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Abstract

Cloud computing paradigm supports dynamic provisioning of resources for deliver-
ing computing for applications as utility services as a pay-as-you-go basis. However, the
energy consumption of cloud data centers has become a major concern as a typical data
center can consume as much energy as 25,000 households. The dominant energy efficient
approaches, like Dynamic Voltage Frequency Scaling and VM consolidation, cannot func-
tion well when the whole data center is overloaded. Therefore, a novel paradigm called
brownout has been proposed, which can dynamically activate/deactivate the optional
parts of the application system. Brownout has successfully shown it can avoid overloads
due to changes in the workload and achieve better load balancing and energy saving
effects.

In this thesis, we propose brownout-based approaches to address energy efficiency
and cost-aware problem, and to facilitate resource management in cloud data centers.
They are able to reduce data center energy consumption while ensuring Service Level
Agreement defined by service providers. Specifically, the thesis advances the state-of-art
by making the following key contributions:

1. An approach for scheduling cloud application components with brownout. The
approach models the brownout enabled system by considering application com-
ponents, which are either mandatory or optional. It also contains brownout-based
algorithm to determine when to use brownout and how much utilization can be
reduced.

2. A resource scheduling algorithm based on brownout and approximate Markov De-
cision Process approach. The approach considers the trade-offs between saved en-
ergy and the discount that is given to the user if components or microservices are
deactivated.

3. A framework that enables brownout paradigm to manage the container-based en-
vironment, and provides fine-grained control on containers, which also contains
several scheduling policies for managing containers to achieve power saving and
QoS constraints.

4. The design and development of a software prototype based on Docker Swarm to
reduce energy consumption while ensuring QoS in Clouds, and evaluations of dif-
ferent container scheduling policies under real testbeds to help service provider de-
ploying services in a more energy-efficient manner while ensuring QoS constraint.
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5. A perspective model for multi-level resource scheduling and a self-adaptive ap-
proach for interactive workloads and batch workloads to ensure their QoS by con-
sidering the renewable energy at Melbourne based on support vector machine. The
proposed approach is evaluated under our developed prototype system.
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Chapter 1

Introduction

CLOUD computing has gained significant attention from the academic and industry

communities in recent years. It provides the vision that encompasses the move-

ment of computing elements, storage, and software delivery away from the personal

computer and local servers into the next generation computing infrastructure hosted

by large companies such as Amazon Web Service (AWS), Microsoft Azure, and Google.

Cloud computing has three distinct characteristics that differentiate it from its traditional

counterparts: pay-as-you-go model, on-demand provisioning of resources, and elasticity

[41].

Cloud computing offers three types of resources delivery models to users [107]: (i)

Infrastructure as a Service (IaaS) which offers computing, network, and storage resources,

(ii) Platform as a Service (PaaS) which provides users tools that facilitate the deployment

of cloud applications, and (iii) Software as a Service (SaaS) which enables users to run the

provider’s software on the cloud infrastructure.

The aim of cloud computing is providing resources in the form of utility like water,

gas, and electricity for daily use. Some attractive characteristics including on-demand

resource provisioning model, scalability enhancement, operational cost reduction, and

convenient access are offered by Clouds. All these features enable cloud computing to

be appealing to business runners, which gets rid of the complexity for service providers

to do provisioning plan and allows companies to begin with the minimum resources as

required. Cloud platforms like EC2, Google Cloud, and Azure, have been built by large

infrastructure providers to support applications around the world with the purpose of

assuring these applications to be scalable and available for the demands of the users

[107]. The cloud customers are allowed to dynamically lease and unlease the on-demand

1
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resources based on their requirements.

Although cloud data centers are providing compelling features for customers, the

energy consumption of data centers has become a major topic of research. Fig. 1.11

illustrates the past and predicted growth rate of total power usage of U.S. data center

from 2000 to 2020. It also shows the energy growth of data centers can be quite fast if

the industry does not make any further efficiency improvements after 2010. The servers

hosted in data centers dissipate heat and need to be maintained by cooling infrastructure,

which provides the cooling resource to extract the heat from IT devices. Though the

cooling infrastructure is already efficient to some extent, the servers are still one of the

major energy consumers.

Due to the rapid growth of the Internet of Things (IoT) based applications, the amount

of cloud services is increasing exponentially, which further increases the power consump-

tions of cloud data centers by 20-25% every year [90]. The data centers in U.S. consumed

100 billion kilowatt hours (kWh) in 2015, which is sufficient for Washington City [132]

[29][50]. The consumption of electricity will reach 150 billion kWh by 2022 i.e. increase

by 50% [126]. Energy consumption in cloud data centers can grow to 8000 terawatt hours

(TWh) in 2030 if controlled mechanisms are not identified [22][26]. Because of the un-

derutilized and overload of resources in infrastructure (cooling, computing, storage, net-

working etc.), the energy consumption in cloud data centers is not efficient and mostly

the energy is consumed while some of the resources are in idle state, which increases the

cost of cloud services [132].

Cloud data centers not only consume huge energy consumption but also have a non-

negligible impact on the environment [6]. It is reported that 78.7 million metric tons of

CO2 are emitted by data centers, which equals the 2% of global emissions [110][150]. It

is also estimated that cloud data centers will use 20% of the world’s electricity and emit

up to 5.5% of global carbon footprint by 2025, which consume more energy than most

countries [93]. Recently, some dominant service providers established a community to

promote energy efficiency for data centers to minimize the impact on the environment,

which is also known as Green Grid [33]. Carbon footprints produced by cloud data cen-

ters is same as aviation industry [38]. In the current scenario, the service providers are

1https://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-
centers-consume
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Figure 1.1: Power consumption of data centers

looking for alternative ways to reduce the carbon footprint of their infrastructure. The

prominent cloud providers such as Google, Amazon, Microsoft and IBM have assured

to attain zero production of carbon footprints and aimed to find the new ways to make

data centers and cloud-based services eco-friendly [133]. Thus, cloud data centers needs

to provision cloud services that minimize carbon footprint and reduce heat release in the

form of greenhouse gas emissions [133].

To solve the above challenges of energy-efficient cloud data centers, a large body of

researchers have proposed resource scheduling models, algorithms and architectures.

However, energy efficiency is still a challenge for future researchers. To ensure high-level

of sustainability, holistic management of resources can solve new open challenges exist-

ing in resource scheduling. Methods are required to harness renewable energy to reduce

carbon footprints without the use of coal-based resources. Additionally, cooling expenses

can be minimized by developing waste heat utilization and free cooling mechanisms. A

promising way is based on location-aware ideal climatic conditions, which can achieve

the efficient implementation of free cooling and renewable energy production techniques

[69]. Further, waste heat recovery locations are required to be identified for an efficient
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implantation of waste heat recovery predictions. Cloud providers such as Google, Ama-

zon, IBM, Facebook, and Microsoft are utilizing more green energy resources instead of

grid electricity [156].

1.1 Motivations

Energy efficiency in cloud data centers is a challenging objective due to applications and

data are growing fast and complex [96]. Normally, the applications and data are required

to be processed within the required time, thus, large and powerful servers are required

to offer services. To ensure the sustainability of future growth of data centers, cloud

data centers must be designed to be efficiently utilize the resources of infrastructure and

minimize energy consumption. To address this problem, the concept of Green Cloud is

proposed, which aims to manage cloud data centers in an energy efficient manner [33].

Consequently, data centers are required to offer resources while satisfying Quality of

Service (QoS), as well as reduce energy consumption.

One of the main reasons of high energy consumption of cloud data centers lies in

that computing resources are inefficiently utilized by applications on servers [145][124].

RightScale states that the cloud consumers waste between 30-45% of their total cloud

consumption [46]. Therefore, applications are currently built with microservices to uti-

lize infrastructure resource more efficiently. Microservices are also referred to a set of

self-contained application components [116]. The components encapsulate its logic and

expose its functionality via interfaces to make them flexible to be deployed and replaced.

With microservices or components, developers and user benefit from their technologi-

cal heterogeneity, resilience, scalability, ease of deployment, organizational alignment,

composability and optimization for replicability. It also brings the advantage of more

fine-grained control over the application resource usage.

Thus, in this thesis, we take advantage of brownout, a paradigm inspired from volt-

age shutdown that copes with emergency cases. In the original brownout scenario, the

light bulbs emit fewer lights to save energy consumption. In Cloud scenario, brownout

can be applied to microservices or application components that are allowed to be tem-

porarily deactivated without affecting main functionality. When brownout is triggered,
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the user’s experience is temporally degraded to relieve the overloaded situation and re-

duce energy consumption.

It is common for microservices or application components to have this brownout fea-

ture. Klein et al. [85] introduced an online shopping system that has a recommenda-

tion engine to recommend products to users. The recommendation engine enhances the

function of the whole system, while it is not necessary to keep it running all the time,

especially under the overloaded situation. As the recommendation engine requires more

resource in comparison to other components, if it is deactivated, more clients with es-

sential requests or QoS constraints can be served. Apart from this example, brownout

paradigm is also suitable for other systems that allow some microservices or application

components to not keep running all the time.

To study service providers’ requirement and concerns for managing services based

on containers, we give a motivation example of a real-world case study with brownout

technology. A good example of the microservice-based system is the web-based service.

An online shopping system implemented with microservices is presented in [2], which

contains multiple microservices, including user, user database, payment, shipping, front-

end, orders, carts, catalog, carts database and etc. As it is implemented with microser-

vices, each microservice can be activated or deactivated independently. When requests

are bursting, the online shopping system may be overloaded, and it cannot satisfy QoS

requirements. To handle the overloads and reduce energy consumption, the brownout

approach can be applied to temporarily disable some microservices, such as the recom-

mendation engine, to save resource and power. By deactivating the recommendation en-

gine, the system is able to serve more requests with the essential requirement and satisfy

QoS. When the system is not overloaded anymore, the disabled microservices are acti-

vated again. Considering the overloaded situation, we assume that the service provider

of this online shopping system is interested to improve QoS and save energy costs. In

addition, the service provider may prefer to apply brownout to manage microservices in

their systems.
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1.2 Research Problems and Objectives

This thesis focuses on self-adaptive resource scheduling for applications in cloud com-

puting systems based on brownout approaches. The optimization objectives are energy

and required QoS. In respect to this objective, the following research problem is investi-

gated:

Designing algorithms for energy-efficient and cost-effective scheduling of multiple

applications in Clouds with distributed and heterogeneous resources under quality of

service constraints.

The research problem can consist of several sub-problems:

• How to deal and manage resource allocation for user requests under overloaded

situation? Since unpredicted workloads, like request bursts, can trigger system per-

formance degradation and lead to overloads, it is necessary to handle the overloads

and allocate resources to satisfy the QoS for users.

• How to monitor application status and make self-adaptive decisions under dif-

ferent workloads? Predicting workloads accurately is helpful for designing re-

source scheduling policies for energy-efficient and cost-effective purposes. It is im-

portant to have a mechanism to predict workloads tendency.

• How to reduce energy consumption while ensuring QoS? Reducing energy con-

sumption is one of the main objectives. However, generally, there are trade-offs

between saved energy and QoS. The scheduling policies should balance the trade-

offs between energy and QoS, like the response time of services.

• How to identify the optional components/microservices? In brownout enabled

model, the components or microservices are identified as optional and manda-

tory ones, and only the optional ones can be deactivated temporarily to reduce

resource utilization and energy consumption. It is required to identify which com-

ponents/microservices are the optional ones.

• When to trigger the brownout mechanism? Brownout should only be triggered

under certain situations, for example, the system is overloaded, since brownout
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comes along with performance degradation or functions deactivation. An effective

mechanism to trigger brownout is also needed.

• How to select the components/microservices to be deactivated temporarily? The

ideal design is to find an optimal list of optional components and deactivate them,

which minimizes the energy consumption while ensuring the QoS. Thus, a compo-

nent/microservice selection algorithm is required to achieve this goal. If the algo-

rithm is not optimal, alternatively, a satidfactory algorithm should be competitive

with the optimal algorithm in terms of time and cost.

To tackle the above research problems and challenges, the following objectives have

been identified:

• Conduct a comprehensive survey and review of brownout-based approaches for

cloud computing systems to identify the existing gaps in this area.

• Define a system model that enables brownout by considering application compo-

nents, which are either mandatory or optional.

• Propose brownout enabled algorithm to determine when to use brownout and how

much utilization can be reduced.

• Develop approaches that consider the trade-offs between discount that should be

given to user if a component is deactivated and how much energy can be saved.

• Propose an approach based on microservices to reduce energy consumption while

ensuring QoS in Clouds.

• Design and develop a software prototype based on microservices management to

reduce energy consumption while ensuring QoS in Clouds.

1.3 Methodology

This thesis endeavors to reduce the energy consumption of data centers while satisfying

the QoS defined by users. To achieve this goal, the following methodology for energy

management problem has been adopted as shown in Figure 1.2
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Figure 1.2: The methodology used in the thesis

1. System and optimization model. We define a system model that enables the brownout

approach, in which the application components are defined as mandatory or op-

tional. Based on the system model, we mathematically define the optimization

model that considers energy consumption and QoS defined by users.

2. Problem definition. We formally define the optimization problem based on the

optimization objectives in the form of mathematical formula with the energy and

predefined QoS.

3. Algorithms. The algorithms used to solve the optimization problems are based

on heuristic and meta-heuristic algorithms. The time complexity of the proposed

algorithms is also evaluated and analyzed.

4. Evaluation. The approaches in this thesis were evaluated both in simulators (CloudSim

[42] developed by CLOUDS lab from University of Melbourne) and real testbeds

(Grid’5000 from INRIA [67], OpenStack [15] at CLOUDS lab). The workloads used

in this thesis were derived from real traces, including Wikipedia [151] and Planet-

Lab [122]. The major parameters we have evaluated are energy consumption and

QoS (discount, response and SLA violations). The scalability of prototype system

in Chapter 5 is also discussed.
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1.4 Contributions

The contributions of this thesis can be broadly categorized into (i) A taxonomy and re-

view of the brownout-based approaches in self-adaptive area, (ii) Scheduling algorithms

for application components with brownout to balance the energy consumption and dis-

count given to user, (iii) A meta-heuristic algorithm based Markov Decision Process to

select application components to improve the trade-offs between energy consumption

and discount, (iv) An approach based on brownout and containers to save power con-

sumption while ensuring QoS, (v) A prototype system based on Docker Swarm to sup-

port brownout evaluated performance. The detailed key contributions of the thesis are

as follows:

1. A review and taxonomy of brownout-based adaptive management of resources and

applications for cloud computing systems.

2. Scheduling cloud application components with brownout :

• A system model considers application components, which are either manda-

tory or optional, and presenting brownout enabled algorithm to determine

when to use brownout and how much utilization can be reduced.

• An approach considers the trade-offs between discount that should be given

to user if a component is deactivated and how much energy can be saved.

• A number of policies that consider the aforementioned trade-offs and dynam-

ically make decisions on which components are going to be deactivated.

3. Scheduling of application components via brownout and approximate Markov De-

cision Process :

• An approach based on brownout-based approximate Markov Decision Process

to improve the trade-offs between energy and discount.

• A model considers the trade-offs between saved energy and the discount that

is given to user if components or microservices are deactivated.

• An efficient algorithm based on brownout and approximate Markov Decision

Process to achieve the better trade-offs than baselines.
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4. Managing energy and brownout in container-based clouds :

• An approach based on containers to reduce energy consumption while ensur-

ing QoS in Clouds.

• An effective architecture that enables brownout paradigm to mange the container-

based environment, which enables fine-grained control on containers. .

• Several scheduling policies for managing containers to achieve power saving

and QoS constraints.

• Evaluations in INRIA Grid’5000 testbed for Wikipedia workload.

5. A software system based on brownout and containers for clouds :

• A software prototype based on Docker Swarm to reduce energy consumption

while ensuring QoS in Clouds.

• An effective system model that enables brownout approach to manage the

containers and resources in a fine-grained manner.

• Designing and implementing a software system based on Docker Swarm to

provide energy-efficient approaches for cloud data centers.

• Evaluation of different container scheduling polices under real testbeds to help

service provider deploying services in a more energy-efficient manner while

ensuring QoS constraint.

6. A self-adaptive approach for managing applications and harnessing renewable en-

ergy: :

• Providing a perspective model for multi-level adaptive resource scheduling to

manage workloads and renewable energy;

• Proposing a self-adaptive approach for interactive workloads and batch work-

loads to ensure their QoS by considering the predicted renewable energy at

Melbourne based on support vector machine;

• Implementing a prototype system derived from the perspective model and the

proposed approach on a small-scale testbed with 8 hosts;
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• Evaluating the performance of the self-adaptive approach in the proposed pro-

totype system.

1.5 Thesis Organization

The core chapters of this thesis are mostly derived from the publications made during

my PhD candidature. Fig. 1.3 shows the structure of the thesis, and details are described

as below:

• Chapter 2 presents a review and taxonomy of brownout-based adaptive resources

and applications management for cloud computing systems. This chapter is par-

tially derived from:

– Minxian Xu and Rajkumar Buyya, “Brownout Approach for Adaptive Man-

agement of Resources and Applications in Cloud Computing Systems: A Tax-

onomy and Future Directions,” ACM Computing Surveys (CSUR), Volume 52,

No. 8, Pages: 1-27, ISSN: 0360-0300, ACM Press, New York, USA, February

2019.

– Minxian Xu, Wenhong Tian, and Rajkumar Buyya, “A Survey on Load Balanc-

ing Algorithms for Virtual Machines Placement in Cloud Computing,” Con-

currency and Computation: Practice and Experience (CCPE), Volume 29, No. 12,

Pages: 1-16, ISSN: 1532-0626, Wiley Press, New York, USA, June 25, 2017.

• Chapter 3 proposes a scheduling algorithm for application components with brownout

to balance the energy consumption and discount given to user. This chapter is de-

rived from:

– Minxian Xu, Amir Vahid Dastjerdi, and Rajkumar Buyya, “Energy Efficient

Scheduling of Cloud Application Components with Brownout,” IEEE Transac-

tions on Sustainable Computing (T-SUSC), Volume 1, Number 2, Pages: 40-53,

ISSN: 2377-3782, IEEE Computer Society Press, USA, July-Dec 2016.
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Figure 1.3: The thesis organization
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• Chapter 4 presents a meta-heuristic algorithm based Markov Decision Process to

select application components to improve the trade-offs between energy consump-

tion and discount. This chapter is derived from:

– Minxian Xu and Rajkumar Buyya, “Energy Efficient Scheduling of Applica-

tion Components via Brownout and Approximate Markov Decision Process,”

Proceedings of the 15th International Conference on Service-Oriented Computing (IC-

SOC), LNCS, Springer-Verlag Press, Berlin, Germany), Malaga, Spain, Novem-

ber 13-16, 2017.

• Chapter 5 investigates approach based on brownout and containers to save power

consumption while ensuring QoS. This chapter is derived from:

– Minxian Xu, Adel Nadjaran Toosi, and Rajkumar Buyya, “iBrownout: An In-

tegrated Approach for Managing Energy and Brownout in Container-based

Clouds,” IEEE Transactions on Sustainable Computing (T-SUSC), Volume 4, Num-

ber 1, Pages: 53-66, ISSN: 2377-3782, IEEE Computer Society Press, USA, Jan-

Mar 2019.

• Chapter 6 introduces a prototype system based on Docker Swarm to support brownout

and evaluate performance. It is derived from:

– Minxian Xu and Rajkumar Buyya, “BrownoutCon: A Software System based

on Brownout and Containers for Energy Efficient Clouds,” Journal of Systems

and Software (JSS), 2019 (under review).

• Chapter 7 presents a self-adaptive approach for managing applications and har-

nessing renewable energy for cloud data centers. It is derived from:

– Minxian Xu, Adel Nadjaran Toosi, and Rajkumar Buyya, “A Self-adaptive

Approach for Managing Applications and Harnessing Renewable Energy for

Sustainable Cloud Computing,” IEEE Transactions on Parallel and Distributed

Systems (TPDS), 2018 (under review).
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• Chapter 8 concludes the thesis with a summary of the key research outcomes and a

discussion of future directions.



Chapter 2

Taxonomy and Literature Review

Cloud computing is viewed as an emerging approach for provisioning resources and managing ap-

plications. It provides attractive features, such as on-demand model, scalability enhancement, and

management costs reduction. However, cloud computing systems continue to face problems such as

hardware failures, overloads caused by unexpected workloads, or the waste of energy due to inefficient

resource utilization, which all result to resource shortages and application issues such as delays or sat-

urated eventually. A paradigm named brownout has been applied to handle these issues by adaptively

activating or deactivating optional parts of applications or services to manage resource usage in the

cloud computing system. Brownout has successfully shown it can avoid overloads due to changes in

the workload and achieve better load balancing and energy saving effects. In this chapter, we propose

a taxonomy of brownout-based approach for managing resources and applications adaptively in cloud

computing systems and carries out a comprehensive survey.

2.1 Introduction

CCLOUD computing has been regarded as one of the most dominant technologies

that promote the future economy [79]. Traditionally, the service providers used to

establish their own data centers with a huge investment to maintain the applications and

provide services to users. With cloud computing, resources can be leased by application

providers and the applications can be deployed without any upfront costs. Nowadays,

many applications are developed for the cloud computing systems, and Clouds also pro-

vide elastic resources for applications [136]. This feature attracts enterprises to migrate

This chapter is derived from:
• Minxian Xu and Rajkumar Buyya, “Brownout Approach for Adaptive Management of Resources and
Applications in Cloud Computing Systems: A Taxonomy and Future Directions,” ACM Computing Surveys
(CSUR), Volume 52, No. 8, Pages: 1-27, ISSN: 0360-0300, ACM Press, New York, USA, February 2019.
•Minxian Xu, Wenhong Tian, and Rajkumar Buyya, “A Survey on Load Balancing Algorithms for Virtual
Machines Placement in Cloud Computing,” Concurrency and Computation: Practice and Experience (CCPE),
Volume 29, No. 12, Pages: 1-16, ISSN: 1532-0626, Wiley Press, New York, USA, June 25, 2017.
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their local applications to Clouds [25].

In addition to the traditional requirements, the cloud applications are experiencing

unpredictable workloads because of the dynamic amount of requests and users [44].

Thus, cloud computing systems are also required to be designed as robust to handle

unexpected events, such as request bursts, which is commonly named as flash crowds

that can increase the size of requests significantly. For example, the servers of Weibo, a

Chinese web social network website owned by Sina, got a breakdown after a Chinese

celebrity announced his new relationship, which resulted from the celebrity’s fans flood-

ing into the website [12].

Similarly, in cloud data centers, unexpected hardware failures are also common is-

sues. In 2016, the severe weather led to the outage of Amazon data centers in Sydney,

knocking the services of many companies to be offline [7]. Moreover, performance in-

ference resulted from co-located applications and workload consolidations may lead to

unexpected performance degradations [153].

2.1.1 Need for Adaptive Management in Cloud Computing Systems

To handle the aforementioned phenomena, applications are needed to be carefully de-

signed and deployed. For instance, techniques such as auto-scaling [99], data replication

[109], workload consolidation [76] and dynamic load balancing [121] are applied to over-

come unexpected events only if the available resources are adequate. However, these

unexpected events are generally only lasting a relatively short duration, it is not eco-

nomical to provision sufficient capacity as much as possible. Without sufficient resource

provisioning, the applications can be saturated, and cause the users to experience longer

response time or even no response at all. As a result, service providers may lose cus-

tomers and revenues. Therefore, we argue that the adaptive management of resources

and applications is needed for cloud computing systems.

With the adaptive management of resources and applications, different benefits can

be achieved. Adaptive management can improve the Quality of Service (QoS) guarantee

of cloud services. QoS guarantee plays a crucial role in system performance for Clouds

environment [89], and cloud computing systems are required to be designed to offer QoS

guaranteed services [134] [135]. It is a challenging issue for Clouds to support various co-
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located applications with different QoS constraints, and provision resources efficiently to

be adaptive to the users’ dynamic behaviors. These aspects make it difficult to provision

resources efficiently [130] [56]. It is reported that 53% mobile users abandon pages that

have no response within three seconds. Therefore, Google firmly recommended a one-

second web page loading time to improve user’s experience [60]. QoS of applications can

be improved by dynamically adding or removing hosts via adaptive management.

Energy efficiency of cloud computing systems can be improved by adaptive manage-

ment. It has become a major problem in the IT industry that huge energy is consumed

by cloud data centers [104]. The rise and evolution of complicated computation inten-

sive applications have promoted the establishment of large cloud data centers that boost

the total amount of power usage [32]. The physical servers deployed in Clouds gener-

ate massive heat and require to be managed in an environment equipped with powerful

air conditioners. One of the key reasons for huge energy usage is due to the inefficient

utilization of resources [33]. Adaptive management is able to improve resource usage so

that energy consumption can be reduced. For example, when there are fewer requests,

adaptive management can reduce energy consumption by consolidating workloads onto

fewer active physical machines, thus the idle physical machines can be turned into the

low-power mode or fully turned-off.

Balancing the loads in cloud computing systems is another objective that can be ful-

filled by adaptive management. Load balancers are the regular components of web ap-

plications, which allow the system to be scalable and resilience [128]. Numerous load

balancing algorithms have been introduced by researchers, focusing on different opti-

mization targets, ranging from balancing virtual machines load to physical machines

, with specific optimizations by both heuristic and meta-heuristic algorithms.The pur-

poses of load balancing can be various, including geographical balancing [98], electricity

costs reduction [127] and applications load balancing in cloud computing systems [108].

Adaptive management can avoid overloads to achieve load balancing.

A promising approach for adaptive management of resources and applications in

cloud computing systems is brownout [85]. In the field of brownout, the applications/services

are extended to have two parts: mandatory and optional. The mandatory parts are de-

sired to keep running all the time, such as the critical services in the systems including
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data-relevant services. The optional parts, on the other hand, are not necessary to be ac-

tive all the time and can be deactivated temporarily to ensure the system performance in

the case of flash crowds.

A motivational example of brownout-enabled application is the E-Commerce system,

where product descriptions are shown along with related products suggested to the end

users. These related products are managed by a recommendation engine in the system.

The recommendation engine can be identified as an optional part, because it is not strictly

necessary for the core function to work. Indeed, when the system is overloaded, even if

the recommendation engine improves the user experience, it is preferable to deactivate

the engine temporarily to obtain a more responsive website for more users.

2.1.2 Motivation of Research

Currently, brownout approaches have been applied in cloud computing system for dif-

ferent optimization objectives, including system robustness improvement, overbooking,

load balancing and energy efficiency. Therefore, we like to investigate them in depth as

noted below:

• Brownout approach has shown a promising direction to manage applications and

resources in cloud computing systems. Therefore, this article discusses the devel-

opment and application of brownout approaches in the cloud computing area.

• We identify the necessity of a literature review to summarize the progress in brownout

approach with adaptive management of resources and applications for cloud com-

puting systems. Consequently, we have surveyed the existing articles relevant to

this topic and aimed to draw more attention and efforts to advance research with

brownout approaches.

2.1.3 Our Contributions

The major contributions of this chapter are summarized as follows:

• We propose a taxonomy of brownout-based adaptive management of resources and

applications in cloud computing systems.
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• We investigate a comprehensive review of brownout approaches in cloud comput-

ing systems for adaptive management of applications and resources.

• We categorize the studied brownout approaches according to their common fea-

tures and properties, and compare the advantages and limitations of each approach.

• We identify the research gaps and future research directions in brownout-enabled

cloud computing systems.

2.1.4 Related Surveys

A few articles have conducted surveys or taxonomies on resource management in cloud

computing. Kaur et al.[81] conducted a comprehensive taxonomy and survey for energy

efficient scheduling approaches in Clouds. Kong et al. [87] discussed the energy saving

techniques from green energy perspective. Weerasiri et al. [149] introduced a survey and

taxonomy for resource orchestration in Clouds while not focusing on adaptive resource

management. Zhan et al. [152] investigated the cloud computing resource scheduling

approaches and summarized their evolution. Mansouri et al. [102] presented a survey

and taxonomy on resource management in Cloud environment, with the focus on man-

agement of storage resources. Singh et al. [135] proposed a systematic review of Quality

of Service aware automatic resource scheduling approaches in Clouds scenario.

However, there is no existing survey and taxonomy focusing on brownout approach.

As a complimentary, our article enhances previous surveys and focuses on the brownout-

based approach. It also identifies the open challenges and future research directions in

the area that applying brownout in cloud computing systems for adaptive management

of resources and applications.

2.2 Background

In this section, we briefly introduce the background on cloud computing and adaptive

management.
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2.2.1 Cloud Computing

The appearance of cloud computing is regarded as a novel paradigm in information tech-

nology industry [39]. The objective of cloud computing is provisioning resources as util-

ities like water, gas, and electricity for daily use, which can be used on-demand. In addi-

tion, cloud computing also has the attractive features including scalability improvement,

lower operational cost, and convenient access. All these features enable cloud computing

to be appealing to business users, which gets rid of the complexity for service providers

to design provisioning plan and allows companies to begin with the minimum resources

as required. Large cloud service providers like Amazon, Google, and Microsoft, have

established infrastructures to support services distributed in the world with the purpose

of assuring these services to be scalable and available for the demands of the users [107].

The cloud customers are also benefiting from cloud computing that on-demand resources

are allowed to be dynamically leased and unleased based on their requirements.

2.2.2 Adaptive Management

In the past years, a considerable amount of research in adaptive techniques to manage

resources in the system has been conducted. The properties of adaptive techniques are

achieving management in a self-adaptation manner, including protection, optimization,

and recovery. These properties are often featured as self-* characteristics [113].

The feedback loop is the essential concept used to develop an adaptive system, which

monitors the status and the environment of the system, and adapts as desired to obtain

the required self-* characteristics. It is viewed as an important factor to enable adaptive

management of resources and applications by taking advantage of feedback loops for

applications [78]. In adaptive systems, one favorite representation of the feedback loop

is the Monitor, Analyze, Plan, Execute and Knowledge loop, which is abbreviated as

MAPE-K [23]. In the MAPE-K loop, there are several phases to be accomplished in the

loop as below:

(1) Monitoring the system status and the environment situation by Monitor phase;

(2) Analyzing the collected data and determining whether the adaptation is required

or not by Analyze phase;
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(3) Planning the approach to adapt the system by Plan phase;

(4) Executing the plan by Execute phase,

where the knowledge pool is shared by these 4 phases and acts as integration role

[49].

2.3 Article Selection Methodology

In this section, we introduce the approach we followed to find our surveyed articles as

well as the outcome.

2.3.1 Source of Articles

Related articles are broadly searched in main-stream academic databases, including IEE-

EXplore, Springer, Elsevier, ACM Digital Library, ScienceDirect, Wiley Interscience and

Google Scholar.

2.3.2 Search Method

Two phases of our search are involved. In the first phase, we use the keywords ”Brownout”

and ”Cloud Computing” to search the title and abstract of research articles. Several re-

sults are found, however, the number of these articles are quite limited. We think that

some articles may be motivated by the mechanism of brownout while they do not use

the keywords in the title or abstracts. Thus, in the second phase, based on the initial

brownout researches conducted in 2014, we plan to find other articles using brownout

inspired by these work. We show the pioneering work of brownout approach in 2014

and their number of citations2 in Table 2.1. We investigated the articles that cite these

four papers and found more articles that are using brownout.

2.3.3 Outcome

We have found 18 research articles focusing on brownout approach in cloud computing

systems for adaptive management of resources and applications. 77.8% of these research

2This search was conducted on Feb 5, 2018.



22 Taxonomy and Literature Review

Table 2.1: The earliest work in brownout approach for cloud computing systems in 2014
and their citations

Title Citations
”Brownout: Building more robust cloud applications” 84

”The straw that broke the camel’s back: safe cloud overbooking with application brownout” 22
”Improving cloud service resilience using brownout-aware load-balancing” 23
”Control-theoretical load-balancing for cloud applications with brownout” 14

papers were presented in conferences, 16.6% were published in journals and 5.6% in sym-

posiums. Moreover, one master thesis [53] and one PhD thesis [113] have been explored

for this topic. The contents of these two theses are derived from the research articles we

have found and reviewed, therefore, they are not included in the following taxonomy

and review.

2.4 Brownout Approach

Brownout is inspired by the blackout in emergency cases that to cope with electricity.

Such as light bulbs emit fewer lights to save energy usage to handle emergency situations

[142]. In this section, we introduce the background and evolution of brownout approach.

2.4.1 Overview of Brownout Approach

2.4.1.1 Definition

Brownout is a self-adaptive paradigm that enables or disables optional parts (appli-

cation components or services) in the system concerning how to handle unpredictable

workloads [85]. The idea behind the brownout paradigm is as follows: to be adaptive,

optional parts might temporarily be deactivated so that the essential functions of the sys-

tem is ensured as well as avoiding saturated applications. Deactivating certain optional

functions can contribute to increasing request acceptance rate by utilizing the optional

resources for the core functions.

Therefore, the brownout paradigm is a method to make cloud computing system to be

adaptive the changing workloads. Brownout also enables to improve resource utilization

while keeping applications responsive to avoid overloads. Moreover, brownout can be

regarded as a special type of per request admission control, where some requests are
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fully admitted, while others may only be admissible without optional services. In the

brownout paradigm, dimmer is a control knob that takes a value in [0, 1] to represent the

probability to run the optional parts and manages the brownout activities in the system.

[85].

2.4.1.2 Architecture Model

The brownout-based scheduling of resources and applications in cloud computing

systems complies the conventional type of adaptive architectures. It is derived from

MAPE-K [23] feedback loop control including phases, like the monitor, analyze, plan,

execute, and knowledge illustrated in Figure 2.1. Cloud computing system is the target

system of MAPE-K loop and combined with MAPE-K loop through sensors and actua-

tors. The responsibilities of each module in MAPE-K are as below:

• Knowledge module: It is a module that describes the whole system at the abstract

level by capturing the major system features and status. The captured information

is applied to trigger the desirable adaptations;

• Monitor module: It is used to collect the data from sensors and monitor the system

status continuously. The collected data is transferred to Analyze module for further

analysis;

• Analyze module: It analyzes the data obtained from Monitor module and provides

references for Plan module. Different analysis methods can be applied in this mod-

ule;

• Planning module: It makes plans to change system states to be adaptive the fluc-

tuations of workloads;

• Execution module: It implements the plans. Its main role is ensuring the specified

system requirement. In addition, through actuators, it also traces the new changes

and makes other plans based on the predefined rules in the knowledge pool.

2.4.1.3 Brownout Management

The challenges for brownout management includes:

• When the optional services should be deactivated?
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Figure 2.1: Cloud computing systems with MAPE-K adaption loop

It is relevant to system status. The optional services should be deactivated when

some system indicators show the system is not running as expected. Such as, the

system is becoming overloaded when requests are bursting.

• How to deactivate optional services?

Services can be processed in different ways. For example, for the stateless services,

they can be deactivated without any extra efforts. However, for the stateful services,

the states should be recorded and reloaded when they are activated again.

• Which optional services should be deactivated?

It depends on the optional service selection algorithm. The deactivated optional

services can be selected based on the status of services, such as utilization.

2.4.2 Evolution of Brownout Approaches in Cloud Computing

The optimization objectives and metrics of brownout approaches in cloud computing

system have been investigated and proposed throughout the years. As shown in Figure

2.2, we aim to show the evolution and development of brownout approaches in recent

years.

In 2014, the application of brownout in cloud computing systems was proposed by

Klein et al. [85], who introduced brownout as a self-adaptation programming paradigm.

They also proposed that brownout can enhance system robustness when unpredictable

requests are coming into the system. Two web application prototypes have been pre-

sented: RUBiS [4] and RuBBoS [3], which have been widely used in the follow-up re-

search. This work showed the effectiveness of brownout approach, while the experiments
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Figure 2.2: Evolution of brownout approach in cloud computing systems

were only conducted on a single machine. Durango et al. [58] presented load balancing

strategies for application replicas based on brownout and admission control to maximize

application performance and improve system resilience. However, the limitation is that

the modeled application is not general.

To find failures earlier and avoid the limitation of periodically monitoring, based on

event-driven, Klein et al. [86] proposed two load balancing algorithms for brownout-

aware services. The results showed that the proposed algorithm has better performance

in fault-tolerance. Maggio et al. [101] proposed and analyzed several different control

strategies for brownout-aware applications to avoid overloads. Predictions for incoming

load and service time are also applied in the proposed policies. To avoid service level

objective (SLO) violations and unresponsive requests, Nokolov et al. [118] presented a

platform to manage resource adaptively for elastic Cloud based on SLOs, which can over-

come short-time request bursts. The proposed platform can adapt application execution

to corresponding service level agreement (SLA). However, faults handling is not consid-

ered in this work. Tomas et al. [142] combined overbooking and brownout together to
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improve resource utilization without application degradation. Like [58], this approach is

also based on admission control that gradually adapts application according to requests.

In 2015, automatic algorithms based on brownout had drawn more attention. Desmeurs

et al. [54] presented an event-driven brownout technique to investigate the trade-offs

between utilization and response time for web applications. Several automatic policies

based on machine learning and admission control were also introduced in this work. This

work opened a direction to establish more energy-efficient cloud data centers, while the

results were not evaluated under real trace. Dupont et al. [57] proposed another auto-

matic approach to manage cloud elasticity in both infrastructure elasticity and software

elasticity. The proposed method takes advantage of the dynamic selection of different

strategies. This approach considers infrastructure level and extends the application of

brownout by applying it to a broader range. Moreno et al. [114] presented a proactive

approach for latency-aware scheduling under uncertainty to accelerate the decision time.

