
Microservices-based Internet of
Things Applications Placement in

Fog Computing Environments

Samodha Pallewatta

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE, AUSTRALIA

February 2023

Copyright © 2023 Samodha Pallewatta

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.

Microservices-based Internet of Things Applications Placement
in Fog Computing Environments

Samodha Pallewatta
Principal Supervisor: Prof. Rajkumar Buyya

Co-Supervisor: Prof. Vassilis Kostakos

Abstract

The Internet of Things (IoT) paradigm is rapidly improving various application do-

mains such as healthcare, smart city, Industrial IoT (IIoT), and intelligent transportation

by interweaving sensors, actuators and data analytics platforms to create smart environ-

ments. Initially, the cloud-centric IoT was introduced as a viable solution for processing

and storing massive amounts of data generated by IoT devices. However, with rapidly

increasing data volumes, data transmission from geo-distributed IoT devices to the cen-

tralised Cloud incurs high network congestion and high latency. Thus, cloud-centric IoT

often fails to satisfy the Quality of Service (QoS) requirements of latency-sensitive and

bandwidth-hungry IoT application services. Fog computing paradigm extends cloud-

like services towards the edge of the network, thus offering low latency service delivery.

However, Fog nodes are distributed, heterogeneous and resource-constrained, creating

the need to utilise both Fog and Cloud resources to execute IoT applications in a QoS-

aware manner.

Meanwhile, MicroService Architecture (MSA) has emerged as a powerful application

architecture capable of satisfying the development and deployment needs of rapidly

evolving IoT applications. The fine-grained modularity of microservices, their indepen-

dently deployable and scalable nature, along with the lack of centralised management,

demonstrate immense potential in harnessing the power of distributed Fog and Cloud

resources to meet the QoS requirements of IoT applications. Furthermore, the loosely

coupled nature of microservices enables the dynamic composition of distributed mi-

croservices to achieve diverse performance requirements of IoT applications while util-

ising distributed computing resources. To this end, efficient placement of microservices

plays a vital role, and scalable placement techniques can use MSA characteristics to har-

vest the full potential of the Fog computing paradigm.

iii

This thesis investigates novel placement techniques and systems for microservices-

based IoT applications in Fog computing environments. Proposed approaches identify

MSA characteristics to overcome challenges within the Fog computing environments

and make use of them to fulfil heterogeneous QoS requirements of IoT application ser-

vices in terms of service latency, budget, throughput and reliability while utilising Fog

and Cloud resources in a balanced manner. This thesis advances the state-of-the-art in

Fog computing by making the following key contributions:

1. A comprehensive taxonomy and literature review on the placement of microservices-

based IoT applications considering different aspects, namely modelling microservices-

based applications, creating application placement policies, microservice compo-

sition, and performance evaluation, in Fog computing environments.

2. A distributed placement technique for scalable deployment of microservices to

minimise the latency of the application services and network usage due to IoT

data transmission.

3. A robust placement technique for batch placement of microservices-based IoT ap-

plications, where the technique considers the placement of a set of applications

simultaneously to optimise the QoS satisfaction of application services in terms

of makespan, budget and throughput while dynamically utilising Fog and Cloud

resources.

4. A reliability-aware placement technique for proactive redundant placement of mi-

croservices to improve reliability satisfaction in a throughput and cost-aware man-

ner.

5. A software framework for microservices-based IoT application placement and dy-

namic composition across federated Fog and Cloud computing environments.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Samodha Pallewatta, February 2023

v

Preface

Main Contributions

This thesis research has been carried out in Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, School of Computing and Information Systems, The University

of Melbourne. The main contributions of the thesis are discussed in Chapters 2-6 and

are based on the following publications:

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Placement of Micro-

services-based IoT Applications in Fog Computing: A Taxonomy and Future Di-

rections”, ACM Computing Surveys (CSUR), Volume 55, No. 14s, Article 321, ISSN:

0360-0300, December 2023.

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Microservices-

based IoT Application Placement within Heterogeneous and Resource Constrained

Fog Computing Environments”, Proceedings of the 12th IEEE/ACM International Con-

ference on Utility and Cloud Computing, Pages: 71-81, Auckland, New Zealand, De-

cember 2-5, 2019.

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”QoS-aware place-

ment of microservices-based IoT applications in Fog computing environments”,

Future Generation Computer Systems (FGCS), Volume 131, Pages: 121-136, ISSN:

0167-739X, June 2022.

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Reliability-aware

Proactive Placement of Microservices-based IoT Applications in Fog Computing

vii

Environments”, IEEE Transactions on Mobile Computing (TMC), (revision, August

2023).

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”MicroFog: A Frame-

work for Scalable Placement of Microservices-based IoT Applications in Federated

Fog Environments”, Journal of Systems and Software, (revision, June 2023).

Supplementary Contributions

During the Ph.D. candidature, I have also contributed to the following collaborative

works (this thesis does not claim them as its contributions):

• Redowan Mahmud, Samodha Pallewatta, Mohammad Goudarzi, and Rajkumar

Buyya, ”IFogSim2: An Extended iFogSim Simulator for Mobility, Clustering, and

Microservice Management in Edge and Fog Computing Environments”, Journal of

Systems and Software (JSS) Volume 190, ISSN: 0164-1212, August 2022.

viii

Acknowledgements

I would like to thank my supervisors, Professor Rajkumar Buyya and Professor Vassilis
Kostakos, for giving me the opportunity to pursue my PhD under their guidance. I
am grateful for their invaluable support, encouragement, and guidance throughout my
candidature. I would like to express my sincere gratitude to them for providing me
with great opportunities to grow as a researcher and helping me navigate the ups and
downs of the challenging PhD journey. I would also like to express my gratitude to
my PhD advisory committee members, Professor Alistair Moffat and Professor Shanika
Karunasekera, for their valuable comments and suggestions.

I would also like to thank all the past and current members of the CLOUDS Labo-
ratory at the University of Melbourne. In particular, I thank Dr. Mohammad Goudarzi,
Dr. Redowan Mahmud, Dr. Maria Rodriguez, Dr. Sara Kardani, Dr. Shashikant Ilager,
Dr. Muhammad Hilman, Dr. Muhammed Tawfiqul Islam, Dr. TianZhang He, Zhiheng
Zhong, Amanda Jayanetti, Anupama Mampage, Rajeev Muralidhar, Kwangsuk Song,
Jie Zhao, Ming Chen, Siddharth Agarwal, Tharindu Bandara, Thanh-Hoa Nguyen, Yu-
lun Huang, Zhiyu Wang, Kalyani Pendyala, Duneesha Fernando, Jayath Seneviratne,
Chun Wei Lim, and Thakshila Mohottige for their support.

I would also like to thank friends and family, Shashi Jayaweera, Anjana Perera, Man-
jula Geeganaarachichi, Punsala Manage and Upendra Keerthilatha, for their support
and companionship.

I acknowledge the University of Melbourne for providing me with the scholarship
and resources to pursue my doctoral studies. My research is also supported by a Discov-
ery Project grant from the Australian Research Council (ARC) awarded to my principal
supervisor.

I would like to extend my sincere thanks to the past and present admin staff of the
School of Computing and Information Systems for their support.

I would like to thank my parents, Bandula Pallewatta and Jayanthika Chithrangani,
and my brother Samudaya Pallewatta for their unconditional love and support. My
sincerest gratitude goes to my parents for always encouraging me and believing in me
throughout this challenging journey. Reaching this amazing goal would not have been
possible without their endless support.

Samodha Pallewatta
February 2023, Melbourne, Australia

ix

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Background . 3

1.1.1 Fog Computing . 3
1.1.2 Microservice Architecture (MSA) . 5
1.1.3 Microservices-based IoT Applications and Fog Computing 7

1.2 Problem Definition . 9
1.2.1 Challenges of Fog Application Placement 11

1.3 Research Questions and Objectives . 13
1.4 Thesis Contributions . 15
1.5 Thesis Organization . 18

2 A Taxonomy and Review on Placement of Microservices-based IoT Applica-
tions 21
2.1 Introduction . 21
2.2 Related Surveys . 25
2.3 Microservice Architecture . 29

2.3.1 Granularity . 30
2.3.2 Service Composition . 32
2.3.3 Application Composition . 33
2.3.4 Research Gaps . 34

2.4 Application Placement Policy . 36
2.4.1 Placement Mode . 36
2.4.2 Placement Perspective . 37
2.4.3 Placement Parameters . 37
2.4.4 Placement Techniques . 43
2.4.5 Advanced Microservice Characteristics 44
2.4.6 Other Placement Objectives . 45
2.4.7 Research Gaps . 47

xi

2.5 Microservice Composition . 48
2.5.1 Service Discovery . 49
2.5.2 Load Balancing . 50
2.5.3 Networking . 51
2.5.4 Elasticity . 52
2.5.5 Monitoring . 52
2.5.6 Other . 53
2.5.7 Research Gaps . 53

2.6 Performance Evaluation . 53
2.6.1 Evaluation Approach . 54
2.6.2 Workload . 56
2.6.3 Research Gaps . 57

2.7 Summary . 58

3 A Distributed Placement Policy for Scalable Microservice Deployment 59
3.1 Introduction . 59
3.2 Related Work . 62
3.3 System Model and Problem Formulation 64

3.3.1 Fog Architecture . 65
3.3.2 Application Model . 66
3.3.3 Fog Nodes . 67
3.3.4 Placement Problem . 69

3.4 Proposed Solution . 70
3.4.1 Microservice Placement . 70
3.4.2 Service Discovery . 74
3.4.3 Load balancing . 75
3.4.4 Time Complexity Analysis . 76

3.5 Design and Implementation . 77
3.6 Performance Evaluation . 78

3.6.1 Experimental Configurations . 79
3.6.2 Results and Analysis . 79

3.7 Summary . 86

4 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications 87
4.1 Introduction . 88
4.2 Related Work . 91

4.2.1 Application Placement in Fog Environments 91
4.2.2 Particle Swarm Optimisation . 94

4.3 System Model and Architecture . 98
4.3.1 Application Model . 98
4.3.2 Fog Architecture . 100
4.3.3 Pricing Model . 101

4.4 QoS-aware Application Placement . 101
4.4.1 Problem Formulation . 102

xii

4.4.2 QoS-aware Multi-objective S-CLPSO (QMPSO) 108
4.5 Performance Evaluation . 115

4.5.1 Implementation of the Algorithms 117
4.5.2 Experimental Configurations . 118
4.5.3 Results and Analysis . 122

4.6 Summary . 131

5 Reliability-aware Proactive Placement of Mission-critical IoT Applications 133
5.1 Introduction . 134

5.1.1 Motivational Scenario . 136
5.1.2 Proposed Approach and Contributions 137

5.2 Related Work . 138
5.3 System Model and Problem Formulation 141

5.3.1 Microservices-based Application Model 141
5.3.2 Fog Computing Environment Model 142
5.3.3 System and Failure Characteristics 143
5.3.4 Throughput-aware Minimum Instance Calculation 147
5.3.5 Service Latency Model . 147
5.3.6 Pricing Model . 148
5.3.7 Problem Formulation . 148

5.4 Reliability-aware Placement Method (RPM) 149
5.4.1 Overview . 149
5.4.2 Monte Carlo Simulation-based Service Reliability 151
5.4.3 Stage 1 - Throughput-aware Scalable Placement 153
5.4.4 Stage 2 - Reliability-aware Redundant Placement 157

5.5 Performance Evaluation . 161
5.5.1 Experimental Configurations . 161
5.5.2 RPM Algorithm Performance Evaluation 162
5.5.3 RPM Algorithm Placement Evaluation 165

5.6 Summary . 168

6 A Framework for Scalable Microservices Placement in Federated Fog Environ-
ments 171
6.1 Introduction . 172
6.2 Background and Related works . 174

6.2.1 Fog Computing . 174
6.2.2 Microservices-based Applications 175
6.2.3 Application Deployment Related Aspects 177
6.2.4 Containerisation using Docker . 177
6.2.5 Placement Problem . 182
6.2.6 Framework Requirements . 182
6.2.7 Existing Fog Frameworks . 183

6.3 MicroFog Framework . 185
6.3.1 High-level Architecture . 186

xiii

6.3.2 Main Components and Technologies 186
6.3.3 PR Processing flow of MicroFog-CE 194

6.4 MicroFog Deployment . 196
6.4.1 MinIO YAML File Store Deployment 197
6.4.2 Redis Meta Data Store Deployment 199
6.4.3 Control-Engine Deployment . 199
6.4.4 Deployment of Observability, Monitoring and Logging Tools . . . 201

6.5 APIs of MicroFog-CE . 202
6.6 MicroFog - Evaluation and Validation . 203

6.6.1 Experimental Setup . 204
6.6.2 Use cases and results . 210

6.7 Summary . 219

7 Conclusions and Future Directions 221
7.1 Summary of Contributions . 221
7.2 Future Research Directions . 224

7.2.1 Dynamic Application Management 224
7.2.2 Placement within Federated Multi-fog Multi-cloud Environments . 224
7.2.3 Software Frameworks and Platforms for Fog Environments 225
7.2.4 IoT Workloads/Benchmarks Related to MSA 225
7.2.5 Security-aware Placement . 226
7.2.6 Scalable Placement under state management constraints 226
7.2.7 Resource Contention Handling . 226
7.2.8 Observability and Monitoring Driven Maintenance 227
7.2.9 Placement within NFV-enabled Networks 227
7.2.10 Fault Tolerant Placement and Management of Microservices 228
7.2.11 Availability Assurance under Continuous Integration and Deliv-

ery . 228
7.3 Final Remarks . 228

xiv

List of Figures

1.1 Fog computing and related paradigms . 3
1.2 Application architecture (monolithic vs microservices) 6
1.3 IoT applications, Microservice architecture and Fog computing 9
1.4 Microservices-based Fog application placement 10
1.5 Example use cases of microservice composition 11
1.6 The thesis structure . 18

2.1 Main challenges related to designing novel Fog placement policies for
microservice-based IoT applications and their relationships. 24

2.2 Taxonomy for microservices-based IoT applications placement 25
2.3 Taxonomy for modelling of microservice architecture for placement prob-

lem formulation . 30
2.4 Taxonomy for placement policies designed for microservices-based appli-

cations . 39
2.5 Taxonomy for microservice composition . 49
2.6 Taxonomy for performance evaluation of the placement policy 54

3.1 Hierarchical Fog architecture . 65
3.2 Microservices-based IoT application . 66
3.3 Fog node architecture . 68
3.4 Class diagram of extensions made to iFogSim simulator (existing classes:

FogDevice.java and ModulePlacement.java) 77
3.5 ECG monitoring application data flow and resource requirements 80
3.6 Average delay for latency sensitive path . 82
3.7 Average network usage . 83
3.8 Total time taken for deployment of microservices within Fog layer 85

4.1 Example scenarios for IoT application placement 89
4.2 Microservices-based IoT application architecture (a) DAG representation,

(b) Service composition patterns . 100
4.3 An overview of the Fog architecture . 102
4.4 QMPSO particle representation . 110
4.5 Variation of fitness values for different adaptations of S-CLPSO 121
4.6 Performance for different device counts . 125

xv

4.7 Performance for different application/microservice counts 126
4.8 Execution time of the QMPSO and CPPA algorithms 126
4.9 Performance for different throughput requirements 129

5.1 A scenario of usecase in the context of smart heath monitoring 135
5.2 Microservices-based application model . 141
5.3 Multi-component system reliability model 144
5.4 Reliability-aware placement process . 151
5.5 Monte Carlo based TTF calculation . 153
5.6 Evaluation of proactive redundant placement 166
5.7 Evaluation of throughput-aware scalability 167
5.8 Evaluation of CCF effect . 168

6.1 Federated multi-fog and multi-cloud architecture 175
6.2 Example deployment of a smart health monitoring application 181
6.3 MicroFog: High-level architecture . 187
6.4 MicroFog: Domain diagram for CE . 198
6.5 MinIO - YAML file store deployment . 200
6.6 Distributed CE deployment . 201
6.7 API 1 - For submitting PRs . 204
6.8 API 2 - For querying cluster information . 205
6.9 API 3 - For submitting placement output for deployment 206
6.10 Multi-fog multi-cloud infrastructure . 208
6.11 Availability analysis of data stores . 211
6.12 Distributed placement algorithm execution 213
6.13 Analysis of CE operation modes . 214
6.14 Analysis of Kubernetes distributions . 215
6.15 Scalable microservice placement . 217
6.16 Multi-cluster service discovery and load balancing scenario - app2 218
6.17 Multi-cluster service discovery and load balancing scenario - hcapp 219

xvi

List of Tables

1.1 Comparison between monolithic and microservice architecture 7

2.1 Summary of existing surveys . 26
2.2 Analysis of existing literature based on the taxonomy for modelling of

microservice architecture . 38
2.3 Analysis of existing literature based on the taxonomy for application place-

ment policy . 40
2.4 Analysis of existing literature based on the taxonomy for microservice

composition . 50
2.5 Analysis of existing literature based on the taxonomy for performance

evaluation . 55

3.1 Summary of literature study . 62
3.2 Evaluation parameters . 81
3.3 Configuration of Fog devices . 81

4.1 Comparison of existing application placement policies 93
4.2 Notations . 98
4.3 Evaluation parameters . 119
4.4 Parameters for placement algorithms . 119
4.5 Mean fitness values and standard error of the objectives for different adap-

tations of S-CLPSO to Fog placement problem 122
4.6 Complexity analysis . 130

5.1 Comparison of existing research . 140
5.2 Evaluation of different varients (under independent failures) 164
5.3 Evaluation of different varients (independent and correlated failures) . . 164

6.1 Comparison of existing frameworks . 184
6.2 Federated fog-cloud infrastructure setup 207
6.3 Generated placement for example applications (app2 and hcapp) 217

xvii

List of Acronyms

IoT Internet of Things

IIoT Industrial IoT

MSA MicroService Architecture

FAPP Fog Application Placement Problem

SOA Service Oriented Architecture

CPS Cyber-Physical Systems

SLA Service Level Agreement

QoS Quality of Service

QoE Quality of Experience

MEC Mobile Edge computing

VM Virtual Machines

CoAP Constrained Application Protocol

LAN Local Area Network

WAN Wide Area Network

WLAN Wireless Local Area Network

RAN Radio Access Network

SDN Software-Defined Networking

NFV Network Function Virtualization

DAG Directed Acyclic Graph

BoT Bag of Tasks

FIFO First In First Out

xix

ILP Integer Linear Programming

MILP Mixed Integer Linear Programming

GA Genetic Algorithm

PSO Particle Swarm Optimisation

ACO Ant Colony Optimisation

S-CLPSO Set-based Comprehensive Learning Particle Swarm Optimisation

AHP Analytical Hierarchy Process

ML Machine Learning

xx

Chapter 1

Introduction

The Internet of Things (IoT) paradigm is gaining immense popularity due to its signifi-

cance in technical, social and economic aspects [1]. IoT transforms everyday objects and

infrastructure into intelligent entities that can interact with each other without human

intervention, which has resulted in its expansion to a wide range of services, including

healthcare, transportation, industrialisation, and agriculture. IoT generates enormous

quantities of dynamic data composed of various data types to be processed, analysed

and stored. Cloud computing was initially identified as a viable solution for hosting

such IoT services, giving rise to cloud-centric IoT [2]. However, due to the exponential

increase in connected devices, raw data transmission towards centralised Cloud data

centres increases network congestion and latency, thus reducing the feasibility of cloud-

centric IoT analytics. As a solution, a novel distributed computing paradigm called Fog

computing is introduced, bringing data processing and storage closer to the end-user,

hence supporting latency-critical and bandwidth-consuming IoT services.

Meanwhile, MicroService Architecture (MSA) emerged as a cloud-native applica-

tion architecture style, enabling the development and deployment of highly reliable and

scalable software systems that can undergo frequent updates and deployments [3, 4].

Microservices-based IoT applications are gaining tremendous momentum due to their

potential to improve the performance of IoT services deployed within distributed com-

puting environments [5]. According to the market research conducted by The Interna-

tional Market Analysis Research and Consulting Group (IMARC Group), the global microser-

vice architecture market is expected to reach US$ 6.84 Billion by 2027 with a Compound

Annual Growth Rate (CAGR) of 15.70% during 2022-2027 [6]. Compared to previous

application architectures such as monolithic architecture and Service Oriented Architec-

1

2 Introduction

ture (SOA) realised through web services, the true potential of MSA as a cloud-native

application architecture lies in its loosely coupled nature, which enables containerised

deployment, dynamic composition, and load-balancing across federated multi-fog and

multi-cloud environments with the support of other cloud-native technologies like con-

tainer orchestrators (i.e., Kubernetes, Docker Swarm) and service mesh technologies

(i.e., Istio, Linkerd). Microservices can be independently and dynamically deployed

and horizontally scaled across hybrid environments while maintaining seamless con-

nectivity among interacting microservices under dynamic conditions. This paved the

way for the convergence of Fog computing, IoT and microservices, thus resulting in the

introduction of novel paradigms such as Osmotic Computing [7] that focus on dynamic

placement and deployment of microservices across federated Fog-Cloud environments.

Thus, within geo-distributed and heterogeneous Fog environments, the placement of

microservices-based applications remains one of the most critical and challenging areas.

The placement algorithms benefit from awareness of the MSA-related characteristics so

that they can adequately utilise the strengths of the application architecture to overcome

the challenges and limitations of Fog computing environments.

To this direction, this thesis addresses the problem of optimal placement of microservices-

based IoT applications within Fog computing environments. It investigates novel place-

ment approaches to utilise MSA characteristics to overcomes the challenges of Fog com-

puting and improve the QoS of IoT application services. This is achieved by conducting

a comprehensive background survey and developing a taxonomy of the state-of-the-art

to identify multiple aspects related to solving the placement problem of microservies-

based IoT applications within Fog computing environments. Moreover, a set of place-

ment algorithms are developed to improve the QoS satisfaction of the IoT application

services in terms of service latency, deployment cost, throughput and reliability. Finally,

a software framework is designed and implemented to enable the placement and dy-

namic composition of microservices across multi-fog multi-cloud environments.

Proposed placement algorithms and software framework are evaluated using three

methodologies; numerical evaluations to determine the efficiency of the proposed algo-

rithms based on convergence and complexity analysis, discrete event-driven simulations

to evaluate placement approaches using simulated Fog environments and practical im-

1.1 Background 3

plementations to create prototype systems to evaluate proposed software framework. In

this thesis, simulations are conducted using the iFogSim simulation toolkit [8, 9]. To this

end, we extend iFogSim and implement microservice orchestration-related features [8].

For practical evaluations presented in this thesis, we create the prototype using cloud-

native technologies such as Docker, Kubernetes and Istio.

1.1 Background

This section discusses fundamental concepts related to the research problem addressed

in the thesis.

1.1.1 Fog Computing

Figure 1.1: Fog computing and related paradigms

4 Introduction

For many years Cloud computing has been one of the leading facilitators of IoT that

offers on-demand services to aggregate, process and store the data generated by IoT

devices. As Cloud data centres are located multiple hops away from IoT devices, data

analytics in the Cloud results in higher latency values due to the extended data trans-

mission delay. This considerably degrades the performance of IoT application services

with low latency requirements. With IoT applications growing into a vital aspect of

modern living, the number of IoT devices has increased exponentially. According to the

estimates by International Data Corporation, 41.6 billion IoT devices will generate 79.4

zettabytes of data in 2025 [10]. Transmitting such a large amount of data towards Cloud

would add a substantial load to the network resulting in severe network congestion.

To address these limitations of the cloud-centric IoT model, Fog computing is in-

troduced to extend cloud-like services towards the edge of the network [11]. The Fog

computing paradigm was first introduced by Cisco in 2012 as a platform to support the

unique requirements of IoT, such as low latency, location awareness, mobility support,

and geo-distribution [12]. To this end, Fog computing introduces an intermediate layer

between IoT devices and Cloud data centres [11], which is organised in a multi-tier ar-

chitecture. It exploits computation, storage and networking resources that reside within

the path connecting end devices to the Cloud data centres [13]. Thus, Fog resources

consist of a diverse set of devices (i.e., smart routers and switches, personal computers,

edge servers, Raspberry Pi devices, micro-datacentres, cloudlets, etc.). Consequently,

Fog computing provides data processing in the proximity of the data sources, thus sup-

porting low service delivery times. Furthermore, distributed data processing at the net-

work edge minimises the amount of data sent towards the Cloud. This reduces network

congestion and lowers the burden on Cloud data centres.

Compared to the Cloud data centres, Fog nodes are distributed and resource-constrained.

To overcome the resource limitations, the Fog computing paradigm maintains feder-

ated Fog computing architectures, where distributed Fog resources collaborate to satisfy

client requirements [14]. Moreover, the Fog computing layer maintains a seamless con-

nection with the Cloud [15] so that computation-intensive tasks can be carried out using

Cloud resources. In our view, paradigms like Edge Computing and Mobile Edge Com-

puting (MEC) utilise only the Edge resources residing within the closest layer to the IoT

1.1 Background 5

devices. In contrast, Fog extends this concept further to include resources at different

computing layers with the integration of Cloud data centres when necessary (see Fig-

ure 1.1) to provide IaaS, PaaS and SaaS services in the proximity of the data sources

(although some works use these terms interchangeably).

Considering the benefits and potential of Fog computing, major Cloud service providers

like Amazon, Google, Microsoft, Oracle, and IBM have started extending their infras-

tructure to support Fog services [16]. Moreover, hardware manufacturers such as Cisco,

Dell and Intel are developing devices to be used as Fog computing nodes. Furthermore,

companies like VMware, FogHorn Systems, and SONM are building software platforms

and compute stacks to build, run, and manage Fog computing-based IoT solutions [17].

To further increase the momentum of Fog adaptation, telecom providers such as Telstra

and Telefonica have commenced developing prototypes to provide computing at the

network edge through mini-data centres. With such rapid advancement, the Fog market

is expected to reach USD 155.90 billion by 2030 [18].

1.1.2 Microservice Architecture (MSA)

An enterprise application usually consists of a server-side application that implements

its domain-specific business logic, and client-side user interfaces supporting different

clients such as desktop browsers and/or mobile browsers, and a database to persist

the data. Moreover, the application may connect with other third-party applications

(through web services or message brokers) and expose APIs for third parties to con-

sume. The design and development of such applications follow different architectural

patterns depending on the complexity of the business domain. Figure 1.2 presents a

general representation of an application developed using Monolithic and Microservice

architecture.

In monolithic architecture, the server-side application is a single logical executable

developed either as a single process or a modular monolith where modules invoke each

other through method/function calls at the programming language level [19]. Using

monolithic architecture is advantageous during the early stages of an application or if

the application is quite simple with only a few core functionalities. But as the appli-

6 Introduction

 Business
 Logic

Data
InterfaceREST API

Web UI Adapter
External
Service

Database

module 1

module 2module n

module ...

module 4

module 3

module 1

module 2module n

module ...

module 4

module 3

(a) Monolithic application architecture (b) Microservice application architecture (MSA)

Figure 1.2: Application architecture (monolithic vs microservices)

cations grow, they tend to outgrow the monolithic architecture [20]. As all modules of

the application are combined into a single unit, the coupling among them increases, and

the application becomes too complex to understand, inflexible to change, incurs high

deployment delays and lacks scalability.

MSA aids in overcoming the limitations of the monolithic architecture within rapidly

growing software ecosystems. Martin Fowler defines MSA as ”an approach to develop-

ing a single application as a suite of small services, each running as independent pro-

cesses and communicating with lightweight mechanisms, often an HTTP resource API”

[21]. Microservices are independently deployable and scalable units designed around

business logic adhering to the single responsibility principle [22]. Moreover, microser-

vices are loosely connected components that can be easily integrated to create complex

applications. Due to fine-grained modularity, each microservice can be deployed on

hardware that best matches its resource requirements (i.e., CPU-intensive, memory-

intensive, I/O-intensive, etc.) and can be deployed and scaled independently according

to the load on each service. Unlike monolithic architecture, MSA provides better fault

isolation, as a fault in a particular service only affects that service. Furthermore, the in-

dependent scalability of microservices improves redundant deployment to achieve fault

tolerance. New technologies that best suit the microservices can be easily adapted as

services are loosely coupled. This mitigates the need to stick to a single technology stack

and provides the flexibility to evolve with technologies. Table 1.1 summarises and com-

pares the characteristics of the two architectures.

1.1 Background 7

Table 1.1: Comparison between monolithic and microservice architecture

Monolithic Architecture Microservice Architecture

Server-side application is a single logical
executable

Server-side consists of independently deployable, multiple mi-
croservices

Modules communicate through language
level method invocations

Inter-process communication through REST APIs or lightweight
messaging

Low flexibility Flexible - different programming languages and technologies
can be used based on microservice requirements

Less support for scaling Highly scalable (independently deployable and scalable mi-
croservices)

Longer time from development to deploy-
ment

Supports rapid and agile development and deployment

Unreliable due to single point of failure Higher resilience to failure due to failure isolation and redun-
dancy support

These characteristics of MSA have established it as the backbone of the cloud-native

application architecture. According to the cloud-native architecture, microservices are

packaged as self-contained, lightweight containers (such as Docker) and managed through

container orchestration tools (such as Kubernetes) to utilise elasticity, scale and resiliency

provided by computing architectures like Cloud and Fog. Moreover, MSA uses service

mesh technologies (such as Istio) to manage microservice composition-related cross-

cutting concerns such as service discovery, load balancing among horizontally scaled

microservices, distributed monitoring, and security. Thus, MSA has emerged as the

leading enabler for scalable application execution in distributed, multi-cloud environ-

ments, thus making MSA a strong candidate for Fog applications [23].

1.1.3 Microservices-based IoT Applications and Fog Computing

This section highlights how the main characteristics of MSA, IoT applications and Fog

computing paradigm fit perfectly together, giving rise to microservices-based IoT appli-

cations for Fog environments. Figure 1.3 lists these characteristics and groups them to

show their relationships.

IoT application characteristics can be categorised into three main groups; Design

and Development, Deployment and Management, and Service Characteristics. Rapid

design, development needs and interoperability, and service reusability caused by the

IoT ecosystem’s complexity can be satisfied by adopting a software architecture that

8 Introduction

supports higher flexibility to change, reduced time to market, and collaboration among

multiple development teams. MSA can enable these requirements with the fine-grained

modular design and loosely coupled nature, which perfectly conforms with agile de-

sign and development principles. From a deployment and maintenance perspective,

IoT applications must maintain rapid deployment cycles with minimum service dis-

ruptions and support the dynamic workload while maintaining service availability and

resilience. These requirements can be successfully satisfied using MSA [24–26]. MSA de-

composes large and complicated applications into independently deployable and scal-

able modules that can be conveniently packaged into lightweight containers with con-

siderably lower startup times and rapid deployment and migration support, which re-

sult in higher service availability and reliability under dynamic conditions. The de-

composition of the application into small independent units allows only the updated or

newly developed microservices to be re-deployed and just the performance-affected mi-

croservices to be scaled within each deployment cycle. Moreover, this enables a proper

balance between horizontal and vertical scalability where microservices that are harder

to scale horizontally (i.e., services that use relational databases) can be vertically scaled

while the rest can be horizontally scaled [27]. Thus, MSA meets the scalability, main-

tainability, extensibility, and interoperability requirements of large and complex IoT

software systems [28]. As a result, MSA is increasingly adopted for IoT application

development in many areas such as smart cities, smart healthcare, IIoT [29–31].

In contrast to Cloud data centres, Fog environments consist of distributed, hetero-

geneous, resource-constrained devices. Thus, deploying a monolithic application onto

such devices is less feasible due to their resource demand. The scalability of such appli-

cations is also limited by the said characteristic of Fog devices. Fine-grained microser-

vices match such environments better due to their modular, loosely coupled nature,

which makes the resource requirements of each microservice small enough to be sat-

isfied by the distributed resources. Independent deployability and scalability of such

microservices enable them to adjust to dynamic conditions (i.e., device failures, mobil-

ity, workload changes, etc.) while utilising limited resources. Moreover, these charac-

teristics support dynamic and fast migration and composition of microservices across

distributed resources, thus improving deployment flexibility. Thus, MSA demonstrates

1.2 Problem Definition 9

Figure 1.3: IoT applications, Microservice architecture and Fog computing

the potential to utilise Fog environments and achieve a balance between federated Fog

and Cloud usage to improve application performance and meet QoS requirements.

1.2 Problem Definition

Microservices-based IoT Application Placement within Fog computing environments

falls under Fog Application Placement Problem (FAPP) addressed in works such as

[32–35]. FAPP addresses application deployment and maintenance within Fog envi-

ronments, where services with agreed Service Level Agreements (SLA) are deployed

onto federated Fog and Cloud resources for the shared use by the application users.

To this end, FAPP considers factors such as horizontal and vertical scalability, request

load balancing, ubiquitous access, location awareness, and fault tolerance to produce

application deployments that meet the required performance of the application services

[32, 34].

Based on the definition of FAPP, we define ”Microservices-based IoT applications

placement in Fog environments” as follows:

Let A be a microservices-based IoT application where A consists of a set of inde-

10 Introduction

Figure 1.4: Microservices-based Fog application placement

pendently deployable and scalable microservices (MA) and a set of services provided

to the application users (SA). We use the term ”service” to denote end-user-requested

business functionalities, which can be either an atomic service (consisting of only a

single microservice) or composite services (composed of multiple microservices). As

the microservices are granular with well-defined business boundaries, they (m ∈ MA)

can communicate using lightweight protocols to create composite services (s ∈ SA) re-

quested by the end-users. Figure 1.5 presents example use cases of microservice com-

position highlighting various different patterns. Placement of such applications in-

cludes mapping these microservices to distributed Fog and Cloud resources such that

the requirements (i.e., resource requirements of the microservices, QoS requirements

of the services, etc.) are ensured while maintaining seamless connectivity across dis-

tributed microservices to create composite services. Figure 1.4 provides a motivation

scenario to elaborate this further by demonstrating the event flow of the Fog application

placement process. The depicted event flow contains distributed control engines re-

ceiving application placement requests from application providers and processing them

for placement across Fog device clusters and Cloud data centres using efficient and ro-

1.2 Problem Definition 11

Figure 1.5: Example use cases of microservice composition

bust placement techniques. Placement policies consider multiple aspects such as ser-

vice quality expectations of the application users, SLAs negotiated between application

service providers and infrastructure providers (i.e., service latency, throughput, cost of

deployment, reliability) [36–38], and resource offerings of Fog and Cloud infrastruc-

ture providers and their revenue [39, 40] to makes the placement decisions. Moreover,

placement policies incorporate knowledge about the application model [41, 42] and mi-

croservice composition-related features [38, 43, 44] to improve placement approaches to

enhance the performance of the applications.

1.2.1 Challenges of Fog Application Placement

The challenges of microservices-based application placement in Fog computing envi-

ronments are discussed below:

• Distributed, resource-constrained, and heterogeneous Fog resources: Fog nodes are de-

ployed in a geo-distributed manner closer to the edge of the networks. While this fa-

cilitates the location-aware ubiquitous access required by IoT applications, application

placement across distributed computing resources is challenging. Moreover, Fog nodes

consist of a large variety of devices (i.e., Raspberry pi, edge servers, nano data centres,

cloudlets, etc.) having heterogeneous resources, communication standards, operating

systems, etc. Furthermore, their processing power, storage and networking capabilities

are limited compared to Cloud resources. Thus, microservices-based Fog application

placement approaches have to address challenges such as distributed placement of ap-

12 Introduction

plication microservices, latency and failures in communication among distributed mi-

croservices and their dynamic composition through efficient service discovery and load

balancing mechanisms.

• Heterogeneous IoT application services: IoT application services can consist of mul-

tiple microservices with heterogeneous resource requirements in terms of processing

power, memory, storage, etc. Moreover, these services can have heterogeneous QoS re-

quirements (i.e., latency, throughput, reliability, etc.). Thus, optimal use of limited Fog

resources in a QoS-aware manner is a significant challenge where batch placement ap-

proaches need to be developed. With batch placement approaches, a set of applications

are considered for placement simultaneously, which helps to prioritise services dynam-

ically based on their QoS requirements. While MSA enables these heterogeneous char-

acteristics to be captured at a very granular level providing more scope for improving

placement QoS-aware placements, the complex interaction patterns among microser-

vices become a significant challenge to overcome. To this end, developing efficient

and intelligent batch placement approaches that dynamically utilise Fog and Cloud re-

sources is an important challenge to satisfy diverse application service requirements.

• Uncertain failures and lack of dependability: Even though Fog computing reduces ser-

vice latency and network congestion, Fog environments have lower dependability com-

pared to Cloud servers. Fog nodes are highly prone to hardware and software failures

of the nodes, network failures, and power failures, which ultimately result in service

unavailability. Due to the latency-sensitive nature of the services deployed within Fog

environments, it is challenging to maintain service availability and reliability require-

ments. MSA aims to improve failure resistance through the distributed deployment of

modular microservices, thus enabling fault isolation. However, it increases the possible

points of failure. Also, the complex interaction patterns among microservices result in

cascading and correlated failures that degrade the performance of composite IoT ser-

vices. Thus, accurate reliability modelling in the context of Fog and MSA, and devel-

oping reliability-aware placement approaches are important challenges to achieving the

performance requirements of the IoT application services.

• Interoperability and federation: As Fog environments are distributed and resource-

constrained, Fog node clusters interact with adjacent Fog clusters (provided by multiple

1.3 Research Questions and Objectives 13

Fog infrastructure providers) or Cloud data centres to execute application services. To

enable such application placement, it is necessary to develop techniques to run place-

ment algorithms across multiple Fog and Cloud environments that are geographically

separated and provided by multiple infrastructure providers. Moreover, applications

developed using MSA require microservice composition-related cross-cutting functions

(i.e., service discovery, load balancing, security, networking and monitoring, etc.) to

be extended across federated Fog-Cloud environments to maintain seamless connec-

tivity among interacting microservices. Although the concept of Fog federation offers

better application performance, its adaptation for application placement is hindered by

the lack of frameworks and standards addressing these challenges to enable multi-fog

multi-cloud integration.

1.3 Research Questions and Objectives

In smart systems, a large number of geo-distributed IoT devices and application users

interact with Fog and Cloud environments to access data analytics services provided by

microservices-based IoT applications placed within them. Application placement within

Fog environments is mainly determined by service quality expectations of the applica-

tion users, SLAs negotiated between application service providers and infrastructure

providers, and resource offerings of Fog and Cloud infrastructure providers. Thus, this

thesis investigates the placement of microservices-based IoT applications from the per-

spective of different entities interacting with IoT systems. The objective of this thesis

is to create algorithms and systems for optimal placement of microservices to meet the

QoS requirements of IoT applications within Fog computing environments. To achieve

these objectives, we solve the application placement problem by addressing the follow-

ing research questions:

• Q1. How to utilise microservice characteristics for the efficient placement of IoT appli-

cations across resource-constrained and heterogeneous Fog resources? Rapid growth in

the number of connected devices and IoT application users increases the demand

for Fog resources to satisfy the stringent latency requirements of latency-critical

IoT services and reduce the burden on core-network caused by bandwidth-hungry

14 Introduction

services. However, this is limited by the resource-constrained and heterogeneous

nature of the distributed Fog devices. Hence, it is vital to exploit the MSA char-

acteristics that align with Fog computing architecture. To this end, distributed

placement approaches need to be developed to use the independently deployable

and scalable nature of the microservices, along with their lack of centralised man-

agement to dynamically deploy horizontally scaled microservices, thus improv-

ing the utilisation of distributed Fog resources. Furthermore, this requires service

discovery and load-balancing approaches to enable the dynamic composition of

microservices deployed across distributed Fog resources.

• Q2. How to utilise the fine-grained nature of the microservices to improve the QoS sat-

isfaction of heterogeneous IoT application services? As the number and diversity of

IoT application services grow, the optimal use of Fog resources becomes a critical

challenge. MSA decomposes applications into granular components that commu-

nicate to create composite services with heterogeneous QoS requirements. Thus,

batch placement approaches can be developed to dynamically place microservices

across Fog and Cloud resources based on the QoS requirements defined at the

composite service level. Such placement approaches need to consider complex

interaction patterns among microservices and multiple QoS parameters such as

makespan, budget and throughput and facilitate dynamic placement across Fog

and Cloud to ensure optimum usage of computing and network resources, which

makes the placement problem more complex. Hence, developing efficient and ro-

bust placement algorithms that can traverse large solution spaces is necessary to

reach resultant placements with improved QoS satisfaction.

• Q3. How to improve the reliability of mission-critical IoT application services through

the proactive redundant placement of microservices ? IoT applications such as smart

healthcare, intelligent transportation and IIoT provide highly safety-critical and

mission-critical services with high-reliability requirements. Due to their low or

ultra-low latency requirements, proactive fault-tolerant methods are required to

improve service availability, especially considering the low dependability of Fog

resources. Due to their independently scalable nature, microservices can support

1.4 Thesis Contributions 15

reliability-aware redundant placements. However, factors such as complex inter-

action patterns among microservices, resource limitations in Fog nodes, and in-

creased deployment cost due to redundant deployments restrain such placements

and increase the complexity of the placement problem. Thus, it is essential to

develop robust placement algorithms that can use the proactive redundant place-

ment of microservices to ensure the reliability requirements of mission-critical ser-

vices while adhering to the above constraints.

• Q4. How to utilise federated Fog and Cloud resources through distributed placement and

dynamic composition of microservices? Federated Fog Computing can overcome the

resource limitations of Fog devices and provide ubiquitous access to IoT service

users. Furthermore, due to the loosely coupled nature of microservices, it is pos-

sible to place them across distributed computing resources, thus reaping the ben-

efits of Fog federation. However, existing literature lacks frameworks that can

enable scalable microservice placement and dynamic composition across multi-

ple Fog and Cloud clusters. To this end, the development of scalable and ex-

tensible Fog computing frameworks is essential to support the integration and

execution of placement algorithms in a distributed manner within multi-cloud

multi-fog environments. Moreover, such frameworks need to facilitate dynamic

microservice composition (i.e., service discovery, load balancing) among microser-

vices that span multiple Fog and Cloud clusters to improve the QoS of the appli-

cations placed within federated Fog environments.

1.4 Thesis Contributions

This thesis makes the following contributions to address the research problems men-

tioned above:

1. It proposes different taxonomies on the placement of microservices-based IoT ap-

plications in Fog computing environments and reviews the existing placement ap-

proaches.

2. It investigates a placement approach that utilises the independently deployable

16 Introduction

and scalable nature of the microservices to minimise the latency and network

usage of IoT applications while ensuring optimum usage of heterogeneous and

resource-constrained Fog devices (addresses Q1).

• A distributed placement technique for processing application placement re-

quests.

• A microservice placement algorithm to place latency-critical and bandwidth-

hungry microservices as close as possible to the network edge by efficiently

utilising the horizontal scalability of microservices.

• A Fog node architecture to support decentralised placement along with ser-

vice discovery and load balancing.

3. It proposes a batch placement technique for QoS-aware placement of heteroge-

neous IoT applications to satisfy makespan, budget and throughput requirements

of application services while ensuring optimum resource usage through collabo-

ration among Fog and Cloud resources (addresses Q2).

• Formulation of Fog application placement problem as a Lexicographic Com-

binatorial Optimisation Problem considering QoS satisfaction (in terms of

makespan, budget, and throughput) as the primary objective and optimum

resource usage as the secondary objective.

• Exploitation of microservice fine-granularity by incorporating throughput-

aware horizontal scalability and service-level QoS definitions into the prob-

lem formulation.

• An improved meta-heuristic technique based on Set-based Comprehensive

Learning Particle Swarm Optimisation (S-CLPSO) for batch placement of IoT

applications.

• Multiple heuristic techniques to improve the convergence speed of the meta-

heuristic algorithm and avoid premature convergence to reach the global op-

timum solution.

4. It puts forward a batch placement technique for proactive redundant placement of

microservices to meet reliability requirements of mission-critical IoT application

1.4 Thesis Contributions 17

services under resource constraints of the Fog devices (addresses Q3).

• It models the reliability of microservices-based application services as k out of

n serial-parallel systems and formulate the placement problem and capture

reliability, throughput requirements, and cost at the composite service level.

• The problem formulation captures both independent and correlated failures

within Fog environments.

• A hierarchical placement approach consisting of two optimised meta-heuristic

algorithms (based on S-CLPSO and NSGA-II) to place microservice replicas

within Fog environments proactively.

• Multiple approaches, including novel heuristic techniques and reliability-aware

fitness functions, to improve the meta-heuristic algorithms to achieve faster

convergence to reach the optimum solution.

5. It designs and develops a framework for scalable placement of microservices within

federated Fog computing environments (addresses Q4).

• A scalable and extensible framework for deploying and managing microservices-

based IoT applications within federated Fog and Cloud environments.

• A configurable software component (developed as a microservice) for pro-

cessing application placement requests.

• Deployment architectures for the major components of the framework to en-

sure their scalable and fault-tolerant deployment across federated Fog and

Cloud environments.

• Implementation and integration of placement algorithms with the software

framework using practical implementation.

• A proof-of-concept prototype of the framework and evaluation of the frame-

work’s main features within a multi-fog multi-cloud setup.

18 Introduction

Figure 1.6: The thesis structure

1.5 Thesis Organization

The structure of this thesis is shown in Figure 1.6. The remaining part of this thesis is

organized as follows:

• Chapter 2 presents a taxonomy and literature review on the placement of microservices-

based IoT applications in Fog computing environments. This chapter is derived

from:

- Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Placement of

Microservices-based IoT Applications in Fog Computing: A Taxonomy and Fu-

ture Directions”, ACM Computing Surveys (CSUR), Volume 55, No. 14s, Article

321, ISSN: 0360-0300, December 2023.

• Chapter 3 presents a distributed placement policy for scalable placement of mi-

1.5 Thesis Organization 19

croservices across Fog and Cloud computing resources to minimise the service

latency and overall network usage. This chapter is derived from:

- Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Microservices-

based IoT Application Placement within Heterogeneous and Resource Constrained

Fog Computing Environments”, Proceedings of the 12th IEEE/ACM International Con-

ference on Utility and Cloud Computing, Pages: 71-81, Auckland, New Zealand, De-

cember 2-5, 2019.

• Chapter 4 presents an efficient batch placement policy for QoS-aware placement of

IoT application services with heterogeneous QoS requirements in terms of makespan,

budget and throughput. This chapter is derived from:

- Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”QoS-aware place-

ment of microservices-based IoT applications in Fog computing environments”,

Future Generation Computer Systems (FGCS), Volume 131, Pages: 121-136, ISSN:

0167-739X, June 2022.

• Chapter 5 presents a technique for proactive redundant placement of microser-

vices to improve the reliability satisfaction of mission-critical IoT application ser-

vices in a throughput and cost-aware manner. This chapter is derived from:

- Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Reliability-aware

Proactive Placement of Microservices-based IoT Applications in Fog Computing

Environments”, IEEE Transactions on Mobile Computing (TMC)), 2022 (revision, Au-

gust 2023).

• Chapter 6 proposes a software framework to enable placement and dynamic com-

position of microservices across multi-fog multi-cloud environments to harvest

distributed and resource constrained Fog resources. This chapter is derived from:

- Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”MicroFog: A

Framework for Scalable Placement of Microservices-based IoT Applications in Fed-

erated Fog Environments”, Journal of Systems and Software, 2023 (revision, June

2023).

20 Introduction

• Chapter 7 concludes the thesis by summarising the findings and identifies future

research directions.

Chapter 2

A Taxonomy and Review on
Placement of Microservices-based IoT

Applications

This chapter investigates the existing techniques in Fog computing for the placement of

microservices-based IoT applications and reviews them under four aspects, namely, modelling mi-

croservice architecture, designing placement policies, incorporating microservice composition-related

features, and performance evaluation. After conducting an in-depth literature analysis, separate tax-

onomies for each aspect of placement of microservices-based IoT applications in Fog computing envi-

ronments are proposed. Next, a comprehensive survey of existing approaches is conducted according

to the proposed taxonomies. Finally, the research gaps are identified and discussed in detail for fur-

ther improvement of the application placement in Fog computing environments.

2.1 Introduction

Microservice architecture is becoming exceedingly popular for the design and develop-

ment of large-scale IoT applications, and the features of the architecture (loosely coupled

nature, fine granularity, extensibility, cohesiveness, scalability, etc.) demonstrate im-

mense potential to improve the performance of the applications through their efficient

placement within federated Fog-Cloud environments. As a cloud-native application

architecture, MSA supports dynamic composition of loosely coupled microservice that

This chapter is derived from:

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Placement of Microservices-based
IoT Applications in Fog Computing: A Taxonomy and Future Directions”, ACM Computing Surveys
(CSUR), Volume 55, No. 14s, Article 321, ISSN: 0360-0300, December 2023.

21

22 A Taxonomy and Review on Placement of Microservices-based IoT Applications

can be scaled up/down across geo-distributed Fog environments and distributed across

Fog and Cloud data centres to meet the throughput demand of the applications in a QoS-

aware manner. Thus, designing efficient and scalable algorithms for the ”Microservices-

based IoT applications placement in Fog environments” is a vital and challenging re-

search area.

To develop efficient placement approaches, it is paramount to incorporate the charac-

teristics and features of the MSA into the placement problem formulation and also carry

out extensive evaluations. However, very few initiatives have been taken to identify dif-

ferent aspects related to designing novel Fog placement policies for microservices-based

applications. To this end, we identify four aspects related solving the microservices-

based Fog application placement problem, as follows:

• Accurate modelling of MSA: The precise formulation of the placement problem

depends on accurate modelling of the application architecture, such that all essential

characteristics of the architecture are properly abstracted and captured to support the

placement of an extensive range of IoT applications developed following the said ar-

chitecture. When considering MSA, the fine-grained nature of the microservices and

their complex interaction patterns set MSA apart from other application architectures

and add novel challenges to the placement problem formulation. Thus, to utilise MSA’s

full potential and overcome related challenges, accurate modelling of the applications is

of paramount importance. This includes the correct depiction of microservice granular-

ity (i.e., number of microservices, microservice heterogeneity and their invocation pat-

terns), service composition (i.e., number of microservices per service and their dataflow

patterns), and application composition (i.e., number of heterogeneous services per ap-

plication and advanced interactions like shared/candidature/3rd party microservices).

•Developing microservices placement policy: Developing a novel placement pol-

icy includes problem formulation, which contains optimisation metrics, objectives, con-

straints, etc., and, based on that creating an efficient algorithm to reach an optimum

placement. Compared to other application models, the loosely coupled nature and the

resultant complex interaction patterns, along with higher dynamism, affects different as-

pects of the problem formulation, such as QoS granularity (i.e., latency requirements can

be defined per composite service or among interacting microservices), QoS-awareness

2.1 Introduction 23

(i.e., handling competing QoS requirements among multiple composite services in a

QoS-aware manner), incorporating the horizontally and vertically scaled placement of

microservices across federated Fog, and Cloud environments and load balancing re-

quests among dynamically composed distributed instances [38, 45, 46] to utilise lim-

ited resources better. This provides opportunities to create efficient redundant place-

ments, optimum request routing-based placements, locality-aware placements, resource

contention-aware batch placements, etc., to meet the expected performance of the ser-

vices. While these aspects increase the complexity of the placement process, their incor-

poration in placement policies contributes to optimum and balanced utilisation of dis-

tributed, heterogeneous and resource-constrained Fog devices and resource-rich, cen-

tralised Cloud resources to improve the performance of heterogeneous IoT application

services.

• Microservice composition: The composition of granular microservices to create

composite services becomes a critical challenge affecting the application’s performance.

The main challenges related to this include cross-cutting functions such as service dis-

covery, load balancing, monitoring, networking etc., that come with distributed place-

ment, scalability, elasticity, migration, redundant deployment and failures of microser-

vices. Furthermore, as a cloud-native application architecture that can be extended to the

distributed Fog layer, these composition-related functions need to support higher flex-

ibility and dynamism across distributed environments, which separates microservice

composition from previous web services-oriented SOA. Thus, container orchestration

or choreography frameworks and service mesh technologies are introduced to handle

the dynamic changes and maintain interconnections among microservices minimising

adverse effects on service performance.

Moreover, knowledge about their capabilities is essential in developing placement

policies and, in turn, is vital in creating evaluation platforms (simulators and real-world

test beds) to evaluate the performance of the developed policies. To this end, factors such

as load-balancing policies, overheads due to dynamic service discovery, ability to have

service discovery and load-balancing across multiple computing environments needs

to be incorporated into placement problem formulation [43, 47, 48] to achieve efficient

placements. Moreover, the evaluation of placement policies should be carried out with

24 A Taxonomy and Review on Placement of Microservices-based IoT Applications

the accurate implementation of these cross-cutting concerns to properly evaluate the

placement policies.

