee

n
pr

ov
id

er
s

G
ri

d
N

ot
Sp

ec
ifi

ed
N

A

Pe
er

M
ar

t
(R

M
S)

P2
P

A
uc

tio
n

D
ou

bl
e

A
uc

tio
n

N
ot

Sp
ec

ifi
ed

M
ea

n
Pr

ic
e

ba
se

d
on

m
at

ch
ed

as
k

an
d

bi
d

P2
P

N
ot

Sp
ec

ifi
ed

B
id

s

B
el

la
gi

o
(R

M
S)

C
en

tr
al

is
ed

C
om

bi
na

to
ri

al
A

uc
tio

n
V

ic
ke

ry
A

uc
tio

n
C

PU
s

an
d

St
or

ag
e

Se
co

nd
pr

ic
e

P2
P

N
ot

Sp
ec

ifi
ed

B
id

di
ng

32 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

Sh
ar

p
(M

E
)

C
en

tr
al

is
ed

C
om

m
od

ity
M

ar
ke

t
L

ea
se

s
C

PU
tim

e
Fi

xe
d

G
ri

d
L

ea
se

al
lo

ca
tio

n
L

ea
se

re
qu

es
t

to
Sh

ar
p

Sh
ir

ak
o

(M
E

)
C

en
tr

al
is

ed
N

ot
sp

ec
ifi

ed
se

em
s

to
be

co
m

m
od

ity

N
eg

ot
ia

tio
n,

le
as

in
g

ge
ne

ri
c

V
ir

tu
al

M
a-

ch
in

e
an

d
St

or
ag

e
N

A
V

ir
tu

al
M

a-
ch

in
es

N
ot

sp
ec

ifi
ed

L
ea

se
re

qu
es

t
to

br
ok

er

O
C

E
A

N
(M

E
)

D
is

tr
ib

ut
ed

B
ar

ga
in

in
g,

Te
nd

er
in

g,
C

on
tr

ac
t-

N
et

,
C

on
tin

u-
ou

s
D

ou
bl

e
A

uc
tio

n

D
is

co
ve

ri
ng

po
te

nt
ia

l
se

lle
r

an
d

N
eg

ot
ia

tio
n

C
PU

C
yc

le
s

Fi
xe

d
A

ny
di

st
ri

bu
te

d
re

so
ur

ce
N

ot
Sp

ec
ifi

ed
D

is
co

ve
r

an
d

N
e-

go
tia

tio
n.

C
at

N
et

s
(M

E
)

D
ec

en
tr

al
is

ed
B

ar
ga

in
in

g
N

eg
ot

ia
tio

n
C

om
pl

ex
Se

r-
vi

ce
s

an
d

B
a-

si
c

Se
rv

ic
es

T
hr

ou
gh

ne
go

tia
tio

n.
D

yn
am

ic
pr

ic
in

g
de

-
pe

nd
on

av
ai

la
bl

e
se

rv
er

s

G
ri

d
an

d
Se

rv
ic

e-
O

ri
en

te
d

C
om

pu
tin

g
N

ot
Sp

ec
ifi

ed
B

id
di

ng
ty

pe

SO
R

M
A

(M
E

)
C

en
tr

al
is

ed
C

om
bi

na
to

ri
al

A
uc

tio
n

G
re

ed
y

M
ec

ha
ni

sm
N

ot
Sp

ec
ifi

ed
K

-P
ri

ci
ng

,
ba

se
d

on
au

ct
io

n

C
om

m
er

ci
al

Pr
ov

id
er

s

N
ot

Sp
ec

ifi
ed

(S
im

-
ul

at
io

n
ar

e
ba

se
d

on
in

de
pe

nd
en

tt
as

ks
)

B
id

di
ng

G
ri

dE
co

n
(M

E
)

C
en

tr
al

is
ed

C
om

m
od

ity
M

ar
ke

t
N

ot
Sp

ec
i-

fie
d

R
es

ou
rc

es
m

an
ag

ed
by

co
m

m
er

-
ci

al
se

rv
ic

e
pr

ov
id

er
s

Fi
xe

d
C

om
m

er
ci

al
R

e-
so

ur
ce

Pr
ov

id
er

s
N

ot
Sp

ec
ifi

ed
Pr

ic
e

sp
ec

ifi
ed

by
re

so
ur

ce

G
-

C
om

m
er

ce
(M

E
)

C
en

tr
al

is
ed

C
om

m
od

ity
M

ar
ke

t
A

uc
tio

n
N

A
D

yn
am

ic
pr

ic
in

g

Si
m

ul
at

es
hy

po
th

et
ic

al
co

ns
um

er
s

an
d

pr
od

uc
es

N
A

B
id

di
ng

Ta
bl

e
2.

1:
M

ar
ke

t-
O

ri
en

te
d

Sc
he

du
lin

g
Sy

st
em

s

2.5. SURVEY OF GRID RESOURCE MANAGEMENT SYSTEMS 33

GRIA

GRIA (Grid Resources for Industrial Applications) [155] is a web-services based Grid
middleware for Business-to-Business (B2B) service procurement and operation. It aims at
the development of business models and processes that make it feasible and cost-effective
to offer and use computational services securely in an open Grid market exchange. It also
helps the Industries to achieve better utilisation and manage demand peaks on resources.
GRIA software is based on and uses web services standard specifications and tools such as
Apache AXIS. GRIA aiming to make Grid Middleware reliable for industrial application,
thus, provides various software packages for performance estimation and QoS, workflow
enforcement, cluster management, security and inter-operability semantics. Thus, each
service provider using GRIA middleware has an account service and a resource allocation
service, as well as services to store and transfer data files, and execute jobs which process
these data files. Service provider’s interaction is based on B2B model for accounting and
QoS agreement.

PeerMart

PeerMart [78] is a Peer-to-Peer market based framework which allows completely decen-
tralised trading of services between peers. It includes with capability of dynamic pricing
and efficient price dissemination, and services discovery over a P2P network. Using Peer-
Mart, peers can bid prices for services, which enable them to govern the desired service
performance. PeerMart implements an economically efficient distributed Double auction
mechanism where each peer being responsible for matching several services. PeerMart
uses the overlay network infrastructure to map the services onto particular sets of peers
following a fully distributed and redundant approach for high reliability and scalability to
the number of participating peers. Its main limitation is the tight integration of auction
model in the framework, making it inflexible with respect of the market model.

Bellagio

The Bellagio [9] is a resource management system that allocates resources using combina-
torial auction in order maximise aggregate end-user utility. Users identify their resources
of interest via a SWORD [125] based resource discovery mechanism and register their
preference to a centralised auctioneer for said resources over time and space as a com-
binatorial auction bids using a bidding language, which support XOR bids [122]. The
bids are formulated in the virtual currency. The auction employed in Bellagio is peri-
odic. Unlike other work that focuses on the contention for a single resource (CPU cycles),
they are motivated by scenarios where users express interest in ‘slices’ of heterogeneous
goods (e.g. disk space, memory, bandwidth). Bellagio employs Share [37] for resource

34 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

allocation in order to support a combinatorial auction for heterogeneous resources.

SHARP

SHARP [69] is not exactly a complete resource management system, but it is an archi-
tecture to enable secure distributed resource management, resource control and sharing
across sites and trust domains. The real management and enforcement of allocations
are created by resource provider middleware which process the tickets and leases issued
by SHARP. SHARP stands for Secure Highly Available Resource Peering and is based
around timed claims that expire after a specified period, following a classical lease model.
The resource claims are split into two phases. In the first phase, a user agent obtains a
‘ticket’, representing a soft claim that represents a probabilistic claim on a specific re-
source for a period of time. In the second phase, the ticket must be converted into a
concrete reservation by contracting the resources site authority and requesting a ‘lease’.
These two phases allow SHARP system to become oversubscribed by issuing more tick-
ets than it can support. SHARP also presents a very strong security model to exchange
claims between agents, either user agents or 3rd party brokers, and that then achieves
identification, non-repudiation, encryption, and prevents man-in-the-middle attacks.

CATNET

CATNET Project [54] proposed a Catallaxy based market place where trading is divided
into two layers, the application and service layer. The notion of a Catallaxy based market
for Grids was proposed by Austrian economist F.A. von Hayek. In this market, prices
evolve from the actions of economically self-interested participants which try to max-
imise their own gain whilst having limited information available to them. In the applica-
tion layer, complex services are mapped to basic services. The service layer maps service
requests to actual resources provided by local resource managers. There are two markets
which operate simultaneously - one for buying resources by service providers from re-
source providers, and another for buying services by clients from service providers. Thus,
the client is not aware of the details of the resource provider, and vice versa. The prices are
fixed in two markets by bilateral bargaining. CATNETS offers very interesting features
but lacks comprehensive support (e.g., monitoring, multi platform deployment).

In both layers, the participants have varying objectives which change dynamically and
unpredictably over time. In the application/service layer, a complex service is a proxy
who negotiates the access to bundles of basic service capabilities for execution on behalf
of the application. Basic services provide an interface to access computational resources
Agents representing the complex services, basic services and resources participate in a
peer-to-peer trading network, on which requests are disseminated and when an appropriate
provider is found, agents engage in a bilateral bargaining [55].

2.5. SURVEY OF GRID RESOURCE MANAGEMENT SYSTEMS 35

Shirako

Shirako [87] is a generic and extensible system that is motivated by SHARP for on-
demand leasing of shared networked resources across clusters. Shirako framework con-
sists of distributed brokers which provision the resources advertised by provider sites to
the guest applications. Thus, it enables users to lease groups of resources from multiple
providers over multiple physical sites through broker service. Site authorities compute
and advertise the amount of free resource by issuing resource tickets to the selected bro-
kers. When a broker approves a request, it issues a ticket that is redeemable for a lease at
a site authority. The ticket specifies the resource type, resource units granted and the val-
idation period. SHIRAKO allows ‘flexible’ resource allocation through leases which can
be re-negotiated and extended via mutual agreement. A request can be defined as ‘elastic’
to specify a user will accept fewer resources if its full allocation is not available. Requests
can be ‘deferrable’ if a user will accept a later start time than what is specified in the lease
if that time is unavailable. The function of broker is to prioritise the request and match
to appropriate resource type and quantity. Provider side is represented by site authorities
that run Cluster on Demand [31] to configure the resources allocated at the remote sites.

OCEAN

OCEAN (Open Computation Exchange and Arbitration Network) [127] is a market based
system for matching user applications with resources in the high performance computing
environments, such as Cluster and Grid computing. It consists of all major components
required to build utility Grid, such as user node which submit trade proposals, computa-
tional resource and underlying market mechanism. Ocean first discovers potential sellers
by announcing a buyer’s trade proposal using optimised P2P search protocol. Then, the
user node can negotiate with sellers based on the rules dynamically defined in a XML for-
mat. The ability to define negotiation rules is a remarkable characteristic of OCEAN that
allows the adaptation of the economic model to diverse applications. The two possible
negotiation allowed by OCEAN are “yes/no” and automated bargain.

SORMA

Based on market engineering principles, the SORMA project [121] proposed an Open
Grid Market which is built above the existing RMSs. It consists of self-interested resource
brokers and user-agents. The users submit their bids for resources to the Open Grid Mar-
ket using an autonomous bidding agent. On the other side of the market, the resource
side bidding agents publish automatically available resources based on their predefined
policies. The Open Grid Market matches requesting and offering bids and executes them
against each other using Combinatorial Auction. The matches (i.e. allocations) are for-

36 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

mulated in SLAs (i.e. contracts). The Grid middleware is responsible for the resource
provisioning and the payment system (such as PayPal) for the monetary transfer of funds.
The open infrastructure of Open Grid Market allows various resource providers with dif-
ferent virtualisation platforms or managers to easily plug in the market.

GridEcon

GridEcon Project [4] proposed a market exchange technology that allows many (small
and medium) providers to offer their resources for sale. To support buying and selling
of resources, GridEcon market offers various services that makes exchange of commod-
ity convenient, secure, and safe. The GridEcon market also proposed to design a series
of value-added services on top of the market exchange (e.g. insurance against resource
failures, capacity planning, resource quality assurance, stable price offering), ensuring
quality of the traded goods for Grid users. Currently, GridEcon supports only commodity
market model where commercial resource providers can advertise their spare resources.
The fixed pricing is used to allow users to sell and buy resources. The GridEcon market
delegates the real resource management to commercial service providers.

G-Commerce

G-Commerce [169] provides a framework for trading computer resources (CPU and hard
disk) in commodity markets and Vickrey auctions. By comparing the results of both mar-
ket strategies in terms of price stability, market equilibrium, consumer efficiency, and
producer efficiency, the G-commerce project concludes that commodity market is a better
choice for controlling Grid resources than the existing auction strategies. It is argued and
shown in simulations that this model achieves better price predictability than auctions.
Thus, G-commerce is a Grid resource allocation system based on the commodity mar-
ket model where providers decide the selling price after considering long-term profit and
past performance. The simulated auctions are winner-takes-it-all auctions and not pro-
portional share, leading to reduced fairness and starvation. Furthermore, the auctions are
only performed locally and separately on all hosts, leading to poor efficiency.

2.5.2 System-Oriented Schedulers

For over a decade various technologies have enabled applications to be deployed on the
Grids, including Grid middleware such as Globus [64], Legion [30], and gLite [8]; sched-
ulers such as Application Level Schedulers (AppLeS) [11]; and resource brokers including
Gridbus Resource Broker [163], Nimrod/G [1], Condor-G [68], and GridWay [85]. These
meta-schedulers or resource management systems interact with Local Schedulers or Grid

2.5. SURVEY OF GRID RESOURCE MANAGEMENT SYSTEMS 37

Middleware of various resource sites. The Local Scheduler supported such as Load Shar-
ing Facility (LSF) [180], Open Portable Batch System (Open PBS [79] and Grid Engine
(SGE / N1GE) [71]. In following section, we discuss some of the scheduling systems in
detail and compare them using a Table 2.2.

Community Scheduler Framework (CSF)

The Community Scheduler Framework (CSF) [172] is an open source tool set for im-
plementing a Grid meta-scheduler using the Globus Toolkit Services. The Grid meta-
scheduler provides an environment for dispatching jobs to various resource managers.
CSF was developed by Platform Computing in cooperation with the Jilin University,
China. The CSF provides plug-in for various heterogeneous schedulers such as Platform
Load Sharing Facility (LSF), Open Portable Batch System (Open PBS) and Grid Engine
(SGE / N1GE), however CSF is designed for the best compliance with Platform LSF.

CSF implements by default two basic scheduling algorithms i.e. Round-robin and
reservation based algorithm. For the later algorithm, CSF facilitates advance reservation
of resources for its users. Thus, users can make resource reservation using Resource
Manager Tool of CSF, in order to guarantee the resource availability at a specified time.
In addition, it also provides submission and monitoring tools to its users.

Computing Centre Software (CCS)

CCS [132] is a vendor-independent resource management software that manages geo-
graphically distributed High Performance Computers. It is analogous to Globus and con-
sists of three main components the CCS, which is a vendor-independent Local Resource
Management Schedulers (LRMSs) for local HPC systems; the Resource and Service De-
scription (RSD), used by the CCS to specify, and map hardware and software compo-
nents of computing environments; and the Service Coordination Layer (SCL), which co-
ordinates the resource usage across multiple computing sites. CCS schedules and maps
interactive and parallel jobs using an enhanced first-come-first-served (FCFS) scheduler
with backfilling. Deadline scheduling is another feature of CCS that gives the flexibility
to improve the system utilisation by scheduling batch jobs at the earliest convenient and
at the latest possible time. It also supports jobs with reservation requirements. At the
meta-computing level, the Centre Resource Manager (CRM) is a layer above the CCS
islands that exposes CSS scheduling features. When a user submits an application, the
CRM maps the user request to the static and dynamic information regarding available re-
sources through Centre Information Server (CIS). Centre Information Server (CIS) is a
passive component that contains information about resources and their status. Once the
CRM finds resources, it interacts with selected CCS islands for resource allocations. If
not all resources are available, the CRM either re-schedules the request or rejects it.

38 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

GridWay

GridWay [85] is a meta-scheduler framework developed by a team working for Distributed
Architecture Group from Universidad Complutense in Madrid, Spain. GridWay provides
a transparent job execution management and resource brokering to the end user in a ‘sub-
mit and forget’ fashion. GridWay uses the Globus GRAM to interface with remote re-
sources and, thus it can support all remote platforms and resource managers (for example
fork, PBS and LSF) compatible with Globus. GridWay offers only simple scheduling
capabilities even though custom scheduling algorithms are also supported. By default,
GridWay follows the “greedy approach”, implemented by the round-robin algorithm. The
collective scheduling of many jobs is not supported by the meta-scheduler. GridWay
also provides sophisticated resource discovery, scheduling, constant monitoring and self-
adaptive job migration to increase performance. Thus, an application is able to decide
about resource selection as it operates, i.e. it can modify its requirements and request a
migration. GridWay also enables the deployment of virtual machines in a Globus Grid.

Moab (Silver) Grid Scheduler

Moab Grid Scheduler is a Grid metascheduler developed by Cluster Resources Inc. Moab
allows combining the resources from multiple high performance computing systems while
providing a common user interface to all resources. It supports intelligent load balancing
and advanced allocation allowing a job to be run over multiple machines in a homoge-
neous way or in a heterogeneous way resulting in better overall utilisation and better time.
Moab supports all major scheduling systems and even optionally relies on Globus Toolkit
Grid middleware for security and user account management purposes. It manages the
resources on any system where Moab Workload Manager (a part of Moab Cluster Suite)
is installed. Moab Workload Manager is a policy engine that allows sites to control the
allocation of available resources to jobs. The meta-scheduler supports fine-grained Grid
level fairness policies. Using these policies, the system manager may configure com-
plex throttling rules, fairshare, a hierarchical prioritisation, and cooperation with alloca-
tion managers. Moab also has support for advanced reservations. This feature enables
scheduling techniques such as backfilling, deadline based scheduling, QoS support and
Grid scheduling. One of the most interesting features going to be added in Moab is sup-
port for resource selection based on utility function where job completion time, resource
cost, and other parameters are taken into account. These features allow easy transition of
Moab meta-scheduler to market-oriented Grid.

2.5. SURVEY OF GRID RESOURCE MANAGEMENT SYSTEMS 39

N
am

e
A

llo
ca

tio
n

M
ec

ha
-

ni
sm

Sc
he

du
lin

g
Ty

pe
Sc

he
du

lin
g

O
bj

ec
tiv

e
A

rc
hi

te
ct

ur
e

A
pp

lic
at

io
n

Ty
pe

A
dv

an
ce

R
es

er
va

-
tio

n
G

ri
d

M
id

dl
ew

ar
e

C
SF

R
ou

nd
-R

ob
in

an
d

R
es

er
va

tio
n-

ba
se

d
O

nl
in

e
N

A
C

en
tr

al
is

ed
Ta

sk
M

od
el

Y
es

L
SF

,
O

pe
n

PB
S,

SG
E

,G
lo

bu
s

C
C

S
FC

FS
O

nl
in

e/
In

te
ra

ct
iv

e

M
in

im
is

e
R

es
po

ns
e

Ti
m

e
D

ec
en

tr
al

is
ed

Pa
ra

lle
l

A
pp

lic
a-

tio
n

Y
es

N
A

G
ri

dW
ay

G
re

ed
y/

ad
ap

tiv
e

sc
he

du
lin

g
O

nl
in

e
M

in
im

is
e

R
es

po
ns

e
Ti

m
e

C
en

tr
al

is
ed

Pa
ra

lle
la

pp
lic

at
io

n
an

d
Pa

ra
m

et
ri

c
Sw

ee
p

N
o

G
lo

bu
s

M
ao

b
(S

ilv
er

)
Fa

ir
sh

ar
e

an
d

Jo
b

pr
i-

or
iti

sa
tio

n
O

nl
in

e

L
oa

d
ba

l-
an

ci
ng

an
d

R
es

po
ns

e
tim

e
m

in
-

im
is

at
io

n

C
en

tr
al

is
ed

Ta
sk

M
od

el
Y

es
G

lo
bu

s,
M

au
i

Sc
he

du
le

r

C
on

do
r/

G
M

at
ch

m
ak

in
g

O
nl

in
e

N
A

C
en

tr
al

is
ed

N
ot

Sp
ec

ifi
ed

N
o

G
lo

bu
s,

U
ni

co
re

,
N

or
du

G
ri

d
G

ru
be

r/
D

i-G
ru

be
r

FC
FS

O
nl

in
e

N
ot

Sp
ec

i-
fie

d
D

ec
en

tr
al

is
ed

Ta
sk

M
od

el
Y

es
G

lo
bu

s

eN
an

os

Jo
b

Se
le

ct
io

n
po

lic
ie

s
ba

se
d

on
ar

riv
al

tim
e

an
d

de
ad

lin
e;

R
es

ou
rc

e
Se

le
ct

io
n

ba
se

d
on

E
ST

B
at

ch
/

Pe
ri

-
od

ic

M
in

im
is

e
R

es
po

ns
e

tim
e

C
en

tr
al

is
ed

Ta
sk

M
od

el
N

o
G

lo
bu

s

A
PS

T
D

iv
is

ib
le

L
oa

d
Sc

he
du

lin
g-

ba
se

d
al

go
ri

th
m

s

Si
ng

le
ap

pl
ic

at
io

n

O
pt

im
is

e
R

es
po

ns
e

tim
e

C
en

tr
al

is
ed

Pa
ra

m
et

ri
c-

Sw
ee

p
Y

es
/N

o
G

lo
bu

s

Ta
bl

e
2.

2:
Sy

st
em

-O
ri

en
te

d
Sc

he
du

le
rs

40 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

Condor-G

Condor-G [68] is a fault tolerant job submission system that can access various computing
resources which employs softwares from Globus and Condor [108] to allocate resources
to users in multiple domains. Condor-G is not a real broker but a job manager, thus it
does not support scheduling policies but it provides framework to implement scheduling
architecture about it. Condor-G can cooperate with the following middleware: Globus
Toolkit (2.4.x - 4.0.x), Unicore and NorduGrid, and it can submit jobs to Condor, PBS
and Grid Engine (SGE / N1GE) scheduling systems. Condor’s Classified Advertisement
language (ClassAd) MatchMaking tool allows users to specify which resource to allocate.
The mechanism allows both jobs and machines to describe attributes about themselves,
their requirements and preferences, and matches result in a logical-to physical binding.
The GlideIn mechanism is also provided in Condor-G that starts a daemon processes
which can advertise resource availability which is used by Condor-G to match locally
queued jobs to resources advertised. The command-line interface is provided to perform
basic job management such as submitting a job, indicating executable input and output
files and arguments, querying a job status or cancelling a job. The most striking capability
of Condor-G is its failure management which can deal with crashes at various levels.

Gruber/DI-Gruber

To avoid bottleneck of a central broker, DI-Gruber [49] is implemented as a completely
distributed resource broker. It has been developed as an extension of the SLA based
GRUBER broker deployed on the Open Science Grid.

The Gruber system [48] consists of four main components. The engine implements
several algorithms necessary for determining optimised resource assignments. The site
monitor acts as a data provider that publishes the status of Grid resources. The site selector
provides the information about sites which is used for selecting a resource provider for
execution of new tasks. It communicates with the engine to select the resource provider.
The queue manager resides on submitting hosts, deciding which jobs can be executed at
what time. The Gruber can be utilised as the queue manager that controls the start time of
jobs and enforces Virtual Organisation (VO) policies, or as a site recommender when the
queue manager is not available.

eNanos Resource Broker

eNANOS [134] is a general purpose OGSI-compliant resource broker developed by the
Barcelona Supercomputing Center. It abstracts Grid resources and provides an API-based
model to access the Grid. The eNanos Grid resource broker is implemented on top of
Globus Toolkit (GT) and supports both GT2 and GT3. It focuses on resource discov-

2.6. DISCUSSION AND GAP ANALYSIS 41

ery and management, failure handling, and dynamic policy management for job schedul-
ing and resource selection. The eNanos Grid resource broker provides dynamic policy
management and multi-criteria user requirements which are described in an XML docu-
ment. These multi-criteria descriptions are used for resource filtering and ranking. The
job scheduling in eNanos broker is divided into three phases, first is to select job to be
schedule, second to select resource for selected job, and finally using meta-policy which
consists of selection of the best job and the best resource. For job scheduling, several po-
lices are implemented such as FIFOjobPolicy (First In First Out), REALTIMEjobPolicy
(minimises REALTIME=deadline time-estimated time of job finalisation), EDFjobPol-
icy (Earliest Deadline First). Similarly for resource selection RANKresPolicy (resource
selection based in the greatest rank obtained from the resource filtering process), ESTre-
sPolicy (Earliest Starting Time, based in the estimated waiting time for a job in a local
queue). Jobs are queued up in the local system, and periodically scheduled by the resource
broker.

AppLeS Parameter Sweep Template (APST)

APST [11] is an application level scheduler that provides an environment for schedul-
ing and deploying large-scale parameter sweep applications (PSAs) on Grid platforms.
APST supports scheduling and job submission on different Grid middleware and sched-
ulers that take into account PSAs with data requirements. The APST scheduler allocates
resources based on several parameters including predictions of resource performance, ex-
pected network bandwidths and historical data. The scheduler takes help of tools such as
DataManger and ComputeManager to deploy and monitor data transfers and computation
respectively which in turn get information from sources such as Network Weather Service
(NWS) [170] and the Globus Monitoring and Discovery Service (MDS) [95]. AppLeS
interacts directly with resource managers, performs all application management tasks, in-
cluding, e.g., file staging, and can enact collations of applications. APST is compatible
with different low-level Grid middleware through the use of Actuators and also allows for
different scheduling algorithms to be implemented.

2.6 Discussion and Gap analysis

After understanding the basic features of various market-oriented and system-oriented
schedulers, based on presented taxonomy and requirements of utility Grids, we can iden-
tify several outstanding issues that are yet to be explored to adopt a Grid for creating a
utility computing environment.

42 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

2.6.1 Scheduling Mechanisms

The market oriented scheduling mechanisms vary based on a market model used for trad-
ing resources. For example, if auction is the main market model then strategies for bidding
and auction selection are required to maximise the chances of winning the auction. While
in a commodity model, aggregation of resources from different provider is required to
maximise user’s utility. The challenges which are needed to be tackled more deeply can
be categorised as following:

Support for multiple QoS parameters

In utility Grids, other than traditional QoS requirements of users such as response time,
additional QoS issues are needed to be addressed. For example, for HPC application, one
has to minimise the execution time, thus, the resource capability and availability becomes
essential which may be contradictory to the budget constraint. Many factors, such as
deadline, resource reliability and security, need to be considered with monetary cost while
making a scheduling decision on utility Grids. Similarly, the resource management system
should support QoS based scheduling and monitoring to deliver the quality service.

Support for different application type

The current market-oriented scheduling mechanisms mainly support simpler applications/
job models such as parameter-sweep. But, in reality, more advanced job models that
comprise parallel job processing type and multiple-task data intensive applications, such
as message-passing and workflow applications are also required by users. Thus, advanced
algorithms, which require concurrent negotiation with multiple resource providers, are
needed to be designed.

Support for market-oriented meta-scheduling mechanisms

Currently, most of the scheduling approaches in utility Grids are studied from an auction
perspective [143] (Schnizler et al., 2008). However, auctions based scheduling may not be
always suitable, particularly when users want immediate access to resources or they are
part of the same community. As an example of a user community, we consider the finan-
cial institution Morgan Stanley that has various branches across the world. Each branch
has computational needs and QoS (Quality of Service) constraints that can be satisfied by
Grid resources. In this scenario, it is more appealing for the company to schedule various
applications in a coordinated manner. Furthermore, another goal is to minimise the cost
of using resources to all users across the community. Thus, mechanisms are required for
user selection, and then resource allocation for utility maximisation across all users. To

2.6. DISCUSSION AND GAP ANALYSIS 43

tackle the problem of coordination and utility maximisation among concurrent users, this
thesis proposes market-oriented meta-scheduling mechanisms in the three scenarios.

2.6.2 Market-Oriented Systems

In the previous sections, we discussed major systems which support market based mech-
anisms to buy and sell resources, and execute applications. Some of the most important
outstanding issues from user, provider and market exchange perspective are presented as
follows:

User Level Middleware

User level Middleware such as Gridbus broker [163] and GridWay [85] are designed only
to participate in commodity market model. Moreover, they are not designed to trade in
the market exchange for leasing resources. Thus, this infrastructure support is needed to
provide flexibility to user for trading in any market. Moreover, automatic bidding support
is required to participate in auctions used by systems such as Tycoon [104].

Market Exchange

As discussed previously, users and providers can also start negotiation using market ex-
change’s services. The market exchange services are needed to match multiple users
to multiple providers. The market exchange systems such as Catnet [54], Bellagio [9],
GridEcon [4] and SORMA [121]have restrictive price setting and negotiation policies. In
real marketplaces, the choice of negotiation and pricing protocols are decided by partici-
pants in the system. This flexibility is critical because the choice of negotiation protocol
(auction, commodity market, and one-to-one) and pricing (fixed, variable) can affect the
participants utility enormously depending on the current demand and supply.

As the number of consumers and providers grows scalability of the market exchange
will become an issue. Thus, some of the components such as job submission and mon-
itoring, which are already well supported by user brokers and meta-schedulers, can be
delegated to them. It makes the system more decentralised in the sense that, market ex-
change mainly act as the middleman for matching users demand to providers supply, and
other responsibilities during job submission and execution will be delegated to user and
provider’s brokers (or RMSs).

A reputation system would also compliment the market exchanges by removing the
unreliable and malicious users from the market. In addition to that, marketplaces are
needed to be flexible enough to allow the participants to use market protocols of their
choice. This feature will require co-existence of multiple negotiations between consumers
and providers. This thesis proposes a market exchange architecture to overcome some of

44 Chapter 2. TAXONOMY OF MARKET-ORIENTED SCHEDULING MECHANISMS

the short-comings of existing systems by allowing co-existence of multiple negotiation of
different types.

Core Middleware (i.e., Resource Level Middleware)

Similar to the user level middleware, the existing resource middleware are needed to be
extended to participate in market exchange. In addition, these systems support simple job
models, and thus more advanced job models such as workflows need to be considered. In
addition to that, SLA monitoring is required to ensure that user’s QoS satisfaction.

2.7 Summary

In this chapter, a taxonomy and survey of market-based resource allocation approaches
and systems are presented. This chapter also provides an overview of the key requirements
and components which are needed to be added in the existing Grid middleware in order
to support the utility computing. The taxonomy categorises the market-based resource
allocation approaches from five different angles: (i) allocation decisions (ii) mechanism’s
objective (iii) market model (iv) application model (v) participant focus. This taxonomy
is then used to classify various Grid middleware, which helps to examine current state-of-
the-art in utility Grids, thus identifying gaps which are needed to be filled in.

In the utility Grid, several projects are working to solve issues from both user and
provider perspectives. The rapid emergence of utility computing infrastructures such as
Amazon’s Elastic Cloud, combined with industrial and academic High Performance Com-
puting (HPC) demand, has increased the development of open marketplaces. However,
significant work is required to fully benefit from the capabilities of utility Grids. Specif-
ically, the need for coordination between different participants while maximising their
utilities has not been addressed. The lack of coordination can lead to underutilisation of
resources and starvation of low income users. Thus, market-based meta-scheduling mech-
anisms are required to tackle such challenges, particularly in situations where a schedul-
ing decision can affect more than just the immediate users and providers. In the following
chapters, these issues are addressed in different contexts by proposing “Meta-Broker” ar-
chitecture which is a market-oriented meta-scheduler. This meta-broker service can be
part of a market exchange and interact with user and resource brokers (middleware).

Chapter 3

Market-Oriented Meta-Scheduler
Architecture

This chapter presents the architecture of our proposed market-oriented meta-scheduler
called “Meta-Broker”. First, this chapter motivates the need of such an entity in the util-
ity Grid, and then it discusses the architectural components of the meta-broker. It also
presents the high level description of the meta-broker’s scheduling protocol, which is con-
sidered in this thesis. Finally, to evaluate the advantages of our meta-broker, we compared
it with personalised user brokers through a simulation study.

3.1 Motivation

One of the limitations of personalised user brokers for utility Grids, such as Nimrod/G [1]
and Gridbus broker [163], is that they can generate schedules which are conflicting with
other brokers. Due to the lack of information about other users, each user brokers may
end up contending for the same resource. This contention can cause unnecessary delay in
the job submissions. To address this problem, we proposed “Meta-Broker” as a middle
entity between users and resource providers to enable the coordination and scheduling
of applications with conflicting QoS requirements. The meta-broker can simultaneously
maximise the utility of each participant while reconciling their QoS requirements. The
utility maximisation and reduction in delays, due to the contention for resources, are the
main incentive for users to utilise services of the meta-broker.

3.2 Meta-Broker Architecture

The meta-broker acts as a market-oriented meta-scheduler which matches multiple appli-
cations of users with multiple resource sites in a Grid. The architecture of the meta-broker

45

46 Chapter 3. MARKET-ORIENTED META-SCHEDULER ARCHITECTURE

is hybrid in nature i.e. in centralised manner; it allocates the resources to user’s applica-
tions, while in decentralised manner; it delegates the management of job submission,
monitoring and execution to the individual user brokers. The idea behind this is to keep
the Grid users and providers, independent of the meta-broker which acts as a matchmaker
between them. This architecture provides local autonomy, no centralised control for mon-
itoring and execution of jobs, and distributed ownership to all Grid users and resource
owners. More details on the architecture and implementation of the meta-broker within
“Mandi” market exchange will be discussed in Chapter 8.

3.2.1 Architectural Components

The high-level architectural components of the meta-broker are shown in Figure 3.1.
Users submit their applications for scheduling and execution with QoS requirements us-
ing personalised brokers such as Gridbus broker [163]. The meta-broker acts as a match-
maker or clearinghouse between user brokers and local schedulers at various resource
sites under different administrative domains.

Resource

Catalogue

Meta-Broker

Mandi

Market Exchange Job Queuing

Service

User User

Broker 1

UserUser

Broker 2

UserUser

Broker 3

Meta-Broker

Local

(Resource Provider 1)

Local

Scheduler
(Resource Provider 1)

Reservation

Service
Accounting

Service

Local Local

Scheduler
(Resource Provider 2)

Local

Scheduler
(Resource Provider 3)

Local

(Resource Provider 4)

Local

Scheduler
(Resource Provider 4)

Figure 3.1: Meta-Broker Architectural Components

Resource Provider

Each resource site (cluster, servers, and supercomputer) can be considered as a provider
of services such as CPU time slots. Each free CPU slot includes two parameters: number
of processors and time for which they are available. All the CPU’s at a resource site are

3.2. META-BROKER ARCHITECTURE 47

considered to be homogenous while across the resource site CPU configurations may vary.
Providers assign CPUs for the exclusive use of the meta-broker through advanced reserva-
tion, and supply information about the availability of CPUs and usage cost per second at
regular intervals. The economic system considered here is co-operative in nature, that is,
the participants trust and benefit each other by co-operating with the meta-broker. There-
fore, the possibility of providers supplying wrong or malicious information is discounted.
It is assumed that the service price does not change during the scheduling of applications.
The scheduling of applications within a resource site is managed by a local scheduler. To
reduce fragmentation in resource allocation, the local scheduler at a resource site can use
backfilling policies. This can help in maximisation of the resource utilisation. The main
functionalities of a local scheduler deployed at a resource site are the following:

• Registration with the meta-broker to participate in the Grid network.

• Update the information regarding the CPU configurations, pricing details, and time
slots at a regular interval of time.

• Receive schedule information from the meta-broker.

• Receive resource claims from user brokers and schedule their applications in the
agreed time slot.

User Brokers

Using personalised brokers, users submit their application requirements to the meta-
broker for resource allocation. Users require their applications to be executed in the most
economic and efficient manner. The objective of a user is to have their application, com-
pleted by a deadline. It is assumed that deadlines are hard, i.e. a user will benefit only
if his/her application is executed by its deadline. Users also provide initial valuations of
their applications in terms of budget to the meta-broker. These valuations can be based on
the importance of an application to a user or maximum amount the user is willing to pay.
The requestor/user broker has following functions:

• User registration with the meta-broker to get resources from the Grid network.

• Resource requests submission and management of the execution as per schedule
given by the meta-broker.

• Payment for the resources used for execution.

48 Chapter 3. MARKET-ORIENTED META-SCHEDULER ARCHITECTURE

Application Model Applications considered in this thesis are compute-intensive, and
thus, the cost of input and output data transfer is neglected. An application has a fixed
number of CPU requirements. We considered the two types of application models:

• Bag-of-Task model with multiple independent tasks: Any task of this application
can be scheduled on any resource site (Figure 3.2). The execution time of all the
tasks is assumed to be same.

Figure 3.2: Bag-of-Task Application Scheduling

• The parallel application model with multiple communicating processes: The
application needs to be scheduled within a single resource site in a Grid and all
processes need to start at the same time (Figure 3.3). The reason for such a require-
ment is that the performance of these applications may get severely affected when
executed across resource sites with different configurations.

Figure 3.3: Parallel Application Scheduling

To facilitate the comparison of various meta-scheduling algorithms described in this the-
sis, the estimated execution time of an application is assumed to be known at the time
of submission [58]. This estimation can be derived based on user-supplied information,

3.2. META-BROKER ARCHITECTURE 49

experimental data, application profiling or benchmarking, and other techniques. Existing
performance prediction techniques (based on analytical modelling [124], empirical [40]
and historical data [150][89][141]) can also be applied to estimate the execution time of
applications. However, in reality, it is not always possible to estimate the execution time
of an application accurately. But, in utility Grids where users pay according to the actual
resource usage, a user will have to pay more than expected if the execution time of his
application has been under-estimated. Thus, a user must still be given the privilege of
whether to accept or change any automatically derived estimate before request submis-
sion.

Meta-Broker

The meta-broker coordinates the scheduling of user applications on the resources from
multiple Grid sites under different administrative domains. It obtains information from
any of the registered users and resource providers about their requirements and objectives,
and thus takes scheduling decisions.

