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ABSTRACT

The Storage Exchange is a new platform allowing storage to be treated as a

tradeable resource. Organisations with varying storage requirements can use the

Storage Exchange platform to trade and exchange storage services. Organisations

have the ability to federate their storage, be-it dedicated or scavenged and advertise

it to a global storage market.

This thesis provides a detailed account of the Storage Exchange and presents

three main contributions in the field of distributed storage and the process required

to realise a global storage utility. The first is a taxonomy of distributed storage

systems covering a wide array of topics from the past and present. The second

contribution involves proposing and developing the Storage Exchange, a global

trading platform for distributed storage services. The development of the Storage

Exchange platform identifies challenges and the necessary work required to make

the global trading and sharing of distributed storage services possible.

The third and final contribution consists of proposing and evaluating Double

Auction clearing algorithms which allow goods with indivisible demand constraints

to be allocated in polynomial time. The process of optimally clearing goods of this

nature in a Double Auction normally requires solving an NP-hard problem and is

thus considered computationally intractable.
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Chapter 1

INTRODUCTION

This chapter begins by introducing areas of research relevant to the work presented

in this thesis. It discusses how aspects of distributed storage, grid computing and

autonomic computing intersect and form the basis for the Storage Exchange, a

globally distributed storage trading platform. This is followed by a discussion of

the underlying motivating factors and primary contributions made. This chapter

concludes with a discussion on the organisation of the remainder of the thesis.

1.1 Background Research

Storage plays a fundamental role in computing, a key element, ever present from

registers and RAM to hard-drives and optical drives. Functionally, storage may

service a range of requirements, from caching (expensive, volatile and fast) to archival

(inexpensive, persistent and slow). Combining storage with networking has created

a platform with endless possibilities allowing Distributed Storage Systems (DSSs)

to adopt vast and varied roles, well beyond data storage.

Networking infrastructure and distributed storage systems share a close rela-

tionship. Advances in networking are typically followed by new distributed storage

systems, which better utilise the network’s capability. To illustrate, when networks

evolved from primarily being private Local Area Networks (LANs) to public global

Wide Area Networks (WANs) such as the Internet, a whole new generation of DSSs

emerged, capable of servicing a global audience. The Internet has proven to be a

source of many exciting and innovative applications and has enabled users to share

and exchange resources across geographic boundaries. Terms such as pervasive,

ubiquitous and federate were coined and heralded the rise of Grid Computing [108],

which focuses on addressing the challenges associated with coordinating and sharing

1



2 Chapter 1. INTRODUCTION

heterogeneous resources across multiple geographic and administrative domains [53].

One of these challenges is data management, whose requirements led to the Data

Grid [22]. Other issues concerning managing globally distributed data include

providing a standard uniform interface across a heterogeneous set of systems [106],

coordinating and processing of data [144] and managing necessary meta-data [73].

Distributed systems designed to successfully operate on the Internet are faced

with many obstacles such as longer delays, unreliability, unpredictable and poten-

tially malicious behaviour, associated with operating in a public shared environment.

To cope with this, innovative architectures and algorithms have been proposed and

developed, providing a stream of improvements to security, consistency and routing.

As systems continue to advance, they increase in complexity and the expertise

required to operate them [72]. Unfortunately, the continuing increase in complexity

is unsustainable and ultimately limited by human cognitive capacity [134]. To

address this problem, the Autonomic Computing [80] initiative has emerged aiming

to simplify and automate the management of large scale complex systems.

1.2 Autonomic Storage Management

Distributed Storage Systems are rapidly evolving into complex systems, requiring

increasingly more resources to be spent on maintenance and administration. The

problem has been recognised by industry, where as much as 90% spent of the

storage budget is allocated to its management [136]. This makes distributed storage

systems a primary candidate for Autonomic Computing, which can be used to

simplify and reduce the effort spent on maintenance and administration. One way

to autonomically manage resource allocation in computer systems is through the use

of economic principles [15]. Based on these principles we propose a platform capable

of trading and automatically allocating distributed storage services.

Let us imagine a global storage marketplace, allowing storage to be traded much

like any other service. Consumers are able to purchase storage services without being

concerned about the underlying complexities. From the consumer’s perspective

this greatly simplifies the process of acquiring storage services. A process that
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involves selecting hardware, configuration and continuous maintenance is simplified

to recognising a need for storage and setting a budget. The problem of finding a

suitable storage service and maintenance becomes the platform’s responsibility. The

work presented in this thesis provides an important step towards realising this ideal

and proposes the Storage Exchange platform.

The Storage Exchange allows distributed storage to be treated as a tradeable

resource. Organisations with varying storage requirements can use the Storage

Exchange platform to trade and exchange storage services. Organisations have the

ability to federate their storage, be-it dedicated or scavenged and advertise it to a

global storage market. The centre piece of the Storage Exchange is its market model,

which is responsible for automatically allocating trades based upon consumer and

provider requirements. We envisage the Storage Exchange platform could be further

automated by extending brokers to apply multi-agent [122] principles to purchase or

lease storage in an autonomic manner. The ultimate goal being a platform capable

of autonomic management of distributed storage services.

1.3 Significance and Motivation

In this section we discuss the factors motivating our research and the significant

possibilities which arise from realising the Storage Exchange. The Storage Exchange

platform can be used in a collaborative manner, where participants exchange services

for credits, or alternatively in an open marketplace where enterprises trade storage

services. Whether in a collaborative or enterprise environment, the incentives for an

organisation to use our Storage Exchange platform include:

1. Monetary Gain: Organisations providing storage services (Providers) are able

to better utilise existing storage infrastructure in exchange for monetary gain.

Organisations consuming these storage services (Consumers) have the ability

to negotiate for storage services as they require them, without needing to incur

the costs associated with purchasing and maintaining storage hardware.

2. Common Objectives: There may be organisations who may wish to exchange
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storage services as they may have a mutual goal such as preservation of

information [26].

3. Spikes in Storage Requirements: Research organisations may require tempo-

rary access to mass storage [143] (e.g. temporarily store data generated from

scientific experiments) and in exchange may provide access to their storage

services.

4. Economies of Scale: Consumers are able to acquire cheaper distributed storage

services from providers dedicated to selling large quantities of storage, rather

than building in-house storage solutions.

5. Donate: Organisations may wish to donate storage services, particularly if

these services will assist a noble cause.

6. Autonomic Storage Management: Future brokers will trade based upon an

organisation’s storage requirements and budget, simplifying storage manage-

ment.

The Storage Exchange is a dynamic platform which can be applied in many

different ways whilst providing organisations with incentives to participate. This

thesis discusses the design of the Storage Exchange, including an investigation of the

Double Auction market model and a computationally practical clearing algorithm.

1.4 Contribution

This thesis makes three key contributions towards the understanding of distributed

storage systems and by applying market principles, moves closer towards a storage

utility. These include:

1. A taxonomy of distributed storage systems, discussing key topics affecting

the design and development of distributed storage systems. Topics covered

by the taxonomy include functionality, architecture, operating environment,

usage patterns, autonomic management, federation, consistency and routing.
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The taxonomy is followed by a survey of distributed storage systems serving to

exemplify classifications made in our taxonomy. The taxonomy also identifies

challenges facing distributed storage systems and relevant research.

2. The design and development of the Storage Exchange, an innovative platform

allowing storage services to be traded across a global environment. Organ-

isations with varying storage requirements can use the Storage Exchange

platform to trade and exchange services. As a provider, an organisation has

the ability to harness unused storage on their workstations and advertise it to

a global market, better utilising their existing storage infrastructure. From

a consumer’s perspective, organisations seeking storage services can do so

without incurring the initial expense and labour associated with maintaining

their own storage infrastructure.

3. A set of unique clearing algorithms enabling goods with multiple attributes

and divisible constraints to be cleared in polynomial time under a sealed

Double Auction market model. The process of optimally clearing goods of this

nature in a Double Auction model is computationally intractable, requiring

solving an NP-hard optimisation problem [79]. Clearing algorithms proposed

include Maximise Surplus, Optimise Utilisation and a hybrid scheme. These

are incorporated into the Storage Exchange and evaluated through the use of

simulations.

1.5 Thesis Organisation

The remainder of this thesis is organised as follows: Chapter 2 presents a taxonomy

of distributed storage systems, including a survey of distributed storage systems

which apply market principles to manage various facets of their operation. Chapter

3 is dedicated to the Storage Exchange, providing a system overview and details

of the architecture and design. Chapter 4 introduces and compares various auction

market models before presenting and evaluating Double Auction clearing algorithms,

allowing goods with multiple attributes and divisible constraints to be cleared in
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polynomial time. We conclude and present ideas for future work in Chapter 5.

Core chapters of this thesis are based upon a technical report and a conference

paper, detailed below:

Chapter 2 is mostly derived from:

• Martin Placek and Rajkumar Buyya.
A Taxonomy of Distributed Storage Systems, Technical Report, GRIDS-TR-
2006-11, Grid Computing and Distributed Systems Laboratory, The University
of Melbourne, Australia, July 3, 2006.

Chapters 3 and 4 are partially derived from:

• Martin Placek and Rajkumar Buyya.
Storage Exchange: A Global Trading Platform for Storage Services. In
Proceedings of the Twelfth European Conference on Parallel Computing, Euro-
Par 2006, Dresden, Germany, 29 August - 1st September.



Chapter 2

DISTRIBUTED STORAGE SYSTEMS

This chapter presents a taxonomy of key topics affecting research and development

of distributed storage systems. The taxonomy shows distributed storage systems

to offer a wide array of functionality, employ architectures with varying degrees of

centralisation and operate across environments with varying trust and scalability.

Furthermore, taxonomies on autonomic management, federation, consistency and

routing provide an insight into the challenges faced by distributed storage systems

and the research carried out to overcome them. The chapter continues by providing

a survey of distributed storage systems which exemplify topics covered in the

taxonomy. Our focus then shifts to surveying distributed storage systems which

employ market models to manage various aspects of their operation. This chapter

concludes by summarising our discussion of distributed storage systems, which leads

to the proposal of the Storage Exchange, detailed in the next chapter.

2.1 Taxonomy of Distributed Storage Systems

We introduce each of the topics covered in our taxonomy and provide a brief insight

into the relevant research findings:

1. System Function (Section 2.1.1): A classification of DSS functionality uncovers

a wide array of behaviour, well beyond typical store and retrieve.

2. Storage Architecture (Section 2.1.2): We discuss various architectures em-

ployed by DSSs. Our investigation shows an evolution from centralised to the

more recently favoured decentralised approach.

3. Operating Environment (Section 2.1.3): We identify various categories of op-

erating environments and discuss how each influence design and architecture.

7
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4. Usage Patterns (Section 2.1.4): A discussion and classification of various

workloads experienced by DSSs. We observe that the operating environment

has a major influence on usage patterns.

5. Consistency (Section 2.1.5): Distributing, replicating and supporting con-

current access are factors which challenge consistency. We discuss various

approaches used to enforce consistency and the respective trade offs in

performance, availability and choice of architecture.