• Performance evaluation: Accurate evaluation of placement policies depends on

the used Fog framework/platform and the workloads. Due to the lack of commercial

Fog service providers providing Fog platforms such as IaaS, PaaS or SaaS, the evalua-

tion of the novel placement approaches is mainly handled by simulations or small-scale

Fog computing frameworks developed by researchers. Furthermore, with microser-

vices architecture, simulators and frameworks need to be extended further with con-

tainer orchestration/choreography support, MSA-related cross-cutting function support

through service mesh technologies, distributed monitoring, dynamic placement policy

integration, etc. Moreover, the workloads used for evaluations should adequately cap-

ture the complex characteristics of the MSA and large-scale IoT applications to achieve

accurate evaluations.

Figure 2.1: Main challenges related to designing novel Fog placement policies for
microservice-based IoT applications and their relationships.

Figure 2.1 depicts the relationships among these different aspects to emphasise the

importance of their collective consideration to produce efficient placement approaches

for microservices-based IoT applications. Thus, it is essential to analyse existing works

that focus on microservices placement in Fog environments to create a comprehensive

picture of the current status of research and what research gaps remain to be addressed.

To this end, we create a taxonomy based on the four aspects discussed above (see Figure

2.2 Related Surveys 25

2.2).

Figure 2.2: Taxonomy for microservices-based IoT applications placement

The rest of this chapter is organised as follows. Section 2.2 presents a qualitative

analysis of existing surveys and compares them with ours. The proceeding sections in-

troduce and discuss detailed taxonomies under each aspect identified in our high-level

taxonomy: Section 2.3 introduces the taxonomy on modelling IoT applications devel-

oped according to MSA and analyses existing works, Section 2.4 presents the taxonomy

for placement policy design for microservices-based applications and discusses the cur-

rent works accordingly, Section 2.5 introduces the taxonomy for microservice compo-

sition, and Section 2.6 presents the taxonomy for performance evaluation. Section 2.7

concludes this chapter.

2.2 Related Surveys

We analyse related surveys belonging to three main areas of research; surveys on Edge

and Fog computing, Osmotic computing, and MSA, and conduct a qualitative compari-

son of the aspects covered by each of these surveys to define our contribution. Table 2.1

presents a comparison of the features covered in the surveys.

Existing surveys on Edge and Fog computing cover a wide range of research areas,

such as resource management, application placement, and application/task scheduling.

Surveys on Fog resource management mainly focus on the architecture and character-

26 A Taxonomy and Review on Placement of Microservices-based IoT Applications

Table 2.1: Summary of existing surveys

Research Areas Discussion on Application Model MSA specific discussions Placement Evaluation

Edge/Fog Computing Depth Relates Relates microservice

Work MSA Resource Application Application/ Osmotic Available High Level Architecture Modelling Microservice application model composition to Fog Microservice

Management Placement Task Computing Taxonomy Specific Application Composition to placement problem placement problem Platforms Workloads

Scheduling Taxonomy formulation formulation

[49] o ✓ ∆ o o o o o o o o o o o

[50] o ✓ o ✓ o ∆ ∆ o o o o o o o

[51] ∆ o ✓ o o ✓ ✓ o o o o o o o

[52] o ∆ ✓ o o ✓ ✓ o o o o o o o

[53] o o ∆ ✓ o ✓ ✓ o o o o o ∆ o

[34] o o ✓ o o ∆ o o ∆ 0 ∆ o o o

[35] o o ✓ o o ✓ ✓ o o o o o ∆ o

[54] o ∆ ∆ ∆ o ✓ ✓ o o o o o o o

[22] ✓ o ∆ o ∆ ✓ o ∆ ∆ ∆ o o o o

[28] ✓ o o o o ✓ o o ∆ ∆ o o o o

[55] ✓ o o o o ✓ o ∆ ∆ ∆ o o o o

[56] ✓ o o o ✓ ∆ o o o ∆ o o o o

[57] ✓ o o o ✓ o o o o o o o o o

Our ✓ o ✓ o ∆ ✓ o ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: Discussed, ∆: Partially Discussed, o: Not Discussed

istics of underlying Fog infrastructure (i.e., virtualisation, tenancy, etc.) and algorithms

used in administrative operations, including device discovery, monitoring, performance

benchmarking, load distribution, and auto-scaling. Fog application placement-related

surveys comprehensively analyse the broad range of research work that maps applica-

tions to Fog resources to meet their non-functional requirements. In contrast, surveys on

Fog application/task scheduling discuss distributing and sequencing ephemeral tasks

(i.e., independent tasks or dependent tasks of the application arranged as workflows)

for execution within Fog resources. These surveys also discuss works related to the

computation-offloading problem in Edge and Fog computing. Thus, scheduling prob-

lem considers tasks or workflows with ephemeral life cycles that are deployed for use by

a particular user, whereas Fog application placement considers deploying and manag-

ing applications with perpetual life cycles with application services accessed by a large

number of users.

Hong et al. [49] focus on resource management and, thus, study and classify the

architecture of Edge and Fog platforms and algorithms designed for resource manage-

ment. Their discussions on application placement are limited to analysing how static

and dynamic characteristics of the resources are incorporated into placement algorithms

for resource allocation. Hence, they do not focus on application architecture-related

2.2 Related Surveys 27

characteristics and identifying their effect on efficient placement. Jamil et al. [50] pro-

pose a taxonomy of optimisation metrics and algorithms used in resource allocation and

task scheduling in Fog computing. However, they do not characterise existing works

based on the application models or architectures and fail to analyse optimisation char-

acteristics with respect to them. Brogi et al. [34], Salaht et al. [35], Mahmud et al. [52],

and Islam et al. [51] discuss Fog Application Placement Problem (FAPP). In Brogi et

al. [34], the main focus is on analysing placement algorithms based on the method-

ologies of solving the placement problem, their constraints, and optimisation metrics.

Their discussion on application models is limited to modelling application module de-

pendencies as constraints of the placement problem formulation. Salaht et al. [35], and

Mahmud et al. [52] provide a high-level taxonomy on covering the breadth of Fog ap-

plication placement. Thus, their classifications of the application models are limited to

high-level taxonomies that categorise existing works under monolithic architecture and

distributed architectures such as modular and microservices. Islam et al. [51] also pro-

vide a high-level taxonomy that classifies applications into monoliths and distributed

architecture and limits the discussion on MSA to providing future research directions

for microservices-based application placement. Thus, the above works do not capture

MSA-related characteristics and challenges related to solving the placement problem of

microservices-based IoT applications.

Goudarzi et al. [53] also focus on providing a high-level taxonomy to give a compre-

hensive and broad overview of IoT application scheduling in Fog environments where

the authors discuss general aspects related to scheduling, such as application structure,

environmental architecture, optimisation characteristics, decision engine characteristics,

and performance evaluation of algorithms. As their survey focuses on providing a high-

level taxonomy of each aspect, the taxonomy of the application architecture is limited

to a high-level categorisation of applications (monolithic, independent, loosely coupled,

etc.). This work introduces microservices architecture as an example of loosely-coupled

application structure but does not carry out further discussion on the characteristics

of the architecture. An in-depth analysis of MSA is out of scope for this survey, mi-

croservice composition-related cross-cutting functionalities (i.e., load-balancing, service-

discovery, networking, distributed monitoring and tracing, etc.), tools enabling dynamic

28 A Taxonomy and Review on Placement of Microservices-based IoT Applications

composition (i.e., container orchestrators, service meshes, etc.), incorporation of MSA re-

lated features into problem formulation and algorithm evaluation (i.e., Fog computing

platforms that support dynamic microservice composition, microservice workloads) are

not discussed in their work. Moreover, as the main focus is on scheduling problem,

FAPP-related aspects such as throughput-aware horizontal scaling, redundant place-

ments, load-balancing, location-awareness to support distributed users, etc., are not dis-

cussed in their work.

MSA-related surveys mainly focus on development, operational phase concerns [22,

55] and challenges related to adaptation of MSA for application development [28]. Joseph

et al. [22] provide a broad taxonomy using research work that captures development as-

pects related to MSA, such as modelling, architectural patterns, maintenance, testing

and quality assurance, along with operational aspects, including placement, migration,

service discovery and load balancing. Although the work in [22] discusses Osmotic

computing and Edge/Fog computing as distributed computing paradigms employing

MSA, a categorisation of existing works within these paradigms is not performed. [55]

also provides a taxonomy covering all aspects of the microservices lifecycle. Taxon-

omy provided in [55] is helpful for application developers adapting MSA to design

and implement their applications, whereas our survey focuses on large-scale placement

of multiple diverse microservices-based applications within distributed Fog environ-

ments. Thus, in contrast to [55], we explore how to incorporate microservice charac-

teristics into the Fog application placement problem to generate optimum placements.

Razzaq et al. [28] study existing research to identify MSA-related software architectural

styles, patterns, models, and reference architectures adapted by IoT systems. However,

the placement aspects of such applications are out of the scope of their study. Thus,

microservices-related surveys mainly focus on the design, development and mainte-

nance aspects of MSA in general without focusing on challenges related to their place-

ment and deployment within distributed computing paradigms such as Edge and Fog

computing.

Osmotic computing-related surveys focus on detailing the concepts and features of

the Osmotic computing paradigm along with challenges and future directions [7, 58].

Androcec et al. [57] and Neha et al. [56] conduct a systematic review to capture the

2.3 Microservice Architecture 29

current status of Osmotic computing by analysing applications that follow the Osmotic

computing principles, Osmotic computing-related topics addressed and their level of

maturity. While these works highlight the concepts and potential of Osmotic comput-

ing, they do not analyse existing works based on placement-related aspects, including

features and challenges related to modelling, placement, service composition, and eval-

uation with respect to MSA.

Table 2.1 compares existing surveys with our work by presenting a summary of

the key aspects covered. Developing efficient placement approaches for microservices-

based applications requires modelling applications to capture MSA-related characteris-

tics, placement policy creation by incorporating the application model-specific features

and microservice composition-related characteristics to the placement problem formu-

lation, and proper evaluation of the generated policies using Fog platforms that support

microservice composition and microservices-based workloads. Based on the qualita-

tive comparison, existing surveys fail to provide a thorough taxonomy to capture the

above. In this work, we propose taxonomies for modelling applications based on MSA,

placement policy creation, microservice composition, and performance evaluation and

discuss their relationships. Moreover, we identify research gaps with respect to each

aspect and propose future research directions.

2.3 Microservice Architecture

To utilise the capabilities of MSA and overcome the challenges of the architecture within

Fog environments, proper modelling of the applications is of vital importance so that

the placement algorithms can capture all aspects of the placement problem. To this

end, Figure 2.3 presents the taxonomy for modelling applications based on MSA where

we analyse microservices-based application modelling at multiple levels; granularity at

microservice level (Granularity), the composition of microservices at the service level

(Service Composition) and composition of services at the application level (Application

Composition). Table 2.2 maps the existing works to the proposed taxonomy based on

how each research work models the microservices-based applications.

30 A Taxonomy and Review on Placement of Microservices-based IoT Applications

Figure 2.3: Taxonomy for modelling of microservice architecture for placement problem
formulation

2.3.1 Granularity

Granularity is one of the most important and challenging aspects of MSA. The fine-

grained nature of the microservices allows application services to be depicted as a col-

lection of small components communicating together to perform a certain end-user-

requested service. While this allows QoS-improved placement within resource-constrained

Fog devices and dynamic movement between federated Fog-Cloud environments fol-

lowing the Osmotic computing paradigm, it introduces complexities in interaction pat-

terns among the microservices. Thus, when modelling the application placement prob-

lem, the level of granularity should be captured accurately to overcome the challenges

while utilising the advantages introduced by the granular design.

Hence, we analyse the microservice granularity within IoT applications as follows:

1. Microservice count: MSA decomposes the application into a set of microservices, in-

creasing the complexity of the placement problem as the number of microservices

increases. Thus, existing works capture different levels of granularity based on the

number of microservices in the modelled IoT applications. Each application mod-

elled in [61, 67, 68, 72] consists of a single microservice such that the microservice is

2.3 Microservice Architecture 31

designed to perform a specific task requested by the end-user. As an example sce-

nario, [61] introduces an object detection application used by autonomous cars for

the detection of other vehicles, pedestrians, road signs etc., that consists of a single

microservice for object detection service. To avoid the complexities introduced by

having a large number of interconnected microservices, [40] simplifies the place-

ment problem by designing the placement algorithm to handle applications with a

fixed number of microservices. The work in [40] proposes the placement algorithm

for applications consisting of two microservices: a high throughput microservice

that receives data and pe-process it to reduce the throughput, and a low through-

put microservice which process the data sent from the first microservice. Works

such as [32, 36, 42, 45, 46] remove this constraint and model the application as a

collection of any number of microservices, thus providing robust placement al-

gorithms that capture the problem-domain dependent granularity levels of MSA

more accurately.

2. Resource Heterogeneity: One of the advantages of decomposing applications into

microservices is to achieve functional separation where the application is divided

into separate modules following the ”separation of concern” design pattern. This

results in the separation of microservices based on their resource requirements as

well (i.e., CPU, GPU, RAM, storage etc.). It’s especially advantageous in Edge/-

Fog environments where resources are heterogeneous (i.e., Raspberry Pi 1, Jetson

Nano 2, Dell PowerEdge XR12 3, Lenovo ThinkEdge SE50 4, etc.) and resource-

constrained unlike in Cloud environments. Works such as [40, 46, 69] demon-

strate this by modelling microservices within the same application to have het-

erogeneous resource requirements in terms of multiple resource parameters such

as RAM, CPU, storage and bandwidth. Works like [65, 75] extend this to include

GPU as well, where microservices with GPU requirements may have to be moved

to different Fog locations or Fog service providers based on the GPU availabil-

ity. While the above works represent resource requirements as a vector, some

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
2https://developer.nvidia.com/embedded/jetson-nano
3https://www.dell.com/en-au/work/shop/cty/pdp/spd/poweredge-xr12/aspexr12 vi vp
4https://psref.lenovo.com/syspool/Sys/PDF/ThinkEdge/ThinkEdge SE50/ThinkEdge SE50 Spec.pdf

32 A Taxonomy and Review on Placement of Microservices-based IoT Applications

works like [32, 36] simplify the representation by introducing the scalar parameter

”Resource Units”, with the possibility of extending it to include multiple resource

types.

3. Dependency among microservices: Microservices are developed as independently de-

ployable units with well-defined business boundaries such that their functional-

ity is exposed to the outside through open interfaces. This allows microservices

within applications to communicate easily with each other to create composite

services. Works like [61, 62, 64] represent microservices as independent entities

without any interconnections among them. In contrast, works such as [36, 59, 60]

model them to have dependencies, where microservices communicate with each

other through lightweight communication protocols such as REST APIs and mes-

sage brokers, creating a plethora of IoT services.

4. Invocation pattern: The higher level of openness supported by microservices results

in different invocation patterns among them, where client microservices invoke

other microservices to perform functions required to complete the composite ser-

vices. Works such as [38, 45, 59] model the invocation relationship as a chained

pattern. Works presented in [46, 69, 73] use a more general representation of mi-

croservice invocation by modelling it using DAG representation. Works like [41]

and [36] model the invocation as directed graphs where the interactions between

microservice are depicted using many-to-many consumption relationships.

2.3.2 Service Composition

With granularity comes the concept of composite services, where microservices interact

to create services that perform a certain task and provide an output to the user. In this

section, we analyse and categorise aspects related to service composition.

1. Microservice count: The granularity of the microservices creates end-user services

with varying numbers of microservices: ”atomic services” consisting of a single

microservice and ”composite services” that consist of multiple interconnected mi-

croservices. Works such as [61, 64] represent each service by a single microservice

2.3 Microservice Architecture 33

that receives requests from the end-user front-end, completes a task and provides

the result back to the user without interacting with any other microservices. Other

works like [38, 46, 73] model services with multiple microservices that interact to-

gether to perform tasks. The work presented in [38] describes a smart city applica-

tion with a smart policing service used by the police to identify suspects where the

service is a composition of three microservices, and [46, 60] model a smart health-

care application with an emergency notification service where multiple microser-

vices interact to detect abnormalities in ECG data streams and raise emergency

alarms in real-time.

2. Dataflow Pattern: Due to different interaction patterns among microservices, the

data flow within composite services can take many forms. Works such as [40,

59, 63] consider the chained composition of microservices, whereas [46, 69] model

the services considering chained, aggregator and hybrid dataflow patterns to cre-

ate composite services. Works such as [65, 66] model dataflow among microser-

vices as DAGs, assuming the absence of cyclic data flows while [44, 70] include

cyclic dataflows and represent the dataflows using DGs. The work presented in

[74] models the interaction pattern using an Undirected Weighted Graph (UWG)

where edges are represented using interaction weights irrespective of the direction

of communication.

2.3.3 Application Composition

As the capabilities of IoT applications improve rapidly, they quickly evolve into com-

plex applications covering large business domains due to the flexibility of design and

development using MSA. We analyse the aspects related to this as follows:

1. Service count: With the increase in connected devices and the generation of di-

verse data, IoT applications have evolved to provide many services to users. Thus,

microservices-based IoT applications are modelled as a composition of one or

more services. Works such as [40, 61] define applications with single services,

whereas [41, 63, 66] model applications with multiple end-user services with het-

erogeneous QoS requirements. Works like [46, 60] model a smart health care ap-

34 A Taxonomy and Review on Placement of Microservices-based IoT Applications

plication with two primary services; emergency alarm generation service with

stringent latency requirements and a latency tolerant long-term analysis service.

Modelling the applications with multiple services allows the placement problem

to capture competing QoS requirements within applications and paves the way to

propose placement policies that can utilise Fog-Cloud resources more efficiently.

2. Advanced Interactions: Due to the fine-grained nature of the microservices, along

with well-defined functional boundaries and lightweight communication meth-

ods, advanced interactions among microservices are possible. The work in [46]

models applications where some microservices (i.e., feature extraction, data clean-

ing etc.) are part of multiple composite services that have heterogeneous latency

requirements. The paper in [45] models the services to have candidate microser-

vices (i.e., online payment gateways) depending on the payment method used by

the user. Thus, the application is modelled to have alternative data paths. The

work proposed in [72] handles the concept of having alternative paths by defin-

ing control structures for each composite service through conditional branching

within some of the microservices. Another advanced capability of microservices is

using third-party microservices through the use of APIs, which is modelled in the

[72] where composite services are created by combining microservices developed

by multiple developers, and provided as services by multiple computing service

providers.

2.3.4 Research Gaps

Based on the analysis of existing works presented in Table 2.2, we have identified the

following gaps related to microservices-based application modelling.

1. Existing works show shortcomings in several aspects in capturing the granular-

ity of the MSA, such as lack of use in generalised invocation patterns (i.e., directed

graphs) and capturing resource heterogeneity in different microservices within the

same application (i.e., use of GPU, databases etc.). Many works use a chained in-

vocation of microservices without considering complex dependency patterns that

can occur due to the openness of microservice design. For capturing resource het-

2.4 Application Placement Policy 35

erogeneity, most works consider one or more parameters such as CPU, RAM and

storage. However, GPU or TPU requirements are scarcely considered. With the

rise of EdgeAI workloads in IoT, such parameters and the constraints imposed by

them play an important role in the placement logic.

2. In service composition, the data flow pattern is not adequately defined and utilised

in the placement process of the majority of the works. Many works define chained

data flow or acyclic data flows, disregarding cyclic data flows, which affect the

end-to-end latency calculations of the services.

3. Under application composition, most works model each application to have a sin-

gle composite service. Thus heterogeneity in QoS requirements between different

composite services within the same IoT application is not appropriately captured.

This also hinders the application from having complex interaction patterns and

data flow patterns within the applications.

4. In modelling the applications, most works do not consider complex interaction

patterns of microservices, including shared microservices among different com-

posite services, candidate microservices and third-party microservices. The place-

ment of shared microservices has to consider multiple, heterogeneous composite

services that they are part of and place them so that all non-functional require-

ments of the services are satisfied under resource contention. For efficient place-

ment of the candidate services, knowledge of their demand and usage is vital. The

use of third-party microservices in applications results in security, reliability and

performance challenges (i.e., latency, availability, transaction cost etc.) that are out

of the control of the application developers, which need to be accounted for dur-

ing the placement phase to improve performance. Most of the works that consider

these only analyse the effect of a single pattern, thus failing to capture the impact

of multiple ones.

36 A Taxonomy and Review on Placement of Microservices-based IoT Applications

2.4 Application Placement Policy

MSA introduces novel aspects (i.e., QoS granularity, scalability, lightweight/ indepen-

dent deployment, etc.) that can be utilised for better placement of the IoT applications

while also giving rise to novel challenges (i.e., microservice dependencies, interactions,

cascading failures etc.). We consider these MSA-specific effects in addressing the appli-

cation placement problem and create a novel taxonomy as shown in Figure 2.4. Current

works are mapped to the taxonomy to identify gaps and possible improvements (see

Table 2.3).

2.4.1 Placement Mode

Placement mode represents the number of placement requests processed by the place-

ment engine during each execution of the placement algorithm. Placement modes are

categorised into two groups: sequential mode, where the placement algorithm queues

the placement requests to process one after the other, and batch mode, where a set of ap-

plications are considered for placement simultaneously. In the works such as [38, 60, 61],

the placement engine uses a First In First Out (FIFO) queue to store and process applica-

tion placement requests sequentially. Some works, like [40, 42] prioritise the applications

in the queue based on their resource requirements, whereas [36] and [67] prioritise them

based on the deadlines of the applications and order them for sequential placement.

Placement engines in [32, 46, 66] are designed using meta-heuristic algorithms (i.e., ge-

netic algorithm, particle swarm optimisation) to handle the complexities of the batch

placement and navigate the larger solution space successfully. The work presented in

[65] employs a batch placement policy based on a heuristic algorithm to maximise the

placement of IoT applications within a multi-domain federated Fog ecosystem under

locality constraints imposed on microservices. Some works, such as [47, 48, 64] do not

properly define placement mode and carry out the evaluations using the placement of a

single application.

2.4 Application Placement Policy 37

2.4.2 Placement Perspective

The placement perspective is identified based on the optimization parameters/objec-

tives considered during the placement and from whose viewpoint they are addressed

from. Works like [40, 42, 44] define the placement problem from the perspective of the

Fog infrastructure provider, thus aiming to maximise the IaaS provider’s revenue. Other

works such as [38, 45, 63] define the placement problem from the application provider

perspective, where application providers expect the satisfaction of non-functional re-

quirements (i.e., latency, throughput, reliability etc.) of the services provided by their

application while ensuring budget constraints related to Fog-Cloud deployment. Some

works, such as [41, 59] address this from a user perspective where the user sends a re-

quest for an application or service along with performance requirements, and the place-

ment algorithm ensures the availability of the requested service under requested con-

straints (i.e., latency, throughput etc.) to satisfy the user expectations.

2.4.3 Placement Parameters

In this section, we analyse the characteristics of the parameters considered by the place-

ment policy.

1. Parameters: IoT application services have multiple heterogeneous QoS parame-

ters (i.e., latency [38, 43, 45, 70, 74], cost [38, 46, 67], throughput [44, 70, 72], energy

[48], reliability [37] etc.) negotiated with the Edge/Fog infrastructure provider

in the form of SLA. Moreover, placement decisions made from the infrastruc-

ture provider perspective consider the maximisation of the revenue of the IaaS

provider. Works such as [40], and [42] formulate the placement problem to max-

imise the revenue of the Fog provider, whereas [44, 65] consider a federate Fog en-

vironment where each provider focuses on minimising the total deployment cost

while minimising the number of resources rented from external Fog infrastructure

providers and the Cloud. Resource utilisation is another parameter considered in

current research where [32, 72, 74] consider optimisation of computation resource

usage, [73] optimises network resource usage, while [39, 46] consider both. Place-

ment policies focus on optimising one or more of the above-mentioned QoS pa-

38 A Taxonomy and Review on Placement of Microservices-based IoT Applications

Table 2.2: Analysis of existing literature based on the taxonomy for modelling of mi-
croservice architecture

Granularity Service Composition Application Composition

Work Microservice Resource Dependency Invocation Microservice Dataflow Service Advanced Interactions

count Heterogeneity pattern count pattern count Shared Candidate 3rd Party

[59] Multi-V Captured (PC) Dependent Ch Multiple Ch NA - - -

[36] Multi-V Captured (RU) Dependent DG Multiple ND Single - - -

[41] Multi-V Captured (PC) Dependent DG Multiple NA Multiple - - -

[40] Multi-F Captured (R,PC,S) Dependent Ch Multiple Ch Single - - -

[60] Multi-V Captured (R,PC,S,B) Dependent DAG Multiple NA Multiple ✓ - -

[32] Multi-V Captured (RU) Dependent DAG NA NA NA - - -

[42] Multi-V Captured (R,PC,S,B) Dependent DAG Multiple DAG Single - - -

[61] Single NC Independent NA Single NA Single - - -

[37] Mult-V Captured (PC, R) Dependent ND ND ND ND - - -

[62] ND Captured (RU) Independent NA ND NA ND - - -

[63] Multi-V Captured (PC) Dependent ND Multiple Ch Multiple ✓ - -

[64] Single Captured (PC) Independent NA Single NA Single - - -

[65] Multi-V Captured(R,PC,PG,S) Dependent DAG Multiple DAG ND - - -

[45] Multi-V Captured (PC) Dependent Ch Multiple Ch Single - ✓ -

[38] Multi-V Captured (R,PC,S) Dependent Ch Multiple Ch Single - - -

[48] Multi-V NC Dependent Ch Multiple Ch ND - - -

[47] Multi-V Captured (PC) Dependent Ch Multiple Ch ND - - -

[66] Multi-V Captured (PC) Dependent DAG Multiple DAG Multiple - -

[44] Multi-V Captured (PC,R,S) Dependent DG Multiple DG ND - - -

[67] Single NC Independent NA Single NA Single - - -

[68] Single NC Independent NA Single NA ND - - -

[43] Multi-V Captured (R) Dependent Ch Multiple Ch Multiple ✓ - -

[69] Multi-V Captured (R,PC,S) Dependent DAG Multiple Ch, Ag, H Multiple ✓ - -

[70] Multi-V Captured (PC, R) Dependent DG Multiple DG Single - ✓ ✓

[71] Multi-V Captured (PC, R, B) Dependent DAG Multiple DAG ND - - -

[72] Single Captured (R,B) Independent NA Single NA ND - - -

[39] Multi-V Captured (PC, R, B) Dependent DAG Multiple DAG ND - - -

[46] Multi-V Captured (R,PC,S) Dependent DAG Multiple Ch, Ag, H Multiple ✓ - -

[73] Multi-V NC Dependent DAG Multiple DAG ND - - -

[74] Multi-V Captured (PC,R) Dependent NA Multiple UWG NA - - -

[75] Multi-V Captured (PG) Dependent DAG Multiple DAG Single - - -

[76] Multi-V Captured (RU) Dependent NA Multiple DG ND - - -

Mult-F:Multiple-Fixed, Mult-V:Multiple-Variable, Ch:Chain, Ag:Aggregator, H:Hybrid, DAG:Directed
Acylclic Graph, DG:Directed Graph, UWG: Undirected Weighted Graph, R:RAM, PC:Processing power
(CPU), PG:Processing power (GPU), S:Storage, B:Bandwidth, RU:Resource Units, NC:Not Captured, ND:
Not Defined, NA:Not Applicable

2.4 Application Placement Policy 39

Figure 2.4: Taxonomy for placement policies designed for microservices-based applica-
tions

40
A

Taxonom
y

and
R

eview
on

Placem
entofM

icroservices-based
IoT

A
pplications

Table 2.3: Analysis of existing literature based on the taxonomy for application placement policy

Work Placement Placement Placement Parameters Placement Adv µservice characteristics Other Objectives

Mode Perspective Parameters QoS-awareness QoS Granularity Techniques Ind. Deployability Ind. Scalability

[59] Seq-FIFO UP Latency No per microservice/s (Latency) Heuristic - Greedy VMs NC -

[36] Seq-P AP Latency, Availability Yes (Latency) per application (Latency) Heuristic Containers H -

[41] Seq-ND UP Latency No per service (Latency) Heuristic Containers H F-C Balance (D)

[40] Seq-P IP Revenue, Latency Yes among microservices (Throughput) Heuristic-Greedy Containers NC F-C Balance (S)

Throughput (Latency, Throughput) per application (Latency)

[32] Batch AP Latency, RUC No ND Meta-Heuristic Containers H Service Spread

[60] Seq-FIFO UP Latency Yes per service (Latency) Heuristic Containers H+V F-C Balance (S)

[47] ND AP Latency, Cost No per service Meta-Heuristic Containers H+V Redundancy

[37] Seq-ND AP Cost, Reliability Yes (All) per application (All) Meta-Heuristic ND H -

Latency

[48] ND AP Latency, Energy No NC Meta-Heuristic Containers H Redundancy

[64] ND UP Latency Yes (Latency) per microservice (Latency) Machine Learning Containers H Proactive Scaling

[62] Batch UP Energy, Latency Yes (Latency) per microservice (Latency) Mathematical Programming Containers H Fault-tolerance

Cost (Lagrangian Multiplier)

[66] Batch AP Latency, Cost Yes (Latency) per service (Latency) Meta-Heuristic ND NC Fault-tolerance

[63] Seq-ND AP Energy, Latency No NC Meta-Heuristic VMs NC -

[65] Batch IP Revenue, Latency, Yes among microservices Heuristic Containers NC Locality-awareness

Throughput (Latency, Throughput) (Latency, Throughput)

[42] Seq-P IP Revenue, Latency Yes among microservice (Throughput) Heuristic-Greedy Containers NC F-C Balance (D)

Throughput (Throughput, Latency) per application (Latency)

[61] Seq-FIFO AP/UP Latency, Cost Yes (Latency) per application (Latency) Reinforcement Learning Containers NC Mobility-awareness

[44] Seq-ND IP Latency, Throughput Yes (All) among microservices (All) Heuristic Containers H F-C Balance (D)

[67] Seq-P UP+AP Latency, Cost Yes (Latency) per microservice (Latency) Heuristic - Greedy Containers NC F-C Balance (D)

[69] Seq: ND AP Latency, Cost Yes (Cost) among microservices (Latency) Heuristic - Greedy Containers H -

per application (Cost)

[72] Seq-ND AP Latency, RUC Yes (Throughput) per microservice Analytical Hierarchy Process Containers NC -

Throughput (Throughput, Latency) (AHP)

2.4
A

pplication
Placem

entPolicy
41

Work Placement Placement Placement Parameters Placement Adv µservice characteristics Other Objectives

Mode Perspective Parameters QoS-awareness QoS Granularity Techniques Ind. Deployability Ind. Scalability

[71] ND IP+UP Latency, Throughput Yes per application Approximate Algorithm Containers H Load-awareness

Cost, RUC, RUN (Latency, Throughput) (Latency, Throughput) + Deep Reinforcement Learning Resource contention

[46] Batch AP Latency, Cost Yes (All) per service (All) Meta-Heuristic Containers H+V F-C Balance (D)

Throughput, RUC, RUN

[73] Batch UP Latency, RUN Yes (Latency) per service (Latency) Meta-Heuristic Containers H Location-awareness

[74] ND AP Latency, RUC No NC Deep Reinforcement Learning Containers H Load-awareness

+ Heuristic

[38] Seq-FIFO AP Cost, Latency Yes (Latency) per service (All) Mathematical Programming Containers H+V -

(Branch and Bound)

[45] Seq-FIFO AP Latency No per service/application Monte carlo + Containers H Availability

(Latency) Meta-heuristic

[43] Batch IP Latency No per service (Latency) Mathematical Programming ND H+V Optimal routing

(Gurobi MILP solver)

[70] Seq-ND UP Latency, Throughput Yes among microservices Mathematical Programming VMs H Redundancy

(Latency, Throughput) (Latency, Throughput)

[39] ND IP+UP Latency, Throughput Yes per application Approximate Algorithm Containers H Load-awareness

Cost, RUC, RUN (Latency, Throughput) (Latency, Throughput) + Deep Reinforcement Learning Resource contention

[75] ND UP Latency, Throughput Yes (Latency) per service (Latency) Heuristic-Greedy ND H Resource contention

[77] Batch IP + UP Latency, Energy Yes among microservices Meta-heuristic Containers H Fault-tolerance

Throughput (Latency, Throughput) (Latency, Throughput)

[76] Batch UP Latency No among microservices Meta-Heuristic Containers NC -

FIFO:First-In-First-Out, P:Prioritised, UP:User Perspective, AP:Application provider Perspective, IP:Infrastructure provider Perspective,
RUC:Computation Resource Utilisation, RUN :Network Resource Utilisation, ND:Not Defined, NC:Not Considered, H:Horizontal, V:Vertical, F-C
Balance(D):Dynamic Fog-Cloud Balance, F-C Balance(S):Static Fog-Cloud Balance

42 A Taxonomy and Review on Placement of Microservices-based IoT Applications

rameters. Some works, such as [41, 59, 60] formulate the placement problem con-

sidering the satisfaction of a single parameter and focus on minimising the latency

of the services deployed within Fog environments. Other works like [37, 62, 66]

focus on multiple parameters to reach a trade-off between conflicting parameters,

such as latency, cost, energy etc., by formulating the placement problem as a multi-

objective optimisation problem.

2. QoS-awareness: Reduction of service latency and core network congestion are two

of the main objective of Edge/Fog computing paradigms. As a result, works like

[41, 45, 47] aim to place the microservices as close as possible to the user to re-

duce the overall latency of the application. While this is done in a QoS-unaware

manner, assuming that all services require low latency, other research works such

as [37, 46, 65, 73] consider the QoS requirements of the IoT services before placing

them. Such approaches highlight one of the main limitations of Edge/Fog comput-

ing which is its resource-constrained nature compared to the Cloud data centres.

Thus, they aim to capture the QoS heterogeneity of the IoT services and priori-

tise them based on their QoS requirements (i.e., stringent latency requirements

over latency-tolerant services [65, 73], stringent budget constraints over higher

budget availability [37, 46], throughput-aware placement/scaling of microservices

[40, 46]) and achieve a proper balance between Fog and Cloud resource usage in a

QoS-aware manner. MSA further enhances this behaviour due to the ease of mov-

ing independently deployable microservices across Fog and Cloud data centres

dynamically.

3. QoS Granularity: Because of the fine-grained nature of the microservices and

their possible composition patterns, QoS parameters are defined at different lev-

els of granularity. Among existing works, QoS parameters are defined at three

primary levels: microservice level, composite-service level and application level.

Research works like [40, 42] define the throughput requirements at the microser-

vice level, where it is presented as the bandwidth requirement between interacting

microservices, whereas [59, 62, 64] define latency requirements per each microser-

vice. Several works such as [41, 46, 47] define latency, throughput, cost etc., per

2.4 Application Placement Policy 43

each composite service where microservices-based applications can consist of one

or more such services. Works such as [42, 61] define latency requirement per each

application, assuming that the application performs a single function/service re-

quested by the end-user. Most of the works define all QoS parameters at a single

level, whereas [40, 42] use different granularity levels based on the parameter (i.e.,

throughput at the microservice level and latency at the application level).

2.4.4 Placement Techniques

Different placement techniques are chosen to implement the placement policies based on

the complexity of the modelled microservices-based applications, placement mode, opti-

misation parameters and their granularity, and the dynamism of the considered scenario

(in terms of distributed resources, workload, failures etc.). Works such as [38, 43, 62, 70]

use mathematical programming to solve microservices-based application placement in

Fog: [43] formulates the problem using Mixed Integer Linear Programming (MILP) and

solve it using Gurobi MILP solver 5, [62] uses the Lagrangian multipliers to solve the

optimisation problem under multiple constraints including network QoS, price, and re-

source usage. Several works, including [41, 59, 60] propose heuristic placement algo-

rithms to optimise a single placement parameter such as latency. Heuristic approaches

are proposed by works such as [36, 40, 65] that consider multiple parameters as well.

Here, [40], and [65] formulate the placement problem as an Integer Linear Program-

ming problem to solve it using greedy heuristic algorithms. [32, 66, 73] that try to handle

batch placement scenarios and multiple placement parameters, propose placement poli-

cies based on evolutionary meta-heuristic algorithms such as Genetic Algorithm (GA),

Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO) to navigate large

solution space efficiently. With increased computation power available for placement

engines, algorithms are moving towards Machine Learning (ML): [64] uses ML-based

forecasting models to make predictive auto-scaling decisions, and [39, 61, 74] use Rein-

forcement Learning based approaches to tackle the highly dynamic nature of Edge/Fog

environments and the microservices. Moreover, existing works use other techniques

5https://www.gurobi.com/products/gurobi-optimizer/

44 A Taxonomy and Review on Placement of Microservices-based IoT Applications

such as Analytical Hierarchy Process (AHP) [72], which is a powerful decision analy-

sis method used to prioritise and balance multiple criteria, and computation algorithms

such as Monte Carlo method [45] used to capture uncertainties in the placement problem

introduced by the MSA (i.e., candidate microservices, 3rd party microservices, etc.).

2.4.5 Advanced Microservice Characteristics

The popularity of the MSA for deployment within highly distributed Fog environments

stems from two primary microservices-related characteristics, their independently de-

ployable and scalable nature.

1. Independent Deployability: Decomposing monolithic applications into a collection of

microservices can improve deployment-related aspects such as fault tolerance and

reliability due to the independently deployable nature of the microservices. This

is further supported by containerisation, which provides a lightweight method

for deploying microservices compared to the earlier used Virtual Machines(VMs).

The work in [59] proposes a deployment scenario where all microservices of a

user-requested service are mapped onto a single VM. The vast majority of exist-

ing works [32, 36, 48, 65] improve the deployment through the use of containers

(i.e., Docker), which allows rapid deployment by providing microservices with

lightweight, isolated environments. The use of containers enables fast deploy-

ment of microservices while mitigating single point of failure using the distributed

placement of microservices. Works such as [60, 62] highlight the importance of us-

ing container technology due to their faster spin-up times and analyse resultant

performance improvements under dynamic conditions. Works such as [38, 46]

consider the cost of the containerised microservices by adapting the pricing mod-

els used in container platforms provided by the commercial Cloud providers (i.e.,

Amazon Fargate, Azure Containers).

2. Independent Scalability: As microservices are independently deployable units with

well-defined business boundaries, each microservice can be independently scaled

to meet the throughput requirements. This is especially advantageous in Edge/-

Fog computing scenarios where devices are heterogeneous in their resource ca-

2.4 Application Placement Policy 45

pacities, workloads also vary rapidly with the popularity of the services, mobility

of the users etc. Scalability of the microservices is used in multiple ways where

some works consider only horizontal scalability while others use a combination

of horizontal and vertical scalability to satisfy throughput requirements. The pa-

per in [32] uses horizontal scalability of the microservices to spread instances of

each microservices uniformly across the Fog landscape to support distributed ac-

cess by users. Works such as [46, 60] consider resource heterogeneity of the Fog

devices and use a hybrid approach of vertical and horizontal scalability to meet

the throughput requirement. Current works use the scalability of the microser-

vices for multiple purposes. Above works focus on satisfying the overall through-

put requirement while utilising resource-constrained Edge/Fog devices. Mean-

while, the work presented in [73] uses horizontal scalability to incorporate loca-

tion awareness, whereas [45, 62] use horizontal scalability to achieve redundancy

which improves availability and fault-tolerance of the application.

2.4.6 Other Placement Objectives

One of the main advantages of using MSA for Fog application development is the abil-

ity to easily utilise both Fog and Cloud resources to meet application requirements. This

concept is also put forth in Osmotic computing, which highlights the importance of dy-

namically moving microservices between Cloud and Fog and achieving an equilibrium

such that the non-functional requirements of the services are met. In some works such

as [40, 60], this is handled in a static manner where microservices to be placed on Cloud

are predefined per each application based on the deadline requirement of the compos-

ite services each microservice belongs to. Works such as [41, 42, 44, 46] handle this in

a dynamic way: [42] partitions the application based on the throughput requirement

to place microservices with higher throughput requirements in the Fog and rest in the

Cloud, [41] analyses the popularity of the microservices based on the user requests to

move less popular ones to the Cloud, [44] achieves balance by considering the cost of

deployment in Fog and Cloud, [46] formulates a multi-objective problem to achieve a

trade-off between Fog device usage and network usage to achieve a balance between

46 A Taxonomy and Review on Placement of Microservices-based IoT Applications

Fog and Cloud resource usage dynamically.

Locality or location awareness is another aspect that comes with IoT applications due

to data security and latency requirements. Sensitive IoT data (i.e., healthcare, security

camera footage etc.) can have constraints on geographical locations for the processing,

which requires certain microservices to be placed within certain regions or within cer-

tain Fog service providers in federated Fog computing environments. The paper in [65]

adds locality constraint to their problem formulation and handles it using a heuristic

approach. With the distributed nature of the Edge/Fog resources and the users, location

awareness can be used to minimise network resource usage and delay [32, 73]. The work

presented in [73] utilises this concept where the user’s location is used to select the mi-

croservice instances such that the requests are routed to the closest instances. The paper

in [32] introduces a metric called service spread which evenly distributes microservices

across the Fog landscape to improve performance when users are uniformly distributed.

Modularity and scalability of microservices pave the way for efficient redundant

placement to improve the availability and fault-tolerance of the services. The work pre-

sented in [45] proposes a redundant placement policy for composite services consisting

of chained microservices, considering the uncertainty of requests and heterogeneity of

the resources. This work aims to reduce the outage time under failures through redun-

dant placement of microservices. To address the challenge of cascading failures that oc-

cur in MSA, [66] proposes a fault tolerance method for applications deployed using the

API gateway pattern where the API gateway acts as the access point for requests com-

ing from the users. This work deploys API gateways within cache-enabled edge nodes

so that data related to service requests can be cached proactively in case downstream

microservices become unavailable due to failures until the microservice is redeployed

using a reactive fault-tolerance approach.

Due to the horizontal scalability of microservices, proper load balancing and rout-

ing approaches are required to ensure performance requirements. To address this, some

works such as [43, 47, 48] formulate the application placement problem as a combina-

tion of microservice replica placement and determining the optimal data flow path of

composite services. The work in [47] uses minimisation of service latency and cost (both

computation and data transfer costs) to achieve the optimum level of service replication

2.4 Application Placement Policy 47

and identification of the request path that minimises latency of the composite services.

The paper in [48] considers latency and power consumption as optimisation parameters

to achieve this. The work presented in [43] extends this further by incorporating SDN

controller placement as part of the problem, where SDN controllers are used for service

discovery and determining data flow.

Deploying multiple lightweight containers onto the same Fog device can result in

resource contention depending on the resource requirements of each container instance.

To overcome this, several works like [39, 71, 75] propose online algorithms to detect

shared-resource contentions and afterwards dynamically adjust resource allocations or

migrate microservice instances to other idle nodes to maintain the required level of per-

formance. These works capture different types of resource contentions, including I/O

[39], GPU global memory bandwidth [75], and computation capacity [71] contentions.

2.4.7 Research Gaps

Based on the analysis of existing works presented in Table 2.3, we identified the follow-

ing gaps related to microservices-based application placement.

1. QoS-granularity and QoS-awareness, together with proper placement mode selec-

tion, can improve performance, especially when microservices-based IoT applica-

tions are considered. As IoT applications grow in complexity to provide many ser-

vices with heterogeneous QoS requirements, the granularity of the microservices

paves the way for per-service QoS definitions. Together with batch placement or

sequential placement with QoS-aware prioritisation, this approach is rarely ex-

plored in existing works. The following shortcomings are apparent in existing

works;

• QoS-granularity: Most of the works define QoS requirements among inter-

acting microservices (i.e., latency and throughput requirements between two

microservices) which becomes less feasible due to composite services with

complex interaction patterns and their agile evolution as applications evolve.

As a result, existing works scarcely capture the QoS heterogeneity of the com-

posite services within the same application. Thus, MSA-related scenarios like

48 A Taxonomy and Review on Placement of Microservices-based IoT Applications

competing requirements that exist due to shared microservices are not han-

dled.

• QoS-awareness: Many works do not define QoS requirements and capture the

heterogeneity but try to minimise overall latency, cost etc. This approach hin-

ders the proper utilisation of limited Edge/Fog resources and limits achieving

equilibrium between Fog-Cloud resource usage.

The above gaps are tightly coupled with how the microservices-based application

is modelled, and overcoming them requires the proper capturing of MSA as de-

scribed in Section 2.3.

2. In existing works, there’s scope for incorporating advanced microservice charac-

teristics such as the independently deployable and scalable nature of the microser-

vices. Although many of the works use container technology for microservice de-

ployment, they lack proper utilisation of the fast spin-up time, lightweight deploy-

ment capabilities and related cost models, whereas, for independent scalability,

only a very few works explore the combination of horizontal and vertical scalabil-

ity to support throughput requirements of the composite services. This can further

consider the scalability constraints of different microservices (i.e., microservices

with databases).

3. Placement objectives of the current works lack emphasis on the following: security

challenges related to microservice, utilising microservices for improvement of re-

liability and fault tolerance, dynamic microservice placement under federated Fog

architectures, dynamic Fog-Cloud balance, mobility-aware placement, considera-

tion for load uncertainty, etc.

2.5 Microservice Composition

The complex interaction patterns among microservices, their ability to independently

scale up/down to maintain performance and distributed deployment of microservice

instances across networked devices are supported through microservice composition

2.5 Microservice Composition 49

Figure 2.5: Taxonomy for microservice composition

mechanisms. Figure 2.5 presents the taxonomy for essential aspects of the successful

composition of microservices within distributed environments. For this analysis, we

use both Edge/Fog frameworks designed for microservice deployment [78, 79] and con-

ceptual frameworks/simulators used in formulating and solving placement problems

[38, 69] as demonstrated in Table 2.4. We analyse the main functions related to microser-

vice composition in the sections below.

2.5.1 Service Discovery

Dynamic placement algorithms proposed to handle microservice placement [60, 74, 79]

define service discovery mechanisms so that changes (i.e., scale up/down, failures) in

microservice instances are made know to other microservices that interact with them.

Works such as [8, 60] use a client-side service discovery pattern where each client mi-

croservice queries a dynamically updated service registry to determine the available

50 A Taxonomy and Review on Placement of Microservices-based IoT Applications

Table 2.4: Analysis of existing literature based on the taxonomy for microservice com-
position

Work Service Load Balancing Networking Elasticity Monitoring Other
Discovery Type Approach Type Method

[78] S-S S-S Round Robin ✓ U-D H ✓ -
(Kubernetes) (Prometheus)

[60] C-S C-S Weighted Round Robin - U H+V - -
[38] NC C-S Round Robin - - - - -
[46] NC C-S Weighted Round Robin - - - - -
[44] S-S S-S Custom ✓ - - ✓ -

(Flannel + Istio) (Prometheus)
[74] S-S S-S Custom ✓ U-D H ✓ -

(Kubernetes + Istio) (Prometheus)
[47] ND S-S Custom - - - -
[66] S-S NC - - - - - Fault-tolerance
[69] ND C-S Round Robin - - - - -
[79] S-S S-S Weighted Round Robin ✓ - - ✓ -

(Kubernetes + KubeEdge) (Custom)
[8] C-S C-S Weighted Round Robin ✓ U-D H+V - -
[80] S-S S-S ND ✓ U-D H ✓ Fault-tolerance

(MQTT Broker) (Custom) Security
[81] S-S S-S ND ✓ U-D H - -

(Kubernetes + CNI)

C-S:Client-side, S-S: Server-side, U: Up, D: Down, H: Horizontal, V: Vertical, CNI: Container Network
Interface, ND: Not Defined, NC: Not Considered

service instances. Works such as [66, 74, 79] use server-side service discovery where the

requests are directed to a designated entity (i.e., a load balancer, a proxy, etc.) that is re-

sponsible for directing the requests towards available service instances. ”FogAtlas”[78]

which is a Fog computing platform used by multiple works such as [40, 65] and other

works such as [44, 79] use Kubernetes as the orchestrator along with its default proxy-

based, server-side service discovery mechanisms. The work in [66] implements server-

side service discovery using an API gateway as the ingress node responsible for service

discovery and service composition.

2.5.2 Load Balancing

1. Type: Current works model load balancing using two primary approaches: client-

side load balancing [38, 60, 69] where each client is responsible for individually ex-

ecuting load balancing policies, thus enabling application dependent load balanc-

ing policies to be implemented, and server-side load balancing [44, 79] where a ded-

icated load balancer sits between client and server microservices to handle load

2.5 Microservice Composition 51

balancing.

2. Approach: Integrating the effect of the load balancing mechanism and introducing

novel load balancing policies to improve the performance of the services is vital

in microservice application deployment. Works like [38, 46] model the end-to-end

service latency based on the existing load balancing policies such as Round Robin

and Weighted Round Robin to determine the number of microservice instances to

deploy. Meanwhile, some works introduce custom load balancing policies: [44]

proposes a load balancing policy for a multi-region Fog architecture where the

requests are directed based on the residual CPU of each Fog region, [74] uses the

variance of the resource occupancy rate of the edge nodes to determine where

to direct the requests, [47] uses a meta-heuristic algorithm to place microservice

replicas to identify flow paths by considering parameters such as service cost and

service latency.

2.5.3 Networking

Distributed deployment of containerised microservices makes networking one of the in-

tegral functions of microservice compositions. This is further complicated by the feder-

ation of Fog and Cloud, which results in communication between multiple networking

environments and technologies. [78] uses Kubernetes to handle the networking among

microservices instances whereas [74] integrates Istio6 service mesh framework to handle

inter-service communication. [79] integrates Kubernetes with KubeEdge for the edge

network. To overcome the limitation Kubernetes network model and assign subnets

per host, [44] use Flannel, a Container Network Interface (CNI) and Istio on top of Ku-

bernetes orchestration. [81] explores and compares multiple CNIs, including Flannel,

Weave, Calico and OVN. [80] uses MQTT Broker, an asynchronous messaging-based

communication mechanism to transmit messages over the network among decoupled

microservices.

6https://istio.io/

52 A Taxonomy and Review on Placement of Microservices-based IoT Applications

2.5.4 Elasticity

Elasticity indicates the ability of the microservices to be dynamically scaled up and

down dynamically in a performance-aware manner. With the use of lightweight de-

ployment technologies such as containers, microservices can be easily auto-scaled to

improve the performance of the application while ensuring optimum resource utilisa-

tion. Out of the many works that consider horizontal scalability of microservices, the

majority consider this during the initial placement of the application to make use of

resource-constrained Fog devices but fail to use auto-scaling/elasticity under dynamic

changes in the environment (i.e., load changes, failures etc.). Dynamic placement algo-

rithms proposed in works such as [8, 60, 74] consider elasticity. However, we can further

analyse it based on the supported type of elasticity: scaling up, scaling down, and the

method of scaling: horizontal, vertical. The paper in [60] considers both vertical and

horizontal scaling but only considers scaling up as new user requests arrive. The work

in [74] proposes a utilisation threshold-based policy to horizontally scale up/down mi-

croservices through continuous monitoring of the resources. Practical frameworks and

simulators [8, 78] provide the infrastructure required to auto-scale (both up and down,

horizontal and vertical) microservices through customised policy implementations.

2.5.5 Monitoring

Monitoring is the collection of application and platform metrics in such a way that

they can be used to detect failures, performance degraded states, etc. and act accord-

ingly to maintain system performance. The highly dynamic nature of containerised mi-

croservices makes monitoring a challenging task, which has resulted in the development

of open-source monitoring tools that can handle the large volume of moving parts in

microservices-based application deployment. Hence, [44, 74, 78] integrate Prometheus7

to their orchestration platform to monitor multiple platform metrics (i.e., request num-

ber, response times, resource consumption, network communications, etc.). Meanwhile,

works such as [79, 80] implement their own customised monitoring tools to monitor

metrics across Edge-Cloud integration.

7https://prometheus.io/

2.6 Performance Evaluation 53

2.5.6 Other

Other composition-related tasks include fault tolerance and security. The work in [66]

proposes a conceptual framework where API Gateway handles the responsibility of

fault-tolerance by data recovery, service re-composition and re-submission of a failed

request. The paper in [80] introduces three main components: health check component,

circuit breaker and timeout component to identify and isolate failures to avoid cascad-

ing failures under MSA. The paper in [80] implements centralised security components

to manage authorisation and authentication required for microservice access.

2.5.7 Research Gaps

Based on the analysis of existing works presented in Table 2.4, we identified the follow-

ing gaps:

1. Current works demonstrate less emphasis on load-balancing policies and their ef-

fect on the formulation of the placement problem.

2. There’s scope for improvement in elasticity (both horizontal and vertical scaling),

fault tolerance, and microservice security through proper monitoring of the de-

ployed application at the application and platform level.

3. Effect of orchestration components (i.e., service registry, API gateways, load bal-

ancers) on the application performance needs to be analysed and demonstrated in

terms of handling their possible failures, delay overheads, etc.

2.6 Performance Evaluation

Accurate policy evaluation is one of the vital steps in designing novel placement algo-

rithms for fast-evolving fields such as IoT and Fog computing. To this end, we propose

the final taxonomy by analysing the crucial aspects of the evaluation phase, as shown in

Figure 2.6. Afterwards, current works are mapped to the taxonomy to identify gaps and

possible improvements (see Table 2.5).