In addition to provide a common entry point for the registered users to schedule their
applications, the meta-broker coordinates competing users while maximising the utility
of all the participants. Each resource provider has a local control and ownership of their
resources through a local scheduler. The meta-broker does not have control over the set
of applications already scheduled to a local scheduler (also referred to as the resource
management system). The meta-broker controls and manages the resource allocation de-
cisions whereas job execution and monitoring are managed by the local scheduler.

The meta-broker schedules the applications in a batch mode at the end of a Schedule
Interval (SI). At the end of a SI, it calculates the best schedule for all user applications
after negotiating available time-slots with the resource providers. The objective of the
meta-broker is to schedule all user applications such that their utility is maximised. After
allocation of resources to user applications, the submission and execution on the allocated
time-slots can be initiated by users [17]. The main functionalities of the meta-broker are
the following:

• User and Resource Provider Registration: This creates the certificates and also
stores the credentials.

• Collection of all the resource information from the providers.

• Collection of all the resource requests (demand) from users, i.e., broker.

• Scheduling of multiple applications on multiple heterogeneous resource sites.

• Announcement of the scheduling decisions to providers, i.e. local schedulers, and
user brokers.

50 Chapter 3. MARKET-ORIENTED META-SCHEDULER ARCHITECTURE

3.3 Resource Allocation by the Meta-Broker

This section illustrates how the meta-broker allocates the resources to users. Figure 3.4
shows the interaction of the meta-broker with the users and resource providers. Each user
and resource provider register with the meta-broker. The registration process yields the
generation of security keys that are used for negotiation and contract finalisation. The
providers periodically advertise to the meta-broker the information about available re-
sources in the form of time-slots. The resource information consists of the number of
CPUs available for usage, corresponding load, memory, operating system, Grid middle-
ware used, Million of Instructions per Second (MIPS) of each CPU, and the cost per unit
CPU per second. Note that the resource information is dynamic, and the provider can
vary any or all of the parameters at any time based on either their local requirements, or
based on economy models such as supply and demand. Thus, the meta-broker updates
periodically the information about the provider’s resources. The users submit their re-
source requests along with their QoS demands to the meta-broker. The QoS demands
consist of budget, deadline, Grid middleware, and preferred/authorised list of resources
that the meta-broker should look for, if any. Since the meta-broker itself does not perform
the job submission and execution, the authentication and credentials are kept outside the
meta-broker’s prerogative, and hence, they are sent by resource provider to users after
finalisation of schedules by the meta-broker.

The meta-broker runs the scheduling algorithm at periodic intervals so as to satisfy
both the users and resources objectives. After matching applications to resources, the
meta-broker reserves the resources by contacting each resource provider and issue a Ticket
for that. A ‘Ticket’ contains the execution cost with the reservation information that helps
the user broker to schedule an application on the reserved resources.

3.4 Meta-Broker’s Internal Control Flow

The scheduling of user applications on multiple resource sites is enabled through inter-
action of the meta-broker with other components of market exchange as shown in Fig-
ure 3.1. This section presents the flow of interaction between each component during
the meta-scheduling of user applications. The Meta-Broker is the key component for en-
abling coordinated and efficient resource allocation. Its interaction with other components
involves following steps:

1. The information about available resources are stored in the Resource Catalogue.

2. The users’ resource requests with QoS requirements are queued using Queuing Ser-
vice.

3.5. COMPARISON BETWEEN PERSONALISED AND META-BROKER 51

`

Users Local Scheduler

Meta-Broker

Resource Provider

2. Resource request

from users

6. Issue a Ticket to access

matched resource (time slot)

1. Advertisement of

available resources and

their configuration with

execution cost.

5. Resource

reservation

Information

3. Match-making of

applications to resources

4. Request to

reserve the time-slot

8. Scheduling of

job for matched

time slot

7. Transfer the application

for execution and Ticket

Figure 3.4: Meta-Broker Protocol

3. The Meta-Broker periodically gets all the unmatched resource requests from the
Queuing Service.

4. The Meta-Broker makes decisions of allocating resource based on the users’ QoS
requirements and available resources in the Resource Catalogue.

5. The Meta-Broker passes all the scheduling/matching decisions to the Reservation
Service where a Ticket is issued for each reservation.

6. The Meta-Broker passes these Tickets to the respective users.

7. The Meta-Broker then updates the account of all the participants using Accounting
Service.

3.5 Comparison between Personalised and Meta-Broker

In this section, we compare our proposed meta-broker with the completely decentralised
system, where each user has his/her personalised broker for scheduling on utility Grids. To
study their performance, we used the greedy-based scheduling policy on both the systems,
to minimise the user spending for application execution. In the greedy-based scheduling

52 Chapter 3. MARKET-ORIENTED META-SCHEDULER ARCHITECTURE

policy, each of the brokers tries to schedule an application on a resource provider with the
lowest price.

We simulated the utility Grid with heterogeneous resources having different MIPS
[80] ratings and each resource site having different number of CPUs in the range of 4 to
12 with average number of CPUs as 8. A utility Grid having resource sites in the range of
25 to 200 is generated. The usage cost per second of each resource is varied (using Gaus-
sian distribution) between 4G$-5G$ (G$ means Grid dollar) with average cost of 4.5G$.
Execution time in the simulator setup for the several hundred runs restricts us to model
50 jobs per run. Thus, the meta-broker schedules the jobs (which consist of several tasks,
each require one CPU to run) submitted by 50 concurrent users with schedule interval of
50 seconds. The jobs are also simulated with varying the QoS requirements. Jobs with an
average number of 5 tasks, and having 10-50% variations in the number of tasks (using
Gaussian distribution) are considered, and all the jobs are submitted within 20 seconds of
the simulation start time. Average estimated run time for the jobs is also taken to be 400
seconds and varied by 20% using Gaussian distribution. All the jobs are given relaxed
budget constraints (i.e., twice the cost of average job execution time). The simulations are
performed for different deadline scenarios as listed below:

• Experiment-1: Tight deadline (estimated time+(50 seconds with 20% variation)).

• Experiment-2: Medium deadline (estimated time+(250 seconds with 20% varia-
tion)).

• Experiment-3: Relaxed deadline (estimated time+(500 seconds with 20% varia-
tion)).

45

Tight Deadline

40

45

30

35

N
u

m
b

e
r
 o

f
Jo

b
s

20

25

30

N
u

m
b

e
r
 o

f
Jo

b
s

15

20

N
u

m
b

e
r
 o

f
Jo

b
s

5

10N
u

m
b

e
r
 o

f
Jo

b
s

0

5

2 5 10 25 50 100 150 2002 5 10 25 50 100 150 200

Number of Resources
Greedy-based Meta-Broker Personalised BrokerGreedy-based Meta-Broker Personalised Broker

(a)

0.6

Tight Deadline

0.5

0.6

0.4

0.5

U
se

rs
 S

p
e

n
d

in
g

0.3

0.4

U
se

rs
 S

p
e

n
d

in
g

0.2

0.3

U
se

rs
 S

p
e

n
d

in
g

0.1

U
se

rs
 S

p
e

n
d

in
g

0

2 5 10 25 50 100 150 2002 5 10 25 50 100 150 200

Number of Resources
Greedy-based Meta-Broker Personalised BrokerGreedy-based Meta-Broker Personalised Broker

(b)

Figure 3.5: Effect of Tight Deadline on Users

3.6. PERFORMANCE RESULTS 53

3.6 Performance Results

60

Medium Deadline

50

60

40

50

N
u

m
b

e
r
 o

f
Jo

b
s

30

40

N
u

m
b

e
r
 o

f
Jo

b
s

20

30

N
u

m
b

e
r
 o

f
Jo

b
s

10

N
u

m
b

e
r
 o

f
Jo

b
s

0

2 5 10 25 50 100 150 2002 5 10 25 50 100 150 200

Number of Resources

Greedy-based Meta-Broker Personalised BrokerGreedy-based Meta-Broker Personalised Broker

(a)

0.3

0.4

0.5

0.6

0.7

U
se

rs
 S

p
e

n
d

in
g

Medium Deadline

0

0.1

0.2

0.3

2 5 10 25 50 100 150 200

U
se

rs
 S

p
e

n
d

in
g

Number of Resources
Greedy-based Meta-Broker Personalised BrokerGreedy-based Meta-Broker Personalised Broker

(b)

Figure 3.6: Effect of Medium Deadline on Users

60

Relaxed Deadline

50

60

40

50

N
u

m
b

e
r
 o

f
Jo

b
s

30

40

N
u

m
b

e
r
 o

f
Jo

b
s

20

30

N
u

m
b

e
r
 o

f
Jo

b
s

10

N
u

m
b

e
r
 o

f
Jo

b
s

0

2 5 10 25 50 100 150 2002 5 10 25 50 100 150 200

Number of Resources

Greedy-based Meta-Broker Personalised BrokerGreedy-based Meta-Broker Personalised Broker

(a)

0.7

Relaxed Deadline

0.6

0.7

0.5

0.6

U
se

rs
 S

p
e

n
d

in
g

0.3

0.4

U
se

rs
 S

p
e

n
d

in
g

0.2

0.3

U
se

rs
 S

p
e

n
d

in
g

0.1

0.2

U
se

rs
 S

p
e

n
d

in
g

0

2 5 10 25 50 100 150 2002 5 10 25 50 100 150 200

Number of Resources
Greedy-based Meta-Broker Personalised BrokerGreedy-based Meta-Broker Personalised Broker

(b)

Figure 3.7: Effect of Relax Deadline on Users

Figure 3.5(a), 3.6(a), and 3.7(a), shows how jobs completed (out of the 50 concurrent
jobs submitted) by the two types of brokers vary with the number of Grid resources. In the
second set of results, i.e., Figure 3.5(b), 3.6(b) and 3.7(b), aggregated revenue earned for
the completed jobs is shown. Figure 3.5(b) clearly indicates that in spite of having more
resources, the personalised broker could not execute all the jobs. For example, when
200 Grid resources were available the personalised broker could only complete 9 jobs
out of the possible 42 jobs (8 jobs had very tight deadline, hence cannot be completed
within the deadline provided), whereas in the case of Greedy-based meta-broker all the
jobs were finished when the nodes available were around 50 or more. Similar trend can
also be noticed in the case of Medium (Figure 3.6) and Relaxed deadline (Figure 3.7).

54 Chapter 3. MARKET-ORIENTED META-SCHEDULER ARCHITECTURE

The reason behind this is the lack of coordination between personalised brokers. Thus,
when a user tries to establish a contract or SLA, the resource owner would select only the
first user and would send a fail SLA for all other users. Failed-SLA jobs are re-submitted
by the personalised broker that would result in the same situation with reduced users
as compared to previous schedule, provided no other user enters the Grid. The process
would be repeated until the job eventually finds a resource where SLA is established.
Meanwhile, if the deadline is over, then the job is automatically thrown out. This is a live
lock situation, where, even if the resources are available the jobs get omitted.

3.7 Summary

This chapter describes the meta-broker architecture and resource allocation model, which
enables the meta-scheduling of multiple user applications on the resources under different
administrative domains. We also evaluates the advantages of our proposed meta-broker ar-
chitecture over personalised user brokers through a simulation study. To achieve the goal
of utility maximisation for Grid participants, various market-oriented meta-scheduling
mechanisms in the three scenarios are designed and presented in Chapter 4 to 7.

Chapter 4

Meta-Scheduling to Minimise User
Spending

This chapter describes the market-oriented meta-scheduling algorithms to reduce users’
spending. The user applications are constrained by QoS parameters such as deadline and
budget. To investigate the challenges in this meta-scheduling problem, we present a Linear
Programming/Integer Programming (LP/IP)-based analytical model of meta-scheduling
of applications with deadline and budget constraints. The LP model is then used to design
a Genetic Algorithm (GA), which minimises the combined cost of all users participating
in the meta-scheduling. Finally, a simulation-based study is presented to show the effec-
tiveness of the proposed algorithms in minimising the combined spending of all users.

4.1 Problem Definition

As discussed in the previous chapter, users and resource providers interact through the
meta-broker. Grid users submit their applications to the meta-broker with their QoS re-
quirements. The QoS requirements consist of budget, deadline, and number of CPUs re-
quired. Each application consists of independent tasks with each task requiring one CPU.
Grids, such as Grid5000 [28], are generally composed by many resource sites, where
each site consists of homogeneous CPUs. The following two kinds of user applications
are modelled:

1. Multi-Grid node (MGN) applications can split into independent tasks, which can
run on different resources. For example, bag-of-tasks applications.

2. Single-Grid node (SGN) applications that require a complete set of CPUs on the
same resource and fail if all CPUs are not available. For example, synchronous
parallel applications.

55

56 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

The meta-broker gathers the information from resource providers such as CPUs avail-
able, Grid middleware, cost of CPUs per unit time for each user and CPUs capacity (e.g.
Millions of Instruction per Seconds (MIPS) rating). The meta-broker generates a com-
bined schedule based on algorithms discussed in subsequent sections. As the demand for
resources may exceed the supply in the Grid, some applications are placed in the queue
for later assignment when resources are available or freed.

4.1.1 Problem Formulation

The objectives of meta-scheduling in the above environment with m resources and n

applications are as follows:

• Scheduling based on QoS, i.e., budget and deadline.

• Minimise combined cost for all the users by meeting the budget and deadline con-
straints.

• Maximise the total number of users’ application submission.

Let Pi(ni, ci, vi) represents the information that the meta-broker receives from Grid re-
source site i at a given instance T, where ni is the number of free CPUs available, ci is
the cost of using a single CPU per second for application/user j, vi is the MIPS speed
of one of the CPUs, and i ∈ I = 1...m. Let Qj represents the QoS requirement that
the meta-broker receives from user j. Let bj , dj , Mkj and mj be the budget constraint
the user specifies, the deadline constraint for finishing the application, the size of each
task in the application in terms of Millions of Instructions (MI) [80], and the number of
CPUs the user requires for executing the application respectively. Let j ∈ J = 1..n, and
kj ∈ K = 1..mj .

The mathematical model for scheduling of SGN applications is as follows:

c = min

m∑
i=1

n∑
j=1

cixijrijMaxk(Mkj/vi) (4.1)

In Equation 4.1, the variable rij denotes the number of CPUs allotted to application j
on resource i. Note that, in the case of SGN applications, the value of rij would be either
0 or mj (the number of CPUs required by the application j). The variable xij denotes that
whether application j is mapped to resource i or not. (Mkj/vi) refers to the execution
time of task kj on resource i. Equation 4.1 denotes the cost minimisation function that

4.2. PROPOSED ALGORITHMS 57

represents the dollar cost spent by all the users. The constraints are following:

n∑
j=1

rijxij ≤ ni,∀i ∈ I (4.2)

m∑
i=1

rijxij = mj, ∀j ∈ J (4.3)

xij ∈ {0, 1},∀i ∈ I, j ∈ J (4.4)
m∑
i=1

xij = 1, ∀j ∈ J (4.5)∑
rijcijMaxk(Mkj/vi) ≤ bj, ∀j ∈ J (4.6)

Max(Mkj/vi)xij ≤ dj,∀i ∈ I, j ∈ J, k ∈ K (4.7)

ci, xij, rij, bj, and dj ≥ 0, i ∈ I, j ∈ J (4.8)

Equation 4.2 denotes the resources capacity constraints. Equation 4.3 denotes the CPU
requirement of an application i.e.,mj . Equation 4.4 and 4.5 denote the assignment matrix,
which indicates that an application can be assigned to a maximum of one resource. Equa-
tion 4.6 is added for satisfying the budget constraints and Equation 4.7 is added for the
time constraints. Equation 4.1 is solved for minimisation to obtain an optimal cost effi-
cient schedule. All the quantities, i.e., the resource parameters, cost, deadline and budget
should be greater than zero, hence the Equation 4.8. Note that Equation 4.4 and 4.5 make
the problem NP-hard as these constraints make the problem a 0-1 assignment problem,
which is well known to be NP-hard [112]. LP/IP model for scheduling MGN applica-
tions is almost same as for SGN applications. The only difference is that model for MGN
applications will not include constraints 4.4 and 4.5.

4.2 Proposed Algorithms

4.2.1 Linear Programming-based Algorithm for Scheduling MGN
Jobs

As discussed in the previous section, the mathematical model for MGN application schedul-
ing will be converted to an LP/IP model after removing constraints 4.4 and 4.5. LP/IP can
be then easily solved optimally using any standard integer programming algorithms such
as Simplex algorithm. There are many open-source and commercial implementations of
such algorithms. For simulation purposes, we have used the Coin-OR library [138]. The
Coin-OR library is a high quality open-source LP solver, and its main strengths are its
Dual and Primal Simplex algorithms.

58 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

4.2.2 Linear Programming-based Algorithm for Scheduling SGN Jobs

Due to the absence of constraints 4.4 and 4.5, LP/IP solutions obtained in Section 4.2.1
are infeasible for the SGN application scheduling problem. Thus, we need to address the
problem in the two phases: a) approximation of LP/IP solution to a feasible solution b)
search for the optimal solution. For the first phase, we have designed a novel algorithm
Modified MinCost (MMC) to approximate an infeasible LP/IP solution to a feasible so-
lution for the SGN application scheduling problem. For the second phase, we have used
a GA-based heuristic to further optimise the feasible solution. We have chosen GAs for
solving budget and deadline constraint cost minimization problem mainly due to two rea-
sons. First, GAs are more robust than standard heuristics for assignment problem. If good
initial seed and enough computation time is given, then GA most likely approximates a
global optimum, while heuristics in many cases are trapped in a local optimum. Second,
GAs performance is evaluated in many previous studies such as by Golconda et al. [72]
who evaluated performance of five heuristics. It was found in their study that GA pro-
duces the best utility for users in comparison to the heuristics such as Min-Min. Thus,
we have used GA in our second phase. The details about the chosen strategies in each of
these phases are explained in the following sections.

Modified MinCost (MMC) Algorithm

Our MMC algorithm is inspired from ‘Minimum Cost Algorithm’ which is a well-known
method for finding the feasible solution near to the optimal in transport problems. In
the Minimum Cost algorithm, we find the minimum cost resource, assign the maximum
number of applications to that, and reduce the demand and supply. The process is repeated
until all applications are allocated.

In MMC, we take an optimal solution from the LP-based algorithm (discussed in the
previous section), and then, approximate it to obtain a feasible solution for SGN schedul-
ing problem. The solution obtained from this algorithm acts as an initial solution to the
GA.

The pseudo code for MMC is given in Algorithm 4.1, which shows how MMC approx-
imates a LP/IP solution. It takes as an input a list of applications which is a data-structure
containing information regarding, how different tasks of an application are mapped to re-
source providers, and how many CPUs are required by the application. This application
list is generated from the algorithm for scheduling MGN applications. First, MMC algo-
rithm makes a copy of the input, and then sorts application list on the basis of the number
of resources to which applications are mapped (line 1-2). This is done so that we get a
solution as closer as possible to the optimal LP/IP solution.

We handle differently the applications that are mapped only to (a) one resource and
(b) more than one resource. For applications which are mapped only to one resource,

4.2. PROPOSED ALGORITHMS 59

we freeze their mappings. The mappings will not change during the algorithm, and thus
we reduce the total capacity of the resource (line 4, 5, 6). Then, these applications are
added later to the schedule list (line 7). The applications, which were mapped to more
than one resource, will be re-mapped to a resource pi which has the capacity to allocate
the full application j1 and is the most economical (line 9-11). Other applications which
are allocated to this resource will be re-mapped to resource where application j1 was
allocated other than pi, if deadline and budget constraints are satisfied; otherwise they are
allocated to dummy resources (line 15). Other applications, which are not allocated in the
above process, will be mapped to the dummy resource (line 19). These applications are
re-mapped to real resources using a greedy approach.

Algorithm 4.1: ModifiedMinCost (ListJobs)

ListJ← Listapplications.clone()1
sort(ListJ)2
foreach Job j1 in ListJ do3

if numofProviders(j1)=1 then4
changeAvailableCapacity(Provider(j1),j1)5
Goto step 206

end7
else8

P← J1.providerlist.clone()9
sort(P)10
// number of CPU allocated on Provider
foreach provider in P do11

if remainingCapacity(p)>PERequired(j1) then12
AllocateFull(j1,p)13
InterchangeCapacity(p,p.applicationlist[])14
Goto step 2015

end16
end17

end18
addapplication(j1,DummyResProv)19

end20
ScheduleDummyResJob()21
MakeScheduleList(ListJ)22
return ListJ23

Complexity: Complexity of MMC algorithm for m resources and n applications is
O(nlogn + mn + O(interchangeCapacity()function) ∗ n). We have taken a simple
implementation of interchangeCapacity function using arrays, which has worst-case com-
plexity as O(mn). Thus, the worst-case complexity of the algorithm becomes O(mn2),
which is very high upper bound over the real complexity as average number of applica-
tions per resource will be less than the total number of applications.

60 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

Genetic Algorithm formulation

For the second phase, we have used GAs [34]. GAs provide a robust search technique that
allows a high-quality solution to be derived from a large search space in polynomial time,
by applying the principle of evolution. A GA combines the exploitation of best solutions
from past searches with the exploration of new regions of the solution space. Any solution
in the search space of the problem is represented by an individual (chromosomes). A GA
maintains a population of individuals that evolves over generations. The quality of an
individual in the population is determined by a fitness-function. The fitness value indicates
how good the individual is compared to others in the population. A typical GA consists
of the following steps:

1. Create an initial population consisting of randomly generated solutions.

2. Generate new offspring by applying genetic operators, namely selection, crossover
and mutation, one after the other.

3. Compute the fitness value for each individual in the population.

4. Repeat steps 2 and 3 until the algorithm converges.

Convergence can be a different criterion for different problems, but generally the ab-
sence of changes in the solution for n generations is considered as convergence. The n
could be application specific again; in our implementation n is assigned a value of 10.
The following space encoding and fitness function used in our GA-based heuristic:

• Chromosome Encoding

The solution for the scheduling is an assignment vector S (= s1, s2, ..sj, .., sn),
where each element sj in the vector represents the node/resource site onto which
the application is scheduled. The vector S represents a chromosome (individual) in
the population. Since each application can be assigned to a maximum of one node,
it can be denoted as a simple single dimensional integer vector of size equal to the
number of applications. Note that the node number sj can be the same for multiple
applications, which means that, if there are sufficient resources then the node can
execute multiple applications.

• Fitness Function

The fitness function for our GA is a cost function on the same lines of Equation 4.1
and is denoted as follows:

F (S) =
n∑
j=1

mj∑
k=1

csjij ∗Mk/vsj + αj, where αj = C ∗ pj (4.9)

4.2. PROPOSED ALGORITHMS 61

αj represents the QoS index; pj is the priority of application j (priority sequence
number, i.e., (1..n)); and C is a cost constant chosen such that the fitness value
of a least priority (higher value of pj) application assigned to real node is always
less than a higher priority (lower value of pj) application scheduled to a dummy
node. The use of pj into the fitness function gives preference to the applications
which promise better QoS; and constraints on C ensure that the solution does not
prematurely end in a local minimum.

The computation of QoS index αj is discussed in the next section. If constraints
listed in Equation 4.2, 4.5 and 4.6 are not satisfied then an infeasible cost or very
high cost is assigned to S.

• QoS index

The QoS index is used to assign priority to applications. Generally priority is a
personal or providers preference, but in an ideal market situation the priority is
linked with QoS, i.e., priority is given to the users who are willing to pay more
incentives, and to provide relaxed deadlines. Therefore it can be represented as
follows:

αj = C ∗ pj, where pj = bj/Max(1, dj − tj) (4.10)

In the above equation, C is a constant value, and tj is the execution time of appli-
cation j. The QoS index is a fairness index computed for each application based on
their deadline and budget parameters. Ideally the user pays either the entire budget
or amount proportional to its priority. As we are considering a fair market meta-
broker scheduling, where user pays only for the resources he/she consumed, the
priority index is computed by using following equation.

if(dj > (T + tj)), αj = 1/MAX(a, dj − (T + tj)) else αj = 0 (4.11)

T is the current schedule time. This function assigns priority to the applications/users
according to their finish time and incentive offered. Note that as the time increases,
even the applications with relaxed deadlines gain priority and similarly, if the user
provides a tight deadline then there is a danger of getting eliminated from schedul-
ing very quickly.

Linear Programming-based Genetic Algorithm (LPGA)

LPGA seeds the approximate LP solution from MMC (first phase) with a GA (second
phase) for generating a solution near to the optimal solution. Thus, first we solve a LP/IP
problem without constraints 4.4 and 4.5 and then MMC approximates the solution ob-

62 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

tained in the previous step. Finally, using the feasible solution from MMC, we iterate
various genetic operations to get the best solution.

The pseudo code is given by Algorithm 4.2. As the scheduling is done by the meta-
broker periodically, it waits for the applications from the users (taken as QoS requirement
for the application in line 4) and the resource load from the provider (line 3). Then, we
have to add a dummy application queue with high cost and number of CPUs to make
scheduling problem balanced, i.e. to balance the supply of resources and the demand
by users for resources (line 6-8). After that, we sort the resource list on the basis of
their cost, and the application list on the basis of QoS index (line 11-13). After sorting
the resource list and the application list, the LP/IP solution is generated that is obtained
without considering constraints 4.4 and 4.5 discussed in the Section 4.1.1 (line 15). This
solution is approximated using the MMC algorithm (line 16) which is used to generate
the initial population space for the GA (line 20-23). From the initial population space,
we select the best chromosome values on the basis of the fitness function. These best
chromosomes are then mutated to generate the next generation population (line 24-35).
This operation is repeated until the convergence criterion is reached or the maximum
specified limit of iteration is reached (line 26). Based on the chromosome, the schedule
list is generated and users are notified about mappings (line 39-41).

One limitation to the problem formulation is that if the number of resources requested
is more than the number of resources available for the broker, then the problem results in
an infeasible solution. Therefore, we propose the introduction of dummy resources with
infinite capacity and having more cost than any of the resources available on the Grid.
This enables the algorithm to converge and assign some of the applications to the dummy
resources. The fitness function forces the applications with lower priority to be scheduled
on the dummy nodes rather than the applications with higher priority. Dummy resource
applications are rolled over to the next schedule period, as they cannot be executed.

4.3 Performance Evaluation

4.3.1 Simulation Methodology

Workload Characteristics: The meta-broker schedules the jobs (which consist of sev-
eral tasks, each require one CPU to run) submitted by 50 concurrent users with simulation
interval of 50 seconds. Execution time in the simulator setup for the several hundred runs
restricts us to model 50 jobs with varying QoS requirements per run. The jobs charac-
teristics such as size and runtime are generated using random distributions. We modelled
jobs with average number of 5 tasks, and having 10-50% variations in the number of tasks
(using Gaussian distribution), and all the jobs are submitted within 20 seconds of simula-

4.3. PERFORMANCE EVALUATION 63

Algorithm 4.2: Algorithm 2. LPGA()

Schd List=null1
while current time <next schedule time do2

RecvResourcePublish(Pj)3
// from providers
RecvJobQos(Qj)4
// users

end5
if numJobs>numResource then6

AddDummyNode()7
end8
ListP=ListProviders.clone()9
Sort(ListP)10
// cost of resource
foreach application ‘j’ in Q do11

compute QoS index12
end13
ListJ=sort(Q)14
// descending order of QoS index
LPschedule=GetLPsolution()15
// from Coin Library
ScheduleList= ModifiedMinCost(LPschedule)16
AddinPopulation(POPU LIST, ScheduleList)17
generateNextGenerationPopulation()18

begin19
foreach i in (population size-POPU LIST.size()) do20

cromos=GenerateRandomCromosome(i)21
POPU LIST.add(cromos)22

end23
ComputeFitnessfunction()24
bestCromos=SearchBestCromosome(POPU LIST)25
if termination then26

return bestCromos27
end28
doSelection()29

begin30
SelectBestCrossoverRateCromosome()31
// ‘based on’Roulette wheel selection policy
DoCrossover()32
DoMutation()33
AddtoPopulationList(POPU LIST)34
Goto step 1835

end36
end37
Schd List =GenerateSchedulelist(bestCromos)38
foreach element in Schd List do39

notifyuser();40
end41

64 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

tion start time. The average estimated run time for the jobs is also taken to be 400 seconds
and varied by 20% using Gaussian distribution. Even though runtime of jobs can be var-
ied other than 20%, we believe that similar results can also be expected in other cases.
In addition, the variation in runtime is chosen to analyze the effect of jobs with similar
needs. All the jobs are given relaxed budget constraints (i.e., twice the cost of average job
execution time), so that it is always greater than job execution cost. The job execution
cost can be computed by using resource usage price*execution time*number of CPUs.

Configuration of Resources: We considered the Grid with heterogeneous resources
having different MIPS [80] ratings, and each resource having different number of CPUs in
the range of 4 to 12 with mean number of CPUs as 8. Grid resources are varied from the
range of 25 to 200. Since, there is no information available on how to model usage cost of
a resource, thus, the usage cost per second per CPU unit of each resource is synthetically
generated. The usage cost is varied (using Gaussian distribution) between 4G$-5G$ (G$
means Grid dollar) with mean cost of 4.5G$.

Experimental Scenarios: To comprehensively evaluate the performance of our al-
gorithms, we examine three experimental scenarios for different job deadlines i.e. tight,
medium and relaxed. The deadlines are model based on how much users are willing to
wait to have their job executed. The tight deadline is modelled as very urgent schedul-
ing requirement from users. Thus, the tight deadline is set to job′s execution time +

scheduling interval time (i.e. 50 sec). The user having medium deadline is modelled
considering that he is willing to wait for at least 50% of his/her job’s execution time. Thus,
the medium deadline is set to 150% ofjob′s execution time+scheduling interval time

(i.e. 50 sec). Similarly, the user having relaxed deadline is willing to wait more than the
job’s execution time. Thus, the relaxed deadline is set to more than 200% ofjob′s execution time+

scheduling interval time (i.e. 50 sec). Since, in our experiments, the average execution
time of an job is set to 400 sec, therefore the following experiments with different dead-
lines are performed

• Experiment-1: Tight deadline (estimated time+(50 seconds with 20% variation)).

• Experiment-2: Medium deadline (estimated time+(250 seconds with 20% varia-
tion)).

• Experiment-3: Relaxed deadline (estimated time+(500 seconds with 20% varia-
tion)).

Our performance evaluation examines the relative performance (users spending and
number of jobs completed) of LPGA with respect to three other following meta-scheduling
algorithms for the above type of jobs by varying the number of resources:

1. Greedy-based meta-scheduling algorithm.

4.3. PERFORMANCE EVALUATION 65

2. Heuristic GA algorithm (HGA) with initial seed from Greedy-based algorithm.

3. Modified MinCost algorithm (MMC).

The results for the three different simulation scenarios for both MGN LP-based algorithm
and SGN LP driven Genetic Algorithm (LPGA) are discussed in the next section.

4.3.2 Performance Results

LP/IP-based Meta-Scheduling Algorithm for MGN Jobs

Table 4.1: Total Cost Spent by Users for MGN Jobs

Total
Num-
ber of
Providers

Cost in Medium
Deadline

Total Cost in Re-
laxed Deadline

Total Cost in Tight
Deadline

25 259832.6 194668.9 245280.8
50 261059.7 198771.5 247655
100 260689.1 198462.5 247251.2
150 260653.5 198360.5 247245.4
200 260664 198455.3 247015.7

The comparison results of our proposed algorithm LPGA with other meta-scheduling
algorithms for MGN jobs are compiled in Table 4.1. In tight deadline out of 50 appli-
cations (246 tasks) only 34 applications (170 tasks) were scheduled where as in medium
and relaxed deadlines all the applications i.e. 50 (246 tasks) were scheduled. The rea-
son behind this is the tight deadline, for which many applications missed the deadline
constraints due to simulation interval. Thus, even though the number of resources is in-
creased, the number of scheduled applications remains the same. Moreover, in the case
of relaxed deadline, the users spending is the minimum in comparison to the other dead-
line types because more applications are scheduled to resources with the least cost. Also,
even though it seems that this trend is not followed when we compare tight deadline and
medium deadline scenarios, more number of applications with medium applications are
completed. It is also interesting to note that in the tight deadline scenario, with the in-
crease in the number of resources; the total cost spent by users is also decreasing.

SGN Job Scheduling Algorithms

In this section, the performance of four meta-scheduling algorithms has been compared
using the number of applications scheduled and the users spending. The results are com-
piled and presented in Figure 4.1 to 4.3. In the first set of results, i.e., Figure 4.1(a),
4.2(a) and 4.3(a), aggregated revenue earned for the completed applications are plotted on

66 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

Y-axis. In the first set of results, i.e. Figure 4.1(b), 4.2(b) and 4.3(b), X-axis presents the
Grid resources while Y-axis presents the applications completed (out of the 50 concurrent
applications submitted). Figure 4.1(a), 4.2(a) and 4.3(a) for relaxed, medium and tight
deadlines show that LPGA has outperformed all other meta-scheduling algorithms, thus
minimising the users spending. In case of all the deadline, even though initially, the user
spending in schedule given by HGA and LPGA seems to be same, as number of resources
increases, LPGA decreases the users spending if compared to other algorithms. Since the
cost variations within the Grid resources are not significant (i.e. 4.5 G$ with 0.5G$) only
up to 7-8 % cost benefit was noticed. However, more benefit can be anticipated if the
variations are higher.

800

1000

1200

1400

S
p

e
n

d
in

g

Tight Deadline

0

200

400

600

25 50 100 150 200

U
se

rs
S

p
e

n
d

in
g

Number of Resources
Greedy MMC HGA LPGAGreedy MMC HGA LPGA

(a)

20

30

40
N

u
m

b
e

r
 o

f
Jo

b
s

Tight Deadline

0

10

2 5 10 25 50 100 150 200

N
u

m
b

e
r
 o

f
Jo

b
s

Number of Resourses

Greedy MMC HGA LPGA

Ti

Greedy MMC HGA LPGA

(b)

Figure 4.1: Effect on User Applications with Tight Deadline

Medium Deadline

1400

1600

1200

1400

U
se

r
S

p
e

n
d

in
g

800

1000

U
se

r
S

p
e

n
d

in
g

600

800

U
se

r
S

p
e

n
d

in
g

200

400

U
se

r
S

p
e

n
d

in
g

0

200

25 50 100 150 20025 50 100 150 200

Number of Resources
Greedy MMC HGA LPGAGreedy MMC HGA LPGA

(a)

30

40

50

60

N
u

m
b

e
r
 o

f
Jo

b
s

Medium Deadline

0

10

20

30

2 5 10 25 50 100 150 200

N
u

m
b

e
r
 o

f
Jo

b
s

Number of Resources

Greedy MMC HGA LPGAGreedy MMC HGA LPGA

(b)

Figure 4.2: Effect on User Applications with Medium Deadline

More interesting results can be observed when we compare the performance of MMC
algorithm and the greedy approach. It is clear from the graphs that the cost gain for users

4.3. PERFORMANCE EVALUATION 67

800

1000

1200

1400

1600

U
se

rs
 S

p
e

n
d

in
g

Relaxed Deadline

0

200

400

600

800

25 50 100 150 200

U
se

rs
 S

p
e

n
d

in
g

Number of Resources
Greedy MMC HGA LPGAGreedy MMC HGA LPGA

(a)

30

40

50

60

N
u

m
b

e
r
 o

f
Jo

b
s

Relaxed Deadline

0

10

20

2 5 10 25 50 100 150 200

N
u

m
b

e
r
 o

f
Jo

b
s

Number of Resources

Greedy MMC HGA LPGAGreedy MMC HGA LPGA

(b)

Figure 4.3: Effect on User applications with Relaxed Deadline

600

800

1000

1200

N
u

m
b

e
r
 o

f
G

A
 I
te

r
a

ti
o

n
s

HGA

LPGA

0

200

400

25 50 100 150 200

N
u

m
b

e
r
 o

f
G

A
 I
te

r
a

ti
o

n
s

Number of Resources

LPGA

Number of Resources

Figure 4.4: Comparison of Number of Iterations in HGA and LPGA

in the case of MMC algorithm can be as much as 30% than greedy approach. Thus, the
results demonstrate the users spending for each application decreases when LPGA is used
by the meta-broker for combined scheduling of applications. This is because MMC is
giving the better schedule which is more closer to the optimal than the greedy algorithm.

It can be noticed from Figure 4.1(b), 4.2(b) and 4.3(b) that the curves become smoother
and peak early compared to tighter deadline. This trend is due to the relaxed deadline hav-
ing more applications completed with the same number of resources. As when the dead-
line is more relaxed, the meta-broker tries to complete more and more tasks. With increase

68 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

in the number of resources, all algorithms schedule the same number of user applications.
In case of tight deadline (Figure 4.1(b)), many applications missed the deadlines (very
tight); only 34 applications are completed even though the number of resource increased
to 200.

The next simulation study presents the advantage of LPGA over HGA algorithm. We
have compared the number of iteration taken by both algorithms in case of tight deadline.
The results shown in Figure 4.4 indicate that in case of LPGA, the number of iterations
is reduced with a decrease in user spending. For example, with 50 resources, the number
of iterations performed in HGA is 1000, whereas in LPGA it is less than 700. Even
though the number of iterations in HGA is less than in LPGA with 150 resources, the
revenue generated is smaller which can be observed from Figure 4.1(a). These results also
indicate that in spite of taking more iteration, the HGA could not find the global/better
optimum. The reason for this is the property of GA-based heuristics which are search
algorithms. The convergence and search domain of a GA are highly dependent on the
seeded population. If the seed is in a domain where the sub-optimal solution exists but
the seed is far away from sub-optimal solution, then the GA may require more number
of iteration to reach the sub-optimal solution. Hence, to search a better solution (either
the one found by LPGA implementation or any other better solution) the algorithm would
have required a higher number of iterations. This clearly explains the reason for a higher
number of iterations in the case of LPGA when the number of resources is 150.

4.4 Related Work

Many works have investigated the application of market models and mechanisms to im-
prove scheduling in Grids. The most relevant works in the context of maximising the
user’s utility are [25][169][61]and [46]. The Gridbus broker [25] is a personalised broker
that uses a greedy approach to schedule a parameter sweep application with deadline and
cost constraints. We differ from them in our aim that is to schedule multiple applications
having different QoS requirements to optimise combined cost.