The motivation is applying formal model to solve the nondeterministic choices of adap-

tation tactics (disabling different optional contents). The limitations of this work are: 1)

this work does not support concurrent tactics, and 2) the uncertainty of environment

predictions is not considered.

In 2016, several articles were devoted to improving the adaption of decision time.

Pandey et al. [120] proposed a hybrid selection methodology that investigates multiple

optimization objectives to balance the trade-offs between different metrics, such as deci-

sion time and optimized results. Markov Decision Process (MDP) is applied to find the

best choice among candidates, which represent the combination of different disabled op-

tional contents. To overcome the limitations in [114], Moreno et al. [115] presented an

approach aiming to eliminate the run-time costs when constructing MDP. The MDP is

solved via stochastic dynamic programming. The results show that the decision time is

reduced significantly. However, the requests are processed in an offline manner.

Some other researchers have paid their attention to energy saving for Clouds. Hasan

et al. [75] introduced a green energy-aware scheduling approach for interactive cloud

application that allows being dynamically adapted. Each application has three different

modes, and each mode has a different percentage of optional contents.

In 2017, as an extension work of [75], Hasan et al. [74] investigated multiple metrics
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other than energy, including both user experience and performance for the interactive

cloud application. An adaptive application management approach based on dynami-

cally switching application modes was proposed to improve the trade-offs among multi-

ple optimization objectives. In order to improve the elasticity of infrastructure by adding

or removing resources, Hasan et al. [73] proposed a platform that applied green energy

aware approach to schedule interactive applications in Clouds. The proposed platform

aims to utilize both infrastructure and application resources to adapt to changing work-

loads.

2.5 Phases and Taxonomy of Brownout-based Adaptive Manage-
ment

In this section, the phases and review of brownout approach for adaptive management of

resources and applications in cloud computing systems are presented. According to our

surveyed articles, we have classified adaptive management of the resources and appli-

cations with brownout into five phases: application design, workload scheduling, mon-

itoring, brownout controller design, and metrics, as demonstrated in Figure 2.3. These

phases can be mapped to the MAPE-K modules in as shown in Figure 2.1 Application

design and workload scheduling correspond to the Knowledge module to describe sys-

tem; monitoring is mapped to the Monitor module to monitor system status; brownout

controller design corresponds to the Analyze, Plan and Execute modules; and metrics

are mapped to the information obtained from the Sensors. Now, we explain the details

of each phase.

Figure 2.3: Phases of applying brownout approach in cloud computing systems
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2.5.1 Application Design

Applications are running in cloud computing systems and providing services for users.

To enhance the system performance in Clouds, applications are required to be designed

by referring to system configuration and users requirements. In Figure 2.4, the categories

we used for the application design are: 1) application type, 2) application domain, 3)

optional parts, and 4) application deployment.

Figure 2.4: Taxonomy based on application design

5.1.1 Application Type. The application can be running locally or in the remote manner

enabled by brownout. Brownout-enabled applications can be classified into two types

according to application type: (1) desktop application, and (2) web application. The desk-

top application represents the brownout-enabled applications runs locally on machines,

for example, the texts processing application [21]. The web application is implemented

in the client-server model to provide web services that the users interact through the In-

ternet. The typical brownout-enabled web application is online shopping system, which

has been applied in many existing brownout-related articles [58][85][101].

5.1.2 Application Domain. Applications are implemented to provide functionalities for

users. The developer is aiming to develop applications in a more efficient manner, while

the complexity of applications is growing. Adaptive application management in cloud

computing systems provides an approach to managing complex applications. To man-

age these applications, the domain of applications should be identified, as applications in

different domains have different management requirements. For the applications in the

general domain, applications are providing functions for general purposes, such as sci-

entific calculation applications. While for the applications in the business domain, which
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focuses on maximizing the profits of service providers, they are more sensitive to some

specific performance metrics. For example, in the online shopping system that belongs

to the business domain, the response time as QoS requirement is one of the most critical

metrics [74], since long response time or unresponsiveness leads to the loss of users.

5.1.3 Optional Parts. In brownout-enabled applications, the optional parts in the ap-

plications are temporarily deactivated to manage resources and applications. The op-

tional parts represent the scheduling units in the applications. In existing articles, the

optional parts are identified as (1) contents, (2) components and (3) containers. Optional

web contents on servers are to be showed selectively to users to save resource usage [85].

Components-based applications deactivate optional components to manage resource uti-

lization [21]. In containerized clouds, each service is implemented as containers, and the

optional containers can be activated/deactivated based on system status.

5.1.4 Application Deployment. In cloud computing systems, applications can be de-

ployed on physical machines (PMs) or virtual machines (VMs). Deploying applications

directly on PMs enables applications to have almost the same performance as native sys-

tems, such as containerized applications. One PM can host multiple VMs, and multiple

applications can be deployed on the same VM to improve the usage of shared resources.

When applications are deployed on VMs, VM migrations and VM consolidation can be

applied with brownout together to optimize resource utilization.

2.5.2 Workload Scheduling

Workload scheduling aims at scheduling and allocating appropriate resources to suit-

able workloads according to SLA defined by end-users and service providers so that the

workloads can be executed efficiently and the applications utilize resources efficiently.

In Figure 2.5, the categories we used for workload scheduling are: 1) workload type, 2)

resource type, 3) dynamicity, 4) workload trace and 5) experiment platform.

2.5.2.1 Workload Type. The workload type represents the resource requirement of

workloads. In current brownout-relevant articles, most works are focusing on schedul-

ing the CPU-intensive workloads [58][54][57], as computation resources are regarded as

the main resource allocated to workloads. Some articles also consider network-intensive

workloads to reduce the network latency [118].
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Figure 2.5: Taxonomy based on workload scheduling

2.5.2.2 Resource Type. For homogeneous resource type, the resources offered by ser-

vice providers are limited to a single type. This configuration simplifies the workload

scheduling and overlooks the various characteristic of workload. The homogeneous con-

figuration is mostly used in small-scale tests where resource diversity is limited or for

the initial research of novel approach [58][85]. Cloud computing systems have the nature

of heterogeneity, to utilize this feature, mature service providers are offering heteroge-

neous resources for workload scheduling. For example, Amazon EC2 has provided more

than 50 types of VMs, and these VMs are categorized as various classifications for differ-

ent workload types, such as general purpose, computation intensive purpose or memory

intensive purpose [59].

2.5.2.3 Dynamicity. The dynamicity of workload scheduling represents the time when

the workload information is obtained. The dynamicity of workload scheduling is noted

as online if the information of workloads is only available when the workloads are com-

ing into systems. If all the information of workloads are known in advance and work-

loads can be rescheduled based on system resource, this scheduling process is identified

as offline. One example of the offline scheduling is the batch job [75], in which the dead-

lines of jobs are known and jobs can be executed with delay based on resource availabil-

ity. Compared with online workload scheduling, offline workload scheduling is prone to

achieve more optimized results, however, it is not available for some scheduling scenar-

ios, such as real-time applications.

2.5.2.4 Workload Trace. Different workload traces are used to evaluate the performance

of brownout approaches. When brownout was initially proposed, synthetic traces, such
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as workloads generated based on Poisson distribution, were applied. Later on, work-

loads derived from real traces were also applied. Presently, the popular real traces are

from FIFA [5], Wikipedia [151], and Planet lab trace [122].

2.5.2.5 Experiments Platform. Both real testbed and simulations have been conducted to

test the performance of brownout approaches. Experiments under real testbed are more

persuasive. Grid’5000 platform [67] has been adopted in several articles, which provides

APIs to collect PM utilization and energy consumption. However, some uncontrolled

factors exist in real testbed, such as network traffics and unpredictable loads. Therefore,

simulation tools provide more feasible options. Besides, with simulations, it is easier

to conduct experiments with heterogeneous resources as well as large-scale size. The

cloud simulation toolkit, CloudSim [40], has been used for simulating brownout-enabled

workload scheduling.

2.5.3 Monitoring

The objective of monitoring is achieving performance optimization by monitoring re-

source usage in cloud computing systems. Therefore, a monitoring component is re-

quired to collect system and analyze the resource utilization information. After analysis,

decisions to change the system status and resource usage are made to ensure system to

satisfy the specified SLA. As shown in Figure 2.6, we categorize the components of mon-

itoring as 1) resource usage, 2) services, 3) status, and 4) execution.

Figure 2.6: Taxonomy based on monitoring

2.5.3.1 Resource Usage. The monitor in Clouds environment is used to monitor re-

source usage, including CPU, memory and network usage via the monitoring tools. As



32 Taxonomy and Literature Review

mentioned in Section 2.5.2.1, the current brownout related workload scheduling is fo-

cusing on handling CPU-intensive and network-intensive workloads [86][118]. So, the

monitors in brownout-enabled systems are mainly monitoring the CPU and network re-

source usage. Two objectives of monitoring resource usage can be achieved from both

users’ and service providers’ perspectives: users expect their requests to be processed

within QoS, and service providers aim to execute the workloads with minimum resource

usage.

2.5.3.2 Services. Service monitoring gathers the information about resource statuses

to check whether the workload is executed by applications as desired. Two types of ser-

vice monitoring exist in cloud computing systems, one is centralized and the other is

distributed. In a centralized manner, a central repository is applied to store the collected

data, which is not scalable when the number of monitored targets is increased. For the

distributed service monitoring, the monitored data is stored distributedly to achieve bet-

ter fault tolerance and load balancing [21].

5.3.3 Status. To be more specific, monitoring resource utilization is regarded as moni-

toring the status of different levels, including PMs [114], VMs [57], and applications [142].

Based on various optimization goals, data are collected at different levels. For example,

to reduce the energy of cloud computing systems, power consumption of PMs should be

collected. To improve the response time of requests, it is required to obtain the resource

usage of applications.

2.5.3.4 Execution. To avoid unexpected failures and execute workloads promptly, the

execution monitoring has two types: periodically and event-driven. In the periodical

manner, the monitor periodically checks the resource usage and makes decisions on the

execution process for the next time period [58]. In an event-driven manner, changes in the

execution process are triggered once a specific event is detected, such as resource usage

is above the predefined overloaded threshold [86]. The motivation of event-driven is its

real-time requirement, which is suitable for latency-aware applications.

2.5.4 Brownout Controller/Dimmer Design

In brownout-enabled systems, the deactivation/activation operations on optional parts

are managed by brownout controller. The brownout controller also has a control knob
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called dimmer, which represents the probability of the optional parts to be deactivated.

Therefore, we can notice that the brownout controller design is the most important part

for brownout approach. In Figure 2.7, we have categorized the classification of brownout

controller/dimmer design as 1) parameters, 2) controller algorithm, 3) controller number

and 4) adaptivity.

Figure 2.7: Taxonomy based on brownout controller design

2.5.4.1 Parameters. Brownout controller can be designed based on different parame-

ters. These parameters can be classified based on system and user perspectives as system

performance and user experience. If system performance is addressed, the brownout

controller is configured with system parameters, such as resource utilization [58]. If the

brownout controller aims to optimize user-experience, parameters like response time can

be designed into brownout controller [85].

2.5.4.2 Controller Algorithm. Similar to the resource scheduling problem, finding the

optimal solutions of suitable optional parts to be deactivated/activated by controller al-

gorithms is computationally expensive. Thus, finding the approximate solutions is an

alternative to the most of proposed approaches. We have classified the surveyed con-

troller algorithms as heuristic and meta-heuristic. The heuristic ones comply with the

predefined constraints and try to find an acceptable solution for particular problem [137].

Usually, the constraints are varied for different problems, and the solutions can be ob-

tained within a limited time. One type of heuristic algorithms is greedy algorithm and

has been adopted in [54][57][114]. As for meta-heuristic algorithms, they are generally

applied to general purpose problems [137], and have standard procedures for problem
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construction and solving. One example of the meta-heuristic algorithm is the approach

based on Markov Decision Process that has been applied in [115].

2.5.4.3 Controller Number. The brownout controller may have single or multiple con-

trollers to manage the optional parts in cloud computing systems. In [142], multiple

controllers are applied, in each application, there is a controller and its dimmer value is

calculated based on its status. Thus, the dimmer values of different applications in [142]

can be varied. For overall management, a single controller is applied. For example, in

[73], the dimmer value is calculated as the severity of overloads in the whole data center.

2.5.4.4 Adaptivity. The adaptivity represents whether the brownout controller is adap-

tive to the change of workloads. It is categorized as static and dynamic. In our surveyed

approaches, most of them are dynamic [58][101][142], which can be dynamically adapted

to the change of system. Only limited approaches are static, which apply static parame-

ters. The static brownout controllers are easy to violate the specific SLAs [75][73].

2.5.5 Metrics

Different metrics are considered in cloud computing systems to evaluate the performance

of different brownout-based approaches. As shown in Figure 2.8, from our surveyed lit-

erature, we have identified 9 metrics: response time, execution time, utilization, avail-

ability, decision time, latency, request number, energy and revenue.

Figure 2.8: Taxonomy based on metrics

Response Time [58][85][101] is the total time it costs from when users send requests

until they receive a response. The response time can be influenced by system process-

ing time, which is also relevant to hardware resource utilization. This metric should be

reduced to improve the user experience. Execution Time [21][154] is the time required to

complete the workloads execution. Minimizing the execution time can improve system
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QoS. Utilization [118][142] is the actual resource percentage used to run workloads to the

total resource provided by service provider. Available utilization should be improved

to maximize the resource usage. Availability [21][154] is the capability of the cloud com-

puting system to guarantee the services are available with expected performance as well

as handle fatal situations. This metric should be ensured in cloud computing systems,

e.g. during 99.9% time, the services are running with expected performance. Decision

Time [114][115] is the time that scheduling algorithm takes to find the optional parts to be

deactivated/activated, which is associated with algorithm design. To find the solutions

faster, in online scheduling scenario, the decision time of algorithm should be accelerated.

Latency [85][114] is the time delay that spends on message communication across the net-

work, which is relevant to hardware resources and utilization. In business applications,

latency is an crucial metric to indicate the system performance. Requests Number [57][75]

is the number of requests received by the system. The scheduling algorithm has better

performance if more requests can be served with the same amount of resources. En-

ergy [73] is the total power used for the cloud computing system to provide the services

to users. The system should reduce energy consumption while ensuring QoS. Revenue

[73][75] is the profit obtained from users when service providers are offering services.

The service provider aims to maximize their revenue as well as lowering costs.

2.6 Review of Brownout Approaches

In this section, a review of brownout-based approaches for adaptive management of re-

sources and applications in cloud computing system is conducted. To identify the differ-

ences in surveyed articles, we use the taxonomy in Section 2.5 to map the key features

of these approaches. Table 2.2 shows a summary of selected brownout approaches, and

Tables 2.3 to 2.7 summarize the comparison of selected brownout approaches and their

categorized classification according to our taxonomy. For instance, Table 2.3 shows the

comparison based on the taxonomy of application design as presented in Section 2.5.1,

and Table 2.7 shows the metrics comparison based on the discussion in Section 2.5.5.

The ”Convex Optimization Based Load Balancing” (COBLB) [58] technique extends

brownout approach for services with multiple replicas, which are the copies of applica-
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Table 2.2: Summary of brownout approaches

Approach Year Author Description Orgranization

COBLB [58] 2014 Durango et al.
Load Balancing with Brownout

and Control Theory
Umea University, Sweden

SAB [85] 2014 Klein et al.
Robust Cloud Applications

with Brownout
Umea University, Sweden

EPBH [86] 2014 Klein et al.
Resilience and Load Balancing

with Brownout
Umea University, Sweden

FPF [101] 2014 Maggio et al. Brownout Prediction Lund University, Sweden

CLOUDFARM [118] 2014 Nikolov et al.
Adaptive Resource

Management
University of Ulm, Germany

BOB [142] 2014 Tomas et al. Overbooking with Brownout Umea University, Sweden

EDB [54] 2015 Desmeurs et al.
Event-Driven Application

with Brownout
Umea University, Sweden

CAA [57] 2015 Dupont et al.
Cloud Elasticity
with Brownout

INRIA, France

PLA [114] 2015 Moreno et al.
Proactive Self-Adaptation for

Uncertainty Environment
Carnegie Mellon University,

USA

HYB-Q [75] 2016 Hasan et al.
Green Energy for

Cloud Application
INRIA, France

PLA-MDP [115] 2016 Moreno et al.
Decision-Making for

Proactive Self-Adaptation
Carnegie Mellon University,

USA

HYBP [120] 2016 Pandey et al.
Hybrid Planning in

Self-Adaptation
Carnegie Mellon University,

USA

MODULAR [21] 2017 Alvares et al.
Modular Autonomic Manager

in Software Components
INRIA, France

SaaScaler [74] 2017 Hasan et al.
Power and Performance
Scaler for Applications

INRIA, France

GPaaScaler [73] 2017 Hasan et al.
Green Energy Aware Scaler for

Interactive Applications
INRIA, France

RLBF [154] 2017 Zhao et al.
Reinforcement Learning for

Software Adaptation
Peking University, China

Table 2.3: Taxonomy based on application design

Approach Application Type Application Domain Optional Parts Application Deployment
COBLB Web application Business Contents Virtual Machine

SAB Web application Business Contents Virtual Machine
EPBH Web application Business Contents Virtual Machine
FPF Web application Business Components Physical Machine

CLOUDFARM Web application Business Components Physical Machine
BOB Web application Business Contents Virtual Machine
EDB Web application Business Contents Virtual Machine
CAA Web application Business Contents Virtual Machine
PLA Web application Business Contents Virtual Machine

HYB-Q Web application Business Contents Virtual Machine
PLA-MDP Web application Business Contents Virtual Machine

HYBP Web Application Business Contents Virtual Machine
MODULAR Desktop Application General Components Physical Machine

SaaScaler Web application Business Contents Virtual Machine
GPaaScaler Web application Business Contents Virtual Machine

RLBF Web application Business Components Physical Machine
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Table 2.4: Taxonomy based on workload scheduling

Approach Workload Type Resource Type Dynamicity Trace Experiments Platform
COBLB CPU-intensive Homogeneous Online Synthetic Simulation

SAB CPU-intensive Homogeneous Online Synthetic Real testbed
EPBH CPU-intensive Homogeneous Online Synthetic Real testbed
FPF CPU-intensive Homogeneous Online Synthetic Simulation

CLOUDFARM Network-intensive Heterogeneous Online Synthetic Real testbed
BOB CPU-intensive Homogeneous Online/Offline Real Real testbed
EDB CPU-intensive Homogeneous Online Synthetic Real testbed
CAA CPU-intensive Homogeneous Offline Synthetic Real testbed
PLA CPU-intensive Homogeneous Online Real Real testbed

HYB-Q CPU-intensive Homogeneous Online Real Real testbed
PLA-MDP CPU-intensive Homogeneous Offline Real Real testbed

HYBP CPU-intensive Heterogeneous Online Real Simulation
MODULAR CPU-intensive Homogeneous Online Synthetic Real testbed

SaaScaler CPU-intensive Homogeneous Online Real Real testbed
GPaaScaler CPU-intensive Homogeneous Online Real Real testbed

RLBF CPU-intensive Homogeneous Online/Offline Synthetic Real testbed

Table 2.5: Taxonomy based on monitoring

Approach Resource Usage Services Status Execution
COBLB CPU Centralized Applications Periodically

SAB CPU Centralized Applications Periodically
EPBH CPU Centralized Applications Event-Driven
FPF CPU Centralized Applications Periodically

CLOUDFARM Network Centralized PMs, Applications Periodically
BOB CPU Centralized Applications Periodically
EDB CPU Centralized Application Event-Driven
CAA CPU Centralized VMs Periodically
PLA CPU Centralized PMs Periodically

HYB-Q CPU Centralized Applications Periodically/Event-Driven
PLA-MDP CPU Centralized PMs Periodically

HYBP CPU Centralized PMs Periodically
MODULAR CPU Decentralized PMs Periodically/Event-Driven

SaaScaler CPU Centralized VMs, Applications Periodically/Event-Driven
GPaaScaler CPU Centralized VMs, Applications Periodically

RLBF CPU Centralized PMs Periodically
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Table 2.6: Taxonomy based on brownout controller/dimmer design

Approach Parameters Controller Algorithm Controller Number Adaptivity
COBLB System Performance Heuristic Multiple Dynamic

SAB User-experience Heuristic Multiple Dynamic
EPBH System Performance Heuristic Single Dynamic
FPF User-experience Heuristic Single Dynamic

CLOUDFARM System Performance Heuristic Multiple Dynamic
BOB System Performance Heuristic Multiple Static/Dynamic
EDB System Performance Heuristic Multiple Dynamic
CAA System Performance Heuristic Multiple Dynamic
PLA System Performance Meta-heuristic Single Dynamic

HYB-Q User-experience Heuristic Single Static
PLA-MDP System Performance Meta-heuristic Single Static

HYBP System Performance Meta-heuristic Single Dynamic
MODULAR System Performance Heuristic Multiple Dynamic

SaaScaler User-experience Heuristic Single Static
GPaaScaler User-experience Heuristic Single Static

RLBF System Performance Meta-heuristic Multiple Static/Dynamic

Table 2.7: Taxonomy based on metrics

Approach
Response

Time
Execution

Time
Utilization Availability

Decision
Time

Latency
Requests
Number

Energy Revenue

COBLB X X
SAB X X

EPBH X X
FPF X X

CLOUDFARM X
BOB X X
EDB X X
CAA X X
PLA X X

HYB-Q X X X X
PLA-MDP X X

HYBP X X
MODULAR X X

SaaScaler X X X X
GPaaScaler X X X

RLBF X X
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Table 2.8: Comparison of brownout approaches

Approach Objectives Advantages Limitations

COBLB
Load balancing for
Cloud applications

Resilience is improved
Application model is not

general

SAB
Enhance robustness of

Cloud applications
Support more users
with fewer resources

Only tested on a single
machine

EPBH Improve resilience Response time is reduced
Parameters are chosen

empirically

FPF Mitigate overloads Prediction is applied
Only validated with

simulations

CLOUDFARM Improve elasticity
SLA is ensured when

there are bursts
Faults handling is not

considered

BOB Resource overbooking
Improve resource utilization

without application degradation
Scalability is not discusses

EDB
Balance utilization and

response time
Utilization is improved and

response time is ensured
Not evaluated with

real workloads

CAA Manage elasticty
Elasticity is improved at both
infrastructure and software

levels

Limited number of
tactics

PLA Accelerate decision time Latency is reduced
Concurrent tactics are

not supported

HYB-Q
Green energy provisioning

for interactive cloud
application

Brown energy is saved
Non-interactive cloud

applications are not
investigated

PLA-MDP Accelerate decision time Decision time is reduced
Not available for
online requests

HYBP
Balance decision time

and optimality
Decision time is reduced

Not validated in real
testbed

MODULAR
Manage modular

components
System availability is improved

The availability for other
applications is not

discussed

SaaScaler
Investigate trade-offs
between energy and

performance

Energy is reduced and QoS
is improved

Resources addition or
removal are not flexible

GPaaScaler Reduce energy consumption Energy is saved
Not available for real-time

requests

RLBF
Enhance flexibility of

approach
Better adaptation effectiveness

is achieved
Convergence time is not

analyzed
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tions providing same functionalities. These replicas contain optional contents and allow

to be served selectively according to system status. To enhance the system load balancing

performance, the technique also collects information about adaptation in replicas. In the

technique, all replicas are managed in queuing systems adopting the resource sharing.

Response time and the number of requests are improved by this technique.

Self-Adaptive Brownout (SAB) [85] approach adds a dynamic parameter that affects

user experience and the amount of resource required by the application. This parameter

is adapted based on both workload and available resources to enhance the robustness

of applications. The proposed approach is synthesized with control theory approach to

adaptively determine when to activate/deactivate optional features in the applications.

With control theory, the behaviors of applications can be predicted, and some system

constraints can be guaranteed. In this approach, the maximum latency is controlled so

that the latency is reduced. Also, SAB can serve more users with fewer resources.

Equality Principle-Based Heuristic (EPBH) [86] is focusing on enhancing the resilience

of cloud services when system faces resource shortage. Similar to COBLB [58], this ap-

proach is also applied to application replicas. This event-driven approach is based on

heuristic and requires all the replicas to have a control parameter (dimmer) value. Ac-

cording to the parameter value, EPBH decides which replicas to receive more loads.

EPBH has been proven to improve resilience when resource shortage is triggered by fail-

ures.

The objective of Feedforward Plus Feedback (FPF) [101] approach is keeping the av-

erage response time below a certain threshold. FPF works by configuring the probability

to serve requests with optional computations. FPF is able to handle the requests bursts

for cloud applications and reacts to the changes of resource amount allocated to cloud

applications. The idea of FPF is obtaining the number of currently queued requests from

the applications and predicting the latency experienced by future requests. The results

demonstrate that although FPF spends efforts on obtaining more information, the over-

loads are mitigated.

CLOUDFARM [118] is an elastic cloud platform to manage resource reservations in

flexible and adaptive ways based on actual resource demands and predefined SLAs. It

provides flexible SLAs that can be configured dynamically to fulfill the elasticity of cloud
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computing systems. Based on SLAs and costs produced by users, the services can be

dynamically downgraded to avoid bursts so that system utilization and revenue can be

improved. CLOUDFARM also introduces an abstract level by using virtual framework

for all the applications, which benefits from its lightweight and dynamic degradation

from full mode to degraded mode.

Brownout OverBooking (BOB) [142] technique is designed to ensure graceful degra-

dation when loads spike and thus avoiding overloads in resource overbooking scenario.

The motivation of BOB is combining overbooking and brownout together, where over-

booking system takes advantage of application information from brownout and applies

deactivation operations to relieve overloads. In BOB, an overbooking controller is re-

sponsible for admitting or rejecting new requests and a brownout controller is respon-

sible for adapting the resources allocated to accepted requests. Higher utilization is

achieved while response time is ensured by BOB.

To ensure application responsiveness, an Event-Driven Brownout (EDB) [53] tech-

nique at application level has been proposed. In this approach, the application is allowed

to run optional codes that are not necessary for key functionalities but for extra user

experience. EDB combines machine learning techniques and control theory together to

dynamically configure a given threshold that represents the number of pending requests.

The configuration operation is based on application response time. An advance in ensur-

ing response time is achieved without sacrificing utilization.

Cloud Automatic Approach (CAA) [57] aims at managing cloud elasticity in a cross-

layered manner. The motivation is combining the infrastructure elasticity and software

elasticity to overcome the conceptual limitations of IaaS and make software at SaaS in-

volved in the elasticity process. For the software at SaaS, they are running at different

levels and can be degraded to lower levels when the resource is limited. And for the

resources at IaaS level, physical machines can be scaled in and out according to sys-

tem loads. An advantage in response time is obtained when the cross-layered manner is

working in a coordinated way.

Proactive Latency-Aware (PLA) [114] addresses the inefficient reactive adaption prob-

lem when adaptation has latency. Thus, PLA considers adaptation latency and applies

the probabilistic model to decide adaptations. The main motivation is using a formal
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model to find the adaptation decisions which are underspecified through nondetermin-

ism, and then resolve the nondeterministic choices to maximize optimization goals. PLA

takes the uncertainty of environment into account and predicts needed resources by look-

ing ahead. The effectiveness of adaptation decisions is significantly improved.

The QoS aware hybrid controller (HYB-Q) [75] technique is aiming at achieving green

energy-aware scheduling by using both green and brown energy. The target applications

are focused on interactive cloud applications that can be dynamically adapted to avail-

able green energy based on changing conditions. HYB-Q obtains information in feedback

loop about the number of requests executed under different modes in the previous time

period and computes the current adaptation value. In the controller, the response time

and workload changes are periodically checked. If the response time arises above the

predefined threshold, the user experience is downgraded to lower mode to avoid over-

loads by the controller. It is observed that providers’ revenue is improved and the usage

of brown energy is reduced.

As an extension work of PLA [114], Proactive Latency-Aware with Markov Decision

Process (PLA-MDP) [115] takes advantage of the probabilistic property of Markov Deci-

sion Process to adapt application functionalities. To eliminate the run-time overhead of

constructing MDP, stochastic dynamic programming is applied to solve MDP. The deci-

sion time is vitally reduced while same results are obtained.

The objective of Hybrid Planning (HYBP) [120] is finding the trade-offs between time-

liness and optimality of solutions to adapt application modes. HYBP combines two ap-

proaches together to achieve the best balance between the conflicts. One is deterministic

planning and the other is Markov Decision Process planning, which can be fitted in dif-

ferent cases. In the case of fast response is required, the deterministic planning is applied

to give a fast response. When the time is adequate, the MDP planning is applied to gen-

erate an optimal solution. Simulated experiments have shown that HYBP can improve

system performance by balancing the aforementioned trade-offs.

MODULAR [21] approach leverages modularity feature of the component-based sys-

tem to strengthen the domain-specific language application. Domain-specific language

has high-level constructs to describe the configurations and executed policies of the tar-

get system. With brownout mechanism, the components can be transferred from nominal
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configuration to degraded one, which incurs different loads for the system. Thus, the sys-

tem is entitled the capability of dynamic reconfiguration to be self-adaptive.

Compared with HYB-Q [75] that focuses on green energy usage, SaaScaler [74] ap-

proach analyzes the trade-off between power and performance by considering green en-

ergy usage for the interactive cloud applications. SaaScaler can satisfy different metrics.

Considering these metrics, three levels of user experience are defined. Capacity require-

ment is dynamically adjusted among these levels to serve more users. Experiments con-

ducted in real testbed show that energy consumption is reduced while performance and

revenues are improved by carefully tuning applications.

GPaaScaler [73] considers adaptation both at infrastructure and application levels by

using green energy source. At the infrastructure level, resources are added or removed

according to resource demand of applications. While the applications are dynamically

changing their service levels according to performance and green energy availability.

These adaptations are implemented separately and can be coordinated together. Lower

costs and less usage of brown energy are achieved.

The objective of Reinforcement Learning-Based Framework (RLBF) [154] approach is

overcoming the limitations of rule-based adaptation that decisions are only made based

on static rules. Based on reinforcement learning, RLBF enables automatic learning rules

with various optimization objectives in an offline manner. Additionally, the rules can

also be evolved with real-time information for online adaptation of selecting optional

services to run. The efficiency and effectiveness of adaptation process are improved by

this approach.

To summarize the merits and demerits of reviewed brownout approaches, a compar-

ison of the advantages and limitations of each brownout approach is presented in Table

2.8. For example, COBLB [58] approach achieves better resilience while the adopted ap-

plication model is not general.

2.7 A Perspective Model

Brownout approach has shown its ability to improve applications and resources man-

agement to handle changes in workloads. However, the trade-offs between workload
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Figure 2.9: Perspective model of applying brownout in cloud computing systems

handling and performance degradation are necessary for consideration. Several opti-

mization objectives are usually considered together to investigate the trade-offs. The

primary research problems in the context are as below:

• (1). How to enable brownout approach in cloud computing system?

• (2). How to enable brownout to manage resources and applications adaptively?

• (3). How to balance the trade-offs between different metrics when applying brownout?

To deal with these issues, there is a need for the brownout-enabled mechanism for

adaptive management. We propose a perspective model of brownout-enabled cloud

computing system for adaptive resource scheduling as shown in Figure 2.9.

From users’ perspective, users interact with the system and submit their requests

for services to the system. The users may have constraints for the submitted requests,

such as QoS constraints or budget. From service providers’ perspective, these workloads

generated by users are executed by applications.

Applications are provided by service providers to offer services for users, and these

applications are managed by the application hosting engine, e.g. Docker [11] and Apache
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Tomcat [14]. Applications can be deployed on either virtualized platform (virtual re-

sources) or cloud infrastructure (physical resources). The host application engine can

be container-based management platforms, e.g. Docker Swarm [17], Kubernetes [16] or

Mesos [13], which provide management of container-based applications. The virtualized

platform manages the virtualized resources, for example, the Virtual Machines managed

by VMware [18]. As for the resource allocation and provisioning in cloud infrastructure,

they can be managed by infrastructure management platform, such as OpenStack [15].

To deal with research problem (1), the applications can be composed of optional and

mandatory components/services. The optional components/services should be identi-

fied by service providers and can be activated/deactivated by brownout controller. For

instance, in Docker Swarm, the services can be deployed via a configuration file [10] and

the file can set the service with the feature ”optional”.

To resolve research problem (2), a brownout controller is required based on MAPE-K

architecture model and fits into the feedback loop of MAPE-K model as introduced in

Figure 2.1. As described in Section 2.4.1.2, it has modules including Monitor, Analyze,

Plan and Execute to fulfill adaptation with cloud computing system. Sensors and Actu-

ators are used to interact with cloud computing system. Sensors collect the information

from different levels in cloud computing systems, including application hosting engine,

virtualized platform, and cloud infrastructure. The Sensors can be the devices attached to

hardware, e.g. power meter. The collected information is provided to Monitor module.

After analyzing the information by Analyze module, Plan module makes decisions

for applying brownout control operations, in which the brownout-based scheduling poli-

cies are implemented. Based on the decisions, the Execute module applies brownout via

actuators to application hosting engine and virtualized platform to enable/disable op-

tional components/services. These operations can be fulfilled via the APIs provided by

application hosting engine or virtualized platform.

To handle the research problem (3), the Knowledge pool in MAPE-K model is ap-

plied to store the predefined objectives (e.g. load balancing, energy efficiency or SLA

constraints) and trade-offs (e.g. trade-offs between energy and SLA). The rules in Knowl-

edge pool, such as SLA rules, can be updated according to brownout-based policies.
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2.8 Summary

Brownout is a novel paradigm for self-adaptation that enables optional parts in the sys-

tem to be temporarily disabled in order to deal with changing situations. In addition,

it has been shown as a promising approach to improve system performance and user

experience.

In this chapter, we proposed a review and taxonomy of brownout-based adaptive

resources and applications management for cloud computing systems. A taxonomy is

presented according to 5 phases: (1) application design, (2) workload scheduling, (3)

monitoring, (4) brownout controller/dimmer design and (5) metrics. The taxonomy of

each phase is summarized based on the different classification of brownout approaches.

Then, a comprehensive review of existing brownout approaches was presented. Fur-

thermore, the comparison of the advantages and limitations of the surveyed brownout

approaches are also made.

Our analysis shows that brownout can be applied in cloud computing systems for

different optimization objectives. Brownout approach also provides a new option for

adaptive management of resources and applications. This chapter shows the progress

of brownout since it was firstly borrowed to Clouds, and it also helps readers to find

the research gap existing in the discussed area. It is a promising direction to combine

brownout with other existing techniques to achieve better system performance. In the

following chapters, we present our research contributions in this area.



Chapter 3

Energy Efficient Scheduling of Cloud
Application Components with

Brownout

Dynamic Voltage Frequency Scaling and VM consolidation have been proved effective to man-

age overloads. However, they cannot function when the whole data center is overloaded. Brownout

provides a promising direction to avoid overloads through configuring applications to temporarily

degrade user experience. Additionally, brownout can also be applied to reduce data center energy con-

sumption. In this chapter, as a complementary option for Dynamic Voltage Frequency Scaling and

VM consolidation, we propose a brownout-based approach to reduce energy consumption through se-

lectively and dynamically deactivating application optional components, which can also be applied to

self-contained microservices.

3.1 Introduction

G IVEN the scenario that the budget and resource are limited, overloaded tasks

may trigger performance degradation and lead the applications to saturate, in

which some applications cannot be allocated by provider. Therefore, some users are not

served in a timely manner or experience high latencies, others may even not receive ser-

vice at all [85]. The saturated applications also bring the over-utilized situation to hosts

and cause high energy consumption. Unfortunately, current resource management ap-

proaches like Dynamic Voltage Frequency Scaling (DVFS) and VM consolidation cannot

function when the holistic data center is overloaded.

This chapter is derived from:
•Minxian Xu, Amir Vahid Dastjerdi, and Rajkumar Buyya, “Energy Efficient Scheduling of Cloud Applica-
tion Components with Brownout,” IEEE Transactions on Sustainable Computing (T-SUSC), Volume 1, Number
2, Pages: 40-53, ISSN: 2377-3782, IEEE Computer Society Press, USA, July-Dec 2016.
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In this chapter, we consider component-level control in our system model. The model

could also be applied to the container or microservices architecture. We model the ap-

plication components as mandatory and optional, if required, optional components can

be deactivated. By deactivating the optional components selectively and dynamically,

the application utilization is reduced and eventually total energy consumption is saved

as well. While under the market scenario, the service provider may provide discount to

user as the services are deactivated.

Our objective is to tackle the problem of energy efficiency and our contributions are

as below:

• Our approach considers the trade-offs between discount that should be given to a

user if a component is deactivated and how much energy can be saved.

• Then we propose a number of policies that consider the aforementioned trade-offs

and dynamically make decisions on which components are going to be deactivated.

The rest of this chapter is organized as: after discussing related work in Section 3.2,

we present the brownout enabled system model and problem statement in Section 3.3.

Section 3.4 introduces our proposed brownout enabled approach in details, while the ex-

perimental results of the proposed approach are illustrated in Section 3.5. The summary

are given in Section 3.6.