54 A Taxonomy and Review on Placement of Microservices-based IoT Applications

Figure 2.6: Taxonomy for performance evaluation of the placement policy

2.6.1 Evaluation Approach

Evaluation approaches can be categorised as Numerical Evaluations, Simulations, use

of Practical test-beds and Hybrid approaches consisting of combinations of the above

methods.

Numerical Evaluations: In numerical experiments, the algorithm is evaluated by nu-

merically calculating specific metrics that provide insights on the fitness of the resultant

placement proposed by the algorithm [40, 42, 43, 69] or/and evaluating performance

metrics of the algorithm such as execution time, computation complexity and conver-

gence [32, 69]. [40, 42] use the Gurobi mathematical optimisation solver to obtain the

optimum solution to the formulated MINLP and compare the solution obtained from

their proposed heuristic placement algorithm by calculating metrics such as the number

of placed applications, network link usage, etc. numerically. The work in [32] evaluates

their approach based on the performance metrics (i.e., the fitness of the best solution,

Pareto solution spread, execution time, etc.) of their proposed multi-objective evolu-

tionary algorithm, whereas [69] analyses the execution time of the algorithm under dif-

ferent experimental settings to evaluate the scalability of the algorithm, thus deriving

the system size the algorithm can handle.

Simulations: For the evaluation of microservices-based application placement in Edge/-

Fog computing environments, both open-source simulators (i.e., iFogSim [41, 46, 60, 63],

YAFS [36], CloudSim [38, 59]) and custom simulators [44, 45, 61] are used by the current

works. Simulators such as iFogSim [8] and YAFS [83] provide in-built microservice-

2.6 Performance Evaluation 55

Table 2.5: Analysis of existing literature based on the taxonomy for performance evalu-
ation

Work Evaluation Approach Workload Work Evaluation Approach Workload

Numerical Simulation Practical Synthetic Real Hybrid Numerical Simulation Practical Synthetic Real Hybrid

[36] ✓(YAFS) ✓(Other) [40] ✓ - ✓(FogAtlas) ✓(MSA) - -

[60] - ✓(iFogSim) - ✓(MSA) - - [32] ✓ - - - - ✓

[42] ✓ - - ✓(Other) - - [45] - ✓(C-MATLAB) - ✓(MSA) - -

[38] - ✓ - ✓(MSA) - - [61] - ✓(C-MATLAB) - ✓(MSA) - -

(MATLAB + CloudSim)

[46] - ✓(iFogSim) - ✓(MSA) - - [44] - ✓(C-Python) ✓ - - ✓

[63] - ✓(iFogSim) - ✓(MSA) - - [62] - ✓(ND) - ✓(MSA) - -

[74] - - ✓ - ✓(MSA) - [64] - - ✓ - - ✓

[67] - ✓(C-Java) - - ✓(Other) - [47] - ✓(ND) - ✓(MSA) - -

[43] ✓ - - ✓(MSA) - - [69] ✓ - - ✓(Other) - -

[66] - ✓(C-Python) - - ✓(MSA) - [72] - ✓(NS3) - ✓(MSA) - -

[65] - ✓(C-Python) - ✓(Other) - - [59] - ✓(Cloudsim) - ✓(MSA) - -

[73] ✓ - - ✓(MSA) - - [82] - ✓(iFogSim) - - ✓(MSA) -

[71] - - ✓ - ✓(MSA) - [79] - - ✓ - ✓(MSA) -

[75] - - ✓(Astraea) - ✓(MSA) - [41] - ✓(iFogSim) - - - ✓

[37] - ✓(iFogSim) - - - ✓ [48] - ✓(C-C++) - ✓(MSA) - -

related features such as distributed application modelling, service discovery and load

balancing, thus enabling the users to simply implement their placement policy within

the simulator or implement the algorithm separately (i.e., MATLAB [38], IBM CPLEX

[46]) and input the resultant placement to the simulator for evaluations.

Practical: To evaluate placement algorithms using practical frameworks, [40] uses

”FogAtlas”, an open source framework for microservices deployment and orchestration

in Fog environments, [75] implements a framework called ”Astraea” for the manage-

ment of GPU microservices, whereas other works such as [44, 64, 74, 79] implement

customised test-beds with functionalities relevant to the placement algorithms. They

use popular container-orchestration platforms such as Docker swarm [64], Kubernetes

[44, 74], KubeEdge [79] in their implementations.

Hybrid: Some of the works use multiple evaluation approaches to analyse and evalu-

ate the proposed placement policies from multiple perspectives. The work presented in

[44] use both Simulations and practical test beds for evaluation. Simulations carry out

large-scale experiments, whereas test beds further verify the results of the simulations

by carrying out a selected set of experiments. The work in [46] use a combination of nu-

56 A Taxonomy and Review on Placement of Microservices-based IoT Applications

merical evaluations and simulations where numerical evaluations are used to improve

and fine-tune the meta-heuristic placement algorithm, whereas the simulation evaluates

the resultant placements.

2.6.2 Workload

For the analysis of the workload, we consider the nature of the application placement

requests used to evaluate the placement policy. We can categorise them as Synthetic,

Real, or a combination of both, denoted as Hybrid.

Synthetic: Synthetic workloads are created either by mimicking specific microservices-

based applications [40, 59, 60] (categorised in the taxonomy as MSA) or using generic

application models such as DGs or DAGs [36, 42, 65, 69] (categorised in the taxonomy as

Other) to generate a workload consisting of multiple applications with heterogeneous

resource and QoS requirements. The paper in [40] models the applications following

a microservices-based IoT application for face recognition consisting of two chained

microservices. The work in [60] models a smart-healthcare application and creates a

synthetic workload based on the modelled application. [59] models smart city and for-

est surveillance applications. Meanwhile, some work like [42, 65, 69] generate random

synthetic DAGs as microservices-based applications, whereas [36] uses Growing Net-

work(GN) graph structure where graphs are created by adding nodes one at a time to

existing nodes to develop microservices-based applications following Directed Graphs

as the interaction pattern.

Real: Real workloads include the use of already implemented microservices-based

applications (categorised in the taxonomy as MSA) or adapting performance traces of

applications that follow other application models (categorised in the taxonomy as Other).

[74] use Bookinfo 8, an online book store application following MSA along with the ho-

tel reservation booking application from DeathStartBench 9 [84], which is a benchmark

application suite following MSA. [71] also uses benchmark applications from Death-

StartBench along with the benchmark application provided in [85]. [75] uses AI-based

8https://istio.io/latest/docs/examples/bookinfo/
9https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation

2.6 Performance Evaluation 57

GPU microservices available in AIbench 10 to create the workload. [66] uses the curated

data set available in [86] which consists of 20 open-source projects based on MSA. In con-

trast to the above examples, [67] uses traces from Google Cluster 2019 [87]. These traces

provide data on task requests (i.e., CPU. memory, deadline, etc.), and as [67] models

microservices as independent components that do not interact with other microservices,

the said data set is easily adapted by this work for evaluations.

Hybrid: [32, 41] use a microservices-based e-commerce application known as Sock

Shop 11 provided under Apache License 2.0, along with two other synthetic application

models (an online EEG tractor beam game and intelligent surveillance application) to

create the workload. [44] creates a synthetic workload for simulation-based studies and

implements a microservices-based application name ”Paper Miner” designed for min-

ing research papers and deploys it on a real-world platform to evaluate the placement

algorithm.

2.6.3 Research Gaps

Based on the analysis of existing works presented in Table 2.5, we identified the follow-

ing gaps related to the evaluation of placement algorithms developed for microservices-

based application placement within Fog environments.

1. Lack of use in practical test beds is one of the prominent drawbacks of currently

used evaluation approaches. The majority of the available works use numerical

evaluations or simulations to evaluate the performance of their placement policies

but fail to validate them on real test beds. Thus, overheads related to orchestration

tasks (i.e., service discovery, load balancing, auto-scaling etc.), failure character-

istics, resource contention among microservices, etc., are not accurately captured.

Moreover, the suitability of the Edge/Fog devices to act as the placement engine

that runs the algorithms is not evaluated in practical settings.

2. As Edge/Fog computing paradigms are still relatively new and yet to be adopted

by the service providers, simulators play a significant role in evaluating placement

10https://www.benchcouncil.org/aibench/index.html
11https://microservices-demo.github.io/

58 A Taxonomy and Review on Placement of Microservices-based IoT Applications

policies. However, this requires a standard open-source simulator for use among

the research community and continuous improvements through collaboration. As

microservices-based application placement in Fog environments is still in its in-

fancy, we see the increased use of custom simulators due to the lack of open-source

simulators that capture all related aspects of microservice orchestration.

3. Lack of real-world traces or actual implementations of applications for the deploy-

ment within test beds is another significant gap in current research. The existing

benchmark applications do not include IoT applications, making it harder to cap-

ture their characteristics accurately.

2.7 Summary

This chapter focused on IoT applications designed and developed using MSA and their

placement within Fog computing environments. We conducted a comprehensive back-

ground study and identified four critical aspects of microservices-based application place-

ment, namely, modelling of MSA, placement policy creation, microservice composition

and performance evaluation. We proposed taxonomies for each aspect, highlighting

features related to MSA and the Fog computing paradigm. Moreover, we analysed and

discussed the current literature under each taxonomy and identified research gaps. This

thesis investigated some these research gaps and proposed new research directions in

the last chapter.

Chapter 3

A Distributed Placement Policy for
Scalable Microservice Deployment

Independent deployability and scalability, along with the lack of centralised management of mi-

croservices, demonstrate significant potential to utilise distributed, heterogeneous and resource-

constrained Fog computing resources. This chapter proposes a decentralised microservices-based

IoT application placement policy for heterogeneous and resource-constrained Fog environments. The

proposed approach utilises microservices’ independently deployable and scalable nature to place them

as close as possible to the data source to minimise latency and network usage. Moreover, it aims to

handle service discovery and load balancing related challenges of the microservice architecture. We

implement and evaluate our policy using iFogSim simulated Fog environment. Results of the simu-

lations show around 85% improvement in latency and network usage for the proposed microservice

placement policy compared with the Cloud-only placement approach and around 40% improvement

over an alternative Fog application placement method known as Edge-ward placement policy. More-

over, the decentralised placement approach proposed in this chapter demonstrates a significant reduc-

tion in microservice placement delay over centralised placement.

3.1 Introduction

IoT is spreading across a large variety of application domains such as healthcare, agri-

culture, defence, smart city, and IIot. Due to the socio-economic benefits generated by

IoT, the number of connected devices and IoT application users keep growing rapidly.

This chapter is derived from:

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Microservices-based IoT Applica-
tion Placement within Heterogeneous and Resource Constrained Fog Computing Environments”,
Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, Pages: 71-
81, Auckland, New Zealand, December 2-5, 2019.

59

60 A Distributed Placement Policy for Scalable Microservice Deployment

IoT applications demand more resources to support the ever-increasing workloads gen-

erated by IoT devices and meet the performance requirements expected by the users.

While Fog computing can satisfy the stringent latency requirements of latency-critical

IoT services, the resource-constrained nature of Fog devices poses a challenge in sup-

porting increasing workloads.

Microservice architecture, which decomposes applications into fine-grained microser-

vices, can aid in overcoming the above challenge. To this end, IoT applications in Fog

environments can benefit from three main characteristics of microservices as follows:

• Independently deployable - Microservices are easily containerised due to being

loosely coupled, independent and self-sustained instances. In turn, containers are

suitable for Fog computing environments due to lower startup time, lower vir-

tualisation overhead and support for scalability [22]. Moreover, this enables mi-

croservices to be deployed across Fog resources and Cloud data centres, thus al-

lowing better utilisation of resource-constrained Fog resources for latency-critical

and bandwidth-hungry microservices.

• Independently scalable - Microservices support both vertical and horizontal scal-

ability. Vertical scalability represents the change of resource allocation as per the

load, whereas horizontal scalability indicates having multiple replicas of a sin-

gle microservice to support the load. As Fog environments consist of resource-

constrained nodes that are heterogeneous in resource availability, the horizontal

scalability of microservices can significantly impact the performance of applica-

tions deployed within Fog environments.

• Lack of centralised management - This matches with highly distributed nature of

the Fog computing environments. Furthermore, this enables the federated use of

Fog computing environments with resource-rich Cloud datacentres.

Thus, applications developed using microservices have the potential to be efficiently

adapted to Fog environments through the dynamic deployment of scalable microser-

vices to meet user demands. However, the introduction of microservices-based appli-

cations creates challenges in terms of dynamic service discovery, load balancing and

3.2 Related Work 61

architectures to support decentralised management of microservices within Fog envi-

ronments.

In literature, there is a notable number of works that focus on developing placement

algorithms for distributed applications within Fog-Cloud environments [88], [9], [89].

However, the placement of microservices-based Fog applications has not been investi-

gated extensively. Moreover, existing works lack a decentralised approach for placing

microservices within heterogeneous and resource-constrained Fog environments, focus-

ing on horizontal scalability and challenges such as service discovery and load balanc-

ing. In our work, we present a microservices-based IoT application placement policy

addressing the abovementioned aspects.

Thus, key contributions of our work can be summarised as follows:

1. A decentralised placement algorithm for microservices-based IoT applications, high-

lighting horizontal scalability of microservices within resource-constrained and

heterogeneous Fog nodes.

2. A Fog node architecture to support decentralised placement along with service

discovery and load balancing.

3. An implementation of our proposed policy on the iFogSim simulation environ-

ment and comparison against different placement approaches in terms of latency,

network usage and efficiency of decentralisation.

The rest of this chapter is organised as follows. In Section 2, we highlight related

research. Section 3 presents the microservices-based application model, Fog architecture

and Fog node architecture, along with the problem description. Our proposed solution

is provided in Section 4, along with relevant algorithms. Section 5 presents steps related

to the implementation of the solution using the iFogSim simulator, whereas Section 6

reflects simulation setup and performance evaluation. Finally, Section 7 concludes the

chapter with future work and research directions.

62 A Distributed Placement Policy for Scalable Microservice Deployment

Table 3.1: Summary of literature study

Work Fog Layer Architecture Application Model Decentralised Microservices-based

Hierarchical Clustering DAG BoT Placement Applications

Taneja et al.(2017) ✓ ✓

Gupta et al. (2017) ✓ ✓

R. Mahmud et al. (2018) ✓ ✓ ✓ ✓

Filip et al. (2018) ✓ ✓

Faticanti et al. (2019) ✓ ✓

Santoro et al (2017) ✓ ✓

this work ✓ ✓ ✓ ✓ ✓

3.2 Related Work

Microservices architecture is a recent concept that has created a phenomenal impact on

development of IoT applications within Cloud computing environments. Butzin et al.

[26] investigate the state of the art of IoT and microservices architecture to show how

their architectural goals are quite similar. Several research studies have been conducted

on developing Cloud-centric IoT frameworks based on microservices architecture [90],

[91], [92], [93]. However, research on adapting this concept to Fog environments is still

in its early stages.

Filip et al. [59] present a centralised placement approach for Edge-Cloud schedul-

ing of microservices using Bag of Tasks (BoT) model where each task consists of one or

more microservices. In the proposed architecture, nano data centers are used as Edge

resources. Scheduling engine receives jobs and assigns them to VMs in the nano data

centers or Cloud. Their scheduling policy places all microservices of a certain job within

the same processing element or move it towards the Cloud, based on resource availabil-

ity.

Santoro et al. [94] implement a framework and a software platform for orchestration

of microservices-based IoT application workloads. In the proposed architecture, appli-

cations are modeled as a collection of microservices distributed via container images.

The proposed architecture consists of IoT device layer, Edge gateways, Edge cloudlets

and Cloud. Microservice deployment requests are sent towards a negotiator that ac-

3.2 Related Work 63

cepts or rejects the requests. Orchestrator calculates the most suitable device to deploy

microservices of the accepted requests, based on requirements (CPU, RAM, bandwidth,

etc.) defined in deployment requests.

A centralised throughput aware placement algorithm for microservices-based Fog

applications is presented in [40]. The proposed system consists of Edge servers that

are grouped together based on their geographical regions. In this work, application mi-

croservices are placed within the region that contains respective IoT device or within the

neighboring region. A greedy algorithm is presented for mapping these microservices

onto Edge servers with sufficient computational resources while ensuring that band-

width of the involved links can satisfy the throughput requirements of the application

microservices.

Moreover, there are numerous works in literature that try to solve application place-

ment problem in Fog environments by depicting applications in a distributed manner as

a collection of interdependent modules. But, the concept of microservices architecture

along with its unique characteristics and challenges are not observed in these works.

Taneja et al. [88] present a resource aware module mapping algorithm for place-

ment of distributed applications within Fog environments. This work tries to optimise

resource utilisation by sorting application modules and nodes based on required re-

sources and available capacity respectively and mapping sorted modules to resources.

The proposed algorithm is compared with Cloud-only placement to depict the reduction

of end-to-end latency in the Fog placement approach. This work defines a hierarchical

Fog architecture where each Fog node is connected with a node in immediate upper

layer of the hierarchy. Horizontal connections among Fog nodes of the same level are

not defined. Moreover, placement is managed through a centralised approach.

Gupta et al. [9] propose a centralised edge-ward module placement algorithm for

placing distributed applications modeled as Directed Acyclic Graphs (DAG). Their al-

gorithm commences the placement of application modules starting from lower level Fog

nodes and move upwards the hierarchy until a node with enough resources is met. But,

their proposed algorithm supports only the vertical scaling of modules and does not

consider horizontal connections among Fog nodes within the same Fog level.

Latency aware placement of application modules within Fog environments is pre-

64 A Distributed Placement Policy for Scalable Microservice Deployment

sented in R. Mahmud et al. [89]. This work, proposes a decentralised module placement

method that considers service access delay, service delivery time and internodal com-

munication delay when placing application modules within Fog environments. In this

approach, distributed applications consisting of interdependent modules are placed and

forwarded vertically and horizontally to satisfy the latency requirements of the applica-

tion while optimizing resource usage. But horizontal scaling of modules within Fog

layer, microservices architecture and related challenges are not considered in this work.

A summary of the reviewed related works is presented in Table 3.1, comparing them

in terms of architecture of the Fog layer, application model and application placement

approach. Architecture of the Fog layer used in each work is identified as hierarchical, if

the Fog tier consists of multiple Fog levels where each device is connected with a node

in immediate upper layer and the latency from the IoT devices and resource availability

of the nodes increase when moving towards upper levels. Clustering denotes existence

of horizontal connections among Fog nodes of the same hierarchical level of the Fog

architecture.

In our work, we present a placement algorithm for microservices-based IoT applica-

tions, where horizontal scalability of microservices is used within Fog node clusters that

exist on the same hierarchical level of the Fog architecture. Moreover, the proposed pol-

icy also handles the challenges that come with horizontal scaling of microservices such

as service discovery and load balancing. Our placement approach uses decentralised

management of placement where each Fog node is responsible for placement decision

making instead of having a centralised entity.

3.3 System Model and Problem Formulation

We propose a multi level, hierarchical Fog architecture where each Fog computing node

is responsible for processing application placement requests.

We model IoT applications as collections of containerized microservices and place

them within the Fog environment using a decentralised placement approach.

Our Fog architecture, application model, Fog node architecture and application place-

ment problem are discussed in detail in the following subsections.

3.3 System Model and Problem Formulation 65

Fog Cluster

End Devices (IoT
sensors and
Actuators)

Fog Layer

Cloud Layer

 Fog Level 1

 Fog Level 2

 Fog Level 3

 Fog Level n

Figure 3.1: Hierarchical Fog architecture

3.3.1 Fog Architecture

Fog computing makes use of computation, networking and storage capabilities of geo-

graphically distributed, heterogeneous and resource constrained devices such as mobile

phones, access points, routers, proxy servers, nano data centers that span the continuum

from IoT devices to Cloud. This, in turn provides localized services to end users, thus

resulting in efficient bandwidth usage and low latency.

In this work, the three-tier hierarchical Fog architecture is used, where Fog layer

is placed between IoT devices and Cloud data centers [95]. In our architecture, nodes

within the Fog layer are also organised hierarchically as depicted in Figure. 3.1.

66 A Distributed Placement Policy for Scalable Microservice Deployment

IoT Sensor

Actuator

µservice_1
Instance1

µservice_1
Instance2

µservice_2
Instance1

µservice_3
Instance1

Client Module

REST
API

REST
API

REST
API

REST
API

Figure 3.2: Microservices-based IoT application

Fog nodes are placed in such a way that compute, storage and networking capabil-

ities of Fog devices vary not only among the nodes in different levels but also within

the same hierarchical level of the Fog layer. Compute, storage and network capability

of Fog nodes increase when moving from lower levels to higher levels inside the Fog

layer. Moreover, each Fog node has a direct connection with a node in immediate upper

level and also can have links with nodes in the same level forming clusters among them-

selves. In this work, it is assumed that a certain Fog node belongs to only one cluster at a

particular time. Nodes within the same Fog cluster communicates with each other using

Constrained Application Protocol (CoAP) which is a simple web transfer protocol based

on REST model [89], [96]. Therefore, the communication delay among cluster nodes is

extremely low.

3.3.2 Application Model

In our work, we have modeled IoT applications as a set of microservices that can be

deployed, upgraded and scaled independently. Each microservice is deployed as an

independent container and the resource requirement for each microservice is defined

in terms of CPU, bandwidth, RAM and storage. Figure 3.2 depicts our microservices-

based Fog application architecture. Each application consists of a Client module that is

3.3 System Model and Problem Formulation 67

deployed onto end user devices such as mobiles, tablets etc. that reside in the lowest

level of the Fog layer. This module is responsible for sending data received from IoT

sensors, towards relevant microservices for processing and also displaying results or

sending resulting signals to the actuators. The rest of the microservices are deployed on

either Fog or Cloud layer based on the placement policy. Since microservices that make

up an application have data dependencies amongst them, an IoT application is depicted

as a DAG [88]. In this model, each microservice is represented by vertices of the DAG,

whereas edges between vertices represent data dependencies among microservices.

In microservices-based applications, microservices call each other through REST APIs

to perform tasks. As microservices are horizontally scalable, a certain microservice can

have multiple replicas to support the load balancing. When directing requests to mi-

croservices, two approaches are available: through server-side load balancing or client-

side load balancing. In the server-side load balancing approach, a dedicated load bal-

ancer component lies between client microservices and server side microservices. This

component is responsible for service discovery and directing the requests according to

a load balancing policy. However, in a highly distributed environment such as Fog, us-

ing such centralised load balancing approach is not efficient. Thus, within this model,

service discovery and load balancing is handled through a decentralised method by us-

ing client-side load balancing. So, in the proposed model, device that hosts the client

microservice has to be aware of all microservice instances of the required services and

route requests according to the load balancing logic.

3.3.3 Fog Nodes

In this chapter we present a comprehensive Fog node architecture to support decen-

tralised placement of microservices-based applications. [89] proposes an architecture

where each Fog node consists of three main components: communication component,

computational component and controller component. However, their architecture does

not capture the requirements of microservices architecture. So, we improve their con-

cept to propose a Fog node architecture (see Figure 3.3) that supports placement of

microservices-based applications within Fog environments.

68 A Distributed Placement Policy for Scalable Microservice Deployment

Communication Component

Containerized
µservice

Containerized
µservice

Controller Component
Computational Component

Application Placement
Logic

Load Balancing Logic

Resource
Availability

Info

Service
Discovery

Info

µservice
Placement

Info

Application
Info

Meta
Data

Blocks

Controller Logic

Figure 3.3: Fog node architecture

According to our model, Placement of Microservices, Service Discovery and Load Bal-

ancing are handled by controller component in the node. When a placement request is

received by a Fog node, it is queued in Placement Request Queue (PRQ) in the controller

component. Placement requests in the queue are processed one after the other using Ap-

plication Placement Logic. Service Discovery Info (SDI) data block is a service registry that

contains network locations of service instances that can be used by client microservices

placed within the Fog node. Each time a client microservice makes a request, it is routed

to a service instance according to the Load Balancing Logic using data in SDI.

Each node keeps track of available resources (Resource Availability Info) such as CPU,

RAM, bandwidth and storage. This information is used when placing microservices and

also when making decisions on scaling microservices across clusters of nodes that are in

the same Fog level. µservice Placement Info (µPI) keeps track of all microservices that are

placed within the Fog node along with resources allocated for each microservice. Ap-

plication Info stores DAG representations of each IoT application available for placement

within the Fog environment.

Computation component of the Fog node consists of deployed microservices. Each

3.3 System Model and Problem Formulation 69

Fog node deploys microservices using container images that are available in a cen-

tralised container image registry.

3.3.4 Placement Problem

Placing latency critical and bandwidth hungry microservices belonging to IoT applica-

tions within lower levels of Fog layer results in reduction of latency and network usage.

But Fog nodes that reside in the lower levels of the hierarchy are more resource con-

strained when compared with upper level Fog devices and Cloud data centers. Even

within the same level, resource availability in Fog nodes varies. Since IoT end devices

are highly distributed and dynamic, load on each of these Fog nodes also varies.

Under these circumstances, lower level Fog nodes may not be able to support the

service demand which results in microservices being placed at higher levels in Fog hi-

erarchy. Moreover, due to resource heterogeneity of nodes and varying loads on each

Fog node, some nodes within same Fog level can have under-utilised resources while

others fail to support the service demand. This can be overcome by creating clusters

among Fog nodes of the same hierarchical level and scaling application modules among

the clustered devices to support the load. This has several associated challenges noted

below.

1. An efficient application microservice placement algorithm is needed that can iden-

tify what application microservices to be scaled and in which device in the cluster

to place them.

2. A microservice discovery method to be used by client microservices to call server

microservices.

3. A Load balancing mechanism to direct requests to scaled microservice instances.

4. A decentralised approach to meet above challenges.

In this chapter, we propose a Microservice Placement Algorithm addressing afore-

mentioned challenges.

70 A Distributed Placement Policy for Scalable Microservice Deployment

3.4 Proposed Solution

To solve the placement problem, we propose a heuristic placement algorithm, that scales

microservices across Fog device clusters to accommodate load within resource con-

strained and heterogeneous Fog environments. Aim of the algorithm is to place latency

critical and bandwidth hungry microservices as close as possible to the data source.

Closeness is defined in terms of hierarchical level of the device that hosts the microser-

vice, as depicted in Figure 3.1. The algorithm facilitates decentralised placement of mi-

croservices, service discovery and load balancing.

3.4.1 Microservice Placement

Controller component of every Fog node contains the Application Placement Logic (Al-

gorithm 1, Algorithm 2, Algorithm 3). Thus, every Fog device contributes in making

placement decisions using this placement policy.

When a sensor joins a lower level Fog node, placement process is invoked by the

corresponding Fog node. This Fog node which acts as the gateway to the rest of the Fog

network, hosts the client module of the IoT application and rest of the module place-

ment is carried out according to the Application Placement Logic starting from it. Gate-

way Fog node generates a Placement Request (pr) which consists of Application ID, Placed

microservices map, Gateway device ID and Placement request ID. Application ID identifies

each IoT application uniquely. Each Fog node has information on available IoT applica-

tions including microservices that form the applications and connections among those

microservices in the form of a DAG which can be accessed using Application ID. Placed

microservices map consists of already placed microservices with respect to the placement

request and nodes they are placed on. Placement request ID is a unique ID generated per

request. It can be used to uniquely identify each sensor that joins the gateway node.

Gateway Fog node sends this placement request towards the parent node where it gets

added to parent node’s PRQ.

PRQ is a First in First Out (FIFO) data structure. Thus, if the queue is not empty,

requests are processed starting from the first request in the queue. Each request gets

processed according to the Algorithm 1. For the selected placement request, algorithm

3.4 Proposed Solution 71

Algorithm 1 Process Placement Request
Input: placement request pr
Output: placement request status; Status.COMPLETED for request processed, Sta-

tus.HALTED for waiting for cluster placement
1: procedure PROCESSPLACEMENTREQUEST(pr)
2: node← this.node
3: a← pr.applicationID
4: mp ← pr.placedMicroservices
5: m f ← {} ▷ Placement failed µservices
6: mtoPlace ← GetµservicesToPlace(a, mp, m f)
7: while mtoPlace is not empty do
8: if node is cloud then
9: place all remaining microservices here

10: send service discovery info
11: return Status.COMPLETED
12: else
13: m← mtoPlace.remove(0)
14: placementStatus = PlaceMicroservice(m)
15: if placementStatus = Status.PLACED then
16: nodesclient = GetClientNodes(m, mp)
17: for every node n of nodesclient do
18: n.SDI.add(m, node)
19: mp.add(m, node)
20: if mtoPlace is empty then
21: mtoPlace ← GetµservicesToPlace(a, mp, m f)

22: else if placementStatus = Status.CLUSTER then
23: return Status.HALTED
24: else if placementStatus = Status.FAILED then
25: m f .add(m)
26: if mtoPlace is empty then
27: mtoPlace ← GetµservicesToPlace(a, mp, m f)

28: if mp.size() < appµserviceCount(a) then
29: nodeparent ← node.parent
30: nodeparent.PRQ.add(pr)

31: return Status.COMPLETED

72 A Distributed Placement Policy for Scalable Microservice Deployment

Algorithm 2 Place Microservice
Input: microservice to place m
Output:microservice placement status : Status.PLACED if placed on this node, Sta-

tus.CLUSTER if placement on cluster nodes and Status.FAIL if no resources are available
on this node or cluster nodes

1: procedure PLACEMICROSERVICE(m)
2: if instance of m already in node then
3: if req(m) ≤ availCap(node) then
4: increase resources allocated for instance of m
5: µPI.add(m)
6: return Status.PLACED
7: else if node is in a cluster then
8: send ClusterPlacementQuery to cluster nodes
9: return Status.CLUSTER

10: else
11: if req(m) ≤ availCap(node) then
12: place m on node
13: µPI.add(m)
14: return Status.PLACED
15: else if node is in a cluster then
16: send ClusterPlacementQuery to cluster nodes
17: return Status.CLUSTER
18: return Status.FAILED

determines the microservices to be placed based on the DAG representation of the ap-

plication stored in Application Info (line 6). A microservice is selected for placement only

if all the client microservices in the application that uses its service are already placed.

GetµservicesToPlace method traverse the DAG of the application and identifies such mi-

croservices, taking already placed microservices and placement failed microservices into

consideration. Once the microservices are determined, placement begins from the cur-

rent node. If current node is Cloud, all the remaining microservices are placed there (line

8-11), otherwise algorithm tries to place the selected microservices on the current node

by calling PlaceMicroservice procedure (line 14) for each microservice in the selected set

of microservices, starting with the first in the set. If the placement succeeded, then the

next microservice to place is found and placement process on the current node continues

(line 15-21). If cluster placement is invoked (Status.CLUSTER), then placement request

processing is halted until cluster placement decision is made (line 22-23). If placement

3.4 Proposed Solution 73

Algorithm 3 Place Microservice On Cluster
Input: microservice to place m, cluster nodes C, placement request pr

1: procedure PLACEONCLUSTER(m, C, pr)
2: node← this.node
3: C′ ← C.requestQueueEmptyNodes
4: for every node n of C′.nodesWithInstanceO f m do
5: if req(m) ≤ availCap(n) then
6: n.PRQ.add(pr)
7: ProcessPlacementRequest(node.PRQ.dequeue())
8: return
9: for every node n of C′.activeNodesWithoutInstanceO f m do

10: if req(m) ≤ availCap(n) then
11: n.PRQ.add(pr)
12: ProcessPlacementRequest(node.PRQ.dequeue())
13: return
14: for every node n of C′.inactiveNodes do
15: if req(m) ≤ availCap(n) then
16: n.PRQ.add(pr)
17: ProcessPlacementRequest(node.PRQ.dequeue())
18: return
19: nodeparent ← node.parent
20: nodeparent.PRQ.add(pr)
21: ProcessPlacementRequest(node.PRQ.dequeue())

failed, then Algorithm 1 tries to place other possible microservices on the current node

(line 24-27). After placing all possible microservices on the current node, pr is sent to-

wards the parent node to place rest of the microservices of the application or pr process-

ing is finished if all microservices of the application are placed (line 28-31). If Algorithm

1 returns Status.COMPLETED, next request in PRQ is selected for processing.

Microservices placement on each Fog device is carried out according to the Algo-

rithm 2. If current node already contains an instance of the microservice, placement pol-

icy tries to scale the microservice. At this point microservice is either scaled vertically or

horizontally. If considered node has requested amount of resources, allocated resources

for the microservice are increased (line 3-5) whereas if not, microservice is scaled across

the cluster to accommodate the load (line 7-8). If the node does not already contain an

instance of the microservice, algorithm tries to place microservice on current node or on

any of the nodes within Fog node cluster (line 11-17). If horizontal placement within

74 A Distributed Placement Policy for Scalable Microservice Deployment

a particular Fog level is not possible, procedure returns Status.FAILED, so that the pr is

sent to the next level towards the parent node of the current Fog device.

When a Fog node does not have enough resources to support placement of a mi-

croservice, our proposed placement policy checks whether this node is in a cluster and if

so tries to place the microservice within cluster nodes. To achieve this, a Cluster Placement

Query is sent to all nodes in the cluster, to which cluster nodes reply with information

on available resources (from Resource Availability Info), microservices already deployed

on the node (from µservice Placement Info) and current PRQ size. Once replies from all

the cluster nodes are received, Algorithm 3 is used to determine the suitable Fog node

to place the microservice. For placement, cluster nodes with PRQ size of zero is con-

sidered. Here priority is given to nodes that already have required microservice placed

on the device (line 4-8). If it failed, other active nodes in the cluster are considered (line

9-13). Inactive nodes are considered if this failed (line 14-18). Here inactive Fog nodes

are the devices that does not have any microservices deployed and has no placement

requests in PRQ. Once the cluster node selection is completed, current pr is sent either

towards the selected cluster node or towards the parent node in case no suitable cluster

nodes are found. Then the next placement request in the queue is taken for processing

by the current node.

The proposed placement policy propagates pr among Fog nodes until all microser-

vices in the application are placed or scaled to support processing of the data generated

by newly joined sensor. Each Fog node that receives the pr, processes it using Applica-

tion Placement Logic and determine whether to deploy microservices on the node, send

pr for placement within a cluster node or send towards the parent node. Once all mi-

croservices are placed, placement completion is informed to the gateway node along

with placement request ID of the request. Afterwards, gateway node starts accepting data

from the associated sensor, identified based on the placement request ID.

3.4.2 Service Discovery

Microservices architecture has two approaches to handle service dicovery; server-side

service discovery where all API requests are sent towards a centralised load balancer

3.4 Proposed Solution 75

that directs them using information stored in a service registry, client-side service dis-

covery where client retrieves service locations by directly contacting the service registry

and uses its own load balancing logic to direct them. Due to the highly distributed and

hierarchical nature of the Fog architecture server-side service discovery is not suitable.

In both approaches having a separate centralised service registry adds an extra overhead

to the load balancing and routing process. Moreover, in the above described client-side

approach, client would have to communicate with service registry before every API call

which results in a large number of messages flowing among them.

As a solution to these challenges, in our work we propose a decentralised client-

side service discovery approach. Every time a microservice is placed or scaled, Placed

microservices map in the placement request can be used to find nodes that host the client

microservices. Afterwards, each of these nodes are notified of the service placement.

This information is stored within the SDI data structure of the recipient nodes. Thus,

each Fog device maintains a service registry that contains location details of only the

services that are accessed by that device instead of accessing a separate service registry.

Moreover, service discovery related messages are transmitted only when a microservice

is placed or scaled and the messages are exchanged only among the service Fog node

and client Fog nodes related to the pr, which limits the service discovery related message

flow.

As service discovery messages are sent after placement and scaling of microservices,

a client can receive multiple service discovery messages with reference to a service de-

ployed on a certain node. The number of such messages received by a Fog device acts

as an indication of the amount of resources allocated for a service instance deployed on

a certain node to handle the client requests. Hence, it is also stored within SDI and used

later as the weighting factor for load balancing.

3.4.3 Load balancing

Information stored in SDI of each Fog node is used for load balancing. When making

calls to services, this data is used, and API call is directed based on Load Balancing Logic.

In this work, we’ve used a Weighted Round Robin method for load balancing where

76 A Distributed Placement Policy for Scalable Microservice Deployment

weighting is done based on the amount of resources allocated for each available service

instance, which is stored within SDI.

3.4.4 Time Complexity Analysis

As our microservice placement approach is executed in a distributed manner, the rate

of processing PRs received by each Fog node depends on the time it takes for two

placement-related stages: Stage 1) time for the Fog node to check if the eligible microser-

vices of the pr can be placed within the node, which happens through the execution of

Algorithm 1 and Algorithm 2, Stage 2) time to select a cluster node for forwarding in-

completed PRs based on cluster feedback.

In Algorithm 1, GetµservicesToPlace procedure removes placed microservices (mp)

from the application DAG and traverse the resultant DAG to find vertices without any

incoming edges, while taking placement failed microservices of the current node (m f)

into consideration. If the application consists of M microservices that represent vertices

of the DAG and E connections among them that represent edges of the DAG, above

function has time complexity of O(|M|+ |E|). PlaceMicroservice function in Algorithm 2

check if selected microservices can be placed within the current Fog node, which is com-

pleted in constant time with complexity of O(1). If it’s not possible to place within the

current node, a query is broadcast to all cluster nodes, which takes O(|C|) for C number

of nodes and the process exits Algorithm 2. The best time complexity for Stage 1 oc-

curs if no microservices are placed within the current node, and the pr gets forwarded

directly to the parent node as the current node is not part of a cluster. This results in a

time complexity of O((|M|+ |E|)). Worst time complexity of O([|M| ∗ (|M|+ |E|)] + |C|)
occurs when all except the final microservice of the DAG is placed, and a query is sent

for cluster nodes for pr placement completion.

For the Stage 2, for a Fog node cluster with C number of nodes, worst case time

complexity of Algorithm 3 is of linear time where all nodes are checked for resource

availability to place the selected microservice. Thus, the time complexity of selecting a

cluster node for the placement of a microservice is O(|C|).

3.5 Design and Implementation 77

FogDeviceFogDevice

FogNodeControllerFogNodeController

LoadBalancerLoadBalancer
MicroservicesPlacementMicroservicesPlacement

ModulePlacementModulePlacement

ClusteredFogDeviceClusteredFogDevice

Figure 3.4: Class diagram of extensions made to iFogSim simulator (existing classes:
FogDevice.java and ModulePlacement.java)

3.5 Design and Implementation

To evaluate the performance of the proposed policy, we implemented and simulated

a Fog computing environment using iFogSim Simulator [9]. iFogSim is a simulation

toolkit developed for the simulation of Fog environments. It is built based on CloudSim

simulator [97] which is widely used for evaluating resource-management and schedul-

ing policies for Cloud computing environments. iFogSim supports creation of hierarchi-

cal Fog architectures, modelling of distributed applications and evaluation of schedul-

ing policies based on performance metrics such as latency, network usage and power

consumption. Since these features are significant in modelling the proposed system,

iFogSim was chosen for simulations. Moreover, several features were added to iFogSim

simulator to support modelling of the proposed system. Figure 3.4 represents new

classes implemented within iFogSim simulator to support our placement policy.

iFogSim supports a centralised approach for application module placement where

module placement is handled by a broker that has knowledge of overall Fog archi-

tecture and resource availability of each Fog node. Since our placement approach is

decentralised, simulator was extended to support this. Instead of using the existing

broker class (FogBroker.java), Fog nodes were implemented according to the Fog node

architecture introduced in Figure 3.3. Thus, in our implementation, each Fog node has

a Fog node controller (FogNodeController.java) that handles microservices placement

78 A Distributed Placement Policy for Scalable Microservice Deployment

(MicroservicesPlacement.java) and load balancing (LoadBalancer.java).

iFogSim provides capabilities to create hierarchical Fog architectures with multiple

Fog levels. But connections are made only vertically. Horizontal connections within the

same Fog level are not available. Thus, clustering of Fog nodes within the same level

cannot be simulated using current iFogSim version. So, the simulator was extended to

support creation of clusters by forming connections among nodes of the same Fog level.

In iFogSim, data streams are realised using an object that is characterised by source

and destination application modules. As a result, when a workload is simulated, data

streams are always sent up the hierarchy till a Fog node that hosts the destination mod-

ule is met. This implementation is not compatible with the proposed solution due to

horizontal scaling and load balancing features introduced in our policy. This requires

the simulator to direct data streams based on destination device instead of destination

module. Moreover, due to clustering, data streams need to be routed to clustered nodes

through horizontal links as well. These features were also added to the simulator to

simulate the proposed placement policy.

In the proposed model, applications are developed as a collection of microservices

where each microservice is deployed on a separate container using operating system

level virtualization. In iFogSim, distributed applications are modeled as a collection

of modules (AppModule.java), where resource requirement of each module can be de-

fined. Even though AppModule class is implemented as an extension of VM class in

CloudSim, it can be realised as OS level virtualization of containers by defining resource

requirements accordingly and changing startup delay to match that of containers.

3.6 Performance Evaluation

We evaluated our Microservice placement policy through simulation of a smart health-

care application and compared it with two existing application placement algorithms,

in terms of latency and network usage of the application after placement. Moreover, we

compared our distributed placement approach against centralised placement to evalu-

ate it based on placement time of microservices within the Fog layer.

3.6 Performance Evaluation 79

3.6.1 Experimental Configurations

To evaluate the performance of the proposed placement algorithm, we have used a syn-

thetic workload generated by modelling a smart healthcare application on “ECG Moni-

toring” [98], [99]. Application is modeled according to the Microservices-based IoT ap-

plication architecture mentioned earlier in Figure 3.2. This application uses a wearable

ECG sensor that transmits data towards Level 1 Fog nodes using Bluetooth technology.

Application consists of two microservices, ECG Feature Extractor Microservice which ex-

tracts features from ECG to detect and notify about any existing abnormal situations

and ECG Analyser Microservice which carries out further analysis on ECG data collected

and stored for a longer duration of time. ECG Feature Extractor Microservice provides

a latency critical service and is placed on either Fog layer or Cloud according to the

placement policy. ECG Analyser Microservice receives results from ECG Feature Extractor

Microservice where it further processes the extracted data, so that they can be used by re-

mote health monitoring purposes of hospitals. Service provided by this microservice is

neither latency critical nor bandwidth consuming. Moreover, it requires a large amount

of storage, as it stores and processes data received by ECG Feature Extractor Microservice

to provide long term analysis. Thus, this microservice is always placed on Cloud. Data

flow among different microservices of the application along with resource requirements

of each microservice is depicted in Figure 3.5.

The fog environment modelled for simulations follows the system model presented

in Section 3.3.1 and consists of four Fog layers with devices that are heterogeneous to

each other in terms of resource availability. Clusters are formed between Fog devices in

Fog Level 2 that are connected to the same Fog Level 3 device. Table 3.2 and Table 3.3 de-

pict the parameters used in creating the Fog environment. Parameters of the simulation

environment are determined based on the previous studies that model heterogeneous

and hierarchical fog computing environments presented in works [9, 88, 100, 101].

3.6.2 Results and Analysis

Performance of the proposed placement policy is evaluated based on three performance

metrics: latency of the latency critical path of the modeled application, network usage

80 A Distributed Placement Policy for Scalable Microservice Deployment

ECG
Sensor

Display

Client Module

 <100, 512, 160, 2>

<,,>

<605, 128, 800, 0.1>

ECG signals

Long term analysis update

Emergency notification

ECG feature analysis

Long term analysis

ECG features

 ECG Analyser

 ECG Feature
Extractor

 ECG Feature
Extractor

<630, 256, 1540, 0.2>

Resource Requirements of µservices:
<CPU (MIPS), RAM (MB), Bandwidth (kbps), Storage (GB)>

Aggregated ECG
signals

Figure 3.5: ECG monitoring application data flow and resource requirements

after placing the application and required time for application microservice placement.

To evaluate performance based on latency and network usage, the proposed microser-

vice placement policy is compared with two other placement approaches.

1. Cloud-only placement - All microservices of the application are placed within

Cloud layer.

2. Edge-ward placement proposed in [9] - In this algorithm horizontal placement of

the microservices across Fog node clusters is not considered. If a microservice

placed on a certain Fog device does not have enough resources to handle the load,

that microservice gets moved up the Fog hierarchy until a device that can handle

the load is met.

The proposed microservice placement policy targets to optimise placement within Fog

environments that consist of heterogeneous and resource constrained Fog nodes. Thus,

three scenarios that capture the above mentioned aspects, were used for the evaluation

3.6 Performance Evaluation 81

Table 3.2: Evaluation parameters

Parameter Value

Latency values:

IoT device to Fog Level 1 5ms

Fog Level 1 to Fog Level 2 20ms

Fog Level 2 to Fog Level 3 30ms

Fog Level 3 to Fog Level 4 50ms

Fog Level 4 to Cloud 150ms

Among cluster nodes 2ms

ECG sensor data transmission interval 5ms

Device count for Scenario 1-3

ECG sensors 60

Fog level 1 nodes 60

Fog level 2 nodes 16

Fog level 3 nodes 8

Fog level 4 nodes 1

Container startup time 300ms

Placement Calculation time of a microservice 2ms

Simulation Time 120s

Table 3.3: Configuration of Fog devices

Device Type Cloud Fog Level 4 Fog Level 3 Fog Level 2 Fog Level 1

CPU(MIPS) 80000 10000 8000 2800-6000 1000

RAM(GB) 48 8 4 2-4 2

BW to ↑ level (Gbps) - 100 10 10 0.15

BW to ↓ level (Gbps) 100 10 10 0.15 0.002

Cluster link BW (Gbps) - - - 0.15 -

Storage(GB) 1000 256 256 128 32

of the proposed placement policy.

1. Scenario 1 - Nodes on Fog level 2 have same resource capacities. But the number

of Fog level 1 nodes per each Fog Level 2 node differs.

82 A Distributed Placement Policy for Scalable Microservice Deployment

Scenario1 Scenario2 Scenario30

100

200

300

400

500
Av

er
ag

e
De

la
y

(in
 m

illi
se

co
nd

s)
Average Latency of the Latency Sensitive Path

 Sensor -> Client -> ECG Feature Extractor Microservice -> Client -> Display

Cloud-only placement Edge-ward placement Microservice placement

Figure 3.6: Average delay for latency sensitive path

2. Scenario 2 - Nodes on Fog level 2 have same number of Fog Level 1 nodes con-

nected. But resource capacities among Fog Level 2 devices differ.

3. Scenario 3 - Both resource capacity and number of connected Fog Level 1 nodes

differ among Fog Level 2 nodes.

All three scenarios depict heterogeneous and resource constrained Fog environments

where some of the nodes get overloaded whereas others are under-utilised.

For these three scenarios, average latency of the latency sensitive loop (Figure 3.6)

and average network usage (Figure 3.7) were measured after simulations.

In all three scenarios, Cloud-only placement shows a significant increase in both

latency and network usage when compared to Edge-ward placement and Microservice

placement approaches. Moreover, Microservice placement approach proposed in this

chapter outperforms both Cloud-only placement and Edge-ward placement approaches

in terms of both latency and network efficiency.

In Cloud-only placement, as all microservices are placed within Cloud layer, data

generated by geo-distributed sensors have to be sent towards centralised Cloud which

is multiple hops away from the edge of the network. Since all the generated data are sent

towards Cloud, amount of data flowing through the core network increases, resulting

3.6 Performance Evaluation 83

Scenario1 Scenario2 Scenario30

500

1000

1500

2000

2500

Ne
tw

or
k

Us
ag

e
(in

 k
ilo

by
te

s)

Average Network Usage

Cloud-only placement Edge-ward placement Microservice placement

Figure 3.7: Average network usage

in network congestion. Due to these two reasons, latency of the services deployed on

Cloud is significantly higher than other two scenarios where latency critical microservice

is placed within Fog layer closer to the data source.

Raw data transmitted from IoT sensors requires a large amount of bandwidth. In

the modeled application, ECG Feature Extractor Microservice analyses raw ECG data and

produce results. As a result, large volumes of sensor data get reduced into meaningful

information and these information gets sent towards the ECG Analyser Microservice and

the display. Thus, if the ECG Feature Extractor Microservice is placed at the Fog layer,

volume of data transmitted through the core network reduces dramatically. This results

in efficient utilisation of bandwidth in Fog placement approaches when compared with

Cloud-only placement.

In Edge-ward placement, horizontal scaling of microservices is not considered. So,

if a certain instance of a microservice deployed on a Fog node does not have enough

resources available to handle received workload, that particular microservice is moved

up the Fog hierarchy to a node with higher resource capacity. In contrast to this, the

Microservice placement approach utilises horizontal scaling and load balancing. If a

certain microservice instance does not have enough resources to support the workload,

microservice is horizontally scaled across nodes within clusters. These nodes are in the

84 A Distributed Placement Policy for Scalable Microservice Deployment

same Fog level and latency among nodes within the same cluster is extremely low due

to the use of light weight web transfer protocols such as CoAP. Thus, our proposed ap-

proach utilises microservices architecture to place latency critical services within lower

Fog levels closer to the data source.

In all three scenarios, due to heterogeneity among resource constrained Fog nodes

and difference of load on nodes, some Fog nodes gets over-utilised while others are

under-utilised. Under such circumstances, proposed approach ensures that microser-

vices are deployed in such a way so that available resources within Fog node clusters are

utilised before moving towards higher level Fog nodes with higher resource availabil-

ity. As a result, Microservice placement approach places modules in lower Fog levels

when compared to Edge-ward placement. This results in further reduction of latency

and network usage when using the proposed placement policy.

Based on the generated results, our proposed microservice placement policy demon-

strates around 85% improvement over Cloud-only placement and around 40% improve-

ment over Edge-ward placement policy, in terms of both latency and network usage.

To evaluate the efficiency of using a decentralised placement approach, we eval-

uated the proposed method based on total time taken to place ECG Feature Extractor

microservice within Fog layer. We implemented the same placement algorithm using

a centralised placement method and compared the placement delay with the proposed

decentralised approach.

In modelling the centralised placement method, a separate Fog node on Fog Level

4 was chosen as the centralised application scheduler. A node in this level was chosen

because it resides in the highest Fog level, which enables it to have a full view of all

the Fog levels. Once an ECG sensor joins the network, a placement request is sent by

Fog Level 1 node towards this scheduler node. It maintains a complete view of the Fog

hierarchy below Fog Level 4 and calculates the nodes to place the requested microser-

vices. This decision is sent towards the selected nodes in order to deploy an instance of

a microservice on respective Fog nodes.

Experiments were carried out changing the number of sensors connected to the Fog

environment. Number of sensors were increased by increasing number of Fog Level 1

devices connected to each Fog Level 2 device where each Fog Level 1 device has one

3.6 Performance Evaluation 85

40 60 80 100 120 140
Total Number of Sensors

200

400

600

800

1000

1200

Ti
m

e
ta

ke
n

fo
r m

icr
os

er
vi

ce
s p

la
ce

m
en

t
 (m

s)
Microservices Placement Delay

Decentralized Placement
Centralized Placement

Figure 3.8: Total time taken for deployment of microservices within Fog layer

ECG sensor connected to it.

As per Figure 3.8, placement delay of the centralised method is significantly higher

than the decentralised placement. In centralised approach, all placement requests have

to be sent towards Fog Level 4 scheduler node which is multiple hops away. After pro-

cessing the request and selecting a Fog node to place the microservice, scheduler node

has to inform this to the selected node placed within lower Fog levels. This induces a

communication delay on all placement requests. But, in decentralised approach, place-

ment request processing starts from Fog Level 1 node and the placement requests prop-

agate up the hierarchy until suitable nodes are met for the deployment of microservices.

This results in significantly lower placement delay in decentralised placement.

Moreover, in centralised management all requests are sent towards a central sched-

uler node. Thus, as the number of sensors increases, the number of placement requests

that needs to be processed by the centralised scheduler is higher than that of each Fog

node in decentralised case. As a result, there’s a rapid increase in placement delay for

centralised management whereas increase of delay is quite small in decentralised ap-

proach as the number of sensors increases.

As the number of placement request increases, placement of microservices is moved

towards upper level Fog nodes with higher resource availability. Slight increase of place-

ment delay in decentralised placement is caused due to this. Our results show that due

86 A Distributed Placement Policy for Scalable Microservice Deployment

to highly distributed nature of the Fog nodes it is much efficient and scalable to use

decentralised placement and service discovery methods.

3.7 Summary

In this chapter, we explored the potential of microservice architecture in improving the

performance of IoT applications within Fog environments by considering three main

characteristics of microservices: independent deployability, independent scalability, and

decentralised management. To this end, we proposed a decentralised placement algo-

rithm for microservices-based IoT applications, highlighting the horizontal scalability

of microservices within resource-constrained and heterogeneous Fog nodes. Moreover,

we proposed a Fog node architecture to support decentralised placement through dis-

tributed placement algorithm execution, dynamic service discovery and load balancing.

We conducted simulation-based experiments using iFogSim simulated Fog environ-

ment to demonstrate the performance of the proposed solution. Based on the simulation

results, the proposed placement policy significantly reduced latency and network usage

within heterogeneous and resource-constrained Fog environments. We also compared

our approach with a centralised placement approach, highlighting the suitability of the

decentralised management within Fog environments in terms of application placement

delay and scalability of placement.

