Energy-Efficient Management of
Resources in Container-based Clouds

Sareh Fotuhi Piraghaj

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

March 2016

Department of Computing and Information Systems
The University of Melbourne, Australia

Energy-Efficient Management of Resources in Container-based
Clouds

Sareh Fotuhi Piraghaj
Principal Supervisor: Prof. Rajkumar Buyya
Co-Supervisor: Dr. Rodrigo N.Calheiros

Abstract

LOUD enables access to a shared pool of virtual resources through Internet and its
C adoption rate is increasing because of its high availability, scalability and cost effec-
tiveness. However, cloud data centers are one of the fastest-growing energy consumers
and half of their energy consumption is wasted mostly because of inefficient allocation
of the servers resources. Therefore, this thesis focuses on software level energy manage-
ment techniques that are applicable to containerized cloud environments. Containerized
clouds are studied as containers are increasingly gaining popularity. And containers are
going to be major deployment model in cloud environments.

The main objective of this thesis is to propose an architecture and algorithms to min-
imize the data center energy consumption while maintaining the required Quality of
Service (QoS). The objective is addressed through improvements in the resource utiliza-
tion both on server and virtual machine level. We investigated the two possibilities of
minimizing energy consumption in a containerized cloud environment, namely the VM
sizing and container consolidation. The key contributions of this thesis are as follows:

1. A taxonomy and survey of energy-efficient resource management techniques in
PaaS and CaaS environments.

2. A novel architecture for virtual machine customization and task mapping in a con-
tainerized cloud environment.

3. An efficient VM sizing technique for hosting containers and investigation of the
impact of workload characterization on the efficiency of the determined VM sizes.

4. A design and implementation of a simulation toolkit that enables modeling for con-
tainerized cloud environments.

5. A framework for dynamic consolidation of containers and a novel correlation-aware
container consolidation algorithm.

6. A detailed comparison of energy efficiency of container consolidation algorithms
with traditional virtual machine consolidation for containerized cloud environments.

ii

Declaration

This is to certify that
1. the thesis comprises only my original work towards the PhD,
2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Sareh Fotuhi Piraghaj, 24 March 2016

iii

Preface

This thesis research has been carried out in the Cloud Computing and Distributed Sys-
tems (CLOUDS) Laboratory, Department of Computing and Information Systems, The
University of Melbourne. The main contributions of the thesis are discussed in Chap-

ters 2- 5 and are based on the following publications:

e Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros, and Rajku-
mar Buyya, “A Survey and Taxonomy of Energy Efficient Resource Management
Techniques in Platform as a Service Cloud,” Handbook of Research on End-to-End
Cloud Computing Architecture Design Book, |.Chen, Y.Zhang, and R.Gottschalk (eds), IGI
Global, Pages. 410 - 454. Web. 16 Oct. 2016. doi: 10.4018/978-1-5225-0759~
8.ch017, Hershey, PA, USA, 2017.

e Sareh Fotuhi Piraghaj, Rodrigo N.Calheiros, Jeffery Chan, Amir Vahid Dastjerdi ,
and Rajkumar Buyya “A Virtual Machine Customization and Task Mapping Archi-
tecture for Energy Efficient Allocation of Cloud Data Center Resources,” The Com-
puter Journal, vol. 59, no. 2, Pages. 208 - 224, ISSN 0010-4620, Oxford University Press,
UK, November, 2015.

e Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and Rajkumar
Buyya, “Efficient Virtual Machine Sizing For Hosting Containers as a Service,” Pro-
ceeding of the 2015 IEEE World Congress on Services (SERVICES2015), Pages. 31 - 38,
New York, United States.

e Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and Rajkumar

Buyya, “An Environment for Modeling and Simulation of Containers in Cloud Data

\%

10.4018/978-1-5225-0759-8.ch017
10.4018/978-1-5225-0759-8.ch017

Centers”, Software: Practice and Experience (SPE), John Wiley & Sons, Ltd, USA, 2016

. [Online]. Available: http://dx.doi.org/10.1002/spe.2422.

e Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and Rajkumar
Buyya, “A Framework and Algorithm for Energy Efficient Container Consolida-
tion in Cloud Data Centers ,” Proceedings of the 11th IEEE International Conference
on Green Computing and Communications (GreenCom 2015), Pages: 368 - 375, Sydney,
Australia, 2015.

vi

http://dx.doi.org/10.1002/spe.2422

Acknowledgements

Reflect upon your present blessings, of which every man has plenty; not on your past
misfortunes, of which all men have some. — Charles Dickens

PhD is a rewarding journey, which would not be possible without the support of
many people. As my journey is near to its end, I would like to take this opportunity to
thank these amazing people who inspired me during the ups and downs of this pleasant
experience.

First and foremost, I would like to express my sincere gratitude to my principal su-
pervisor, Professor Rajkumar Buyya for giving me the opportunity to pursue my studies
in his eminent group. His continuing guidance, support, and encouragement helped me
in all aspects of my research and writing of this dissertation. Secondly, I would like to ac-
knowledge my co-supervisor, Doctor Rodrigo N.Calheiros, on his precious support and
wise advice that made the contributions of this thesis more significant.

I would like to express my appreciation to my collaborator Dr. Jeffery Chan for his
valuable and insightful comments on the third chapter of this thesis. I also thank Dr.
Amir Vahid Dastjerdi, for his generous guidance on developing research skills, collabo-
rating on research, providing constructive comments and proofreading the dissertation.
I thank Professor Christopher Andrew Leckie for serving as the chair of the PhD commit-
tee and offering his constructive feedback on my research work.

I would like to thank all past and current members of the CLOUDS Laboratory, at the
University of Melbourne: Atefeh Khosravi, Adel Nadjaran Toosi, Yaser Mansouri, Maria
Rodriguez, Chenhao Qu, Yali Zhao, Jungmin Jay Son, Bowen Zhou, Farzad Khodadadi,
Hasanul Ferdaus, Safiollah Heidari, Liu Xunyun, Caesar Wu, Minxian Xu, Sara Kardani
Moghaddam, Muhammad H.Hilman, Redowan Mahmud, Anton Beloglazov, Nikolay
Grozev, Deepak Poola, Mohsen Amini Salehi, Saurabh Garg, and Mohammed Alrokayan
for their friendship and support.

I acknowledge the University of Melbourne and the Australian Research Council
(ARC) grants (awarded to my principal supervisor) for providing scholarships and facil-
ities to pursue my research. I am also thankful for Amazon Web Services (AWS) research
grant that provided me a real cloud environment for running experiments and validating
my research assumptions. I also thank the CIS Department administrative staff members
Rhonda Smithies, Madalain Dolic, and Julie Ireland and Professor Justin Zobel for their
support and guidance.

vii

I express my profound gratitude to my parents, who have always been supporting
me in every stage of life including my undergraduate and postgraduate studies. I also
thank my sisters, and brother for their love and encouragements in time of trouble and
doubt. Your prayer for me was what sustained me thus far.

I thank my brother- and sisters-in-law for their precious understanding and encour-
agement. I specially thank my parents-in-law for their support and thoughtfulness over
these years.

Lastly and most importantly, I would like to dedicate this thesis to my beloved hus-
band, Maysam, who has been making my life so incredible and prosperous each and
every day. These few words can not express my deepest appreciation for his selfless
patience, unconditional love, and endless support during these past years.

Sareh Fotuhi Piraghaj
Melbourne, Australia
March 24, 2016

viii

Contents

1 Introduction
1.1 Container as a Service Cloud Deployment Model
1.2 Energy Consumption Challenges in Containerized Clouds
1.3 Research Problems and Objectives
14 Research Methodology
1.5 Research Contributions
1.6 ThesisOrganization.,

2 Literature Survey and Related Work
21 Introduction
2.2 PaaSPower-aware Resource Management
221 Bare Metal Environments
222 Virtualized Environments00 L.
223 System-Level Virtualization (Virtual Machines)
224 Hybrid L
2.3 Workload Characterization and Modeling
2.3.1 Workload Definition,
2.3.2 Workload Modeling Techniques
2.3.3 Workload-based Energy Saving Techniques
2.4 Application-based Energy Saving Techniques
241 Web Applications o L.
242 BagofTasks
243 BigData Applications
2.5 SLA and Energy Management Techniques
2.6 Thesis Scope and Positioning, .
27 SUMMATIY .« o v v v v vt e e e e

3 Virtual Machine Customization and Task Mapping Architecture
31 Introduction e
32 RelatedWork
321 Google Trace ResearchWorks
3.3 System Model and Architecture Lo o L oL
331 UserRequestModel
332 CloudModel L
3.3.3 System Architecture o L.
334 SystemComponents

X

N U1 W =

34 TaskClustering
3.4.1 Clustering FeatureSet
342 Clustering Algorithm
3.5 Identification of VM Types for the VM Type Repository
3.5.1 Determination of Number of Tasks for each VM Type
3.5.2 Estimation of Resource Usage of Tasks ina Cluster
3.5.3 Determination of Virtual Machines Configuration
3.6 Resource Allocation Policies
3.7 Google Cluster Workload Overview
3.8 Characteristics of Task Clusters
3.9 Performance Evaluation
3.9.1 Experiment Setup for Investigating Resource Allocation Policies .
3.9.2 Task Execution Efficiency of the Proposed Algorithms
3.9.3 Energy Efficiency of the Proposed Algorithms
394 Discussion e
3.10 Efficient VM SizingforCaaS.
3.10.1 Extended System Model
3.10.2 Extended Architecture oL oL,
3.10.3 Experiment Setup for Investigating VM Sizing Efficiency
3.10.4 Featuresetselection
3.10.5 Baselinescenarios.
3.10.6 ExperimentResults
311 Conclusions

Modeling and Simulation of Containers in Cloud Data Centers
41 Introduction e
42 RelatedWork
43 CaaSmodeling requirements
44 Simulator Architecture L
45 Design and Implementation o o0 L.
45.1 Discrete Event Simulation Dynamics
4.6 Use Cases and Performance Evaluation
4.6.1 Use Case 1: Container Overbooking
4.6.2 Use Case 2: Container Consolidation
4.6.3 Use Case 3: Container Placement Policies
464 Containerand VM Start Up Delays.
4.6.5 Simulation Scalability
4.6.6 Energy consumption overheadof CaaS
4.6.7 Empirical Evaluation:
47 Conclusions e

Efficient Container Consolidation in Cloud Data Centers

5.1 Introduction e

5.2 Related Work e

5.3 System Objective and Problem Formulation
5.3.1 DataCenter PowerModel
532 SLAMetric e e

100
101
103
103
104
106
107
108
109
111

113
113
115
119
121
122
126
127
128
131
132
133
134
136
138
142

5.3.3 Problem Formulation 147

54 SystemModel Lo 148
54.1 HostStatusModule, 150
5.4.2 ConsolidationModule 151
55 Algorithms 153
55.1 Correlation Analysis 154
5.5.2 Host Status Monitor Module 154
55.3 ConsolidationModule 155
5.6 Performance Evaluation 157
5.6.1 SimulationSetup o oo oL 157
5.6.2 ExperimentResults 158
5.6.3 Container Consolidation Versus VM Consolidation 169
57 Conclusions e 171
Conclusions and Future Directions 173
6.1 Summary 173
6.2 Future Research Directions 176
6.2.1 Dynamic Virtual Machine Sizing 176
6.2.2 Multi-objective Container Placement Algorithms 177
6.2.3 Network-aware Container Consolidation Algorithms 178
6.2.4 Joint VM and Container Consolidation Algorithms 178
6.2.5 Extending ContainerCloudSim Simulator 179
6.2.6 Advanced Container Overbooking Algorithms 179
6.2.7 Deploying a Scalable Containerized Testbed 180
6.3 FinalRemarks e 180

xi

1.1

1.2

1.3
1.4
1.5

2.1
2.2
2.3

24

2.5

2.6
2.7
2.8

29

2.10
211

212
2.13
2.14

3.1
3.2
3.3
34

List of Figures

The four cloud deployment models: private, public, community, and hy-
bridcloud. e
The Container as a Service cloud service model links the PaaS and IaaS

A simple CaaS deployment modelonlaaS.
Outline of the thesis objective.
Thesis organization. o o oo

Power-aware PaaS resource management research breakdown
Containerized Virtual Environment
Energy management techniques which are applied to the OS level virtual-
izationenvironments. oo
The differences between the Application container and the OS container
for a three tier application. Application containers are implemented to run
a single service and by default has layered Filesystems [121].
The difference between the original bin packing problem and its variation
for the resource allocation [126]
System Level Virtualization
System-Level virtualization energy efficient management techniques . . .
The consolidation sub problems which need to be answered for a general
consolidation problem. Lo L oL
VM sizing techniques categorized in two major groups including static and
dynamicsizing.
Hybrid Virtual Environment
The energy efficient resource management techniques in PaaS environ-
ment are grouped based on the approach awareness of the cloud workload
and its characteristics. L oo L oo
Application types supported in energy management systems.
Two MapReduce development models studied in [52]
Considering SLA, the energy efficient resource management techniques
for PaaS environments are categorized in two groups, namely SLA Aware
and SLA Agnostic.

A Simple CaaS Deployment ModelonlaaS.
Proposed system architecture and its components.
State Transition for jobs and tasks (Adopted from [137])
CDF of average requested and utilized resources for Google cluster tasks.

xiii

0 =~ W

13

19
23

24

25

26
29
29

30

39
41

47
48
52

54

70
78
89
91

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13

41
4.2
4.3
44
4.5

4.6
4.7

4.8

4.9

4.10

411

4.12

413

Population of tasks in each cluster. Clusters 15 to 18 are the most populated
clusters. Since Cluster 1 population is less than 1%, it is not shown in the
chart. 93
Clusters of tasks are categorized on three levels according to the average
length, the priority, and the scheduling class (C) considering the statistics
inTable3.5. 94
Task execution efficiency in the RRA, FqRA, AvgRA, MeRA, ThqRA, and

URA policies. Efficiency is measured as the task rejection rate per minute. 99
Average delay caused by applying the RRA, FqRA, AvgRA, MeRA, ThqRA,

and URA policies. The delay is estimated by the time it takes for a specific

task to be rescheduled on another virtual machine after being rejected. . . 99
Energy consumption comparison of the RRA, FgRA, AvgRA, MeRA, ThqRA
and URA policies. URA outperforms the other five algorithms in terms of

the energy consumption and the average saving considering all the clusters. 100

Energy consumption of the data center for the usage-based fix VM size

approach versus RESand WFS 108
Energy consumption of the data center for the request-based fix VM size

approach versus RESand WFES. 110
Number of instantiated virtual machines for the applied approaches. . . . 110
Task rejection rate for WFS, RFS and the fixed VM sizes considering the

usage-based approach oo oL, 111
The virtual environment modeled in ContainerCloudSim. 114
ContainerCloudSim relations to the CloudSim ecosystem. 119
ContainerCloudSim simulator architecture. 120
ContainerCloudSim class diagram. 123
Space-shared and time-shared provisioning concepts for containers A1 and

A2runningona VM. Lo Lo L o 125
Data center internal processing sequence diagram. 127

A common architecture for the studied use cases: VMM sends the data in-
cluding the status of the host along with the list of the containers to migrate
to the consolidation manager. The consolidation manager decides about
the destination of containers and sends requests to provision resources to
the selected destination. 00 L., 128
Impact of container’s overbooking on the number of successfully allocated
containers along with the number of container migrations happened for
the experiments with the same number of allocated containers. 129
Impact of container selection algorithm on the container migration rate
(per 5 minute), SLA violations and the total data center energy consumption.130
Impact of initial container placement algorithm on the container migration
rate (per 5 minute), SLA violations, and data center energy consumption. 132
The container start up delay for running 1 to 5000 concurrent containers in

each of the studied Amazon EC2 instances. 133
Impact of increasing the number of containers on the average memory us-
age and the execution time of the simulator. 135
Grid5000 infrastructure sites in France. The circles show the sites that are
distributed across thecountry. 0 L. 136

xiv

4.14 The Container Placement System architecture that is employed in the em-

5.1
52

5.3

54

5.5

5.6

5.7

5.8

5.9

pirical evaluation. o o o o

System Architecture and Processes.
Impact of over-load detection threshold OL on container migration rate,
created VMs, data center energy consumption, and SLA violations.
Impact of under-load detection threshold UL on container migration rate,
created VMs, data center energy consumption, and SLA violations.
Impact of container selection algorithm on container migration rate, cre-
ated VMs, data center energy consumption, and SLA violations.
Impact of overbooking of containers on migration rate, created VMs, data
center energy consumption and SLA violations.
Impact of over-load detection threshold OL on number of over-load status,
average VM migrations (per hour), data center energy consumption, and
SLAviolations. e
Impact of under-load detection threshold UL on number of over-load sta-
tus, average VM migrations (per hour), data center energy consumption,
and SLAviolations. Lo
Impact of VM selection policies on number of over-load status, average
VM migrations (per hour), data center energy consumption, and SLA vi-
olations.
Investigating the efficiency of the Container consolidation versus VM con-
solidation considering the average number of migrations (per hour), SLA
violations, and data center energy consumption.

XV

160

161

170

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
34
3.5

3.6

3.7

3.8
3.9

4.1
4.2
43

44

4.5

51
52
5.3

List of Tables

Hardware Virtualization Taxonomy. 22
Thethesisscope 55
Energy Efficient Research Considering Bare Metal Environment 58
Energy Efficient Research Considering Bare Metal Environment 59
Energy Efficient Research Considering Bare Metal Environment 60
Energy Efficient Research Considering OS-Level Virtualization. 61
Energy Efficient Research Considering System-Level Virtualization 62
Energy Efficient Research Considering System-Level Virtualization 63
Energy Efficient Research Considering System-Level Virtualization 64
Energy Efficient Research Considering Hybrid Virtual Environment 65
Virtual machine configurations. 86
Google Trace Data Tables [137] 89
Workload Parameters and statistics during the 24 hours studied period. . 91
Largest amount of each resource applied for de-normalization. 92
Statistics of the clusters in terms of the scheduling class, priority and the

average task length. The star sign (*) shows the dominant priority and

scheduling class of the tasksineach group. 95
Virtual machine task capacity of each cluster for RRA, FqRA, AvgRA, MeRA,
ThqRA, and URA resource allocation policies. 96
Available server configurations present in one of the platforms of the Google
cluster [63]. e e e 98
Virtual machine configurations for 18 clusters. 107
Virtual machine specifications of RFS and the selected Amazon EC2 in-
StANCES. e e e e e e e e e e e e e e e 107
Configuration of the server, VMs, and containers. 128
Power Consumption of Taurus-7 Server 138
Average power consumption (W) of Taurus-7 Server when stressing CPU

from 0% to 100% in virtualized environment 138
Average power consumption (W) reported in Grid5000 versus Container-
CloudSim e e e 139
Average power consumption (W) reported in Grid5000 versus Container-
CloudSim for container overbooking 141
Description of symbols used in Section5.3. 146
Server Configurations and power models (700 Servers) 157
Configuration of containersand VMs. 158

Xvii

54
55

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

Experiment sets, objectives, and parameters for container consolidation. .
Tukey multiple comparisons of means for energy consumption of the data
center for the studied over-load thresholds.
Tukey multiple comparisons of means for energy consumption of the data
center for the studied under-load thresholds.
Tukey multiple comparisons of means for energy consumption of the data
center for the studied host selection algorithms considering the MCor con-
tainer selection algorithm. oo 0oL
Tukey multiple comparisons of means for energy consumption of the data
center for the studied overbooking percentile for containers.
Tukey multiple comparisons of means for energy consumption of the data
center for the studied host selection algorithms considering the 20th over-
booking factor. L L
Experiment sets, objectives, and parameters for VM consolidation.

Tukey multiple comparisons of means for energy consumption of the data
center for the studied over-load thresholds.
Tukey multiple comparisons of means for energy consumption of the data
center for the studied host selection algorithms considering the 100% OL
threshold.
Tukey multiple comparisons of means for energy consumption of the data
center for the studied under-load thresholds.

xviii

159

159

162

164

166

Chapter 1

Introduction

LOUD computing is a realization of utility-oriented delivery of computing ser-
C vices on a pay-as-you-go basis [22]. There are a variety of definitions of Cloud
Computing and the specific characteristics it offers to a user. The National Institute of
Standards and Technology (NIST) [112] defines Cloud Computing as “... a model for en-
abling ubiquitous, convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction”. As
stated by Armbrust et al. [6], cloud computing has the potential to transform a large part

of the IT industry while making software even more attractive as a service.

Traditional cloud services are broadly divided into three service models, namely In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). In the Iaa$S service model, a cloud customer has the ability to provision virtualized
resources using both web portals and APIs. Gartner I defines Taa$S as “... a standardized,
highly automated offering, where compute resources, complemented by storage and networking
capabilities are owned and hosted by a service provider and offered to customers on-demand”. The
PaaS service model has a higher level of abstraction when compared to IaaS. This service
model enables developers to build applications and services over the Internet by provid-
ing a platform and an environment that is accessible by the web browser. Server-side
scripting environment, database management system, and server software are some of
the features that can be included in the Paa$S cloud service model 2. The Software as a

Service (SaaS) cloud model enables customers to access applications over the Internet °.

lhttp://www.gartner.com/it-glossary/infrastructure-as—a-service—iaas/
thtp ://www.interoute.com/what-paas
3http ://www.interoute.com/what—-saas

http://www.gartner.com/it-glossary/infrastructure-as-a-service-iaas/
http://www.interoute.com/what-paas
http://www.interoute.com/what-saas

2 Introduction

Public Cloud

Private Cloud / N
AN ~ Comunnity
Cloud

Figure 1.1: The four cloud deployment models: private, public, community, and hybrid
cloud.

Google docs, Facebook, and Twitter are some examples of this cloud service model.

In addition to these service models, Clouds are categorized into four deployment

models on the basis of their availability to the general public (Figure 1.1):

e Public: In this model, the Cloud is available to the general public.

e Private: The private Cloud is accessible by a business or organization while it is not

available to the general public.

e Community: This category of cloud provides services to a limited number of indi-
viduals or organizations that have shared concerns (e.g., mission, security require-
ments, and compliance considerations). These organizations are commonly man-
aged, secured, and governed by either a third party managed service provider or

all of the participating organizations.

e Hybrid: This model is an integration of two or more of the aforementioned cloud
deployment models. Here, customers benefit from the multiple deployment mod-
els, what consequently eliminates the boundaries and limitations of each cloud

model while increasing the capacity through aggregation *.

4https ://www.ibm.com/developerworks/community/blogs/722£6200-fd4ca-4eb3-9d64-
8d2b58b2d4e8/entry/4_Types_of_Cloud_Computing_Deployment_Model_You_Need_to_
Knowl?lang=en

https://www.ibm.com/developerworks/community/blogs/722f6200-f4ca-4eb3-9d64-8d2b58b2d4e8/entry/4_Types_of_Cloud_Computing_Deployment_Model_You_Need_to_Know1?lang=en
https://www.ibm.com/developerworks/community/blogs/722f6200-f4ca-4eb3-9d64-8d2b58b2d4e8/entry/4_Types_of_Cloud_Computing_Deployment_Model_You_Need_to_Know1?lang=en
https://www.ibm.com/developerworks/community/blogs/722f6200-f4ca-4eb3-9d64-8d2b58b2d4e8/entry/4_Types_of_Cloud_Computing_Deployment_Model_You_Need_to_Know1?lang=en

1.1 Container as a Service Cloud Deployment Model 3

Applications

SaaS

Data

Programming Environment

PaaS

Runtime System

Containerization

q — — -
)

Operating System (OS)

seed

Virtualization

I
|
|

aa) qudware («!:) (i!!)

(Compute, Storage, Network)

laaS

Figure 1.2: The Container as a Service cloud service model links the PaaS and IaaS layers.

1.1 Container as a Service Cloud Deployment Model

PaaS provides a platform for application development that allows users not to worry
about the underlying infrastructure and technologies. These platforms are widely used
by companies for various purposes such as hosting mobile systems [105]. Google App
Engine (GAE) and Amazon Web Services (AWS) Elastic Beanstalk are examples of PaaS
services. Gartner named 2015 as “the year of PaaS. ” ° and defined Platform-as-a-Service
(PaaS) as “a broad collection of application infrastructure (middleware) services (including ap-
plication platform, integration, business process management and database services)”°.

Despite the advantages of the PaaS service model, there are still a number of draw-
backs that has limited the broader adoption of this service model. PaaS provides a plat-

form that is optimized for a specific use case, while IaaS gives costumers flexibility by of-

5 http://insights.wired.com/profiles/blogs/why-2015-is-the-year—-of-paas#

axzz3s5dYcebL

6http://www.gartner.com/itfglossary/platformfasfafservicefpaas

http://insights.wired.com/profiles/blogs/why-2015-is-the-year-of-paas#axzz3s5dYcebL
http://insights.wired.com/profiles/blogs/why-2015-is-the-year-of-paas#axzz3s5dYcebL
http://www.gartner.com/it-glossary/platform-as-a-service-paas

4 Introduction

OlXxx>||> > ol x> | >
mollooc ||o||T molloc | T
S ‘:_3'_ | © © >S5 2_ © ©
O gllHN|[|[w]] & Qol|lm| N
B a o 3

- Libs - Libs

VM A VM B
Hypervisor
Server

Figure 1.3: A simple CaaS deployment model on IaaS.

fering configurable virtual environments (virtual machines). By utilizing the PaaS model,
customers are able to focus on the code only, without being concerned about maintenance
costs, runtime environments, and operating systems. However, applications developed
in a PaaS environment are restricted by the platform specifications. For example, in or-
der to be able to run Java applications on GAE, developers must first make sure that
their utilized third party libraries are compatible with GAE. This is because GAE does
not support all the Java Runtime Environment (JRE). In this respect, CaaS (Container as a
Service) is introduced to solve these issues resulted from the dichotomy between the IaaS
and PaaS models [143]. Containers, as the building blocks of the CaaS cloud model, offer
isolated virtual environments without requiring intermediate monitoring media such as
hypervisors. Containers increase the efficiency of cloud resource utilization as they are
denser compared to virtual machines. In addition, as containers share the host Operat-
ing System kernel, their communication is performed via system standard calls, which is

much faster than hypervisor-based communication of virtual machines.

Amazon EC2 Container Service (ECS) and Google Container Engine are two exam-
ples of CaaS cloud environments that lie between IaaS and PaaS. While IaaS provides
virtualized compute resources and PaaS provides application specific runtime services,
CaaS is the missing layer that links these two layers together (as depicted in Figure 1.2).
CaaS services are usually provided on top of IaaS” virtual machines, as illustrated in

Figure 1.3. CaaS providers, such as Google and AWS, argue that while containers offer

1.2 Energy Consumption Challenges in Containerized Clouds 5

appropriate environment for semi-trusted workloads, virtual machines provide another
layer of security for untrusted workloads. While Google runs containers on bare-metal
in its private infrastructure, this option is not available in public cloud environment. In
addition to this, virtual machines enable the system load optimization where containers
are not using the whole physical server’s capacity. Apart from this, infrastructure owner
will not be able to run mix workloads while running containers on bare-metal. How-
ever, this is not the case for VMs as VMs with different operating systems can run on one
physical server. Moreover, virtual machines are more advanced in terms of disaster re-
covery when compared with physical servers. VMs also enable multi tenancy when the
workloads can not share the same kernel. Apart from this, VM provisioning is a lot eas-
ier through API when compared to physical server provisioning, therefore VMs are also
beneficial for automation purpose’. On the other hand in a CaaS environment, Contain-
ers decouple applications from their running environment and consequently eliminate
platform-dependency [7], which is one of the drawbacks of PaaS. Containerization brings
portability so developers are able to build applications and run them anywhere on any
kind of platform. The CaaS cloud model is considered a gateway to active application

management.

1.2 Energy Consumption Challenges in Containerized Clouds

The numerous advantages of cloud computing environments, including cost effective-
ness, on-demand scalability, and ease of management, encourage service providers to
adopt them and offer solutions via cloud models. This in turn encourages platform
providers to increase the underlying capacity of their data centers to accommodate the
increasing demand of new customers. One of the main drawbacks of the growth in ca-
pacity of cloud data centers is the need for more energy to power these large-scale infras-
tructures. Such a drastic growth in energy consumption of cloud data centers is a major
concern of cloud providers.

An average data center consumes as much energy as 25,000 households, as reported

by Kaplan et al. [90]. This energy consumption results in increased Total Cost of Own-

7https ://blog.docker.com/2016/04/physical-virtual-container-deployment/

https://blog.docker.com/2016/04/physical-virtual-container-deployment/

6 Introduction

ership (TCO) and consequently decreases the Return of Investment (ROI) of the cloud
infrastructure. Apart from low ROI, energy consumption has a significant impact on
carbon dioxide (CO2) emissions, which are estimated to be 2% of global emissions [21].

Energy wastage in data centers are driven by various reasons such as inefficiency in
data center cooling systems [71], network equipments [80], and server utilization [70].
However, servers are still the main power consumers in a data center [70]. Both the
amount of work and the efficiency with which the work is performed affect the power
consumption of servers [103]. Therefore, for improving the power efficiency of data cen-
ters, the energy consumption of servers should be made more proportional to the work-
load. Power proportionality is defined as the proportion of the amount of power con-
sumed comparing to the actual workload and it can be achieved by either decreasing
servers’ idle power utilization at hardware level [11] or efficient provisioning of servers
through power-aware resource management policies at software level.

Although there is a large body of research on energy efficient resource management of
IaaS, not enough attention has been given to PaaS environments with containers. Hence,
this thesis focuses on software-level energy management techniques that are applicable
to containerized cloud environments. The main objective is improving data center energy
consumption while maintaining the required Quality of Service (QoS) through decreas-
ing Service Level Agreement (SLA) violations. This thesis contributes to the literature by
considering containerized cloud environments while addressing their new challenges.
One of the aspects that distinguishes this thesis from the related work is that this thesis
tackles the problem of data center energy consumption through the study of real cloud
backend data. It also explores the potential benefits, for containerized cloud environ-
ments, from a comprehensive cloud workload study and how it can decrease the amount

of energy consumption in the data center.

1.3 Research Problems and Objectives

This thesis tackles research challenges in relation to energy-efficient resource manage-
ment techniques applicable for containerized cloud environments in which containers

are running on VMs. In summary, the following research problems are explored:

1.3 Research Problems and Objectives 7

e How to map tasks/containers to virtual machines considering available cloud

workload data?

The determination of virtual machine configuration is an important factor that af-
fects the amount of resources required for task/container placement and the total
energy consumption of a data center. Considering a single VM size for each con-
tainer individually increases the chance of system fragmentation. In this respect,
classification of containers into different groups has the potential to decrease the
granularity of the placement problem. Apart from this, the analysis of usage pat-
terns of each class of containers can help in the determination of the optimal num-

ber of containers that can be hosted in one VM.

e How workload characterization methodologies/techniques affect the number of
identified virtual machine sizes and energy consumption in a PaaS/ CaaS envi-

ronment?

As the output of the workload characterization step is utilized in the determination
of virtual machine sizes, it is essential that the methodology used to characterize
the workload is well understood. This is required to avoid over classification of the
workload, which may increase both resource wastage and fragmentation. Hence,
making sure that the workload analysis results in an efficient resource allocation is

as important as the characterization process itself.

e How the algorithms applied in various stages of the consolidation process in
a CaaS/PaaS environment affects the total energy consumption and SLA viola-
tions? Similarly to any consolidation problem, the container consolidation problem

should also be considered as a multi-stage problem as follows.

1. When to trigger the migration?
Container migration is triggered when a host is found to be overloaded or un-
derloaded. When they are overloaded, the migration happens to avoid further
SLA violations and performance degradation. However, when they are under-
loaded, the migration objective is improving the resource utilization by mi-
grating containers away from underloaded hosts so that they can be switched

off or put in a lower power state.

Introduction

VM Sizing

I

I
r | Mining Workload Tailoring VM Sizes
—_ | | Usage Patterns to Derived patterns

I

I

Container Management

I
I
: Migrate and
I
I

. Place Containers
Consolidate
. on VMs
Containers
.- - J

Figure 1.4: Outline of the thesis objective.

2. Which containers to migrate?

When a host is found to be overloaded, it is the time to choose a set of contain-
ers to move from the overloaded hosts to resolve the situation. As host over-
load increases incurred SLA violations, the container selection criteria may af-
fect the energy efficiency of the consolidation approach and the performance

of applications running inside containers.

3. Where to migrate?

When the set of containers are selected for migration, it is important to find
the best placement for them. Selected migration destinations affect the effi-
ciency of the consolidation process in terms of energy efficiency and SLA vio-
lations. For instance, selecting the most utilized host as the migration destina-
tion might increase SLA violations, since the probability that the most utilized
host will experience overload in the near future is higher than for the least

utilized host.

e Is container consolidation a better approach than VM consolidation?

In CaaS environments, there is the option of consolidation at VM and container
levels. This option raises the question of which one is more beneficial in terms of

total energy consumption of the data center along with incurred SLA violations.

1.3 Research Problems and Objectives 9

Considering the aforementioned research problems, the following objectives are iden-

tified (Figure 1.4):

e Explore, analyze, and systematize research in the area of PaaS/CaaS energy-efficient
resource management techniques to obtain an understanding of the studied ap-

proaches along with the shortcomings of existing applied algorithms.

e Conduct a brief analysis of the only publicly available cloud backend traces, re-
leased by Google in 2011, to obtain insights about the challenges in a real cloud

environment.

e Propose a task mapping and VM size customization architecture that is inspired
by the Google workload analysis and characterization results. This architecture

benefits from both virtual machine and containerization technology.

e Explore the effect of workload analysis on the efficiency of customized VM sizes
considering data center’ total energy consumption and container/task rejection

rates.

e Compare the efficiency of customized VM types with the currently offered VM con-

tigurations considering data center’s total energy consumption.

e Extend the current available cloud simulator CloudSim to model the CaaS cloud
environment, which enables the ability to conduct experiments and compare con-

tainer/ VM consolidation approaches in a controllable and reproducible way.

e Investigate the effect of the algorithms applied in different stages of the consoli-
dation process on data center’s total energy consumption and incurred SLA viola-

tions.

e Propose a correlation-aware container consolidation algorithm and compare its ef-

ticiency with the efficiency of available approaches.

e Compare the efficiency of VM consolidation approaches with container consolida-
tion algorithms in terms of data center’s energy consumption and incurred SLA

violations.

10 Introduction

1.4 Research Methodology

The virtual machine sizing and task mapping approaches presented in this thesis are
evaluated using real cloud backend traces. For this purpose, we analyzed and charac-
terized the publicly available Google cloud backend traces. The traces were released in
two versions. The first Google log provides normalized resource usage of a set of tasks
over a 7-hour period. The second version of the Google traces, released in 2012, contains
more details in a longer time frame. Therefore, the data set used in this thesis is derived
from the second version of the Google cloud trace log [137] collected during a period of
29 days. The log consists of data tables describing machines, jobs, and tasks.

In addition, to evaluate the proposed container and VM consolidation algorithms, we
utilized simulated application workloads obtained from real-world workload traces. The
CPU utilization of containers are simulated based on the data provided by Beloglazov et
al. [15]. The workload data was obtained from monitored CPU utilization by the CoMon
project of the PlanetLab [127] infrastructure.

In order to enable evaluation of our proposed algorithms, we utilized simulation. For
this purpose, we designed and implemented a simulator that enables modeling of con-
tainerized cloud environments. Simulation was selected as the evaluation methodology
because it provides a repeatable and controllable environment to evaluate our proposed
algorithms. The proposed simulator for containerized environment enables researchers
to plug in and compare their container scheduling and provisioning policies in terms of

energy efficiency and SLA compliance.

1.5 Research Contributions

This thesis” contributions can be broadly classified into 5 major categories, namely anal-
ysis and classification of prior research work, presentation of an efficient virtual machine
customization and task mapping architecture for a containerized cloud environment,
proposition of virtual sizing techniques for CaaS cloud service model, implementation
of the ContainerCloudSim simulator for containerized cloud environments, and investi-
gation of energy efficiency of container consolidation algorithms. The key contributions

of this thesis are:

1.5 Research Contributions 11

1. A taxonomy and survey of energy-efficient resource management techniques in

PaaS and CaaS environments.

2. Virtual machine customization and task mapping architecture.

o A detailed analysis of Google trace workload, which is the only publicly avail-

able cloud backend data.

e An end-to-end architecture for efficient allocation of tasks on data centers that

decreases data center’s total energy consumption .

o Identification of virtual machine configurations sizes (types) in terms of CPU,
memory, and disk capacity through extraction of resource utilization patterns

of tasks.

e Determination of the maximum number of tasks (task capacity) that can be ac-
commodated in each virtual machine type. Various estimates such as average

resource usage of tasks in each cluster are considered for this purpose.

3. Efficient VM sizing technique for hosting Containers as a Service:

e An approach to determine the most efficient VM sizes considering similarities

in usage patterns of tasks.

¢ Investigation of the impact of the feature set selection on the number of result-

ing clusters and resource allocation efficiency.

e A comparison of our VM sizing technique with fixed VM size baseline scenar-

i0s.

4. Design and implementation of the “ContainerCloudSim” simulator, which enables

modeling of containerized cloud environments.

e A simulation architecture for containerized clouds and its implementation.
The simulator provides a repeatable and controllable environment that sup-
ports modeling and simulation of containerized cloud computing environ-

ments.

12 Introduction

e A number of use cases to demonstrate how researchers can plug in and com-
pare their container scheduling and provisioning policies in terms of energy

efficiency and SLA compliance.

e Evaluation of the scalability of our system as it supports simulation of large

number of containers.

e Modeling of the startup delay of containers considering real experiments while

incorporating it in the simulation.

5. Novel algorithm for energy efficient container consolidation.

e A framework for dynamic container consolidation.
e A novel correlation-aware container consolidation algorithm.

e A comparison of the heuristics used in different stages of VM and container
consolidation considering the total energy consumption of the data center and

SLA violations.

1.6 Thesis Organization

The core chapters of this thesis are derived from several journal and conference papers
during the PhD candidature. The thesis structure is depicted in Figure 1.5. Chapter 3 is
focused on the virtual machine sizing techniques for containerized cloud environments.
Chapter 4 and Chapter 5 are focused on container consolidation. The remainder of the

thesis is organized as follows:

e Chapter 2 presents a taxonomy and survey of energy management techniques ap-
plied in cloud computing environments with focus on both Platform as a Service
(PaaS) and Container as a Service (CaaS) cloud deployment models. In addition,
this chapter also contains the scope of the thesis along with its positioning in the

literature. This chapter is derived from:

— Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros, and Ra-
jkumar Buyya, “A Survey and Taxonomy of Energy Efficient Resource Man-

agement Techniques in Platform as a Service Cloud,” Handbook of Research

1.6 Thesis Organization 13
g
Chapter 1
Introduction
\
Chapter 2
Background and Literature
o Review Container
VM Sizing l Consodilation
r— - - - —— == | - — — - - - - = A
| y | | y |
Chapter 4
| | | Containerized cloud environment |
Simulator
| Chapter 3 | | ContainerCloudSim |
| 1. Architecture for Task Mapping | | |
and VM Customization
| 2. Efficient VM Sizing for CaaS | | |
| Cloud Model | | |
Chapter 5
| | | Architecture for Container |
| | | Consolidation |
I I I I
I i i I
Lo Y J L Y J
Chapter 6
Conclusions and Future
Directions

Figure 1.5: Thesis organization.

14

Introduction

on End-to-End Cloud Computing Architecture Design Book, J.Chen, Y.Zhang, and
R.Gottschalk (eds), 1GI Global, Pages. 410 - 454. Web. 16 Oct. 2016. doi: 10.
4018/978-1-5225-0759-8.ch017, Hershey, PA, USA, 2017.

e Chapter 3 presents an architecture for efficient allocation of cloud resources in the

Platform as a Service cloud service model. Workload characterization is leveraged
to determine the most efficient virtual machine configurations for each group of
tasks. In addition to VM configuration, various algorithms are proposed for con-
solidation of tasks/containers on VMs and the results are compared in terms of
data center energy consumption and task rejection rate. Real cloud backend data
released by Google is characterized and used as system input for validation pur-
poses. In addition, the chapter also carries out an investigation of the efficiency of
the obtained VM configurations when compared to some of the available VM sizes
in common cloud providers such as Amazon EC2. The effect of the workload char-
acterization is then studied considering two different feature sets. This chapter is

derived from:

— Sareh Fotuhi Piraghaj, Rodrigo N.Calheiros, Jeffery Chan, Amir Vahid Dast-
jerdi, and Rajkumar Buyya “A Virtual Machine Customization and Task Map-
ping Architecture for Energy Efficient Allocation of Cloud Data Center Re-
sources,” The Computer Journal, vol. 59, no. 2, Pages. 208 - 224, ISSN 0010-4620,
Oxford University Press, UK, November, 2015.

- Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and Ra-
jkumar Buyya, “Efficient Virtual Machine Sizing For Hosting Containers as a
Service,” Proceeding of the 2015 IEEE World Congress on Services (SERVICES2015),
Pages. 31 - 38, New York, United States.

Chapter 4 describes the ContainerCloudSim simulator. This software enables re-
searchers to validate their proposed container consolidation algorithms and also
compare them with VM consolidation algorithms in a simulated environment. This

chapter is derived from:

- Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros, and Ra-

10.4018/978-1-5225-0759-8.ch017
10.4018/978-1-5225-0759-8.ch017

1.6 Thesis Organization 15

jkumar Buyya, “An Environment for Modeling and Simulation of Containers
in Cloud Data Centers”, Software: Practice and Experience (SPE), 2016. [Online].

Available: http://dx.doi.org/10.1002/spe.2422.

e Chapter 5 presents an architecture for consolidation of containers on virtual ma-
chines in CaaS environments. It presents a correlation-aware algorithm for pack-
ing containers and compares the efficiency of this approach with commonly used
packing algorithms. It also contains a brief comparison of the algorithms utilized
in different stages of the consolidation process for containers. Furthermore, the ef-
ficiency of container consolidation is compared with virtual machine consolidation

in terms of energy consumption and SLA violations.This chapter is derived from:

— Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and Ra-
jkumar Buyya, “A Framework and Algorithm for Energy Efficient Container
Consolidation in Cloud Data Centers ,” Proceedings of the 11th IEEE Interna-
tional Conference on Green Computing and Communications (GreenCom 2015), Pages:

368 - 375, Sydney, Australia, 2015.

e Chapter 6 concludes the thesis with a summary of the main findings, an outline of

possible future research directions, and final remarks.

http://dx.doi.org/10.1002/spe.2422

Chapter 2
Literature Survey and Related Work

The numerous advantages of cloud computing environments, including scalability, high availabil-
ity, and cost effectiveness have encouraged service providers to adopt the available cloud models to
offer solutions. This rise in cloud adoption, in return encourages platform providers to increase the
underlying capacity of their data centers so that they can accommodate the increasing demand of new
customers. Increasing the capacity and building large-scale data centers has caused a drastic growth
in energy consumption of cloud environments. The enerqy consumption not only affects the Total
Cost of Ownership but also increases the environmental footprint of data centers as CO2 emissions
increases. Hence, energy and power efficiency of the data centers has become an important research
area in distributed systems. In order to identify the challenges in this domain, this chapter surveys
and classifies the energy efficient resource management techniques specifically focused on the PaaS
and CaaS cloud service models. Finally, the chapter concludes with a brief discussion about the scope

of the current thesis along with its positioning within the research area.

2.1 Introduction

ATA centers, as the backbone of the modern economy, are one of the fastest-
D growing power consumers [37]. U.S. data centers consumed of 75 billion kWh of
electricity annually which was equivalent to the output of around 26 medium-sized coal-
fired power plants. This energy usage is estimated to reach 140 billion kilowatt-hours
annually, in the next four years [37]. Despite this huge amount of energy that is required
to power on these data centers, half of this energy is wasted mostly due to the inefficient

allocation of servers resources.

This chapter is derived from: Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros,
and Rajkumar Buyya, “ A Survey and Taxonomy of Energy Efficient Resource Management Techniques
in Platform as a Service Cloud,” Handbook of Research on End-to-End Cloud Computing Architecture Design
Book,].Chen, Y.Zhang, and R.Gottschalk (eds), IGI Global, Pages. 410 - 454. Web. 16 Oct. 2016. doi:
10.4018/978-1-5225-0759-8.ch017, Hershey, PA, USA, 2017.

17

10.4018/978-1-5225-0759-8.ch017

18 Literature Survey and Related Work

The energy wastage not only increases the electricity bills, it is also considered a threat
for the environment, as it contributes to the global warming phenomena and increases the
CO2 emissions. In this respect, there has been an increasing effort to minimize the power
consumption of cloud data centers through various energy efficient resource manage-
ment techniques. In this chapter we survey the research applied resource management
techniques in this area while focusing more on the PaaS and containerized cloud models.

These models are selected as they are the main focus of the current thesis.

2.2 PaaS Power-aware Resource Management

There is a large body of literature investigating energy management techniques for PaaS
cloud service model that provides a platform for cloud customers to develop, run, and
manage their applications without worrying about the underlying infrastructure and the
required software. Both kinds of virtualization namely, OS level and System level virtu-
alization, are considered and the newly introduced CaaS model can be viewed as a form
of OS level virtualization service. Since CaaS cloud model has been newly introduced,
we grouped all the research with the focus on containerized (OS-level virtualized) cloud
environments under the Paa$S category.

The work in this area, as demonstrated in Figure 2.1, is grouped in two major cate-
gories namely Bare Metal, non-virtualized, and Virtualized. The Bare Metal group con-
tains the techniques in which the applications/tasks are mapped to the servers without
considering virtualization technology, whereas the work investigating energy efficient

techniques in a virtualized environment are all included in Virtualized group.

2.2.1 Bare Metal Environments

Servers are one of the most power-hungry elements in data centers, with CPU and mem-
ory as their main power consumers. The average power consumption of CPU and mem-
ory is reported to be 33% [111] and 23% [35] of the server’s total power consumption
respectively. Therefore, any improvement on processor and memory-level power con-
sumption would definitely reduce the total power consumption of the server, which also

improves the energy efficiency of data center.