6. Security (Section 2.1.6): With attention turning towards applications operat-

ing on the Internet, establishing a secure system is a challenging task which is

made increasingly more difficult as DSSs adopt decentralised architectures.

Our investigation covers traditional mechanisms as well as more recent

approaches that have been developed for enforcing security in decentralised

architectures.

7. Autonomic Management (Section 2.1.7): Systems are increasing in complexity

at an unsustainable rate. Research into autonomic computing [80] aims

to overcome this dilemma by automating and abstracting away system

complexity, simplifying maintenance and administration.

8. Federation (Section 2.1.8): Many different formats and protocols are employed

to store and access data, creating a difficult environment in which to share

data and resources. Federation middleware aims to provide a single uniform

homogeneous interface to what would otherwise be a heterogeneous cocktail of

interfaces and protocols. Federation enables multiple institutions to share

services, fostering collaboration whilst helping to reduce effort otherwise

wasted on duplication.

9. Routing and Network Overlays (Section 2.1.9): This section discusses the

various routing methods employed by distributed storage systems. In our

investigation we find that the development of routing shares a close knit

relationship with the architecture; from a static approach as employed by
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Figure 2.1: system function taxonomy

client-server architectures to a dynamic and evolving approach as employed

by peer-to-peer.

2.1.1 System Function

In this section we identify categories of distributed storage systems (Figure 2.1).

The categories are based on application functional requirements. We identify the

following: (a) Archival, (b) General purpose Filesystem, (c) Publish/Share, (d)

Performance, (e) Federation Middleware and (f) Custom.

Systems which fall under the archival category provide the user with the ability to

backup and retrieve data. Consequently, their main objective is to provide persistent

non-volatile storage. Achieving reliability, even in the event of failure, supersedes all

other objectives and data replication is a key instrument in achieving this. Systems

in this category are rarely required to make updates, their workloads follow a write-

once and read-many pattern. Updates to an item are made possible by removing the

old item and creating a new item and whilst this may seem inefficient, it is adequate

for the expected workload. Having a write-once/read-many workload eliminates the

likelihood of any inconsistencies arising due to concurrent updates, hence systems

in this category either assume consistency or enforce a simple consistency model.

Examples of storage systems in this category include PAST [46] and CFS [32].

Systems in the general purpose filesystem category aim to provide the user with

persistent non-volatile storage with a filesystem like interface. This interface provides

a layer of transparency to the user and applications which access it. The storage
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behaves and thus complies to most, if not all, of the POSIX API standards [76]

allowing existing applications to utilise storage without the need for modification or

a re-build. Whilst systems in this category have ease of access advantage, enforcing

the level of consistency required of a POSIX compliant filesystem is a non-trivial

matter, often met with compromises. Systems which fall into this category include

NFS [121], Coda [124, 123], xFS [4], Farsite [2] and Ivy [97].

Unlike the previous two categories where the storage service aims to be persistent,

the publish/share category is somewhat volatile as the main objective is to provide

a capability to share or publish files. The volatility of storage is usually dependent

on the popularity of the file. This category of systems can be split into two further

categories: (i) Anonymity and Anti-censorship and (ii) File Sharing. Systems in the

anonymity and anti-censorship category focus on protecting user identity. While the

storage is volatile, it has mechanisms to protect files from being censored. Systems

in this category usually follow the strictest sense of peer-to-peer, avoiding any form

of centralisation (discussed in greater detail in Section 2.1.2). Examples of systems

which fall into this category include Free Haven [41], Freenet [24] and Publius [146].

The main objective for systems in the file sharing category is to provide the capability

to share files amongst users. The system most famous for doing so, Napster [102],

inspired the subsequent development of other systems in this category; Gnutella

[102], MojoNation [151] and Bittorrent [68] to name a few.

DSSs in the performance category are typically used by applications which

require a high level of performance. A large proportion of systems in this category

would be classified as Parallel File Systems (PFSs). PFSs typically operate within

a computer cluster, satisfying storage requirements of large I/O-intensive parallel

applications. Clusters comprise of nodes interconnected by a high bandwidth and

low latency network (e.g. Myrinet). These systems typically stripe data across

multiple nodes to aggregate bandwidth. It is common for systems in this category

to achieve speeds in the GB/sec bracket, speeds unattainable by other categories

of DSSs. Commercial systems use fibre channel or iSCSI to connect storage nodes

together to create a Storage Area Network (SAN), providing a high performance

storage service. To best utilise the high performance potential, DSSs in this
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category are specifically tuned to the application workload and provide an interface

which mimics a general purpose filesystem interface. However, a custom interface

(e.g. MPI-IO) that is more suited to parallel application development may also be

adopted. Systems which fall into this category include PPFS [77], Zebra [67], PVFS

[16], Lustre [13], GPFS [126], Frangipani [140], PIOUS [96] and Galley [99].

Global connectivity offered by the Internet allows institutions to integrate

vast arrays of storage systems. As each storage system has varying capabilities

and interfaces, the development of federation middleware is required to make

interoperation possible in a heterogeneous environment. Middleware in this category

is discussed in greater detail in Section 2.1.8. Systems which fall into this category

are not directly responsible for storing data, instead they are responsible for high-

level objectives such as cross domain security, providing a homogeneous interface,

managing replicas and the processing of data. Generally speaking, much of the

research into Data Grids [22, 73, 144, 7] is relevant to federation middleware.

Finally, the custom category has been created for storage systems that possess

a unique set of functional requirements. Systems in this category may fit into a

combination of the above system categories and exhibit unique behaviour. Google

File System (GFS) [57] and OceanStore [82, 109], are examples of such systems.

GFS has been built with a particular functional purpose which is reflected in its

design (Section 2.2.7). OceanStore aims to be a global storage utility, providing

many interfaces including a general purpose filesystem. To ensure scalability and

resilience in the event of failure, OceanStore employs peer-to-peer mechanisms to

distribute and archive data. Freeloader [143] combines storage scavenging and

striping, achieving good parallel bandwidth on shared resources. The array of

features offered by Freeloader, OceanStore and the purpose built GFS all exhibit

unique qualities and are consequently classified as custom.

2.1.2 Storage Architecture

In this section our focus turns to distributed storage system architectures. The

architecture determines the application’s operational boundaries, ultimately forging

behaviour and functionality. There are two main categories of architectures (Figure
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Figure 2.2: architecture taxonomy

2.2), client-server and peer-to-peer. The roles which an entity may embrace within

a client-server architecture are very clear, an entity may exclusively behave as either

a client or a server, but cannot be both [128]. On the contrary, participants within a

peer-to-peer architecture may adopt both a client and a server role. A peer-to-peer

architecture in its strictest sense is completely symmetrical, each entity is as capable

as the next. The rest of this section discusses both categories in greater detail.

A client-server based architecture revolves around the server providing a service

to requesting clients. This architecture has been widely adopted by distributed

storage systems past and present [121, 4, 95, 124, 140, 143, 57]. In a client-server

architecture, there is no ambiguity concerning who is in control, the server is the

central point, responsible for authentication, consistency, replication, backup and

servicing requesting clients. A client-server architecture may exhibit varying levels of

centralisation and we have identified two categories Globally Centralised and Locally

Centralised. A globally centralised architecture contains a single central entity

being the server, this results in a highly centralised architecture which has limited

scalability and is susceptible to failure. To alleviate problems associated with a single

central server, a locally centralised architecture distributes responsibilities across

multiple servers allowing these systems [4, 124, 140, 143, 57] to be more resilient to

outages, scale better and aggregate performance. However, even a locally centralised

architecture is inherently centralised, making it vulnerable to failure and scalability

bottlenecks. A client-server architecture is suited to a controlled environment, either

trusted or partially trusted (Section 2.1.3). Operating in a controlled environment

allows the focus to shift to performance, strong consistency and providing a POSIX

file I/O interface.
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To meet the challenges associated with operating in an ad-hoc untrusted

environment such as the Internet, a new generation of systems adopting a peer-

to-peer architecture have emerged. In a peer-to-peer architecture every node has

the potential to behave as a server and a client, and join and leave as they wish.

Routing continually adapts to what is an ever changing environment. Strengths

of the peer-to-peer approach include resilience to outages, high scalability and an

ability to service an unrestricted public user-base. These strengths vary depending

on the category of peer-to-peer a system adopts.

There are three main categories of peer-to-peer architectures, Globally Cen-

tralised, Locally Centralised and Pure Peer-to-Peer. Each of these categories have a

varying degree of centralisation, from being globally centralised to locally centralised

to having little or no centralisation with pure peer-to-peer. One of the early peer-

to-peer publishing packages, Napster [102] is an example of a system employing a

globally centralised architecture. Here, peers are required to contact a central server

containing details of other peers and respective files. Unfortunately, this reliance on

a globally central index server limits scalability and proves to be a Single Point of

Failure (SPF).

Locally centralised architectures were inspired by the shortcomings of early peer-

to-peer efforts. Gnutella [102] initially relied on broadcasting to relay queries

although this proved to be a bottleneck, with as much as 50% [30] of the

traffic attributed to queries. To overcome this scalability bottleneck, a locally

centralised architecture employs a select few hosts with high performance and

reliable characteristics to behave as super nodes. These super nodes maintain

a repository of meta-data which a community of local nodes may query and

update. Super nodes communicate amongst each other forming bridges between

communities, allowing local nodes to submit queries to a super node rather than

broadcasting to the entire community. Whilst super nodes introduce an element of

centralisation, in sufficient numbers, they avoid becoming points of failure. Examples

of peer-to-peer systems which use a locally centralised architecture include FastTrack

[39, 68], Clippee [3], Bittorrent [68] and eDonkey [142].

Without any central entities, a pure peer-to-peer architecture exhibits symmet-
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rical harmony between all entities. The symmetrical nature ensures that it is the

most scalable of the three and proves to be very capable at adapting to a dynamic

environment. Whilst on the surface it may seem that this is the architecture

of choice, adhering to a pure peer-to-peer philosophy is challenging. Achieving

a symmetrical relationship between nodes is made difficult in the presence an

asymmetric [102] network such as the Internet. User connections on the Internet

are usually biased towards downloads, sometimes by as much as 600% (1.5Mb

down/256Kb up). This bias discourages users from sharing their resource, which in

turn hinders the quality of service provided by the peer-to-peer system. The way in

which nodes join [151] a peer-to-peer network also poses a challenge. For example,

if every node were to join the network through one node, this would introduce a

SPF, something which peer-to-peer networks need to avoid. Finally the lack of

centralisation and the ad-hoc environment a peer-to-peer system operates in makes

establishing trust and accountability essential but difficult to do without ironically

introducing some level of centralisation or neighbourhood knowledge. Systems which

closely follow a pure peer-to-peer architecture include Free Haven [41], Freenet [24]

and Ivy [97].

The choice of architecture has a major influence on system functionality,

determining operational boundaries and its effectiveness to operate in a particular

environment. As well as functional aspects, the architecture also has a bearing on

the mechanisms a system may employ to achieve consistency, routing and security.