3.2 Related Work

It is an essential requirement for Cloud providers to reduce energy consumption, as it can

both decrease operating costs and improve system reliability. Data centers can consume

from 10 to 100 times more power per square foot than a typical office building. A large

body of literature has focused on reducing energy consumption in cloud data centers,

and the dominant categories for solving this problem are VM consolidation and Dynamic

Voltage Frequency Scaling (DVFS) [80].

VM consolidation is regarded to be an act of combining into an integral whole, which

helps to minimize the energy consumed by allocating work among fewer machines and

turning off unused machines [123]. Under this approach, the VMs hosted on underuti-

lized hosts would be consolidated to other servers and the remaining hosts would be
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transformed into the power-saving state. Beloglazov et al. [33] proposed scheduling

algorithms considering Quality of Service and power consumption in Clouds. The al-

gorithm’s objective is energy-efficient mapping VMs to cloud servers through dynamic

VM consolidation. The VM consolidation process is modeled as a bin-packing problem,

where VMs are regarded as items and servers are regarded as bins. The advantages of the

proposed algorithms are that they are independent of workload types and do not need

to know the VM application information in advance.

The authors in [34] introduced adaptive approaches for VM consolidation with live

migration according to VM historical data. Similar to [33], the VM placement is also

modeled as a bin-packing problem, in which VMs from over-utilized servers are allo-

cated to the PM with the least increase of power consumption and under-utilized servers

are switched to be off or low power mode. In comparison to [33], this work consid-

ers multiple dimension resource (CPU, memory and bandwidth) and focuses more on

VM placement optimization stage by proposing various policies. This work advances

previous work by discussing online algorithm competitive ratio for energy efficient VM

consolidation, which proves the algorithm’s efficiency.

A self-adaptive method for VM consolidation on both CPU and memory is intro-

duced in [105]. Its objective is minimizing the overall costs caused by energy-related is-

sues. The VM assignment and migration processes are determined by probabilistic func-

tions (Bernoulli trial). The mathematical analysis and realistic testbed results show that

the proposed algorithm reduces total energy consumption for both CPU-intensive and

memory-intensive workloads with suitable Bernoulli trial parameters. Compared with

the bin-packing approach (adopted in [33] [34]), the proposed algorithm in this work can

reduce migration times of VMs and its time complexity is lower than the bin-packing-

based algorithm, which offers higher efficiency in the online scenario. To achieve the

best performance, the disadvantage of this work is that it needs some efforts to find the

most suitable Bernoulli trial parameter. Chen et al. [43] extended [105] and proposed

another utilization-based probabilistic VM consolidation algorithm that aimed at reduc-

ing energy consumption and VM migration times. The author also made performance

comparison with the algorithms in [33].

Corradi et al. [47] considered VM consolidation in a more practical viewpoint re-
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lated to power, CPU and networking resource sharing and tested VM consolidation in

OpenStack, which shows VM consolidation is a feasible solution to reduce energy con-

sumption. Salehi et al. [129] proposed a VM consolidation based approach, which is an

adaptive energy management policy that preempts VMs to reduce the energy consump-

tion according to user-specific performance constraints and used fuzzy logic for obtaining

appropriate decisions.

Li et al . [91] developed a Bayesian network-based estimation model for live VM mi-

gration, which enables the comprehensive configurations of nine parameters in real data

centers. The objective of this approach is degrading energy consumption while avoiding

inefficient VM migrations and improving QoS. The proposed approach takes advantage

of the Bayesian network to model complex uncertainty systems and reduce the difficulty

of knowledge access.

Dou et al. [56] proposed an energy-aware VM scheduling approach for QoS enhance-

ment in cloud computing for big data applications. Focusing on big data applications,

the authors aim to improve the QoS of big data services based on VM migrations while

considering energy consumption. The motivation of this work is migrating the compu-

tational tasks to servers with lower energy consumption or servers with higher perfor-

mance, which reduces service costs or execution time. The advantage of this work is that

it considers two-level dynamic scheduling including tasks scheduling and VM schedul-

ing for big data applications.

Han et al. [71] used Markov Decision Process (MDP) to handle VM management to

reduce data center energy consumption. Through MDP, the optimal result is obtained by

solving objective function. However, its solution dimension is quite large, the authors

also proposed an approximate MDP approach to reduce the solution space and achieve

faster convergence. In this approximate algorithm, a centralized controller calculates

the utility function for each VM and determines the possibilities for the state transition.

The state transitions in this algorithm represent the VMs are migrated from one server

to another. The authors also theoretically validated the upper bound of the algorithm’s

error.

A practical OpenStack framework was implemented in [35] considering VM consoli-

dation and data center power management. This framework is available for customized
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algorithm implementation. With public APIs, the framework is transparent to the orig-

inal OpenStack installation, and it is not required to modify any OpenStack’s config-

urations. This work is the first step to implement VM consolidation in OpenStack to

minimize total energy consumption.

The DVFS technique introduces a trade-off between computing performance and en-

ergy consumed by the server. The DVFS technique lowers the frequency and voltage

when the processor is lightly loaded, and utilizes maximum frequency and voltage when

the processor is heavily loaded. Von et al. [146] introduced a power-aware scheduling

algorithm based on DVFS-enabled cluster. Hanumaiah [72] et al. introduced a solution

that considers DVFS, thread migration and active cooling to control the cores to maximize

overall energy efficiency.

The authors in [83] modeled real-time service to be real-time VM requests and ap-

plied several DVFS algorithms to reduce energy consumption. Their objective is bal-

ancing the energy consumption and prices. The major concern in this work is that less

energy is preferred at the same price, thus three different schemes based on DVFS are

proposed to balance energy consumption and prices. The proposed schemes are easy

to implement while the adaptive DVFS evaluations are restricted by the simplified and

known-in-advance queuing model.

Deng et al. [51] proposed a method named CoScale for DVFS coordinating on CPU

and memory while investigating performance constraints, which is the first trial to co-

ordinate them together. Its objective is finding the most efficient frequency from a set of

frequency settings while ensuring system performance. The most efficient frequencies

for cores and memory are selected as they minimize the whole system energy consump-

tion. CoScale adopts a fine-grained heuristic algorithm that iteratively predicates the

component frequencies according to its performance counters as well as online models.

However, CoScale is not suitable for offline workloads because it cannot reduce the pos-

sible frequency space as like in online workloads.

Teng et al. [140] combined DVFS and VM consolidation together to minimize total

energy consumption. The energy saving objective is mainly applied to batch-oriented

scenario, in which the authors introduced a DVFS-based algorithm to consolidate VMs

on servers to minimize energy consumption and ensure job Service Level Agreement.
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With theoretical analysis and realistic testbed on Hadoop, the authors proved that the

proposed algorithm can find the most efficient frequency that is only associated with the

processor type and its VM consolidation performance is insensitive to tunable parame-

ters. The limitation of this work is that its realistic testbed is already upgraded to a new

version that provides better management, which is more persuasive to implement the

proposed approach on the updated platform.

Brownout was originally applied to prevent blackouts through voltage drops in case

of emergency. Klein et al. [85] firstly borrowed the approach of brownout and applied

it to cloud applications, aiming to design more robust applications under unpredictable

loads. Tomas et al. [142] used the brownout along with overbooking to ensure grace-

ful degradation during load spikes and avoid overload. Durango et al. [58] introduced

novel load balancing strategies for applications by supporting brownout. In a brownout-

compliant application or service, the optional parts are identified by developers and a

control knob called dimmer that controls these optional parts is also exported. The dim-

mer value represents a certain probability given by a control variable and shows how of-

ten these optional parts are executed. In addition, a brownout controller is also required

to adjust the dimmer value to avoid overload [142].

To the best of our knowledge, our approach is the first research to reduce energy con-

sumption with brownout at components level, which also considers revenues for cloud

service providers. Our approach provides a complementary option apart from VM con-

solidation and DVFS.

3.3 Problem Statement

In this section, we explain our system model and state the problem we aim to tackle. For

reference, Table 3.1 summaries the symbols and their definitions throughout this chapter.

3.3.1 System Model

Our system model (Figure 3.1) includes several entities: users, applications and cloud

providers, which are discussed below:
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Users: Users submit service requests to cloud data centers to process. User entities

contain user id and requested applications (services) information.

Applications: The application entities in our model come into system together with

user entities. The applications consist of a number of components, which are tagged as

mandatory or optional.

Mandatory component: The mandatory component is always running (activated)

when the application is executed.

Optional component: The optional component can be set as activated or deacti-

vated. These components have parameters like utilization and discount (penalty payment

amount). Utilization indicates the amount of reduced utilization, and discount repre-

sents the price that is cut. The deactivation and activation of optional components are

controlled by the brownout controller, which makes decisions based on system status

and component selection policies.

The components can also be connected, which means that they communicate with each

other and there are data dependencies between them. Therefore, we consider that if a

component is deactivated, then all its connected optional components would also be set

as deactivated. For example in Figure 3.1, if Com3 in Application #1 is deactivated, Com2

should also be deactivated; in Application #2, if Com1 is deactivated, Com3 should also

be deactivated; in Application #n, if Com4 is deactivated, Com3 should also be deacti-

vated, but Com2 is still working (Com1 is connected with Com3, but Com1 is mandatory,

so it is not deactivated).

Cloud Providers: Cloud providers offer resources to meet service demands, which

host a set of VMs or containers to run applications.

3.3.2 Power Model

To calculate the total energy consumption of data center, we adopt the server power

model proposed by Zheng et al. [155]. The server power consumption is modeled as:

Pserver
i =

Pidle
i + ∑wi

j=1 u(VMi,j)× Pdynamic
i , wi > 0

0 , wi = 0
(3.1)
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Table 3.1: Symbols and definitions

Symbol Definition
hi Server (host) i

Pserver
i Power of hi
Pidle

i Power when hi is idle
Pdynamic

i Power when hi is fully loaded
Pmax

i Maximum power of hi
hl Server list in data center
wi Number of VMs assigned to hi

VMi,j VM j on hi
u(VMi,j) Utilization of VM j on hi
d(VMi,j) Discount of VM j on hi

Appc Application component c
Aj Total number of application components

u(Appc) Utilization of application component c
d(Appc) Discount of application component c

Di Total discount from server i
N Total number of VMs
M Total number of servers

E f fpa Algorithm efficiency of proposed algorithm pa
Epa Energy consumption of proposed algorithm pa
Ebl Energy consumption of baseline algorithm bl
Dpa Discount amount of proposed algorithm pa

α Weight of discount to calculate algorithm efficiency
t Time interval t
T The whole scheduling interval

TP Overloaded power threshold
θt Dimmer value in brownout at time t
nt Number of overloaded hosts at time t
Pr

i Expected power reduction of hi
COH() Calculate the number of overloaded hosts
HPM() Host power model to compute expected utilization reduction

ur
hi

Expected utilization reduction on hi
VUM() VM utilization model to compute expected utilization reduction

ur
VMi,j

Expected utilization reduction on VMj on hi

CSP() Component selection policy to deactivate components
dcli,j,t Deactivated component list at time t on hi

St Set of deactivated components connection tags
Ct(Appc) Connection tag of component Appc

ocli,j,t Optional component list of VMj on hi at time t
p Position index in optional component list

Rh Available resource of host
Rv Maximum requested resource of VM
Ce Cost of energy consumption per unit of time
Co Cost of overloads per unit of time
ε Relative cost of overloads compared with Ce
tb Time for brownout operation
tm Time for VM consolidation
τ The times of brownout and VM consolidation occur in T
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Figure 3.1: System model with brownout

Pserver
i is composed of idle power and dynamic power. The idle power is regarded as

constant and the dynamic power is linear to the total CPU utilization of all the VMs on

the server. If no VM is hosted on a server, the server is turned off to save power. VMi,j

refers to the jth VM on the ith server, wi means the number of VMs assigned to server i.

u(VMi,j) =

Aj

∑
c=1

u(Appc) (3.2)

The utilization of VMi,j is represented as u(VMi,j), which is computed by summing up all

the application utilization on the jth VM. The c is the component id and Aj is the number of

application components. As processors are still the main energy consumer of servers, we focus

on CPU utilization in this work.

Note: We consider the application component can be activated/deactivated within a rather

short time compared with the scheduling period. Thus, in our model, we assume that the time

and energy cost for the activation/deactivation operations are 0.

3.3.3 Discount Amount

Di =
wi

∑
j=1

d(VMi,j) (3.3)
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In Equation 3.3, Di is the total discount amount obtained from all VMs, in which the indi-

vidual discount d(VMi,j) from VMi,j is the sum of all application components discount amount

d(Appc) as shown in Equation 3.4.

d(VMi,j) =

Aj

∑
c=1

d(Appc) (3.4)

Aj is the number of applications hosted on VMj, and d(VMi,j) is the discount happened

from VMj on server i, and Di is the total discount amount on server i.

3.3.4 Constraints and Objectives

The above equations subject to the following constraints:

M

∑
i=1

wi = N (3.5)

wi

∑
j=1

u(VMi,j) ≤ 1, ∀i ∈ [1, M] (3.6)

N is the total number of VMs and M is the total number of servers. Equation 3.5

represents the total number of VMs assigned to hosts wi equals to the sum of VMs. Equa-

tion 3.6 represents the sum of all the VMs utilization cannot surpass their host available

utilization.

We formulate the objectives of this problem as:

min
M

∑
i=1

Pserver
i (3.7)

As well as

min(
M

∑
i=1

Di) (3.8)

Therefore, we aim at investigating the trade-off total energy consumption and discount

amount.

To measure the performance of an algorithm, we represent the algorithm efficiency
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E f fpa:

E f fpa =
Epa

Eb
+ αDpa (3.9)

where Epa is the energy consumption of the proposed algorithm, Eb is the baseline al-

gorithm energy consumption, Dpa is the discount amount offered by the proposed algo-

rithm. If the proposed algorithm saves more energy than the baseline algorithm, Epa
Eb

is

a value between 0 to 1, and Dpa represents the offered discount percentage, which also

belongs to 0 to 1. Thus, the smaller E f fpa is, the more energy is reduced and less dis-

count amount is offered. The α is the weight of discount, its default value is 1.0, if service

provider care more on discount, α is set as larger than 1.0; if they care more about energy

saving, α is set as less than 1.0.

3.4 Proposed Approach

Prior to brownout approach, we require a VM placement and consolidation algorithms.

We adopt the placement and consolidation algorithm (PCO) proposed by Beloglazov et

al. [33]. Then we propose our brownout enabled algorithm based on PCO and intro-

duce a number of component selection policies considering component utilization and

discount.

3.4.1 VM Placement and Consolidation Algorithm (PCO)

The VM placement and consolidation (PCO) algorithm is an adaptive heuristics for dy-

namic consolidation of VMs and extensive experiments show that it can significantly

reduce energy consumption. In the initial VM placement phase, PCO sorts all the VMs in

decreasing order of their current CPU utilization and allocates each VM to the host that

increases the least power consumption due to this allocation. In the VM consolidation

phase, PCO optimizes VM placement according to loads of hosts: PCO separately picks

VMs from over-utilized and under-utilized hosts to migrate, and finds new placements

for them. After migration, the over-utilized hosts are not overloaded any more and the

under-utilized hosts are switched to sleep mode.



58 Energy Efficient Scheduling of Cloud Application Components with Brownout

Algorithm 3.1: Energy Efficient with Brownout Algorithm (EEBA)
Input : hostList hl with size M, application components information, overloaded power threshold

TP, dimmer value θt at time t, scheduling interval T, deactivated component list dcli,j,t of
VMi,j on host hi, power model of host HPM, VM utilization model VUM, component
selection policy CSP

Output: total energy consumption, discount amount, number of shutting down hosts
1 use PCO algorithm to initialize VMs placement
2 initialize parameters with inputs, like TP
3 for t← 0 to T do
4 nt ← COH(hl)
5 if nt > 0 then

6 θt ←
√

nt
M

7 forall hi in hl (i.e. i = 1, 2, . . . , M) do
8 if (Pserver

i > Pmax
i × TP) then

9 Pr
i ← θt × Phi

10 ur
hi
← HPM(hi, Pr

i )
11 forall VMi,j on hi (i.e. j = 1, 2, . . . , wi) do
12 dcli,j,t ← NULL
13 ur

VMi,j
← VUM(ur

hi
, VMi,j)

14 dcli,j,t ← CSP(ur
VMi,j

)

15 Di ← Di + d(VMi,j)

16 end
17 end
18 end
19 else
20 activate deactivated components
21 end
22 use VM consolidation in PCO algorithm to optimize VM placement
23 end

3.4.2 Energy Efficient Brownout Enabled Algorithm

Our proposed energy efficient brownout enabled approach (noted as EEBA) is an en-

hanced approach based on PCO algorithm. According to host power consumption, the

brownout controller dynamically deactivates or activates applications’ optional compo-

nents on VMs to relieve overloads and reduce the power consumption.

As shown in Algorithm 3.1, EEBA mainly consists of 6 steps:

Before entering the approach procedures, service provider firstly needs to initialize

VM placement by algorithm like PCO and overloaded power threshold (lines 1-2). The

power threshold TP is a value for checking whether a host is overloaded. Then the other

steps are as below:

1) In each time interval t, checking all the hosts and counting the number of over-

loaded hosts as nt (line 4);
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2) Adjusting dimmer value θt as
√

nt
M based on the number of overloaded hosts nt

and host size M (line 6).

As mentioned in our related work, the dimmer value θt is a control knob used to de-

termine the adjustment degree of power consumption at time t. The dimmer value θt is

1.0 if all the hosts are overloaded at time t and it means that brownout controls compo-

nents on all the hosts. The dimmer value is 0.0 if no host is overloaded and brownout will

not be triggered at time t. The dimmer adjustment approach shows that dimmer value

varies along with the number of overloaded hosts.

3) Calculating the expected utilization reduction on the overloaded hosts (lines 8-10).

According to the dimmer value and host power model, EEBA calculates expected host

power reduction Pr
i (line 9) and expected utilization reduction ur

hi
(line 10). With host

power model (like in Table 3.3), we have host power at different utilization levels, so

the utilization reduction can be computed based on power reduction. For example, in a

power model, the host with 100% utilization is 247 Watts and 80% utilization is 211 Watts,

if the power is required to be reduced from 247 to 211 Watts, the expected utilization

reduction is 100%− 80% = 20%.

4) Calculating the expected utilization reduction on VM (lines 11-13). An empty de-

activated component list dcli,j,t of VMj on host hi is initialized to prepare for storing de-

activated components (line 12). Then the expected VM utilization reduction ur
VMi,j

is

computed based on VM utilization model as VM utilization multiplies ur
hi

(line 13).

5) Applying component selection policy CSP to find and deactivate components list

dcli,j,t (line 14). According to the expected VM utilization reduction ur
VMi,j

, component

selection policy is responsible for finding the components satisfying the utilization con-

straint, deactivating these components and their connected ones, and updating total dis-

count amount (line 15).

6) In EEBA, if no host is above the power threshold, the algorithm activates the op-

tional components that have been set as deactivated (line 20).

Finally, after finishing the main steps of EEBA, VM consolidation in PCO algorithm

is applied to optimize VM placement (line 22).

The EEBA algorithm takes effect between the VM placement and VM consolidation

in PCO. VMs are initially placed by VM placement phase in PCO, after that, if no host
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is above the power threshold, the EEBA does not work; otherwise, the brownout is trig-

gered to handle the overloaded condition, then the VM consolidation phase in PCO is

applied.

As applications may have multiple optional components with different utilization

and discount amount, for Algorithm 3.1 step 4 that applies component selection policy,

we have designed several policies:

Nearest Utilization First Component Selection Policy (NUFCS): The objective of

NUFCS is finding and deactivating a single component in the component list. Com-

pared with other components, the single component has the nearest utilization to ur
VMi,j

.

NUFCS can find the goal component in O(n) time, which is efficient in online scheduling.

If the deactivated component is connected with other components, NUFCS also deac-

tivates other connected components. NUFCS runs fast and can reduce utilization, but if

ur
VMi,j

is much larger than all the single component utilization in the component list, more

components should be deactivated to achieve expected energy reduction. Therefore, we

propose another 3 multiple components selection policies to achieve expected utilization

reduction:

Lowest Utilization First Component Selection Policy (LUFCS): LUFCS selects a set

of components from the component with the lowest utilization until these components

achieve expected utilization reduction. This policy follows the assumption that the com-

ponent with less utilization is less important for users. Hence, with this policy, the service

provider deactivates a number of components with low utilization to satisfy the expected

utilization reduction.

Lowest Price First Component Selection Policy (LPFCS): LPFCS selects a set of com-

ponents from the component with the lowest discount. This policy focuses more on

discount and its objective is deactivating a number of components with less discount

amount and satisfying the expected utilization reduction.

Highest Utilization and Price Ratio First Component Selection Policy (HUPRFCS):

HUPRFCS selects a set of components considering component utilization and discount

together. The components with larger u(Appc)
d(Appc)

values are prior to be selected. Its objective

is deactivating the components with higher utilization and smaller discount. Therefore,

the service provider saves more energy while offering less discount amount.
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Algorithm 3.2: Component Selection Policy: Lowest Utilization First Compo-
nent Selection Policy (LUFCS)

Input : expected utilization reduction ur
VMi,j

on VMi,j

Output: deactivated components list dcli,j,t
1 Sort the optional component list ocli,j,t based on utilization u(Appc) in ascending order //Other

policies may change the sorting approach at this line. If there are connected components, the
connected components are treated together and sorted by their average utilization

2 St← NULL
3 if u(App1st) ≥ ur

VMi,j
then

4 dcli,j,t ← dcli,j,t + App1st
5 St← St + Ct(App1st)
6 forall Appc in ocli,j,t do
7 if Ct(Appc) is in St then
8 dcli,j,t ← dcli,j,t + Appc

9 d(VMi,j)← d(VMi,j) + d(Appc)

10 end
11 end
12 else
13 p← 0
14 forall Appc in ocli,j,t do
15 if (∑k

0(Appc) < ur
VMi,j

& ∑k+1
0 (Appc) > ur

VMi,j
) then

16 if (ur
VMi,j

−∑k
0(Appc) < ∑k+1

0 (Appc)− ur
VMi,j

) then
17 p = k− 1
18 else
19 p = k
20 end
21 end
22 break
23 end
24 for c←0 to p do
25 dcli,j,t ← dcli,j,t + Appc

26 St← St + Ct(Appc)
27 d(VMi,j)← d(VMi,j) + d(Appc)

28 end
29 forall Appc in ocli,j,t do
30 if Ct(Appc) in St then
31 dcli,j,t ← dcli,j,t + Appc

32 d(VMi,j)← d(VMi,j) + d(Appc)

33 end
34 end
35 end
36 return dcl(i, j, t)
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Algorithm 3.2 shows an example about how the component selection policy works.

The example is about LUFCS: the input of the algorithm is the expected configured uti-

lization ur
VMi,j

and the output is the deactivated components list dcli,j,t. The steps are:

a) Algorithm 3.2 sorts the optional components list ocli,j,t based on component utiliza-

tion parameter in ascending sequence (line 1), therefore, the component with the lowest

utilization is put at the head. For connected components, the sorting process is modi-

fied as treating the connected components together and using their average utilization

for sorting, which lowers the priority of deactivating connected components to avoid

deactivating too many components due to connections;

b) Initialize a set St that stores the deactivated components connection tags (line 2);

c) Algorithm 3.2 deactivates the first component and its connected components if it

satisfies the expected utilization reduction (lines 3-11). If the first component utilization

parameter value is above ur
VMi,j

, Algorithm 3.2 puts this component into the deactivated

components list dcli,j,t and puts its connection tag Ct(App1st) (a tag shows how it is con-

nected with other components) into St. After that, Algorithm 3.2 finds other connected

components and put them into deactivated components list. Finally, summing up the

deactivated components discount amount as d(VMi,j);

d) If the first component utilization does not satisfy the expected utilization reduction,

Algorithm 3.2 finds a position p in the optional components list (lines 13-23). The sublist

before p− 1 is the last sublist that makes its components utilization sum less than ur
VMi,j

and the sublist that before p is the first sublist that makes its components utilization sum

larger than u. The policy selects the sublist with utilization sum closer to the ur
VMi,j

from

these two sublists;

e) Algorithm 3.2 puts all the components in the sublist into the deactivated compo-

nents list and puts their connection parameters into the St (lines 24-28);

f) Algorithm 3.2 finds other connected components and puts them into the deacti-

vated components list, and updates the discount amount (lines 29-35);

g) Finally, Algorithm 3.2 returns the deactivated components list (line 36).

The LPFCS and HUPRFCS procedures are quite similar to LUFCS except the sorting

process at line 1. For example, the LPFCS sorts the optional components list according to

component discount, while HUPRFCS sorts the optional components list based on com-
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ponent utilization and discount ratio u(Appc)
d(Appc)

. For connected components, these policies

also treat them together and use their discount or utilization and discount ratio to sort.

The complexity of our proposed algorithm at each time interval is calculated based on

two parts, one is the brownout part and the other is the PCO part. At each time interval,

the complexity of the brownout part is O(m ∗M), where m is the maximum number of

components in all applications, M is the number of hosts. The complexity of the PCO

part is O(2M) as analyzed in [33]. The complexity at each time interval of our proposed

algorithm is the sum of the two parts, which is to O((2 + m) ∗M).

3.4.3 EEBA Competitive Analysis

We apply competitive analysis [37][34] to analyze the brownout approach combining

with VM consolidation for multiple hosts and VMs. We assume that there are M ho-

mogeneous hosts and N homogeneous VMs. If the available resource of each host is Rh

and maximum resource that can be allocated to VM is Rv, then the maximum number

of VMs allocated to host is Rh
Rv

. Overloaded situation occurs when VMs require more ca-

pacity than Rh. The brownout approach handles with the overloaded situation with a

processing time tb, and VMs are migrated between hosts through VM consolidation with

migration time tm. The cost of overloads per unit of time is Co, and the cost of energy

consumption is Ce. Without loss of generality, we can define Ce = 1 and Co = ε. Then we

have the following theorem:

Theorem 1. The upper bound of the competitive ratio of EEBA algorithm for the components

control and VM migration problem is EEBA(I)
OPT(I) ≤ 1 + Nε

N+M .

Proof: The EEBA controls the application components to handle with the over-

loaded situation and applies VM consolidation to reduce energy consumption. This al-

gorithm deactivates application components to make the hosts to be not overloaded and

consolidates VMs to the minimum number of hosts. Under normal status, the number of

VMs allocated to each host is N
M , while in overloaded situation, at least N

M + 1 VMs are al-

located to a single host. Thus, the maximum number of overloaded hosts is Mo = b N
N
M+1
c,

which is equivalent to Mo = b MN
N+Mc.

In the whole scheduling interval T, we split the time into 3 parts T = (tb + tm)τ +
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t0, where tb is the time that EEBA uses brownout to relieve overloads, tm is the time

consumed for VM migration, t0 is the time that hosts running at normal status and τ

∈ R+ . For the brownout and VM migration parts, the behaviors are as below:

1). During the tb, the brownout controller selects application components on over-

loaded hosts and deactivates them. Because all the hosts are active during tb, the cost of

this part is tb(MCe + MoCo).

2). During the tm, if there are still overloaded hosts, VMs are migrated from the over-

loaded hosts M
′
o, and M

′
o ≤ Mo. As the VM migration time is tm and all the hosts are

active during migration, the total cost during this time of period is tm(MCe + M
′
oCo).

Therefore, the total cost C during tb + tm is defined as below:

C = tb(MCe + MoCo) + tm(MCe + M
′
oCo). (3.10)

And the total cost incurred by EEBA for the input I is shown in Equation 3.11:

EEBA(I) = τ[tb(MCe + MoCo) + tm(MCe + M
′
oCo)] (3.11)

The optimal offline algorithm for this problem only keeps the VMs at each host and

does not apply brownout and VM consolidation. Therefore, the total cost of an optimal

offline algorithm is defined as:

OPT(I) = τ(tb + tm)MCe (3.12)

Then we compute the competitive ratio of an optimal offline deterministic algorithm

as:
EEBA(I)
OPT(I)

=
τ[tb(MCe + MoCo) + tm(MCe + M

′
oCo)]

τ(tb + tm)MCe
(3.13)

As M
′
o ≤ Mo, we have:

EEBA(I)
OPT(I)

≤ τ[(tb + tm)(MCe + MoCo)]

τ(tb + tm)MCe
=

MCe + MoCo

MCe
(3.14)

As Mo = b MN
N+Mc, we have M0 ≤ MN

N+M and combine with Equation 3.14 as well Ce =
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Table 3.2: Host / VM Types and capacity

Name CPU Cores Memory Bandwidth Storage
Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB
Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB
VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB
VM Type 2 2.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 3 1.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

Table 3.3: Power consumption of servers in Watts

Servers
0%

(sleep mode)
10% 20% 30% 40%

50%
(idle)

60% 70% 80% 90%
100%
(max)

IBM x3550 M3
(Intel Xeon X5670 CPU)

66 107 120 131 143 156 173 191 211 229 247

IBM x3550 M3
(Intel Xeon X5675 CPU)

58.4 98 109 118 128 140 153 170 189 205 222

1, Co = ε, the competitive ratio is defined as:

EEBA(I)
OPT(I)

≤ MCe + MoCo

MCe
≤

M + MN
N+M ε

M
= 1 +

Nε

N + M
(3.15)

3.5 Performance Evaluation

3.5.1 Environment Setting

We use the CloudSim framework [40] to simulate a cloud data center with 100 hosts. Two

types of hosts and four types of VMs are modeled based on current offerings in EC2 as

shown in Table 3.2. The power models of hosts we adopted are derived from IBM System

x3550 M3 with CPU Intel Xeon X5670 and X5675 [1], and their power consumption at

different utilization levels are demonstrated in Table 3.3. We assume that the idle host

consumes 50% of the full utilization, as mentioned in [106] that idle hosts can consume

Table 3.4: Parameter configurations for testing

Parameters
P1: Optional component

utilization threshold
P2: Percentage of

optional Components
P3: Percentage of

connected components
P4: Discount

Range 0% to 100% 0% to 100% 0% to 100% 0% to 100%
Categories 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% varying with P1
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Table 3.5: A testcase example

Testcase ID Optional component
utilization threshold

Percentage of
optional Components

Percentage of
connected components Discount

TC1 50% 50% 25% 50%

up to 60% of peak utilization.

The application modeled in CloudSim is based on a class called cloudlet. We have

extended the cloudlet to model application with optional components, and each compo-

nent has its corresponding CPU utilization, discount amount, and connection parameter.

The components are uniformly distributed on VMs.

We adopt the realistic workload trace from more than 1000 PlanetLab VMs [122] to

create an overloaded environment [32]. Our experiments are simulated under one-day

scheduling period and repeated 10 times based on 10 different days PlanetLab data. The

brownout is invoked every 300 seconds (5 minutes per time slot) if hosts power sur-

passes the power threshold. The CPU resource is measured with the capacity of running

instructions. Assuming that the application workload occupies 85% resource on a VM

and the VM has 1000 million instructions per second (MIPS) computation capacity, then

it presents the application constantly requires 0.85 × 1000 = 850 MI to 1.0 × 1000 = 1000

MI per second in the 5 minutes.

To reflect the impact of different configurations, we investigate a set of parameters as

shown in Table 3.4:

1) Optional component utilization threshold: it represents the threshold portion of

utilization that is optional and can be reduced by deactivating optional components. An

optional component with 25% utilization means 25% of application utilization is reduced

if it is set as deactivated. We adjust this parameter from 0% to 100% and categorize it as

25%, 50%, 75% and 100%.

2) Percentage of optional components: it represents how many components of the to-

tal components are optional. Assuming the number of all components is numcom and the

number of optional components is numopt, then the percentage of optional components

is numopt
numcom

. This parameter is varied from 0% to 100% and is categorized as 20%, 50%, 75%

and 100%.

3) Percentage of connected components: it represents how many components are con-
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nected among all the components. Assuming the number of connected components is

numconnected, then the percentage of connected components is numconnected
numcom

. This parameter is

also varied from 0% to 100% and is categorized as 25%, 50%, 75% and 100%. The connec-

tions between components are randomly generated based on the percentage of connected

components.

4) Discount: It represents the discount amount that allowed to be paid back to the

user if components are deactivated. We assume that application maximum discount

is identical to the optional component utilization threshold, for example, 50% optional

component utilization threshold comes along with 50% discount.

We assume that the components utilization u(Appc) and discount d(Appc) conform

normal distribution u(Appc):N(µ, σ2), d(Appc):N(µ, σ2), the µ is the mean utilization

of component utilization or discount, which is computed as the optional component uti-

lization threshold (or discount amount) divided by the number of optional components.

The σ2 is the standard deviation of components utilization or discount.

Based on σ2, we consider two component design patterns according to component

utilization and discount. One pattern is that components are designed with uniform

or approximate utilization and discount, which means each component is designed to

require same or approximate resource amount, like there are 5 components and each

component requires 10% utilization and offers 10% discount. We define the components

as approximate if their utilization standard deviation and discount standard deviation

are both less than 0.1. Another pattern is that components utilization and discount are

conspicuous different, which means the components are designed to require quite differ-

ent resource. We define the components as different if either their utilization standard

deviation or discount standard deviation is larger than 0.1.

According to Table 3.4, Table 3.5 shows a testcase with configured parameters, the

optional component utilization threshold is configured as 50%, the percentage of optional

utilization is configured as 50%, the percentage of connected components is set as 25%

and the discount is 50%.

Table 3.6 demonstrates an application components example fits the configurations

in Table 3.5. This application consists of 8 components: 4 of them (50%) are optional

components. Each component has utilization, discount and connected relationship with
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other components: the optional component utilization threshold is 50% (the utilization

sum of component 5, 6, 7 and 8), there are 2 components (20%) of all components are

connected (component 5 and 6) and the total discount of optional components is 50%.

3.5.2 Results and Analysis

In this section, we compare EEBA performance with two baselines algorithms:

1) VM Placement and Consolidation algorithm (PCO): the algorithm is described in

Section 3. 4.1. We configure its upper threshold as 0.8 and the lower threshold as 0.2.

Table 3.6: An application component example1

Components
ID

Mandatory /
Optional Utilization Discount Connected

Comp 1 Mandatory 10% 10% N/A
Comp 2 Mandatory 10% 10% N/A
Comp 3 Mandatory 20% 20% N/A
Comp 4 Mandatory 10% 10% N/A
Comp 5 Optional 5% 5% Comp8
Comp 6 Optional 10% 10% Comp7
Comp 7 Optional 15% 20% N/A
Comp 8 Optional 20% 15% N/A

2) Utilization-based Probabilistic VM consolidation algorithm (UBP) [43]: in the

VM placement, UBP adopts the same approach as PCO: sorting all the VMs in decreasing

order based on their utilization and allocating each VM to the host that increases the least

power consumption. In the VM consolidation phase, UBP applies a probabilistic method

[105] to select VMs from the overloaded host. The probabilistic method calculates the

migration probability based on PM utilization u as :

fm(u) = (1− u− 1
1− Th

)λ (3.16)

where fm(u) is the migration probability, Th is the upper threshold for detecting over-

loads and λ is a constant to adjust probability. We configure the Th = 0.8 and λ = 1.

In EEBA, we also configure TP = 0.8 that is as same as the upper threshold in PCO

and Th in UBP.

We separately conduct experiments for the two design patterns to evaluate algorithm

performance. With approximate components, our proposed policies LUFCS, LPFCS and
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HUPRFCS select the same components, so we focus on comparing PCO, UBP, NUFCS

and LUFCS policies, which represent baseline algorithms without brownout, EEBA with

single component selection policy and EEBA with multiple components selection pol-

icy respectively. While with different components, we focus on comparing the LUFCS,

LPFCS and HUPRFCS policies to evaluate the performance of different multiple compo-

nents selection policies.

In addition, as introduced in Section 3.3.1, components may be connected. Therefore,

to investigate the effects of individual component selection and connected components

selection, we separately run experiments for components without connections and con-

nected components.

As PCO and UBP performance are not influenced by the parameters in Table 3.4, we

firstly obtain their results as baselines. The PCO leads to 345.3 kWh with 95% confidence

interval (CI): (336.9, 353.7), and UBP reduces this value to 328.5kWh with 95% CI: (321.1,

335.9). Both these two algorithms offer no discount and no disabled utilization. Because

UBP performance is better than PCO, we set PCO as the benchmark. Referring to Equa-

tion 3.9, Eb is set as 345.3, so PCO algorithm efficiency E f fPCO = 345.3/345.3+ 0.0 = 1.0;

for UBP algorithm, its efficiency is E f fUBP = 321.1/345.3 + 0.0 = 0.95.

Components without Connections

Figure 3.2: Comparison by varying optional utilization threshold for approximate com-
ponents

1) Varying Optional Component Utilization Threshold

Figure 3.2 shows the comparison between PCO, UBP, NUFCS and LUFCS when com-

ponents are approximate by varying the optional utilization threshold (the percentage

of optional components is fixed as 50%). Figure 3.2a shows the energy consumption of

these policies respectively. NUFCS and LUFCS can save more energy when the optional
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Figure 3.3: comparison by varying optional utilization threshold for different compo-
nents

Figure 3.4: Comparison by varying optional component percentage for approximate
components

component utilization threshold is larger. However, more discount amount is also of-

fered to users according to Figure 3.2b. The reason lies in that Figure 3.2c and Figure

3.2d demonstrate that more utilization amount is disabled in NUFCS and LUFCS, and

more hosts are shutdown by these policies, which contributes to more energy reduction.