2.2 PaaS Power-aware Resource Management 19

CPU
J_ DVFS Memory

Bare Metal

Coordinated CPU and Memory
Power-aware OS Container
Resource Management OS Level ‘
Virtualized Application Container
System Level — Virtual Machine
Hybrid —— CaaS Container Consolidation

Figure 2.1: Power-aware PaaS resource management research breakdown

Dynamic Voltage and Frequency Scaling (DVFS) is an effective system level technique
utilized both for memory and CPU in Bare Metal environments and it is demonstrated
to improve the power consumption of these two elements [28, 35,39, 160] considerably.
DVFS enables dynamic power management through varying the supply voltage or the
operating frequencies of the processor and/or memory. Research in this area are summa-

rized in Tables 2.3 - 2.5.

Dynamic Voltage and Frequency Scaling of CPU

The technologies present in the market are AMD Turbo Core!, Intel Turbo Boost [28],
and Intel Enhanced Speed Stepping Technology?, which dynamically adjust the CPU fre-
quency and voltage according to the workload. Kim et al. [99], harnessed the DVEFS capa-
bility of CPU in the proposed scheduling algorithm. DVS scheduling scheme considers
the deadline of the Bag-of-Tasks applications as a constraint and the CPU frequency is
adjusted so that the sub-tasks are finished by the deadline. An application made of a
group of independent and identical tasks is an example of Bag-of-Task applications. DVS
scheduling algorithms are provided for both time-shared and space-shared resource shar-
ing policies. Proposed algorithm is validated through simulation and is shown to be more
energy efficient when compared to the static voltage schemes.

Pietri et al. [133] also proposed an energy efficient scheduling algorithm utilizing the

1http ://www.amd.com/en-us/innovations/software-technologies/turbo-core
2http ://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htmffoverview

http://www.amd.com/en-us/innovations/software-technologies/turbo-core
http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm#overview

20 Literature Survey and Related Work

DVES capability of CPU. The frequency of the CPU is adjusted with the objective of re-
ducing the total energy consumption for the execution of tasks while meeting a user-
specified deadline. Decreasing the overall energy consumption is considered as the ob-
jective of the algorithms, since DVES is not always energy efficient, as scaling the CPU
frequency may increase the execution time. Hence, it escalates the processors idle time.
Based on the aforementioned objective, it is demonstrated that the lowest possible fre-
quency is not always the most energy-efficient option. Therefore, the proposed approach

only scales the frequency if the overall energy consumption can be minimized.

Dynamic Voltage and Frequency Scaling of Memory

In addition to CPU, memory of servers also consumes a considerable amount of energy
that is not proportional to the load [35]. For memory-intensive workloads, system’s mem-
ory speed is well tuned and optimized according to the peak computing power. How-
ever, there is still a place for improvement for other kinds of workloads that are less
sensitive to the memory speed. For these kinds of workload, running at lower memory
speed would result in less performance degradation and reduce the power consumption
via running memory at a lower frequency.

David et al. [35] presented an approach utilizing the memory DVFS capability to tune
the system’s memory frequency based on the workload and consequently minimize the
energy consumption. Additionally, a detailed power model is presented which quantifies
dependency portions of memory power to the frequency and further proves the possibil-
ity of considerable power deduction through memory DVEFS. Also, a control algorithm
is proposed to tune frequency/voltage of memory considering its bandwidth utilization
with the objective of minimizing performance degradation. The approach is evaluated
through implementation on real hardware while SPEC CPU2006 is used to generate the
workload. This work can further be extended for different types of workloads consider-
ing DVFS application for both CPU and memory components.

Deng et al. [39] introduces active lower-power modes (MemScale) for main memory
to make it more energy proportional. In this respect, DVFS and dynamic frequency scal-
ing (DFS) are applied on the memory controller and its channels and DRAM devices,

respectively. MemScale is implemented as an operating system policy and, like David

2.2 PaaS Power-aware Resource Management 21

et al. [35], it identifies the DVFS/DFS mode for the memory subsystem according to the
bandwidth utilization of memory. The objective of the research is also similar to the work
by David et al. [35], which improves the energy consumption of the memory subsystem.
This is important because it can reach up to 40% of the system’s energy utilization [82].
MemScale is evaluated through simulation considering a large set of workloads with less

than 10% performance degradation while in [35] only one workload is studied.

Coordinated CPU and Memory DVFS

Deng et al.[38] introduced CoScale, which jointly applies DVFS on memory and CPU sub-
systems with the objective of minimizing the systems total power consumption. CoScale
is the first work in this area that coordinates DVFS on CPU and memory considering
performance constraints. The frequency of each core and the memory bus is selected
in a way that energy saving of the whole system is maximized. Therefore, the selected
frequencies are not always the lowest ones.

As observed by Dhimsan et al. [40], lowering the frequency sometimes results in more
energy consumption. So CoScale always balances the system and component power uti-
lization. It efficiently searches the space of available frequency settings of CPU and mem-
ory and sets the components voltage according to the selected frequencies. In this respect,
the algorithm should consider m * n * ¢ possibilities in which m and ¢ are the number of
available frequency setting for memory and CPU respectively and #n is the number of
CPU cores. In order to accelerate the search process, a gradient-descent heuristic is pro-
posed that iteratively estimates the frequencies of the components through the presented
online models. Memory-intensive (MEM), compute-intensive (ILP), compute-memory
balanced (MID), and a combination of workloads are applied as the input of the system.
The results of CoScale is further compared with four different algorithms, namely Mem-
Scale [39], CPU DVFES, a fully uncoordinated, and a semi-coordinated algorithm. In the
fully uncoordinated algorithm, both memory and CPU frequency are decided by their
managers independently. In semi-coordinated policy, the CPU manager is aware of the
degradation caused by the memory manager decision in the previous cycle through ac-
cessing overall performance slack. CoScale satisfies the performance target while being

robust-across the search space parameter.

22 Literature Survey and Related Work

Table 2.1: Hardware Virtualization Taxonomy.

Component Communication Available
Virtualization P with Hardware Technologies
OS Container L.XC' OpenVZ,
(Lightweight Linux VServer,
EWElS FreeBSD Jails,
Operating VM) System Standard Solaris zones
System (OS) R Calls
Apphce'atlon Docker, Rocket
Container
Virtual
System Machine Hypervisor KVM, VMWare
(VM)

2.2.2 Virtualized Environments

Virtualization technology is one of the key features in cloud data centers that can improve
the efficiency of hardware utilization through resource sharing, migration, and consoli-
dation of workloads. The technology was introduced in the 1960’s [68, 69] and exists in
many levels. Of interested in this chapter, are virtualization at operating system level and
at system level (Table 2.1).

In system-level virtualization, there exists the emulated hardware referred as “virtual
machines’ (VMs) that have their own operating system (OS) running on top of the host’s
hypervisor with independent kernels. However, on the operating system level, there
exists the so called containers that share the same kernel with the host and are defined
as lightweight virtual environments that provide a layer of isolation between workloads
without the overhead of the hypervisor-based virtualization.

Considering these two virtualization types, techniques investigating power-aware re-
source management are divided into three main categories namely Lightweight Con-
tainer, Virtual Machine, and Hybrid. These groups are formed according to the environ-
ment in which applications execute. Therefore, the Lightweight container category contains
techniques that assume that tasks/applications execute inside containers. In the Virtual
Machine group, applications execute inside virtual machines. Finally in the Hybrid cate-
gory, applications execute inside the containers while containers are mapped on virtual

machines instead of servers.

Next, we discuss these three groups with more details and explore techniques that are

2.2 PaaS Power-aware Resource Management 23

~l|l Cont1l Cont 2 Contn
m O Separate Separate | 5 | Separate
8 5. User Space | User Space User Space
5 -
o3 :

= Libs

Kernel of the Host

Infrastructure Layer

Figure 2.2: Containerized Virtual Environment

applied to minimize the data center energy consumption considering the characteristics

of each virtualized environment. The research in this area are summarized in Table 2.6.

Operating System (OS) Level Virtualization (Containers)

The Platform as a Service (PaaS) model has accelerated application development and
eliminated the need for administration of the underlying infrastructure. In this service
model, application isolation is achieved through the utilization of containers that can run
both on PMs and VMs.

Containers are the building blocks of OS-level virtualization that offer isolated virtual
environments without the need for intermediate monitoring media such as hypervisors,
as shown in Figure 2.2. The container technology of the Linux Kernel are developed sep-
arately by four different resources including OpenVZ ® from Parallels, Google’s cgroups
(control groups), IBM’s Dpar, and namespaces [139]. Among those, cgroups and names-
paces presented solutions for resource management and per process isolation respec-
tively and except for the Dpar, the other three are currently used [20].

Containerization technology has been implemented on large scale by cloud compa-
nies such as Google and Facebook. Containers are beneficial for cloud providers since
they can be more densely packed when compared to VMs. The other benefit of contain-
ers is that they all share the host kernel. Therefore, the communication between contain-
ers and the hardware is performed through standard systems calls, which is much faster

than hypervisor-based communication.

3https ://openvz.org/Main_Page

https://openvz.org/Main _Page

24 Literature Survey and Related Work

—— OS Containers Container Placement

Energy Management Techniques
Applied for OS Level Virtualization

Application
Containers

Service Consolidation

Figure 2.3: Energy management techniques which are applied to the OS level virtualiza-
tion environments.

Operating System level virtualization or the containerization itself is categorized in
two different types including OS containers and application containers and the energy
management techniques which are applied to these environments are depicted in Fig-
ure 2.3. OS containers can be taught of VMs that share the kernel of the hosts operat-
ing system while providing isolated user space. Various OS containers with identical or
different distributions can run together on top of the host operating system as long as
they are compatible with the host kernel. The shared kernel improves the utilization of
resources by the containers and decreases the overhead of container’s startup and shut-

down.

OS containers are built up on the cgroups and namespaces, whereas application con-
tainers are built upon the existing container technologies. Application containers are
specifically designed for running one process per container. Therefore, one container
is assigned for each component of the application. Application containers, as demon-
strated in Figure 2.4, are specifically beneficial for microservice architecture in which the
objective is having a distributed and multi component system that is easier to manage if

anything goes wrong.

Operating System (OS) Containers

OS containers based on cgroups and namespaces provide user space isolation while
sharing the kernel of the host operating system. The development in OS containers is like
VMs and one can install and run applications in these containers as he runs it on a VM.
Like VMs, containers are created from templates that identify the contents [121]. Google

cluster is an example of such systems that runs all its services in containers. As stated

2.2 PaaS Power-aware Resource Management 25

Node.js
Node.js - Postgres
Postgres :
Nginx 3 Nginx
OS Container | | Application Container |

Figure 2.4: The differences between the Application container and the OS container for
a three tier application. Application containers are implemented to run a single service
and by default has layered Filesystems [121].

on Google open source blog #, Google launches more than 2 billion containers per week
considering all of its data centers. The container technologies that support OS containers
are LXC °, OpenVZ, Linux VServer®, FreeBSD Jails and Oracle’s Solaris zones [135].
Energy efficient resource management techniques applied for OS container systems
mostly focus on the algorithms for initial placement of the OS containers. In this respect,
Dong et al. [45] proposed a greedy OS container placement scheme, the most efficient
server first or MESF, that allocates containers to the most energy efficient machines first.
For each container, the most energy efficient machine is the server that shows the least rise
in its energy consumption while hosting the container. Simulation results using an actual
set of Google cluster data as task input and machine set show that the proposed MESF
scheme can significantly improve the energy consumption as compared to the Least Al-
located Server First (LASF) and random scheduling schemes. In addition, a new perspec-
tive on evaluating the energy consumption of a cloud data center is provided considering
resource requirement of tasks along with task deadlines and servers’ energy profiles.
Pandit et al. [126] also explored the problem of efficient resource allocation focus-
ing on the initial placement of containers. The problem is modeled utilizing a variation
of multi-dimensional bin packing. CPU, memory, network and storage of PMs are all
considered as each dimension of the problem. In a general n-dimensional bin-packing

problem, there exists n sub-bins of different sizes that must be filled with objects. The

4http ://google-opensource.blogspot.de/2014/06/an-update-on—-container—
support—-on.html

Shttps://linuxcontainers.org/

bhttp://linux-vserver.org/Overview

http://google-opensource.blogspot.de/2014/06/an-update-on-container-support-on.html
http://google-opensource.blogspot.de/2014/06/an-update-on-container-support-on.html
https://linuxcontainers.org/
http://linux-vserver.org/Overview

26 Literature Survey and Related Work

Original Resource Provisioning
2D Bin Packing Problem 2D Bin Packing Problem

e

az1g A
az1g A

C6

-
-

4——— XSize ———p <— XSize — >

Figure 2.5: The difference between the original bin packing problem and its variation for
the resource allocation [126]

resource allocation problem is different from the general form, since if any sub-bin of a
bin reaches its capacity (e.g. CPU), then the bin is considered full while in the original
problem this is not the case. Figure 2.5 demonstrates this difference. In order to design
an efficient resource allocation algorithm, Pandit et al. [126] applied Simulated annealing
(SA). SA is a technique used to find optimal or sub-optimal solution for NP Hard prob-
lems such as the bin packing problem and it is often applied for discrete search space. The
proposed resource allocation algorithm is demonstrated to be more efficient in terms of
resource utilization when compared to the commonly used First Come First Serve (FCFS)

allocation policy.

OS containers is also utilized in Mesos [81] to provide the required isolation for work-
load. Mesos platform enables sharing commodity clusters between cluster computing
frameworks with different programming models. The main objective of Mesos is effi-
cient utilization of resources through sharing and also avoiding data replication for each
framework. Hindman et al. [81] proposed a two-level scheduling for the Mesos platform
called ‘resource offers’. For the first level of the scheduling, Mesos identifies the amount
of required resources for each framework. The second level scheduling is performed by
the scheduler of each framework, therefore the scheduler has the ability to accept or re-
ject the resources while deciding about the placement of the tasks. Mesos used Linux
Containers and Solaris technologies for the workload isolation. The framework is tested

through applying both CPU and IO-intensive workloads derived from the statistics of

2.2 PaaS Power-aware Resource Management 27

Facebook cloud backend traces. The studied workloads are derived from the applica-
tions that are developed utilizing both Hadoop and MPI programming model. Results
show that Mesos is highly scalable and fault tolerant and can improve the resource uti-

lization with less than 4% overhead.

Application Containers

Contrary to OS containers that run multiple processes and services, application con-
tainers are dedicated to a single process and are built upon OS containers. The single
process in each container is the process that runs the residing application [121]. Appli-
cation containers can be considered a new revolution in the cloud era since containers
are lightweight, easier to configure and manage, and can decrease the start-up time con-
siderably. Docker 7 and Rocket ® are examples of application containers. These contain-
ers are the building block of modern PaaS. Regular provisioning and de-provisioning of
these containers, that happens during the auto-scaling, along with their unpredictable
workloads results in cloud resource wastage and consequently more energy consump-
tion. Therefore, like OS containers, designing optimal placement algorithms is the major
challenge for container-based cloud providers.

Containers are fast to deploy because of their low overhead. Therefore, to simplify
the development of applications, Spicuglia et al. [147] proposed OptiCA in which ap-
plications execute inside containers. The aim of the proposed approach is to achieve the
desired performance for any given power and capacity constraints of each processor core.
Although the focus in OptiCA is mainly on effective resource sharing across containers
under resource constraints, it still reduces power consumption through considering en-
ergy as one of the constraints.

Anselmi et.al [5] investigated the Service Consolidation Problem (SCP) for multi-tier
applications with the objective of minimizing the number of required servers while sat-
isfying the Quality of Service defined by applications’ response time. For modeling the
data center, queueing networks theory is utilized since it is capable of capturing the per-

formance behavior of service systems. A number of linear and non-linear optimization

7 https://www.docker.com/
8https ://rocket.readthedocs.org/en/latest/

https://www.docker.com/
https://rocket.readthedocs.org/en/latest/

28 Literature Survey and Related Work

server consolidation problems are defined and solved through a number of heuristics.
Heuristics are chosen as they solve the optimization problems in a shorter amount of
time with a considerable accuracy when compared to the standard Integer Linear Pro-
gramming (ILP) techniques. This work solves SCP and finds the best data-center con-
figuration with the least cost while satisfying the required end-to-end response time of

applications.

In the same direction, Rolia et al. [138] investigated the SCP problem with the ob-
jective of minimizing the number of required servers through application consolida-
tion. Enterprise applications are studied and their resource utilization is characterized.
Like Anselmi et al. [5], linear integer programming is considered as one of the solutions
and ILP is further compared with the genetic algorithms. The techniques are validated
through a case study considering the workload of 41 servers. Results show that the linear
integer programming model outperforms the genetic algorithm in terms of the required
computation with a satisfactory accuracy in estimating the resource utilization. However,
the proposed technique is not evaluated for large-scale data centers containing thousands

of servers.

Mohan Raj et al. [116] also focused on minimizing the energy consumption of the
data center through consolidation of applications on physical machines (PM). An end-to-
end Service-Level Agreement (SLA)-aware energy efficient strategy is presented in [116]
and the main objective is having an strategic workload scheduling for maximizing en-
ergy efficiency of the data center. Tasks are consolidated on virtual machines so that the
number of active servers is reduced. Contrary to the previous discussed works [5,138],
synthetic workloads following the Poisson distribution are applied for the simulations
to model the web server workloads. Containers are placed on the PMs that utilize the
least energy rise. SLA is maintained through a control theoretic method and the requests
of applications are accepted considering the SLA along with the data center capacity.
The presented model is a queue-based routing approach and Holt-Winters forecasting
formula is utilized for improving the SLA through decreasing the cost incurred by the
times system waits for a PM to startup or to shut down. The proposed algorithm is also
applicable in virtualized environments, where applications execute on virtual machines

instead of directly on PMs.

2.2 PaaS Power-aware Resource Management

VM 1 VM 2 VM n
Guest OS Guest OS Guest OS
Separate Separate Separate
Kernel & Kernel & - Kernel &

User Space User Space User Space

| Hypervisor/ VMM |

I Kernel of the Host |

Infrastructure Layer

Figure 2.6: System Level Virtualization

— VM Consolidation
— Overbooking

System Level

Virtualization —1— VM Placement

— VM Sizing

—— DVFS

Figure 2.7: System-Level virtualization energy efficient management techniques

2.2.3 System-Level Virtualization (Virtual Machines)

The virtual machine’s idea originated from simulated environments offered for software
development when testing on real hardware was unfeasible [68]. In this respect, a spe-
cific environment was simulated considering the required processor, memory, and I/O
devices. Later, this idea was improved to develop efficient simulators to provide copies
of a server on itself. The improvement is done so that the program running on each copy
can be executed directly on the hardware without requiring any software interpretation.
These copies (simulated environments) are referred to as virtual machine systems, and
the simulated software is referred as the virtual machine monitor (manager) (VMM) or
the hypervisor [68]. This kind of virtualization is referred as system-level virtualization.

In system-level virtualization, the VM communications happens through the hyper-
visor with more overhead than the OS standard calls for containers. However, commu-
nicating through VMM offers a stronger layer of isolation and is more secure than con-
tainers [121]. In addition, system-level virtualization enables VMs with any type of OS to
be installed on a host (Figure 2.6). Moreover, this technology enables consolidating vir-

tual machines (VM) on physical machines (PMs) to reach higher and efficient utilization

30 Literature Survey and Related Work

Static Threshold
— When to Migrate {
Dynamic Threshold

—— Correlation Aware

[~ Which VM to Migrate l_ Minimum Migration Time

VM Consolidation __|

Potential Growth of Usage

— Interference Aware

— Where to Migrate

—— Multiplexing

—— Correlation Aware

Figure 2.8: The consolidation sub problems which need to be answered for a general
consolidation problem.

levels of PMs. The virtualization technology also improves the deployment time, and
the operating costs. As depicted in Figure 2.7, energy management technique applied for
system-level virtualization are categorized into five groups namely virtual machine con-
solidation, overbooking, VM placement, VM sizing, and DVFS. The research in this area
are summarized in Tables 2.7 - 2.9. In the rest of this section, we discuss these techniques

with more details.

VM Consolidation

The hypervisor technology enables consolidation of virtual machines on physical servers.
There is a vast body of literature investigating VM consolidation algorithms that can im-
prove the energy consumption of data centers. The consolidation problem can be di-
vided into three main sub-problems which are depicted in Figure 2.8. The techniques are
grouped according to the sub problem it investigates.
Techniques investigating migration triggers (When to migrate?)

Virtual machine consolidation is shown to be an effective way to minimize the en-
ergy consumption of cloud data centers. However, identifying the right time to trigger
migration is crucial specially when the host is overloaded. This ensures a certain level of

Quality of Service (QoS).

2.2 PaaS Power-aware Resource Management 31

Gmach et al. [67] proposed an energy-efficient reactive migration controller that iden-
tifies situations in which the hosts are determined overloaded or underloaded. The over-
load and underload detection is defined when the server’s CPU and memory utilization
goes beyond or under a given fix threshold respectively. The same approach is applied
in [13] and the effect of these two thresholds on the overall data center energy consump-
tion and SLA violations is studied. 30% and 70% is shown to be the efficient underload
and overload threshold considering the total energy consumption and average SLA vio-
lations. Contrary to Gmach et al. [67], the proposed approach [13] is not dependent on
the type of workload.

Beloglazov et al. [14] improved the aforementioned approach [13] so that the under-
load and over-load thresholds are automatically adjusted. The previous approach for
triggering the migration is modified since fixed values for thresholds are not suitable for
cloud environments in which the workload’s behavior is unknown and dynamic. The
automation is performed through statistical analysis of the historical data from virtual
machines workload. CPU utilization of the host is assumed to follow the t-distribution
so that the sample mean and the standard deviation of the distribution can be used for
determining the overload thresholds of each host. However, only one underload thresh-
old is defined for the whole system. The adoptive approach shows a considerable im-
provement in terms of the QoS when compared to the fixed thresholds while it still saves

energy.

Cloud providers should be able to ensure the Quality of Service (QoS) that they have
promised to costumers. In the consolidation process, this QoS might be degraded because
of the hosts being overloaded. In this respect, Beloglazov et al. [15] proposed a technique
for host overload detection that ensures QoS while saving energy. The proposed ap-
proach can find the optimal solution for the overload detection problem considering any
known stationary workload. The main objective is maximizing the intermigration time
considering a given QoS goal based on a Markov chain model. In order to handle the
nonstationary workloads which are unknown, a heuristic-based approach is presented
that utilizes the Multisize Sliding Window technique for workload estimation. The al-
gorithm is validated through simulations considering PlanetLab VMs traces as the input

workload. The technique is proven to provide up to 88% of the performance of the opti-

32 Literature Survey and Related Work

mal offline algorithm.
Techniques for choosing VMs to migrate (What to migrate?)

When migration is triggered, the second step is selecting the appropriate virtual ma-
chine to migrate. For under-load hosts, it is clear that all the VMs should be migrated so
that the host can be shutdown or put in a lower power state. For overloaded hosts only a
couple of VMs are needed to be migrated so that the host is no longer overloaded.

Beloglazov et al. [15], investigated the problem of VM selection policies in the con-
solidation process. Three different VM selection algorithms are studied namely random
selection (RS), maximum correlation (MC), and the Minimum Migration Time (MMT)
policies. The RS policy chooses VMs randomly until the host is not overloaded anymore.
The MC policy chooses the VM with the maximum correlated workload with the other
co-located VMs. The MMT policy selects the VM with the least migration time. The
performances of these policies are validated through simulation and the VM types are
derived from Amazon EC2 instance types’. PlanetLab’s workload!" is used as the CPU
utilization of the VMs. Since the applied workload is for single core VMs, the VM types
are all assumed to be single-core and the other resources are normalized accordingly. The
performance of the algorithms is compared considering the total energy consumption by
the physical servers of the data center and the SLA violations. Considering the results,
the MMT selection policy outperforms the MC and RS policies in terms of the total joint
power consumption and the SLA violations. Minimization of the VM migration time is
proven to be more important than the correlation between the VMs allocated to a host.

Beloglazov et al. [14] also compared two other VM selection policies including Min-
imization of Migrations (MM) and Highest Potential Growth (HPG) with the RS. The
MM algorithm selects the least number of VMs to migrate with the objective of decreas-
ing the migration overhead. HPG chooses VMs with the lowest CPU usage compared to
their requested amount, aiming at reducing the SLA violations through avoiding the total
potential increase. It is shown that MM, which reduces the number of migrations, out-
performs the other two algorithms in terms of the SLA violations and data center energy
consumption.

Techniques investigating migration destination (Where to migrate?)

Mttps://aws.amazon.com/ec2/instance-types/
Ohttps://www.planet—lab.org/

https://aws.amazon.com/ec2/instance-types/
https://www.planet-lab.org/

2.2 PaaS Power-aware Resource Management 33

When the migration is triggered and the virtual machines are selected for migration,
it is the time to find a new destination for the selected VMs. Here, we describe techniques

considered for finding new placement/destination for migrating virtual machines.
Interference-aware VM placement algorithms

Virtualization improves resource utilization efficiency and consequently the energy
consumption of cloud data centers by enabling multi-tenant environments in which di-
verse workload types can exist together. VM consolidation and resource overbooking
improve energy savings in cloud environments. However, overbooking might affect the
performance of virtual machines that are co-located on each server VM [122]. The high-
competitions for resource incurred between co-hosted VMs and the resource sharing na-
ture of virtualized environment might cause performance degradation and more energy
consumption. The degradation effect of co-located VMs on the performance of each oth-

ers applications on the same VM is known as performance interference phenomenon.

Moreno et al. [119] investigated the impact of this phenomena on the energy efficiency
in cloud data centers. The problem is formulated for the virtual machine placement and
is modeled utilizing the Google cloud backend traces to leverage cloud workload hetero-
geneity. Google tasks are grouped according to their CPU, memory and length. Three
types referred as small, medium and large are extracted through applying K-means clus-
tering algorithm on the 18th day of the trace that has the highest submission rate. The
VM placement decision is made considering the current performance interference level
of each server. The interference aware VM placement algorithm is compared , via simu-
lation, with the Google FCFS algorithm and shown to reduce the interference by almost

27.5% while saving around 15% of energy consumption.

As mentioned previously, the performance interference might degrade the QoS for
real time cloud applications and consequently result in SLA violations and the place-
ment/packing of VMs play an important role on the performance interference, since it
is dependent on the workload of the co-located VMs. In this respect, Cagar et al. [23]
presented an online VM placement technique included in the hALT (harmony of Liv-
ing Together) middleware. hALT takes into account workload characteristics of the VMs
along with the performance interference for finding placement for each VM. Machine

Learning techniques are used for the online placement and the system is trained utilizing

34 Literature Survey and Related Work

the results from an offline workload characterization. The presented framework contains
three main parts, namely Virtual machine classifier, neural networks, and the decision
making placement. A brief analysis of the Google cloud backend traces is presented. The

analysis of the 3 days of the traces is utilized for training the classifier.

Each task in the Google traces is considered as a VM. CPU utilization, memory, and
the CPI of tasks are used for the classification purpose. CPI attribute shows the ‘Cy-
cle Per Instruction” metric and is used as a performance metric since it can well present
the response time for compute-intensive applications [172]. Therefore, tasks that utilize
more than 25% of the CPU and are compute intensive are considered for evaluation of the
framework. Decrease CPI results in better performance, a result that had been demon-

strated by the previous study.

Back propagation-based artificial neural networks (ANN) [79] is used as the classifier
that predicts the performance interference level. This is used to determine the best place-
ment of the VM. The ANN is trained using the VM utilization patterns of each class of
VMs, which is defined by the k-means clustering algorithm. The number of VM classes
is estimated based on the maximum Silhouette value [92,140] and is determined to be 6
for the studied data set. The effect of the performance interference on the energy con-
sumption is not investigated. The other drawback of the work is when the VM migration
is triggered the ANN should run for every server in the data center, which may cause
delays and overhead for large data centers. This can be avoided through new techniques

in the search process.
Multiplexing placement algorithms

The other technique that is widely applied to find the new placement for selected
VMs is Statistical Multiplexing. Multiplexing means sharing a resource between users
with the objective of increasing the bandwidth utilization. This method has been applied
to a variety of concepts including MPEG transport stream for digital TV [77], UDP and
TCP [58] protocols.

Meng et.al [113] applied the Statistical Multiplexing concept to VM placement in the
server resources are multiplexed to host more VMs. In the proposed approach, called
joint-VM provisioning, multiple VMs are consolidated together according to their work-

load patterns. Statistical multiplexing enables the VM to borrow resources from its co-

2.2 PaaS Power-aware Resource Management 35

allocated VMs while it is experiencing its workload spikes. In order to satisfy QoS re-
quirements, a performance constraint is defined for each VM. This constraint ensures the
required capacity for a VM to satisfy a specific level of performance for its hosted ap-
plication. Three different policies are proposed for defining the performance constraint,
selecting the co-located VMs, and estimating the aggregated resource demand of mul-
tiplexed VMs with complementary workloads. The VM workloads of a commercial data
center are applied for evaluation purposes and the results show that the joint-VM provi-

sioning is considerably efficient in terms of the energy consumption.

Chen et al. [29] investigated the problem of VM placement with the focus on con-
solidating more VMs on servers. The VM placement is formulated as a stochastic bin
packing problem and VMs are packed according to their effective size (ES), which is de-
fined considering Statistical Multiplexing principles. This principle takes into account
the factors that might affect the servers aggregated resource demand on which the VM is
placed. The effective size is originated from the idea of effective bandwidth, however it
is extended to consider the correlation of VM workloads. In this respect, the ES of a VM
is affected by its own demand and its co-located VMs considering the correlation coef-
ficient. The proposed VM placement algorithm with the order of O(1) is applied to find
the best destination for VMs. Poisson and normal distributions are considered for the
VM workloads. The system is also validated through simulation applying a real cloud
workload trace. The effective sizing technique adds around 10% to 23% more energy sav-
ing than a generic consolidation algorithm. The optimization is performed considering

only one dimension, which is CPU demand of VMs.
Correlation Aware VM Placement

Verma et al. [159] are among the first researchers to take into account correlation
between workloads of co-allocated VMs in the proposed consolidation approach. The
idea is initiated from a detail study of an enterprise server workload, the distribution
of the utilization and spikes of the workload while considering workloads statistic met-
rics including the percentiles and average. According to the analysis, average is not a
suitable candidate for sizing the applications since the tail of the distribution of the uti-
lization does not decay quickly for most of the studied servers. Therefore, if the sizing

is performed based on the average, it might result in QoS degradation. However, the

36 Literature Survey and Related Work

90-percentile and the cross correlation is shown to be fairly stable and consequently are
the best metrics for application sizing purpose. Two correlation-aware placement algo-
rithms, Correlation Based Placement (CBP) and Peak Clustering based Placement (PCP),
are proposed considering the insights from the workload characterization. The place-
ment algorithms are implemented as a part of a consolidation planning tool and further
evaluated utilizing traces from a live production data center. PCP achieves more energy
savings than PCB and also improves the QoS through an extra metric to ensure that co-
allocated workloads” peak do not lead to violations.

Similarly, Meng et al. [113] also utilized correlation of VMs in their proposed joint-VM
provisioning approach. In this approach, multiple VMs are consolidated in a way that
the underutilized resources of one VM can be used by the co-located VM at its peak.

Quality of Service (QoS) is important in a cloud environment especially for scale-out
applications [54] such as MapReduce[36] and web searches. Therefore, Kim et.al [97] in-
vestigated the VM consolidation problem concentrating on the aforementioned applica-
tions. Scale-out applications are different from HPC workloads in terms of the workload
variance resulted from their user-interactive nature. This high variance is caused by ex-
ternal factors such as number of users and makes these workloads less predictable. The
other difference is that scale-out applications are latency sensitive and should maintain
users expectations and consequently satisfy the SLA. In order to save power consump-
tion, DVFS is considered in conjunction with the VM consolidation. The voltage and the
frequency are defined considering the correlation between the VMs” workloads which
ensures that the expected QoS is achieved. The approach is verified through real imple-
mentation of distributed web search applications. The approach is also validated for large
scale cloud workloads and compared with a correlation aware placement approach [159].
The comparison shows that this approach outperforms the aforementioned technique by

13.7% and 15.6% in terms of the energy saving and QoS improvements.

Overbooking

Overbooking is an admission control method to improve resource utilization in cloud
data centers. In general, cloud users overestimate the VM size they need to avoid risk of

resource shortage. This provides the opportunity for providers to include an overbooking

2.2 PaaS Power-aware Resource Management 37

strategy [153] in their admission control system to accept a new user based on anticipated
resource utilization and not on the requested amount. Overbooking strategies mostly rely
on load prediction techniques and manage the tradeoff between maximizing resource
utilization and minimizing performance degradation and SLA violation.

Based on the resources considered for overbooking, research works can be classified
into two main categories. The first category [78,96] only considers CPU and the second
category [153, 154] considers I/O and memory along with CPU. Commonly, after the
overbooking phase, the majority of approaches [84,150] mitigate the risk of overbooking
by dealing with overload of VMs on a limited number of servers. However, when the
data center is overloaded, such techniques are no longer effective.

One way to deal with such challenges (which is of interest for PaaS provider) is to
collect the statistics regarding application performance metrics and then, based on the
priority of application and users, degrade user experience and reduce utilization of re-
sources. There are a number of application-aware approaches proposed in the litera-
ture [78,96]. However, they are application-specific and only consider CPU. To this end,
Klein et al. proposed brownout [101], a programming paradigm that suits cloud en-
vironments and considers CPU, IO and memory. In a PaaS environment, brownout is
integrated to an application in three phases. In the first phase, the application owner
(with the incentive of receiving discount on service cost) reveals which part of the hosted
application can be considered non-compulsory. This part of application can be discarded
to decrease the resource requirements. In the second phase, brownout decides how of-
ten the non-compulsory computation can be discarded. Finally, in the last stage, when
there is not enough capacity, brownout lessens the number of requests served with the

non-compulsory part.

VM Placement

Among resource management policies, the initial placement of VMs plays an impor-
tant role in the overall data center performance and energy consumption. A strategic
placement of VMs can further improve the system overhead through decreasing the re-
quired number of migrations. Kabir et al. [88] investigated the issue assuming a hierar-

chical structure as a favored deployment model for cloud service provider that consists of

38 Literature Survey and Related Work

cloud, cluster, and hosts. This model helps in appropriately managing the geographical
distributed infrastructure to achieve scalability. This hierarchical structure needs a VM
placement approach that smartly provides cloud cluster, and node selection mechanisms
to minimize resource fragmentation and improve energy efficiency.

In general, the placement strategies can be categorized into two classes, namely cen-
tralized and hierarchical. Khosravi et al. [95] proposed a centralized VM placement al-
gorithm for distributed cloud data centers with the objective of minimizing both power
consumption and carbon footprint. An information system that has the updated status
regarding cloud, cluster, and host utilization is considered that enables centralized deci-
sion making and resource optimization. They considered distributed data centers with
diverse carbon footprint rates and PUE values and provided a comprehensive compar-
ison on energy efficiency of different combinations of bin-packing heuristics. They con-
cluded that the proposed approach called energy and carbon-efficient (ECE) VM place-
ment saves up to 45% carbon footprint and 20% of power consumption in data centers.

Similarly, Forestiero et al. [57] proposed EcoMultiCloud, a hierarchical approach for
workload management that offers an energy efficient VM placement in a multi-site data
center. Their proposed architecture consists of two main layers. The upper layer is re-
sponsible for the assignment of workload (virtual machine requests) among remote sites
and lower layer places virtual machines to hosts in each site. The proposed hierarchical
approach achieves same energy efficiency as ECE (centralized solution), and offers more
flexibility. This is because, as a hierarchical approach, it allows single data centers to

select their internal VM placement algorithms.

VM Sizing

Virtualization technology provides the opportunity for applications to share the under-
lying hardware with secure isolation [113]. Virtual machines configuration, in terms of
the amount of resources (CPU, memory and 1/0), are pre-defined by the cloud provider
in most of the cloud service models. VM configuration is important for the resource al-
location process where a host with enough resources need to be chosen to host the VM.
Such VM placement process may ultimately affect the energy consumption of the data

center. Therefore, the efficiency of VM placement can be achieved by three different ap-

2.2 PaaS Power-aware Resource Management 39

— Static Sizing

VM Sizing _

e Dynamic Sizing

Figure 2.9: VM sizing techniques categorized in two major groups including static and
dynamic sizing.

proaches. In the first approach, VMs are assigned to hosts according to their fix sizes and
consolidated to less number of servers without change of configuration. This approach
is discussed with details in the VM consolidation section [13-15,67,119]. The second ap-
proach is tailoring virtual machine configuration to the workload, which can be achieved
through characterization of the applications workload. These two approaches are con-
sidered as Static VM Sizing (Figure 2.9). Finally, the third approach is adjusting the VM’s
configuration to match its workload in runtime [113] and is known as Dynamic VM Sizing
(Figure 2.9).

Static VM Sizing

Assuncao et al. [8] proposed CloudAffinity, a framework to match physical servers
to VM instances called as CloudMates. This framework enables organizations to move
their workloads to the cloud while choosing optimal number of available VM templates
considering their budget constraint. Cloud Affinity considers CPU, memory, and disk re-
quirement of each server and chooses the optimal number of VM templates minimizing
the users cost based on the predefined Quality of Service (QoS). The QoS is defined as the
percentage of the requests which are satisfied by each VM template. The effectiveness
of the VM template matching is investigated through three metrics including cost, Eu-
clidean distance, and Matching factor. The cost metric shows the amount of money that
the user should pay to maintain a cloud instance and this cost differs from one instance
to the other. The Euclidean distance metric is the distance between the cloud providers
template and the users requirement in terms of the resources including CPU, memory
and disk. The Matching factor metric shows the percentage of the difference between

customers requirement and what the template offers for each VM.

40 Literature Survey and Related Work

Dynamic VM Sizing

In dynamic VM sizing, the approach estimates the amount of the resources that should
be allocated to a VM with the objective of matching the VMs resources to its workload.
The VM sizing should be carried out in a way that to avoid SLA violations resulted from
under-provisioning of resources. Meng et al. [113], present a provisioning approach in
which the less correlated VMs are packed together and an estimate of their aggregate
capacity requirements is predicted. This approach applies statistical multiplexing con-
sidering dynamic VM resource utilization and it makes sure that the utilization peaks of
one VM do not necessarily coincide with the co-allocated VMs. Hence, the amount of
resources allocated to each VM varies according to its workload.

Chen et al. [29] also investigated the problem of VM sizing in the provisioning pro-
cess, so that more VMs can be hosted on servers. The estimated VM sizes are referred as
effective size (ES), which is determined through Statistical Multiplexing principles. These
principles take into account the factors that might affect aggregated resource demand of
the server on which the VM is placed. The effective size of a VM is affected by both its
own demand and its co-allocated VMs considering the correlation coefficient. This effec-
tive sizing technique is demonstrated to save more energy than a generic consolidation

algorithm.

Dynamic Voltage and Frequency Scaling (DVES)

In addition to the Bare Metal environment, Dynamic Voltage Scaling has also been applied
to virtualized environments. Laszewski et al. [160] focused on the design and implemen-
tation of energy-efficient VM scheduling in a DVFS-enabled compute clusters. Jobs are
assigned to preconfigured VMs and the VMs are shutdown when the jobs finish. The so-
lution is proposed for high performance cluster computing, however since they consider
virtualization technology, it can be implemented in a cloud environment as well. The
scheduling algorithm operates considering two main approaches. It either optimizes the
processor power dissipating by running the CPU at a lower frequency with the minimum
effect on the overall performances of the VMs or schedules the VMs on CPUs with low
voltages and tries not to scale up the CPU voltage.

Urgaonkar et al. [156] investigated the problem of optimal resource allocation and

2.2 PaaS Power-aware Resource Management 41

ololo 0 0 0
o o o (=] (=] o
3 3 3 3 3 3
D ~ ~ ~ ~ D ~ ~
o Ll N w ey o Ll N
[a} [a}
~ ~
1] o
= 3
Libs Libs
VM A | | VM B

Hypervisor Layer

Infrastructure Layer

Figure 2.10: Hybrid Virtual Environment

power efficiency in cloud data centers through online control decisions. These decisions
are made utilizing available queueing information in the system and the Lyapunov opti-
mization theory. Heterogeneous applications with volatile workloads are used to show
that the presented approach can handle unpredictable changes in the workload since it
is not dependent on any prediction or estimate of the workload. In the studied system,
applications execute inside virtual machines and each application can have multiple in-
stances running across different VMs. Dynamic Voltage and Frequency scaling of CPU
is applied for improving the energy consumption of the data center. The frequency of
CPU is decided according to the workload by the Resource Controller, which is installed
on each server.

Authors conclude that DVFS does not always result in more energy savings and oper-
ators should also consider utilizing the low power modes available in modern processors

which might provide better energy savings with the least performance degradation.

2.24 Hybrid

The hybrid virtualization model shown in Figure 2.10 is a combination of system and
OS-level virtualization approaches. The containerization technology used in this model
is mainly application containers such as Docker !! , which was explained previously. This
new model is currently provided by Google Container Engine and Amazon ECS as a new
cloud computing service called Container as a Service. Running containers inside virtual

machines provides an extra layer of isolation while ensuring the required security for

1 https://www.docker.com/

https://www.docker.com/

42 Literature Survey and Related Work

users. Research in this area are summarized in Tables 2.10.

As discussed, VM consolidation can be utilized for reducing energy consumption in
data centers. However, VM consolidation is limited by the VMs memory [151] and un-
limited number of VMs can not be mapped on a physical machine (PM). Therefore, in
order to save more energy, VM’s resources should also be utilized efficiently. This prob-
lem is tackled in the hybrid model through consolidation of containers on VMs, which
further improves the utilization of VMs resources. This approach is introduced by Tchana
etal. [151] and is called Software/Service Consolidation problem (SCP). In the SCP problem,
several software/services are dynamically collocated on one VM. The objective is reduc-
ing the number of VMs and consequently decreasing the population of PMs along with
the data center power consumption. In order to provide the required isolation, applica-
tions execute inside Docker containers. The problem is modeled utilizing Constraint Sat-
isfaction Programming (CSP) and the Software Consolidation is carried out along with the
VM consolidation. In order to accelerate the software consolidation process, the search
domain is reduced considering a couple of boundaries such as containers collocation con-
straints. One of the limitations of this approach is the OS of the VM hosting the container,
since unlike virtual machines, containers share the OS with their host.

Yaqub et al. [168] also investigated SCP in PaaS Clouds. This problem is framed lever-
aging the Google definition of Machine Reassignment model for the ROADEF/EURO
challenge 12 and was extended for RedHat’s public PaaS (OpenShift13). Four Meta-heuristics
are applied to find solutions for (re)allocations of containers. The solutions are then com-
pared and ranked considering SLA violations, energy consumption, resource contention,
migrations, machine used, and utilization metrics for four different cloud configurations.
Contrary to [151], no boundaries are considered to reduce the search domain for the
Meta-heuristics to speed up the consolidation process.

Almeida et al. [4] investigated the SCP problem in a Service-Oriented Architecture.
The problem was divided into two related sub-problems, short-term resource allocation
and long-term capacity planning. The short-term resource allocation problem has a short-
term impact on the revenue and its solution determines the optimal resource allocation

to different services while increasing the revenue obtained through SLA contracts. How-

12http ://challenge.roadef.org/2012/en/index.php
Bhttps://github.com/openshift-quickstart

http://challenge.roadef.org/2012/en/index.php
https://github.com/openshift-quickstart

2.3 Workload Characterization and Modeling 43

ever, the answer to long-term problem determines the optimal size of the service center
that maximizes the long-term revenue from SLA contracts along with decreasing the To-
tal Cost of Ownership (TCO). These problems are modelled in the proposed framework
and a deep analysis of effects of short-term resource allocation is provided. A model is
presented for identification of the optimal resource allocation in order to maximize the
revenues of the service provider while meeting the required QoS. Resource utilization
and the associated costs are also taken into account. The proposed optimal model is fast
in terms of the computation speed, which makes it a good candidate for online resource
management. Transactional Web services are considered as the hosted applications in the
data center. The services are categorized into sub-classes because of the volatility of the
web server workloads. Each VM is responsible for one class of web servers (WS). In order
to insure the quality of service for each class of the WS, admission control is employed
on top of each VM which decides to accept or reject the requests.

Dhyani et al. [41], introduced a constraint programming approach for the SCP prob-
lem. The research objective is decreasing data center cost through hosting multiple ser-
vices running in VMs on each host. The SCP is modeled as an Integer Linear Program-
ming (ILP) problem and compared with the presented solution through constraint pro-
gramming. The constraint programming approach can find the solution in less than 60
seconds. However, ILP could find a better solution if it could meet the 60 seconds dead-
line. Therefore, constraint programming is found as a better solution comparing to ILP
for SCP problem considering the algorithm speed.

Bichler et al. [17] also investigated the problem of capacity planning. An IT service
provider hosting services of multiple customers is investigated in a virtualized envi-
ronment. Three capacity planning models are proposed for three allocation problems.
These problems are solved through multi-dimensional bin-packing approximate algo-

rithms and the workloads of 30 services are applied as the input of the system.

2.3 Workload Characterization and Modeling

There is a growing body of research on resource management techniques with the focus

on minimizing the energy usage in cloud data centers [89,123]. These techniques should

44 Literature Survey and Related Work

be applicable for dynamic cloud workloads. However, because of the competitiveness
and security issues, cloud providers do not disclose their workloads, and as a result there
are not many publicly available cloud back-end traces. Therefore, most of the research
lacks the study of the dynamicity in users demand and workload variation.

The availability of cloud backend traces makes researchers able to model real cloud
data center workloads. The obtained model can be applied for proving the applicability
of the proposed heuristics in real world scenarios.

In 2009, Yahoo released traces from a production MapReduce M45 cluster to a selec-
tion of universities [167]. In the same year, Google made the first version of its traces
publicly available and this publicity resulted in a variety of research investigating the
problems of capacity planning and scheduling via workload characterisation and statis-

tical analysis of the planet’s largest cloud backend traces [137].

2.3.1 Workload Definition

The performance of a system is affected not only by its hardware and software compo-
nents but also by the load it has to process [27]. As stated by Feitelson [51], understanding
the workload is more important than designing new scheduling algorithms. If the tested
systems does not have its input workload chosen correctly, the result of the proposed
policies or algorithms might not work as expected when applied to real world scenarios.

The computer workload is defined as the amount of work allocated to the system that
should be completed in a given time. A typical system workload consists of tasks and
group of users who are submitting the requests to the data center. For example, in Google
workload tasks are the building block of a job. In other words, a typical job consists of
one or more tasks [137]. These jobs are submitted by the users, which are in this case the

Google’s engineers or its services.