This chapter presented a placement algorithm that sequentially processes applica-

tion placement requests in a first come, first serve manner to reduce latency and net-

work usage by placing microservices as close as possible to the network edge. With the

diversity in performance requirements of IoT application services (i.e., latency-critical,

latency-tolerant, bandwidth-hungry, computation-intensive, etc.) and conflicting QoS

requirements (i.e., latency vs budget), placement algorithms can be improved by inte-

grating QoS-aware dynamic prioritising and multi-objective optimisation to meet mul-

tiple QoS parameters. Thus, in the next chapter, we study QoS-aware batch placement

of microservices-based IoT applications to improve performance satisfaction in terms

of throughput, makespan and budget while dynamically utilising Fog and Cloud re-

sources.

Chapter 4

QoS-aware Batch Placement
Approach for Heterogeneous IoT

Applications

Microservice architecture improves the granularity of application decomposition, thus providing

scope for improvement in QoS-aware placement of diverse IoT applications within distributed, hetero-

geneous and resource-constrained Fog environments. In this chapter, we harvest the characteristics

of microservice architecture to propose a scalable QoS-aware application placement policy for batch

placement of microservices-based IoT applications within Fog environments. Our proposed policy,

QoS-aware Multi-objective Set-based Particle Swarm Optimisation (QMPSO), aims at maximis-

ing the satisfaction of multiple QoS parameters (makespan, budget and throughput) while focusing

on the balanced utilisation of Fog and Cloud resources. Besides, QMPSO adapts and improves the

Set-based Comprehensive Learning Particle Swarm Optimisation (S-CLPSO) algorithm to achieve

better convergence in the Fog application placement problem. We evaluate our policy in a simulated

Fog environment. The results show that compared to the state-of-the-art solutions, our placement

algorithm significantly improves QoS in terms of makespan satisfaction (up to 35% improvement)

and budget satisfaction (up to 70% improvement) and ensures optimum usage of computing and net-

work resources, thus providing a robust approach for QoS-aware placement of microservices-based

heterogeneous applications within Fog environments.

This chapter is derived from:

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”QoS-aware placement of
microservices-based IoT applications in Fog computing environments”, Future Generation Com-
puter Systems (FGCS), Volume 131, Pages: 121-136, ISSN: 0167-739X, June 2022.

87

88 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

4.1 Introduction

The growing popularity of the IoT paradigm has resulted in a rapid increase in the num-

ber of smart devices generating data and IoT applications processing the generated data.

With the rise in the number and the diversity of IoT services provided by these appli-

cations, the optimal usage of limited Fog resources becomes a significant challenge due

to the competing QoS requirements among services. To overcome this challenge, intelli-

gent placement algorithms must be developed to dynamically place applications across

Fog and Cloud resources in a QoS-aware manner.

Microservices architecture decomposes applications into fine-grained components,

thus giving rise to composite IoT services, where end-to-end services accessed by the

users can consist of multiple inter-connected microservices. A microservices-based IoT

application would contain multiple such services with heterogeneous quality require-

ments and characteristics (i.e., latency-critical, latency tolerant, high bandwidth, etc.).

Moreover, due to the fine granularity of the architecture, microservices within compos-

ite services can have complex data dependencies where some microservices can also

be part of more than one service [60]. Such application design enables the definition

of per-service quality requirements in terms of parameters like makespan, budget, and

throughput. By properly utilising this information and handling the complexities intro-

duced by the granularity of inter-connected microservices, application placement poli-

cies can optimally harness both Fog and Cloud resources to maximise QoS satisfaction.

Due to latency and bandwidth improvements at the edge of the network, resource

providers can charge higher prices for Fog resources compared to the Cloud resources

[102, 103], which has led many existing placement policies to consider minimising total

latency and cost to reach a trade-off between the two [33, 104, 105]. But due to limited

resources, makespan and budget aware prioritising is crucial to distribute Fog resources

among competing applications or services. Per service makespan and budget expecta-

tions defined for microservice applications along with batch placement can enable this.

Moreover, throughput expectations of the services can be used to reap the benefits of

vertical and horizontal scalability of the microservices to make maximum use of het-

erogeneous Fog resources to minimise the effect of resource limitations on application

4.1 Introduction 89

Figure 4.1: Example scenarios for IoT application placement

performance.

As a motivating scenario, Figure 4.1 presents a smart health care application for pa-

tient monitoring (A1) [106] and a smart city application for parking occupancy detection

(A2) [107]. A1 consists of three microservices that communicate together to provide two

services to the user. m1, m2 form a latency-critical emergency alert service, whereas m1,

m3 form a latency tolerant service that generates long term analysis reports for the user.

A2 consists of three microservices forming a single service that detects parking spot oc-

cupancy in real-time. Due to the microservice-based decomposition of the applications,

QoS requirements (i.e, makespan, budget, throughput etc.) can be defined separately

for each service. Using this knowledge, placement decisions can be made to satisfy the

QoS requirements of each service by utilising both Fog and Cloud resources (i.e, m1

and m2 are mapped to Fog layer devices to satisfy stringent latency requirements; m4

is mapped to Fog layer to reduce the amount of data sent towards the Cloud; m3, m5

and m6 are mapped to the Cloud to satisfy their high computation resource require-

ments). Furthermore, microservices placed in Fog can be horizontally scaled to satisfy

the throughput requirements of the services under resource limitations of Fog devices

(i.e, two instances of m1 placed on two separate Fog devices when a single device doesn’t

have enough processing power to support the request rate). A1 and A2 represent two

heterogeneous applications trying to utilise Fog resources. In the example scenario, the

service S1 in A1 is more latency-critical compared to the service S3 in A2 and due to the

resource-constrained and heterogeneous nature of the Fog devices, batch placement of

applications has the potential to prioritise S1 over S3 to ensure QoS satisfaction.

Although Fog application placement has been studied extensively, microservices ar-

90 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

chitecture provides a novel perspective, where per service quality requirements and

independently scalable nature of the microservices can enable harnessing the power

of both the Fog devices and Cloud data centres to improve application performance

through batch placement. Research on this is still at its early stages and has much

room for improvement. Therefore, in this work, we propose a QoS-aware placement

algorithm that improves the total QoS satisfaction considering multiple QoS parameters

(makespan, cost, and throughput) and at the same time, ensures optimum resource us-

age through collaboration among Fog and Cloud resources. The key contributions of

our work are as follows:

1. We formulate the Fog application placement problem as a Lexicographic Combina-

torial Optimisation Problem considering QoS satisfaction (in terms of makespan,

budget, and throughput) as the primary objective and optimum resource usage as

the secondary objective.

2. We propose an IoT application batch placement technique based on Set-based

Comprehensive Learning Particle Swarm Optimisation (S-CLPSO). To improve the

convergence rate, we introduce a heuristic-driven swarm initialisation and fitness

parameter normalisation method and further incorporate a priority-based particle

construction technique to overcome premature convergence due to the resource

constraints of the Fog devices.

3. We implement our policy using iFogSim2 [8] simulated Fog environment and com-

pare it against existing scheduling approaches based on their resultant QoS satis-

faction and balanced Fog and Cloud resource usage.

The rest of the chapter is organised as follows. Section 4.2 highlights related research

followed by Section 5.3, which presents system architecture. In Section 4.4, the Fog ap-

plication placement problem and our proposed solution is detailed. Section 4.5 presents

performance evaluation and Section 4.6 concludes the chapter and draws future work

and research directions.

4.2 Related Work 91

4.2 Related Work

In this section, we summarise existing work on Fog application placement, compare

them based on their key features and also provide a detailed background on Particle

Swarm Optimisation (PSO) algorithm and its derivatives used in designing our place-

ment policy.

4.2.1 Application Placement in Fog Environments

Existing research propose numerous algorithms to schedule applications within Fog en-

vironments. They mainly fall under two categories: application offloading and appli-

cation service placement, where offloading deploys application modules from client de-

vices to the Fog to be used by each client separately while service placement refers to

the deployment of application services in the Fog so that multiple clients can use them

[32]. Since our work focuses on the latter, in this section we summarise research related

to the application service placement in Fog.

Brogi et al. [108] present a placement policy to place multi-component applications

within a Fog environment when inter-component link bandwidth and latency require-

ments are defined. They propose a heuristic placement algorithm consisting of two

steps, where it first searches for all eligible nodes to host each application component

based on its software and hardware requirements and then employs a greedy back-

tracking algorithm to place each component considering inter-component latency and

bandwidth requirements. Yousefpour et al. [105] implement a framework that supports

dynamic deployment and release of IoT services. Their work presents two separate

greedy algorithms for minimising delay violation and minimising total cost for IoT ser-

vices with delay constraints. In their work, each service is an independent task with an

expected deadline for its completion and applications are built as a collection of such

independent services. Skarlat et al. [33] propose a deadline-aware policy using Integer

Linear Programming (ILP) to place applications within micro data centres know as Fog

colonies. They model applications as a set of independent tasks and define a deadline

for the entire application. Their placement policy prioritises applications based on the

deadline and tries to maximise the placement of applications within the Fog layer such

92 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

that for each application, the total deployment and execution time of the tasks does not

exceed the application deadline. Skarlat et al. [109] extend the work proposed in [33]

and solve the proposed optimisation problem using GA. GA based approach is evalu-

ated against a mathematical programming based optimisation method. Results indicate

that the GA algorithm can reduce deployment delays. Xie et al. [104] present a workflow

application scheduling algorithm based on Particle Swarm Optimisation aiming to min-

imise the weighted sum of total latency and cost. They propose a non-local convergent

PSO algorithm introducing a non-linear inertia weight calculation method along with a

directional search process.

Deng et al. [38] form the microservices-based application scheduling problem in Fog

to minimise the cost of application deployment adhering to resource constraints and ex-

pected response time of the mobile services. The placement problem is solved through

ILP. Their placement algorithm handles only the placement of a single application each

turn. Thus, prioritising applications based on their latency requirements is not captured

in their work. Guerrero et al. [32] compare three evolutionary algorithms; Weighted

Sum Genetic Algorithm (WSGA), non-dominated sorting genetic algorithm (NSGA-II)

and multi-objective evolutionary algorithm based on decomposition (MOEA/D), for

solving Fog service placement focusing on optimising latency, service spread and use

of resources.

Chen et al. [110] apply Set-based Comprehensive Learning Particle Swarm Opti-

misation (S-CLPSO) algorithm for workflow application scheduling in Cloud environ-

ments to satisfy user-defined QoS constraints in terms of deadline, budget and reliabil-

ity. The proposed algorithm allows the user to select one of the QoS parameters as the

optimisation objective while keeping the other two as constraints. Meta-heuristic algo-

rithm combined with multiple heuristics to speed up the search process provides better

results in satisfying QoS requirements. Verma et al. [111] propose a non-dominated

sorting based PSO for minimisation of execution time, cost and energy consumption for

workflow scheduling in Cloud environments.

Table 4.1 compares features of the related works with our work in terms of three

main categories; application model, placement properties and algorithm type. Features

analysed under the application model aim to capture the granularity of the components

4.2 Related Work 93

Table 4.1: Comparison of existing application placement policies

Work Environment Application Model Placement Properties Algorithm

Cloud Fog/ µservice QoS Application Composition Batch Decision Parameters Scalability type

Edge architecture granularity services service composition placement QoS-aware QoS-unaware Resource

per app single chained aggregator makespan budget throughput total makespan total budget usage

[108] ✓ per link multiple ✓ ✓ ✓ ✓ heuristic

[105] ✓ per service multiple ✓ ✓ ✓ ✓ heuristic

[33] ✓ per app single ✓ ✓ ✓ ✓ ILP solver

[109] ✓ per app single ✓ ✓ ✓ ✓ meta-heuristic

[104] ✓ per app single ✓ ✓ ✓ ✓ ✓ meta-heuristic

[38] ✓ ✓ per app single ✓ ✓ ✓ ✓ ✓ ✓ ILP solver

[32] ✓ ✓ per app multiple ✓ ✓ ✓ ✓ ✓ meta-heuristic

[110] ✓ per app single ✓ ✓ ✓ ✓ ✓ meta-heuristic

[111] ✓ per app single ✓ ✓ ✓ ✓ ✓ meta-heuristic

our work ✓ ✓ per service multiple ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ meta-heuristic

(i.e., microservices, modules) of the application and their data dependencies. Applica-

tion composition analyses each application model based on the number of services and

service composition based on the collaboration pattern of the components that work

together to perform a service. In literature, the term ”service” is used for modules,

microservices, components, processes etc. In our work, we define service from a user

perspective where it represents a business functionality accessed by the user. Due to

the fine-grained design of microservices, a service can consist of multiple microservices

communicating together to perform a service. As existing works do not capture these

features properly, we model our application placement problem to represents the gran-

ularity of the microservice design.

Placement properties characterise the works based on their ability to perform batch

placement, decision parameters, Fog/Cloud balanced resource utilisation and scala-

bility of application components. Decision parameters are analysed under two cat-

egories: QoS-aware parameters that represent quality expectations of the services in

terms of makespan, budget and throughput, QoS-unaware parameters which focus on

total makespan and budget of the placement irrespective of their QoS expectations. Due

to resource constraints within Fog environments, Fog application placement can ben-

efit from batch placement, QoS-awareness and optimum use of Fog resources, which

allow prioritising of services with stringent QoS requirements to achieve a balance be-

tween Fog and Cloud resource usage. Moreover, developing applications as microser-

vices enables each microservice to scale independently, so that each microservice can be

94 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

vertically or horizontally scaled based on the resource availability of heterogeneous Fog

devices.

Considered related works use three main types of algorithms to solve the applica-

tion placement problem; heuristic, meta-heuristic and mathematical programming. As

heuristic and greedy algorithms are unable to handle multiple objectives, [105, 108] pro-

pose multiple heuristic algorithms where each focuses on one of the decision parame-

ters. Mathematical programming-based approaches can only obtain the optimum solu-

tion when search space is small and not suitable for batch placement problems. Thus,

due to the ability to handle multiple objectives and also to reach near-optimum solutions

faster, meta-heuristic algorithms have become a popular approach in solving multi-

objective optimisation problems. Meta-heuristics such as Genetic Algorithm (GA), Ant

Colony Optimisation (ACO), Particle Swarm Optimisation (PSO) are popularly used

in solving scheduling problems in both single objective and multi-objective scenarios.

However, one of the main challenges when adapting meta-heuristics to the Fog applica-

tion placement is handling Fog resource constraints without trapping the algorithm to a

local optimum. This issue is not properly addressed in existing works in both Fog and

Cloud placements. Proper use of heuristics to populate the initial solution and efficiently

normalise weighted parameters is another area with scope for improvement. So in our

work, we propose a placement technique based on Set-based Comprehensive Learning

Particle Swarm Optimisation (S-CLPSO) and improve it to reach a near-optimum solu-

tion for batch placement of microservices-based IoT applications.

4.2.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a population-based meta-heuristic algorithm [112],

which was originally introduced for the optimisation of problems defined in continuous

solution space. In PSO, a set of solutions identified as a swarm of particles moves within

the solution space using not only its own experience but also the experiences of other

particles. Each particle is characterised based on two factors; its position and velocity.

In each iteration, particles update their velocity taking their own best position (pbest)

and best position of the swarm (gbest) into consideration and modify their position to

4.2 Related Work 95

move towards a better solution within the solution space. PSO is simple in concept,

computationally inexpensive and has a higher convergence rate due to social sharing of

information among particles in the swarm and use of previous experiences of particles

for the decision making process.

As the traditional PSO is not designed for solving discrete optimisation problems,

multiple approaches have been introduced to adapt PSO for discrete cases, including

Binary PSO (BPSO) and Discrete PSO (DPSO). Among these, Chen et al.[113] propose a

Set-based PSO (S-PSO) that can be used for solving Combinatorial Optimisation Prob-

lems (COPs) in the discrete space and demonstrate that this approach can efficiently

navigate within discrete solution space and successfully solve COPs.

S-PSO employs a set-based representation of particles where particle position is de-

picted as a crisp set, whereas the velocity is a set with possibilities. In [113], COP is

formulated as ”finding a set of candidate solutions X which is a subset of the universal

set of elements E, such that X satisfies some pre-defined constraints Ω and optimises the

objective function f ”.

For a universal set E divided into N dimensions, velocity and position updating

functions for nth dimension of kth particle are defined as,

Vn
k = ωVn

k + c1.rn
1 .(pbestn

k − Xn
k) + c2.rn

2 .(gbestn
k − Xn

k) (4.1)

Xn
k = Xn

k + Vn
k (4.2)

where, ω is the inertia weight that controls the momentum of the particle, c1 and c2

are learning factors related to particle’s own experience and swarm’s experience respec-

tively and r1, r2 are random values in the range [0,1]. Equation 4.1 depicts the velocity

updating rule proposed by the original PSO algorithm. This tends to get trapped in local

optimum solutions, specially when applied for discrete optimisation problems. Thus,

[114], shows that for their proposed S-PSO for discrete space, Comprehensive Learning

Particle Swarm Optimisation(CLPSO) algorithm [115], which is a variant of PSO, gives

better performance.

96 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

CLPSO uses the following equation for velocity updating:

Vn
k = ωVn

k + c.rn
1 .(pbestn

fk(n)
− Xn

k) (4.3)

where fk(n) depicts the particle whose pbest is used by kth particle for updating its

nth dimension. In this approach, instead of using gbest of the swarm, pbest of any par-

ticle including its own can be used. CLPSO uses tournament selection to select fk(n)

depending on a probability (Pc) known as learning probability or uses its own pbest.

To ensure that particles don’t move towards poor directions, these exemplars are up-

dated after a certain number of iterations (refreshing gap m), if the particle fitness fails

to improve.

For the calculation of the new velocity, the following set-based operations are de-

fined,

• Coefficient × Set with possibilities

For a coefficient c ⩾ 0 and a set with possibilities defined on universal set E,

depicted as V = {e/p(e)|e ∈ E}, product of the two is a set of possibilities

cV = {e/p′(e)|e ∈ E} calculated as,

p′(e) =


1 if c × p(e) > 1

c× p(e) otherwise

(4.4)

• Crisp Set - Crisp Set

For two crisp sets X1 and X2, minus operator between the two (X1−X2) is defined

as the crisp set of elements that are available in X1, but not in X2.

• Coefficient × Crisp Set

For a coefficient c ⩾ 0 and a crisp set X ∈ E, product of the two results in a set of

4.3 System Model and Architecture 97

possibilities, cX = {e/p′(e)|e ∈ E} calculated as,

p′(e) =



1 if e ∈ X and c>1

c if e ∈ X and c≤1

0 if e /∈ X

(4.5)

• Set with Possibilities + Set with Possibilities

Plus operator between two sets with possibilities generates a set with possibilities

containing larger possibility for each element.

Updated velocity is used to adjust the position. Since solutions in discrete space

should meet a pre-defined set of constraints, feasible positions are obtained using two

main strategies; step-by-step construction, build and repair [114]. ω is used to achieve

exploitation and exploration to overcome local optimums and move towards the global

optimum of the problem. As larger values of ω supports global search whereas local

search is supported by small ω values, changing ω from larger values to smaller val-

ues through iterations enables the algorithm to converge into the global optimum value.

The most common method of achieving this is by linearly changing ω over the itera-

tions. But, [104] presents a non-linear function for varying ω that results in improved

convergence.

Set-based CLPSO (S-CLPSO) is a successful method for solving COPs in discrete

space with a higher convergence rate and simple implementation. In our work, we base

our placement policy on S-CLPSO, integrate a lexicographic fitness function and further

improve its performance by integrating multiple heuristics and propose a prioritised

particle construction method to handle Fog resource constraints to mitigate the issue of

converging to a local optimum solution.

98 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Table 4.2: Notations

Symbol Definition Symbol Definition

F Set of all devices available in Fog layer. C Cloud.

E Set of all client devices that connects to
Fog Gateways.

D All available devices. (F ∪ C ∪ E)

A Set of all requested applications for place-
ment.

Ma Set of all microservices of application a ∈
A.

Sa Set of all services defined for application
a ∈ A.

Ms
a Set of microservices of service s ∈ Sa.

Ps
a Set of data paths in service s ∈ Sa. d f s

p Set of all data flows in path p ∈ Ps
a .

∆mm′ Size of data transmitted from m to m′. imm′ Number of instructions to process data
sent from m to m′

Rmm′ Access rate among microservices m & m′. dp
ij Network propagation delay among de-

vice i, j ∈ D

ls makespan requirement of service s ∈ Sa. bs Budget requirement of service s ∈ Sa.

rs Throughput requirement of service s ∈
Sa.

ϕd Processing capacity of device d ∈ D

ωd RAM of device d ∈ D. γd Storage capacity of device d ∈ D.

Φm Processing capacity required by microser-
vice m ∈ a.

Ωm RAM required by microservice m ∈ a.

Γm Storage capacity required by microser-
vice m ∈ a.

vl
s makespan violation of service s ∈ Sa.

vb
s Budget violation of service s ∈ Sa. vl Total makespan violation.

vb Total budget violation. η(vl) Normalised makespan.

η(vb) Normalised budget. τnw Total network usage due to placement.

τr Total active devices due to placement. Y Set of devices Y ⊂ D, that are not eligible
for placement of any microservice

xd
mi
∈ {0,1} Equals to 1 if ith instance of microservice

m is mapped to d ∈ D, 0 otherwise.
act f ∈ {0,1} Equals to 1 if at least one microservice is

placed on f ∈ F, 0 otherwise.

4.3 System Model and Architecture

This section details the microservices-based application model, Fog architecture along

with the pricing model used in this work. Table 4.2 summarises all the notations used in

this chapter.

4.3.1 Application Model

To support the rapid modifications and agile development of IoT applications, microser-

vices architecture is used to design and develop these applications. As microservices are

4.3 System Model and Architecture 99

designed as independently deployable modules adhering to a single business capability,

the number of components that builds a single application increases. Due to the higher

level of granularity presented by microservices architecture, a single service can consist

of multiple microservices that collaborate to complete end-user requests. Moreover, a

single microservice can be used by multiple services as well. So, higher flexibility and

agility can be achieved by defining QoS parameters at these composite service level,

instead of at the microservice or application levels.

Figure 4.2.a shows the general representation of a microservices-based IoT applica-

tion. Application is depicted using a DAG where vertices represent microservices and

edges denote the data dependencies among microservices. The starting point of the

arrow indicates the client microservice and the arrowhead indicates the microservice in-

voked by the client microservice. Each application consists of a front-end denoted as

Client Module that is always placed within client devices such as mobile phones, tablets,

laptops that connect directly with IoT devices. The rest of the application consists of

microservices that are placed either on Fog or Cloud resources based on the placement

policy. Each application, a ∈ A can be depicted as a tuple containing a set of microser-

vices, data flows among them and a set of services where microservices collaborate to

perform a function useful to the end-user; < Ma, d f a, Sa >. Each microservice is char-

acterised by its resource requirements; < Φm, Ωm, Γm, rm > indicating CPU, RAM and

storage requirement of microservice m ∈ Ma to support the request rate of rm. This re-

source definition is used as the basic deployment unit of the microservice container and

it is scaled horizontally or vertically based on the expected rate of the requests received

by the microservice.

Based on the collaboration patterns among microservices, we have identified 3 types

of service representations; Chained, Aggregator and Hybrid representation (Figure 4.2.b).

In a chained pattern, data flow within the service can be represented as a single chain

whereas in an aggregator pattern, multiple data paths are invoked and the aggregator

microservice waits for the processed data from those paths and aggregates them to re-

turn a single response. Aggregator microservice can invoke chains of microservices as

well, which results in a hybrid representation. Thus, the completion time of each service

differs based on the collaboration pattern of the microservices in the service. Microser-

100 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

vices use the Asynchronous Request-Reply pattern, so once a request is made client mi-

croservice proceed to process other incoming requests until the response arrives. Each

service s ∈ Sa is denoted by a tuple containing a set of microservices creating the service

and all possible data paths of the service; < Ms
a, Ps

a >. The number of data paths in each

service depends on the collaboration pattern of the microservices in the service.

The QoS profile of each application consists of QoS parameters that are defined sep-

arately per each service within the application. Our work considers makespan: end-to-

end completion time of the service, budget: the amount the user expects to pay for the

service and throughput: supported request rate by the service, as QoS requirements.

(a) (b)

Figure 4.2: Microservices-based IoT application architecture (a) DAG representation, (b)
Service composition patterns

4.3.2 Fog Architecture

Fog computing environment is a multi hierarchical environment consisting of IoT/client

devices, Fog layer and Cloud layer. The Fog layer is an intermediate layer that resides

between the IoT and Cloud layer, thus providing computational, networking and stor-

age capabilities closer to the edge of the network. Figure 4.3 depicts the architecture

followed in this work. The Fog layer consists of clusters of Fog nodes deployed by mul-

tiple service providers. IoT sensors and actuators that connect to client devices (i.e.,

mobile phone, tablets) access Fog clusters through Fog Gateway Devices (i.e., wireless

access points, base transmission systems) and further connection to the Cloud is main-

tained through a Fog Cloud Gateway node. We refer to this node as the Fog Orchestration

Node (FON), as it’s responsible for monitoring Fog nodes in the cluster and scheduling

4.4 QoS-aware Application Placement 101

applications within them.

The Fog layer consists of heterogeneous devices in terms of resource availability and

access technologies. Each Fog device (f ∈ F) is characterised by its resources in terms of

CPU (ϕ f), RAM (ω f) and storage (γ f). Fog nodes within the same cluster communicate

with each other using Local Area Network (LAN) links which have considerably high

bandwidths when compared with the Wide Area Network (WAN) links that connect Fog

clusters to the Cloud. Multiple IoT and client devices use Wireless Local Area Network

(WLAN) to connect to Fog Gateway Devices.

4.3.3 Pricing Model

Due to distributed, scalable and independently deployable nature of the microservices,

container technology has become the best-suited method of packaging and deploying

microservice applications. Cloud service providers have server-less compute engines to

support easy container deployment, by relieving the users of the responsibility to pro-

vision and manage servers. Such server-less platforms provide flexible pricing where

users pay only for the amount of resources used by the containers. AWS Fargate [116]

and Azure Container Instances [117] determine the pricing based on requested vCPUs,

memory and storage amount where all three can be configured independently. In our

work, we use the on-demand pricing models used by the above server-less platforms

where the price of each Fog/Cloud device is defined as the total price for vCPUs, mem-

ory and storage.

4.4 QoS-aware Application Placement

We formulate the microservices-based application placement in Fog environments as

a ”Lexicographic Multi-objective Combinatorial Optimisation Problem”, which aims at min-

imising QoS violation of services and ensures optimum use of Fog and Cloud resources

while adhering to the resource requirements of the microservices. The proposed policy

explores batch placement of services and also incorporate independently scalable nature

of the microservices to obtain a more efficient placement.

102 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Figure 4.3: An overview of the Fog architecture

4.4.1 Problem Formulation

Placement approaches within Fog environments should aim to maximise the QoS satis-

faction of the application services while utilising the limited amount of Fog computing

resources. As depicted in Section 4.1 through a motivation scenario, such placement

approaches require the incorporation of knowledge related to heterogeneous QoS re-

quirements at the service level (i.e., capturing requirements such as latency, budget and

throughput at composite service level) to meet QoS requirements and further knowl-

edge on microservice heterogeneity (i.e., capturing computation and bandwidth require-

ments of the microservices) in terms of their resource consumption. To this end, Fog

application placement problem needs to focus on both application and Fog resource het-

erogeneity and prioritise microservices for limited Fog resources and rest for resource-

rich Cloud. Thus, we formulate the placement problem to support the placement of

a batch of applications (A) onto a set of devices (D) within the Fog environment. As

4.4 QoS-aware Application Placement 103

microservices are independently scalable, multiple instances of each microservice can

be deployed. For each microservice m, number of instances is denoted by insm where

mi represents the ith instance. Resultant placement is expressed by xd
mi

where xd
mi

= 1

depicts that the ith instance of microservice m is mapped to d ∈ D.

The main goal of the placement is to achieve maximum possible QoS satisfaction

considering makespan, budget and throughput requirements. The throughput require-

ment of each service is satisfied by scaling the microservices. Throughput aware instance

calculation for the microservices is discussed in detail in Section 4.4.1. Makespan and

budget satisfaction are achieved by the first objective of the optimisation problem (equa-

tion 4.6). Due to resource limits in the Fog layer, it is not guaranteed that makespan and

budget requirements of all services can be satisfied. Thus, we formulate equation 4.6

to minimise the weighted sum of normalised makespan violation (η(vl)) and budget

violation (η(vb)) so that services with stringent QoS requirements are prioritised.

The purpose of the Fog layer is twofold: to support latency-critical services and to

reduce network usage by supporting bandwidth-hungry services. While the first objec-

tive moves latency-critical services towards the edge of the network, it does not focus

on bandwidth-hungry microservices that are part of latency-tolerant services. Thus, the

second objective is introduced with a sub-objective to ensure that such microservices

are moved towards the edge of the network. At the same time, due to the resource-

constrained nature of Fog devices, it is crucial to strike a balance between Fog and Cloud

resource usage to avoid over-use of limited Fog resources. To this end, we formulate the

second objective (equation 4.7) to achieve a trade-off between total network resource

usage (τnw) and total Fog resource usage (τr). Hence, the second objective aims to im-

prove the QoS-aware placement achieved by the first objective, by enhancing resource

utilisation through the dynamic and balanced use of Fog and Cloud resources.

As QoS satisfaction is the primary objective of the placement, the second objective

can be considered as a further improvement on the schedule proposed by the first ob-

jective. To ensure this, the placement problem is solved as a lexicographic optimisation

where equation 4.6 is the primary objective and equation 4.7 is the secondary objective.

minimise [ωl η(vl) + ωb η(vb)] (4.6)

104 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

minimise [ωnw η(τnw) + ωr η(τr)] (4.7)

subject to,

∑
∀d∈D

xd
mi

= 1; ∀i ∈ [1, insm], ∀m ∈ Ma, ∀a ∈ A (4.8)

∑
∀d∈Y

insm

∑
i=1

xd
mi

= 0; ∀m ∈ Ma, ∀a ∈ A (4.9)

∑
∀a∈A
∀m∈Ma

insm

∑
i=1

xd
mi

Φm ≤ ϕd; ∀d ∈ D (4.10)

∑
∀a∈A
∀ma∈Ma

insm

∑
i=1

xd
mi

Ωm ≤ ωd; ∀d ∈ D (4.11)

∑
∀a∈A
∀m∈Ma

insm

∑
i=1

xd
mi

Γm ≤ γd; ∀d ∈ D (4.12)

Both objectives are optimised under multiple constraints; placement constraints where

each microservice instance is mapped to a single device (equation 4.8) and each mi-

croservice is mapped only to eligible devices (equation 4.9), resource constraints of all

Fog devices in terms of CPU, RAM and storage (equation 4.10, 4.11, 4.12 respectively).

Throughput aware instance count calculation

In our proposed system model, resource requirements of each microservice are defined

to support a certain request rate (rm). We take this as the base instance and scale each

microservice vertically or horizontally according to the expected service throughput (rs

per service s) in the application’s QoS profile. Using the DAG representation of the

microservice application, the expected request rate of each microservice (r′m) can be cal-

4.4 QoS-aware Application Placement 105

culated using the following equations:

r′m = ∑
∀m′∈CM(m)

Rm′m (4.13)

Rm′m =

rs m′ is Client Module

α.r′m′ otherwise
(4.14)

Function CM(m) calculates all the client microservices of microservice m, that sends

requests towards m. Thereby, equation 4.13 calculates access rate of the microservice m

by taking summation of the request rates of all incoming edges of m. α ∈ [0, 1] represents

the relationship between incoming and outgoing request rates of m′.

Accordingly, instance count for the microservice m is calculated as:

insm =
r′m
rm

(4.15)

Primary Objective - QoS Violation

The first objective of the multi-objective Fog placement is depicted in equation 4.6. Here

the aim is to minimise the total violation of QoS in terms of makespan and budget re-

quirements for a batch of services. Since QoS parameters are of different units, nor-

malised values of each QoS parameter violation are used. The weighted sum of nor-

malised sub-objectives forms the objective function. Weights are chosen to prioritise

among the two parameters, maintaining ωl + ωb = 1.

1. Makespan violation -

Calculation of the makespan of a service depends on the data flow pattern of the

service. For a service representing chained microservices, makespan can be calculated as

the total processing time of each microservice and the data communication delay among

microservices. But for aggregator and hybrid service patterns, aggregator microservice

can’t complete the processing until results from all the data paths invoked by aggregator

microservice are completed. Thus, the makespan of such services depends on the data

path that takes the longest to complete.

106 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Accordingly, makespan violation of service s ∈ Sa where Sa indicates the set of ser-

vices of application a ∈ A, can be calculated as,

vl
s = max{L(d f s

p); ∀p ∈ Ps
a} − ls (4.16)

Equation 4.16 calculates the difference between makespan defined in the QoS profile

of the service (ls) and makespan due to proposed placement. L(d f sa
p) is the function used

to calculate the makespan of the datapath p of service s due to proposed placement. Data

path with maximum makespan is equal to the makespan of the service irrespective of

the data dependency pattern of the service.

This calculation considers both processing latency and network latency. Network

latency includes transmission latency as well as propagation latency among different

Fog/ Cloud nodes where microservices are placed. Since each microservice m has insm

instances, we consider that for the dataflow among m and m′, requests generated from

insm are equally load balanced among ins′m microservices. So, equation 4.17 aims to find

the highest latency of the path considering all instances of a microservice.

L(d f s
p) = Lnw(d f s

p) + Lproc(d f s
p) (4.17)

Lnw(d f s
p) = ∑

∀mm′∈d f s
p

max
[

∑
∀dd′∈D

xd
mi

xd′
m′j
(dp

dd′ + Ltr); ∀i, j
]

(4.18)

where 1 ≤ i ≤ insm and 1 ≤ j ≤ insm′ .

Ltr(d, d′) = ∆mm′ [
ρ

bwWLAN
+

σ

bwLAN
+

ψ

bwWAN
] (4.19)

ρ, σ and ψ contains binary values (0 or 1) depending on the d and d′ device types.

ρ =

1 i f (d ∈ E)⊕ (d′ ∈ E)

0 otherwise
(4.20)

4.4 QoS-aware Application Placement 107

σ =

1 i f (d ∈ F) ∧ (d′ ∈ F) ∧ d ̸= d′

0 otherwise
(4.21)

ψ =

1 i f (d ∈ C)⊕ (d′ ∈ C)

0 otherwise
(4.22)

Lproc(d f s
p) = ∑

∀(m,m′)∈d f s
p

imm′

Φm′
(4.23)

Total makespan violation of the placement is calculated taking the sum of violations

as follows,

vl = ∑
∀a∈A

∑
∀s∈Sa

max
[

vl
s, 0

]
(4.24)

2. Budget violation -

Budget violation of service s ∈ Sa, where Sa indicates the set of services of application

a ∈ A, can be calculated as,

vb
s =

 ∑
∀m∈Ms

a
∀d∈D

insm

∑
i=0

xd
mi

Cd
m

− bs (4.25)

Cost of executing microservice m on device d, Cd
m is calculated based on the pricing

model presented in Section 4.3.3. Total budget violation of the placement is calculated

taking the sum of violations as follows,

vb = ∑
∀a∈A

∑
∀s∈Sa

max
[

vb
s , 0

]
(4.26)

Secondary Objective - Resource utilisation

The second objective function (equation 4.7) handles resource utilisation under two sub-

objectives, computation resources and network resources. Similar to the primary objec-

tive, this also calculates the weighted sum of the two normalised sub-objectives.

1. Computation resource usage:

108 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

The Fog layer consists of resource-constrained devices that are heterogeneous in their

resource capacities. Thus within Fog environments, it is important to place applications

in such a way that limited computation power is utilised by using a minimum number

of Fog nodes so that only the services with stringent QoS requirements use limited Fog

resources. This provides Fog service providers with the ability to host more applications

within their Fog infrastructure. Besides, this encourages a balance between horizontal

and vertical scaling, thus reducing the carbon footprint as well.

τr = ∑
∀ f∈F

act f (4.27)

2. Network resource usage:

Fog resources can be used to reduce the amount of data sent towards Cloud data

centres by hosting bandwidth-hungry microservices. To this end, our placement policy

introduces this sub-objective to reduce network usage, thereby increasing the placement

of bandwidth-hungry microservices within the Fog layer.

τa
nw = ∑

∀mm′∈d f a

∀dd′∈D

insm

∑
i=1

insm′

∑
j=1

xd
mi

xd′
m′j

dp
dd′ ∆mm′ Rmm′

insm insm′
(4.28)

τnw = ∑
∀a∈A

τa
nw (4.29)

4.4.2 QoS-aware Multi-objective S-CLPSO (QMPSO)

To solve the Fog application placement problem, we propose a placement policy based

on the S-CLPSO algorithm described in Section 4.2.2 and integrate multiple heuristics

to improve the convergence rate by proposing novel approaches for multi-objective nor-

malisation and particle construction. Algorithm 4 presents the overview of our proposed

QoS-aware Multi-Objective S-CLPSO (QMPSO) placement policy.

QMPSO algorithm first derives the number of instances per each microservice (line

1) using equation 4.15, which calculates the instance count based on the throughput

requirement of each service (rs). Then the algorithm initialises the minimum and max-

4.4 QoS-aware Application Placement 109

Algorithm 4 QMPSO Algorithm
Input: Placement Requests and Meta-data
Output: Microservices to devices mapping

1: Calculate the number of instances per microservice
2: Initialise Min/Max sub-objective values using heuristics
3: Set iteration count i← 1
4: Initialise population of N particles using SWARM INIT
5: while i ≤ Iterations do
6: Calculate fitness values of all sub-objectives for each particle
7: Update Min/Max of sub-objectives
8: Obtain the normalised fitness values for each sub-objective
9: Calculate fitness values of the two main objectives for each particle using nor-

malised values
10: Update pBest position of each particle
11: Update gBest position of the swarm
12: Select exemplar dimensions for each particle
13: Update velocity of each particle
14: Update position for each particle using CPPC VA
15: Set i← i + 1

return gBest of the swarm

imum possible values for each sub-objective of the multi-objective fitness function for-

mulated in Section 4.4.1 (line 2). QMPSO uses multiple heuristics to obtain estimates

for these values. In our multi-objective optimisation problem, these values are used to

calculate the normalised sub-objectives. Then an initial population is created using both

heuristic-based and random placements (line 4), which is explained in detail in the Al-

gorithm 5. After creating the initial population, the algorithm calculates fitness values

for each sub-objective for all particles (line 6) and accordingly update the minimum and

maximum values of each sub-objective (line 7). This enables the normalisation calcula-

tions to become more accurate as the swarm progresses through solution space in each

iteration. Afterwards, normalised fitness values are calculated for each particle (line

8). Based on the values obtained for the two main objectives (line 9), the personal best

(pBest) of each particle and the global best (gBest) of the swarm are updated using lexi-

cographic comparison (lines 10-11). Then, the velocity matrix is updated using exemplar

dimensions according to the S-CLPSO algorithm (lines 12-13). Finally, the new position

of each particle is updated using the velocity matrix of the particle (line 14). Each cre-

ated particle should adhere to the resource constraints of the Fog devices. To satisfy this

110 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

constraint, QMPSO proposes a novel particle construction process as Constraint-aware

Prioritised Particle Construction (CPPC). This contains two algorithms; CPPC INIT for

random construction of particles during swarm initialisation and CPPC VA for velocity

aware construction of particles after updating the velocity of the particle during each it-

eration. After executing these steps for a pre-defined number of iterations, the algorithm

returns the global best position of the swarm as the placement mapping.

Integral steps of the QMPSO algorithm, which includes problem mapping, initial

swarm, fitness calculation and particle position update are described in detail in the

following sub-sections.

Mapping microservice application placement problem to S-CLPSO

As per the S-CLPSO, each particle representing a possible solution to the problem is

characterised by a position vector and velocity matrix (Figure 4.4). For the considered

microservice placement problem, the position vector is a crisp set that maps each mi-

croservice instance to a device. Number of microservice instances are calculated at the

start of the Algorithm 4 according to equation 4.15. The dimension of the position vec-

tor is equal to the total number of microservice instances that are to be placed. Velocity

matrix is a set of possibilities that contains the possibility of each microservice instance

being placed on each device. All position and velocity related basic calculations follow

the concepts introduced in Section 4.2.2.

Figure 4.4: QMPSO particle representation

4.4 QoS-aware Application Placement 111

Algorithm 5 SWARM INIT
Input: numParticles
Output: Swarm

1: Swarm← {}
2: pv← create position vector from OHPP placement
3: vm← initialise velocity matrix
4: particle← createParticle(pv, vm)
5: Swarm.add(particle)
6: particleCount← 1
7: while particleCount < numParticles do
8: pv← random construct using CPPC INIT
9: vm← initialise velocity matrix

10: particle← createParticle(pv, vm)
11: Swarm.add(particle)
12: particleCount← particleCount + 1

return Swarm

Initial Swarm

Initial position vectors of the particles are generated using two methods: heuristic-based

particle generation and random particle construction (Algorithm 5). We propose a novel

makespan and budget aware heuristic named, Osmotic Heuristic Placement Policy

(OHPP) to seed the initial population (lines 2-4). The rest of the particles are generated

using the random particle construction path of the CPPC process (lines 7-12).

OHPP: For the swarm to reach global optimum position faster, we introduce Os-

motic Heuristic Placement Policy (OHPP). This policy follows the concept of Osmotic

computing and tries to move latency-sensitive services to the Fog layer (Algorithm 6).

The algorithm starts by placing all microservices on the Cloud and afterwards calcu-

lates the latency violation of each service using equation 4.16 (line 1-2). Makespan vio-

lated services are sorted from minimum to maximum budget requirement (line 3-4) and

matched on to Fog devices sorted from minimum to maximum pricing (line 5-22). Other

than providing a feasible placement, OHPP is also used to prioritise microservices for

placement within the Fog layer (lines 23-24). OHPP algorithm derives all microservices

of the FogServices and outputs them as prioritised microservices to be placed on Fog (To-

FogM), while the rest of the microservices are added to a separate list (ToCloudM). This

prioritisation plays an important role in the particle construction process of the CPPC

112 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

(in both CPPC INIT and CPPC VA).

Algorithm 6 OHPP
Input: Placement Requests and Meta-data
Output: Microservices to devices mapping

1: Place all microservice instances in Cloud
2: Calculate deadline violation using equation 4.16
3: FogServices← get all deadline violated services
4: sorted← sort FogServices from min to max budget requirement
5: FogDevices←sort from min to max pricing
6: for each service s in sorted do
7: Minst ← topologically sorted µservice instances of s from meta-data
8: for each m in Minst do
9: if m.predecessor in Cloud then

10: d← Cloud
11: else
12: d← FogDevices. f irst
13: while m is not placed do
14: if d.availResources ≥ m.resources then
15: place m in d
16: update availResources of d
17: else
18: if d = FogDevices.last then
19: d← Cloud
20: else
21: d← FogDevices.next
22: Place the rest on Cloud
23: ToFogM←microservices of FogServices
24: ToCloudM←microservices not included in FogServices
25: return microservice placement, ToFogM, ToCloudM

CPPC INIT: For the creation of the rest of the particles, the random construction path

of the CPPC Algorithm is used (Algorithm 7). CPPA INIT uses microservice priori-

tisation for the construction of placements under resource constraints. The algorithm

prioritises latency-critical microservices in ToFogM for the placement within resource-

constrained Fog devices (lines 2-9). Afterwards, the algorithm proceeds with mapping

ToCloudM microservices (line 10-16).

The above methods together populate the initial swarm with diverse and feasible

solutions, thus improving the ability of the swarm to reach its global optimum solution

4.4 QoS-aware Application Placement 113

within less amount of time. For the initialisation of the velocity matrix, a value in the

range [0,1] is assigned for the mapped device of each microservice instance and the rest

of the devices are assigned 0 for the said microservice.

Algorithm 7 CPPC INIT Algorithm
Input: D devices, ToFogM, ToCloudM
Output: PositionVector

1: PositionVector ← {};
2: devices← D.getFogDevices();
3: devices.add(D.getCloudDevices());
4: for each microservice m in ToFogM do
5: for each device d in devices do
6: if d.availResources ≥ m.resources then
7: PositionVector.add(m, d)
8: update availResources of d
9: break;

10: devices.shu f f le();
11: for each microservice m in ToCloudM do
12: for each device d in devices do
13: if d.availResources ≥ m.resources then
14: PositionVector.add(m, d)
15: update availResources of d
16: break;

return PositionVector

Normalised Fitness Calculation

The placement problem is modelled with two main objectives where each is calculated

as the weighted sum of its two sub-objectives (Section 4.4.1). As each sub-objective value

has different units and has different ranges of values, a normalised weighted sum is re-

quired to reach a proper trade-off between the sub-objectives. The best approach for this

would be to minimise and maximise each sub-objective separately to obtain the range of

values for each. But due to the higher time consumption of this method, we propose a

heuristic driven normalisation approach to initialise minimums and maximums for each

sub-objective.

We use the following heuristics to initialise maximums and minimums for each sub-

objective with close enough estimates:

114 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Deadline-aware heuristic placement: Services are sorted from minimum to maximum

makespan requirement and placed starting from Fog layer and move to Cloud-only if

non of the Fog devices have enough resources to host the microservice. This placement

provides an estimate for minimum latency violation and minimum network usage.

Budget maximisation placement: To find an estimate for maximum cost violation, we

propose a heuristic where devices are sorted from maximum to minimum unit price,

services are sorted from minimum budget to maximum budget requirement and mi-

croservices from ordered services are matched with ordered devices.

Cloud only placement: All microservices are placed in the Cloud providing an esti-

mate for maximum latency violation, maximum network usage and minimum budget

violation.

Moreover, for Fog resource usage, the minimum is set to 0 and maximum is deter-

mined as min(Fog device count, microservice instance count).

During each iteration of the QMPSO algorithm, minimum and maximum values are

updated based on the fitness values of the particles in the swarm. Updated minimum

and maximum values are used to calculate Min-Max Normalisation, which scales the

value of each objective to the range 0-1. For an objective i (obji), with current value of x,

normalised value using Min-Max Normalisation is calculated as follows:

η(x) =
x−min(obji)

max(obji)−min(obji)
(4.30)

This approach enables the QMPSO algorithm to avoid premature convergence and

reach a fair trade-off between the weighted sub-objectives.

Position update - Constraint-aware Prioritised Particle Construction (CPPC)

Position updating undergoes three main steps; 1) selection of exemplar dimensions for

the particle 2) update particle velocity 3) construct new particle position.

Selection of exemplar dimensions is the process of selecting which particle’s pBest

should be followed by each dimension for velocity updating as depicted in equation

4.3. Particle position update is carried out using the updated velocity matrix. Due to

resource constraints of the Fog resources, updated particle positions have to adhere to

4.5 Performance Evaluation 115

resource constraints, which is one of the main challenges of Fog service placement, as

mending particles based on resource constraints can considerably hinder the conver-

gence to the global optimum position.

To overcome this issue, we propose CPPC VA, which is the velocity aware path

of our proposed CPPC process. It is a particle construction algorithm that checks re-

source constraints at the time of particle position update based on the velocity matrix.

CPPC VA uses two main features to improve convergence (Algorithm 8):

Use of prioritised microservices: Similar to CPPC INIT, this algorithm also uses mi-

croservice prioritisation into two groups as toFogM and toCloudM. The idea behind this

is to enable toFogM microservices a higher chance of being assigned to the devices indi-

cated by its velocity matrix (lines 1-2).

Velocity aware device selection: For each microservice, the algorithm tries to determine

the new Fog device in a velocity conscious manner. First, all devices with higher or

equal velocity values are identified (lines 5-7) and each selected device is considered

for placement until a device with the required resource amount is met (lines 8-12). If

all selected devices are infeasible for placement, microservice is added to a separate list

(notMapped) for placement later (lines 13-14). After iterating through all microservices,

each microservice in notMapped list are mapped to feasible devices randomly (lines 15-

20). Here all devices are considered irrespective of the velocity value. This method pro-

vides a proper balance between exploitation and exploration, thus generating a diverse

solution set and improving algorithm convergence.

4.5 Performance Evaluation

We evaluated the performance of our QMPSO algorithm through simulation of syn-

thetic workloads of microservices-based IoT applications, that have heterogeneous QoS

requirements in terms of makespan, budget and throughput. Evaluations are completed

under two main categories:

QMPSO Performance Evaluation: Section 4.5.3 evaluates the performance of the QMPSO

algorithm in terms of convergence improvement against two adaptations of the S-CLPSO

algorithm for Fog application placement problem.

116 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Algorithm 8 CPPC VA Algorithm
Input: D devices, particle P, ToFogM, ToCloudM
Output: updated particle P

1: microservices← ToFogM
2: microservices.add(ToCloudM)
3: notMapped← {}
4: for each microservice m in microservices do
5: currDevice← P.positionVector.get(m);
6: currVelocity← P.velocityMatrix.get(currDevice)
7: D′ ← get devices with velocities ≥ currVelocity
8: for each device d in D′ do
9: if d.availResources ≥ m.resources then

10: P.PositionVector.add(m, d)
11: update availResources of d
12: break;
13: if m is not mapped to a device then
14: notMapped.add(m)

15: for each microservice m in notMapped do
16: D′ ← get all possible devices from D
17: r = random(1, D′.size)
18: d← D′.get(r);
19: P.PositionVector.add(m, d)
20: update Avail Resources

return updated particle P

1. No-Heuristics: Directly adapts the S-CLPSO algorithm to Fog application place-

ment problem without incorporating any heuristics.

2. No-Prioritised-Construct: Heuristics are used in this approach for swarm ini-

tialisation and fitness normalisation. But particle construction does not prioritise

microservices during the construction process, but randomly select microservices.

QMPSO Placement Evaluation: Section 4.5.3 compares QMPSO with four other Fog

application placement approaches in terms of QoS satisfaction and optimum Fog-Cloud

resource usage. These approaches are selected to cover different types of algorithms

including optimisation-based, meta-heuristic and heuristic approaches to solve applica-

tion placement problem within Fog environments.

1. Constraint Programming based Placement Algorithm (CPPA) - Placement prob-

4.5 Performance Evaluation 117

lem introduced in Section 4.4.1 is solved using a Constraint Programming solver.

2. OHPP - Algorithm which is used in generating our initial swarm of particles. We

use this to demonstrate how the incorporation of improved S-CLPSO results in

better placement decisions.

3. FSPP - Fog service placement approach proposed in [32], where service spread

(scale microservices to evenly spread them within Fog environment), latency (min-

imise communication delay among microservices) and resource usage (maximise

Fog device usage) are the focus of placement decision making.

4. DNCPSO - Algorithm proposed in [104] for workload scheduling in cloud-edge

environments to minimise the total latency and cost of the placement.

Out of the existing works analysed in Section 4.2.1, FSPP and DNCPSO are the only

works that can be adapted and applied to the batch placement of microservices-based

applications addressed in our work. So, they are chosen for the performance compari-

son.

4.5.1 Implementation of the Algorithms

For the performance evaluation, all placement algorithms were implemented using iFogSim2

[8] simulator, which is a toolkit for the simulation of Fog computing environments.

iFogSim2 extends iFogSim [9] simulator and provides support for simulation of mi-

croservice application placement through its advanced features such as service discov-

ery and load balancing.

QMPSO Implementation

To support the simulation of the proposed system architecture along with the QMPSO

algorithm, we extended the iFogSim2 simulator by integrating features to support mul-

tiple service composition patterns and QoS profiles containing per service QoS defini-

tions. Afterwards, the QMPSO algorithm was developed and simulated on top of that.

118 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

CPPA Implementation

An optimised solution for the placement problem can be obtained by solving the prob-

lem modelled in Section 4.4.1 using a solver. In this work, we have used the Constraint

Programming(CP) engine of IBM ILOG CPLEX 12.10.0 solver [118] for obtaining the op-

timum solution for Fog application placement. iFogSim2 is used for the implementation

of the placement policy by using Java API available in the solver.

CPPA approach uses lexicographic optimisation with objectives ordered as, minimis-

ing QoS violation as first objective (equation 4.6) and resource utilisation as second ob-

jective (equation 4.7). Normalised values of each objective (η(vl), η(vb), η(τnw), η(τr)) is

calculated by taking ”Nadir point” as minimum value and ”Utopia point” as maximum

for each objective [119] . These two points are calculated by optimising each objective

separately. Afterwards, the placement problem is solved using multi-objective optimi-

sation. To obtain the results within a reasonable time limit, the failure limit parameter is

set to 107 failures during the search process.

DNCPSO and FSPP

DNCPSO and FSPP were implemented and simulated in iFogSim2 based on the algo-

rithms described in [104] and [32] respectively. Necessary adaptations were made to the

algorithm to adapt it to our proposed system model and IoT application batch place-

ment scenario while maintaining core principles and fitness functions as proposed in

the said works.