We use UBP and NUFCS with 100% optional utilization threshold to compare the num-

ber of shutdown hosts with PCO, which shows the maximum and minimum number of

shutdown hosts in this series of experiments. The number of shutdown hosts of other ex-

periments falls between the UBP and LUFCS-100% lines in Figure 3.2d. Compared with

UBP, NUFCS reduces 2% to 7% energy and LUFCS reduces 6% to 21% energy while 1%

to 6% and 8% to 22% discount amount are offered respectively.

Figure 3.3 shows LUFCS, LPFCS and HUPRFCS policies’ effects on energy and dis-

count amount when components are different and optional utilization threshold increases,

more energy is reduced and more discount amount is offered. As Figure 3.3a and Fig-

ure 3.3a illustrate, when components are different, LUFCS cannot save as much energy

as when components are approximate. For example, LUFCS-100% in Figure 3.3a shows

it reduces maximum 15% energy (the dotted line represents UBP energy consumption),

while LUFCS-100% in Figure 3.3a saves 21% energy. Therefore, our proposed policies

work better when components are designed with approximate resource requirement,
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Figure 3.5: Comparison by varying optional component percentage for different compo-
nents

Figure 3.6: Comparison by varying percentage of connected components for approximate
components

which also shows the value of proper design of components or microservices. Accord-

ing to Figure 3.3a and Figure 3.3b, LUFCS reduces the maximum energy, but also offers

the maximum discount amount, which gives LUFCS < LPFCS < HUPRFCS in energy

and LUFCS > LPFCS > HUPRFCS in discount amount. We conduct paired t-tests for

energy consumption of these policies, when optional utilization threshold is 25%, the

p-value for LUFCS-25% and HUPRFCS-25% is 0.12, which shows nonstatistically signifi-

cant differences between these policies, while the optional utilization threshold increases,

the p-value for LUFCS-50% and LPFCS-50% is 0.038 and the p-value for LPFCS-50% and

HUPRFCS-50% is 0.046, which shows there are statistically significant differences in en-

ergy consumption. As shown in Figure 3.3c and Figure 3.3d, it reflects more utilization

amount is disabled and more hosts are shutdown in LUFCS as shown. The different

effects between these policies come from the LUFCS selects components without consid-

ering discount, as it can select as many components as possible until achieving expected

utilization reduction. While other two policies consider discount amount and do not

deactivate as many components as in LUFCS.

2) Varying Percentage of Optional Components

Figure 3.4 shows the results when components are approximate by varying the per-

centage of optional components (the optional component utilization threshold is fixed as
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Figure 3.7: Comparison by varying percentage of connected components for different
components

Figure 3.8: Energy consumption comparison by varying percentage of connected compo-
nents and optional component utilization threshold

50%). Figure 3.4a and Figure 3.4b illustrate that in comparison to PCO and UBP, more

energy is saved and more discount amount is offered with the increase of the optional

components in NUFCS and LUFCS, which results from more options of components are

available to be selected. In comparison to UBP, when more than 25% components are

optional, NUFCS saves 1% to 7% energy and offers maximum 12% discount amount, and

LUFCS saves 5% to 19% energy but offers 5% to 20% discount amount. As shown in Fig-

ure 3.4c and Figure 3.4d, compared with UBP, LUFCS disables maximum 19% utilization

amount and more than 8 hosts averagely.

Figure 3.5 compares LUFCS, LPFCS and HUPRFCS policies for different components

when varying the percentage of optional components. The results in Figure 3.5a and

Figure 3.5b show that these policies save more energy when optional components in-

creases, and show LUFCS < LPFCS < HUPRFCS in energy as well as LUFCS > LPFCS >

HUPRFCS in discount amount. As demonstrated in Figure 3.5c and Figure 3.5d, LUFCS

disables more utilization amount than other two policies and shuts down the maximum

number of hosts when with 100% optional components. Through paired t-tests for 25%

optional components, we observe the p-value for LUFCS and LPFCS is 0.035, which

shows statistically significant differences. But the p-value for LPFCS and HUPRFCS is

0.095, which shows nonstatistically significant different. Similar p-values are also ob-
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Figure 3.9: Discount amount comparison by varying percentage of connected compo-
nents and optional component utilization threshold

Figure 3.10: Disabled utilization amount comparison by varying percentage of connected
components and optional component utilization threshold

served when more optional components are provided.

Although LUFCS with 100% optional components saves about 19% and 16% en-

ergy for approximate components and different components respectively, it is not rec-

ommended to set all components as optional since too much discount amount is offered.

We will discuss policies selection considering the trade-offs in the Section 3.3.5.

Connected Components

After investigating the components without connections, we move to investigate con-

nected components. As mentioned in Algorithm 3.2, in these cases, our proposed poli-

cies treat the connected components together and use their average utilization or dis-

count to sort. Figure 3.6 shows the PCO, UBP, NUFCS and LUFCS for approximate

components when varying the percentage of connected components (optional compo-

Table 3.7: Recommended policies for components without connections under different
configurations

Components
Design Pattern

Discount
Constraint

Optional Component
Utilization Threshold

Percentage of
Optional Components

Recommend Policy Algorithm Efficiency

Approximate
Components

≤ 5% ≤ 100% ≤ 100%
NUFCS 0.947 with 95% CI: (0.941, 0.953)

>5% LUFCS 0.91 with 95% CI: (0.887, 0.933)

Different
Components

≤ 100%
≤ 50%

≤ 100%
LUFCS 0.918 with 95% CI: (0.895, 0.941)

50%-75% LPFCS 0.913 with 95% CI: (0.891, 0.936)
>75% HUPRFCS 0.908 with 95% CI: (0.885, 0.931)
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Table 3.8: Recommended policies for connected components under different configura-
tions

Components
Design Pattern

Discount
Constraint

Percentage of
Connected Components

Optional Component
Utilization Threshold

Percentage of
Optional Components

Recommended
Policy

Algorithm Efficiency
with 95% CI

Approximate
Components

≤ 5% ≤ 100%
≤ 100% ≤ 100%

NUFCS 0.901 (0.852, 0.953)
>5% ≤ 100% LUFCS 0.877 (0.852, 0.902)

Different
Components

≤ 100%

≤ 50%
≤ 50%

≤ 100%

LUFCS 0.895 (0.859, 0.931)
>50% LPFCS 0.89 (0.858, 0.922)

50%-75%
≤ 50% LPFCS 0.886 (0.855, 0.917)
>50% HUPRFCS 0.881 (0.856, 0.906)

>75% ≤ 100% HUPRFCS 0.880 (0.85, 0.91)

nent utilization threshold and percentage of optional components are both fixed as 50%).

Figure 3.6a shows that the connected components affects the NUFCS impressively. The

energy consumption drops heavily in NUFCS when the percentage of connected compo-

nents increases, i.e., from 9% to 21% reduction compared with UBP. While in LUFCS, the

connected components do not affect its performance significantly. Although the energy

consumption is also reduced when the percentage of connected components increases,

energy consumption drops slowly from 14% to 21%. When 100% components are con-

nected, NUFCS and LUFCS produce the same effects. As shown in Figure 3.6b, with the

increase of connected components, discount amount increases fast from 10% to 23% in

NUFCS while slowly in LUFCS from 17% to 23%. NUFCS and LUFCS both offer same

discount amount when all the components are connected. For the cases that save more

energy, like NUFCS or LUFCS with 100% connected components, Figure 3.6c and Figure

3.6d show that more utilization amount is disabled and more hosts are shutdown than

baseline algorithms.

Figure 3.7 illustrates the comparison of LUFCS, LPFCS and HUPRFCS for different

components when varying the percentage of connected components. Figure 3.7a shows

that when connected components are larger than 75%, these policies do not result in

significant differences, this is due to when the percentage of connected components in-

creases, similar deactivated component lists are obtained although these components

may be put into the list in different orders by these policies. Apparent differences for

discount amount and disabled utilization amount are illustrated in Figure 3.7b and Fig-

ure 3.7c when connected components are less than 75%, like LUFCS reduces 2% to 5%

energy than LPFCS and 5% to 10% energy than HUPRFCS, LUFCS offers 4% to 10%

more discount than LPFCS and 9% to 15% more discount amount than HUPRFCS. Fig-

ure 3.7d shows that when components are connected, more hosts are shutdown than
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UBP. In summary, our proposed multiple components selection policies works better un-

der components with lower connected percentage up to 75%, which enables to provide

multiple choices for service provider rather than providing same effects.

To evaluate the effects of combined parameters, we vary optional component utiliza-

tion threshold and percentage of connected components together. We choose the optional

component utilization threshold, as this parameter shows more significant effects than

the percentage of optional component in energy and discount. Figures 3.8 to 3.10 demon-

strate the energy consumption, discount amount and disabled utilization amount sepa-

rately when varying these two parameters together. Each subfigure is with fixed optional

component utilization threshold and variable percentage of connected components, for

example, Figure 3.8a represents energy consumption when optional component utiliza-

tion threshold is 25% and percentage of connected component is varied from 25% to

100%. Figure 3.8 shows that energy is reduced when connected components increases

or larger optional component utilization threshold is given. For the compared policies,

LUFCS, LPFCS and HUPRFCS show similar results when optional component utiliza-

tion threshold is below 25% or percentage of connected components is above 75%. This

is because when optional component utilization threshold is low, the disabled utilization

is quite close for different policies, and higher percentage of connected components also

contributes to deactivating the same list of components. For other cases that show sta-

tistically significant differences in energy consumption with p-value less than 0.05, like in

Figure 3.7, the results are given as LUFCS ≤ LPFCS ≤ HUPRFCS. In these cases, Figure

3.9 and Figure 3.10 also show that LUFCS > LPFCS > HUPRFCS in discount amount and

disabled utilization.

In conclusion, EEBA algorithm saves more energy than the VM consolidation ap-

proaches without brownout, like PCO and UBP. It is noticed that our experiments are

mainly focused on optimizing servers energy consumption, so the network infrastruc-

ture energy consumption is not optimized. Since the component selection policies in

brownout controller can be modeled into applications, like in [58], they are insensitive to

network infrastructures.
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Policy Selection Recommendation

To help make choices for component selection policies, we use Equation 3.9 to calculate

their algorithm efficiency and summarize suitable policies under different configurations

to achieve better energy efficiency. We consider energy consumption and discount with

the same importance, so the α is set as 1. Table 3.7 shows the results for components

without connections and Table 3.8 presents the results for the connected components.

To sum up, for components without connections, 1) when the components are ap-

proximate, NUFCS fits in the configurations when service provider allows maximum 5%

discount and LUFCS performs better when more discount amount is allowed by service

provider. 2) When the components are different, although the discount constraint is not

as important as in the approximate components cases, the policies are picked out by other

parameters, for instance, LUFCS achieves the best efficiency with less than 50% optional

component utilization threshold, LPFCS overwhelms others with 50% to 75% optional

component utilization threshold, HUPRFCS performs the best efficiency with more than

75% optional components utilization threshold.

For connected components, the suitable conditions are more complex: 1) when the

components are approximate, NUFCS is recommended if the discount amount is lim-

ited under 5% and LUFCS is suggested if more than 5% discount amount is allowed; 2)

when the components are different, recommended policy changes via different configu-

rations. For example, when connected components are less than 50%, if optional compo-

nent utilization threshold is less than 50%, LUFCS is recommended; if optional compo-

nent utilization threshold is larger than 50%, LPFCS is recommended. When connected

components are between 50% and 75, LPFCS is recommended for optional component

utilization threshold that is not larger than 50%, HUPRFCS is recommended for optional

component utilization threshold larger than 50%. When more than 75% components are

connected, any policy achieves quite close results, HUPRFCS is a choice.

3.6 Summary

In this chapter, we introduced the brownout enabled system model by considering appli-

cation components, which are either mandatory or optional. In the model, the brownout
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controller can deactivate the optional components to reduce data center energy consump-

tion while offering discount to users. We also proposed a brownout enabled algorithm to

determine when to use brownout and how much utilization on a host is reduced. Then

we presented a number of policies to select components and investigate their effects on

energy consumption and offered discount.

In our experiments, we considered different configurations, such as components with-

out connections, connected components, approximate components, different components

and etc. The results showed that these proposed policies save more energy than the base-

lines PCO and UBP. The comparison of proposed policies demonstrates that these poli-

cies fit in different configurations. Considering the discount amount offered by a service

provider, NUFCS is recommended when a small amount of discount (like less than 5%)

is offered, as it can reduce maximum 7% energy consumption in contrast to UBP. When

more discount amount (like more than 5%) is allowed by service provider, other multi-

ple components selection policies are recommended, for example, compared with UBP,

HUPRFCS saves more than 20% energy with 10% to 15% discount amount.

However, this chapter adopts the algorithm based on heuristic algorithms, which is

fast while the optimal results may not be obtained. This means the trade-offs between en-

ergy and discount can be improved. In the next chapter, we apply the algorithm based on

Markov Decision Process, which belongs to the meta-heuristic algorithm. The proposed

algorithm searches a large solution space and aims to find more possible combinations of

deactivated components and achieve better trade-offs.





Chapter 4

Energy Efficient Scheduling of
Application Components via

Brownout and Approximate Markov
Decision Process

Unexpected loads in Cloud data centers may trigger overloaded situation and performance degra-

dation. Brownout has been proved to be a promising approach to relieve the overloads through deac-

tivating application non-mandatory components or microservices temporarily. Moreover, brownout

has been applied to reduce data center energy consumption. It shows that there are trade-offs between

energy saving and discount offered to users (revenue loss) when one or more services are not provided

temporarily. In this chapter, we propose a brownout-based approximate Markov Decision Process

approach to improve the aforementioned trade-offs. The results based on real trace demonstrate that

our approach saves 20% energy consumption than VM consolidation approach. Compared with ex-

isting energy-efficient brownout approach, the proposed approach reduces the discount amount given

to users while saving similar energy consumption.

4.1 Introduction

BROWNOUT has shown its effectiveness in relieving overloads and improving en-

ergy efficiency for cloud computing system. When brownout is used to optimize

energy, discount can be the trade-off. In our scenario, the meaning of discount is not lim-

ited to the discount offered to users. Additionally, it can also be modeled as the revenue

loss of service providers (i.e. SaaS service providers) that they charge the lower price for

This chapter is derived from:
•Minxian Xu and Rajkumar Buyya, “Energy Efficient Scheduling of Application Components via Brownout
and Approximate Markov Decision Process,” in Proceedings of the 15th International Conference on Service-
Oriented Computing (ICSOC), LNCS, Springer-Verlag Press, Berlin, Germany), Malaga, Spain, November
13-16, 2017.
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services under brownout. For example, in an online shopping system, the recommenda-

tion engine helps the service provider to improve their revenue by recommending similar

products. If the recommendation engine is deactivated, the service provider is unable to

obtain the revenue from the recommendation engine.

In this chapter, we consider to apply meta-heuristic algorithm based on Markov De-

cision Process to improve algorithm performance. We consider component-level control

in our system model, which could also be applied to container or microservices archi-

tecture. We model the application components as either mandatory or optional, and if

required, optional components can be deactivated. By deactivating the optional com-

ponents selectively and dynamically, the application utilization is reduced to save total

energy consumption. While under market scenario, service provider may provide dis-

count for users as one or more services are deactivated.

The key contributions of this chapter are:

• Our approach considers the trade-offs between saved energy and the discount that

is given to a user if components or microservices are deactivated;

• We propose an efficient algorithm based on brownout and approximate Markov

Decision Process that considers the aforementioned trade-offs and achieves better

trade-offs than baselines.

The remainder of this chapter is organized as follows: after discussing the related

work in Section 4.2, we present the brownout system model and problem statement in

Section 4.3. Section 4.4 introduces our proposed brownout-based Markov Decision Pro-

cess approach, and Section 4.5 demonstrates the experimental results of our proposed

approach. The summary is concluded in Section 4.6.

4.2 Related Work

A large body of literature has focused on reducing energy consumption in cloud data

centers, and the dominant categories for solving this problem are VM consolidation and

Dynamic Voltage Frequency Scaling (DVFS).

VM consolidation is viewed as an act of combining into an integral whole, which
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saves energy by allocating work among fewer machines and turning off unused ma-

chines [123]. Using this approach, VMs allocated to underutilized hosts are consolidated

to other servers and the remaining hosts are transformed into low power mode. Mas-

troianni et al. [105] presented a self-organizing and adaptive approach for consolidation

of VMs CPU and RAM resource, which is driven by probabilistic processes and local in-

formation. Corradi et al. [47] considered VM consolidation in a more practical viewpoint

related to power, CPU and networking resource sharing and tested VM consolidation in

OpenStack, which shows VM consolidation is a feasible solution to lessen energy con-

sumption. Theja et al. [141] proposed an adaptive genetic algorithm based on VM con-

solidation for QoS and energy oriented Clouds. Monil et al. [111] developed a fuzzy logic

and heuristic-based VM migration control approach to achieve the trade-off between en-

ergy and QoS. Fuzzy VM selection method is applied to select VM from overloaded host

and migrate. Hosseinimotlagh et al. [77] presented a VM scheduling algorithm based on

the unsurpassed utilization level to achieve optimized energy consumption while meet-

ing a QoS constraint.

The DVFS technique introduces a trade-off between computing performance and en-

ergy consumed by the server. The DVFS technique lowers the frequency and voltage

when the processor is lightly loaded, and utilizes maximum frequency and voltage when

the processor is heavily loaded. Kim et al. [83] proposed several power-aware VM

schemes based on DVFS for real-time services. Hanumaiah et al. [72] introduced a so-

lution that considers DVFS, thread migration and active cooling to control the cores to

maximize overall energy efficiency.

Most of the proposed brownout approaches in Cloud scenarios focused on handling

overloads or overbooking rather than energy efficiency perspective. Klein et al. [85]

firstly borrowed the approach of brownout and applied it to cloud applications, aiming

to design more robust applications under unpredictable loads. Tomas et al. [142] used

brownout along with overbooking to ensure graceful degradation during load spikes and

avoid overload. In a brownout-compliant application or service, the optional parts are

identified by developers, and a control knob called dimmer that controls these optional

parts is also introduced. The dimmer value represents a certain probability given by a

control variable and shows how often these optional parts are executed. Moreover, a
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brownout controller is also required to adjust the dimmer value.

Markov Decision Process (MDP) is a discrete time stochastic optimization approach

and provides a way to solve the multiple state probabilistic decision-making problem,

which has been adopted to solve resource management problems in Cloud scenarios.

Toosi et al. [144] used finite MDP for requests admission control in Clouds, while their

objective is maximizing revenues rather than reducing power consumption. Han et al.

[71] applied MDP to determine VM migration for minimizing energy consumption, while

our work is adopting MDP to determine the deactivation of application components.

In our previous chapter, several heuristic policies were proposed to find the com-

ponents that should be deactivated and investigated the trade-offs between energy and

discount. In this chapter, we adopt approximate MDP to improve the aforementioned

trade-offs.

4.3 System Model and Problem Definition

4.3.1 System Model

Our system model is presented in Figure 4.1 and it consists of the following entities:

Users: Users submit service requests to cloud data centers. The users entity contains

user information and requested applications (services).

Applications: The applications provide different services for users and are consisted

of a set of components, which are identified as mandatory or optional. Different from

Figure 3.1, we don’t consider the connected components in this chapter.

Mandatory component: The mandatory component keeps running all the time when

the application is launched.

Optional component: The optional component can be set as activated or deacti-

vated according to the system status. These components have parameters like utilization

u(Appc) and discount d(Appc). Utilization indicates the amount of utilization, and dis-

count represents the amount of discount that is offered to the users (or revenue loss of

service provider). The operations of optional components are controlled by the brownout

controller, which makes decisions based on the system overloaded status and brownout

algorithm.
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Figure 4.1: System Model with Brownout

To adapt the dimmer to our model, different from the dimmer in [85] that requires

a dimmer per application, our dimmer is only applied to the applications with optional

components. Rather than response time, another adaptation is that our dimmer value is

computed based on the number of overloaded hosts and adapts to the severity of over-

loaded events (more details are presented in Section 4.4.1).

Cloud Providers: Cloud providers offer physical resources to meet service demands,

which host a set of VMs or containers to run applications.

4.3.2 Power Model

We adopt the servers power model derived from [155]. The power of server i is Pi(t) that

is dominated by the CPU utilization:

Pi(t) =


Pidle

i + ∑Ni
j=1 u(VMi,j(t))× Pdynamic

i , Ni > 0

0 , Ni = 0
(4.1)

Pi(t) is composed of idle power and dynamic power. The idle power is regarded as

constant and the dynamic power is linear to the total CPU utilization of all the VMs on

the server [155]. If no VM is hosted on a server, the server is turned off to save power.

VMi,j refers to the jth VM on server i, Ni means the number of VMs assigned to server i.

And u(VMi,j(t)) refers to the VM utilization at time interval t, which is represented as:
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u(VMi,j(t)) =
Cj

∑
c=1

u(Appc) (4.2)

where Cj is the number of application components on VM, and u(Appc) is the utilization

of application component c when it is activated.

Then the total energy consumption during time interval t, with M servers is:

E(t) =
M

∑
i=1

∫ t

t−1
Pi(t)dt (4.3)

Notes: In our power model, we assume that the time required to turn on/off hosts

(including the time to deactivate and activate components) is less than a scheduling time

interval (like 5 minutes). When the host is turned off/on, the host is assumed to be

consuming the idle power.

4.3.3 Discount Amount

As introduced in Section 4.1, the meaning of discount could be either the discount offered

to users or the revenue loss of service providers that they charge the lower price for

services under brownout. In this chapter, we note them as discount.

The total discount amount at time interval t is modeled as the sum of discount of all

deactivated application components at t:

D(t) =
M

∑
i=1

Ni

∑
j=1

d(VMi,j(t)) (4.4)

where D(t) is the total discount amount at t that obtained from all VMs on hosts, Ni is

the number of VMs assigned to server i, M is the number of servers. The individual dis-

count d(VMi,j(t)) is the sum of discount amount of deactivated application components

d(Appc) of VMi,j, which is shown in Equation 4.5:

d(VMi,j) =
Cj

∑
c=1

d(Appc) (4.5)

where Cj is the number of application components hosted on VMj, and only the deacti-

vated components are counted.
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4.3.4 Problem Definition

Let Q(t) ∈ Q, where Q = η1, . . . , η|Q|, ηi ∈ Q. The Q(t) is a combination of two vectors:

energy consumption vector E(t) and discount amount vector D(t), representing the pos-

sible energy consumption and discount amount at different system states. Let C(t) to be

all the application component states at t, we have

Definition 1 The system state at time interval t can be specified as:

S(t) , [Q(t), C(t)] (4.6)

The system state S(t) contains the energy consumption and discount amount as well as

their corresponding application components states .

At each time interval, we calculate the state information as:

g(t) = E(t) + λD(t) (4.7)

where λ is the weight of discount. The higher λ implicates that more weights are given to

the discount amount. In the whole scheduling period T under policy π, our optimization

objective is:

min
π

g(π) =
T

∑
t=0

[E(t) + λD(t)] (4.8)

4.4 Proposed Approach

4.4.1 Approximate Markov Decision Process Model

To adopt the Markov model, we assume that the workload satisfies the Markov prop-

erty, which means the state transitions caused by workloads are memoryless. Our ex-

periments are conducted with PlanetLab workload, which has been validated to satisfy

Markov chain property [33]. In our model, we assume that the probability of application

components to transfer their states at the next time period only depends on the work-

loads of the current time period and independent on earlier states. We formulate our

problem as finite horizon MDP that we investigate a fixed length of time.
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Then we can solve our objective function by using Bellman equation [31]:

V∗(Si) = arg min
γ∈R

[g(Si) + ∑
Sj∈S

Pr[Sj|Si, γ]V∗(Sj)] (4.9)

g(Si) is the instant cost under system state Si, and V∗(Si) is the expected energy con-

sumption and discount obtained from Sj to Si. We also denote γ(t) , [γ1(t), . . . , γn(t)] ∈

R as the operations (activation or deactivation actions) for application components. V∗(Si)

can be found by iteratively obtaining minimum energy consumption and discount until

convergence.

Let p̂i,j denote the estimated transition probability that the application component

changes its state. The transition probability is computed as:

p̂i,j =

√
M̂
M
× Pr(

u(Appc)

d(Appc)
= zC) (4.10)

Pr( u(Appc)
d(Appc)

= zC) is the probability that the ratio of component utilization and discount
u(Appc)
d(Appc)

falls into category zC. We divide the probability into C (the maximum number of

components on a VM) categories. For all the components with the probability falls into

the same category, we apply the same operation. To avoid the curse of dimension, noted

by [71], we adopt key states to reduce state space. With key states, the component states

on a VM is reduced to the maximum number of components on a VM as |C|. M̂ is the

estimated number of overloaded hosts, which is calculated based on a sliding window

[32]. The advantage of sliding window is to give more weights to the values of recent

time intervals. Let Lw to be the window size, and N(t) to be the number of overloaded

hosts at t, we estimate M̂ as:

M̂(Lw) =
1

Lw

Lw−1

∑
t=0

N(t) (4.11)

We denote the states as key states Sk as described above. With proof in [71], ∀Si ∈ Sk

for all the VMs, the equivalent Bellman’s equation in Equation 4.9 can be approximately

formulated as:

V∗(Si) ≈
M

∑
m=1

Nm

∑
n=1

(g(Si) + arg min
γn∈Rn

{ ∑
Sj∈Sk

Pr[Sj|Si, γn]Ṽ∗n (Sj)}) (4.12)

The state spaces thus are reduced to polynomial with linear approximation. The M is the
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number of hosts and Nm is the number of VM assigned to server m.

4.4.2 Brownout Algorithm based on Markov Decision Process (BMDP)

Our novel brownout algorithm is embedded within a VM placement and consolidation

algorithm. We adopt the VM placement and consolidation algorithm (PCO) proposed in

[33], which is also one of our baselines in Section 4.5.

The PCO algorithm is a heuristic to reduce energy consumption through VM consol-

idation. In the initial VM placement phase, PCO sorts all the VMs in decreasing order

by their current CPU utilization and allocates each VM to the host that increases the least

power consumption due to this allocation. In the VM consolidation phase, PCO opti-

mizes VM placement by separately picking VMs from over-utilized and under-utilized

hosts to migrate, and finding new placements for them. After migration, the over-utilized

hosts are not overloaded any more and the under-utilized hosts are switched to sleep

mode.

Our brownout algorithm based on approximate Markov Decision Process is shown

in Algorithm 4.1 and includes 6 steps:

1) System initialization (lines 1-2): Initializing the system configurations, including

overloaded threshold TP, dimmer value θt, vector Q that contains the D(t) and E(t)

information, as well as objective states Sd, and applying VM placement algorithm in PCO

to initialize VM placement.

2) Estimating transition probability of each application component (lines 3-14): At

each time interval, the algorithm firstly estimates the number of overloaded hosts. The

dimmer value is computed as
√

M̂
M , which is adaptive to the number of overloaded hosts.

If no host is overloaded, the value is 0 and no component is deactivated. If there are

overloaded hosts, the transition probabilities of application components are computed

using Equation 4.10.

3) Finding the states that minimize the objective function (lines 15-17): Traversing

all the key states by value iteration according to Equation 4.12, where D
′
(t) and E

′
(t) are

the temporary values at the current state.

4) Updating system information (lines 18-20): The algorithm updates the obtained

energy consumption and discount values if g(t) in Equation 4.7 is reduced, and records
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Algorithm 4.1: Brownout based Markov Decision Process Algorithm (BMDP)
Input : host list hl with size M, VM list, application components information, overloaded power threshold TP,

dimmer value θt at time t, destination states Sd(t), energy consumption E(t) and discount amount
D(t) in Q

Output: total energy consumption, discount amount
1 TP← 0.8; θt ← 0; ∀E(t), ∀D(t) ∈ Q← max; Sd(t) ∈ Sd ← NULL
2 use PCO algorithm to initialize VMs placement
3 while true do
4 for t← 0 to T do

5 θt ← =
√

M̂t
M

6 forall hi in hl do
7 if hi is overloaded then
8 forall VMi,j on hi do
9 forall Appc on VMi,j do

10 Pr(Appc)← θt × Pr( u(Appc)
d(Appc)

= zC)

11 end
12 end
13 end
14 end
15 forall Sj(t) ∈ Sk(t) do
16 V∗(Si) = ∑m=M

m=1 ∑n=Nm
n=1 (g(Si) + minγn∈Rn{∑Sj∈Sk

Pr[Sj|Si , γn]Ṽ∗n (Sj)})
17 g(t) = E

′
(t) + λD

′
(t)

18 if g(t) < E(t) + λD(t) then
19 E(t)← E

′
(t) ; D(t)← D

′
(t) ; Sd(t)← Sj(t)

20 end
21 deactivate the selected components to achieve state Sd(t)
22 end
23 end
24 use VM consolidation in PCO algorithm to optimize VM placement
25 end

the optimized states. The current states are substituted by the state with a lower g(t).

5) Deactivating the selected components (line 22): The brownout controller deacti-

vates the selected components to achieve objective states.

6) Optimize VMs placement (line 24): The algorithm uses the VM consolidation

approach in PCO to optimize VM placement via VM consolidations.

The complexity of the BMDP algorithm at each time interval is consisted of the brownout

part and VM consolidation part. The complexity of the transition probability computa-

tion is O(C · N ·M), where C is the maximum number of components in all applications,

N is the maximum number of VMs on all the hosts and M is the number of hosts. With

the key states, the space state of the MDP in brownout part is O(C · N ·M). According to

Equation 4.12, the actions are reduced to O(C · N ·M), so the overall MDP complexity is

O(C2 ·N2 ·M2). The complexity of the PCO part is O(2M) as analyzed in [33]. Therefore,

the overall complexity is O(C ·M · N + C2 · N2 ·M2 + 2M) or equally O(C2 · N2 ·M2).
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Table 4.1: Host / VM Types and capacity

Name CPU Cores Memory Bandwidth Storage

Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB
Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB

VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB
VM?Type 2 2.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 3 1.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

4.5 Performance Evaluation

4.5.1 Methodology

We use the CloudSim framework [40] to simulate a cloud data center. The data center

contains two types of hosts and four types of VMs that are modeled based on current of-

ferings in EC2 as shown in Table 4.1. The power models of the adopted hosts are derived

from IBM System x3550 M3 with CPU Intel Xeon X5670 and X5675 [1] . We set the time

required to turn on/off hosts as 0.5 minute.

We implemented an application with optional components, and each component has

its corresponding CPU utilization and discount amount. The components are uniformly

distributed on VMs.

We adopt the realistic workload trace from more than 1000 PlanetLab VMs [122] to

create an overloaded environment [32]. Our experiments are simulated under one-day

scheduling period and repeated for 10 different days. The brownout is invoked every

5 minutes (one time interval) if hosts are overloaded. The sliding window size Lw in

Equation 4.11 to estimate the number of overloaded hosts is set as 12 windows (one hour).

The CPU resource is measured with capacity of running instructions. Assuming that

the application workload occupies 85% resource on a VM and the VM has 1000 million

instructions per second (MIPS) computation capacity, then it represents the application

constantly requires 0.85 × 1000 = 850 MI per second in the 5 minutes time interval.

We use three baseline algorithms for comparison as below:

1) VM Placement and Consolidation algorithm (PCO) [33]: the algorithm has been

described at the beginning of Section 4.2.

2) Utilization-based Probabilistic VM consolidation algorithm (UBP) [43]: for VM

initial placement, UBP adopts the same approach as PCO, which sorts all the VMs in de-
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creasing order based on their utilization and allocating each VM to the host that increases

the least power consumption. For VM consolidation, UBP applies a probabilistic method

[105] to select VMs from overloaded host. The probabilistic method calculates the migra-

tion probability fm(u) based on host utilization u as : fm(u) = (1− u−1
1−Th

)α , where Th is

the upper threshold for detecting overloads and α is a constant to adjust probability.

3) Brownout algorithm with Highest Utilization and Price Ratio First Component

Selection Algorithm (HUPRFCS) from Chapter 3: it is a brownout-based heuristic al-

gorithm. This algorithm deactivates the application components from the one with the

highest
u(App)
d(Appc)

to the others with lower u(Appc)
d(Appc)

until the deactivated components obtain

the expected utilization reduction, which is a deterministic algorithm. HUPRFCS is an

efficient approach to reduce energy consumption under discount amount constraints.

To evaluate algorithms’ performance, we mainly explore two parameters:

1) Overloaded threshold: It identifies the CPU utilization threshold that determines

the overloaded hosts, and it is varied from 80% to 95% in increments of 5%. We adopt this

parameter since both [33] and [105] have shown that it influences energy consumption.

2) Percentage of optional utilization in an application: It shows how much utiliza-

tion in application is optional and can be deactivated. It is varied from 25% to 100% in

increments of 25%. An application with 100% optional utilization represents that the ap-

plication components or microservices are self-contained and each of them is allowed to

be disabled temporarily (not disabling all the components at the same time), such as a

stateless online document processing application. We assume the application maximum

discount is identical to the percentage of optional utilization, for example, 50% optional

utilization in an application comes along with 50% discount amount.

We assume that the optional components utilization u(Appc) and discount d(Appc)

conform normal distribution u(Appc):N(µ, σ2), d(Appc):N(µ, σ2), the µ is the mean

utilization of component utilization or discount, which is computed as the percentage

of optional utilization (or discount amount) divided by the number of optional compo-

nents. The σ2 is the standard deviation of optional components utilization or discount.

In our experiments, we consider both optional component utilization standard devia-

tion and discount standard deviation are less than 0.1, which represents that the optional

components are designed to have balanced utilization and discount.
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Figure 4.2: Comparison with different λ. The parameter λ is the weight of discount.

4.5.2 Results

4.5.2.1 Comparison with different λ

To investigate the impacts of different discount weights in Equation 4.7, we conduct

a series of experiments with different λ. In these evaluations, the hosts number and

VMs number are set to 200 and 400 respectively, the overloaded threshold is set to 85%

and the percentage of optional utilization is set to 50%. Figure 4.2 indicates that energy

consumption increases and discount amount decreases when λ increases. The reason lies

in that larger λ will guide our algorithm to find the states that offer less discount. From

the results, we notice that when λ value is less than 4500, BMDP saves more energy than

UBP and PCO, and in comparison to HUPRFCS, BMDP has similar energy consumption

and reduces significant discount amount.

In the following evaluations, we set λ to a small value (i.e. λ=100) so that the energy

consumption of BMDP is below two baselines (PCO and UBP) and close to HUPRFCS.

Additionally, with this λ value, the discount of BMDP is less than the discount produced

by HUPRFCS.

4.5.2.2 Comparison under varied overloaded thresholds

The performance evaluated under different overloaded thresholds is shown in Figure

4.3. Other parameters are configured as same as in Section 4.5.2.1. In Figure 4.3a, we ob-

serve that the energy consumption of all the algorithms are reduced when the overloaded

threshold increases, for example, PCO-80% has 699.6 kWh with 95% Confidence Interval

(CI) (682.6, 716.6) and reduces it to 649.9 kWh with 95% CI: (635.8, 664.1) in PCO-95%;

BMDP-80% has 607.8 kWh with 95% CI: (598.1, 617.4) and saves it as 558.4 kWh with
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Figure 4.3: Varying overloaded threshold

Table 4.2: Paired t-tests with 95% CIs for comparing energy consumption by HUPRFCS
and BMDP under different overloaded thresholds

Algorithm 1 (kWh) Algorithm 2 (kWh) Difference (kWh) p-value
HUPRFCS-80% (598.01) BMDP-80% (607.78) -9.77 (-15.14, -4.39) 0.0026
HUPRFCS-85% (595.87) BMDP-85% (599.24) 3.37 (-0.77, 7.52) 0.099
HUPRFCS-90% (581.91) BMDP-90% (587.97) -6.05 (-9.41 -2.69) 0.0027
HUPRFCS-95% (557.03) BMDP-95% (558.41) -1.38 (-5.36, 2.6) 0.45

95% CI: (549.6, 567.2) in BMDP-95%. The reason lies in that higher overloaded thresh-

olds allow more VMs to be packed on the same host, so that more hosts are shutdown.

When overloaded thresholds are between 80% to 90%, UBP reduces around 5% energy

consumption compared to PCO, while HUPRFCS and BMDP save about 14-16% more

energy consumption than PCO. When the overloaded threshold is 95%, PCO and UBP

achieve close energy consumption, while HUPRFCS and BMDP still reduce around 16%

energy compared with them.

As the energy consumption of HUPRFCS and BMDP are quite close, we conduct

paired t-tests for HUPRFCS and BMDP as shown in Table 4.2. We notice that the dif-

ferences between them are less than 2%, and when the overloaded thresholds are 85%

and 95%, the p-values are 0.09 and 0.45 respectively, which indicates weak evidence to

prove that they are different.