2.3.2 Workload Modeling Techniques

In order to characterize the workload, the drive or input workload of the studied system

should also be investigated. For measuring the performance of a computer system, input

2.3 Workload Characterization and Modeling 45

workload'* should be the same as the real one. As stated by Ferrari [55], there are three

types of techniques for obtaining the input workload:

e Natural Technique

Natural technique utilizes real workloads obtained from the log file of the system
without any manipulation. Urgaonkar et al. [156], utilized real traces from hetero-
geneous applications to investigate the problem of optimal resource allocation and
power efficiency in cloud data centers. Anselmi et.al [5] also applied real workloads
from 41 servers to validate their proposed approach for Service Consolidation Prob-
lem (SCP). PlanetLab VMs traces are applied as the input workload to validate the

consolidation technique in several works [15,21].

e Artificial Technique

Artificial technique involves the design and application of a workload that is inde-
pendent of the real one. Mohan Raj and Shriran [116] apply synthetic workloads

following the Poisson distribution to model web server workloads.

e Hybrid Technique

Hybrid technique involves sampling a real workload and constructing the test work-
load from the parts of the real workload. Hindman et al. [81] evaluate Mesos the ap-
plication of both CPU and IO-intensive workloads that are derived from the statis-
tics of Facebook cloud backend traces and running applications utilizing Hadoop

and MPL.

Workload Modelling

As stated by Calzarossa and Swerazzi [27], the workload modeling process can be con-
structed through three main steps. The first step is the formulation in which the basic
components such as submission rates for users and their descriptions are selected. In
addition to this, for evaluating the proposed model, a criterion is considered. During

the second step, the required parameters for modeling are collected while the workload

4The input or drive workload is the workload under which the performance of the system is tested.

46 Literature Survey and Related Work

executes in the system. Finally in the last step, a statistical analysis is performed on the
collected data.

In selecting the workload modeling technique, the considered parameters for defining
the requests play an important role [2]. In a distributed system, a user request is mainly

defined via three main parameters including;:
e t: The time t is when the request is submitted to the system.
e [: The location [is where the request is submitted from.

e 1 : The request vector r contains the amount of resources needed in terms of CPU,

memory and disk.

When time and spatial distribution of the user requests are ignored, e.g., only one
day of the trace is studied, requests population are likely to have similarities and can
be presented in the form of relatively homogeneous classes [2]. Such kind of workload
modeling is explored by Mishra et al. [115] and Chen et al. [31] on the first version of the
Google cluster traces. Mishra et al. [115] applied the clustering algorithm K-means for
forming the groups of tasks with more similarities in resource consumption and duration,
while Chen et al. [31] classified jobs instead of tasks. In addition to these approaches, Di et
al. [43] characterized applications running in the Google cluster. Like [31,115], K-means
is chosen for the clustering purpose.

If the time and location of the requests are considered, the workload can be mod-
eled via a stochastic process such as Markovian model or time series models such as the
technique applied by Khan et al. [94]. Khan et al. [94] presented an approach based on
Hidden Markov Modeling (HMM) to characterize the temporal correlations in the clus-
ters of VMs that are discovered and to predict the patterns of workload along with the

probable spikes.

2.3.3 Workload-based Energy Saving Techniques

Study of the characteristics of the workload and its fluctuations is crucial for selecting
energy management techniques. For example in Intel Enhanced Speed Stepping Technol-

ogy'®, the CPU frequency and voltage are dynamically adjusted according to the servers

1Shttp ://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htmffoverview

http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm#overview

2.4 Application-based Energy Saving Techniques 47

‘ Agnostic

Workload
Characteristics ‘ CPU

Aware — Feature Set
Memory

Figure 2.11: The energy efficient resource management techniques in PaaS environment
are grouped based on the approach awareness of the cloud workload and its characteris-
tics.

workload. From the analysis of the workload, one can decide if a power management
methodology is applicable for the system. As stated by Dhiman et al. [40], DVFS does
not always result in more energy savings and operators should also consider utilizing
low power modes available in modern processors that might provide better energy sav-
ings with the least performance degradation considering the workload. The workload
type is also important for DVFS on memory component because, as stated previously, in
non-memory intensive workloads running at lower memory speed would result in less
performance degradation than memory-intensive workloads. Therefore, reducing power
consumption can be obtained through running memory at a lower frequency with the
least effect on the application performance [35]. The energy efficient resource manage-
ment techniques in PaaS environments are grouped into two major categories namely

workload aware and workload agnostic as depicted in Figure 2.11.

Beloglazov et al. [15] applied Markov chain model for known stationary workloads
while utilizing a heuristic-based approach for unknown and non-stationary workloads.
Apart from this work, the analysis of workloads of co-existing/co-allocated VMs moti-
vated new algorithms and management techniques for saving energy in cloud data cen-
ters. These techniques contain the interference-aware [23,119,122], and correlation-aware
and multiplexing [29,54,113,159] VM placement algorithms, virtual machine static [8]
and dynamic sizing techniques [113], which were discussed previously. The workload
study also motivated the idea of overbooking resources to utilize the unused resources

allocated to the VMs [84,150, 153, 154].

48 Literature Survey and Related Work

Web-based

Applications — ————

Bag of Tasks

Batch Processing

Big data

Work-flow

Figure 2.12: Application types supported in energy management systems.

2.4 Application-based Energy Saving Techniques

The type of application (Figure 2.12) plays an important role in selecting the energy man-
agement technique. For scale out applications, turning on/off cores, which is called dy-
namic power gating, is not practical since these applications are latency sensitive and
their resource demand is volatile, therefore the transition delay between power modes
would degrade the QoS. In this respect, Kim et al. [97] considered the number of cores

according to the workloads peak and achieved power efficiency through DVFS.

2.4.1 Web Applications

Web applications deployed in cloud data centers have highly fluctuating workloads.
Wang et al. [161] measured the impact of utilizing DVFS for multi-tier applications. They
concluded that response time and throughput are considerably affected as results of bot-
tlenecks between the database and application servers. The main challenge is identify-
ing the DVFS adjustment period, which is not synchronized with workload burst cycles.
Therefore, they proposed a workload-aware DVFES adjustment method that lessens the
performance impact of DVFS when a cloud data center is highly utilized. VM consolida-
tion methods also have been used along with DVFS for power optimization of multi-tier
web applications.

Wang et al [162] proposed a performance-aware power optimization that combines
either DVFS or VM consolidation. To achieve the maximum energy efficiency, they in-

tegrate feedback control with optimization strategies. The proposed approach operates

2.4 Application-based Energy Saving Techniques 49

in two levels: 1) at the application level, it uses a multi-input-multi-output controller
to reach the performance stated in SLA by dynamically provisioning VMs, reallocating
shared resources across VMs and DVEFS, 2) at the data center level, it consolidates VMs

onto the most energy-efficient host.

2.4.2 Bag of Tasks

Bag-of-Tasks (BoT) applications are defined as parallel applications whose tasks are in-
dependent [33]. Kim et al. [99] investigated the problem of power-aware BoT scheduling
on DVS-enabled cluster systems. Applying DVES capability of processors, the presented
space-shared and time-shared scheduling algorithms both saved a considerable energy
while meeting the user-defined deadline.

Calheiros et al. [24] proposed an algorithm for scheduling urgent, CPU intensive Bag
of Tasks (BoT) utilizing processors DVFES with the objective of keeping the processor at
the minimum frequency possible while meeting the user-defined deadline. An urgent ap-
plication is defined as a High Performance Computing application that needs to be com-
pleted before the soft deadline defined by the user. Disaster management and healthcare
applications are examples of this kind of applications. DVFES is applied at the middle-
ware/Operating System level rather than at CPU level and maximum frequency levels
are supplied by the algorithm during task execution. The approach does not require prior

knowledge of the host workload for making decisions.

2.4.3 Big Data Applications

As indicated by International Data Corporation (IDC) in 2011, the overall information
created and copied in the world has grown by nine times within five years reaching 1.8
zettabytes (1.8 trillion gigabytes) [61] and this trend would continue to at least double
every two year. The exceptional growth in the amount of produced data introduced the
phenomenon named Big Data. There exists various definitions for Big Data. However,
Apache Hadoop definition is the one which is close to the concept of this study. Apache
Hadoop defines Big Data as datasets that could not be captured, managed and processes by gen-

eral computers within an acceptable scope. Big data analysis and processing along with the

50 Literature Survey and Related Work

data storage and transmission require huge data centers that would eventually consume
large amount of energy. In this respect, energy efficient power management techniques
are really crucial for Big Data processing environments. In this section, we discuss batch
processing and workflows as two examples of Big Data applications along with the tech-

niques applied to make them more energy efficient (Figure 2.12).

Batch processing

Large-scale data analysis and batch processing are enabled utilizing data center resources
through parallel and distributed processing frameworks such as MapReduce [36] and
Hadoop '°. The large scale data analysis performed by these frameworks requires many
servers and this triggers the possibility of a considerable energy savings that can be ob-
tained via resource management heuristics that minimize the required hardware.

As stated by Leverich et al. [107], MapReduce is widely used by various cloud providers
such as Yahoo and Amazon. Google executes on average one hundred thousand MapRe-
duce jobs every day on its clusters'”. The vast usage of this programming model, along
with its unique characteristics, requires further study to explore any possibilities and
techniques that can improve energy consumption in such environments.

The energy saving in a cluster can either be made by limiting the number of active
servers to the workload requirement and shutting down the idle servers or matching the
compute and storage of each server to its workloads. Due to the special characteristics of
the MapReduce frameworks, these options are not useful in these environments. Power-
ing down idle servers is not applicable, as in MapReduce frameworks data is distributed
and stored on the nodes to ensure reliability and availability of data. Therefore, shutting
down a node would affect the performance of the system and the data availability even
if the node is idle. Moreover, in a MapReduce environment, the mismatch between hard-
ware and workload characteristics might also result in energy wastage (e.g. CPU idleness
for I/O workloads). Also, recovery mechanisms applied for hardware/software failures
increases energy wastage in MapReduce frameworks.

Leverich et al. [107] investigated the problem of energy consumption in Hadoop as a

16https ://hadoop.apache.org/
17http ://google-opensource.blogspot.de/2014/06/an-update-on-container—
support—-on.html

https://hadoop.apache.org/
http://google-opensource.blogspot.de/2014/06/an-update-on-container-support-on.html
http://google-opensource.blogspot.de/2014/06/an-update-on-container-support-on.html

2.4 Application-based Energy Saving Techniques 51

MapReduce style framework. Two improvements are applied to the Hadoop framework.
Firstly, an energy controller is added that can communicate with the Hadoop framework.
The second improvement is in the Hadoop data-layout and task distribution to enable
more nodes to be switched off. The data-layout is modified so that at least one replica
of a data block would be placed on a set of nodes referred as covering Set (CS). These
Covering Sets ensure the availability of the data block when the other nodes that store
the other replicas are all shutdown to save power. The number of replicas in a Hadoop

framework is specified by users and is equal to three by default.

Lang et al. [104] proposed a solution called All-In Strategy (AIS) that utilizes the
whole cluster for executing the workload and then power down all the nodes. Results
show that the effectiveness of the algorithms directly depend on both complexity of the

workloads and the time it takes for the nodes to change power states.

Kaushik et al. [93], presented GreenHDEFS , an energy efficient and a highly scal-
able variant of the Hadoop Distribution File System (HDFS). GreenHDFS is based on the
idea of energy-efficient data-placement through dividing servers into two major groups
namely Hot and Cold zones. Data that are not accessed regularly are placed in the Cold
zone so that a considerable amount of energy can be saved harnessing the idleness in this

zone.

Long predictable, streaming I/O and parallelization and non-interactive performance
are named as the characteristics of MapReduce workloads computations in Leverich et
al. [107]. However, there exists MapReduce with interactive analysis (MIA) style work-
loads that have been widely used by organizations [30]. Since MapReduce makes storing
and processing of large scale data a lot easier, data analysts are widely adopting MapRe-

duce to process their data.

Typical energy saving solution obtained through maximization of server utilization is
not applicable for MIA workloads because of two main reasons. Firstly, MIA workloads
are dominated by human-initiated jobs that force the cluster to be configured to the peak
load so that it can satisfy SLAs. Secondly, workload spikes are unpredictable and the en-
vironment is volatile because machines are added or removed from the cluster regularly.
In this respect, Chen et al. [30] proposed BEEMR (Berkeley Energy Efficient MapReduce)

as an energy efficient MapReduce workload manager inspired by an analysis of the Face-

52 Literature Survey and Related Work
M) Map task (R) Reduce task | B Data Block
9 TaskTracker - HDFS layer MapReduce layer
'§ S MJIR)M & NameNode JobTracker
ro M (R (M Q
2 JobTracker
=
C DataNode
o 8 NameNode ‘ DataNode TaskTracker
Q& BB | MIRIM
BB B/ B
Master B B M (R M
Slaves
Collocated data and compute Data Slaves Compute Slaves
(Traditional model) Separated data and compute
(Alternative model)
Figure 2.13: Two MapReduce development models studied in [52]
book Hadoop workload.

Hadoop is the open source implementation of the MapReduce programming model.
Apart from energy consumption, which is studied in a number of works [30,93,104,107],
Hadoop performance for both collocated and separated compute services and data mod-
els (Figure 2.13) is investigated by Feller et al. [52]. The separation of compute services
and data is applied for virtualized environments. It is shown that the collocation of VMs
on servers has a negative effect on the I/O throughput, which makes physical clusters
more efficient in terms of the performance when compared to the virtualized clusters.
The performance degradation is proven to be application-dependent and related to the
data-to-compute ratio. There is also a tradeoff between the application’s completion time

and the energy consumed in the cluster.

Workflow Applications

Workflows or precedence-constrained parallel applications are a popular paradigm for
modeling large applications that is widely used by scientists and engineers. Therefore,
there has been an increasing effort to improve the performance of these applications
through utilizing distributed resources of Clouds. With the increase in the interest to-
ward this type of applications, the energy efficiency of the proposed approaches also

comes into the picture, as performance efficiency brought by excessive use of resources

2.4 Application-based Energy Saving Techniques 53

might result in extra energy consumption.

The inefficiency of provisioned resources for scientific workflows execution results in
excessive energy consumption. Lee et al. [106] addressed this issue through a resource-
efficient workflow scheduling algorithm named MER. The proposed algorithm optimizes
the resource usage of a workflow schedule generated by other scheduling algorithms.
MER consolidates tasks that were previously scheduled and maximizes the resource uti-
lization. Based on the trade-off between makespan (execution time) increase and resource
utilization reduction, MER identifies the near optimal trade-off point between these two
factors. Finding this point, the algorithm improves resource utilization and consequently
reduces the provisioned resources and saves energy. The proposed algorithm can be ap-
plied to any environment in which scientific workflows of many precedence-constrained

tasks are executed. However, MER is specifically designed for the IaaS cloud model.

As discussed earlier, Dynamic Voltage and Frequency Scaling (DVES) is an effective
approach to minimize the energy consumption of applications. As scientific workflows
contain tasks with data dependencies between them, DVFS might not always result in
desirable energy saving. Depending on system and workflow characteristics, decreasing
the CPU frequency may increase the overall execution time and the idle time of the pro-
cessors, which consequently deteriorates the planned energy saving. In addition, when
the SLA violation penalty is higher than the power savings, adjusting the CPU to operate
at the lowest frequency is not always energy efficient. In this situation, executing the tasks
quickly with a higher frequency might result in less energy consumption [59]. In this re-
spect, Pietri et al. [133] proposed an algorithm that identifies the best time to reduce the
frequency in a way that the overall energy consumption is decreased. In the presented
approach, the lowest possible frequency did not always result in the least energy con-
sumption for completing the workflow execution. The algorithm considers various task
runtime and processor frequency capabilities and it assumes an initial task placement on
the available machines. Next, it determines the appropriate CPU frequency considering
the time that the task can be stretched without violating the deadline (slack time). The
proposed algorithm gradually scale down the frequency of the processor assigned for
each task iteratively by the time the overall energy savings are increased. In each iter-

ation, the CPU frequency is scaled down to the next available frequency mode. The al-

54 Literature Survey and Related Work

Response Time

— SLA Aware

Customized Metrics

SLA

| SLA Agnostic

Figure 2.14: Considering SLA, the energy efficient resource management techniques for
PaaS environments are categorized in two groups, namely SLA Aware and SLA Agnostic.

gorithm performance is validated through simulation and the results demonstrated that
the system can provide a good balance between energy consumption and makespan.
Durillo et al. [46] proposed MOHEFT as an extension of the Heterogeneous Earliest
Finish Time (HEFT) algorithm [155], which is widely applied for workflow scheduling.
The proposed algorithm is able to compute a set of suboptimal solutions in a single run
without any prior knowledge of the execution time of tasks. MOHEFT policy comple-
ments the HEFT scheduling algorithm through predicting task execution time based on

the historical data obtained from real workflow task executions.

2.5 SLA and Energy Management Techniques

The expectations of providers and costumers of a cloud service including the penalties
considered for violations are all documented in the Service Level Agreement (SLA) [72,
75,169]. Considering SLA, energy management techniques are categorized into two
groups, namely SLA-Aware and SLA-Agnostic approaches (as shown in Figure 2.14).
SLA contains service level objectives (SLOs) including the service availability and per-
formance in terms of the response time and throughput [100]. Satisfying SLA in a cloud
computing environment is one of the key factors that builds trust between consumers and
providers. There has always been a trade-off between saving energy and meeting SLA
in resource management policies, therefore it is really crucial to make sure that energy
saving does not increase SLA violations dramatically.

The metrics utilized to measure SLA can be different based on the application type,

for example SLA for workflow applications is defined in terms of the user-defined dead-

2.6 Thesis Scope and Positioning 55

Table 2.2: The thesis scope

Characteristic Thesis scope

Virtualization Containerized data centers

System resources Multiple resources: CPU, RAM

Target systems Heterogeneous Paas and CaaS Clouds

Goal Minimize energy consumption under performance constraints

Power saving techniques VM sizing, dynamic container consolidation, server power switching
Workload Google cloud backend traces and Arbitrary mixed workloads
Architecture Distributed task mapping and dynamic container consolidation systems

lines [46, 106, 133] while in web and scale-out applications it is defined as the response
time [5,81,104]. Anselmi et.al [5] consider the application response time as their SLA
metric in their proposed solution for the Service Consolidation Problem (SCP) consid-
ering multi-tier applications. In the studied scenario, the objective was minimizing the
number of required servers while satisfying the Quality of Service. Similarly, Mohan et
al. [116] considered response time of the application as the SLA metric in their proposed
energy efficient workload scheduling algorithm. The application request is accepted con-
sidering the data center capacity along with the SLA. The SLA is maintained through a
control theoretic method. Holt-Winters forecasting formula is applied for improving the
SLA through minimizing the incurred cost by the time in which the system waits for
startup and shutdown delays of a PM/VM. Cagar et al. [23] also considered response
time as their SLA metric in the presented online VM placement technique. In a different
approach, Beloglazov et al. [13] utilized a combined metric considering both SLA viola-
tion and energy consumption for their optimization problem. In the presented approach,
SLA is violated during the time that a host is overloaded. This approach is application

independent.

2.6 Thesis Scope and Positioning

This thesis investigates energy-efficient management of resources in enterprise and container-
based clouds. The objective is to minimize energy consumption of data centers through
efficient allocation of resources and consolidation of workload on minimum number of
servers. The thesis investigates VM sizing, container placement and consolidation in a

hybrid containerized environment and its scope is illustrated in Table 2.2. As inefficient

56 Literature Survey and Related Work

utilization of servers is one of main source of the energy wastage in data centers'®, in
this thesis we focus on improving servers utilization. We considered both OS-level and

system-level virtualization technologies to improve utilization on VM and server level.

This thesis focus on Cloud environments where the tasks/applications are running
inside containers. Chapter 3 focuses on VM sizing for containers while considering the
analysis and application of real cloud backend traces. The effect of variable cloud work-
loads on the efficiency of VM sizing solutions has not been studied deeply in the litera-
ture. Hence, these chapters characterize the only publicly available cloud backend traces
released by Google in 2011. Contrary to the literature that concentrates on the maxi-
mization of host-level utilization and load balancing techniques [89,98,123], our research
in these chapters focus on maximizing the VM-level utilization via VM customization.
These VM sizes are derived from the characterization of the Google workload via clus-

tering techniques.

Chapters 4 and 5 studied energy efficient container placement and consolidation al-
gorithms. To evaluate the performance of scheduling and allocation policies in container-
ized cloud data centers, there is a need for evaluation of environments that support scal-
able and repeatable experiments. In chapter 4, we introduce ContainerCloudSim, which
provides support for modeling and simulation of containerized cloud computing envi-
ronments. This simulator is proposed as the primarily focus of the current available sim-
ulators are solely on system level virtualization with virtual machine as the fundamental
component [25,42,56,62,62,74,85,102,124,125,152,164] and do not support modeling and

simulation of containers in a cloud environment.

Finally, Chapter 5 present a framework that consolidates containers on virtual ma-
chines. Our approach is different from the literature, as we modeled the consolidation
problem on container level. We compare a number of container consolidation algo-
rithms using the ContainerCloudSim simulator and evaluate their performance against
metrics such as energy consumption and Service Level Agreement violations. We com-
pare the energy efficiency of container consolidation with virtual machine consolidation
to demonstrate the effectiveness of our approach. The proposed framework and algo-

rithms can be applied to any containerized cloud environment to minimize energy con-

18http ://www.nrdc.org/energy/data-center—-efficiency-assessment.asp

http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

2.7 Summary 57

sumption, or alternatively in a public cloud to minimize the total number of hours the

virtual machines leased.

2.7 Summary

According to the Refrigerating and Air Conditioning Engineers (ASHRAE) [12], the In-
frastructure and Energy Cost (I&E) has increased by 75% of the cost in 2014 while IT
costs are only 25% 19 Thisis a significant rise for I&E costs, which was contributing up
to 20% to the whole cost when IT costs where only 80% in the early 90’s. This drastic
rise of data center power consumption has made energy management techniques a non-
separable part of the resource management in a cloud computing environment. In this
respect, there is a large body of literature that considers energy management techniques
for various cloud service models. In this chapter, we mainly focused on the PaaS service
model in which the data center owner can obtain prior knowledge of the applications
and their usage patterns. Further, we discuss the energy management techniques in both
bare-metal and virtualized environments. In summary, research in this area conclude that

selecting the right energy management technique is dependent on three main factors:

e The environment where the applications run. In this chapter, we covered various
alternatives for execution environments including Bare Metal, containerized, and

hypervisor-based virtualization.

e The workload and application type. Applications are mainly different in terms of
their workload patterns, latency sensitiveness, and etc. Understanding the work-

load characteristics can further improve the efficiency of the algorithms.

e QoS. The Quality of Service for applications is defined through the Service Level
Agreements (SLA) and the SLA metric can be different considering the applications
nature. Consideration of SLA is important since energy management techniques
might result in SLA violations and consequently degrade the performance of the

system or increase the total costs for the applications execution.

19http ://www.electronics—cooling.com/2007/02/in-the-data-center-power—-and-
cooling-costs-more-than-the-it-equipment-it-supports/

http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/

Literature Survey and Related Work

58

“UOTINIIXS Peos[Iom aY}
Sunmp sapou surfjjo pue

“uonezImn Moy jo sporrad

S[opOW-L}oW JokIISqe Sk PAIdPISu0d

auruo yjoq Aq umeip ur AS1oUs 0AES 0} SapOU ST ssuodse pue parpms axe sqol jo sjeod sduewrroyrad [¥01] ‘Te 3@
1amod ayy sayerodiodur : P iL d pue uonduwmnsuod ad1nosa1 pajoadxa Sue]
MIN dnjumop 19Mog
yorym pajuasard dYj Se YoNs SOnSLISORIRY) PROPIIOM
SI Jopow A319Us Uy
Ayiqerreae
eyep oy arnsue 03 dnypeq
(&1uo NdD) e Sk PaIapISU0d dIe SOpou [z01] TR 32
‘[OPOIA JoMOJ Teaur] jo 305 e “Arren3a1 passad mdygnoxyL peoppiom sonpaydey s, doopey UOLI9Ad]
-dk JOU aIe YoIym Sapou
3[p1 umop SurIIMOJ
B M Nwa L jusuoduwod N gD uo [66] 'Te 30
= (T AN+ 1AW auIn uorndaXy Mser, syse[-jo-3eq wr
= oHvISy 4 &:E:@m =7 SdAd 2|
Adouanbaiy Arowew pueyaiojaq
‘Juauodwod A10 .
pue NJD yroq Surureyuod jwt] uonyepeIdap UMODY 91 SDTISLID)ORILYD PROPIOM [8¢] TR 32
pasodoad st jopowr THSUE PUE 1dD HHoq uo douewroyrad uoneorddy 9L ‘Speop[IoM 3SaY} JO UOTeuIquIod Sus(q
A319Ud [e10}) WAISAG sdAd © pUe AISUSIUL N D Pue AIOWSA
‘uonpdurnsuod romod
swa)sAs a3 uo Aouanbaiy d X Tl .
jusuodwod A1owew uo SpeOPIOM padueleq [6¢] Te 3
A1owawr 2y} Jo 309530 uorneperdap aoueuriojrad 12 SAISI S ATSUSIUT AIOUIS Qo
ayy apnpur o3 pasodoxd sdAd paunap s P SUSIUT [1dD "SAISUSIU] N a
st popour 1omod v
‘A1owawr 10§ speoy
Ppowr uogonpax 1amod SIOM JAISURIUL N D) I0J [ce] Te 3o
A[reondreue ue yim Jueuoduon %HE@E uo umop moys uonedrddy PpeoPIoM SIeunpPuaq 900zNdD DAJS praeq
Zuore syuawaInsesaw SIAd :
wo)SAs-Teay]
[PPOIN A319Ug Suraeg AS1euy VIS PeOTIIOM sIoymy

JUSWIUOIIAUY [BISIA o1eg SULIDPISUOD) YdI1easay] Jusnyjy AS1ouq :¢'Z 9[qeL

59

2.7 Summary

“uonezInn
901n0sa1 ayy paaorduy

uedsayeN

98parmouy
zorxd e 9q 0} pawInsse SI SOYSLISOLILYD)
PeOPIIOM peopiIopm suonedridde
MOTJIIOM [9AS] WAISAG pue [eIdJA d18g

[901] TR 32
997

"(000SPMD)

PaZI[IN ST JUSWUOITAUD
parejowr A31ouy

‘sysey
aonpai pue dewr ay) usamiaq
S9OUBIDHIP a3 Yrm Suore syse}
3} JO SSEUPUNOQ 3DINOSAI A}
SurapIsuod Y3noIy) pardnPy

-dwyy uonardwod

s,uonedrddy

‘[9AS] WAISAG
pue [ejowr areq yjoq 10y o[qeoridde
st yoeoxdde ay3 pue parpnis are
Surssanoxd eyep erpadpip pue ‘J10geI1a],
“U9D)RII], A[PWBU SYILWDUS]-OIOTUI
da1y) Surpnpour syreuwnydouaq dooper]

[ce] Te 1o
.szwm

“(ATuo NdD)
[PPOA ToMOJ Teaur|

peoppiom doopep] sooqade
oy} Surdpmys £q pardsur
ST yorym 1odeueur peopiom
sonpaydey yusniyye A319us
ue se (onpaydey JusyFg

A31ouy Asex19g) MINAAY

owry asuodsay

“WILI0S[e ULIISN Sueaw-
Gursn payrssed st speopIom 9141s (VIIA)
sIsAeue aanoeIdur Yim aonpaydeiy

[og] Te 3o
uayD

WVIA
oy} pue 1o0ssadoxd
oy {sIp oy urpnpur
ouIr} ssadoe mamum%mﬁ—ﬂm
3y} pue sajels 1omod
JO sawur} suonsuer)
‘S[oA9] 1omod ayj 10§
pasn are s[opowr 1oMOJ

*9U0Z PIoD) 9y} ur
ssauR[pI Y3 Surssaurey y3noiyy
paaes aq ued A31ouy ‘sauoz
PIoD pue jop] Apuwreu sdnoid
I0few 0M} OJUL SISAISS SUIPIAIP
y3nomny yuawaderd-ejep
juapyya-A319uy

ouur], asuodsay

"S9U0Z P[Od pue J0Y A[Pureu
PII9PISUOD 3I€ SILIOZILD UTew OM],
"9)el SS3DDE puk djep UOKELaId SUIpIodde
padnoi3 are 193SN[d JURUL)-NW € Ul S30]

SIAH s,doope] ooyex Jo JIuouwr-auo

[c6] Te 1o
Arysney

[PPOIN A319Ug

Suiaeg A31oug

VIS

PeopIIom

sIoymny

JUSWIUOITAUY [N 91eg SULIDPISUO)) YdIeasay Jusyjy AS1ouq 7 9[qeL

Literature Survey and Related Work

60

“UOIINDAX sk} Ay} Jurmp
JATIOR dIB UDIYM SWISASQNS pateys Sy [[e
jo uonpdwnsuod A31ous ayy st PP 7 yse)

SUnNOaXa S[TYM SII0D SAT)OE UI PIWNSU0D uorjedo[e suoneorddy [9%] Te 3
A319Ud 9} ST 077 pue SIT0D AR 9IN0SAI JUID uedsoye MO[PYIO O[T
Y st=3 p 0 HRDYFY [FPLIOM mmg
JO I9quINU dY} SI 0 ‘AIdf] "7 4 240977
YSNOIY) pajewIss St SWDISAS 9100 Gynur
uo Suruuni y yse} jo uondwmsuod A31euyg
*9[p1 st 10ssad0xd
ay} usym paumsuod ramod ayy o3 /7 Surppe
parewmnsa st uondumsuod romod 1230} suoneoridde .
o PUe (st ;) * f1pd + 0 = Id [ce1] w potodue: Yena vedsre MOBPTIOM Hmm:h“wm
PaALISp [opow dIqnd e ydnony; J Aousnbaxy 2gRuabg o
Gunerado s10ssa001d yoes Surropisuod
payewnsa st /d uondumsuod £31auyg
[PPOIN A319Ug Suraeg AS1oug VIS PeOIIOM sioymny

JUSWIUOIIAUY [eISA d1eg SULIDPISUOD) YdIeasay Jusyjy AS19uq G 7 9[qeL

61

2.7 Summary

ananb 1oydyedsip

SINA Jo Ioqumu o ur uoeordde (1durejuo)) uoryeorddy) O11] Te 0
3} UO pase(SIDAIS - b uoTNqLISIP UOSSIOJ SMO[[0]
o urojdumsuo)) 1moJ b9 10§ S3Sonbat Jey} SI9AIIS oM I0J [eALLIE }sanbay HEHON
jou Surpuad arqemorry :
pasn st L1iqe
uonyeI3Iu JSey YyIm (1oureyuo)) uonyedrddy) [8c1] TR 32
) SIOAIDG ‘SIDINOSAY) peopyiom uorjedrdde asudioyug er[oy]
JO UO[ESO[[V 3Ua1dyyy
) $92IN0S3.I st asuodsay (1oureyuo)) uonyedrddy) [¢] Te3e
JO UOTedO[[e JUIOYJH peoptiom uonedrddy 1o1 sary . TWI[asuy
) (13ureuo)
(‘suoneoydde uonedrddy) ‘x Sunndwod)
(A1uo NaD) 3uruuni 103 JurenSUOd [£¥1] Te 30
mdy3noryy, suonjedridde punoidyoeq ayy pue
[PPOIA ToMO] Teaur] 1omod e s1pIsuo))) , , erdnordg
([8S1] NAIVA ‘[87] {1eyS) speopirom
Suidde)y 1amog
uonjeoridde eyeq Sig Arewrtig
sjapow Sutwrurergoxd
SNOLIBA UdIM. d 18] Te 30
I 39q QUIL] 9SU0dsay] (I9UTEIUOD) GO) PLOIOM DIPIUAS
UeWpurf]
Gurreys adInosay
‘pardde
3 [9z1] TR 30
- st durfeauuy paje[nuiIg - (I9UTEIUOD) GO) PLOIOM DIPYIUAS oue
“Juawaded 1aurejuo)) npued
OdA JuduIddE[J Iaurejuo) [¢¥] TR 30
Se paweu pappowt) - (13UTEIUOD) GO) BIR(] I9)ISN]D) I[3005)
SiAd Suoq
1omod e pasodoi g
[PPOIN AS10ug uraeg A31ouyg VIS PEOTIOM sIoymy

UOTRZI[ENIIA [9A -0 SULIDPISUOD) YdIeasay] JuaIdny A319uq :9°7 3qeL,

Literature Survey and Related Work

62

(yoeoadde Suixordnymy (INA Yyoee 10§
[eonsnels Ayl SuIdpIS jurersuod souewroyrad [c11]Te32
. "> syerdn 03 S1UM) v Sumopisuon) I9JUSD BJEP [RIDISWIWIOD © JO SPROPIIOM AIA Sus\
uorepIosuo) A awry asuodsay
(e3eaS1wr 03 INA
S oyy Sumpopes pue
(ATuo) OUSaIy} PEBO[ISAO 3} W}LIOSZ[e UOT)ePI[OSU0D SPLOpHOM Aeuoness-uou pue Axeuoness [c1] Te 1
[¥o NdD proysaiyy peoj Y iLtos[e uonepry Surpnpour peopjIom jo juspuadapur STl
[PPOIN Iomo teaur] dumsnlpe Aewmndo yim jo yndur ue se [eo8 god) v Seordd ’ : Aozer3oreg
voneiSi 19881 JeUm) st yoeoxdde oy “peOIOM qeTIdue[J
uoneprjosuod WA
(seyoeoidde uonoares
WA om} ym Suore
(£1u0 14D) suryjriodre uondIp POPRO[ISAO POIIUSPT (1] o3
SPOJ\ IOMO,] TEAUT| PeO[ISA0 pue peo[-Iapun st souaLIadx? 380y PeOPIIOM qeTioue]J rozerSopeg
op : opewone PPIM uon ydrym Sunmp swiy Yy,
-erdrwr s19831 jeyp)
uoneprjosuod WA
(spro
(4110 Nd) -USaIy} Ppeo[-IdAQ pue POPRO[ISAO POIIUSPT [c1] Te 3
SPOJN JOMO,] TEAUTT PeO-I9pUN POXY Im st souaLIadx? 380y POEPIIOM qeT3oue]J rozerSog
oP : uoneidiur s193831 jeypy) yorym Sunmnp swig ay [,
uoneprjosuod WA
S1SOY 10§ SUOT}ETYIS PLO[-19A0 .
obo AEMM\WQWVS Mwwmmwmzhmﬂosmsgv aurrf, asuodsay pue peol-1opun ay3 Surewnss 10§ paziyn Eo_uqu“w
PPON d F1 HEPH O WA st sisATeue speopyiom uonyedridde asudisjug PO
- (g wi wped peopliom
(" B W\va +d oy} ur saduep a[qedrpardun 0y ydepe
= (/)d pue urea] 0} uoneurioyur Surenanb ayy sasn)
[epowr onerpenb (rusuodwod N D) uo) [961] Te 3@
: mdySnoryy, }1 SB SDISIE)S S)I pue uondIpaid peopfiom
e se d Y Y p pald peop] 3
pajuasarx siAd d ad doxd Tesuoedin
st drysuonepar jo yuapuadapur st yoeoxdde pasodor
fouonbary-1omod oy AU, "PAIpMIS SI UOHNJLYSIP WOopuel
WIIOJTUN © MOT[OJ JeY} SPLOPLIOM OHRYIUAS
[PPOIN A319ug Guiaeg AS10ug VIS PeOPIIOM sIoymny

UOTJRZI[ENIIIA [9Ad-WISAG SULISPISUOD) YdI1easdy Jusdyjy AS1ouq /7 9[qeL

63

2.7 Summary

Aouanbaiy .
(4iuo ndD) peopfiom (DD1M) [091] Te 32
e wzu%mqs SIAa ndyEnonL puo Sunndwo) DHT IPImMPLIoM Dismazse]
parewnsa st A31ouy
"9100
NdD Yoea Jo Uonngrijuod £ S [¥2] Te 10
ndD) S[se} SAISUBIUL D el
oy} SuIapIsuod ¢ SIAd SOUI[PEIP pouljop 198(] Surraprsuod suonjedsridde sysey jo Seq soImdYy[eD
pare[nored St 3SoY Yyoes jo T A
uondumsuod romod ayy,
. ‘SpeoIoM
(uogeziyn Juowiade[J INA Ayoeded s,10A108 9} U99M19(UOT}R[aII0D a3 Surpnjdur
NdD SA 19MO() SI9AIDS SuxordnnN [eOHSHEIS Byj Uel} SI0W ST PUBWIDP pajuasaid st peoIOM 3 JO SIsA[eur [6ST] TE 30
O UO SjtotaImseowt ISINA 93RISIW 0} SIYM uonedrdde ue yeyy [re1dp v Auedwod (oG [eqo[o) Suniiog BPULIDA
[ETIOP WOLj paALIop UOTJEPI[OSUOD) JATA S9OURISUI 9WIN JO IdquINN [PUOTBU-I[NW € JO I9juad ejep uononpoid
ore spppowr 1omod ay a3 woj peopjrom uonyeoridde astrdiajug
Juswade]d INA papeol12A0 3utaq suoL q
ONAISIp Sumy era .
, Superdnmy - Tednsnels 380y e jo Ayiqeqoxd pazLLioRIEYD mm_ mmEMmEoUw:mEt% uo) l62] 'Te 30
(SINA 91eIStua 0} dIUM AU} SUTeIUOD jey) Eob SIoAIoS mi\m .mo erep _umovﬁ?.s oy uayDd
uonepIosuo) WA uonouny onsijiqeqoid vy
TUSWISDCJ
INA 9IeMYy 9DUSISJISU[[cz]l Te ¥
- SSINA S1eISIu 03 UM ouuty, asuodsay PpeOPIIopM 213005 08e
uonepijosuon WA
JUSWIADL[J SIAA P23EeD0[-0D 3}
(£1uo NdD) INA SIeMy SDUDISLIdIU] 3L SOUSISJISIUL 1oL} suraped a8esn 90Ino0saI yse} [611] TR 3
[9POIA IoMO Teaur| ISINA 93RISTW O} aI9YM uo paseq SNA Suerd Uo paseq payIsse[D) ST PeoPIOM 2[3005) OURIOIN
UonepI[OSUO0D) INA YSnoiy} painsut st SO0)
[PPOIN A319Ug Suiaeg AS1oug VIS uoneZLIdDRILY) PROPIOM sioymny

UOTJRZI[EN}IIA [9A-WISAG SULIDPISUOD) YdIeasdy Jusyfy AS1ouq :8'7 9[qeL

Literature Survey and Related Work

64

sayerdway parmbaz

sajyerdura) pajdoas

- JO 12quInu 343 Surseanaq OJUT }1J UED SPEOIOM 3 ‘paIssed are speopIom jsanbar [8] Te 30
soomos YUY PeoPy Ui palisse] peoPIIoM A VL oeounssy
JO JSOWI JeUf} 9INS SN
-91 JO UOI}EdO[[e JUIYJY
] ‘peopiom syse] -jo-3eq pue uonedrdde .
R e AR W - oo s 010
3} SULISpT P[PPON joi d yuatoyIyg S [POW PLOPYIOM UOS[OJId-UT[qn] ! Ep |
;oyeIdnuu
03 IYM (JUSWIUOITAUD
PnNop paIngLisIp-035)) papeoppa0 Suraq woo *PNoToF00s * mmm Aueduwod [z6] Te 3o
) wroyyerd ays-pnu wo1y sayis Aue SUrproAy pnopDH0oq Jo s3o0] 0I9T)S9I0]
© Uo speopiom
Suneprjosuo)
mdysnony [To1] T30
- sa01n0sax Jun[ooqiaA0 pue o ssuodsey sogg Ny pue sigNy wory
- $921n0s31 SUD[00qIdAQ ouur], asuodsay suoyedtjdde yajeq danLIIL-UOU [es1] Teso
PUE SPROPIOM dAT}ORISIUL SJI[-[eY sewo],
sIsA[eue UOR[aLI0D UO peo| sead a1t
[871] ut [9pOIN AS10ug paseq SNA Superd uon . vm:.o is1a01d “I9JUDD Bjep ke woly paureqo suoneoridde [z6] TE'32
-eDO[[e IDIN0SII JUIDYJY INO-3[LIS JO SONSLISORILYD A} PIzATeuy wny]
aIe SAUIYDLW [eNIIA
SiAd
[PPOIN A319Ug Suraeg AS1euyg VIS uoneZLIgDeILY) PROPIOM sIoymy

UOTJRZI[EN}IIA [9A[-WISAG SULISPISUO)) YdI1easdy JUsdYjy ASI1ouq :6'Z 9[qeL

www.eco4cloud.com

65

2.7 Summary

"S9SSE[D (SM) 9IIAISS

- HonesorIe awry asuodsay goM Yuspuadapur ojur payIssed ST 7] Te 1o
30IN0S3I JUIDYJY ‘ NG ‘ eprowy
PROPIIOM SIDIAIIS oM [LUOTIORSURI],
Oada)
S9DINOSAI SAUTYIBUL
U0 UOTJUd}U0d pue
UOT}RIZIW JOUTRIUO)) (N@d) uonesdiu oq ‘Gee] urewrop-pnu ueds ued yorym
(£juo NdD) ; 0} anp uoneper3op [891] Te 0
5 UOTJRIPOSU0)) q pnop yrysuadQ 105 paziiajoered are b
[PPOIA ToMOJ Teaur] 9DULULIO}Id qnbex
aremijog SurepISUo 913005 w01y syasejep Aqrqerrea Y3
Emﬁ.ﬂm@.ﬁ:sos
12ddn se pajepowu st
(AV'IS) uone[oIA Vg
uoneoydde (/L00zZsul /bxooads *mmm/ /
) uorepIosuo) yoes JI0J awi} 1Ie)s : d39y [161] ‘Te 10
aremijog e pauygep PIoYSaIy} T A g euey,
uorjepeIdap 9OIAIDG
uoneoridde jourayur astadiajus uy
suoryeoryd
-de 3unsoy 10§ sroaias S9OTAIDS)

[£1] Te

- parmbar Jo raquunu oy - uonedrdde jo sad4) yuazaptp unsoy IoUTT
Guiseard(‘uorjedojre SIDAIIS POJEIIPIP () WIOIJ SIDLI], i

32IN0S3I JUIYJY

] $32IN0S3I i POTSIOM SIUIUL [17] T
JO UOIEdO[[E JUSDYJY PEOPTIOM PHOWUAS ueAy(

[PPOIN AS10ug Suiaeg AS1oug VIS PeOTIOM sIoymy

JUSWIUOIIAUY [eN}IIA PHGAL] SULISPISUO)) YdoIeasay] yuaniyyg A319uy 01 9[qel

http://www.spec.org/jms2007/
http://www.spec.org/jms2007/

Chapter 3

Virtual Machine Customization and
Task Mapping Architecture

Energy usage of large-scale data centers has become a major concern for cloud providers. There
has been an active effort in techniques to minimize the energy consumed in data centers. However,
most approaches lack the analysis and application of real cloud backend traces. The focus of existing
approaches is on virtual machine migration and placement algorithms, with little regard to tailoring
virtual machine configuration to workload characteristics, which can further reduce the energy con-
sumption and resource wastage in a typical data center. To address these weaknesses and challenges,
in this chapter we propose a new architecture for cloud resource allocation that maps groups of tasks
to customized virtual machine types. This mapping is based on task usage patterns obtained from
the analysis of historical data extracted from utilization traces. Further, the proposed architecture is
extended to incorporate the recently introduced Container as a Service (CaaS) and the impact of work-
load study and the selected clustering feature set on the efficiency of our proposed VM sizing technique
is investigated. When the right feature set is used for the workload study, the experimental results
showed up to 7.55% and 68% improvements in the average energy consumption and total number of
instantiated VMs respectively when compared to baseline scenarios where the virtual machine sizes

are fixed.

This chapter is derived from:

1. Sareh Fotuhi Piraghaj, Rodrigo N.Calheiros, Jeffery Chan, Amir Vahid Dastjerdi, and Rajkumar
Buyya “A Virtual Machine Customization and Task Mapping Architecture for Energy Efficient
Allocation of Cloud Data Center Resources”, The Computer Journal, vol. 59, no. 2,Pages. 208-224,
2016.

2. Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and Rajkumar Buyya, “Ef-
ficient Virtual Machine Sizing For Hosting Containers as a Service,” Proceeding of the 2015 IEEE
World Congress on Services (SERVICES2015), Pages. 31 - 38, New York, United States.

67

68 Virtual Machine Customization and Task Mapping Architecture

3.1 Introduction

S stated by Armbrust et al. [6], cloud computing has the potential to transform
A a large part of the IT industry while making software even more attractive as a
service. However, the major concern in cloud data centers is the drastic growth in en-
ergy consumption, which is a result of the rise in cloud services adoption and popularity.
This energy consumption results in increased Total Cost of Ownership (TCO) and conse-
quently decreases the Return of Investment (ROI) of the cloud infrastructure.

There has been a growing effort in decreasing cloud data centers’ energy consump-
tion while meeting Service Level Agreements (SLA). Since servers are one of the main
power consumers in a data center [174], in this chapter we mainly focus on the efficient
utilization of computing resources.

Virtualization technology is one of the key features introduced in data centers that
can decrease their energy consumption. This technology enables efficient utilization of
resources and load balancing via migration and consolidation of workloads. Therefore,
a considerable amount of energy is saved with virtual machine migrations from under-
loaded servers by putting them in a lower power state. Many approaches utilize this tech-
nology, along with various heuristics, concentrating solely on virtual machine migrations
and VM placement techniques with the objective of decreasing the data center power con-
sumption. However, these approaches ignore tailoring virtual machine configurations to
workload characteristics and the effect of such tailoring on the energy consumption and
resource wastage in a typical data center. User-defined virtual machine configuration
is an available option for most cloud service models such as Google'. Therefore, one
of the challenges is to propose a method for defining the most efficient virtual machine
configuration for a given application.

Apart from VM configuration, the other factor impacting the efficiency of resource uti-
lization is the application of the knowledge obtained from the analysis of the real world
clouds trace logs. This analysis enables an understanding of the variance of workloads
that should be incorporated in solutions, as they affect the performance of proposed re-

source management approaches.