G-commerce [169] is another economic-based study that applies strategies for pricing
Grid resources to facilitate resource trading, and compares auction and commodity mar-
ket models using these pricing models. Feng [61] proposed a deadline cost optimisation
model for scheduling one application with dependent tasks. There are some limitations
of these studies: (1) the algorithms proposed are not designed to accommodate concur-
rent users competing for resources (2) the application models considered are simple i.e.
independent task or parametric sweep application. Similarly, Dogan et al. [46] proposed
a meta-scheduling algorithm considering many concurrent users with single task applica-
tions. On the other hand, in our work, we have modelled both independent and parallel

4.5. SUMMARY 69

applications submitted by concurrent users in a meta-scheduling environment to minimise
the combined cost of all users.

In the Grid environment, where each user has different QoS constraints, the schedul-
ing problem becomes a Generalised Assignment Problem (GAP) that is a well known NP
hard problem. GAP can be solved using GAs [34]. Thus many GA-based heuristics are
proposed in the literature. Wiessman et al. [98] proposed a novel GA-based algorithm that
schedules a divisible data intensive application. Martino et al. [45] presented a GA-based
scheduling algorithm where the goal of super-scheduling was to minimise the release time
of applications. These GA-based heuristics do not consider the QoS constraints of concur-
rent users such as budget and deadline. The viability of an evolutionary algorithm-based
scheduling such as GAs for realistic scientific workloads is demonstrated by systems such
as Mars [13]. Mars is a meta-scheduling framework for scheduling tasks across multiple
resources in a Grid. In a recent study [72] where five heuristics were compared, it was
found that the GA produces the best utility for users in comparison to the heuristics such
as Min-Min. Thus, for comparison, we have used GA seeded with greedy as an algo-
rithm. In this work, we have used LP/IP model to solve the cost minimisation scheduling
problem in Grid. The LP/IP can offer optimal solutions in minimisation/ maximisation
scheduling problems when constraints and objective functions are linear. There are many
works on scheduling in domains other than Grid using LP/IP model. In Feltl et al. [60],
an LP/IP-based initial solution and followed by an intelligent replacement of offspring
based on Martello et al. [112] is proposed. But these models do not consider the deadline
and budgets constraints. As they are developed based on specific domain knowledge, they
cannot be applied directly to Grid scheduling problems, and hence. have been enhanced
accordingly.

4.5 Summary

This chapter models the scheduling of concurrent user applications in utility Grids as an
LP/IP problem. The meta-broker maximises the utility of all the users participating in the
meta-scheduling. We have presented a novel algorithm called MMC that approximates the
LP solution to derive a near-optimal solution for single-grid node application scheduling.
LPGA is designed to decrease the combined user spending and increase the resource
utilisation by seeding the solution from MMC algorithm to the GA. We have also taken
into consideration user QoS constraints, i.e., deadline, number of CPUs and budget. The
results show that LPGA outperforms other meta-scheduling algorithms such as the greedy
approach and HGA by giving the minimum monetary cost.

In this chapter, we have considered only one objective function i.e. cost minimisation,
but in some scenarios, users may want to optimise both response time and execution cost

70 Chapter 4. META-SCHEDULING TO MINIMISE USER SPENDING

of the application. Thus, the user has to choose between multiple conflicting objectives,
which makes the problem of meta-scheduling more challenging. In the next chapter, we
will show how this challenge can be tackled using a “trade-off metric”.

Chapter 5

Meta-Scheduling to Minimise Time and
Cost for Users

This chapter proposes three meta-scheduling heuristics, i.e. MinMin Cost Time Trade-off
(MinCTT), Max-Min Cost Time Trade-off (MaxCTT) and Sufferage Cost Time Trade-off
(SuffCTT), to manage the trade-off between the overall processing time and monetary
cost. Thus, these heuristics aim to minimise simultaneously both the response time and
monetary cost on the basis of a trade-off factor. The trade-off factor indicates the priority
of optimising monetary cost over time. In order to study the effectiveness and efficiency
of the proposed heuristics, this chapter presents an extensive simulation study which anal-
yses the best heuristic to adopt according to different user preferences.

5.1 Motivation

As discussed in the last chapter, users in the utility Grid may have conflicting require-
ments, and thus the coordination is needed with efficient and cost-effective scheduling
algorithms. Other than this, users may also want to minimise application’s response time
not just monetary cost. In this scenario, the aim of user is to execute their applications
most economically in the minimum time. The meta-broker needs to consider multiple fac-
tors such as execution time, monetary cost, and number of CPUs while making a schedul-
ing decision on utility Grids where heterogeneous resources have different capabilities
and pricing. Therefore, we designed three heuristics in order to simultaneously minimise
the response time and monetary cost while meeting users’ QoS requirements.

5.2 Meta-Broker System

As discussed in Chapter 3, resource providers sell the CPU time slots on their resources
(clusters or supercomputers) and the consumers (or users) buy these time slots to run their

71

72 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

applications through the meta-broker. Providers delegate the allocation control of their
CPUs to the meta-broker.

Users require their parallel applications with fixed CPU requirements to be executed
in the most economical and efficient manner. Thus, the users also provide a trade-off
factor to indicate the importance of cost over execution time, otherwise it will be set by
the meta-broker. The trade-off factor can be calculated by a user on the basis of urgency
and budget for executing the application.

The meta-broker maps the user’s application to the delegated resources through ad-
vanced reservation based on the availability of CPUs and usage cost per second at regular
time intervals. The objective of the meta-broker is to schedule all user applications such
that both the total time and cost for applications execution are minimised.

5.3 Meta-Scheduling Algorithms

In general, users have two QoS requirements, i.e., the processing time and cost for exe-
cuting their applications on pay-per-use services [176]. The users normally would like to
get the execution done at the lowest possible monetary cost in minimum time. Thus, we
introduce a trade-off factor that indicates the importance level of the monetary cost for
users in comparison to the response time. In this section, we present our meta-scheduling
heuristics that aim to manage the trade-off between cost and time.

5.3.1 Problem Statement

Let n(t) be the number of user’s resource request during the scheduling cycle which ends
at time t. Every application i requires pi CPUs for execution. Let T (t) be the set of ap-
plications that the meta-broker has to schedule at time t. Let application i arrives at time
arr(i). The estimated time to compute (ETC) values of each application on each compute
resource is assumed to be known based on the user-supplied information, experimental
data, application profiling or benchmarking, or other techniques. We assume that an ap-
plication cannot be executed until all of the required CPUs are available simultaneously.
Let m(t) be the total number of service providers available, and R(t) be the set of service
providers available during the scheduling interval at time t. Each service provider has mi

CPUs to rent. Let cj be the cost of using a CPU on resource j per unit time.

Let s(i, j) and f(i, j) be the submission time and finish time of application i on re-
source j, respectively. The response time of application i is defined as

α(i, j) = f(i, j)− s(i, j)

5.3. META-SCHEDULING ALGORITHMS 73

The average execution time of application i is given by

βi =

∑
jεR(t)ETC(i, j)

m(t)

The cost spent to execute application i on resource j is given by

c(i, j) = cj × pi × ETC(i, j)

The average cost of executing application i is given by

γi =

∑
jεR(t) c(i, j)

m(t)

Given δ is the trade-off factor for all user applications; the trade-off cost metric for ith
user application is given by:

φ(i, j, t) = δ
c(i, j)

γi
+ (1− δ)α(i, j)

βi
(5.1)

Thus, the objective of our scheduling algorithm is to minimise the summation of trade-off
metric for all user applications:

minimise(
∑

∀(iεT (t),t)

min∀j,tφ(i, j, t))

The scheduling problem is to map every application iεT (t) onto a suitable resource
jεR(t) to minimise the total execution time and monetary cost of all user applications.

A lower bound on the overall cost and makespan (or response time) of executing all
applications successfully can be calculated as the minimum cost and makespan when
value of the cost metric (Equation 5.1) is the lowest for all the applications. The value
of the cost metric will be the lowest when (1) response time is minimal i.e. application’s
submission time is equal to its execution start time, and (2) application get scheduled on
the cheapest and fastest resource. Let φ(i, j, arr(i)) is the minimum for application i and
resource j assuming no other application is present.
Mathematically, the lower bound can be described as follows :

Lower bound for Overall Cost =
∑
∀i

costi,j. (5.2)

Lower bound for Overall Makespan = max(max∀i(arr(i) + ETC(i, j)),

+
∑
∀i

ETC(i, j)/m) (5.3)

74 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

It is clear that the above lower bounds may not be achieved by the optimal schedule.

5.3.2 Min-Min Cost Time Trade-off (MinCTT) Heuristics

MinCTT is based on the concept of Min-Min heuristic [110][86][15]. For each user ap-
plication, MinCTT finds a time slot on a resource with the minimum value of cost metric
as defined in Equation 5.1. From these user application/time slot pairs, the pair that gives
the overall minimum is selected; and that application is scheduled onto that time slot of
the resource. This procedure is repeated until all of the user applications have been sched-
uled. The pseudo code for MinCTT is given in Algorithm 5.1. The meta-broker collects
the user application’s QoS requirements and available time slots from resources during
schedule interval (line 1 and 2). MinCTT heuristic, then, selects the resource time slot
for which value of the cost metric is minimum (line 3-8). From the feasible schedule
queue, the heuristic assigns the time-slots to the user application with the minimum cost
metric value (line 12-13). Then, the available time slots list is updated; and the process is
repeated until all applications get the required resource time slot (line 14-16).

Algorithm 5.1: Pseudo code for MinCTT
Input: set of applications (submission time, execution time, CPUs required) and resources

(time slots, number of available CPUs)
Output: Mapping of applications to resources
Collect all user applications until Schedule Interval ends1
Get list of available time slots for all resources2
foreach user application ui do3

foreach each resource rj do4
Find all feasible time slots5

Find time slot TS which minimises cost metric φ(i, j, t) = δ c(i,j)γi
+ (1− δ)α(i,j)βi

6
Insert TS and resource pair in feasible schedule queue S7

end8
(TSi, rj)← element with minimum cost metric value from S9
Insert (ui, (TSi, rj)) pair in a queue K10

end11
(u, (TS, r))← element with minimum cost metric value from K12
Allocate time slot TS on resource r to user application u13
Update the time slots list for resource r14
Remove u from user application list15
Repeat 3− 15 until all applications are allocated16

5.3.3 Max-Min Cost Time Trade-off (MaxCTT Heuristics)

MaxCTT is based on the concept of Min-Max heuristic [110][86][15]. This heuristic
removes fragmentation from the time slot reservations. For each user application, first
MaxCTT finds a time slot on a resource with the minimum value of cost metric as defined
in Equation 5.1. From these user application/time slot pairs, the pair that gives the overall

5.3. META-SCHEDULING ALGORITHMS 75

maximum is selected; and that application is scheduled onto that resource’s time slot. This
procedure is repeated until all of the user applications are scheduled. The pseudo code
to MaxCTT is the same as for MinCTT, except replace “minimum” with “maximum”
in line 12 of Algorithm 5.1. MaxCTT heuristic, then, selects the resource time slot for
which value of the cost metric is minimum (line 3-8). From, the feasible schedule queue,
the heuristic assigns the time-slot to the user application having the maximum cost metric
value (line 12-13). Then, the available time slots list is updated and the process is repeated
until all applications get the required resource time slot (line 14-16).

5.3.4 Sufferage Cost Time Tradeoff (SuffCTT Heuristics)

SuffCTT is based on the concept of Sufferage heuristic [110][116] which assigns highest
priority to the application, which would “suffer” the most if not assigned. For each user
application, first SuffCTT finds the time slot on a resource with minimum sufferage value
which is the difference between its best and second best value of cost metric as defined in
Equation 5.1. From these user application/time slot pairs, the pair that gives the highest
sufferage value is selected; and that application is scheduled onto that time slot of that
resource. This procedure is repeated until all of the user applications have been sched-
uled. The pseudo code for SuffCTT is given by Algorithm 5.2. SuffCTT heuristic, then,
selects for each application, all the feasible time-slots for which value of the cost metric
is minimum (line 3-8). The heuristic calculates the sufferage value for each application
and select the application with the maximum sufferage value (line 9-13). The selected ap-
plication is then scheduled on the resource time slot with the minimum cost metric value
(line 14). Then, the available time slots list is updated and the process is repeated until all
applications get the required resource time slot (line 15-17).

5.3.5 Time Complexity

Let TS(j, t) be the number of time slots initially available at resource j during the schedul-
ing interval at time t. The main operations performed during MinCTT and MaxCTT are
the following:

1. To allocate any resource to an application, the worst number of iteration is to be
performed over each user application and resource i.e. O(n ∗ |R(j)|) times

2. In each iteration (step 5 to 8 in Algorithm 5.1), time slot with minimum execution
time is searched. This is of order of available time slots i.e., O(TS(j, t)).

3. In worst case, the above operations are performed for each application, i.e., n times

76 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

Algorithm 5.2: Psuedo code for SuffCTT
Input: set of applications (submission time, execution time, CPUs required) and resources

(time slots, number of available CPUs)
Output: Mapping of appications to resources
Collect all user applications until Schedule Interval ends1
Get list of available time slots for all resources2
foreach user application ui do3

foreach each resource rj do4
Find all feasible time slots5

Find time slot TS which minimises cost metric φ(i, j, t) = δ c(i,j)γi
+ (1− δ)α(i,j)βi

6
Insert TS and resource pair in feasible schedule queue S7

end8
Calculate the sufferage si value for application ui9
(TSi, rj , si)← element with minimum cost metric value from S10
Insert (ui, (TSi, rj), si) pair in a queue K11

end12
(u, (TS, r), si)← element with maximum sufferage value from K13
Allocate time slot TS on resource r to user application u14
Update the time slots list for resource r15
Remove u from user application list16
Repeat 3− 15 until all applications are allocated17

Therefore, the resultant worst case complexity of the meta-scheduling algorithm is a com-
bination of above operations, i.e., O(n2

∑
jεR(t) TS(j, i, t)). In the case of SuffCTT, the

worst time complexity will be similar as the number of operations in SuffCTT and other
other proposed heuristics are almost same.

5.4 Simulation Setup

User applications are modelled as parallel applications which require all CPUs to be al-
located at the same time and on the same resource. About 1,000 user applications are
generated according to the Lublin workload model [109]. The model specifies the arrival
time, number of CPUs required, and execution time (µ) of application. This model is de-
rived from existing workload traces for rigid jobs and incorporates correlations between
job runtimes, job sizes, and daytime cycles in job inter-arrival times. The workload pa-
rameters values we used for Lublin model are listed in Table 5.1. Since the generated
workload gives execution time on one resource, the ETC matrix is thus generated using
random distributions to simulate the effect of heterogeneous resources. The variation of
the application’s execution time on different resources can be high or low. A high varia-
tion in execution time of the same application is generated using the gamma distribution
method presented by Ali et al. [2]. In the gamma distribution method [2], a mean task
execution time and coefficient of variation (COV) are used to generate ETC matrices. The
mean task execution time of an application is set to µ and a COV value of 0.9 is used.

5.4. SIMULATION SETUP 77

Similarly, the low variation in the execution time is generated using uniform distribution
with mean value of µ and standard deviation of 20 seconds.

Table 5.1: Lublin Workload Model Parameter Values

Workload Parameter Value
jobType BATCH JOBS
Maximum number of CPUs 1000
required by a job (p)

uHi log2(p)
uMed uHi− 2.5
Other parameters as created by Lublin model

Table 5.2: Simulated EDG Testbed Resources.

Site name Number of Single CPU rating Execution price
(Location) CPUs (MIPS) (G$)
RAL (UK) 20 1140 0.0061
Imperial College (UK) 26 1330 0.1799
NorduGrid (Norway) 265 1176 0.0627
NIKHEF (Netherlands) 54 1166 0.0353
Lyon (France) 60 1320 0.1424
Milano (Italy) 135 1000 0.0024
Torina (Italy) 200 1330 1.856
Catania (Italy) 252 1200 0.1267
Padova (Italy) 65 1000 0.0032
Bologna (Italy) 100 1140 0.0069

The computing installation modelled in our simulation is that of a subset of the Eu-
ropean Data Grid (EDG) 1 testbed [83] which contains ten Grid resources spread across
four countries connected via high capacity network links. The configurations assigned to
the resources in the testbed for the simulation are listed in Table 5.2. The configuration
of each resource is decided so that the modelled testbed would reflect the heterogeneity
of platforms and capabilities. All the resources were simulated as clusters of CPUs that
employed easy backfilling policies and allow advance reservation in order to improve re-
sponsiveness. The number of CPUs on each resource are chosen such that the demand
of CPUs by all applications will always be greater than the total free CPUs available on
all the resources. A sample of initial price of using each PE on a Grid resource is given
in Table 5.2. In the real world, pricing of resources are generally controlled by many
economic factors. As our research focus is not on how to price the resources and also for
simplicity, we generated the prices randomly using distributions. The prices of resources
are generated using Weibull Distribution with parameters α = 0.4 & β = 0.8. The pric-

78 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

ing of resource may or may not be related to CPU speed. Thus, minimisation of both
execution time and cost of an application may conflict each other depending on how the
resources are priced. Thus, two types of prices, i.e., consistent and inconsistent prices,
for resources are used in the experiments. The consistent prices of resources means the
prices of resources are inversely proportional to their CPU speed. Thus, the price of the
slowest resource will be the lowest. Otherwise, the pricing of resources will be referred
to as inconsistent. These resources send the availability of time slots to the meta-broker
regularly. The schedule interval of the meta-broker is 50 simulation seconds.

We compare our proposed heuristics (denoted as MinCTT, SuffCTT and MaxCTT)
with a common heuristic which is used in the previous work i.e. cost-based Greedy heuris-
tic (Greedy). This approach is derived from the cost optimisation algorithm in Nimrod-G
[1], which is initially designed for scheduling independent tasks on Grids and thus en-
hanced for parallel applications. The enhanced Greedy heuristic allocate resources to ap-
plications on first-come-first-serve basis. To schedule each application, it first calculates
the cost metrics (Equation 5.1) for all the time slots available on each of the resources
and, then schedules the application to the time slots with the minimum trade-off cost.

As discussed in previous sections, the trade-off factor is used to manage the users
preference for the allocation and the execution cost. The trade-off factor can be decided
by one of the two participants i.e., users or meta-broker. Thus, either each user can submit
to the meta-broker their trade-off factor or the meta-broker can set one trade-off factor for
all applications on behalf of the users.

Hence, the experiments are conducted for the following two cases:

1. Case 1: the trade-off factor is set by the meta-broker.

2. Case 2: the trade-off factor is provided by each user.

with four configurations:

1. High variation in execution time and inconsistent prices of resources (HIUC)

2. High variation in execution time and consistent prices of resources (HICC)

3. Low variation in execution time and inconsistent prices of resources (LOUC)

4. Low variation in execution time and consistent prices of resources (LOCC)

The two metrics used to evaluate the scheduling approaches are overall makespan and
average execution cost. The former indicates the maximum time when all the submitted
applications finish execution, whereas the latter indicates how much it costs to schedule
all the applications on the testbed.

5.5. ANALYSIS OF RESULTS 79

8000

HICC

7000

8000

5000

6000

C
o

st
/A

p
p

li
ca

ti
o

n

4000

5000

C
o

st
/A

p
p

li
ca

ti
o

n

2000

3000

C
o

st
/A

p
p

li
ca

ti
o

n

1000

2000

C
o

st
/A

p
p

li
ca

ti
o

n

0

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(a)

10000

HIUC

8000

9000

10000

7000

8000

C
o

st
/A

p
p

li
ca

ti
o

n

5000

6000

C
o

st
/A

p
p

li
ca

ti
o

n

3000

4000

5000

C
o

st
/A

p
p

li
ca

ti
o

n

1000

2000

3000

C
o

st
/A

p
p

li
ca

ti
o

n

0

1000

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(b)

600

LOCC

500

600

400

500

C
o

st
/A

p
p

li
ca

ti
o

n

300

400

C
o

st
/A

p
p

li
ca

ti
o

n

200

300

C
o

st
/A

p
p

li
ca

ti
o

n

100

C
o

st
/A

p
p

li
ca

ti
o

n

0

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(c)

600

LOUC

500

600

400

500
C

o
st

/A
p

p
li

ca
ti

o
n

300

400

C
o

st
/A

p
p

li
ca

ti
o

n

200

300

C
o

st
/A

p
p

li
ca

ti
o

n

100

C
o

st
/A

p
p

li
ca

ti
o

n

0

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(d)

Figure 5.1: Overall Average Cost of Execution

5.5 Analysis of Results

This section shows the comparison between MaxCTT, Greedy, SuffCTT, and MinCTT
heuristics. This section also shows how the proposed heuristics reduces combined execu-
tion cost and makespan of applications submitted during all scheduling intervals.

5.5.1 CASE 1: Trade-off Factor Set by Meta-broker

The results (with 95% confidence interval bars) for various configurations with varying
trade-off factor by the meta-broker are shown in Figure 5.1 and 5.2. The results presented
are averaged out over ten trials with different resource prices. This section presents the
effect of different trade-off factors on the performance of heuristics. Greedy heuristic
performed worst in minimising the overall execution cost and makespan. For HICC and
HIUC configurations (Figure 5.1(a) and 5.1(b)), Greedy heuristic results in about 15%

more average execution cost than other heuristics. Similarly, for LOCC and LOUC con-

80 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

800

HICC

700

800

500

600

700

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

400

500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

200

300

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

100

200

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(a)

1200

HIUC

1000

1200

800

1000

O
v

e
ra

ll
 M

a
k

e
sp

a
n

600

800

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

400

600

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

200O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

0

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(b)

500

LOCC

400

450

500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

300

350

400

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

250

300

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

150

200

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

50

100

150

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0

50

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(c)

500

LOUC

400

450

500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

350

400

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

250

300

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

150

200

250

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

50

100

150

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0

50

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Trade-off Factor
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(d)

Figure 5.2: Overall Makespan

figuration (Figure 5.1(c) and 5.1(d)), Greedy heuristic also results in about 10% more
execution cost except when “Trade-off factor=0”. The reason for this anomaly is that
“Trade-off factor=0” means users are only looking for the fastest execution time of their
applications, not the cheapest resource. Thus all heuristics try to run the applications on
the fastest resource. For HICC and HIUC configurations (Figure 5.1), MaxCTT, MinCTT
and SuffCTT results in almost similar average execution cost. While in the case of LOCC
and LOUC configurations, MinCTT resulted in the lowest cost.

It can be noted from Figure 5.1 that with the increase in the trade-off factors, the over-
all average execution cost is also decreased. With the increase in the trade-off factor from
0 to 1, the average execution cost fall by about 90%. This is because more applications
are scheduled on the cheaper resources, due to the increase in user’s priority for cost over
time.

Figure 5.2 shows the effect on the overall makespan by the four heuristics in different
configurations. The overall makespan of applications for HICC and HIUC (Figure 5.2(a)
and 5.2(b)) is about 30% higher than for LOCC and LOUC (Figure 5.2(c) and 5.2(d)).

5.5. ANALYSIS OF RESULTS 81

Moreover, for LOCC (Figure 5.2(c)) and LOUC (Figure 5.2(d)), the overall makespan by
all heuristics, except greedy, remained almost the same (about 150–200 sec) regardless of
the change in trade-off factor (0–1). This is because the low variation in execution time
across various resources causes the time factor in the cost metric (as defined in Equation
5.1) to be less effective. This low variation in overall makespan also demonstrates the
effectiveness of our proposed heuristics in managing the time requirement of all users.

For configurations HICC and HIUC (Figure 5.2(a) and 5.2(b)), the overall makespan
increases with the trade-off factor which becomes very significant for Trade-off factor=1.
This increase in the overall makespan is because of running all applications on the cheap-
est resources. Figure 5.2 shows that MinCTT resulted in the lowest overall makespan and
greedy resulted in the highest makespan.

The effect of cost consistency can also be observed when we compare Figure 5.1
and 5.2. The overall makespan is increased on average by about 30–40% from HICC
configuration (Figure 5.2(a)) to HIUC configuration (Figure 5.2(b)). Similar behaviour is
also observed in the case of average execution cost from Figure 5.1(a) and 5.1(b).

5.5.2 CASE 2: Trade-off Factor Set by User

This section discusses the performance of the heuristics in four different configurations of
ETC matrix and resource pricing.

Impact on Makespan and Execution Cost of Users

In Figure 5.3, the normalised average execution cost and overall makespan for all user
applications is compiled in four different configurations with the lower bound. The cost
and makespan by different heuristics is normalised using values by Greedy heuristic.

The Greedy heuristic performed worst by generating the most expensive schedule with
the maximum makespan in almost all four configurations, thus values in Figure 5.3 are less
than one. MaxCTT, MinCTT, and SuffCTT resulted in about 18% cheaper schedule than
Greedy heuristic. The reason for Greedy heuristic performance is that Greedy heuristic
does not consider the effect of other applications in the meta-broker while generating the
schedule for any application. Even though, MinCTT, MaxCTT, and SuffCTT heuristics
give almost same overall cost improvement over Greedy, MinCTT gives the best overall
makespan in almost all the cases. For example, in LOCC configuration (Figure 5.3(b)),
MinCTT improved the overall makespan by 20%.

Moreover, in comparison to the lower bound, our proposed heuristics give the best
performance for LOCC and LOUC configuration. In Figure 5.3, in case of LOCC con-
figuration, the difference between lower bound for overall cost and our heuristics is just
2 − 3%, while for overall makespan it is about 8 − 9%. In case of high variation of

82 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

execution time (i.e. for HICC and HIUC configuration), the difference is large.

0.90.90.9

0.80.8

0.7

0.8

0.70.7

0.6

C
o
st
/A
p
p
li
ca
ti
o
n 0.6

C
o
st
/A
p
p
li
ca
ti
o
n 0.6

C
o
st
/A
p
p
li
ca
ti
o
n

0.5

C
o
st
/A
p
p
li
ca
ti
o
n

0.5

C
o
st
/A
p
p
li
ca
ti
o
n

0.5

C
o
st
/A
p
p
li
ca
ti
o
n

0.4

C
o
st
/A
p
p
li
ca
ti
o
n

0.4

C
o
st
/A
p
p
li
ca
ti
o
n

0.3

C
o
st
/A
p
p
li
ca
ti
o
n

0.3

C
o
st
/A
p
p
li
ca
ti
o
n

0.3

C
o
st
/A
p
p
li
ca
ti
o
n

0.2

C
o
st
/A
p
p
li
ca
ti
o
n

0.2

C
o
st
/A
p
p
li
ca
ti
o
n

0.2

C
o
st
/A
p
p
li
ca
ti
o
n

0.1

C
o
st
/A
p
p
li
ca
ti
o
n

0.1

000

LOCC HICC LOUC HIUCLOCC HICC LOUC HIUC

Configurations
LOCC HICC LOUC HIUC

ConfigurationsConfigurationsConfigurations
MinCTT MaxCTT SuffCTT Lower BoundMinCTT MaxCTT SuffCTT Lower BoundMinCTT MaxCTT SuffCTT Lower Bound

(a) Total Execution Cost of Applications

0.9

1

0.7

0.8

0.9

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0.6

0.7

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0.4

0.5

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0.2

0.3

0.4

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0.1

0.2

O
v

e
ra

ll
 M

a
k

e
sp

a
n

0

LOCC HICC LOUC HIUCLOCC HICC LOUC HIUC

Configurations
MinCTT MaxCTT SuffCTT Lower BoundMinCTT MaxCTT SuffCTT Lower Bound

(b) Total Makespan of Applications

Figure 5.3: Different ETC and Resource Pricing Configurations

Application Distribution on Resources

Figure 5.4 shows how the applications are distributed on various resources by the meta-
scheduling heuristics in four different configurations. This measure is taken to study how
the pricing of resources affects the selection process of the heuristics. In Figure 5.4, it can
be observed that, a maximum number of applications are allocated on Grid sites such as
NorduGrid and Catania in all the configurations i.e. LOUC, HIUC, LOCC and HICC. For
example, in Figure 5.4(b), about 25% applications are scheduled on Catania. This is due
to the fact that NorduGrid and Catania have the maximum number of CPUs thus more
applications can be scheduled which results in lower makespan.

When cost is consistent with the ETC values of application, less variation in execution
time of applications across resources results in the assignment of more applications to the
cheapest resource as the effect of execution time is very low. Thus, it can be noted in
Figure 5.4(a)-5.4(d) that for HICC and LOCC configurations, the number of applications
on Catania has decreased, but has increased on Bologna and NorduGrid.

For LOCC and HICC configurations, we also observe that on the Toriana resources
more applications are scheduled even though it has highest price (Table 5.2) than RAL
resources. This is due to two reasons, first, RAL has only 20 CPUs, thus it can run fewer
applications than Imperial College. Second, even though Imperial College is expensive,
it is the fastest resource thus it decreases in the weight of time factor (α(i, j)) in the cost
metric as defined in Equation 5.1.

From Figure 5.4, the reason for lower total execution cost in case of MaxCTT, MinCTT,
and SuffCTT is also clear. MaxCTT, MinCTT, and SuffCTT have allocated more appli-
cations on cheaper resources than the Greedy heuristics.

5.5. ANALYSIS OF RESULTS 83

The effect of cost consistency is very low when the variation in execution time of an
application is less across different resources. It can be observed in Figure 5.4(a)-5.4(d)
that the distribution of application in LOUC and LOCC configurations is similar. For
example, in Figure 5.4(b) on NorduGrid about 15–17% applications are scheduled in both
LOCC and LOUC configurations. However, in the case of high variation in execution
time of applications across the resources, the effect of cost consistency is quite high.
For example, in Figure 5.4(b), the percentage of applications scheduled by MaxCTT on
Bologna resources is about 2% in HICC configuration; which increases to about 12% in
case of HIUC configuration. A similar pattern of application distribution can be observed
in Figure 5.4(b)–5.4(d). The reason for this behaviour is the trade-off between execution
time and cost. For any application, all the heuristics have to choose a resource which is
not only faster but also cheaper.

Effect of Scheduling Interval

In this experiment, the performance of heuristics is analysed with varying scheduling
interval. We increased the submitted applications to 1500 and number of resources to
15, where number of processors were randomly generated (between 20–300) by uniform
distribution. The results are presented for HICC configuration in Figure 5.5. Other config-
uration results are not presented to save space as they are very similar. Figure 5.5 clearly
shows that Greedy heuristic performed worst with the highest cost and makespan which is
about 25% higher than other heuristics and remained almost constant across all scheduling
intervals. The average cost (Figure 5.5(a)) of all heuristics is unaffected by the changes
in the scheduling interval. The overall makespan (Figure 5.5(b)) changed drastically for
MaxCTT and SuffCTT where it is dropped by 15% and increased by 15% respectively.

Effect of Input and Output Transfer Cost

This experiment is conducted to analyse the effect of input and output data transfer cost
on the performance of heuristics. We have considered data transfer time associated with
each application. Since applications are compute-intensive, the data transfer cost is mod-
elled to be 1/10th of the average execution cost of application. To vary data transfer cost
over time i.e. to simulate changes in available bandwidth with time, we have considered
a bandwidth factor which is submitted by resource provider to the meta-broker in every
scheduling interval. The bandwidth factor is randomly generated (between 0–1) using
uniform distribution. In each scheduling interval, data transfer cost (DTC) of an applica-
tion to execute on any resource r is given by:

DTC(t) =
Intial DTC

bandwidth factor(r, t)

84 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

100%

MinCTT

Bologna

90%

100% Bologna

(Italy)

Padova (Italy)

70%

80% Catania (Italy)

Torina(Italy)

60%

70%
Torina(Italy)

Milano (Italy)

40%

50%

Milano (Italy)

Lyon (France)
c

30%

40%
NIKHEF

(Netherlands)

NorduGrid

10%

20%
NorduGrid

(Norway)

Imperial

College(UK)

0%

10%

LOCC HICC LOUC HIUC

College(UK)

RAL(UK)

LOCC HICC LOUC HIUC

(a) MinCTT Heuristic

100%

MaxCTT

90%

100% Bologna

(Italy)

Padova (Italy)

70%

80%

90% Padova (Italy)

Catania (Italy)

60%

70%
Torina(Italy)

Milano (Italy)

40%

50%
Milano (Italy)

Lyon (France)

c

30%

40%

NIKHEF

(Netherlands)

10%

20%
NorduGrid

(Norway)

Imperial

0%

10%

LOCC HICC LOUC HIUC

Imperial

College(UK)

RAL(UK)

LOCC HICC LOUC HIUC

(b) MaxCTT Heuristic

100%

Greedy

90%

100% Bologna

(Italy)

Padova (Italy)

70%

80%

90% Padova (Italy)

Catania

(Italy)

60%

70% (Italy)

Torina(Italy)

Milano (Italy)

40%

50%
Milano (Italy)

Lyon (France)

30%

40%

NIKHEF

(Netherlands)
NorduGrid

10%

20% NorduGrid

(Norway)
Imperial

0%

10%

LOCC HICC LOUC HIUC

Imperial

College(UK)

RAL(UK)

LOCC HICC LOUC HIUC

(c) Greedy Heuristic

100%

SuffCTT

90%

100% Bologna

(Italy)

Padova

70%

80%

90% Padova

(Italy)

Catania

(Italy)

60%

70%
(Italy)

Torina(Italy)

Milano

40%

50%

Milano

(Italy)

Lyon

(France)

30%

40% (France)

NIKHEF

(Netherlands)

10%

20%

(Netherlands)

NorduGrid

(Norway)

Imperial

0%

10%

LOCC HICC LOUC HIUC

Imperial

College(UK)

RAL(UK)

LOCC HICC LOUC HIUC

(d) SuffCTT Heuristic

Figure 5.4: User Application Distribution on Resources in Different Configurations

The data transfer cost will be added in the total execution cost of the application. Fig-
ure 5.6 shows the average cost and overall makespan in different configurations with DTC.
Clearly Greedy heuristic generates the most expensive schedule in all four configurations.
Even though the makespan seems to be improved by Greedy heuristic for LOCC and
LOUC configurations, due to the trade-off factor, the execution cost by Greedy heuris-
tic is about 10–25% higher than other heuristics. MinCTT resulted in the best overall
makespan almost in all configurations. If we compare results in Figure 5.3 when DTC is
not considered and Figure 5.6 when DTC is considered, it is clear that the average cost
resulted by Greedy is still most expensive, while the overall makespan is improved when
the variation in execution time of application across resources is low.

Effect of Different Job Sample Size

In previous experiments, the number of applications submitted during experiments were
fixed. Here, we vary the number of applications and analysed how average cost and overall

5.5. ANALYSIS OF RESULTS 85

35

40

30

35

C
o
st
/A
p
p
li
ca
ti
o
n

25

30

C
o
st
/A
p
p
li
ca
ti
o
n

15

20

C
o
st
/A
p
p
li
ca
ti
o
n

10

15

C
o
st
/A
p
p
li
ca
ti
o
n

5

10C
o
st
/A
p
p
li
ca
ti
o
n

0

25 50 75 10025 50 75 100

Scheduling Interval
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(a) Total Execution Cost of Applications

950

1000

1050

1100

1150

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

800

850

900

950

25 50 75 100

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

Scheduling Interval

MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(b) Total Makespan of Applications

Figure 5.5: Effect of Scheduling Interval in HICC Configuration

60

50

60

C
o
st
/A
p
p
li
ca
ti
o
n

40

C
o
st
/A
p
p
li
ca
ti
o
n

30

C
o
st
/A
p
p
li
ca
ti
o
n

20

C
o
st
/A
p
p
li
ca
ti
o
n

10

C
o
st
/A
p
p
li
ca
ti
o
n

0

LOCC HICC LOUC HIUCLOCC HICC LOUC HIUC

Configuration
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(a) Total Execution Cost of Applications

200

250

300

350

400

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(S
e

co
n

d
s)

0

50

100

150

LOCC HICC LOUC HIUC

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(S
e

co
n

d
s)

Configuration
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(b) Total Makespan of Applications

Figure 5.6: Effect of DTC on Cost and Time

makespan changes in different configurations. The results are presented in Figure 5.7
and 5.8. We also consider the effect of DTC for this experiment. Figure 5.7 and 5.8
show that the average execution cost and overall makespan increase with the number of
submitted applications. Greedy heuristic resulted in a schedule which is as expensive
as 70% (Figure 5.7) of schedule generated by other heuristics. For LOUC and LOCC
configurations (Figure 5.8(c) and 5.8(d)), as variation in execution time is low, due to
which the time effect on scheduling decision is negligible. Thus, even though Greedy
heuristics seems to outperform other heuristics in these configurations (Figure 5.8(c) and
5.8(d)), it results in very costly schedule as shown in Figure 5.7(c)– 5.7(d). This becomes
more clear from results in Figure 5.8(a)– 5.8(b) for HICC and HIUC configurations.

86 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

25

30

35

40

45

50

C
o

st
/A

p
p

li
ca

ti
o

n

HICC

0

5

10

15

20

250 500 1000 1500

C
o

st
/A

p
p

li
ca

ti
o

n

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(a)

50

HIUC

40

45

50

C
o

st
/A

p
p

li
ca

ti
o

n

30

35

40

C
o

st
/A

p
p

li
ca

ti
o

n

20

25

30

C
o

st
/A

p
p

li
ca

ti
o

n

10

15

20

C
o

st
/A

p
p

li
ca

ti
o

n

5

10C
o

st
/A

p
p

li
ca

ti
o

n

0

250 500 1000 1500250 500 1000 1500

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(b)

20

25

30

35

40

45

50

C
o

st
/A

p
p

li
ca

ti
o

n

LOCC

0

5

10

15

20

250 500 1000 1500

C
o

st
/A

p
p

li
ca

ti
o

n

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(c)

30

40

50

60

70

C
o

st
/A

p
p

li
ca

ti
o

n
LOUC

0

10

20

30

250 500 1000 1500

C
o

st
/A

p
p

li
ca

ti
o

n

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(d)

Figure 5.7: Effect of Change in Application Submitted on Cost

5.6 Related Work

As noted in Chapter 2, many projects have investigated the application of market models
and mechanisms to improve the efficiency of scheduling in Grids. In this section, we
discuss and compare the most relevant works in the context of minimising both response
time and cost for Grid users.