Comparing the discount amount, Figure 4.3b shows that there is no discount offered

in PCO and UBP, but HUPRFCS offers 11% to 20% discount and BMDP reduces it to 3%

to 11% as the trade-off due to components deactivation. This is because, based on heuris-

tics, HUPRFCS quickly finds the components with higher utilization and discount ratio,

while BMDP steps further based on MDP to optimize the component selection.
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Figure 4.4: Varying percentage of optional utilization

4.5.2.3 Comparison under Varied Percentage of Optional Utilization

In Figure 4.4, we compare the algorithms with different percentages of optional uti-

lization. Other parameters are set the same as those in Section 4.5.2.1. As shown in

Figure 4.4a, for PCO and UBP, their energy consumption are not influenced by differ-

ent percentage of optional utilization. PCO has 684 kWh with 95% CI: (667.4, 700.6),

and UBP has reduced 4.7% to 651.9 with 95% CI: (637.3, 666.5). Compared with PCO,

HUPRFCS-25% reduces 11% energy to 605kWh with 95% CI: (596.6, 613.4), and BMDP-

25% reduces 9% energy to 615.9 kWh with 95% CI: (605.9, 625.8). When the percentage

of optional utilization increases, the more energy consumption is saved by HUPRFCS

and BMDP. For instance, HUPRFCS-100% and BMDP-100% achieve around 20% energy

saving as 556.9kWh with 95% CI: (550.9, 562.3) and 551.6kWh with 95% CI: (545.8, 557.4)

respectively. The reason is that higher percentage of optional percentage allows more

utilization to be reduced. For the discount amount comparison in Figure 4.4b, it shows

that HUPRFCS offers 10% to 25% discount amount as trade-offs, while BMDP only offers

3% to 10% discount amount. Figure 4.4c demonstrates that HUPRFCS provides about 3%

more disabled utilization amount than BMDP. In the comparison of the number of shut-

down hosts shown in Figure 4.4d, HUPRFCS and BMDP shut down about 18-20 more

host than PCO and 3-5 more hosts than UBP.

Because the energy consumption of HUPRFCS and BMDP are quite close, we conduct

the paired t-test for HUPRFCS and BMDP as illustrated in Table 4.3. When the percentage

of optional utilization are 75% and 100%, the p-values are 0.099 and 0.057, which indicates

weak evidence to prove that they are different. And with other percentage of optional

utilization, the energy consumption differences are less than 2%.
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Table 4.3: Paired t-tests with 95% CIs for comparing energy consumption by HUPRFCS
and BMDP under different percentage of optional utilization

Algorithm 1 (kWh) Algorithm 2 (kWh) Difference (kWh) p-value
HUPRFCS-25% (617.57) BMDP-25% (628.10) -10.52 (-12.52, -8.52) 0.00082
HUPRFCS-50% (595.0) BMDP-50% (605.88) -10.88 (-15.26, -6.5) 0.00032
HUPRFCS-75% (575.87) BMDP-75% (579.24) -3.37 (-7.52 -0.78) 0.099

HUPRFCS-100% (551.56) BMDP-100% (556.59) -3.12 (-5.08, -1.16) 0.0057

4.6 Summary

In this chapter, we introduced the system model of brownout by deactivating optional

components in applications or microservices temporarily. In the model, the brownout

controller can deactivate the optional components or microservices to deal with over-

loads and reduce data center energy consumption while offering discount to users. We

also proposed an algorithm based on brownout and approximate Markov Decision Pro-

cess namely BMDP, to find the components should be deactivated. The simulations based

on real trace showed that BMDP reduces 20% energy consumption than non-brownout

baselines and saves discount amount than brownout baseline.

However, the evaluation of our brownout-based approaches is under simulations.

There are some gaps between simulations and real testbeds, e.g. network traffics. In

the next chapter, we present a brownout-based approach developed under real infras-

tructure, which validates the feasibility and scalability of brownout-based approach to

reduce energy consumption while ensuring the quality of service.



Chapter 5

Integrated Approach for Managing
Energy in Container-based Clouds

Energy consumption of Cloud data centers has been a major concern of many researchers, and one

of the reasons for huge energy consumption of Clouds lies in the inefficient utilization of comput-

ing resources. Container-based clouds provide an approach to utilize resources in a more efficient

manner. Besides energy consumption, another challenge of data centers is unexpected loads, which

leads to overloads and performance degradation. In this chapter, we propose an integrated approach

to manage energy consumption and brownout in container-based cloud data centers. We also eval-

uate our proposed scheduling policies with real traces in a prototype system. The results show that

our approach reduces about 40%, 20% and 10% energy than the approach without power-saving

techniques, brownout-overbooking approach and auto-scaling approach respectively while ensuring

Quality of Service.

5.1 Introduction

DATA centers are required to offer resources while satisfying Quality of Service

(QoS), as well as reduce energy consumption. Reducing energy consumption is

a challenging objective as applications and data are growing fast and complex [96]. Nor-

mally, the applications and data are required to be processed within the required time,

thus, large and powerful servers are required to offer services. To ensure the sustainabil-

ity of future growth of data centers, cloud data centers must be designed to efficiently

utilize the resources of infrastructure and minimize energy consumption. To address

this problem, the concept of green cloud is proposed, which aims to manage cloud data

This chapter is derived from:
•Minxian Xu, Adel Nadjaran Toosi, and Rajkumar Buyya, “iBrownout: An Integrated Approach for Manag-
ing Energy and Brownout in Container-based Clouds,” IEEE Transactions on Sustainable Computing (T-SUSC),
Volume 4, Number 1, Pages: 53-66, ISSN: 2377-3782, IEEE Computer Society Press, USA, Jan-Mar 2019.
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Table 5.1: Comparison of focus of related work and our work

Approach
Technique Optimization Objective Management Unit Experiments Platform

VM
Consolidation

DVFS Brownout
Energy

Consumption
SLA/QoS Overloads VMs Containers Simulation Real Testbed

Beloglazov et al. [32] X × × X X X X × X ×
Beloglazov et al. [34] X × × X X × X × X ×

Chen et al. [43] X × × X X × X × X ×
Han et al. [71] X × × X X X X × X ×

Mastroianni et al. [105] X × × X × X X × × X
Zheng et al. [155] X × × X X × X × × X
Ferdaus et al. [62] X × × X X × X × × X

Kim et al. [83] × X × X X × × × X ×
Pietri et al. [125] × X × X X × × × X ×
Teng et al. [140] X X × X X × × × X X
Klein et al. [85] × × X × X X × × × X

Tomas et al. [142] × × X × X X × × × X
Wang et al. [148] X × × X X × X × × X

iBrownout × × X X X X × X × X

centers in an energy efficient manner [33].

In this chapter, we propose a brownout prototype system based on containers to re-

duce data center energy while ensuring Quality of Service. The main contributions of

our work are as follows:

• Proposed an effective architecture that enables brownout paradigm to manage the

container-based environment, which enables fine-grained control on containers;

• Presented several scheduling policies for managing microservices or containers to

achieve power saving and QoS constraints;

• Implemented a prototype system and carried out the evaluation in INRIA Grid’5000

testbed using resources from Lyon cluster for Wikipedia web workload.

The rest of this chapter is organized as: Section 5.2 discusses the related work, followed

by scenarios that brownout can be applied and the challenges for using brownout pre-

sented in Section 5.3. Section 5.4 and Section 5.5 introduce the architecture that enables

brownout to manage the microservices or application components and models respec-

tively. Scheduling policies for determining the activation and deactivation of microser-

vices are presented in Section 5.6. In Section 5.7, we present our experiments environ-

ment and evaluate the performance of different scheduling policies. Conclusions and

future directions are given in Section 5.8.
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5.2 Related Work

A recent report suggests that U.S. data center will consume 140 billion kWh of electricity

annually in the next four years by 2020 [29], which equals to the annual output of about 50

brown power plants and translates to higher carbon emissions. To decrease operational

costs and environmental impact, numerous state-of-the-art research has been conducted

to reduce data center energy consumption. The main categories for handling this energy

efficient problem are VM consolidation and Dynamic Voltage Frequency Scaling (DVFS).

VM consolidation minimizes energy consumption by allocating tasks among fewer

machines and turning the unused machines into low-power mode or power-off state.

To reduce the number of active machines, the VMs hosted on underutilized machines

are consolidated to other machines and the underutilized machines are transformed into

low-power mode. Beloglazov et al. [32] proposed several VM consolidation algorithms to

save data center energy consumption. The VM consolidation process is modeled as a bin-

packing problem, where VMs are regarded as items and hosts are regarded as bins. The

objective of these VM consolidation algorithms is mapping the VMs to hosts in an energy-

efficient manner. This work advanced the existing work by modeling the algorithms to be

independent of workload types and do not need to know the VM application information

in advance. However, the algorithms have not been evaluated under realistic testbeds.

Based on the VM consolidation approaches in this work, other works like [34][43][71],

have done some extension work to improve algorithm performance.

Mastroianni et al. [105] introduced a self-adaptive method for VM consolidation on

both CPU and memory. The method aims to reduce the overall costs caused by energy-

related issues. The VM consolidation process is determined by a probabilistic function

based on the Bernoulli trial. Both the mathematical analysis and realistic testbed results

show that the proposed method reduces total energy consumption efficiently.

Zheng et al. [155] jointly considered VM consolidation and traffic consolidation to-

gether to minimize the servers and network energy consumption in data centers. The

authors not only model the server power model, but also the switch model in the net-

work. Experiments conducted under real environment show that this joint approach

outperforms the approaches that only adopt VM consolidation in energy consumption

and service delay. Ferdaus et al. [62] proposed a VM consolidation algorithm combin-
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ing with Ant Colony Optimization, in which a number of artificial ants select feasible

solutions and exchange information for their solutions quality to obtain an optimized so-

lution. As the authors consider multiple resource types, the VM consolidation process in

this work is modeled as a multi-dimensional vector packing process.

The difference of DVFS and VM consolidation lies in that DVFS achieves energy sav-

ing by adjusting frequencies of processors rather than using fewer active servers. The

DVFS approach introduces a trade-off between energy consumption and computing per-

formance, where processor lowers the frequency/voltage when it is lightly loaded and

utilizes full frequency/voltage when heavily loaded.

Kim et al. [83] modeled real-time service as real-time VM requests. To balance the

energy consumption and price, they proposed several DVFS algorithms to reduce energy

consumption. Pietri et al. [125] introduced another energy-aware workflow scheduling

approach using DVFS and its objective is finding an available frequency to minimize

energy consumption while ensuring user deadline. Deng et al. [51] coordinated CPU

and memory together to investigate performance constraints, which is the first trial to

consider them together when applying DVFS. They aim to find the most energy efficient

frequency while ensuring system performance constraints.

To reduce energy consumption, an approach that combines DVFS and VM consolida-

tion together was presented in [140]. The authors proposed several heuristic algorithms

for batch-oriented scenarios. A DVFS-based algorithm for consolidating VMs on hosts

is introduced to minimize the data center energy consumption while ensuring Service

Level Agreement of jobs. The results demonstrate that these two techniques can work

together to achieve better energy efficiency.

VM consolidation and DVFS have been proven to be efficient to reduce energy con-

sumption, however, both of them cannot function well when the whole data center is

overloaded. Therefore, we introduce a paradigm, called brownout, to handle data center

overloads and reduce energy consumption. Originally, the brownout is applied to pre-

vent blackouts through voltage drops in case of emergency. In Cloud scenario, it is first

borrowed in [85] to design more robust applications under the overloaded or unpredicted

situation. Tomas et al. [142] introduced a combined brownout-overbooking approach to

improve resource utilization while ensuring response time. In our previous work, we ap-
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plied brownout to save energy consumption in data centers. In Chapter 3, we presented

the brownout enabled system model and proposed several heuristic policies to find the

microservices or application components that should be deactivated for energy saving

purpose. We also introduced that there was a trade-off between energy consumption

and discount in our model. In Chapter 4, we extended our previous work and adopted

approximate Markov Decision Process to improve the aforementioned trade-off. Both in

Chapters 3 and 4, the experiments are conducted under simulation environments. Dif-

ferent from them, in this chapter, we implement a prototype system based on real infras-

tructure.

Some other works related to energy-aware resource scheduling in Clouds are also

proposed in the literature. Gai et al. [64] presented a cost-aware heterogeneous cloud

memory model to provision memory services and considered energy performance. In

[63], the authors introduced a novel approach that aimed to reduce the total energy

cost of heterogeneous embedded systems in mobile Clouds. A dynamic energy-aware

model to reduce the additional power consumption of wireless communications in the

dynamic network environment was introduce in [65]. Sampaio et al. [130] introduced a

interference-aware and power-aware approach called PIASA to address the problem that

when resource allocation is applied to different applications and workloads, the QoS of

applications on VMs in data centers is difficult to be guaranteed. Liao et al. [92] proposed

an energy efficient algorithm for distributed storage system. The algorithm aims to save

energy and negotiates the QoS constraints as well. The motivation of this work is switch-

ing the idle hosts to sleep mode without degrading the QoS requirements of data files

and tasks. Different from our work, these articles are not focused on data center energy

consumption.

In this chapter, our objective is reducing data center energy consumption while en-

suring Quality of Service (QoS). Some related work considering power and QoS have

also been conducted. Khanouche et al. [82] proposed an energy-aware and QoS-aware

service selection algorithm, which is designed to solve a multi-objective optimization

problem. But it is applied to the Internet of Things rather than data centers. Wang et

al. [148] used an improved particle swarm optimization algorithm to develop an optimal

VM placement approach involving a tradeoff between energy consumption and global
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QoS guarantee for data-intensive services in national cloud data centers.

Different from the energy efficient approaches based on VMs, our implementation is

based on containers. Compared with VMs, containerization provides cloud application

management based on lightweight virtualization. Currently, most work related to con-

tainers are focused on the orchestration of containers construction and deployment [119].

A detailed comparison of related work is shown in Table 5.1.

To the best of our knowledge, our work is the first prototype system to reduce energy

consumption with brownout based on containers, which also considers the trade-offs

between energy consumption and QoS. Our prototype system provides practice and ex-

perience for finding complementary option apart from VM consolidation and DVFS.

5.3 Motivations: Scenarios and Challenges

To study service providers’ requirement and concerns for managing services based on

containers, we give a motivation example of a real-world case study with brownout tech-

nology.

A good example of the container-based system is the web-based service. An online

shopping system implemented with containers are presented in [2], which contains mul-

tiple microservices, including user, user database, payment, shipping, front-end, orders,

carts, catalog, carts database and etc. As it is implemented with microservices, each mi-

croservice can be activated or deactivated independently. When requests are bursting,

the online shopping system may be overloaded, and it cannot satisfy QoS requirements.

To handle the overloads and reduce energy consumption, the brownout approach can be

applied to temporarily disable some microservices, such as the recommendation engine,

to save resource and power. By deactivating the recommendation engine, the system is

able to serve more requests with the essential requirement and satisfy QoS. When the

system is not overloaded anymore, the disabled microservices are activated again. Con-

sidering the overloaded situation, we assume that the service provider of this online

shopping system is interested to improve QoS and save energy costs. In addition, the

service provider can prefer to apply brownout to manage microservices in their systems.

For such deployment, the service provider faces several challenges as below:
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1. How to predict the tendency of future workload. It is common for cloud data

centers meeting unexpected loads, which can lead to the overloaded situation and per-

formance degradation. Estimating the workloads precisely enables the service providers

to select the proper resource management policy.

2. When to disable microservices. Microservices can be dynamically deactivated

or activated according to system conditions. A crucial decision should be made in both

situations to determine the best time to deactivate containers to relieve overloads and

reduce energy consumption while ensuring predefined QoS constraints.

3. Which microservice to disable. Firstly, mandatory and optional microservices

are required to be identified. The mandatory microservices, like the database, must be

kept running all the time. While the optional microservices are allowed to be deacti-

vated temporarily, such as the recommendation engine in the online shopping system.

Secondly, once brownout is triggered, it may require selecting one or more microservices

to deactivate. The challenge lies in determining the proper combinations of deactivated

microservices to achieve the best beneficial results.

4. When to turn the hosts on or into low-power mode. To reduce energy consump-

tion, it is required to combine brownout and dynamically turning hosts into low power

states, which saves the energy of idle hosts. To ensure QoS, it is also essential to deter-

mine efficiently when the host states should be switched, because hosts are required to

be turned on quickly when requests are increasing.

5. How to design scheduling policy based on brownout. In brownout-compliant

microservices, there is a control knob called dimmer that represents a certain probability

and shows how often the optional components are executed. It is required to design the

dimmer value to be efficiently computed, which supports the brownout to be triggered

quickly. The designed policy is also needed to be available for different preferences, like

investigating the trade-offs between energy consumption and QoS.

To address aforementioned issues and enable system deployment based on containers

and brownout, we introduce our approach: iBrownout.
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5.4 iBrownout Architecture

The architecture of iBrownout is demonstrated in Figure 5.1 and its main components are

explained below:

Figure 5.1: iBrownout Architecture

1) Users: All services provided by the system are available for users to submit their

requests to cloud data centers. The user component contains user’ information and re-

quested services. In addition, the system administrator is also included in this compo-

nent, in which it captures administrators’ configurations such as predefined QoS con-

straints (including maximum response time, error rates and etc.), energy budget and ser-

vice deployment patterns (in Docker, it is represented as a compose file [10]).

2) Cloud Service Repository: The services provided by the service provider are man-
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aged by Cloud Service Repository component, which contains the service information,

including service’s name and image. Each service may be constructed by several mi-

croservices, for example, in the online shopping system, the carts service manages items

in user’s cart, which contains cart microservice showing items in carts and cart database

microservice storing items information. To manage microservices with brownout, the

microservices are identified as mandatory or optional.

a. Mandatory microservices: The mandatory microservice keeps running all the time

when it is launched, such as database-related microservices.

b. Optional microservices: The optional microservices are allowed to be activated

or deactivated according to system status. Optional microservices have parameters like

CPU utilization u(MSc), which indicates the amount of CPU usage when it is running

and the reduced amount of CPU usage if it is deactivated.

3) Execution Environment: It represents the running environment for containerized

applications. The dominant environments are Docker, Kubernetes and Mesos. In our

prototype system, we adopt Docker to provide the execution environment for contain-

ers/microservices.

4) Brownout Controller: The operations of optional microservices are controlled by

Brownout Controller, which determines operations based on system overloaded status.

The Brownout Controller takes advantage of scheduling policies that are introduced in

Section 5.6 (Scheduling Policies) to offer an elegant solution for operating optional mi-

croservices. It is also responsible for monitoring the health of all services. To adapt to

our architecture, our dimmer in Brownout controller is different from the one in [85] that

requires a dimmer per application. Our dimmer is only applied to the optional microser-

vices. Moreover, rather than based on response time, our dimmer is computed according

to the severity of overloaded hosts (the number of overloaded hosts).

5) System Monitor: This component provides health monitoring of nodes and collects

hosts resource usage information. Third party monitoring toolkit can be used to provide

a view of host status. For instance, the APIs provided by Grid’5000 [67] (a real cluster

infrastructure in France) give users real-time reports on infrastructure metric, including

host healthy status, utilization and energy consumption.

6) Scheduling Policy Manager: This component provides a set of scheduling policies
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for Brownout Controller to schedule containers/microservices. Because there exist en-

ergy consumption budget and QoS constraints, we have to design and implement poli-

cies targeting for different preferences. For example, when the service provider cares

more about QoS, a scheduling policy that focuses on optimizing QoS should be applied.

7) Models Management: It provides energy consumption and QoS models for the

system. The power consumption model should be modeled to be relevant to microser-

vice/container utilization, and the QoS model identifies the constraints of QoS. such as

response time and error rates.

8) Cloud Infrastructure: In infrastructure as a service model, Cloud providers offer

bare metal to support service requests, which host multiple containers/microservices.

We take advantage of Grid’5000 clusters as our infrastructure.

In order to realize the proposed architecture, several techniques are utilized.

Java: iBrownout is built by using Java and it benefits from Java’s feature to run on any

platform with Java Virtual Machine. Components including Brownout Controller, Sys-

tem Monitor, Deployment Policy Manager, and Models Management are all implemented

with Java. These components calls Docker APIs to collect containers information, such

as utilization of containers.

Docker [11]: iBrownout takes advantage of Docker Swarm cluster to manage the con-

tainers/microservices, including microservices deployment, stop, start, update and etc.

Docker compose file is used to define features of containers, such as whether containers

are optional, which containers are deployed, how many containers are provided, how

much resources are allocated to containers, deployment constraints of containers and de-

pendencies between different containers.

Ansible [8]: It is a toolkit to automate applications provisioning, configuration man-

agement and application deployment. iBrownout utilizes it to send management opera-

tions among nodes.

5.5 Modelling and Problem Statement

In this section, we will introduce the models in our system and state the problem we aim

to optimize. Table 5.2 presents the symbols and their meanings used in this chapter. For
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example, we use hi to denote host i and Pi(t) to represent the power of hi at time interval

t.

5.5.1 Power Consumption

We adopt the servers power model derived from [155]. The power of server i is Pi(t) that

is dominated by the CPU utilization:

Pi(t) =


Pidle

i + ui × Pdynamic
i , Ni > 0

0 , Ni = 0
(5.1)

Pi(t) is composed of idle power and dynamic power. The idle power is regarded as

constant and the dynamic power is linear to the server utilization ui [155]. If no con-

tainer or microservice is hosted on a server, the server is turned off to save power. The

server CPU utilization equals to total CPU utilization of all the containers/microservices

deployed to the server, which is represented as:

ui =
Ni

∑
j=1

u(MSi,j(t)) (5.2)

where MSi,j refers to the jth microservice on server i, Ni represents the number of mi-

croservices deployed to server i. And u(MSi,j(t)) refers to the CPU utilization of the

container/microservice at time interval t.

Then the total energy consumption during time interval t, with M servers is:

E(t) =
M

∑
i=1

∫ t

t−1
Pi(t)dt (5.3)

5.5.2 Quality of Service

To model the QoS requirement in our system, we adopt several QoS metrics as below:

Overloaded Time Ratio: Based on host loads, we define two states for hosts: over-

loaded and non-overloaded. Overloads will lead hosts to experience performance degra-

dation. We regard host as overloaded when host utilization is above the predefined uti-
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Table 5.2: Symbols and their meanings

Symbols Meanings
hi Server (host) i
t Time interval t

Pi(t) Power of hi at time t
Pidle

i Power when hi is idle
Pdynamic

i Power when hi is fully loaded
Pmax

i Maximum power of hi
hl Server list in data center
M Size of server list hl
Ni Number of microservices assigned to hi
ui Utilization of host hi

MSi,j Microservice j on hi
u(MSi,j) Utilization of microservice j on hi

E(t) Energy consumption at time interval t
ut Overloaded threshold of host

OTR(ut) Overloaded time ratio according to ut
k Maximum percentile value of response time
tv Time threshold of SLA violation

SLAVR(tv) SLA violation ratio according to violation time threshold tv
Numv The number of requests that violate SLA
Numa The total number of requests from clients

C The maximum number of containers on hosts
α The maximum allowed overloaded time ratio
β The maximum allowed average response time
φ The maximum allowed 95th percentile of response time
γ The maximum allowed SLA violation ratio

Ma The number of current active hosts
M
′
a The updated number of active hosts for Auto-scaling policy

no Overloaded threshold of request number based on profiling data
nr Request rate

ocli,t The optional container/microservice list on hi at time interval t
P(ocli,t) The power set of ocli,t

dcli,t The deactivated container/microservice list on hi at time interval t
HUM() Host utilization model to compute host power based on host utilization

HP The expected host power calculated by host utilization model
TP The overloaded power threshold
ur

i The expected utilization reduction
u(dcli,t) The utilization of deactivated container/microservice list

nt The number of overloaded hosts at time interval t
θt The dimmer value

COH() Compute overloaded hosts
HPM() Host power model to compute host utilization based on host power

Pr
i Expected power reduction of hi

MSc Container/microservice c
St The set of deactivated containers/microservice connection tags

Ct(MSc) Connection tag of MSc
X Random variable to generate sublist of ocli,t
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lization threshold. To evaluate this QoS metric to be independent of workloads, we adopt

the metric introduced in [32], which is denoted as Overloaded Time Ratio (OTR):

OTR(ut) =
to(ut)

ta
(5.4)

where ut is the overloaded CPU utilization threshold; to is the time period that host is

identified as overloaded, which is relevant to ut; and ta is the total time periods of the

hosts. As a QoS constraint, this metric is configured as the maximum allowed value of

OTR. For instance, if the system SLA is defined as 10%, the time period of overloaded

states for all the hosts is less then 10%. The SLA constraint can be formulated as:

1
M

n=M

∑
i=1

OTRn(ut) ≤ 0.1 (5.5)

where M is the total number of hosts in the data center. As introduced in the later sec-

tions, our brownout-based approach checks the host status at each time period and trig-

gers the brownout to deactivate containers when there are overloaded hosts. Therefore,

this metric also represents the ratio that brownout is triggered.

Response time: This metric measures the time that from sending requests to receiv-

ing requests. We also evaluate the response time with the maximum of kth percentile

response time of all requests, where k could be 90, 95, 99 and etc. For example, if the

maximum of 95th percentile response time equals to 1 second, it means that 95% of all

requests get the response within 1 second.

SLA Violation Ratio: It represents how many requests are failed due to overload. If

clients send Numa requests to the system, and Numerr of them are returned with errors,

then the error rate is represented as:

SLAVR =
Numerr

Numa
(5.6)
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5.5.3 Optimization Objective

As discussed in the previous section, it is necessary to minimize the total energy con-

sumption, while ensuring QoS by avoiding overloads, decreasing response time and re-

ducing error rates. Therefore, our problem can be formulated as an optimization problem

(5.7)-(5.10):

min
T

∑
t=1

E(t)

s.t.
1
M

n=M

∑
n=1

OTRn(ut) ≤ α, ∀t

Rt
avg ≤ β, Rt

95th ≤ φ, ∀t

SLAVR ≤ γ

(5.7)

where ∑T
t=1 E(t) is the total energy consumption of data center, α is the maximum allowed

average response time of overloaded states; Rt
avg is the average response time and β is

the allowed average response time; Rt
95th is the maximum of 95th percentile response

time and φ is the allowed the 95th percentile response time, and γ is the allowed SLA

violation ratio.

5.6 Scheduling Policy

In this section, we will introduce our brownout-based scheduling policies. Prior to brownout

approach, we require an auto-scaling algorithm to dynamically add or remove hosts to

utilize host resource more efficiently.

5.6.1 Auto-scaling Policy

We adopt the auto-scaling algorithm in [143], which is a predefined threshold-based ap-

proach. With profiling experiments, we configure the requests overloaded threshold

above which the host cannot respond to requests within an acceptable time limit. As

shown in Algorithm 5.1, in the initialization stage, the master node that runs auto-scaling

algorithm firstly gets the number of current active hosts (line 1), sets the overloaded

threshold of request number according to profiling data (line 2) and fetches the request

rate at current time window according to previous time windows (line 3). The advantage



5.6 Scheduling Policy 109

Algorithm 5.1: Auto-scaling Policy
Input : host list hl with size M, number of active hosts Ma, number of requests when host is

overloaded no, recent request rate in the recent time nr.
Output: number of active hosts Ma′

1 Ma ← number of current active hosts
2 no ← overloaded threshold of request number according to profiling data
3 nr ← number of request rate at current time window according to previous time windows
4 Ma′ ← dnr ÷ noe
5 M′ ← Ma′ −Ma
6 if M′ > 0 then
7 Add M′hosts
8 else if M′ < 0 then
9 Remove |M′|hosts

10 else
11 no scaling
12 end
13 update number of active hosts with Ma′

of sliding time window is to give more weights to the values of recent time windows, and

more details will be given in Section 5.7. Line 4 shows the method to compute the current

required hosts Ma′ , which is the ratio of current request rate and the overload threshold.

If the required number of hosts is more than current active hosts, more hosts will be

added to provide services, otherwise, if current active hosts are more than required, then

the excess machine can be set as low-power mode to save energy consumption (lines

6-12). Finally, the master node will update the number of active hosts.

5.6.2 Initial Deployment

In the initial deployment stage, containers are deployed based on Docker compose file,

which identifies all the required information of services and the configurations of initial

deployment. A simple example is shown in Figure 5.2. Lines 2-14 show the information

of recommendation engine service, which is built on the Ubuntu image and attached with

a data volume. The recommendation engine is set as optional microservice, which can

be deactivated and has two replicates. Moreover, this service will only be deployed on

Docker worker node as deployment constraint. Lines 16-21 demonstrate the information

of user database service, which is not optional and restricts to be deployed to Docker

master node.
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Figure 5.2: Simple example of Docker compose file

5.6.3 Optimization Deployment with Scheduling Policies

We have proposed three brownout-based policies as follows:

Lowest Utilization Container First (LUCF)

The Lowest Utilization Container First policy selects a set of containers with the low-

est utilization that reduces the utilization to be less than the overloaded threshold of a

host is overloaded. Let ocli,t be the optional container list on host hi at time interval t.

Let P(ocli,t) to be the power set of ocli,t, the LUCF finds the deactivated container list

dcli,t, which is included in P(ocli,t). The deactivated container list minimizes the value

difference between the expected utilization reduction ur
i and its utilization u(dcli,t) The

deactivated container list is defined in Equation 5.8.

dcli,t =

{HP ≤ TP, ur
i − u(dcli,t)→ min}, i f Pi(t) ≥ TP

∅, i f Pi(t) < TP
(5.8)
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Algorithm 5.2: Lowest Utilization Container First Policy (LUCF)
Input : host list hl with size M, microservice information, overloaded power threshold TP,

dimmer value θt at time t, scheduling interval T, deactivated component list dcli,t on host
hi, power model of host HPM, the optional component list ocli,t, which is sorted based on
utilization u(MSc) in ascending order

Output: total energy consumption, number of shutting down hosts
1 initialize parameters with inputs, like TP
2 for t← 0 to T do
3 nt ← COH(hl)
4 if nt > 0 then

5 θt ← =
√

nt
M

6 forall hi in hl (i.e. i = 1, 2, . . . , M) do
7 if (Pi(t) > TP) then
8 Pr

i ← θt × Pi(t)
9 ur

i ← HPM(hi, Pr
i )

10 dcli,t ← NULL
11 St← NULL
12 if u(MS1) ≥ ur

i then
13 dcli,t ← dcli,t + MS1
14 St← St + Ct(MS1)

15 end
16 for MSc in ocli,t do
17 if (u(MSc) ≤ ur

i ) & (u(dcli,t) ≤ ur
i ) then

18 dcli,t ← dcli,t + MSc
19 St← St + Ct(MSc)
20 min← (ur

i − u(dcli,t))
21 end
22 end
23 forall MSc in ocli,t do
24 if Ct(MSc) in St then
25 dcli,t ← dcli,t + MSc
26 end
27 end
28 end
29 deactivate components in dcli,t
30 end
31 else
32 activate deactivated components
33 end
34 end
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Table 5.3: Power consumption of selected node at different utilization levels in Watts

Utilization Sleep 0% 10% 20% 30% 40%
Power (Watts) 10 201 206 211 213 216

Utilization 50% 60% 70% 80% 90% 100%
Power (Watts) 221 223 225 231 233 237

where HP is the expected host power calculated by host utilization model HUM(hi, ui −

u(dcli,t)) that fetches the host power based on host utilization ui − u(dcli,t); TP is the

overloaded power threshold of hi.

The pseudocode of LUCF is shown in Algorithm 5.2, which mainly consists of 8 steps

as discussed below. Before entering the approach procedures, service provider firstly

needs to initialize input parameters for the algorithm, such as overloaded power thresh-

old (lines 1-2). The power threshold TP is a value for checking whether a host is over-

loaded.

1) In each time interval t, checking all the hosts status and counting the number of

overloaded hosts as nt (line 3).

2) Adjusting the dimmer value θt as
√

nt
M based on the number of overloaded hosts nt

and host size M (line 5). As introduced in related work, the dimmer value θt is applied

to compute the adjustment degree of power consumption at time t. The dimmer value

θt is 1.0 if all the hosts are overloaded at time t and it means that brownout controls

containers/microservice on all the hosts. The dimmer value is 0.0 if no host is overloaded

and brownout will not be triggered at time t. The adjustment of dimmer presents that

the dimmer value is relevant to the number of overloaded hosts.

3) Calculating the expected utilization reduction on the overloaded hosts (lines 7-9).

Based on the dimmer value and host power model, LUCF calculates the expected host

power reduction Pr
i (line 8) and the expected utilization reduction ur

i (line 9) respectively.

In our host power model, the host power consumption is mainly relevant to it CPU uti-

lization. As shown in Table 5.3, we list power consumption at different CPU utilization

levels of one host in Grid’5000 (Sagittare cluster in Lyon). In this power model, for ex-

ample, the host with 100% utilization is 237 Watts and 80% utilization is 231 Watts, if the

power is required to be reduced from 237 to 231 Watts, the expected utilization reduction

is 100%− 80% = 20%.
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4) Resetting the deactivated container list dcli,t and the set of deactivated container

connection tags St as empty (lines 10-11). This list and the set will be ready to collect

deactivated containers and their connection tags.

5) Finding the containers to be deactivated (lines 16-27). The LUCF sorts the optional

container list ocli,t based on container utilization parameter in ascending order , therefore,

the container with the lowest utilization is put in the head of the list. Since we consider

connected containers, each container has a connection tag Ct(MSc) that shows how it

is connected with other containers. If the first container utilization parameter value is

above ur
i , Algorithm 5.2 adds this container into the deactivated container list dcli,t and

inserts its connection tag Ct(MS1) into St (lines 12-13). After that, Algorithm 5.2 finds

other connected containers and adds them into deactivated container list (line 14). If the

first container utilization does not satisfy the expected utilization reduction, Algorithm

5.2 finds the containers sublist in the optional container list to deactivate more containers

(lines 16-22). The utilization of this sublist is closest to the expected utilization reduction

among all the sublists.

Algorithm 5.2 also puts all the containers in the sublist into the deactivated containers

list and puts their connection parameters into the St. For connected containers, the sort-

ing process is modified as treating the connected containers together for sorting, which

lowers the priority of deactivating the connected containers, and avoids deactivating too

many containers due to connections.

6) Finding other connected container and putting them into the deactivated container

list (lines 23-27).

7) Deactivating the containers in the deactivated container list (line 29).

8) In Algorithm 5.2, if no host is above the power threshold, the algorithm activates

the deactivated containers (line 32).

It is noticed that when the whole data center is overloaded, auto-scaling cannot add

more hosts because of the limited resource. LUCF takes effects when Auto-scaling cannot

function well, to be more specific, LUCF can be embedded into line 7 in Algorithm 5.1 to

handle with overloads and reduce energy consumption.

Algorithm Complexity: the complexity of LUCF at each time interval is calculated as

below: the complexity of finding the deactivated containers is O(C ∗M), where C is the
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maximum number of containers on hosts and M is the number of hosts. The complexity

of finding the connected components is also O(C ∗M). Therefore, the complexity at each

time interval of LUCF is the sum of these parts, which is O(2 ∗ C ∗M). To be noted, line

3 relies on the network connection, if C and M are small, the network delay O(Td) can be

a dominant part of algorithm execution time. Please see the results in Section 5.7.4.

Minimum Number of Components First Policy (MNCF)

The Minimum Number of Containers First (MNCF) policy selects the minimum number

of containers while reducing the energy consumption in order to deactivate fewer ser-

vices, as formalized in Equation 5.9. We do not provide the pseudocode of MNCF here

because it is quite similar to the LUCF algorithm introduced earlier.

dcli,t =

{HP ≤ TP, |u(dcli,t)| → min}, i f Pi(t) ≥ TP

∅, i f Pi(t) < TP
(5.9)

Random Selection Container Policy (RSC)

The Random Selection Container policy (RSC) policy takes advantage of a random se-

lection of a number of optional containers to reduce energy consumption. Based on a

uniformly distributed discrete random variable (X), which selects randomly a subset of

dcli,t, RSC is presented in Equation 5.10.

dcli,t =

{HP ≤ TP, X = U(0, |ocli,t| − 1)}, i f Pi(t) ≥ TP

∅, i f Pi(t) < TP
(5.10)

5.7 Performance Evaluation

We are evaluating our techniques experimentally on INRIA Grid’5000 testbed for Wikipedia

web workload. We also compare the performance with related policies introduced in [33],

[142] and [143].
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5.7.1 Workload

Figure 5.3: Predicted and actual requests rate

We use real trace from Wikipedia requests on 2007 October 17 to replay the workload

of Wikipedia users. To scale the workload set to fit with our experiments, we use 5%

of the original user requests size. JMeter [9] is a toolkit designed for load testing and

performance measurement, we use it to generate the requests by replaying the Wikipedia

trace. nr is the predicted request rate, which is calculated based on a sliding window [32].

Let Lw to be the window size, and nr(t) to be the request rate at t, we estimate nr as:

nr(Lw) =
1

Lw

Lw−1

∑
t=0

nr(t) (5.11)

In our experiments, we set the sliding window size as 5. Figure 5.3 shows the requests

rate per second during the day, and the predicted rates and the actual rates are quite

close.
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5.7.2 Testbed

We use Grid’5000 [67], a French experimental grid platform, as our testbed. We adopt

the cluster equipped with power measurement APIs at Lyon site, which is located at

the southeast French. The architecture of prototype system deployed on the Grid’5000

clusters is presented in Figure 5.4, which shows that all the nodes are deployed with

Docker swarm and categorized according to different roles as below:

• Master node: this node is initialized as the master node and running some services

that can only be deployed on the master node, such as the brownout controller

containing scheduling policies, as well as the Java Runtime and Ansible toolkit.