1https ://cloud.google.com/compute/docs/instances/creating—-instance-with-
custom-machine—-type

https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type

3.1 Introduction 69

In this chapter, we propose an end-to-end architecture for energy-efficient resource
allocation and management in data centers. Because of the predefined software and ap-
plications that are executed in the data center, there exist similarities between the us-
age patterns of tasks and hence similar tasks can be grouped together using clustering
algorithms. Our proposed solution decreases the resource wastage in data centers via

virtualization and efficient resource allocation policies.

This chapter addresses the problem of inefficient resource allocation by tailoring VM
configurations to the workload along with the determination of the maximum number
of tasks that can be allocated to each VM type. For determination of virtual machine
types and their capacity, we leverage similarities in the utilization patterns reported in
the Google traces that is confirmed by previous studies [31,43,115,146]. These similari-
ties enable tasks to be grouped based on average resource usage via clustering techniques
and consequently decrease the granularity of resource allocation problem. In this respect,
decisions are made for each group of tasks instead of per task. Further, the output of
clustering is used for determination of customized virtual machine types. The actual
resource utilization of tasks is considered during the grouping process, since there is a
considerable gap between the actual reported resource usage and the requested amount
of resources for task execution in the studied trace. In this respect, considering the ac-
tual resource utilization during task execution will result in less resource wastage and
consequently less energy consumption, which is one of the objectives of the proposed
architecture. An evaluation of the proposed architecture shows that the policy that con-
siders the actual reported usage results in less energy consumption in the data center.
This policy exhibited 73% improvements when comparing to a policy that allocates the

resources of virtual machines based on the resource estimation provided by users.

This chapter also studies the efficiency of determined VM sizes considering the data
center power consumption. Moreover, it considers the Container as a Service (CaaS)
cloud service model that is discussed in Chapter 2. This service model has been in-
troduced in 2014 by Google and Amazon in addition to the traditional cloud services,
namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). An example of container management system is docker?, which is a tool

2pocker: https://www.docker.com/

Docker: https://www.docker.com/

70 Virtual Machine Customization and Task Mapping Architecture

> > > | > > >
T T T © © ©
o T T |T © ol|T ©
o =N W H o Ll N
(o] (@]
=~ =~
o o
- . - .
VM A B VM B
Hypervisor
Server

Figure 3.1: A Simple CaaS Deployment Model on IaaS.

that allows developers to define containers for applications.

Like traditional service models, to reduce the energy consumption of CaaS one may
choose virtual machine consolidation, Dynamic Voltage and Frequency Scaling (DVFS),
or both of them combined. However, as we discussed these efforts would be in vain if
VM sizes are not customized to better support deployed containers. Figure 3.1 illustrates
a situation where the size of VM B is not optimally allocated to the containers when
compared to VM A . As a result, there is resource wastage that results in inefficiency
in terms of energy consumption regardless of how effective and energy efficient is the
VM consolidation technique in place. In other words, as we discussed in Chapter 2,
VM consolidation is limited by other resources such as memory (Figure 2.5), hence for
improving the resource utilization of the servers, resources of virtual machines should
also be allocated and utilized efficiently.

In this regard, we extended our proposed architecture to incorporate the CaaS cloud
model. In this methodology, we added one extra step between task grouping and VM
type identification. In this extra step, the clustering output is used for mapping tasks to
containers. Each task is assumed to represent a container with the same resource require-
ment as the task itself. Afterward, each cluster of containers is mapped to a correspond-
ing virtual machine type.

Using our extended architecture, we investigate the impact of feature set selection on
the number of resulting clusters along with the effect on resource allocation efficiency in
a CaaS cloud service model. We also compare our VM sizing technique with fixed VM
size baseline scenarios. The experimental results show that selecting the right features
improves the efficiency of clustering process and consequently results in more energy

savings. In summary, our proposed approach results in less number of servers, which in

3.1 Introduction 71

turn results in less energy consumption in the data center.

In order to apply information of real cloud backend traces in our solutions and in
their evaluation, we utilized Google traces. The first Google log provides the normalized
resource usage of a set of tasks over a 7-hour period. The second version of the Google
traces, which was released in 2012, contains more details in a longer time frame. There-
fore, the data set used in this chapter is derived from the second version of the Google
cloud trace log [137] collected during a period of 29 days. The log consists of data tables
describing the machines, jobs, and tasks.

Recent work analyzing Google traces focused on various objectives such as charac-
terization of task usage [171], task grouping for workload prediction and capacity plan-
ning [115], characterization of applications [43], modeling and synthesis of task place-
ment constraints [142], and workload characterization for simulation parameter extrac-
tion and modeling [42, 118, 146]. Our work in this chapter contributes to the current
research area by introducing an architecture that utilizes the knowledge obtained from
the characterization of task usage patterns to determine efficient resource allocation. In

summary, the key contributions of this chapter are:

1. We propose an end-to-end architecture for efficient allocation of requests on data cen-

ters that reduces the infrastructure’s energy consumption.

2. We present an approach, applied to the proposed architecture, to identify virtual
machine configurations (types) in terms of CPU, memory, and disk capacity via
clustering tasks, taking into consideration usage patterns of each cluster. The afore-

mentioned architecture is then extended to incorporate the CaaS service model.

3. We propose an approach for identification of VM task capacity, which is the maxi-
mum number of tasks that can be accommodated in a virtual machine, considering

different estimates, including the average resource usage of tasks in each cluster.

4. We investigate the impact of feature set selection on the number of resulting clusters

along with the effect on the resource allocation efficiency.

5. We compare our VM sizing technique with fixed VM size baseline scenarios.

72 Virtual Machine Customization and Task Mapping Architecture

3.2 Related Work

There is a vast body of literature that considers power management in virtualized and
non-virtualized data centers via hardware and software-based solutions [89,98,123]. Most
of the works in this area focus on host level optimization techniques neglecting energy-
efficient virtual machine size selection and utilization. These approaches are suitable for
IaaS cloud services, where the provider does not have any knowledge about the appli-
cations running in every virtual machine. However, for SaaS and CaaS service models,
information about the workload on the virtual machines and improvements on the size
selection and utilization efficiency on VM level could be the first step towards more en-
ergy efficient data centers, as the results presented in this chapter demonstrate.

Regarding the comparison between hosting SaaS on bare-metal servers or virtual ma-
chines, Daniel et al. [66] explored the differences between fixed virtual machine sizes and
time shares. Although they concluded that the time-share model requires less number of
servers, they have not considered dynamic VM size selection in their experiments. Sim-
ilarly, in the SEATS (smart energy-aware task scheduling) framework, Hosseinimotlagh
et al. [83] introduced an optimal utilization level of a host to execute tasks that minimizes
the energy consumption of the data center. In addition, they also presented a virtual
machine scheduling algorithm for maintaining the host optimal utilization level while
meeting the given QoS.

Apart from the level of optimization (host-level, data center-level, or virtualization
level), most of the research in the area lack the analysis of real cloud backend traces and
the variance in the cloud workload in the proposed solutions. In 2009, Yahoo! released
traces from a production MapReduce cluster to a selection of universities. In the same
year, Google made the first version of its traces publicly available. Google trace’s release
resulted in a number of research investigating the problems of capacity planning and
scheduling via workload characterization and statistical analysis of the planet’s largest
cloud backend traces [137]. Hence, we utilized the second version of Google traces to
validate our proposed architecture and our experiments.

Different from previous works, we leverage virtualization and containerization tech-
nology together and map the groups of tasks to containers and containers to VMs. The

configuration of the container-optimized VMs is chosen based on the workload charac-

3.2 Related Work 73

teristics, which results in less resource wastage. In our methodology, the problem of high
energy consumption that results from low resource utilization is also addressed, which
is not explored in most of the previous studies. Further, we detail the research works

performed on Google cluster data.

3.2.1 Google Trace Research Works

Next, we discuss in more details related research that studied or applied Google trace
data. The works in this area fall into three major categories, namely statistical analysis,

workload modeling and characterization, and simulation and modeling.

Statistical Analysis

The first version of the Google traces contains the resource consumption of tasks, whereas
the second version of Google traces covers more details including machine properties
and task placement constraints. These constraints limit the machines onto which tasks
can be scheduled [137]. In order to measure the performance impact of task placement
constraints, Sharma et al. [142] synthesized these constraints and machine properties into
performance benchmarks of Google clusters in their approaches.

Garraghan et al. [64] investigated server characteristics and resource utilization in the
Google cluster data. They also explored the amount of resource wastage resulted from
failed, killed, and evicted tasks for each architecture type over different time periods. The
average resource utilization per day lies between 40-60% as stated by Reiss et al. [136],
and the CPU wastage on average server architecture type lies between 4.52-14.22%. These
findings justify an investigation of new approaches for improving resource utilization
and reducing resource wastage.

Di et al. [44] investigated the differences between a cloud data center and other Grids
and cluster systems considering both workload and host load in the Google data center.
An analysis of the job length and jobs resource utilization in various system types, along
with job submission frequency, shows that the host load in a cloud environment faces
higher variance resulted from higher job submission rate and shorter job length. As a

result, the authors identified three main differences between cloud and Grid workloads:

74 Virtual Machine Customization and Task Mapping Architecture

firstly, Grid tasks are more CPU intensive, whereas cloud tasks consume other resources,
such as memory, more intensively. Secondly, CPU load is much noisier in clouds than
in Grids. Thirdly, the host load stability differs between infrastructures, being less stable
in clouds. These differences make the analysis of cloud traces crucial for researchers, en-

abling them to verify the applicability of heuristics in real cloud backend environments.

Workload Modeling and Characterization

Mishra et al. [115] and Chen et al. [31] explored the first version of the Google cluster
traces and two approaches were introduced for workload modeling and characterization.
Mishra et al. [115] used the clustering algorithm K-means for forming groups of tasks
with more similarities in resource consumption and duration. Likewise, Chen et al. [31]
used K-means as the clustering algorithm. In their experiments, the authors classified
jobs® instead of tasks. Di et al. [43] characterized applications, rather than tasks, run-
ning in the Google cluster. Similarly to the two previous approaches, the authors chose
K-means for clustering, although they optimized the K-means result using the Forgy
method.

Moreno et al. [118] presented an approach for characterization of the Google work-
load based on users and task usage patterns. They considered the second version of the
Google traces and modeled the workload for two days of it. Later in 2014 [146], authors
extended the work with an analysis of the entire tracelog. The main contribution of the
work is considering information about users along with the task usage patterns. Moreno
et al. [118,146] also used K-means for grouping purposes. They estimated the optimal k
with the quantitative approach proposed by Pham et al. [131].

The previous study demonstrated that there are similarities in task usage patterns of
Google backend traces. Therefore in the architecture we introduce later in this chapter,
likewise previous approaches [31,115], tasks with similarities in their usage patterns are
grouped using clustering. In typical clustering, the number of clusters is a variable that
is data-dependent and has to be set beforehand. Approaches in [118,146] use K-means
and vary the number of clusters considering a finite range for example 1 to 10. Then,

the optimal value of k is derived considering the degree of variability in derived clus-

3 A job is comprised of one or more tasks [137].

3.2 Related Work 75

ters [118,146] and Within cluster Sum of Squares (WSS) [43]. Although these approaches
could be applied here, we aimed to make the architecture as autonomous as possible and
thus we avoided manual tuning of the number of clusters for each dataset like previous
studies [43,118,146]. Pelleg and Moore [129] proposed X-means, a method that combines
K-means with BIC. The latter is used as a criterion for automatic selection of the best num-
ber of clusters. Hence, we utilize X-means rather than existing approaches based solely
on K-means [43,118,146]. It is worth mentioning that the workload modeling part of the
architecture can be substituted, without changes in other components of the proposed
architecture, by other approaches available in the literature [31,43,115,118,146].

The concept of task clustering has been previously investigated and shown to be effec-
tive outside of cloud computing area [120,145,162]. Our approach is different from them
in terms of the objective and the target virtualized environment. For example, Singh et
al. [145] and Muthuvelu et al. [120] utilized the technique for reducing communication
overhead for submission of tasks in Grid systems, which are geographically distributed,
in contrast with our application for energy minimization in a centralized cloud data cen-
ter. Task clustering is also utilized by Wang et al. [162] to improve energy efficiency
in clusters via dynamic frequency and voltage (DVES) techniques targeting parallel ap-
plications. Our approach, on the other hand, is agnostic to the application model and
achieves energy-efficiency via consolidation and efficient utilization of data center re-
sources. Furthermore, our work goes beyond these previous approaches on clusters and
Grids by leveraging virtualization and considering the newly introduced Caa$S cloud ser-

vice model.

Simulation and Modeling

Di et al. [42] proposed GloudSim as a distributed cloud simulator based on Goog]le traces.
This simulator leveraged virtualization technology and modeled jobs and their usage in
terms of the CPU, memory, and disk. It supports simulation of a cloud environment that
is as similar as possible to Google cluster.

Moreno et al. [118, 146] proposed a methodology to simulate the Google data cen-
ter. Authors leveraged their modeling methodology to build a workload generator. This

generator is implemented as an extension of the well-known cloud discrete simulator

76 Virtual Machine Customization and Task Mapping Architecture

CloudSim [26] and is capable of emulating the user behavior along with the patterns of
requested and utilized resources of submitted tasks in Google cloud data center.

In this chapter, we present an end-to-end architecture aiming at efficient resource al-
location and energy consumption in cloud data centers. In this architecture, the cloud
provider utilizes the knowledge obtained from the analysis of the cloud backend work-
load to define customized virtual machine configuration along with maximum task ca-
pacity of virtual machines.

In the proposed architecture, likewise the discussed related work [42, 118, 146], we
assume the availability of virtualization technology and CaaS cloud service model where
tasks are executed on top of containers while containers are running inside virtual ma-
chines instead of physical servers. This architecture can also be implemented utilizing
the aforementioned simulation models [42,118,146]. Our work is different since we aim
at decreasing energy by defining the virtual machines configurations along with their

maximum task capacity.

3.3 System Model and Architecture

Our proposed architecture targets Platform as a Service (PaaS) data centers operating as a
private cloud for an organization. Such a cloud offers a platform where users can submit
their applications in one or more programming models supported by the provider. The
platform could support, for example, MapReduce or Bag of Tasks (BoT) applications.
Here, users interact with the system by submitting requests for execution of applications
supported by the platform. Every application, in turn, translates to a set of jobs to be
executed on the infrastructure. In our studied scenario, the job itself can be composed of

one or more tasks.

3.3.1 User Request Model

In the proposed model, users of the service submit their application along with estimated
resources required to execute it and receive back the results of the computation. The exact
infrastructure where the application executes is abstracted away from users. Parameters

of a task submitted by a user are:

3.3 System Model and Architecture 77

Scheduling Class;

Task priority;

Required number of cores per task;

Required amount of RAM per task; and

Required amount of storage per task.

All the aforementioned parameters are present in Google Cluster traces [137].

3.3.2 Cloud Model

In the presented cloud model, system virtualization technology [10] is taken into con-
sideration. This technology improves the utilization of resources of physical servers by
sharing them among virtual machines [170]. Apart from this, live migration of VMs and
overbooking of resources via consolidation of multiple virtual machines in a single host
reduce energy consumption in the data center [16]. The other benefit of virtualization is
the automation it provides for application development [32]. For example, once a virtual
machine is customized for a specific development environment, the VM’s image can be
used on different infrastructures without any installation hassles. Therefore, as long as
the virtual machine is able to be placed on the server, homogeneity of the environment of-
fered by the VM image is independent of the physical server and its configuration. These
characteristics and advantages of the virtualization technology persuaded us in applying
this in our proposed architecture.

Our focus is on data centers that receive task submissions and where tasks are ex-
ecuted in virtual machines instead of physical servers, a model that has been widely
explored in the area of cloud computing [50,157]. Since these tasks might be different
in terms of running environments, it is assumed that tasks run in containers [137] that
provide these requirements for every one of them. However, in our model, these con-
tainers run inside the virtual machines instead of the physical machines. This can be
achieved with the use of Linux containers or tools such as Docker [114], an open plat-
form for application development in which containers can run inside the virtual machine

or on physical hosts.

78 Virtual Machine Customization and Task Mapping Architecture

Cloud
Resources

PaaS Resource Allocator

Available VM
Capacity Repository

Killed Task
Repository

Host —
_J\ Host
P —
Stream Task Task VM VM Controller
Of Tasks Classifier » Mapper Instantiator Provisioner B

e —
VM '_rype VM Types
Definer Repository

Vi
[Power Monitor]q—//g
—————

Figure 3.2: Proposed system architecture and its components.

3.3.3 System Architecture

The objective of the proposed architecture (shown in Figure 3.2) is to execute the work-
load with minimum wastage of energy. Therefore, one of the challenges is finding op-
timal VM configurations, in such a way that the accommodated tasks have enough re-
sources to be executed and resources are not wasted during the operation. Since the pro-
posed model has been designed to operate in a private cloud, the different number and
types of applications can be controlled and there is enough information about submitted

tasks so that cloud usage can be profiled.

3.3.4 System Components

The proposed architecture is presented in Figure 3.2 and their components are discussed

in the rest of this section.

Pre-execution Phase

We discuss the components of the proposed architecture that need to be tuned or defined

before system runtime.

e Task Classifier: This component is the entry point of the streaming of tasks being
processed by the architecture. It categorizes tasks arrived in a specified time frame
into predefined classes. The classifier is trained with the clustering result of the his-

torical data before system startup. The clustering is performed considering average

3.3 System Model and Architecture 79

CPU, memory, and disk usage together with the priority, length, and submission
rate of tasks obtained from the historical data. The time interval for the classifica-
tion process is specified by the cloud provider according to the workload variance
and task submission rate. Once an arriving task is classified in terms of the most
suitable virtual machine type for processing it, the task is forwarded to the Task
Mapper to proceed with the scheduling process. The Task Mapper component is

discussed in the execution phase.

e VM Type Definer: This component is responsible for defining the configurations
of virtual machines based on the provided historical data. Determining the opti-
mal VM configuration requires analysis of task usage patterns. In this respect, the
identification of groups of tasks with similar usage patterns reduces the complex-
ity of estimating the average usage for new tasks. These patterns, which identify
groups of tasks that have a mutual optimal VM configuration, are obtained with

application of clustering algorithms.

e VM Types Repository: In this repository, the available virtual machine types, in-
cluding CPU, memory, and disk characteristics, are saved. These types are specified
by the VM Type Definer considering workload specifications and is derived from

historical data used for training the task classifier component.

Execution Phase

The components that operate during the execution phase of the system are discussed

below.

e Task Mapper: The clustering results from the Task Classifier are sent to the Task
Mapper. The Task Mapper operation is presented in Algorithm 1. Based on avail-
able resources in the running virtual machines and the available VM types in the
VM Types Repository, this component calculates the number and type of new vir-
tual machines to be instantiated to support the newly arrived tasks. Apart from
new VM instantiation when available VMs cannot support the arriving load, this
component also reschedules rejected tasks that are stored in the killed task reposi-

tory to the available virtual machines of the type required by the VM (if any). This

80

Virtual Machine Customization and Task Mapping Architecture

Algorithm 1: Overview of the Task Mapper operation process.

12
13
14

Input: KilledTasks, AvailablevmCapacity, NewTasks, V MTypeRepository
Output: Numbero fomsTolnstatiate
foreach ProcessingWindow do

foreach Task in NewlyArrivedTasks do

if There is a vm in AvailablevmCapacity then
vm.Assign(Task)
vm.CheckStatus
Delete Task from NewlyArrivedTasks

foreach Task in KilledTasks do

if There is a vm in AvailablevmCapacity then
vm.Assign(Task)
vm.CheckStatus
Delete Task from KilledTasks

LeftTasks = Append KilledTasks to Newly ArrivedTasks
foreach Task in LeftTasks do
L Calculate the Numbero fumsTolInstantiate

component prioritizes the assignment of newly arrived tasks to available resources
before instantiating a new virtual machine. However, in order to avoid starvation
of the rejected tasks, the component assigns the newly arrived tasks to the available
virtual machines and the killed tasks are assigned to newly instantiated VMs. The
operation of this component on each processing window (Algorithm 1) yields com-
plexity O(n x m), where n is the total number of tasks to be mapped (i.e., tasks in
the KilledTaskDictionary along with the tasks received in the processing window)

and m is the number of VMs.

Virtual Machine Instantiator: This component is responsible for the instantiation
of a group of VMs with the specifications received from the Task Mapper. This com-
ponent decreases the start-up time of the virtual machines by instantiating a group

of VMs at a time instead of one VM per time.

Virtual Machine Provisioner: This component is responsible for determining the
placement of each virtual machine on available hosts and turning on new hosts if

required to support new VMs.

o Killed Task Repository: Tasks that are rejected by the Controller are submitted to

3.3 System Model and Architecture 81

Algorithm 2: Virtual Machine Controller Process.

Input: RunningTaskList, TaskUsage
Output: CPUUsage,MemoryUsage,DiskUsage, KilledTasksList
foreach Processingwindow do

foreach Task in RunningTaskkList do
vm.updateUsage()
vm.updateState()

foreach vm whose state is OverLoaded do
foreach Task in RunningTaskkList do
if TaskPriority equals to Lowest Priority and has MinNumbero fKills then
vm killTask()
vm.updateState()

this repository, where they stay until the next upcoming processing window to be

rescheduled by the Task Mapper.

Available VM Capacity Repository: IDs of virtual machines that have available
resources are registered in this repository. It is used for assigning tasks killed by
the Virtual Machine Controller, along with newly arrived ones, to available resource

capacity.

Power Monitor: This component is responsible for estimating the power consump-

tion of the cloud data center based on the resource utilization of the available hosts.

Host Controller: It runs on each host of the data center. It periodically checks
virtual machine resource usage (which is received from the Virtual Machine Con-
trollers) and identifies underutilized machines, which are registered in the available
resource repository. This component also submits killed tasks from VMs running
on its host to the Killed Task Repository so that these tasks can be rescheduled in the
next processing window. This component also sends the host usage data to the

Power Monitor.

Virtual Machine Controller (VMC): The VMC runs on each VM of the cloud data
center. It monitors the usage of the VM and if the resource usage exceeds the virtual
machine capacity, it kills a number of tasks with low priorities so that high priority

ones can obtain the resources they require in the virtual machine. In order to avoid

82

Virtual Machine Customization and Task Mapping Architecture

task starvation, this component also considers the number of times a task has been
killed. The Controller sends killed tasks to the Host Controller to be submitted to the
global killed task repository. As mentioned before, killed tasks are then rescheduled
on an available virtual machine in the next processing window. The operation of
this component is shown in Algorithm 2 that has a time complexity of O(n x m),

where 7 is the number of running tasks and m is the number of VMs.

3.4 Task Clustering

In this section, we discuss the selected clustering feature set and the clustering algorithm

utilized for clustering tasks with more details.

3.4.1 Clustering Feature Set

As our feature set, we used the following characteristics of each task:

e Task Length: The time during which the task was running on a machine.

Submission Rate: The number of times that a task is submitted to the data center.

Scheduling Class: This feature shows how latency sensitive the task/job is. In the
studied traces, the scheduling class is presented by an integer number between 0
and 3. Tasks with a 0 scheduling class are non-production tasks. The higher the

scheduling class is, the more latency sensitive is the task.

Priority: The priority of a task shows how important a task is. High priority tasks
have preference for resources over low priority ones [137]. The priority is an integer

number between 0 and 10.

Resource Usage: The average resource utilization Ur of a task T in terms of CPU,
memory, and disk, which is obtained using Equation 3.1. In this equation, nr is the
number of times that the task usage (1) is reported in the studied 24 hours period

and u(r) is the m-th observation of the value of utilization ur in the traces.

nr
. Zmzl U(T,m)
nr

Ur (3.1)

3.4 Task Clustering 83

The selected features of the data set were used for estimation of the number of task

clusters and determination of the suitable virtual machine configuration for each group.

3.4.2 Clustering Algorithm

Clustering is the process of grouping objects with the objective of finding the subsets with
the most similarities in terms of the selected features. In this respect, both the objective
of the grouping and the number of groups affect the results of clustering. In our specific
approach, we focus on finding groups of tasks with similarities in their usage pattern so
that available resources can be allocated efficiently. For determining the other attribute,
the namely definition of the most effective number of clusters, the X-means algorithm is

utilized.

X-means Clustering Algorithm

Pelleg et al. [129] proposed the X-means clustering method as the extended version of
K-means [76]. In addition to grouping, X-means also estimates the number of groups
present in a typical dataset, which in the context of the architecture is the incoming
tasks. K-means is a computationally efficient partitioning algorithm for grouping n-
dimensional dataset into k clusters by minimizing within-class variance. However, sup-
plying the number of groups (k) as an input of the algorithm is challenging since the
number of existing groups in the dataset is generally unknown. Furthermore, as our pro-
posed architecture aims for automated decision making, it is important that the number
of input parameters is reduced and that the value of k is automatically calculated by the
platform. For this reason, we opted for X-means.

As stated by Pelleg et al. [129], X-means efficiently searches the space of cluster lo-
cations and number of clusters in order to optimize the Bayesian Information Criterion
(BIC). BIC is a criterion for selecting the best fitting model amongst a set of available
models for the data [141]. Optimization of the BIC criterion results in a better fitting
model.

X-means runs K-means for multiple rounds and then clustering validation is per-

formed using BIC to determine the best value of k. It is worth mentioning that X-means

84 Virtual Machine Customization and Task Mapping Architecture

Algorithm 3: Estimation of the optimum number of tasks for a VM Type.

input: Clustero f Tasks,
nT: Maximum number of tasks per VM,
nl: Number of iterations

Output: Numbero f TasksPerCluster

1 foreach ClusterofTasks do

2 AvgCPU <—Average CPU Usage of the Clustero f Tasks

3 for k from 1 tonl do

4 forifrom1tonT do

5 ClusterSample <— i random samples of TaskCluster without replacement

6 AvgCPU; < Average CPU usage for the ClusterSample

AvgCPU—AvgCPUs
7 CPUgrror < AogCPU
8 temp@”’w[i] < CPUEsror
9 Ming,yor [k] <— Index of min(tempe,ror)

10 | NumberofTasksPerCluster < mode(Mingo)

has been successfully applied in different scenarios [47,73,91,144].

3.5 Identification of VM Types for the VM Type Repository

Once clusters that represent groups of tasks with similar characteristics in terms of the
selected features are defined, the next step is to assign a VM type that can efficiently
execute tasks that belong to the cluster. By efficiently, we mean successfully executing
the tasks with minimum resource wastage. Parameters of interest of a VM are number of
cores, amount of memory, and amount of storage. Since tasks in the studied trace need
small amount of storage, the allocated disk for virtual machines are assumed to be 10 GB,
which is enough for the Operating System (OS) installed on the virtual machine and the

tasks disk usage.

3.5.1 Determination of Number of Tasks for each VM Type

Algorithm 3 details the steps taken for estimation of the number of tasks for each virtual
machine type. In order to avoid overloading the virtual machines, the maximum number
of tasks in each VM (nT) is set to 150. This amount is allowed to increase if the resource

demand is small compared to the VM capacity. Then, for each allowed number of tasks i

3.5 Identification of VM Types for the VM Type Repository 85

(i between 1 and nT), i random tasks are selected from the cluster of task and the average
CPU utilization is calculated for this selection. The CPU error is then reported and stored
in temperror-

Next, according to the tenpe,ror, the algorithm finds the value of i that has the lowest
CPU usage estimation error as the VM'’s number of tasks. This process is repeated for 500
(nI) iterations, which enables enough data to be collected for drawing conclusions. The
VM'’s number of tasks in each iteration is then saved in Mit . According to Mitierror,
the number of task for each VM type would be the number that shows the minimum es-
timation error in most of the iterations. In other words, the algorithm selects the number

of tasks that is the most probable to result in less estimation errors.

3.5.2 Estimation of Resource Usage of Tasks in a Cluster

After estimating the maximum number of tasks in each virtual machine with the objective
of decreasing the estimation error, the virtual machine types need to be defined. For this
purpose, there is a need to estimate the resource usage of a typical task running in a
virtual machine. For estimating the resource usage of each task in a cluster, the algorithm
uses the average resource usage and variance of each cluster of tasks in our selected
dataset. The first step for this is the computation of the average resource usage of each
task during the second day of the trace. Then for each cluster, 98% confidence interval of
the average utilization of resources of the tasks in the group is used. The upper-bound of
the calculated confidence interval is then used as the estimate of the resource demands

(RDs) for a typical task from a specific cluster.

3.5.3 Determination of Virtual Machines Configuration

After obtaining the estimates for resource demands (RD) and the number of tasks in
a virtual machine type (nT), the specifications of the virtual machine is derived using

Equation 3.2.

Capacity = [nT x RD]| (3.2)

86 Virtual Machine Customization and Task Mapping Architecture

Table 3.1: Virtual machine configurations.

VM Type | Number of Tasks | vCPU ?é%l;mry VM Type | Number of Tasks | vCPU ?é%r;lory
TYPE1 136 3 4.5 TYPE 10 250 1 0.4
TYPE 2 125 1 0.5 TYPE 11 188 3 1.6
TYPE 3 500 1 1.8 TYPE 12 1250 1 1.1
TYPE 4 38 6 11 TYPE 13 118 4 10.3
TYPE 5 139 5 34 TYPE 14 126 25 14.2
TYPE 6 250 1 0.9 TYPE 15 100 2 19
TYPE7 143 14 20.6 TYPE 16 136 3 6.8
TYPE 8 150 3 2.4 TYPE 17 143 2 11
TYPE 9 154 8 4.3 TYPE 18 500 1 3.8

Since tasks running in one virtual machine are already sharing the resources, at least
one core of the CPU of the physical machine is assigned to each virtual machine. Because
of the rounding process in Equation 3.2, the number of tasks in each virtual machine is
estimated again applying the same equation.

The above process was applied to determine VM types for each cluster. VM types
resulting from the above process are stored in the VM Types Repository to be used by
the Task Mapper for assignment purposes. The application of this process resulted in the
VM types described in Table 3.1. The number of tasks nT obtained from Equation 3.2 is
used as the virtual machines’ task capacity for the proposed Utilization based Resource
Allocation (URA) policy, which is briefly discussed in the next section along with the

other proposed policies.

3.6 Resource Allocation Policies

The number of tasks residing in one VM varies from one cluster to another. As discussed
in the previous section, virtual machine configurations are tailored to the usage pattern
of the tasks residing in the VMs. The same virtual machine configurations are used for
all the proposed policies. However, these algorithms are different in terms of the task ca-
pacity of the virtual machines for each cluster of tasks. These resource allocation policies

are detailed below.

e Utilization Based Resource Allocation (URA): In this policy, the number of tasks
assigned to each VM is computed according to the 98% confidence interval of the
observed average utilization of resources by the tasks being mapped to the VM. For

example, if historical data shows that tasks of a cluster used on average 1GB, and

3.6 Resource Allocation Policies 87

Algorithm 4: Determination of the minimum number of running tasks for each vir-
tual machine that causes VM resource utilization to be higher than 90% of its capac-
ity without causing rejections.

Input: vmListso fClusters = {vmListy, ..., vmList;g}
UmLiStclusterlndex = {UmIDlr s vaDnumberofVMs }clusterlndex
resourceList = {CPU, memory, disk}

Output: nT(clustrIndex,Res) = {ntvaDll e ntvaDnumberofVMs}

1 for clusterIndex <— 1 to 18 do

2 | vmlIDList <— vmListso f Clusters.get(clusterIndex)

3 for vmID in vmIDList do

4 foreach Res in resourceList do

5 Find minimum number of running tasks (nt) that caused the utilization
of the resource (Res) to be between 90% to 100% of its capacity.

n T(clustrlndex,Res) .add <ntvaD)

tasks of such cluster are going to be assigned to a VM with 4 GB of RAM, URA
will assign 4 of such tasks, regardless the estimated amount of memory declared by
the user when submitting the corresponding job (which is the value obtained from
the traces). The task capacity of each virtual machine type is equal to the nT term

obtained from Equation 3.2.

e Requested Resource Allocation (RRA): In this policy, the same virtual machine
types from URA are considered, however the number of tasks assigned to a VM
is based on the average requested amount by the submitted tasks. As mentioned
before, the requested amount of resources is submitted along with the tasks. RRA
is used as a baseline for our further comparisons in terms of data center power

consumption and server utilization.

The other four policies are derived from the results of the evaluation of URA. In this
respect, the usage of virtual machines is studied to get more insights about the cause
of rejections (CPU, memory, or disk) and the number of running tasks in each virtual
machine when the rejections occurred.

For each virtual machine, the minimum number of running tasks that utilizes more
than 90% of the VM’s capacity in terms of CPU, memory, and disk without causing any
rejections are extracted. This 90% limit avoids the occurrence of underutilized virtual

machines. The extracted number is defined as 1f(y1p resource)- The procedure is applied

88 Virtual Machine Customization and Task Mapping Architecture

on each cluster and is explained with more details in Algorithm 4.

For each cluster determined by its clusterIndex in Algorithm 4, nt is obtained for each
VM type. Then, nt of the VMs in each cluster are gathered in a set named 1T ;,ster1ndex Res
for each of the considered resources (Res) including CPU, memory, and disk. We propose
four policies to determine the number of tasks residing in each virtual machine. These
policies as described below are based on the estimates (average, median, the first and the

third quantile) derived from 1T j,sterindex Res fOT €ach cluster.

e Average Resource Allocation policy (AvgRA): For each cluster of tasks, consider-
ing m as the length of the set nT ster1ndex, (CPU memory disk), fOT the average number of

tasks, we have:
m

nTAvg,resource - (Z nti,resource/m) (33)
i=1

The nTayq is estimated for each resource separately. In this policy, the number of

tasks residing in each virtual machine type is equal to the minimum nT obtained

for each resource (Equation 3.4).

1 Tminimum = min (n TAvg,CPU/ n TAVg,memory/ n TAVg,Disk) (34)

e First Quantile Resource Allocation policy (FgRA): For this policy, the first quan-
tiles* of the 1 T.1,ster Index,Res S€ts are used for determining the number of tasks allo-
cated to each virtual machine type. Like AvgRA, the minimum amount obtained
for each of the resources is used. By resource, we mean the virtual machine’s CPU,

memory, or disk capacity.

e Median Resource Allocation policy (MeRA): For this policy, the second quantiles
(median) of the nTysterindex res S€ts are used for determining the number of tasks
allocated to each virtual machine type. Like the previous policy, the minimum
amount of 1T g4 resource Obtained for each of the resources is used for determining

the VM'’s task capacity.

e Third Quantile Resource Allocation policy (ThgRA): In this policy, the third quan-

“The k quantile of a sorted set is the value that cuts off the first (25 k)% of the data. For first, second,
and third quantile k is equal to 1, 2 and 3 respectively.

3.6 Resource Allocation Policies 89

Table 3.2: Google Trace Data Tables [137]

] Table Name

Description ‘

Machine Events

Contains the machines specifications including normalized CPU, mem-
ory capacity, events , and platform ID

Describes the key-value pairs that indicates properties of the machines

Machine Attributes such as kernel version,clock speed and etc.
Job Events Contains jobs and the lifecycles of jobs that is depicted in Figure 3.3
Task Events Contains the tasks along with the lifecycles of tasks as depicted in Fig-

ure 3.3

Task Constraints

Contains the tasks placement constraints that restrict the type of ma-
chines that a task can be executed on.

Task Usage

Describes the actual normalized resource usage of tasks including the
CPU, memory , and disk usage.

UPDATE RUNNING

'

SCHEDULE EVICT,FAIL,FINISH,KILL,LOST

UPDATE PENDING

PENDING

FAIL KILL,LOST

Figure 3.3: State Transition for jobs and tasks (Adopted from [137])

tiles of the 1T sterindex,Res Sets are used for determining the number of tasks allo-

cated to each virtual machine type. As in the previous cases, the minimum amount

of 1T pted resource Obtained for each of the resources is used for determining the virtual

machines task capacity.

90 Virtual Machine Customization and Task Mapping Architecture

3.7 Google Cluster Workload Overview

The dataset used in this chapter is derived from the second version of the Google cloud
trace log [137] collected during a period of 29 days. The Google cluster log consists of data
tables describing machines, jobs, and tasks as shown in Table 3.2. In the trace log, each
job consists of a number of tasks with specific constraints. Considering these constraints,
the scheduler determines the placement of tasks on the appropriate machines. The event
type value in the job and tasks are reported in the event table. The event type value in
the job and task event table shows the state of the job/task in the event (Figure 3.3). The
job/task event has two types: events that change the scheduling state such as submitted,
scheduled or running, and events that indicate the state of a job such as dead [137]. For
the purpose of this evaluation, we utilize all the events from the trace log and we assume
that all the events are occurring as reported in the trace log. The second day of the traces
is selected for evaluation purposes, as it had the highest number of task submissions.
Also, in order to eliminate placement constraint for tasks, we have chosen only one of the
three platforms, the one with the largest number of task submissions.

In order to find the groups of tasks with same usage patterns, we utilized the reported
data in the Task Usage Table. In this table, the actual task resource usage including normal-
ized CPU, memory, and disk usage are reported for periods of five minutes. This data is
used for clustering of tasks in order to find groups having the same usage pattern. The
resource utilization measurements and requests are normalized, and the normalization
is performed separately for each column.

We compare the cumulative distribution function (CDF) of requested and actual uti-
lized resources including the CPU, memory, and disk in Figure 3.4 for the selected part of
the Google workload. The average requested and utilized resources are calculated con-
sidering the tasks’ requested and utilized reported resources during the second day of
the Google traces. As it is depicted in Figure 3.4a, there is a considerable gap between
the amount of requested and the utilized CPU. 45% of the tasks are requesting 6% of
the biggest available CPU while the rest are requesting more than this amount. Look-
ing at the actual CPU utilized by the submitted tasks during the studied period, 80% of
the tasks are utilizing less than 1% of the biggest CPU, whereas the remaining tasks are

utilizing almost 5% of the biggest available CPU.

3.7 Google Cluster Workload Overview 91

1.0 1.0
0.8 0.8
%TQG -? 0.6
& S
Boa 504
v} v}
0.2 0.2
. Utilized
utilized |} Requested
LT R A e s S s Requested 0.0
0.0 0.1 0.2 0.3 0.4 05 0.0 0.2 04 0.6 0.8 1.0
Normalized CPU Normalized Memory
(@) (b)
1.0 -
i
|
0.8 !
- l
So6 i
& !
= I
a8 04 |
v f
|
02 |
—— Utilized
77777 Requested
0.0 q
0.00 0.01 0.02 0.03 0.04

Normalized Disk

(©

Figure 3.4: CDF of average requested and utilized resources for Google cluster tasks.

As depicted in Figure 3.4b, 80% of the tasks utilize less than 0.4% of the biggest avail-
able memory while they request more than 1% of the available memory. The same pat-
tern can be observed for disk, as shown in Figure 3.4c, where tasks request for more than
0.07% of the biggest available disk while using a negligible amount of their requested
disks.

In table 3.3, we detail the statistics of the studied parameters of the workload derived

from the second day of the traces. These figures confirm our previous inferences regard-

Table 3.3: Workload Parameters and statistics during the 24 hours studied period.

| Workload Parameters | Mean \ StDev \ Minimum | Maximum |
Requested CPU 0.045189 0.027699 0 0.5
Utilized CPU 0.006637 0.013751 0 0.261725
Requested Memory 0.029162 0.022123 0.000001 0.9551
Utilized Memory 0.003751 0.008234 0 0.652255
Requested Disk 0.000527 0.001191 0 0.03766
Utilized Disk 0.000004 0.000023 0 0.000623
submission Rate 3.71 21.46 1 1956
task Length 21.55 (minutes) | 69.79 (minutes) | 1 (micro seconds) | 24.67 (hours)

92 Virtual Machine Customization and Task Mapping Architecture

Table 3.4: Largest amount of each resource applied for de-normalization.

] CPU | Memory (GB) | Disk (GB) |
100% of a core of the largest machine CPU(3.2GHz) 4 1
8

ing utilized and requested amounts of resources that we conclude considering the plots
in Figure 3.4. Table 3.3 also suggests that there is a high variability in submission rate
and length of tasks. Here, the submission rate of tasks ranges from 1 to 1956 and the task
length range is between 1 microseconds to more than 24 hours. High task submission fre-
quency and short task lengths justify the inference of high variance of cloud workloads
derived by Di et al. [44] (See Section 3.2).

As the reported resource request and utilization is normalized and the normaliza-
tion is carried out in relation to the highest amount of the particular resource found on
any of the machines [137]. In this context, to get a real sense of the data, we assume
the largest amount of resources for each column as described in Table 3.4 and multiply
each recorded data by the related amount (e.g for recorded memory utilization we have
Real,;;j = Recordedyyy;; * 4). Then, the total resource utilization and requested amount are

calculated for each cluster as discussed in the last section.

3.8 Characteristics of Task Clusters

X-means algorithm reports the existence of 18 clusters in the tasks. In this section, we go
through the specifications of the task clusters in terms of the scheduling class, priority,
and the average length of the tasks in each group (Table 3.5). The population comparison
of the clusters is presented in Figure 3.5. To enable a better understanding of the char-
acteristics of task clusters, Figure 3.6 summarizes Table 3.5 considering the similarities
between task groups.

In Figure 3.6, task priority higher than 4 is considered “high”. In addition, the average
task length less than 1 and less than 5 hours are noted “short” and “medium” length
respectively. The average task length higher than 5 hours is considered “long”. Figure 3.6
shows that almost 78% of the tasks fall into the short length category. In addition, all long
and medium length tasks have higher priorities and are less likely to be preempted. This

logic is implemented in the Google cluster scheduler to avoid long tasks getting restarted

3.8 Characteristics of Task Clusters 93

cluster10 - %6 cluster9 - %5
cluster11 - %7 cluster8 - %5

cluster7 - %4

cluster12 - %7
cluster6 - %3

clusters - %3
clusterd - %2

- gluster - %]

cluster13 - %8

cluster14 - %8 ~ cluster18 - %11

cluster15 - %9
cluster17 - %10

cluster16 - %10

Figure 3.5: Population of tasks in each cluster. Clusters 15 to 18 are the most populated
clusters. Since Cluster 1 population is less than 1%, it is not shown in the chart.

in the middle of execution, which leads to more resource wastage. Next, we describe the

four meta-cluster task groups.

e Short and high priority tasks (Cluster 2, 3, 13): Tasks in clusters 2 and 3 are all from
scheduling class 0. However, tasks in cluster 13 are from higher scheduling classes,
which indicates that they are more latency sensitive than the tasks in clusters 2
and 3. Amongst these three clusters, cluster 13, with the average length of 38.66

minutes, has the longest average length.

e Short and low priority tasks (Clusters 5, 6, 7, 10, 11, 12, 14, 15, 17, 18): Comparing
to others, this category includes the largest number of clusters. Cluster 7, with the
average length of 56.82 minutes, has the longest tasks in this group. Considering
the scheduling class, tasks in clusters 5, 6, 7, 10, 11, and 12 are all from scheduling
class 0 while most of the tasks in clusters 14, 15, 17, and 18 are from scheduling class

1.

e Medium and low priority tasks (Clusters 4, 8, 9, 16): In terms of the average
task length, Cluster 8, with 4.72 hours, has the longest length. Considering the

scheduling class, tasks in Cluster 16 are more latency sensitive and probably belong

94

Virtual Machine Customization and Task Mapping Architecture

Task Clusters

Short Length
(L <1 hour)

High Priority

Cc.o
I

C.2
[

Clusters:
2,3
(2%)

Cluster:
13
(8%)

Medium Length
(L < 5 hours)

Long Length
(L > 5 hours)

|

Low Priority | Low Priority | | High Priority |
Cc.2 CA1 C.0 C.2 C.2
| I
Clusters: Clusters: Clusters: Cluster: Cluster:
5,6,7,10, 11,12 | 14, 15, 17, 18 489 16 1
(30%) (38%) (12%) (10%) (<1%)

Figure 3.6: Clusters of tasks are categorized on three levels according to the average
length, the priority, and the scheduling class (C) considering the statistics in Table 3.5.

to the production line while the tasks from the other three clusters are less latency

sensitive.

e Long and high priority tasks (Cluster 1): Although Cluster 1 contains less than 1%

of the tasks (Figure 3.5), this group has the highest priority tasks with the longest

durations as shown in Table 3.5. Most of the tasks of the group have scheduling

class 1, which shows they are less latency sensitive in comparison with tasks from

higher scheduling classes.

Results of clustering allowed us to draw conclusions per cluster that help in the de-

sign of specific resource allocation policies for each cluster. For example, as depicted in

Figure 3.6, tasks in Cluster 1 are the longest and have the highest priority. Therefore,

one can conclude that the system assigns the higher priority to these long tasks so that

if they failed, the system still has time to reschedule them. In contrast, as illustrated by

Figure 3.6, the majority of tasks with short length have been given low priorities. This

is because, in case of failure or resource contention, the system can delay their execution

and still guarantee that they are executed in time.

In addition, as shown in Table 3.6, for task clusters with larger length, less usage

variation is observed. For resource allocation policies, this makes the usage estimation

of resources and predictions more accurate and more efficient, as less sampling data is

3.8 Characteristics of Task Clusters

95

Table 3.5: Statistics of the clusters in terms of the scheduling class, priority and the aver-
age task length. The star sign (*) shows the dominant priority and scheduling class of the
tasks in each group.