A centralised architecture is suited to controlled environments and while it may

lack the scalability of its peer-to-peer counterpart, it has the ability to provide

a consistent Quality of Service (QoS). By contrast a peer-to-peer architecture is

naturally suited to a dynamic environment, key advantages include unparalleled

scalability and the ability to adapt to a dynamic operating environment. Our

discussion of architectures in this section has been presented in a chronological order.

We can see that the evolution of architectures adopted by DSSs have gradually moved

away from centralised to more decentralised approaches (Figure 2.3), adapting to

challenges associated with operating across a dynamic global network.
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2.1.3 Operating Environment

This section discusses the possible target environments which distributed storage

systems may operate in. While examining each operating environment, a discussion

of the influence on architecture and the resulting workload is made. We have

identified three main types of environments, (a) Trusted, (b) Partially Trusted and

(c) Untrusted, as shown in Figure 2.4.

A trusted environment is dedicated and quarantined off from other networks.

This makes the environment very controlled and predictable. Users are restricted

and therefore accountable. Its controlled nature ensures a high level of QoS and

trust, although in general scalability is limited. Administration is carried out under

a common domain and therefore security is simpler compared to environments that

stretch beyond the boundaries of an institution. Due to the controlled nature of

a trusted environment, workload analysis can be conducted without the need to

consider the unpredictable behaviour exhibited by external entities. As the workload

is primarily influenced by the application, the storage system can be optimised to

suit the workload. As the storage system’s main goal is performance, less emphasis
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is given to adhering to the standard POSIX File I/O Interface [76]. A cluster is a

good example of a trusted environment.

Distributed storage systems which operate in a partially trusted environment

are exposed to a combination of trusted and untrusted nodes. These nodes operate

within the bounds of an organisation. The user base is also limited to the personnel

within the organisation. Whilst a level of trust can be assumed, security must

accommodate for “the enemy within” [130, 119]. This environment is not as

controlled as a trusted environment as many other applications may need to share the

same resources and as such this introduces a level of unpredictability. As the network

is a shared resource, DSSs need to utilise it conscientiously so as not to impede other

users. In a partially trusted environment, DSSs are primarily designed for maximum

compatibility and the provision of a general purpose filesystem interface.

In an untrusted environment, every aspect (nodes and network infrastructure)

is untrusted and open to the public. An environment which best likens itself to

this is the Internet. In an open environment where accountability is difficult if not

impossible [102], a system can be subjected to a multitude of attacks [40]. With the

emergence of peer-to-peer systems allowing every host to be as capable as the next,

it is important to understand user behaviour and the possible perils. Some lessons

learnt include a very transient user base (also referred to as churn) [151], tragedy of

the commons [64] and the Slashdot effect [1].

Early research [125, 133] discusses issues associated with scaling up client-server

distributed storage systems (Andrew [95] and Coda [124]) across a WAN. Some of the

problems identified include (i) a lower level of trust between users, (ii) coordination

of administration is difficult, (iii) network performance is degraded and failures are

more common than what is found in a LAN environment. DSSs need to overcome

challenging constraints imposed by an untrusted environment. Achieving a robust

and secure storage service whilst operating in an untrusted environment is a source

of much ongoing research.

Our survey of DSSs has found the operating environment has a major influence

on system design and the predictability of workload. A trusted environment has the

advantage of being sheltered from the unpredictable entities otherwise present in
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partially trusted and untrusted environments. The predictability and controlled

nature of a trusted environment is suitable for a client-server architecture. In

contrast, the dynamic nature of a partially trusted or untrusted environment requires

that a more ad-hoc approach to architecture be employed, such as peer-to-peer.

2.1.4 Usage Patterns

Collection and analysis of usage data including various file operations and attributes

plays an important role in the design and tuning of DSSs. Empirical studies serve

to provide an important insight into usage trends, identifying possible challenges

and the necessary research to overcome them. In our investigation, we found usage

patterns to be closely related to the operating environment (Figure 2.4) and for this

reason our discussion of usage patterns is organised based on operating environments.

This section summarises empirical studies based on DSSs which operate in a partially

trusted environment, a trusted environment and finally in an untrusted environment.

Partially Trusted

A study [100] focusing on the usage patterns of the Coda [124] (Section 2.2.4) storage

system makes some interesting observations regarding file usage whilst disconnected

from the file server. Coda employs an optimistic approach to consistency (Section

2.1.5) permitting users to continue to work on locally cached files even without

network connectivity. During the study, the authors found there to be a surprisingly

high occurrence of integration failures or change conflicts. A change conflict occurs

when a user reconnects to merge their changes with files that have already been

modified during the period the user was disconnected. A file server attempting

to merge a conflicting change will fail to do so, requiring the users to merge

their changes manually. Whilst some of these change conflicts were due to servers

disappearing during the process of merging changes, there still remained a high

proportion of conflicts. This occurrence suggested that disconnected users do not

work on widely distinct files as previously thought, this is an important realisation

for DSSs adopting an optimistic approach to consistency.
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A survey [45] conducted across 4800 workstations within Microsoft found only

half of the filesystem storage capacity to be utilised. These results inspired a

subsequent feasibility study [12] on accessing this untapped storage. The feasibility

study focused on machine availability, filesystem measurements and machine load.

The results supported earlier findings with only 53% of disk space being used, half

of the machines remained available for over 95% of the time, machine’s cpu load

average to be 18% and 70% of the time the machine’s disks were idle. The results of

the feasibility study found that developing a storage system which utilised available

storage from shared workstations was in fact possible and consequently lead to the

development of Farsite [2] (Section 2.2.3).

A number of other empirical studies relevant to the partially trusted category

include: A comparatively early study [133] primarily focusing on the use of AFS [74]

whilst another study adopted a developer’s perspective [58], analysing source code

and object file attributes. That study found more read-write sharing to be present in

an industrial environment than typically found in an academic environment. DSSs

operating in a partially trusted environment aim to provide an all-purpose solution,

servicing a wide array of applications and users. Due to the general nature of these

storage systems, studies analysing usage patterns are influenced by a combination

of user and application behaviour.

Untrusted

Usage patterns of applications designed to operate in an untrusted environment

are primarily influenced by user behaviour. Applications which adopt a peer-to-

peer approach serve as primary examples, empowering every user with the ability

to provide a service. With these type of systems, it is therefore important to

understand user behaviour and the resulting consequences. Past experience from

deploying MojoNation [151] show how flash crowds have the ability to cripple a

system with any element of centralisation in its architecture. When MojoNation was

publicised on Slashdot, their downloads skyrocketed from 300 to 10,000 a day. Even

though MojoNation employs a peer-to-peer architecture for its day-to-day operation,

a central server assigned to handling new MojoNation users was overwhelmed,
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rendering it unavailable. Further observations include: a very transient user base

with 80% to 84% of users being connected once and for less than an hour and

users with high-bandwidth and highly-available resources being least likely to stay

connected for considerable lengths of time.

Systems adopting a peer-to-peer philosophy rely on users cooperating and sharing

their services, unfortunately there are many disincentives [51] resulting in peer-to-

peer systems being vulnerable to freeriding, where users mainly consume services

without providing any in return. Studies show that [102, 51, 75] the primary reason

for this behaviour is due to the asymmetrical nature of users’ connections, being very

biased towards downloading. A usage study of Gnutella [75] found that 85% of users

were freeriding. To discourage this and promote cooperation, the next generation

of peer-to-peer systems (Maze [153], Bittorrent [10]) provide incentives for users to

contribute services.

Trusted

Unlike the previous two categories, storage systems operating in a trusted en-

vironment (e.g. clusters) service a workload primarily influenced by application

behaviour. A trusted environment is dedicated, making it predictable and controlled,

eliminating variables otherwise found in shared environments, leaving the application

as the main influence of usage patterns. Currently the vastly superior performance

of CPU and memory over network infrastructure has resulted in networking being

the bottleneck for many parallel applications, especially if heavily reliant on storage.

Hence, understanding the application’s workload and tuning the storage system to

suit plays an important role in improving storage performance, reducing the network

bottleneck and realising a system running closer to its full potential. A usage pattern

study [28] of various parallel applications found that each application had its own

unique access pattern. The study concluded that understanding an application’s

access pattern and tuning the storage system (caching and prefetching) to suite was

the key to realising the full potential of parallel filesystems.

The Google File System (GFS) [57] (Section 2.2.7) is another example high-

lighting the importance of understanding an application’s usage pattern and the
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advantages of designing a storage system accordingly. The authors of the GFS

made a number of key observations on the type of workload their storage system

would need to service and consequently designed the system to accommodate this.

The GFS typical file size was expected to be in the order of GB’s and the application

workload would consist of large continuous reads and writes. Based on this workload,

they adopted a relaxed consistency model with a large chunk size of 64MB. Choosing

a large chunk size proved beneficial as (i) the client spent less time issuing chunk

lookup requests, (ii) the meta-data server had less chunk requests to process and

consequently chunk entries to store and manage.

2.1.5 Consistency

The emergence and subsequent wide proliferation of the Internet and mobile

computing has been a paradox of sorts. Whilst networks are becoming increasingly

pervasive, the connectivity offered is unreliable, unpredictable and uncontrollable.

The result effect is a network that imposes challenging operational constraints

on distributed applications. More specific to storage systems, the Internet and

mobile computing increase availability and the risk of concurrent access and

unexpected outages have the potential to partition networks, further challenging

data consistency. This section discusses various mechanisms employed by DSSs to

ensure data remains consistent even in the presence of events which challenge it. Our

discussion of consistency begins from a database viewpoint outlining principles and

terminology and continues with a discussion of various approaches storage systems

employ.

Principles and Terminology

In this section we shall cover the underlying principles and terminology relevant

to consistency. The topic has received much attention in the area of transactions

and databases and thus we shall draw upon these works [62, 34] to provide a

brief introduction. Whilst terminology used to describe consistency in databases

(transactions and tables) may differ to DSSs (file operations and files) the concepts
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are universal. Consistency ensures the state of the system remains consistent

or correct even when faced with events (e.g. concurrent writers, outages) which

would otherwise result in an inconsistent or corrupt state. The ACID principles,

serializability, levels of isolation and locking are all important terms which lay the

foundations for consistency and we shall now discuss each briefly.

The ACID (Atomic, Consistent, Isolation, Durability) [63] principles describe a

set of axioms, that if enforced, will ensure the system remains in a consistent state.

A system is deemed to uphold ACID principles if:

1. Atomic: Transaction is atomic, that is, all changes are completed or none are.

(all or nothing).

2. Consistency: Transactions preserve consistency. Assuming a database is in a

consistent state to begin with, a transaction must ensure that upon completion

the database remains in a consistent state.

3. Isolation: Operations performed within the life-cycle of a transaction must

be performed independently and unbeknown to other transactions running

concurrently. The strictest sense of isolation is referred to as serializability

(see below). A system may guarantee varying degrees of isolation each with

their trade-offs.