• Worker node: these nodes are workers that running services apart from the ser-

vices on master node and database services. We have multiple worker nodes in our

system.

• Worker node (node only for the database): the database services are deployed on a

specific worker node, which only hosts database-related services.

We also have another node, namely request node, that contains workload trace and

installed with JMeter to send requests to our cluster. This node can be located at any place

to simulate users’ behavior. In our experiments, to reduce the impacts of uncontrolled

network traffic out of Lyon cluster, we also locate this node in Lyon cluster.

The hardware information of our selected nodes is as below:

• Machine model: Sun Fire V20z. The maximum power of this model is 237 Watts,

and its power of sleep mode is 10 Watts;

• Operating system: Debian Linux;

• CPU: AMD Operon 250 with 2 cores (2.4 GHz);

• Memory: 2 GB

One of the nodes is running as the Docker Swarm master node, and other nodes are

running as worker nodes. All required applications, such as Java, Docker, Ansible and

JMeter, are installed in advance to minimize the impacts of CPU utilization and network

traffics.
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Figure 5.4: Architecture of Prototype System

5.7.3 Results

Figure 5.5: Algorithm Performance Comparison

To evaluate the performance of our proposed policies, we use three benchmark poli-

cies for comparison.

1). Non-Power-Aware (NPA) policy [33]: It applies no power-aware optimization and

hosts are keeping on all the time. We give 13 nodes as the resource for NPA.

2). Brownout-OverBooking (BOB) policy [142]: It aims to maximize actual utiliza-

tion while reducing response time and minimally triggering brownout. The brownout

operation in BOB is based on response time. When the response time is less than target

utilization, the approach gradually increases application utilization. To let BOB experi-

ence overloads, only 10 nodes are given to it.

3). Auto Scaling (Auto-S) policy [143]: It dynamically scales in and out the number

of active hosts as introduced in Algorithm 5.1. To let Auto-S endure overloads, we also

give 10 nodes to Auto-S.
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For our proposed policies, they have the identical resource as BOB and Auto-S. In

the following experiments, we mainly investigate two parameters: overloaded threshold

and optional utilization percentage.

Overloaded threshold: It represents the CPU utilization threshold that identifies

whether a host is overloaded. We adopt this parameter since [33] have shown that it has

an impact on energy consumption. It is varied from 60% to 90% in increments of 10%.

We choose this range because of the smaller overloaded threshold, like 50%, means hosts

are easier to be identified as overloaded and it will lead to inefficient resource usage.

Optional utilization percentage: It identifies how much CPU resource is given to

optional containers, which also means how much CPU utilization can be reduced to save

energy consumption. This parameter is investigated because Chapter 3 shows that it

influences the power consumption. It is varied from 10% to 40% in increments of 10%.

We choose these ranges because Chapter 3 shows large optional utilization percentage,

like 50%, comes along much revenue loss and non-negligible experience degradation.

(1) Comparison with different overloaded thresholds

We have conducted several experiments with different values of overloaded thresh-

old and optional utilization percentage for LUCF policy. In Figure 5.5, the results show

that when the overloaded threshold is higher, LUCF reduces less energy consumption,

and when the system has higher optional utilization percentage, LUCF saves more en-

ergy consumption. However, as shown in Figure 5.5b, when the overloaded threshold

is smaller, like 60%, the overloaded time ratio is quite high (around 85%), which means

hosts are regarded as overloaded in most time periods and brownout will be triggered

frequently. As optional utilization percentage does not influence overloaded time ratio,

we only show the LUCF with 10% optional utilization here. From the results, we observe

a trade-off between energy consumption and overloaded ratio time when the overloaded

threshold is varied, and we find out that configuring the overloaded threshold as 70%

and 80% achieves better trade-offs, which reduces energy consumption while not trig-

gering brownout too frequently. Therefore, we conduct experiments under 70% and 80%

overloaded thresholds to compare our proposed policies in the following section.

(2) Comparison with proposed policies

Figure 5.6 shows the results with varied overloaded thresholds and optional utiliza-
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Figure 5.6: Performance Comparison of Proposed Policies

tion percentages for our proposed policies, we compare the energy consumption, average

response time, maximum of 95th percentile response time and SLA violations achieved

by LUCF, MNCF and RSC. For the energy consumption, under same optional utilization

percentage, policies with 70% overloaded threshold save more energy than policies with

80%. For example, when the optional utilization percentage is 10%, LUCF with 70% over-

loaded threshold has 39.7 kWh and LUCF with 80% overloaded threshold has 40.9 kWh.

It is observed that with more optional utilization percentage, all the policies reduce more

energy consumption, and both LUCF and MNCF save more energy consumption and

RSC. Under 80% overloaded threshold, as the energy consumption of LUCF and MNCF

is quite close, we conduct the paired t-tests for them, and the p-values are 0.09, 0.15, 0.1

and 0.09 respectively. Therefore, we conclude that energy consumption of LUCF and

MNCF has no statistically significant difference when the overloaded threshold is 80%.

For the comparison of average response time and maximum of 95th percentile re-

sponse time in Figure 5.6b and Figure 5.6c, policies with 70% overloaded threshold expe-

rience more average response time and maximum of 95th percentile response time than

the ones with 80% overloaded threshold. The average response time of LUCF with 70%

overloaded threshold ranges from 515 to 621 ms, while with 80% overloaded threshold,

it is from 452 ms to 500 ms. When more optional utilization percentage is configured, the

average response time and the maximum of 95th percentile response time is reduced. For

instance, with 80% overloaded threshold, the average response time of LUCF is reduced
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from 500 to 452 ms, and the maximum of 95th percentile response time of MNCF is de-

creased from 780 to 680 ms. The results show that brownout-based policies are able to

improve response time as well as energy saving. Figure 5.6d illustrates the comparison

of SLA violations. When the overloaded threshold is 70% and optional utilization per-

centage is 10% the SLA violation is more than 4%, as the overloaded threshold and the

optional utilization percentage increase, the SLA violations are reduced to less than 1%.

To conclude, LUCF and MNCF achieve better performance than RSC, as RSC selects

containers randomly rather than deterministic methods. LUCF and MNCF have close

energy consumption, but in most cases, LUCF achieves better performance in response

time and SLA violations than MNCF. The reason lies in that LUCF has more container de-

activation options than MNCF. For different overloaded thresholds comparison, policies

with 70% overloaded threshold save more energy but have the more average response

time, maximum of 95th percentile response time and SLA violations than policies with

80% overloaded threshold. Configuring overloaded threshold as 80% achieves a better

trade-off than 70%, as it reduces energy consumption while not having large average

response time. Thus, the following experiments are conducted under 80% overloaded

threshold. Additionally, as LUCF has the best performance among our proposed poli-

cies, we choose LUCF as the representative of our proposed algorithms to compare with

benchmark policies.

Table 5.4: Final experiment results

Policy Energy (kWh) Average response time Max of 95th response time SLA violation

NPA 69.71 (68.94,70.45) 188.8 (137.4, 240.2) 312.2 (178.8, 445.8) -
BOB 49.83 (49.06, 50.60) 440.1 (426.0, 454.1) 712.4 (696.8, 727.9) 1.240 (1.098, 1.381)

Auto-S 43.95 (43.48, 44.43) 511.0 (502.3, 519.6) 929.5 (840.9, 1018.1) 4.240 (4.098, 4.382)
LUCF-10 40.36 (40.01, 40.71) 482.1 (471.5, 492.7) 775.4 (746.2, 804.6) 2.140 (2.020, 2.259)
LUCF-20 40.17 (39.87, 40.47) 476.0 (462.4, 489.5) 735.7 (712.2, 759.1) 1.516 (1.340, 1.691)
LUCF-30 39.41 (38.93, 39.89) 451.5 (428.1, 475.0) 721.1 (702.3, 739.9) 1.082 (1.005, 1.158)
LUCF-40 38.60 (38.21, 39.01) 431.1 (415.0, 447.2) 687.8 (661.2, 714.4) 0.494 (0.439, 0.548)

(3) Final experiment results

Figure 5.7 and Table 5.4 present the mean values of energy consumption, average re-

sponse time, maximum of 95th percentile response time and SLA violations along with

95% CI for the NPA, BOB, Auto-S and LUCF with different optional utilization percent-

ages. The results demonstrate that NPA has energy consumption 69.71 kWh with 95% CI
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Figure 5.7: Performance comparison of policies

(68.94, 70.45), BOB has 49.83 kWh with 95% CI (49.06, 50.6), and Auto-S reduces it to 43.95

kWh with 95% CI (43.48, 44.43). LUCF saves more energy consumption than Auto-S, to

be more specific, LUCF with 10% optional utilization leads to 40.36 kWh with 95% CI

(40.01, 40.71) and lowers gradually to 38.6 kWh with 95% CI (38.21, 39.01) when optional

utilization is 40%.

In the comparison of average response time and the maximum of 95th percentile re-

sponse time in Figure 5.7b and Figure 5.7c, as NPA has adequate resources, it has the

minimum response time compared with other policies. Its average response time is 188.8

ms with 95% CI (137.4, 240.2) and its maximum of 95th percentile response time is 312.2

ms with 95% CI (178.8, 445.8). As Auto-S experiences overloads, its average response

time and the maximum of 95th response time are 511 ms with 95% CI (502.3, 519.6) and

929.5 with 95% CI (840.9, 1018.1) respectively. Taking advantage of brownout, although

BOB and LUCF endure overloads, their brownout controllers relieve the overloaded situ-

ation. In BOB, its average response time is reduced to 440.1 ms with 95% CI (426.0, 454.1)

and its maximum of 95th response time is 712.4 ms with 95% CI (696.8, 727.9). In LUCF

with 40% optional utilization percentage, its average response time and the maximum of
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95th response time are reduced to 431.1 ms with 95% CI (415, 447.2) and 687.8 ms with

95% CI (661.2, 714.4) respectively. Figure 5.7d presents the SLA violation comparison.

NPA does not have SLA violations, BOB has 1.24% with 95% CI (1.098, 1.381), and Auto-

S has 4.24% with 95% CI (4.098, 4.382) SLA violations. When more optional utilization is

offered, LUCF improves the SLA violations from 2.14% to 0.5% in average values.

Figure 5.8: Number of active hosts comparison

This is due to the fact that LUCF uses less active hosts as shown in Figure 5.8, which

shows the number of active hosts within one day. For instance, at the time intervals from

400-500, 6 hosts are active with Auto-S, while LUCF runs 5 active hosts. For NPA and

BOB, hosts are always at active states. From the presented results, we can conclude that

the LUCF achieves better energy consumption than NPA, BOB and Auto-S. According

to response time and SLA violation comparison, LUCF outperforms Auto-S. Compared

with BOB, LUCF has better performance when optional utilization percentage is larger

than 30%.

5.7.4 Scalability

Figure 5.9: Scalability evaluation of iBrownout with LUCF policy
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Table 5.5: Scalability experiments results

Number of Hosts Energy Consumption Average Response Time Brownout Execution Time
5 hosts 22.6 kWh 882 ms 1.223421 s
10 hosts 40.2 kWh 476 ms 1.224356 s
15 hosts 53.4 kWh 251 ms 1.224973 s

In this section, we evaluate the scalability of the proposed approach and the efficiency

of the algorithm when the number of nodes is increased. As mentioned in previous sec-

tions, iBrownout is implemented based on Docker Swarm, thus, its performance depends

on the performance of Docker Swarm. Our aim in this chapter is not to discuss the scal-

ability design of Docker Swarm. In [100], the authors conducted scalability testing on

Docker Swarm with 1,000 nodes and 30,000 containers, and results show that Docker

Swarm has high scalability.

We evaluate the scalability of iBrownout in terms of the number of hosts. The experi-

ment settings are almost as same as in the previous experiments, the overloaded thresh-

old is set as 80% and optional utilization percentage is 30%, while the difference lies in the

number of hosts, we conduct experiments with 5, 10 and 15 hosts respectively. Energy

consumption and QoS are the main concern of our proposed approach. In this chapter,

we only focus on average response time as QoS metric. In addition, to compare algorithm

efficiency, we also evaluate the brownout algorithm (LUCF policy) execution time, which

represents the time between brownout is triggered and the deactivated components are

selected.

Figure 5.9 and Table 5.5 show the impact of the varied number of hosts on energy

consumption, average response time and brownout algorithm execution time. As it can

be seen, when there are more hosts, the energy consumption is increased and the aver-

age response time is reduced, while the brownout execution time is kept as stable. The

energy consumption is growing from 22.6 kWh with 5 hosts to 53.4 kWh with 15 hosts,

while the average response time is dropping to 251 ms with 15 hosts from 882 ms with 5

hosts. The reason lies in that when more hosts are running, these hosts consume more en-

ergy, and the benefit is that the average response time is reduced due to more resources.

The brownout execution time remains 1.22 s when the number of hots is varied. As

mentioned in Section 5.6.3.1, although the algorithm complexity of LUCF is relevant to

the number of hosts, the search operation in LUCF only consumes a small portion of
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time compared with the network delay to fetch the information of hosts and containers.

Therefore, the brownout execution time remains stable when the number of hosts is in-

creased. The results show that iBrownout scales reasonably well when the number of

hosts grows. To be noted, the master node in Docker Swarm may be the bottleneck if

there are a number of worker nodes but only one master node, thus, more nodes should

be promoted as master nodes to ensure the system scalability.

5.8 Summary

In this chapter, we introduced a brownout-based architecture by deactivating optional

containers in applications or microservices temporarily to reduce energy consumption.

Under this architecture, we introduced an integrated approach for managing energy

and brownout in container-based clouds. We also proposed several policies to find the

suitable containers to deactivate and evaluate their performance in a prototype system.

The experiment results under real test-beds have shown that our proposed policies can

achieve better performance in energy consumption, response time and SLA violations

than baselines.

After discussing the brownout-based architecture for approaches implemented un-

der real testbed, in the next chapter, we will introduce the architecture, design and im-

plementation of our developed container-based prototype system, which aims to attract

more attention in the brownout-related area.



Chapter 6

Container-based Software System for
Energy-Efficient Cloud Computing

Container-based approach provides a mechanism to manage microservices in a more fine-grained

manner and improve the resource usage of computing systems. Brownout approach can overcome the

limitation of VM consolidation and Dynamic Voltage Frequency Scaling when the holistic system is

overloaded via dynamically deactivating or activating optional microservices or containers. In this

chapter, we propose a brownout-based software system for container-based clouds to handle overloads

and reduce power consumption. We also introduce its design and implementation based on Docker

Swarm containers. The proposed system is integrated with existing Docker Swarm without the mod-

ification of their configurations. In addition, to show the availability to reduce energy, we implement

several policies to manage containers and conduct experiments on French Grid’5000 cloud infras-

tructure. The results show that our policies can save about 40% and 10% energy than two existing

baselines while ensuring quality of services.

6.1 Introduction

TOOLKITS and software systems are necessary to foster innovation and develop-

ment for experiments with microservices and brownout approaches in cloud com-

puting systems. Docker [11] is developed to manage microservices and it enables to de-

velop different resource management policies for microservices. However, the brownout

mechanism is not provided in Docker. To overcome this limitation, we develop a container-

based software prototype that enables brownout approach.

This chapter is derived from:
•Minxian Xu and Rajkumar Buyya, “BrownoutCon: A Software System based on Brownout and Containers
for Energy Efficient Clouds,” Journal of Systems and Software (JSS), 2019 (under review).

125
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In this chapter, we propose and develop a software system, called BrownoutCon2,

which is inspired by brownout-based approach to deliver energy-efficient resource schedul-

ing. The implementation of BrownoutCon is based on Docker Swarm [11] that provides

the management of container cluster. The software system is designed and implemented

as an add-on for Docker Swarm, which has no necessity to modify the configurations of

Docker Swarm. The system also applies the public APIs of Grid’5000 [67], which is a

real testbed that provides power measurement for hosts. The aims of BrownoutCon are

twofold: 1) providing an open-source software system based on brownout and Docker

Swarm to manage containers; 2) offering an extensible software system for conducting

research on reducing energy consumption and handling overloads in cloud data centers.

The BrownoutCon is designed and implemented by following the brownout enabled

system model in our previous chapters. Mandatory containers and optional containers

are introduced in the system model, which are identified according to whether the con-

tainers can be temporarily deactivated or not. The brownout controller is the key part

of the system model to manage brownout, which also provides the scheduling policies

for containers. The problem of designing the brownout controller splits into several sub-

problems:

1. Predicting the future workloads, so that the system can avoid overloads to foster

the system robustness.

2. Determining whether a host is overloaded or not, so that the brownout controller

will be triggered to relieve the overloads.

3. Deciding when to disable the containers, so that the system can relieve overloads

and reduce energy consumption while ensuring QoS constraints.

4. Selecting the containers to be disabled, so that a better trade-off can be achieved

between the reduced energy and QoS constraints.

5. Deciding when to turn the hosts on or into the low-power mode, so that the idle

hosts can be switched into low-power mode to save power consumption.

Compared with VM consolidation approaches, the software system based on brownout

and containers has two advantages: 1) a container can be stopped or restarted in sec-

2The source codes are available at Github: https://github.com/xmxyt900/BrownoutPrototype

https://github.com/xmxyt900/BrownoutPrototype
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onds, while VM migration may take minutes. Thus, scheduling with containers is more

light-weight and flexible than VMs. 2) the brownout-based approach provides another

optional energy-efficient approach apart from VM consolidation and DVFS, which is also

available to be combined with VM consolidation to achieve better energy efficiency, es-

pecially for the situation when the whole data center is overloaded.

To evaluate the proposed system in practice, we conduct our experiments on Grid’5000

[67] real testbed. We also evaluate the performance of proposed system with real traces

derived from Wikipedia3 workloads.

The main contributions of this chapter are as follows:

• Proposed an effective system model that enables brownout approach to manage the

containers and resources in a fine-grained manner;

• Designed and developed a software system based on Docker Swarm to provide

energy-efficient approaches for cloud data centers;

• Experimental evaluations of our proposed software system on French Grid’5000

infrastructure for service providers to deploy microservices in an energy-efficient

manner while ensuring QoS constraints.

The rest of this chapter is organized as: Section 6.2 discusses the related work, fol-

lowed by the system design and implementation in Section 6.3. Brownout-based poli-

cies implemented in BrownoutCon are presented in Section 6.4. In Section 6.5, we in-

troduce our experiments setup and evaluate the performance of implemented policies

under Grid’5000 testbed. Conclusions along with future work are given in Section 6.6.

6.2 Related Work

It is estimated that U.S. data centers will consume 140 billion kWh of electricity annually

by the year 2020, which equals to the annual output of about 50 brown power plants that

have high carbon emissions [50][29]. To minimize the operational expenses and impacts

on the environment, a variety of state-of-the-art works have been conducted to reduce

data center energy consumption.

3See http://www.wikibench.eu/wiki/2007-10/ for more details.
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There is a close relationship between resource utilization and energy consumption, as

inefficient utilization of resource contributes to more power consumption [81]. Virtualiza-

tion is an import technique in Clouds and it can improve resource utilization. Therefore,

numerous energy-efficient resource scheduling approaches based on VM consolidation

have been proposed. Consolidating VMs on fewer physical machines and turning the

unused machines into the low-power mode reduce the number of active machines. Be-

loglazov et al. [33] proposed several VM consolidation algorithms to save data center

energy consumption. The VM consolidation process has been modeled as a bin-packing

problem, where VMs are regarded as items and hosts are regarded as bins. The objec-

tive of these VM consolidation algorithms is mapping the VMs to hosts in an energy-

efficient manner. Based on the VM consolidation approaches in this work, other works

like [34][43][71] have extended them to improve algorithm performance.

Mastroianni et al. [105] introduced a self-adaptive method for VM consolidation on

both CPU and memory. The method aims to reduce the overall costs caused by energy-

related issues. The VM consolidation process is determined by a probabilistic function,

which is based on Bernoulli trial. Li et al. [91] developed a Bayesian network-based

estimation model for VM consolidation and took nine data center factors into consider-

ation. Zheng et al. [155] jointly considered VM consolidation and traffic consolidation

together to minimize the servers and network energy consumption in data centers. The

authors not only modeled the server power model, but also the switch model in the net-

work. Experiments conducted under real environment showed that this joint approach

can outperform the approaches that only adopt VM consolidation in terms of energy con-

sumption and service delay. Habibi et al. [68] proposed a VM placement approach and

routing system based on software defined network (SDN) and consider both energy con-

sumption and QoS. Han et al. [70] presented a remaining utilization-aware algorithm for

VM placement, and an energy-efficient algorithm to select hosts to shut down.

Another dominant approach to reduce energy consumption is Dynamic Voltage Fre-

quency Scaling (DVFS). The DVFS approaches achieve energy reduction by adjusting

frequencies of processors rather than using less active servers in VM consolidation. The

DVFS approach investigates a trade-off between energy consumption and computing

performance, where processors lower their frequency when they are lightly loaded and
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utilize full frequency when loads are heavy.

Kim et al. [83] modeled real-time service as real-time VM requests, and proposed

several DVFS algorithms to reduce energy consumption for the DVFS-enabled cluster.

Arroba et al. [24] proposed an approach combines DVFS and VM consolidation tech-

niques by considering energy consumption and performance degradation together. Teng

et al. [140] presented several heuristic algorithms combining DVFS and VM consolida-

tion together for batch-oriented scenarios.

Some research taking both energy consumption and QoS into account have been con-

ducted, which is also the consideration of our proposed software prototype system. Dou

et al. [56] introduced an energy-aware dynamic VM scheduling approach for QoS en-

hancement in Clouds for big data, which aimed to benefit users with discount prices and

reduce the execution time of tasks. Adhikary et al. [19] developed a QoS-aware and

energy-aware cloud resource management system for multimedia applications, and pro-

posed two resource management algorithms to reduce energy consumption while main-

taining QoS of applications. Khanouche et al. [82] presented an energy-centered and

QoS-aware service selection algorithm to deal with the multiple-objective problem for

the Internet of Things applications. Wang et al. [147] proposed an energy-aware multi-

dimension resource scheduling algorithm for cloud data centers to reduce energy and

ensure QoS. Tang et al. [138] proposed a SLA-aware and resource-efficient algorithm for

making auto-scaling policy, which aims to achieve energy saving and QoS improvement

for VNFs. Cheng et al. [44] developed a power-aware resource provisioning approach,

namely ePower for sustainable datacenter by considering renewable resources. The pro-

posed approach aims to reduce system energy consumption via green power and fulfill

QoS requirement under heterogeneous workloads.

VM consolidation and DVFS have been proven to be efficient to reduce energy con-

sumption in both theory and practice, however, both of them cannot function well when

the whole data center is overloaded. Thus, brownout is applied to handle data center

overloads and reduce energy consumption. Klein et al. [85] applied brownout to design

more robust applications under the overloaded or unpredicted situation. In our previous

work, brownout was applied to save energy consumption in data centers. In Chapter 3,

we presented the brownout enabled system model and proposed several heuristic poli-
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cies to find the microservices or application components that should be deactivated for

energy saving purpose. The results showed that a trade-off existed between energy con-

sumption and discount, and in Chapter 4 , we adopted approximate Markov Decision

Process to improve the trade-off.

Different from the energy-efficient approaches based on VMs, our software system

is based on containers. Compared with VMs, containerization provides a fine-grained

control on microservice resource usage. Kozhirbayev et al. [88] compared several exist-

ing container-based technologies for Clouds and evaluated their strength and weakness.

They concluded that containers can give almost the same performance of native systems.

Currently, most work related to containers are focused on the orchestration of contain-

ers construction and deployment [119]. For example, Liu et al. [95] proposed a flexible

container-based computing platform for scientific workflow. Barresi et al. [28] introduced

MicroCloud, which is a container-based solution for managing cloud resource efficiently.

Kim et al. [84] proposed a virtual network function placement algorithm that allows

users to meet QoS while minimizing energy consumption.

Maqsood et al. [103] proposed algorithms to reduce energy consumption and data

access latency on single-chip cloud computers. Fang et al. [61] proposed a model based

on predictive control approach to reduce data center power while maintaining QoS. The

model was designed for a broader view of data centers, including the performance of

hosts and thermal changes. Deng et al. [52] presented a mobile service selection approach

for composition to reduce energy consumption in a mobile cloud environment. Bi et al.

[36] introduced an approach to manage resources at the application level in cloud data

centers, while they focused on economic profits perspective.

In Chapter 5, we have proposed an approach for managing energy in container-based

clouds while focusing on scheduling algorithms design. Whereas, in this chapter, we

focus on the design and development of a new software system supporting brownout-

based energy-efficient management of clouds. To the best of our knowledge, our pro-

posed software system is the first one to reduce energy consumption with brownout

based on containers, which also considers both energy consumption and QoS.
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6.3 System Architecture, Design and Implementation

The purpose of BrownoutCon is to provide a software system based on brownout and

containers for energy-efficient cloud data centers. The system takes advantage of public

APIs of Docker Swarm and is evaluated under Grid’5000 testbed. The system is designed

to be extensible, which means new components can be added without the necessity to

modify the original codes or configurations of Docker Swarm and Grid’5000.

Our software system is deployed on Docker Swarm master and worker nodes. Docker

Swarm provides a platform for managing container cluster, monitoring status of swarm

master and worker nodes, deploying containers on nodes, collecting resource usage of

containers, controlling the lifecycle of containers, sending messages and commands be-

tween the master and worker nodes. Docker Swarm needs to be deployed on physical

machines or virtual machines. Therefore, we adopt Grid’5000, a real testbed that pro-

vides access to ample resources for Docker Swarm deployment. We also take advantage

of the Grid’5000 APIs to collect the energy consumption data of the machines. In the

following sections, we discuss the system requirements, assumptions, system design and

its implementation.

6.3.1 Requirements and Assumptions

The components of the proposed software prototype system are running on the Docker

Swarm master and worker nodes. Our current implementation assumes that a single

instance of each key components is invoked on the master node, such as components

for controlling brownout, monitoring system status, managing deployment policies and

managing models. On each worker node, a single instance of a component that collects

node information is running. When new nodes are joining the Docker Swarm as worker

nodes, the master node is responsible for deploying containers to the nodes.

BrownoutCon saves the energy consumption and handles overloads via temporarily

disabling some containers, therefore, we assume that the services in the target system

(e.g. e-commerce system) are implemented with microservice paradigm and some ser-

vices (e.g. recommendation engine service) are not necessary to keep running all the

time.
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The main optimization objective of our software system is reducing energy consump-

tion, a precise power probe to collect energy usage is required. Container scheduling

policies may use the energy usage data to make decisions on controlling containers.

Another requirement is that a manager is needed to control all the hosts to turn them

into low-power mode or active. This manager is used by the brownout controller on mas-

ter node to connect with other worker nodes via the communication protocol. Grid’5000

has provided the APIs to switch the status of hosts, and more details will be introduced

in the following sections.

6.3.2 BrownoutCon Architecture

The architecture of BrownoutCon is same as the architecture depicted in Figure 5.1. We

briefly introduce the main components as below:

1) Users: This component contains user and requests information. It also captures

system configurations such as predefined QoS constraints (e.g. average response time

and SLA violations), energy budget and service deployment patterns according to users’

demand.

2) Cloud Service Repository: This component manages the services offered to users,

including service information, such as service name and image. Each service may be

constructed via a set of microservices. In order to manage microservices with brownout,

the microservices are identified as mandatory or optional.

a. Mandatory Microservices: These microservices keep running all the time when

they are started and cannot be temporarily stopped, like database related microservices.

b. Optional Microservices: These microservices can be deactivated temporarily de-

pending on system status. Microservices are connected if there are communications be-

tween them. We consider that if one optional microservice is deactivated, then other

connected microservices should also be deactivated.

Notes: A microservice can be identified as optional if the service/content it provides

is defined as optional by its creators. For instance, the online recommendation engine

in the online shopping system and the spell checker in the online editor system can be

identified as optional microservices under resource constrained situations.

3) Execution Environment: This component provides the container-based environ-
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ment for microservices or containers. The dominant execution environments for mi-

croservices or containers are Docker, Kubernetes, and Mesos. In BrownoutCon, we use

Docker as the execution environment for microservices.

4) Brownout Controller: This component controls optional microservices or contain-

ers based on system status . It applies policies introduced in Section 6.4 to provide an

efficient solution for managing brownout and containers. As mentioned in Section 6.1,

brownout has a control knob called dimmer that represents the probability to execute mi-

croservices. We make some adjustments to make the dimmer of brownout to be adapted

to this component as well as our architecture. Our dimmer is only applied to the optional

microservices and its value is computed according to the severity of system overloads

(the number of overloaded hosts in the data center).

5) System Monitor: It is a component that monitors the health of nodes and collects

hosts resource consumption status. It uses the third-party toolkit to support its func-

tion, such as Grid’5000 public APIs that provide real-time data on infrastructure metrics,

including host health, CPU utilization, and power consumption.

6) Scheduling Policy Manager: This component provides and manages the policies

for Brownout Controller to schedule microservices/containers. In order to ensure the

energy budget and QoS constraints, different policies designed for different preferences

are required. For instance, if the service provider wants to balance the trade-off between

energy and QoS, then a policy that considers the trade-off is preferred.

7) Models Management: This component maintains the energy consumption and

QoS models in the system. In BrownoutCon, the power consumption model is closely

related to the utilization of microservice or container, and the QoS model is applied to

define the QoS constraints.

8) Cloud Infrastructure: Under Infrastructure as a Service model, it is a component

that offers physical resources to users, where microservices or containers are deployed.

In our experiments, we use Grid’5000 as our infrastructure. More details are given in

Section 6.5.
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Figure 6.1: Energy-efficient scheduling architecture

6.3.3 Energy-efficient Scheduling Architecture

The main purpose of our software system is energy efficiency, and the main approach to

achieve this goal is through energy-efficient scheduling policies. Deriving from Brownout-

Con architecture, Figure 6.1 shows the energy-efficient scheduling architecture based on

brownout, which depicts the BrownoutCon from the energy-efficient scheduling perspec-

tive.

In this scheduling architecture, clients submit their requests to the system, and Docker

Swarm Manager dispatches the requests to containers and hosts. The System Monitors

collect the energy and utilization information from hosts, and then send the information

to Brownout Controller. With the information from System Monitors, the Brownout Con-

troller refers to the host power consumption or utilization models to compute how much

utilization/energy should be reduced. Then the Brownout Controller makes decisions

based on scheduling policies to switch the states of hosts and containers, such as turning

the hosts into low-power mode or deactivating containers.

6.3.4 Integration with Docker Swarm

BrownoutCon is installed on Docker Swarm node independently of Docker Swarm ser-

vices. In addition, the activities of BrownoutCon are transparent to the Docker Swarm
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Figure 6.2: BrownoutCon integrated with Docker Swarm

services, which means Docker Swarm does not need to reconfigure to fit with Brownout-

Con and use its brownout feature. In other words, BrownoutCon can be installed on

existing Docker Swarm cluster without modifying the configurations.

BrownoutCon achieves the transparency via the interactions with the public APIs of

Docker Swarm cluster. BrownoutCon uses the APIs to obtain information about contain-

ers deployment, containers utilization, and containers properties. Although the opera-

tions of BrownoutCon will affect the system status and containers state by deactivating

or activating containers, it is transparently processed by Docker Swarm public APIs.

The implication of this integration approach represents that the container deployment

is handled by Docker Swarm, and BrownoutCon makes decisions on deactivation or ac-

tivation of containers. Figure 6.2 shows how BrownoutCon is integrated into Docker

Swarm. In Docker Swarm, the nodes are categorized as two classes: swarm master node

and swarm worker node. The master node is responsible for maintaining cluster state,

scheduling services (containers) and serving swarm mode with Docker APIs over HTTP,

while the purpose of worker nodes is executing containers. The respective BrownoutCon

components are deployed on master and worker nodes.

6.3.5 Containers Deployment with Compose File
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Docker provides compose4 tool to deploy multiple containers, in which a configuration

file is used to configure containers properties. With the compose file, the containers can

be easily deployed and managed on clusters. In the compose file of our web application,

to identify the recommendation engine microservice as optional, we labeled it as optional

in the brownout feature. Moreover, as previously mentioned, the optional containers

are only allowed to be deployed on the worker node, thus, we configure the placement

constraint of this microservice as the worker node. More deployment properties can also

be configured in the compose file.

6.3.6 Entity Interaction Diagram

Figure 6.3: Entity interactions in BrownoutCon

To implement the aforementioned architecture and functionalities, we use Java to de-

velop our software system. The main classes of BrownoutCon are depicted in Figure 6.3.

The details of these classes are as below:

Docker Swarm API: This class wraps Docker Swam APIs and provides the interface

for BrownoutController class to call. The Docker Swarm APIs offer the functions to fetch

the information of containers and operate on containers, such as collecting containers

utilization, containers id, containers property (optional or mandatory), deploying and

updating containers with the compose file, deactivating and activating containers.

Grid’5000 API: This class uses Grid’5000 APIs to collect hosts energy consumption

and switch status of hosts. Grid’5000 provides APIs to gather the total power at per

second rate for all the hosts in data center. The APIs also allow BrownoutController class

to switch the hosts into low power mode or turn the hosts on.

WorkerNode: This class models the host in the data center. Attributes of a Work-

4See https://docs.docker.com/compose/compose-file/ for more details.
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erNode include CPU utilization and the containers deployed on the host. The software

system initializes a WorkerNode instance for each host. To be consistent with the status

of real hosts, when the software system is running, the WorkerNode instances will keep

updating their CPU utilization and container lists .

AbstractMonitor: It provides an interface to monitor the status system. The class

UtilizationMonitor implements the AbstractMonitor interface and focuses on monitoring

hosts utilization. With the monitored information, the system can know how many hosts

are overloaded and make decisions based on this information. Other monitors, such as

memory or network monitors can be extended if they implement the AbstractMonitor.

Container: The Container class models the containers deployed on hosts. The class

defines the basic information of containers, including container id, CPU utilization and

other information that can be fetched via Docker Swarm APIs. To apply brownout on

containers, the Container class also has the attribute to identify whether a container is

optional or mandatory.

AbtractPolicy: It is an interface that defines the functions that scheduling policies

should implement. To deactivate some containers temporarily and reduce energy con-

sumption, the policies that implement the AbstractPolicy interface are responsible for

finding the containers that should be deactivated. More scheduling policies can be im-

plemented only if they implement the AbstractPolicy interface. The details of our imple-

mented policies in BrownoutCon will be introduced in Section 6.4.

BrownoutController: This class is the core class of our software system. It assembles

all the information from different sources and makes the decision for controlling hosts

and the containers on them. The overloaded threshold is defined in BrownoutController

class to determine whether a host is overloaded. BrownoutController knows system sta-

tus from Docker Swarm APIs, Grid’5000 APIs and WorkerNode instances, and triggers

brownout to handle overloads and reduce energy consumption via operations on hosts

or containers.

6.3.7 Sequence Diagram

To provide an in-depth understanding of the working process of BrownoutCon, Figure

6.4 shows a sequence diagram of handling requests by our software system. Firstly, the
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Figure 6.4: Sequence diagram of of handling requests by BrownoutCon

users submit their requests to a web application called Weave Shop (more details about

this application will be introduced in Section 6.5.2.) Then the Weave Shop sends the in-

formation of requests to BrownoutCon, and BrownoutCon keeps collecting nodes and

containers information periodically via Grid’5000 and Docker Swam public APIs respec-

tively. When BrownoutCon is collecting information, if the system is overloaded, which

means the Weave Shop cannot handle all the incoming requests, the BrownoutCon adds

nodes to serve requests. The BrownoutCon also triggers brownout-based policies to de-

activate containers to relieve overloads and reduce energy consumption. After these op-

erations, the information of the nodes and containers are updated. Once the system is

not overloaded, BrownoutCon activates the containers or removes the nodes from active

nodes list (switching nodes into low-power mode). Upon the completion of operations

on containers and nodes, the updated information is sent to BrownoutCon.
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6.3.8 Problem Formulation

One of the objectives of BrownoutCon is reducing energy consumption. The total en-

ergy consumption E(t) during time interval t is formed as the sum of all the host energy

consumption in the data center as shown in Equation 6.1. Here, we only care about

the physical server’s energy consumption rather than other network devices or cooling

equipment.

E(t) =
n−1

∑
i=0

∫ t+1

t
Pi(t)dt (6.1)

where n is the total number of hosts in the data center, and Pi(t) is the power at time

t of host i. The energy consumption of each physical server in Grid’5000 can be collected

via APIs.

Another objective of BrownoutCon is ensuring the QoS, thus, to quantify the over-

all QoS of the system, we use the average response time to measure the time between

sending a request and receiving the response. We also use SLA Violation Ratio (SVR) to

quantify the failed requests, which is formalized as:

SVR =
numerr

numa
(6.2)

where numa is the total number of requests sent to the system, and numerr is the num-

ber of requests failing to get the response.