Scheduling Class (%) Priority (%) Average
Cluster - 1 0 1* 2 8 9* 10 11 Task Length
0.09 |99.76 | 0.15 0.88 99.10 | 0.01 0.01 18.19(hrs)
0* 6*
Cluster -2 100 100 6.38(mins)
0 8 9 10
Cluster - 3 100 63.20 36.76 0.04 5.7(mins)
c 4 0* il
uster - 100 100 1.04(hrs)
cl 0* il
uster - 5 100 100 20.32(mins)
cl 6 0* il
uster - 100 100 5.32(mins)
0 0 1 2
Cluster -7 100 97.02 2.98 0.01 56.82(mins)
Cluster - 8 0* 1 0* 1 2 4 2
94.32 57 83.44 | 842 | 033 | 7.80 0.01 4.72(hrs)
0* 0 1 2
Cluster -9 100 36.55 63.23 025 | 1.47(hrs)
c 10 0* o*
uster - 100 100 28.04(mins)
0* G 2
Cluster - 11 100 99.2 08 19.19(mins)
c 12 0* o*
uster - 100 100 21.17(mins)
Cluster - 13 2 3 2 il 6 8 9 10
74.9 251 | 0.03 | 30.97 | 1628 | 21.75 | 28.17 | 2.80| 38.66(mins)
0 ¥ |2 1 2 e 9
Cluster - 14 - 50— 4762 1 0.09 0.04 0.02 | 99.49 0.45 42.9(mins)
Cluster - 15 L & 5 6
100 97.67 0.04 2.29 39.83(mins)
2% 3 0 1 2 1 9
Cluster - 16 93.67 633 | 67.61 | 28.14 | 423 | 0.015 0.001 1.45(hrs)
Cluster - 17 1 0* 1
100 99.2 0.8 27.59(mins)
Cluster - 18 1" 1 2
100 27 97.3 20.49(mins)

96 Virtual Machine Customization and Task Mapping Architecture

Table 3.6: Virtual machine task capacity of each cluster for RRA, FqRA, AvgRA, MeRA,
ThqRA, and URA resource allocation policies.

| ClusterIndex | RRA [FqRA [AvgRA | MeRA | ThqRA | URA |

Cluster - 1 15 29 34 32 38 136
Cluster - 2 20 33 39 40 43 125
Cluster - 3 20 16500 16500 16500 16500 500
Cluster - 4 41 33 43 38 56 38

Cluster - 5 28 32 48 46 56 139
Cluster - 6 8 51 88 77 117 250
Cluster - 7 80 46 64 53 62 143
Cluster - 8 73 45 48 47 48 150
Cluster - 9 41 95 104 104 107 154
Cluster - 10 6 7 9 7 8 250
Cluster - 11 12 91 92 99 105 188
Cluster - 12 11 28 53 46 71 1250
Cluster - 13 28 13 19 13 13 118
Cluster - 14 83 67 69 67 67 126
Cluster - 15 18 17 45 33 52 100
Cluster - 16 48 74 79 94 101 136
Cluster - 17 7 21 28 22 23 143
Cluster - 18 73 409 439 478 478 500

required while the prediction window can be widened. The opposite holds for clusters
with smaller length: in these clusters, more variation is observed, and as a result predic-

tion requires more frequent sampling and narrower time window.

3.9 Performance Evaluation

We discuss our experiment setup along with the results of experiments considering the

aforementioned resource allocation algorithms.

3.9.1 Experiment Setup for Investigating Resource Allocation Policies

We discuss the setup of experiments that we conducted to evaluate our proposed ap-
proach in terms of its efficiency in task execution and power consumption. We studied
the Google workload and grouped tasks according to their usage patterns utilizing clus-
tering (Section 3.4). Then, the proposed system is simulated for each cluster and tasks
are assigned to the corresponding virtual machine types during each processing window

(one minute for the purposes of these experiments). The simulation runtime is set to 24

3.9 Performance Evaluation 97

hours. Cluster resource usage and number of rejected tasks are reported for each clus-
ter of tasks separately. Since virtual machine placement also affects simulation results,
the same policy introduced in Section 3.9.1 is used in the Virtual Machine Provisioner
component for all the proposed algorithms. In order to show the efficiency of our pro-
posed architecture in terms of power consumption, the linear power consumption model
is adopted for each of the running machines. The power consumption model is discussed

in more details in the rest of this section.

Data Center Servers” Configuration

We define a data center with the three server configurations listed in Table 3.7. These
types are inspired from Google data center and its host configurations during the studied
trace period. Hosts in the Google cluster are heterogeneous in terms of the CPU, memory,
and disk capacity. However, hosts with the same platform ID have the same architecture.

As mentioned in Section 3.2, there are three types of platforms in Google data center.
In order to eliminate placement constraint for tasks, we have chosen the platform with
the largest number of task submissions. The server architecture for our implementation
is the same for all three types. As suggested by Garraghan et.al [63], servers in this
platform are assumed to be 1022G-NTF (Supermicro Computer Inc.) inspired from the

SPECpower_ssj2008 results [34].

Virtual Machine Placement Policy

The First Fit algorithm is applied as the placement policy for finding the first available
machines for hosting newly instantiated VMs. The algorithm first searches through the
running machines to find if there are enough resources available for the virtual machine.
It reports the first running host that can provide the resources for the VM. If there is no
running host found for placing the virtual machine, a new host is activated. The new host
is selected from the available host list, which is obtained from the trace log and contains
the hosts IDs along with their configurations. All the proposed algorithms have access to
the same host list to make sure that the placement decision does not affect the simulation

results.

98 Virtual Machine Customization and Task Mapping Architecture

Table 3.7: Available server configurations present in one of the platforms of the Google
cluster [63].

[Server Type [Number of Cores [Core Speed (GHz) [Memory (GB) [Disk (GB) [Piger (W) [Priax (W)]

Typel 0 16 8 1000
Type2 32 6 16 1000 70.3 213
Type3 32 6 24 1000

Server’s Power Consumption Model

The power profile of the selected server’ from SPECpower is used for determining the
linear power model constants in Equation 3.5 [18]. The power consumption for process-
ing tasks at time t is defined as the accumulative power consumed in all the active servers
at that specific time. For each server, the power consumption at time ¢ is calculated based
on the CPU utilization and server’s idle and maximum power consumption (Eq. 3.5). We
focus on energy consumption of CPU because this is the component that presents the

largest variance in energy consumption regarding its utilization rate [18].

Pn(ti> = (Pmax - Pidle) *1/100 + Pigge (3.5)

3.9.2 Task Execution Efficiency of the Proposed Algorithms

After discussing the characteristics of extracted task groups, here we compare task exe-
cution efficiency of our proposed algorithms in terms of task rejection rate. Ideally, the
percentage of tasks that need to be rescheduled should be as low as possible, since it
results in delays in the completion of jobs. In addition to delays, the increase in task re-
jection rate increases resource wastage since computing resources (and energy) are spent
on tasks that do not complete successfully and thus need to be later executed again. The
rejection rate for each policy is presented in Figure 3.7.

Virtual machine capacity for each of the algorithms is shown in Table 3.6. In the
URA policy, tasks are allocated based on the actual usage. Because of the gap between
requested resources and the actual usage of tasks, in URA the VM task capacity is higher
than in the other five algorithms. Therefore, in most of the clusters, RRA accommodates
the least number of tasks in one virtual machine. Excluding RRA, FqRA has the smallest

VM task capacity in comparison to the other four algorithms and excluding the URA

51022G-NTF (Supermicro Computer Inc.)

3.9 Performance Evaluation

99

10

Task Rejection Per Minute

6

_ﬂﬂJﬂ
7 8 9 10

Cluster Index

RRA
FqRA
AvgRA
MeRA
ThqRA
URA

HE@EOmmO

5 16 17 18

11 12 13 14 1

Figure 3.7: Task execution efficiency in the RRA, FqRA, AvgRA, MeRA, ThqRA, and URA
policies. Efficiency is measured as the task rejection rate per minute.

o
w

30 40

Average Scheduling Delay (Seconds)
20

10

O

RRA AvgRA
FQRA 3 MeRA

ThgRA
[U URA

L LA T

(o]
~

MU LT LALLM T ALV MIA Y

9 10

Cluster Index

] 1t L L L LALLM M |

15 16

Figure 3.8: Average delay caused by applying the RRA, FqRA, AvgRA, MeRA, ThqRA,
and URA policies. The delay is estimated by the time it takes for a specific task to be
rescheduled on another virtual machine after being rejected.

policy, ThqRA has the largest amounts in terms of the task capacity.

Considering task rejection rate, the algorithms with larger amounts of VM task capac-

ity have higher rejection rates. Therefore, in most clusters, URA has the highest rejection

rate. However, the gap between rejection rates for FQRA, AvgRA, MeRA and ThqRA are

almost negligible. As expected, RRA, with the lowest number of tasks in each virtual

machine, incurs the least rejections during the simulation.

In addition to rejection rates, the delay caused in the execution of the tasks are re-

100 Virtual Machine Customization and Task Mapping Architecture

250
J

200
1

T

150
!

100
!

Energy Consumption (kWh)

50

o R L T

o {EIMM L}
1 2 3 6

Figure 3.9: Energy consumption comparison of the RRA, FgRA, AvgRA, MeRA, ThqRA
and URA policies. URA outperforms the other five algorithms in terms of the energy
consumption and the average saving considering all the clusters.

™
8

7

Cluster Index

ported for the proposed policies. This delay is extracted for rejected tasks that finish
during the simulation time (24 hours). The delay ¢, is equal to {; — t; in which ¢y is
the time that the execution of the task is finished in our simulation and t, is the desired
finished time reported in the Google traces. In other words, t; of a typical task is the
time it takes for the task to start running after it is rejected. Figure 3.8 shows that the
average delay for all the proposed algorithms is less than 50 seconds. This delay can be
reduced via smaller processing window sizes. The processing window size in our case
is assigned to one minute. Hence, tasks should wait in the killed task repository until
the next processing window, so that they can get the chance to be rescheduled in another

virtual machine.

3.9.3 Energy Efficiency of the Proposed Algorithms

The experiments presented in the previous section focused on the analysis of the perfor-
mance of the assignment policies in terms of rejection rate and average delay. Since one
of the goals of the proposed architecture is efficient resource allocation, which results in
less energy consumption, in this section we analyze the policies in terms of their energy
efficiency.

The power consumption incurred by servers are estimated using the power model

3.9 Performance Evaluation 101

presented in Equation 3.5. Figure 3.9 shows the amount of energy consumption (kWh)
for the six applied resource allocation policies. In terms of energy consumption, URA
on average outperforms RRA, FqRA, AvgRA, MeRA, and ThqRA by 73.02%, 59.24%,
51.56%, 53.22%, and 45.36% respectively, considering all the clusters. However, URA in
most of the clusters increases the average task rejection rate and results in delays in task
execution. Considering this, URA is the selected policy when tasks have low priorities
and the delay in the execution is not a concern.

ThrdRA policy is the second most energy efficient algorithm, outperforming RRA,
FgRA, AvgRA, and MeRA in average 34.41%, 25.11%, 7.42%, and 15.01% respectively.
Apart from energy efficiency, this policy caused less task rejections in comparison with
URA. Therefore, when task execution efficiency and energy are both important, this pol-
icy is the best choice. RRA in most clusters is the least energy efficient algorithm, al-
though it caused less task rejections. Therefore, RRA can be applied for tasks with higher
priorities.

AVgRA and MeRA have almost the same energy consumption for all the clusters. The
task capacity of the VM in AvgRA and MeRA is based on the average and the median
number of tasks that can run without causing any rejections. In most cases, the median
and the average of our considered estimate (number of running tasks) are close to each
other, therefore the difference in the energy consumption of AvgRA and MeRA is negli-
gible.

3.9.4 Discussion

We investigated the problem of energy consumption resulted from inefficient resource al-
location in cloud computing environments using Google cluster traces. We proposed an
end-to-end architecture and presented a methodology to tailor virtual machine configu-
ration to the workload. Tasks are clustered and mapped to virtual machines considering
the actual resource usage of each cluster instead of the amount of resources requested by
users.

Six policies were proposed for estimating task populations residing in each VM type.
In the RRA policy, tasks are assigned to VMs based on their average requested resource.

This policy is the baseline for our future comparison since it is solely based on the re-

102 Virtual Machine Customization and Task Mapping Architecture

quested resources submitted to the data center. Resource allocation in the URA policy is
based on the average resource utilization of task clusters obtained from historical data. In
the other four policies, the assignment is based on the four estimates extracted from the
virtual machines” usage logs from the URA policy. The extracted estimates are average,
median, first and third quantile of the number of tasks that can be accommodated in a
virtual machine without causing any rejections. Compared to RRA, the other five policies
show up to 73.01% improvements in the data center total energy consumption.
Comparing the results from the six studied policies the following conclusions can be

derived:

e By analyzing cloud workload, cloud providers and users can tailor their virtual
machine configurations according to their workload usage patterns. This would
result in less resource wastage and be cost effective on both consumers and cloud

providers side. Customized VM types are now offered by Google® cloud.

e Results demonstrate that utilization of historical data regarding actual resource uti-
lization can help in decreasing the amount of hardware consumption and conse-
quently reduce the energy usage of cloud data centers. However, it is advisable to
analyze VM'’s resource consumption instead of task clusters when it comes to the

amount of rejected tasks and violations.

e Customized VM sizes are beneficial for workloads that are not a good fit for avail-

able VM sizes or for workloads that require more computing resources °.

Based on the above insights, next we evaluate the utilization of customized VM sizes
compared to fixed VM configurations. In addition, we explore the Container as a Service
(CaaS) cloud model, in which users request the execution of containers, which are de-
ployed inside virtual machines. We explore this model because it represents more closely
the architecture used by Google when generating the Google traces utilized in these ex-
periments. A key difference between Google architecture concerns the envisioned de-
ployment model: Google traces related to a private cloud accessible only by Google em-

ployees. Our approach targets any deployment model, and therefore an extra layer of

6https ://cloud.google.com/compute/docs/instances/creating—-instance-with-
custom-machine—-type

https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type

3.10 Efficient VM Sizing for CaaS 103

performance isolation between tenants, enabled by virtualization, is also included in the
architecture. Notice that this is exactly the method that public cloud providers utilize to offer
CaaS: containers on top of VMs rather than on bare hardware (Amazon ECS’ and Container

Engine®).

3.10 Efficient VM Sizing for CaaS

As we mentioned a new type of service—called Containers as a Service (CaaS)—has been
introduced by Google® and AWS’. To reduce the energy consumption of CaaS, one may
choose virtual machine consolidation, Dynamic Voltage and Frequency Scaling (DVES),
or both of them combined. However, these efforts would be in vain if VM sizes are not
customized to better support deployed containers. For example, as shown in Figure 3.1,
the size of VM B in comparison to VM A is not container-optimized. As a result, there is
resource wastage that results in inefficiency in terms of energy consumption regardless
of how effective and energy efficient is the VM consolidation technique in place. In other
words, as we discussed in Chapter 2, VM consolidation is limited by other resources
such as memory (Figure 2.5), hence for improving the resources utilization of the servers,

resources of virtual machines should also be allocated and utilized efficiently.

3.10.1 Extended System Model

In order to incorporate the CaaS cloud model, we extended our studied system model in
Section 3.3 and added one more layer to it.

Cloud Model: The cloud model explored in this chapter contains three layers:

¢ Infrastructure layer: This layer contains physical servers that are partitioned to

virtual machine through the next layer;

e Virtualization layer: The virtualization technology is taken into consideration as it

improves the utilization of resources by sharing them between virtual machines;

"https://aws.amazon.com/ecs/
8https ://cloud.google.com/container—engine/

https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/

104 Virtual Machine Customization and Task Mapping Architecture

e Container layer: Containers run on virtual machines and all share the same Linux
kernel as the OS. The combination of these technologies (i.e., container and virtual-
ization) has been recently introduced in Google Container Engine’, which uses the

Open Source technology Kubernetes!'’.

3.10.2 Extended Architecture

We utilize the architecture proposed in Section 3 (Figure 3.2) for selecting the right size of
virtual machines that hosts containers running users’ tasks. However, the task mapper
component in the execution phase is substituted by another component named “Con-
tainer Mapper”. Similar to Task Mapper, the Clustering results from the Task Classifier
are sent to the Container Mapper. Firstly, this component maps each task to a suitable
container. Then, as it is depicted in Algorithm 1, based on the available resources in the
running virtual machines and the available VM types in the VM Types Repository, this
component estimates the number and type of new virtual machines to be instantiated to
support the newly arrived tasks. Apart from new VM instantiation when available VMs
cannot support the arriving load, this component also reschedules rejected tasks that are
stored in the rejected task repository to the available virtual machines of the type required
by the VM (if any). This component prioritizes the assignment of newly arrived tasks to

available resources before instantiating a new virtual machine.

Modified VM Sizing Strategy:

We modified the sizing strategy for VMs in Section 3.5 to take into account the infrastruc-
ture’s owner limits in terms of the minimum number of VMs that can be accommodated
on each server. For each group (cluster) of tasks, in order to determine the virtual ma-
chine’s parameters, the average amount of resources required per hour for serving the
user requests during the 24 hours observation period is estimated. Thus, the amount of

CPU required per hour (CPU,) is defined as follows:

CPU,, = nT * CPU, (3.6)

9Google Container Engine: https://cloud.google.com/container-engine/docs/
K ubernetes: http://kubernetes.io/

https://cloud.google.com/container-engine/docs/
http://kubernetes.io/

3.10 Efficient VM Sizing for CaaS 105

where CPU, is the average amount of CPU usage on an hourly basis and nTj, is the

average number of tasks per hour that are present and running in the system.

When the average amount of required CPU per hour is estimated, a limit should be
set for the maximum amount of the CPU that a virtual machine can obtain. This amount
should be set according to the underlining infrastructure. For example, if the servers have
32 cores of CPU and the provider wants to host at least two virtual machines per server,
then each VM can obtain at most 16 cores. If we assume that the largest virtual machine
in the system would have less than 16 cores, then if the CPU, is above 16, the load should
be served by more than one virtual machine. It has to be divided by the first integer n
found between 2 to 9 in a way that the residual of CPUj,/n is zero (For example if the
CPUy, is equal to 21, n would be 3, which results in 3 VMs with 7 cores each). In other
words, 7 is the number of virtual machines with VMcp; = CPU), /n which is enough for
serving the requests for every hour. Moreover, if the CPUj, is bellow the virtual machine’s
maximum CPU limit, then one virtual machine would be enough to serve the requests

and n is equal to 1.

Then, for defining the VM memory size, Equation 3.7 is used.

nT * memory,

VMmemory = 1

(3.7)
The VM'’s task capacity V M;. is calculated based on Equation 3.8 where tTL is the

average resource usage during the observed period.

VM = min(VM; /ty,, ..., VM;/ty,),i = {CPU, memory} (3.8)

Thus, for each cluster, the VM type is defined in terms of CPUj, and V Mepmory. Once
VM Types are determined, they are stored in the VM types repository, so future selec-
tion of better matches for required containers hosting the tasks are chosen based on such
defined types. The effectiveness of this strategy for selection of VM Types based on clus-

tering of tasks is evaluated in the next sections.

106 Virtual Machine Customization and Task Mapping Architecture

3.10.3 Experiment Setup for Investigating VM Sizing Efficiency

In this section, we discuss the experiments that we conducted to evaluate the efficiency of
our proposed VM sizing approach in terms of its efficiency in task execution and power
consumption. The data set used for these experiments is also derived from the second
day of the Google cluster traces [137]. In order to get a real sense of the data, we assume
the same amounts mentioned in Section 3.9.1 as the largest amount of resources including
CPU, memory, and disk.

As we discussed, the Google cluster hosts are heterogeneous in terms of the CPU,
memory, and disk capacity. However, hosts with the same platform ID have the same
architecture. Like our previous experiment setup in Section 3.9.1, in order to eliminate
the placement constraints and decrease placement complexity, only the tasks scheduled
on one of the three available platforms are considered. The configurations of the simu-
lated data center servers are also inspired by Google data center during the studied trace
period. However, in order to check the applicability of our proposed approach, we uti-
lized the tasks submitted to the platform with the second highest submission rate in the
second day of the traces. As suggested by Garraghan et.al [63], the servers in this plat-
form are PRIMERGY RX200 S7. For the PRIMERGY platform, the tasks scheduled during
the second day of the traces are all scheduled on one server type with 32 cores of CPU
(3.2 GHz), 32 GB of memory and 1 TB of disk. The power profile of this server type is
extracted from the SPECpower_ssj2008 results [34] reported for PRIMERGY. This power
profile is then used for determining the constants of the applied power linear model pre-
sented in Equation 3.5.

In our experiments, the proposed system is simulated and the tasks are assigned to
containers. Then, these containers are hosted in the corresponding virtual machine types
during each processing window (one minute for the purposes of these experiments). The
simulation runtime is set to 24 hours. The number of rejected tasks is reported for each
experiment separately. Since the virtual machines placement also affects the simulation
result, First-Fit placement policy is used for all of the experiments. This placement al-
gorithm selects the first running host that can provide resources for the VM and if no

running host is found for placing the VM, then a new host will be turned on.

Output metrics of interest are number of instantiated VMs, task rejection rate, and

3.10 Efficient VM Sizing for CaaS 107
Table 3.8: Virtual machine configurations for 18 clusters.
Memory Memory

VM Type | Number of Tasks | vCPU (GB) VM Type | Number of Tasks | vCPU (GB)
TYPE 1 142 14 17.93 TYPE 10 418 8 14.8
TYPE 2 79 1 2.82 TYPE 11 471 9 28.98
TYPE 3 261 3 11.70 TYPE 12 87 2 411
TYPE 4 292 2 2.39 TYPE 13 439 1 3.68
TYPE 5 1836 1 535 TYPE 14 185 3 22.48
TYPE 6 107 3 8.1 TYPE 15 78 1 2.72
TYPE 7 70 2 3.21 TYPE 16 220 3 10.12
TYPE 8 585 1 0.93 TYPE 17 254 1 14.14
TYPE 9 336 1 2.06 TYPE 18 1200 1 1.52

Table 3.9: Virtual machine specifications of RFS and the selected Amazon EC2 instances.

RFS Amazon EC2
Memory Memory

VM Type | Number of Tasks | vCPU (GB) VM Type Cuax | VCPU (GB)

TYPE 1 452 1 5.42

TYPE 2 696 9 161 m3.]large 150 | 1 7.5

TYPE 3 273 3 5.32 m3.medium | 150 | 1 3.75

TYPE 4 1639 1 24.29 t2.medium 266 | 2 4

TYPE 5 357 1 3.29 t2.small 133 | 1 2

the energy consumption (Subsection 3.10.6). In order to ensure the quality of service,

task rejection rate is defined as the number of rejected tasks in each 1-minute processing

window.

3.10.4 Feature set selection

we explore the factors that affect the resulting virtual machine sizes (types). The number

of VM types is directly affected by the number of task clusters (k), which is estimated via

applying X-means on the selected feature set. The following approaches are considered

in the investigation of the effect of feature selection on virtual machine sizes:

e Whole Feature Set (WFS) approach: In this approach, the whole feature set listed in

Section 3.4.1 is considered as the input of the X-means algorithm, which resulted in

18 clusters of tasks. The virtual machine sizes are defined following the procedures

in Section 3.10. The obtained VM sizes are listed in Table 3.8. As we mentioned in

Section 3.10, 10 GB of storage is assigned to all VM types in order to have enough

space for the OS installed on each VM.

e Reduced Feature Set (RFS) approach: By assigning the same amount of storage,

WES approach leads to the observation that the most effective parameters in VM

108

Virtual Machine Customization and Task Mapping Architecture

size selection for this specific workload are the average CPU and memory utiliza-
tion. Therefore, for the RFS approach, the clustering feature set is reduced to these
two main features. The application of the new feature set as the input of X-means
resulted in 5 clusters, which consequently results in 5 different VM sizes (shown

in Table 3.9). Between these two approaches, the one that could save more energy

&
—®-- ma3.large o
< Q 1~ m3.medium o
E ->- t2.medium &
= Q4o t2.small o
8 - WFS o
£o |~v- RFS ,<>
(90] T ,0 [

> .
O o <>/ 'l'.'
O« © .
> © " 00
(@)] K ’ ._l'. Q_0_0-0’9.”_0.0
= [- c.o"’j;. %X
2 3 o 6_9-0:;2;:;f°x7X;§ﬁ§,v-§-V'V
L TRPUY, 2 S SRR

BOUS & S A o

O 1 0 aibiB STV
T T T T T
5 10 15 20 25
Time (Hour)

Figure 3.10: Energy consumption of the data center for the usage-based fix VM size ap-
proach versus RFS and WFS

via reducing the number of servers has the more efficient virtual machine sizes. As
Figure 3.10 shows, RFS results in 81% less energy consumption in comparison to
WES. This is because RFS causes less resource fragmentation and that leads to less
number of servers. Therefore, it can be concluded that tailoring the size of virtual
machines to container requirement is crucial, however it has to be done in such
a way that resource fragmentation is avoided. Apart from the energy perspective,
comparing to WFS approach, RFS results in 86% and 77% less instantiated VMs and

rejection rate respectively.

3.10.5 Baseline scenarios

In order to investigate the effect of defining the virtual machine sizes according to the

workload (container optimized), in these experiments we consider scenarios where VM

sizes are fixed. In this respect, we consider the existing Amazon EC2 instances listed in

3.10 Efficient VM Sizing for CaaS 109

Table 3.9. In these scenarios, the scheduler assigns containers to only one specific VM

size (e.g t2.small instance) considering the following approaches:

¢ Request-based resource allocation approach: In the request-based resource alloca-
tion approach, tasks are given the exact amount of resources requested and speci-
tied by the user while submitted. Therefore, in this approach containers are packed
in the virtual machines according to their containing task specifications, as submit-

ted by users.

e Usage-based resource allocation approach: In this approach, the maximum num-
ber of containers (c;;qy) that can be hosted in one VM instance is specified in the
pre-execution phase leveraging the average resource utilization of the tasks. ¢y is
reported for each of the Amazon instances in Table 3.9. This approach is included
in the baseline scenarios, since the concept of utilizing the usage of the tasks is also

taken into account in our VM size selection technique.

cmax = min(VM, /Usage,), r = CPU, Memory,Disk (3.9)

3.10.6 Experiment Results

Results obtained with the utilization of aforementioned approaches are compared consid-
ering three different matrices. The first matrix, which shows the main effect of our pro-
posed VM size selection technique, is the energy consumption matrix obtained through
Equation 3.5. Figure 3.10 shows the energy consumption for the baseline scenarios con-
sidering the usage-based approach and the proposed VM size selection technique. The
data center energy consumption for the baseline scenarios considering the requested-
based approach is also plotted in Figure 3.11. Because users overestimate resource re-
quirements, the energy consumption is improved in the usage-based approach by almost
50% comparing to the requested-based approach in the baseline scenarios, for all of the
fixed VM sizes. However, RFS still outperforms all of other approaches in terms of the
data center energy consumption. For the usage-based baseline scenarios, RFS shows
33%, 44%, 24%, and 70% less energy consumption on average compared to t2.small,

t2.medium, m3.medium, and m3.large VM sizes respectively.

110 Virtual Machine Customization and Task Mapping Architecture

o _
(00] .
—m®- ma3.large
= |~ m3.medium
E o |- t2.medium
N— © N o
p -o- t2.small . o
R4 <
S |-o WFS S
Q. /, -
E o Y RFS /l(<>.'<> N
o < I /.('<>>‘ QIQI
[7)] n <o &~ /x':
< I/ © Q'e X/?;’o‘
8 LS ° o
L /ij:z,o
20 | EaR 9’2;%("’
[@2Ne\| o R
— -0 B2 e
(D) O ,Q’?:g'
c R 25 R
L . ’;_%?;X' og-vY vV vV
[R v-vv
o J s8¢ 0w

Time (Hour)

Figure 3.11: Energy consumption of the data center for the request-based fix VM size
approach versus RFS and WEFS.

2 small e —
m3.medium L
t2.medium h

m3.large E

WES] Resource Allocation Mode:

O Usage-based

B Request-based
RFS U]
[T T T T T 1
o o o o o o o
S ST T SO -
T\iumber of Iné?antiated VMs

Figure 3.12: Number of instantiated virtual machines for the applied approaches.

For the second comparison matrix, we consider the number of instantiated virtual
machines (nyy). The increase in nyy;, results in more virtualization overhead and also
longer delays in scheduling because of the VM instantiation delay. Results show that RFS
can execute the workload with the smallest ny). It outperforms usage-based baseline
scenarios by 82%, 75%, 37%, and 86% less instantiated VMs for the t2.small, t{2.medium,

m3.medium, and m3.large VM sizes respectively (Figure 3.12).

3.11 Conclusions 111

t2.small

m3.medium

t2.medium

ma3.large

WES

RFS

I T T T T 1
o (@] o o (@) o
— o™ <
Task Rejection Rate(task/minute)

Figure 3.13: Task rejection rate for WFS, RFS and the fixed VM sizes considering the
usage-based approach

In order to ensure the quality of service, the task rejection rate is considered as the
third comparison matrix. Task rejection rates for the usage-based baseline scenarios,
WES, and RFS approaches are shown in Figure 3.13. As in previous cases, RFS VM size
selection approach outperforms the usage-based baseline scenarios by 8%, 42%, 8%, and
15% less task rejection rate for the t2.small, t2.medium, m3.medium, and m3.large VM
sizes respectively. It is worth mentioning that, because of the over-allocation of resources
for the requested-based baseline scenarios, the task rejection rate is equal to zero for all
of the VM types.

In summary, the experiments show that our VM sizing technique combined with
workload information saves a considerable amount of energy with minimum task re-
jections. This implies that studying the usage patterns of applications would improve
the utilization of resources and consequently would reduce the energy consumption of
data centers. However, the study of the workload should be accurate in a way that it

would not result in more resource wastage as it is shown in RFS approach.

3.11 Conclusions

In this chapter, we investigated the problem of inefficient utilization of data center infras-
tructure resulted from users’ overestimation of required resources on the virtual machine

level. To address the issue, we presented a technique for finding efficient virtual machine

112 Virtual Machine Customization and Task Mapping Architecture

sizes for hosting tasks considering their actual resource usage instead of users estimated
amounts.

We clustered the tasks and mapped them to the virtual machines according to their
actual resource usage. Then, we proposed six policies for estimating task populations
residing in each VM type. In the baseline scenario (RRA policy), we assigned the tasks
to the VMs considering their average requested resource. While in the second resource
allocation policy (URA), the tasks are assigned based on their average resource utiliza-
tion of task clusters obtained from historical data. The assignment of tasks in the other
four policies is based on the virtual machines’ usage logs from the URA policy. These es-
timates include average, median, first and third quantile of the number of tasks that can
be accommodated in a virtual machine without causing any rejections. The experiment
results demonstrate that considering the resource usage patterns of the tasks improves
the energy consumption of the data center.

Further, we extended our proposed technique to incorporate the CaaS cloud service
model and investigate the efficiency of our VM sizing technique considering the clus-
tering feature set. We considered baseline scenarios in which virtual machine sizes are
fixed. Again, due to user overestimation of resources, the usage-based approach (where
VM sizes are chosen based on actual requirements of applications rather than the amount
requested by users) outperforms the requested-based approach by almost 50% in terms
of the data center average energy consumption. In addition, the results demonstrate
that over analyzing the workload (18 clusters resulted from RFS policy) would result in
resource wastage while right workload analysis (8 clusters resulted from WFS policy)
improves the resource utilization and consequently decrease the data center energy con-
sumption.

In addition to determining efficient VM sizes, dynamic container consolidation also
affects the efficiency of VM'’s resource utilization. In order to evaluate and compare the
performance of the resource management algorithms for containerized clouds, we re-
quire an environment that supports scalable and repeatable experiments. Therefore, in
the next chapter, we present our developed simulator, which provides support for mod-
eling and simulation of containerized cloud environments and for exploring efficiency of

container consolidation algorithms.

Chapter 4

Modeling and Simulation of
Containers in Cloud Data Centers

Containers are increasingly gaining popularity and becoming one of the major deployment models
in cloud environments. To evaluate the performance of scheduling and allocation policies in con-
tainerized cloud data centers, there is a need for evaluation environments that support scalable and
repeatable experiments. Simulation techniques provide repeatable and controllable environments and
hence they serve as a powerful tool for such purpose. This chapter introduces ContainerCloudSim,
which provides support for modeling and simulation of containerized cloud computing environments.
We developed a simulation architecture for containerized clouds and implemented it as an extension of
CloudSim. We have described a number of use cases to demonstrate how one can plug in and compare
their container scheduling and provisioning policies in terms of energy efficiency and SLA compli-
ance. Our system is highly scalable as it supports simulation of large number of containers, given

that there are more containers than virtual machines in a data center.

4.1 Introduction

UE to the elasticity, availability, and scalability of its on-demand resources, cloud
D computing is being increasingly adopted by businesses, industries, and govern-
ments for hosting applications. As discussed in Chapter 2, in addition to traditional
cloud services, namely Infrastructure as a Service (IaaS), Platform as a Service (Paa$S),
and Software as a Service (SaaS), recently a new type of service—Containers as a Service
(CaaS)—has been introduced . Containers share the same kernel with the host, hence

they are defined as lightweight virtual environments compared to VMs that provide a

This chapter is derived from: Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N.Calheiros , and
Rajkumar Buyya, “An Environment for Modeling and Simulation of Containers in Cloud Data Centers”,
Software: Practice and Experience (SPE), John Wiley & Sons, Ltd, USA, 2016 . [Online]. Available: http:
//dx.doi.org/10.1002/spe.2422.

113

http://dx.doi.org/10.1002/spe.2422
http://dx.doi.org/10.1002/spe.2422

114 Modeling and Simulation of Containers in Cloud Data Centers

1 1
1 1
! olo|of|lo ol o |
! olo|o|]|o ol|| o !
O 3|13 |3 35 lw) 35 35 \
1 (o) ~ |t |t + o ~+ ~
! oOllINv|w]] & o[~ N X
~ ~
i L Q :
. Libs | | Libs | ;
1
1 1
! VM A | | VM B |
. . . 1
- - Virtualization Layer .
Infrastructure Layer

Figure 4.1: The virtual environment modeled in ContainerCloudSim.

layer of isolation between workloads without the overhead of hypervisor-based virtual-
ization. CaaS providers, such as Google and AWS, argue that containers offer appropriate
environment for semi-trusted workloads, while virtual machines provide another layer
of security for untrusted workloads.

Resource management policies to ensure Quality of Service (QoS), avoid energy wastage
and resource fragmentation are an integral part of cloud systems. Innovating and com-
paring resource management strategies require environments that facilitate the design
of experiments while making them repeatable and accurate. Simulators are useful tools
to build such evaluation environments in the cloud context [173]. They are particularly
helpful at early stages of research to identify and eliminate ineffective polices or when
accessing large scale distributed infrastructure is costly and not possible. Testing and
evaluating resource management policies in the first verification stage in a production
environment is both risky and costly. In this respect, a number of simulation tools are
developed for evaluation of algorithms that are specifically designed for cloud comput-
ing environments. Although containers are going to be one of the dominant application
deployment models in the cloud, most of the simulators consider VMs as the building
blocks of the virtualized cloud data centers. To the best of our knowledge, no simula-
tors introduced modeling for containerized cloud environments. Therefore, this chapter
presents a simulation environment, named “ContainerCloudSim”, for studying resource
management techniques in CaaS environments.

ContainerCloudSim is developed as an extension of the ClouSim simulation toolkit [26].
It provides an environment for test and evaluation of resource management techniques

such as container scheduling, placement, and consolidation of containers. As depicted in

4.2 Related Work 115

Figure 4.1, ContainerCloudSim uniquely enables researchers to consider resource manage-
ment techniques for both virtualization types including the system level virtualization/
containers (Figure 2.2) and Operating System level virtualization/VMs (Figure 2.6) side
by side. For the Virtual Machine type, applications execute inside virtual machines and
for the CaaS model, applications execute inside containers while the containers are placed
in virtual machines. The proposed simulator models a container migration by stopping
the container on the source host and starting it with a realistic delay on the destination
host, which closely resembles current containerized environments. Moreover, Contain-
erCloudSim offers an environment to evaluate various (power-aware) resource manage-

ment algorithms by providing diverse power models in a data center.

4.2 Related Work

As discussed earlier, simulation environments can speed up the development process of
theoretical research by allowing repeatable experiments in a controllable environment [149].
Simulators enable the study of the effect of one parameter on the objective of research
while keeping the other parameters controlled, which might be difficult or sometimes
impossible to achieve in a real world scenario. Considering the significant benefits of
simulation for cloud computing environments, a number of simulators with various ob-
jectives were developed [49]. The simulators differ in considered performance metrics,
supported applications, and whether they consider power consumption or not.
MDCSim [108] is a commercial comprehensive and scalable simulation toolbox that
is used for in-depth analysis of multi-tier data centers. It models the underlying hard-
ware characteristics of data center components and estimates the power consumption
of data centers. Throughput and response time are considered as performance metrics
and the topology of the data center is supplied as a directed graph by the MDCSim net-
work package. MDCSim helps cloud users to examine different resource configurations
to improve the performance of web applications while keeping the power consumption
low. Likewise, GDCSim [74], as a simulation tool, is especially developed to help service
providers to test the impact of different data center physical designs and resource man-

agement algorithms on power consumption before deployment. GDCSim is extensible

116 Modeling and Simulation of Containers in Cloud Data Centers

so that the user can add new models of power consumption, resource management, and
cooling. Similar to GDSim[74] and MDCSim [108], ContainerCloudSim also enables users
to have an estimate of the data center power consumption by using the available built-in

or user-defined power models.

CloudSim is developed as an extensible cloud simulation toolkit that enables mod-
eling and simulation of cloud systems and application provisioning environments [26].
This toolkit provides both system and behavior modeling of cloud computing compo-
nents such as virtual machines (VMSs), data centers, and users. It also enables the evalu-
ation of resource provisioning policies in a cloud computing environment. The generic
application provisioning techniques implemented in CloudSim can be extended easily
with limited effort. It also supports modeling and simulation of both single and inter-
networked clouds (federation of clouds) and exposes custom interfaces for implementing
policies and VM provisioning techniques. In ContainerCloudSim, CloudSim is extended
to enable modeling a containerized cloud environment that is not currently supported by

CloudSim or any of its extensions.

Simulation Program for Elastic Cloud Infrastructures (SPECI) [148] is a simulation
toolkit that focuses on scalable design of cloud data centers. In addition, it is capable
of testing failure and recovery mechanisms. This enables exploring aspects of scalability
along with performance properties of future data centers. The objective of SPECI is sim-
ulating the performance and behavior of data centers having the size and middleware
design policy as input.

GroudSim [125] is a Java-based simulation toolkit especially designed for simulat-
ing scientific applications execution both on Grid and cloud infrastructures. GroudSim
provides users with basic statistics and analysis after the simulation. It also supports
modeling of computational and network components, job submissions, and file trans-
fers. Similar to SPECI [148], failures in GroudSim can be modeled and integrated with
background load, and cost models. ContainerCloudSim can also be extended to incorpo-

rate the modeled application and machine failures.

Data center Simulator (DCSim) [152] is an extensible simulation framework devel-
oped aiming at investigating dynamic resource management techniques in Infrastructure

as a Service cloud deployment model. The key features introduced in DCSim include a

4.2 Related Work 117

multi-tier application model and the modeling of interactions and dependencies between
virtual machines (VMs). VM replication is another feature available in DCSim and is uti-

lized for handling increases in the workload.

GloudSim [42] is developed as a distributed cloud simulator based on the second
version of the Google traces considering virtualization technology (VMs). GloudSim in-
troduced three main features. The first feature is the ability to emulate resource utiliza-
tion of reproduced jobs as closely as possible to the real values in the trace. The second
feature is the simulator’s ability to precisely emulate the different event types such as
kill/evict based on the trace. Finally, the simulator can emulate more complex cases be-
yond the original trace investigating the challenges in resource management in cloud
computing environment. GloudSim can also reproduce check-pointing/restart events
considering the Google trace leveraging Berkeley Lab Checkpoint/Restart (BLCR) tool.
Like GloudSim [42], ContainerCloudSim also provides the support for incorporating the
cloud data centers’ resource utilization traces. Currently, the workload models of Planet-

Lab [127] is utilized as the container’s usage data.

iCanCloud [124] is a simulation tool that aims to predict the trade-offs between cost
and performance of a set of applications executed in a cloud data center. iCanCloud can
be used by different users including basic cloud users and distributed application devel-
opers. The simulation platform of iCanCloud provides a scalable, fast, and easy-to-use
tool helping users to obtain results quickly considering their budget limits. iCanCloud
is based on SIMCAN' and provides a graphical user interface that enables users to exe-
cute the experiments. In addition, it models network communication between machines
and supports parallel simulations, hence an experiment can be executed across multiple

machines.

In CloudAnalyst, Wickremasinghe et al. [164] extended CloudSim to enable applica-
tions workload description including the number of users, data centers, and cloud re-
sources along with the location of both users and data centers. CloudAnalyst can be
used by application developers or testers to determine the best strategic allocation of re-
sources among the available cloud data centers. Data centers can be selected strategically

considering the application workload and the available budget. Like iCanCloud [124],

1http://www.arcos .inf.uc3m.es/~simcan/

http://www.arcos.inf.uc3m.es/~simcan/

118 Modeling and Simulation of Containers in Cloud Data Centers

CloudAnalyst also provides a graphical interface which simplifies the process of build-

ing a number of simulation scenarios.

In TeachCloud [85], CloudSim is extended with a model for MapReduce application
and an integrated comprehensive workload generator called Rain. It enables experiments
with various cloud components including processing elements, storage, networking, and
data centers. Like the two aforementioned simulators [124,164], it also supports a graph-
ical interface that enables building and implementing customized network topologies.
It also provides a VL2 network topology model. TeachCloud, as a comprehensive and
easy-to-use tool, can be utilized as a educational tool that allows students to conduct

experiments in a cloud system.

CDOSim [56] is developed extending CloudSim to model response times, SLA vio-
lations, and costs of a cloud deployment option (CDO). CDOSim is oriented towards the
cloud user’s side instead of investigating the issues on the cloud provider side. The user
behavior can be supplied through workload profiles extracted from production monitor-
ing data. CDOSim can simulate any application as long as it can be modeled follow-
ing the Knowledge Discovery Meta-Model (KDM) [134]. The notion of million instruc-
tions per second (MIPS) unit in CloudSim is refined to the mega integer plus instruc-
tions per second (MIPIPS) unit. CDOSim is integrated in the cloud migration framework
CloudMIG [60] and is available as a plug-in for the CloudMIG Xpress tool. Contrary to
CDOSim [56], ContainerCloudSim is mainly focused on the provider’s side.

In NetworkCloudSim, Garg et al. [62] extended CloudSim to provide a scalable net-
work and generalized application model. It supports applications with communicating
elements including Message Passing Interface (MPI) and workflows. A network flow
model is designed for cloud data centers and bandwidth sharing is made possible. The
extension is developed in such a way that users can modify the network topology simply
by modifying a configuration file.

Contrary to NetworkCloudSim [62], GreenCloud [102] is developed as a packet level

simulator on top of the NS2 simulator [1].

GreenCloud is specifically designed to investigate power management schemes to
achieve an energy efficient data center. These schemes include both voltage and fre-

quency scaling, and dynamic shutting down of network and compute components. It

4.3 CaaS modeling requirements 119

8 3 3
F ° <)
o o =
Q >
¥ S 5
o o

J c

ContainerCloudSim Cloud Modeling Simulation

| Discrete Event Simulation Core

L =CloudSim= =)

Figure 4.2: ContainerCloudSim relations to the CloudSim ecosystem.

enables the capture of details of the energy consumption of data center’s computing and
network components. It also considers the packet-level communication patterns between
network components. Like CloudSim, ContainerCloudSim can also be extended to incor-
porate network components and the communications between containers.

In summary, in comparison to our proposed ContainerCloudSim, existing simulators
do not support modeling and simulation of containers in a cloud environment. They
primarily focus on system level virtualisation with virtual machine as the fundamental
component [25,42,56,62,74,85,102,124,125,152,164]. In comparison to other CloudSim
extensions [25,62,85,164], ContainerCloudSim has been developed on top of the CloudSim

core as depicted in Figure 4.2.

4.3 CaaS modeling requirements

Since Container as a Service (CaaS) is a newly introduced service in public cloud com-
puting environments, there is still a lack of defined methods and standards that can
efficiently tackle both application-level and infrastructure complexities. However, as
container technologies mature and are broadly adopted, research in this topic will also
emerge, proposing new algorithms and policies for containerized cloud environments.
To reduce the development time of these new approaches, there is need for an envi-

ronment that provides functionalities to enable robust experiments with various setups

120 Modeling and Simulation of Containers in Cloud Data Centers

ContainerCloudSim
| Workload Management Service Application Deployment Application ’ Application Monitoring |
Container Life-cycle Management]
| Service Container |
| M LIfe-CyS(:(:vliV(I:inagement ‘ Virtual Machine (VM) ’ |
| Resource Management Service Container Placement VM Placement Consolidation Service |
| Resource Allocation Service VM Allocation Service ’ ‘ Container Allocation Service ’ |
Power and Energy Consumption
| Monitoring Service Power Monitoring Service |
Data Center
| Management Service Host |

Figure 4.3: ContainerCloudSim simulator architecture.

allowing development of best practices in a containerized cloud context. In this respect,
we developed ContainerCloudSim which aims to provide support for modeling and sim-

ulation of containerized cloud computing environments including:

e Management interfaces for containers, VMs, hosts, and data centers resources in-
cluding CPU, memory, storage. Particularly, it should provide the fundamental
functionalities such as provisioning of VMs to containers, dynamic monitoring of

the system state, and controlling the application execution inside the containers.

e Functionalities which enable researchers to plug in and compare new container

scheduling and provisioning policies. Container scheduling policies determine

4.4 Simulator Architecture 121

how resources are allocated to containers and virtual machines, and can be ex-

tended to allow evaluation of new strategies.

e Investigation of energy efficient resource allocation ability of provisioning algo-
rithms. The simulation environment should provide basic models and entities that
can be utilized to evaluate the energy aware provisioning algorithms. To this end,

container migration and consolidation have to be supported.

e Support for simulation scalability, as the number of container in a CaaS environ-

ment is much higher than the number of virtual machines in a data center.

4.4 Simulator Architecture

ContainerCloudSim follows the same layered architecture of CloudSim, with necessary
modifications to introduce the concept of containers. In the proposed architecture of Con-
tainerCloudSim (depicted in Figure 4.3), Caa$S consists of containerized cloud data centers,
hosts, virtual machines, containers, and applications along with their workloads. For ef-

ficient management of Caa$S, the architecture benefits from multiple layers:

Workload Management Service: This service takes care of clients” application registra-

tion, deployment, scheduling, application level performance, and health monitor-

ing.

Container Life-cycle Management Service: This service is responsible for container life-
cycle management. This includes creating containers and registering them in the
system, starting, stopping, restarting, and migrating containers from a host to an-
other host, or destroying the container. In addition, this component is responsible
for managing the execution of tasks which are running inside the container and

monitoring their resource utilization.