4. Durablity: Once a transaction has completed the system must guarantee that

any modifications done are permanent even in the face of subsequent failures.

Serializability is a term use to describe a criterion of correctness. A set of

transactions is deemed serializable if their result is some serial execution of the

same transactions. In other words, even though the execution of these transactions

may have been interleaved, as long as the final result is achieved by some serial order

of execution, their execution is deemed serializable and thus correct. To guarantee a

transaction is serializable, its execution needs to adhere to the two-phase locking [49]

theorem. The theorem outlines the following two axioms on acquiring and releasing

locks:
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1. Before executing any operations on data, a transaction must acquire a lock on

that object.

2. Upon releasing a lock, the transaction must not acquire any more locks.

Serializability achieves maximum isolation, with no interference allowed amongst

executing transactions. The ANSI/ISO SQL standard (SQL92) identifies four

degrees of isolation. To offer varying levels of isolation, transactions may violate the

two-phase locking theorem and release locks early and acquire new locks. Violating

the two-phase locking protocol relaxes the degree of isolation allowing for a greater

level of concurrency and performance at the cost of correctness. The SQL standard

identifies the following three possible ways in which serializability may be violated:

1. Dirty Read: Uncommitted modifications are visible by other transactions.

Transaction A inserts a record, Transaction B is able to read the record,

Transaction A than executes a rollback leaving Transaction B with a record

which no longer exists.

2. Non-Repeatable Read: Subsequent reads may return modified records. Trans-

action A executes a query on table A. Transaction B may insert, update

and delete records in table A. Assuming Transaction B has committed its

changes, when Transaction A repeats the query on Table A changes made by

Transaction B will be visible.

3. Phantom Read: Subsequent read may return additional (phantom) records.

Transaction A executes a query on table A. Transaction B than inserts a

record into the table A and commits. Transaction A then executes, repeats its

original query of table A and finds an additional record.

Therefore a database typically supports the following four levels of consistency,

with repeatable read usually being the default:

1. Serializability: To achieve serializability, transactions executing concurrently

must execute in complete isolation and must not interfere with each other.

Transactions must adhere to the two-phase locking protocol to achieve
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serializability. Whilst this offers the highest level of isolation possible, a

subsequent penalty is poor concurrency.

2. Repeatable Read: Repeatable read ensures that data retrieved from an earlier

query will not be changed for the life of the transaction. Therefore subsequent

executions of the same query will always return the same records unmodified,

although additional (phantom) records are possible. Repeatable Read employs

shared read locks which only covers existing data queried. Other transactions

are allowed to ’insert’ records giving rise to Phantom Reads.

3. Read Committed: Transactions release read locks early (upon completion

of read), allowing other transactions to make changes to data. When a

transaction repeats a read, it reacquires a read lock although results may

have been modified, resulting in a Non-Repeatable Read.

4. Read Uncommitted: Write locks are released early (upon completion of write),

allowing modifications to be immediately visible by other transactions. As data

is made visible before it has been committed, other transactions are effectively

performing Dirty Reads on data which may be rolled back.

Approaches

Thus far our discussion of consistency has been in the context of databases and

transactions, which have been used to convey the general principles. There are

two ways of approaching consistency, Strong or Optimistic, each method with its

respective trade offs (Figure 2.5).

Strong consistency also known as pessimistic, ensures that data will always

remain and be accessed in a consistent state, thus holding true to the ACID

principles. A couple of methods which aim to achieve strong consistency include

one copy serializability [8], locking and leasing. The main advantage of adopting

a strong approach is that data will always remain in a consistent state. The

disadvantages include limited concurrency and availability, resulting in a system with

poor performance that is potentially complex if a distributed locking mechanism is

employed. The other approach to consistency is optimistic consistency [83] which
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is also known as weak consistency. It is considered weak as it allows the system to

operate whilst in an inconsistent state. Allowing concurrent access to partitioned

replicas has the potential for inconsistent reads and modifications that fail to

merge due to conflicting changes. The advantages associated with an optimistic

approach include excellent concurrency, availability and consequently good scalable

performance. The main drawbacks being inconsistent views and the risk of change

conflicts which require user intervention to resolve.

Strong Consistency

The primary aim of strong consistency is to ensure data is viewed and always remains

in a consistent state. To maintain strong consistency, locking mechanisms need to

be employed. Put simply, a piece of data is locked to restrict user access. Much

discussion and work [111, 112, 61] has gone into applying locks and choosing an

appropriate grain size. Choosing a large grain to lock has the advantage of lowering

the frequency at which locking be initiated, the disadvantages include increasing

the probability of dealing with lock contention and low concurrency. Choosing a

small grain to lock has the advantage of high concurrency, but carries an overhead

associated with frequently acquiring locks. These grain size trade-offs are universal

and also apply to a distributed storage environment.

In a distributed environment the performance penalty associated with employing

a locking infrastructure is high. Distributed storage systems which support repli-

cation face the prospect of implementing a distributed locking service (Frangipani



2.1. TAXONOMY OF DISTRIBUTED STORAGE SYSTEMS 25

[140] and OceanStore [82]) which incurs further performance penalties; a polynomial

number of messages need to be exchanged between the group of machines using a

Byzantine agreement (see Section 2.1.6). With these high overheads the choice to

use a large block size is justified: e.g. 64MB used by the GFS [57]. However, careful

analysis of storage workload is required as any performance gained from choosing a

large block size would be annulled by the resulting lock contention otherwise present

in a highly concurrent workload.

A locking infrastructure requires a central authority to manage and oversee lock

requests. Therefore, DSSs choosing to employ locking to achieve consistency are

restricted to architectures which contain varying degrees of centralisation (Table

2.1). A client-server architecture is ideal, leaving the server to be the central entity

which enforces locking. Implementing a locking mechanism over a peer-to-peer

architecture is a more involved process, which becomes impossible in a pure peer-

to-peer architecture. Systems which choose to support strong consistency mostly

operate in a partially trusted environment. The relatively controlled and reliable

nature of a partially trusted environment suites the requirements imposed by strong

consistency.

System Architecture Environment

Frangipani Client-Server Partially Trusted
NFS Client-Server Partially Trusted
Farsite Locally Centralised

Peer-to-Peer
Partially Trusted

Table 2.1: strong consistency - impact on architecture and environment

Optimistic Consistency

The primary purpose is to keep data consistent without imposing the restrictions

associated with strong consistency. Optimistic consistency allows multiple readers

and writers to work on data without the need for a central locking mechanism.

Studies of storage workloads [81, 58] show that it is very rare for modifications

to result in a change conflict and as such the measures used to enforce strong

consistency are perceived as overkill and unnecessary. Taking an optimistic approach
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to consistency is not unreasonable and in the rare event that a conflict should occur

users will need to resolve conflicts manually.

An optimistic approach to consistency accommodates a dynamic environment,

allowing for continuous operation even in the presence of partitioned replicas, this is

particularly suited to unreliable connectivity of WANs (e.g. Internet). There are no

limits imposed on the choice of architecture when adopting an optimistic approach

and, as it is highly concurrent, it is well suited to a pure peer-to-peer architecture.

Examples of DSSs which employ an optimistic consistency model include: xFS

[4], Coda [124] and Ivy [97]. Both Ivy and xFS employ a log structured filesystem,

recording every filesystem operation into a log. By traversing the log it is possible to

generate every version of the filesystem and if a change conflict arises it is possible

to rollback to a consistent version. Coda allows the client to have a persistent cache,

which enables the user to continue to function even when without a connection to

the file server. Once a user reconnects, the client software will synchronize with the

server’s.

2.1.6 Security

Security is an integral part of DSSs, serving under many guises from authentication

and data verification to anonymity and resilience to Denial-of-Service (DoS) attacks.

In this section we shall discuss how system functionality (Section 2.1.1), architecture

(Section 2.1.2) and operating environment (Section 2.1.3) all have an impact on

security and the various methods (Figure 2.6) employed to enforce it. To illustrate,

a storage system used to share public documents within a trusted environment need

not enforce the level of security otherwise required by a system used to store sensitive

information in an untrusted environment.

Systems which tend to operate within the confines of a single administration

domain use ACL (Access Control List) to authenticate users and firewalls to restrict

external access. These security methods are effective in controlled environments

(partially trusted or trusted). Due to the controlled nature of these environments,

the potential user base and hardware is restricted to within the bounds of an

institution, allowing for some level of trust to be assumed. On the contrary,



2.1. TAXONOMY OF DISTRIBUTED STORAGE SYSTEMS 27

Security

Access Control List (ACL)

Node ID AssignementReputation

Routing Table Maintenance

Secure Message ForwardingByzantine Agreement

Onion Routing

Probabilistic Routing

P2P Network Overlay
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untrusted environments such as the Internet expose systems to a global public user

base, where any assumptions of trust are void. Storage systems which operate in

an untrusted environment are exposed to a multitude of attacks [44, 40]. Defending

against these is non-trivial and the source of much ongoing research.

The choice of architecture influences the methods used to defend against attacks.

Architectures which accommodate a level of centralisation such as client-server

or centralised peer-to-peer have the potential to either employ ACL or gather

neighbourhood knowledge to establish reputations amongst an uncontrolled public

user base. However, security methods applicable to a centralised architecture are

inadequate in a pure peer-to-peer setting [66]. Systems adopting a pure peer-

to-peer architecture have little, if any, element of centralisation and because of

their autonomous nature are faced with further challenges in maintaining security

[19, 131]. Current peer-to-peer systems employ network overlays (Section 2.1.9) as

their means to communicate and query other hosts. Securing a peer-to-peer network

overlay [19] decomposes into the following key factors:

1. Node Id Assignment: When a new node joins a peer-to-peer network it is

assigned a random 128bit number which becomes the node’s id. Allowing a

node to assign itself an id is considered insecure making the system vulnerable

to various attacks, including (i) attackers may assign themselves ids close to the

document hash, allowing them to control access to the document, (ii) attackers

may assign themselves ids contained in a user’s routing table, effectively

controlling that user’s activities within the peer-to-peer network. Freenet [24]
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attempts to overcome this problem by involving a chain of random nodes in

the peer-to-peer network to prevent users from controlling node id selection.

Assuming the user does not have control of node id selection, this still leaves the

problem of users trying to dominate the network by obtaining a large number of

node ids, this kind of attack is also known as the Sybil [44] attack. A centralised

solution is proposed in [19], where a trusted entity is responsible for generating

node ids and charging a fee to prevent the Sybil attack. Unfortunately this

introduces centralisation and a SPF which ultimately could be used to control

the peer-to-peer network itself.

2. Routing Table Maintenance: Every node within a peer-to-peer network overlay

maintains a routing table that is dynamically updated as nodes join and leave

the network. An attacker may attempt to influence routing tables, resulting in

traffic being redirected through their faulty nodes. Network overlays which use

proximity information to improve routing efficiency are particularly vulnerable

to this type of attack. To avoid this, strong constraints need to be placed upon

routing tables. By restricting route entries to only point to neighbours close in

the node id space (CAN and Chord), attackers cannot use network proximity

to influence routing tables. Whilst this results in a peer-to-peer network that

is not susceptible to such an attack, it also disables any advantages gained

from using network proximity based routing.