4.5.2 Experimental Configurations

Simulation Environment

To evaluate the performance of the algorithms, we created synthetic workloads based

on the microservices-based application model proposed in Section 4.3.1. Each workload

consists of multiple applications, including Smart health monitoring and Smart Parking

application presented in the motivation scenario along with synthetic DAG-based ap-

plications created to represent all service composition patterns introduced in this work.

4.5 Performance Evaluation 119

Table 4.3: Evaluation parameters

Parameter Value

Communication links LAN 0.5ms, 1 Gbps

(latency, bandwidth) WAN 30ms, 100 Mbps

[105, 120–122] WLAN 2ms, 150 Mbps

Fog device resources CPU (MIPS) 1500-3000

[123, 124] RAM (GB) 2-8

Storage (GB) 32-256

Cost Model CPU (Cloud) $0.040480 per 150 MIPS per hour

parameters RAM (Cloud) $0.004445 per GB per hour

[116] Storage (Cloud) $0.000111 per GB per hour

Increase factor for fog 1.2-1.5

QoS parameters Makespan (ls) 20-150ms

[125, 126] Budget (bs) $0.25-1.50 per hour

Throughput (rs) 200-800 requests/s

Table 4.4: Parameters for placement algorithms

Parameter QMPSO DNCPSO FSPP

No. of particles in swarm 50 50 100

No. of iterations 300 300 400

Mutation rate - 0.25 0.25

ωmin - ωmax 0.4 - 0.9 0.4-0.9 -

c1, c2 - 2 -

c 1.49445 - -

m (refresh gap) 0 - -

ωl , ωb, ωnw, ωr 0.5 - -

Heterogeneity within the workloads is further ensured by modelling the diversity of

microservices in terms of computation cost of the microservices (300-900 MIPS) and

bandwidth usage among microservices (200-1500 bytes/packet). Moreover, when defin-

ing resource requirements of each microservice, the request rate supported by the basic

deployment unit (rm) is chosen between 100-200 requests/s. All the above parameter

values are determined based on the IoT simulation benchmarks presented in previous

simulation studies [8, 100]. Diversity among services is maintained in terms of QoS by

varying makespan, budget, and throughput requirements.

The Fog environment is constructed according to the architecture proposed in Sec-

tion 4.3.2. Table 4.3 lists the configurations used in constructing the simulated Fog envi-

120 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

ronment. Parameters of the Fog network such as communication link latency and band-

width represent novel network technologies like Wi-Fi 6 [120], 5G [121] for WLAN, and

gigabit Ethernet [105] for LAN connections, acquired from edge network performance

studies. Fog resources are modelled as a pool of heterogeneous devices with varying

resource capacities similar to [123, 124] which include heterogeneous Fog devices such

as Raspberrypi 4B, Jetson Nano, Dell PowerEdge, etc. Cost of execution of the microser-

vices is modelled according to AWS Fargate pricing [116] defined for CPU, RAM, and

storage separately. Due to service level improvements provided by the Fog environ-

ment, Fog resource prices are determined by multiplying on-demand prices of Cloud

resources by an increase factor between 1.2-1.5 according to [102], which models on-

demand pricing within Fog environments. vCPU to MIPS mapping for the simulation is

obtained based on Microsoft Azure industrial benchmark where 150MIPS estimates to

1vCPU [127].

QoS parameters are varied to ensure makespan and budget limits of the services

span from the edge of the network to the Cloud. Makespan requirement is varied within

20-150ms, following the IoT application latency requirements discussed in the previous

studies [125, 126]. The budget requirement is set based on the resource requirements

of each microservice in the synthetic workload and cost parameters of the environment

in such a way that the values span both Cloud and Fog deployment. Moreover, the

budget parameter is adjusted so that latency-critical and bandwidth-hungry services

have higher budget limits to enable their placement within the Fog layer. For through-

put requirement of services (rs), we have considered a wide range of values (200-800

requests/s) compared to rm of each microservice, to evaluate how the placement algo-

rithm handle the scalability of microservices.

Algorithm Parameter Tuning

Table 4.4 lists parameters and their values for QMPSO, DNCPSO and FSPP algorithms.

For QMPSO algorithm preliminary experiments were carried out to observe the fitness

value achieved by the algorithm for different values of swarm size, iteration count and

refreshing gap. Based on the observations, we set particle count to 50, iteration count to

4.5 Performance Evaluation 121

Figure 4.5: Variation of fitness values for different adaptations of S-CLPSO

300 and refreshing gap to 0. Further improvements to the fitness values can be obtained

by increasing particle and iteration counts at the cost of increased algorithm execution

time. Values for inertia weight ω and coefficient c are chosen based on previous stud-

ies on PSO algorithm [104, 115] conducted to determine the optimum values for these

parameters. ω is changed from ωmax (0.9) to ωmin (0.4) over the iterations, according to

the non-linear equation proposed in [104]. Coefficient c is set to 1.49445 as per [115]. For

the performance evaluation, we consider all sub-objectives are equally important. Due

to objective normalisation used in the QMPSO algorithm, this is achieved by setting all

weights to 0.5.

For DNCPSO and FSPP algorithms, parameters are set according to [104] and [32]

respectively.

122 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Table 4.5: Mean fitness values and standard error of the objectives for different adapta-
tions of S-CLPSO to Fog placement problem

QMPSO No-Prioritised-Construct No-Heuristics

Obj1 Obj2 Obj1 Obj2 Obj1 Obj2

Workload1 0 0.5544± 0.0271± 0.5633± 0.0297± 0.649±

0.0025 0.0020 0.0068 0.0012 0.0074

Workload2 0 0.5389± 0.0293± 0.5429± 0.0262± 0.6183±

0.0017 0.0007 0.0040 0.0013 0.0072

Workload3 0.0010± 0.5271± 0.0019± 0.5738± 0.005± 0.6395±

6.145E-06 0.0018 0.0007 0.0049 0.0015 0.0067

4.5.3 Results and Analysis

QMPSO Performance Evaluation

This section evaluates the performance of QMPSO by analysing how the values for the

two main objectives gradually evolve with iterations. For the evaluation, three synthetic

workloads are created according to the specifications detailed in Section 4.5.2, where

Workload1, Workload2 and Workload3 consist of 5, 7 and 10, microservice-based appli-

cations respectively. For placement of the workloads, a Fog environment with 17 Fog

devices is considered. For each workload, placement is generated using No-Heuristics,

No-Prioritised-Construct and QMPSO algorithms and the fitness values for Objective1

(QoS violation) and Objective2 (Resource usage) are recorded over 300 iterations. Each

algorithm is repeated 100 times and the average fitness values are obtained.

Figure 4.5 depicts the variations of fitness values while Table 4.5 lists the average

fitness value of each algorithm after 300 iterations. Results show that the QMPSO algo-

rithm outperforms the other two approaches in reaching the global optimum solution

within a lesser number of iterations. For both objectives, No-Heuristics demonstrates a

higher fluctuation in fitness value during early iterations. In No-Prioritised-Construct

and QMPSO algorithms, this behaviour is not present for Objective1 due to heuristics

based minimum and maximum initialisation. No-Heuristics algorithm updates mini-

4.5 Performance Evaluation 123

mum and maximum values for each sub-objective only based on the particles available

in the swarm. So it takes the algorithm a larger number of iterations to obtain accurate

values, which results in the fluctuations. Besides, the use of OHPP in the initial swarm

provides No-Prioritised-Construct and QMPSO with a better starting point. Moreover,

both No-Heuristics and No-Prioritised-Construct tend to converge to local-optimum po-

sitions. QMPSO has overcome this with the proposed particle construction algorithm,

CCPC. The use of prioritised microservices in CCPC ensures a proper balance between

exploitation and exploration to make sure that the algorithm moves towards the global-

optimum solution for Objective1. As solution space is a discrete space limited by re-

source constraints, there’s a higher chance of algorithms converging to a local optimum

solution. But prioritised particle construction in QMPSO helps the algorithm to traverse

the discrete solution space successfully without getting stuck in local optimums.

As the placement problem is modelled as a lexicographic optimisation, fluctuations

are expected to occur in the Objective2 value until Objective1 converges. This explains

the increase in Objective2 during early iterations in all three approaches. In No-Heuristics,

the increase and fluctuations in the value are considerably higher because it takes more

time for this approach to obtain the accurate minimum and maximum values for the sub-

objectives without the use of heuristics. Thus, faster convergence in Objective1 results

in better results of Objective2 as well. This is evident in the behaviour of the QMPSO

algorithm. Objective values denoted in Table 4.2.2 shows that QMPSO reaches lower

objective values for both objectives. Besides, the standard error of the achieved values

is also lower in QMPSO when compared with other approaches. This indicates that the

performance of QMPSO is consistent over multiple runs.

The above results demonstrate that the proposed QMPSO algorithm can reach better

performance due to multiple features we’ve incorporated with the algorithm, including

OHPP-based swarm initialisation (SWARM INIT), heuristic-driven fitness value nor-

malisation and prioritised particle construction (CCPC).

124 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

QMPSO Placement Evaluation

In this section, we evaluate the placement generated by our algorithm using several per-

formance metrics: makespan satisfaction percentage and budget satisfaction percentage

are used to evaluate the QoS satisfaction of the placement, network usage and the total

number of active Fog devices to evaluate the Fog resource usage.

Makespan Satisfaction: This metric is calculated as the number of service requests

that meets makespan requirements of the said service, as a percentage of all the service

requests received by the Fog environment.

Budget Satisfaction: A metric reflecting budget satisfaction percentage of the Fog en-

vironment. This metric is calculated as the difference between the cost violation af-

ter placement and the maximum possible cost violation of the environment for the re-

quested placement, as a percentage of the maximum possible violation.

Network Usage: Indicates network occupancy as a measurement of packet size (kilo-

bytes) x link delay (ms) within the duration of the simulation for all packets sent through

the Fog environment.

Active Fog Devices: Depicts the number of devices with at least one microservice de-

ployed onto the device. Optimum usage of Fog computing resources can be evaluated

based on two main aspects; balanced use of Fog and Cloud where Fog resources are

used only for latency-critical and bandwidth-hungry services which mitigates overuse

of limited Fog resources, and the ability to avoid unnecessary dispersion of microser-

vices within highly distributed Fog environments. Active Fog device count is a quanti-

tative metric that can provide accurate insight on both of these aspects.

Solution Space Analysis: Experiments are conducted to observe the performance

of each algorithm as the solution space grows. The size of the solution space depends

on two parameters; the number of microservice instances to be placed and the number

of devices considered for placement of the microservices. Figure 4.6 depicts the per-

formance for different device counts (15, 20 and 25 Fog devices) keeping microservice

count a constant (8 Applications, 30 microservices) whereas Figure 4.7 is for the sce-

narios where the microservice count is changed keeping device count a constant (20

Fog devices). Microservice count is increased by increasing the number of applications

considered for placement (5, 7 and 10 applications). Moreover, it varies the degree of

4.5 Performance Evaluation 125

Figure 4.6: Performance for different device counts

heterogeneity within the batch of services available for placement.

Based on the results depicted in Figure 4.6 and Figure 4.7, for QoS satisfaction,

QMPSO and CPPA achieve the highest satisfaction percentage in both makespan and

budget for all scenarios. But for network usage and Fog resource usage which indicate

the ability of the algorithm to obtain a proper balance between Fog and Cloud usage,

QMPSO outperforms CPPA. As the solution space grows, network usage and active de-

vice count for CPPA placement increase. Due to the NP-complete nature of the Fog

application placement problem, CPPA is limited by a failure limit of 107 to obtain a so-

lution within reasonable time limits. Thus, QMPSO with its meta-heuristic approach

outperforms CPPA. Figure 4.8 compares the execution time of QMPSO and CPPA algo-

rithm as solution space grows. Both the execution time and increase in execution time

with solution space growth is considerably higher in CPPA.

According to Figures 4.6 and 4.7, OHPP, which is our proposed heuristic for QMPSO

126 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Figure 4.7: Performance for different application/microservice counts

Figure 4.8: Execution time of the QMPSO and CPPA algorithms

4.5 Performance Evaluation 127

initialisation, can achieve high makespan satisfaction but lacks budget satisfaction. OHPP

prioritises services based on stringent makespan and budget requirements but fails to

handle the complexity introduced due to data dependencies among microservices. As a

result, OHPP shows a decrease in budget satisfaction as the number of applications in-

creases. Moreover, OHPP only focuses on moving latency-critical service to the Fog and

place the rest of the service in the Cloud. As a result, bandwidth-hungry microservice

of latency tolerant services are placed in the Cloud, which under-utilises Fog resources

and increases network usage.

The fitness function of the DNCPSO algorithm is designed to minimise the weighted

sum of total latency and cost of the placement. Moreover, DNCPSO aims to re-arrange

particles to place all latency-critical microservices in the Fog layer which results in high

makespan satisfaction. However, the budget satisfaction of the algorithm drops signif-

icantly (up to 70%), as the fitness calculation does not contain budget awareness, but

try to minimise the total cost. This approach lacks prioritisation of services with strin-

gent budget requirements which moves more services to the Fog to reduce total latency.

This results in lower network usage, but over utilises Fog resources and reduces budget

satisfaction significantly.

Similarly, FSPP tries to minimise the latency of the services without taking their

makespan requirements into consideration. As this approach does not prioritise latency-

critical microservices, makespan satisfaction reduces up to 35% within a resource-constrained

Fog environment. As the number of devices increase, more latency-critical microser-

vices are placed inside the Fog layer, which results in a slight increase in makespan

satisfaction. FSPP aims to increase the Fog resource usage by placing replicas of the mi-

croservices without imposing a budget constraint, which results in closer to zero budget

satisfaction. FSPP tries to maximise Fog resource usage irrespective of the throughput

requirements of the services. As a result, all Fog devices are active in all placement sce-

narios. As FSPP scale microservices randomly in the Fog layer, the number of microser-

vices pushed to the Cloud increases due to the resource constraints of Fog devices. This

results in a significant increase in network usage as well.

Scalability Analysis: Experiments are conducted to analyse the performance of the

placement as throughput requirements of the services change. To this end, a workload

128 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

of 5 applications is considered for two scenarios where throughput requirement in QoS

profile of each application is doubled in scenario2 when compared with scenario1 (Fig-

ure 4.9). For both scenarios, 25 Fog devices are considered for placement.

As throughput requirement increases, microservices are horizontally scaled in QMPSO,

CPPA and OHPP placement policies due to the throughput aware instance count calcu-

lation proposed in Section 4.4.1. This increases the number of microservice instances to

be placed, thus expanding the solution space. As a result, the performance of the CCPA

reduces with increased throughput (scenario2). In scenario1, CPPA is able to reach sim-

ilar QoS satisfaction values as our QMPSO algorithm. But in scenario2, CPPA is unable

to reach an optimum solution within the specified failure limit of the algorithm, which

results in the reduction of makespan satisfaction. Although OHPP is able to achieve

full makespan satisfaction, budget satisfaction drops significantly (up to 20% reduc-

tion) as throughput increases. Thus, as the number of microservice instances increase

heuristic approach fails to provide satisfactory results. DNCPSO does not consider the

scalability of microservices. So, as throughput increases, resource requirements of each

microservice increase and resource-constrained Fog devices are unable to handle them.

As a result, DNCPSO moves these microservices towards the Cloud, which results in

the increase of latency violation and network usage. Without using horizontal scal-

ability, DNCPSO is unable to fully utilise Fog devices with limited resources. FSPP

scales microservices to spread them evenly across the Fog environment. So, FSPP does

not demonstrate a significant difference in makespan satisfaction as sufficient microser-

vice instances are available in both scenarios. But, FSPP randomly scales microservices

without supporting throughput aware scalability which result in the overuse of Fog re-

sources.

Compared to other approaches, QMPSO achieves improved performance in all con-

sidered metrics for both scenarios. Our placement vertically and horizontally scales

microservices based on their throughput requirements, which results in proper utilisa-

tion of resource-constrained Fog devices to maximise makespan and budget satisfaction.

This also indicates the ability of the QMPSO algorithm to successfully navigate larger

solution spaces, unlike CPPA and OHPP algorithms.

Based on the solution space analysis and scalability analysis, it is evident that QMPSO

4.5 Performance Evaluation 129

Figure 4.9: Performance for different throughput requirements

significantly improves QoS satisfaction along with resource utilisation. For the con-

sidered scenarios, QMPSO records up to 35% improvement in makespan satisfaction

and up to 70% improvement in budget satisfaction. These results indicate the ability of

the QMPSO algorithm to navigate large solution spaces successfully to reach optimum

QoS satisfaction. Moreover, results depict that QoS-awareness in the fitness function of

QMPSO enables it to successfully utilise both Fog and Cloud resources to handle het-

erogeneous QoS requirements. Thus, QMPSO provides a robust algorithm capable of

harvesting Fog and Cloud resources to obtain an efficient placement schedule for het-

erogeneous microservice-based IoT applications.

130 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

Table 4.6: Complexity analysis

QMPSO DNCPSO FSPP

Initialisation O(Slog(S) + |D′|log(|D′|) + S.M.I.|D′|) O(S.M.|D′|) O(S.M.|D′|)

Evolution O(S.M.I.|D′|) O(S.M.|D′|) O(S.M.|D′|)

Algorithm Complexity Analysis

We have introduced multiple approaches/algorithms to improve the performance of our

QMPSO placement algorithm. In this section, we evaluate the time complexity intro-

duced by these novel approaches and compare them with approaches used in DNCPSO

and FSPP algorithms which use PSO and NSGA-II respectively. All three evolutionary

algorithms have two main phases that affect the overall complexity of the algorithms

and Table 4.6 presents their complexities. We consider the number of services for place-

ment as S with each having a maximum of M microservices along with I instances per

microservice for the placement within |D′| devices where D′ = F ∪ C. The effect of pop-

ulation size and iteration count is ignored as they are constants in all three algorithms.

Initialisation : For QMPSO, initialisation includes the creation of initial solution space

(SWARM INIT) and heuristic based initialisation of minimum and maximum values

required for normalisation of the sub-objectives. SWARM INIT consists of OHPP and

CPPC INIT algorithms. OHPP contains two main steps; sorting of services and devices

which is completed with linearithmic time complexity ofO(Slog(S)) andO(|D′|log(|D′|))
respectively, and mapping of each microservice instance of the service to a device (O(M.I.|D′|)),
which results in time complexity of O(S.M.I.|D′|) for all services. CPPC INIT iterates

through prioritised microservice instances to randomly find the eligible device. As pri-

oritising is already completed by OHPP, the algorithm can be completed with worst

case time complexity of O(S.M.I.|D′|). The total time complexity of SWARM INIT

is O(Slog(S) + |D′|log(|D′|) + S.M.I.|D′|). Heuristic approaches used for normalisa-

tion (Deadline-aware heuristic placement and Budget maximisation placement) follow

the same placement approach as OHPP with different sorting orders for services and

devices, thus resulting in polynomial time complexity of O(Slog(S) + |D′|log(|D′|) +
S.M.I.|D′|). Thus, for the Initialisation phase worst-case time complexity of the QMPSO

resolves to O(Slog(S) + |D′|log(|D′|) + S.M.I.|D′|).

4.6 Summary 131

Both DNCPSO and FSPP, do not use heuristics when creating initial population

nor use heuristic-based normalisation. Furthermore, these algorithms do not support

throughput aware scalability of microservices. Thus, random initialisation of eligible

solutions within resource-constrained devices results in time complexity ofO(S.M.|D′|)
for DNCPSO and FSPP.

Evolution: For this phase time complexity of the algorithm is dominated by the con-

struction of the next solution. For QMPSO, this consists of velocity update and position

update. The time complexity of velocity update is equal to the number of elements in

the velocity matrix, which is O(S.M.I.|D′|). QMPSO uses CPPC VA algorithm to up-

date the particle positions. Similar to CPPC INIT, CPPC VA also acquires prioritised

microservice instances generated from OHPP, which does not add extra computations

to the algorithm. To make velocity-aware updates, algorithm iterates through devices

for each prioritised microservice instance which results in O(S.M.I.|D′|) iterations dur-

ing the worst case. This results in time complexity of O(S.M.I.|D′|) for the Evolution

phase. The time complexity of DNCPSO and FSPP for this phase becomes, O(S.M.|D′|)
due to the lack of throughput aware scalability of microservices.

Although the novel approaches introduced in QMPSO add extra complexity to the

algorithm, lack of these features results in a slower convergence rate, convergence to

local optimums, lower QoS satisfaction, and lower resource utilisation as demonstrated

by the results in Sections 4.5.3 and 4.5.3. Thus, this trade-off between accuracy and extra

computation time is vital in solving the microservices-based application placement in

Fog. Moreover, the added time complexity due to these improvements is limited to lin-

earithmic increase for sorting operations and an increase by a factor of I for throughput

aware scaling of microservices. Thus, QMPSO reaches a fair trade-off between perfor-

mance of the placement and extra time-complexity by maximising QoS satisfaction and

resource usage of the placement while avoiding a drastic increase in time complexity.

4.6 Summary

Rapid growth in IoT has resulted in the emergence of diverse and complex applica-

tions developed using the microservices architecture. To fully leverage the capabilities

132 QoS-aware Batch Placement Approach for Heterogeneous IoT Applications

of Fog devices to support multiple heterogeneous applications, we exploited the gran-

ularity and scalability of microservice architecture and formulated the Fog application

placement problem as a Lexicographic Combinatorial Optimisation Problem for batch

placement of IoT applications, where QoS satisfaction and optimum resource usage are

the primary and secondary objectives respectively. To solve the placement problem, we

proposed an algorithm by adapting and improving the S-CLPSO technique. Extensive

experiments are carried out to evaluate the effectiveness of the proposed technique un-

der two aspects; convergence improvement against other adaptations of the S-CLPSO

and efficiency of the resultant placement against state-of-the-art techniques. Obtained

results depict that our approach successfully navigates large solution spaces and gener-

ates placements with higher QoS satisfaction (35% and 70% improvement in makespan

and budget satisfaction, respectively) while ensuring optimum Fog and Cloud resource

usage.

The placement approach proposed in this chapter considered throughput, makespan

and budget as QoS parameters but did not account for the uncertainties caused by the

failures within Fog environments, which is a vital requirement for mission-critical ap-

plications. In the next chapter, we focus on mission-critical IoT applications and study

the proactive redundant placement of microservices to satisfy their stringent reliability

requirements.

Chapter 5

Reliability-aware Proactive Placement
of Mission-critical IoT Applications

Reliability remains one of the most critical QoS requirements for mission-critical IoT services de-

ployed within Fog environments due to the lower dependability of Fog resources compared to the

Cloud. Granular microservices with independent deployment and scaling exhibit great potential

in utilising resource-constrained Fog resources to improve reliability through redundant placement.

However, current research on service placement lacks reliability-aware holistic approaches that com-

bine the MSA features and failure characteristics of Fog resources under independent and correlated

failures. Moreover, proactive redundant placement approaches must consider constraints due to re-

source limitations within Fog environments and the increase in the cost of deploying redundant mi-

croservice instances. Hence, we analyse MSA and formulate the reliability-aware placement problem

by modelling composite services as k-out-of-n serial-parallel systems in a throughput-aware man-

ner for placement under Fog resource failures. Our proposed Reliability-aware Placement Method

(RPM) is a hierarchical policy combining improved PSO and NSGA-II algorithms. We integrate it

with Monte Carlo reliability calculations to produce redundant placements to maximise reliability

satisfaction. Moreover, the proposed approach aims to reduce the cost of deployment as a secondary

objective. The performance results reveal that compared to the benchmarks, our algorithm shows

significant improvements in reliability satisfaction (up to 25%) and time to first failure (up to 40%),

thus providing a robust placement method.

This chapter is derived from:

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”Reliability-aware Proactive
Placement of Microservices-based IoT Applications in Fog Computing Environments”, IEEE
Transactions on Mobile Computing (TMC), (revision, August 2023).

133

134 Reliability-aware Proactive Placement of Mission-critical IoT Applications

5.1 Introduction

IoT applications include highly safety-critical and mission-critical services such as smart

healthcare, intelligent transportation, and Industrial Internet of Things (IIoT). For such

services, high reliability is a crucial requirement [128]. Moreover, heterogeneity of Fog

resources and their resource-constrained and geo-distributed nature results in lower de-

pendability compared to the powerful, robust and centralised Cloud servers [129, 130].

Thus, application deployment within Fog computing environments should incorporate

reliability awareness to minimise the application unavailability caused by Fog device

failures (i.e., hardware, software, power, network, etc.) while satisfying multiple other

QoS requirements such as deadline and throughput.

Over the years, two main approaches have been introduced to maintain application

reliability: proactive failure avoidance and reactive failure recovery techniques. For IoT

services with stringent latency requirements, reactive algorithms that focus on healing

after faulty events are insufficient to ensure the higher level of availability required to

meet low and ultra-low latency expectations, which fall within millisecond deadline

limits [45, 131]. Hence, proactive methods driven by redundant placement are identified

as viable solutions. In Cloud environments, redundant placement is limited by the high

costs incurred by deploying multiple copies of the application. In Fog environments,

this is further restrained by the limited availability of computing resources.

Under such challenges, the shift in IoT application development from monoliths to

microservices has the potential to improve the proactive redundant placement within

Fog environments due to their fine-grained design. Ability of MSA to support inde-

pendent scalability of microservices, including both vertical and horizontal scalability,

enhances the chances of throughput and reliability-aware redundant placement within

resource-limited Fog devices (i.e., Raspberry Pis, small-cell base stations, nano data cen-

tres, edge servers etc.) with heterogeneous failure characteristics. Moreover, the gran-

ularity of microservices with well-defined business boundaries results in complex in-

teractions among microservices to create composite services. Furthermore, this results

in each microservice-based application being a composition of multiple services with

heterogeneous QoS requirements (i.e., latency-critical, latency tolerant, high bandwidth

5.1 Introduction 135

Figure 5.1: A scenario of usecase in the context of smart heath monitoring

consuming etc.) where some microservices are shared among various services. This

enables per-service QoS definitions which can be used with batch placement to utilise

Fog and Cloud resources in a balanced manner [46]. While MSA presents potential im-

provements to the reliability-aware proactive placement of IoT applications, they also

introduce critical challenges. Complex interaction patterns among scalable microser-

vices results in cascading and correlated failures which increases the complexity of the

reliability model of the microservice-based applications.

Microservices-based application placement falls under Fog Service Placement Prob-

lem (FSPP) [32], [46], where each application service is deployed to provide shared ac-

cess to a large number of users. Thus, concepts such as throughput-aware service scal-

ability and load sharing are important aspects of FSPP, which sets it apart from DAG-

based workflow scheduling and task offloading problems studied in the existing litera-

ture [32]. Existing research on FSPP mainly focuses on QoS parameters such as latency,

cost and throughput. Thus, reliability-aware placement has a lot of room for improve-

ment, especially for IoT applications developed using MSA. Existing works lack proper

analysis of the potential of microservices-based IoT application architecture to introduce

novel placement algorithms that enable the proactive redundant placement to improve

the reliability of the services under both independent and correlated failures of the Fog

resources. To further highlight this idea, we present an IoT use case modelled using

MSA and examine its reliability-aware placement.

136 Reliability-aware Proactive Placement of Mission-critical IoT Applications

5.1.1 Motivational Scenario

We consider a use case of a smart health monitoring application (see Figure 5.1) to

demonstrate how MSA features can be utilised in achieving high reliability in Fog ap-

plications.

Due to the granularity of microservices, QoS requirements can be defined at the com-

posite service level. Thus, A1 can be represented as a composition of two composite

services: a mission-critical emergency event detection service (service S1 consisting of

microservices, m1 and m2) and a latency tolerant, computationally intensive analysis

service (service S2 consisting of microservices, m1 and m3) [46]. The loosely coupled

nature of the microservices enables dynamic deployment of microservices across Fog

layer resources and Cloud resources in a QoS-aware manner. In our example scenario,

m1 and m2 are deployed in the Fog layer to accommodate the low latency requirement

of S1, whereas m3, which only contributes to the latency tolerant service S2, is placed

within Cloud data centres. It improves Fog resource utilisation, thus allowing more Fog

resources to be allocated for services with stringent latency requirements.

Being a mission-critical service, S1 has high-reliability expectations so that in case of

an emergency, the application can react within the stringent latency expectations of the

service. As services like S1 have latency requirements in the millisecond range, in case

of Fog resource failures, the effect on the service would be adverse if only reactive fault-

tolerance methods were employed. Thus, such application services can benefit from

proactive reliability ensured by redundant placements [45]. However, this is limited

by the heterogeneity and resource-constrained nature of the Fog devices. The indepen-

dently deployable and scalable nature of the microservices can be utilised to overcome

this challenge. To this end, microservice instances packaged as lightweight Docker con-

tainers can be scaled horizontally or/and vertically in throughput and reliability-aware

manner. Example use case indicates that to support user requests, at least one instance

of m1 and two instances of m2 are required. Failure characteristics of the Fog devices

can be used to improve this placement further so that redundant microservice instances

are deployed to improve the service reliability. For example, the number of redundant

placements can be increased if their deployed devices have low reliability (four instances

of m2 and two instances of m1 depending on the failure characteristics of the Fog devices

5.1 Introduction 137

they are deployed on). Hence, with MSA, each composite service is represented as a

serial-parallel hybrid system, with each horizontally scaled microservice being a k out of

n load-balanced sub-system of the end-user service. Here, k is the minimum number of

microservice instances that can cater for the incoming user request volume, determined

in a throughput-aware manner, whereas n is determined by integrating knowledge of

the failure characteristics (i.e., independent and correlated failures) of Fog devices to

ensure availability of at least k instances during application run time.

Thus, it is evident that MSA can provide the flexibility required to utilise resource-

constrained Fog resources to improve the reliability of the deployed applications by in-

troducing robust placement policies that combine MSA features with the failure charac-

teristics of Fog resources.

5.1.2 Proposed Approach and Contributions

The above use case demonstrates that proper utilisation of MSA characteristics can po-

tentially improve the reliability of mission-critical IoT services through proactive and

dynamic redundant placement of microservices in a ”reliability and throughput aware”

manner. Research that emphasises the said characteristics is still in its early stages and

has much room for improvement. Existing research lacks in multiple areas, such as

utilising microservice features (i.e., granular design, independent deployment and scal-

ability, balanced deployment between fog and cloud, per-service QoS-awareness), over-

coming challenges of the MSA (i.e., complex interaction patterns among microservices),

application batch placement to prioritise mission-critical services, consideration of mul-

tiple failure types (i.e., independent failures, correlated failures) and dynamic redun-

dant placement of microservice. In this work, we aim to address these shortcomings

by proposing a holistic placement approach that improves the reliability of the services

under multiple reliability-related metrics, such as availability and time to first failure.

The key contributions of our work are:

1. In order to capture MSA characteristics, we model the microservices-based appli-

cation services as k out of n serial-parallel systems and formulate the placement

problem to capture reliability, throughput awareness, and cost at the composite

138 Reliability-aware Proactive Placement of Mission-critical IoT Applications

service level. The problem formulation captures both independent and correlated

failures within repairable fog environments and, dynamically calculate and place

redundant microservice instances proactively.

2. Based on the problem formulation, we propose a hierarchical placement algorithm

to place microservice replicas within fog environments proactively. Our proposed

algorithm operates at two levels; Particle Swarm Optimisation based Throughput-

aware Scalable Placement (TSP), Genetic Algorithm based Reliability-aware Re-

dundant Placement (RRP), which together provide a robust placement method

under failures in fog resources. Furthermore, a Monte Carlo-based approach is

incorporated to calculate reliability-related parameters.

3. We improve the performance of the algorithm by introducing multiple novel pro-

cesses: an availability-aware fitness function for TSP, an availability-aware heuris-

tic redundancy placement for the initialisation of RRP and a reliability-aware dom-

inant selection method for RRP.

4. We implement our policy using iFogSim2 [8] simulated fog environment and eval-

uate against multiple benchmarks based on reliability satisfaction, time to first fail-

ure and deployment cost.

5.2 Related Work

In this section, we summarise current works in Cloud and Fog environments (see Table

5.1) related to reliability-aware placement and proactive redundant placement, consid-

ering multiple placement problems such as FSPP, DAG workflow scheduling and task

offloading. We also make a qualitative comparison between existing approaches and

our work.

Multiple works consider reliability in Cloud environments for the deployment of

workflows, where the majority focus on scientific workflows. Rehani et al. [132] pro-

pose a DAG workflow scheduling algorithm that considers the reliability of repairable

Cloud resources for assigning tasks to VMs. They model the Cloud failures and repairs

5.2 Related Work 139

using Weibull distribution and use Monte Carlo Failure Estimation to accurately calcu-

late the time to failure and time to repair for each Cloud resource. Tang et al. [133]

consider a multi-cloud scenario to improve the reliability of the DAG-based scientific

workflows to reach a trade-off between cost and reliability using the hazard rates of VMs

and their connected links. Zhu et al. [134] also present a fault-tolerant DAG placement

by proposing primary-backup copy placement (PB) with one replica per task deployed

as a backup. Their work assumes no simultaneous failures among devices and considers

only one host fails at a time. The work in [135] extends this to consider network failures

that can result in simultaneous failures of the hosts and propose a placement algorithm

to place primary and its backup copy in different subnets to overcome such failures.

Works such as Yao et al. [136], Liu et al. [137] and Aral et al. [138] focus on

reliability-aware scheduling within Edge computing environments. The works pro-

posed in [136, 137] consider task-offloading problem considering failures of the edge

VMs. Yao et al. [136] consider independent tasks whereas Liu et al. [137] model the

application dataflows as DAGs. Both of these works assume the VM failures to be re-

pairable and independent of each other. Yao et al. [136] try to achieve a trade-off between

cost and reliability, whereas Liu et al. [137] aim to balance reliability and network usage.

Aral et al. [138] introduce a Bayesian Network-based approach to model and detect cor-

related failures among edge nodes and combine it with link failure probabilities to cal-

culate the joint failure probability of edge devices. When the minimum required replica

count for each single-component service is provided as input, the approach presented

in [138] outputs a redundant placement to minimise the joint failure probability of the

replicas. The works presented in [32, 46, 139, 140], and [45] explore the effect of replica

placement to improve the performance of the Fog application services. The works in

[139, 140] consider monolith applications, whereas the works in [32, 45, 46] model the

applications following MSA. The approaches proposed in [139, 140] and [46] place the

minimum number of required microservice replicas to satisfy the throughput require-

ments of the services but do not consider redundant placements to handle uncertainty.

The work in [45] tries to overcome the throughput uncertainty of the services where

some of the microservices have multiple candidates, whereas the approach presented in

[32] proposes a method to evenly distribute microservices across the Fog resources to

140 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Table 5.1: Comparison of existing research

Work Research Environment Application QoS Failure Characteristics Scalability Batch

Problem Model Reliability Throughput Other Type Repairable Redundancy Replica Load Placement

Calc. Balance

[132] ✓ - Latency Independent ✓ - - - -

[133] Workflow Cloud DAG ✓ - Latency, Cost Ind., Corr.(Network) - ✓ Static - (PB) - -

[134] Scheduling Workflows ✓ - Latency Independent ✓ ✓ Static - (PB) - -

[135] ✓ - Latency Ind., Corr. (Network) - ✓ Static - (PB) - -

[137] Task ✓ - Latency, Bandwidth Independent ✓ - - - ✓

[136] Offloading Edge-Only Independent ✓ - Latency, Cost Independent ✓ - - - ✓

[138] Tasks ✓ - Latency, Cost Correlated - ✓ Dynamic ✓ -

[32] - - Latency - - ✓ Dynamic ✓ ✓

[45] FSPP Fog MSA - ✓ Latency - - ✓ Dynamic ✓ -

[46] - ✓ Latency, Cost - - - Dynamic ✓ ✓

[139] (Edge-Cloud) Monolith - ✓ Latency - - - Dynamic ✓ ✓

[140] - ✓ Latency - - - Dynamic ✓ ✓

Our FSPP Fog MSA ✓ ✓ Latency, Cost Ind., Corr. ✓ ✓ Dynamic ✓ ✓

improve service availability.

Qualitative Comparison: DAG workflow scheduling in the Cloud [132–135] and IoT

application offloading in the edge [136, 137], both consider workloads with ephemeral

life cycles where the problem is addressed from the user perspective such that the DAGs/-

tasks are deployed to be used by a particular user, and after the execution, each task

is removed from the environment giving way to the following tasks in the queue. In

contrast to this, our work considers Fog Service Placement Problem (FSPP) described in

many previous works such as [32, 45, 46], where the placement is addressed from the ap-

plication provider’s perspective where applications are used by a large number of users

and process continuous requests, making their life cycle perpetual. This makes it infea-

sible to adapt former approaches to reliability-aware FSSP. Furthermore, throughput-

awareness, horizontal/vertical scaling, and load balancing become essential aspects of

the FSPP, which are not considered in [132, 136, 137], etc. Moreover, MSA creates com-

posite services with complex interaction patterns among microservices. Existing works

like [136, 138–140] consider independent tasks or single component services, thus failing

to capture the effect of such dependencies in modelling system reliability. Works such

as [32, 45] consider complex interactions among microservices along with redundant

placement of microservices but do not consider failure characteristics of the Edge/Fog

nodes to improve the reliability of the placement. Among the works that consider fail-

ures within Fog environments, some consider independent failures [132, 134], whereas

5.3 System Model and Problem Formulation 141

Figure 5.2: Microservices-based application model

works like [138] consider correlated failures. The work in [135] considers both indepen-

dent and correlated failures but limits it to network failures that can be isolated at the

subnet level.

Based on the above analysis, existing works lack a holistic approach that captures

all the above characteristics. To this end, in our work, we consider MSA characteristics

(i.e., composite services, microservice interaction patterns, independent scalability, load

balancing, etc.) and propose a reliability-aware redundant placement approach for ap-

plication batch placement under Fog resource failures (both independent and correlated

failures). We further improve the robustness of the algorithm by dynamically calculat-

ing the number of microservice replicas in a ”throughput and reliability-aware” manner

while reaching a trade-off between reliability and cost.

5.3 System Model and Problem Formulation

5.3.1 Microservices-based Application Model

Microservices-based applications can be modelled using a DAG [46] where vertices de-

note microservices and edges represent the interactions among microservices with di-

rection from client microservice towards the invoked microservice (Figure 5.2). Each

application, a ∈ A, is depicted as a collection of microservices, data flows among them,

142 Reliability-aware Proactive Placement of Mission-critical IoT Applications

and a set of composite services providing end-user requested functionalities denoted

as < Ma, d f a, Sa >. Each microservice is defined based on its resource requirements;

< Γm, rm > where Γm can be a combination of multiple resources such as CPU, RAM

and storage requirements of microservice m ∈ Ma to support the request rate of rm. This

acts as the basic deployment unit of each microservice, which can be independently

scaled (horizontally and vertically).

The granularity of MSA supports complex interactions, thus creating various com-

posite service patterns (i.e., Chained, Aggregator and Hybrid) with diverse data flow repre-

sentations (i.e., chained pattern as a single chain, aggregator pattern where multiple data

paths are invoked and results are aggregated to return a single response, etc.). These

data flow characteristics affect the end-to-end latency of the composite services. Thus,

we represent each service S ∈ Sa by a tuple containing the set of all microservices of the

service and all possible data paths within the service: < Ms
a, Ps

a >.

5.3.2 Fog Computing Environment Model

The Fog environment is represented by a hierarchical architecture consisting of three

main layers: IoT/client devices, Fog layer and Cloud layer. The Fog layer, which resides

between end devices and the Cloud, contains heterogeneous, resource-constrained, dis-

tributed devices that provide computational, networking and storage closer to the edge

of the network. We model the Fog layer as clusters of such Fog nodes managed by mul-

tiple service providers. Client devices access Fog resources through gateway devices

such as wireless access points and base transmission systems using WLAN technolo-

gies. These Fog clusters maintain seamless connectivity with the Cloud with WAN links

through fog-cloud gateways. Intra-cluster communication is established using high

bandwidth LAN to achieve high throughput and low latency within the Fog clusters.

As Fog devices are heterogeneous in resource availability, we characterise each device

(d ∈ D) based on its resources (γd). γd can be a combination of resources including, but

not limited to, CPU, RAM and storage. Moreover, in this work, we also consider the

failure characteristics of the Fog devices, detailed in the following sections.

5.3 System Model and Problem Formulation 143

5.3.3 System and Failure Characteristics

In this section, we analyse microservices-based application architecture and Fog envi-

ronments to create a reliability model.

Reliability Analysis of Microservice Applications

A failure is an event that causes a system to become unable to perform its intended

task reliably [141]. A system can consist of one or more components, where system

reliability depends on the failure and repair characteristics of these components. Thus,

for the microservices-based application placement, we identify the system boundaries,

decompose the system to identify its components and their failure characteristics, and

afterwards model their effect on system performance. Figure5.3a depicts the multi-level

representation of the system.

For the reliability modelling of a microservices-based Fog applications, we consider

each end-user service as a separate system with reliability requirements realised at the

service level. Each service consists of one or more independently deployable and scal-

able microservices with data dependencies among them. Accordingly, we formulate

the block representation of the system (Figure 5.3b) to analyse the effect of compo-

nent failures on the system performance. For a service S with Ms critical microservices

(Ms ⊂ Ms), each microservice m ∈ Ms can be horizontally and vertically scaled to meet

the user demand by utilising resource-constrained Fog resources. Service failure occurs

when the service is unable to maintain the expected level of QoS (i.e., deadline and

throughput) due to the failure of one or more microservice instances belonging to the

service.

If microservice m requires a minimum of k instances to support the expected through-

put demand, m is considered to be operating as expected if a minimum of k instances

out of the deployed n are running without failures. Furthermore, to maintain service

availability, all critical microservices of the service should be running without failures.

This results in a serial relationship among microservices of the service where the failure

of one or more microservices results in degrading the service performance or making

the service unavailable until the system is restored.

144 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Hence, for a microservices-based IoT application, reliability can be analysed per each

composite service by modelling the service as a serial-parallel hybrid system of its crit-

ical microservices and their replicas. Following this model, we analyse the effect of

underlying Fog resource reliability on the availability of the service under two main

resource failure types: independent and correlated.

(a) Multi-level representation

(b) Block diagram representation

Figure 5.3: Multi-component system reliability model

Independent Failures

Independent failures in distributed computing environments include failures of server-

s/nodes due to factors such as hardware failures (i.e., disk failures) and software/OS

failures (i.e., kernel failures, firmware failures etc.) that occur individually and indepen-

dently among nodes. In literature, such failures are analysed using failure probability

density functions (i.e., Weibull, Lognormal, Poisson etc.) of each node defined indepen-

dently [132, 137]. Using this information, the reliability of multi-component systems can

be analysed based on metrics such as Time To Failure (TTF) and availability [138].

Within Fog and Cloud environments, computation nodes can be repaired after fail-

ures or deployed containers can be redeployed or migrated to working nodes upon the

5.3 System Model and Problem Formulation 145

failure of the current nodes. As a result, in analysing the reliability of such systems, TTF

can be identified as an essential metric. By maximising the TTF of services, we can min-

imise the number of times the microservice instances have to be redeployed or migrated

to maintain service QoS, thus improving service reliability in mission-critical scenarios.

At the same time, Service Level Agreements (SLAs) of the services include the reliability

of the service in terms of expected average uptime availability. For microservices-based

IoT applications, this can be defined at the composite service level. Hence, in this work,

we create the reliability model considering both TTF and availability.

1. TTF Calculation

Based on the proposed serial-parallel hybrid reliability model of a service, the TTF

of service S can be defined as,

TTF(S) = min[TTF(m); ∀m ∈ Ms
] (5.1a)

For each microservice, the TTF is determined considering the k-out-of-n load bal-

ancing system represented by its instances. For microservice m ∈ Ms, if Im is the set of

|Im| = nm instances, the TTF of m is defined as,

TTF(m) = min[TTF(I′m); ∀I′m ⊂ Im] (5.1b)

where |I′m| ≥ (nm − km + 1).

As we consider failure of each microservice instance due to the underlying host fail-

ures, failure of m occurs when the Fog devices that host nm − km + 1 instances or more

of the microservice fail. If f [dmi] indicates the failure of Fog device hosting instance mi

of microservice m, TTF(m) can be reduced to the minimum time to joint failure of the

devices as follows,

TTF(I′m) = min[T(
⋂

mi∈I′m

f [dmi])] (5.1c)

2. Availability Calculation

Based on the proposed reliability model, the availability of service S can be defined

as,

146 Reliability-aware Proactive Placement of Mission-critical IoT Applications

AV(S)t1,t2 =
1

(t2− t1)

∫ t2

t1
AvS(t)dt (5.2a)

AvS(t) =

1 Up(Im,t) ≥ km; ∀m ∈ Ms

0 otherwise
(5.2b)

Eq. 5.2a defines mean availability of the service S within [t1,t2] time period in terms

of service uptime. Function AvS(t) denotes if the service is in up or failed status at

time t. In Eq. 5.2b, function Up(Im, t) calculates the number of running instances of

microservice m at time t. Above two equations together calculate the average uptime

availability of the service S following k out of n load balancing model.

Correlated Failures

Correlated or dependent failures, also known as Common Cause Failures (CCF), indi-

cate one or more components of the system failing simultaneously due to a common

cause. Within distributed computing environments, this can be due to failures of shared

power supplies, virtual networks, network component failures, software updates, etc.

[135, 138]. Such failures affect the redundant placement decisions as deploying redun-

dant instances within a group of servers that belong to the same Common Cause Failure

Group (CCFG) reduces its effectiveness. Considering this, we propose a Discorrelation

Index (DI) for each microservice as follows:

DI(m) =
∑∀g∈G min[|Im\FG(g,Im)|

km
, 1]

|G| (5.3a)

Eq. 5.3a considers each sub system (microservice) having a parallel relationship

among its components (microservice instances). Here, FG(g, Im) returns the instances

that belong to the same CCFG (g ∈ G) and calculates the k out of n instance satisfaction

under CCF. Based on this, calculations for each service S can be represented as follows:

DI(S) =
∑∀m∈Ms DI(m)

|Ms|
(5.3b)

5.3 System Model and Problem Formulation 147

5.3.4 Throughput-aware Minimum Instance Calculation

In the k out of n parallel model derived for each microservice, k can be determined in

a throughput-aware manner where the throughput requirement is defined per service

(rs for service S). We take the microservice definition proposed in our application model

(Section 5.3.1), where the resource requirement for the microservice is defined to support

a certain request rate. We consider this as the base microservice instance to be deployed

as a Docker container and calculate the number of instances required to support the

incoming request volume. For each microservice in the DAG representation, its expected

incoming request rate (r′m) is calculated using the following equations:

r′m = ∑
∀m′∈CM(m)

Rm′m (5.4a)

Rm′m =

rs m′ is Client Module

α.r′m′ otherwise
(5.4b)

The access rate of the microservice m is calculated by identifying all incoming edges

of m and adding their request rates (Eq. 5.4a). To achieve this, the function CM(m) out-

puts the client microservices of m based on the DAG representation of the application.

α ∈ [0, 1] indicates the difference in rates between incoming and outgoing requests of

m′. Afterwards, the minimum instance count for the microservice m is calculated as,

km =
r′m
rm

(5.4c)

5.3.5 Service Latency Model

Due to the granularity of the MSA, deadlines can be defined at the composite service

level, where the latency of each service depends on the data flow pattern of the service.

Considering multiple service composition patterns, the deadline violation of service S

with a deadline of lS can be calculated based on the latency of the longest data path of

the service. Considering each data path within the service (p ∈ PS), function L(d f S
p)

calculates the total latency of the datapath p of service S for the proposed placement.

148 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Due to distributed nature of the fog resources, the total latency consists of network la-

tency (Lnw(d f S
p)) and processing latency (Lproc(d f S

p)), where network latency is a com-

bination of transmission latency and propagation latency among different fog/cloud

nodes where the microservices are deployed.

vl
S = max{L(d f S

p); ∀p ∈ PS} − lS (5.5a)

L(d f S
p) = Lnw(d f S

p) + Lproc(d f S
p) (5.5b)

5.3.6 Pricing Model

Cloud service providers support container deployment through serverless compute en-

gines (i.e., AWS Fargate, Azure Container Instances etc.) where pricing is calculated

based on the requested vCPUs, memory and storage and flexibility is provided to con-

figure each separately. In our work, we use the above on-demand pricing model to

determine the price of deploying microservices within Fog and Cloud servers using

container technology. For a service S having a set of Ms microservices, the total cost can

be calculated as,

C(S) = ∑
∀m∈Ms

∀d∈D

nm

∑
i=1

xd
mi

Cd
m (5.6)

Cd
m indicates the total cost of deploying microservice m on device d. xd

mi
∈ {0, 1} is

a binary variable which is set to 1 if the ith instance of the microservice m is deployed

on device d. According to the above equation total cost for service S is calculated as the

total cost for deployment of all microservices instances.

5.3.7 Problem Formulation

Based on the system model, we formulate the reliability-aware placement problem as

a multi-objective optimisation. As proactive redundant placement of microservices is

limited by the cost of resource allocation and resource availability in Fog environments,

5.4 Reliability-aware Placement Method (RPM) 149

the placement problem aims to reach a trade-off between maximising reliability (Eq. 5.7)

and minimising the cost (Eq. 5.8). Based on the proposed reliability model, the reliability

of the services is represented as a composite of three metrics: TTF, availability and DI.

Furthermore, the placement aims to satisfy three constraints: resource constraints (Eq.

5.9a), service deadline (Eq. 5.9b) and throughput requirements of the services (Eq. 5.9c).

max P(As) = ∑
∀S∈As

[
TTF(S), AV(S), DI(S)

]
(5.7)

min C = ∑
∀S∈As

C(S) (5.8)

Subject to,

∑
∀a∈A
∀m∈Ma

∑
∀mi∈Im

xd
mi

Γm ≤ γd; ∀d ∈ D (5.9a)

V l
S = 0; ∀S ∈ As (5.9b)

nm ≥ km; ∀m ∈ Ma; ∀a ∈ A (5.9c)

As application placement within Fog environments has to utilise the limited Fog

resources and achieve a proper balance between Fog layer resource usage and Cloud

usage, the batch placement of applications contributes to prioritising services based on

heterogeneous QoS requirements. Thus, we formulate our placement problem to sup-

port the placement of a set of applications A, where all the available services are depicted

by As.

5.4 Reliability-aware Placement Method (RPM)

5.4.1 Overview

Based on the problem formulation, we propose a Reliability-aware Placement Method

(RPM) for the proactive redundant placement of microservices-based IoT applications.

Figure 5.4 presents a high-level representation of the method. Our approach consists of

four main processes:

150 Reliability-aware Proactive Placement of Mission-critical IoT Applications

• Monte Carlo Simulation-based Service Reliability calculation process: It uses em-

pirical data derived from past failures of the devices to calculate time to failure

(TTF(S)) and availability (AV(S)) metrics based on independent failures.

• DI calculation process: It calculates DI using data on CCFGs derived from common

course failure data.

• Throughput-aware Scalable Placement (TSP) - It generates initial microservice place-

ment with the minimum number of microservice instances to satisfy the through-

put demand.

• Reliability-aware Redundant Placement (RRP) - It extends TSP to accommodate

the redundant deployment of microservices to improve reliability in a cost-aware

manner.

Monte Carlo reliability calculation and DI calculation provide service reliability-

related metrics considering independent and correlated failures of the fog devices (i.e.

TTF, Availability, DI). These metrics are used by TSP and RRP, which create a hierarchi-

cal approach for throughput, reliability and cost-aware redundant placement of a batch

of IoT applications.

Our proposed approach assumes the availability of previous failure data of the fog

resources and meta-data derived from them. This includes data related to both inde-

pendent failures and correlated failures. Previous works such as [142, 143] use publicly

available failure and repair data of cloud data centres to derive statistical parameters for

failure and repair distributions using empirical analysis. In our approach, such parame-

ters derived for each fog node are provided as metadata to Monte Carlo-based reliability

calculation process to derive reliability metrics based on independent failures of fog de-

vices. To identify the possibility of correlated failures among devices, the CCF analysis

also can be conducted using past failure data to identify spatial and temporal dependen-

cies among fog nodes. [138] proposes a method based on a Dynamic Bayesian Network

to identify fog nodes that can fail together. Using such approaches, fog devices that be-

long to the same CCFG can be determined to be used as input for calculating DI by the

DI calculator process.

5.4 Reliability-aware Placement Method (RPM) 151

Figure 5.4: Reliability-aware placement process

Our placement method (RPM denoted in Figure 5.4) uses these data to propose a

redundant placement method following the reliability model proposed specifically for

microservices-based IoT applications. Thus, the process of deriving statistical parame-

ters and dependency information from past failure data is out of the scope of this work.

We base our policy on the derived metadata with the flexibility of updating the methods

used to extract the metadata.

5.4.2 Monte Carlo Simulation-based Service Reliability

Due to non-constant failure/repair rates of the components, the use of Markov chains

and Bayesian Networks for reliability analysis becomes impractical [144]. For such

repairable systems, Monte Carlo Simulation is better suited. Monte Carlo Simulation

performs a virtual experiment that simulates random walks within the stochastic envi-

ronment using random number generation from known probability distributions [144].