VM Life-cycle Management Service: This service is responsible for VM management
and consist of VM creation, start, stop, destroy, migration, and resource utilization

monitoring.

122 Modeling and Simulation of Containers in Cloud Data Centers

Resource Management Service: This service manages the process of creating VMs/containers
on hosts/VMs that satisfy their resource requirements and other placement con-

straints such as software environment. It consists of four main services:

Container Placement Service: Containers are allocated to the VMs based on a

Container allocation policy defined in this service.

e VM Placement Service: VMs are allocated to hosts considering a VM alloca-

tion policy that is defined in the VM placement service.

e Consolidation Service: This service minimizes resource fragmentation by con-

solidating containers to the least number of hosts.

e Container Allocation Service: This service is equipped with policies that de-

termine how VM resources are allocated (scheduled) to containers.

e VM Allocation Service: This service is equipped with policies that determine

how hosts’ resources are allocated (scheduled) to VMs.

Power and Energy Consumption Monitoring Service: This services is responsible for mea-
suring the power consumption of hosts in the data center and is equipped with the

necessary power models.

Data Center Management Service: This services is responsible for managing data cen-
ter resources, powering on and off the hosts, and monitoring the utilization of re-

sources.

4.5 Design and Implementation

For implementing the aforementioned functionalities, CloudSim Discrete Event simula-
tor Core is used to provide basic discrete event simulation functionalities and modeling
of basic cloud computing elements. Since CloudSim entities and components communi-
cate through message passing operations, the core layer is responsible for managing the
events and handling interactions between components. The main classes of Container-
CloudSim are depicted in Figure 4.4. In this section, we go through the details of these
classes. ContainerCloudSim implementation is constituted of two main parts simulated ele-

ments and simulated services. The simulated elements include:

4.5 Design and Implementation 123

| SimEntity |

I Data Center l@—' Container Allocation Policy |

I Container RAM Provisioner \

Container BW Provisioner VM IQ’—‘I Host |

Container Scheduler I/U .
Container

9

Cloudlet Scheduler

Figure 4.4: ContainerCloudSim class diagram.

Data Center: The hardware layer of the cloud services is modeled through the Data

Center class.

Host: The Host class represents physical computing resources (servers). Their con-
figuration are defined as processing capability that is expressed in MIPS (million

instructions per second), memory, and storage.

VM: This class models a Virtual Machine. VMs are managed and hosted by a Host.

Attributes of VM are memory, processor, and its storage size.

Container: This class models a Container that is hosted by a VM. Attributes of

Containers are accessible memory, processor, and storage size.

Cloudlet: The Cloudlet class models applications hosted in a container in cloud data
centers. Cloudlet length is defined as Million Instructions (MI) and it has function-
alities of its predecessor in CloudSim package including StartTime and status of

execution (such as CANCEL, PAUSED, and RESUMED)

In addition, simulated services available in ContainerCloudSim are:

e VM Provisioning: The VM provisioning policy, which assigns CPU cores from the

host to VM, is considered as a field of the Host class. Similar to CloudSim, the

Host component implements the interfaces that provide modeling and simulation

124

Modeling and Simulation of Containers in Cloud Data Centers

of classes that implement CPU cores management. For example, VMs can have
dedicated cores assigned to it (pinning of cores to VMs) or can share cores with

other VMs in the host.

Container Provisioning: The simulator provides container provisioning at two lev-
els: VM level and container level. At the VM level, the amount of VM'’s total
processing power that is assigned to each container is specified. Whereas at the
container level the container can assign a fixed amount of resources to each of the
application services that are hosted on it. To enable compatibility with CloudSim, a
task unit is considered as a finer abstraction of an application service that is hosted
in the container. Time-shared and space-shared provisioning policies are imple-
mented for both levels in the current version of the ContainerCloudSim (as depicted
in Figure 4.5). In addition, ContainerRamProvisioner is an abstract class that rep-
resents the provisioning policy utilized for allocating the virtual machine’s memory
to containers. A container can be hosted on a VM only if the ContainerRamProvi-
sioner component assures that the VM has the needed amount of free memory. If
the memory requested by the container is beyond the VM’s available free memory;,
the ContainerRamProvisioner rejects the request. For provisioning the bandwidth,
the abstract class named ContainerBwProvisioner models the policy for provision-
ing of bandwidth of the containers. The role of this component is handling network
bandwidth allocation to a set of competing containers. This class can be extended

to contain new policies to include the requirements of various applications.

Figure 4.5 illustrates a simple provisioning scenario. In this figure, containers Al
and A2 are hosted on a host with 2 cores. In the space-shared scenario, only one
of the two A1l and A2 container can run at a given instance of time. Therefore, A2
can only be assigned the core when A1 finishes its execution. In this scenario, each
container requires 2 cores for its execution. However, in the time shared scenario,
each container receives a time slice on each processing core and each component
receives a variable amount of the processing power during its execution. The avail-
able amount of processing power for each container can be estimated through the
calculation of the number of active components that are hosted on each VM. The

provisioning policy is defined by ContainerScheduler, which is an abstract class

4.5 Design and Implementation 125

and is implemented by a VM component. More application-specific processor shar-

ing policies can be implemented by overriding the functionalities of this class.

A A

Core
Core

N
N

A2
1 AL 1 Al A2
Time Time
(a) Space-shared. (b) Time-shared.

Figure 4.5: Space-shared and time-shared provisioning concepts for containers Al and
A2 running on a VM.

e CloudletScheduler: The same relationship between container and VM helds be-
tween applications (called Cloudlets) and containers. The CloudletScheduler ab-
stract class can be extended to implement different algorithms to identify the share
of processing power among Cloudlets that are running in a container. Both types
of provisioning policies are included in the ContainerCloudSim package, namely
time-shared (ContainerCloudletSchedulerTimeShared) and space-shared (Contain-

erCloudetSchedulerSpaceShared) policies.

e CloudInformationService: The CloudInformationService (CIS) class provides re-

source registration, indexing, and discovering capabilities.

e ContainerAllocationPolicy: This abstract class represents a placement policy that
is utilized for allocating containers to VMs. The chief functionality of the Con-
tainerAllocationPolicy is to select the available VM in a data center that meets the
container’s deployment requirements including the container’s required memory;,
storage, and availability. Different placement policies, with different objectives, are

created by extending this class.

e VmAllocationPolicy: In addition to allocating VMs to hosts, this abstract class im-
plements the optimizeAllocation method that defines the consolidation policies in

container and VM levels.

126 Modeling and Simulation of Containers in Cloud Data Centers

e Workload Management: Highly variable workloads is one of the main character-
istics of cloud applications. In this respect, ContainerCloudSim also supports the
modeling of dynamic workload patterns of cloud applications in a CaaS environ-
ment. We leveraged the existing Utilization Model in CloudSim to determine re-
source requirements on container-level. The Utilization Model is an abstract class
and its getUtilization() method can be overridden by simulator users to obtain var-
ious workload patterns. The getUtilization() method input is the simulation time
and its output is the percentage of the required computational resource of each

Cloudlet.

e Data Center Power Consumption: To manage power consumption per host basis,
the PowerModel class is included. It can be extended (by overriding the getPower()
method) for simulating custom power consumption model of a host. getPower()
input parameter is the host’s current utilization metric while its output is the power
consumption value. By using this capability, ContainerCloudSim users are able to
design and evaluate energy-conscious provisioning algorithms that demand real-
time monitoring of power utilization of cloud system components. The total energy

consumption can also be reported at the end of the simulation.

4.5.1 Discrete Event Simulation Dynamics

The simulated processing of task units is managed inside the containers executing the
tasks. In this respect, at every simulation step, the task execution progress is updated.
Figure 4.6 depicts the sequence diagram of the updating process. At each simulation
time step, the method updateVMsProcessing() of the Data Center class is called. up-
dateVMsProcessing() method accepts the current simulation time as its input parameter
type. It then calls a method (updateContainersProcessing()) on each host to instruct them
to update the processing on each of their VMs. The process is recursively repeated for
each VM to update their container processing and for each container to update the appli-
cation processing. The method at the container level returns the earliest completion time
of jobs running on it. At VM level, the smallest completion time among all containers is

returned to the host. Finally, at host level the smallest completion time among all VMs is

4.6 Use Cases and Performance Evaluation

127

DataCenter

I |
L

UpdateVMsProcessing()

UpdateContainersProcessing()

VirtualMachine 0

I
!

Container 0

UpdateCloudletsProcessin

time of next event

time of next event

Container n

IJ

UpdateCloudletsProcessing()
time of next event

VirtualMachine n

UpdateC

Container 0

I

SPr ing()

UpdateCloudl| rocessin

time of next event

time of next event

14

Container n

UpdateC
time of next event

time of next event

UpdateVMsProcessing() !

T

UpdateContainersProcessing() ‘

VirtualMachine 0

Container 0

i

smallest time of next event

time of next event

UpdateCloudletsProcessin
time of next event

Container n

VirtualMachine n

UpdateContainersProcessing()

time of next event

deatecIoudletsProcessinff I

Container 0

UpdateCloudletsP i !
time of next even

Container n

UpdateCloudletsProcessin
time of next event

T
|
|
'

) update processing event

T

Figure 4.6: Data center internal processing sequence diagram.

returned to Data Center. The earliest time value returned to the Data Center class is used

to set the time in which the whole process will be repeated. An event is then scheduled in

the simulation core for the calculated time, which dictates the next simulation step, and

therefore progresses the simulation.

4.6 Use Cases and Performance Evaluation

To demonstrate the capabilities of ContainerCloudSim for evaluating resource manage-

ment policies, we present three use cases including the container overbooking, container

128 Modeling and Simulation of Containers in Cloud Data Centers

I Consolidation Manager l

V4 RN
Host I VMM I Host I VMM I

_— 3 _— 3

VM VM

Container Container Container Container Container Container
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Figure 4.7: A common architecture for the studied use cases: VMM sends the data includ-
ing the status of the host along with the list of the containers to migrate to the consoli-
dation manager. The consolidation manager decides about the destination of containers
and sends requests to provision resources to the selected destination.

consolidation, and container placement. Further, we evaluate the ContainerCloudSim in
terms of its scalability and container start-up delay modeling.

All the use cases leverage the same architecture depicted in Figure 4.7. In this archi-
tecture, the VMM deployed on top of physical servers sends the data including the status
of the host along with the list of containers that are required to be migrated to the consol-
idation manager. The consolidation manager, which is deployed on a separate machine,
decides about the new placement of containers and sends requests to provision resources

to the destination host.

4.6.1 Use Case 1: Container Overbooking

Table 4.1: Configuration of the server, VMs, and containers.

Server Configurations and power models (20 Servers)
Server type # | CPU [3GHz] (mapped on 37274 MIPS Per core) | Memory (GB) | P¥(Watt) | P (Watt) | Population
#1 ‘ 8 cores ‘ 128 93 ‘ 135 ‘ 20
Container and VM Types (200 Containers and 20 VMs in total)
Container Type # | CPU MIPS | Memory (GB) Population VM Type# | CPU [1.5GHz] (mapped | Memory(GB) | Population
(1 core) on 18636 MIPS Per core)
#1 4658 128 66 #1 2 cores 1 5
#2 9320 256 67 #2 4 cores 2 5
#3 1 core 4 5
#3 18636 512 67 ¥ 8 cores 3 5

Cloud users tend to overestimate the container size they require so that they can avoid

the risk of facing less capacity than the actually required by the application. The user’s

4.6 Use Cases and Performance Evaluation 129

0 2
©200 & S
£196 . s
g SR13 &
3185 * =
Q g
5 <
5172 * £
Qo o
£ ©210 *
21591+ ¢ ¢ & & %
10 20 30 40 50 60 70 80 90 2209 ¢ ¢ * ‘
_ £ 50 60 70 80 90
Percentile e

. . Percentile
(a) The number of containers which are suc-

cessfully allocated to the VMs considering (b) The number of container migrations hap-
each pre-defined percentiles of the workload. pened during the experiments.

Figure 4.8: Impact of container’s overbooking on the number of successfully allocated
containers along with the number of container migrations happened for the experiments
with the same number of allocated containers.

overestimation provides opportunity for the cloud providers to include an overbook-
ing strategy [153] in their admission control system to accept new users based on the
anticipated resource utilization rather than the requested amount. Overbooking strate-
gies manage the tradeoff between maximizing resource utilization and minimizing per-
formance degradation and SLA violation. ContainerCloudSim is capable of overbooking

containers by allocating resources for a specific percentile of the workload.

In this case study, to demonstrate this capacity of the simulator, we designed a cou-
ple of experiments to investigate the impact of container overbooking. In the designed
experiments, containers are placed on virtual machines according to a pre-defined per-
centile of their workload, which varied from 10 to 90. The workload traces are derived
from PlanetLab [127] and are used as the containers” CPU utilization. These traces con-
tain 10 days of the workload of randomly selected sources from the testbed that were
collected between March and April 2011 [15]. In order to eliminate the impact of the con-
tainer placement algorithm on the results, for all of the studied percentiles, we consider
First-Fit as our container placement policy.

In these experiments, we also utilized the consolidation capability of the simulator.
In this respect, the migration process is triggered if the host status is identified as over-
utilized /underutilized. A simple static threshold-based algorithm is utilized for this
purpose. Hosts with less than 70% or more than 80% CPU utilization are considered
overloaded or under-loaded respectively. When the migration is triggered because of an

overloaded host, the containers with the highest CPU utilization are chosen to migrate.

130 Modeling and Simulation of Containers in Cloud Data Centers

S —~~
=150 0.2
) - s
=2 5
=100 @
o 2
'}—E <>l:0.'|
g 50- _|
5] n
0 0.0

MC
MU|
MC
MU

(a

Naid

(b)

150- $

50

Energy Consumption(KWh)
o
o

MU

9
=
(©

Figure 4.9: Impact of container selection algorithm on the container migration rate (per 5
minute), SLA violations and the total data center energy consumption.

The simulation setup including the configurations of the servers, containers, and virtual

machines are all shown in Table 4.1.

As depicted in Figure 4.8a, the output of the simulation shows that the number of
successfully allocated containers decreases as the percentile increases. The higher per-
centile results in a smaller number of containers accommodated on each VM. The same
trend exists when the number of container migrations is considered (Figure 4.8b). The
volatility of the workload is the key factor that affects the percentile value. Thus, more

volatile workloads would show more difference in the simulation results.

4.6 Use Cases and Performance Evaluation 131

4.6.2 Use Case 2: Container Consolidation

Container consolidation is a promising approach to decrease energy consumption. Con-
tainerCloudSim supports this by modeling container migrations aiming at consolidating
containers to a smaller number of hosts. In ContainerCloudSim, a migration is triggered
either because a host is overloaded or under-loaded. To this end, a number of containers
should be selected for the migration list in order to rectify the situation. Utilizing Contain-
erCloudSim, researchers are able to study various selection algorithms and investigate the
efficiency of their proposed selection policies in terms of the desired metrics including
the data center energy consumption, container migration rate, and SLA violations.

The aim of this case study is utilizing ContainerCloudSim to investigate the container
selection algorithm effect on the efficiency of the consolidation process of the containers.
The same setup, as depicted in Table 4.1, is considered. However, in order to evaluate
the algorithms in a larger scale, a larger number of elements are considered in this case
study: the number of containers, VMs, and servers set to 4002, 1000, and 700 respectively.
Under-load and overload thresholds are fixed as in the previous use case and are 70% and
80% respectively. Containers are placed utilizing the First-Fit algorithm. The destination
host is also selected based on the First-Fit policy.

The two algorithms studied for containers selection are “MaxUsage” and “MostCor-
related”. The “MaxUsage” algorithm selects the container that has the biggest CPU uti-
lization while the “MostCorrelated” algorithm chooses the container whose load is the
most correlated with the server which is hosting it. Each experiment is repeated 30 times
as the workload is assigned randomly to each container. Then, results are compared and
depicted in Figure 4.9. The power consumption of the data center at time t (Py.(t)) is cal-
culated as Py (t) = Efisl P;(t), where Ng is the number of servers and P;(t) corresponds
to the power consumption of server; at time ¢t. CPU utilization is applied for estimating
the power consumption of each server as CPU is the dominant component in a server’s
power consumption [18]. The linear power model P;(t) = Pidle 4 (pmax — pide) s 1], , is
applied for calculating the servers power consumption, where Piidle and P/"** are the idle
and maximum power utilization of the server respectively and U;; corresponds to the

CPU utilization of server i at time ¢.

The SLA in this experiment is considered violated if the virtual machine on which the

132 Modeling and Simulation of Containers in Cloud Data Centers

container is hosted does not receive the required amount of CPU that it requested. There-
fore, the SLA metric is defined as the fraction of the difference between the requested and
the allocated amount of CPU for each VM. The SLA metric is shown in Equation 4.1 [15]
in which N;, Nym, and N, are the number of servers, VMs and containers respectively.
In this equation, CPU,(W],J.JP) and CPUa(vm]-,,v,tp) correspond to the requested and the allo-

cated CPU amount to vm; on server i at time tp.

NS Nvm NC CPUy Um] ir tp) CPUa(Um]J, tp)
SLA=)Y)" Z CPU, (om 1) (4.1)

i=1 j=1 p=1

As shown in Figure 4.9, adding the containers with the maximum CPU utilization
to the migration list results in less container migrations, energy consumption, and SLA

violations and thus should be the preferred policy to be utilized by CaaS providers.

80 $ 1 =
0.20 200 =
s
c —_ | _ = == g =
260 —_— R c
5 =0 —_ | g =
= S g-
| ©
?40 50.10 5100
£ S
o <}
< << (&)
520 #0.05 > 50
§ 3
c
0 0.00 w o
FirstFit MostFull Random FirstFit MostFull Random FirstFit MostFull Random

(a) (b) (©

Figure 4.10: Impact of initial container placement algorithm on the container migration
rate (per 5 minute), SLA violations, and data center energy consumption.

4.6.3 Use Case 3: Container Placement Policies

Various mapping scenarios between containers and virtual machines result in different
resource utilization patterns. Researchers can utilize ContainerCloudSim to study various
container to VM mapping algorithms. Therefore, in this case study, we demonstrate how
ContainerCloudSim is used to investigate the effect of container placement algorithms on
the number of container migrations, data center total power consumption, and result-
ing SLA violations. The same setup as of the Use Case 2 is applied. The three differ-
ent placement policies are evaluated: FirstFit, MostFull, and random. As depicted in

Figure 4.10, the MostFull placement algorithm, which packs containers on the most full

4.6 Use Cases and Performance Evaluation 133

virtual machine in terms of the CPU utilization, results in a higher container migration
rate. Consequently, the aforementioned algorithm results in higher violations and en-
ergy consumption. In contrast, FirstFit results in less number of migrations and energy
consumption, and thus should be the preferred policy to be utilized if the goal of the

provider is to reduce energy consumption.

4.6.4 Container and VM Start Up Delays

An important operation in cloud computing environments is instantiation of virtual ma-
chines. This time is non-negligible and can impact performance of applications running
on clouds. Virtual machine start-up delay of virtual machines was previously studied by
Mao et. al [110]. Based on this study, the current version of the simulator includes a static

delay of 100 seconds for every virtual machine.

Amazon Instance Type

3.00- ¢ O c4.4xlarge

A cd.large

+ m3.medium

x M4.4xlarge

< mé4.large

v t2.Medium
8 X t2.small

N
=)
=)

Startup Delay (second)

-
o
o

o 8
+

+ = =
- a
A B -] -] -] = -]
s = aye
§ - B A L ¥ % 1
0.25- ;¢ @ . 2 e = e ®a

=

0 1000 2000 3000 4000 5000
Number of Concurrent Containers

Figure 4.11: The container start up delay for running 1 to 5000 concurrent containers in
each of the studied Amazon EC2 instances.

Containers startup delay is also important, since live migration of containers is not ap-
plicable in real world scenarios. Therefore, the container migration is performed through

shutting down the container on the source host as soon as the same container is started on

134 Modeling and Simulation of Containers in Cloud Data Centers

the destination host. Likewise VMs, container startup delay can be set as a constant (Con-
stantsEx.Container STARTTUP_DELAY) in the current version of ContainerCloudSim.
The Docker containers startup delay has been recently studied for running one to 100
Ubuntu containers on top of one of the Amazon EC2 instances (c4.4xlarge)’. Each con-
tainer runs the server Uptime command. This command is used for identifying how long
a system has been running. The storage backend devicemapper is utilized along with an
Ubuntu Linux image. In order to have a better understanding of the startup delay, we
also followed the same setup. However, we increased the number of containers simulta-
neously executed from 100 to 5000 (adding one container at a time). The experiment is
conducted for other selected Amazon EC2 instance types. As illustrated in Figure 4.11,
the start up delays varies between 0.2 to 0.5 seconds for most of the cases. For the current
version of the simulator, we utilized the average container startup delay for all studied

instance types, which is equal to 0.4 seconds.

4.6.5 Simulation Scalability

As a containerized cloud simulator, ContainerCloudSim scales with minimal memory over-
head and execution time. In order to investigate the scalability of the developed simu-
lator, we ran the same experiment setup as Case 2 considering the MostFull algorithm
as the container initial placement policy. The same experiment is repeated for various
number of containers ranging from 50 to 5000. In order to have a fair comparison, the
number of available hosts and VMs are considered constant and equal to 700 and 1000
respectively. For each experiment, the execution time of the simulation, which is defined
as the time that it takes for the simulation to finish, and the memory utilization of the
Java program (simulation) are depicted in Figure 4.12. The experiment results show (Fig-
ure 4.12a) that the memory overhead for running 5000 containers is less than 200MB on
average. Considering the execution time, as it is depicted in Figure 4.12b, with every 1000
containers added the simulation time increases by 13 seconds only. It shows that Contain-
erCloudSim is scalable enough to enable simulation experiments on the scale expected in

the context of Container as a Service.

2Docker Performance Tests: http://www.draconyx.net/articles/some-docker—
performance—-tests.html

http://www.draconyx.net/articles/some-docker-performance-tests.html
http://www.draconyx.net/articles/some-docker-performance-tests.html

4.6 Use Cases and Performance Evaluation 135

|
|
7
|

Average Memory Usage (MB)
400
Il

200

50 500 1000 2000 3000 4000 5000

Number of Containers

(@)
o |
3] .
o e
—~ © 7 -
g
$ P
2 o | -
£s
-é o e
& o | e
139 e
o
0 1000 2000 3000 4000 5000
Number of Containers
(d)

Figure 4.12: Impact of increasing the number of containers on the average memory usage
and the execution time of the simulator.

136 Modeling and Simulation of Containers in Cloud Data Centers

10G dedicated .
= = == ==]GBL2VPN | L"\

<

TN

C Vg 1
> [
~— o I
29 ;
AN I
/ I
/ /
I : /
\ P4
\

Figure 4.13: Grid5000 infrastructure sites in France. The circles show the sites that are
distributed across the country.

4.6.6 Energy consumption overhead of CaaS

Simulators are designed and developed to imitate the real-world behaviour of the sys-
tems and processes [9]. As one of the objectives of ContainerCloudSim is enabling re-
searchers to compare the energy efficiency of various algorithms for different kinds of
virtualization technologies, it is important to incorporate the impact of these technolo-
gies on the server’s energy consumption.

ContainerCloudSim is designed in a way that user can plugin various server energy
model or the server’s power profile for different simulation scenarios. However, apart
from the impact that the user’s choice of power model would have on the simulation
results, one should also consider the overhead of different virtualization technologies on
server’s energy consumption especially when it comes to their comparison.

In order to investigate the energy consumption overhead of running containers inside
virtual machines, we utilized Grid5000 [19] infrastructure in which we are able to monitor
the energy consumption of the servers through the provided API. The experiments are

carried out using the clusters in Lyon site (See Figure 4.13). As we discussed earlier,

4.6 Use Cases and Performance Evaluation 137

CPU is the dominant component in a server’s power consumption [18], therefore in our
experiments we solely focus on the CPU utilization of our studied server and its impact
on its power consumption.

In order to generate CPU intensive workloads, we employed Stress® package and
we invoked the Stress command to stress all the available resources (CPU cores) for a
specific amount of time (2 minutes for our experiments). Additionally, for limiting the
CPU utilization from 10% to 100%, we utilized the CPU limit package *. For CPU loads
the Stress command is invoked for 2 minutes stressing all the available CPU cores, while
CPU limit is set to the load amount ranging from 10% to 100% with 10% increase in the
load for each cycle.

Energy consumption of the available virtualization technologies has been recently
studied indicating that containers outperform VMs in terms of both performance and
power consumption [53,117, 165] when running on bare hardware. To the best of our
knowledge, energy consumption overhead of running containers in VMs that is the case
in our studied cloud service model (CaaS) has not yet been explored. Hence, we studied
the energy consumption of a server in three different scenarios. In the first scenario, we
considered a bare-metal server with Debian Wheezy® as its operating system. While in
the second and third scenarios where the hypervisor based virtualization is studied, we
deployed the wheezy-x64-xen image®that is available on the Grid5000 platform. In the
first scenario, the Stress command is invoked in the server, while in the second scenario
it is used to generate the VM load. In the third scenario, the load is generated in each
container while containers are running on top of VMs. The generated load increases
every three minutes by 10% ranging from 10% to 100%.

In order to have a fair comparison, we considered the same setup for our virtualized
environments in the last two scenarios. We considered 4 VMs with 6 vCPUs, and 128
MB of memory. The operating system of these virtual machines is the same as the host
operating system that is SMP Debian Wheezy 3.16.36. We considered Xen version 4.1.4
as the hypervisor. For the container manager, we employed Docker version 1.12.1 and

considered one container per virtual machine for the third scenario. CPU of each docker

Shttp://people.seas.harvard.edu/~apw/stress/
4http://cpulimit.sourceforge.net/
Shttps://www.grid5000.fr/mediawiki/index.php/Wheezy-x64-base—-1.5
bhttps://www.grid5000.fr/mediawiki/index.php/Wheezy-x64-xen—-1.6

http://people.seas.harvard.edu/~apw/stress/
http://cpulimit.sourceforge.net/
https://www.grid5000.fr/mediawiki/index.php/Wheezy-x64-base-1.5
https://www.grid5000.fr/mediawiki/index.php/Wheezy-x64-xen-1.6

138 Modeling and Simulation of Containers in Cloud Data Centers

Table 4.2: Power Consumption of Taurus-7 Server

Virtualization type Average __power
consumption
Bare Metal 169.68
Xen 190.78
Docker running in Xen VMs | 194.88

Table 4.3: Average power consumption (W) of Taurus-7 Server when stressing CPU from
0% to 100% in virtualized environment

Load 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Powey 137.16 | 155 | 162 | 172.55 | 188.31 | 198.26 | 201 | 214 | 222.3 | 230.11 | 233.95

container is not limited so that it can occupy all the available resources of the virtual
machine that is hosting the container.

Like [117], we utilized the vCPU pining to dedicate a specific physical CPU to the
virtual CPU cores. In the virtualized scenarios, we pin each virtual CPU to one physical
core, while one of the VMs share one core of its physical CPU with the Domain-0 of Xen
hypervisor. The Domain-0 can specifically run on core 0 of the CPU core that is assigned
to it using the vcpu-set and vcpu-pin commands. We ran the experiments on Taurus-7
machine in Grid5000 lyon site. This machine has 24 cores of CPU, 31GB of RAM, and
557GB of hard disk drive (HDD).

As depicted in Table 4.2, Xen hypervisor increases the average power consumption by
12.43% when compared to the bare metal. As illustrated in this table, running containers
on top of virtual machines also increases the average power consumption of the server
by 4.1 watts when compared to running Stress command on VMs directly. This difference

on small scale can be considered almost negligible.

4.6.7 Empirical Evaluation:

In order to investigate the accuracy of the reported power consumptions data in Contain-
erCloudSim, we repeated the same experiment setup using simulation and studied the
reported power consumption. In the simulation, we considered one server, 4 VMs and
4 containers accordingly. In this respect, we utilized average power consumption data
of Taurus-7 server when stressing CPU from 0% to 100% in the real setup as depicted in

Table 4.3. The simulation results show that when the server load is equal to the loads de-

4.6 Use Cases and Performance Evaluation 139

Table 4.4: Average power consumption (W) reported in Grid5000 versus Container-
CloudSim

Load 3% | 16% | 24% | 33% | 38% | 76% | 84% | 89% | 92%
Grid5000 153.4 | 160.79 | 164.6 | 174.75 | 18633 | 222 225 230 | 230.55
Container- | 1o) | 4595 | 1662 | 1772 | 185.16 | 21898 | 225.42 | 22032 | 230.87
CloudSim

Error (%) 241 | 097 | 094 | 174 | 063 | 135 | 0189 | 03 0.14

picted in Table 4.3, reported power consumption exactly matches the real data. However,
for the CPU loads between these amounts (e.g. 24%) the power consumption is simulated
considering a linear relationship between the cpu utilization and the power consumption
for these gaps (e.g. the gap between 10% to 20%). Hence, we studied the reported power
consumptions of Taurus-7 when the server load falls between the gaps and observe the
difference between the reported and the real power consumption of the server. On aver-
age the simulated power consumption shows a negligible difference (around 1%) when
compared to the average power consumption of the server we obtained in the real setup
(Table 4.4). To further validate simulation results, we developed a system implementing
container placement policy and carried out experiments on Grid5000 testbed in France as

described below.

Container Placement System:

The system architecture is depicted in Figure 4.14. The Resource Allocator component de-
termines the placement of both containers and VMs. It then provides the list of machines,
and VMs that are required for hosting docker containers. As shown in Figure 4.14, the
output of the Resource Allocator is used for deploying the OS images on hosts. When
all the images are deployed on the required machines. The VM Provisioner component
creates VMs in every machines. Later, the Container Provisioner component creates con-
tainers in every virtual machine that is up and running. In this system, the Computing
Resource Usage Data collector and Power Usage Data Collector components are responsible
for collecting the data for the power consumption and resource usages of the machines
respectively. The power data is fetched using the available Kwapi API on the Grid5000”

infrastructure. For logging the utilization of the virtual machines, the xentop command is

7http ://kwapi.readthedocs.io/en/latest/

http://kwapi.readthedocs.io/en/latest/

140 Modeling and Simulation of Containers in Cloud Data Centers

Head Node

I

Nod 1
| —Create Docker Container—p{ VM 1
I
I

Host List Deploy Image VM m

—Create Docker Container

Resource
Allocator A 4

VM List VM provisioner

Create VMS

Create VMS

Container

I

I

I

|

I

:

]

provisioner I
Container List :
I

I

I

I

I

I

I

Nod n

[VM1
Create Docker Container-

L—Create Docker Container—»{ VM m

]

Compute Power Usage
Data Collector

Resource
Usage Data
Collector

Resource

Usage
Data

Grid5000
Power API

Xentop.

Xentop-

Figure 4.14: The Container Placement System architecture that is employed in the empir-
ical evaluation.

employed to get the average usage of VMs for the last 6 seconds. These two components

store the data in their relative databases.

Experiments and Results:

We did this study to demonstrate the accuracy of the reported power usage of our pro-
posed simulator. In the Resource Allocator component for both containers and VMs place-
ment, we considered the well-known mostfull algorithm considering the allocated amount
of CPU for hosts and VMs. Here, we consider 3 homogeneous servers with 24 cores of
CPU, 31GB of RAM, and 557GB of disk. In terms of the virtual machines, we consider 4
VMs per host with 6 cores of CPU, 128 MB of memory, and 10 GB of disk. For contain-
ers, we consider 60 homogeneous ones with 1 core of CPU, and 12.8 MB of memory. In

the real world setup, if the container’s resources are not limited 8 the processes in the

8https ://docs.docker.com/engine/reference/run/

https://docs.docker.com/engine/reference/run/

4.6 Use Cases and Performance Evaluation 141

Table 4.5: Average power consumption (W) reported in Grid5000 versus Container-
CloudSim for container overbooking

I?;iﬂ::ﬁle(mg Average Power (W) | Average Power (W) | Error (%) | Number of Hosts
Grid5000 ContainerCloudSim

20th 448.83 434.45 3.2% 2

80th 625.87 616.18 1.55% 3

container can use as much resource as they need and are available in the VM. The same
thing is simulated in ContainerCloudSim, therefore when the containers are assigned to
the virtual machines they can occupy all the CPU cores of the VM if available. For cases
where more than one container is running in a VM, the VM CPU is divided equally be-
tween containers when the VMs resources are fully utilized. For example, when two
containers request 100% of the VMs CPU, the virtual machine’s operating system assigns
50% of CPU for each container. The workload traces are derived from PlanetLab [127]
and are used as the containers” CPU utilization. We utilized Stress package to simulate
these workloads in the real setup. The container’s CPU usage is updated every 3 minutes

and the experiment runs for the first 10 CPU load reported by PlanetLab [127].

The experiment is carried out utilizing the Orion cluster of site Lyon of Grid5000 in-
frastructure. The machines in this cluster has the same architecture and characteristics
as Taurus-7 machine that was used for the previous experiment. This experiment is also
simulated using ContainerCloudSim and the average power consumption reported by
this simulator is compared with the amounts we observed in the real implementation.
As we discussed in Section 4.6.1, overbooking containers based on the percentile of the
workload affects the number of required virtual machines and consequently the number
of required servers as containers are allocated to VMs based on the predefined percentile
of the workload. As shown in Section 4.6.1, increasing the percentile increases the num-
ber of required hosts and consequently increases the energy consumption. As shown in
Table 4.5, for both of the 20th and 80th percentiles the differences between the reported
power consumption in the real setup and simulation is less than 5% that can be consid-
ered negligible. In addition, both of the approaches (real implementation and simulation)
indicate around 30% improvements in terms of energy when considering 20th percentile

of the workload for overbooking containers.

142 Modeling and Simulation of Containers in Cloud Data Centers

4.7 Conclusions

In this chapter, we discussed the modeling and simulation of containerized computing
environments as they are currently one of the dominant application deployment models
in clouds. We proposed the ContainerCloudSim simulator architecture and implemented
it as an extension of CloudSim. The simulator architecture is explained in details and we
carried out three use cases and demonstrated effectiveness of the ContainerCloudSim for
evaluating resource management techniques in containerized cloud environment.

The scalability of the simulation is also verified and the approach for modeling con-
tainer migration is validated in a real environment. Our experiment results demonstrated
that ContainerCloudSim is capable of supporting simulations on the scale expected in the
context of CaaS. ContainerCloudSim enables researchers to plug in and compare their con-
tainer scheduling and provisioning policies in terms of energy efficiency and SLA com-
pliance.

We also verified the accuracy of the power consumption reported by the Container-
CloudSim, repeating the experiments in a real setup utilizing the resources of Grid5000
cluster. The results show that the simulator can report the energy consumption with less
than 3.2% error. The availability of a container simulation toolkit provides a controllable
and repeatable environment for investigation of the container-level resource manage-
ment algorithms. Hence, in the next chapter, we study the efficiency of a number of
container consolidation algorithms and evaluate their performance in terms of energy

consumption using ContainerCloudSim.

Chapter 5

Efficient Container Consolidation in
Cloud Data Centers

One of the major challenges that cloud providers face is minimizing power consumption of their
data centers. As we discussed containers are increasingly gaining popularity and going to be major
deployment model in cloud environment and specifically in Platform as a Service. This chapter focuses
on improving the energy efficiency of servers for this new deployment model by proposing a framework
that consolidates containers on virtual machines. We first formally present the container consolidation
problem and then we compare a number of algorithms and evaluate their performance against metrics
such as energy consumption, Service Level Agreement violations, average container migrations rate,
and average number of created virtual machines. We also investigate the virtual machine consolidation
efficiency considering the same algorithms applied for the container consolidation problem. We showed
that container consolidation is more energy efficient than VM consolidation. Our proposed framework
and algorithms can be utilized in any containerized cloud environment including private clouds to
minimize energy consumption, or alternatively in a public cloud to minimize the total number of hours
the virtual machines leased. The algorithms are evaluated through simulation using our implemented

simulator which is briefly discussed in Chapter 4 .

5.1 Introduction

LOUD computing environments offer numerous advantages including cost effec-
C tiveness, on-demand scalability, and ease of management . The aforementioned
cloud advantages has encouraged service providers to adopt them and offer solutions
via cloud models and consequently encourages platform providers to increase the un-

derlying capacity of their data centers to accommodate the increasing demand of new

This chapter is partially derived from: Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo
N.Calheiros, and Rajkumar Buyya, “A Framework and Algorithm for Energy Efficient Container Consol-
idation in Cloud Data Centers ,” Proceedings of the 11th IEEE International Conference on Green Computing and

Communications (GreenCom 2015), Pages: 368 - 375, Sydney, Australia, 2015.

143

144 Efficient Container Consolidation in Cloud Data Centers

customers. As mentioned in previous chapters, one of the main drawbacks of the growth
in capacity of cloud data centers is the need for more energy for powering these large-
scale infrastructures.

The Container as a Service (CaaS) cloud model that has been introduced by Google'
and Amazon Web Services is increasingly gaining popularity and going to be one of the
major cloud service models. A recent study [3] shows that VM-Container configurations
obtain close to, or even better performance, than native Docker (container) deployments.
However, improving energy efficiency in CaaS data centers has not yet been investigated
deeply. Therefore, in this chapter, we use ContainerCloudSim to model and tackle the
power optimization problem in CaaS.

As we mentioned, servers are still the biggest power consumers in a data center [174].
Therefore, in our proposed framework decreasing the number of running servers is con-
sidered as our objective, like the previous chapters. However, in this chapter this objec-
tive is met through container consolidation. Like any consolidation solution, our frame-
work should be able to tackle the consolidation problem in three stages. Firstly, it needs
to identify the situations in which container migration should be triggered. Secondly;, it
should select a number of containers to migrate in order to resolve the situation. Finally,
it should find migration destinations (host/VM) for the selected containers.

The rest of the chapter is organized as follows. Section 5.2 presents the related work.
In Section 5.3, the system objective and problem formulation are presented. Section 5.4
briefly discusses the system architecture and along with its components. Later in Sec-
tion 5.5, the algorithms are presented. Section 5.6 discusses the testbed and the experi-

ment results. Finally Section 5.7 presents the conclusion of the work.

5.2 Related Work

Unlike the extensive research on energy efficiency of computing [130,163] and network
resources [80,86,87,174] for virtualized cloud data centers, only few works investigated
the problem of energy efficient container management.

Ghribi [65] studied energy-efficient resource allocation in IaaS-PaaS hybrid cloud

1Google CaaS: https://cloud.google.com/container—engine/

https://cloud.google.com/container-engine/

5.2 Related Work 145

model considering both hypervisor-based and containerization technology. Although
their proposed algorithms can be applied for both VM and container allocation, the effec-
tiveness of these policies has not been compared for these two virtualization technology.
Spicuglia et al. [147] proposed OptiCA, which simplifies the deployment of big data
applications in CaaS. The aim of the proposed approach is to achieve the desired perfor-
mance for any given power and core capacities constraints. OptiCA focuses on effective
resource sharing across containers under resource constraints, while we focus on con-

tainer consolidation to reduce energy consumption.

Dong et al. [45] proposed a greedy container placement scheme, the most efficient
server first or MESEF, that allocates containers to the most energy efficient machines first.
Simulation results, using an actual set of Google cluster traces for modeling as task input
and machine set, show that the proposed MESF scheme can significantly improve the
energy consumption as compared to the Least Allocated Server First (LASF) and random

scheduling schemes.

Yaqub et al. [168] highlighted the differences between deployment models of IaaS and
PaaS. They noted that the deployment model in PaaS is based on OS-level containers that
host a variety of software services. As a result of unpredictable workloads of software
services and variable number of containers that are provisioned and de-provisioned,
Paa$S data centers usually experience under-utilization of the underlying infrastructure.
Therefore, the main contribution of their research is modeling the service consolidation
problem as a multi-dimensional bin-packing and applying metaheuristics including Tabu
Search, Simulated Annealing, and Late Acceptance to solve the problem. We also mod-
eled the container allocation problem; however, our solution focuses on application of

correlation analysis and light-weight heuristics rather than on metaheuristics.

In Chapter 3, we considered CaaS cloud service model and presented a technique for
finding efficient virtual machine sizes for hosting containers. To investigate the energy
efficiency of our VM sizing technique, we considered baseline scenarios in which vir-
tual machine sizes are fixed. Our approach outperforms the baseline scenarios by almost
7.55% in terms of the data center energy consumption. Apart from the energy perspec-

tive, our approach results in less VM instantiations.

146 Efficient Container Consolidation in Cloud Data Centers
Table 5.1: Description of symbols used in Section 5.3.
Symbol Description
Py (t) Power Consumption of the data center at time ¢
P;(t) Power Consumption of Server i at time ¢
Ns Number of servers
pidte Idle power Consumption of Server i
pprax Maximum power Consumption of Server i
Ui CPU Utilization percentage of Server i at time ¢
Nym Number of vins
N Number of containers
Uei i (1) CPU utilization of container k on (VM j, Server i) at time ¢
v Number of SLA Violations
ty The time t at which the violation p happened
omj; VM j on server i
CPU, (omjj, tp) CPU amount requested by VM j on server i at time ¢,
CPUﬂ(Umji, tp) CPU amount allocated to VM j at time ¢,
S(ix) Server i Capacity for resource r
uvmj,i(f) CPU Utilization of VM j on Server i at time ¢
UM i r) The capacity of resource r of VM j on server i
C(k,j,ir) The resource r capacity of container k on (VM j, server i)

5.3 System Objective and Problem Formulation

In this section, we briefly discuss the objective of our proposed system, which is min-
imizing the data center overall energy consumption while meeting the Service Level
Agreement (SLA). Firstly, we discuss the power model utilized for estimation of the data
center energy consumption and the SLA metric used for comparison of consolidation

algorithms. Symbols used in this section are defined in Table 5.1.

5.3.1 Data Center Power Model

The power consumption of the data center at time ¢ is calculated as follows:

Ns

Pyc(t) =} Pi(t)

i=1

(5.1)

For estimation of power consumption of servers, we consider the power utilization of the
CPU because this is the component that presents the largest variance in power consump-
tion in regards to its utilization rate [18]. Therefore, for each server i, CPU utilization

(U;;) is equal to Z]N:”T Z,Z(\il Ue. (t) and the power consumption of the server is esti-

5.3 System Objective and Problem Formulation 147

mated through Equation 5.2. When there is no VM on the server, it can be switched off to
save power. As our studied workload reports the utilization of the containers every five
minutes and the migration window is set for 5 minutes accordingly, the servers would
be able to boot and become available to process the workload on time. Study [166] show
that a blade server can be started and become available in 79 seconds and consumes only
11 watts while it is in its lowest power state (54).

pidle 4 (pmax — pidle) 4 Uiy, Nym >0;

Pi(t) = (5.2)
0, Nvm =0;

The energy efficiency of the consolidation algorithms is evaluated based on the data

center energy consumption obtained from Equation 5.1.

5.3.2 SLA Metric

Since in our targeted system we do not have any knowledge of the applications running
inside the containers, definition of the SLA metric is not straightforward. In order to sim-
plify the definition of the SLA metric, we defined an overbooking factor for provisioning
containers on virtual machines which is defined by the costumer based on the percentile
of the application workload at the time the container request is submitted. Hence, SLA
is violated only if the virtual machine on which the container is hosted on do not get the
required amount of CPU that it requested. In this respect, the SLA metric is defined as
the fraction of the difference between the requested and the allocated amount of CPU for

each VM (Equation 5.3 [15]).

Ns Nym Ny CPUr(Um]',i,tp) — CPUa(Um]',i, tp)
CPU,/(UTH]',Z', tp)

SLA =

5.3.3 Problem Formulation

In order to minimize the power consumption of a data center with M containers, N VMs
and K servers, we formulate the problem as follows:

Ns

min(Pac(t) = Y, P(1)) 54)

i=1

148 Efficient Container Consolidation in Cloud Data Centers

Considering the following constraints:

NVm
Z uvmj,i(t) < S(i,r)r Vie [1/ Ns], Vr € {CPU} (5.5)
=1
Nym
)3 o iy < S(iyy, Vi € [1, Ny
= (5.6)
, Vr € {BW, Memory, Disk}
Nc
Z uc(k,j,i)(t) < OM(jir), Vj € [1, Nym|
= (5.7)
, Vi€ [1,Ns], Vr € {CPU}
N,
Z Clkjir) < UM (jir)s V] € [11 Nvm]; Vi e [1, NS]
! (5.8)

, Vr € {BW, Memory, Disk}

Equation 5.5 ensures that CPU utilization of virtual machines on each host does not
exceed the host’s CPU limit. Equation 5.6 ensures that the amount of required memory,
disk, and bandwidth of co-located VMs do not exceed the host’s resource limits. Equa-
tion 5.7 also ensures that the CPU utilization of co-located containers do not exceed the
CPU limit of the VM that is hosting the containers. Finally, Equation 5.8 enforces that
accumulated memory, disk, and bandwidth requested by the containers are not bigger
than the VM’s memory, disk, and bandwidth capacity.

Although optimization toolkits can be employed to find a near-optimal solution for
the above-mentioned problem, the computation time and complexity increases exponen-
tially with the number of containers. Therefore, in section 5.5 we evaluate a set of heuris-

tic algorithms that can obtain near-optimal solution with less computational overhead.

5.4 System Model

The proposed model targets a CaaS environment where applications are executed on con-
tainers. Users of this service submit requests for provisioning of containers. Containers

run inside virtual machines that are hosted on physical servers. Both physical servers

5.4 System Model 149

and VMs are characterized by their CPU performance, memory, disk, and network band-
width. Likewise, containers are characterized by the demand of the aforementioned re-
sources. The objective of the system is to consolidate containers on the smallest number
of VMs and consequently the smallest number of physical servers. The framework con-
sists of "Host Status’ and ‘Consolidation” modules that are shown in Figure 5.1 along with

their components.

l_Host Status Module —I
— S —— — = —— — 1
I I_Host Status Module _I
I ™ "Host status . - N
| If Over-loaded| Container Container
Module L .
| Selector Migration List |
Host Host
Over-Load/Under-Load e
Load Detector |
= If Over-loaded
[
>
o
]
&
oo |E T Tormionsm] | !
Consolidation ‘lfler't°f_ ‘:
Module ostLis
i - -
Under-loaded Host Over-load Destination
VM Creator Destination Host/ VI
\ 4 ¥

Under-load Destination Selector

Containers to Migrate
All Containers are Migratable

| Destination Host/ VM. Destination List

List Selector |
—l No placen:ent Found I NI

Under-loaded Host VM-Host Migration Manager
Deactivator

- J

Figure 5.1: System Architecture and Processes.