3. Secure Message Forwarding: All peer-to-peer network overlays provide a means

of sending a message to a particular node. It is not uncommon for a message

to be forwarded numerous times in the process of being routed to the target

node. If any nodes along this route are faulty, this message will not reach the

desired destination. A faulty node may choose not to pass on the message or

pretend to be the destined node id. To overcome this, [19] proposes a failure

test method to determine if a route works and suggests the use of a redundant

routing path when this test fails.

The rest of this section discusses a few methods commonly used by DSSs to

establish trust, enforce privacy, verify and protect data. A simple but effective way
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of ensuring data validity is through the use of cryptographic hash functions such as

the Secure Hash Algorithm (SHA) [98] or Message Digest algorithm (MD5) [113].

These algorithms calculate a unique hash which can be used to check data integrity.

Due to the unique nature of the hash, distributed storage programs also use it as a

unique identifier for that block of data. To protect data and provide confidentiality

the use of the Public Key Infrastructure (PKI) allows data encryption and restricted

access to audiences holding the correct keys.

The Byzantine agreement protocol [21] enables the establishment of trust within

an untrusted environment. The algorithm is based on a voting scheme, where a

Byzantine agreement is only possible when more than two thirds of participating

nodes operate correctly. The protocol itself is quite network intensive with messages

passed between nodes increasing in polynomial fashion with respect to the number

of participants. Hence the number of participants which form a Byzantine group are

limited and all require good connectivity. OceanStore [82] and Farsite [2] are both

examples of systems which have successfully employed the Byzantine protocol to

establish trust. Another way to establish trust is via a reputation scheme, rewarding

good behaviour with credits and penalising bad behaviour. Free Haven [41] and

MojoNation [151] use digital currency to encourage participating users to behave.

Systems such as Free Haven [41] and Freenet [24] both aim to provide users

with anonymity and anti-censorship. These class of systems need to be resilient to

many different attacks from potentially powerful adversaries whilst ensuring they

do not compromise the very thing they were designed to protect. Introducing any

degree of centralisation and neighbourhood intelligence into these systems is treated

with caution [42, 88] as this makes the system vulnerable to attacks. Onion routing

[102, 43, 137] and probabilistic routing [41] are two methods employed to provide

anonymous and censorship resistant communications medium.

2.1.7 Autonomic Management

The evolution of DSSs has seen an improvement in availability, performance

and resilience in the face of increasingly challenging constraints. To realise

these improvements DSSs have grown to incorporate newer algorithms and more
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components, increasing their complexity and the knowledge required to manage

them. With this trend set to continue, research into addressing and managing

complexity (Figure 2.7) has led to the emergence of autonomic computing [72, 80].

The autonomic computing initiative has identified the complexity crisis as a

bottleneck, threatening to slow the continuous development of newer and more

complex systems.

Distributed Storage Systems are no exception, evolving into large scale complex

systems with a plethora of configurable attributes, making administration and

management a daunting and error prone task [6]. To address this challenge,

autonomic computing aims to simplify and automate the management of large

scale complex systems. The autonomic computing vision, initially defined by

eight characteristics [72], was later distilled into four [80]; self-configuration, self-

optimisation, self-healing and self-protection, all of which fall under the umbrella

of self management. We discuss each of the four aspects of autonomic behaviour

and how they translate to autonomic storage in Table 2.2. Another approach to

autonomic computing takes a more ad-hoc approach, drawing inspiration from

biological models [134]. Both of these approaches are radical by nature, having

broad long-term goals requiring many years of research to be fully realised. In the

mean time, research [52, 152, 15, 149] with more immediate goals discuss the use of

market models to autonomically manage resource allocation in computer systems.

More specifically, examples of such storage systems and the market models employed
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are listed below and discussed in greater detail in Section 2.3.

1. Mungi [70]: is a Single-Address-Space Operating System (SASOS) which

employs a commodity market model to manage storage quota.

2. Stanford Archival Repository Project [26]: apply a bartering mechanism, where

institutions barter amongst each other for distributed storage services for the

purpose of archiving and preserving information.

3. MojoNation [151]: uses digital currency (Mojo) to encourage users to share

and barter resources on its network, users which contribute are rewarded with

Mojo which can be redeemed for services.

4. OceanStore [82]: is a globally scalable storage utility, providing paying

users with a durable, highly available storage service by utilising untrusted

infrastructure.

5. Storage Exchange [104]: applies a sealed Double Auction market model allow-

ing institutions to trade distributed storage services. The Storage Exchange

provides a framework for storage services to be brokered autonomically based

on immediate requirements.

As distributed storage systems are continuing to evolve into grander, more

complex systems, autonomic computing is set to play an important role, sheltering

developers and administrators from the burdens associated with complexity.

2.1.8 Federation

Global connectivity provided by the Internet has allowed any host to communicate

and interact with any other host. The capability for institutions to integrate systems,

share resources and knowledge across institutional and geographic boundaries is

available. Whilst the possibilities are endless, the middleware necessary to federate

resources across institutional and geographic boundaries has sparked research in Grid

computing [53]. Grid computing is faced with many challenges including: supporting

cross domain administration, security, integration of heterogeneous systems, resource
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1.Self-configuration: Autonomic systems are configured with high-level
policies, which translate to business-level objectives.

Large DSSs are governed by a myriad of configurable attributes, requiring
experts to translate complex business rules into these configurables.
Storage Policies [37] provide a means by which high-level objectives can
be defined. The autonomic component is responsible for translating these
high-level objectives into low level configurables, simplifying the process
of configuration.

2.Self-optimisation: Continually searching for ways to optimise operation.

Due to the complex nature and ever changing environment under which
DSSs operate in, finding an operational optimum is a challenging task. A
couple of approaches have been proposed, introspection [82], and recently
a more ad-hoc approach [134] inspired by the self-organising behaviour
found in biological systems.
The process of introspection is a structured three stage cyclical process:
data is collected, analyzed and acted upon. To illustrate, a system samples
workload data and upon analysis finds the user to be mostly reading data,
the system can then optimise operation by heavily caching on the client
side, improving performance for the user and lessening the load on the file
server.
Several efforts focusing on self-optimisation include GLOMAR [29], HAC
[20] and a couple of proposals [85, 84] which apply data mining principles
to optimise storage access. GLOMAR is an adaptable consistency
mechanism that selects an optimum consistency mechanism based upon
the user’s connectivity. HAC (Hybrid Adaptive Caching) proposes an
adaptable caching mechanism which optimises caching to suit locality and
application workload.

3.Self-healing: Being able to recover from component failure.

Large scale distributed storage systems consist of many components and
therefore occurrence of failure is to be expected. In an autonomic
system, mechanisms to detect and recover from failure are important. For
example, DSSs which employ replication to achieve redundancy and better
availability need recovery mechanisms when replicas become inconsistent.

4.Self-protection: Be able to protect itself from malicious behaviour or
cascading failures.

Systems which operate on the Internet are particularly vulnerable to a
wide array of attacks. Self-protection is especially important to these
systems. To illustrate, peer-to-peer systems are designed to operate in an
untrusted environment and by design adapt well to change be-it malicious
or otherwise. Systems which focus on providing anonymity and anti-
censorship (Freenet [24] and Free Haven [41]) accommodate for a large
array of attacks aimed to disrupt services and propose various methods to
protect themselves.

Table 2.2: autonomic computing and distributed storage
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discovery, the management and scheduling of resources in a large scale and dynamic

environment.

In relation to distributed storage, federation involves understanding the data

being stored, its semantics and associated meta-data. The need for managing

data has been identified across various scientific disciplines (Ecological [78], High

Energy Physics [71], Medicinal [14]). Currently most institutions maintain their

own repository of scientific data, making this data available to the wider research

community would encourage collaboration. Sharing data across institutions requires

middleware to federate heterogeneous storage systems into a single homogeneous

interface which may be used to access data. Users need not be concerned about

data location, replication and various data formats and can instead focus on what

is important, making use of the data. The Data Grid [22] and SRB [7, 106] (Section

2.2.8) are examples of current research being carried out into federating storage

services.

2.1.9 Routing and Network Overlays

The evolution of routing has evolved in step with distributed storage architecture.

Early DSSs [95, 74, 121] that were based on a client-server architecture, employed a

static approach to routing. A client would be configured with the destination address

of the server, allowing the client to access storage services in one hop. The server

address would seldom change and if so would require the client to be re-configured.

The next phase of evolution in routing was inspired by research into peer-to-

peer systems, which itself underwent many stages of development. Early systems

like Napster [102] adopted a centralised approach, where peer-to-peer clients were

configured with the address of a central peer-to-peer meta-server. This meta-server

was responsible for managing a large dynamic routing table which mapped filenames

to their stored locations. Clients now required three hops to reach the destined data

source: one to query the meta-server for the host address storing the data of interest,

another hop for the reply and finally a third hop to the host containing the data. The

centralisation introduced by the meta-server proved to be a scalability and reliability

bottleneck, inspiring the next generation of peer-to-peer systems.
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A method of broadcasting queries [102] was employed by Gnutella to abate

centralisation, although this inadvertently flooded the network. Peer-to-Peer clients

would broadcast their queries to immediately known peers which in turn would

forward the queries to their known list of peers. This cycle of broadcasting flooded

the network to the point where 50% of the traffic was attributed to queries [30]. To

limit the flooding, a Time To Live (TTL) attribute was attached to queries, this

attribute was decremented with every hop. Unfortunately a TTL meant searches

would fail to find data even though it was present on the network. The problem of

flooding inspired the use of super nodes (FastTrack [39]). Super nodes are responsible

for maintaining routing knowledge for a neighbourhood of nodes and serving their

queries. The use of super nodes reduced the traffic spent on queries but resulted in

a locally centralised architecture.

The next generation of peer-to-peer systems brought routing to the forefront

of research. The introduction of Distributed Hash Tables (DHT) spawned much

research [105, 154, 135, 118, 107, 31, 90] into network overlays. Routing tables were

no longer the property of a centralised meta-server or super nodes, routing tables

now belonged to every peer on the network.

Each peer is assigned a hash id, some methods use a random hash, others hash

the IP address of the node [154, 118]. Each data entity is referenced by a hash of its

payload and upon insertion is routed towards nodes with the most similar hash id.

A peer-to-peer network overlay is able to route a peer’s storage request within logN

hops, where N is the number of nodes in the network. Whilst this may not perform

as well as an approach with constant lookup time, network overlays scale well and

continue to operate in an unreliable and dynamic environment. A comparison (Table

2.3) of all discussed routing algorithms, suggest that each has a varying capability

regarding performance. Variables listed in Table 2.3 are described in detail in [86],

which also provides a detailed description and comparison of network overlays.