Feng et al. [61] proposed a deadline cost optimisation model for scheduling one ap-
plication with dependent tasks. This work is different from our research in two ways:
(1) algorithms proposed are not designed to accommodate concurrent users competing
for resources; (2) the application model considered is for applications whose tasks can
be distributed on different resource sites. Munir et al. [116] proposed QoS Sufferage for
independent task scheduling on grids. This work does not consider the cost and time
trade-off and only focused on improving makespan. Kumar et al. [101] proposed two
heuristics, HRED and HRED-T, to minimise business value, i.e., cost or time, of users.
In this work, they studied the minimisation of only one parameter, i.e., cost, but not mul-

5.6. RELATED WORK 87

150

200

250

300
O

v
e

ra
ll

 M
a

k
e

sp
a

n

(s
e

co
n

d
s)

HICC

0

50

100

250 500 1000 1500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(a)

200

250

300

350

400

450

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

HIUC

0

50

100

150

200

250 500 1000 1500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(b)

150

200

250

300

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

LOCC

0

50

100

250 500 1000 1500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(c)

100

150

200

250

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

LOUC

0

50

100

250 500 1000 1500

O
v

e
ra

ll
 M

a
k

e
sp

a
n

(s
e

co
n

d
s)

Number of Applications
MaxCTT Greedy SuffCTT MinCTTMaxCTT Greedy SuffCTT MinCTT

(d)

Figure 5.8: Effect of Change in Application Submitted on Overall Makespan

tiple conflicting parameters such as time and number of processors required. Dogan et
al. [46] proposed a meta-scheduling algorithm considering many concurrent users, but the
application model assumed that each application consists of one task that requires only
one processor and each application is independent. In this chapter, we have considered
multiple and concurrent users competing for resources in a meta-scheduling environment
to minimise the trade-off between the combined cost and time of all user applications.

Many Genetic Algorithms (GA)-based heuristics are also proposed in the literature.
Kim et al. [98] proposed a novel GA-based algorithm which schedules a divisible data
intensive application. Martino et al. [45] presented a GA-based scheduling algorithm
where the goal of super-scheduling was to minimise the release time of jobs. Wang et
al. [166] considered the use of a GA to schedule a DAG of communicating tasks onto a
heterogeneous parallel system to minimise makespan. These GA-based heuristics based
solutions do not consider QoS constraints of concurrent users such as budget and deadline.
Singh et al. [147] presented a multi-objective GA formulation for provisioning resources
for an application using a slot-based resource model to optimise cost and performance.

88 Chapter 5. META-SCHEDULING TO MINIMISE TIME AND COST FOR USERS

As GAs require a long time to execute, they are not suitable for a dynamic environment
such as Grids where schedules have to be recomputed regularly as resource availability
changes rapidly.

For scheduling approaches outside Grid computing, the Min-Min, Min-Max, and Suf-
ferage heuristics [110] are the three major task-level heuristics employed for resource
allocation. As they are developed based on specific domain knowledge, they cannot be
applied directly to scheduling parallel jobs with strict requirements on utility Grids. In
this chapter, we are considering jobs/applications with fixed number of processors re-
quirement that are also called rigid parallel jobs [145]. The scheduling of such jobs on
Grid resources is a complex 0–1 Knapsack Problem that is more challenging than tradi-
tional scheduling on parallel systems, because of the fixed (rigid) number of processors
required by the job, the dynamic availability of resources with different capabilities in dif-
ferent administrative domains, and continuously arriving jobs at the meta-scheduler [178].
Thus, in this chapter, these heuristics are enhanced accordingly.

5.7 Summary

In utility Grids, a user may have conflicting goals of minimising simultaneously the pro-
cessing time and monetary execution cost of his/her application. Thus, we design a cost
metric to manage the trade-off between execution cost and time. We also propose three
meta-scheduling heuristics (MaxCTT, SuffCTT, and MinCTT) which minimise and man-
age the execution cost and makespan of users’ applications.

The sensitivity of the proposed heuristics is evaluated with respect to changes in the
user preferences (trade-off factor), application’s execution time, and resource pricing. The
results show that MaxCTT, SuffCTT, and MinCTT outperform the Greedy heuristic in
not only optimising cost, but also in minimising the overall makespan. When the trade-
off factor (TF) value is chosen by the meta-broker, MinCTT gives the lowest makespan
and cost for all configurations except for TF = 1. When the trade-off factor is set by
users, MinCTT, SuffCTT, and MaxCTT generate the cheapest schedule with the lowest
makespan. Among these three heuristics, MinCTT results in the lowest overall makespan
for LOCC, LOUC and HICC configurations. For HIUC configuration, SuffCTT gener-
ates the lowest overall makespan. The impact on the average cost due to the changes in
the scheduling interval is minimal for all heuristics. Similarly, the overall makespan by
MaxCTT and Greedy heuristics almost remained same. When data transfer cost is consid-
ered, similar results are observed except for LOUC and LOCC configurations, MinCTT
and Greedy heuristic generates the lowest overall makespan. In short, this chapter has
addressed the importance of managing the trade-off between execution cost and response
time by analysing various resource configurations.

5.7. SUMMARY 89

Chapter 4 and 5 discusses the meta-scheduling of concurrent users with competing
QoS requirements. The meta-broker maximises users’ utility by decreasing their spend-
ing for execution of applications in the utility Grid environment. In the next chapter,
we will discuss the market-oriented meta-scheduling problem in the second scenario, i.e.
maximising the provider’s utility (profit) while reconciling users’ demand for resources.

Chapter 6

Meta-Scheduling to Maximise
Provider’s Utility

In this chapter, we study the problem of scheduling concurrent users with deadline con-
straint on multiple resource sites from the resource provider’s perspective. In this context,
the aim of our meta-broker is to maximise resource provider’s utility calculated in terms
of the total profit. The profit of resource provider can be maximised by two methods one
by intelligent selection of users, and other by intelligent scheduling across different re-
source sites. In this chapter, we focus on minimising the resource provider’s cost by using
the later approach i.e. scheduling applications across multiple sites.

6.1 Motivation

The increasing maintenance cost of super-computing centers or data centers has become
a big issue for resource providers. The major contributor in this cost is the high energy
consumption [12] which checks the growth of provider’s profit with growing resource
demand [133]. The high energy consumption not only translates into high energy costs
which directly affect the profit, but also high carbon emissions [113] which can indirectly
affects the profit due to restriction from regulatory agencies [96]. Thus, many resource
providers are building different data centers and deploying them in many geographical
locations so as not only to expose their resources to business and consumer applications,
e.g. Amazon [6], but also to reduce energy cost, e.g. Google [111]. To address this issue,
in this chapter, we present novel near-optimal meta-scheduling algorithms to maximise
provider’s profit by exploiting heterogeneity across multiple resource sites in terms of
energy efficiency and electricity cost.

The analysis of previous work shows that little investigation has been done for both
economic and environmental sustainability of utility Grids. Most previous works have

91

92 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

Computer Power Consumption Index

0.59

0.55

0.66

0.33

0.43

0.68

0.59

0.47

0.38

0.63

0.42

0.49 0.49

0.59

0.67
0.70

0.75

0.60

0.74

1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22

 Data Center Number

C
o

m
p

u
te

r
P

o
w

e
r:

 T
o

ta
l

P
o

w
e

r

Figure 6.1: Computer Power Consumption Index (Source: [73])

studied how to reduce energy usage from the perspective of reducing cost, but not how
to improve the profit while reducing the carbon emissions which are also significantly
impacting the resource providers [62]. For example, to address energy usage, Chase et
al. [32] adopted an economic approach to manage shared server resources in which ser-
vices “bid” for resources as a function of delivered performance. Similarly, Burge et
al. [19] scheduled tasks to heterogeneous machines, and made admission decisions based
on the energy costs of each machine to maximise the profit of a single data center. But,
both of them do not study the critical relationship between carbon emissions (environmen-
tal sustainability) and profit (economic sustainability) for the energy sustainability issue,
and how they can affect each other.

Other previous works have focused on achieving energy efficiency at a single data
center/supercomputing location, but not across multiple locations. However, resource
providers such as Amazon EC2 [6] typically have multiple data centers distributed world-
wide. As shown in Figure 6.1, the energy efficiency of an individual data center in differ-
ent locations changes dynamically at various times depending on a number of factors such
as energy cost, carbon emission rate, workload, CPU power efficiency, cooling system,
and environmental temperature. Thus, these different contributing factors can be consid-
ered to exploit the heterogeneity across multiple data centers for improving the overall
energy efficiency of the resource provider.

Moreover, several works have mainly proposed energy-saving policies that are appli-
cation specific [63][67], processor-specific [137][50], and/or server-specific [167][97].
But, these policies are only applicable or most effective for the specific models that
they are specially designed for. Hence, we require some simple, yet effective generic
energy-efficient scheduling policies, that can be extended to any application, processor,
and server models, so that they can be readily deployed in existing data centers with mini-
mum changes at the infrastructure level. Table 6.1 summarises the most relevant previous

6.2. META-SCHEDULING MODEL 93

Table 6.1: Comparison of Related Work

C
O

2
em

is
si

on
/e

ne
rg

y
co

ns
um

pt
io

n

H
PC

w
or

kl
oa

d
ch

ar
ac

te
ri

st
ic

M
ul

tip
le

da
ta

ce
nt

er
s

E
ne

rg
y

co
st

aw
ar

e
sc

he
du

lin
g

M
ar

ke
t-

or
ie

nt
ed

sc
he

du
le

rs

Our work X X X X X
Bradley et al. [14] X X

Lawson and Smirni [105] X X
Tesauro [158] X X

Orgerie et al. [126] X X X
Patel et al. [129] X
Chase et al. [32] X X
Burge et al. [19] X X X

work which addresses any of the five aspects considered in this chapter.
Therefore, in this chapter, our aim is to design generic scheduling policies that can

maximise the profit provider on the global scale; while they can easily complement any of
these application-specific, processor-specific, and/or server-specific energy-saving poli-
cies that are already in place within existing data centers or servers.

6.2 Meta-scheduling Model

In this chapter, the system model considered is similar to previous chapters except the
objective of the meta-broker is now to maximise the profit of resource provider while
minimising application’s deadline violations and carbon emissions. The meta-broker in-
terprets and analyses the service requirements of a submitted application, and decides
whether to accept or reject the application based on the availability of CPUs.

Users submit parallel applications with their QoS and processing requirements. Each
application must be executed within an individual data center and does not have preemp-
tive priority. Furthermore, since the main aim of work presented in this chapter is to design
high-level application-independent meta-scheduling policies, we do not want to consider
the fine-grained details of workloads (such as considering the impact of communication
and synchronisation, and their overlapping with computation), which are more applicable
at the local scheduler level. The objective of the user is to have his/her application com-

94 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

pleted by the specified deadline. Deadlines are hard, i.e. the user will benefit from the
resources only if the application completes before its deadline [131].

A resource provider has multiple resource sites distributed across the world. Each
resource site is modelled as a data center. For example, Amazon [6] has data centers in
many cities across Asia, Europe, and United States. Each data center has a local scheduler
that manages the execution of incoming applications. The meta-broker interacts with these
local schedulers for application execution. Each local scheduler periodically advertise
information about available time slots (ts, te, n) to the meta-broker, where ts and te are
the start time and end time of the slot respectively and n is the number of CPUs available
for the slot.

To facilitate energy-efficient computing, each local scheduler also supplies informa-
tion about the carbon emission rate, Coefficient of Performance (COP), electricity price,
CPU power-frequency relationship, Million Instructions Per Second (MIPS) rating of
CPUs at the maximum frequency, and CPU operating frequency range of the data cen-
ter. The MIPS rating is used to indicate the overall performance of a CPU. All CPUs
within a data center are homogeneous, but CPUs can be heterogeneous across data cen-
ters. The carbon emission rates are calculated based on the fuel type used in electric
power generation. These are published regularly by various government agencies such
as U.S. Energy Information Administration (EIA). COP of the data center’s cooling sys-
tem is defined as the amount of cooling delivered per unit of electrical power consumed.
COP can be measured by monitoring the energy consumption by various components of
the cooling system [128]. Various parameters of CPUs at the data center can be derived
experimentally [70].

6.2.1 Data Center Energy Model

The major contributors for the total energy usage in a data center are IT equipments (which
consists of servers, storage devices, and network equipment) and cooling systems [159].
Other systems such as lighting are not considered due to their negligible contribution to
the total energy usage.

Within a data center, the total energy usage of a server depends on its CPUs, memory,
disks, fans, and other components [56]. It is pointed out by Fan et al [56], the energy usage
of the server varies depending on the type of workload executed. Since we only consider
compute-intensive applications and the CPUs use the largest proportion of energy in a
server, it is sufficient in our case to only model CPU energy usage. Thus, for simplicity,
we only compute the energy usage of a server based on its CPUs.

The power consumption of a CPU can be reduced by lowering its supply voltage us-
ing Dynamic Voltage Scaling (DVS). DVS is an efficient way to manage dynamic power
dissipation during computation. The power consumption model of CPUs which are gen-

6.2. META-SCHEDULING MODEL 95

erally composed of CMOS circuits is given by: P = αV 2f + IleakV + Pshort, where P
is the power dissipation, V is the supply voltage, f is the clock frequency, Ileak is the
leakage current, and Pshort is the short circuit power dissipated during the voltage switch-
ing process [18][130]. The first term constitutes the dynamic power of the CPU and the
second term constitutes the static power. Pshort is generally negligible in comparison to
other terms.

Since the voltage can be expressed as a linear function of frequency in the CMOS
logic, the power consumption Pi of a CPU in a data center i is approximated by the
following function (similar to previous works [167][33]): Pi = βi + αif

3, where βi
is the static power consumed by the CPU, αi is the proportionality constant, and f is
the frequency at which the CPU is operating. We use this cubic relationship between
the operating frequency and power consumption since this work focuses on compute-
intensive workload and to the best of our knowledge, the cubic relationship is the most
commonly used metric for CPU power in previous works [167][33]. We also consider that
a CPU of data center i can adjust its frequency from a minimum of fmini to a maximum
of fmaxi discretely. The frequency levels supported by a CPU typically varies for different
CPU architecture. For instance, Intel Pentium M 1.6GHz CPU supports 6 voltages from
0.956V to 1.484V.

The energy cost of the cooling system depends on its COP [114] [157]. COP is an
indication for the efficiency of the cooling system, which is defined as the ratio of the
amount of energy consumed by CPUs to the energy consumed by the cooling system.
However, COP is not constant and varies with the cooling air temperature. We assume
that COP will remain constant during a scheduling cycle and data centers will update the
meta-broker whenever COP changes. Thus, the total energy consumed by the cooling
system in a data center i is given by:

Eh
i =

Ec
i

COPi
(6.1)

where Ec
i is the total energy consumed by CPUs and Eh

i is the total energy consumed by
cooling devices. The total energy consumed by data center i can then be approximated
by:

Etotal
i = Ec

i + Eh
i = (1 + 1

COPi
)Ec

i = (COPi+1
COPi

)Ec
i

Therefore, the data center efficiency (DCiE) [164] is given as:

DCiE = COP
COP+1

96 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

6.2.2 Relation between Execution Time and CPU Frequency

Since DVS is adopted to scale up/down the CPU frequency, the execution time of an ap-
plication can significantly vary according to the CPU frequency. However, the decrease in
the execution time due to the increase in CPU frequency depends on whether the applica-
tion is CPU bound or not. For example, if the performance of an application is completely
dependent on the CPU frequency, then its execution time will be inversely proportional to
the change in the CPU frequency. Thus, the execution time of an application is modelled
according to the definition proposed by Hsu et al. [84]:

T (f) = T (fmax)× (γcpu(
fmax

f
− 1) + 1) (6.2)

where T (f) is the execution time of the application at CPU frequency f , T (fmax) is
the execution time of the application at the maximum CPU frequency fmax, and γcpu is
the CPU boundness of the application.

If the value of γcpu decreases, the CPU boundness of the application will also decrease,
which results in potentially more energy reduction by using DVS in servers within a data
center (see Section 6.3.2). It is however important to note that the CPU boundness of
an application varies based on the CPU architecture, as well as memory and disks. Like
many prior studies [53][66], we still use this factor to model the CPU usage intensity
of an application in a simple generic manner so as to optimise its energy consumption
accordingly. However, for all our experiments, we have used the worst case value of
γcpu = 1 to analyse the performance of our heuristics.

6.2.3 Problem Description

Table 6.2: Parameters of a Data Center i

Parameter Notation

Carbon emission rate
(kg/kWh)

rCO2
i

Average COP COPi
Electricity price
($/kWh)

pei

Data transfer price
($/GB) for up-
load/download

pDTi

CPU power Pi = βi + αif
3

CPU frequency range [fmini , fmaxi]
Time slots (start time,
end time, number of
CPUs)

(ts, te, n)

6.2. META-SCHEDULING MODEL 97

Let a resource provider have N data centers distributed in different locations. All the
parameters associated with data center i are given in Table 6.2. Data center i incurs carbon
emission based on its carbon emission rate rCO2

i (kg/kWh). To execute an application, the
resource provider has to pay data center i the energy cost and data transfer cost depending
on its electricity price pei ($/kWh) and data transfer price pDTi ($/GB) for upload/download
respectively. The resource provider then charges fixed prices to the user for executing his
application based on the CPU execution price pc ($/CPU/hour) and data transfer price
pDTU ($/GB) for the processing time and upload/download respectively.

Let J be the total number of user applications. A user submits her requirements for
application j in the form of a tuple (dj, nj, ej1, . . . , ejN , γ

cpu
j , (DT)j), where dj is the

deadline to complete application j, nj is the number of CPUs required for application
execution, eji is the application execution time on the data center i when operating at the
maximum CPU frequency, γcpuj is the CPU boundness of the application, and (DT)j is
the size of data to be transferred. For simplicity, we assume that users are able to specify
their processing requirements (nj , eji, and γcpuj).

In addition, let fij be the initial frequency at which CPUs of a data center i operate
while executing application j. Hence executing application j on data center i results in
the following:

(i) Energy consumption of CPUs

Ec
ij = (βi + αi(fij)

3)× njeji × (γcpuj (
fmaxi

fij
− 1) + 1) (6.3)

(ii) Total energy which consist of the cooling system and CPUs

Eij =
COPi + 1

COPi
× Ec

ij (6.4)

(iii) Energy cost
Ce
ij = pei × Eij (6.5)

(iv) Carbon emission
(CO2 E)ij = rCO2

i × Eij (6.6)

(v) Execution Profit
(ProfExec)ij = njejip

c − Ce
ij (6.7)

(vi) Data Transfer Profit

(ProfData)ij = (DT)j × (pDTU − pDTi) (6.8)

98 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

(vii) Profit
(Prof)ij = (ProfExec)ij + (ProfData)ij (6.9)

The carbon emission (CO2 E)ij (Equation (6.6)) incurred by application j is com-
puted using the carbon emission rate rCO2

i of data center i. However, this means that
(CO2 E)ij only reflects the average carbon emission incurred since rCO2

i is an average
rate. We can only use rCO2

i , since the exact amount of carbon emission produced depends
on the type of fuel used to generate the electricity, and no detailed data is available in this
regard.

The profit (Prof)ij (Equation (6.9)) gained by the resource provider from the exe-
cution of application j on data center i includes the execution profit (ProfExec)ij and
input/output data transfer profit (ProfData)ij . Studies [62][10] have shown that the on-
going operational costs (such as energy cost) of data centers greatly surpass their one-time
capital costs (such as hardware and support infrastructure costs). Hence, when computing
the execution profit (ProfExec)ij , we assume that the CPU execution price pc charged
by the resource provider to the user already includes the one-time capital costs of data
centers, so that we only subtract the ongoing energy cost Ce

ij of executing applications
from the revenue. The data transfer profit (ProfData)ij is the difference between the
cost paid by the user to the provider and the cost incurred for transferring the data to the
data center.

The meta-scheduling problem can then be formulated as:

Minimise Carbon Emission =
N∑
i

J∑
j

xij(CO2 E)ij (6.10)

Maximise Profit =
N∑
i

J∑
j

xij(Prof)ij (6.11)

Subject to:

(a) Response time of application j < dj

(b) fmini < fij < fmaxi

(c)
∑N

i xij ≤ 1

(d)

xij =

{
1 if application j allocated to data center i
0 otherwise

6.3. META-SCHEDULING POLICIES 99

The dual objective functions (6.10) and (6.11) of the meta-scheduling problem are
to minimise the carbon emission and maximise the profit of a resource provider. Con-
straint (a) ensures that the deadline requirement of an application is met. But it is dif-
ficult to calculate the exact response time of an application since applications have dif-
ferent sizes, require multiple CPUs, and have very dynamic arrival rates [33]. Moreover,
this problem maps to the 2-dimensional bin-packing problem which is NP-hard in na-
ture [112]. Hence, we propose various scheduling policies to heuristically approximate
the optimum.

6.3 Meta-Scheduling Policies

The meta-broker periodically assigns applications to data centers at a fixed time interval.
This enables the meta-broker to potentially make a better selection choice of applications
when mapping from a larger pool of applications to the data centers, as compared to during
each submission of an application. In each scheduling cycle, the meta-broker collects the
information from both data centers and users.

In general, a meta-scheduling policy consists of two phases: 1) mapping phase, in
which the meta-broker first maps an application to a data center; and 2) scheduling phase,
in which the scheduling of applications is done within the data center, where the required
time slots is chosen to execute the application. Depending on the objective of resource
provider whether to minimise carbon emission or maximise profit, we have designed var-
ious mapping policies which are discussed in the subsequent section. To further reduce
the energy consumption within the data center, we have designed a DVS based scheduling
policy for the local scheduler of a data center.

6.3.1 Mapping Phase (Across Many Data Centers)

We have designed the following meta-scheduling policies to map applications to data
centers depending on the objective of the resource provider:

Minimising Carbon Emission

The following policies optimise the global carbon emission of all data centers while keep-
ing the number of deadline misses low.

• Greedy Minimum Carbon Emission (GMCE): Since the aim is to minimise the
carbon emission across all the data centers, we want the most number of applica-
tions to be executed on data centers with the least carbon emission. Hence applica-
tions are sorted by their deadline (earliest first) to reduce the deadline misses, while

100 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

data centers are sorted by their carbon emission (lowest first), which is computed
as: rCO2

i × COPi+1
COPi

× (βi + αi(f
max
i)3). Each application is then mapped to a data

center in this ordering.

• Minimum Carbon Emission - Minimum Carbon Emission (MCE-MCE): MCE-
MCE is based on the Min-Min heuristic [110] which has performed very well in pre-
vious studies of different environments [15]. The meta-broker first finds the “best”
data center for all applications that are considered. Then among these application-
data center pairs, the meta-broker selects the “best” pair to map first. Since the
aim is to minimise the carbon emission, the “best” pair has the minimum carbon
emission (CO2 E)ij , i.e. minimum fitness value of executing application j on data
center i. MCE-MCE has the following steps:

Step 1: For each application in the list of applications to be mapped, find the data
center of which the carbon emission is the minimum, i.e. minimum (CO2 E)ij

(the first MCE), among all data centers which can complete the application by
its deadline. If there is no data center where the application can be completed
by its deadline, the application is removed from the list of applications to be
mapped.

Step 2: Among all the application-data center pairs found in Step 1, find the pair
that results in the minimum carbon emission, i.e. minimum (CO2 E)ij (the
second MCE). Then, map the application to the data center, and remove it
from the list of applications to be mapped.

Step 3: Update the available time slots from data centers.

Step 4: Do Step 1 to 3 again until all applications are mapped.

Maximising Profit

The following policies optimise the global profit of all data centers while keeping the
number of deadline misses low.

• Greedy Maximum Profit (GMP): Since the aim is to maximise the profit across
all the data centers, we want the most number of applications to be executed on data
centers with the least energy cost. Hence applications are sorted by their deadline
(earliest first) to reduce the deadline misses, while data centers are sorted by their
energy cost (lowest first), which is computed as: pei × COPi+1

COPi
× (βi + αi(f

max
i)3).

Each application is then mapped to a data center in this ordering.

• Maximum Profit - Maximum Profit(MP-MP): MP-MP works in the same way as
MCE-MCE. However, since the aim is to maximise the profit, the “best” pair has

6.3. META-SCHEDULING POLICIES 101

the maximum profit (Prof)ij , i.e. maximum fitness value of executing application
j on data center i. Hence the steps of MP-MP are the same as MCE-MCE, except
the following differences:

Step 1: For each application in the list of applications to be mapped, find the data
center of which the profit is the maximum, i.e. maximum (Prof)ij (the first
MP), among all data centers which can complete the application by its dead-
line.

Step 2: Among all the application-data center pairs found in Step 1, find the pair
that results in the maximum profit, i.e. maximum (Prof)ij (the second MP).

Minimising Carbon Emission and Maximising Profit (MCE-MP)

MCE-MP works in the same way as MCE-MCE. But, since the aim is to minimise the total
carbon emission while maximising the total profit across all the data centers, MCE-MP
handles the trade-off between carbon emission and profit which may be conflicting. Hence
the steps of MCE-MP are the same as MCE-MCE, except the following differences:

Step 1: For each application in the list of applications to be mapped, find the data center
of which the carbon emission is the minimum, i.e. minimum (CO2 E)ij (the first
MCE), among all data centers which can complete the application by its deadline.

Step 2: Among all the application-data center pairs found in Step 1, find the pair that
results in the maximum profit, i.e. maximum (Prof)ij (the second MP).

6.3.2 Scheduling Phase (Within a Data Center)

The energy consumption and carbon emission are further reduced within a data center by
using DVS at the CPU level to save energy by scaling down the CPU frequency. Thus,
before the meta-broker assigns an application to a data center, it decides the time slot in
which the application should be executed and the frequency at which the CPU should
operate to save energy. But, since a lower CPU frequency can increase the number of
applications rejected due to the deadline misses, the scheduling of applications within the
data center can be of two types: 1) CPUs run at the maximum frequency (i.e. without
DVS) or 2) CPUs run at various frequencies using DVS (i.e. with DVS). It is important
to adjust DVS appropriately in order to reduce the number of deadline misses and energy
consumption simultaneously.

The meta-broker will first try to operate the CPU at a frequency in the range [fmini , fmaxi]

nearest to the optimal CPU frequency f opti = 3

√
βi
2αi

for γcpu = 1. Since the CPU fre-

quency of data center i can only operate in the interval [fmini , fmaxi], we define f opti = fmini

if f opti < fmini , and f opti = fmaxi if f opti > fmaxi .

102 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

If the deadline of an application will be violated, the meta-broker will scale up the
CPU frequency to the next level and then try again to find the free time slots to execute
the application. If the meta-broker fails to schedule the application on the data center as
no free time slot is available, then the application is forwarded to the next data center
for scheduling (the ordering of data centers depends on various policies as described in
Section 6.3.1).

6.3.3 Lower Bound and Upper Bound

Due to the NP hardness of the meta-scheduling problem described in Section 6.2.3, it is
difficult to find the optimal profit and carbon emission in polynomial time. Thus, to esti-
mate the performance of our scheduling algorithms, we present a lower bound for the car-
bon emission and an upper bound for the profit of the resource provider respectively. Both
bounds are derived based on the principle that we can get the minimum carbon emission
or the maximum profit when most of the applications are executed on the most “efficient”
data center and also at the optimal CPU frequency. For carbon emission minimisation,
the most “efficient” data center incurs the minimum carbon emission for executing ap-
plications, while for profit maximisation, the most “efficient” data center results in the
minimum energy cost.

For the sole purpose of deriving the lower and upper bounds, we relax three constraints
of our system model so as to map the maximal number of applications to the most “effi-
cient” data center. First, we relax the constraint that when an application is executed at the
maximum CPU frequency, it will result in the maximum energy consumption. Instead, we
assume that even though all applications are executed at the maximum CPU frequency,
the actual energy consumed by them for calculating their carbon emission still remains
at the optimal CPU frequency using DVS. Second, although the applications considered
in the system model are parallel applications with fixed CPU requirements, we relax this
constraint to applications that are moldable in the required number of CPUs. Thus, the
runtime of applications will decrease linearly when it is scheduled on a larger number of
CPUs. This in turn increases the number of applications that can be allocated to the most
“efficient” data center with the minimum energy possible. Third, the applications in the
system model are arriving dynamically in many different scheduling cycles, but for deriv-
ing the bounds, all applications are considered in only one scheduling cycle and mapped
to data centers. This forms the best ideal bound scenario, where all the incoming appli-
cations are known in advance. Hence the actual dynamic scenario definitely has worse
performance than that of the ideal bound scenario.

It is important to note that the bounds of carbon emission and profit obtained with these
three assumptions are unreachable loose bounds of the system model. This is because data
centers will be executing the maximum possible workload with 100% utilisation of their

6.3. META-SCHEDULING POLICIES 103

CPUs, while the least possible energy consumption is still considered for the purpose of
comparison.

Let TWL be the total workload scheduled, TCE be the total carbon emission, and
TP be the total profit. The lower bound for the carbon emission is derived through the
following steps:

Step 1: Applications are sorted by their deadline (earliest first) to reduce the deadline
misses, while data centers are sorted by their carbon emission (lowest first), which
is computed as: rCO2

i × COPi+1
COPi

×(βi+αi(f
max
i)3). Each application is then mapped

to a data center in this ordering.

Step 2: For each application j, search for a data center i, starting from the most “efficient”
one, where the application j can be scheduled without missing its deadline when
running at the maximum CPU frequency.

Step 3: If a data center i is not found, then application j will be removed from the list of
potential applications. Go to step 2 to schedule other applications.

Step 4: If a data center i is found, application j is assigned to it and molded such that
there is no fragmentation in the schedule of data center i for executing applications.

Step 5: TWL += nj × eji

Step 6: TCE += rCO2
i × COPi+1

COPi
× (Power consumption of the CPU at optimal CPU

frequency) ×nj× (Execution time of application j at optimal CPU frequency)

Step 7: TP += (1 − (pei × COPi+1
COPi

× (Power consumption of the CPU at optimal CPU
frequency))) ×nj× (Execution time of application j at optimal CPU frequency)

Step 8: Repeat from Step 2 until all applications are scheduled.

TCE
TWL

will be the lower bound of the average carbon emission due to the execution of
all applications across multiple data centers of the resource provider.

To derive the upper bound for the profit, the steps remain the same, except the follow-
ing differences:

• In Step 1, data centers are sorted by their energy cost (lowest first), which is com-
puted as: pei × COPi+1

COPi
× (βi + αi(f

max
i)3).

• TP
TWL

will be the upper bound of the average profit.

104 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

6.4 Performance Evaluation

Configuration of Applications: We use workload traces from Feitelson’s Parallel Work-
load Archive (PWA) [57] to model the workload. Since this chapter focuses on studying
the requirements of users with compute-intensive applications, the PWA meets our objec-
tive by providing workload traces that reflect the characteristics of real parallel applica-
tions. Our experiments utilise the first week of the LLNL Thunder trace (January 2007 to
June 2007). The LLNL Thunder trace from the Lawrence Livermore National Laboratory
(LLNL) in USA is chosen due to its highest resource utilisation of 87.6% among available
traces to ideally model a heavy workload scenario. From this trace, we obtain the submit
time, requested number of CPUs, and actual runtime of applications. We set the CPU
boundness of all workload as 1 (i.e. γcpu = 1) to examine the worst case scenario of CPU
energy usage. We use a methodology proposed by Irwin et al. [88] to synthetically assign
deadlines through two classes namely Low Urgency (LU) and High Urgency (HU).

An application j in the LU class has a high ratio of deadlinej/runtimej so that its
deadline is definitely longer than its required runtime. Conversely, an application j in the
HU class has a deadline of low ratio. Values are normally distributed within each of the
high and low deadline parameters. The ratio of the deadline parameter’s high-value mean
and low-value mean is thus known as the high:low ratio. In our experiments, the deadline
high:low ratio is 3, while the low-value deadline mean and variance is 4 and 2 respectively.
In other words, LU applications have a high-value deadline mean of 12, which is 3 times
longer than HU applications with a low-value deadline mean of 4. The arrival sequence
of applications from the HU and LU classes is randomly distributed.

Configuration of Data Centers: We model 8 data centers with different configura-
tions as listed in Table 6.3. Carbon emission rates and electricity prices at various data
center locations are averages over the entire region and derived from the data published
by US Department of Energy [161] and Energy Information Administration [160].

Wang and Lu [167] also focus on the similar problem of considering the energy con-
sumption of heterogeneous CPUs within a data center. Thus, power parameters (i.e. CPU
power factors and frequency level) of the CPUs at different data centers are derived based
on the experimental data from Wang and Lu’s work [167]. The values of α and β are set
such that the ratio of static power and dynamic power can cover a wide variety of CPUs.

Current commercial CPUs only support discrete frequency levels, such as the Intel
Pentium M 1.6GHz CPU which supports 6 voltage levels. We consider discrete CPU
frequencies with 5 levels in the range [fmini , fmaxi]. For the lowest frequency fmini , we use
the same value used by Wang and Lu [167], i.e. fmini is 37.5% of fmaxi .

To increase the utilisation of data centers and reduce the fragmentation in the schedul-
ing of parallel applications, the local scheduler at each data center uses Conservative
Backfilling with advance reservation support as proposed by Mu’alem and Feitelson [115].

6.4. PERFORMANCE EVALUATION 105

Ta
bl

e
6.

3:
C

ha
ra

ct
er

is
tic

s
of

D
at

a
C

en
te

rs

L
oc

at
io

n
C

ar
bo

n
E

m
is

si
on

E
le

ct
ri

ci
ty

C
PU

Po
w

er
Fa

ct
or

s
C

PU
Fr

eq
ue

nc
y

L
ev

el
N

um
be

r
R

at
ea

(k
g/

kW
h)

Pr
ic

eb
($

/k
W

h)
β

α
f
m
a
x

i
f
o
p
t

i
of

C
PU

s
N

ew
Y

or
k,

U
SA

0.
38

9
0.

15
65

7.
5

1.
8

1.
63

03
24

20
50

Pe
nn

sy
lv

an
ia

,U
SA

0.
57

4
0.

09
75

5
1.

8
1.

8
26

00
C

al
if

or
ni

a,
U

SA
0.

27
5

0.
13

60
60

2.
4

0.
79

37
01

65
0

O
hi

o,
U

SA
0.

81
7

0.
09

75
5.

2
2.

4
1.

93
20

1
54

0
N

or
th

C
ar

ol
in

a,
U

SA
0.

56
3

0.
07

90
4.

5
3.

0
2.

15
44

35
60

0
Te

xa
s,

U
SA

0.
66

4
0.

1
10

5
6.

5
3.

0
2.

00
63

9
35

0
Fr

an
ce

0.
08

3
0.

17
90

4.
0

3.
2

2.
24

07
02

20
0

A
us

tr
al

ia
0.

92
4

0.
11

10
5

4.
4

3.
2

2.
28

50
84

25
0

a C
ar

bo
n

em
is

si
on

ra
te

s
ar

e
de

riv
ed

fr
om

a
U

S
D

ep
ar

tm
en

to
fE

ne
rg

y
(D

O
E

)d
oc

um
en

t(
A

pp
en

di
x

F-
E

le
ct

ri
ci

ty
E

m
is

si
on

Fa
ct

or
s

20
07

)[
16

1]
.

b E
le

ct
ri

ci
ty

pr
ic

es
ar

e
av

er
ag

e
co

m
m

er
ci

al
pr

ic
es

til
l2

00
7

ba
se

d
on

a
U

S
E

ne
rg

y
In

fo
rm

at
io

n
A

dm
in

is
tr

at
io

n
(E

IA
)r

ep
or

t[
16

0]
.

106 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

The meta-broker schedules applications periodically at each scheduling cycle of 50 sec-
onds, which is to ensure that the meta-broker can receive at least one application in every
scheduling cycle.

The COP (power usage efficiency) value of data centers is randomly generated using a
uniform distribution between [0.6, 3.5] as indicated in the study conducted by Greenberg
et al. [73]. To avoid the energy cost of a data center exceeding the revenue generated by
the resource provider, the CPU execution price charged by the provider to the user is fixed
at $0.40/CPU/hour which is approximately twice of the maximum energy cost at a data
center.

Performance Metrics: We observe the performance from both user and provider
perspectives. From the provider perspective, four metrics are necessary to compare the
policies: average energy consumption, average carbon emission, profit gained, and work-
load executed. The average energy consumption compares the amount of energy saved
by using different scheduling algorithms, whereas the average carbon emission compares
its corresponding environmental impact. Since minimising the carbon emission can affect
a resource provider economically by decreasing its profit, we have considered the profit
gained as another metric to compare different algorithms. It is important to know the
effect of various meta-scheduling policies on energy consumption, since higher energy
consumption is likely to generate more carbon emission for worse environmental impact
and incur more energy cost for operating data centers.

From the user perspective, we observe the performance of varying: 1) urgency class
and 2) arrival rate of applications. For the urgency class, we use various percentages (0%,
20%, 40%, 60%, 80%, and 100%) of HU applications. For instance, if the percentage of
HU applications is 20%, then the percentage of LU applications is the remaining 80%.
For the arrival rate, we use various factors (10 (low), 100 (medium), 1000 (high), and
10000 (very high)) of submit time from the trace. For example, a factor of 10 means an
application with a submit time of 10s from the trace now has a simulated submit time of
1s. Hence, a higher factor represents higher workload by shortening the submit time of
applications.

Experimental Scenarios: To comprehensively evaluate the performance of our algo-
rithms, we examine various experimental scenarios that are classified as:

(a) Evaluation without data transfer cost (Section 6.5.1): In the first set of experi-
ments (Section 6.5.1), we evaluate the importance of our mapping policies which
consider global factors such as carbon emission rate, electricity price and data cen-
ter efficiency. In these experiments, we also evaluate the effectiveness of exploiting
local minima in our local DVS policy (Section 6.5.1 and Section 6.5.1). Then, in
the next set of experiments (Section 6.5.1), we compare the performance of our
proposed algorithms with the lower bound (carbon emission) and the upper bound

6.5. ANALYSIS OF RESULTS 107

(profit).

To evaluate the overall best among the proposed algorithms, we conduct more ex-
periments by varying different factors which can affect their performance:

• Impact of urgency and arrival rate of applications (Section 6.5.1)

• Impact of carbon emission rate (Section 6.5.1)

• Impact of electricity price (Section 6.5.1)

• Impact of data center efficiency (Section 6.5.1)

(b) Evaluation with data transfer cost (Section 6.5.2): In the last set of experiments
(Section 6.5.2), we examine how the data transfer cost affect the performance of
our algorithms.