150 Efficient Container Consolidation in Cloud Data Centers

Algorithm 5: Overview of the Container Selector process.

Input: serverContainerList(SCL)
Output: SelectedContainersList
1 while host status is Overloaded do
2 container <—
3 | ContainerSelectionAlgorithm.getContainer(SCL)
SelectedContainersList.add(container)
4 SCL.remove(Container)

5.4.1 Host Status Module

The host status module executes on each active hosts in the data center and consists of

three main components as follows.

Host Over-load/ Under-Load Detector

The host over-load /under-load detection algorithms, that will be discussed in Section 5.5,
are both implemented in this component. The component checks the resource utilization
of the host every five minutes. If the host is identified as under-loaded, the detector sends
the host ID and the IDs of all the containers running on the host to the consolidation mod-
ule. This is done in an attempt to shut down the under-loaded host if the consolidation
module can find new destinations for all the containers. However, if the host status is
identified as over-loaded the detector sends a request to activate the Container Selector

component.

Container Selector

The container selection algorithm, which will be discussed in Section 5.5, is implemented
in this component. The component is activated whenever the host is identified as over-
loaded and the container selection process continues until the host status is no longer

over-loaded (Algorithm 5).

5.4 System Model 151

Algorithm 6: Over-loaded Destination Selection process.

Input: overLoadedHostList(SCL), CMLs,activeHosts

Output: Destination(hostld, Vmld)

containerList.add All(CMLs)

availableHostList(AHL) < activeHosts.removeAll(SCL)
containerList.sortByCPUUftilization()

foreach container in containerList do

destination < HostSelectionAlgorithm.getplacement(AHL,container)
if destination # null then

L containerList.remove(container)

W S Ul kR WN -

Send destination and container.getId() to Destination List Component

9 else
10 L Send container to VM Creator component

11 Activate the VM Creator component.

Container Migration List (CML)

The information about containers selected by the Container Selector are saved in CML

and are submitted to the consolidation module.

5.4.2 Consolidation Module

The consolidation module is installed on a separate node and can be replicated to avoid
single point of failure. This module identifies an appropriate destination for the selected

containers to be migrated.

Over-loaded Host List

It stores hosts that are identified as over-loaded by their status.

Over-loaded Destination Selector

This component finds the appropriate destination for the containers in the received CMLs
utilizing the host selection algorithm which will be discussed in Section 5.5. The process

of this component is shown in Algorithm 6.

152 Efficient Container Consolidation in Cloud Data Centers

Destination List

Data received from the Overloaded Destination Selector component, which contains the
container ID along with the host and the VM ID of the migration destination, are stored

in this list.

VM Creator

This component is responsible for estimating the number of required VMs to be instan-
tiated in the next processing window. The estimation is done based on the number of
containers for which the over-load destination selector was unable to assign an appropri-
ate host or VM as the destination. The priority of this component is creating the largest
VM possible on under-loaded hosts and assigning the containers to these new VMs. If
any container is left, it then chooses a random host from the inactive hosts and creates

VMs on this host.

Under-loaded Host List

Hosts that are found to be under-loaded by their status module are stored in this list.

Under-loaded Destination Selector

Considering the under-loaded host list and the destinations decided by the over-load
destination selector, this component finds the best destination for containers from the
under-loaded hosts (Algorithm 7) using the host selection algorithm discussed in the
next section. If this component finds an appropriate destination for all the containers of
an under-loaded host, it then sends the destination of the containers together with the
destinations decided by the over-loaded destination selector to the VM-Host Migration
Manager component. It also sends the host ID to the Under-loaded host deactivator

component.

5.5 Algorithms 153

Algorithm 7: Under-loaded Destination Selector process.

Input: destinationList(DL), underloadedHostList(UHL),activeHosts
Output: ContainersToMigrateList

1 availableHostList(AHL) < activeHosts.removeAll(hosts in DL)
2 ContainersToMigrateList.add All(DL)
3 UHL.sortByCpuUtilizationInDescendingOrder()
4 foreach host in UHL do
5 if host.getld() is in DL then
6 L continue
else
8 AHL.remove(host)
9 containerList <— host.getContainerList() foreach container in containerList
do
10 destination < HostSelectionAlgorithm.
11 getplacement(AHL,container)
12 if destination # null then
13 containerList.remove(container)
14 L tempDestList.add(destination)
15 if containerList.size() is equal to 0 then
16 ContainersToMigrateList.add All(tempDestList)
17 Send the host.getID() to the Under-loaded host deactivator component.
18 else
19 L AHI.add(host)

20 Send ContainersToMigrateList to the Migrate to VM-Host Migration Manager
component.

VM-Host Migration Manager

The containers ID together with the selected destinations are all stored by this compo-

nent, and are used for triggering the migration.

Under-loaded Host Deactivator

It switches off under-loaded hosts that have all their containers migrated.

5.5 Algorithms

In this section, we briefly discuss the algorithms implemented in the components of the

‘Host Status” and ‘Consolidation” modules of the proposed framework. As we use corre-

154 Efficient Container Consolidation in Cloud Data Centers

lation analysis in the algorithms, we start with a brief description of the Pearson’s corre-

lation analysis.

5.5.1 Correlation Analysis

The Pearson’s correlation analysis of the container’s CPU load X and host (CPU) work-
load Y performed by the selection algorithms are discussed here. This analysis results in
an estimate named “Pearson’s correlation coefficient” that quantifies the degree of depen-
dency between two quantities. According to Pearson’s analysis, if there are two random
variables X and Y with n samples denoted by x; and y;, the correlation coefficient is calcu-
lated using Equation 5.9 where X and i denote the sample means of X and Y respectively

and ry, varies in the range [—1, 4-1].

(5.9)

The more closer the correlation coefficient of X and Y gets to +1, the variables are
more likely to have their peak/valley together. In other words, if the container workload
is not correlated with the host load, there is less probability of that container causing the

host to get over-loaded.

5.5.2 Host Status Monitor Module

We briefly discuss the algorithms that are implemented for each of the module’s compo-
nents including the “Host Overload and under-load Detector” and “Container Selector

components”.

Overload and Under-load Detection Algorithms

These algorithms are implemented in the Host Over-load/Under-load Detector component
and are responsible for identifying host status. We consider static thresholds T,,; and
T,; as the criteria for over-loaded or under-loaded host detection respectively (Equa-

tion 5.10).

5.5 Algorithms 155

Overloaded, if Ugyp > Ty
Under-loaded, if Uy < Tu

Host Status = (5.10)

Container Selection Algorithms

This algorithm is implemented in the Container Selector component and is responsible for
selecting a number of containers to migrate from the over-loaded hosts so that the host
is no longer over-loaded. The selected container list is saved in the Container Migration
List and passed to the consolidation module to find a new VM for the containers. We

consider two policies as bellow:

e Maximum Usage (MU) Container Selection Algorithm: In this policy, the con-
tainer that has the maximum CPU usage is selected and added to the migration

list.

e Most Correlated (MCor) Container Selection Algorithm: In this policy, the con-
tainer that has the most correlated load with the host load is chosen and added to

the migration list.

5.5.3 Consolidation Module

The algorithms in this section are implemented in the consolidation module where the
new destination is assigned for the CMLs received from the over-loaded hosts and the
containers of the under-loaded hosts. The new destination contains the new host ID and

the VM ID that the container should be migrated to.

Host Selection Algorithms

The host selection algorithm is implemented in the Overload and Under-load destination
Selector components. The output of the algorithm contains the host and VM ID of the
migration destination. The following host selection algorithms are studied in this chapter.
In all the following selection methods, the virtual machine is chosen using the First-Fit

algorithm based on a given percentile of the container’s CPU workload.

156 Efficient Container Consolidation in Cloud Data Centers

Algorithm 8: Correlation Threshold Host Selection Algorithm.

Input: availableHostList(AHL), container, correlation Threshold (0 < thr < 1),
AlternativeHostSelectionAlgorithm
Output: destination
1 find < false
2 containerloadHistory <— container.get Load History/()
3 if containerloadHistory.size() is less than 5 then
/* Find a host utilizing a substitute policy. */
4 destination < AlternativeHostSelectionAlgorithm.getHost(container, AHL)
5 find < true

6 while /find do

7 foreach host in AHL do
8

9

hostloadHistory < host.getLoadHistory()
cor <—Compute the correlation between hostloadHistory and
containerLoadHistory

10 if cor < thr then

11 if host.allocate(container) then

12 destination <host.getld(), host.getVmld(container)

13 find < true

14 break

/* If no hosts are found then relax the threshold by 0.1
*/

15 cor < cor + 0.1

16 if cor > 1 then

/+ Stop the search, cor can not be bigger than 1. */
17 destination < null
18 break

e Random Host Selection Algorithm (RHS): It selects a random host from the avail-

able host list AHL that can host the container on at least one of its VMs.

e First Fit Host Selection Algorithm (FFHS): Chooses the first host of the available

host list (AHL) that meets the container’s resource requirements.

o Least Full Host Selection Algorithm (LFHS): The AHL list is sorted according to
its CPU utilization in descending order. Then, the first host in the sorted AHL
that meets the resource requirements of the container is selected as the migration

destination.

e Correlation Threshold Host Selection Algorithm (CorHS): The algorithm first checks

5.6 Performance Evaluation 157

Table 5.2: Server Configurations and power models (700 Servers)

Server | Number of CPU Cores, CPU idle max

Memory | P P .
type | [3GHz] (mapped on 37274 (GB) (Watt) | (Watt) Population
MIPS Per core)
#1 4 64 86 117 234
#2 8 128 93 135 233
#3 16 256 66 247 233

if the CPU workload history of containers and hosts are adequate for correlation
analysis. In a case that the workload history is not available, it simply uses an al-
ternative algorithm such as LHFS and RHS. If the workload history is available, the
tirst host that meets the initial correlation threshold constraint and can accommo-
date the container on one of its VMs is chosen. If no host is found, the threshold is

relaxed by 0.1 until a host is found (Algorithm 8).

5.6 Performance Evaluation

In this section, we discuss the simulation setup along with the experiment results for
both container and virtual machine consolidation separately. Further, the results of the
most energy efficient host selection algorithm are compared for both container and VM
consolidation considering three metrics including energy consumption, average number

of migrations and SLA violations.

5.6.1 Simulation Setup

We used ContainerCloudSim detailed in Chapter 4 to model a Caa$S provider. In our model,
we consider 0.4 seconds startup delay for each container? and 100 seconds startup delay
for VM creation [110]. These startup times are important as they directly affect the SLA
metric. SLA metric is affected since migrations would be delayed and hosts would re-
main in the overload status for a longer amount of time waiting for a container or a VM
to become available. In this chapter, we utilized static startup delays for both containers
and VMs, however, dynamic startup delays can also be considered for both VMs and con-

tainers where more information is available about the application types that are running

2Docker Performance Tests: http:/ /sickbits.net/some-docker-performance-tests /

158 Efficient Container Consolidation in Cloud Data Centers

Table 5.3: Configuration of containers and VMs.

Container Types(5000 Containers in total)

Container Type # | CPU MIPS (1 core) Memory (MB) | Population
#1 4658 128 1666
#2 9320 256 1667
#3 18636 512 1667

VM Types (1000 VMs in total)
Number of CPU cores,
VM Type # CPU [1.5GHz] (mapped | Memory(GB) | Population

on 18636 MIPS Per core)
#1 2 cores 1 256
#2 4 cores 2 256
#3 1 core 4 256
#4 8 cores 8 256

inside these components. For example databases might take longer to become available
than other kinds of applications such as web servers.

A data center with 700 heterogeneous servers of three different types is simulated
(Table 5.2). Characteristics of each server together with VM and container configurations
is shown in Table 5.3. Network bandwidth is 1 GB/s, 10 MB/s, and 250 KB/ s for servers,
VMs, and containers, respectively. Disk bandwidth is 1 TB, 2.5 GB, and 0.1 GB for servers,
VMs, and containers, respectively.

In order to evaluate the algorithms considering the aforementioned simulation setup
and configurations, we applied the workload traces from PlanetLab [127]. These traces
contain 10 days of the workload of randomly selected sources from the testbed that were
collected between March and April 2011 [15].

Each container is assigned to one of the workloads containing one day of CPU uti-
lization data which is reported every 5 minutes. In order to consolidate more containers
on each virtual machine, a predefined (e.g. 80th) percentile of the workload is considered

while packing the containers on the VMs using the First Fit algorithm.

5.6.2 Experiment Results

In this section, we investigate the impact of the algorithms presented in Section 5.5 for
both container and virtual machine consolidation in a containerized cloud environment.
The main objective is studying the efficiency of the container consolidation when com-

pared to traditional virtual machine consolidation.

5.6 Performance Evaluation

159

Table 5.4: Experiment sets, objectives, and parameters for container consolidation.

Set Investigating the Conta'mer UL OL Percentile
Impact of: Selection

#1 | OL Threshold MU 70% [80%,90%,100%] | 80

#2 | UL Threshold MU [50%,60%,70%]| 80% 80

g3 | container selection | s nreo | 700, 80% 80
policies

g4 | Overbooking of |y, 70% 80% [20, 40, 80]
containers

Table 5.5: Tukey multiple comparisons of means for energy consumption of the data
center for the studied over-load thresholds.

Overload Thresholds | Difference of Means | 95% Confidence Interval | P-Value
90% - 80% -5.93 (-9.40, -2.46) < 0.001
100% - 80% -10.42 (-13.89,-6.95) < 0.001
100% - 90% -4.49 (-7.93,-1.04) < 0.001

For both cases, we also studied the effect of the parameters of algorithms on the sys-
tem performance and data center energy consumption. Four sets of experiments were
conducted with different objectives and each experiment on each set is repeated 30 times,
the variation in the simulation is resulted from random assignment of workload to each

container.

Container Consolidation

The results of the experiments are compared considering four metrics, namely SLA viola-
tions (as discussed in Section 5.3), energy consumption, container migrations rate (num-
ber of containers migrated in each 5 minutes time slot), and average number of VMs
created during the 24 hours simulation period.

Impact of the Over-load (OL) Threshold: We investigated the effect of the OL thresh-
old in the Host Over-load/Under-load Detector component that identifies the host status. As
shown in Table 5.4, the OL threshold varied from 80% to 100% while the other parameters
remained stable . Figure 5.2 shows that, for all the algorithms, increasing OL decreases
the container migration rate since less hosts would be identified as over-loaded and less
number of containers would be chosen to migrate. This decrease in the container migra-
tion rate results in less number of VM creations. On the other hand, higher ‘OL threshold’

increases the probability that the VMs could not get the required resources for the con-

160 Efficient Container Consolidation in Cloud Data Centers

;:O

Sln e _

2 |O oL-80% 5 - .
© OL - 90% ESA OL—SOD/o
= I OL - 100% 0 OL - 90%
= O 4- OL - 100%
o =

(O]
0O | >8 |

SO o

< o>

8 -

o - 3:0—

CorHS FFHS LFHS RHS

CorHS FFHS LFHS RH
(a) Average container migrations rate per 5 min-

(b) Average number of created VMs.

utes.

= | 80 \ 90 100 80 90 100

= +

300 R R A B

= -~ == T T R0.075 =

2 5 o R

£200° S) % .

©0.050 =5 =

2 o = =

2 Rel

o >

o100 <0.025

& ®

—_

2 o 0.000
%) %) %) %) %) %)

MOZ22290 2229 2220 I222 T2292 229
Sohx o4 JE4sx sy gui4hshe Sk4sx
(c) Data center energy consumption. (d) SLA Violations

Figure 5.2: Impact of over-load detection threshold OL on container migration rate, cre-
ated VMs, data center energy consumption, and SLA violations.

tainers to run and this would increase the SLA violations. The results we obtained from
the Anova and Tukey multiple test (See Table 5.5) also verifies that OL threshold has a
significant effect with a P — Value < 0.01 on the data center energy consumption. For
CorHS and FFHS, 80% is the most efficient threshold in terms of the energy consumption.
For LFHS and RFHS 100% is the best option in terms of the energy efficiency, however
as Figure 5.2 depicts average SLA violation considerably raises when compared to 80%
and 90% thresholds. CorHS with 80% over-load threshold consumes 7.41% less energy
on average when compared to other experiments with a reasonable average SLA viola-
tions (less than 5%). Performing the Anova and Tukey tests on the 80% OL threshold
data verified that the energy consumption improvement by the CorHS is significant with
a P — Value < 0.001 when compared to the other algorithms. When compared to FFHS
that is the closes algorithm in terms of the data center energy consumption, CorHS shows

a 20.22 KWh difference in the mean with a 95% confidence interval between 16.55 and
24.09.

5.6 Performance Evaluation 161

c c —
cO i)
't*_-U'LO E] UL - 50% Ega UL—5OZ/o
5 UL - 60% 08 UL - 60%
5 - UL - 70% O i - UL —70%
2 Sg
-%O o<
g s
3 o
Oo 3: o -
CorHS FFHS LFHS RH CorHS ~FFHS LFHS RH
(a) Average container migrations rate per 5 min- (b) Average number of VMs created during the
utes. simulation.
= 7
§ ;0 . 0. 50 60 70
—_— T -+ ——
== 1
%,300 = === FRe= == _
8 320.075
£200 5 C
=] -
©0.050 $$ e
2 °© $$ | == é
G100 S e B
> <€0.025
< =l £
o w
2o
0 oo ® o % o 0.000
IT22 1222 1229 Q0w D wnn CRYROR
LIy sy 56kigy ITTrT® TP Tz ?
° © © gbEhe §ise kb
¢) Energy Consumption of the data center durin; L
’Eh)e simliglztion P J (d) SLA violations.

Figure 5.3: Impact of under-load detection threshold UL on container migration rate,
created VMs, data center energy consumption, and SLA violations.

Table 5.6: Tukey multiple comparisons of means for energy consumption of the data
center for the studied under-load thresholds.

UL Thresholds | Difference of Means | 95% Confidence Interval | P-Value
60% - 50% -3.64 (-7.27 ,-0.01) 0.049
70% - 50% -12.04 (-15.67 ,-8.41) < 0.001
70% - 60% -8.40 (-12.03,-4.77) < 0.001

Impact of the Under-load (UL) Threshold: As illustrated in Table 5.4, for this set
of experiments we vary the UL threshold while keeping the other parameters fixed. As
shown in Figure 5.3, decreasing the under-load threshold increases the number of con-
tainer migrations since more hosts would be identified as under-loaded as the threshold
increases. Higher container migration rate results in more VMs to be created to host the
migrating containers. This means more SLA violations since the container needs to wait
for the VM to start-up. 70% is the most energy efficient threshold for all the algorithms
except for LFHS because of the bigger gap between the number of the VMs created in 70%
under-load threshold and the other two thresholds (Figure 5.3c). Table 5.6 also indicates

162 Efficient Container Consolidation in Cloud Data Centers

%o 7EI MCor _5 0 MCor
TS m MU So m My
S Lo
S -
o) =
2O - S
£ o
s | 53
S g "
Uo , 5: o
CorHS FFHS LFHS RH CorHS FFHS LFHS RH
(a) Average container migrations rate per 5 min- (b) Average number of VMs created during the
utes. simulation.
= | MCor \ MU MCor MU
=400 —
= }

¥C/ = = | 0.15 é{
8300 == | &
Q ! © i
IS 50.10:
3200 S =5
S S — = |
O100! (/)0'05 . T = _. —
>
1o
20 , 0.00
L %) %) %) n v

I 22¢ $Z2g¢ Tt 222 1 Z22¢

S & 4 § o 4« S &k 4 & S k& 4 &

(c) Energy Consumption of the data center. (d) SLA violations.

Figure 5.4: Impact of container selection algorithm on container migration rate, created
VMs, data center energy consumption, and SLA violations.

Table 5.7: Tukey multiple comparisons of means for energy consumption of the data
center for the studied host selection algorithms considering the MCor container selection
algorithm.

Host Selection Algorithms | Difference of Means 95% CI P-Value
FFHS-CorHS 6.1 (2.40,9.8) < 0.001
LFHS-CorHS 38.37 (34.67 ,42.07) < 0.001

RHS-CorHS 26.08 (22.377329 ,29.774781) | < 0.001
LFHS-FFHS 32.27 (28.572744 35.970196) | < 0.001
RHS-FFHS 19.98 (16.28 , 23.68) < 0.001
RHS-LFHS -12.3 (-16,-8.6) < 0.001

that UL threshold can significantly affect the total energy consumption of the data center,
however the difference between the energy consumption for the 50% and 60% thresh-
olds is not significant. CorHS with 70% under-loaded threshold, outperforms the other
algorithms by 7.46% on average considering energy consumption with less than 5% SLA
violations (Figure 5.3). This difference is significant as verified by the Anova and Tukey
multiple comparison test with the P — Value < 0.001 when compared to other three host

selection algorithms.

5.6 Performance Evaluation 163

S O 20th Percentile S T
= _| 2 40th Percentile 2o 0O 20th Percent?le
ao M 80th Percentile o 8 b 40th Percentile
58 B O _|® 80th Percentile
5 Sg |
59 2 %
= - g -
o
OCo - Zod
CorHS ~ FFHS ~ LFHS RHS CorHS FFHS LFHS RHS
(a) Average container migration rate per 5 min- (b) Average number of created VMs during the
utes. simulation.
= 20 40 80 20 40 80
S = . T .
00 =] =TT £ —
c T = 1 2
g —_ ©0.075 %
£200 S ||
> = .
2 T0.050 = $ e .
5 e == $$ $ == $
G100 > i
> <0.025
_|
<)
= 9]
2o
] Doy ooy 2oo 0.000(__ : - —
TIIxz TIZTII TIIzZ Qouong ooy Loagp
SLYx SE4sx Su4sr srnf 5o s5nir
© © o Susx Sui¥ SuLick
(c) Energy Consumption of the data center during S
. . d) SLA Violations.
the simulation. (d)S tolations

Figure 5.5: Impact of overbooking of containers on migration rate, created VMs, data
center energy consumption and SLA violations.

Impact of Container Selection Policies As Figure 5.4 shows, since MU chooses the
container with the biggest utilization, it requires fewer containers to migrate when the
host is over-loaded and consequently results in smaller number of migrations. However,
this selection increases the number of VMs required as the migration destination since
most of the large containers are selected. Although the delay for starting containers is
smaller than for starting VMs, the higher container migration rate in MCor results in more
SLA violations than MU. We carried out T-tests on the energy consumptions reported by
all the algorithms, the T-test results show that container selection algorithm significantly
affects the amount of energy consumed in the data center with a 95% confidence interval
between 63.16 and 72.57 considering the differences between the average (mean) energy
consumption of MU (302.37 KWh) and MCor (370.23 KWh). Considering all experiments,
CorHS is the most energy efficient host selection algorithm with 7.45% less consumption
and less than 5% SLA violation. As illustrated in Table 5.7, this difference is significant
with a P — Value < 0.001.

164 Efficient Container Consolidation in Cloud Data Centers

Table 5.8: Tukey multiple comparisons of means for energy consumption of the data
center for the studied overbooking percentile for containers.

Overbooking Percentile | Difference of Means | 95% Confidence Interval | P-Value
40-20 15.27 (9.90,20.65) < 0.001
80-20 25.78 (20.40,31.15) < 0.001
80-40 10.50 (5.13,15.88) < 0.001

Table 5.9: Tukey multiple comparisons of means for energy consumption of the data
center for the studied host selection algorithms considering the 20th overbooking factor.

Host Selection Algorithms | Difference of Means 95% CI P-Value
FFHS - CorHS 26.77 (23.39,30.15) | < 0.05
LFHS - CorHS 45.53 (42.15,48.91) | < 0.05

RHS - CorHS 34.91 (31.54,38.29) | < 0.05
LFHS - FFHS 18.76 (15.39,22.14) | < 0.05
RHS - FFHS 8.14 (4.77,11.52) | <0.05
RHS - LFHS -10.62 (-14,-7.24) < 0.05

Impact of Container Overbooking: Overbooking is an important factor that affects
the efficiency of consolidation algorithms in terms of energy utilization and the SLA vi-
olations. Here, containers are allocated to VMs based on the predefined percentile of the
application workload running on each container (Table 5.4). The higher percentile results
in smaller number of containers accommodated on each VM. Therefore, as Figure 5.5
illustrates 20th percentile results in fewer VMs being created and consequently less en-
ergy consumption and more SLA violations. The number of container migrations is the
same for most of the algorithms since the variance of the workload is low and migration
decisions are based on the host load rather than VM load. As shown in Table 5.8, the over-
booking percentile significantly affects the energy consumption of the data center with
the P — Value < 0.001 for all the studied percentiles. As depicted in Table 5.9, CorHS
algorithm outperforms the other three algorithms in terms of the energy consumption
with a significant difference and a P — Value < 0.05 when the overbooking percentile is

set to 20 for containers.

VM Consolidation

The same setup and architecture is used for the virtual machine consolidation. However,
when a migration is triggered VMs, instead of containers, would be migrated . Therefore,

the virtual machines will not be shut down due to the container migrations. Hence, it is

5.6 Performance Evaluation 165

Table 5.10: Experiment sets, objectives, and parameters for VM consolidation.

Set# | Investigating the Impact of: VM Selection | UL OL

#1 OL Threshold MU 70% [80%,90%,100%]
#2 UL Threshold MU [50%,60%,70%]| 80%

#3 VM selection policies [MU, MCor] 70% 80%

#4 overbooking of containers MU 70% 80%

not required to initiate new virtual machines to accommodate the migrated containers.

At the start of the simulation, the containers are placed on the virtual machines utiliz-
ing the First-Fit algorithm considering the 80 percentile of its CPU workload. In order to
solely study the impact of the correlation of the VM’s load with the host’s load, random
selection (RHS) substitutes the Least-Full algorithm in the correlation aware (CorHS) pol-
icy (Algorithm 8). In this respect, if the CPU load of the VM is correlated with all of the
running hosts or the data is not enough for drawing conclusion, then a random host is
selected as the migration destination. The experiment sets along with their objectives and
parameters are summarized in Table 5.10.

Impact of the Over-Load (OL) Threshold: We investigated the effect of the OL thresh-
old in the Host Over-load/Under-load Detector component that identifies the host status.
Figure 5.6 shows that, for all the algorithms, increasing OL decreases the number of VM
migrations as less hosts would be identified as over-loaded and less number of VMs
would be chosen to migrate. This decrease in the average number of VM migrations
results in less energy consumption.

The higher OL threshold increases the probability that the VMs could not get the re-
quired resources. Contrary to the same experiment setup for containers (Section 5.6.2),
in this setup of experiments SLA violations increase as the over-load threshold increases.
This is resulted from the decreasing pattern of the incurred over-load status while in-
creasing the OL threshold. As shown in Table 5.11, OL threshold affects the total energy
consumption of the data center significantly considering the P-Values of the Tukey test
for the studied thresholds.

For OL, equal to 100% the host load never reaches the host capacity as it is depicted
in Figure 5.6a. Considering this phenomena, 100% is the most efficient threshold for
the studied workload with less than 2% SLA violations (Figure 5.6d). In Table 5.12 for the

100% OL threshold, the difference between the energy consumption of the data center for

166

Efficient Container Consolidation in Cloud Data Centers

O OL -80%
. OL - 90%
B OL - 100%

%%%@

CorHS FFHS LFHS RH

10 15 20

5
I

Average Over Utilizatin

0

wo |0 OL-80%
SF 1@ OL-90%
2 B OL- 100%
E —
D
SQ
=
1 7

O |

CorHS FFHS LFHS RH

(a) Average number of incurred over-load host status

per hour.

= | 80 \ 90 \ 100

3 T T 4

5 T L

3400-$ —-—_‘_ — T

1S

>

2

5200

(@)

>

o

@

uCJO“'co""'m""'m"'

%)) 0w 0

ITrx® ITrxr%® Tz ?
oLl_u_ﬂ: oLLLLn: olJ_LLm
O w3 [& R O w4

(c) Data center energy consumption.

(b) Average VM migrations per hour.

80 90 100
0.04 -
= 1
c0.03 — "
§e] T
© —_
50.02 -l —| -
>
<o.01:
w
o0 — T — T
[20N7)) [20N7)) [20N7))
IZ2¢ TZZ2P 29
s Jksx Susx

(d) SLA Violations

Figure 5.6: Impact of over-load detection threshold OL on number of over-load status,
average VM migrations (per hour), data center energy consumption, and SLA violations.

Table 5.11: Tukey multiple comparisons of means for energy consumption of the data
center for the studied over-load thresholds.

Overload Thresholds | Difference of Means | 95% Confidence Interval | P-Value
90% - 80% -38.68 (-59.36,-18) < 0.001
100% - 80% -67.21 (-87.89,-46.53) < 0.001
100% - 90% -28.53 (-49.20,-7.85) < 0.001

the studied host selection algorithms are verified to be significant with the P — Value <

0.01.

Impact of the Under-Load (UL) Threshold: The UL threshold that identifies the host

status is investigated in this set of experiments and as it is shown in Table 5.10, where

the UL threshold varies from 50 to 70 percent. Increasing the underutilization thresh-

old, increases both VM migrations and SLA violations (Figure 5.7). However, it reduces

the energy consumption of the data center for most of the algorithms. Although the dif-

5.6 Performance Evaluation

167

Table 5.12: Tukey multiple comparisons of means for energy consumption of the data
center for the studied host selection algorithms considering the 100% OL threshold.

(a) Average number of incurred over-load host status

per hour.
=y 50 60 70
£600
< L1 + 4
< - - _0.04
S400 — =
S T - = c0.03-
€ S
: -
@ I ol
8200 _90.02
1S) >
> <G0.01-
= %)
0
C
w 0 0w 0 0w D 0w 0.00;
ITrT @ I T T @ I T T @
s Sy JEp4sx

(c) Energy Consumption of the data center during
the simulation.

Host Selection Algorithms | Difference of Means 95% CI P-Value
FFHS-CorHS 169.71 (167.65,171.76) | < 0.01
LFHS-CorHS 131.06 (129.01,133.11) < 0.01
RHS-CorHS 19.36 (17.30,21.41) < 0.01
LFHS-FFHS -38.64 (-40.67,-36.59) < 0.01

RHS-FFHS -150.35 (-152.40,-148.30) | < 0.01
RHS-LFHS -111.70 (-113.76,-109.65) | < 0.01
S8 -
g o UL oo O UL - 50%
Nuw @ UL-60% o | .
57 a0 £9 1z uoan
52 - g 1
3 22 >
0 7 = 7
: 1: »l
_ 1:
ge- ol LA 7
CorHS FFHS LFHS RHS CorHS FEHS LEHS RHS

(b) Average VM migrations per hour.

CorHS]

50

FFHS |
LFHS |

60

RHS |
CorHS]
FFHS |
LFHS |

70

RHS |
CorHS]
FFHS |
LFHS |

(d) SLA violations.

RHS |

Figure 5.7: Impact of under-load detection threshold UL on number of over-load status,
average VM migrations (per hour), data center energy consumption, and SLA violations.

ferences between the energy consumption is not significant for the (50% -60%) and the

(60% and 70%) pairs (Table 5.13), the Tukey results show a significant difference between

these thresholds in terms of the reported SLA violations with P — Value < 0.001. The

UL threshold increase results in more VM migrations as more hosts would be identified

as under-loaded. Due to the raise in the number of VM migrations, more SLA violations

168

Efficient Container Consolidation in Cloud Data Centers

Table 5.13: Tukey multiple comparisons of means for energy consumption of the data
center for the studied under-load thresholds.

(a) Average container migrations rate per 5 minutes.

= | MCor

E __—;'—

E/ —_—

S400

o

S

>

2

§200:

O

>

o

o)

v o 0
I 222
§ & 4

MU
=¢=
0 9 o
I = ?
oLI_LI_Q:
Q L 3

(c) Energy Consumption of the data center during

the simulation.

(b) Average VM migrations per hour.

MCor
004 —
o\\o/ —_
£0.03
o —_—
©
50.02
> —_
<$0.01-
%)
0.00- i
1229
S & 4 &

UL Thresholds | Difference of Means | 95% Confidence Interval | P-Value
60% - 50% -18.12 (-40.58,4.33) 0.14
70% - 50% -26.78 (-49.236,-4.323) < 0.01
70% - 60% -8.66 (-31.11, 13.8) 0.67
- o _
2] © O MCor
*ﬁ " O MCor 4 m MU
S0 - m MU go |
2 g9
o m >
3 s
©
go - .
< CorHS FFHS LFHS RHS o
CorHS FFHS LFHS

MU

CorHS]
FFHS

(d) SLA violations.

RHS

LFHS |

RHS |

Figure 5.8: Impact of VM selection policies on number of over-load status, average VM
migrations (per hour), data center energy consumption, and SLA violations.

are incurred for higher values of under-load thresholds. As depicted in Figure 5.7, 70% is

the most energy efficient threshold for all the algorithms. CorHS, with 70% under-loaded

threshold, outperforms the other algorithms in terms of the energy consumption with less

than 3% SLA violations. We also carried out the Anova and the Tukey test for the 70% UL

threshold. The test results verify that the difference between the energy consumption of

5.6 Performance Evaluation 169

the data center for the CorHS algorithm is statistically significant with a P — Value < 0.01
when compared to the other studied host selection policies.

Impact of Virtual Machine Selection Policies: Similar to the container selection poli-
cies discussed thoroughly in Section 5.5.2, the MU policy selects the VM with the biggest
CPU utilization while the MCore algorithm chooses the VM which has the most correlated
CPU load with the host load. Experiment parameters are all shown in Table 5.10.

As depicted in Figure 5.8, the MU algorithm results in fewer migrations as it selects
the largest VMs when the host is over-loaded. The number of over-loaded hosts is higher
in MCore which shows that selecting a VM with the highest correlation increases the
probability of the destination host getting over-loaded. Hence, the MU algorithm results
in less SLA violations. Considering the energy consumption, CorHS algorithm outper-
forms the other three studied policies with less than 3% SLA violations. We carried out
T-tests on the energy consumptions reported by all the algorithms, the T-test results show
that container selection algorithm significantly affects the amount of energy consumed in
the data center with a 95% confidence interval between 39.68 and 71.26 considering the
differences between the average (mean) energy consumption of MU (453.44 KWh) and
MCor (508.91 KWh).

5.6.3 Container Consolidation Versus VM Consolidation

In order to investigate the efficiency of the container consolidation, we compare the con-
tainer consolidations algorithm with the VM consolidation ones. The same server, virtual
machine, and container configurations are considered as they are depicted in Table 5.2,
and Table 5.3 respectively. We also considered the same power models which were ap-
plied to the previous experiments (Table 5.2).

For comparison purpose, the most energy efficient algorithm for both VM and con-
tainer consolidation algorithms are selected. For container consolidation, CorHS is se-
lected having 70% and 80% as the under-load and over-load thresholds while selecting
the most utilized container. From the virtual machine consolidation algorithms consid-
ering the aforementioned thresholds, CorHS outperforms the other three algorithms in
terms of the data center energy consumption.

In order to have a fair comparison, for the container consolidation we considered

170 Efficient Container Consolidation in Cloud Data Centers

20;
0.04
15 X
— ~
(%) =0.03
c o
210 5 —
i So.02
1§’ 50.02
= <
5 $0.01:
0 0.00"
Container VM Container VM
(a) Average container/VM migrations per hour. (b) SLA violations.
4001
= _—
=
el
g
5200
@
c
[}
o
=100
o
[}
c
w g
Container VM

(c) Energy Consumption of the data center during
the simulation.

Figure 5.9: Investigating the efficiency of the Container consolidation versus VM consol-
idation considering the average number of migrations (per hour), SLA violations, and
data center energy consumption.

the Random Host Selection (RHS) algorithm as an alternative if no hosts are found after
relaxing the correlation threshold in the CorHS Algorithm 8.

As depicted in Figure 5.9, container consolidation is more energy efficient than the
virtual machine consolidation with a minimal SLA violation (around 2% more com-
pared to VM consolidation). Therefore, if the extra 2% SLA violations is acceptable for
providers, container consolidation can replace VM consolidation to save 15%-20% of en-
ergy consumption. We carried out T-tests on the energy consumptions reported in VM
consolidation and Container consolidation, the T-test results show consolidating con-
tainers significantly affects the amount of energy consumed in the data center with a
95% confidence interval between 76.21 and 82 considering the differences between the

average (mean) energy consumption of container consolidation (294.31 KWh) and VM

5.7 Conclusions 171

consolidation (373.41 KWh).

5.7 Conclusions

Improving the energy efficiency of cloud data centers is an ongoing challenge that can
increase the cloud providers return of investment (ROI) and also decrease the CO2 emis-
sions that are accelerating the global warming phenomenon. Despite the increasing pop-
ularity of Container as a Service (CaaS), energy efficiency of resource management algo-
rithms in this service model has not been deeply investigated.

In this chapter, we modeled the CaaS environment and the associated power opti-
mization problem. We proposed a framework to tackle the issue of energy efficiency
in the context of CaaS through container consolidation and reduction in the number of
active servers. Four sets of simulation experiments were carried out to evaluate the im-
pact on system performance and data center energy consumption of our algorithms for
triggering migrations, selecting containers for migration, and selecting destinations. Re-
sults show that the correlation-aware placement algorithm (MCore) with 70% and 80%
as under-load and over-load thresholds, outperforms other placement algorithms when
the biggest container is selected to migrate (MU).

The same host selection algorithms are studied for the containerized cloud environ-
ment when consolidations are happening through VM migrations. We applied the same
data center configuration and the containers are overbooked considering the 80 percentile
of their CPU workload. The CorHS algorithm outperforms the other studied state-of-the-
art algorithms in terms of the energy consumption when the parameters are set as the
previous container consolidation problem. In order to solely study the effect of the corre-
lation algorithm, the Random Host selection algorithms is considered as the alternative
policy of CorHS. Results show in a containerized cloud environment where container con-
solidation is available, migrating containers is more energy efficient than consolidation

virtual machines with minimal SLA violations.

Chapter 6

Conclusions and Future Directions

This chapter summarizes the thesis investigation on Energy-Efficient Management of Resources in
Enterprise and Container-based Clouds and highlights its main research outcomes. It also discusses

open research challenges and future directions in the area.

6.1 Summary

LOUD, as a utility-oriented computing model, has been facing an increasing adop-
C tion rate by various businesses. As stated by RightScale in their 2015 report, “68%
of enterprises run less than a fifth of their application portfolios in the cloud while 55% of them
has built a significant portion of their existing application portfolios with cloud-friendly archi-
tectures.” This rapid growth in Cloud computing adoption resulted in the construction
of large-scale data centers that require huge amount of electricity to operate. Therefore,
improving the energy efficiency of cloud data centers is considered an ongoing challenge
that can increase cloud providers’ return of investment (ROI) along with reducing CO2
emissions that are accelerating the global warming phenomenon. Hence, in this thesis
we tackled the energy efficiency problem in cloud environments.

Docker [114], as a container management engine, in its first year (2015) has been
adopted by 13% of surveyed organizations while 35% of the rest were planning to use
it'. Despite this increasing popularity of containerized data centers, energy efficiency of
resource management algorithms in this deployment model has not been deeply investi-
gated in the literature. Hence, in this thesis containerized cloud environment was set as
our target cloud service model and we broke down our general goal to decrease energy

consumption of data centers as delineated in Chapter 1. We utilized two capabilities of

1http ://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-
trends—-2015-state-cloud-survey

173

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey

174 Conclusions and Future Directions

containerized cloud environments, namely ability to customized VM sizes and to con-
solidate containers, to achieve our research objectives. In this respect, we proposed tech-
niques to determine VM sizes and investigated algorithms utilized in different stages of
the consolidation process. Furthermore, we compared the efficiency of container consoli-
dation with consolidation in terms of data center total energy consumption and incurred

SLA violations.

Chapter 2 presented an in-depth review and analysis of prior research in the area of
energy efficient resource management in PaaS and CaaS cloud service models. It classi-
fied the related work considering three main features, namely the environment where the
applications run, the type of workload and application, and the considered SLA metrics.
This chapter helped us to identify the open challenges in the area of energy efficiency and

define research directions.

In Chapter 3, we tackled the problem of energy consumption resulting from inefficient
resource allocation in containerized cloud environments. We presented a brief analysis of
the Google cluster data and proposed an architecture for efficient allocation of resources.
Later in the same chapter, we proposed a methodology to determine virtual machine
configurations considering the extracted task usage patterns. In this regard, tasks were
grouped considering their actual resource usage patterns, which are extracted from his-
toric data, through the application of clustering techniques. Along with virtual machines’
resource requirements, we also determined the maximum number of tasks that can be
accommodated in each VM. Six policies were proposed for estimating task populations
residing in each VM type. Later in Chapter 3, we utilized the proposed architecture and
investigated the impact of workload characterization on resulting VM configurations. We
extended the architecture to incorporate the CaaS cloud service model and modified the
VM sizing strategy through limiting the number of tasks that a VM can accommodate

according to the available hardware.

Due to the need for testbed environments evaluating the performance of schedul-
ing and allocation policies in containerized cloud data centers, Chapter 4 focused on the
modeling and simulation of these computing environments and presented the Container-
CloudSim simulator. To the best of our knowledge, this is the first simulator that provides

support for modeling and simulation of containerized cloud computing environments.

6.1 Summary 175

ContainerCloudSim was implemented as an extension of the cloud simulator CloudSim.
This chapter described a number of use cases to demonstrate how researchers can plug
in and compare their container scheduling and provisioning policies in terms of energy
efficiency and SLA compliance. The scalability of the simulator was verified and the

approach for modeling container migration was validated in a real cloud environment.

Utilizing the proposed ContainerCloudSim, in Chapter 5 we modeled the CaaS envi-
ronment and the associated power optimization problem. A framework was proposed
to tackle the power consumption issue through container consolidation. We carried out
four sets of simulation experiments to evaluate the impact on system performance and
data center energy consumption of the algorithms applied for different stages of the con-
solidation problem. These algorithms contain the policies used for triggering migrations,
selecting containers for migration, and selecting migration destinations. The algorithms
were evaluated through simulation and the results showed that our proposed correlation-

aware placement algorithm outperforms other placement algorithms.

In order to investigate the efficiency of container consolidation in comparison with
traditional VM consolidation, we repeated the same set of experiments considering VM
migration as the only available option. We studied the same host selection algorithms for
the same containerized cloud environment while consolidations were happening through
VM migration only. The correlation-aware VM consolidation algorithm again outper-
formed the other studied state-of-the-art algorithms in terms of energy consumption
when the parameters are set as the previous container consolidation problem. The results
demonstrated that in a containerized cloud environment where container consolidation
is an available option, migrating containers is more energy-efficient than consolidating
virtual machines. However, when the number of container migrations is higher than
the number of VM migrations due to the small sized containers, container consolidation
can result in slightly more SLA violations. In our studied scenario, container migration

resulted in 2% more SLA violations than VM consolidation.

176 Conclusions and Future Directions

6.2 Future Research Directions

Instead of emulating a physical machine as in the case of VMs, containers focus on pro-
cess isolation in a way that one or more processes can run inside them. As mentioned in
Chapter 2, container is not a new concept and has been introduced in the early 80’s by the
introduction of chroot in the Linux kernel [109]. The introduction of process container !,
which is a way to provision and run a standalone process, goes back to 2006. Due to
the confusion caused by multiple meanings of the term containers in the Linux kernel,
containers were then renamed to Control Groups (cgroups), which led to the evolution of
Linux Containers (LXC). LXC, which is known as an operating system level virtualization
environment, is built on the Linux kernel.

In addition to OS containers, there exist a new type of containers, called application
containers, that are specifically dedicated to one and only one process that runs the resid-
ing application. Application containers are considered a new revolution in the cloud era
as containers are lightweight, easier to configure and manage, and can decrease start-up
times considerably. These containers are the building block of modern PaaS. In this the-
sis, we considered a couple of challenges in this area including determination of efficient
VM sizes for containers and container consolidation algorithms. However, as the con-
tainerization technology is evolving rapidly, researchers will face new challenges. Here,
we discuss a number of open research challenges that are required to be addressed in

order to further advance the area.

6.2.1 Dynamic Virtual Machine Sizing

Containerization technology provides opportunity for execution of multiple containers
on one VM, which in turn improves resource utilization at VM level. As it is demon-
strated in Chapter 3, VM size has an impact on the total energy consumption of the data
center. We tackled the problem of energy efficiency by tailoring virtual machine sizes to
the workload. The objective is achieved through characterization of the workload of the
Google data center data. Then, one virtual machine size is determined for each cluster

of containers. Due to regular provisioning and de-provisioning of containers, required

1http ://fabric8.io/gitbook/processContainer.html

http://fabric8.io/gitbook/processContainer.html

6.2 Future Research Directions 177

resources for VMs can be unpredictable and the utilization of average resource usage for
clustering purposes may lead to resource wastage. Hence, in order to match the con-
figuration of each VM to its residing workload, our work can be extended to support
destination and change in VM configurations in runtime. This approach is referred as
dynamic VM sizing and various techniques such as Statistical Multiplexing can be utilized

in this context.

6.2.2 Multi-objective Container Placement Algorithms

Like in the case for virtual machines, effective placement of containers in the data center
affects the utilization of compute resources and decreases the probability of containers’
future migrations. In this thesis, we considered the problem of initial placement of con-
tainers as a multidimensional bin packing problem and applied the well-known First-Fit
placement algorithm for locating containers. We assumed that containers are able to run
inside any VM. This approach can be extended considering various packing constraints
as placement objectives.

In a containerized cloud environment, containers share the kernel of the server or
the VM that they are being hosted in. In this respect, during the placement process of
containers, the algorithm should take the VM’s operating system into consideration as
one of the placement objectives. In other words, container running inside a VM with the
Windows operating system will not be able to run in a VM with a Linux OS.

The other objective that can be considered during the packing process is the applica-
tion’s workload usage pattern. As we discussed in Chapter 2, each application container
specifically executes one process, which is used for running its residing application. Ap-
plications are different in terms of their usage patterns as some may consume I/0O in-
tensively while others might be compute- or memory-intensive. In this respect, cloud
providers can achieve efficient resource utilization by considering the application type
during the placement process. For instance, an I/O-intensive web application can be
co-located with a compute-intensive application.