Continuous research and development into network overlays has seen them evolve

to support an increasing number of services. Some of these services include providing

stronger consistency [87], better query capability [65, 141], anonymity [54] and

censorship resistance [69]. To consolidate the vast array of research, [31] proposes a



2.1. TAXONOMY OF DISTRIBUTED STORAGE SYSTEMS 35

System Model Hops to Data

AFS, NFS Client-Server O(1)
Napster Central Meta-Server O(3)
Gnutella Broadcasting O(TTL)
Chord Uni-Dimensional

Circular ID space
O(logN)

CAN multi-dimensional space O(d.N
1

d )
Tapestry Plaxton-style Global Mesh O(logbN)
Pastry Plaxton-style Global Mesh O(logcN)
Kademlia X-OR based

Look-up Mechanism
O(logeN)

Where:
N : the number of nodes in the network
d: the number of dimensions
b: base of the chosen peer identifier
c: number of bits used for the base of the chosen identifier
e: number of bits in the Node ID

Table 2.3: comparison of routing mechanisms

standard interface for network overlays. The authors hope that standardising will

help facilitate further innovation in network overlays and integrate existing peer-to-

peer networks. Currently, a user requires a different client to log into every peer-

to-peer network, if the standard is embraced, it would serve to integrate various

networks, allowing a single client to operate across multiple networks concurrently.

An interesting observation in the evolution of routing is the shift from (1) static

centralised routing tables, to (2) static decentralised to (3) dynamic centralised and

finally to (4) dynamic decentralised (Figure 2.4). The shift from centralised to

decentralised has seen the move from one static server to multiple static servers,

replicating storage, providing better redundancy and load balancing. The shift from

static to dynamic routing has resulted in storage systems being able to cope with

a dynamic environment where each host is capable of providing services. The more

recent advance being dynamic decentralised routing tables which has moved the

management of routing tables to the fringes of the network, giving rise to peer-to-

peer network overlays.
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Centralised Decentralised

Static 1. Client-Server 2. Replicated Servers
NFS [121] xFS [4], Coda [124]

Dynamic 3. Centralised Peer-to-Peer 4. Peer-to-Peer Network Overlay
Napster [102] Ivy [97] OceanStore [82]

Table 2.4: routing and architecture taxonomy

2.2 Survey of Distributed Storage Systems

Our survey covers a variety of storage systems, exposing the reader to an array

of different problems and solutions. For each surveyed system, we address the

underlying operational behaviour, leading into the architecture and algorithms

employed in the design and development. Our survey covers systems from the

past and present, Table 2.5 lists all the surveyed systems tracing back to those

characteristics discussed in the taxonomy.

2.2.1 OceanStore

OceanStore [82] is a globally scalable storage utility, allowing consumers to purchase

and utilise a persistent distributed storage service. Providing a storage utility

inherently means that data must be highly available, secure, easy to access and

support guarantees on Quality of Service (QoS). To allow users to access their

data easily from any geographic location, data is cached in geographically distant

locations, in effect, travelling with the user and thus giving rise to the term nomadic

data. OceanStore provides a transparent, easily accessible filesystem interface,

hiding any underlying system complexities whilst enabling existing applications to

utilise storage services.

Architecture

OceanStore employs a 2-tier based architecture (Figure 2.8), the first is the super-

tier, responsible for providing an interface, consistency mechanisms and autonomic

operation. It achieves this by maintaining a primary replica amongst an “inner ring”

of powerful, well connected servers. The second tier, the archival-tier, is responsible
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System System
Function

Architecture Operating
Environ-
ment

Consistency Routing Interfaces Scalability

OceanStore Custom Locally
Centralised
Peer-to-Peer

Untrusted Optimistic Dynamic
DHT
(Tapestry)

POSIX and
custom

Large
(global)

Free Haven Publish/Share Pure
Peer-to-Peer

Untrusted N/A
(WORM)

Dynamic
Broadcast

Custom Large
(global)

Farsite General purpose
Filesystem

Locally
Centralised
Peer-to-Peer

Partially
Trusted

Strong Dynamic
DHT

POSIX Medium
(institution)

Coda General purpose
Filesystem

Locally
Centralised

Partially
Trusted

Optimistic Static POSIX Medium
(institution)

Ivy General purpose
Filesystem

Pure
Peer-to-Peer

Trusted Optimistic Dynamic
DHT
(Dhash)

POSIX Medium
(small
groups)

Frangipani Performance Locally
Centralised

Trusted Strong Static
Petal

POSIX Medium
(small
groups)

GFS Custom Locally
Centralised

Trusted Optimistic Static Incomplete
POSIX

Large
(institution)

SRB Federation Mid-
dleware

Locally
Centralised

Trusted Strong Static Incomplete
POSIX

Large
(global)

Freeloader Custom Locally
Centralised

Partially
Trusted

N/A
(WORM)

Dynamic Incomplete
POSIX

Medium
(institution)

PVFS Performance Locally
Centralised

Trusted Strong Static POSIX, MPI-
I/O

Medium
(institution)

Table 2.5: distributed storage systems surveyed
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for archiving data and providing additional replication by utilising nodes which may

not be as well connected or powerful. A hierarchy exists between the tiers, the super-

tier constitutes of super nodes, which form a Byzantine agreement [21] enabling the

collective to take charge and make decisions. The archival-tier receives data from

the super-tier which it stores, providing an archival service. The nodes within an

archival-tier need not be well connected or provide high computational speed, as

it neither performs high computational tasks or service requests directly made by

user applications. The super-tier is a centralised point, as it forms a gateway for

users to access their files, but as OceanStore can accommodate multiple cooperating

super-tiers, we classify its architecture as locally centralised.

Any requests to modify data are serviced by the super-tier, and hence it is

responsible for ensuring data consistency [9]. The super-tier maintains a primary

replica which it distributes amongst its nodes. Modifications consist of information

regarding the changes made to an object and the resulting state of the object,

similar to that of the Bayou System [35]. Once updates are committed to the

primary replica, these changes are distributed to the secondary replicas. Before

data is distributed to secondary replicas, erasure codes [11] are employed to achieve
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redundancy. Erasure codes provide redundancy more efficiently then otherwise

possible by replication [148].

The super-tier utilises Tapestry [154], for distributing the primary replica.

Tapestry is a peer-to-peer network overlay responsible for providing a simple API

capable of servicing data requests and updates, whilst taking care of routing and

data distribution to achieve availability across a dynamic environment. Further

information on network overlays can be found in Section 2.1.9.

Data objects are stored (read-only), referenced by indirect blocks, in principle

very much like a log structured filesystem [114]. These indirect blocks themselves

are referenced by a root index. Therefore, when an update is made to a data

object, a new pointer is created in the root index, which points to a series of indirect

blocks, which finally point to a combination of old unchanged data objects and newly

created data objects containing the modifications. This logging mechanism enables

every version of the data object to be recreated, enabling the user to recreate past

versions of the file, hence the provision of a rollback facility. Unfortunately, providing

this feature bears a high cost in space overhead. Indirect blocks are indexed by a

cryptographically secure hash of the filename and the owner’s public key, whereas

data blocks are indexed by a content hash.

Finally, the concept of introspection is introduced as a means of providing

autonomic operation. A three-step cycle of Computation, Observation and

Optimisation is proposed. Computation is considered as normal operation, which

can be recorded and analysed (Observation). Based on these Observations,

Optimisations can be put in place.

Implementation

A prototype named Pond [109] has been developed and released as open source

under the BSD license and is available for download1. SEDA [150] (Staged Event-

Driven Architecture) was utilised to provide a means of implementing an event

driven architecture. Java was the overall language of choice due to its portability,

1OceanStore Homepage: http://oceanstore.cs.berkeley.edu
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strong typing and garbage collection. A problem with the unpredictability of the

garbage collection was highlighted as an issue, as it was found to pause execution

for an unacceptable amount of time posing a performance problem.

Summary

The authors of OceanStore set themselves a very challenging set of requirements

covering many areas of research. OceanStore aims to provide a storage utility

with a transparent filesystem like interface, providing QoS typical of a LAN whilst

operating in a untrusted environment. Providing a storage utility implies the need

for accountability and thus a payment system. Providing accountability within a

distributed untrusted environment is a challenging task and it would have been

interesting to see how that would have been incorporated into the architecture.

The prototype [109] has been tested in a controlled environment and showed

promising benchmark results. Pond provides an excellent insight into the challenges

of building a system of this calibre. Challenges identified include performance

bottlenecks in erasure codes, providing further autonomic operation, increased

stability, fault tolerance and security [47].

2.2.2 Free Haven

Free Haven [41] [102] is a distributed storage system which provides a means to

publish data anonymously and securely. The aim is to provide individuals with an

anonymous communication channel, allowing them to publish and reach out to an

audience without the fear of persecution from government bodies or powerful private

organisations who would otherwise censor the information. The authors motivation

for providing an anonymous communication medium is based on the shortcomings

in existing peer-to-peer publication systems, where system operators (Napster [102])

or users themselves (Gnutella [102]) were being persecuted for breach of copyright

laws. Performance and availability are secondary with the primary focus being on

protecting user identity. Protecting user identity enables individuals to distribute

and access material anonymously. Dingldine [40] provides a detailed classification
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of various types of anonymity. Further objectives include (i) persistence: to prevent

censorship despite attacks from powerful adversaries, (ii) flexibility: accommodate

for a dynamic environment and (iii) accountability: to establish synergy in an

otherwise untrusted environment.

Architecture

Free Haven is based upon a pure peer-to-peer design philosophy. With no hierarchy,

every node is equal to the next and transactions are carried out in a symmetric and

balanced manner. Free Haven utilises a re-mailer network [33], which provides an

anonymous communications medium by utilising onion routing (Figure 2.9). Queries

are broadcast with the use of onion routing making it difficult for adversaries to trace

routes. Each user is assigned a pseudonym to which a reputation is assigned. Servers

are only known by their pseudonyms making them difficult to locate. Reputations

are assigned to each pseudonym and are tracked automatically. In the rest of this

section we shall provide an overall high-level walk-through and discuss reputation

and the process of trading.

The primary purpose of the anonymous communication medium is to ensure

the messages relayed cannot be traced to the source or destination, protecting user

identity. The anonymous communication medium can utilise onion routing or a re-



42 Chapter 2. DISTRIBUTED STORAGE SYSTEMS

mailer, both work on a similar set of principles. Nodes communicate by forwarding

messages randomly amongst each other using different pseudonyms at each hop

making it difficult for adversaries to determine a message’s origin or destination.

Figure 2.9 shows a peer client G communicating to H along a route that involves

nodes A, B, C, D, I and J. Only node A is able to map G’s pseudonym to its IP, as

once the message is passed beyond A only pseudonyms are used. Even though peer

client G may need only to communicate with H, the route taken may visit other

peer clients (I and J) along the way, again to make the process of finding a users

true identity more difficult.