The optimization objective of BrownoutCon is minimizing the total power consump-

tion while satisfying QoS. Thus, the optimization problem of resource scheduling in

BrownoutCon can be formulated as:

min
T

∑
t=0

E(t)

s.t.Ravg ≤ α, ∀T

SVR ≤ β, ∀T

(6.3)

where ∑T
t=0 E(t) is the total power consumption in the data center during the observation

time period T, Ravg is the average response time and α is the allowed average response

time defined by the service provider, and β is the allowed SLA violation ratio.
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6.4 Policies Implemented in BrownoutCon

BrownoutCon has implemented several policies that proposed in Chapter 3 and the VM

consolidation aspect is excluded. In Chapter 3, the policies were evaluated through sim-

ulations in CloudSim. As introduced in Section 6.1, the scheduling problem can be di-

vided into several sub-problems: (1) workload prediction; (2) overloaded status detec-

tion (3) brownout trigger; (4) deactivated containers selection; and (5) hosts scaling. In

this section, we will introduce the implemented policies for reference. It is noted that

the introduced policies are not the main focus of this chapter. The focus of this work is

designing and implementing the software system based on brownout and containers.

6.4.1 Workload Prediction

To predict the future workloads based on the previous workloads, we adopt the sliding

windows as shown in Algorithm 6.1. The motivation of sliding windows is giving more

weights to the requests rates of recent time intervals. Let Lw to be the window size,

num(t) to be the number of requests at time interval t, we estimate the number of requests

for the next time interval t + 1 as in Equation 6.4. And the sliding window is moving

forward along with the time.

Algorithm 6.1: Algorithm for predicting future workload based on sliding win-
dows

Input : sliding window size Lw, the number of requests at previous Lw time intervals, the
predicted time interval t (t ≥ Lw)

Output: the predicted number of requests ˆnum(t) at time interval t
1 for k from t− Lw to t− 1 do
2 ˆnum(k + 1)← ˆnum(k) + num(k)
3 end
4 ˆnum(t)← ˆnum(k + 1)/Lw
5 return ˆnum(t)

ˆnum(t) =
1

Lw

t−1

∑
k=t−Lw

num(k) (6.4)



6.4 Policies Implemented in BrownoutCon 141

6.4.2 Overloaded Host Detection

In our experiments, we use a predefined overloaded threshold to detect whether a host is

overloaded or not. For instance, if the overloaded threshold is defined as 85%, the host is

regarded as overloaded when its CPU utilization is above 85%. Currently, we only adopt

CPU utilization to detect the overloaded host. Algorithm 6.2 shows the pseudocode of

our overloaded host detection algorithm.

Algorithm 6.2: Algorithm for detecting the number of overloaded hosts
Input : overloaded threshold Tu, the number of hosts n in data center, CPU utilization ui of host i
Output: the number of overloaded hosts no

1 for i← 0 to n− 1 do
2 if ui ≥ Tu then
3 no ← no + 1
4 end
5 end
6 return no

Equations 6.5 and 6.6 show the way to calculate the number of the overloaded host.

We use no
i to denote whether host i is overloaded or not, which is detected by the utiliza-

tion ui and overloaded threshold Tu. If ui is no less than Tu, no
i equals to 1, otherwise it

equals to 0. The total number of the overloaded host is denoted as no, which is the sum

of no
i for all the hosts.

no
i =


1, i f ui ≥ Tu

0, i f ui < Tu

(6.5)

no =
n−1

∑
i=0

no
i (6.6)

6.4.3 Brownout Trigger

Once there are hosts detected as overloaded, the brownout mechanism will be triggered

to handle the overloads as well as to reduce energy consumption. As mentioned in Sec-

tion 6.1, firstly, the algorithm is required to calculate the dimmer value, which is the

control knob to represent the probability to trigger brownout on hosts.

The pseudocode of brownout trigger algorithm is presented in Algorithm 6.3, the

dimmer value θt is calculated based on the number of overloaded hosts (line 1). The
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dimmer value θt at time t is calculated based on the number of overloaded hosts no as

shown in Equation 6.7:

θt =
√

no/n (6.7)

Then the algorithm computes the expected utilization reduction on overloaded hosts.

The expected utilization reduction ur
i of host i is the product of dimmer value θt and the

host utilization ui as:

ur
i = θt × ui (6.8)

Algorithm 6.3: Brownout trigger algorithm
Input : the overloaded threshold Tu, the number of overloaded hosts no, the number of hosts n in

data center, dimmer value θt at time t, CPU utilization ui of host i
Output: expected utilization reduction list ur

i
1 θt ←

√
no/n

2 for i← 0 to n− 1 do
3 if ui > Tu then
4 ur

i ← θt × ui
5 end
6 end
7 return ur

i

6.4.4 Deactivated Containers Selection

Based on the expected utilization reduction, the policies select containers to deactivate

based on different containers selection policies. In BrownoutCon, we have implemented

three containers selection policies for deactivation. Based on the strategy design pattern5,

these policies implement the AbstractPolicy interface in Figure 6.3 and can be selected

independently at runtime.

1) Lowest Utilization Container First policy

The Lowest Utilization Container First (LUCF) policy selects a set of containers to reduce

the utilization of overloaded hosts. The objective of LUCF is that the utilization after re-

duction is expected to be less than the overloaded threshold, and the difference between

the expected utilization reduction and the sum of deactivated containers utilization is

5See https://en.wikipedia.org/wiki/Strategy pattern for more details.
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minimized. Thus, the host utilization is reduced and the reduced utilization is close to

the expected reduction. The deactivated container list is defined in Equation 6.9. We use

u
′
i to denote the utilization of host i after the containers in the deactivated lists are deacti-

vated, which equals to ui − udcl
i . The utilization of all the containers in dcli is denoted as

udcl
i . The min(|ur

i − udcl
i |) represents the to minimize the absolute value of ui − udcl

i .

dcli =

{u
′
i ≤ Tu, min(|ur

i − udcl
i |)}, i f ui ≥ Tu

∅, i f ui < Tu

(6.9)

Algorithm 6.4 presents the pseudocode of LUCF. The LUCF sorts the optional con-

tainers list ocli based on container utilization in ascending order so that the container

with the lowest utilization is at the head of the list. The size of ocli is ocli.size(). The

algorithm checks the hosts one by one, if the first container c0 on host i has the utiliza-

tion greater than ur
i , c0 is put into the deactivated container list dcli. Since we consider

connected microservices, the policy also adds the container’s connection tag Tc
0 (a string

value) that indicates how it is connected with other containers into a set S for recording

connections. However, if the utilization of the first container is less than the expected

utilization reduction, LUCF finds a containers sublist to deactivate more containers. The

sublist is the one that has the sum of utilization that is closest to the expected utiliza-

tion reduction than other sublists. Same as previous operations, these containers are put

into the deactivated container list dcli and their connection tags are put into the set S.

Then, the algorithm finds other connected containers and put them into the deactivated

container list.

2) Minimum Number of Containers First policy

As formalized in Equation 6.10, in order to deactivate fewer containers so that more op-

tional functionalities can be provided, we also implement Minimum Number Containers

First (MNCF) policy, which selects the minimum number of containers while saving the

power consumption. Since it is quite similar to the LUCF, the pseudocode of MNCF is

not provided here. The min(dcli.size()) represents the objective to minimize the size of

the deactivated container list.
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Algorithm 6.4: Lowest Utilization Container First policy (LUCF)
Input : the number of hosts n in data center, overloaded threshold Tu, deactivated container list

dcli on host i, the optional container list ocli of host i, which is sorted based on utilization
of containers uc

j in ascending order, deactivated tag set S, connection tag Tc
j of container cj

Output: deactivated container list dcli
1 for i← 0 to n− 1 do
2 if ui > Tu then
3 if uc

0 ≥ ur
i then

4 add c0 into dcli
5 add Tc

0 into S
6 end
7 for cj in ocli (j = 0, 1, 2, . . . , ocli.size()− 1) do
8 if (uc

j ≤ ur
i ) & (udcl

i ≤ ur
i ) then

9 add cj into dcli
10 add Tc

j into S

11 minimize |ur
i − udcl

i |
12 end
13 end
14 forall cj in ocli (j = 0, 1, 2, . . . , ocli.size()− 1) do
15 if Tc

j in S then
16 add cj into dcli
17 end
18 end
19 end
20 deactivate containers in dcli
21 end
22 return dcli

dcli =

{u
′
i ≤ Tu, min(dcli.size())}, i f ui ≥ Tu

∅, i f ui < Tu

(6.10)

3) Random Container Selection policy

Based on a uniformly distributed discrete random variable X that selects a subset of dcli

randomly, the Random Container Selection (RCS) policy uses uniform distribution func-

tion U(0, ocli.size()− 1)} to randomly select a number of optional containers to reduce

energy consumption, as presented in Equation 6.11.

dcli =

{u
′
i ≤ Tu, X = U(0, ocli.size()− 1)}, i f ui ≥ Tu

∅, i f ui < Tu

(6.11)



6.5 Performance Evaluation 145

6.4.5 Hosts Scaling

To scale the number of active hosts, we adopt the hosts scaling algorithm in [143] as

shown in Algorithm 6.5, which is a predefined threshold-based approach. With profiling

experiments, we set the overloaded requests threshold as the number of requests when

the host cannot respond within an acceptable time limit. The algorithm computes the

required hosts as the predicted number of request divided by the profiling number of

requests of the overloaded threshold. If the required number of hosts is more than current

active hosts, more hosts will be added to provide services, otherwise, if current active

hosts are adequate, then the excess machine can be set as low-power mode to save energy

consumption.

Algorithm 6.5: Hosts scaling algorithm
Input : number of hosts n in data center, number of active hosts na, number of requests when host

is overloaded numthr, predicted number of requests ˆnum(t) at time t.
Output: number of active hosts na

1 na ← d ˆnum(t)÷ numthre
2 n′ ← na − n
3 if n′ > 0 then
4 Add n′hosts
5 else if n′ < 0 then
6 Remove |n′| hosts
7 else
8 no host scaling
9 end

10 return na

6.5 Performance Evaluation

In this section, we evaluate our proposed software prototype system by conducting ex-

periments under Grid’5000 infrastructure. The goals of this section include: 1) evaluating

the behavior of the software system in a test environment; 2) showing the availability of

the proposed system so that fostering and facilitating research efforts and future work in

brownout and container-based area.
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6.5.1 Workload Traces

To make the experiments reproducible, we use the real trace from Wikipedia requests

on 2007 October 17 to replay the workload of Wikipedia users. The trace includes data

on requests time stamp and their accessed pages. We filter6 the requests based on per

second rate and generate the requests rate. The original request rate is around 1,500-

3,000 per second. To scale the workload set to fit with our experiments, we use 10%

of the original user requests size. Figure 6.5 shows the requests rate per second during

the day. The blue line is the actual trace derived from Wikipedia and the red line is the

predicted trace based on the sliding window (sliding window size is 5) as introduced in

Section 6.4. We can observe some anomalies during intervals 600-800, which can be due

to the unpredicted network congestion. While during most time intervals, the variances

between actual trace and predicted trace are small. This means the predicted trace can

serve a guide for host scaling strategy.

Figure 6.5: Requests rate of Wikipedia trace

6The details about how we filter the raw data are provided as supplementary materials.
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6.5.2 Application Deployment

We use the Weave Shop7 web application that implemented with containers as the ap-

plication in our scenario. The Weave Shop is a shopping system for selling socks on-

line and has multiple microservices, including user microservice to handle user login,

user database microservice for user information storage, payment microservice to pro-

cess transactions, font-end microservice to show the user interface, catalog microservice

for managing item for sale and etc. As these microservices are implemented indepen-

dently, they can be deployed and controlled without impacting other microservices. The

application is deployed by the compose file as introduced in Section 6.3.5, and part of

the microservices are configured as optional, e.g. recommendation engine is noted as

optional.

The user interface may be influenced due to the deactivation of some microservices.

Figure 6.6 shows the user interface of Weave Shop application. Figure 6.6a is the user

interface when full services are provided during no resource saturated scenario, while

Figure 6.6b illustrates the user interface when brownout is triggered and the recommen-

dation engine service/container is deactivated. As a result, other recommended products

are not showed in Figure 6.6b

6.5.3 Experimental Testbed

The testbed we used for evaluation is Grid’5000, and we adopt the cluster equipped with

power measurement APIs at Lyon site. The hardware specifications are as below:

• 11 × Sun Fire V20z8 with AMD Opteron 250 CPU (2 cores, 2.4GHz) and 2GB mem-

ory, and all the hosts are running on Debian Linux operating system.

We choose the machines in the same site so that we can reduce the network influence

of uncontrolled traffics from other sites. Among the 11 servers, nine are running as the

Docker Swarm worker nodes, one is running as the Docker Swarm master node, and

another node contains workload trace and installed with JMeter9 for sending requests

to Docker Swarm cluster. The energy consumption of the workload trace node is not

7See https://github.com/microservices-demo/microservices-demo for more details.
8The maximum power of this model is 237 Watts, and the sleep mode consumes 10 Watts.
9See http://jmeter.apache.org/ for more details.
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Figure 6.6: Impact on user interface when brownout is triggered

counted, as it is not regarded as a part of the cluster to provide services. All required

softwares, such as Docker, Java, Ansible10 and JMeter have been installed on these ma-

chines to minimize the effects of CPU utilization and network delay.

6.5.4 Experimental Design and Setup

In our experiments, the overloaded threshold is configured as 85%, and other parameters

of BrownoutCon are configured as default except for the optional utilization percentage.

The optional utilization percentage is configured as how much CPU utilization is allowed

10See https://www.ansible.com/ for more details.
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to be given to optional containers. According to Chapter 3 , the change of this parameter

has an impact on energy consumption. This parameter is varied for each experiment by

going through the algorithms as below:

1. NPA algorithm [33] — A baseline algorithm that does not consider overloads and

optional containers, where the hosts are running all the time and containers are not de-

activated.

2. HS [143] — Another baseline algorithm that applies the host scaling algorithm in

Algorithm 6.5, while not applying brownout-based policies.

3. The LUCF, MNCF and RCS algorithms introduced in Section 6.4 are with the varied

optional utilization percentages from 10% to 30% in increments of 10%.

We evaluate the energy consumption, average response time and SLA violation ratio

for these algorithms. We run each experiment three times to deal with the variance re-

sulted from random factors, such as initial containers deployment, network latency, and

application running status.

6.5.5 Experimental Results and Analysis

Figure 6.7: Energy consumption comparison

Figure 6.7 depicts the energy consumption comparison of different algorithms. From

the results, NPA has the highest energy consumption with 69.6 kWh, and HS reduces

it to 43.9 kWh. For the brownout-based algorithms with varied parameters, the energy
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consumption of LUCF is from 40.5 kWh to 38.8 kWh when the optional utilization per-

centage is increased from 10% to 30%. For the MNCF, its energy is close to LUCF, which

ranges from 41.1 kWh to 39.2 kWh when optional utilization percentage is varied. As for

the RCS, it decreases the energy from 41.4 kWh to 38.8 kWh. All the brownout-based al-

gorithm have shown a significant reduction in energy consumption than NPA, and they

can also save about 6% to 12% power consumption than HS with different parameter

settings.

Figure 6.8: Average response time comparison

We also compare the average response time in Figure 6.8. Although NPA consumes

more energy than other algorithms, with the adequate resources, the average response

time is the lowest as 174.3 ms. The average response time of HS is 611.6ms, while the

other brownout-based algorithms decrease this value. LUCF lowers the average response

time from 472.6 ms to 425 ms, MNCF reduces it from 485.6 ms and reaches 427.3 ms with

30% optional utilization percentage, and the average response time of RCS ranges from

564.0 ms to 511.3 ms.

In Figure 6.9, the SLA violation ratios are compared. As NPA has enough resources, it

does not experience any SLA violation, while in HS, it has 4.3% SLA violation. Compared

with HS, LUCF relieves the SLA violated situation, reducing it from 2.1% to 0.5%. Similar

to LUCF, MNCF also decreases the SLA violation to 0.5% from 2.3% when more optional

utilization percentage is allowed. As for RCS, its SLA violation drops from 3.2% to 0.9%.

The mean values of obtained results are also displayed in Table 6.1. HS saves more
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Figure 6.9: SLA violation ratio comparison

Table 6.1: The experiment results

Algorithm Energy Avg. Response Time SLAVR
NPA 69.6 kWh 174.3 ms -
HS 43.9 kWh 611.6 ms 4.3 %

LUCF-10 40.5 kWh 472.6 ms 2.1 %
LUCF-20 39.5 kWh 470.3 ms 1.4 %
LUCF-30 38.8 kWh 425.0 ms 0.5 %
MNCF-10 41.1 kWh 485.6 ms 2.3 %
MNCF-20 40.4 kWh 471.3 ms 1.4 %
MNCF-30 39.2 kWh 427.3 ms 0.5 %

RCS-10 41.4 kWh 564.0 ms 3.2 %
RCS-20 39.8 kWh 551.6 ms 2.2 %
RCS-30 38.8 kWh 511.3 ms 0.9 %

energy than NPA because it dynamically turns hosts into low-power mode, however,

since resources are limited and without brownout, HS also experiences higher average

response time and SLA violation ratio. We can also conclude, the brownout-based al-

gorithms, LUCF, MNCF, and RCS save more energy than NPA and HS while ensuring

QoS by reducing average response time and SLA violation ratio. The reason lies in that

the brownout-based algorithms reduce energy by deactivating a set of containers and im-

prove the QoS compared with the overloaded situation. And the performance differences

of brownout-based algorithms are due to the different selections of deactivated contain-

ers. For the comparison of brownout-based algorithms, when more optional utilization

percentage is provided, the algorithms perform better. Therefore, in practice, our soft-

ware system works better if more containers are allowed to be deactivated, which also

means that better performance of brownout-based approach can be achieved when more
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containers are configured as optional.

6.5.6 Scalability Discussion

The design and implementation of BrownoutCon are based on Docker Swarm, therefore,

the performance of BrownoutCon is relevant to the scalability of Docker Swarm. Scala-

bility tests on Docker Swarm have been conducted in [100] with 1000 nodes and 30,000

containers, which shows that Docker Swarm is highly scalable system.

6.6 Summary

In this chapter, we proposed the design and development of a software system based on

brownout and containers for energy-efficient clouds, called BrownoutCon. Brownout-

Con is transparent system based on Docker Swarm for containers management and does

not require to modify the default configurations of Docker Swarm via using its APIs.

BrownoutCon can be customized for implementing brownout-based algorithms, which

dynamically activates or deactivates containers to handle overloads and reduce energy

consumption. The experiments conducted on Grid’5000 infrastructure show that the

brownout-based algorithms in BrownoutCon are able to reduce energy consumption

while ensuring QoS. The proposed software can be applied in the container-based en-

vironment as well as future research in brownout area.

Renewable energy provides another promising direction to address the concern of

energy efficiency problems in cloud computing environments. In the next chapter, we

will present a self-adaptive approach for sustainable cloud data centers by managing

applications and renewable energy.



Chapter 7

Approach for Managing Applications
and Harnessing Renewable Energy

The attractive features like elasticity, availability and pay-as-you-go pricing model contributed

towards rapid adoption of cloud computing. However, the huge energy consumed by cloud data centers

makes them to be one of the fastest growing sources of carbon emissions. Approaches for improving the

energy efficiency include enhancing the resource utilization to reduce resource wastage and applying

the renewable energy as the energy supply. This chapter aims to reduce the carbon footprint of the

data centers by reducing the usage of brown energy and maximizing the usage of renewable energy.

Taking advantage of microservices and renewable energy, we propose a self-adaptive approach for the

resource management of interactive workloads and batch workloads. To ensure the QoS of workloads,

a brownout-based algorithm for interactive workloads and a deferring algorithm for batch workloads

are also proposed. We have implemented the approach in a prototype system and evaluated with real

traces. The results illustrate our approach can reduce the brown energy usage by 17% and improve

the renewable energy usage by 13%.

7.1 Introduction

APART from self-contained microservices, renewable energy is another solution

gaining momentum to address energy consumption concerns (i.e., the carbon

footprint) of cloud computing. In response to the climate change concerns and economic

stimulus, many research initiatives have been launched to promote renewable energy use

to power cloud data centers in recent years [96][71][66]. Many cloud providers also work

on this goal by generating their own renewable energy or drawing power from a nearby

This chapter is derived from:
•Minxian Xu, Adel Nadjaran Toosi, and Rajkumar Buyya, “A Self-adaptive Approach for Managing Appli-
cations and Harnessing Renewable Energy for Sustainable Cloud Computing,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2018 (under review).
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renewable power plant. For example, in January 2018, AWS achieved 50% renewable

energy usage by investing in clean energy activities including a commercial-scale wind

farm in North Carolina.2

Renewable energy systems are shown to be extremely effective in reducing depen-

dence on finite fossil fuels and decreasing environmental impacts. However, powering

data centers entirely or partially with renewable energy sources such as solar or wind is

challenging as they are non-dispatchable and not always available due to their fluctuat-

ing nature. For example, photovoltaic (PV) solar energy is only available during daytime

and the amount of power produced depends on the weather and geographical location

of the data center. To be able to offer cloud services under such circumstances, cloud re-

source management systems need to support methods that allocate resources and sched-

ule applications execution by preferring to finish them during the time when renewable

energy is available while at the same time need to make sure that user QoS requirement

are honored.

The key contributions of the chapter are:

• Providing a perspective model for multi-level adaptive resource scheduling to man-

age workloads and renewable energy;

• Proposing a self-adaptive approach for interactive workloads and batch workloads

to ensure their QoS by considering the predicted renewable energy at Melbourne

based on support vector machine technique;

• Implementing a prototype system derived from the perspective model and the pro-

posed approach on a small-scale testbed;

• Evaluating the performance of the self-adaptive approach in the proposed proto-

type system.

The rest of this chapter is organized as: Section 7.2 discusses the related work for

managing energy in the cloud computing environment. Section 7.3 depicts the system

model of our proposed approach, followed by modeling and problem statement in Sec-

tion 7.4. The scheduling algorithm with renewable energy is introduced in Section 7.5.

2 https://aws.amazon.com/about-aws/sustainability/
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Table 7.1: Comparison for related work

Approach
Technique Energy Efficiency Workloads Type Resource Scheduling

DVFS
VM

Consolidation
Host

Scaling
Brownout

Brown
Energy

Renewable
Energy

Cooling
Energy

Single Mix
Single
Layer

Multiple
Layer

Beloglazov et al. [33]
√ √ √ √ √

Kim et al. [83]
√ √ √ √

Liu et al. [94]
√ √ √ √ √

Teng et al. [140]
√ √ √ √ √ √

Nguyen et al. [117]
√ √ √ √ √

Hasan et al. [74]
√ √ √ √ √ √

Li et al. [90]
√ √ √ √ √

Beloglazov et al. [32]
√ √ √ √ √

Goiri et al. [66]
√ √ √ √ √ √

Liu et al. [97]
√ √ √ √ √ √

Our Approach
√ √ √ √ √ √ √ √

Section 7.6 provides the detailed information about the implementation of our prototype

system, and Section 7.7 shows the evaluation results of our proposed approach under

our prototype system. Finally, conclusions along with the future directions are given in

Section 7.8.

7.2 Related Work

A large body of research on the energy efficiency of data centers has been dedicated to

the optimization techniques to reduce the energy consumption of servers within a data

center using technologies such as dynamic voltage and frequency scaling (DVFS) and

VM consolidation [33][83]. Liu et al [94] proposed a heuristic algorithm for big data task

scheduling based on thermal-aware and DVFS-enabled techniques to minimize the total

energy consumption of data centers. Kim et al. [83] modeled real-time service as real-

time VM requests and proposed several DVFS algorithms to reduce energy consumption

for the DVFS-enabled cluster. Cheng et al. [45] proposed a heterogeneity-aware task

assignment approach to improve the overall energy consumption in a heterogeneous

Hadoop cluster without sacrificing job performance. Teng et al. [140] presented a set

of heuristic algorithms by taking advantage of DVFS and VM consolidation together for

batch-oriented scenarios. Nguyen et al. [117] introduced a virtual machine consolida-

tion algorithm with multiple usage prediction to improve the energy efficiency of cloud

data centers. The limitation of DVFS and VM consolidation is that they cannot function

well if the whole system is overloaded. Therefore, in this chapter, we take advantage of

brownout-based approach to handle the interactive workloads.

Brownout is a self-adaptive approach to manage resources and applications in cloud
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computing systems. In Chapter 2, we proposed a survey and taxonomy on brownout-

based approaches, which summarized that application of brownout in cloud computing

systems for different optimization objectives. Tomas et al. [142] applied brownout to

address the load balancing issues in clouds. Shahrad et al. [131] proposed a practical

pricing model for brownout system and aims to increase the utilization of the cloud in-

frastructure by incentivizing users to dampen their usage fluctuations. Hasan et al. [74]

investigate the green energy and user experience trade-off in interactive cloud applica-

tions and propose a controller to provide guarantees of keeping response time within the

SLA range in the presence of green energy based on a brownout-enabled architecture.

Due to the complexity of thermal modeling of data center operation, traditional ap-

proaches ignored the impacts of resource management techniques on the cooling power

system of data centers. Recently, the holistic management of resources in which both

computing and cooling energy are considered in the minimization of the overall con-

sumption of energy has gained considerable attention from the community. Li et al [90],

for example, provided models capturing thermal features of computer room air condi-

tioning (CRAC) unit of the data center and accordingly propose a VM scheduling algo-

rithm to reduce data center energy consumption while it maintains the SLA violation in

an acceptable range. In their work, resource scheduling happens on VM level and the

workload type is batch. Al-Qawasmeh et al. [20] presented power and thermal-aware

workload allocation in the heterogeneous cloud. They developed optimization tech-

niques to assign the performance states of CPU cores (P-states) at the data center level

to optimize the power consumption while ensuring performance constraints. Tang et al.

[139] investigated the thermal-aware task scheduling for homogeneous HPC data center,

which aims to minimize peak inlet temperature through task assignment, thus reducing

the cooling power. However, the virtualized resources are not considered in their model.

Compared with these works, we consider multiple layer resource scheduling and mixed

types of workloads.

There are many studies in the literature that focused on the optimization of onsite re-

newable energy use in data centers. Goiri et al [66] presented a prototype of a green data

center powered with solar panels, a battery bank, and a grid-tie which they have built

as a research platform. They also describe their method, called GreenSwitch, for dynam-
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ically scheduling the interactive and batch workload and selecting the source of energy

to use. GreenSwitch aims to minimize the overall cost of electricity while respecting the

characteristics of the workload and battery lifetime constraints. Similar to our work, they

consider batch and interactive workloads in the data center. Their work focuses on the

resource scheduling at the application level, while our work is a multi-layer schedul-

ing approach that considers the application, VMs, and hosts. Liu et al. [97] also focus

on shifting workloads and matching renewable energy supply and demand in the data

center. They schedule non-critical IT workload and allocates IT resources within a data

center according to the availability of renewable power supply and the efficiency of the

cooling system. They formulate the problem as a constrained convex optimization and

aim to minimize the overall cost within the data center. Different from the optimization

of overall costs, we aim to optimize the energy perspective. Another difference is that we

use two separate algorithms for interactive workloads and batch workloads, while [97]

considers the workloads in an integrated manner. The current chapter contributes to the

growing body of work.

Table 7.1 shows the comparison among the related work. The most similar works to

us are [66] and [96], and we advance them by applying the brownout mechanism and

multiple layer scheduling.

7.3 System Model

We propose a system model for adaptive resource scheduling as shown in Figure 7.1

based on the modified perspective model derived from Chapter 2. The main difference

lies in the type of workloads and the source of energy supply. We consider both inter-

active workloads and batch workloads in the application layer and consider green and

brown energy together in the energy supply layer.

In the users layers, users submit their service requests to the system. The users can

define QoS constraints for the submitted requests, such as budget and deadline. The

submitted requests are forwarded to the application layer. From the service providers’

viewpoint, these workloads generated by users are processed by the applications hosted

in the cloud infrastructure.
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Figure 7.1: Perspective model

We consider two types of applications: the interactive application (such as web appli-

cation), and batch application. The interactive application should be executed as soon as

possible to ensure the QoS. We consider the interactive application to support brownout,

thus the microservices of the interactive applications can be identified as optional or

mandatory. The optional ones can be deactivated to save resource usage, if deemed nec-

essary. For the batch application, the workloads can be deferred for execution if their

deadline is ensured.

Applications provided by service providers to offer services for users are managed

by the application hosting engines, such as Docker [11] or Apache Tomcat. Applications

can be deployed on either virtualized platform (virtual resources) or cloud infrastructure

(physical resources). The host application engine can be container-based management

platforms, e.g. Docker Swarm [17], Kubernetes [16] or Mesos [13], which provide man-

agement of container-based applications. The virtualized platform manages the virtu-

alized resources, for example, the Virtual Machines managed by VMware [18]. As for

the resource allocation and provisioning in cloud infrastructure, they can be managed by

infrastructure management platform, e.g. OpenStack [15].

The bottom layer is the energy supply layer, which provides the mixed of energy

sources for powering the system. The brown energy comes from a coal-based thermal

power plant, which has high carbon footprint. The green energy comes from the renew-
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able energy, such as solar power.

To support the resource provision, monitor and allocation in the system, a controller

is required based on MAPE-K architecture model and fits into the feedback loop of the

MAPE-K process, which has modules including Monitor, Analyze, Plan and Execute to

achieve the adaptation process in cloud computing system. Sensors and Actuators are

used to establish interactions with the system. Sensors gather the information from dif-

ferent levels in the system, including application hosting engine, virtualized platform,

cloud infrastructure, and energy usage. The Sensors can be the devices attached to hard-

ware, e.g. power meter. The collected information is provided to the Monitor module.

The Analyze module analyzes the received information from the Monitor module,

and the Plan module makes decisions for applying scheduling policies, in which the

scheduling policies are implemented. According to the decisions, the Execute module

schedules resources via actuators on the application hosting engine and the virtualized

platform to enable/disable optional microservices in interactive applications or defer the

workloads of batch applications to be supplied by renewable energy. These operations

can be fulfilled via the APIs provided by the application hosting engine or the virtualized

platform.

The Knowledge pool in MAPE-K model is applied to store the predefined objectives

(energy efficiency or SLA constraints) and trade-offs (e.g. trade-offs between energy and

SLA). The rules in Knowledge pool, such as SLA rules, can be updated according to re-

source scheduling algorithms. The Knowledge pool also contains models like predicting

the supplied amount of renewable energy, which can be used by scheduling algorithms.

.

In the following sections, we will introduce our proposed approach and the prototype

system that is derived from this perspective model.

7.4 Problem Modeling

In this section, we will discuss the modeling and the optimization problem. Table 7.2

shows the symbols and their meanings utilized throughout this chapter.
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Table 7.2: Symbols and definitions

Symbol Definition
i Server (host) i

Ps
i Power consumption of server i

Pidle
i Power when i is idle

Pdynamic
i Power when i is fully loaded

wi The number of VMs deployed on host i
Uvm

i,j The utilization of the jth VM on host i
t The time interval
T The scheduling period
θt The brownout dimmer value at time interval t
Aj The number of microservices on VM j

Ums
j The utilization of microservice ms

CoP The function to calculate the cooling efficiency of cold air
Tsup Cooling air supply temperature
Pc

i Cooling power for host i
Pi Total power of host i
Pt Total power of data center at time interval t

d(t) Total workloads at time interval t
am(t) The interactive workloads at time interval t with size m
bn(t) The batch workloads at time interval t with size n

D The maximum resource capability in system
Sn The start time of batch workload bn(t)
En The execution time of batch workload bn(t)
Dn The deadline of batch workload bn(t)
sla SLA violation ratio in the system

num f The number of failed requests
numa All the number of requests coming into system

Rt Available renewable energy at time interval t
d(t)+ Power resulted from workloads on server

c(d(t)) Power resulted from cooling part reduction
α Allowed SLA violation ratio

avga(t) Average response time interactive workloads at time interval t
β Allowed average response time

Ut
i Host utilization of host i at time interval t

TUup Threshold to determine overloaded hosts
TUlow Threshold to determine underutilized hosts

ts
r The start time of available renewable energy

te
r The end time of available renewable energy

nt
o The number of overloaded hosts at time interval t

n The total number of hosts in the system
ε The percentage of utilization from batch workloads
Si The set of deactivated microservices on host i

U(Si) The utilization sum of deactivated microservices
d(t)

′
Predicted total workloads at time interval t

am(t)
′

Predicted interactive workloads at time interval t with size m
bn(t)

′
Predicted batch workloads at time interval t with size n

TD
j Deferred time of batch workload

td Start time of batch workload after deferred
S
′
j Start time after deferred

R
′
td Predicted renewable energy at td

P
′
td Predicted power consumption at td

na The number of active hosts
numthr Number of requests when host is overloaded

n
′

The difference between required host and active hosts
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7.4.1 Power Consumption

Server Power Consumption

The server power model is derived from [155], which is based on the average CPU uti-

lization. As we consider multiple-layer scheduling, the utilization of hosts, VM and mi-

croservices are modeled:

Ps
i =


Pidle

i + θt ∑wi
j=1 Uvm

i,j × Pdynamic
i , wi > 0

0 , wi = 0
(7.1)

where Ps
i is the power consumption of the host i in the data center, which is composed

of two parts: the idle power Pidle
i and dynamic power Pdynamic

i . The dynamic power part

is related to the VM utilization on the host. If there is no VM running on the host, it

means the host can be switched into the low power mode and consume low energy. The

wi represents the number of VMs deployed on host i. Uvm
i,j represents the utilization of

jth VM on host i. The θt is the dimmer value of brownout at time interval t.

The utilization of VM is the sum of microservices utilization running on the VM,

which is modeled as:

Uvm
i,j =

Aj

∑
k=1

Ums
j,k (7.2)

where the ms is the id of microservice and Aj is the number of microservices. Since CPU

computation is main power consumption component of servers, in our server model, we

mainly focus on the power draw by the CPU utilization.

Cooling Power Consumption

For cooling power consumption, we use the model from HP lab data center [112] as

follows:

CoP(Tsup) = 0.0068T2
sup + 0.0008Tsup + 0.458 (7.3)

The CoP in Equation 7.3 is a function to estimate the cooling efficiency of cold air supply

temperature Tsup provided by cooling equipment, which is related to the target tempera-

ture that room is aimed to be maintained.
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We consider the data center thermal control is managed by Computer Room Air Con-

dition (CRAC) system. The system contains multiple CRAC units, which transfers cold

air to the hosts to reduce hotspots. Based on server power consumption and cooling

efficiency, we can calculate the power consumed Pc
i by cooling equipment for host i as:

Pc
i =

Pi

CoP(Tsup)
(7.4)

The total power draw by the server part and the cooling part can be represented as:

Pi = Ps
i + Pc

i (7.5)

The total power of the data center with n servers:

Pt =
n

∑
i=1

Pi (7.6)

7.4.2 Workloads Model

In this work, we consider two types of workloads: (1) interactive workloads and (2) batch

workloads. The interactive workloads are response time sensitive, thus these workloads

should be executed immediately with the response time specified in the SLA, while the

batch workloads can be deferred for execution as long as the deadline is satisfied. Based

on the different characteristics of these workloads, the interactive workload at time t

is denoted as am(t), and the batch workload is presented as bn(t), with start time Sn,

execution time En, and deadline Dn. Therefore, the total workload at t is:

d(t) = ∑
m

am(t) + ∑
n

bn(t) (7.7)

The value of d(t) should be 0 ≤ d(t) ≤ D, in which D is the maximum resource capability

of the system.

We use sla to denote the SLA violation that the system allows for interactive work-

loads, which represents the ratio of the requests fail to execute within predefined SLA,
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which is modeled as:

sla =
num f

numa
(7.8)

The numa is the number of all the requests coming into the system, and num f is the

number of failed requests. To ensure the QoS, we have the constraint on all requests as

sla ≤ α. For the interactive requests the average response time avgb(t) should be below

the threshold defined by service provider avga(t) ≤ β.

7.4.3 Optimization Objectives

We assume the scheduling period as T, and time interval we schedule resources is de-

noted as t. We assume the available renewable energy at time t is Rt. As the server power

and cooling power is related to workloads, we use d(t)+ to denote the power consump-

tion resulted from the workload execution on servers, and c(d(t)) represents the cooling

power resulted the from workload, thus Pt = d(t)+ + c(d(t)), our optimization objective

is modeled as:
min ∑

t
(max(Pt − Rt, 0))

s.t.0 ≤ d(t) ≤ D, ∀t

0 ≤ θt ≤ 1, ∀t

sla ≤ α, ∀t

avgb(t) ≤ β, ∀t

(7.9)

7.5 Scheduling with renewable energy

7.5.1 Green-aware Scheduling Algorithm

To schedule the interactive and batch workloads in an energy efficient manner by con-

sidering renewable energy, we propose a Green-aware scheduling algorithm, which is

shown in Algorithm 7.1. During the observation period T, at each time interval t, the

algorithm will firstly identify the number of overloaded hosts (line 2). If the overloading

situation exists, the algorithm will manage the interactive workloads and batch work-

loads with different algorithms: brownout algorithm for interactive workloads (Algo-
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Algorithm 7.1: Green-aware scheduling algorithm
Input : host utilization Ut

i , utilization thresholds TUup, TUlow
Output: brown energy usage ∑t(max(Pt − Rt, 0))

1 nt
o = ∑k(Ut

i > TUup)
2 for t← 0 to T do
3 if nt

o > 0 then
4 Si ← brownout algorithm for interactive workloads
5 TD

j ← deferring algorithm for batch workloads

6 min← ∑t(max(Pt − Rt, 0))
7 else if Ut

avg < TUlow then
8 VM consolidation algorithm
9 host scaling algorithm

10 min← na
11 else
12 process iteractive workloads in normal mode
13 porcess batch workloads in normal mode
14 end
15 end

rithm 7.2) and deferring algorithm for batch workloads (Algorithm 7.3) to minimize

brown energy usage (lines 4-6). If the system is not overloaded and average utilization

is below the underutilized threshold (line 7), the algorithm will apply VM consolidation

algorithm to pack VMs on fewer servers, thus the idle servers will be switched into the

low power mode to save energy (lines 8-10). If the system is running at the normal status,

then the workloads will be executed in the normal fashion.