Containerization as a virtualization technology enables multi-tenancy in which var-
ious workload types can co-exist. Using this technology, providers can overbook the

containers and consequently save energy. However, like VMs [122] overbooking contain-

178 Conclusions and Future Directions

ers might affect the performance of containers that are co-located on each VM. Therefore,
considering the performance interference phenomenon in the container placement pro-
cess is another objective that can be considered and this type of placement not only aims
at reducing the energy consumption but also aims at decreasing the interference phe-

nomenon.

6.2.3 Network-aware Container Consolidation Algorithms

In addition to required compute resources, network traffic of containers should also be
considered to guarantee Quality of Service in a cloud environment and decrease the data
center total energy consumption. Hence, virtual machines should satisfy both the aggre-
gated resource utilization of co-located containers and their required bandwidth. This
is a complex problem due to its quadratic nature as it is required to consider the com-
munication between each pair of containers. Moreover, applications should be placed in
such a way that they can communicate with each other with the least amount of network
overhead. In this regard, containers with higher communication rate should be placed
on virtual machines that are hosted on one server or on servers with minimum average
network path. It is worth mentioning that network-aware placement has been studied
for virtual machines and is demonstrated to be effective in terms of data center energy
consumption and generated revenue for cloud providers. The consolidation algorithms
in Chapter 5 can be extended to consider communications between containers. However,
considering the network on container level increases the complexity of the algorithms, as

the number of containers is higher than the number of VMs in a cloud data center.

6.2.4 Joint VM and Container Consolidation Algorithms

In Chapter 5, container consolidation is demonstrated to be more energy efficient than
VM consolidation, with minimal SLA violation increase (around 2% compared to VM
consolidation). One of the reasons of the increase in SLA violations for container consoli-
dation is the higher migration rate of containers. The migration rate is directly related to
the size of containers, which are generally smaller than virtual machines. Hence, when

a host is identified as overloaded/under-loaded, the number of containers that are re-

6.2 Future Research Directions 179

quired to be migrated to obviate the condition is higher than the number of VMs to be
migrated. In this respect, designing algorithms that dynamically select between VM and
container migration based on application SLA requirements and the impact on energy
consumption can be considered as a future research direction. In addition, future re-
search can also look into approaches that decide about migrating VMs and containers
independently. For example, a policy can decide to keep a container of a particular VM

in the current host while moving the VM to a different host.

6.2.5 Extending ContainerCloudSim Simulator

The newly introduced Container as a Service cloud model introduces new research di-
rections that are required to be explored in more details. In Chapter 4, we modeled the
containerized cloud environments and developed a simulation toolkit. The Container-
CloudSim simulator provides a controllable environment in which researchers are able to
plug in their proposed container management algorithms. However, there is still room
for adding new functionalities and models to this simulator. For instance, Container-
CloudSim can be extended to enable visualization of spatio temporal behavior of nodes,
VMs and containers in a data center. In order to study network-aware container place-
ment algorithms, the connectivity between containers should be modeled to support var-

ious types of applications including Web and MapReduce-like computing environments.

6.2.6 Advanced Container Overbooking Algorithms

Since cloud users tend to overestimate their resource requirements, overbooking of cloud
resources is applied to improve utilization of resources and consequently decrease data
center energy consumption. However, excessive overbooking results in violation of Ser-
vice Level Agreement and degradation of application performance.

In Chapter 5, containers are overbooked considering the percentile of CPU workload
of containers. Future research can look into other resources such as memory and network,
as well as CPU, for overbooking purposes, as ignoring other resources might result into
performance degradation of applications. In addition to the percentile method, which

assumes a complete knowledge about the workload, future research can employ online

180 Conclusions and Future Directions

policies to estimate resource utilization by container applications and dynamically de-
fine the overbooking factor. In addition to future resource utilization of containers, the
overbooking policy can also incorporate knowledge about the correlation of container’s

workloads to define the overbooking factor.

6.2.7 Deploying a Scalable Containerized Testbed

Theoretical analysis of containerized cloud environments is difficult due to the complex-
ity and characteristics of these large scale distributed systems. As discussed in Chap-
ter 4, simulators are powerful tools that can support scalable and repeatable experiments.
However, simulators are not able to cover and model all the aspects of a real world exper-
iment. Hence, there is a need for configurable distributed platforms in order to evaluate
the performance of scheduling and allocation policies in containerized cloud data cen-
ters.

Although there exist a couple of distributed testbeds such as Grid5000 [19] and Plan-
etLab [127] that researchers can utilize to study containerized environments, they are
not specifically tuned for containerization. Therefore, users of these platforms have to
set up their own containerized environment while dealing with various technical diffi-
culties such as network and kernel configurations. In this respect, preparing a highly
configurable containerized platform for research purpose can expedite research in this
area through helping researchers to perform experiments more efficiently without going
through the hassle of setting up their own environment. These type of platform can also
enhance studies that compare the efficiency of hypervisor-based and OS-based virtual-
ization technologies considering various metrics including energy consumption, network

overhead, and response time of applications.

6.3 Final Remarks

Cloud computing adoption is increasing and containerized cloud environments are going
to be one of the dominant cloud deployment models. Energy consumption has always
been a challenge in cloud data centers as it affects the Return of Investment and data

center’s carbon footprint. For this newly introduced model, it is really essential to pro-

6.3 Final Remarks 181

pose new approaches, such as the ones presented in this thesis, which can decrease the
energy consumption in cloud data centers. Research such as this conveys the way to a
greener environment by significantly reducing the energy it takes to power data centers.
We expect contributions of this thesis to energize further innovation and development in

containerized cloud environments and to introduce new challenges in this area.

Bibliography

[1] “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/, (Accessed on

11/30/2015).

[2] A. K. Agrawala, J. Mohr, and R. Bryant, “An approach to the workload characteri-
zation problem,” Computer, vol. 9, no. 6, pp. 18-32, 1976.

[3] Q. Ali, “Scaling web 2.0 applications using Docker containers on vSphere 6.0,”
http://blogs.vmware.com/performance/2015/04/scaling-web-2-0-applications-
using-docker-containers-vsphere-6-0.html, 2015, (Accessed on 03/21/2016).

[4]]. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian, “Resource

7

Management in the Autonomic Service-Oriented Architecture,” in Proceedings of
the 2006 IEEE International Conference on Autonomic Computing (ICAC 2006), June

2006, pp. 84-92.

[5] J. Anselmi, E. Amaldi, and P. Cremonesi, “Service Consolidation with End-to-End
Response Time Constraints,” in Proceedings of 34th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA 2008.), September 2008, pp. 345-352.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communica-

tions of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

[7] B. Arnold, S. A. Baset, P. Dettori, M. Kalantar, I. I. Mohomed, S. J. Nadgowda,
M. Sabath, S. R. Seelam, M. Steinder, M. Spreitzer, and A. S. Youssef, “Building the
ibm containers cloud service,” IBM Journal of Research and Development, vol. 60, no.

2-3, pp. 9:1-9:12, March 2016.

183

http://www.isi.edu/nsnam/ns/
http://blogs.vmware.com/performance/2015/04/scaling-web-2-0-applications-using-docker-containers-vsphere-6-0.html
http://blogs.vmware.com/performance/2015/04/scaling-web-2-0-applications-using-docker-containers-vsphere-6-0.html

184 BIBLIOGRAPHY

[8] M. Assuncao, M. Netto, B. Peterson, L. Renganarayana, J. Rofrano, C. Ward, and
C. Young, “CloudAffinity: A framework for matching servers to cloudmates,” in
Proceedings of the 2012 IEEE Network Operations and Management Symposium (NOMS
2012), April 2012, pp. 213-220.

[9] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-event system simulation.
Prentice Hall, 2010.

[10] P. Barham et al., “Xen and the art of virtualization,” in Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP 2003), October 2003, pp. 164-177.

[11] L. A. Barroso and U. Hoélzle, “The case for energy-proportional computing,” Com-

puter, vol. 40, no. 12, pp. 33-37, Dec. 2007.

[12] C. L. Belady and D. Beaty, “Roadmap for datacom cooling,” ASHRAE journal,
vol. 47, no. 12, p. 52, 2005.

[13] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual machines in
cloud data centers,” in Proceedings of the 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid 2010), May 2010, pp. 577-578.

[14] ——, “Adaptive threshold-based approach for energy-efficient consolidation of vir-
tual machines in cloud data centers,” in Proceedings of the 8th International Workshop

on Middleware for Grids, Clouds and e-Science, December 2010, pp. 4:1-4:6.

[15] ——, “Optimal online deterministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurrent Computing : Practice and Experience, vol. 24, no. 13, pp. 1397-

1420, 2012.

[16] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxonomy and survey of
energy-efficient data centers and cloud computing systems,” Advances in computers,

vol. 82, no. 2, pp. 47-111, 2011.

[17] M. Bichler, T. Setzer, and B. Speitkamp, “Capacity planning for virtualized servers,”
in Proceedings of the 16th Annual Workshop on Information Technologies and Systems
(WITS 2006), 2006.

BIBLIOGRAPHY 185

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Blackburn, Five ways to reduce data center server power consumption. The Green

Grid, 2008.

R. Bolze, E. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,
S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: a large scale and highly recon-
figurable experimental grid testbed,” International Journal of High Performance Com-

puting Applications, vol. 20, no. 4, pp. 481-494, 2006.

J. Bottomley, “Containers and the cloud a match made in heaven,” ftp:/ /ftp.kernel.
org/pub/linux/kernel/people/jejb /LF-End-User-2013.0dp, May 2013, (Accessed
on 10/22/2015).

R. Buyya, A. Beloglazov, and]. Abawajy, “Energy-efficient management of data
center resources for cloud computing: a vision, architectural elements, and open
challenges,” in Proceedings of 16th International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA 2010), July 2010, pp. 6-17.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as

the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

E. Caglar, S. Shekhar, and A. Gokhale, “A performance Interference-aware virtual
machine placement strategy for supporting soft realtime applications in the cloud,”
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA,
Tech. Rep. 1SIS-13-105, 2013.

R. Calheiros and R. Buyya, “Energy-efficient scheduling of urgent Bag-of-Tasks ap-
plications in clouds through DVFS,” in Proceedings of the 6th IEEE International Con-
ference on Cloud Computing Technology and Science (CloudCom 2014), December 2014,
pp. 342-349.

R. N. Calheiros, M. A. Netto, C. A. De Rose, and R. Buyya, “EMUSIM: an integrated
emulation and simulation environment for modeling, evaluation, and validation
of performance of cloud computing applications,” Software: Practice and Experience,

vol. 43, no. 5, pp. 595-612, 2013.

ftp://ftp.kernel.org/pub/linux/kernel/people/jejb/LF-End-User-2013.odp
ftp://ftp.kernel.org/pub/linux/kernel/people/jejb/LF-End-User-2013.odp

186

BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms,” Software: Practice and Experience, vol. 41,

no. 1, pp. 23-50, 2011.

M. Calzarossa and G. Serazzi, “Workload characterization: A survey,” Proceedings

of the IEEE, vol. 81, no. 8, pp. 1136-1150, 1993.

J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, “Evaluation of the
Intel® Core i7 turbo boost feature,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC 2009), October 2009, pp. 188-197.

M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and K. Yoshihira, “Effective VM
sizing in virtualized data centers,” in Proceedings of the 2011 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011), May 2011, pp. 594-601.

Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy efficiency for large-scale
MapReduce workloads with significant interactive analysis,” in Proceedings of the

7th ACM European Conference on Computer Systems, April 2012, pp. 43-56.

Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and lessons from
a publicly available Google cluster trace,” University of California, Berkeley, Tech.

Rep., 2010.

T. Chieu, A. Mohindra, A. Karve, and A. Segal, “Dynamic scaling of Web Applica-
tions in a virtualized cloud computing environment,” in Proceedings of the 9th IEEE

International Conference on e-Business Engineering, October 2009, pp. 281-286.

W. Cirne, F. Brasileiro, J. Sauv, N. Andrade, D. Paranhos, E. Santos-neto,
R. Medeiros, and F. C. Gr, “Grid computing for of Bag-of-Tasks applications,” in
Proceedings of the 3rd IFIP Conference on E-Commerce, E-Business and EGovernment,

September 2003.

S. P. E. Corporation, “Specpower_ssj2008 results,” Available at http://www.spec.
org/power_ssj2008 /results /. Accessed on 04/06/2015.

http://www.spec.org/power_ssj2008/results/
http://www.spec.org/power_ssj2008/results/

BIBLIOGRAPHY 187

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory power
management via Dynamic Voltage/Frequency Scaling,” in Proceedings of the 8th

ACM International Conference on Autonomic Computing, June 2011, pp. 31-40.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clus-

ters,” Magazine Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

P. DELFORGE, “Energy efficiency, data centers — NRDC,” http:/ /www.nrdc.org/

energy/data-center-efficiency-assessment.asp, (Accessed on 02/18/2016).

Q. Deng, D. Meisner, A. Bhattacharjee, T. Wenisch, and R. Bianchini, “CoScale:
Coordinating CPU and memory system DVFS in server systems,” in Proceedings
of the 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
2012), December 2012, pp. 143-154.

Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “MemScale: Ac-
tive low-power modes for main memory,” in Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS 2011), March 2011, pp. 225-238.

G. Dhiman, K. K. Pusukuri, and T. Rosing, “Analysis of Dynamic Voltage Scaling
for system level energy management,” in Proceedings of the 2008 Conference on Power

Aware Computing and Systems (HotPower 2008), 2008, pp. 9-9.

K. Dhyani, S. Gualandi, and P. Cremonesi, “A constraint programming approach

7

for the service consolidation problem,” in Integration of Al and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, A. Lodi, M. Milano,

and P. Toth, Eds., 2010, vol. 6140, pp. 97-101.

S. Di and E. Cappello, “GloudSim: Google trace based cloud simulator with virtual
machines,” Software: Practice and Experience, vol. 45, no. 11, pp. 1571-1590, 2015.

S. Di, D. Kondo, and F. Cappello, “Characterizing cloud applications on a Google
data center,” in Proceedings of the 42nd International Conference on Parallel Processing

(ICPP 2013), October 2013, pp. 468—473.

http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

188

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

S. Di, D. Kondo, and W. Cirne, “Characterization and comparison of cloud versus
grid workloads,” in Proceedings of the 2012 IEEE International Conference on Cluster
Computing (CLUSTER 2012), September 2012, pp. 230-238.

Z. Dong, W. Zhuang, and R. Rojas-Cessa, “Energy-aware scheduling schemes for
cloud data centers on Google trace data,” in Proceedings of the 2014 IEEE Online
Conference on Green Communications (OnlineGreencomm 2014), November 2014, pp.

1-6.

J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective energy-efficient workflow
scheduling using list-based heuristics,” Future Generation Computer Systems, vol. 36,

pp. 221-236, 2014.

J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning,” The Jour-

nal of Machine Learning Research, vol. 5, pp. 845-889, 2004.

C. Engle, A. Lupher, R. Xin, M. Zaharia, M.]J. Franklin, S. Shenker, and I. Stoica,
“Shark: Fast data analysis using coarse-grained distributed memory,” in Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of Data, May
2012, pp. 689-692.

K. Ettikyala and Y. R. Devi, “A study on cloud simulation tools,” International Jour-

nal of Computer Applications, vol. 115, no. 14, pp. 18-21, April 2015.

Y. Fang, F. Wang, and J. Ge, “A task scheduling algorithm based on load balancing
in cloud computing,” in Web Information Systems and Mining, F. Wang, Z. Gong,
X. Luo, and J. Lei, Eds. Heidelberg, Germany: Springer, 2010, vol. 6318, pp. 271-
277.

D. G. Feitelson, Workload modeling for computer systems performance evaluation. Cam-

bridge University Press, 2015.

E. Feller, L. Ramakrishnan, and C. Morin, “Performance and energy efficiency of
big data applications in cloud environments: a hadoop case study,” Journal of Par-

allel and Distributed Computing, vol. 79, pp. 80-89, 2015.

BIBLIOGRAPHY 189

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance com-
parison of virtual machines and linux containers,” in Proceedings of the 2015 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS),
March 2015, pp. 171-172.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kay-
nak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: A study
of emerging scale-out workloads on modern hardware,” ACM SIGPLAN Notices,
vol. 47, no. 4, pp. 3748, 2012.

D. Ferrari, “Workload characterization and selection in computer performance

measurement,” Computer, vol. 5, no. 4, pp. 18-24, 1972.

E. Fittkau, S. Frey, and W. Hasselbring, “CDOSim: Simulating cloud deployment
options for software migration support,” in Proceedings of the IEEE 6th International
Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Sys-
tems (MESOCA 2012), September 2012, pp. 37—46.

A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, and M. Sheikhalishahi, “Hi-
erarchical approach for green workload management in distributed data centers,”
in Proceedings of the 20th International European Conference on Parallel and Distributed

Computing (Euro-Par 2014) Workshops, August 2014, pp. 323-334.
B. A. Forouzan, TCP/IP protocol suite. McGraw-Hill, Inc., 2002.

V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree, and
M. E. Femal, “Analyzing the energy-time trade-off in high-performance computing
applications,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 6, pp.
835-848, June 2007.

S. Frey and W. Hasselbring, “Model-based migration of legacy software systems
into the cloud: The CloudMIG approach,” Softwaretechnik-Trends, vol. 30, no. 2, pp.
84-85, 2010.

J. Gantz and D. Reinsel, “Extracting value from chaos,” https://www.emc.com/
collateral/analyst-reports /idc-extracting-value-from-chaos-ar.pdf, June 2011, (Ac-

cessed on 11/02/2015).

https://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
https://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

190

BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

S. Garg and R. Buyya, “NetworkCloudSim: Modelling parallel applications in
cloud simulations,” in Proceedings of the Fourth IEEE International Conference on Util-

ity and Cloud Computing (UCC 2011), December 2011, pp. 105-113.

P. Garraghan, I. S. Moreno, P. Townend, and J. Xu, “An analysis of failure-related
energy waste in a large-scale cloud environment,” IEEE Transactions on Emerging

Topics in Computing, vol. 2, no. 2, pp. 166-180, 2014.

P. Garraghan, P. Townend, and J. Xu, “An analysis of the server characteristics and
resource utilization in Google cloud,” in Proceedings of the 2013 IEEE International

Conference on Cloud Engineering (IC2E 2013), March 2013, pp. 124-131.

C. Ghribi, “Energy efficient resource allocation in cloud computing environments,”

Ph.D. dissertation, Evry, Institut national des télécommunications, 2014.

D. Gmach, J. Rolia, and L. Cherkasova, “Selling t-shirts and time shares in the
cloud,” in Proceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2012), May 2012, pp. 539-546.

D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management:
Reactive versus proactive or let’s be friends,” Comput. Netw., vol. 53, no. 17, pp.
2905-2922, Dec. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.
2009.08.011

R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 9, pp.

34-45, 1974.

C. D. Graziano, “A performance analysis of Xen and KVM hypervisors for hosting
the xen worlds project,” 2011, Graduate Theses and Dissertations, Paper 12215.
[Online]. Available: http:/ /lib.dr.iastate.edu/etd /12215

[70] A. Greenberg,]. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research

problems in data center networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 39, no. 1, pp. 68-73, 2008.

http://dx.doi.org/10.1016/j.comnet.2009.08.011
http://dx.doi.org/10.1016/j.comnet.2009.08.011
http://lib.dr.iastate.edu/etd/12215

BIBLIOGRAPHY 191

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myatt, “Best practices for data
centers: Lessons learned from benchmarking 22 data centers,” in Proceedings of the

ACEEE Summer Study on Energy Efficiency in Buildings, August 2006, pp. 76-87.

D. Greenwood, G. Vitaglione, L. Keller, and M. Calisti, “Service Level Agreement
management with adaptive coordination,” in Proceedings of the 2006 International

conference on Networking and Services, July 2006, pp. 45—45.

G. Gu, R. Perdisci,]. Zhang, and W. Lee, “BotMiner: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection,” in Proceedings of

the 17th Conference on Security Symposium (SS 2008), August 2008, pp. 139-154.

S. K. S. Gupta, A. Banerjee, Z. Abbasi, G. Varsamopoulos, M. Jonas, J. Ferguson,
R. R. Gilbert, and T. Mukherjee, “GDCSim: A simulator for green data center de-
sign and analysis,” ACM Transactions on Modeling and Computer Simulation, vol. 24,

no. 1, pp. 3:1-3:27, 2014.

A.F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Renegotiation in Service Level
Agreement management for a cloud-based system,” ACM Computer Survey, vol. 47,

no. 3, pp. 51:1-51:21, 2015.

J. Hartigan and M. Wong, “Algorithm as 136: A K-means clustering algorithm,”
Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp.
100-108, 1979.

B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to MPEG-2.
Springer Science & Business Media, 1997.

Y. He, Z. Ye, Q. Fu, and S. Elnikety, “Budget-based control for interactive services
with adaptive execution,” in Proceedings of the 9th International Conference on Auto-

nomic Computing, 2012, pp. 105-114.

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Net-
works for Perception (Vol. 2), H. Wechsler, Ed. = Harcourt Brace & Co., 1992, pp.
65-93.

192

BIBLIOGRAPHY

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “ElasticTree: Saving energy in data center networks,” in Proceedings
of the 7th USENIX Conference on Networked Systems Design and Implementation, March
2010, pp. 249-264.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in
the data center,” in Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, April 2011, pp. 295-308.

U. Hoelzle and L. A. Barroso, The Datacenter As a Computer: An Introduction to the
Design of Warehouse-Scale Machines, 1sted. Morgan and Claypool Publishers, 2009.

S. Hosseinimotlagh, F. Khunjush, and R. Samadzadeh, “SEATS: smart energy-
aware task scheduling in real-time cloud computing,” The Journal of Supercomput-

ing, vol. 71, no. 1, pp. 45-66, 2015.

W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, R. Bull, and J. N. Matthews,
“A quantitative study of virtual machine live migration,” in Proceedings of the 2013

ACM Cloud and Autonomic Computing Conference, August 2013, p. 11.

Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh, “TeachCloud:
a cloud computing educational toolkit,” International Journal of Cloud Computing,

vol. 2, no. 2-3, pp. 237-257, 2013.

J. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement and routing
for data center traffic engineering,” in Proceedings of the 2012 IEEE International Con-

ference on Computer Communications (INFOCOM 2012), March 2012, pp. 2876-2880.

H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and N. Pissinou,
“Joint Host-Network optimization for energy-efficient data center networking,” in
Proceedings of the 27th IEEE International Symposium on Parallel Distributed Processing
(IPDPS 2013), May 2013, pp. 623-634.

M. Kabir, G. Shoja, and S. Ganti, “VM placement algorithms for hierarchical cloud
infrastructure,” in Proceedings of the 6th IEEE International Conference on Cloud Com-

puting Technology and Science (CloudCom 2014), December 2014, pp. 656—659.

BIBLIOGRAPHY 193

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

A. Kansal, FE. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual machine

7

power metering and provisioning,”

Cloud Computing (SoCC 2010), June 2010, pp. 39-50.

in Proceedings of the 1st ACM Symposium on

J. M. Kaplan, W. Forrest, and N. Kindler, “Revolutionizing data center energy effi-
ciency,” Technical Report, available at http://www.mckinsey.com/clientservice/
bto/pointofview /pdf/revolutionizing_data_center_efficiency.pdf. Accessed on

5/06/2015, 2008.

R. E. Kass and L. Wasserman, “A reference bayesian test for nested hypotheses and
its relationship to the schwarz criterion,” Journal of the American Statistical Associa-

tion, vol. 90, no. 431, pp. 928-934, 1995.

L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster

analysis. John Wiley & Sons, 2009, vol. 344.

R. T. Kaushik, M. Bhandarkar, and K. Nahrstedt, “Evaluation and analysis of
GreenHDFS: A self-adaptive, energy-conserving variant of the hadoop distributed
file system,” in Proceedings of the 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, November 2010, pp. 274-287.

A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization and pre-
diction in the cloud: A multiple time series approach,” in Proceedings of the 2012
IEEE Network Operations and Management Symposium (NOMS 2012), April 2012, pp.
1287-1294.

A. Khosravi, S. K. Garg, and R. Buyya, “Energy and carbon-efficient placement of
virtual machines in distributed cloud data centers,” in Proceedings of the 19th Inter-
national European Conference on Parallel and Distributed Computing (Euro-Par 2013),

July 2013, pp. 317-328.

J. Kim, S. Elnikety, Y. He, S.-w. Hwang, and S. Ren, “QACO: exploiting partial ex-
ecution in web servers,” in Proceedings of the 2013 ACM Cloud and Autonomic Com-

puting Conference (CAC 2013), August 2013, pp. 12:1-12:10.

http://www.mckinsey.com/clientservice/bto/pointofview/pdf/revolutionizing_data_center_efficiency.pdf
http://www.mckinsey.com/clientservice/bto/pointofview/pdf/revolutionizing_data_center_efficiency.pdf

194

BIBLIOGRAPHY

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

J. Kim, M. Ruggiero, D. Atienza, and M. Lederberger, “Correlation-aware virtual
machine allocation for energy-efficient datacenters,” in Proceedings of the Conference

on Design, Automation and Test in Europe, 2013, pp. 1345-1350.

K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning of cloud re-

sources for real-time services,”
Middleware for Grids, Clouds and e-Science (MGC 2009). Champaign, USA: ACM,

New York, USA, November 2009, pp. 1:1-1:6.

in Proceedings of the 7th International Workshop on

K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling of Bag-of-Tasks ap-
plications with deadline constraints on dvs-enabled clusters,” in Proceedings of the
2007 IEEE Seventh International Symposium on Cluster Computing and the Grid (CC-
Grid 2007)., May 2007, pp. 541-548.

W. Kim, “Cloud computing architecture,” International Journal of Web and Grid Ser-

vices, vol. 9, no. 3, pp. 287-303, 2013.

C. Klein, M. Maggio, K.-E. Arzén, and E Herndndez-Rodriguez, “Brownout: build-
ing more robust cloud applications,” in Proceedings of the 36th International Confer-

ence on Software Engineering, July 2014, pp. 700-711.

D. Kliazovich, P. Bouvry, and S. Khan, “GreenCloud: a packet-level simulator of
energy-aware cloud computing data centers,” The Journal of Supercomputing, vol. 62,

no. 3, pp. 1263-1283, 2012.

A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. H. Katz, “NapSAC:
Design and implementation of a power-proportional web cluster,” in Proceedings of
the First ACM SIGCOMM Workshop on Green Networking (Green Networking 2010).
New York, USA: ACM, 2010, pp. 15-22.

W. Lang and]. M. Patel, “Energy management for MapReduce clusters,” Proceed-
ings of the Very Large Data Bases (VLDB) Endowment Journal, vol. 3, pp. 129-139, 2010.

J. Lawler, H. Howell-Barber, and A. Joseph, “A cloud computing methodology
study of platform-as-a-service (paas) in the financial industry,” Journal OF Infor-

mation Systems Applied Research, 2015.

BIBLIOGRAPHY 195

[106]

Y. C. Lee, H. Han, A. Y. Zomaya, and M. Yousif, “Resource-efficient workflow
scheduling in clouds,” Knowledge-based Systems, vol. 80, pp. 153-162, 2015.

[107] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of hadoop clusters,”

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

SIGOPS Operating Systems Review, vol. 44, pp. 61-65, 2010.

S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “Mdcsim: A multi-tier data
center simulation, platform,” in Proceedings of the 2009 IEEE International Conference

on Cluster Computing and Workshops, August 2009, pp. 1-9.

A. Mani Sankar, “Containers (Docker): A disruptive force in cloud computing.”
http:/ /anandmanisankar.com/posts/container-docker-PaaS-microservices/, (Ac-

cessed on 02/25/2016).

M. Mao and M. Humphrey, “A performance study on the vm startup time in the
cloud,” in Proceedings of the IEEE Fifth International Conference on Cloud Computing
(CLOUD 2012). Washington, DC, USA: IEEE Computer Society, 2012, pp. 423-430.

D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating server idle
power,” SIGARCH Computer Architecture News, vol. 37, no. 1, pp. 205-216, 2009.

P. Mell and T. Grance, “The NIST definition of cloud computing,” Communications

of the ACM, vol. 53, no. 6, p. 50, 2010.

X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis, “Efficient
resource provisioning in compute clouds via VM multiplexing,” in Proceedings of

the 7th International Conference on Autonomic Computing, 2010, pp. 11-20.

D. Merkel, “Docker: Lightweight Linux containers for consistent development and

deployment,” Linux Journal, vol. 2014, no. 239, 2014.

A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards characterizing
cloud backend workloads: insights from Google compute clusters,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 37, no. 4, pp. 34-41, 2010.

V. Mohan Raj and R. Shriram, “Power aware provisioning in cloud computing en-
vironment,” in Proceedings of the 2011 International Conference on Computer, Commu-

nication and Electrical Technology (ICCCET), March 2011, pp. 6-11.

http://anandmanisankar.com/posts/container-docker-PaaS-microservices/

196

BIBLIOGRAPHY

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

R. Morabito, “Power consumption of virtualization technologies: an empirical in-
vestigation,” in Proceedings of the 2015 IEEE/ACM 8th International Conference on Util-
ity and Cloud Computing (UCC), December 2015, pp. 522-527.

I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An approach for characteriz-
ing workloads in Google cloud to derive realistic resource utilization models,” in
Proceedings of the 7th IEEE International Symposium on Service Oriented System Engi-
neering (SOSE 2013), March 2013, pp. 49-60.

I. S. Moreno, R. Yang, J. Xu, and T. Wo, “Improved energy-efficiency in cloud dat-
acenters with interference-aware virtual machine placement,” in Autonomous De-
centralized Systems (ISADS), 2013 IEEE Eleventh International Symposium on, March
2013, pp. 1-8.

N. Muthuvelu, C. Vecchiola, I. Chai, E. Chikkannan, and R. Buyya, “Task granular-
ity policies for deploying bag-of-task applications on global grids,” Future Genera-
tion Computer Systems, vol. 29, no. 1, pp. 170-181, January 2013.

G. Nagy, “Operating system containers vs. application containers,” https:
/ /blog.risingstack.com/operating-system-containers-vs-application-containers/,

May 2015, (Accessed on 10/22/2015).

R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing performance in-
terference effects for qos-aware clouds,” in Proceedings of the 5th European conference

on Computer systems, 2010, pp. 237-250.

R. Nathuji and K. Schwan, “VirtualPower: Coordinated power management in vir-
tualized enterprise systems,” in Proceedings of 21st ACM SIGOPS Symposium on Op-
erating Systems Principles (SOSP 2007), October 2007, pp. 265-278.

A. Nez,]J. Vzquez-Poletti, A. Caminero, G. Casta, J. Carretero, and I. Llorente,
“iCanCloud: A flexible and scalable cloud infrastructure simulator,” Journal of Grid

Computing, vol. 10, no. 1, pp. 185-209, 2012.

S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “GroudSim: An

event-based simulation framework for computational grids and clouds,” in Pro-

https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/

BIBLIOGRAPHY 197

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

ceedings of the 2010 European Conference on Parallel Processing (Euro-Par 2010) Work-
shops, August 2010, pp. 305-313.

D. Pandit, S. Chattopadhyay, M. Chattopadhyay, and N. Chaki, “Resource alloca-
tion in cloud using simulated annealing,” in Proceedings of the 2014 Conference on
Applications and Innovations in Mobile Computing (AIMoC 2014), February 2014, pp.
21-27.

K.Park and V. S. Pai, “CoMon: A mostly-scalable monitoring system for planetlab,”
SIGOPS Operating System Review, vol. 40, no. 1, pp. 65-74, 2006.

M. Pedram and I. Hwang, “Power and performance modeling in a virtualized
server system,” in Proceedings of the 39th International Conference on Parallel Process-

ing Workshops (ICPPW 2010), September 2010, pp. 520-526.

D. Pelleg and A. W. Moore, “X-means: Extending K-means with efficient estimation
of the number of clusters,” in Proceedings of 17th International Conference on Machine

Learning (ICML 2000), 2000, pp. 727-734.

S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understanding and ab-
stracting total data center power,” in Proceedings of the 2009 Workshop on Energy-
Efficient Design, June 2009.

D. T. Pham, S. S. Dimov, and C. Nguyen, “Selection of k in K-means clustering,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, vol. 219, no. 1, pp. 103-119, 2005.

J.-M. Pierson and H. Casanova, “On the utility of DVFES for power-aware job place-
ment in clusters,” in Proceedings of the 17th International European Conference on Par-

allel Processing (Euro-Par 2011), 2011, pp. 255-266.

I. Pietri and R. Sakellariou, “Energy-aware workflow scheduling using frequency
scaling,” in Proceedings of the 43rd International Conference on Parallel Processing Work-

shops (ICCPW 2014), September 2014, pp. 104-113.

198

BIBLIOGRAPHY

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

R. Prez-Castillo, I. G.-R. de Guzmn, and M. Piattini, “Knowledge discovery
Metamodel-ISO/IEC 19506: A standard to modernize legacy systems,” Computer
Standards and Interfaces, vol. 33, pp. 519 — 532, 2011.

D. Price and A. Tucker, “Solaris Zones: Operating system support for consolidat-
ing commercial workloads,” in Proceedings of the 18th USENIX Conference on System
Administration (LISA 2004), 2004, pp. 241-254.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity
and dynamicity of clouds at scale: Google trace analysis,” in Proceedings of the Third

ACM Symposium on Cloud Computing (SoCC 2012), October 2012, pp. 7:1-7:13.

C. Reiss,]. Wilkes, and J. L. Hellerstein, Google cluster-usage traces: format+ schema,

Google Inc., November 2011.

J. Rolia, A. Andrzejak, and M. Arlitt, “Automating enterprise application place-
ment in resource utilities,” in Self-Managing Distributed Systems, M. Brunner and

A. Keller, Eds., 2003, vol. 2867, pp. 118-129.

R. Rosen, “Resource management: Linux kernel namespaces and cgroups,” Haifux,

May, 2013.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp.
53-65, 1987.

G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6,

no. 2, pp. 461-464, 1978.

B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das, “Modeling
and synthesizing task placement constraints in Google compute clusters,” in Pro-
ceedings of the 2nd ACM Symposium on Cloud Computing (SOCC 2011), October 2011,
pp- 3:1-3:14.

D. Shepherd, “Containers as a Service (CaaS) is the cloud operating system - i
build the cloud,” http:/ /www.ibuildthecloud.com/blog/2014/08/19/containers-

as-a-service-caas-is-the-cloud-operating-system/, (Accessed on 03/01/2016).

http://www.ibuildthecloud.com/blog/2014/08/19/containers-as-a-service-caas-is-the-cloud-operating-system/
http://www.ibuildthecloud.com/blog/2014/08/19/containers-as-a-service-caas-is-the-cloud-operating-system/

BIBLIOGRAPHY 199

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically character-
izing large scale program behavior,” ACM SIGARCH Computer Architecture News,
vol. 30, no. 5, pp. 45-57, 2002.

G. Singh et al., “Workflow task clustering for best effort systems with Pegasus,”
in Proceedings of the 15th ACM Mardi Gras Conference (MG 2008), January 2008, pp.
9:1-9:8.

I. Solis Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis, modeling and
simulation of workload patterns in a large-scale utility cloud,” IEEE Transactions on

Cloud Computing, vol. 2, no. 2, pp. 208-221, 2014.

S. Spicuglia, L. Y. Chen, R. Birke, and W. Binder, “Optimizing capacity allocation
for big data applications in cloud datacenters,” in Proceedings of the 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2015), 2015, pp. 511-
517.

I. Sriram, “SPECI, a simulation tool exploring cloud-scale data centres,” in Cloud
Computing, M. Jaatun, G. Zhao, and C. Rong, Eds. Springer Berlin Heidelberg,
2009, vol. 5931, pp. 381-392.

I. Stojmenovic, “Simulations in wireless sensor and ad hoc networks: matching
and advancing models, metrics, and solutions,” Communications Magazine, IEEE,

vol. 46, no. 12, pp. 102-107, December 2008.

P. Svédrd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta compres-
sion techniques for efficient live migration of large virtual machines,” ACM Sigplan

Notices, vol. 46, no. 7, pp. 111-120, 2011.

A. Tchana, N. Palma, I. Safieddine, D. Hagimont, B. Diot, and N. Vuillerme, “Soft-
ware consolidation as an efficient energy and cost saving solution for a SaaS/PaaS
cloud model,” in Proceedings of the 2015 European Conference on Parallel Processing

(Euro-Par 2015), August 2015, pp. 305-316.

M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “DCSim: A data centre simulation

tool for evaluating dynamic virtualized resource management,” in Proceedings of

200

BIBLIOGRAPHY

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

the 8th international conference on Network and service management (CNSM 2012) and
workshop on systems virtualiztion management (SVM 2012), October 2012, pp. 385-
392.

L. Tomas, C. Klein, J. Tordsson, and F. Hernandez-Rodriguez, “The straw that broke
the camel’s back: Safe cloud overbooking with application brownout,” in Proceed-
ings of the 2014 International Conference on Cloud and Autonomic Computing (ICCAC
2014), September 2014, pp. 151-160.

L. Tomas and J. Tordsson, “An autonomic approach to risk-aware data center over-

booking,” IEEE Transactions on Cloud Computing, vol. 2, no. 3, pp. 292-305, 2014.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 3, pp. 260-274, 2002.

R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely, “Dynamic resource allocation
and power management in virtualized data centers,” in Proceedings of the 2010 IEEE
Network Operations and Management Symposium (NOMS 2010), April 2010, pp. 479-
486.

R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-Optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads,” in Proceedings of the 3rd

International Conference on Cloud Computing, July 2010, pp. 228-235.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah et al., “Apache Hadoop YARN: Yet another resource
negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC
2013). ACM, 2013, pp. 5:1-5:16.

A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server workload anal-
ysis for power minimization using consolidation,” in Proceedings of the 2009 Confer-

ence on USENIX Annual Technical Conference, 2009, pp. 28-28.

G. von Laszewski, L. Wang, A. Younge, and X. He, “Power-aware scheduling of

virtual machines in DVFS-enabled clusters,” in Proceedings of the 2009 IEEE Inter-

BIBLIOGRAPHY 201

[161]

[162]

[163]

[164]

[165]

[166]

[167]

national Conference on Cluster Computing and Workshops (CLUSTER 2009)., August
2009, pp. 1-10.

D. Wang, C. Ren, S. Govindan, A. Sivasubramaniam, B. Urgaonkar, A. Kansal, and
K. Vaid, “ACE: abstracting, characterizing and exploiting peaks and valleys in dat-
acenter power consumption,” in Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems, 2013, pp. 333-334.

L. Wang, J. Tao, G. von Laszewski, and D. Chen, “Power aware scheduling for par-
allel tasks via task clustering,” in Proceedings of the IEEE 16th International Conference

on Parallel and Distributed Systems (ICPADS 2010), December 2010, pp. 629-634.

X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “CARPO: Correlation-aware power
optimization in data center networks,” in Proceedings of the 2012 IEEE International
Conference on Computer Communications (INFOCOM 2012), March 2012, pp. 1125-
1133.

B. Wickremasinghe, R. Calheiros, and R. Buyya, “CloudAnalyst: A cloudsim-based
visual modeller for analysing cloud computing environments and applications,” in
Proceedings of the 24th IEEE International Conference on Advanced Information Network-
ing and Applications (AINA 2010), April 2010, pp. 446-452.

M. G. Xavier, M. V. Neves, and C. A. F. D. Rose, “A performance comparison of

7

container-based virtualization systems for mapreduce clusters,” in Proceedings of
the 2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing, February 2014, pp. 299-306.

M. G. Xavier, F. D. Rossi, C. A. E De Rose, R. N. Calheiros, and D. G.
Gomes, “Modeling and simulation of global and sleep states in acpi-compliant
energy-efficient cloud environments,” Concurrency and Computation: Practice and

Experience, 2016. [Online]. Available: http://dx.doi.org/10.1002/cpe.3839

Yahoo, “Yahoo! expands its m45 cloud computing initiative,” https:/ /yodel.yahoo.
com/blogs/product-news/yahoo-expands-m45-cloud-computing-initiative-

5065.html, November 2010, (Accessed on 03/21/2016).

http://dx.doi.org/10.1002/cpe.3839
https://yodel.yahoo.com/blogs/product-news/yahoo-expands-m45-cloud-computing-initiative-5065.html
https://yodel.yahoo.com/blogs/product-news/yahoo-expands-m45-cloud-computing-initiative-5065.html
https://yodel.yahoo.com/blogs/product-news/yahoo-expands-m45-cloud-computing-initiative-5065.html

202 BIBLIOGRAPHY

[168] E. Yaqub, R. Yahyapour, P. Wieder, A. Jehangiri, K. Lu, and C. Kotsokalis,
“Metaheuristics-based planning and optimization for SLA-Aware resource man-
agement in Paa$S clouds,” in Proceedings of the 7th IEEE/ACM International Conference
on Utility and Cloud Computing (UCC 2014), December 2014, pp. 288-297.

[169] R. Yogamangalam and V. S. Sriram, “A review on security issues in cloud comput-

ing,” Journal of Artificial Intelligence, vol. 6, no. 1, pp. 1-7, 2013.

[170] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and re-
search challenges,” Internet Services and Applications, vol. 1, no. 1, pp. 7-18, 2010.

[171] Q. Zhang, J. L. Hellerstein, and R. Boutaba, “Characterizing task usage shapes in
Google’s compute clusters,” in Proceedings of the 5th International Workshop on Large

Scale Distributed Systems and Middleware, September 2011, pp. 1-6.

[172] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and]. Wilkes, “CPI2: CPU
performance isolation for shared compute clusters,” in Proceedings of the 8th ACM

European Conference on Computer Systems (EuroSys '13), 2013, pp. 379-391.

[173] W.Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and simulation of cloud computing:
A review,” in Proceedings of the 2012 IEEE Asia Pacific Congress on Cloud Computing
(APCloudCC 2012), November 2012, pp. 20-24.

[174] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization of data center
network and servers with correlation analysis,” in Proceedings of the 2014 IEEE Inter-
national Conference on Computer Communications (INFOCOM 2014), April 2014, pp.
2598-2606.

	1 Introduction
	1.1 Container as a Service Cloud Deployment Model
	1.2 Energy Consumption Challenges in Containerized Clouds
	1.3 Research Problems and Objectives
	1.4 Research Methodology
	1.5 Research Contributions
	1.6 Thesis Organization

	2 Literature Survey and Related Work
	2.1 Introduction
	2.2 PaaS Power-aware Resource Management
	2.2.1 Bare Metal Environments
	2.2.2 Virtualized Environments
	2.2.3 System-Level Virtualization (Virtual Machines)
	2.2.4 Hybrid

	2.3 Workload Characterization and Modeling
	2.3.1 Workload Definition
	2.3.2 Workload Modeling Techniques
	2.3.3 Workload-based Energy Saving Techniques

	2.4 Application-based Energy Saving Techniques
	2.4.1 Web Applications
	2.4.2 Bag of Tasks
	2.4.3 Big Data Applications

	2.5 SLA and Energy Management Techniques
	2.6 Thesis Scope and Positioning
	2.7 Summary

	3 Virtual Machine Customization and Task Mapping Architecture
	3.1 Introduction
	3.2 Related Work
	3.2.1 Google Trace Research Works

	3.3 System Model and Architecture
	3.3.1 User Request Model
	3.3.2 Cloud Model
	3.3.3 System Architecture
	3.3.4 System Components

	3.4 Task Clustering
	3.4.1 Clustering Feature Set
	3.4.2 Clustering Algorithm

	3.5 Identification of VM Types for the VM Type Repository
	3.5.1 Determination of Number of Tasks for each VM Type
	3.5.2 Estimation of Resource Usage of Tasks in a Cluster
	3.5.3 Determination of Virtual Machines Configuration

	3.6 Resource Allocation Policies
	3.7 Google Cluster Workload Overview
	3.8 Characteristics of Task Clusters
	3.9 Performance Evaluation
	3.9.1 Experiment Setup for Investigating Resource Allocation Policies
	3.9.2 Task Execution Efficiency of the Proposed Algorithms
	3.9.3 Energy Efficiency of the Proposed Algorithms
	3.9.4 Discussion

	3.10 Efficient VM Sizing for CaaS
	3.10.1 Extended System Model
	3.10.2 Extended Architecture
	3.10.3 Experiment Setup for Investigating VM Sizing Efficiency
	3.10.4 Feature set selection
	3.10.5 Baseline scenarios
	3.10.6 Experiment Results

	3.11 Conclusions

	4 Modeling and Simulation of Containers in Cloud Data Centers
	4.1 Introduction
	4.2 Related Work
	4.3 CaaS modeling requirements
	4.4 Simulator Architecture
	4.5 Design and Implementation
	4.5.1 Discrete Event Simulation Dynamics

	4.6 Use Cases and Performance Evaluation
	4.6.1 Use Case 1: Container Overbooking
	4.6.2 Use Case 2: Container Consolidation
	4.6.3 Use Case 3: Container Placement Policies
	4.6.4 Container and VM Start Up Delays
	4.6.5 Simulation Scalability
	4.6.6 Energy consumption overhead of CaaS
	4.6.7 Empirical Evaluation:

	4.7 Conclusions

	5 Efficient Container Consolidation in Cloud Data Centers
	5.1 Introduction
	5.2 Related Work
	5.3 System Objective and Problem Formulation
	5.3.1 Data Center Power Model
	5.3.2 SLA Metric
	5.3.3 Problem Formulation

	5.4 System Model
	5.4.1 Host Status Module
	5.4.2 Consolidation Module

	5.5 Algorithms
	5.5.1 Correlation Analysis
	5.5.2 Host Status Monitor Module
	5.5.3 Consolidation Module

	5.6 Performance Evaluation
	5.6.1 Simulation Setup
	5.6.2 Experiment Results
	5.6.3 Container Consolidation Versus VM Consolidation

	5.7 Conclusions

	6 Conclusions and Future Directions
	6.1 Summary
	6.2 Future Research Directions
	6.2.1 Dynamic Virtual Machine Sizing
	6.2.2 Multi-objective Container Placement Algorithms
	6.2.3 Network-aware Container Consolidation Algorithms
	6.2.4 Joint VM and Container Consolidation Algorithms
	6.2.5 Extending ContainerCloudSim Simulator
	6.2.6 Advanced Container Overbooking Algorithms
	6.2.7 Deploying a Scalable Containerized Testbed

	6.3 Final Remarks