A reputation mechanism is used to provide an incentive for users to participate

in an honest manner. Reputation makes the users accountable, providing a means to

punish or even exclude users who misbehave. The process of integrating a reputation

mechanism requires careful consideration [42, 88], so as not to compromise the very

thing the system was designed to protect, user identity. The amount of data which

a server may store is governed by reputation, making it difficult for users to clog the

system with garbage. Reputation is calculated based upon the trades a server makes

with other servers. A successful trade increases the server’s reputation. Trades made

amongst servers consist of two equally sized contracts, which are negotiated and (if

successful) traded. The size of the contract is based on the file size and the duration

for which the file is to be stored. Therefore, the size of contract equates to the file

size multiplied by the duration. As such, the larger the file and the longer the period

it is to be stored, the more expensive the contract. Servers within the Free Haven

environment are continually making trades to: provide a cloak of anonymity for

publishers, create a moving target, provide longer lasting shares, and allow servers

to join and leave, amongst other reasons.

The process of confirming a trade is made difficult by the fact that it is done

in an untrusted environment. Detecting malicious behaviour, where servers may

falsely deny they received a trade or present false information about another server

to reduce its reputation. To address these problems, a buddy system is introduced

which involves each server having a shadow to look over and certify trades. When a

negotiation of a contract is finalised, each server sends a receipt acknowledging the
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trade. This receipt is then sent from each server to the other and to their respective

buddies. Each buddy will receive the same receipt twice. Once from the server which

created the trade and once from the accepting server. This enables the buddies to

oversee the contract and detect any malicious behaviour.

Implementation

Free Haven has not been released, the website details problems and areas which

need to be addressed and as such development is in a state of hibernation2. The

problems discussed involve:

1. Reputation: Flaws have been identified in the current reputation system with

a need to incorporate verifiable transactions.

2. Protocol: The underlying protocol is based on broadcasting messages, this was

found to be too inefficient.

3. Anonymous Communication: At the moment there is no anonymous com-

munications medium. An enhanced version of the onion routing protocol is

proposed [43], detailing how anonymity could be integrated at the TCP level

rather than at the message level. Although weaker anonymity is traded against

lower latency in this situation.

Releases of both the the anonymous re-mailer Mixminion [33] and Tor [43] can

be found on the Free Haven website.

Summary

Free Haven aims to operate in a globally untrusted environment providing the user

with the ability to anonymously publish data. Free Haven sacrifices efficiency and

convenience in its pursuit of anonymity, persistence, flexibility and accountability.

The persistence of data published is based on duration as apposed to popularity (as

in many other publishing systems), this is an important unique feature as it prevents

2Free Haven Homepage: http://www.freehaven.net/
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popular files from pushing out other files and as such cannot be used by adversaries

to censor information.

As Free Haven aims to resist censorship and provide strong persistence, even

under attacks from strong opponents, its design was based on detailed consideration

[40] of possible attacks. The documented attacks are applicable to any system

operating in an untrusted environment. The concepts applied by Free Haven to

achieve anonymity could be applied by other systems aiming to protect user privacy.

2.2.3 Farsite

The goal of Farsite [2] is to provide a secure, scalable file system by utilising

unused storage from user workstations, whilst operating within the boundaries of an

institution. Farsite aims to provide a transparent, easy to use file system interface,

hiding its underlying complexities. From the administrators perspective, it aims

to simplify effort required to manage the system. Tasks such as backing up are

made redundant through replication, available storage space is proportionate to the

free space on user machines. This autonomic behaviour aims to reduce the cost of

ownership by simplifying the administration and better utilising existing hardware.

If a need for further storage is required, the option of adding dedicated workstations

to the network can be achieved without introducing down time. Due to its ability

to utilise existing infrastructure, Farsite can be seen as a cheaper solution to a SAN,

but only if a trade-off in performance is acceptable.

Architecture

The architecture is based on the following three concepts: client, directory group

and a file host (Figure 2.10). A node may adopt any, or all of these roles. The client

is responsible for providing a filesystem like interface. Nodes which participate

in a directory group do so in a Byzantine agreement, these nodes are responsible

for establishing trust, enforcing consistency, storing meta-data and monitoring

operational behaviour. They can also, as required, execute choirs and exhibit a

degree of autonomic operation. The file host role consists of providing storage space
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for file data. We shall now discuss each role in greater detail.

The client provides an interface which emulates the behavior of a traditional local

filesystem, providing users with the ability to access the system in a transparent,

easy to use manner. The directory group begins as a set of nodes assigned the

root namespace for which they have to service client requests. As the namespace

grows, a part of the namespace is delegated to another directory group. Each group

establishes trust and redundancy via the Byzantine protocol. Every node in this

group maintains a replica of the meta-data. The directory group behaves like a

gateway for client requests, ensuring consistency by utilising leases. Autonomic

behavior extends to managing replication, by relocating replicas to maintain file

availability. File availability is based on the availability of replicas and therefore

files which have a higher availability than the mean availability have their replicas

swapped with replicas which have lower availability, this establishes a uniform level

of availability across all files.

The meta-data stored by the directory group includes certificates, lease in-

formation, directory structure, Access Control Lists (ACL) and a routing table,

consisting of filenames, content hash and file location. There are three main types
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of certificates, a namespace certificate which associates the root of a file-system

namespace with the directory group, a user certificate which associates the user

with his public key, to provide a means to authorise a user against an ACL and

a machine certificate which is similar to the user certificate except it is used to

authorise and identify the machine as a unique resource. Certificates are signed by

trusted authorities, which are used to establish a chain of trust. A user’s private key

is encrypted with a symmetric key derived from the user’s password.

Farsite utilises leases to ensure consistency. The granularity of leases is variable,

in that they may cover anything from a single file to a directory tree. There are

four main types of leases, content leases, name leases, mode leases and access leases.

Content leases govern what access modes are allowed. There are two types of content

leases, read-write which permits a client to perform both read and write operations

and a read-only lease that guarantees the client that data read is not stale. Name

leases provide clients with control over a filenames in a directory. Mode leases are

application level leases, enabling applications to have exclusive read, write or delete

modes. Access leases are used to support Microsoft Windows deletion semantics,

which state that a file can be marked to be deleted, but can only be deleted after

all open handles are released. A file that is marked for deletion cannot accept new

file handles, but applications which already hold a file handle have the capability

of resetting the delete flag. To support this there are three types of access leases;

public, protected and private. A public lease being the least restrictive of the three,

indicates the lease holder has the file open. A protected lease is the same as the

public lease with the extra condition that any lease request made by clients must

first contact the lease holder. Finally the private lease is the same as the protected

lease but with a further condition that any access lease request by a client will be

refused.
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Implementation

Unfortunately Farsite is closed source and because of this, limited information is

available3. The authors break down the code into two main components, user

and kernel level, both developed in C. User level component is responsible for

the backend jobs, including managing cache, fetching files, replication, validation

of data, lease management and upholding the Byzantine protocol. Kernel level

component is mainly responsible for providing a filesystem like interface for the user.

Whilst Farsite has implemented some of its proposed algorithms, others remain to

be completed, including those related to scalability and crash recovery.

Summary

Farsite aims to operate in a controlled environment, within an institution. The

controlled nature of this environment means that nodes are assumed to be

interconnected by a high bandwidth, low latency network and whilst some level

of malicious behaviour is expected, on the whole, most machines are assumed, to

be available and functioning correctly. As a level of trust is assumed we classify

the operating environment as partially trusted. Farsite bases its workload model

on typical desktop machine operating in a academic or corporate environment

and thus assumes files are not being updated or read by many concurrent users.

Farsite maintains a database of content hashes of every file and utilises it to detect

duplicate files and increase its storage efficiency. On the whole Farsite aims to

provide distributed storage utilising existing infrastructure within an institution

whilst minimising administration costs, through autonomic operation.

2.2.4 Coda

Coda [124, 123, 81] provides a filesystem like interface to storage that is distributed

within an institution. Coda clients continue to function even in the face of network

outages, as a local copy of the user’s files is stored on their workstation. As well

as providing better resilience to network outages, having a local copy increases

3Farsite Homepage: http://research.microsoft.com/Farsite/
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performance and proves to be particularly useful to the ever growing group of

mobile users taking advantage of laptops. Coda was designed to take advantage

of Conventional Off The Shelf (COTS) hardware, proving to be a cost competitive

solution compared with expensive hardware required by traditional fileservers or

SANs. Upgrades simply require the addition of another server, without affecting the

operation of existing servers, therefore eliminating unavailability due to upgrades.

Coda has been designed to operate within an institution and its servers are assumed

to be connected by a high bandwidth, low latency network in what we deem to be

a partially trusted environment.

Architecture

Coda is divided into two main components (Figure 2.11), the server (Vice) and the

client (Venus). Many Vice servers can be configured to host the same Coda filesystem

in effect replicating the filesystem. Each Vice server that hosts the filesystem is part

of a Volume Storage Group (VSG). Referring to Figure 2.11, we can see that Vice

Servers A, B and C form a VSG for volume A, whilst only Vice Servers B and C form

a VSG for volume B. The Venus client software enables the user to mount the Coda

volume, providing a transparent filesystem interface. Venus has knowledge of all

available Vice servers and broadcasts its requests to them. Venus caches frequently

accessed files allowing users to operate on cached files even when disconnected from

Vice servers.

The architecture of Coda is heavily oriented around the client. The client is

left with the majority of the responsibilities, reducing the burden and complexity

of the Vice server. Therefore, the client is left with the responsibility for detecting

inconsistencies and broadcasting changes to all Coda servers. This itself could prove

to be a bottleneck as the system scales up.

Clients have two modes of operations, a connected mode when the Client has

connectivity to the Server and a disconnected mode when the client loses connectivity

to the server. Disconnected mode enables the user to continue operation even whilst

losing connectivity with the network. Coda is able to provide this mode by caching

files locally on the user’s machine. Whilst caching was initially seen as a means to
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Figure 2.11: Coda architecture

improve performance, it has the added advantage of increasing availability. Files

are cached locally based upon the Least Recently Used (LRU) algorithm, much

like traditional caching algorithm. Allowing client side caching and disconnected

operation raises issues relating to consistency.

There are two possible scenarios leading to data inconsistency in the Coda

environment. The first is in the event that a client enters disconnected operation,

the second being when a Coda server loses connectivity with other Coda servers.

When a client switches to disconnected operation the user is still able to make

changes as if they were still connected, completely oblivious to the fact they have

lost connectivity. Whilst the user makes changes a log is kept of all the changes they

make to their files. Upon reconnection an attempt to merge their changes with the

Coda server is attempted by replaying the log of their changes. If the merge fails

and a conflict is detected, manual intervention is required to resolve the conflict.

Coda’s approach to consistency is optimistic as it allows data replicas to become

inconsistent. To illustrate, disconnected users are permitted to make changes and

hence their local replica becomes inconsistent with the server’s, only when the

user reconnects are all replicas returned to a consistent state. The choice to use

an optimistic approach was based on analysing a users’ workload profile [81] and

observing that it was an unlikely occurrence for them to make modifications where
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a conflict would arise. With this in mind, the advantages to be gained by optimistic

concurrency control far outweigh the disadvantages.