6.5 Analysis of Results

6.5.1 Evaluation without Data Transfer Cost

Effect of Mapping Policy and DVS

As discussed in Section 6.3, our meta-scheduling policies are designed to save energy at
two phases, first at the mapping phase and then at the scheduling phase. Hence, in this
section, we examine the importance of each phase in saving energy. These experiments
also answer the question why we require special energy saving schemes at two phases.

First, we examine the importance of considering the global factors at the mapping
phase by comparing meta-scheduling policies without the energy saving feature at the lo-
cal scheduling phase, i.e. DVS is not available at the local scheduler. Hence, we name
the without-DVS version of the carbon emission based policy (GMCE) and profit based
policy (GMP) as GMCE-WithoutDVS and GMP-WithoutDVS respectively. The results in
Figure 6.2 shows that the consideration of various global factors not only decrease the car-
bon emission, but also decrease the overall energy consumption. For various urgency of
applications (Figure 6.2(a)), GMCE-WithoutDVS can prevent up to 10% carbon emission
over GMP-WithoutDVS. For various arrival rate of applications (Figure 6.2(b)), GMCE-
WithoutDVS can produce up to 23% less carbon emission than GMP-WithoutDVS. The
corresponding difference in energy cost (Figure 6.2(c) and 6.2(d)) between them is very
little (about 0–6%). This is because with the decrease in energy consumption due to the
execution of HPC workload, both carbon emission and energy cost will automatically de-
crease. This trend still remains by comparing GMCE and GMP, both of which uses DVS
at the scheduling phase.

108 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

150

200

250

300

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

0

50

100

0% 20% 40% 60% 80% 100%

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

% of High Urgency (HU) Jobs

GMCE GMP GMCE-WithoutDVS GMP-WithoutDVSGMCE GMP GMCE-WithoutDVS GMP-WithoutDVS

(a) Carbon Emission VS Urgency

150

200

250

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

0

50

100

Low Medium High Very High

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

Job Arrival Rate
GMCE GMP GMCE-WithoutDVS GMP-WithoutDVS

(b) Carbon Emission VS Arrival Rate

40

50

60

70

80

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
st

($
/u

n
it

 w
o

rk
lo

a
d

)

0

10

20

30

0% 20% 40% 60% 80% 100%

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
st

($
/u

n
it

 w
o

rk
lo

a
d

)

% of High Urgency (HU) Jobs

GMCE GMP GMCE-WithoutDVS GMP-WithoutDVSGMCE GMP GMCE-WithoutDVS GMP-WithoutDVS

(c) Energy Cost VS Urgency

30

40

50

60

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
st

($
/u

n
it

 w
o

rk
lo

a
d

)

0

10

20

Low Medium High Very High

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
st

($
/u

n
it

 w
o

rk
lo

a
d

)

Job Arrival Rate

GMCE GMP GMCE-WithoutDVS GMP-WithoutDVSGMCE GMP GMCE-WithoutDVS GMP-WithoutDVS

(d) Energy Cost VS Arrival Rate

1500

2000

2500

W
o

rk
lo

a
d

 E
xe

cu
te

d

M
il
li
o
n
s

0

500

1000

0% 20% 40% 60% 80% 100%

W
o

rk
lo

a
d

 E
xe

cu
te

d

% of High Urgency (HU) Jobs
GMCE GMP GMCE-WithoutDVS GMP-WithoutDVSGMCE GMP GMCE-WithoutDVS GMP-WithoutDVS

(e) Workload Executed VS Urgency

1000

1200

1400

1600

1800

2000

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

M
il

li
o

n
s

0

200

400

600

800

Low Medium High Very High

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

Job Arrival Rate

GMCE GMP GMCE-WithoutDVS GMP-WithoutDVSGMCE GMP GMCE-WithoutDVS GMP-WithoutDVS

(f) Workload Executed VS Arrival Rate

Figure 6.2: Effect of Mapping Policy and DVS

6.5. ANALYSIS OF RESULTS 109

Next, we examine the impact of the scheduling phase on energy consumption by com-
paring meta-scheduling policies with DVS (GMCE and GMP) and without DVS (GMCE-
WithoutDVS and GMP-WithoutDVS). With DVS, the energy cost (Figure 6.2(c)) to exe-
cute HPC workload has been reduced on average by 33% when we compare GMP with
GMP-withoutDVS. With the increase in HU applications, the gap is increasing and we
can get almost 50% decrease in energy cost as shown in Figure 6.2(c). With the increase
in arrival rate, we get a consistent 25% gain in energy cost by using DVS (Figure 6.2(d)).
The carbon emission is also reduced further on average by 13% with the increase in ur-
gent applications as shown in Figure 6.2(a). With the increase in arrival rate, the HPC
workload executed is decreasing in the case of policies using DVS as can be observed
from Figure 6.2(f). This is because the execution of applications at lower CPU frequency
results in more rejection of urgent applications when the arrival rate is high. Thus, HPC
workload executed in the case of policies without DVS is almost the same even when the
arrival rate is very high.

Exploiting Local Minima in DVS

We want to highlight the importance of exploiting local minima in the DVS function
while scheduling within a data center. But, to correctly highlight the difference in DVS
performance for the scheduling phase of the meta-scheduling policy, we need an inde-
pendent policy (which is not linked to our proposed polices) for the mapping phase.
Hence, we use EDF-EST, where the applications are ordered based on Earliest Dead-
line First (EDF), while the data centers are ordered based on Earliest Start Time (EST).
We name our proposed DVS as EDF-EST-withOurDVS that exploits the local minima in
the DVS function. Our proposed DVS is compared to a previously proposed DVS named
as EDF-EST-withPrevDVS, in which the CPU frequency is scaled up linearly between
[fmin, fmax] [167][97].

Figure 6.3 shows that EDF-EST-withOurDVS has not only outperformed EDF-EST-
withPrevDVS by saving about 35% of energy, but also executed about 30% more work-
load. This is because EDF-EST-withPrevDVS tries to run applications at the minimum
CPU frequency fmin which may not be the optimal frequency. Thus, it is clear from here
that an application executed at fmin may not lead to the least energy consumption due
to the presence of local minima. Moreover, executing applications at a lower frequency
results in a lower acceptance of applications since less CPUs are available. Thus, it is
important to exploit such characteristics when designing the scheduling policy within a
data center.

110 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

700

500

600

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

400

500

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s/
u

n
it

 w
o

rk
lo

a
d

)

300

400

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s/
u

n
it

 w
o

rk
lo

a
d

)

200

300

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s/
u

n
it

 w
o

rk
lo

a
d

)

100A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

0

0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%

% of High Urgency (HU) Jobs

EDF-EST-withOurDVS EDF-EST-withPrevDVS

(a) Energy Consumption VS Urgency

300

400

500

600

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s/
u

n
it

 w
o

rk
lo

a
d

)

0

100

200

Low Medium High Very High

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s/
u

n
it

 w
o

rk
lo

a
d

)

Job Arrival Rate

EDF-EST-withOurDVS EDF-EST-withPrevDVS

(b) Energy Consumption VS Arrival Rate

1000

1200

1400

1600

1800

2000

W
o

rk
lo

a
d

 E
xe

cu
te

d

M
il
li
o
n
s

0

200

400

600

800

0% 20% 40% 60% 80% 100%

W
o

rk
lo

a
d

 E
xe

cu
te

d

% of High Urgency (HU) Jobs

EDF-EST-withOurDVS EDF-EST-withPrevDVSEDF-EST-withOurDVS EDF-EST-withPrevDVS

(c) Workload Executed VS Urgency

800

1000

1200

1400

1600
W

o
r
k

lo
a

d
 E

x
e

c
u

te
d

M
il

li
o

n
s

0

200

400

600

Low Medium High Very High

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

Job Arrival Rate

EDF-EST-withOurDVS EDF-EST-withPrevDVS

(d) Workload Executed VS Arrival Rate

Figure 6.3: Exploiting Local Minima in DVS

Comparison of Lower Bound and Upper Bound

To evaluate the performance of our algorithms in terms of carbon emission reduced and
profit gained by the resource provider, we compare our algorithms with the theoretically
unreachable bound.

Figure 6.4 shows how different policies closely perform to the lower bound of average
carbon emission and the upper bound of average profit. In Figure 6.4(a), the difference
in average carbon emission for carbon emission based policies (GMCE, MCE-MCE, and
MCE-MP) and the lower bound is less than about 16% which becomes less than about 2%
in the case of 20% HU applications. On the other hand, in Figure 6.4(b), the difference
in average profit for profit based policies (GMP and MP-MP) and the upper bound is less
than about 2% which becomes less than about 1% in the case of 40% of HU applications.
Hence, in summary, our carbon emission based and profit based policies perform within
about 16% and 2% of the optimal carbon emission and profit respectively.

In Figure 6.4(a) and 6.4(b), with the increase in HU applications, the difference be-

6.5. ANALYSIS OF RESULTS 111

180

200

160

180

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n

120

140

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

80

100

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

40

60

80

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

20

40

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n

0

0% 20% 40% 60% 80% 100%

% of High Urgency (HU) Jobs% of High Urgency (HU) Jobs

MCE-MP MP-MP GMCE

GMP MCE-MCE Lower BoundGMP MCE-MCE Lower Bound

(a) Carbon Emission

0.38

0.375

0.37

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0.365

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0.36

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0.355

0.35

0% 20% 40% 60% 80% 100%

% of High Urgency (HU) Jobs% of High Urgency (HU) Jobs

MCE-MP MP-MP GMCE

GMP MCE-MCE Upper Bound

(b) Profit

Figure 6.4: Comparison of Lower Bound and Upper Bound

tween the lower/upper bounds and various policies is increasing. This is due to the in-
crease in looseness of the bounds with the increase in HU applications. To avoid deadline
misses with a higher number of HU applications, our proposed policies schedule more
applications at higher CPU frequency which results in higher energy consumption. This
in turn leads to an increase in the carbon emission and decrease in the profit. Whereas, for
computing the lower/upper bounds, we only consider energy consumption at the optimal
CPU frequency. Thus, the effect of urgency on the bounds is not as considerable as in our
policies. This explains why our policies are closer to the bounds for a lower number of
HU applications.

Impact of Urgency and Arrival Rate of Applications

Figure 6.5 shows how the urgency and arrival rate of applications affects the performance
of carbon emission based policies (GMCE, MCE-MCE, and MCE-MP) and profit based
policies (GMP and MP-MP). The metrics of total carbon emission and total profit are used
since the resource provider needs to know the collective loss in carbon emission and gain
in profit across all data centers.

When the number of HU applications increases, the total profit of all policies (Fig-
ure 6.5(c)) decreases almost linearly by about 45% from 0% to 100% HU applications.
Similarly, there is also a drop in total carbon emission (Figure 6.5(a)). This fall in total
carbon emission and total profit is due to the lower acceptance of applications as ob-
served in Figure 6.5(e). In Figure 6.5(a), the decrease in total carbon emission for profit
based policies (GMP and MP-MP) is much more than that of carbon emission based poli-
cies (MCE-MP, GMCE, and MCE-MCE). This is because carbon emission based policies
schedule applications on more carbon-efficient data centers.

Likewise, the increase in arrival rate also affects the total carbon emission (Figure 6.5(b))

112 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

150

200

250

300

350

To
ta

l
C

a
rb

o
n

 E
m

is
si

o
n

(t
o

n
s)

M
il
li
o
n
s

0

50

100

0% 20% 40% 60% 80% 100%

To
ta

l
C

a
rb

o
n

 E
m

is
si

o
n

% of High Urgency (HU) Jobs

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(a) Carbon Emission VS Urgency

150

200

250

300

To
ta

l
C

a
rb

o
n

 E
m

is
si

o
n

(t
o

n
s)

M
il

li
o

n
s

0

50

100

Low Medium High Very High

To
ta

l
C

a
rb

o
n

 E
m

is
si

o
n

Job Arrival Rate

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(b) Carbon Emission VS Arrival Rate

400

500

600

700

800

900

To
ta

l
P

ro
fi

t
($

)
M
il
li
o
n
s

0

100

200

300

0% 20% 40% 60% 80% 100%

To
ta

l
P

ro
fi

t

% of High Urgency (HU) Jobs

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(c) Profit VS Urgency

300

400

500

600

700

To
ta

l
P

ro
fi

t
($

)
M

il
li

o
n

s

0

100

200

Low Medium High Very High

To
ta

l
P

ro
fi

t

Job Arrival Rate

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(d) Profit VS Arrival Rate

1000

1500

2000

2500

W
o

rk
lo

a
d

 E
xe

cu
te

d
M
il
li
o
n
s

0

500

1000

0% 20% 40% 60% 80% 100%

W
o

rk
lo

a
d

 E
xe

cu
te

d

% of High Urgency (HU) Jobs

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(e) Workload Executed VS Urgency

800

1000

1200

1400

1600

1800

2000

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

M
il

li
o

n
s

0

200

400

600

800

Low Medium High Very High

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

Job Arrival Rate

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(f) Workload Executed VS Arrival Rate

Figure 6.5: Impact of Urgency and Arrival Rate of Applications

6.5. ANALYSIS OF RESULTS 113

and total profit (Figure 6.5(d)). As more applications are submitted, fewer applications
can be accepted (Figure 6.5(f)) since it is harder to satisfy their deadline requirement when
workload is high.

Impact of Carbon Emission Rate

To examine the impact of carbon emission rate in different locations on our policies, we
vary the carbon emission rate, while keeping all other factors such as electricity price as
the same. Using normal distribution with mean = 0.2, random values are generated for
the following three classes of carbon emission rate across all data centers as: A) Low
variation (low) with standard deviation = 0.05, B) Medium variation (medium) with
standard deviation = 0.2, and C) High variation (high) with standard deviation = 0.4.
All experiments are conducted at medium job arrival rate with 40% of HU applications.

180

140

160

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n

100

120

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

80

100

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

40

60

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

20

40

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n

0

Low Medium High

Variation in Carbon Emission RateVariation in Carbon Emission Rate

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(a) Carbon Emission

0.4

0.3

0.35

0.25

0.3

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0.15

0.2

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0.1

0.15

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0.05

0

Low Medium High

Variation in Carbon Emission Rate

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(b) Profit

1680

1700

M
il
li
o
n
s

1660

1680

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

M
il
li
o
n
s

1620

1640

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

1600

1620

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

1560

1580

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

1520

1540

1520

Low Medium High

Variation in Carbon Emission RateVariation in Carbon Emission Rate

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(c) Workload Executed

Figure 6.6: Impact of Carbon Emission Rate

The performance of all policies is similar for all three cases of carbon emission rate.
For example, in Figure 6.6(a), the carbon emission of profit based policies (GMP and

114 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

MP-MP) is always higher than carbon emission based policies (GMCE, MCE-MCE, and
MCE-MP). Similarly, for profit (Figure 6.6(b)), all profit based policies perform better
than all carbon emission based policies. For instance, in Figure 6.6(a), the difference
in carbon emission of MCE-MCE and MP-MP is about 12% for low variation, which
increases to 33% for high variation. On the other hand, in Figure 6.6(b), the corresponding
decrease in profit is almost negligible and is less than 1% for both the low and high
variation case. Moreover, by comparing MCE-MCE and MP-MP in Figure 6.6(c), the
amount of workload executed by MCE-MCE is slightly higher than MP-MP. Thus, for
the case of high variation in carbon emission rate, resource providers can use carbon
emission based policies such as MCE-MCE to considerably reduce carbon emission with
almost negligible impact on their profit. For minimising carbon emission, MCE-MCE is
preferred over GMCE since the latter leads to lower profit due to the scheduling of more
applications on data centers with higher electricity price.

Impact of Electricity Price

To investigate the impact of electricity price in different locations on our policies, we
vary the electricity price, while keeping all other factors such as carbon emission rate
as the same. Using normal distribution with mean = 0.1, random values are gener-
ated for the following three classes of electricity price across all data centers as: A) Low
variation (low) with standard deviation = 0.01, B) Medium variation (medium) with
standard deviation = 0.02, and C) High variation (high) with standard deviation =

0.05. All experiments are conducted at medium job arrival rate with 40% of HU applica-
tions.

The variation in electricity price affects the performance of profit based policies (GMP
and MP-MP) in terms of carbon emission (Figure 6.7(a)) and workload executed (Fig-
ure 6.7(c)), while carbon emission based policies (GMCE, MCE-MCE and MCE-MP) are
not affected. But, the profit of all policies decrease more as the variation of electricity
price increases (Figure 6.7(b)) due to the subtraction of energy cost from profit. For high
variation in electricity price, there is not much difference (about 1.4%) in carbon emis-
sion between MP-MP and MCE-MCE (Figure 6.7(a)). Hence, resource providers can use
MP-MP which gives slightly better average profit than carbon emission based policies
(GMCE, MCE-MCE and MCE-MP). On the other hand, for cases when the variation in
electricity price is not high, providers can use carbon emission based policies such as
MCE-MCE and MCE-MP to reduce about 5-7% of carbon emission by sacrificing less
than 0.5% of profit.

6.5. ANALYSIS OF RESULTS 115

140

145

150

155
A

v
e

ra
g

e
 C

a
rb

o
n

 E
m

is
si

o
n

(t
o

n
s/

u
n

it
 w

o
rk

lo
a

d
)

125

130

135

Low Medium High

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

Variation in Electricity Price

MCE-MP MP-MP GMCE GMP MCE-MCE

(a) Carbon Emission

0.15

0.2

0.25

0.3

0.35

0.4

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0

0.05

0.1

0.15

Low Medium High

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

Variation in Electricity Price

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(b) Profit

1550

1600

1650

1700

W
o

rk
lo

a
d

 E
x
e

cu
te

d

M
il
li
o
n
s

1450

1500

1550

Low Medium High

W
o

rk
lo

a
d

 E
x
e

cu
te

d

Variation in Electricity Price

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(c) Workload Executed

Figure 6.7: Impact of Electricity Price

Impact of Data Center Efficiency

To study the impact of data center efficiency in different locations on our policies, we
vary the data center efficiency = COP

COP+1
, while keeping all other factors such as carbon

emission rate as the same. Using normal distribution with mean = 0.4, random val-
ues are generated for the following three classes of data center efficiency across all data
centers as: A) Low variation (low) with standard deviation = 0.05, B) Medium vari-
ation (medium) with standard deviation = 0.12, and C) High variation (high) with
standard deviation = 0.2. All experiments are conducted at medium job arrival rate
with 40% of HU applications.

Figure 6.8(a) shows carbon emission based policies (GMCE, MCE-MCE and MCE-
MP) achieve the lowest carbon emission with almost equal values. MCE-MCE performs
better than MCE-MP by scheduling more HPC workload (Figure 6.8(c)) while achieving
similar profit (Figure 6.8(b)). But when the variation in data center efficiency is high,
GMCE can execute much higher workload (Figure 6.8(c)) than MCE-MCE and MCE-

116 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

150

200

250

300

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

0

50

100

Low Medium High

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

Variation in Data Center Efficiency

MCE-MP MP-MP GMCE GMP MCE-MCE

(a) Carbon Emission

0.15

0.2

0.25

0.3

0.35

0.4

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0

0.05

0.1

0.15

Low Medium High

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

Variation in Data Center Efficiency

MCE-MP MP-MP GMCE GMP MCE-MCEMCE-MP MP-MP GMCE GMP MCE-MCE

(b) Profit

1620

1640

1660

1680

1700

W
o

rk
lo

a
d

 E
x
e

cu
te

d
M
il
li
o
n
s

1560

1580

1600

Low Medium High

W
o

rk
lo

a
d

 E
x
e

cu
te

d

Variation in Data Center Efficiency

MCE-MP MP-MP GMCE GMP MCE-MCE

(c) Workload Executed

Figure 6.8: Impact of Data Center Efficiency

MP while achieving only slightly less profit than profit based policies (GMP and MP-MP)
(Figure 6.8(b)). Thus, resource providers can use GMCE to decrease the carbon emissions
across their data centers without significant profit loss.

6.5.2 Evaluation with Data Transfer Cost

Impact of Data Transfer Cost

The data transfer cost of the resource provider varies across different data centers. Thus, to
study the impact of data transfer cost on our policies, we vary the data transfer cost while
keeping all other factors such as carbon emission rate and electricity price as the same. For
this set of experiments, the resource provider charges the user a fixed price of $0.17/GB
for data transfer up to 10TB, which is derived from Amazon EC2 [6]. Since this thesis
focuses on compute-intensive parallel applications, the maximum data transfer size of an
application is limited to 10TB. The data transfer size of an application is varied between

6.5. ANALYSIS OF RESULTS 117

[0, 10]TB using uniform distribution. The data transfer cost that the resource provider has
to incur is varied between $[0, 0.17] using normal distribution with mean = 0.4 ∗ 0.17.
Random values are generated for the following three classes of data transfer cost across
all data centers as: A) Low variation (low) with standard deviation = 0.05, B) Medium
variation (medium) with standard deviation = 0.12, and C) High variation (high) with
standard deviation = 0.2. All experiments are conducted at medium job arrival rate
with 20% of HU applications.

140

145

150

155

160

165

170

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

120

125

130

135

140

Low Medium High WithoutDT

A
v

e
ra

g
e

 C
a

rb
o

n
 E

m
is

si
o

n
(t

o
n

s/
u

n
it

 w
o

rk
lo

a
d

)

Variation in Data Transfer Cost

MCE-MP MP-MP GMCE GMP MCE-MCE

(a) Carbon Emission

0.15

0.2

0.25

0.3

0.35

0.4

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

0

0.05

0.1

0.15

Low Medium High WithoutDT

A
v

e
ra

g
e

 P
ro

fi
t

($
/u

n
it

 w
o

rk
lo

a
d

)

Variation in Data Transfer Cost

MCE-MP MP-MP GMCE GMP MCE-MCE

(b) Profit

1550

1600

1650

1700

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

M
il
li
o
n
s

1450

1500

1550

Low Medium High WithoutDT

W
o

r
k

lo
a

d
 E

x
e

c
u

te
d

Variation in Data Transfer Cost

MCE-MP MP-MP GMCE GMP MCE-MCE

(c) Workload Executed

Figure 6.9: Impact of Data Transfer Cost

Figure 6.9 shows how the average carbon emission and profit will be affected due to
data transfer cost in comparison to the case when data transfer cost is not considered (as
indicated by WithoutDT). The relative performance of all policies has remained almost
the same even with data transfer cost. For instance, in Figure 6.9(a) and 6.9(c), MP-
MP results in the maximum average carbon emission, while MCE-MCE results in the
minimum carbon emission. This is because of the compute-intensive workload, whereby
the impact of data transfer cost is negligible in comparison to the execution cost. There
is only a slight increase in the average profit (Figure 6.9(b)) due to the additional profit

118 Chapter 6. META-SCHEDULING TO MAXIMISE PROVIDER’S UTILITY

gained by the resource provider from the transfer of data.

6.6 Summary

The high usage of energy has become a major concern due to its large share in mainte-
nance cost of data centers. Especially, resource providers need a high amount of electricity
to run and maintain their computational resources, in order to guarantee the best service
level for the customer. Although this importance has been emphasised in a lot of research
literature, the combined approach of analysing the profit and energy sustainability in the
resource allocation process has not been taken into consideration.

Table 6.4: Summary of Heuristics with Comparison Results

Overall Performance
Meta-
Scheduling
Policy

Description Time Com-
plexity

HU
Jobs

Arrival
Rate

Carbon
Emission
Rate

Data
Center
Efficiency

Energy
Cost

GMCE
Greedy
(Carbon
Emission)

O(NJ) Bad Bad Bad Best (high) Bad

MCE-MCE

Two-phase
Greedy
(Carbon
Emission)

O(NJ2)
Good
(low)

Good
(low)

Best
(high) Okay (low) Good

(low)

GMP Greedy
(Profit) O(NJ)

Okay
(high)

Okay
(high) Bad (low) Bad (high) Bad

MP-MP
Two-phase
Greedy
(Profit)

O(NJ2)
Good
(high)

Bad
(Car-
bon
Emis-
sion),
Best
(Profit)

Good
(low) Best (low) Good

(high)

MCE-MP

Two-phase
Greedy
(Carbon
Emission
and Profit)

O(NJ2)
Best
(low)

Good
(high) Okay Okay Best

(low)

We outline how the meta-broker manages the resource allocation across multiple lo-
cations to maximise the provider’s utility (profit). The overall meta-scheduling problem
is formulated as an optimisation problem with dual objective functions. Due to its NP
hard nature, several heuristic policies are proposed, and compared for profit maximisation
in various test cases. In some cases, the policies perform very well with only almost 1%
away from the upper bound of profit. By introducing DVS and hence lowering the supply
voltage of CPUs, the energy cost for executing HPC workloads can be reduced by 33%
on average. Applications run on CPUs with a lower frequency than expected, but they

6.6. SUMMARY 119

still meet the required deadlines. The limitation of carbon emission can be forced by gov-
ernments to comply with certain threshold values [96]. In such cases, resource providers
should focus on reducing carbon emission in addition to minimising energy consumption.

We identify that policies, such as MCE-MCE, can help providers to reduce their emis-
sion while almost maintaining their profit. If providers face a volatile electricity price,
the MP-MP policy will lead to a better outcome. Depending on the environmental and
economic constraints, resource providers can selectively choose different policies to effi-
ciently allocate their resources to meet customers’ requests. The characteristics and per-
formance of each meta-scheduling policy are summarised in Table 6.4, where “low” and
“high” represent the scenario for which the overall performance of the policy is given.
For instance, GMCE performs the best when the variation in data center efficiency is
high, while MCE-MP performs the best when the variation in energy cost is low, or when
there is a low number of HU applications. We observe that the impact of data transfer
cost is minimal for the compute-intensive applications that we have considered. How-
ever, our model has explicitly considered the data transfer cost, and thus can be used for
data-intensive applications as well.

Hence, this chapter addresses the problem of profit maximisation for the resource
provider having multiple resource sites (data centers) by intelligent meta-scheduling of
user applications with QoS requirements. In the next chapter, we will investigate the
market-oriented meta-scheduling problem in the third scenario i.e. to maximise the utility
of both Grid users and resource providers.

Chapter 7

Meta-Scheduling to Enhance All Grid
Players’ Utility

In previous chapters, we developed market-oriented meta-scheduling algorithms for two
scenarios where matching of multiple applications and resources is required. In this chap-
ter, we aim to apply the market-oriented meta-scheduling in order to maximise simultane-
ously both Grid users’ and resource providers’ utility. To achieve this objective, valuation
metrics are designed and presented for both user applications and resources. The valuation
metrics commodify the complex resource requirements of the users and the capabilities of
available computational resources. An analytical model of the meta-scheduling problem
in Grids is presented to ensure correctness of our mechanism, and to estimate effect on
other crucial system-based metrics such as slowdown and waiting time. Then, at the end
of the chapter, a simulation study discusses the performance of our presented mechanism
in comparison to both existing market-based and traditional meta-scheduling algorithms.
The results show that our meta-scheduling mechanism not only satisfies more user re-
quirements (users’ utility) than others, but also improves system utilisation (providers’
utility) through load balancing.

7.1 Motivation

As discussed in Chapter 1 and 2, the previously proposed solutions for meta-scheduling in
Grid computing focused more on improving system-centric performance metrics such as
utilisation, average load and turnaround time for user applications [136]. They were not
designed to cater to the sophisticated QoS needs of an application, particularly when the
demand for resources exceeded the supply. Thus, in recent years, a number of researchers
have explored application of market-based models to address user requirements in meta-
scheduling. Auctions have been particularly preferred [9, 104] as they provide immense

121

122 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

flexibility to participants to specify their valuations for applications and resources. How-
ever, these systems have limitations [168]. It is difficult for the users to come up with a
valuation corresponding to their utility function. In a Grid with changing availability of
resources, it is difficult to determine resource and application valuations accurately. Also,
users with low valued and urgent requirements may be starved by those with higher value.
Auctions are applied to commodities that are comparable to one another. However, the
parallel applications having fixed processor requirements are not comparable, and cannot
be commodified easily. Hence, the problem is to design valuation metrics that commodi-
tize resource requirements and availability so as to take advantage of the efficiency of
auction mechanisms [146]. Thus, we need new scheduling mechanisms that are not only
efficient and ensure better performance of Grid resources, but also take into account user
interests, resource valuation and demand, and allocate resources fairly to user applications
by reducing the starvation of low valued and urgent applications.

Therefore, in this chapter, we present a novel market-oriented meta-scheduling mech-
anism which takes inspiration from auction principles to allocate resources in global Grid
environment. The objective of our meta-scheduling mechanism is to maximise both the
users’ utility by reducing starvation of applications, and the resource providers’ utility
by equally distributing the load, while minimising affect on other crucial metrics such as
waiting time and slowdown.

7.2 System Model

We consider a Grid with m resource sites, R1, R2..Rm having k job queues. Resource
sites supply information about available slots, load and waiting times of each queue to
the meta-broker at regular time intervals. A slot is a unit of resource allocation which is
described by a start time, a finish time, and the number of processors available for that
duration. A resource site also supplies an initial valuation for running an application in a
queue on that resource. The utility of of the resource provider is considered in the terms
of fairness in receiving the workload for execution. Thus, the objective of the meta-broker
is to equally distribute the load across all the resource sites.

The objective of the users is to have their applications completed by a deadline. It
is assumed that deadlines are hard, i.e. a user will benefit only if his/her application is
executed by its deadline. Users will also provide an initial valuation of the application to
the meta-broker.

7.3 Double Auction-Inspired Meta-scheduling (DAM)

Auction-based mechanisms have been the subject of many previous studies. Grosu et
al. [74] compare resource allocation protocols using First-Price, Second-Price, Vickery

7.3. DOUBLE AUCTION-INSPIRED META-SCHEDULING (DAM) 123

and Double Auction (DA). They show that DA favours both users and resources, while
the first-price auction is biased towards resources and the Vickery auction favours users.
Therefore, we have opted to use principles of DA (aka Call auction) for designing our
meta-scheduling mechanism.

In a typical Call auction, sellers and buyers submit offers (asks) and requests (bids)
respectively to an auctioneer who continually ranks them from highest to lowest in order to
generate demand and supply profiles. From the profiles, the maximum quantity exchanged
can be determined by matching asks, starting with the lowest price and moving up, with
the bids, starting with the highest price and moving down. This format allows buyers to
make offers, and sellers to accept those offers at any particular moment even though the
matching of asks and bids is done after specific scheduling intervals.

Figure 7.1: Double Auction based Meta-Scheduling Protocol

The elements of our meta-broker, which acts as an auctioneer in this context, can
be divided into three parts, as shown in Figure 7.1 – collection: meta-broker collects
information about queue slot availability and waiting time, valuation: assigns values to
the user applications and resource queues, and finally, matching: matching of applications
to resources. Within the meta-broker, an application valuation is considered as a bid while
a resource valuation is considered as an ask. In Figure 7.1, Un represents the nthuser
application, ak and bn represent the ask k for resource queue k and the bid corresponding
to user n respectively, and mQk represents the resource queue k at the resource m.

In our mechanism, the meta-broker generates bids and asks using the initial valuations

124 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

of users and resources as input, and augmenting them with information about resource
availability and user requirements. The valuation methods are described in the next sec-
tion. At regular scheduling intervals, the meta-broker matches the applications (asks) to
the resource queues (bids) if the deadline constraint of the application is satisfied. If an
application cannot be matched, then it will be reconsidered in the next scheduling interval.
Throughout this thesis, we refer to our Double auction-inspired mechanism as DAM.

7.3.1 Valuation Mechanism

One of the most important components of an auction is to assign valuation to user applica-
tions and resources. The Grid services may be valued based on the cost of infrastructure,
and economic factors such as supply and demand. However, user needs and urgency, and
simultaneously, efficient utilisation of Grid services must be reflected through valuation
of user applications and resources. Therefore, the meta-broker must generate a metric
for both the users and the resource providers that takes into account all these attributes.
This valuation should be dynamic, that is, in each scheduling cycle; it should be updated
based on various parameters, and the dynamic demand and supply of the system. To
design a good valuation metric, we took inspiration from Multi-Attribute Utility Theory
(MAUT) [20] [93]. MAUT gives a logical, consistent and tractable approach for quantify-
ing an individual’s preferences by consolidating them into a single objective. This allows
comparison of many diverse measures via single value. This theory includes first the iden-
tification of attributes and desirability function for each attributes and, then aggregation
of these desirability functions to a single scalar utility value. The details of our valuation
metric are discussed in next section.

Resource Valuation (Ask): The valuation of resources is affected by attributes such as
waiting time, load, initial valuation of the provider, and economic factors such as demand
and supply. The load of a queue is defined as the ratio of the number of processors
occupied to the total number of processors available to the queue. In order to balance load
across independent Grid sites, the meta-broker tries to give preference to the least loaded
queues while submitting applications. Also, the most urgent application must be matched
to the fastest queue. Since, in a Call auction, the maximum bid is matched to minimum
ask, the valuation metric of resource queues should be such that the queue with the least
waiting time should have the least ask value. Moreover, the valuation metric should also
take into account the initial valuation given by the resource provider, and also the demand
and supply levels of resources in the system (denoted asDemand and Supply). Demand
is the sum of the processors required by tasks to be allocated and Supply is the total
number of processors available at all resources. Let lk,t be the load on the resource queue
k at time t. Let ck,t be the initial resource valuation given by the provider. Let wk,t be

7.3. DOUBLE AUCTION-INSPIRED META-SCHEDULING (DAM) 125

the application waiting time for queue k at time t. Thus, the desirability functions are
proportional to wk,t, ck,t, Demand, Supply, and lk,t. Since each of these attributes are
preferentially independent [93], thus the valuation metric can be formed by aggregating
these attributes either in multiplicative or additive form. When we compared the effects
of each metric on distribution of load on the resource sites, we found that in the case of
additive form, the deviation in load1 across the resource sites is much more than that for
the multiplicative form. This can be observed from Figure 7.2. Secondly, when more
than two attributes are involved, an accurate additive aggregation requires the exact trade-
offs between attributes, which may not be apparent. Thus, we have used a multiplicative
aggregation to form a valuation metric from normalised attributes. This is given by:

ak(t) = Ok × wk,t ×
ck,t
cmax,t

× lk,t
lmax,t

× Demand

Supply
,where Ok is a proportionality constant

(7.1)

0.15

0.2

0.25

0.3

L
o

a
d

 D
e
v
ia

ti
o

n

0

0.05

0.1L
o

a
d

 D
e
v
ia

ti
o

n

Time (Seconds)
Additive Form Multiplicative Form

Figure 7.2: Comparison of Multiplicative and Additive forms of Valuation Metrics

Job Valuation (Bid): Similar to resources, a user’s application has also many attributes
such as the number of CPUs required, deadline and run time. The valuation metric of an
application i at time t is designed in such a way that the maximum value is assigned to
applications with urgent deadline. Also, if an application has not been mapped in the pre-
vious scheduling cycle, its corresponding bid (valuation) should be increased. This is to

1Note: Configurations of the experiment conducted is same as given in the Section 7.4.1

126 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

reduce the possibility of the application getting starved of resources by others with higher
valuations (bids) that have arrived at the meta-broker in the meanwhile. The urgency can
be calculated as (di − t), where di is the user-supplied deadline for the application. Let
sti be the submission time of the application. Similar to that for resources, the application
metric should also take into account the initial valuation of the application given by the
user, and also demand and supply levels of resources in the system (denoted as Demand
and Supply). Let vi is the initial application valuation given by the user. Thus, the desir-
ability functions are proportional to vi, sti, Demand, Supply, and (di − t). The resultant
valuation metric, formed by multiplying all the normalised attributes, is the following:

bi(t) = Hi ×
vi
vmax

× dmax − t
di − t

× Demand

Supply
× (t+ 1− sti)
t+ 1− stmin

, (7.2)

where Hi is a proportionality constant, and di 6= t.

7.3.2 The Meta-Scheduling Algorithm

As discussed earlier, the bids and asks generated by the meta-broker using the valuation
metrics are sorted on the basis of their values. Let following be the ordering of asks and
bids after sorting:

a1 < a2 < . . . aj . . . < am

b1 > b2 > . . . bi . . . > bn

A user application is allowed to participate in the match process if am < bn. As noted
before in Section 7.2, the commodity unit matched on behalf of the resource site is a slot
which a set of processors bounded by start and finish times. Figure 7.3 demonstrates the
two methods by which the slots can be generated:

!

"

#

!

"

!

"

$"

$!

$#
%&

%'

(%"
%!

%#

%) %*

!"##$%&'()*$'!"#
()*$

+"$"$,

+!

+#

+"

(a) Immediate

!

"

#

!

"

!

"

$"

$!

$#
%&

%'

(%"
%!

%#

%) %*

!"##$%&'()*$'!"#

()*$

+"$"$,

'$%

%+

,!

,#

,*

,)

,"

(b) Packaged

Figure 7.3: Available Queue Slots

7.3. DOUBLE AUCTION-INSPIRED META-SCHEDULING (DAM) 127

Immediate: At time t, the meta-broker can provide an immediate allocation to applica-
tions on the processors that are currently free. For example in Figure 7.3(a), two
processors are available on queue Q3. In this case, the slot start time is the schedul-
ing instant, and the slot is allocated for the estimated run time of the application.
In addition, the maximum number of slots available will equal the number of pro-
cessors. This manner of slots trading can help in reducing fragmentation in the
scheduling when application’s runtime is not precise.

Packaged: Alternatively, the applications can be scheduled to fill up the queue to a spe-
cific time horizon TH . The slots start from the first available time and contain as
many processors that are not occupied for a specific duration. In Figure 7.3(b), the
slots S1 to S5 are examples of such slots. After current time t, two processors are
free in queue Q3 upto time TH . S5 is therefore, an available time slot. Another time
slot S1, consisting of one processor on the queue Q1, is available as well. In this
method, the slot sizes can be of different sizes as can be noted from Figure 7.3(b).
This approach, depicted in Figure 7.3(b), was also used by Singh et. al [147]. In
this case, local schedulers can use backfilling to minimise the fragmentation in the
schedule such that execution of applications in the queue does not get delayed.