When the parameters for the failure and repair distributions of each Fog node are esti-

mated from past failure data, the Monte Carlo method uses values drawn from a uni-

form random variable U(0, 1) together with the Inverse Cumulative Distribution Func-

152 Reliability-aware Proactive Placement of Mission-critical IoT Applications

tion (ICDF) of the distribution to generate failure and repair times repeatedly to create

histories of the system that are used to derive failure and repair times within a consid-

ered time duration.

Data centre failure and repair data analysis presented in [142, 143] shows that server

failures best fit the Weibull distribution while repair times can be best modelled using

Lognormal distributions. Thus, in our work, we consider these distributions to model

failure and repair times of the Fog nodes. However, the use of Monte Carlo Simulations

to determine reliability metrics makes the approach easily adaptable to any distribution

due to its use of the inverse transform method.

As most of the failures in Fog resources are repairable, the effect of the repair/main-

tenance actions on the status of the Fog nodes needs to be considered. Kijima [145] anal-

yses such systems and proposes a model based on the system repair condition known

as general renewal process which models general or imperfect repair of the components

where the failed system is returned to a state between new and prior to the most recent

failure by introducing a virtual age to the component. For a component having virtual

age Vi−1 = v after the (i− 1)th repair, the CDF for the time to ith failure T becomes,

F(T|Vi−1 = v) =
F(T + v)− F(v)

1− F(v)
(5.10)

For failures following the weibull distribution this results in the ICDF,

t1 = η β

√
−ln(1−U)− t′ (5.11)

where t′ is the time elapsed since last failure of the component from the historical

data. For i ≥ 2, ICDF is calculated as,

ti =

[
η β

√
(

vi−1

η
)β − ln(1−U)

]
− vi−1; i ≥ 2 (5.12)

where virtual age is calculated using repair degree q [146, 147] as follows:

vi−1 = q(t1 + t′ + t2 + ... + ti−1); 0 ≤ q ≤ 1 (5.13)

Parameter q enables the system reliability measurements to be adjusted based on

5.4 Reliability-aware Placement Method (RPM) 153

Figure 5.5: Monte Carlo based TTF calculation

repair characteristics. q indicates the remaining damage after the repair, where q = 0 and

q = 1 represent the two extreme cases of perfect repair and minimal repair, respectively

[148].

Accordingly, we propose Algorithm 9 to calculate the expected TTF(S) and AV(S) of

each service using Monte Carlo simulations. Figure 5.5 shows a visual representation of

how the algorithm calculates TTF for a service. For clarity, Algorithm 9 is presented as a

combination of conducting Monte Carlo simulations (lines 3-20) and calculating relevant

metrics using resultant events (lines 21-26). However, it’s important to note that Monte

Carlo simulation is a less frequently process that needs to be done as new empirical data

become available or periodically. Calculated events are stored and used by placement

policy which is a more frequent process. Due to this approach, Monte Carlo simulations

can be carried out in Cloud servers, thus overcoming the computation complexity of the

process and mitigating its effect on the placement algorithm.

5.4.3 Stage 1 - Throughput-aware Scalable Placement

Throughput-aware Scalable Placement (TSP) is the first stage of our hierarchical place-

ment policy (see Algorithm 10). TSP outputs a reliability-aware, scalable placement

based on the throughput requirements of the services but does not focus on the deploy-

ment of redundant microservice instances.

At this stage, since the number of exact instances per each microservice is calculated

using Eqs. 5.4a-5.4c, we use a Particle Swarm Optimisation (PSO) based meta-heuristic

154 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Algorithm 9 Monte Carlo based Service Reliability
Input: Placement P for service S, Estimated failure and Repair distributions for each

Fog device
Output: TTF(S), AV(S), Events

1: Ms ← S.getMicroservices(); D ← P.getAllMappedDevices()
2: Events← {}
3: for d in D do
4: i← 0 ;
5: for i ≤ simTimes do
6: set t← 0.0 ; status← UP ; currentEvent← first event
7: while t ≤ Tmax do
8: u← sample(U(0, 1))
9: if status = UP then

10: ∆t←timeToNextFailure(d,u,Events.get(d)) ▷ This is calculated using
Eqs. 5.11, 5.12

11: else
12: ∆t←timeToRepair(d,u); ▷ This is calculated using the ICDF of

Lognormal distribution
13: Events.updateAverage(d, currentEvent, ∆t)
14: t← t + ∆t; currentEvent← next event
15: status← (status = UP)?DOWN : UP
16: i← i + 1
17: for m in Ms do
18: Dm ← P.getMappedDevices(m); nm ← no of min instances
19: tt fm ← calculate time to (nm − km + 1) or more simultaneous failures based on

Events related to Dm

20: TTF(S)← minimum(tt fm; ∀m ∈ Ms
)

21: AV(S)0,t ← calculateAvailability(Events) ▷ AV(S) is calulated applying Eqs. 5.2 to
the calculated Events

22: return TTF(S), AV(S), Events

to achieve throughput-reliability aware placement under resource and deadline con-

straints. In our previous work [46], we examined the adaptability of Set-based Com-

prehensive Learning Particle Swarm Optimisation (S-CLPSO) for microservices-based

application placement to satisfy throughput, latency and cost requirements and intro-

duced multiple approaches to improve its ability to achieve quicker convergence and

reach the global optimum. Thus, in this stage, we adapt the improved S-CLSPO algo-

rithm but extend and further improve it to solve the reliability-aware placement problem

as follows:

5.4 Reliability-aware Placement Method (RPM) 155

Algorithm 10 TSP Algorithm
Input: Placement Requests and Meta-data
Output: Microservices to devices mapping

1: Calculate the number of instances per microservice (Eqs.5.4)
2: Set iteration count i← 1
3: ▷ Prioritise microservices based on deadline of the composite services they belong

to
4: Place all in Cloud and calculate deadline violation (Eq. 5.5a)
5: ToFogM← deadline violated; ToCloudM← deadline satisfied
6: ▷ Construct a random swarm of N particles under deadline and resource

constraints
7: Particles← initialise(N, ToFogM, ToCloudM)
8: while i ≤ Iterations do
9: Calculate fitness of each particle using AFF;

10: Update pBest and gBest
11: Select exemplar dimensions for each particle
12: Update velocity of each particle
13: ▷ Update position using deadline-resource constrained prioritised construction
14: for p ∈ Particles do
15: for m ∈ ToFogM do
16: D′ ← eligibleFogDevices(m,p.velocityMatrix)
17: Try to place m in a d ∈ D′ s.t resource constraints satisfied
18: if not placed then notPlaced.add(m)

19: for m ∈ notPlaced do
20: Try to place m in a f ∈ f ogDevices s.t resource constraints satisfied
21: if not still placed then Place in Cloud
22: Place ToCloudM in Cloud
23: Set i← i + 1

return gBest of the swarm

1. Availability-aware fitness function (AFF): Being the first stage of the policy, the

aim of TSP is to provide an output that has the potential to be further improved with re-

dundant placements in the next stage. To this end, we introduce a novel fitness function

(Eq. 5.14a) with 3 metrics: 1) TTF of each service, 2) a novel Availability Score for each

microservice (Eqs. 5.14b, 5.14c) which is introduced by modifying Eqs. 5.2 to calculate

the mean number of active instances during service failure, thus aiming to minimise the

simultaneous failures among its instances and improve the possibility of finding redun-

dant placements during Stage 2 of the algorithm, and 3) DI of the placement which is

also used to minimise simultaneous failures. For each particle, fitness is calculated as

156 Reliability-aware Proactive Placement of Mission-critical IoT Applications

the summation of reliability, ρ(S) of all the services considered for placement.

max ρ(S)t1,t2 =
[TTF(S)

t2− t1
+ ∑
∀m∈Ms

AS(m).DI(m)
]

(5.14a)

AS(m)t1,t2 =
1

(t f ail)

∫ t2

t1
Asm(t)dt (5.14b)

Asm(t) =


Up(Im,t)

km
Up(Im,t) < km

0 otherwise
(5.14c)

2. Multiple constraint handling: Each particle has to satisfy three main constraints

to be considered a valid placement: throughput requirement of the service, resource

constraints of Fog devices and deadline of the services. The throughput requirement

is handled at the start of the algorithm (line 1) by calculating the minimum number

of instances (km) required. Other constraints are handled at the particle construction

during the initial swarm creation (line 5) and the position updates conducted in each

iteration (lines 11-22). To achieve deadline satisfaction, first, the deadline stringent mi-

croservices are identified (lines 3-4) and prioritised for placement within Fog under re-

source constraints. For initialisation (line 5), the algorithm constructs particles through

random assignment of microservice to devices such that the constraints are satisfied.

To further improve the convergence, we seed the initial swarm with a reliability-aware

heuristic placement that sorts Fog devices based on their time to first failure and map the

ToFogM to devices with the highest time to failures. For the particle position update pro-

cess, a velocity-aware position update method is implemented with deadline-resource

constrained construction of particles to ensure the satisfaction of the constraints. Po-

sition update is conducted in a prioritised manner, starting with latency-sensitive mi-

croservices (lines 12-20). eligibileFogDevices() (line 13) method finds eligible devices in

a velocity-aware manner where devices with equal or higher velocity compared to the

current placed device are selected as eligible devices for the subsequent placement. This

prioritises latency-critical microservices for placement within the Fog, thus maximising

the deadline satisfaction of the placement.

3. Updating pBest and gBest: Due to resource constraints, Fog may not be able to ac-

5.4 Reliability-aware Placement Method (RPM) 157

commodate all latency-critical services in some particles. Hence, constructed particles,

while satisfying resource constraints, may not be able to satisfy the deadline require-

ments after position updates. To mitigate the effect of such scenarios, pBest and gBest

selection consider deadline satisfaction of the placement before comparing the fitness

values.

5.4.4 Stage 2 - Reliability-aware Redundant Placement

Algorithm 11 RRP Algorithm
Input: TSP, ToFog, ToCloud and Meta-data
Output: Microservices to devices mapping

1: Initialise population of N chromosomes using AHI
2: Calculate fitness using Eqs 5.16
3: calculateDominants(population) using RDS
4: f ronts← calculateFronts(population)
5: crowdingDist← calculateCrowdingDistance(population, f ronts)
6: while i ≤ Iterations do
7: childChromosomes← {} ▷ 2N chromosomes
8: while childChromosomes ≤ N do
9: orderedParents← order(populations, f ronts, crowdingDist)

10: parents← tournamentSelect(orderedParents)
11: children←crossover(parents)
12: childChromosomes.add(children)
13: mutate(childChromosomes)
14: Calculate fitness using Eqs 5.16
15: population← population ∪ childChromosomes
16: calculateDominants(population) using RDS
17: f ronts← calculateFronts(population)
18: crowdingDist← calculateCrowdingDistance(population, f ronts)
19: ordered← order(populations, f ronts, crowdingDist)
20: population← get 1st N chromosomes
21: calculateDominants(population) using RDS
22: f ronts← calculateFronts(population)
23: crowdingDist← calculateCrowdingDistance(population, f ronts)

return population.best + TSP

During this stage, the placement generated from TSP is used as the input to the

Reliability-aware Redundant Placement (RRP) algorithm (see Algorithm 11) to create

redundant microservice deployments to improve the reliability further. As the number

158 Reliability-aware Proactive Placement of Mission-critical IoT Applications

of redundant instances is not known prior to algorithm execution but decided based on

the optimisation objectives, we propose an algorithm by improving NSGA-II. NSGA-

II is a genetic algorithm for multi-objective optimisation where each placement can be

depicted as a 2D chromosome. This representation enables the count of instances to be

adjusted flexibly to reach a trade-off between reliability and cost. We make multiple

improvements to adapt the NSGA-II algorithm to our specific placement problem as

follows:

1. Availability-aware Heuristic Initialisation (AHI): This heuristic is used to popu-

late the initial population in a reliability-aware manner (Algorithm 12) to achieve faster

convergence by having a strong population as the starting point of the algorithm. To

achieve this, AHI first calculates alternative Fog devices for each device based on how

they complement each other from a reliability perspective (lines 3-9). We introduce a

alternative device score (Alt Scored1,d2) based on TTF improvement (tt f d1,d2
ext) and avail-

ability improvement (avd1,d2
ext) as follows:

Alt Scored1,d2 = tt f d1,d2
ext + avd1,d2

ext (5.15a)

tt f d1,d2
ext =


tt fd1∪d2−tt fd1

t2−t1 {d1, d2} ̸⊂ g; ∀g ∈ G

0 otherwise
(5.15b)

avd1,d2
ext =


[∫ t2

t1 Avd1∪d2 (t)dt−
∫ t2

t1 Avd1
(t)dt

]
t f ,d1

{d1, d2} ̸⊂ g; ∀g ∈ G

0 otherwise
(5.15c)

Eqs. 5.15 calculate the reliability improvement of deploying microservice instances

on both d1 and d2 compared to deploying only on d1, where t f ,d1 indicates the total failure

duration of d1 alone. To maintain the diversity among the generated chromosomes,

results of the heuristic are made random by changing the order of considered mappings

from TSP (line 13) and changing the order of the alternative devices (lines 19-20) to select

the best alternative device out of a portion of the devices selected from D′.

2. Chromosome fitness and Reliability-aware Dominant Selection (RDS): We define

the fitness of the chromosomes using 3 parameters including availability (Eq. 5.16a),

TTF (Eq. 5.16b) and cost (Eq. 5.8) of the placement. Based on the problem formulation

5.4 Reliability-aware Placement Method (RPM) 159

Algorithm 12 AHI Algorithm
Input: Number of chromosomes (N) and Meta-data
Output: Initial population

1: initPopulation← {}
2: ▷Calculate Per Device Alternatives
3: altDevices← {} ▷Alternative devices and scores per device
4: for d ∈ f ogDevices do
5: for d′ ∈ [f ogDevices− {d}] do
6: altScore← calculateAtlScore(d, d′) ▷Use Eqs. 5.15
7: if altScore ̸= 0 then altDevices.add(d, d′, altScore)
8: Order altDevices.get(d) in descending fitness score
9: for n ∈ N do

10: ordered← (n ≤ N/2)?TRUE:FALSE
11: P← fog layer placement from TSP (list of {m, d})
12: shuffle(P)
13: for (m, d) ∈ P do
14: D′ ← altDevices.get(d)
15: if ordered is TRUE then
16: d′ ← choose device with highest altScore from first device of D′ s.t re-

source constraints are met
17: else
18: shuffle(D′)
19: d′ ← choose device with highest altScore from first x devices of D′ s.t

resource constraints are met
20: if d′ is null then
21: d′ ← random device from f ogDevices s.t resource constraints are met
22: initPopulation.getChromosome(n).place (m, d′)

return initPopulation

in Section 5.3.7, the final fitness values are created as follows:

f1 =

[
1−

∑
∀S∈As

(Max[ρs − AV(S), 0])/ρs

Sv
num

]
DI(As) (5.16a)

f2 =

∑
∀S∈As

TTF(S)

Snum.T
DI(As) (5.16b)

where ρs indicates the reliability expectation of the service in terms of average uptime

availability and Sv
num denotes the number of reliability expectation violated services. To

maximise the reliability satisfaction while reducing the cost, we propose RDS (Algo-

160 Reliability-aware Proactive Placement of Mission-critical IoT Applications

rithm 13) for dominant selection where higher priority is given to satisfying ρs using f1

(lines 1-4) and non-dominated sorting is used for f2 and cost (lines 5-10).

Algorithm 13 RDS Algorithm
Input: Chromosomes Ci and Cj
Output: TRUE if Ci dominates Cj, FALSE otherwise

1: if Ci. f1 > Cj. f1 then
2: dominates← TRUE
3: else if Ci. f1 < Cj. f1 then
4: dominates← FALSE
5: else
6: if (Ci. f2 ≥ Cj. f2 AND Ci.cost ≤ Cj.cost) AND
7: (Ci. f2 > Cj. f2 OR Ci.cost < Cj.cost) then
8: dominates← TRUE
9: else

10: dominates← FALSE
return dominates

3. Generation of new population: RRP uses tournament selection, single-point crossover

with random point selection and a custom mutation process to evolve the current pop-

ulation into the next. The mutation operator randomly selects between replica growth

and replica removal. The device for replica growth is chosen by selecting a microservice

placement and making a tournament selection on Alt Score values of its alternative Fog

devices. Resource constraints are validated afterwards, and chromosomes undergo a

mending process in case of violation by moving microservice instances from resource-

violated Fog devices.

Finally, RRP acquires the best chromosome of the final population by selecting the

one with the highest weighted sum of the three objectives. To adjust the weighted sum as

a maximisation objective, the cost is normalised using (MaxCost− Cost)/(MaxCost−
MinCost) for each chromosome. RRP combines the selected chromosome with TSP out-

put and returns the final placement.

5.5 Performance Evaluation 161

5.5 Performance Evaluation

5.5.1 Experimental Configurations

For the evaluations, we use iFogSim2 [8] simulated Fog environment. iFogSim2 pro-

vides support for modelling hierarchical fog-cloud architecture and microservice appli-

cation architecture along with microservices-related functions such as horizontal scala-

bility, load balancing and dynamic service discovery, which are essential in modelling

and simulating our reliability-aware deployment scenario. Furthermore, the simulator

is easily extendable to simulate failure scenarios of the Fog nodes.

We model the Fog environment according to the architecture presented in Section

5.3.2. Network parameters of the Fog environment include bandwidth and latency

among different devices of the Fog architecture. We extract these values from previ-

ous studies on network performance of edge networks following novel communication

technologies as follows: WLAN communication (150Mbps, 2ms) based on WiFi-6 [120]

and 5G [121], LAN connections (1Gbps, 0.5ms) based on gigabit Ethernet technology

[105], and fog-cloud connections with WAN (30ms, 100Mbps) [46]. Fog device resources

are defined using three parameters: CPU (1500-3000 MIPS), RAM (2-8 GB) and storage

(32-256 GB) [123, 124]. These values represent resource availability of heterogeneous

Fog devices such as RaspberryPi, Dell PowerEdge, Jetson Nano, etc. The cost of the re-

sources is modelled following the price model of AWS Fargate and extended to the Fog

layer with an increase factor of 1.2-1.5 as proposed in [102].

Due to the novelty of the Fog computing paradigm, there’s a lack of availability in

Fog computing reliability data. Hence, following previous reliability studies in the area

[138], we create synthetic failure traces based on real-world failure data available for

distributed systems. In our work, we use the failure characteristics presented in [143],

which analyses Google Cloud trace logs consisting of around 12,5000 servers monitored

over 29 days. Failure characteristics of the Fog devices in our simulated environment

are modelled based on the results of the empirical analysis done on the said data set and

fed to our placement algorithms. Failure and repair events during the simulation time

are also synthesized accordingly.

Workloads used in the performance evaluation are synthetically generated following

162 Reliability-aware Proactive Placement of Mission-critical IoT Applications

the microservices-based applications used in the literature [32, 38]. Workloads model

multiple IoT applications such as smart health monitoring [106], smart parking [107],

etc. and also follow general microservice composition patterns such as chained, aggre-

gator, and hybrid patterns. Diversity among applications is ensured by varying mi-

croservice resource requirements in terms of CPU (300-900 MIPS), bandwidth (200-1500

bytes/packet), base request rate (100-200 requests/s) following previous IoT simulation

benchmarks [8, 46].

5.5.2 RPM Algorithm Performance Evaluation

In this section, we evaluate RPM’s ability to converge to a solution that can reach a trade-

off between cost and reliability. To this end, we consider multiple design decisions made

in our proposed algorithm (RPM) and evaluate their effect on the performance of the

placement. For the comparison, the following variants of the algorithm are used,

1) No AFF: In this approach, the fitness function of the TSP uses Eqs. 5.2a, 5.2b to

calculate the availability, instead of the Availability Score proposed in AFF.

2) No AHI: Creates random chromosomes for the initial population of RRP algo-

rithm, without using Algorithm 12.

3) No RDS: In this approach, reliability and cost have equal priority during domi-

nant chromosome selection. Hence, generic non-dominated sorting is used instead of

our proposed RDS approach.

4) No Cost-awareness (No CA): Maximises reliability without having cost as a limit-

ing factor for the redundant placement.

We carry out the experiments for 6 workloads covering both independent and cor-

related failures (see Table 5.2 and 5.3). The algorithm’s search space depends on three

main parameters: the number of composite services in the batch placement, the number

of Fog devices eligible for placement and the time duration considered. We create the

workloads to capture performance with variations in all three parameters. All variants

use the same parameters for the algorithms: TSP with 100 particles, 300 iterations and

RRP with 100 chromosomes, 300 iterations. Based on the results, we compare each ap-

proach with RPM to evaluate its ability to reach a better trade-off between reliability and

5.5 Performance Evaluation 163

cost. To this end, we calculate the Trade-off Ratio of each approach with respect to the

No CA, where reliability degradation per unit cost reduction is calculated. Reliability

Satisfaction, FTTF and Cost values are calculated with a confidence interval of 95%.

The aim of AFF is for the TSP (Stage 1) to produce a placement such that it is easier for

the RRP (Stage 2) to find redundant placements that can improve the overall reliability

of the final output. We can validate this by comparing No AFF and RPM. Based on the

results, it is evident that Reliability Satisfaction (R.S) and FTTF of No AFF are lower

than RPM for all considered workloads. Moreover, No AFF does not provide sufficient

cost advantage compared to RPM, which is further proven by the high trade-off ratio

of the resultant placement. This shows that having AFF improves RRP’s ability to find

redundant placements that can easily enhance the reliability of the final placement while

reducing the cost.

In RPM, we have introduced a heuristic to populate the initial population of RRP

such that nodes selected for redundant placement try to complement the output from

the TSP. The aim of introducing this method is to improve the convergence of the RRP

by creating an initial population of better solutions. We verify this by comparing RPM

with No AHI, which randomly initialises the population. Results show that RPM can

achieve higher reliability satisfaction and FTTF. The costs incurred by No AHI vary de-

pending on the scenarios showing slightly higher or lower cost values than RPM. How-

ever, No AHI records a lower trade-off ratio demonstrating RPM’s ability to reach a

better trade-off between objectives.

In No RDS, traditional non-dominated sorting gives equal priority to cost and relia-

bility, which results in a lower cost at the expense of lower reliability (over 9% reliability

violation for considered scenarios). Thus, for mission-critical services that usually ex-

pect availability higher than 99.99%, this approach fails to achieve a proper balance.

With our proposed RDS approach, the placement algorithm handles multi-objective op-

timisation while giving the reliability aspect higher priority than cost. Considering these

factors, RPM can reach a better trade-off between reliability and cost for services with

high-reliability requirements.

Based on the above analysis, the introduced improvements (AFF, AHI and RDS) en-

sure RPM’s ability to converge towards a placement with higher reliability while mini-

164 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Table 5.2: Evaluation of different varients (under independent failures)

Scenario1 Scenario2 Scenario3

Approach R.S FTTF Cost Trade R.S FTTF Cost Trade R.S FTTF Cost Trade

(%) (%) (0-1) Ratio (%) (%) (0-1) Ratio (%) (%) (0-1) Ratio

RPM 98.813 93.533 0.531 0.036 98.577 94.51 0.609 0.049 98.239 91.784 0.713 0.069

±0.201 ±0.652 ±0.005 ±0.205 ±0.503 ±0.005 ±0.307 ±0.823 ±0.007

No AFF 95.249 83.019 0.472 0.139 93.073 81.654 0.524 0.218 91.314 73.317 0.624 0.324

±0.435 ±0.906 ±0.007 ±0.494 ±0.899 ±0.007 ±0.799 ±1.634 ±0.01

No AHI 97.54 91.005 0.539 0.086 97.664 92.641 0.592 0.085 97.55 90.62 0.731 0.127

±0.344 ±0.773 ±0.007 ±0.263 ±0.577 ±0.006 ±0.404 ±0.917 ±0.01

No RDS 90.498 76.085 0.314 0.192 88.161 76.321 0.373 0.254 80.992 64.307 0.367 0.364

±0.594 ±0.882 ±0.002 ±0.405 ±0.603 ±0.001 ±0.565 ±0.957 ±0.002

No CA 99.753 98.808 0.795 N/A 99.637 98.624 0.825 N/A 99.328 96.16 0.871 N/A

±0.134 ±0.314 ±0.009 ±0.114 ±0.29 ±0.008 ±0.161 ±0.568 ±0.008

Table 5.3: Evaluation of different varients (independent and correlated failures)

Scenario4 Scenario5 Scenario6

Approach R.S FTTF Cost Trade R.S FTTF Cost Trade R.S FTTF Cost Trade

(%) (%) (0-1) Ratio (%) (%) (0-1) Ratio (%) (%) (0-1) Ratio

RPM 98.305 92.474 0.633 0.064 98.894 96.237 0.762 0.103 99.417 95.968 0.592 0.025

±0.29 ±0.812 ±0.015 ±0.196 ±0.443 ±0.01 ±0.14 ±0.563 ±0.011

No AFF 97.032 89.297 0.643 0.148 96.606 92.438 0.728 0.397 98.832 93.734 0.566 0.083

±0.427 ±0.92 ±0.013 ±0.379 ±0.576 ±0.009 ±0.222 ±0.743 ±0.012

No AHI 96.395 88.094 0.619 0.164 97.449 93.001 0.694 0.178 99.124 95.914 0.632 0.188

±0.474 ±0.943 ±0.015 ±0.333 ±0.622 ±0.013 ±0.201 ±0.586 ±0.014

No RDS 87.252 69.859 0.291 0.238 88.161 76.321 0.323 0.235 87.798 72.487 0.233 0.278

±0.724 ±0.925 ±0.002 ±0.405 ±0.602 ±0.001 ±0.525 ±0.809 ±0.001

No CA 99.376 96.753 0.801 N/A 99.225 97.268 0.794 N/A 99.576 97.337 0.656 N/A

±0.178 ±0.584 ±0.01 ±0.158 ±0.39 ±0.008 ±0.122 ±0.464 ±0.011

mizing the deployment cost as a secondary objective. Thus, we use RPM in the follow-

ing section to provide reliability-aware placements under different scenarios for further

evaluation. However, the algorithms are designed flexibly to switch between these vari-

ations easily depending on the kind of trade-off required.

5.5 Performance Evaluation 165

5.5.3 RPM Algorithm Placement Evaluation

In this section, we evaluate the efficiency of the placement generated by RPM under

multiple aspects addressed by the algorithm: the effect of reliability-aware redundant

placement, the impact of throughput-awareness, and finally, CCF consideration. To in-

dicate the behaviour of the algorithms under different failure types, we start with in-

dependent failures in the first two experiments and add CCF to the final experiment to

analyse the overall effect.

Effect of Redundant Placement - This section evaluates ”proactive redundant place-

ment” handled in stage 2 (RRP) of the hierarchical placement process. We compare our

approach with multiple alternative approaches as follows:

1) No Red: Does not consider the redundant placement of the microservices but tries

to place the minimum required microservice instances to maximise the reliability of the

placement using TSP.

2) Even Dist: The placement method proposed in [32], where microservice instances

are evenly replicated across the Fog resources while maximising Fog resource usage.

3) Reliability-aware Heuristic (R Heu): Uses the two heuristic approaches used in

our placement policy to populate the initial populations of TSP and RRP algorithms.

R Heu represents an improved adaptation of primary-backup copy placement concept

in [135] to our FSPP problem with load sharing.

For this evaluation, we use two workloads (WL1 with six composite services and

30 devices, WL2 with 12 composite services and 60 devices) and consider two time

periods (20 days, 30 days). Such a selection of workloads covers all three parameters

that affect the solution space. Figure 5.6 depicts the results of the different approaches.

Results show that our policy is able to outperform other approaches in terms of relia-

bility satisfaction while improving FTTF (up to 25% and 40% improvement in reliabil-

ity satisfaction and FTTF, respectively). All the approaches except No Red utilise in-

dependent scalability of the microservices to replicate them across Fog environments.

Thus, No Red records the lowest reliability at a lower cost. Due to redundant place-

ments, R Heu records improved reliability. However, being a heuristic approach, R Heu

lacks control over the number of redundant placements, which hinders it from achiev-

ing higher satisfaction compared to RPM. The reliability satisfaction of both of these

166 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Figure 5.6: Evaluation of proactive redundant placement

approaches is unacceptable for mission-critical services with stringent reliability expec-

tations. Even Dist approach shows reliability metrics closer to RPM, especially in WL2

where the number of Fog devices is higher, allowing Even Dist to deploy more replicas

to ensure even distribution of instances. However, this approach incurs higher costs due

to reliability-unaware replication and shows a higher reduction in reliability metrics as

the considered time period increases. Although RPM incurs higher costs compared to

No Red and R Heu due to higher flexibility in its replica placements, reliability and cost

awareness of the algorithms allow it to reach higher reliability satisfaction (over 98%)

while reducing the cost by more than 8% compared to Even Dist which also makes use

of independent scalability of microservices.

Throughput-aware Scalability of the Placement - In this section, we evaluate how

throughput awareness, together with MSA, contributes to higher performance (see Fig-

ure 5.7). To this end, we use two workloads: a Uniform workload where all services

have similar throughput requirements and a Varied workload having heterogeneous

throughput requirements among services.

All considered approaches except Even Dist incorporate throughput awareness into

the placement. No Red places the minimum required instances (k) to satisfy through-

put requirements, whereas R Heu deploys redundant microservice instances on top of

that using the AHI algorithm. RPM formulates the problem as a k out n load balanc-

ing problem where n is determined robustly based on the failure characteristics of the

environment. As a result, RPM reaches the highest reliability satisfaction in both sce-

5.5 Performance Evaluation 167

Figure 5.7: Evaluation of throughput-aware scalability

narios (around 98.5% in both), adapting well to the heterogeneous throughput needs.

Although No Redundancy and R Heu have lower performance due to limitations in

proactive redundant placement, they show an increase in reliability metrics in the Var-

ied scenario. This is also a result of combining throughput and reliability awareness,

where it’s easier for these two approaches to ensure high reliability for low throughput

services with less number of instances, which ultimately improves the average reliability

compared to a uniform throughput scenario. Compared to the above three approaches,

Even Dist shows a considerable decline (98.4% in Uniform to 95.1% in Varied) in re-

liability metrics in the Varied scenario as this approach tries to replicate instances for

all services evenly without prioritising the ones with higher throughput requirements.

From the above results, it is evident that the incorporation of throughput awareness to

proactive redundant placement decisions improves the robustness of the algorithm al-

lowing proper utilisation of limited Fog resources to generate a scalable microservice

placement (using both horizontal and vertical scalability).

Effect of CCF - In this section, we evaluate the effect of considering common cause

failures along with independent device failures. To assess the robustness of the proposed

fitness functions, two main categories of CCFGs are considered: a non-overlapping sce-

nario where device groups can be isolated and overlapping scenarios where devices

can belong to multiple CCFGs in an overlapping manner (see Figure 5.8). For these

two scenarios, RPM is compared with CCF Unaware variation of the RPM algorithm

168 Reliability-aware Proactive Placement of Mission-critical IoT Applications

Figure 5.8: Evaluation of CCF effect

and Even dist approach. In both scenarios, RPM is able to take the effect of CCFGs

into consideration for the placement decisions and hence, records the highest reliability

satisfaction (up to 2.5% improvement). Because of CCFGs, RPM spreads redundant mi-

croservice instances across CCFGs such that failures of such groups would be isolated.

This results in a slight increase in cost compared to CCF Unaware (up to 3.5%), but still

able to achieve around 20% cost reduction compared to Even dist.

Based on the experiments, it is evident that RPM provides a robust approach capa-

ble of delivering throughput-aware redundant placements under both independent and

correlated failures of Fog environments, while achieving a balance between reliability

and cost. Moreover, the proposed algorithm is capable of navigating solution spaces of

different sizes successfully.

5.6 Summary

In this chapter, we proposed a reliability model for microservices-based IoT applica-

tions, considering their placement within resource-constrained and heterogeneous Fog

devices where independent and correlated failures exist within the Fog environments.

Accordingly, we proposed a proactive redundant placement policy that utilises the in-

dependently deployable and scalable nature of the microservices to support the high-

5.6 Summary 169

reliability requirements of the mission-critical IoT services in a throughput and cost

aware manner. We implemented a hierarchical algorithm consisting of PSO and NSGA2-

II algorithms and improved them with multiple approaches to improve the algorithm’s

convergence. Moreover, we evaluated our approach through extensive experiments

under two main aspects: performance improvements of the algorithm compared with

multiple alternative approaches and efficiency of the resultant placement compared to

multiple benchmark placement policies. The obtained results show that our policy can

successfully navigate different solution spaces and provide robust placements that can

achieve high reliability (up to 25% improvement in reliability) considering independent

and correlated failures.

In the next chapter, we investigate microservice placement within federated Fog en-

vironments and develop a software framework to enable scalable placement and dy-

namic composition of microservices within multi-fog multi-cloud environments.

Chapter 6

A Framework for Scalable
Microservices Placement in Federated

Fog Environments

The Federation of distributed Fog resource clusters and Cloud data centres is an effective solution

to overcome the resource-constrained nature of Fog resources and to provide geo-distributed access

to IoT services. Execution of placement policies for distributed microservice placement across Fog

and Cloud resource clusters and their dynamic composition (service discovery and load balancing) to

create composite services are the main challenges related to realising federated Fog computing. Thus,

this chapter presents ”MicroFog”, a novel Fog computing framework designed and developed to

support the placement and management of microservices-based applications within multi-fog multi-

cloud environments. We design and implement a software framework that utilises the capabilities

of cloud-native technologies (i.e., Kubernetes and Istio etc.) to facilitate distributed placement and

composition of microservices-based applications across federated fog environments. We extend and

integrate the distributed placement algorithm presented in Chapter 3 to evaluate the framework’s fea-

tures. Results demonstrate that MicroFog is a scalable, extensible and easy-to-configure framework

that can be used to integrate and assess novel placement policies for deploying microservice-based

applications within multi-fog multi-cloud environments. It enables horizontally scaled placement,

service discovery and load balancing of microservices across federated environments, thus reducing

the application service response time up to 54% compared to placements without horizontally scaling

microservices across distributed resources.

This chapter is derived from:

• Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya, ”MicroFog: A Framework for Scal-
able Placement of Microservices-based IoT Applications in Federated Fog Environments”, Journal of
Systems and Software, (revision, June 2023).

171

172 A Framework for Scalable Microservices Placement in Federated Fog Environments

6.1 Introduction

The IoT is growing rapidly, and the ever-increasing number and variety of connected

devices generate massive amounts of geo-distributed data to be processed using Fog

resources. However, the resource-constrained nature of the Fog resources is the main

drawback which limits realising the full potential Fog resources as the load on applica-

tions grows. This challenge can be overcome through the federation of geo-distributed

Fog clusters and Cloud data centres. This includes cooperative use of distributed Fog

computing cluster/ data centres and Cloud data centres for the placement of applica-

tions to satisfy their demands and meet QoS requirements [149]. Such an approach

focuses on extending the hybrid Cloud to include Fog computing resources provided by

multiple Fog Infrastructure Providers (FIP) and maintain seamless connectivity across

different environments to achieve the best possible performance [150].

Furthermore, cloud-native characteristics of microservices make them perfect for

such placement of large-scale IoT applications, which has given rise to novel paradigms

like Osmotic Computing that proposes the convergence of IoT, MSA and Fog comput-

ing where microservices are dynamically moved and composed across hybrid fog-cloud

environments [56]. To support such distributed and dynamic deployment, Microser-

vices are containerised using technologies such as Docker and dynamically composed

using container orchestration platforms like Kubernetes and service mesh technologies

such as Istio, thus ensuring seamless connectivity among microservices deployed across

distributed computing resources.

The development and integration of novel efficient placement algorithms are vital

to harvesting the full potential of MSA in Fog computing environments. Existing litera-

ture contains works focusing on horizontally scaled placement of microservices to meet

QoS parameters such as throughput, reliability and latency [32, 38, 40, 46], location-

aware placements [73], etc. that place interconnected microservices across distributed

resources. However, these algorithms require extensive and accurate evaluations and

validations before applying them at the enterprise level [8]. Compared to Cloud com-

puting, where Cloud resources can be acquired from commercial service providers like

Amazon AWS, Google Cloud, etc., Fog computing lacks frameworks and platforms that

6.1 Introduction 173

can be used for easy integration and evaluation of novel placement policies. Although

several real-world frameworks are available to manage Fog resources [94, 151], they

have limitations related to Microservices-based IoT application placement. They lack

support for the dynamic composition of microservices across federated Fog and Cloud

data centres, easy integration of distributed placement policies, compatibility with open-

source cloud-native technologies, support for heterogeneous microservices-based appli-

cations, ease of setup and prototyping support, etc. To overcome these limitations, we

propose MicroFog: an easily configurable software framework for microservice-based

application placement within federated fog-cloud environments. MicroFog can be used

by IoT application developers, Fog infrastructure providers, and researchers in Fog com-

puting to create, integrate and evaluate novel placement policies to deploy and manage

microservices-based IoT applications. MicroFog enables the users to create placement

approaches that harvest the potential of MSA, thus improving the QoS of applications.

MicroFog provides a configurable control engine that executes placement policies

in a distributed or centralised manner and deploys containerised microservices within

Kubernetes and Istio-managed Fog and Cloud resource clusters. MicroFog abstracts

Kubernetes and Istio resource deployment (i.e., pods, services, virtual services, gate-

ways, etc.) while providing support for integrating novel placement algorithms and

load-balancing policies. Moreover, MicroFog ensures the dynamic composition of mi-

croservices distributed across geo-distributed multi-fog multi-cloud environments by

enabling service discovery and load balancing.

The major contributions of our work are as follows:

• A scalable and extensible framework is proposed for deploying and managing

microservices-based IoT applications within the federated Fog and Cloud envi-

ronments. The framework consists of multiple components, including a Control

Engine (MicroFog-CE) for placement algorithms execution and application de-

ployment, data stores to store required metadata, a monitoring component and

a logging component.

• MicroFog-CE is designed and developed as an easy-to-configure microservice sup-

porting different operation modes (centralised vs distributed), application place-

174 A Framework for Scalable Microservices Placement in Federated Fog Environments

ment modes (periodic vs event-driven), integration of novel placement policies,

load balancing policies, etc.

• Deployment architectures are proposed for the major components of the MicroFog

framework to ensure their scalable and fault-tolerant deployment across federate

Fog and Cloud environments.

• A proof-of-concept prototype of the framework is created, and the main features

of the framework are demonstrated and evaluated using multiple use cases and

benchmark policies integrated with the control engine.

The rest of the chapter is organised as follows. In Section 6.2, we provide a com-

prehensive background on microservices-based application placement, derive require-

ments of the framework based on that and analyse related research. Section 6.3 intro-

duces the MicroFog framework, and Section 6.4 details the deployment architectures for

the main components of the framework. APIs to access MicroFog-CE are presented in

Section 6.5. Features of the framework are evaluated in Section 6.6. Finally, Section 6.7

concludes the chapter.

6.2 Background and Related works

In this section, we present a comprehensive background on the Fog computing paradigm,

microservices-based applications, their deployment-related aspects and the Fog appli-

cation placement problem to derive requirements of the frameworks for scalable Place-

ment of Microservices-based IoT Applications within Federated Fog Environments. More-

over, we provide a qualitative comparison of existing frameworks to highlight the capa-

bilities of our proposed framework.

6.2.1 Fog Computing

Fog computing introduces an intermediate layer between IoT devices and the Cloud,

consisting of distributed, heterogeneous and resource-constrained resources compared

to Cloud data centres [11]. With the rapid growth in IoT applications, Fog computing

6.2 Background and Related works 175

Figure 6.1: Federated multi-fog and multi-cloud architecture

is evolving towards a federated multi-fog multi-cloud architecture [150] where multiple

Fog Providers provide infrastructure, including computing, storage and networking re-

sources within the Fog layer. This helps to overcome the resource-constrained natures

of the Fog devices, enables ubiquitous access, and supports location-aware placement of

applications. In this work, we consider the existence of multiple such Fog clusters pro-

vided by various service providers where they maintain connectivity with neighbouring

clusters and the Cloud (see Figure 6.1).

6.2.2 Microservices-based Applications

MSA decomposes an application into a set of independently deployable modules known

as microservices designed around business logic to have well-defined business bound-

176 A Framework for Scalable Microservices Placement in Federated Fog Environments

aries [22]. Microservices communicate with each other using lightweight APIs to create

composite services that the end users access.

The loosely coupled nature of these microservices enables them to be deployed and

scaled independently within distributed environments. Thus, dynamic service discov-

ery and load-balancing mechanisms ensure seamless connectivity among microservices.

To achieve such cloud-native behaviour, microservices are packaged as containers (i.e.,

Docker) that can be scaled (up and down) rapidly to meet the request demand. With

such technologies, MSA can deploy microservices across distributed multi-fog multi-

cloud environments while maintaining seamless connectivity and dynamic load balanc-

ing among horizontally scaled instances.

Modelling Microservice Application

As microservices-based applications have interactions among microservices, they can

be modelled using Directed Acyclic Graphs (DAGs) [46] where the vertices of the DAG

represent microservices (m ∈ Ma where Ma is the set of microservices of application

a). Directed edges in DAG represent microservice invocations such that the direction

is from the client microservice (consumer) to the invoked microservice (consumed).

Microservices are independently packaged and have heterogeneous resource require-

ments that can be defined in terms of required RAM, CPU, storage, etc., needed to

satisfy a specific request rate/throughput. Due to the fine-grained nature of the mi-

croservices, they communicate to create composite services where each application pro-

vides multiple services (Sa: the set of services of application a) with heterogeneous

QoS requirements that can be defined at the service level. As microservices can have

complex interaction patterns to create composite services (i.e., chained, aggregator, hy-

brid), the dataflows among microservices can be uni-directional or bi-directional (d f a:

set of dataflows among m ∈ Ma). Thus, each application can be denoted as a tuple of

< Ma, d f a, Sa > where each service s ∈ Sa is depicted by a tuple containing its microser-

vices, data paths within them and QoS requirements of the service; < Ms
a, Ps

a , Reqa¿.

Data paths are collections of dataflows within a composite service that can be used to

calculate the makespan of the service. It depends on the interaction pattern of the mi-

6.2 Background and Related works 177

croservices within the composite service (i.e., the chained pattern has a single data path,

whereas the aggregator invokes multiple datapaths).

6.2.3 Application Deployment Related Aspects

Microservices-based application deployment and management are aided by three cloud-

native technologies: containerisation platforms (i.e., Docker), container orchestration

systems (i.e., Kubernetes, Docker Swarm) and service mesh platforms (i.e., Istio, Con-

sul). The MicroFog framework proposed in this work uses Docker, Kubernetes and Is-

tio for the deployment and management of the microservices. Hence, we describe each

technology and its aspects related to the federated fog-cloud deployment of applications

as follows:

6.2.4 Containerisation using Docker

Microservices are packaged as Docker containers to make them independent of the host

environments. Moreover, compared to earlier used virtual machines, containers are

light-weigh with less startup time. Thus, containerisation of the microservices suits dis-

tributed deployment and scaling across heterogeneous and resource-constrained Fog

nodes. Docker container images are stored and distributed using a container registry.

Docker provides a fully managed container repository known as DockerHub. However,

this is a centralised repository with limitations in privacy and security. Pulling images

from a centralised repository can incur extra latency during microservice deployment in

Fog environments. Thus, for Fog computing, it’s important to explore distributed con-

tainer image registries, depending on the resource availability of the Fog infrastructure

to host the registry.

Kubernetes as Container Orchestration Platform

Decomposition of an application according to microservices architecture results in a

large number of microservices and an even more significant number of containers due to

horizontally scaled deployment of microservice instances to meet throughput demand,

178 A Framework for Scalable Microservices Placement in Federated Fog Environments

redundant placement of microservice instances to ensure reliability, distributed place-

ment across Fog cluster to support location-awareness, etc. Thus, a container manage-

ment platform such as Kubernetes is required to manage the life cycle of thousands of

containers. As one of the most popular open-source container orchestrators, Kubernetes

is rapidly improved for use within heterogeneous computing environments through dis-

tributions like k3s which is a minimal Kubernetes distribution for extreme edge (i.e.,

resource-constrained IoT devices, Raspberry Pis, etc.). Thus, the use of k8s and k3s

across multi-fog multi-cloud environments is exceeding explored by Cloud providers

and Telco providers in their efforts to extend cloud-like services towards network edge

[152–154]. Thus, we summarise the basic concepts used in Kubernetes. To deploy con-

tainers at a scale and to maintain communication among microservice containers, Ku-

bernetes provides build-in ”resources” (i.e., Pods, Service, etc.) that provide abstractions

for underlying management operations. We discuss some of the most used resources in

our framework below.

• Pod: A Pod is the smallest deployable unit supported by Kubernetes, where each

pod can contain one or more containers (containers co-located with its sidecar con-

tainers). A pod represents a logical host where all co-located containers of the pod

share the network resources and communicate through localhost. Pods provide

fine-grained control over microservice instance deployment by enabling the de-

ployment of pods on specific nodes by adding node selection constraints (i.e., node

selectors, node name, etc.) to the pod.

• Service: Kubernetes service is an abstraction over a set of pods within a Kubernetes

cluster that provides discovery and load balancing to those pods, thus allowing

pods to get dynamically created and destroyed. Although in-cluster service dis-

covery is handled through services, multi-cluster service discovery is not possible

with Kubernetes alone.

• Namespace: Namespaces isolate name-spaced Kubernetes objects (i.e., pods, ser-

vices, etc.), thus providing a way to isolate resources within multi-tenant Kuber-

netes clusters.

6.2 Background and Related works 179

• ConfigMaps: ConfigMaps stores configurations as key-value pairs, thus separat-

ing configurations from the pods. This improves the flexibility and portability of

containerised microservices.

• Secrets: Secrets are similar to ConfigMaps, but are designed to hold sensitive in-

formation that should not be stored within the application code.

• Roles and Rolebindings: They grant role-based access to Kubernetes resources (i.e.,

nodes, pods, configmaps, etc.)

Istio as Service Mesh

While Kubernetes provides basic functionalities required for container orchestration, it

has limitations related to service discovery, load balancing, observability, fault tolerance

and security management of the microservice applications. Thus, the service mesh is

introduced as a software abstraction layer on top of Kubernetes to overcome these lim-

itations. To this end, Istio implements multiple Custom Resource Definitions (CRDs)

extending Kubernetes resource definitions as follows:

• Virtual Service (VS): Virtual Services provide more control over traffic routing by

providing a way to define traffic routing rules to pods exposed through Kuber-

netes services.

• Destination Rules (DR): Once virtual service routing rules are applied, and the

traffic is routed to the destination, Destination Rules are applied to perform load

balancing, direct traffic towards service subsets, etc.

• Gateway: Gateway is an abstraction for a load-balancer for ingress and egress

traffic of the cluster. Furthermore, to support inter-cluster traffic among Kuber-

netes clusters spread across different networks, Istio provides a specialised gate-

way known as the east-west gateway.

Kubernetes and Istio provide HTTP REST APIs to retrieve, create, update, and delete

the above resources. Moreover, client libraries (i.e., Fabric8, client-go, etc.) are available

for accessing these APIs through programming languages.

180 A Framework for Scalable Microservices Placement in Federated Fog Environments

Example Application Deployment

In this section, we demonstrate the use of Kubernetes and Istio resources to deploy a

microservices-based IoT application within Kubernetes and Istio available clusters. We

use a Smart Health Monitoring Application (see Figure 6.2) [46] as a use case. The appli-

cation consists of three microservices and two composite services accessed by the users:

a latency-sensitive emergency event detection service (S1) where both its microservices

(m1, m1) are placed in distributed Fog resources, a latency-tolerant predictive health

warning service consisting two microservices (m1, m3). m1 is shared between both ser-

vices and placed within the Fog layer to meet stringent latency requirements of service

S1, whereas m3 is deployed within the Cloud.

Figure 6.2 demonstrates a logical view of how Kubernetes and Istio resources route

external traffic from users to m1 and m3 and maintain communication between intercon-

nected microservices (between m1 and m2, between m1 and m3). With the use of Istio,

the ingress traffic received at the IP and port of the Istio ingress gateway are routed to-

ward the desired pods based on the ”host” header of the request. In Istio, the ”host”

value acts as the address of each set of pods exposed through Kubernetes services. Is-

tio gateway, Virtual Service and Destination Rules are configured accordingly to enable

proper traffic routing. Internal traffic among communicating microservices of the appli-

cation is also routed by Virtual Services and Destination Rules based on ”host” value.

Moreover, these Istio resources together with Kubernetes services decouple service end-

point from the IP addresses of the individual pods, so that the pods can be dynamically

placed and migrated to different nodes within and across clusters.

Kubernetes + Istio Multi cluster support

Istio supports deploying a single mesh to span multiple Kubernetes clusters, thus en-

abling cross-cluster service discovery and load balancing. The Istio deployment model

for multi-cluster scenarios depends on the nature of the underlying network model.

The simplest network model considers multiple clusters belonging to a single network

where all nodes are fully connected through technologies like VPN. However, large-

scale production systems that span multiple Kubernetes clusters belong to multiple net-

6.2 Background and Related works 181

Figure 6.2: Example deployment of a smart health monitoring application

works with administrative boundaries where each cluster is exposed through load bal-

ancers. Fog computing architecture considered in this work (Section 6.2.1) maps to a

multi-network model. Hence, in this work, we consider Istio multi-network deploy-

ment with multiple control planes to improve the resilience of the deployment. In this

deployment mode, each Istio control plane connects to the API server of the connected

clusters for service discovery across clusters.

Istio introduces an east-west gateway to expose the services within the cluster to

other clusters to enable cross-cluster service discovery. Moreover, to ensure successful

DNS lookup across clusters, consumer clusters need to have access to the Kubernetes

Service resource, Istion DR and VS of the consumed service deployed in other clusters.

As an example, for S1 an example application, for m1 to route traffic from its Fog cluster

182 A Framework for Scalable Microservices Placement in Federated Fog Environments

to m2 deployed within a Cloud cluster, the above resources related to m3 should be

deployed within both Fog and Cloud clusters.

6.2.5 Placement Problem

Microservice-based IoT application placement problem within Fog environments ad-

dresses deployment and maintenance of microservices within federated Fog and Cloud

environemnts to meet the SLAs of the application services [32, 33].

Due to the flexibility provided by the microservices architecture, placement algo-

rithms aim to incorporate horizontal scalability to meet throughput requirements [32,

38, 46], location-aware distribution [73], redundant placement to improve reliability [48],

balanced placement across Fog clusters and Cloud depending on service discovery ca-

pabilities [41, 46], optimum load balancing and routing [43], etc. to efficiently utilise

limited Fog resources while satisfying QoS parameters such as makespan, budget, relia-

bility, availability, and throughput.

Execution of placement algorithms can take place as batch placements [46, 62] that

process multiple application placement requests at once or sequential placements [36,

41] where queued placement requests are processed one after the other. Moreover, the

placement policies can be developed as centralised [155] or distributed [60] algorithms

to achieve placement across distributed Fog and Cloud resources provided by multiple

infrastructure providers.

6.2.6 Framework Requirements

Based on the background, we summarise the functional and non-functional require-

ments of a framework for scalable placement of microservices-based IoT applications

within federated Fog and Cloud computing environments, as follows:

• Multi-fog Multi-cloud microservice placement and deployment: Framework should

support execution of placement algorithm across multiple Fog and Cloud clus-

ters using either centralised or distributed operation modes. Accordingly, appli-

cation microservices need to be deployed by using relevant Kubernetes and Istio

6.2 Background and Related works 183

resources.

• Seamless microservice composition across hybrid environments: Kubernetes and

Istio resource deployment should ensure cross-cluster service discovery and load

balancing.

• Ability to integrate novel placement algorithms and load balancing policies easily.

• Support for heterogeneous cloud-native application deployment without any application-

level changes.

• Compatibility with cloud-native technologies so that the framework can improve

and evolve as the underlying technologies evolve (extensibility).

• A configurable control engine to support different operation modes like centralised

or distributed operation, application placement modes such as event-driven or

periodic placement request processing and batch or sequential placement request

processing.

• Distributed storage solutions to store the data required for application placement

and deployment (i.e., application models, Kubernetes and Istio resource defini-

tions).

• Rapid prototyping support to enable evaluations of placement algorithms during

their rapid design and development cycles.

• Framework should be flexible and scalable such that it can be deployed to operate

across distributed Fog and Cloud clusters.

6.2.7 Existing Fog Frameworks

In this section, we compare existing Fog frameworks qualitatively based on the require-

ments identified in the previous section (see Table 6.1).