7.5.2 Brownout Algorithm for Interactive Workloads

The pseudocode of the brownout algorithm for interactive workloads is shown in Algo-

rithm 7.2. The algorithm schedules resources differently according to whether the renew-

able is available or not. 1) During the time when renewable energy is not available (line

2), the brownout is triggered, and the dimmer value is generated. The dimmer value θt

is computed based on the severity of overloads in the system (line 3). With the dimmer

value, the expected utilization reduction Ur
i on host i is computed (line 4). Then the algo-

rithm selects a set of microservices Si to deactivate, thus the utilization is reduced. The

difference between the expected utilization reduction Ur
i and the sum of utilization of

selected microservices U(Si) is minimized (lines 6-8). To minimize the difference, the mi-

croservice selection process is based on the LUCF algorithm in Chapter 3 , which sorts the

microservices according to their utilization in a list, and finds the sublist which has the
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Algorithm 7.2: Brownout Algorithm for Interactive Workloads
Input : time interval t, the number of overloaded hosts nt

o
Output: deactivated microservice Si

1 for host i in the host list do
2 if t < ts

r || t > te
r then

3 θt =
√

nt
o

n
4 Ur

i = θt ×Ut
i

5 if Ut
i > TUup then

6 finding deactivated microservices Si on host i
7 min← |Ur

i −U(Si)|
8 deacivate the microservices
9 end

10 else
11 if Rt < Pt then

12 θt =
1

1−ε ×
√

Rt
Pt

13 Ur
i = θt ×Ut

i
14 finding deactivated microservices Si on host i
15 min← |Ur

i −U(Si)|
16 deacivate the microservices
17 end
18 end
19 end

utilization that is closest to Ur
i . 2) When the renewable energy is available but less than

the total required energy, the brownout is also triggered (line 11). The dimmer value is

calculated based on renewable energy and required energy as noted in line 12. Then the

rest steps are the same as in the first part of Algorithm 7.2, which finds the microservices

and deactivate them. 3) When sufficient renewable energy is available, brownout will not

be triggered.

7.5.3 Deferring Algorithm for Batch Workloads

Algorithm 7.3 shows pseudocode for processing the batch workloads. The batch work-

loads are executed when their start time Sj is coming (line 1). The workloads are pro-

cessed based on the time period that the workloads are in. For the workloads which have

the start time before the renewable available start time ts
r, the objective is to defer their

execution to the time when the renewable energy is available while ensuring their dead-

lines (lines 2-12). 1). If the deadline is before ts
r, it means the workload cannot be deferred

to be processed by renewable energy, so the workload can be executed at t (lines 3-4). If

the workload can be deferred, the algorithm defers its time with TD
j , then the algorithm
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Algorithm 7.3: Deferring Algorithm for Batch Workloads
Input : batch workload bn(t) with start time Sj, execution time En, and deadline Dn

Output: deferred time TD
j

1 for t = Sn in bn(t) do
2 if t > 0 & t < ts

r then
3 if Dj < ts

r then
4 execute bj(t)
5 else
6 defer TD

j time for execution

7 td = t + TD
j , ∀ td ≤ Dj − Ej, td > ts

r

8 d(td)
′
= ∑m am(td)

′
+ ∑n bn(td)

′

9 R
′

td > P
′

td
10 S

′

j = td

11 update P
′

td
12 end
13 else if ts

r ≤t&t ≤ te
r then

14 if Rt > Pt then
15 execute bn(t)
16 else
17 defer TD

j time for execution

18 td = t + TD
j , ∀ td ≤ Dj − Ej

19 d(td)
′
= ∑m am(td)

′
+ ∑n bn(td)

′

20 R
′

td > P
′

td
21 S

′

j = td

22 update P
′

td
23 end
24 else
25 execute bn(t)
26 end
27 end

updates the workloads at time td, which equals to t + TD
j . The deferred time TD

j should

satisfy the constraint, e.g. not failing the deadline, the renewable energy is enough at

td, and should not be deferred to after te
r. If the constraints are satisfied, the algorithm

updates the predicted power consumption at td. 2). When the start time of the workload

is during the time when renewable energy is available if the renewable is sufficient, the

workload is executed; otherwise, the workload will be deferred. Similar to the first part

of Algorithm 7.3, the deferred time td also needs to satisfy the constraints in Equation 7.9

but removing the constraint that workload is executed before te
r. 3) When the time is after

te
r, it means the renewable energy is not available any more, therefore, the workloads are

executed as soon as possible to comply with the deadlines.
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7.5.4 Host Scaling

Algorithm 7.4: Hosts scaling algorithm
Input : number of hosts n in data center, number of active hosts na, number of requests when host

is overloaded numthr, predicted number of requests ˆnum(t) at time t.
Output: number of active hosts na

1 na ← d ˆnum(t)÷ numthre
2 n′ ← na − n
3 if n′ > 0 then
4 Add n′hosts
5 while Pt ≤ Rt do
6 Add another host
7 update Pt
8 end
9 else if n′ < 0 then

10 Remove |n′| hosts
11 else
12 no host scaling
13 end
14 return na

We use a modified host scaling algorithm from [143] by considering renewable en-

ergy as shown in Algorithm 7.4. With profiling data, we configure the threshold of re-

quests that leads to overloads, in which the average response time violates the predefined

constraints. The algorithm calculates the difference n
′

between the number of required

servers and actual servers. 1). When more servers are needed, then it adds n
′
servers into

the system (lines 3-4). If the renewable energy is still enough, then it tries to scale more

servers into the system to improve the QoS (lines 5-8). 2). If servers are already enough,

then remove |n′ | servers from system to reduce energy. 3). If n
′
is 0, then it means no host

scaling is required.

7.5.5 Renewable Energy Prediction

In this work, we focus on the solar energy as it is one of the most common sources of

renewable energy. We use Support Vector Machine (SVM) to predict the solar irradiation

or PV power output for the availability of renewable energy. SVM is a machine learn-

ing approach and has been applied to data analysis successfully. In the studies related

to solar irradiation prediction, SVM has been used to forecast and train solar radiance

model [27][30]. Besides, the amount of weather data that we obtained is not as huge as

the dataset like human’s faces. Thus, instead of training with more advanced machine
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learning techniques, we choose SVM.

In this chapter, we gather the historical data of Melbourne city, Australia and use

SVM to train a prediction model. We use the daily and monthly mean attributes, in-

cluding maximum temperature, minimum temperature, maximum humidity, minimum

humidity, sunshine duration and solar radiation from Bureau of Meteorology of Australia
3. The solar radiation is the output, and other attributes are considered as input. SVM

prediction approach has two phases: the training phase and testing phase. Three years

data are used for the training phase, and one year is used for the testing phase. Once

the process is finished, the test data and prediction results are compared to calculate the

error rate. We use SVM R toolbox for our purpose.

The obtained results are shown in Figure 7.2. We use two SVM models with different

kernels. It shows the svm-2 achieves better performance than svm-1. The root mean

square error (RMSE) and the correlation coefficient are equals to 1.687 and 0.97. The

selected parameters for svm-2 are regularization parameter C = 4 and Kernel bandwidth

ε = 0. In the experiments section, we use svm-2 model to predict solar irradiation with

the aforementioned settings.

Figure 7.2: Melbourne solar radiation

3 http://www.bom.gov.au/climate/data-services/solar-information.shtml



7.6 Prototype System Implementation 169

7.6 Prototype System Implementation

We configure our testbed in Chapter 6 to develop a prototype system to evaluate the

proposed approach. Figure 7.3 shows the implemented architecture of our prototype

system. Cloud resource management platform and microservices management platform

have been developed and widely used for years, thus, in this work, we design and im-

plement our prototype based on these mature platforms.

Cloud IaaS resource management platform, OpenStack, is responsible for managing

cloud resources, including CPU, memory, and bandwidth. The monitored data of re-

sources is collected by status collector and can be used for resource provisioning and op-

timization. Microservice management platform, Docker Swarm, is responsible for man-

aging service images, monitoring service resource utilization and managing the service

life cycles. Other Docker APIs can also be used to run operations on services.

Based on the two management platforms for cloud resources and services, SA (Self-

Adaptive) controller is designed to manage and monitor both of them to achieve the

multiple level resource scheduling. When requests are submitted to the system, like in-

teractive workloads or batch workloads, the resource allocator in SA controller manages

cloud resource management platform and service management platform simultaneously

to accept and process requests by providing the requested amount of resources. Apart

from allocating resources to requests, the resource allocator can also optimize resource

utilization. For instance, brownout can be triggered to deactivate optional microservices

to reduce resource utilization. The service provider can also configure the available re-

source scheduling policies for the energy efficiency purpose.

To provision and optimize the resources by means of resource allocator, the resource

monitor needs to collect the resource usage at different levels, including services utiliza-

tion, VMs utilization, and hosts utilization. To minimize the overheads of frequently

monitored data collection, the collection time intervals should be well configured by the

service provider. For instance, the brownout mechanism can be checked every five min-

utes as the brownout costs are not high, while the VM migration and host scaling opera-

tions can be executed with longer time intervals, e.g. one hour.

In the following subsections, we introduce the implementation of our prototype sys-

tem in details.
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7.6.1 Implementation

Figure 7.3: System architecture and underlying software components of prototype system

To implement our prototype system, we take advantage of the OpenStack cloud re-

source management platform and Docker Swarm service management platform. The

system is implemented with Java, OpenStack, Docker Swarm, Ansible, Eaton Power Dis-

tribution Units (ePDU) API. Our prototype system uses these open source tools to pro-
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vide a self-adaptive approach to optimize, manage and provision resources for different

types of workloads.

OpenStack platform is used to manage hosts and VMs. The hosts in OpenStack are

called compute nodes and are running with Nova Compute Node component to con-

nect the hypervisor and OpenStack controller. VMs are managed by Nova API to create,

migrate and remove VM instances. The Neutron OVS Agent and OpenVSwitch are pro-

viding services related to the network.

Docker Swarm Platform manages the service provided by service providers. The

images of services are stored in the service repository component, which can fetch the

images from remote to local. The services are managed by the service manager via Docker

APIs, including creation and deletion. The status of services are monitored by a service

monitor where we monitor service utilization and liveness.

Our prototype system is based on these services to manage the resources and ser-

vices to handle the requests. Below, we introduce the details of the components in our

prototype.

Resource Allocator: It interacts with OpenStack controller via OpenStack APIs and

Docker Swarm Controller via Docker APIs. It manages the physical resources on com-

pute nodes, and these physical resources can be used for creating and deploying VMs on

the nodes. Resource Manager knows the amount of resource that is used or remaining on

each compute node, like the the number of cores, memory, and storage. When creating

a VM instance, it can also specify the instance capacity (CPU, memory, operation system

and etc.) as well as other information related to VMs, such as location, images of VMs

and IP address. The virtual network in a compute node is also managed by Resource

Manager that uses the Neutron component, which is deployed on each compute node.

Resource Monitor: It is used to monitor the running status of the whole system from

different levels, including hosts, VMs and services. We use OpenStack Ceilometer and

Gnocchi components to measure the data at the host and VM level. Ceilometer is re-

sponsible for monitoring the utilization of resources of VMs and then sends the collected

data to Gnocchi to aggregate the data for all the hosts. We use Docker APIs to collect the

resource utilization of services deployed on VMs. Apart from monitoring the resource

utilization, we also use ePDU APIs to monitor the power consumption of hosts. With
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these monitored data, other components, like Power Estimator and Policy Manager can

use these data to make decisions, which will be introduced later.

Application Scheduler: We design our main controls in the application scheduler

component. When requests are submitted by users, the application scheduler decides

which requests in the batch workloads should be deferred, which microservice should be

temporarily deactivated by brownout mechanism, which VM should be migrated to an-

other host and which host should be switched to the low power mode. With the retrieved

data from the Resource Monitor component, these decisions are made with the policies

in the Policy Manager. After the decisions are made, Resource Provisioner exploits Re-

source Manager to allocate the resources to VMs, services, and requests.

Power Consumption Estimator: To achieve our objective of managing energy and

support our scheduling policies, we have a power consumption estimator to predict the

power consumption at a specific time period. For example, for the batch workloads,

we proposed a deferring algorithm, thus we need to estimate the power consumption

at the deferred time period to calibrate our algorithm. We use the workloads model

shown in Equation 7.7 to estimate the workloads and then convert it to the total energy

consumption based on the model in [96].

Policy Manager: It contains the implemented scheduling policies in our prototype,

including Algorithms 7.1 to 7.4.The Policy Manager component uses the retrieved data

from Resource Monitor, and makes decisions based on system status. For example, a VM

is migrated from an underutilized host to other hosts, thus the idle host can be switched

to the low power mode to save power consumption; when the renewable energy is not

sufficient and the system is overloaded, to ensure the QoS of service, brownout can be

triggered to relieve the overloaded situation. The customized workloads processing pol-

icy, VM migration policy and host scaling policy can also be implemented for the policy

manager.

ePDU API: Eaton Power Distribution Units (ePDU) 4 is an effective power manage-

ment and monitoring device. It has outlets that electric devices can be connected to it. It

also provides the features to read the power consumption of hosts as well as turn on/off

the outlets remotely. We implemented Python scripts based on ePDU APIs to read the

4https://powerquality.eaton.com/ePDUG3/
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Table 7.3: Machines specification

Machine CPU Cores Memory Storage Idle Power Full Power
3 × IBM X3500 M4 2 GHz 12 64 GB 2.9 TB 153 Watts 230 Watts
4 × IBM X3200 M3 2.8 GHz 4 16 GB 199 GB 60 Watts 150 Watts

2 × Dell OptiPlex 990 3.4 GHz 4 8 GB 399 GB 26 Watts 106 Watts

power data at per second rate to support part of the functions in Resource Monitor. Our

scripts can also operate the hosts remotely by turning on/off the power supply to hosts

to support the decision in Policy Manager. For example, a host needs to be scaled out if

the whole system is underutilized; or hosts should be scaled in to support more requests.

Renewable Energy Predictor: For supporting our renewable energy experiments,

we implement a renewable energy predictor that predicts the renewable energy at Mel-

bourne city based on the historical data. Our current renewable energy predictor is based

on the support vector machine. As introduced in Section 7.5.5, our SVM models show

that it can achieve a high accuracy. The data based on this component can also be in-

corporated into the scheduling policy. In our current implementation, we consider five

attributes that introduced in Section 7.5.5 as inputs, more attributes can be considered as

a customized renewable energy predictor.

7.7 Performance Evaluation

7.7.1 Environmental Settings

Hardware: We utilize a micro data center of Melbourne CLOUDS lab as our testbed. Our

data center is consist of 9 heterogeneous servers. Table 7.3 shows the capacity specifica-

tion of the servers and their energy consumption information. To monitor the power con-

sumption of individual machines, we use two Eaton EMAB03 vertical managed enclosure

Power Distribution Units (ePDUs) and all the servers are connected to them. Apart from

the power monitor, Eaton ePDUs also enable us to switch on/off power outlets connected

with individual server remotely through the network. Figure 7.4 shows the servers and

ePDUs of our testbed. The total maximum power of the IT equipment in our system is

1.27 KWh for 8 hosts (one IBM X3500 M4 machine is regarded as the OpenStack control

node and is not considered).
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We assume our system is equipped with 1.63 KWh PV panel, which has 30% more

power than the hosts, as the cooling part normally consumes about 20% to 30% of server

energy if the target temperature is 25 degree [96]. We consider to control the data center

temperature as 25 degree, according to Equation 7.3, Tsup = 25, then we get CoP(Tsup) =

0.211. In the following experiments, we use this value to compute the power from the

cooling equipment, e.g. if the hosts consume 10 kWh, then the cooling part is 2.11 kWh.

Figure 7.4: Testbed

Software: The operating systems of the servers are CentOS Linux Distribution. We

use OpenStack [15] to support our cloud platform and manage the VMs. One of our most

powerful machines is selected as our controller node, and other nodes are acting in the

same role. In VM instances, we deploy Docker [55] containers to provide services in the

form of microservices and use Docker Swarm to manage the containers cluster. Some
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other required software, like Java, Ansible are also installed in the VMs.

7.7.2 Workload

To make the experiments as realistic as possible, we use real traces from Wikipedia and

Facebook. For the interactive workloads, we use the real trace from Wikipedia requests

on 2007 October 17 to replay the workload of Wikipedia users. The trace includes data on

requests time stamp and their accessed pages. We filter the requests based on per second

rate and generate the requests rate. The original request rate is around 1,500- 3,000 per

second.

For the batch workloads, we use the traces collected in October 2009 by Facebook

for applications that are executed under Hadoop environment5. Referring to [66], we

configure the map phase of each job takes 25-13000 seconds, and the reduce phase takes

15-2600 seconds. The deadline for processing jobs is generated based on uniform distri-

bution with µ = 6 hours and σ = 1 hour in N(µ, σ2). We also assume the workloads

consume the maximum of cluster utilization as 27% as same as in [66].

7.7.3 Application

We use the Weave Shop6 web application that implemented with containers as the ap-

plication in our scenario. The Weave Shop is a shopping system for selling socks online

and has multiple microservices, including user microservice to handle user login, user

database microservice for user information storage, payment microservice to process

transactions, font-end microservice to show the user interface, catalog microservice for

managing item for sale and etc. As these microservices are implemented independently,

they can be deployed and controlled without impacting other microservices. The appli-

cation is deployed by a configuration file, and part of the microservices are configured as

optional, e.g. recommendation engine.

5https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
6See https://github.com/microservices-demo/microservices-demo for more details.
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7.7.4 Results

To evaluate the benefits of our proposed approach for renewable energy usage, we per-

form the comparison of our proposed approach (SA) and a baseline algorithm (HS),

which applies VM consolidation [35] and host scaling [143] that dynamically adds/removes

hosts in system, while the green-aware scheduling algorithm in our proposed approach

is not applied.

Figure 7.5: Results of baseline

Figure 7.5 shows the baseline energy consumption of interactive workloads, batch

workloads and cooling during the observed time period (one day). The blue line shows

the predicted solar energy based on our SVM model. The system is consuming brown

energy at night time from 0:00 to 6:00 and 18:00 to 24:00. The solar energy is available

at day time during hours 7:00 to 17:00. Even with taking advantage of VM consolidation

and host scaling, the solar energy consumption of the system is not fully utilized. For

example, at hour 9:00, the total energy consumption of system is about 1000 Watts, while

the available solar energy is more than 1300 Watts.

Figure 7.6 demonstrates the energy consumption of our proposed approach by using

Algorithms 7.1 to 7.4. We can observe that the power consumption of the batch work-
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Figure 7.6: Results of proposed approach

loads during 0:00 to 6:00 has been reduced, which results from the deferring operations:

batch workloads are deferred to the time when solar energy is available, e.g. hour 8:00.

If the deadline of these workloads is before the end time the solar energy. Some batch

workloads are still executed during hours from 0:00 to 6:00 due to the deadline con-

straints, which cannot be deferred to the time when renewable energy is available. Thus,

we can find that the brown energy usage during 0:00 to 6:00 has been reduced compared

in Figure 7.5. For example, at hour 1:00, the total power is reduced from 1221 to 882

Watts.

During the time when solar energy is available, our proposed approach has improved

the usage of renewable energy, in which the energy consumption follows the line the

of predicted renewable energy. For instance, at hour 8:00, the usage of solar energy is

increased from 1238 Wh to 1345 Wh. During the hours 14:00 and 15:00, the system cannot

utilize the full renewable energy because of the maximum IT equipment power.

We can also note that the power consumption during the time when brown energy is

the only source of power supply, the energy is also reduced, which exploits the brownout

mechanism to reduce the energy consumption. For instance, the power at hour 18:00 is

decreased from 1391 Watts to 1195 Watts.
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Combing the results in Figures 7.5 and 7.6, we conclude that our proposed approach

can improve the usage of renewable energy and reduce the usage of brown energy.

Figure 7.7: Response time of proposed approach

The average response time and CDF response time for interactive workloads in our

proposed approach are demonstrated in Figure 7.7. The overall measured response time

is 403 ms. The results also show that 95% of requests are responded in 900 ms, and 99%

of requests are responded within 1 second. It shows that our proposed approach reduces

brown energy usage while ensuring the QoS. The reason is that the brownout approach

can relieve the overloaded situation, thus ensuring the response time.

To illustrate the reason of power reduction by our proposed approach, Figure 7.8

compares the active hosts during the observed time period between the baseline and our

proposed approach, as switching the idle hosts into the low power mode is the most

effective way to save power. The results demonstrate that our proposed approach uses

fewer hosts during the time period when renewable energy is not sufficient, e.g. hours

from 0:00 to 7:00 and 17:00 to 24:00, while when the renewable energy is available, more

hosts are scaled in to utilize more renewable energy, such as the time from 7:00 to 12:00.

In this way, the power of all the active hosts is reduced.

Figure 7.9 demonstrates the comparison of brown and renewable energy usage. Dur-
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Figure 7.8: Comparison of number of active hosts

Figure 7.9: Comparison of different types of power usage

ing the night time (0:00 to 6:00 and 18:00 to 24:00), both approaches only use brown

energy. Benefiting from proposed algorithms, our approach reduces the brown energy

usage by 14%. During the daytime (7:00 to 17:00), both renewable energy and brown en-
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ergy are used in two approaches. Our proposed approach consumes more total energy in

the day time, while it uses 7% more renewable energy than the baseline from 12.9 KWh

to 13.9 KWh, and brown energy usage is reduced by 43% from 1.4 KWh to 0.9 KWh.

In summary, experiments show that our proposed approach SA can improve the re-

newable energy usage for both interactive and batch workloads by applying brownout

mechanism and deferring the execution of batch workloads. The brown energy usage is

reduced 17%, and the renewable energy usage is improved 13%. Our proposed approach

can switch more machines into low power mode when renewable energy is not sufficient

while the QoS of workloads are also ensured.

7.8 Summary

The increased adoption of cloud computing and rapid growth in the deployment of data

centers lead to the huge energy consumption issue. This needs a management platform

which can manage the applications and energy in cloud data centers. Our self-adaptive

approach for managing applications and harnessing renewable energy brings up many

opportunities to optimize the energy efficiency problem in cloud computing environ-

ment. In this chapter, we proposed a multiple layer perspective model for interactive and

batch workloads by considering renewable energy. We also introduced a self-adaptive

and renewable energy-aware approach deriving from the perspective model. The pro-

posed approach improves the usage of renewable energy and reduces the usage of brown

energy while ensuring the QoS requirement of workloads. We proposed a solar radiation

prediction method based on SVM to predict the solar power at Melbourne. The predic-

tion method is integrated into our proposed approach. We apply brownout mechanism to

dynamically deactivate/activate optional components in the system for interactive work-

loads and use a deferring algorithm to defer the execution of batch workloads to the time

when renewable energy is available. VM consolidation and host scaling are also applied

to reduce the number of active hosts.

We developed a prototype system to evaluate the performance of our proposed ap-

proach. In the prototype system, the physical resources are managed by OpenStack and

the services are managed by Docker Swarm. We take advantage of the APIs from these
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platforms to monitor, manage, and provision the resources to services. The effective-

ness of our proposed approach is showed through the experiments evaluation, including

the workloads from real traces. The results show that our proposed approach is able to

improve the usage of renewable energy while satisfying the constraints of workloads.





Chapter 8

Conclusions and Future Directions

This chapter provides a summary of research contributions on brownout-based approaches for en-

ergy efficient data centers. The summary of research outcomes and working experience extend the

state-of-art energy efficient management for cloud data centers and also identify the challenges and

future directions in the related area.

8.1 Summary of Contributions

Cloud computing is providing a paradigm for dynamically provisioning resources and

delivering computing for applications as utility services as a pay-as-you-go basis. Providers

like Amazon, Microsoft, IBM and Google have established data centers to support cloud

applications around the world, and aimed to ensure that their services are flexible and

suitable for the needs of the end-users.

However, energy consumed by the cloud data centers has currently become one of

the major problems for the computing industry, since a typical data center can consume

the energy as much as the power consumed by 25,000 households [48]. The growth and

development of complex data-driven applications have promulgated the creation of huge

data centers, which heightens the energy consumption. The energy consumed by servers

constitutes more than half of total power consumption. The servers hosted in data centers

dissipate more heat and need to be maintained in a fully air-conditioned and engineered

environment. The carbon emissions caused by data centers also have impacts on the

environment. Hence, reducing server energy consumption has become a significant topic

in the IT industry.

It is an essential requirement for Cloud providers to reduce energy consumption, as

it can both decrease operational costs and improve system reliability. Data centers can
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consume from 10 to 100 times more power per square foot than a typical office building.

A large body of literature has focused on reducing energy consumption in cloud data

centers, and the dominant categories for solving this problem are VM consolidation and

Dynamic Voltage Frequency Scaling (DVFS). However, both of these approaches cannot

function efficiently when the whole data center is overloaded.

One major reason of high energy consumption in cloud data centers is due to the in-

efficient resource utilization by application on servers. To utilize infrastructure resources

in a more efficient manner, microservices are currently applied to build applications .

Microservices are also referred to as a set of self-contained application components. The

components encapsulate its logic and expose its functionality via interfaces to make them

flexible to be deployed and replaced. With microservices or components, developers

and user can benefit from their technological heterogeneity, resilience, scalability, ease of

deployment, organizational alignment, composability and optimization for replicability,

which can also achieve a more fine-grained control over the application resource usage.

A novel approach for managing resource usage in cloud computing systems is brownout,

which was firstly introduced to cloud computing systems in 2014. In the field of brownout,

the applications/services are extended to have two parts: mandatory and optional. The

mandatory parts are desired to keep running all the time, such as the critical services

in the systems including data-relevant services. The optional parts, on the other hand,

are not necessary to be always active and can be deactivated temporarily to ensure the

system performance in the case of flash crowds.

In this thesis, we have conducted a comprehensive literature review, proposed novel

brownout-based approaches, and implemented prototype system to improve the state-

of-art in these fields. Specifically, Chapter 1 introduced the background of the cloud

computing system and why brownout is needed. Then the objectives of this thesis are

summarized along with the research contributions.

Chapter 2 presented a review and taxonomy of brownout-based adaptive resources

and applications management for cloud computing systems. The taxonomy is classified

according to 5 phases: (1) application design, (2) workload scheduling, (3) monitoring,

(4) brownout controller/dimmer design and (5) metrics. The taxonomy of each phase is

summarized based on the different classification of brownout approaches. The review
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of existing brownout approaches is presented to identify the categories of each article

and discuss the merits and limitations of articles. Furthermore, the comparison of the

advantages and limitations of the surveyed brownout approaches are also made.

Chapter 3 to 7 focused on the specific brownout-based approaches to manage data

center energy consumption. Chapter 3 proposed a scheduling algorithm for application

components with brownout to balance the energy consumption and discount given to

user. Chapter 4 presented a meta-heuristic algorithm based Markov Decision Process to

select application components to improve the trade-offs between energy consumption

and discount. Chapter 5 investigated an approach based on brownout and containers to

save power consumption while ensuring QoS. Chapter 6 introduced a prototype system

based on Docker Swarm to support brownout and evaluated its performance. Chapter 7

presented a self-adaptive approach for managing applications and renewable energy in

sustainable cloud data centers.

Chapter 3 proposed the brownout enabled system model by taking application com-

ponents into account. The application components can be either mandatory or optional

based on the configurations of service provider. In the model, the brownout controller

can dynamically disable/enable the optional components to reduce data center energy

consumption. Meanwhile, the discount will be offered to users since functions are not

fully provided. A brownout enabled algorithm as well as a number of policies to select

components and investigate their effects on energy consumption and offered discount.

Chapter 4 introduced the brownout system model by deactivating optional compo-

nents in applications or microservices temporarily. An algorithm based on brownout and

approximate Markov Decision Process namely BMDP, to find the components should be

deactivated was also proposed. The simulations based on real trace showed that BMDP

can achieve better performance in energy and discount compared with baselines.

Chapter 5 presented a brownout-based architecture by deactivating optional contain-

ers in applications or microservices temporarily to reduce energy consumption. Under

this architecture, an integrated approach to manage energy and brownout in container-

based clouds was introduced. In addition, several policies to find suitable containers to

deactivate were evaluated in a prototype system. The results showed that better perfor-

mance can be achieved in energy consumption, response time and SLA violations than
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baselines.

Chapter 6 proposed the design and development of a software system based on brownout

and containers for energy-efficient clouds, called BrownoutCon, which is a transparent

system based on Docker Swarm for containers management and does not require to mod-

ify the default configurations of Docker Swarm via using its APIs. BrownoutCon can be

customized for implementing brownout-based algorithms, which dynamically activates

or deactivates containers to handle overloads and reduce energy consumption. The ex-

periments conducted on Grid’5000 infrastructure showed that the brownout-based algo-

rithms in BrownoutCon are able to reduce energy consumption while ensuring QoS.

Chapter 7 presented a multiple layer perspective model for both interactive and batch

workloads by utilizing renewable energy to reduce carbon footprint. A self-adaptive

approach derived from the perspective model was also proposed. The evaluations under

our developed prototype system demonstrate that the proposed approach can improve

the usage of renewable energy and reduce the usage of brown energy.

8.2 Future Directions

Although the significant progress of applying brownout to cloud computing systems

has been achieved and adaptive management of resources and applications is improved,

there are still some research gaps and challenges in this area to be further explored. This

section provides some insights into some research gaps and promising future directions

to broad the scenarios of brownout-based approaches and improve the resource manage-

ment for cloud data centers.

8.2.1 Managing Different Resource Types

Managing multiple types of resources coordinately for cloud computing systems is im-

portant to maximize the resource usage. For resource management with brownout, cur-

rent work mostly focus on the management of computation resources. More resource

types, like memory, network and storage, need to be considered as parameters to form

more comprehensive resource management. For example, brownout approach can be

applied to manage data-intensive applications. By considering different resource types,
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more accurate energy model can also be modeled. The dimmer value based on multiple

types of resources can also be calculated instead of computation resource only.

8.2.2 Exploring More Optimization Goals and Scenarios

Investigating into more diverse optimization goals can enhance the applicability of the

brownout-based approach. Brownout has been applied to optimization goals including

load balancing and energy efficiency. Besides these optimization goals, other goals such

as more complicated cost-aware resource scheduling scenario, and more QoS metrics can

be applied with brownout. Additionally, more scenarios, such as sustainable cloud com-

puting systems with brownout can be investigated to reduce carbon emissions. Applying

renewable energy is also an attractive scenario.

8.2.3 Developing Standard Benchmark

It is required to have a benchmark to test the performance of the new algorithm and com-

pare it with other approaches having the same optimization objective. With the standard

benchmark, the performance of proposed algorithms can be easily compared. Presently,

there is a lack of the standard benchmark for performance evaluation of brownout-based

approaches. Different workloads have been applied in articles, thus, it is still hard to com-

pare the performance of different algorithms. The potential benchmarks can be derived

from Facebook for batch workloads and Wikipedia for interactive workloads.

8.2.4 Investigating Distributed Controllers

Scalability should be considered when designing a resource scheduling approach, which

supports to handle the increased number of requests in a smooth way. The centralized

controller can be the bottleneck of the whole system, and scalability of the brownout

controller can be improved by using distributed controllers. Therefore, distributed con-

trollers design can be investigated. In distributed controllers, the dimmer values can be

computed as varied values rather than a same dimmer value for all the controllers.
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8.2.5 Integration with Machine Learning Techniques

The decision time and execution time of brownout-based algorithm to find the optional

parts to be deactivated can be reduced by using machine learning methods. For exam-

ple, based on response time constraints, requests can be clustered by machine learning

algorithms (K-means) for further execution on the same type of machines to improve re-

source usage. Theory contributions are required in the related areas. The overhead and

runtime complexity of heuristic and meta-heuristic approaches are not discussed in our

surveyed works, which should be investigated.

8.2.6 New Cost Models

Service providers will be interested in integrated cost models. The existing cost models

could be improved by considering more parameters, like electricity costs, budget, cooling

costs and carbon emissions. Based on the cost models, the service provide can optimize

their resource provisioning and maximize their profits. A more fine-grained cost model

of brownout mechanism can also be investigated, such as the energy and time costs of

the brownout activation/deactivation operations, and energy consumption of turning

on/off servers.

8.2.7 Integration with Container Systems

Containers have provided a flexible ability to provide services with isolated function,

and their quick start and stop operations enable brownout approach to work efficiently.

Therefore, integrating brownout and containers is a promising direction to improve schedul-

ing performance. The mature containers management platforms, like Apache Mesos,

Kubernetes and Docker Swarm can be applied.

8.2.8 Applying Brownout with Other Application Models

As current works primarily focused on web applications, it is important to explore how

brownout approaches can be applied in other application composition models such as

Map-Reduce, bag of tasks application, and stream processing.
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8.2.9 Integration with Existing Energy Efficient Approaches

It has been evaluated that brownout can be combined with VM consolidation to achieve

better resource management effects. It is reasonable to expect better results when com-

bining brownout with other existing energy efficiency techniques, such as DVFS. Some

work based on the software-defined network (SDN) are optimizing energy consumption

from network traffics perspective, which can also be combined with brownout, such as

when the traffics are under the overloaded situation.

8.2.10 Shifting Workloads in Different Time Zones

Instead of considering a single data center, brownout approach for cloud computing sys-

tems can be extended to multiple data centers in different time zones. The knowledge

pool in the perspective model can be used for tracking availability of the system when

the system is scaled. In different time zones, the availability and amount of renewable

energy can be varied. In the night, shifting the workloads to other time zones that have

renewable energy can improve the usage of renewable energy and reduce the carbon

footprint in the global view. The electricity costs in geographical data centers can also be

considered to determine the workloads shift, thus the costs can also be optimized.

8.2.11 Integration with Fog/Edge Computing

Fog computing extends the cloud services to the edge of networks. The application de-

sign for Fog environment should leverage the real-time response from edge devices and

use sufficient resources from the cloud simultaneously. In some fog computing appli-

cations, such as health monitoring and emergency response that require low latency, the

delay that is caused by transferring data between the cloud and fog application can cause

serious influence on their performance, such as no response at all. The brownout ap-

proach can be applied to reduce latency when there are network congestions. In addition,

it is most likely that IoT/Edge devices have power constraints like the battery powered

ones or may need to harness renewable energy like solar power, so the energy should be

used efficiently. The brownout approach can support to optimize the energy usage for

these devices by temporarily deactivating some optional application components.
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8.3 Final Remarks

Cloud data centers are featured with the attractive characteristics of cloud computing,

however, the energy consumption is a major concern for the IT industry. In this thesis,

we investigated an approach called brownout to complement the existing approaches to

reduce the energy consumption of cloud data centers. It proposed the architecture to en-

able brownout approach for cloud computing systems, algorithms for reducing energy

while ensuring QoS, and prototype system to evaluate performance. The research out-

come of this thesis is guidance to apply brownout to save power consumption of cloud

data centers and investigate brownout in more scenarios for future directions.
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Rodriguez, E. Elmroth, and K.-E. Årzén, “Control-theoretical load-balancing for

cloud applications with brownout,” in Proceedings of the 2014 IEEE 53rd Annual Con-

ference on Decision and Control, 2014, pp. 5320–5327.

[59] A. EC2. (2018) Amazon web services. [Online]. Available: https:

//aws.amazon.com/ec2/

[60] T. Everts. (2016) Google: 53than 3 seconds to load. [Online]. Available:

https://www.soasta.com/blog/google-mobile-web-performance-study/

[61] Q. Fang, J. Wang, and Q. Gong, “Qos-driven power management of data centers via

model predictive control,” IEEE Transactions on Automation Science and Engineering,

vol. 13, no. 4, pp. 1557–1566, Oct 2016.

[62] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Virtual machine con-

solidation in cloud data centers using aco metaheuristic,” in Proceedings of the Euro-

pean Conference on Parallel Processing. Springer, 2014, pp. 306–317.

[63] K. Gai, M. Qiu, and H. 2hao, “Energy-aware task assignment for mobile cyber-

enabled applications in heterogeneous cloud computing,” Journal of Parallel and

Distributed Computing, vol. 111, pp. 126–135, 2018.

[64] K. Gai, M. Qiu, and H. Zhao, “Cost-aware multimedia data allocation for heteroge-

neous memory using genetic algorithm in cloud computing,” IEEE Transactions on

Cloud Computing, 2016.

[65] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware cloudlet-

based mobile cloud computing model for green computing,” Journal of Network and

Computer Applications, vol. 59, pp. 46–54, 2016.

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.soasta.com/blog/google-mobile-web-performance-study/


198 BIBLIOGRAPHY
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