Algorithm 7.1: Double Auction-inspired Meta-scheduling Mechanism

while current time < next schedule time do1
RecvResourcePublish(P)2
// P contains information about providers
RecvJobQoS(Q)3
// Q contains information about users

end4
Calculate the Demand and Supply for resources5
Update the value of bids and asks using eqn. 7.2 and 7.16
Sort asks in ascending order7
Sort bids in descending order8
while all applications are assigned to resource queues do9

if bid bi is greater than ask aj then10
if QueueWaitingT ime(j) + ExecT ime(i) < Deadline(i) then11

if check processor availability on resource j then12
Schedule the application i to the resource j13
add application with matched resource site in Schedule List (Schd List)14
update the value of available time slots with ask aj15
i++16

else17
add user application to pending application list18

end19
j ++20

end21
foreach element ∈ Schd List do22

notifyuser()23
end24

128 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

Our scheduling mechanism is shown in Algorithm 7.1. In each scheduling cycle,
the meta-broker schedules the parallel applications after collecting all user’s requests and
resource performance information such as queue waiting times and free time slots (Line
1-3). At the end of each scheduling cycle, the meta-broker computes the demand for
resources and their supply (Line 4). Then it assigns valuation to user applications (bids)
and resource’s queue (asks) using the mechanisms presented in the previous section (Line
5).

From the sorted bid list, the bid (bi) with the highest value is matched to the resource
queue with the minimum ask (aj) that can satisfy the user requirement. Whether the
user application i is scheduled to the resource queue j (corresponding to ask aj), it will
depend on the applications’ processor and deadline requirements. Thus, first the deadline
of application i is checked using waiting time of the resource queue j (Line 10) and then
processor availability is checked on resource queue j (Line 11). If there is an ask which
satisfies the application’s QoS requirements, then the bid is matched to ask, and the user
and the resource provider are informed of the match. The application i is then scheduled
on to the resource queue j (Line 12) and then added to schedule list (Line 13). The
available time slots (commodity units) on resource queue j are updated correspondingly
(Line 14). If the deadline requirement of application i can be satisfied by resource queue
j, then no other ask can be matched to the application’s bid (Line 18). Therefore, the
application is removed from the bids list in that scheduling cycle. If the required number
of processor is not available on the resource queue j, bid bi is matched with next ask in
the sequence (Line 19). Matching for other bids and asks will be repeated until either all
bids or asks are matched.

7.3.3 Queueing Theory Based Model for Meta-scheduling

In order to know the generalised behaviour of any meta-scheduling algorithm, it is impor-
tant to analyse it with a queuing model which will also help to test the near optimality of
the algorithm. Thus, we designed a formal mathematical model to analyse and predict the
performance of the DAM in terms of other system-based metrics such as slowdown and
waiting time. This analytical model which finds the expected (average) metrics for our
meta-scheduling heuristic is used to test the correctness and substantiate the strength of
DAM in the experimental section.

Our analytical model is based on queuing theory, which has been used extensively
for modelling scheduling problems in distributed systems. Queuing Theory provides a
powerful stochastic and probabilistic approach to analytically model the mechanisms of
scheduling policies [100]. It can be observed by the queueing view of the system model
considered in previous section (as shown in Figure 7.4) that the system is well suited to
be analysed via queueing theory.

7.3. DOUBLE AUCTION-INSPIRED META-SCHEDULING (DAM) 129

Using this model we can get expected performance metrics such as mean waiting
time and mean slowdown of applications, which can be used to directly compare the
performance of our proposed meta-scheduling mechanism. An application’s slowdown
is its waiting time divided by its execution time. Mean slowdown is considered because
users generally desire that their application delay should be proportional to its execution
time [135][76]. For instance, a user with small application size generally prefers to wait
for relatively lesser time than those users who have longer applications.

Figure 7.4: Queuing Theory View of Meta-scheduling

We can model the system under consideration as a network of three queues to get the
optimal bound for various system parameters. In the meta-scheduler, each application is
assigned a priority or valuation and matched to resources according to its priority. This
component of meta-scheduler can be modelled by a priority queue system. Since process-
ing time of each application may not be exponential, thus we have chosen M/G/1 priority
queue system to analyse this part of the meta-scheduler. Then, an application is assigned
and dispatched to a resource to balance load across all queues in the system. This com-
ponent of the meta-scheduler is analysed using a comparable queueing system i.e. central
queueing system with least work remaining policy (M/G/m).

At each resource, an application is executed on more than one machine at the same
time. The local scheduler of the resource site also uses the backfilling policies and dif-
ferent types of queues to increase utilisation [115]. This component of meta-scheduling

130 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

is difficult to model analytically. Thus, to analyse this part of meta-scheduling, we have
taken an approximate model of real local scheduling systems. We have divided CPUs of
a resource into multiple partitions, where each partition acts as a M/G/1 queueing sys-
tem. The resource with multiple partitions is an approximation of real local scheduling
systems. The CPU/machine processing requirements of each application also follows a
general distribution (denoted as G).

Thus, in meta-scheduling, each application goes through three queuing systems be-
fore it start executing. Hence, by analysing the combination of the following sequential
network of three queuing systems, we get an approximate analytical model for meta-
scheduling system:

• Valuation or prioritisation (M/G/1 Queue with Priority)

• Matching or Dispatching (M/G/m Queue i.e. least work remaining (LWR) policy)

• Scheduling at a resource for execution (M/G/1 Queues)

The mean arrival rate of applications is λ. Let the service requirement distribution of
applications be any general distribution X . The mean service time of the applications is
E(X) and the second moment of service time is σ or E(X2). The distribution of processor
requirement by each application is given by C. Let the number of resource sites be m.

Valuation or prioritisation (M/G/1 Queue with Priority)

In the first part of DAM, applications are assigned valuations so that they can be re-
sequenced for scheduling. Thus, this scenario can be modelled as a single server queuing
system as shown in Figure 7.4. There are K priority classes of applications. The mean
service time of priority class j is 1

µj
and the second moment of service time is σ′j . The

overall second moment of service rate of applications by the server is σ′ . Since the time
taken to assign priorities is very small in DAM mechanism, the mean service rates of
application will also be very small. The applications arrival follows a Poisson distribution
with mean λ.

Let pj be the probability with which jth priority class applications arrived at the server.
Then, the mean arrival rate (λj) of the jth priority applications is given by:

λj = pj × λ (7.3)

Since the service time distribution of all priority class is 1
µj

, thus the system load due
to jth priority class applications is given by:

ρj =
λj
µj

7.3. DOUBLE AUCTION-INSPIRED META-SCHEDULING (DAM) 131

Let E(wj) is expected waiting time for the applications with priority level j. Then
using the classic result on non-preemptive priority queue by A. Cobham [38] we obtain
the mean waiting time and slowdown (E(sj)) of class-j applications:

E(wj) =
λ×σ′

2

(1−
∑j−1

i=1 ρi)(1−
∑j

i=1 ρi)

Thus, total mean waiting time and slowdown of applications in the system is given by:

W̄1 =
K∑
j=1

(pj × (E(wj) +
1

µj
)) (7.4)

S̄1 =
K∑
j=1

(pj × (E(wj) +
1

µj
))× E(X−1j) (7.5)

Matching or Dispatching (M/G/m Queue)

After applications are served by above queuing system based on priority, applications in
the out-going queue will be served by the second queuing server on a FCFS basis. It can
be considered as third component of meta-scheduler i.e., matching. For simplicity, the ap-
plications arriving into the second queueing system are taken to follow a poisson process.
For the assignment of these applications to the resource sites, we have used the central
queue with m servers policy. This policy has been proven to be equivalent to least-work-
remaining allocation policy, which is claimed to be optimal by Nelson et. al [119][120].
This policy is not analytically tractable under M/G/m queueing system. Nonetheless, sev-
eral good approximations exist in the literature, many of which are empirical. In this
study, we use the approximation given by Nozaki et. al [123] which is used in several
other publications [75] [76]. The approximation for mean queue length is stated as:

E(NM/G/m) = E(NM/M/m)
E(X2)

E(X)2
,where X: Service Requirement & N: Queue Length

(7.6)

The load of system is given by:

ρ = λ× E(X)

Let E(WM/M/m) be the average waiting time in a M/M/m queueing system and ρ be
the system load. Then, using well known Pollaczek-Khinchin formula in queuing theory,

132 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

the average queue length and waiting time for M/M/m queueing system is given by:

E(NM/M/m) =
PNρ

1− ρ
,where PN = [

m−1∑
z

(mρ)z

z!
+

mmρm

m!1− ρ
]−1 (7.7)

E(WM/M/m) =
E(NM/M/m)

λ
(7.8)

Thus, using Equation 7.6, 7.7 and 7.8, the mean waiting time and slowdown in the
queue by using central queue policy is given by:

W̄2 = E(WM/G/m) = E(WM/M/m)
σ

E(X)2
(7.9)

S̄2 = W̄2 × E(X−1) (7.10)

Scheduling at a Resource for Execution (M/G/1 Queues)

After the application is assigned to the resource queue, the application is needed to be
scheduled on multiple servers. Unlike the most of the commonly used queuing systems
where an application requires only one server for execution, here each application needs
more than one server (processors in our context) at the same time. Moreover, local sched-
uler at a resource uses different backfilling policies to decrease slowdown of applica-
tions [115]. Since, it is analytically intractable to solve this system, the designed analyt-
ical system for this component of meta-scheduling differ slightly from real systems. We
divided the processors of the resource into multiple disjoint partitions, with one queue per
partition. Each partition f on resource z is initially assigned rzf processors. Each of these
queues processes the applications, which require processors within range of (rz(f−1), rzf),
on FCFS basis. Let there be Nz servers/processors at resource site z, which are divided
between nz queues. Thus,

rz0 + rz1 + rz2 + rz3...rzf + ..rz(nz−1) = Nz (7.11)

Since the total number of resource sites ism, the arrival rate of applications at resource
site z is given by:

λz =
λ

m
(7.12)

Let uzf be the probability that an application require processor between rz(f−1) and rzf ,
and thus processed by queue f of resource site f . Let C be the probability distribution of
processor requirements for an application, this probability is given by:

uzf =

∫ azf

az(f−1)

C(x)dx (7.13)

Thus, the fraction of applications arriving at queue f of the resource site z is given by:

7.3. DOUBLE AUCTION-INSPIRED META-SCHEDULING (DAM) 133

λzf = λzuzf (7.14)

The load shared by each queue, when E(X) is mean service time, is given by:

ρzf = λzfE(X) (7.15)

Since each queue partition has M/G/1 FCFS queue system behaviour, thus we can
directly use the same results for the average waiting time. This is given by:

E(wzf) =
λzfσ

2(1− ρzf)
(7.16)

The total expected waiting time at a resource site is the average of all waiting time at
each queue partition, which is given by:

E(wz) =
1

nz

nz∑
f=1

E(wzf) (7.17)

Let W3 and S3 be the expected waiting time and slowdown of all resource sites, re-
spectively. Thus, they are given by:

W3 =
λ

m

m∑
z=1

E(wz) (7.18)

S3 = W3 × E(X−1) (7.19)

The overall expected waiting time and slowdown measures are given by combining
waiting time and slowdown of all three queueing system, i.e., Equation 7.4-7.5, 7.9-7.10
and 7.18-7.19:

Waiting Time = E(W) = W1 +W2 +W3 (7.20)

Slowdown = E(S) = S1 + S2 + S3 (7.21)

Thus, the queueing theory based analytical model for our meta-scheduling mechanism
is given by following equations:

134 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

Minimise(E(W)) subject to
nz∑
k

rzk = Nz, 1 < z < m (7.22)

Minimise(E(S)) subject to
nz∑
k

rzk = Nz, 1 < z < m (7.23)

The above model gives an approximation for real meta-scheduling systems. Thus,
to predict performance of our meta-scheduling policy, we can obtain optimal expected
waiting time and slowdown. Thus, Equations 7.22 and 7.23 for expected waiting time and
slowdown are needed to be solved for different values of nz using optimisation tools such
as Mathematica [Wolform Research 2008]. These analytical values are used to ascertain
the performance of DAM.

7.4 Performance Evaluation

7.4.1 Experimental Configuration

For our experiments in this chapter, we use Feitelson’s Parallel Workload Archive (PWA)
to model the parallel application workload for Grids. Since this chapter focuses on study-
ing the HPC parallel applications of users, the PWA meets our objective by providing the
necessary characteristics of real parallel applications collected from supercomputing cen-
ters. To avoid affect of initial setup phase of the HPC center, our experiments utilise the
applications in the second week of the Lawrence Livermore National Laboratory (LLNL)
Thunder (January 2007 to June 2007). The LLNL Thunder trace from the LLNL in USA
is chosen due to its highest resource utilisation of 87.6% among available traces to ideally
model a heavy workload scenario. From this trace, we obtain the submit time, requested
number of processors, and actual run time of applications. The characteristics of the
traces are given in Table 7.1. The submission time of parallel application is divided by
1000 to increase the number of applications submitted per schedule interval as per the
methodology presented by Sanjay and Vadhiyar [141]. Since the workload trace does not
contain any information about the user’s deadline and initial valuation, these were gen-
erated synthetically. For a user application with a runtime r, the deadline was generated
from a uniform random distribution between r and 3r. The trace data of utility Grid ap-
plications are currently not released and shared by any commercial utility Grid providers,
thus this information also has to be generated using a random distribution. The average
initial valuation of applications is chosen randomly between 90000 and 160000 currency
units using uniform distribution, so that it is always greater than application execution
cost. The user valuations are assigned so that at least half of users can afford to execute

7.4. PERFORMANCE EVALUATION 135

their application on the resources with the highest valuation. The Grid modelled in our

Table 7.1: Workload Characteristics

Mean Inter-Arrival Time 16.176 sec.
Average Job Runtime 2328.911

sec.
Standard Deviation for
Job Runtime

7790.11
sec.

Average CPU require-
ment

44 CPUs

simulation contains 10 resource sites spread across five countries derived from European
Data Grid (EDG) testbed [83]. The configurations assigned to the resources in the testbed
for the simulation are listed in Table 7.2. The configuration of each resource is decided
so that the modelled testbed would reflect the heterogeneity of platforms and capabilities
that is normally the characteristic of such installations. Each of the resources is simulated
using GridSim [24] as a cluster that employed a multi-partition easy backfilling policy for
local resource allocation [44].

The processors associated with each cluster in Table 1 are exclusively managed by
the meta-broker (i.e. all users are going through meta-broker). We have sub-divided the
allocated CPUs of each cluster into 3 queues in ratio of 1:2:3 of the total number of CPUs
in the cluster. The processing capabilities of the processors are rated in terms of Million
Instructions per sec (MIPS) so that the application requirements can be modelled in Mil-
lion Instructions (MI). The average initial valuations that are assigned to each resource is
between 4.5 and 9.5 currency units per processor per second.

We have compared our Double auction-inspired meta-scheduling mechanism against
five other well-known traditional and market based mechanisms listed below:

• Shortest Job First (SJF): In this mechanism, the applications are prioritised on
the basis of estimated runtime. This is a very common algorithm used in cluster
management.

• First Come First Serve (FCFS): An application is assigned to the first available
queue. This is a common mechanism employed by many meta-schedulers such as
GridWay [85].

• Earliest Deadline First (EDF-FQ): In this mechanism, the applications with the
earliest deadline are scheduled on to the resource queue slot with the least waiting
time.

• Highest Valuation to Fastest Queue (HVFQ): In this mechanism, the application
with the highest user valuation is assigned to the queue slot with the least waiting

136 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

Table 7.2: Simulated EDG Testbed Resources

Site name (loca-
tion)

Number
of pro-
cessors

Single
pro-
cessor
rating
(MIPS)

RAL (UK) 2050 1140
Imperial College
(UK)

2600 1330

NorduGrid (Nor-
way)

650 1176

NIKHEF (Nether-
lands)

540 1166

Lyon (France) 600 1320
Milano (Italy) 350 1000
Torina(Italy) 200 1330
Catania (Italy) 250 1200
Padova (Italy) 650 1000
Bologna (Italy) 1000 1140

time. This mechanism is generally used in auction mechanism such as Vickrey auc-
tion. Vickrey auction is used in resource management systems such as Spawn [165]
and Bellagio [9].

• FairShare or Proportional Share: In this mechanism, each application is assigned
queue slots proportional to the ratio of its valuation to the combined valuation of all
the applications. This mechanisms is employed in REXEC [36].

The following criteria are used to compare fairness and user satisfaction provided by
these mechanisms:

• Urgency vs. Success Ratio: The user’s urgency to get their application completed,
is defined as:

u =
deadline− start time

execution time
− 1 (7.24)

where start time and execution time are attributes of the application. The dead-
line is considered very urgent when u < 0.25, urgent when 0.25 < u < 0.5, inter-
mediate when 0.5 < u < 0.75, relaxed when 1 > u > 0.75 and very relaxed when
u > 1. This criterion relates to how the scheduler deals with users with different
demands on time.

• Valuation vs. Success Ratio: The valuation provided by the user for an application
is divided by the required number of processors in order to normalise it. We examine
how the schedulers allocate resources fairly among different users with different

7.4. PERFORMANCE EVALUATION 137

application valuations. If (u < 0) for an application then the application will not be
scheduled by the meta-broker.

• Number of deadlines missed with increase in number of user applications. We use
this criterion to examine how the scheduling mechanisms are able to cope with user
requests when demand for resources exceeds supply.

• Load Deviation: The load of a resource is the ratio of the number of processors
occupied to total number of processors available at the resource site. We average
the load over the Grid resources and measure the standard deviation. This informs
about how well the scheduling mechanism is able to balance load across the Grid.

7.4.2 Analysis of Results

0.8

1

1.2

1.4

1.6

1.8

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

α=2, β=20

0

0.2

0.4

0.6

0.1 0.13 0.16 0.19 0.22 0.25 0.28

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

Arrival Rate (λ)
DAM Analytical ModelDAM Analytical Model

(a)

0.06

0.08

0.1

0.12

0.14

0.16

S
lo

w
d

o
w

n
 (

se
co

n
d

s)

α=2, β=20

0

0.02

0.04

0.06

0.1 0.13 0.16 0.19 0.22 0.25 0.28

S
lo

w
d

o
w

n
 (

se
co

n
d

s)

Arrival Rate (λ)

DAM Analytical ModelDAM Analytical Model

(b)

2.5

α=2, β=25

2

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

α=2, β=25

1.5

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

1

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

0.5

1

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

0.5

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

0

0.1 0.13 0.16 0.19 0.22

W
a

it
in

g
 T

im
e

 (
se

co
n

d
s)

0.1 0.13 0.16 0.19 0.22

Arrival Rate (λ)
DAM Analytical ModelDAM Analytical Model

(c)

0.06

0.08

0.1

0.12

0.14

0.16

S
lo

w
d

o
w

n
 (

se
co

n
d

s)

α=2, β=25

0

0.02

0.04

0.06

0.1 0.13 0.16 0.19 0.22

S
lo

w
d

o
w

n
 (

se
co

n
d

s)

Arrival Rate (λ)

DAM Analytical ModelDAM Analytical Model

(d)

Figure 7.5: Comparison of DAM with analytical results

In this section, we discuss the results of our evaluation.

138 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

Comparison of DAM with Theoretical Results

In Section 7.3.3, we designed an analytical model for meta-scheduling problem in order
to ascertain the behaviour and substantiate the strength of our proposed Double auction-
inspired meta-scheduling (DAM) mechanisms. The analytical model gives an near-optimal
solution for crucial system metrics such as mean waiting time and mean slowdown of ap-
plications, that can be compared with DAM and evaluated under a variety of conditions.

The optimal mean waiting time and mean slowdown is calculated using the approx-
imate queuing model for meta-scheduling, by solving Equation 7.22 and 7.23 using the
NMinimize function in Mathematica [Wolform Research, 2008]. This is achieved by
finding the ri values in each instance that produce the local minima for expected waiting
time (E(W)) and slowdown (E(S)). Since the analytical model proposed in Section 7.3.3
is an approximation to the meta-scheduling problem, thus the optimal solution obtained
is actually a near-optimal solution for the meta-scheduling problem at steady state.

Experimental Methodology: Li et al. [106] analysed various Grid Workloads and
found that the Weibull distribution is best fitted to model runtime of applications. Thus,
the application runtime is generated using a Weibull distribution (α, β) [106]. The arrival
rate application is assumed to be Poisson distribution with parameter λ. Since our aim
is to compare both analytical and simulation results, thus the probability distributions for
arrival rate and runtime of applications are same in both analytical and simulation experi-
ments. However, since the analytical model is an approximation of the real systems, thus
the ri values can differ between the analytical model (where they are numerically solved)
and the simulated real systems (where the scheduling is done using heuristics). The ar-
rival rate of ith priority class applications (λi) depends on probability pi. The pi is obtained
during the valuation process of DAM through simulation. Each resource considered is as-
sumed to have same number of processors to make the simulation scenario as close as
possible to the analytical model. To make the solution of the analytical model tractable,
we have considered five Grid resources with 128 processors each and four priority class
applications.

A large range of λ values were considered demonstrating a wide spectrum of load and
arrival rate. The performance metrics were computed for these arrival rates each with
different mean application runtime (represented by the combination of values of α and
β). Two set of results with different mean application runtime are presented in Figure 7.5.
The different mean in two scenarios is obtained by scaling up the value of β which results
in jobs with longer average runtime and with large variance.

In order to obtain steady state results, we ignored scheduling of first 5000 applications
and measure mean waiting time and mean slowdown for next 5000 applications. For each
value of λ, experiment is repeated 30 times and average of results from these repeated
experiments is used for comparison.

7.4. PERFORMANCE EVALUATION 139

Discussion of Results: Figure 7.5 shows that the simulation results of DAM follows
similar increasing trend as the analytical model. This not only validates the correctness of
DAM heuristic but also indicates that the performance of DAM is near optimal in terms
of metrics such as mean waiting time and mean slowdown. DAM gives consistently lower
values for waiting time and slowdown than the optimal values obtained from analytical
model. There is significant gap between DAM and analytical model results, for example,
when β = 25, the gap between DAM and analytical model is about 25% to 30%. The
reason for the gap is that the analytical model is an approximation of real meta-scheduling
systems and thus it does not model the backfilling policies used by the local scheduler of
resources which reduces the slowdown and waiting time of applications more than the
optimal solution of analytical model.

0.3

0.4

0.5

0.6

S
u

c
c
e
s
s
 R

a
ti

o

0

0.1

0.2

<0.25 0.25-0.5 0.5-0.75 0.75-1 >1

S
u

c
c
e
s
s
 R

a
ti

o

Deadline Urgency

FCFS FairShare SJF HVFQ EDF-FQ DAM

(a) Effect of user urgency

0.7

0.6

0.4

0.5

S
u

c
c
e
s
s
 R

a
ti

o

0.3

0.4

S
u

c
c
e
s
s
 R

a
ti

o

0.2

S
u

c
c
e
s
s
 R

a
ti

o

0

0.1

S
u

c
c
e
s
s
 R

a
ti

o

0

<1000 1000-11000 11000-22000 22000-33000 >33000

Budget/Number of ApplicationsBudget/Number of Applications
FCFS FairShare SJF HVFQ EDF-FQ DAM

(b) Effect of user valuation

40

50

60

70

80

90

%
 o

f
J

o
b

s
 M

is
s

e
d

 D
e

a
d

li
n

e

0

10

20

30

40

1000 2000 3000 4000 5000

%
 o

f
J

o
b

s
 M

is
s

e
d

 D
e

a
d

li
n

e

Number of Jobs Submitted

FCFS FairShare SJF HVFQ EDF-FQ DAMFCFS FairShare SJF HVFQ EDF-FQ DAM

(c) Number of Deadlines Missed

Figure 7.6: Benefit for Users

140 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

Benefit for Users

This section shows how our meta-broker benefits users by not only completing the most
number of applications with different QoS needs but also benefiting every user in different
urgency and budget groups.

Effect of User Urgency: Figure 7.6(a) shows the percentage of total applications com-
pleted successfully against the users’ urgency values. Figure 7.6(a) shows that DAM has
scheduled a larger number of applications than other mechanisms in every urgency group.
For example, in the intermediate group (0.5 − 0.75), DAM scheduled 12% more appli-
cations than its closest competitor (FairShare). This is in contrast to the performance of
FCFS and SJF which is the worst in almost every case. This is due to the fact that DAM
is designed to increase an application’s value with urgency, while in others this is not con-
sidered. The performance of FairShare is very close to DAM and even scheduled almost
equal number of applications as DAM when Deadline urgency is less than 0.25. This is
because DAM tries to reduce the waiting time of applications with relaxed deadline by in-
creasing their valuation. Thus, when the deadline urgency was greater than 1, then DAM
scheduled about 12% of more applications than FairShare. Jobs with relaxed deadlines
progressively gain in valuation (or, float to the top of the bid list) when they are held at
the scheduler over time in DAM, and are therefore not starved. This can be seen by com-
paring the performance of DAM with EDF-FQ, which prioritises urgent applications but
performs poorly with relaxed deadlines. Since the users’ objective is to complete their
applications by the deadline, delaying an application at the scheduler is appropriate as
long as the deadline is met.

Effect of User Valuation: From Figure 7.6(b), we can see that DAM completes greater
number of applications across all valuations than the other mechanisms. Even though
Fareshare again performed very close to DAM for medium valuation groups, DAM out-
perform FairShare for all other groups by scheduling atleast 10% more applications. For
applications with very low valuation (< 1000), the DAM managed to schedule about 20%

of the applications as compared to 11% for FairShare which perform as well as DAM
when the application valuations are medium. This is because the latter assigns the lowest
proportion of resources to the users with the lowest valuation. Therefore, in this case, most
of the parallel applications fail to execute due to lack of sufficient processors. It is also
interesting to note that HVFQ, which was supposed to favour users with high budget, has
scheduled almost 4% less number of applications than DAM for Budget > 33000. This
is because HVFQ does not consider other requirements of applications such as deadline.

7.4. PERFORMANCE EVALUATION 141

Number of deadline missed: From Figure 7.6(c), we can clearly see as the demand
for resources (number of applications) increases, the number of applications that missed
their deadline also correspondingly increases due to the scarcity of resources. But DAM
is able to complete around 8% to 15% more applications than other mechanisms. As SJF
resulted in better packing of jobs at resource sites, SJF performed relatively better than
the other mechanisms such as EDF-FQ, HVFQ and FCFS. FCFS performs the worst as it
does not consider the effect of deadlines and queue waiting time.

0.25

0.2

0.15

L
o

a
d

 D
e
v
ia

ti
o

n

0.15

L
o

a
d

 D
e
v
ia

ti
o

n

0.1

L
o

a
d

 D
e
v
ia

ti
o

n

0.05

0

Time (Seconds)

FCFS FairShare SJF HVFQ EDF-FQ DAM

Figure 7.7: Variation in Load across Resources

Benefit for Resources

Simulation results in Figure 7.7 show how DAM effects the load on different resources.
The figure shows the standard deviation in resource loads against the time period of the
execution. It can be noted that while the deviation across resources for other mechanisms
are steadily increasing, on average DAM has kept it, consistently, almost close to 0. This
implies that the DAM was able to successfully balance the load across all the resource
sites. This is due to the fact that the resource queue’s valuation is increased when its load is
increased and therefore, heavily loaded queues are sorted to the bottom of the ask list. The
performance of the EDF-FQ mechanism, which is closest to that of DAM, also resulted in
on average 5 times more Load Deviation than DAM. Moreover, from Figures 7.6(a) and
7.6(b), it can be seen that EDF-FQ does not schedule as many applications as DAM, even
though EDF-FQ also tries to balance load across the resources by submitting according to
queue waiting time. However, FairShare mechanism which benefitted the users in similar
way as DAM, resulted in maximum load imbalance which is even worst than HVFQ.

142 Chapter 7. META-SCHEDULING TO ENHANCE ALL GRID PLAYERS’ UTILITY

Thus, DAM is not only providing benefit to users but also providing benefit to resource
providers by equally dividing load between them.

7.5 Summary

We have presented a market-oriented meta-scheduling policy for allocating multiple ap-
plications on distributed resources within a Grid. The resource sites are organised as a
collection of queues with different capabilities and waiting times. The goal of the sched-
uler is to maximise the users’ utility by taking into account their deadlines and the value
attached to their applications, and to maximise the resource providers’ utility by fairly al-
locating the applications across the Grid. The meta-broker also has to benefit all users by
preventing starvation of applications that have relaxed deadlines or low valuation, while
keeping effect on other crucial system metrics such as mean waiting time and slowdown
at minimum level.

Experimental evaluation of the proposed mechanism against common mechanisms,
such as SJF, HVFQ, EDF-FQ, FCFS, and FairShare, used in other meta-schedulers has
showed that DAM maximises the utility of both users and resource providers across all
the target metrics. DAM is not only able to schedule about 8% to 15% more user ap-
plications, but also has the highest success ratio in almost all the groups for applications
with different deadlines and different valuations. For the users with the lowest budget
(< 1000), the success ratio of their applications is increased by almost 10%. Similarly,
DAM also maximises the utility of resource side by equally distributing the workload
according to capacity of resource sites. Thus, DAM is able to improve the balancing
of load across the constituent resources of the Grid with almost zero load deviation. In
maximising providers’ utility, DAM even outperforms the FairShare mechanism which
provides similar utility to users as DAM. The key reason here is that the valuation metrics
are able to capture information which is important to both users and resource providers,
and therefore the meta-broker schedules applications more effectively.

Thus, we demonstrate that, by considering both system metrics and market parame-
ters, we can enable more effective scheduling which maximises both users’ and resource
providers’ utility. In the next chapter, we will describe how the meta-broker can be im-
plemented within a Grid exchange environment.

Chapter 8

Market Exchange and Meta-Broker
Implementation

This chapter presents the implementation of our meta-broker within a market exchange
(named as ‘Mandi’) framework. The resulting system aims to provide a market-oriented
meta-scheduling environment in which users can trade and reserve resources in utility
Grids. The architecture of Mandi is designed to overcome the limitations of the existing
Grid Market infrastructures [4] [121], which were discussed in Chapter 2. The Mandi
software also serves as a proof of concept for this thesis. In the next section, the motiva-
tion for designing Mandi is discussed. In the remaining sections of the chapter, market
exchange’s requirements, its architectural design, and the implementation of “Mandi” are
discussed.

8.1 Motivation

Emerging utility computing paradigms such as Clouds are promising to deliver highly
scalable HPC infrastructure on-demand. In Chapters 2 and 3, we discussed how a market
exchange can ease the process of buying and selling of compute resources in these utility
Grids. A market exchange provides a shared trading infrastructure which can enable
interaction between different market-oriented systems.

As described in Chapter 3, our proposed meta-broker architecture distinguishes itself
from other meta-scheduling systems by separating the job submission and monitoring
(performed by the user brokers) from the resource allocation (performed by the meta-
broker). The existing market exchange systems, such as Catnet [54], Bellagio [9], GridE-
con [4] and SORMA [121], do not allow such separation, which makes them difficult to
customise. In addition, they have been designed to support a limited number of trading
protocols. This restricts the participation of resource providers using a trading protocol of

143

144 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

their own choice. The flexibility to choose trading and pricing protocols is critical since
it can impact the participants utility enormously depending on the current demand and
supply. Thus, a market exchange requires to support diverse services [16] including (a)
registration, buying and selling; (b) advertisement of free resources; (c) coexistence of
multiple market models or negotiation protocols such as auction; and (d) Grid resource
brokers and RMSs to discover resources/services and their attributes (e.g., access price
and usage constraints) that meet user QoS requirements.

Therefore, we introduce the design of a market exchange framework ‘Mandi’, which
supports the above features, and thus overcomes some of the short-comings of the existing
systems, by allowing the co-existence of multiple negotiations of different types. We aim
to develop a light weight and platform independent service-oriented market architecture
whose features can be accessed easily by current Grid systems. This chapter describes the
implementation of our meta-broker architecture (proposed in Chapter 3) within Mandi
market exchange, and how it enables the reservation of resources from multiple sites.

8.2 Market Exchange Requirements

The market exchange framework requirements can be divided into two categories: infras-
tructure and market requirements.

8.2.1 Infrastructure Requirements

(a) Scalability: Since, the increase in the number of resource requests can affect
the performance of the market exchange, thus the scalability of the exchange can
become an issue. The exchange architecture should be designed such that access
to market services be least effected by the number of service requests. In addi-
tion, it should guarantee the best efficiency in matching the consumers demand and
provider’s supply.

(b) Interface Requirements and Grid Heterogeneity: The user interface plays an
important role in allowing the access of the market exchange by a wide variety of
users. Depending on how a user wants to access the market, different types of in-
terfaces should be provided. In Grids, many market based brokers [85] [163] ease
the process of accessing the Cloud resources. Similarly, on the resource provider
side, heterogeneous resource brokers [104] with market based capabilities are avail-
able. Thus, these brokers should seamlessly access the market exchange’s services
whenever required by invoking simple platform independent exchange APIs.

(c) Fault Tolerance: the market exchange should be able to resume its services from
the closest point before the failure.

8.2. MARKET EXCHANGE REQUIREMENTS 145

(d) Security: To avoid spamming, there should be a security system for user registra-
tion. All the services of the exchange must be accessed by authorised users.

8.2.2 Market Requirements

(a) Multiple types of Application Models and Compute Services: The user resource
requirements can vary according to their application model. For example, to run an
MPI application, users may want to lease all the compute resources from same re-
source provider, which gives much better bandwidth for communicating processes.
Thus, users can have different types of compute resource demands depending on
their applications. Similarly, resource providers can advertise different type of re-
sources such as storage and virtual machines. Thus, the market exchange should
be generic enough to allow the submission of different types of compute resource
requests and services.

(b) Multiple User Objectives: Users may wish to satisfy different objectives at the
same time. Some possible objectives include receiving the results in the minimum
possible time or within a set deadline, reducing the amount of data transfer and du-
plication, or ensuring minimum expense for an execution or minimum usage of al-
located quota of resources. Different tasks within an application may be associated
with different objectives and different QoS requirements. The exchange should,
therefore, ensure that different matching strategies meeting different objectives can
be employed whenever required.

(c) Resource Discovery: Users may have different resource requirements depending
on their application model and QoS needs. Thus, the exchange should be able to
aggregate different compute resources and should allow users to access and discover
them on demand.

(d) Support for Different Market Models: In Grids, several market based mecha-
nisms have been proposed for trading resources using market models such as auc-
tions and commodity market [5]. Each mechanism, such as the English auction and
the Vickery auction, has different matching and pricing strategies and has their own
advantages and disadvantages. Thus, the exchange should be generic enough to
support as many market models as possible.

(e) Coexistence/Isolation of Market Models: Similar to real world markets, the mar-
ket exchange should support concurrent trading of compute services by different
negotiation protocols such as auction. For example, Double auction and Vickery
auction can coexist simultaneously and users can participate in each of them.

146 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

(f) Support for Holding, Joining and Discovery of Auctions: Users can have re-
quirements that may not be fulfilled by currently available compute resources, and
thus, may want to hold their own auctions and invite bids. Moreover, any user can
discover these auctions and join them if necessary.

The following sections present the architecture, design, and implementation of Mandi
market exchange that takes into account the challenges mentioned so far, and abstracts the
heterogeneity of the environment at all levels from the end-user.

8.3 Mandi Architecture and Design

8.3.1 Design Considerations and Solutions

The primary aim of Mandi is to provide a marketplace where the consumer’s resource
requests and the provider’s compute resources can be aggregated, and matched using dif-
ferent market models. The main challenges and the way they are approached in Mandi
design are as following:

(a) Flexibility in choosing market model and user objectives: As discussed various
market models or negotiation protocols can be employed by users to trade com-
pute resources. Each market model has different requirements [5]. For example,
in the commodity market model, consumers search the current state of the market
and immediately buy some compute service. This requires synchronous access to
that instance of compute resource. In the case of an auction, there is a clearing time
when the winner selection is done. In addition, any user can request to hold auctions
which require separation of each auction. Thus, the components within Mandi are
designed to be modular and cleanly separated on the basis of functionality. Each
of them talks through the persistence database that constitutes a synchronisation
point in the whole system. Different auction protocols are abstracted as “one-sided
auction” and “two-sided auction” which can be extended to add new auction mech-
anisms. Each auction type is characterised by the winner selection mechanism. The
reservation of matched services is separated from the trading mechanisms to al-
low flexibility and coexistence of different trading models such as commodity and
auction market.

(b) Support heterogeneous compute resources and applications: To allow hetero-
geneous Resource Management Systems (RMSs) and brokers to access market ex-
change services, Mandi’s architecture is needed to be platform independent. Current
market exchanges such as Sorma [121] handle the heterogeneity by implementing
plug-in for each resource management system. This is not feasible in the long term

8.3. MANDI ARCHITECTURE AND DESIGN 147

since APIs of different resource providers for job submission, reservation and mon-
itoring may get updated with time. Thus, Mandi is designed to handle mainly the
allocation of resources to users applications, while the job submission, monitor-
ing and execution are left to user brokers. Mandi’s services are available through
platform independent APIs implemented by using Web Services.

(c) Fault tolerance: Mandi can handle failures at two stages: during trading, and dur-
ing reservation. The failure during reservation can occur due to network problems,
and over subscription of resources. In the case of network problem, the failed re-
source requests will be considered in the next scheduling cycle. The reservation
failure due to resource oversubscription is handled by consumers and providers.

To avoid failures during trading, the resources are not reserved, unless all the tasks
of an application are mapped. To avoid allocation of one resource to multiple appli-
cations, one compute resource is allowed to be traded only in one negotiation.

In addition, the persistence database protects the Market Exchange against failure
during trading. The state of Mandi is periodically saved in the database. Thus,
Mandi can resume its work from where it was left.

(d) Scalability: Most of the Mandi’s components work independently and interact
through the database. This facilitates the scalable implementation of Mandi as each
component can be distributed across different servers accessing a shared database.
Since, Mandi handles only the resource allocation and delegates the management of
job submission and execution to the participating brokers and providers RMS, thus
most of threads in Mandi are light weight and short lived.

8.3.2 Architectural Components

The architecture proposed in this work is inspired by the concepts of the ‘Open Market’
where any user can join, sell and buy their compute services. Figure 8.1 shows the service
oriented architecture design of the Mandi’s framework and its main services. Mandi is
organised into two main services i.e. the user services, and the core services consisting
of the meta-broker service the reservation service and the database service. The core
functionality of each layer is described in the following sections. Each of the services can
run on different machines independently, and communicate with only database service.