Yousefpour et al. [105] present a FogPlan, a framework for dynamic provisioning

containerised Fog services using container orchestration platforms such as Kubernetes

or OpenStack. FogPlan consists of a centralised Fog Service Controller responsible for

184 A Framework for Scalable Microservices Placement in Federated Fog Environments

Table 6.1: Comparison of existing frameworks

Work Architecture Cloud-native Application Support Microservice Composition Support Control-engine

Work Integration Multi-cluster µservices Containers Container Service Mesh Automated Service Discovery Load Balancing Extensibility Scalability Configurability Data Stores

Orchestration Deployment Avail. cross-cluster Avail. configurable Cross-cluster

[105] Fog, Cloud - ✓ ✓ - - ∂ ∂ - - - ✓ ∂ ∂ Centralised

[94] Fog, Cloud - ✓ ✓ ✓ - ∂ ✓(Kubernetes) - ✓(Kubernetes) - - ✓ ∂ ∂ Distributed

[78] Fog, Cloud - ✓ ✓ ✓ - ∂ ✓(Kubernetes) - ✓(Kubernetes) - - ✓ ∂ ∂ -

[156] Edge - ✓ ✓ ✓ - - ✓ - ✓ - - ✓ ∂ ∂ -

[157] Fog,Cloud - ✓ ✓ ✓ - ∂ ✓(Docker Swarm) - - - - ∂ ∂ ∂ -

[158] Fog, Cloud - - - - - ∂ - - - - - ∂ ∂ ∂ Distributed

[151, 159] Fog, Cloud - ∂ ✓ ∂ - ∂ ∂(ProxyServer) - - - - ∂ ∂ ∂ Distributed

[160] Fog, Cloud - ✓ ✓ - - ∂ ∂ - - - - ✓ ∂ ∂ Centralised

Our Fog,Cloud ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Distributed, Replicated

(Kubernetes, Istio) (Istio) Fault-tolerant

✓: Supported by the framework, ∂: Partially supported

hosting the data stores, provisioning Fog services and deploying them within Fog nodes.

Santoro et al. [94] provide an open-source technology-based (i.e., OpenStack, Kuber-

netes, Docker) platform named Foggy for workload placement in Fog computing envi-

ronments. FogAtlas [78] extends Foggy platform by extending Kubernetes to orchestrate

distributed Fog and Cloud resources in a user-friendly manner. Ermolenko et al. [156]

also propose a framework based on Kubernetes and Docker where a Kubernetes cluster

is deployed within a Mobile Edge Computing (MEC) environment. Bellavista et al. [157]

create a microservice deployment framework based on Docker and Docker Swarm with

a centralised control engine deployed in the Cloud to execute placement algorithms and

deploy microservices accordingly. While they utilise Kubernetes and Docker Swarm

features for container orchestration, they also have limitations in multi-cluster support,

advanced microservice composition with service mesh technologies, and scalability of

the control engine across multi-fog multi-cloud environments. Tuli et al. [158] introduce

FogBus framework to harness edge/Fog and remote Cloud resources for the placement

of applications developed as a collection of inter-connected modules. Deng et al. [151]

propose FogBus2, a resource management framework for the deployment of container-

ised applications across edge and Cloud resources that are interconnected to each other

using a VPN network. Wang et al. [159] improve FogBus2 and integrated container or-

chestration capabilities to the framework using Kubernetes. Their framework supports

the integration of novel placement policies and their performance monitoring to evalu-

ate novel placement policies. However, their framework lacks support for multi-cluster

scenarios with multiple geo-distributed Kubernetes clusters. Moreover, they lack sup-

6.3 MicroFog Framework 185

port for the dynamic composition of microservices due to limitation in service discov-

ery and load balancing aspects and does not integrate service mesh technologies to fully

leverage the capabilities of microservices architecture. Kubernetes resource usage in

FogBus2 is limited only to Pods, which limits the framework’s scalability. Furthermore,

application-level changes are required for the containerised application modules to be

deployed within the framework. Mahmud et al. [160] propose a fully distributed and

scalable framework named Con-Pi to execute microservices-based applications. Con-

Pi provides a centralised controller to execute integrated customised placement policies

and deploy containerised microservices accordingly. However, Con-Pi does not provide

advanced microservice composition, dynamic service discovery and load balancing for

the deployed microservices and does not consider application deployment across mul-

tiple Fog resource clusters.

Based on the qualitative analysis provided in Table 6.1, existing frameworks have

limitations in multiple requirements identified in Section 6.2.6 such as multi-fog multi-

cloud placement and fully-automated deployment of applications, ensuring cross-cluster

dynamic composition of microservices through container orchestrators and service mesh

technologies, improving extensible of the framework through open-source technologies,

scalability of the framework across highly distributed Fog environments, configurabil-

ity to support different operation and placement modes, and distributed management

of data required for application placement and deployment. Thus, this work introduces

a novel framework for microservices-based application placement within federated Fog

environments that satisfy the above requirements.

6.3 MicroFog Framework

In this section, we discuss the high-level architecture of the proposed MicroFog frame-

work, its main components and workflow to highlight how MicroFog meets the require-

ments identified in Section 6.2.6.

186 A Framework for Scalable Microservices Placement in Federated Fog Environments

6.3.1 High-level Architecture

Figure 6.3 presents the high-level architecture and the workflow of MicroFog. Micro-

Fog provides a scalable and extensible Control Engine (CE) to execute placement al-

gorithms and deploy IoT applications within Istio-installed Kubernetes clusters. CE

communicates with three data stores: 1. YAML File Store containing YAML defini-

tions (both Kubernetes and Istio) required for deployment of applications, 2. Meta Data

Store for storing application models and links to related deployment resources stored

within the YAML File Store, and 3. Docker registry hosting docker images for the ap-

plication microservices. Application providers can submit Placement Requests (PRs) to

the MicroFog-CE, defining the application for deployment and QoS requirements. CE

receives application placement requests (PRs), processes them according to a selected

placement policy (either an inbuilt placement algorithm or external algorithm accessed

through an API), configures related Kubernetes and Istio YAML files according to the

generated placement and the load balancing policy, and finally deploys them within Fog

and Cloud resources using Kubernetes API. Furthermore, MicroFog integrates moni-

toring and logging tools to observe the performance of the MicroFog framework and

applications deployed using it.

6.3.2 Main Components and Technologies

Control Engine (CE)

CE is designed to abstract microservices placement (execution of placement algorithms

and deployment) and cross-cutting function handling (i.e., service discovery, load bal-

ancing) for the dynamic composition of microservices across multi-fog multi-cloud en-

vironments.

We implement CE as an independently deployable and scalable microservice de-

veloped using Quarkus 1, a novel Kubernetes-native lightweight Java framework de-

signed to build cloud-native microservices. Quarkus reduces memory usage and im-

proves deployment density [161], which is suitable for developing microservices for de-

1https://quarkus.io/

6.3 MicroFog Framework 187

Figure 6.3: MicroFog: High-level architecture

ployment within resource-constrained Fog environments. As Quarkus is a Kubernetes-

native framework, the development and deployment of the CE become straightforward

and less time-consuming, thus allowing users to rapidly improve, extend and customise

it with evolving needs. Thus, Quarkus is rapidly becoming popular as a lightweight Java

framework for creating cloud-native microservices. Moreover, Quarkus allows easy ac-

cess to Fabric8 Kubernetes and Istio clients 2 through its extensions. Fabric8 is a highly

popular Kubernetes and Istio client that provides complete access to Kubernetes API.

Fabric8 consists of a rich DSL (Domain Specific Language) for interacting with Kuber-

netes API, hence making it one of the most used open-source Kubernetes clients with

an extremely active community using and continuously improving it. Thus, we have

selected Qaurkus together with Fabric8 Kubernetes and Istio clients to create our con-

troller.

We discuss the functional and non-functional features of the MicroFog-CE as follows:

1. PR submission for placement: Application providers can submit their PRs to the CE

2https://github.com/fabric8io/kubernetes-client

188 A Framework for Scalable Microservices Placement in Federated Fog Environments

through an API which expects HTTP POST requests with the PRs represented in

JSON format (API 1 shown in Figure 6.3). Each submitted PR can define multiple

data fields related to the application, including application id, QoS parameters,

any restrictions for application placement, and traffic entry clusters. Once submit-

ted, CE uses such information to process the PR (i.e., the application id is the key

to retrieving the application model and deployment resources from the data store,

and entry clusters denote the clusters that act as the entry point for the ingress

traffic for the considered application) and deploy the application microservices

and deployment resources accordingly.

2. Multiple operation and placement modes: CE supports Centralised and Distributed

operation modes. In centralised mode, a primary CE (i.e., deployed within the

Cloud) with a global view of the infrastructure (i.e., Fog, Cloud clusters, their

topology and resource availability) is responsible for executing the placement al-

gorithm. In this mode, the primary CE queries the secondary CEs (through API

2) to gain information regarding the resources available within each cluster and

their topology-related data (i.e., directly reachable Fog and Cloud clusters from

each cluster) to construct the global view of the federated environment. Primary

CE uses this information to generate placements for the applications requested by

the PRs and send the output placement details to each relevant cluster (through

API 3). The secondary CEs deployed within each cluster process the placement

output and deploy Kubernetes and Istio resources accordingly. In contrast, in the

distributed mode, all CEs are responsible for running the placement algorithm lo-

cally per cluster. They collaborate by forwarding the PRs among the clusters for

distributed placement across multi-fog multi-cloud environments. MicroFog-CEs

use API 1 for PR forwarding among clusters as well.

Furthermore, the CE supports two placement modes: Periodic Placement and

Event-driven Placement. Periodic placement invokes the placement algorithm pe-

riodically based on a configurable time period. Under this mode, the placement

algorithms can be designed to process the PRs either as a batch (all PRs in the

queue are processed simultaneously by the algorithm) or sequentially (either in

6.3 MicroFog Framework 189

First-In-First-Out order or prioritised). In the event-driven mode, the placement

algorithm is invoked upon receiving a new PR.

3. Placement Algorithm Integration: CE supports easy integration of novel placement

algorithms. This can be done using two methods: in-built algorithm implementa-

tion where novel placement policies can be implemented by extending Placemen-

tAlgorithm.java base class of the CE. The base class is initialised with the meta-

data required by the placement algorithms (i.e., resource availability of the de-

vices, application model and topological information). Novel placement algo-

rithms can extend this to implement customised placement logic that utilises the

metadata to produce placement output (denoted by PlacementOutput.java) con-

sisting of microservice-to-device mapping and PR completion data (completed

PRs vs incomplete PRs that should go through a forwarding process to other clus-

ters for placement completion). Moreover, CE provides capability to integrate ex-

ternal placement algorithms, which allows algorithms to be implemented in other

programming languages (i.e., Python for placement algorithms that use Machine

Learning). Such algorithms can be implemented as a separate microservice and

integrate it to the MicroFog-CE by implementing an API that can be called by the

External Algo Service Rest Client in Figure 6.3 of the CE through an HTTP GET re-

quest. CE rest client is designed to send the metadata along with the GET request

so that the external placement algorithm can generate the placement and return

the deployment-related information back to the CE.

By default, MicroFog-CE implements a Latency-aware Scalable Placement Policy

proposed in [60]. The above algorithm aims to place microservices of latency-

critical service as close as possible to the users who access them. We implement

this algorithm in both distributed and centralised modes. We also implement it

with and without horizontal scalability of the microservices to demonstrate the

performance improvement MSA can provide within resource-limited Fog envi-

ronments.

4. Access Infrastructure Metrics: To make placement decisions, placement algorithms

require metrics related to infrastructure, such as resource availability within the

190 A Framework for Scalable Microservices Placement in Federated Fog Environments

cluster. To this end, the current version of CE provides two measurements: 1.

CE access Kubernetes Metric Server to obtain node metrics of current CPU and

RAM usage, 2. CE also provides current resource allocation of the deployed pods

by querying the Kubernetes API. Placement algorithms can utilise both types of

metric information to make placement decisions. Metric collection can be further

extended to use Prometheus as well to utilise time-series metric data for placement

decision making.

5. Load Balancing Policy Integration: Due to the independently deployable and scal-

able nature of the microservices, load balancing plays a vital role in properly dis-

tributing the load across horizontally scaled microservices deployed across feder-

ated Fog and Cloud environments. By default, Istio use a round-robin load balanc-

ing method to route the requests. Moreover, Istio supports other load balancing

methods like random, least request and weighted load balancing, which are al-

ready implemented in Envoy Proxy used by Istio for service discovery and load

balancing purposes. They can be configured by updating the Istio DRs related

to each microservice. In addition to thus, MicroFog-CE provides enhanced capa-

bilities to support custom load-balancing policies, where weights of the weighted

load-balancing approach can be updated based on custom load-balancing policies.

As an example, the current version of the CE implements weighted round-robin

load balancing policy. Once the weight for each microservice instance is calcu-

lated based on the placement, CE handles the updates related to subsets, weights,

and routes in Istio VS and DR resources. While this update is straightforward for

centralised operation mode, distribute placement has one main challenge. Load

balancing information can only be calculated after all required microservice in-

stances are placed. Moreover, to execute load-balancing policies properly, Istio

needs VS and DR resources to be available in all clusters that host the particular

microservice (consumed microservice) and any microservice that tries to interact

with it (consumer microservices). Thus, in distributed placement mode, for each

microservice, the CE waits until all its instances and its consumer microservices

are placed. Afterwards, the information required for VS and DR updates (subset

6.3 MicroFog Framework 191

names and weights) are sent to relevant clusters through API 3 of the distributed

CEs.

6. PR Forwarding Policy Integration: Placement across multi-cloud multi-fog environ-

ments requires the use of distributed placement policies across infrastructure pro-

vided by multiple Cloud and Fog infrastructure providers. MicroFog-CE enables

this by providing the ability to update the status of the partially processed PRs

and forward them to adjacent Fog or Cloud clusters. Such PRs are submitted to

the selected cluster’s API 1. Moreover, novel forwarding policies can be integrated

as well. The default implementation of the CE provides two forwarding policies

where the PRs can be either forwarded to a random Fog cluster or to the Cloud. As

CE instances are configured independently, it is possible to use different forward-

ing policies across clusters.

7. Automated Application Deployment: MicroFog CE abstracts the microservice deploy-

ment process from the framework users. For each application, YAML File Store is

used to retrieve the Kubernetes and Istio resources related to the deployment of

microservices. This includes resources at different abstraction levels such as 1.

application level resources such as Namespaces, Roles and RoleBindings, 2. mi-

croservice level resources such as ConfigMaps, Secrets and Pod definition YAML

files to create microservice instances on mapped nodes based on the placement

algorithm output, 3. Services, Virtual Services and Destination Rules for service

discovery across clusters and to load balance and route traffic to create compos-

ite services based on the load balancing policy and 4. Gateways to enable ingress

traffic to reach root microservices of application DAG. Moreover, MicroFog-CE en-

ables federation across multiple Fog and Cloud clusters by deploying microservice

composition-related resources (i.e., Kubernetes Services, Virtual Services, Destina-

tion Rules) in relevant clusters. CE rules are designed to handle these functionali-

ties, thus abstracting the underlying complexities from the framework users.

8. Scalable and Distributed CE deployment: As the CE is developed as a microservice

using a Kubernetes-native microservice framework, it can be deployed within Ku-

bernetes and Istio-enabled environments in a distributed manner. Each CE can

192 A Framework for Scalable Microservices Placement in Federated Fog Environments

be configured separately and communicate across clusters using the REST APIs,

thus making MicroFog scalable to operate across federated Fog and Cloud envi-

ronments.

9. Extensibility: Design and architecture of the CE capture the problem domain of

microservices-based application placement by implementing java objects as rich

domain-specific objects. Figure. 6.4 domain diagram used in developing the MicroFog-

CE, which adheres with the system models and placement problem formulated in

the Section 6.2. This makes the CE implementation easy to comprehend and extend

to incorporate novel features. Moreover, due to the compatibility of the MicroFog

framework with open-source cloud-native technologies, the CE can evolve as the

capabilities of the underlying technologies evolve.

10. Configurability: Quarkus enables application configuration properties to be acquired

through Kubernetes ConfigMaps. This highly improves the configurability of the

CE, where the users can update application configurations without creating new

Docker images to rapidly use different configurations (policies, placement modes,

operation modes, etc).

Data Stores

MicroFog uses three main data stores as follows:

1. Meta Data Store: Metadata store contains application-related information belong-

ing to two main categories: 1) application model (as discussed in Section 6.2.2)

which contains specification related to microservices, interconnections among mi-

croservices to create services, dataflows, etc. 2) application deployment related

Kubernetes and Istio resources. This includes resource type (i.e., Namespaces,

Pods, Services, etc.) and URL to the YAML file containing the specifications of

each resource. We use Redis 3 as a primary database to store this information.

Even though Redis was initially introduced as a cache, now it is increasingly used

as a primary database to reduce the complexity of data retrieval and improve per-

3https://redis.io/

6.3 MicroFog Framework 193

formance. Redis allows data to be stored as key-value pairs. With the use of Re-

disson, a Redis Java client, the Application domain objects of the CE can be easily

serialised to store within the Redis metadata store and retrieve them back as Java

objects.

2. Yaml File Store: This is used for storing Kubernetes and Istio resource configura-

tions as YAML files. Due to the geo-distributed nature of the Fog clusters, a dis-

tributed object store is required for efficiently storing the YAML files. To meet this

requirement, we use MinIO Object Store 4, an AWS S3 compatible, Kubernetes-

native object store designed for multi-fog multi-cloud environments. For each

Istion/Kubernetes resource to deploy, the CE retrieves the YAML file from the

MinIO data store using an object URL and uses the Fabric8 Kubernetes client li-

brary to load it as a domain object representing the deployment resource.

3. Docker Registry: As IoT application microservices are containerised for deploy-

ment, the container images must be stored in a docker registry reachable by the

CEs. In the current implementation, we use Docker Hub, a publicly available man-

aged Docker store. However, this can be further improved by using local Docker

stores in conjunction with Docker Hub, depending on the resource availability of

each Fog cluster to host the images.

Monitoring and Log Management:

Due to their highly distributed and dynamic nature, monitoring and observability re-

main essential aspects of cloud-native microservices. To this end, Istio enables the in-

tegration of multiple tools in the form of pre-configured plugins. This includes metric

collection and visualisation (Prometheus and Grafana), distributed tracing (Jaeger, Zip-

kin), and mesh visualisation using Kiali. In the current version of the MicroFog frame-

work, we have integrated Prometheus, Kiali and Grafana to observe the traffic across

clusters and to validate the functionalities of the MicroFog-CE. In addition, MicroFog

uses a cluster-level logging architecture to manage the logs generated within each clus-

ter. To this end, MicroFog uses Grafana Loki, a decentralised, lightweight logging stack
4https://min.io/

194 A Framework for Scalable Microservices Placement in Federated Fog Environments

that compresses and stores data in object stores such as S3. As the MinIO object store

used for YAML File storage is S3 compatible, MicroFog uses the same store for stor-

ing the logs. Compared to other cloud-native logging solutions like ElasticSearch, Loki

has a less complex architecture, requires less storage and consumes less power, which

makes it suitable for Fog deployment. Depending on the resource availability of the

Fog clusters, the logs can be stored within the MinIO hosted in Cloud to save storage

space. However, other tools also can be easily integrated depending on requirements.

Moreover, the current architecture can be easily extended so that MicroFog-CE can use

the metrics collected from monitoring and logging tools to execute dynamic placement

algorithms or integrate machine-learning-based approaches.

Rapid Prototyping Support

Producing novel placement algorithms undergo multiple development and evaluation

cycles to optimise their performance. Thus, rapid prototyping during different stages of

policy development is beneficial before conducting large-scale evaluations or applying

them in real-word application deployments. Due to the use of open-source cloud-native

tools, MicroFog enables fast creation of underlying infrastructure using tools such as

Kind and MetaLB to create Fog computing clusters consisting of heterogeneous nodes

and route inter-cluster traffic through load balancers.

6.3.3 PR Processing flow of MicroFog-CE

In this section, we discuss the high-level pseudo-code (see Algorithm 14) of the MicroFog-

CE with regards to processing received PRs. In an environment where each cluster con-

tains a separate CE, the depicted PR processing procedure is executed in all CEs under

the distributed placement mode and only in the primary CE if the placement mode is

set to centralised placement.

PR processing begins with retrieving PRs from the PRQueue (line 1). The method of

retrieval depends on the placement mode of the CE, where in periodic placement, all PRs

collected in the PRQueue are retrieved for processing, whereas in event-driven mode,

each PR is taken from the queue as its added. If the PR processing thread is busy, the

6.3 MicroFog Framework 195

PR waits in the queue until the thread becomes free. The current implementation of the

CE uses a single thread for the PR processing, whereas multiple threads add incoming

requests to the PRQueue implemented using Java ConcurrentLinkedQueue, which is a non-

blocking and thread-safe queue implementation.

Retrieved PRs undergo three main steps: Meta Data Retrieval, Placement Algorithm

Execution, and finally, Deploying microservices-based applications using Kubernetes

and Istio resources and handling uncompleted PRs. The first step of metadata retrieval

is to generate cluster data required by the placement algorithm (lines 5-11). This in-

cludes details about the resource availability of each node in the cluster along with topo-

logical details such as adjacent Fog and Cloud clusters of each considered cluster. For

centralised placement, the primary CE that is responsible for executing the placement

algorithm needs to have a bird’s eye view of all the Fog and Cloud clusters. Thus, the

primary CE queries other clusters by sending requests to the API 2 of the connected clus-

ters (lines 10-11). For this, we implement a Reactive REST Client that sends all requests

simultaneously, waits for the results of all the sent requests, and retrieve each cluster’s

data from the reply. Reactive REST Clients supported by the Quarkus framework en-

able concurrent request sending, which improves the efficiency of collecting data from

distributed clusters. As the second step of metadata retrieval, the CE queries the applica-

tion model related to the application requested by each PR from the Redis metadata store

(line 13). This retrieves a Java domain object of type Application (as depicted in domain

model 6.4) which consists of Microservices, Composite Services, Datapaths, Dataflows,

Resource Requirements and Commands used for microservice deployment, which are

all depicted using serialisable Java objects.

Afterwards, the CE starts processing the PRs using the placement algorithm (lines

16-19). As the CE can support integration of placement algorithms either by extend-

ing the existing CE or as an external microservice, the algorithm can be configured as a

property of the CE. The CE is designed to use the factory pattern to initialise placement

algorithms based on the configured placement algorithm name. Thus, the internal in-

tegration of the placement algorithms requires them to be added to the factory. To use

external algorithms, CE implements a REST client with a configurable URL that can be

updated with the URL of the external algorithm (line 19).

196 A Framework for Scalable Microservices Placement in Federated Fog Environments

Once the placement output is generated by the placement algorithm, the CE moves

on to the application deployment stage. During this step, CE generates deployment in-

formation for each cluster under two main categories: basic deployment information

and load balancing information. Basic deployment information includes pod-to-device

mapping with required resource allocation, ingress clusters for each application for the

deployment of Istio Gateway and related Virtual Service for ingress traffic routing, etc.

Load balancing-related deployment information generation includes executing the load

balancing policy for the placement of completed microservices and generating subsets

and weights accordingly. This data will be used to update Virtual Services and Destina-

tion Rules to ensure desired load balancing.

After generating the deployment information, the CE invokes a new thread to for-

ward incomplete PRs (in the distributed placement mode) based on the forwarding pol-

icy while the current thread continues with deployment. In the centralised placement

mode, the CE uses a Reactive REST Client to send the deployment information to oth-

ers concurrently while the deployment for the current cluster is carried out in parallel

as well. This decision is made to improve the overall efficiency of the placement as the

deployment of microservices as Docker containers can be time-consuming if carried out

sequentially. Similarly, in the distributed placement mode, load balancing information

relevant to previous clusters are also transmitted concurrently while one thread contin-

ues with deployments related to the current cluster.

6.4 MicroFog Deployment

Deployment of MicroFog within federated fog-cloud environments includes two main

steps: 1. distributed setup for data stores, and 2. distributed deployment of the CE.

As example deployment scenarios, we provide deployment architecture (Figure 6.5 and

Figure 6.6 for each step. The demonstrated examples consider a federated fog-cloud en-

vironment consisting of two Fog clusters and one Cloud cluster. Three clusters belong to

three separate networks and are three independent Kubernetes clusters interconnected

through Istio multi-primary architecture to enable inter-cluster microservice composi-

tion and traffic.

6.4 MicroFog Deployment 197

Algorithm 14 MicroFog-CE PR processing
1: procedure PROCESSPRS(PRQueue)
2: PRs← get PRs from the PRQueue for processing
3: # Step 1. Meta Data Retrieval wich consists of two sub-steps 1.1 and 1.2
4: # Step 1.1 : Cluster data retrieval (including both resource availability within cluster and tipology

information
5: clusterData← {} ▷ Maps cluster name to its data
6: inclusterDeviceData← loadInClusterDeviceData() ▷ Device data related to the current cluster is

loaded
7: currentClusterData← inclusterDeviceData ∪ topologyData
8: clusterData.add(currentClusterName, currentClusterData)
9: # For centralised placement, request cluster data from other cluster using API 2

10: if centralisedPlacement AND is primary CE then
11: clusterData← requestOtherClusterData()
12: # Step 1.2 : Loading application meta data form the Meta Data Store
13: appInfo← loadRelatedAppInfo(prs)
14: # Step 2: Execute the placement algorithm
15: placementOutPut← {}
16: if is internalAlgo then
17: placementOutPut← placementAlgo.generatePlacement(PRs, appIn f o, clusterData)
18: if is externalAlgo then
19: placementOutPut← externalPlacementAlo.generatePlacement(PRs, appIn f o, clusterData, externalUrl)
20: # Step 3. Deploy using Istio + Kubernetes resources and handle incomplete PRs
21: perClusterDeploymentInfo← {}
22: perClusterDeploymentIn f o.add(generateBasicDeploymentInfo(placementOutPut))
23: perClusterDeploymentIn f o.add(generateLoadBalancingRelatedDeploymentInfo(placementOutPut))
24: if is distributedPlacement then ▷ Uses a separate thread
25: incompletePRs← placementOutPut.getIncompletePRs()
26: forwardIncompletePRs(incompletePRs)
27: thisClusterDeployment← perClusterDeploymentIn f o.getThisCluster()
28: deploymentHandler.deploycommands(thisClusterDeployment)
29: sendToOtherClusters(perClusterDeploymentIn f o− thisClusterDeployment)

6.4.1 MinIO YAML File Store Deployment

We provide an example deployment scenario in Figure 6.5 to demonstrate the distributed

deployment of the MinIO YAML File Store within federated fog-cloud environments.

For distributed storage and access of YAML files, we design the deployment architec-

ture to meet the following requirements: 1) Distributed deployment across clusters to

improve the latency of application deployment, 2) Replication across distributed data

stores to maintain data consistency, 3) Fault-tolerance through a prioritised failover

mechanism to ensure availability in a latency-aware manner.

To achieve these objectives, we create two traffic routing layers using Kubernetes

and Istio resources, namely, the Management layer and the Data Access layer. The

198 A Framework for Scalable Microservices Placement in Federated Fog Environments

Figure 6.4: MicroFog: Domain diagram for CE

management layer is used for configuring individual MinIO servers deployed per clus-

ter. Kubernetes service and Istio VS for the management layer expose default MinIO

ports for management console access through ingress gateway (console port) and data

replication among distributed MinIO instances (API port). The second layer of routing

exposes the API port of the MinIO data store, for access by the CE to retrieve YAML

files required for application deployment. This layer of traffic implements a two-tier

failover policy to improve the reliability of the deployment. Istio supports locality-

aware load-balancing to failover based on region (topology.kubernetes.io/region), zone

6.4 MicroFog Deployment 199

(topology.kubernetes.io/zone) and sub-zone (topology.istio.io/subzone) of the nodes.

We use the region and zone to conduct the failover where all Fog level resources belong

to the region ”fog”, where each Fog cluster is considered as a separate zone. Similarly,

all Cloud clusters belong to the region ”cloud”. Istio default failover policy assigns high

priority to failover within the same region (i.e., Fog clusters would fail over to adjacent

Fog clusters). We further extend this by incorporating an Istio DR to ensure failover from

Fog to Cloud if no Fog clusters are available. To ensure proper fault tolerance, each node

in the Kubernetes clusters needs to be annotated with their related region and zone. Al-

though the number of tiers is limited to two in the current implementation, it’s possible

to extend it to three tiers by implementing Istio sub-zones as well.

6.4.2 Redis Meta Data Store Deployment

Deployment of Redis Meta Data flow follows a similar approach with two traffic layers,

one for data replication and the other for retrieving application information. We use

the master-replica deployment supported by Redis. In our proposed architecture, we

deploy the master Redis server in the Cloud cluster and deploy the rest as replicas where

they sync with the master server to retrieve the available metadata. Similar to MinIO

YAML Store, this deployment also uses locality load-balancing in Istio to ensure failover

from the Fog layer to the Cloud to improve the availability of the data.

6.4.3 Control-Engine Deployment

Figure 6.6 depicts an example scenario for the distributed deployment of CEs across

federated Fog and Cloud clusters. We discuss the main aspects of the deployment as

follows:

• Distributed deployment of CEs and maintaining communication across clusters:

In both centralised and decentralised placement modes, CEs need to access APIs

of the other CEs deployed in different clusters for various functions, including

querying cluster data, forwarding PRs, submitting deployment information. We

enable this by using Istio DR and VS to route based on the header value of each

200 A Framework for Scalable Microservices Placement in Federated Fog Environments

Figure 6.5: MinIO - YAML file store deployment

request. We introduce a header called ”cluster”, which defines the destination

cluster to route the requests. To achieve proper routing, each pod of CE is labelled

with its cluster name, and the DR creates subsets based on the cluster name. Fol-

lowing this implementation, the VS routes by matching the header value to the

subset label.

• PR submission to a particular cluster: The above implementation enables not only

inter-CE routing but enables ingress traffic to the CE (i.e., submitting PRs) to be

routed to a specific CE based on the header value.

• Configure each CE separately during deployment: To improve the efficiency of

configuring the CEs and to enable each CE to be configured independently, we use

a Kubernetes CongfigMap to define the CE configurations. Due to its Kuenernetes-

native nature, the Quarkus application is configured to retrieve the values for ap-

plication.properties from the ConfigMap.

• Ensure access to underlying Kubernetes and Istio deployments: CE needs to ac-

cess Kubernetes API for various actions (i.e., retrieve node data, retrieve resource

6.4 MicroFog Deployment 201

metrics, retrieve pod data, deploy Kubernetes and Istio resources). To this end, the

proper level of permission should be granted to the CE. A dedicated service ac-

count is created and attached to a ClusterRoleBinding and a ClusterRole to grant

the required access across the cluster.

Figure 6.6: Distributed CE deployment

6.4.4 Deployment of Observability, Monitoring and Logging Tools

For the current implementation, we integrate Prometheus and Kiali to verify the fea-

ture supported by the CE. Kiali uses the Prometheus monitoring tool to create topology

graphs, calculate health and show metrics. Istio add-on preconfigures it to visualise

multi-cluster service mesh, including different views such as graphs (depicting appli-

cation, services, microservice versions, etc.), traffic flows, metric details, and Istio con-

figurations (YAML files related to each deployed Istio resource). Within the distributed

architecture, Prometheus and Kiali components are deployed per cluster, and the Kiali

dashboard is exposed through the Istio ingress gateway to access it remotely.

For log aggregation and visualisation we use Loki and Grafana. Loki is configured

to use a object bucket from MinIO object store. As the MinIO deployment and request

202 A Framework for Scalable Microservices Placement in Federated Fog Environments

routing is already handled (Section 6.4.1), logs can be directed either to a central Cloud

or stored within the own cluster depending on the resource availability.

6.5 APIs of MicroFog-CE

In this section, we highlight the three main APIs provided by MicroFog-CE and also

explain the API implementation required to integrate external algorithms into the CE.

• API 1 (see Figure 6.7): API 1 is designed for receiving PRs through POST requests,

where the request is routed to the cluster defined in the header. The request con-

tains data related to the PR in JSON format, which will be mapped into a Java-

based domain object by using the Jackson framework upon receipt. ”applicationId”,

which is used to identify the application to be deployed (matched with the meta-

data available in the Redis Meta Data Store), and the ”entryClusters”, which indi-

cates the traffic entry points to the application are required fields for the request

data whereas other fields are optional. The rest of the fields are optional and can be

filled if relevant. ”placedMicroservices” indicate already placed microservices and

their status. Thus this is mostly used for forwarding requests and can also be used

for initial PR submission if some of the application microservices are excluded for

placement within Fog or Cloud (i.e., already placed within IoT devices or client de-

vices). ”compositionOnlyPlacements keep track of intermediate clusters that needs

to host service level resources to enable compositing of microservices across non-

adjacent clusters. Boolean for ”loadBalancingCompleted” indicates if load balancing-

related deployment information for the microservice has already been transmitted

to relevant clusters, whereas ”subsetWeights” indicate relative resource-allocation

among devices to be used for executing load balancing policy. Due to complex de-

pendencies among microservices, the QoS parameters can be defined at multiple

granularity levels: per composite service, among microservices and per applica-

tion [46]. ”qosParameters” field allows detailed parameter definitions adhering to

this.

• API 2 (see Figure 6.8): API 2 is used in centralised placement mode for querying

6.6 MicroFog - Evaluation and Validation 203

cluster data from each cluster by defining the cluster name in the header to en-

sure routing. The response returns two main types of data: 1) an array containing

resource availability of each node in the cluster defining total resources, resource

usage at the time of query and allocated resources (i.e., memory in bytes and CPU

in the number of cores/ vCPUs), 2) data related to topology containing the names

of adjacent Fog and Cloud clusters.

• API 3 (see Figure 6.9): API 3 is for transmitting deployment information to each

cluster specified by the header field. For centralised mode, this includes both

microservice deployment and load balancing related Istio resource deployment,

whereas, in distributed mode, it is limited to load balancing related resources.

This API also accepts some additional information, such as the Boolean indica-

tion if the cluster is the entry cluster for the application so that the Istio Gateway

and VS resources can be deployed accordingly to enable ingress traffic to reach

the application. The request also contains a file that includes a list of microservices

(additionalMForSLevel), where their service level resources (i.e., Kubernetes Service,

Istio VS and DR) need to be deployed within the cluster to maintain seamless con-

nectivity among microservices deployed within clusters that are not adjacent.

Due to the use of Jackson library for conversion between JSON data and JAVA do-

main objects, the data sent to/from APIs can be modified easily by updating the relevant

domain objects accordingly.

6.6 MicroFog - Evaluation and Validation

In this section, we validate the main features and functions supported by MicroFog us-

ing multiple use cases.

204 A Framework for Scalable Microservices Placement in Federated Fog Environments

Figure 6.7: API 1 - For submitting PRs

6.6.1 Experimental Setup

Infrastructure and MicroFog setup

To evaluate the features supported by MicroFog, we create a prototype of a federated

fog-cloud environment consisting of three Fog clusters (fog1, fog2 and fog3) and one

Cloud cluster (cloud1) as depicted in Figure 6.10. Each cluster belongs to a separate

network and communicates with each other through load balancers. For the prototype,

we use MetalLB 5 as the load balancer that exposes each cluster to the outside. Each

5https://metallb.universe.tf/

6.6 MicroFog - Evaluation and Validation 205

Figure 6.8: API 2 - For querying cluster information

cluster is a separate Kubernetes cluster, and the communication among microservices

running across different clusters is maintained by implementing an Istio service mesh

across the clusters in multi-primary mode. Table 6.2 summarises the details of each

cluster.

One of the main advantages of MicroFog is its compatibility with cloud-native tech-

nologies, which enables quick prototyping of federated fog-cloud architectures for place-

ment algorithm development and evaluation to overcome the limitations due to the

lack of publicly available Fog resources. To demonstrate this, we create the fog1, fog2

and fog3 clusters using virtualised resources available in the University of Melbourne’s

Queensberry Hall data centre, which is at the edge of the network and create cloud1

using AWS EC2 instances from ap-southeast-2 accessed through the internet. To repli-

206 A Framework for Scalable Microservices Placement in Federated Fog Environments

Figure 6.9: API 3 - For submitting placement output for deployment

cate the behaviour of Fog clusters where Fog nodes are connected to each other through

high bandwidth LAN links, we implement fog1, fog2 clusters as KinD Kubernetes (con-

tainerised k8s) clusters and fog3 as a k3d (containerised k3s) cluster belonging to sepa-

rate sub-nets within the data centre. Their communication to the Cloud cluster occurs

over the WAN network.

6.6 MicroFog - Evaluation and Validation 207

Table 6.2: Federated fog-cloud infrastructure setup

Cluster Resources

Details CPU (VCPUs) Memory (GB)

Cluster - fog 1 :

node1 (control-node) 3 6

node2 (worker 1) 4 9

node3 (worker 2) 5 16

node4 (worker 3) 3 8

Cluster - fog 2 :

node1 (control-node) 3 6

node2 (worker 1) 3 9

node3 (worker 2) 2 6

node4 (worker 3) 4 12

node5 (worker 4) 4 8

Cluster - fog 3 :

node1 (server) 3 6

node2 (agent 0) 2 4

node3 (agent 1) 2 4

Cluster - cloud 1 :

node1 (control-node) 8 14

node2 (worker) 8 14

Workload Creation

Due to the lack of diverse microservices-based IoT application benchmarks, we imple-

ment a tool to generate microservices-based mock applications 6 that can capture differ-

ent characteristics of MSA and generate heterogeneous applications for placement pol-

icy evaluation purposes. In designing the tool, we analyse the model of the microservice

application presented in Section 6.2.2. Based on this, our proposed tool provides a base

6https://github.com/Cloudslab/MicroFog/tree/main/Workload Generator

208 A Framework for Scalable Microservices Placement in Federated Fog Environments

Figure 6.10: Multi-fog multi-cloud infrastructure

microservice as a template that can be configured (using a Kubernetes ConfigMap) to

create microservices that can interact with other microservices to to create microservices-

based applications having composite services that the users can access. To this end,

microservices can create patterns such as chained, aggregate, hybrid or microservice

candidate pattern. Furthermore, the microservices created using the template, can be

configured to have different processing times and inter-microservice message sizes to

fabricate the behaviour of heterogeneous IoT applications in terms of data processing

and transmission. Using this tool, we create multiple microservices-based applications

containing chained and aggregator interaction patterns to evaluate and verify different

functionalities supported by the MicroFog framework. Moreover, we use the template

microservice and configure it to create the Smart Health Monitoring IoT Application

presented in Section 6.2.4. This demonstrates the tool’s ability support creation of IoT

applications based on their DAG representations.

6.6 MicroFog - Evaluation and Validation 209

Placement Algorithm

To highlight the main features supported by MicroFog, we adapt and implement differ-

ent variations of the placement algorithm proposed in [60]. The algorithm in [60] aims

to place the latency-critical IoT application services as close as possible to the user such

that the resource requirements of the microservices are met. To this end, the placement

policy starts placement from the traffic entry Fog clusters, moves towards adjacent Fog

clusters and finally considers Cloud if the Fog resources are insufficient. We extend the

policy in [60] to incorporate throughput awareness where the throughput of the com-

posite services can be provided during PR submission, and the placement algorithm

calculates the number of microservice instances and resources requirement to support

the throughput. We use the calculation provided in [46] for this. We create three varia-

tions of this approach to evaluate and validate multiple configurations and features of

MicroFog as follows:

1. Version 1 (V1) - Vertically Scaled Distributed Placement: The placement algorithm

retrieves already placed microservices from the PR and calculates the next mi-

croservice to place based on the DAG representation of the application. After-

wards, the algorithm tries to place the microservice within the cluster in a resource-

aware manner. In this approach, since vertical scalability is considered, a single in-

stance is placed for each microservice so that their resource allocation suffices the

throughput requirement. If the cluster doesn’t have enough resources to complete

the application placement, the PR is updated and forwarded to the next cluster to

place the rest of the microservices.

2. Version 2 (V2) - Horizontally Scaled Distributed Placement: This follows a similar

approach to V1 but supports the horizontal scalability of the microservices. Thus,

instead of a single instance, multiple instances of each microservice are placed to

support the throughput requirement.

3. Version 3 (V3) - Centralised Placement: In this version, the placement algorithm

maintains a view of all available clusters. Once the request is received, the al-

gorithm selects one of the entry clusters defined in the PR. Next, the algorithm

traverses the DAG and places microservices starting from the selected Fog cluster,

210 A Framework for Scalable Microservices Placement in Federated Fog Environments

then consider adjacent clusters if no resources are available and finally considers

Cloud for placement.

As discussed above, V1 and V2 algorithms are designed specifically to support dis-

tributed operation mode of the MicroFog-CE whereas V3 is designed for centralised

operation mode and can not carry out placement in distributed mode. To operate in dis-

tributed mode V1 and V2 algorithms are designed with additional functionalities such

as processing partially placed PRs and forwarding partially completed PRs to adjacent

clusters for completion.

6.6.2 Use cases and results

Analysing Flexibility and Scalability of MicroFog Architecture

Flexibility and scalability of the MicroFog architecture is denoted by its ability to op-

erate within distributed multi-fog multi-cloud enviornments. We explore distributed

deployment architecture of the MicroFog framework under different configurations to

demonstrate this.

• Distributed Data management and access :

In this section, we analyse and validate the deployment architectures proposed in

this work for accessing MinIo Yaml File Store and Redis Meta Data Store. Our pro-

posed deployment architectures aim to ensure lower latency and high availability

of the data stores to ensure reliable placement and deployment of applications. To

evaluate this, we consider three data access scenarios. Relative data retrieval la-

tency is measured for each scenario as shown in Figure 6.11(a) and Figure 6.11(b)

for MinIO YAML Store and Redis Meta Data Store, respectively. We submit place-

ment requests to the CE placed in fog1 and observer behaviour under distributed

placement mode. In Scenario 1, both data stores are deployed within all 3 clus-

ters following the proposed architecture in Figure 6.5. Scenario 2 considers the

unavailability of fog1 data stores, whereas Scenario 3 considers the unavailability

of data stores in both fog1 and fog2.

6.6 MicroFog - Evaluation and Validation 211

Results demonstrate that the deployment architecture manages request routing to

data stores as intended. The failover policy is configured to prioritise the closest

data store in case of data store failures. Accordingly, if all data stores are available,

the CE deployed within cluster fog1 accesses the data stored deployed within the

same Fog cluster, thus resulting in the lowest data retrieval latency. If the data

stores within the cluster are unavailable, the routing policy prioritises the closest

adjacent Fog cluster over the Cloud cluster and only accesses the Cloud cluster in

case the data stores in both Fog clusters are unavailable. This behaviour is depicted

by the obtained latency values, which show a slight increase in latency due to

failover triggered among Fog clusters (Scenario 2 - FO to Fog) and a relatively

larger increase with failover from Fog to Cloud (Scenario 3 - FO to Cloud). Thus,

the proposed deployment architecture is robust to ensure data access while aiming

to improve performance. Furthermore, in the case of resource-constrained Fog

clusters, it would be more feasible to host the data stores in adjacent resource-rich

Fog clusters or Cloud clusters at the cost of data access performance. Our proposed

architecture is flexible enough to support this behaviour and ensure data access

across federated multi-fog multi-cloud environments.

Figure 6.11: Availability analysis of data stores

• Analysis on Distributed Deployment of CE and its Operation Modes

212 A Framework for Scalable Microservices Placement in Federated Fog Environments

MicroFog-CE is designed for scalable deployment across distributed Fog and Cloud

clusters. To this end, CE supports distributed operation mode of the CE, where all

CEs execute placement algorithms independently and the centralised mode, where

the primary CE executes the placement algorithms and sends placement output to

individual clusters. In both approaches connectivity among CEs are maintained

using prososed deployment architecture (Section 6.4.3) to achieve successful place-

ment of applications.

In the distributed mode, PRs can be forwarded to adjacent Fog or Cloud clusters,

and MicroFog-CE supports the integration of different forwarding policies, thus

providing the users of the framework with the flexibility to control distributed

placement policies. We demonstrate this by implementing two forwarding poli-

cies, 1) FP1: if the current cluster does not have enough resources to complete PR

placement, PR is forwarded to an adjacent Fog cluster, 2) FP2: if the current cluster

does not have enough resources to complete PR placement, the PR is forwarded to

a connected Cloud cluster. To route the PR to the selected cluster, the header of the

PR forwarding request is updated with the destination cluster name. The deploy-

ment architecture proposed in Figure 6.6 routes to the correct destination based on

that. Figure 6.12 shows three scenarios where in Scenario 1, the entry Fog cluster

for the PR contains enough resources to host the application, thus resulting in the

lowest response time out of the three scenarios. Scenario 2 and Scenario 3 consider

a situation where the entry Fog cluster does not have enough resources to host the

entire application. Scenario 2 uses FP1, thus placing the application across two ad-

jacent Fog clusters, which results in a higher response time than the prior scenario

due to inter-fog communication delay. However, FP1 performs better than Sce-

nario 3, which uses FP2, where the request is forwarded to the Cloud. This incurs

the highest response time among the three scenarios. The above use case demon-

strates the scalability of the CE deployment architecture to tackled multiple Fog

and Cloud clusters and also the ability to configure distributed placement policies

by integrating forwarding policies.

MicroFog-CE also supports centralised placement algorithm execution as well. In

Figure 6.13, we consider three placement scenarios and analyse time to application

6.6 MicroFog - Evaluation and Validation 213

Figure 6.12: Distributed placement algorithm execution

placement under the CE’s distributed and centralised operation mode. The three

scenarios are as follows: Scenario 1 - 5 PRs are submitted to the system simultane-

ously such that three have fog1 as the entry cluster and the other two have fog2 as

the entry cluster; scenario 2 - 10 PRs are submitted to the system simultaneously

such that each receives 5PRs; scenario 3 - 15 PRs in total simultaneously submitted

to fog1, fog2, fog3 such that each received 5 PRs. In the distributed operation mode

PRs are submitted to the CE of their entry cluster, whereas in the centralised mode,

all PRs are submitted to the primary CE deployed within the Cloud. Furthermore,

the centralised mode uses V3, whereas distributed mode uses V2 as the placement

policy. Figure 6.13 depicts the total time for PR deployment, calculated from when

the CE receives the PR to application deployment completion under event-driven

placement mode. According to the results, the distributed mode takes lesser time

to complete application placement in all three scenarios. Moreover, experiment re-

sults depict that as the PR rate grows (i.e., PR arrival rate at each cluster increases

in Scenario 2 compared to Scenario 1) or as the scale of the federated Fog envi-

ronment grows (i.e., Scenario 2 with 3 Clusters and Scenario 3 with 4 Clusters), the

relative increase in completion time is higher for centralised mode. This is because,

214 A Framework for Scalable Microservices Placement in Federated Fog Environments

in the centralised mode, a single controller is processing the received PRs whereas

in decentralised mode all controllers contribute to PR processing, thus reducing

the load on each controller deployed per cluster. Thus, as the PR arrival rate and

the scale of the environment increase, the distributed operation mode performs

better.

However, the selection between the two modes depends also on the design of the

placement algorithm (i.e., V2 is designed to operate in distributed mode, whereas

V3 supports the centralised operation mode). Thus, MicroFog-CE is designed in

an easy-to-configure manner, so that the users can use centralised or distributed

operation modes depending on the PR arrival rate, the design of the placement

policy and the scale of the federated Fog environments.

Figure 6.13: Analysis of CE operation modes

• Analysis on Using Different Kubernetes Distributions

Due to heterogeneous resource availability, Fog and Cloud clusters can run differ-

ent Kubernetes distributions (i.e., k8s for resource-rich clusters and k3s for resource-

constrained clusters). To analyse the ability of MicroFog to operate across different

6.6 MicroFog - Evaluation and Validation 215

distributions. Results show that PR deployment time is lesser in fog3 (Scenario 2),

which uses k3s due to its light architecture, whereas fog1 (Scenario 1) deployment

time is higher. Furthermore, scenario 3 depicts a cross-cluster PR placement sce-

nario, which takes longer than the k3s cluster but less time than the k8s deploy-

ment due to deployment across both. This demonstrates MicroFog-CEs’ flexibility

to operate across clusters with different Kubernetes distributions.

Figure 6.14: Analysis of Kubernetes distributions

The above results demonstrate the ability of MicroFog to handle placement across

multiple clusters (scalable architecture) and configurability (integration of different place-

ment algorithms, forwarding policies, and operation modes) of the MicroFog-CE, which

enables it to successfully execute placement policies and deploy applications across dis-

tributed Fog and Cloud clusters.

Federated fog-cloud deployment and compositing (service discovery and load balanc-
ing) of microservices

One of the main advantages of MSA is the ability to independently scale microser-

vices across distributed computing resources while ensuring their dynamic composition

216 A Framework for Scalable Microservices Placement in Federated Fog Environments

through service mesh technologies. As MicroFog-CE supports easy integration of multi-

ple placement algorithms, we implement V1 and V2 to demonstrate the effect of scalable

microservice placement and validate dynamic composition and load-balancing enabled

by MicroFog.

We consider the placement of two microservices-based applications generated us-

ing workload generator: smart healthcare application (application id: hcapp) discussed

as an example IoT application in Section 6.2.4 (see Figure 6.2) consisting of two com-

posite services, and a DAG-based application (application id: app2) which consists of a

single composite service that can be accessed by the user (see Figure 6.16). The service

consists of 4 microservices, where a2m1 and a2m2 form a chained invocation pattern

and a2m2, a2m3, and a2m4 form an aggregator pattern such that a2m1 invokes a2m3

and a2m4, aggregates their results and return it back to a2m1 for further processing.

The resultant placements generated by the two versions of the placement algorithm for

app2 and hcapp are recorded in Table 6.3. As V1 does not consider horizontal scalabil-

ity, resource-constrained natures of the heterogeneous Fog nodes force the placement to

move towards the Cloud, thus resulting in higher latency, as shown in Figure 6.15. In

comparison to that, V2 utilises the ability to scale microservices horizontally. This results

in better utilisation of limited Fog resources, thus resulting in lower latencies, as shown

under scalable placement in Figure 6.15. Results demonstrate that, V2 improves latency

by 44% for app2 and 54% for hcapp.

However, dynamic service discovery and load balancing across clusters are required

to ensure connectivity among microservices and maintain the expected level of perfor-

mance. To this end, MicroFog-CE supports the integration of new load-balancing poli-

cies. In this experiment, we implement a Weighted Round Robin Load Balancing policy.

Deployment rules of the MicroFog-CE deploy Istio VSs and DRs according to the out-

put of the load balancing policy. For the above placement, we verify this based on the

Kiali workload graph, which depicts the traffic distribution across different horizon-

tally scaled instances of the same microservice. Table 6.3 shows that for the horizontally

scaled microservice a2m2 in app2, the resource distribution is 1:2:1 among instances de-

ployed within fog1-worker3, fog2-worker1 and fog2-worker2, respectively. Obtained

graph (see Figure 6.16 shows that traffic for a2m2 is divided with a 1:3 ratio among two

6.6 MicroFog - Evaluation and Validation 217

Figure 6.15: Scalable microservice placement

Table 6.3: Generated placement for example applications (app2 and hcapp)

Placement app2 hcapp

Algorithm Microservice Deployed Nodes Microservice Deployed Nodes

a2m1 fog1-worker2 hcm1 fog2-worker3

Version 1 a2m2 fog2-worker4 hcm2 cloud1-worker1

(V1) a2m3 cloud1-worker1 hcm3 cloud1-control-node

a2m4 cloud1-worker1

a2m1 fog1-worker2 hcm1 fog1-worker1, fog1-worker3

Version 2 a2m2 fog1-worker3, fog2-worker1, fog2-worker2 Allocated Resource Ratio - 1:1

(V2) Allocated Resource Ratio - 1:2:1 hcm2 fog1-worker1, fog2-worker1, fog2-worker3

a2m3 fog2-worker3 Allocated Resource Ratio - 1:2:3

a2m4 fog2-worker4 hcm1 cloud1-control-node

clusters and 2:1 within the fog2 cluster, thus diving a2m2 traffic with an approximate ra-

tio of 1:2:1 among its three instances. This matches with the expected traffic distribution

of Weighted Round Robin load balancing, thus confirming the ability of the MicroFog

to automate Istio resource deployment to ensure the custom load balancing capabilities

across clusters. This is further demonstrated by Figure 6.17, which reflects the traffic dis-

218 A Framework for Scalable Microservices Placement in Federated Fog Environments

tribution of hcapp. The traffic distributions of microservices hcm1 (1:1) and hcm2 (1:2:3)

adheres to their resource distribution of hcm1 (1:1) and hcm2 (1:2:3).

Figure 6.16: Multi-cluster service discovery and load balancing scenario - app2

Results obtained from the above use cases capture different features supported by

MicroFog and verify that MicroFog is a scalable and easy-to-configure framework that

can deploy microservices across federated Fog computing environments and ensure dy-

namic microservice composition across clusters. Hence, the MicroFog framework can be

successfully used and extended for integrating and evaluating the performance of novel

placement algorithms designed for the placement of microservices-based IoT applica-

tions.

6.7 Summary 219

Figure 6.17: Multi-cluster service discovery and load balancing scenario - hcapp

Software Availability

The source code and documentation of the MicroFog framework is accessible from:

https://github.com/Cloudslab/MicroFog

6.7 Summary

In this work, we proposed a framework for the scalable placement of microservices-

based IoT Applications in federated Fog environments. First, we implemented a novel

control engine for placement policy execution, microservice deployment and dynamic

composition across multi-fog multi-cloud environments. Also, we proposed multiple

deployment architectures to improve the distributed deployment of the framework.