User Services

The user services hide all the internal components of Mandi and implement all the ser-
vices visible to market participants. The services of Mandi are exposed to consumers and

148 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

Mandi
Market

Exchange

Accounting

Service

Reservation

Service

Core

Services

User

Services

�Us

er 3

Advertise Resource

in Commodity Market

Users
Resources

Auctions
Requests
…..

Two-Sided
Auction

One Sided Auction
…..

Database Service

MetaBroker

Service

Advertisement
Discovery

Reservation

….. Authorization / Authentication

Service

Resource

Service

User 1 User

Community

Hold Double

Auction

Join

Auction

User 2

Hold Auction
Join Auction

…..

Registration

Service Auction

Service

Figure 8.1: Mandi Architecture

resource providers through platform independent APIs which are implemented using Web
Services. The following market services are provided to users:

(a) Registration Service: Users need to register before they can access the exchange’s
services. The users details are maintained in the storage layer, and are needed for
authentication and authorisation.

(b) Auction Service: This service allows a user to join any auction and bid for the
items. Hold Auction service allows users to specify the auction types which they
are allowed to initiate. Mandi can conduct two classes of auctions, i.e., one-sided
auction and two-sided auctions. In the case of two-sided auctions, multiple con-
sumers and providers can choose to participate and get matched.

(c) Resource Services: Service Discovery and Service Reservation allow consumers
to find services of their requirements and reserve them. This feature is added to
integrate commodity market model within Mandi. Advertisement Service allows
resource providers to advertise their cloud resources (number of CPUs and time at
which they will be available).

(d) Authentication and Authorization Service: This service allows users to login into
the market exchange and authorises them to access other Mandi services.

8.3. MANDI ARCHITECTURE AND DESIGN 149

Core Services

These services consist of the internal services of the market exchange. Its core compo-
nents are the meta-broker, the accounting and the advance reservation system.

(a) Meta-Broker Service: The initiation of any auction is managed by the meta-broker
service. It conducts the auction and announces the auction winner through Advance
Reservation service. The auction can either be one sided or two sided. Thus, two
components i.e. Two-Sided Auction and One-Sided Auction are provided to add
customised auction protocols within Mandi.

(b) Advance Reservation Service: It informs the resource providers about the match,
reserves the advertised (matched) service, and gets the reservation id (referred as
Ticket in Chapter 3) that is used by consumer to submit his application.

(c) Accounting Service: It records the trading information of each user. It also records
the information about the failed and successful transactions.

(d) Database Service: This service is the interface between the persistence database
and other agents such as the web interface, the advance reservation and the meta-
broker. Its main objective is to maintain all the trading information such as trans-
action history, users details, auctions, compute resources for leasing, and user re-
quests. It enables the recovery of Mandi in the case of unexpected failure, and is
also useful in synchronising exchange’s various components.

8.3.3 High Level Description

Mandi can initiates various negotiation protocols to match multiple user requests to the
provider’s ask. The negotiation protocols can be requested by users participating in the
Mandi. For example, Figure 8.1 shows any user community can request Auction Service to
hold a Double auction. In this case, the providers advertise their resources with their price
(aka asks). Consumers submit their bids to show their interest in leasing the advertised
resources. All the bids and asks are stored in the database which will be accessed at the
end of auction for calculating the winner bids.

The Meta-Broker, which is the main agent of Mandi, coordinates the matching of asks
and bids, and trading between auction participants. At the end of auction, the meta-broker
finds out the winners and sends the reservation requests to the Reservation Service of
Mandi. The Reservation Service informs the resource providers and consumers about the
auction result. The information about reservations is stored within Mandi using Account-
ing Service.

150 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

8.3.4 User Interaction Phases

To understand the interrelationships between Mandi’s services, it is necessary to see how
they interact in different use-cases. There are several important use-cases when inter-
acting with Mandi. There are two types of users trading in Mandi: a) consumers who
need compute resources to execute their applications, and b) resource providers who are
providing their infrastructure as service.

(a) Registration: Every user needs to register and submit their personal details such
as name, organisation address, credit card details and contact phone number. After
registration users are issued a login id and password to access exchanges services.
The user details are stored in the persistence database and needed mostly for the
accounting and logging purposes. These details can be accessed by other entities
through User Catalogue component of the Database Service.

(b) Resource Advertisement: Any user can advertise the compute resource available
for leasing. Each resource is assigned a unique identifier that is registered in Service
Catalogue for discovery purposes. The user is required to give information such
as how many CPUs/Virtual Machines(VMs) are available for processing and what
are their configurations. The user also needs to inform Mandi using what trading
protocol he/she wants to negotiate with resource providers. If the user selects the
commodity market model, then the leasing price of the resource should be given
while advertising the resource. If the user selects the auction model, then the auction
type is needed to be selected by the user. All the information is stored in the storage
layer that is accessed by other components of Mandi using Database Service for
allocation purposes.

(c) Service Discovery: Users can discover resources that are advertised in Mandi
through the Discovery component of Resource Service. To find the resource of
their choice, users just need to give the configuration of compute resource they are
interested in and when they want to lease. Mandi will search the Resource Cata-
logue service for the required resources, and send the matched resources with their
trading protocol information to users. Users can select the resources of their choice
and can utilise either Resource Service or Auction Service for leasing the resource.

(d) Leasing Resources in Commodity Market: To allow the integration of commod-
ity market model in the Mandi market exchange, the reservation service is added to
allow users to directly lease the available resources. A user provides the identifier of
the resource to Mandi that he/she is interested in leasing. The users lease request is
added in the Lease Request Catalogue which is regularly accessed by the Advance
Reservation service. The reservation service does the final allocation of resources

8.3. MANDI ARCHITECTURE AND DESIGN 151

by informing the resource provider and adding the information in the persistence
database for accounting purposes. After allocation the leased resource and request
are removed from the corresponding catalogues.

(e) Conducting an Auction: To hold an auction, first a user needs to get the type
of auctions currently supported by the market exchange. Then, the user can send
a request to hold the particular type of auction with details such as auction item,
minimum bid, and auction end time. If the auction item is a compute resource,
the user is required to specify the time for which CPU/VM will be leased. All
the auction requests are stored in the database. Depending on the chosen auction
protocol, an auction thread (with a unique identifier) is initiated by the Meta-Broker
service. After initiation of the auction thread, the unique identifier (AuctionId) is
sent back to the user (auction holder). The auction thread waits till the auction end
time is reached. Users who want to bid in the auction need to provide the AuctionId
that can be discovered using Join Auction service. Depending on the auction rules,
the user is also allowed to resubmit updated bid. At the end of the auction, the
auction thread collects the bids and executes the winner selection algorithm and
sends the reservation request to the Reservation Service. The Reservation Service
creates a contract for accounting purposes, and informs the participant about the
auction outcome.

8.3.5 Implementation Details

The Class design diagram which illustrates the relationship between Mandi’s Objects is
depicted in Figure 8.2. The objects in the Mandi can be broadly classified into two cate-
gories - entity and workers. This terminology is derived from standard business modelling
processes [51]. Entities exist as information containers representing the properties, func-
tions and instantaneous states of the various architectural elements. The entities are stored
in the database and are updated periodically. Workers represent the internal functionality
of Mandi, that is, they implement the actual logic and manipulate the entities in order to
allocate resources to applications. Therefore, workers can be considered as active objects
and the entities as passive objects. The following sections take a closer look at some of
the important entities and workers within Mandi.

Entities

(a) User: The User class stores information about the participant members (consumers
and providers) of Mandi. This information is used for authentication and autho-
risation. From the point of view of the exchange, any user can act as consumer
or provider thus there is no special field to differentiate between them in Mandi.

152 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

GridExchangeService

Monitor

BrokerStorage

AccountingService MetaBroker

Scheduler

TwoSidedAuction OneSidedAuction

AuctionRequest
TimeSlot

Application
QoS

ComputeResource

User
Job

ComputeQoS

1

1 11 1

1

1

1

1

11
1

1

1

1
1..*

1
1..*

1

1..*
1

1

1
1..*

1..*

1

1..*

1

1

1

«bind»

1

1..*

Figure 8.2: Mandi Class Design Diagram

Each user can advertise multiple compute resources, and submit multiple lease and
auction requests.

(b) TimeSlot and ComputeResource: The TimeSlot Class is used to represent of com-
pute resources available for leasing. The “TimeSlot” indicates how much time and
how many CPUs are available. Each “TimeSlot” is associated with one compute re-
source that is a representation of a set of CPUs or virtual machines advertised by the
resource provider. If a resource provider has conducted an auction for inviting bids
for the time-slot, then the AuctionType and the AuctionID attributes will be used to
store the auctions information. Each “TimeSlot” can be associated with only one
auction.

(c) Auction Request: All the information for holding an auction for any commodity
advertised by a user is represented using the AuctionRequest Class. Every auction
is identified by a unique identifier i.e. auctionID. In economics, generally bids in
auctions are considered in the form of monetary value. But in the case of computing
service, a bid can be a more generalised form depending on the requirements of an
auction holder. For example, a user holds an auction to find a resource provider
who can lease the compute resource with minimum delay and within the specified
budget. Thus, the user can invite bids in terms of the start time of the resource

8.3. MANDI ARCHITECTURE AND DESIGN 153

lease. Mandi provides facilities to define different types of auctions which can
be implemented by extending the TwoSidedAuction and OneSidedAuction classes.
Each auction mechanism is specified by its winner selection algorithm.

To enable co-existence of multiple auction based negotiation with different match-
ing and pricing strategies, the AuctionRequest class contains the “auctionType”
attribute informing Mandi which auction user wants to hold.

(d) Application: The Application class abstracts the resource requests of the user’s
application that consists of the total number of CPUs required, QoS requirements,
deadline, and budget. The “deadline” attribute represents the urgency of the user to
get his/her application finished. The “QoS” is an abstract class that can be extended
to codify special application requirements such as bandwidth. Each application can
consist of several jobs that may differ in their resource requirements such as execu-
tion time. To allow users to submit different application model requirements such as
parameter sweep and parallel application, in Mandi, each application is associated
with the “appType” attribute that will be considered while matching an application
with a resource. The application object also stores the information about the auc-
tion in which the user (consumer) has opted to participate for leasing resource for
its application. Each application is allowed to participate in only one auction.

Workers

(a) MetaBroker: MetaBroker is the first component in Mandi to be started that in-
stantiates other worker components, and manages their life cycles such as Sched-
uler and Monitor. The BrokerStorage is the front end to the persistence system
and implements interfaces used to interact with the database. Another function of
the MetaBroker is to periodically get the list of current auction requests from the
database and start a scheduling thread for clearing each auction.

(b) GridExchange Service: The GridExchange Service is a Web Service interface
that enables users to access various services of Mandi. The services that are avail-
able to users are registration, submission of application and time slots, holding and
joining auctions, and discovering services and getting service reservations. The
GridExchange Service interacts with the BrokerStorage class to access the persis-
tence database. The example sequence of operations for user registration is shown
in Figure 8.3. The UserBroker sends a registration request to the exchange using
the GridExchange web service. It submits the preferred login name and password.
The GridExchange service gets the registered user list from the database and checks
whether the user is registered or not. If the user is not registered, it sends a reply
back to user broker with “registration success” message.

154 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

Figure 8.3: Registration Process

Figure 8.4: Scheduling Sequence

(c) Scheduler: For each market model, the Scheduler matches the user application to
the advertised compute resources and also decides the price for executing the ap-
plication. Figure 8.4 shows the basic steps that are performed by the Scheduler.
The Scheduler gets the auction object (can be in the form of a timeslot or an ap-
plication) from the persistent database and the list of all the bids submitted for the
auction. The Scheduler sets the auction status to “closed” to prevent any further
bid submission to the auction. Depending on the auction type and objective, the

8.4. PROTOTYPE AND PERFORMANCE EVALUATION 155

winning bid is chosen and the trading price is calculated. The status of winning bid
is changed to “matched” from “unmatched”. The match is saved to database in the
form a reservation request which will be used by the Monitor to inform/reserve re-
sources on the compute resource. The function of the Monitor is described in detail
below.

(d) Monitor (aka advance reservation): The Monitor keeps track of all the reservation
request in the database, as shown in Figure 8.5. The Monitor periodically requests
all the reservation requests from the persistent database. It uses Web Services to
send SOAP messages to the resource provider, which informs the provider of the
matching of the user application to the advertised timeslot (compute service). In
the return, the Monitor gets the reservationID from the provider. The reservationID
is used by the consumer to access the compute services offered by the resource
provider. It represents the time-slot reserved and is also the security key for ac-
cessing the resource. After getting the reservationID, the Monitor will set all the
reservation details in the user application object stored in the persistent database.
The consumers (using brokers) can access the reservation information by using the
GridExchange Service.

Figure 8.5: Reservation Process

8.4 Prototype and Performance Evaluation

In order to evaluate the performance of Mandi and provide a proof of concept of its ar-
chitecture, we implemented a prototype and tested it by using Aneka [35] as a service
provider. In this section, we will give an overview of the components composing the
system used for testing and discuss the performance evaluation.

156 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

8.4.1 System Details

Mandi

Mandi has been implemented in Java in order to be portable over different platforms
such as the Windows and Unix operative systems. From an implementation point of view
Mandi is composed of a collection of services that interact by means of a persistence layer
represented by the HSQL database. The system is accessible from external components
through a Web Service that has been deployed by using Apache Axis2 on a TOMCAT
web server (v.5.5). The Web Service interface makes the interaction with Mandi platform
independent. The current prototype support three type of trading mechanisms: i) First Bid
Sealed Auction; ii) Double Auction, and iii) Commodity market.

Aneka

On the provider side, Aneka [35] has been used and extended to support the reservation
and advertisement of slots on Mandi. Aneka is a service-oriented middleware for building
Enterprise Clouds. The core component of an Aneka Cloud is the Aneka container that
represents the runtime environment of distributed applications on Aneka. The container
hosts a collection of services through which all the tasks are performed: scheduling and
execution of jobs, security, accounting, and reservation. In order to support the require-
ments of Mandi a specific and lightweight implementation of the reservation infrastructure
has been integrated into the system. This infrastructure is composed by a central reserva-
tion service that provides global view of the allocation map of the Cloud and manages the
reservation of execution slots, and a collection of allocation services on each node hosting
execution services that are in charge of keeping track of the local allocation map and of
ensuring the exclusive execution for reserved slots. The reservation service is accessible
to external applications by means of a specific Web Service that exposes the common
operations for obtaining the advertised execution slots and reserving them.

Client Components

The client components are constituted by a simple Web Service client that generates all
the resource requests to Mandi.

8.4.2 Performance Evaluation

We evaluated the performance of Mandi in terms of overhead caused to the system due
to the interaction between the internal components and Mandi’s interaction with users re-
quests and provider’s middleware. As discussed previously, Mandi is designed to handle
multiple market models concurrently and exposes a service oriented interface to handle

8.4. PROTOTYPE AND PERFORMANCE EVALUATION 157

Master Node

Reservation Service

Scheduling Services

Slave Node
Slave Node

Slave Node

Mandi
Market Exchange

User Aneka
Allocation Service

Scheduling Services

Allocation Service

Scheduling Services

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Slave Node

Web Service

Reservation Client

(Dynamically Downloaded)

User

User

Allocation Service

Scheduling Services

Figure 8.6: The Topology of Testbed

users requests and reservations of resources. Thus, to evaluate the scalability of Mandi,
the first set of experiments examines the CPU and memory requirements of our imple-
mentation of Mandi. However, the performance of Mandi is also determined by how
quickly and how many simultaneous user requests can be handled. Hence, the second set
of experiments evaluates time incurred in resource request submission (which is initiated
from client machine) and resource reservation (which involve negotiation of Mandi with
providers).

The experimental setup for this evaluation is characterised as follows:

• An instance of Mandi has been deployed on 2.4 GHZ Intel Core Duo CPU and 2 GB
of main memory running the Windows operative system and Java 1.5. The HSQL
Database was configured to run on the same machine. The performance of Mandi
evaluated using JProfiler [144] profiling tool.

• The Aneka setup was characterised by one master node and five slave nodes. The
reservation infrastructure was configured as follows: the master node hosted the
reservation service while each of the slave nodes contained an instance of the allo-
cation service. Each container has been deployed on a DELL OPTIPLEX GX270
Intel Core 2 CPU 6600 @2.40GHz, with 2 GB of RAM and Microsoft Windows
XP Professional Version 2002 (Service Pack 3). As a result the reservation infras-

158 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

tructure can support ten concurrent execution lines (one per core). The topology of
resources is given in Figure 8.6.

Memory Usage and CPU Load

60

50

40

H
e

a
p

 S
iz

e
 (

M
B

)

30

H
e

a
p

 S
iz

e
 (

M
B

)

20H
e

a
p

 S
iz

e
 (

M
B

)

20H
e

a
p

 S
iz

e
 (

M
B

)

10

0

10 100 1000 10000

Number of Auctions

(a) Memory Required by Mandi

60%

50%

40%

C
P

U
 L

o
a

d

30%

C
P

U
 L

o
a

d
20%

C
P

U
 L

o
a

d

10%

20%

10%

0%

10 100 1000 10000

Number of AuctionsNumber of Auctions

(b) CPU Usage by Mandi

Figure 8.7: Performance of Mandi for 50,000 clearance requests

The main threads running in Mandi are: i) MetaBroker, which initiates other threads
and controls the overall execution of Mandi, ii) Monitoring Thread, and iii) Scheduler
Threads, which dynamically vary based on the number of auctions. Thus, the performance
of Mandi is highly dependent on the number of auctions conducted concurrently. Thus, to
evaluate the performance of Mandi, we varied the number of auctions from 10 to 10,000
that are conducted over period of 5 seconds. For this experiment, we generated 50,000
resource requests for matching. Each resource request is mapped to an auction using
uniform distribution. Figure 8.7 shows the graphs of the memory and CPU usage by the
broker over a period of 5 Second run. In Figure 8.7(b), the variation in CPU usage is about
10% with increase in number of auctions. This is because scheduler threads conducting
auctions are short lived and has comparable CPU needs. The little higher value of CPU
usage in the case when 10 auctions are conducted is due to the large number of resource
request per auction (50,000/10) needed to be matched.

In figure 8.7(a), we can see how memory usage of Mandi is increasing with the number
of auctions. For instance, the memory usage increases from 32 MB to 56 MB when the
number of auctions increases from 1000 to 10000. Therefore, there is only a 2 times
increase in memory usage for 10 times increase in the number of auctions. This is due to
the fact that the auction thread loads resource requests from database only when a decision
for the auction winner needs to be taken. In addition, the memory is freed for all resource
requests participating in the auction as soon as auction finished executing. This reduces
the memory occupied by resource request objects waiting to be matched.

8.4. PROTOTYPE AND PERFORMANCE EVALUATION 159

Overhead in Interaction with Resource Provider and Consumer

Two experiments were performed; one for measuring the resource request submission
time, and the other for reservation time and free slot advertisement by the provider mid-
dleware. All interactions between different entities i.e Mandi, consumer, and provider
middleware is using web service. To measure these parameters, we used JMeter tool that
generate SOAP messages to test the performance of web services. We generated SOAP
messages until no more connection can be initiated with the web service located at Mandi
and resource provider’s site. In case of interaction with Mandi’s web service, about 750
concurrent resource submission requests were generated, while in case of interaction with
Aneka reservation web service about 100 concurrent requests were generated. Table 8.1
shows the time taken to serve a request by web service in milliseconds. Overhead in
terms of time for resource request submission is only 11.75 ms. The time taken by Aneka
web service to serve free resource and reservation requests is much longer because each
reservation request can trigger the interaction between the reservation service on the mas-
ter node and the allocation service on the slave node where the reservation is allocated.
This interaction implies the communication between two different containers and varies
sensibly according to the network topology.

8.4.3 Discussion

The performance results indicate the scalability of current prototype of Mandi which is
able to clear about 50,000 resource requests and 10,000 auctions in about 5 seconds. The
major bottleneck in the scalability of Mandi’s architecture is the shared database. The
database constraints the number of multiple and concurrent accesses which is also the
reason that experiments over 50,000 resource requests are not conducted. In addition
to that the database can be cause of single point failure of whole system. The distributed
databases which use replication and load balancing techniques can be helpful in increasing
the scalability of the system.

Table 8.1: Overhead due to Interactions of Mandi

Web Service Re-
quest

Service
Time/request (ms)

Resource Request
Submission

11.75

Getting Free Re-
sources

30

Resource Reserva-
tion

240

160 Chapter 8. MARKET EXCHANGE AND META-BROKER IMPLEMENTATION

8.5 Summary

The presence of IT demand and supply in utility oriented Clouds and Grids led to the need
of a market exchange that can ease the trading process by providing the required infras-
tructure for interaction. In this chapter, we introduce a novel market exchange framework
named ”Mandi” for facilitating such trading. We identify the essential technical and mar-
ket requirements, and challenges in designing such an exchange. The architecture and
implementation of Mandi is comprehensively described and evaluated. The two exper-
iments performed measure the effect of design choices on the performance of Mandi,
and overhead time incurred in the interaction between the consumer and provider through
Mandi. The experiments show that Mandi can scale well and can handle many concurrent
trading models and resource requests. We can thus conclude that the overhead generated
for matching a large number of resource requests in concurrent auctions is minimal. The
only limit to the scalability of the system is the persistence layer, which also constitutes
the single point of failure. In order to address this issue, a more efficient database server
and a solid replication infrastructure has to be put in place.

Chapter 9

Conclusions and Future Directions

This chapter summarises our objectives and work done in this thesis. Our main findings
and lessons learned are discussed along with their significance. In this chapter, this thesis
concludes with a discussion on the future work that emerged during this research but are
loosely connected and outside its scope.

9.1 Summary

This thesis began with the introduction of utility Grids which are becoming the main-
stream infrastructure for executing large scale applications from academia and industrial
enterprises. Many challenges are pointed out in solving the problem of resource manage-
ment and scheduling in utility Grids. The literature review identified a lack of research
on the coordinated scheduling of multiple applications which have conflicting QoS re-
quirements, across multiple resource sites. Thus, we set out to investigate how to design
market-oriented meta-scheduling algorithms and mechanisms which can reconcile and
coordinate users’ QoS requirements while maximising the utility for both users and re-
source providers. To solve the problem of market-oriented meta-scheduling, the following
objectives are defined:

• To investigate an architectural model for a market-oriented meta-scheduler to coor-
dinate resource demand,

• To design the meta-scheduling algorithms and mechanisms that can reconcile the
resource demands from users with conflicting requirements,

• To investigate how other system-centric metrics such as response time will impact
both the participants’ utility.

The first objective is achieved in Chapter 3, which proposed the meta-broker architec-
ture and evaluated its advantages against a completely decentralised model, where each

161

162 Chapter 9. CONCLUSIONS AND FUTURE DIRECTIONS

personalised broker competes to access resources in a utility Grid. We showed in that
chapter how the meta-broker, not only maximises the successful execution of user appli-
cations, but also maximises the resource utilisation.

This thesis accomplished the second and third objectives by studying the problem in
three scenarios: i) to maximise users’ utility, ii) to maximise providers’ utility, and iii)
to maximise both users’ and providers’ utility. Chapter 4 and 5 discussed the problem
from user’s point of view and proposed several heuristics to maximise the user’s utility in
terms of performance and monetary costs. Experimental results showed how the trade-off
between two conflicting goals can be managed by aggregating them within a trade-off
metric.

Chapter 6 examined mechanisms which can maximise a provider’s utility by minimis-
ing the maintenance costs in terms of energy consumption of CPUs. This chapter also
presented mechanisms that minimise carbon emissions from the environment’s perspec-
tive. Chapter 7 addressed the problem of meta-scheduling to maximise both users’ and
resource providers’ utility using analytical and experimental approaches. In the next sec-
tion, we summarise the main contributions of this thesis with lessons learned and their
significance.

9.2 Lessons Learned and Significance

In the beginning of this thesis, a taxonomy was developed to classify the common market-
oriented scheduling mechanisms based on allocation decisions, mechanisms’ objective,
market model, application model, and participant focus. The taxonomy provided the basis
for comparing market-oriented scheduling systems and technologies. This comprehensive
classification not only enhances the understanding of recent developments in utility Grids,
but also provides an insight into research gaps which still need to be addressed.

Based on the literature study, we pointed out that a lack of coordination between per-
sonalised brokers can lead to the contention for cheap and efficient resources. Our simu-
lation study in Chapter 3 showed that the contention can even result in underutilisation of
resources. Thus, this thesis proposed a market-oriented meta-scheduler architecture called
“Meta-Broker”. The meta-broker architecture is semi-decentralised, thus only scheduling
decisions are made by the meta-broker, while job submission and monitoring is performed
by personalised user brokers. This hybrid design makes the meta-broker system light
weight, and thus, it can handle a large number of scheduling requests, while allowing
local autonomy to its participants. The meta-broker allows the inclusion of various strate-
gies for resource selection and allocation. From our simulation study, we learned that
the meta-broker architecture can maximise the utilisation of resources by decreasing the
deadline violation of applications.

9.2. LESSONS LEARNED AND SIGNIFICANCE 163

Motivated by these preliminary results, this thesis investigated the meta-scheduling al-
gorithms that can minimise the combined spending of users with QoS requirements such
as deadline and budget. To analyse challenges involved, the meta-scheduling problem of
scheduling multiple applications on multiple resources is modelled using Linear/Integer
Programming model. Based on this model, a novel genetic algorithm, LPGA, was pre-
sented to minimise the combined spending of users in executing their applications. This
thesis also reveals how approximation algorithms such as MMC in Grid environments can
be designed to achieve cost optimisation.

In Chapter 5, we relaxed the deadline constraint, and studied the problem in a scenario
where users also wanted to optimise system metrics such as makespan while minimising
monetary cost. The challenge was to schedule various applications in a coordinated man-
ner by satisfying as many users as possible with the goal of minimising the monetary cost
and time of using resources for all Grid users. This scheduling problem, which aims to
minimise the cost and time of using resources for all concurrent users, is found to be NP-
hard due to its combinatorial nature. The problem becomes more challenging when a user
has to relax her QoS requirements, such as makespan, under limited budget constraints.
Users may prefer cheaper services with a relaxed QoS, if it is sufficient to meet their re-
quirements. Thus, a user has to choose between multiple conflicting optimisation objec-
tives [102]. This problem is not only strongly NP-hard, but also non-approximable [101],
i.e., it cannot be approximated in polynomial time within a reasonably good precision.
Moreover, the scheduling in utility Grids needs to be online, which further adds to the
challenge. Thus, this thesis proposed three meta-scheduling online heuristics, such as
MinMin Cost Time Trade-off (MinCTT), Sufferage Cost Time Trade-off (SuffCTT), and
Max-Min Cost Time Trade-off (MaxCTT), to manage the trade-off between overall exe-
cution time and cost, and minimise them simultaneously on the basis of a trade-off factor.
The trade-off factor is used to resolve the conflicting goals of a user. It indicates the
priority of optimising cost over time. The proposed heuristics were evaluated by an ex-
tensive simulation study, which analysed the best heuristic to adopt according to different
user preferences. The heuristic MinCTT gave the lowest makespan and cost in almost all
scenarios considered.

The algorithms proposed in Chapter 4 and 5 can be used in scheduling applications of
users from the same community (scientific or industry) on Cloud resources provided com-
mercially by companies such as Amazon. The Cloud resources are virtualised computing
infrastructure which can be leased on the hourly basis. The organizations such as Mor-
gan Stanley, having more than one research divisions, can directly employ our approaches
to schedule their applications from different divisions in a coordinated and cost-effective
manner.

In Chapter 6, we investigated the market-oriented scheduling problem in the resource

164 Chapter 9. CONCLUSIONS AND FUTURE DIRECTIONS

provider’s context. This thesis gave a novel approach to maximise the resource provider’s
profit (utility) by intelligent energy-efficient meta-scheduling of applications across het-
erogeneous resource sites. Thus, the proposed approach reduces the maintenance cost
which results in higher profit rather than selecting profitable users. This scenario is very
timely since high maintenance costs in data centers due to the increasing price of electric-
ity have become a major concern. To maximise profit for the provider, this thesis proposed
three simple, yet effective generic scheduling policies that can be extended to any appli-
cation, processor, and server models so that they can be readily deployed in existing data
centers with minimum changes. Our generic scheduling policies can also easily com-
plement any of the existing application-specific, processor-specific, and/or server-specific
energy-saving policies that are already in place within existing data centers or servers.
We identified some of the factors such as electricity rates, energy efficiency of data cen-
ters and carbon emissions which play an important role in minimising the maintenance
cost for resource providers. Thus, the thesis addressed an important topic of balancing
profit and carbon emissions for globally distributed utility computing environments such
as Clouds. This thesis highlighted the need to consider the heterogeneity in data cen-
ters when mapping workloads, and to conserve energy when scheduling and running the
workloads.

In Chapter 7, this thesis investigated the meta-scheduling problem of simultaneously
maximising both users’ and resource providers’ utility. A question to answer was “Can
we design a meta-scheduling approach which can benefit users by satisfying their QoS
and benefit resource providers by increasing their utilisation?”. Another more specific
question to answer was “How the consideration of other system-centric metrics such as re-
sponse time will impact the participants’ utility”. This thesis proposed a meta-scheduling
mechanism (Double Auction-Inspired Meta-Scheduling Mechanism) for parallel applica-
tions that takes advantage of both auctions and system-based schedulers to simultaneously
maximise satisfied users, and resource providers by evenly distributing load across all the
resources. To achieve this, valuation metrics were designed using system parameters that
commodify the available resource share and the user’s application requirements so that
they can be compared and matched using principles similar to Double auctions. To inves-
tigate the impact on system metrics, this meta-scheduling problem was analysed through a
queuing theory based analytical model. This thesis demonstrated that by considering both
system metrics and market parameters we can enable more effective scheduling which
will benefit both users and resource providers. This thesis also demonstrated how classical
economic models, when adapted suitably, are able to deal with multiple QoS requirements
of the users more effectively than state-of-the art algorithms used in existing schedulers.
This motivates further exploration of other economic models to solve particular problems
in job scheduling.

9.3. FUTURE DIRECTIONS 165

Finally, we realised the proposed architecture by presenting a system prototype as part
of Mandi Grid exchange . We implemented it using Web Services to make this platform
independent. A web interface is also provided so that users can check their account details
and advertise resources. Mandi gives flexibility to its users not only in terms of trading
protocol but also allows co-existence of multiple negotiation between users and providers.

In summary, the planning and scheduling algorithms proposed in this thesis have taken
into account both costs and capabilities of Grid resources while meeting users QoS re-
quirements. Hence, this thesis successfully demonstrated the feasibility of using market-
oriented meta-scheduling for multiple applications in utility Grids, and made significant
contributions towards the advancement of the discipline.

9.3 Future Directions

In this thesis, the problem of market-oriented meta-scheduling of multiple applications
with QoS constraints on heterogeneous and distributed resources was addressed. How-
ever, there are still open issues that can serve as a starting point for future research.

9.3.1 Resources with Different Pricing Models

In this thesis, we considered a fixed pricing model while scheduling multiple applica-
tions. In recent years, many research studies [148] [154] has been done on pricing the
resources in utility Grids. Each provider can employ different dynamic pricing policies
for maximising their profit. For example, Amazon [6] uses two types of pricing models;
a) spot pricing and b) fixed pricing. Each of these models gives some advantages and dis-
advantages to end users. For example, the spot pricing can be exploited by meta-broker to
maximise the user’s profit but it reduces the chances of task being executed successfully.
In such environments, not only the current but also future status of resources needs to be
considered to reduce the user’s spending. Hence, there is a need to understand the effect
of using different pricing models on cost-based scheduling, and design novel scheduling
policies to handle such heterogeneity. The time factor will again play an important role in
this study.

9.3.2 Scheduling with Pre-emption

Throughout this thesis, we considered a non-preemptive execution model to avoid delays
caused in the transfer of applications from one resource provider to another. However,
there are some cases where checkpoints can be used to restart the application from the
point, where execution was stopped. This has become more feasible due to recent techno-
logical advancement in Virtual Machines [31]. In such cases, the consideration of migra-

166 Chapter 9. CONCLUSIONS AND FUTURE DIRECTIONS

tion might be useful to enhance the utility of users and resource providers. The provider
can preempt those applications which are less profitable and accept more profitable ones.
Similarly, the meta-broker can migrate the application from expensive resources (fast) to
cheaper ones (slow). The migration of such jobs would be a challenging task since we
also need to consider other issues such as the application model, network delays, resource
status and checkpointing.

9.3.3 Network and Data-Aware Application Meta-scheduling

In scientific environments such as High Energy Physics (HEP), there are several appli-
cations that require petabytes of data from various repositories distributed across various
nations. The meta-scheduling of these applications competing for compute and storage
resources can be very challenging due to the highly dynamic nature of network. In addi-
tion, computation should be ideally located near to storage, thus decreasing the delays in
the execution. If the scheduling decisions are made just on the basis of either data size or
computation time, the resultant schedule can lead to resource wastage in terms of network
bandwidth, and performance degradation due to large execution delays. Moreover users
need to pay for both data transfer and computation. These challenges soar up when there
is contention for resources by concurrent users with similar applications. Thus, intelligent
meta-scheduling approaches that take into account not only monetary execution costs, but
also reconciling the competing storage, network and computation demand of users are
required.

9.3.4 SLA based Meta-Scheduling in Cloud Computing Environments

Cloud computing has emerged as an important utility computing paradigm that provides
highly flexible on-demand access to commercial resources. Being a commercialised en-
vironment, the formal SLA acts as the basis for resource sharing. In the case when users
require resources from multiple resource providers, multiple levels of SLAs may exist.
From the user’s perspective, it is challenging to handle any SLA violation because it can
recursively affect other SLAs. From the provider’s perspective, the challenge is to man-
age SLAs in such a way to ensure profit maximisation. Thus, admission control plays an
important role.

9.3.5 Energy-efficient Meta-Scheduling

Energy efficiency is important for the development of utility computing and environmen-
tal sustainability. In Chapter 6, we showed how meta-scheduling can also help in reducing
energy consumption to a great degree. This finding has given a new research perspective

9.3. FUTURE DIRECTIONS 167

into scheduling across data centers. For further efficiency within a data center, differ-
ent techniques for energy consumption, such as turning servers on and off, need to work
simultaneously. This requires more technical analysis of the effect of various strategies
on the execution delays and power consumption for servers, as well as the effect on the
reliability of computing devices. The benefit of virtualised environments can also be har-
nessed. Virtualisation makes it easier to consolidate many applications on fewer physical
servers. In addition, in future research, it is important to consider the energy (and po-
tential latency) overhead of moving data sets between the data centers, in particular for
data-intensive HPC applications. This overhead can be quite significant depending on the
size of the data set and the activity of the workloads.

9.3.6 Scalable Meta-Broker Architecture

The meta-broker coordinates communication between multiple resource providers and
user brokers. Being a common entry point for accessing global information about re-
sources, the failure of the meta-broker can result in the failure of the entire system. In
addition, in the case of high load, the computation required to make scheduling decisions
can cause long execution delays. Thus, the scalability of the meta-broker can become a
bottleneck in the system’s performance.

To resolve the scalability issue, investigation is required on the most suitable architec-
ture for the meta-broker. A decentralised architecture such as P2P can be incorporated so
that the single point of failure can be avoided and fast scheduling decisions can be made
by sharing information between peers. In addition, the communication protocol between
peers needs to be investigated.

9.3.7 Mixed Application Model with QoS Requirements

It will be interesting to enhance all heuristics to schedule jobs with different application
models such as workflows. Different application models forces different QoS needs on the
scheduling strategy. For example, workflow and bag-of-task application, which consist of
many independent tasks, may not require re-execution of the entire application in case
of failure. On the other hand, in the case of parallel application, any failure will require
the re-execution of the entire application. Thus, it is important to study the challenge of
scheduling applications by reconciling the QoS needs based on their model. In addition,
the proposed heuristics in this thesis can also be enhanced by considering more QoS needs
such as memory and network bandwidth.

REFERENCES

[1] D. Abramson, R. Buyya, and J. Giddy. A Computational Economy for Grid Com-
puting and its Implementation in the Nimrod-G Resource Broker. Future Genera-
tion Computing System, 18(8):1061–1074, 2002.

[2] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen. Representing Task and Ma-
chine Heterogeneities for Heterogeneous Computing Systems. Tamkang Journal
of Science and Engineering, 3(3):195–208, 2000.

[3] D. Allenotor and R. Thulasiram. Grid Resources Pricing: A Novel Financial Option
based Quality of Service-Profit Quasi-Static Equilibrium Model. In Proceedings
of 9th IEEE/ACM International Conference on Grid Computing. IEEE Computer
Society, 2008.

[4] J. Altmann, C. Courcoubetis, J. Darlington, and J. Cohen. GridEcon-The
Economic-Enhanced Next-Generation Internet. In Proceedings of the 4th Interna-
tional Workshop on Grid Economics and Business Models, Rennes, France, 2007.

[5] J. Altmann, M. Ion, A. Adel, and B. Mohammed. A Taxonomy of Grid Business
Models. In Proceedings of the 4th International Workshop on Grid Economics and
Business Models, Rennes, France, 2007.

[6] Amazon. Amazon Elastic Compute Cloud (EC2). http://www.amazon.
com/ec2/, Aug. 2009.

[7] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. OurGrid: An Approach to
Easily Assemble Grids with Equitable Resource Sharing. Lecture Notes in Com-
puter Science, 2862:61–86, 2003.

[8] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini, M. Cecchi, V. Cias-
chini, A. Dorise, F. Giacomini, A. Gianelle, et al. The gLite Workload Management
System. In Journal of Physics: Conference Series, volume 119, page 062007. In-
stitute of Physics Publishing, 2008.

[9] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource Allocation in Feder-
ated Distributed Computing Infrastructures. In Proceedings of the 1st Workshop on
Operating System and Architectural Support for the On-demand IT InfraStructure,
NV, USA, 2004.

[10] C. Belady. In the Data Center, Power and Cooling Costs More Than the IT Equip-
ment it Supports. Electronics cooling, 13(1):24, 2007.

[11] F. Berman and R. Wolski. The AppLeS Project: A Status Report. In Proceedings
of the 8th NEC Research Symposium, Berlin, Germany, 1997.

169

http://www.amazon.com/ec2/
http://www.amazon.com/ec2/

170 REFERENCES

[12] R. Bianchini and R. Rajamony. Power and Energy Management for Server Sys-
tems. Computer, 37(11):68–74, 2004.

[13] A. Bose, B. Wickman, and C. Wood. Mars: A Metascheduler for Distributed Re-
sources in Campus Grids. In Proceedings of the 5th IEEE/ACM International Work-
shop on Grid Computing, Pittsburgh, USA, 2004.

[14] D. Bradley, R. Harper, and S. Hunter. Workload-based Power Management for Par-
allel Computer Systems. IBM Journal of Research and Development, 47(5):703–
718, 2003.

[15] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, et al. A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems. Journal of Parallel and Distributed Computing, 61(6):810–837, 2001.

[16] J. Broberg, S. Venugopal, and R. Buyya. Market-oriented Grids and Utility Com-
puting: The State-of-the-Art and Future Directions. Journal of Grid Computing,
6(3):255–276, 2008.

[17] M. Buco, R. Chang, L. Luan, C. Ward, J. Wolf, and P. Yu. Utility Computing SLA
Management Based upon Business Objectives. IBM Systems Journal, 43(1):159–
178, 2004.

[18] T. Burd and R. Brodersen. Energy Efficient CMOS Microprocessor Design. In
Proceedings of the 28th Hawaii International Conference on System Science, Maui,
Hawaii, USA, 1995.

[19] J. Burge, P. Ranganathan, and J. Wiener. Cost-Aware Scheduling for Hetero-
geneous Enterprise Machines (CASHEM). In Proceedings of 2007 IEEE Inter-
national Conference on Cluster Computing, Austin, Texas, USA, pages 481–487,
2007.

[20] J. Butler, D. Morrice, and P. Mullarkey. A Multiple Attribute Utility Theory Ap-
proach to Ranking and Selection. Management Science, 47(6):800–816, 2001.

[21] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic Models for Re-
source Management and Scheduling in Grid Computing. Concurrency and Com-
putation: Practice and Experience, 14(13-15):1507–1542, 2002.

[22] R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy. Proceedings of
the IEEE, 93(3):698–714, 2005.

[23] R. Buyya and K. Bubendorfer, editors. Market-Oriented Grid and Utility Comput-
ing. John Wiley & Sons Inc, New Jersey, USA., 2009.

[24] R. Buyya and M. Murshed. Gridsim: A Toolkit For the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing. Concur-
rency and Computation: Practice and Experience, 14(13-15):1175–1220, 2002.

REFERENCES 171

[25] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal. Scheduling Parameter
Sweep Applications on Global Grids: A Deadline and Budget Constrained Cost-
Time Optimisation Algorithm. Software: Practice and Experience, 35(5):491–512,
2005.

[26] R. Buyya and S. Vazhkudai. Compute Power Market: Towards a Market-Oriented
Grid. In Proceedings of the 1st International Symposium on Cluster Computing
and the Grid, Brisbane, Australia, 2001.

[27] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud Computing
and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing
as the 5th Utility. Future Generation Computer Systems, 25(6):599–616, 2009.

[28] F. Cappello. Towards an International Computer Science Grid. In Proceedings of
the 16th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, Paris, France, 2007.

[29] C. Catlett. The Philosophy of TeraGrid: Building an Open, Extensible, Distributed
TeraScale Facility. In Proceedings of 2nd IEEE International Symposium on Clus-
ter Computing and the Grid, Berlin, Germany, 2002.

[30] S. Chapin, J. Karpovich, and A. Grimshaw. The Legion Resource Management
System. In Proceedings of the 5th Workshop on Job Scheduling Strategies for
Parallel Processing, San Juan, Puerto Rico, 1999.

[31] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle. Dynamic Virtual Clusters
in a Grid Site Manager. In Proceedings of the Twelfth International Symposium on
High Performance Distributed Computing, Seattle, Washington, USA, 2003.

[32] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing
Energy and Serve Resources in Hosting Centers. SIGOPS Opering System Review,
35(5):103–116, 2001.

[33] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam. Manag-
ing Server Energy and Operational Costs in Hosting Centers. ACM SIGMETRICS
Performance Evaluation Review, 33(1):303–314, 2005.

[34] P. Chu and J. Beasley. A Genetic Algorithm for the Generalised Assignment Prob-
lem. Computers and Operations Research, 24(1):17–23, 1997.

[35] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya. Aneka: Next-
Generation Enterprise Grid Platform for e-Science and e-Business Applications.
In Proceedings of the 3rd IEEE International Conference on e-Science and Grid
Computing, Bangalore, India, 2007.

[36] B. Chun and D. Culler. Rexec: A Decentralized, Secure Remote Execution environ-
ment for Clusters. In Proceedings of 4th Workshop on Communication, Architec-
ture, and Applications for Network-based Parallel Computing, Toulouse, France,
2000.

172 REFERENCES

[37] B. Chun, C. Ng, J. Albrecht, D. Parkes, and A. Vahdat. Computational
Resource Exchanges for Distributed Resource Allocation. Technical report,
http://citeseer.ist.psu.edu/706369.html, 2004.

[38] A. Cobham. Priority Assignment in Waiting Line Problems. Journal of the Oper-
ations Research Society of America, 2(1):70–76, 1954.

[39] B. Cooper and H. Garcia-Molina. Bidding for Storage Space in a Peer-to-Peer
Data Preservation System. In Proceeding of 22nd International Conference on
Distributed Computing Systems, Vienna, Austria, 2002.

[40] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Maz-
ina, J. Mellor-Crummey, F. Berman, H. Casanova, et al. New Grid Scheduling and
Rescheduling Methods in the GrADS Project. In Proceedings of 18th International
Parallel and Distributed Processing Symposium, New Mexico, USA, 2004.

[41] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-
vices for Distributed Resource Sharing. In 10th IEEE International Symposium on
High Performance Distributed Computing, San Francisco, CA, USA, 2001.

[42] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP: A Proto-
col for Negotiating Service Level Agreements and Coordinating Resource Manage-
ment in Distributed Systems. Lecture Notes in Computer Science, 2537:153–183,
2002.

[43] E. David, R. Azoulay-Schwartz, and S. Kraus. Protocols and Strategies for Au-
tomated Multi-Attribute Auctions. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems , Bologna, Italy, 2002.

[44] M. de Assunção and R. Buyya. Performance Analysis of Allocation Policies for
InterGrid resource Provisioning. Information and Software Technology, 51(1):42–
55, 2009.

[45] V. Di Martino and M. Mililotti. Scheduling in a Grid Computing Environment
using Genetic Algorithms. In Proceedings of the 16th International Parallel and
Distributed Processing Symposium, Fort Lauderdale, Florida, USA, 2002.

[46] A. Dogan and F. Ozgiiner. Scheduling Independent Tasks with QoS Requirements
in Grid Computing with Time-Varying Resource Prices. In Proceedings of Third
International Workshop of Grid Computing, Baltimore, MD, USA, 2002.

[47] T. Dornemann, E. Juhnke, and B. Freisleben. On-Demand Resource Provisioning
for BPEL Workflows Using Amazon’s Elastic Compute Cloud. In Proceedings of
the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
Shanghai, China, 2009.

[48] C. Dumitrescu and I. Foster. Gruber: A Grid Resource Usage SLA Broker. 2005.

[49] C. Dumitrescu, I. Raicu, and I. Foster. DI-GRUBER: A Distributed Approach to
Grid Resource Brokering. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing (SC’05), Seattle, WA, USA, 2005.

REFERENCES 173

[50] A. Elyada, R. Ginosar, and U. Weiser. Low-Complexity Policies for Energy-
Performance Tradeoff in Chip-Multi-Processors. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 16(9):1243–1248, 2008.

[51] H. Eriksson and M. Penker. Business Modeling with UML: Business Patterns at
Work, John Wiley&Sons, 2001.

[52] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic Scheduling in Grid Com-
puting. In Proceedings of 7th International Workshop on Job Scheduling Strategies
for Parallel Processing, Cambridge, MA, USA, 2001.

[53] M. Etinski, J. Corbalan, J. Labarta, M. Valero, and A. Veidenbaum. Power-Aware
Load Balancing of Large Scale MPI Applications. In Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, Rome, Italy, 2009.

[54] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, F. Freitag, and L. Navarro. Decen-
tralized Resource Allocation in Application Layer Networks. In Proceedings of the
3rd International Symposium on Cluster Computing and the Grid, Tokyo, Japan,
2003.

[55] T. Eymann, M. Reinicke, F. Freitag, L. Navarro, Ó. Ardáiz, and P. Artigas. A
Hayekian Self-Organization Approach to Service Allocation in Computing Sys-
tems. Advanced Engineering Informatics, 19(3):223–233, 2005.

[56] X. Fan, W.-D. Weber, and L. A. Barroso. Power Provisioning for a Warehouse-
Sized Computer. In Proceedings of the 34th Annual International Symposium on
Computer Architecture, pages 13–23, New York, NY, USA, 2007.

[57] D. Feitelson. Parallel Workloads Archive. URL http://www. cs. huji. ac.
il/labs/parallel/workload.

[58] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong. Theory
and Practice in Parallel Job Scheduling. In Proceedings of 1997 Job Scheduling
Strategies for Parallel Processing, Geneva, Switzerland, 1997.

[59] M. Feldman, K. Lai, and L. Zhang. A Price-Anticipating Resource Allocation
Mechanism for Distributed Shared Clusters. In Proceedings of the 6th ACM Con-
ference on Electronic Commerce, Vancouver, Canada, 2005.

[60] H. Feltl and G. Raidl. An Improved Hybrid Genetic Algorithm for the Generalized
Assignment Problem. In Proceedings of the 2004 ACM Symposium on Applied
Computing, Nicosia, Cyprus, 2004.

[61] H. Feng, G. Song, Y. Zheng, and J. Xia. A Deadline and Budget Constrained Cost-
Time Optimization Algorithm for Scheduling Dependent Tasks in Grid Computing.
Lecture Notes In Ccomputer Science, pages 113–120, 2004.

[62] W. Feng and K. Cameron. The Green500 List: Encouraging Sustainable Super-
computing. Computer, 40(12):50–55, 2007.

174 REFERENCES

[63] X. Feng, R. Ge, and K. W. Cameron. Power and Energy Profiling of Scientific Ap-
plications on Distributed Systems. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, Los Alamitos, CA, USA, 2005.

[64] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of High Performance Computing Applications, 11(2):115,
1997.

[65] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 2004.

[66] V. Freeh, D. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. Rountree, and M. Fe-
mal. Analyzing the Energy-Time Trade-Off in High Performance Computing Ap-
plications. IEEE Transactions on Parallel and Distributed Systems, 18(6):835,
2007.

[67] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal, and R. Springer. Exploring the
Energy-Time Tradeoff in MPI Programs on a Power-Scalable Cluster. In Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Sympo-
sium, Los Alamitos, CA, USA, 2005.

[68] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A Com-
putation Management Agent for Multi-Institutional Grids. Cluster Computing,
5(3):237–246, Jul 2002.

[69] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An Architecture for
Secure Resource Peering. In Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles, Bolton Landing, New York, USA, 2003.

[70] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal Power Allocation
in Server Farms. In Proceedings of the 11th International Joint Conference on
Measurement and Modeling of Computer Systems, Seattle, WA, USA, 2009.

[71] W. Gentzsch et al. Sun Grid Engine: Towards Creating a Compute Power Grid.
In Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, Brisbane, Australia, 2001.

[72] K. Golconda, F. Ozguner, and A. Dogan. A Comparison of Static QoS-based
Scheduling Heuristics for a Meta-Task with Multiple QoS Dimensions in Heteroge-
neous computing. In Proceedings of the 18th International Parallel and Distributed
Processing Symposium, Santa Fe, New Mexico, 2004.

[73] S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myatt. Best Practices for
Data Centers: Results from Benchmarking 22 Data Centers. In Proceedings of
the 2006 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove,
USA, 2006.

[74] D. Grosu and A. Das. Auction-based Resource Allocation Protocols in Grids. In
Proceedings of the 16th International Conference on Parallel and Distributed Com-
puting and Systems, Cambridge, USA, 2004.

REFERENCES 175

[75] M. Harchol-Balter, M. Crovella, and M. C.D. On Choosing a Task Assignment
Policy for a Distributed Server System. Journal of Parallel and Distributed Com-
puting, 59(2):204–228, 1999.

[76] M. Harchol-Balter and A. Downey. Exploiting Process Lifetime Distributions
for Dynamic Load Balancing. ACM Transactions on Computer Systems (TOCS),
15(3):253–285, 1997.

[77] G. Hardin. The Tragedy of the Commons. Science, 162(3859):1243–1248, 1968.

[78] D. Hausheer and B. Stiller. Peermart: The Technology for a Distributed Auction-
based Market for Peer-to-Peer Services. In Proceedings of the 2005 IEEE Interna-
tional Conference on Communications, Seoul, South Korea, 2005.

[79] R. Henderson. Job Scheduling Under the Portable Batch System. In Proceedings
of the 1995 Workshop on Job Scheduling Strategies for Parallel Processing, Santa
Barbara, CA, USA, 1995.

[80] J. Henning. SPEC CPU2000: Measuring CPU Performance in the New Millen-
nium. Computer, 33(7):28–35, 2000.

[81] E. Herness, R. High, and J. McGee. WebSphere Application Server: A Foundation
for on Demand Computing. IBM Systems Journal, 43(2):213–237, 2004.

[82] W. Hoschek, F. J. Jaén-Martı́nez, A. Samar, H. Stockinger, and K. Stockinger. Data
Management in an International Data Grid Project. In Proceedings of the First
IEEE/ACM International Workshop on Grid Computing, pages 77–90, London,
UK, 2000. Springer-Verlag.

[83] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger. Data
Management in an International Data Grid Project. In Proceedings of 1st Interna-
tional Workshop on Grid Computing, Bangalore, India, 2000.

[84] C. Hsu and U. Kremer. The Design, Implementation, and Evaluation of a Compiler
Algorithm for CPU Energy Reduction. In Proceedings of the 2003 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Swe-
den, 2003.

[85] E. Huedo, R. Montero, I. Llorente, D. Thain, M. Livny, R. van Nieuwpoort,
J. Maassen, T. Kielmann, H. Bal, G. Kola, et al. The GridWay Framework for
Adaptive Scheduling and Execution on Grids. Software-Practice and Experience,
6(8), 2005.

[86] O. Ibarra and C. Kim. Heuristic Algorithms for Scheduling Independent Tasks on
Nonidentical Processors. Journal of the ACM (JACM), 24(2):280–289, 1977.

[87] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. Yocum. Sharing
Networked Resources with Brokered Leases. In Proceedings of the 2006 USENIX
Technical Conference, Boston, MA, USA, 2006.

176 REFERENCES

[88] D. Irwin, L. Grit, and J. Chase. Balancing Risk and Reward in a Market-Based
Task Service. In Proceedings of the 13th IEEE International Symposium on High
Performance Distributed Computing, Honolulu, Hawaii, USA, 2004.

[89] S. Jang, V. Taylor, X. Wu, M. Prajugo, E. Deelman, G. Mehta, and K. Vahi. Perfor-
mance Prediction-Based Versus Load-based Site Selection: Quantifying the Dif-
ference. In Proceedings of the 18th International Conference on Parallel and Dis-
tributed Computing Systems, Las Vegas, Nevada, 2005.

[90] L. Kale, S. Kumar, M. Potnuru, J. DeSouza, and S. Bandhakavi. Faucets: Effi-
cient Resource Allocation on the Computational Grid. In Proceedings of the 33rd
International Conference on Parallel Processing, Quebec, Canada, 2004.

[91] W. Kang, H. Huang, and A. Grimshaw. A Highly Available Job Execution Service
in Computational Service Market. In Proceedings of the 8th IEEE/ACM Interna-
tional Conference on Grid Computing, Austin, Texas, USA, 2007.

[92] U. Kant and D. Grosu. Double Auction Protocols for Resource Allocation in Grids.
In Proceedings of the International Conference on Information Technology: Cod-
ing and Computing, Nevada, USA, 2005.

[93] R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. Cambridge University Press, 1993.

[94] T. Kelly. Generalized Knapsack Solvers for Multi-Unit Combinatorial Auctions:
Analysis and Application to Computational Resource Allocation. Technical Report
HPL-2004-21, HP Labs, Palo Alto, CA, USA, 2004.

[95] H. Keung, J. Dyson, S. Jarvis, and G. Nudd. Performance Evaluation of a
Grid Resource Monitoring and Discovery Service. IEE Proceedings - Software,
150(4):243–251, 2003.

[96] A. S. Kiara Corrigan and C. Patel. Estimating Environmental Costs. In Proceedings
of the Ist USENIX Workshop on Sustainable Information Technology, San Jose, CA,
USA, 2009.

[97] K. Kim, R. Buyya, and J. Kim. Power Aware Scheduling of Bag-of-Tasks Appli-
cations with Deadline constraints on DVS-Enabled Clusters. In Proceedings of the
Seventh IEEE International Symposium on Cluster Computing and the Grid, Rio
de Janeiro, Brazil, 2007.

[98] S. Kim and J. Weissman. A GA-based Approach for Scheduling Decomposable
Data Grid Applications. In Proceedings of the 2004 International Conference on
Parallel Processing, Montreal, Canada, 2004.

[99] L. Kleinrock. A Vision for the Internet. ST Journal of Research, 2(1):4–5, 2005.

[100] L. Kleinrock and R. Gail. Queueing Systems. Wiley New York, 1976.

REFERENCES 177

[101] S. Kumar, K. Dutta, and V. Mookerjee. Maximizing Business Value by Optimal
Assignment of Jobs to Resources in Grid Computing. European Journal of Oper-
ational Research, 194(3):856–872, 2009.

[102] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz. Scheduling Jobs on the
Grid–Multicriteria Approach. Computational Methods in Science and Technology,
12(2):123–138, 2006.

[103] Y. Kwok, S. Song, and K. Hwang. Selfish Grid Computing: Game-Theoretic Mod-
eling and NAS Performance Results. In Proceedings of the 5th IEEE International
Symposium on Cluster Computing and the Grid, Cardiff, UK, 2005.

[104] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman. Tycoon: An Imple-
mentation of a Distributed, Market-based Resource Allocation System. Multiagent
and Grid Systems, 1(3):169–182, 2005.

[105] B. Lawson and E. Smirni. Power-Aware Resource Allocation in High-End Systems
via Online Simulation. In Proceedings of the 19th Annual International Conference
on Supercomputing, pages 229–238, Cambridge, USA, 2005.

[106] H. Li, D. Groep, and L. Wolters. Workload Characteristics of a Multi-Cluster
Supercomputer. In Proceedings of the 7th Internation Workshop on Job Scheduling
Strategies for Parallel Processing, New York, USA, 2004.

[107] J. Li and R. Yahyapour. Learning-based Negotiation Strategies for Grid Schedul-
ing. In Proceedings of the 6th IEEE International Symposium on Cluster Comput-
ing and the Grid, Singapore, 2006.

[108] M. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter of Idle Workstations.
In Proceedings of the 8th International Conference of Distributed Computing Sys-
tems, San Jose, CA, 1988.

[109] U. Lublin and D. Feitelson. The Workload on Parallel Supercomputers: Modeling
the Characteristics of Rigid Jobs. Journal of Parallel and Distributed Computing,
63(11):1105–1122, 2003.

[110] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic Map-
ping of a Class of Independent Tasks onto Heterogeneous Computing Systems.
Journal of Parallel and Distributed Computing, 59(2):107–131, 1999.

[111] J. Markoff and S. Hansell. Hiding in Plain Sight, Google Seeks More Power. New
York Times, 14, 2006.

[112] S. Martello and P. Toth. An Algorithm for the Generalized Assignment Problem.
Operational research, 81:589–603, 1981.

[113] S. Mingay. ITs Role in a Low Carbon Economy. Keynote Address, Greening the
Enterprise, 2, 2008.

178 REFERENCES

[114] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Scheduling ”Cool”:
Temperature-Aware Workload Placement in Data Centers. In Proceedings of the
2005 USENIX Annual Technical Conference, Anaheim, CA, 2005.

[115] A. Mu’alem and D. Feitelson. Utilization, Predictability, Workloads, and User
Runtime Estimatesin Scheduling the IBM SP2 with Backfilling. IEEE Transactions
on Parallel and Distributed Systems, 12(6):529–543, 2001.

[116] E. Munir, J. Li, and S. Shi. QoS Sufferage Heuristic for Independent Task Schedul-
ing in Grid. Information Technology Journal, 6(8):1166–1170, 2007.

[117] J. Nakai and R. Van Der Wijngaart. Applicability of Markets to Global Scheduling
in Grids. NAS Report, pages 03–004, 2003.

[118] M. Narumanchi and J. Vidal. Algorithms for Distributed Winner Determination in
Combinatorial Auctions. Agent-Mediated Electronic Commerce. Designing Trad-
ing Agents and Mechanisms, 3937:43–56, 2006.

[119] R. Nelson and T. Philips. An Approximation to the Response Time for Shortest
Queue Routing. ACM SIGMETRICS Performance Evaluation Review, 17(1):181–
189, 1989.

[120] R. Nelson and T. Philips. An Approximation for the Mean Response Time for
Shortest Queue Routing with General Interarrival and Service Times. Performance
Evaluation, 17(2):123–139, 1993.

[121] D. Neumann, J. Stoesser, A. Anandasivam, and N. Borissov. Sorma-Building an
Apen Grid Market for Grid Resource Allocation. In Proceedings of the 4th In-
ternational Workshop of Grid Economics and Business Models, Rennes, France,
2007.

[122] N. Nisan. Bidding and Allocation in Combinatorial Auctions. In Proceedings of
the 2nd ACM Conference on Electronic Commerce, pages 1–12, New York, NY,
USA, 2000.

[123] S. Nozaki and S. Ross. Approximations in Finite-Capacity Multi-Server Queues
with Poisson Arrivals. Journal of Applied Probability, 15(4):826–834, 1978.

[124] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper, and D. Wilcox. Pace–
A Toolset for the Performance Prediction of Parallel and Distributed Systems. In-
ternational Journal of High Performance Computing Applications, 14(3):228–251,
2000.

[125] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Distributed Resource
Discovery on PlanetLab with SWORD. In Proceedings of the 1st Workshop on
Real, Large Distributed Systems, San Fancisco, CA, USA, 2004.

[126] A. Orgerie, L. Lefèvre, and J. Gelas. Save Watts in Your Grid: Green Strategies for
Energy-Aware Framework in Large Scale Distributed Systems. In Proceedings of
the 2008 14th IEEE International Conference on Parallel and Distributed Systems,
Melbourne, Australia, 2008.

REFERENCES 179

[127] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. Frank, and C. Chokkareddy.
OCEAN: The Open Computation Exchange and Arbitration Network, A Market
Approach to Meta Computing. In Proceedings of the 2nd International Symposium
on Parallel and Distributed Computing, Ljubljana, Slovenia, 2003.

[128] C. Patel, R. Sharma, C. Bash, and M. Beitelmal. Energy Flow in the Information
Technology Stack: Coefficient of Performance of the Ensemble and its Impact on
the Total Cost of Ownership. HP Labs External Technical Report, HPL-2006-55,
2006.

[129] C. Patel, R. Sharma, C. Bash, and S. Graupner. Energy Aware Grid: Global Work-
load Placement based on Energy Efficiency. Technical Report HPL-2002-329, HP
Labs, Palo Alto, Nov. 2002.

[130] P. Pillai and K. Shin. Real-time Dynamic Voltage Scaling for Low-Power Embed-
ded Operating Systems. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, Banff, Canada, 2001.

[131] R. Porter. Mechanism Design for Online Real-Time Scheduling. In Proceedings of
the 5th ACM Conference on Electronic Commerce, pages 61–70, New York, USA,
2004.

[132] F. Ramme, T. Romke, and K. Kremer. A Distributed Computing Center Software
for the Efficient Use of Parallel Computer Systems. In Proceedings of the 1994 In-
ternational Confernece on High Performance Computing and Networking, Munich,
Germany, 1994.

[133] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort: A Balanced
Energy-Efficiency Benchmark. In Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data, New York, NY, USA, 2007.

[134] I. Rodero, F. Guim, J. Corbalan, and J. Labarta. eNANOS: Coordinated Scheduling
in Grid Environments. In Proceedings of the 2005 International Conference on
Parallel Computing (ParCo), Malaga, Spain, 2005.

[135] L. Rudolph and P. Smith. Valuation of Ultra-scale Computing Systems. In Proceed-
ings of 2000 Job Scheduling Strategies for Parallel Processing, Cancun, Mexico,
2000.

[136] G. Sabin, V. Sahasrabudhe, and P. Sadayappan. Assessment and Enhancement of
Meta-Schedulers for Multi-Site Job Sharing. In Proceedings of 14th IEEE Interna-
tional Symposium on High Performance Distributed Computing, Research Triangle
Park, NC, 2005.

[137] V. Salapura et al. Power and Performance Optimization at the System Level. In
Proceedings of the 2nd Conference on Computing Frontiers, Ischia, Italy, 2005.

[138] M. Saltzman. COIN-OR: An Open-Source Library for Optimization. Programming
Languages and Systems in Computational Economics and Finance, page 1, 2002.

180 REFERENCES

[139] T. Sandholm, K. Lai, and S. Clearwater. Admission Control in a Computational
Market. In Proceedings of the 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid, Lyon, France, 2008.

[140] T. Sandholm, K. Lai, J. Ortiz, and J. Odeberg. Market-Based Resource Alloca-
tion using Price Prediction in a High Performance Computing Grid for Scientific
Applications. In Proceedings of 15th IEEE International Symposium on High Per-
formance Distributed Computing, Paris, France, 2006.

[141] H. A. Sanjay and S. Vadhiyar. Performance Modeling of Parallel Applications for
Grid Scheduling. Journal of Parallel Distributed Computing, 68(8):1135–1145,
2008.

[142] B. Schnizler. MACE: a Multi-Attribute Combinatorial Exchange. Negotiation,
Auctions, and Market Engineering, 2:84–100.

[143] B. Schnizler. Resource Allocation in the Grid. A Market Engineering Approach,
Ph.D. thesis. Studies on eOrganisation and Market Engineering, 2007.

[144] J. Shirazi. Java performance tuning. O’Reilly Media, Inc., 2003.

[145] E. Shmueli and D. Feitelson. Backfilling with Lookahead to Optimize The Packing
of Parallel Jobs. Journal of Parallel and Distributed Computing, 65(9):1090–1107,
2005.

[146] J. Shneidman, C. Ng, D. Parkes, A. AuYoung, A. Snoeren, A. Vahdat, and B. Chun.
Why Markets Could (but Dont Currently) Solve Resource Allocation Problems in
Systems. In Proceedings of the 10th USENIX Workshop on Hot Topics in Operating
System, Santa Fe, NM, USA, 2005.

[147] G. Singh, C. Kesselman, and E. Deelman. A Provisioning Model and its Compari-
son with Best-Effort for Performance-Cost Optimization in Grids. In Proceedings
of the 16th International Symposium on High Performance Distributed Computing,
California, USA, 2007.

[148] G. Singh, C. Kesselman, and E. Deelman. Adaptive Pricing for Resource Reserva-
tions in Shared Environments. In Proceedings of the 8th IEEE/ACM International
Conference on Grid Computing, Texas, USA, 2007.

[149] R. Smith. The Contract Net Protocol High-Level Communication and Control in a
Distributed Porblem Solver. IEEE Transaction on Computer, 4:1104–1113, 1980.

[150] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using Histor-
ical Information. In Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling
Strategies for Parallel Processing, Florida, USA, 1998.

[151] O. Sonmez and A. Gursoy. A Novel Economic-based Scheduling Heuristic for
Computational Grids. International Journal of High Performance Computing Ap-
plications, 21(1):21, 2007.

REFERENCES 181

[152] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, and
C. Staelin. An Economic Paradigm for Query Processing and Data Migration in
Mariposa. In Proceedings of the 3rd International Conference on Parallel and
Distributed Information Systems, Austin, Texas, USA, 1994.

[153] J. Stosser, P. Bodenbenner, S. See, and D. Neumann. A Discriminatory Pay-as-Bid
Mechanism for Efficient Scheduling in the Sun N1 Grid Engine. In Proceedings
of the 41st Annual Hawaii International Conference on System Sciences, Hawaii,
2008.

[154] G. Stuer, K. Vanmechelen, and J. Broeckhove. A Commodity Market Algorithm
for Pricing Substitutable Grid Resources. Future Generation Computer Systems,
23(5):688–701, 2007.

[155] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska. Experiences with GRIA
Industrial Applications on a Web Services Grid. In Proceedings of the Ist Interna-
tional Conference on e-Science and Grid Computing, Melbourne, Australia, 2005.

[156] Z. Tan and J. Gurd. Market-based Grid Resource Allocation using a Stable Con-
tinuous Double Auction. In Proceedings of the 8th IEEE/ACM International Con-
ference on Grid Computing, Austin, Texas, USA, 2007.

[157] Q. Tang, S. K. S. Gupta, D. Stanzione, and P. Cayton. Thermal-Aware Task
Scheduling to Minimize Energy Usage of Blade Server Based Datacenters. In
Proceedings of the 2nd IEEE International Symposium on Dependable, Autonomic
and Secure Computing, Los Alamitos, CA, USA, 2006.

[158] G. Tesauro et al. Managing Power Consumption and Performance of Computing
Systems Using Reinforcement Learning. In Proceedings of the 21st Annual Con-
ference on Neural Information Processing Systems, Vancouver, Canada, 2007.

[159] United States Environmental Protection Agency. Report to Congress on
Server and Data Center Energy Efficiency, Public Law 109-431. http:
//www.energystar.gov/ia/partners/prod_development/
downloads/EPA_Datacenter_Report_Congress_Final1.pdf,
Aug. 2007.

[160] U.S. Department of Energy. US Energy Information Administration
(EIA) report. http://www.eia.doe.gov/cneaf/electricity/epm/
table5_6_a.html, 2007.

[161] U.S. Department of Energy. Voluntary Reporting of Green-
house Gases: Appendix F. Electricity Emission Factors, 2007.
http://www.eia.doe.gov/oiaf/1605/pdf/Appendix20F r071023.pdf.

[162] S. Venugopal, X. Chu, and R. Buyya. A Negotiation Mechanism for Advance
Resource Reservation using the Alternate Offers Protocol. In Proceedings of the
16th International Workshop on Quality of Service, Netherlands, 2008.

http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html

182 REFERENCES

[163] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya. Designing a Resource
Broker for Heterogeneous Grids. Software: Practice and Experience, 38(8):793–
826, 2008.

[164] G. Verdun, D. Azevedo, H. Barrass, S. Berard, M. Bramfitt, T. Cader, T. Darby,
C. Long, N. Gruendler, B. Macarthur, et al. The Green Grid Metrics: Data Center
Infrastructure Efficiency (DCIE) Detailed Analysis. The Green Grid, 2008.

[165] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kep hart, and W. S. Stornetta.
Spawn: A Distributed Computational Economy. IEEE Transactions on Software
Engineering, 18(2):103–117, 1992.

[166] L. Wang, H. J. Siegel, V. Royehowdhury, and A. Maciejewski. Task Match-
ing and Scheduling in Heterogeneous Computing Environments Using a Genetic-
Algorithm-Based Approach. Journal of Parallel and Distributed Computing,
47(1):8–22, 1997.

[167] L. Wang and Y. Lu. Efficient Power Management of Heterogeneous Soft Real-Time
Clusters. In Proceedings of the 2008 Real-Time Systems Symposium, Barcelona,
Spain, 2008.

[168] R. Wolski, J. Plank, J. Brevik, and T. Bryan. Analyzing Market-based Resource
Allocation Strategies for the Computational Grid. International Journal of High
Performance Computing Applications, 15(3):258, 2001.

[169] R. Wolski, J. Plank, J. Brevik, and T. Bryan. G-commerce: Market Formulations
Controlling Resource Allocation on the Computational Grid. In Proceedings of
the 2001 International Parallel and Distributed Processing Symposium, CA, USA,
2001.

[170] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems, 15:757–768, 1999.

[171] L. Xiao, Y. Zhu, L. Ni, and Z. Xu. GridIS: An Incentive-Based Grid Scheduling.
In Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium, Denver, Colorado, USA, 2005.

[172] W. Xiaohui, D. Zhaohui, Y. Shutao, H. Chang, and L. Huizhen. CSF4: A WSRF
compliant meta-scheduler. In Proceedings of the 2006 World Congress in Com-
puter Science, Computer Engineering, and Applied Computing, Las Vegas, Nevada,
USA, 2006.

[173] B. A. Yair Amir and R. S. Borgstrom. The Java Market: Transforming the Internet
into a Metacomputer. Technical Report CNDS-98-1, Johns Hopkins University,
1998.

[174] C. Yeo and R. Buyya. Service Level Agreement based Allocation of Cluster Re-
sources: Handling Penalty to Enhance Utility. In Proceedings of the 7th IEEE
International Conference on Cluster Computing, Boston, USA, 2005.

REFERENCES 183

[175] C. Yeo and R. Buyya. A Taxonomy of Market-based Resource Management Sys-
tems for Utility-Driven Cluster Computing. Software: Practice and Experience,
36(13):1381, 2006.

[176] J. Yu, R. Buyya, and C. Tham. Cost-based Scheduling of Scientific Workflow Ap-
plications on Utility Grids. In Proceeding of the 1st IEEE International Conference
on e-Science and Grid Computing, Melbourne, Australia, 2005.

[177] J. Yu, S. Venugopal, and R. Buyya. A Market-Oriented Grid Directory Service
for Publication and Discovery of Grid Service Providers and their Services. The
Journal of Supercomputing, 36(1):17–31, 2006.

[178] W. Zhang, A. Cheng, and M. Hu. Multisite Co-allocation Algorithms for Com-
putational Grid. In Proceedings of the 20th International Parallel and Distributed
Processing Symposium, Rhodes Island, Greece, 2006.

[179] H. Zhao and X. Li. Efficient Grid Task-Bundle Allocation Using Bargaining Based
Self-Adaptive Auction. In Proceedings of the 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, Shanghai, China, 2009.

[180] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: A Load sharing Facility
for Large, Heterogeneous Distributed Computer Systems. Software, Practice &
Experience, 23(12):1305–1336, 1993.

	Introduction
	Grid and Utility Computing
	Limitations of Existing Scheduling Mechanisms
	Problem Statement and Objectives
	Proposed Solution
	Thesis Contributions
	Thesis Organisation

	Taxonomy of Market-Oriented Scheduling Mechanisms
	Overview of Utility Grids and Preliminaries
	Requirements
	Consumer Requirements
	Resource Provider Requirements
	Market Exchange (ME) Requirements

	Utility Grid Infrastructural Components
	Taxonomy of Market-Oriented Scheduling
	Market Model
	Allocation Decision
	Participant Focus
	Application Type
	Allocation Objective

	Survey of Grid Resource Management Systems
	Survey of Market-Oriented Systems
	System-Oriented Schedulers

	Discussion and Gap analysis
	Scheduling Mechanisms
	Market-Oriented Systems

	Summary

	Market-Oriented Meta-Scheduler Architecture
	Motivation
	Meta-Broker Architecture
	Architectural Components

	Resource Allocation by the Meta-Broker
	Meta-Broker's Internal Control Flow
	Comparison between Personalised and Meta-Broker
	Performance Results
	Summary

	Meta-Scheduling to Minimise User Spending
	Problem Definition
	Problem Formulation

	Proposed Algorithms
	Linear Programming-based Algorithm for Scheduling MGN Jobs
	Linear Programming-based Algorithm for Scheduling SGN Jobs

	Performance Evaluation
	Simulation Methodology
	Performance Results

	Related Work
	Summary

	Meta-Scheduling to Minimise Time and Cost for Users
	Motivation
	Meta-Broker System
	Meta-Scheduling Algorithms
	Problem Statement
	Min-Min Cost Time Trade-off (MinCTT) Heuristics
	Max-Min Cost Time Trade-off (MaxCTT Heuristics)
	Sufferage Cost Time Tradeoff (SuffCTT Heuristics)
	Time Complexity

	Simulation Setup
	Analysis of Results
	CASE 1: Trade-off Factor Set by Meta-broker
	CASE 2: Trade-off Factor Set by User

	Related Work
	Summary

	Meta-Scheduling to Maximise Provider's Utility
	Motivation
	Meta-scheduling Model
	Data Center Energy Model
	Relation between Execution Time and CPU Frequency
	Problem Description

	Meta-Scheduling Policies
	Mapping Phase (Across Many Data Centers)
	Scheduling Phase (Within a Data Center)
	Lower Bound and Upper Bound

	Performance Evaluation
	Analysis of Results
	Evaluation without Data Transfer Cost
	Evaluation with Data Transfer Cost

	Summary

	Meta-Scheduling to Enhance All Grid Players' Utility
	Motivation
	System Model
	Double Auction-Inspired Meta-scheduling (DAM)
	Valuation Mechanism
	The Meta-Scheduling Algorithm
	Queueing Theory Based Model for Meta-scheduling

	Performance Evaluation
	Experimental Configuration
	Analysis of Results

	Summary

	Market Exchange and Meta-Broker Implementation
	Motivation
	Market Exchange Requirements
	Infrastructure Requirements
	Market Requirements

	Mandi Architecture and Design
	Design Considerations and Solutions
	Architectural Components
	High Level Description
	User Interaction Phases
	Implementation Details

	Prototype and Performance Evaluation
	System Details
	Performance Evaluation
	Discussion

	Summary

	Conclusions and Future Directions
	Summary
	Lessons Learned and Significance
	Future Directions
	Resources with Different Pricing Models
	Scheduling with Pre-emption
	Network and Data-Aware Application Meta-scheduling
	SLA based Meta-Scheduling in Cloud Computing Environments
	Energy-efficient Meta-Scheduling
	Scalable Meta-Broker Architecture
	Mixed Application Model with QoS Requirements

	References