Also, we implemented multiple placement policies to demonstrate the framework’s fea-

tures. Next, we created a prototype of the proposed framework within a federated Fog

https://github.com/Cloudslab/MicroFog

220 A Framework for Scalable Microservices Placement in Federated Fog Environments

computing environment and evaluated the framework’s performance and its ability to

integrate placement algorithms for scalable placement of microservices, thus reducing

the service latency of the microservices-based applications.

Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis and provides a summary of works and key contributions. Next,

it highlights several future research directions for further improvement of Microservices-based appli-

cation placement in Fog computing environments.

7.1 Summary of Contributions

The IoT paradigm has gained tremendous popularity within diverse application do-

mains containing heterogeneous services ranging from computation intensive and bandwidth-

hungry to latency-sensitive and mission-critical. To meet the data processing demands

of ever-growing IoT applications, Fog computing has emerged as a distributed comput-

ing paradigm that extends cloud-like services toward the edge to improve service la-

tency and reduce network congestion. Meanwhile, Microservice Architecture has risen

as a powerful software architecture that can meet the rapid development and deploy-

ment needs of fast-evolving IoT applications. Moreover, microservices’ independent

deployability, scalability, distributed deployment, and dynamic composition capabili-

ties make them suitable for deployment within distributed computing paradigms such

as Fog computing. Thus, the execution of microservices-based IoT applications within

Fog computing environments has attracted significant interest from both industry and

academia. With the ever-increasing number of IoT devices and various application ser-

vices, the resource-constrained nature of the Fog resources becomes one of the main

challenges for hosting large-scale IoT applications. Moreover, application execution

within distributed Fog environments is affected by reliability and interoperability is-

sues. In Fog computing environments, these issues can be resolved by identifying suit-

221

222 Conclusions and Future Directions

able placement techniques for application microservices. In this thesis, we investigated

optimal placement techniques for microservices-based IoT applications within Fog com-

puting environments.

Chapter 1 presented the basic concepts of Fog computing and Microservice Archi-

tecture and detailed the problem definition for ”Microservices-based IoT Application

Placement in Fog Computing Environments”. Next, the challenges related to Fog ap-

plication placement are highlighted and discussed. This chapter also discussed the re-

source questions identified in this thesis and summarised the thesis contributions.

Chapter 2 analysed the existing placement techniques for microservices-based IoT

applications in Fog computing from different aspects, namely the accurate modelling of

microservice architecture, developing microservices placement policy, incorporating mi-

croservice composition-related features, and performance evaluation. Next, taxonomies

are created for each aspect, and the recent literature is reviewed according to the tax-

onomies, along with comprehensive discussions on research gaps.

Chapter 3 proposed a distributed placement approach for the scalable placement

of microservices within resource-constrained and heterogeneous Fog devices. The pro-

posed placement technique aims to reduce the service latency and network usage of

the IoT applications services through the optimum use of heterogeneous Fog devices by

utilising horizontal scalability and decentralised management of the microservices. Fur-

thermore, to ensure distributed placement of microservices, this technique proposed a

Fog node architecture to support distributed placement algorithm execution along with

dynamic service discovery and load balancing.

Chapter 4 investigated a batch placement technique for the placement of IoT appli-

cation services with heterogeneous QoS requirements in terms of makespan, budget and

throughput. Moreover, the proposed approach dynamically utilises Fog and Cloud re-

sources to ensure the optimum use of computation and network resources. To achieve

this, the placement problem is formulated as a Lexicographic Combinatorial Optimisa-

tion Problem, considering QoS satisfaction (in terms of makespan, budget, and through-

put) as the primary objective and optimum resource usage as the secondary objective.

Afterwards, an improved meta-heuristic technique based on Set-based Comprehensive

Learning Particle Swarm Optimisation (S-CLPSO) is proposed for the batch placement

7.1 Summary of Contributions 223

of applications. Also, multiple novel heuristic techniques are integrated into the meta-

heuristic algorithm to improve its convergence speed and avoid premature convergence

to local optima.

Chapter 5 proposed a batch placement technique to improve the reliability satisfac-

tion of mission-critical IoT applications using a throughput-aware proactive redundant

placement method. Also, it aims to reduce the cost of deployment as a secondary objec-

tive. First, the reliability model of the microservices-based application services is devel-

oped as a k out of n serial-parallel system, and the placement problem is formulated to

capture reliability, throughput awareness, and cost at the composite service level. Also,

the failures of the Fog computing environment are modelled to capture both indepen-

dent and correlated failures of the Fog devices. Next, a hierarchical placement approach

is proposed, which consists of two meta-heuristics. Finally, multiple methods, including

novel heuristic techniques and fitness functions, are introduced to improve the conver-

gence of the meta-heuristics to an optimum microservice placement.

Chapter 6 proposed a framework for the scalable placement of microservices within

federated Fog computing environments. Firstly, the functional and non-functional re-

quirements of the framework were identified, and the framework architecture was pro-

posed to meet the identified requirements. Also, a novel control engine is designed and

implemented as a microservice to enable placement policy execution and microservice

deployment within multi-fog multi-cloud environments. Next, multiple deployment ar-

chitectures are provided for major components of the framework to ensure their scalable

and fault-tolerant deployments. Finally, the features and performance of the framework

are validated by creating a prototype of the framework and integrating multiple mi-

croservice placement policies.

These chapters proposed multiple algorithms and systems for optimal placement of

microservices to meet the QoS requirements of IoT applications within Fog computing

environments, which is a timely contribution to the state-of-the-art.

224 Conclusions and Future Directions

7.2 Future Research Directions

Based on the research carried out in this thesis, we identify and propose potential future

directions for microservices-based IoT application placement in Fog environments.

7.2.1 Dynamic Application Management

To maintain application QoS under the dynamic nature of the Fog infrastructure and

fluctuating workloads, application management algorithms must adapt and make deci-

sions accordingly. Online placement algorithms that carry out continuous re-evaluations

of application placements can achieve this. Furthermore, algorithms can exploit the in-

dependently deployable nature of the microservices, which adds dynamic behaviour

to them through auto-scaling, migration, proactive placements, etc. To this end, the

placement techniques can benefit from AI-based techniques, such as evolutionary algo-

rithms, ML techniques, and Reinforcement Learning approaches that can adapt to dy-

namic environmental changes. Application placement algorithms proposed in this the-

sis, together with dynamic application management algorithms for microservice auto-

scaling and migration, can provide holistic approaches to maintain QoS requirements

throughout the application lifecycle under dynamic conditions.

7.2.2 Placement within Federated Multi-fog Multi-cloud Environments

Federation among Fog resources provided by multiple Fog infrastructure providers (multi-

fog) and multi-cloud environments is emerging as an approach better suited for utilising

geo-distributed and resource-constrained Fog computing resources to meet the non-

functional requirements of IoT applications. This results in a large-scale distributed

environment with Fog and Cloud resources separated by administrative boundaries

and geographical locations. The loosely coupled nature of the microservices allows

them to span across such environments while maintaining seamless connectivity among

them. However, for such scenarios, placement policies need to consider costs, resource

availability, security, composition-related overheads, fault-tolerance and fail-over mech-

anisms, and limitations based on the infrastructure provider and location of the Fog

7.2 Future Research Directions 225

resources. Moreover, placement policies must evolve towards distributed approaches to

handle placement within multi-fog environments governed by multiple infrastructure

providers.

7.2.3 Software Frameworks and Platforms for Fog Environments

For the evaluation of placement policies within Cloud environments, commercial plat-

forms such as AWS, Google Cloud, and Microsoft Azure are available. As Fog com-

puting is still in its early stages of industrial adaptation, current research uses small,

custom-built test beds. However, they lack support for large-scale experiments, thus

failing to capture important aspects related to MSA, such as distributed, location-aware

deployments, load balancing, reliability, security and interoperability of services within

the large-scale IoT ecosystem. Moreover, they should reflect novel technologies (i.e.,

container orchestration, service mesh, monitoring tools, overlay networks, etc.). Hence,

scalable and extensible frameworks and platforms for Fog environments should be im-

plemented for rapid integration and evaluation of placement policies. We have devel-

oped MicroFog as a distributed software framework to enable microservice placement

and composition across federated environments. However, this framework can be fur-

ther extended with lightweight security mechanisms for data transmission across clus-

ters, scalable architectures to store and use observability-related data to improve place-

ment algorithms, and the ability to integrate novel fault-tolerance policies for applica-

tions.

7.2.4 IoT Workloads/Benchmarks Related to MSA

The lack of microservices-based IoT workload traces from large-scale deployments and

benchmark IoT applications that follow MSA hinder the large-scale evaluation of place-

ment policies. Enterprise workload traces of IoT applications can be used to derive

accurate data related to request volumes, patterns, diversity in usage of services, etc.

Collecting such data over a long time within large-scale IoT deployments and making

them accessible to the research community is significant for improving and accurately

evaluating placement and management algorithms.

226 Conclusions and Future Directions

7.2.5 Security-aware Placement

Data privacy is one of the main concerns of data-driven IoT applications. Distributed

deployment of microservices across fog-cloud, along with the vulnerability of open mi-

croservice interfaces, poses a considerable security threat to sensitive data transmission

and processing. The independently deployable nature of microservices enables the mi-

gration of microservices easily across federated Fog environments and between Fog and

the Cloud. However, placement algorithms have to incorporate data privacy and secu-

rity threats related to such migrations in making deployment decisions.

7.2.6 Scalable Placement under state management constraints

Microservices can be stateless or stateful. Stateless microservice do not retain state data

between requests, which makes them highly scalable. Stateful microservices persist state

data (e.g., in-memory, databases, distributed caching, etc.) to be accessed and used when

processing subsequent requests. Thus, the scalability of stateful microservices is con-

strained by the challenges related to data consistency and state synchronisation across

multiple instances, especially across geo-distributed multi-fog environments. Applica-

tion placement algorithms proposed in this thesis can be further extended to include the

scalability constraints related to state maintenance of stateful microservices depending

on the state persistence approach used. Moreover, the integration of dynamic applica-

tion management approaches can further improve QoS in such scenarios by ensuring

dynamic memory and storage requirements for retaining state data across instances and

considering state synchronisation overheads (i.e., increased network traffic and latency)

in real-time.

7.2.7 Resource Contention Handling

Due to the concurrent execution of multiple containers within the same device, resource

limitation in the devices and complex interaction patterns of the microservices, resource

contention among microservices can affect application performance negatively. The de-

velopment of intelligent algorithms that can proactively identify resource contentions

7.2 Future Research Directions 227

during microservice placement, dynamically auto-tune container parameters or migrate

containers across the Fog-Cloud continuum has the potential to mitigate this challenge.

7.2.8 Observability and Monitoring Driven Maintenance

Deployment of microservices-based IoT applications creates a distributed system of

many microservice instances that can be dynamically created and destroyed. Observ-

ability and monitoring can be used to detect performance anomalies within such sys-

tems. This requires distributed tracing, monitoring and analysis of the system at both

application and platform levels, which would create massive amounts of data of differ-

ent metrics, logs and traces. This poses a big data analysis challenge where data mining

and artificial intelligence models can be integrated with the placement policy to make

performance-aware decisions in handling performance anomalies and failures within

the system.

7.2.9 Placement within NFV-enabled Networks

Network Function Virtualisation (NFV) has become a key enabler for 5G and 6G mobile

networks. NFV virtualises network functions (i.e., firewalls, routers, load balancers, etc.)

to provide flexible management and orchestration of network resources, thus support-

ing IoT applications with large, fluctuating traffic volumes to meet expected QoS lev-

els. To this end, virtualised network functions are developed as containerised microser-

vices that become part of the composite application services (known as service function

chains). This requires microservices-based application placement and request routing

to be solved in the context of service function chains, where the dynamic placement of

containerised network functions becomes a significant part of microservices-based IoT

application placement to improve dynamic traffic routing, security, etc., to satisfy the

non-functional requirements of the application services.

228 Conclusions and Future Directions

7.2.10 Fault Tolerant Placement and Management of Microservices

MSA avoids a single point of failure by decomposing applications into loosely coupled

microservices. While this improves fault tolerance, it creates more points of failure and

also cascading failures due to interacting microservices. Root-cause tracing, predictive

redundant placements, awareness of microservice level stability patterns (i.e., circuit

breaking, timeouts, retries, etc.) and their effect can be used to generate more resilient

placement, migration and request load balancing approaches to improve fault-tolerance

of IoT application services.

7.2.11 Availability Assurance under Continuous Integration and Delivery

One of the main reasons for the rising popularity of MSA is its ability to support rapid

development and deployment cycles to keep up with the fast-evolving IoT domain.

However, this requires smooth integration and deployment of novel updates and changes

while minimising service downtime. MSA handles this through multiple deployment

strategies such as Canary deployments, Rolling deployments, Blue-Green deployments

and A/B testing. To support continuous integration and delivery requirements in an

availability-aware manner, continuous placement policies need to be developed, includ-

ing combinations of multiple deployment strategies supported by MSA.

7.3 Final Remarks

The Fog computing paradigm has emerged as a leading facilitator for IoT-driven solu-

tions spanning a vast range of domains such as healthcare, smart city, intelligent trans-

portation and industrial IoT. Moreover, MSA has risen as an application architecture that

can support the rapid development and deployment of IoT applications. Also, MSA is

designed with the ability to fully take advantage of the distributed, scalable and flexible

nature of the Fog and Cloud resources. The efficient placement of microservices is vital

in harvesting the full potential Fog computing paradigm. In this thesis, we investigated

and developed algorithms and systems for optimal placement of microservices to meet

the Quality of Service (QoS) requirements of IoT applications within Fog computing en-

Conclusions and Future Directions 7.3 Final Remarks

vironments. The algorithms, mathematical models, and system architectures proposed

in the thesis improve services latency, budget satisfaction, throughput, and reliability of

the IoT application services while ensuring optimum use of Fog and Cloud resources.

Moreover, the research outcomes of this thesis offer opportunities for further innovation

and evolution in IoT and Fog computing domains.

229

Conclusions and Future Directions BIBLIOGRAPHY

Bibliography

[1] S. Bhardwaj and A. Kole, “Review and study of Internet of Things: It’s the future,”

in Proceedings of the 2016 International Conference on Intelligent Control Power

and Instrumentation (ICICPI). IEEE, 2016, pp. 47–50.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT):

A vision, architectural elements, and future directions,” Future Generation

Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on microser-

vices architecture in devops,” Journal of Systems and Software, vol. 170, p. 110798,

2020.

[4] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi, “The evo-

lution of distributed systems towards microservices architecture,” in Proceedings

of the 2016 11th International Conference for Internet Technology and Secured

Transactions (ICITST). IEEE, 2016, pp. 318–325.

[5] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and

R. Ranjan, “Fog computing: Survey of trends, architectures, requirements, and

research directions,” IEEE Access, vol. 6, pp. 47 980–48 009, 2018.

[6] The International Market Analysis Research and Consulting Group (IMARC

Group), “Microservices Architecture Market: Global Industry Trends, Share, Size,

Growth, Opportunity and Forecast 2022-2027,” https://www.imarcgroup.com/

microservices-architecture-market, June 2022, [Online; accessed Jan-2023].

[7] A. Kaur, R. Kumar, and S. Saxena, “Osmotic computing and related challenges:

a survey,” in Proceedings of the 2020 Sixth International Conference on Parallel,

Distributed and Grid Computing (PDGC). IEEE, 2020, pp. 378–383.

[8] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “iFogSim2: An extended

iFogSim simulator for mobility, clustering, and microservice management in edge

and fog computing environments,” Journal of Systems and Software, p. 111351,

2022.

231

https://www.imarcgroup.com/microservices-architecture-market
https://www.imarcgroup.com/microservices-architecture-market

BIBLIOGRAPHY Conclusions and Future Directions

[9] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit

for modeling and simulation of resource management techniques in the Inter-

net of Things, Edge and Fog computing environments,” Software: Practice and

Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[10] International Data Corporation, “Worldwide Global DataSphere IoT Device and

Data Forecast, 2021–2025,” July 2021.

[11] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and

future directions,” in Internet of Everything. Springer, 2018, pp. 103–130.

[12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

Internet of Things,” in Proceedings of the first edition of the MCC workshop on

Mobile cloud computing, 2012, pp. 13–16.

[13] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud orches-

trated network computing paradigms: Transparent computing, mobile edge com-

puting, fog computing, and cloudlet,” ACM Computing Surveys (CSUR), vol. 52,

no. 6, pp. 1–36, 2019.

[14] A. M. Alqahtani, B. Yosuf, S. H. Mohamed, T. E. El-Gorashi, and J. M. Elmirghani,

“Energy Minimized Federated Fog Computing over Passive Optical Networks,”

in 2021 International Symposium on Networks, Computers and Communications

(ISNCC). IEEE, 2021, pp. 1–6.

[15] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong,

and J. P. Jue, “All one needs to know about fog computing and related edge com-

puting paradigms: A complete survey,” Journal of Systems Architecture, vol. 98,

pp. 289–330, 2019.

[16] IoT For All, “The Big Three Make a Play for the Fog,” https://www.iotforall.com/

big-three-make-play-fog/, 2018, [Online; accessed 20-Jan-2023].

[17] VMware, “VMware Edge Compute Stack,” https://www.vmware.com/

products/edge-compute-stack.html, 2023, [Online; accessed 24-Jan-2023].

232

https://www.iotforall.com/big-three-make-play-fog/
https://www.iotforall.com/big-three-make-play-fog/
https://www.vmware.com/products/edge-compute-stack.html
https://www.vmware.com/products/edge-compute-stack.html

Conclusions and Future Directions BIBLIOGRAPHY

[18] Grand View Research, “Global Edge Computing Market Size, Share Trends Anal-

ysis Report by Component (Hardware, Software, Services, Edge-managed Plat-

forms), by Application, by Industry Vertical, by Region, and Segment Forecasts,

2022-2030,” June 2022.

[19] S. Newman, Monolith to microservices: evolutionary patterns to transform your monolith.

O’Reilly Media, 2019.

[20] C. Richardson, Microservices Patterns. Manning Publications Company, 2018.

[21] M. Fowler and J. Lewis. (2014, March) Microservices a definition of this new ar-

chitectural term. https://martinfowler.com/articles/microservices.html. [Online;

accessed Dec-2022].

[22] C. T. Joseph and K. Chandrasekaran, “Straddling the crevasse: A review of mi-

croservice software architecture foundations and recent advancements,” Software:

Practice and Experience, vol. 49, no. 10, pp. 1448–1484, 2019.

[23] F. Pachinger. (2022, June) Edge Native Applications Are Conquering the Smart De-

vice Edge. https://blogs.cisco.com/developer/smartdeviceedge01. [Online; ac-

cessed Dec-2022].

[24] E. Al-Masri, “Enhancing the microservices architecture for the Internet of Things,”

in Proceedings of the 2018 IEEE International Conference on Big Data (Big Data).

IEEE, 2018, pp. 5119–5125.

[25] C. Santana, B. Alencar, and C. Prazeres, “Microservices: A mapping study for

Internet of Things solutions,” in Proceedings of the 2018 IEEE 17th international

symposium on network computing and applications (NCA). IEEE, 2018, pp. 1–4.

[26] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach for the

Internet of Things,” in Proceedings of the 2016 IEEE 21st International Conference

on Emerging Technologies and Factory Automation (ETFA). IEEE, 2016, pp. 1–6.

[27] M. Luksa, Kubernetes in Action. Simon and Schuster, 2017.

233

https://martinfowler.com/articles/microservices.html
https://blogs.cisco.com/developer/smartdeviceedge01

BIBLIOGRAPHY Conclusions and Future Directions

[28] A. Razzaq, “A systematic review on software architectures for IoT systems and

future direction to the adoption of microservices architecture,” SN Computer

Science, vol. 1, no. 6, pp. 1–30, 2020.

[29] L. N. T. Thanh, N. N. Phien, H. K. Vo, H. H. Luong, T. D. Anh, K. N. H. Tuan, H. X.

Son et al., “IoHT-MBA: an internet of healthcare things (IoHT) platform based

on microservice and brokerless architecture,” International Journal of Advanced

Computer Science and Applications, vol. 12, no. 7, 2021.

[30] A. De Iasio, A. Futno, L. Goglia, and E. Zimeo, “A microservices platform for

monitoring and analysis of IoT traffic data in smart cities,” in Proceedings of the

2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019, pp. 5223–

5232.

[31] N. Bugshan, I. Khalil, N. Moustafa, and M. S. Rahman, “Privacy-preserving

microservices in industrial Internet of Things driven smart applications,” IEEE

Internet of Things Journal, vol. 10, no. 4, pp. 2821–2831, 2023.

[32] C. Guerrero, I. Lera, and C. Juiz, “Evaluation and efficiency comparison of evo-

lutionary algorithms for service placement optimization in fog architectures,”

Future Generation Computer Systems, vol. 97, pp. 131–144, 2019.

[33] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware fog ser-

vice placement,” in Proceedings of the 1st IEEE international conference on Fog

and Edge Computing (ICFEC). IEEE, 2017, pp. 89–96.

[34] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in the fog:

State of the art and open challenges,” Software: Practice and Experience, vol. 50,

no. 5, pp. 719–740, 2020.

[35] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service placement problem

in fog and edge computing,” ACM Computing Surveys (CSUR), vol. 53, no. 3, pp.

1–35, 2020.

[36] I. Lera, C. Guerrero, and C. Juiz, “Availability-aware service placement policy in

234

Conclusions and Future Directions BIBLIOGRAPHY

fog computing based on graph partitions,” IEEE Internet of Things Journal, vol. 6,

no. 2, pp. 3641–3651, 2018.

[37] J. Paul Martin, A. Kandasamy, and K. Chandrasekaran, “CREW: Cost and Reliabil-

ity aware Eagle-Whale optimiser for service placement in Fog,” Software: Practice

and Experience, vol. 50, no. 12, pp. 2337–2360, 2020.

[38] S. Deng, Z. Xiang, J. Taheri, M. A. Khoshkholghi, J. Yin, A. Y. Zomaya, and S. Dust-

dar, “Optimal application deployment in resource constrained distributed edges,”

IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp. 1907–1923, 2020.

[39] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive Resource Efficient Mi-

croservice Deployment in Cloud-Edge Continuum,” IEEE Transactions on Parallel

and Distributed Systems, vol. 33, no. 8, pp. 1825–1840, 2021.

[40] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, “Cut-

ting throughput with the edge: App-aware placement in fog computing,” in

Proceedings of the 2019 6th IEEE International Conference on Cyber Security and

Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge

Computing and Scalable Cloud (EdgeCom). IEEE, 2019, pp. 196–203.

[41] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized service place-

ment policy for performance optimization in fog computing,” Journal of Ambient

Intelligence and Humanized Computing, vol. 10, no. 6, pp. 2435–2452, 2019.

[42] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, “Throughput-

aware partitioning and placement of applications in fog computing,” IEEE

Transactions on Network and Service Management, vol. 17, no. 4, pp. 2436–2450,

2020.

[43] J. L. Herrera, J. Galán-Jiménez, P. Bellavista, L. Foschini, J. Garcia-Alonso, J. M.

Murillo, and J. Berrocal, “Optimal Deployment of Fog Nodes, Microservices and

SDN Controllers in Time-Sensitive IoT Scenarios,” in Proceedings of the 2021 IEEE

Global Communications Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

235

BIBLIOGRAPHY Conclusions and Future Directions

[44] V. Armani, F. Faticanti, S. Cretti, S. Kum, and D. Siracusa, “A Cost-Effective

Workload Allocation Strategy for Cloud-Native Edge Services,” arXiv preprint

arXiv:2110.12788, 2021.

[45] H. Zhao, S. Deng, Z. Liu, x. Yin, and S. Dustdar, “Distributed redundant placement

for microservice-based applications at the edge,” IEEE Transactions on Services

Computing, vol. 15, no. 3, pp. 1732–1745, 2020.

[46] S. Pallewatta, V. Kostakos, and R. Buyya, “QoS-aware placement of microservices-

based IoT applications in Fog computing environments,” Future Generation

Computer Systems, vol. 131, pp. 121–136, 2022.

[47] T. Huang, W. Lin, C. Xiong, R. Pan, and J. Huang, “An ant colony optimization-

based multiobjective service replicas placement strategy for fog computing,” IEEE

Transactions on Cybernetics, vol. 51, no. 11, pp. 5595–5608, 2020.

[48] F. Xu, Z. Yin, A. Gu, F. Zhang, and Y. Li, “A Service Redundancy Strategy and

Ant Colony Optimization Algorithm for Multiservice Fog Nodes,” in Proceedings

of the 2020 IEEE 6th International Conference on Computer and Communications

(ICCC). IEEE, 2020, pp. 1567–1572.

[49] C.-H. Hong and B. Varghese, “Resource management in fog/edge computing:

a survey on architectures, infrastructure, and algorithms,” ACM Computing

Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[50] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya, “Resource Allocation and

Task Scheduling in Fog Computing and Internet of Everything Environments: A

Taxonomy, Review, and Future Directions,” ACM Computing Surveys (CSUR),

Jan 2022. [Online]. Available: https://doi.org/10.1145/3513002

[51] M. M. Islam, F. Ramezani, H. Y. Lu, and M. Naderpour, “Optimal Placement of

Applications in the Fog Environment: A Systematic Literature Review,” Journal

of Parallel and Distributed Computing, vol. 174, pp. 46–69, 2023.

[52] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application management in

236

https://doi.org/10.1145/3513002

Conclusions and Future Directions BIBLIOGRAPHY

fog computing environments: A taxonomy, review and future directions,” ACM

Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–43, 2020.

[53] M. Goudarzi, M. Palaniswami, and R. Buyya, “Scheduling IoT applications in

edge and fog computing environments: a taxonomy and future directions,” ACM

Computing Surveys (CSUR), vol. 55, no. 7, pp. 1–41, 2022.

[54] P. Varshney and Y. Simmhan, “Characterizing application scheduling on edge, fog,

and cloud computing resources,” Software: Practice and Experience, vol. 50, no. 5,

pp. 558–595, 2020.

[55] M. Garriga, “Towards a taxonomy of microservices architectures,” in Proceedings

of the International conference on software engineering and formal methods.

Springer, 2017, pp. 203–218.

[56] B. Neha, S. K. Panda, P. K. Sahu, K. S. Sahoo, and A. H. Gandomi, “A Systematic

Review on Osmotic Computing,” ACM Transactions on Internet of Things, vol. 3,

no. 2, pp. 1–30, 2022.

[57] D. Andročec, “Systematic mapping study on osmotic computing,” in Proceedings

of the Central European Conference on Information and Intelligent Systems. Fac-

ulty of Organization and Informatics Varazdin, 2019, pp. 79–84.

[58] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic computing: A

new paradigm for edge/cloud integration,” IEEE Cloud Computing, vol. 3, no. 6,

pp. 76–83, 2016.

[59] I.-D. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices scheduling model

over heterogeneous cloud-edge environments as support for IoT applications,”

IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2672–2681, 2018.

[60] S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based IoT application

placement within heterogeneous and resource constrained fog computing envi-

ronments,” in Proceedings of the 12th IEEE/ACM International Conference on

Utility and Cloud Computing, 2019, pp. 71–81.

237

BIBLIOGRAPHY Conclusions and Future Directions

[61] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-aware microser-

vice coordination in mobile edge computing: A reinforcement learning approach,”

IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 939–951, 2019.

[62] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in edge com-

puting enabled IoT,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6164–6174,

2020.

[63] J. Fang and A. Ma, “IoT application modules placement and dynamic task pro-

cessing in edge-cloud computing,” IEEE Internet of Things Journal, vol. 8, no. 16,

pp. 12 771–12 781, 2020.

[64] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi, “Predictive au-

toscaling of microservices hosted in fog microdata center,” IEEE Systems Journal,

vol. 15, no. 1, pp. 1275–1286, 2020.

[65] F. Faticanti, M. Savi, F. De Pellegrini, P. Kochovski, V. Stankovski, and D. Siracusa,

“Deployment of Application Microservices in Multi-Domain Federated Fog En-

vironments,” in Proceedings of the 2020 International Conference on Omni-layer

Intelligent Systems (COINS). IEEE, 2020, pp. 1–6.

[66] C. Lei and H. Dai, “A Heuristic Services Binding Algorithm to Improve Fault-

Tolerance in Microservice based Edge Computing Architecture,” in Proceedings

of the 2020 IEEE World Congress on Services (SERVICES). IEEE, 2020, pp. 83–88.

[67] Y. Xu, L. Chen, Z. Lu, X. Du, J. Wu, and P. C. Hung, “An Adaptive Mechanism

for Dynamically Collaborative Computing Power and Task Scheduling in Edge

Environment,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3118–3129, 2023.

[68] D. Baburao, T. Pavankumar, and C. Prabhu, “Load balancing in the fog nodes

using particle swarm optimization-based enhanced dynamic resource allocation

method,” Applied Nanoscience, pp. 1–10, 2021.

[69] X. He, Z. Tu, M. Wagner, X. Xu, and Z. Wang, “Online Deployment Algorithms for

Microservice Systems with Complex Dependencies,” IEEE Transactions on Cloud

Computing, 2022.

238

Conclusions and Future Directions BIBLIOGRAPHY

[70] H. Watanabe, T. Sato, T. Kondo, and F. Teraoka, “AFC: A Mechanism for Dis-

tributed Data Processing in Edge/Fog Computing,” in Proceedings of the 2021

IEEE Global Communications Conference (GLOBECOM). IEEE, 2021, pp. 01–07.

[71] K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo, “QoS-aware

and resource efficient microservice deployment in cloud-edge continuum,” in

2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

IEEE, 2021, pp. 932–941.

[72] D. Alencar, C. Both, R. Antunes, H. Oliveira, E. Cerqueira, and D. Rosário, “Dy-

namic microservice allocation for virtual reality distribution with QoE support,”

IEEE Transactions on Network and Service Management, vol. 19, no. 1, pp. 729–

740, 2021.

[73] F. Guo, B. Tang, and M. Tang, “Joint optimization of delay and cost for microser-

vice composition in mobile edge computing,” World Wide Web, pp. 1–29, 2022.

[74] W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang, and C. Lin, “Microservice de-

ployment in Edge Computing Based on Deep Q Learning,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 11, pp. 2968–2978, 2022.

[75] W. Zhang, Q. Chen, K. Fu, N. Zheng, Z. Huang, J. Leng, and M. Guo, “As-

traea: towards QoS-aware and resource-efficient multi-stage GPU services,” in

Proceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, 2022, pp. 570–582.

[76] K. Kaur, F. Guillemin, V. Q. Rodriguez, and F. Sailhan, “Latency and net-

work aware placement for cloud-native 5G/6G services,” in Proceedings of the

2022 IEEE 19th Annual Consumer Communications & Networking Conference

(CCNC). IEEE, 2022, pp. 114–119.

[77] M. G. Mortazavi, M. H. Shirvani, and A. Dana, “A Discrete Cuckoo Search

Algorithm for Reliability-aware Energy-efficient IoT Applications Multi-service

Deployment in Fog Environment,” in Proceedings of the 2022 International

239

BIBLIOGRAPHY Conclusions and Future Directions

Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE,

2022, pp. 1–6.

[78] RiSING unit of FBK , “FogAtlas,” https://fogatlas.fbk.eu/, [Online; accessed Dec-

2022].

[79] S. Yang, Y. Ren, J. Zhang, J. Guan, and B. Li, “KubeHICE: Performance-

aware Container Orchestration on Heterogeneous-ISA Architectures in

Cloud-Edge Platforms,” in 2021 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing, Sustainable

Computing & Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021, pp. 81–91.

[80] C. J. L. de Santana, B. de Mello Alencar, and C. V. S. Prazeres, “Reactive microser-

vices for the Internet of Things: A case study in fog computing,” in Proceedings of

the 34th ACM/SIGAPP Symposium on Applied Computing, 2019, pp. 1243–1251.

[81] A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and M. Villari, “To-

wards osmotic computing: Analyzing overlay network solutions to optimize the

deployment of container-based microservices in fog, edge and IoT environments,”

in Proceedings of the 2018 IEEE 2nd International Conference on Fog and Edge

Computing (ICFEC). IEEE, 2018, pp. 1–10.

[82] O. R. C. Rodrı́guez, C. Pahl, N. El Ioini, H. R. Barzegar et al., “Improvement of

edge computing workload placement using multi objective particle swarm opti-

mization,” in Proceedings of the 2021 8th International Conference on Internet of

Things: Systems, Management and Security (IOTSMS). IEEE, 2021, pp. 1–8.

[83] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A simulator for IoT scenarios in fog com-

puting,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[84] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,

B. Ritchken, B. Jackson et al., “An open-source benchmark suite for microser-

vices and their hardware-software implications for cloud & edge systems,” in

240

https://fogatlas.fbk.eu/

Conclusions and Future Directions BIBLIOGRAPHY

Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, 2019, pp. 3–18.

[85] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault analysis and

debugging of microservice systems: Industrial survey, benchmark system, and

empirical study,” IEEE Transactions on Software Engineering, vol. 47, no. 2, pp.

243–260, 2018.

[86] M. I. Rahman, S. Panichella, and D. Taibi, “A curated dataset of microservices-

based systems,” SSSME-2019, 2019.

[87] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-

Balter, and J. Wilkes, “Borg: the next generation,” in Proceedings of the fifteenth

European conference on computer systems, 2020, pp. 1–14.

[88] M. Taneja and A. Davy, “Resource aware placement of IoT application mod-

ules in Fog-Cloud Computing Paradigm,” in Proceedings of the 2017 IFIP/IEEE

Symposium on Integrated Network and Service Management (IM). IEEE, 2017,

pp. 1222–1228.

[89] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware application mod-

ule management for fog computing environments,” ACM Transactions on Internet

Technology (TOIT), vol. 19, no. 1, p. 9, 2018.

[90] T. Vresk and I. Čavrak, “Architecture of an interoperable IoT platform based

on microservices,” in Proceedings of the 39th International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO). IEEE, 2016, pp. 1196–1201.

[91] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city Internet of Things

platform with microservice architecture,” in Proceedings of the 3rd International

Conference on Future Internet of Things and Cloud. IEEE, 2015, pp. 25–30.

[92] S. Nastic, M. Vögler, C. Inzinger, H.-L. Truong, and S. Dustdar, “rtGovOps: A Run-

time Framework for Governance in Large-Scale Software-Defined IoT Cloud Sys-

241

BIBLIOGRAPHY Conclusions and Future Directions

tems,” in Proceedings of the 3rd IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering. IEEE, 2015, pp. 24–33.

[93] K. Vandikas and V. Tsiatsis, “Microservices in IoT clouds,” in Proceedings of the

2016 Cloudification of the Internet of Things (CIoT). IEEE, 2016, pp. 1–6.

[94] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, “Foggy: a plat-

form for workload orchestration in a fog computing environment,” in Proceedings

of the 2017 IEEE International Conference on Cloud Computing Technology and

Science (CloudCom). IEEE, 2017, pp. 231–234.

[95] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture,

key technologies, applications and open issues,” Journal of network and computer

applications, vol. 98, pp. 27–42, 2017.

[96] M. Slabicki and K. Grochla, “Performance evaluation of CoAP, SNMP and NET-

CONF protocols in fog computing architecture,” in Proceedings of the NOMS

2016-2016 IEEE/IFIP Network Operations and Management Symposium. IEEE,

2016, pp. 1315–1319.

[97] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,

“CloudSim: a toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms,” Software: Practice

and experience, vol. 41, no. 1, pp. 23–50, 2011.

[98] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen,

“Fog computing in healthcare internet of things: A case study on ecg feature ex-

traction,” in Proceedings of the 2015 IEEE International Conference on Computer

and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and

Computing. IEEE, 2015, pp. 356–363.

[99] Z. Yang, Q. Zhou, L. Lei, K. Zheng, and W. Xiang, “An IoT-cloud based wearable

ECG monitoring system for smart healthcare,” Journal of Medical Systems, vol. 40,

no. 12, p. 286, 2016.

242

Conclusions and Future Directions BIBLIOGRAPHY

[100] R. Mahmud and R. Buyya, “Modelling and simulation of fog and edge computing

environments using iFogSim toolkit,” Fog and Edge Computing: Principles and

Paradigms, pp. 1–35, 2019.

[101] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “ContainerCloudSim:

An environment for modeling and simulation of containers in cloud data centers,”

Software: Practice and Experience, vol. 47, no. 4, pp. 505–521, 2017.

[102] D. T. Nguyen, H. T. Nguyen, N. Trieu, and V. K. Bhargava, “Two-stage robust edge

service placement and sizing under demand uncertainty,” IEEE Internet of Things

Journal, vol. 9, no. 2, pp. 1560–1574, 2021.

[103] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Profit-aware ap-

plication placement for integrated fog–cloud computing environments,” Journal

of Parallel and Distributed Computing, vol. 135, pp. 177–190, 2020.

[104] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A. S. Sani, D. Yuan, and Y. Yang, “A

novel directional and non-local-convergent particle swarm optimization based

workflow scheduling in cloud–edge environment,” Future Generation Computer

Systems, vol. 97, pp. 361–378, 2019.

[105] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong,

and J. P. Jue, “All one needs to know about fog computing and related edge com-

puting paradigms: A complete survey,” Journal of Systems Architecture, vol. 98,

pp. 289–330, 2019.

[106] A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, M. Tlili, and A. Erbad, “Edge

computing for smart health: Context-aware approaches, opportunities, and chal-

lenges,” IEEE Network, vol. 33, no. 3, pp. 196–203, 2019.

[107] R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, “A smart, efficient, and reliable park-

ing surveillance system with edge artificial intelligence on IoT devices,” IEEE

Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4962–4974,

2020.

243

BIBLIOGRAPHY Conclusions and Future Directions

[108] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications through the

fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, 2017.

[109] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized

IoT service placement in the fog,” Service Oriented Computing and Applications,

vol. 11, no. 4, pp. 427–443, 2017.

[110] W.-N. Chen and J. Zhang, “A set-based discrete PSO for cloud workflow schedul-

ing with user-defined QoS constraints,” in Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2012, pp. 773–778.

[111] A. Verma and S. Kaushal, “A hybrid multi-objective particle swarm optimization

for scientific workflow scheduling,” Parallel Computing, vol. 62, pp. 1–19, 2017.

[112] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the

ICNN’95-International Conference on Neural Networks, vol. 4. IEEE, 1995, pp.

1942–1948.

[113] W.-N. Chen, J. Zhang, H. S. Chung, W.-L. Zhong, W.-G. Wu, and Y.-H. Shi, “A

novel set-based particle swarm optimization method for discrete optimization

problems,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 2, pp.

278–300, 2009.

[114] W.-N. Chen and D.-Z. Tan, “Set-based discrete particle swarm optimization and its

applications: a survey,” Frontiers of Computer Science, vol. 12, no. 2, pp. 203–216,

2018.

[115] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions,” IEEE

Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[116] AWS, “AWS Fargate Pricing,” https://aws.amazon.com/fargate/pricing/, 2021,

[Online; accessed Sep-2021].

[117] Azure, “Container Instances pricing,” https://azure.microsoft.com/en-au/

pricing/details/container-instances/, [Online; accessed Sep-2021].

244

https://aws.amazon.com/fargate/pricing/
https://azure.microsoft.com/en-au/pricing/details/container-instances/
https://azure.microsoft.com/en-au/pricing/details/container-instances/

Conclusions and Future Directions BIBLIOGRAPHY

[118] IBM, “IBM ILOG CPLEX Optimization Studio V12.10.0 documentation,”

https://www.ibm.com/docs/en/icos/12.10.0?topic=SSSA5P 12.10.0/ilog.odms.

studio.help/Optimization Studio/topics/COS home.htm, march 2021, [Online;

accessed Sep-2021].

[119] O. Grodzevich and O. Romanko, “Normalization and other topics in multi-

objective optimization,” in Proceedings of the Fields–MITACS Industrial Problems

Workshop, 2006.

[120] S. Edirisinghe, C. Ranaweera, C. Lim, A. Nirmalathas, and E. Wong, “Univer-

sal optical network architecture for future wireless LANs,” Journal of Optical

Communications and Networking, vol. 13, no. 9, pp. D93–D102, 2021.

[121] D. Minovski, N. Ogren, C. Ahlund, and K. Mitra, “Throughput Prediction Us-

ing Machine Learning in LTE and 5G Networks,” IEEE Transactions on Mobile

Computing, vol. 22, no. 3, pp. 1825–1840, 2023.

[122] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application placement

technique for concurrent IoT applications in edge and fog computing environ-

ments,” IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1298–1311,

2020.

[123] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A Distributed Deep Reinforce-

ment Learning Technique for Application Placement in Edge and Fog Computing

Environments,” IEEE Transactions on Mobile Computing, 2021.

[124] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic Scheduling

for Stochastic Edge-Cloud Computing Environments Using A3C Learning and

Residual Recurrent Neural Networks,” IEEE Transactions on Mobile Computing,

vol. 21, no. 3, pp. 940–954, 2020.

[125] E. El Haber, H. A. Alameddine, C. Assi, and S. Sharafeddine, “UAV-aided

ultra-reliable low-latency computation offloading in future IoT networks,” IEEE

Transactions on Communications, vol. 69, no. 10, pp. 6838–6851, 2021.

245

https://www.ibm.com/docs/en/icos/12.10.0?topic=SSSA5P_12.10.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.htm
https://www.ibm.com/docs/en/icos/12.10.0?topic=SSSA5P_12.10.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.htm

BIBLIOGRAPHY Conclusions and Future Directions

[126] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial Inter-

net of Things: Challenges, opportunities, and directions,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 11, pp. 4724–4734, 2018.

[127] Azure, “Move mainframe compute to Azure,” https://docs.microsoft.com/

en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/

mainframe-compute-azure, 2021, [Online; accessed Sep-2021].

[128] L. Xing, “Reliability in Internet of Things: Current status and future perspectives,”

IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6704–6721, 2020.

[129] S. Bagchi, M.-B. Siddiqui, P. Wood, and H. Zhang, “Dependability in edge com-

puting,” Communications of the ACM, vol. 63, no. 1, pp. 58–66, 2019.

[130] Z. Bakhshi, G. Rodriguez-Navas, and H. Hansson, “Dependable fog comput-

ing: A systematic literature review,” in Proceedings of the 2019 45th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA). IEEE,

2019, pp. 395–403.

[131] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying microser-

vice based applications with kubernetes: Experiments and lessons learned,” in

Proceedings of the 2018 IEEE 11th international conference on cloud computing

(CLOUD). IEEE, 2018, pp. 970–973.

[132] N. Rehani and R. Garg, “Reliability-aware workflow scheduling using monte

carlo failure estimation in cloud,” in Proceedings of international conference on

communication and networks. Springer, 2017, pp. 139–153.

[133] X. Tang, “Reliability-aware cost-efficient scientific workflows scheduling strategy

on multi-cloud systems,” IEEE Transactions on Cloud Computing, vol. 10, no. 4,

pp. 2909–2919, 2021.

[134] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, “Fault-tolerant scheduling

for real-time scientific workflows with elastic resource provisioning in virtualized

clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 12,

pp. 3501–3517, 2016.

246

https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure

Conclusions and Future Directions BIBLIOGRAPHY

[135] G. Yao, X. Li, Q. Ren, and R. Ruiz, “Failure-aware Elastic Cloud Workflow

Scheduling,” IEEE Transactions on Services Computing, 2022.

[136] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware IoT net-

works,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262–8269, 2019.

[137] J. Liu, A. Zhou, C. Liu, T. Zhang, L. Qi, S. Wang, and R. Buyya, “Reliability-

enhanced task offloading in mobile edge computing environments,” IEEE Internet

of Things Journal, vol. 9, no. 13, pp. 10 382–10 396, 2021.

[138] A. Aral and I. Brandić, “Learning Spatiotemporal Failure Dependencies for Re-

silient Edge Computing Services,” IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 7, pp. 1578–1590, 2020.

[139] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “Optimized place-

ment of scalable IoT services in edge computing,” in Proceedings of the 2019

IFIP/IEEE Symposium on Integrated Network and Service Management (IM).

IEEE, 2019, pp. 189–197.

[140] A. M. Maia, Y. GhamriDoudane, D. Vieira, and M. F. de Castro, “Dynamic service

placement and load distribution in edge computing,” in Proceedings of the 2020

16th International Conference on Network and Service Management (CNSM).

IEEE, 2020, pp. 1–9.

[141] W. R. Blischke and D. P. Murthy, Reliability: modeling, prediction, and optimization.

John Wiley & Sons, 2011, vol. 767.

[142] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-

performance computing systems,” IEEE Transactions on Dependable and Secure

Computing, vol. 7, no. 4, pp. 337–350, 2009.

[143] P. Garraghan, P. Townend, and J. Xu, “An empirical failure-analysis of a large-

scale cloud computing environment,” in 2014 IEEE 15th International Symposium

on High-Assurance Systems Engineering. IEEE, 2014, pp. 113–120.

[144] E. Zio, “Monte carlo simulation: The method,” in The Monte Carlo simulation

method for system reliability and risk analysis. Springer, 2013, pp. 19–58.

247

BIBLIOGRAPHY Conclusions and Future Directions

[145] M. Kijima, “Some results for repairable systems with general repair,” Journal of

Applied probability, vol. 26, no. 1, pp. 89–102, 1989.

[146] A. Mettas and W. Zhao, “Modeling and analysis of repairable systems with

general repair,” in Annual Reliability and Maintainability Symposium, 2005.

Proceedings. IEEE, 2005, pp. 176–182.

[147] M. Yanez, F. Joglar, and M. Modarres, “Generalized renewal process for analysis

of repairable systems with limited failure experience,” Reliability Engineering &

System Safety, vol. 77, no. 2, pp. 167–180, 2002.

[148] M. Tanwar, R. N. Rai, and N. Bolia, “Imperfect repair modeling using Kijima type

generalized renewal process,” Reliability Engineering & System Safety, vol. 124,

pp. 24–31, 2014.

[149] W. do Espı́rito Santo, R. d. S. M. Júnior, A. d. R. L. Ribeiro, D. S. Silva, and R. San-

tos, “Systematic mapping on orchestration of container-based applications in fog

computing,” in Proceedings of the 2019 15th International Conference on Network

and Service Management (CNSM). IEEE, 2019, pp. 1–7.

[150] P. Farzin, S. Azizi, M. Shojafar, O. Rana, and M. Singhal, “FLEX: a platform

for scalable service placement in multi-fog and multi-cloud environments,” in

Australasian Computer Science Week 2022, 2022, pp. 106–114.

[151] Q. Deng, M. Goudarzi, and R. Buyya, “Fogbus2: a lightweight and distributed

container-based framework for integration of IoT-enabled systems with edge and

cloud computing,” in Proceedings of the International Workshop on Big Data in

Emergent Distributed Environments, 2021, pp. 1–8.

[152] ”Google”, “”google distributed cloud edge overview”,” https://cloud.google.

com/distributed-cloud/edge/latest/docs/overview, [Online; accessed Feb-

2023].

[153] M. Komu and T. Kauppinen, “Enhancing service mobility in the 5G

edge cloud and beyond,” https://www.ericsson.com/en/blog/2022/11/

service-mobility-in-the-edge-cloud, [Online; accessed Feb-2023].

248

https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://www.ericsson.com/en/blog/2022/11/service-mobility-in-the-edge-cloud
https://www.ericsson.com/en/blog/2022/11/service-mobility-in-the-edge-cloud

Conclusions and Future Directions BIBLIOGRAPHY

[154] ”IBM”, “”edge clusters”,” https://www.ibm.com/docs/en/eam/4.2?topic=

nodes-edge-clusters, [Online; accessed Feb-2023].

[155] P. Farhat, H. Sami, and A. Mourad, “Reinforcement R-learning model for time

scheduling of on-demand fog placement,” The Journal of Supercomputing,

vol. 76, pp. 388–410, 2020.

[156] D. Ermolenko, C. Kilicheva, A. Muthanna, and A. Khakimov, “Internet of Things

services orchestration framework based on Kubernetes and edge computing,”

in Proceedings of the 2021 IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering (ElConRus). IEEE, 2021, pp. 12–17.

[157] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment based

on docker containerization over raspberrypi,” in Proceedings of the 18th

international conference on distributed computing and networking, 2017, pp. 1–

10.

[158] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-based

lightweight framework for edge and fog computing,” Journal of Systems and

Software, vol. 154, pp. 22–36, 2019.

[159] Z. Wang, M. Goudarzi, J. Aryal, and R. Buyya, “Container orchestration

in edge and fog computing environments for real-time IoT applications,” in

Computational Intelligence and Data Analytics: Proceedings of ICCIDA 2022.

Springer, 2022, pp. 1–21.

[160] R. Mahmud and A. N. Toosi, “Con-Pi: A distributed container-based edge and fog

computing framework,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4125–

4138, 2021.

[161] J. ”Falkner, “”key findings from idc red hat quarkus lab validation”,” https:

//www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation,

October 2020, [Online; accessed Oct-2022].

249

https://www.ibm.com/docs/en/eam/4.2?topic=nodes-edge-clusters
https://www.ibm.com/docs/en/eam/4.2?topic=nodes-edge-clusters
https://www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation
https://www.redhat.com/en/blog/key-findings-idc-red-hat-quarkus-lab-validation

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Fog Computing
	Microservice Architecture (MSA)
	Microservices-based IoT Applications and Fog Computing
	Problem Definition
	Challenges of Fog Application Placement
	Research Questions and Objectives
	Thesis Contributions
	Thesis Organization
	A Taxonomy and Review on Placement of Microservices-based IoT Applications
	Introduction
	Related Surveys
	Microservice Architecture
	Granularity
	Service Composition
	Application Composition
	Research Gaps
	Application Placement Policy
	Placement Mode
	Placement Perspective
	Placement Parameters
	Placement Techniques
	Advanced Microservice Characteristics
	Other Placement Objectives
	Research Gaps
	Microservice Composition
	Service Discovery
	Load Balancing
	Networking
	Elasticity
	Monitoring
	Other
	Research Gaps
	Performance Evaluation
	Evaluation Approach
	Workload
	Research Gaps
	Summary
	A Distributed Placement Policy for Scalable Microservice Deployment
	Introduction
	Related Work
	System Model and Problem Formulation
	Fog Architecture
	Application Model
	Fog Nodes
	Placement Problem
	Proposed Solution
	Microservice Placement
	Service Discovery
	Load balancing
	Time Complexity Analysis
	Design and Implementation
	Performance Evaluation
	Experimental Configurations
	Results and Analysis
	Summary
	QoS-aware Batch Placement Approach for Heterogeneous IoT Applications
	Introduction
	Related Work
	Application Placement in Fog Environments
	Particle Swarm Optimisation
	System Model and Architecture
	Application Model
	Fog Architecture
	Pricing Model
	QoS-aware Application Placement
	Problem Formulation
	QoS-aware Multi-objective S-CLPSO (QMPSO)
	Performance Evaluation
	Implementation of the Algorithms
	Experimental Configurations
	Results and Analysis
	Summary
	Reliability-aware Proactive Placement of Mission-critical IoT Applications
	Introduction
	Motivational Scenario
	Proposed Approach and Contributions
	Related Work
	System Model and Problem Formulation
	Microservices-based Application Model
	Fog Computing Environment Model
	System and Failure Characteristics
	Throughput-aware Minimum Instance Calculation
	Service Latency Model
	Pricing Model
	Problem Formulation
	Reliability-aware Placement Method (RPM)
	Overview
	Monte Carlo Simulation-based Service Reliability
	Stage 1 - Throughput-aware Scalable Placement
	Stage 2 - Reliability-aware Redundant Placement
	Performance Evaluation
	Experimental Configurations
	RPM Algorithm Performance Evaluation
	RPM Algorithm Placement Evaluation
	Summary
	A Framework for Scalable Microservices Placement in Federated Fog Environments
	Introduction
	Background and Related works
	Fog Computing
	Microservices-based Applications
	Application Deployment Related Aspects
	Containerisation using Docker
	Placement Problem
	Framework Requirements
	Existing Fog Frameworks
	MicroFog Framework
	High-level Architecture
	Main Components and Technologies
	PR Processing flow of MicroFog-CE
	MicroFog Deployment
	MinIO YAML File Store Deployment
	Redis Meta Data Store Deployment
	Control-Engine Deployment
	Deployment of Observability, Monitoring and Logging Tools
	APIs of MicroFog-CE
	MicroFog - Evaluation and Validation
	Experimental Setup
	Use cases and results
	Summary
	Conclusions and Future Directions
	Summary of Contributions
	Future Research Directions
	Dynamic Application Management
	Placement within Federated Multi-fog Multi-cloud Environments
	Software Frameworks and Platforms for Fog Environments
	IoT Workloads/Benchmarks Related to MSA
	Security-aware Placement
	Scalable Placement under state management constraints
	Resource Contention Handling
	Observability and Monitoring Driven Maintenance
	Placement within NFV-enabled Networks
	Fault Tolerant Placement and Management of Microservices
	Availability Assurance under Continuous Integration and Delivery
	Final Remarks