When a Coda server loses connectivity with other servers, the responsibility of

detecting inconsistencies is left with the client. When a client requests a file, it first

requests the file version from each of the Coda servers. If it detects a discrepancy

in the version numbers, it notifies the Coda server with the latest version of the file.

It is only then that changes are replicated amongst the Coda servers.

Implementation

Coda was written in C and consists of two main components, the Vice server and the

Venus client (Figure 2.12). Venus consists of two main modules, the Coda FS kernel

module and the cache manager. The Coda FS kernel module is written to interface

the Linux VFS (virtual file system) enabling it to behave like any other filesystem.

When a client program accesses data on a Coda mount point, VFS receives these

I/O requests and routes them to the Coda FS kernel module. The Coda FS kernel

module than forwards these requests to cache manager, which, based on connectivity

and cache status, can choose to service these requests by either logging them to local

store or contacting the Vice servers. Vice consists of one main component which

provides an RPC interface for Venus to utilise in the event of cache misses or meta-

data requests.

Coda is an open source effort and is available for download4. Whilst Coda

itself is written in C, the distribution is accompanied by a host of utilities written

in shell and Perl for recovery and conflict resolution. Current development efforts

include: making Coda available to a wider community by porting it to various

popular platforms, reliability, robustness, setting up a mailing group and extending

the available documentation.

4Coda Homepage: http://www.coda.cs.cmu.edu/
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Summary

Coda aims to provide all the benefits associated with conventional file servers

whilst utilising a decentralised architecture. Coda is resilient to network outages

by employing an optimistic approach to consistency, which allows clients to operate

on locally cached data whilst disconnected from the server. Utilising an optimistic

consistency model is a key component in providing maximum data availability,

although this creates the possibility for consistency conflicts to arise. Knowledge

gained from the usage of Coda [81] has shown that the occurrence of conflicts are

unlikely and therefore the advantages gained by utilising an optimistic consistency

model outweigh the disadvantages. Coda’s ability to provide disconnected operation

is a key unique feature, which will grow in popularity with mobile computing.
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2.2.5 Ivy

Ivy [97] employs a peer-to-peer architecture to provide a distributed storage service

with a filesystem like interface. Unlike many existing peer-to-peer storage systems

(Gnutella [102], Napster [102]) which focus on publishing or at best only supporting

the owner of the file to make modifications, Ivy supports read-write capability and

an interface which is indifferent to any other mounted filesystem. Ivy is suited to

small cooperative groups of geographically distant users. Due to its restrictive user

policy, a user is are able to choose which other users to trust. In the event a trusted

user node is compromised and changes made are malicious, a rollback mechanism

is provided to undo any unwanted changes. Ivy is designed to be utilised by small

groups of cooperative users in an otherwise untrusted environment.

Architecture

Ivy’s architecture has no hierarchy, with every node being identical and capable of

operating as both a client and server. Due to its symmetrical nature, the architecture

is considered pure peer-to-peer. Each node consists of two main components

Chord/Dhash and the Ivy server(Figure 2.13). Chord/Dhash is used for providing

a reliable peer-to-peer distributed storage mechanism. The Ivy server interfaces to

Dhash, to send and receive data from peer nodes, and to the NFS loop-back to

provide a filesystem interface.

Ivy uses a log based structure whereby every user has their own log and view

of the filesystem. Logs contain user data and the changes made to the filesystem.

These logs are stored in a distributed fashion utilising Chord/DHash [135], a peer-

to-peer network overlay (Section 2.1.9), used for its ability to reliably store and

retrieve blocks of data across a network of computers.

The log contains a linked list data structure, where every record represents one

NFS operation. Log records are immutable and kept indefinitely enabling users to

roll back any unwanted changes, much like a log structured filesystem [114]. Whilst

Ivy supports file permission attributes, all users are able to read any log in the Ivy

system. It is advised that if a user wishes to restrict access to their files they use
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Figure 2.13: Ivy architecture

encryption. Log records store minimal information to minimise the possibility of

concurrent updates and consistency issues.

To create a filesystem within Ivy, a group of users agree upon which set of logs

will be trusted and therefore used to generate the filesystem. For every log deemed

to be part of the filesystem, an entry pointing to its log head is created in the view

array. The view array is the root index and is traversed by all the users to generate

a snapshot of the filesystem. A filesystem may comprise of multiple logs which in

turn can be used to record modifications concurrently. As Ivy supports concurrent

writes, consistency conflicts can occur.

Ivy aims to provide close-to-open consistency and as such modifications com-

pleted by users are immediately visible to operations which other participants may

initiate. This feature cannot be upheld when nodes in the Ivy filesystem lose

connectivity or become partitioned. To achieve close-to-open consistency, every

Ivy server that is performing a modification waits until Dhash has acknowledged

the receipt of new log records before announcing completion. For every NFS

operation, Ivy requests Dhash for the latest view array. Modifications which result

in consistency conflicts require the use of the lc command, which detects conflicts by

traversing the logs, looking for entries with concurrent version vectors which affect
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the same file or directory entry. Users are expected to resolve these conflicts by

analysing the differences and merging the changes.

Whilst an optimistic approach to consistency is used with respect to file

modifications, a more strict strategy (utilising locking) is in place for file creation.

Ivy aims to support exclusive creation, its reason for doing so extends to applications

which rely upon these semantics to implement their own locking. Ivy can only

guarantee exclusive creation when the network is fully available. As each user has to

fetch every other user’s log, performance degrades as the number of users increase.

Consequently, Ivy’s scalability is limited and hence the system is only suited to small

groups of users.

Implementation

Ivy is distributed as open source under the GPL agreement and is available for

download5. Source code is written using a combination of C and C++. The

SFS tool kit is utilised for event-driven programming. Performance benchmarks

conducted in a dedicated controlled environment and with replication switched off

in Chord/DHash, showed promising results where Ivy was only a factor of 2 to 3

times slower than NFS.

Summary

Ivy uniquely provides a distributed storage service with a filesystem like interface,

whilst employing a pure peer-to-peer architecture. Every user stores a log of their

modifications and at a specified time interval generates a snapshot, a process which

requires them to retrieve logs from all participating users. Whilst the transfer of logs

from every user may prove to be a performance bottleneck, users have the ability to

make changes to the filesystem without concern to the state of another participant’s

logs. Ivy logs and stores every change a user makes which enables users to rollback

any unwanted changes, although this comes at a high cost in storage overhead. Ivy

utilises an optimistic approach to consistency allowing users to make concurrent

5Ivy Homepage: http://www.pdos.lcs.mit.edu/ivy/
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changes to the same piece of data, providing users with maximum flexibility whilst

avoiding locking issues. Although, like any other systems which adopts an optimistic

approach to consistency, the system can reach an inconsistent state requiring user

intervention to resolve. Overall, Ivy can be seen as an extension of CFS [32], which

like Ivy utilises Chord/DHash for distributing its storage but only supports a limited

write-once/read-many interface.

2.2.6 Frangipani

Frangipani [140] is best utilised by a cooperative group of users with a requirement

for high performance distributed storage. It offers users excellent performance as it

stripes data between servers, increasing performance along with the number of active

servers. Frangipani can also be configured to replicate and thus offer redundancy

and resilience to failures. It provides a filesystem like interface that is completely

transparent to users and applications. Frangipani is designed to operate and scale

within an institution and thus machines are assumed to be interconnected by a

secure, high bandwidth network under a common administrative domain. The

operating environment by nature mirrors a cluster and can be considered a trusted

environment. Frangipani was designed with the goal of minimising administration

costs. Administration is kept simple even as more components are added. Upgrades

simply consist of registering new machines to the network without disrupting

operation.

Architecture

Frangipani consists of the following main components: Petal Server, Distributed

Locking Service and the Frangipani File Server Module (Figure 2.14). The Petal

Server [139] is responsible for providing a common virtual disk interface to storage

that is distributed in nature. As Petal Server nodes are added, the virtual disk scales

in throughput and capacity. The Petal device driver mimics the behaviour of a local

disk, hiding its distributed nature.

The Distributed Locking Service is responsible for enforcing consistency, thus
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Figure 2.14: Frangipani architecture

changes made to the same block of data by multiple Frangipani servers are serialised

ensuring data is always kept in a consistent state. The locking service is an

independent component of the system, it may reside with Petal or Frangipani Servers

or even on an independent machine. It was designed to be distributed, enabling

the service to be instantiated across multiple nodes with the aim of introducing

redundancy and load balancing.

The locking service employs a multiple reader, single writer locking philosophy.

It employs a file locking granularity where files, directories and symbolic links are

lockable entities. When there is a lock conflict, the locking service sends requests

to the holders of the conflicting locks to either release or downgrade. The are two

main types of locks, a read lock and a write lock. A read lock allows a server to

read the data associated with the lock and cache it locally. If it is asked to release

its lock, it must invalidate its cache. A write lock permits the server to read and

write to the associated data. If it is asked to downgrade, the server must write any

cached modifications and downgrade to a read lock. If it is asked to release the lock,

it must also invalidate its cache.

The third component is the Frangipani File Server Module, which interfaces

with the kernel and the Petal device driver to provide a filesystem like interface.

Frangipani File Server communicates with the Distributed Locking Service to

acquire locks and ensure consistency, and with Petal Servers for block-level storage
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capability. Frangipani File Server communicates with Petal Servers via the Petal

device driver module which is responsible for routing data requests to the correct

Petal Server. It is the responsibility of Frangipani File Server Module to abstract

the block-level storage provided by the Petal device driver and present a file level

interface to the kernel, which in turn provides a filesystem interface.

Frangipani utilises write-ahead redo logging of meta-data to aid in failure

recovery. The logged data is written into a special area of space allocated within

Petal Server. When the failure of a Frangipani File Server is detected, any redo logs

written to a Petal Server are used by the recovery daemon to perform updates and

upon completion releases locks owned by the failed server.

Implementation

Frangipani was implemented on top of the Petal system, employing Petal’s low-

level distributed storage services. Frangipani was developed on a DIGITAL Unix

4 environment. Through careful design considerations, involving a clean interface

between Petal Server and Frangipani File Server, the authors were able to build the

system within a few months. Unfortunately, because of Frangipani’s close integration

to the kernel, its implementation is tied to the platform, making it unportable to

other operating systems. The product has no active web page and seems that its

has no active developer/user base. Frangipani is closed source and unfortunately in

an archived state.

Summary

Frangipani provides a distributed filesystem that is scalable in both size and

performance. It is designed to be utilised within the bounds of an institution

where servers are assumed to be connected by a secure high bandwidth network.

Performance tests carried out by the authors have shown that Frangipani is a very

capable system. A benchmark on read performance showed Frangipani was able

to provide a near linear performance increase with respect to the number of Petal

Servers. The only limiting factor was the underlying network, with benchmark

results tapering off as they approached the limit imposed by network capacity.
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An interesting experiment was conducted, showing the effects of locking con-

tention on performance. The experiment consisted of a server writing a file while

other servers read the file. The frequent lock contention resulted in a dramatic

performance drop, in the factors of 15 to 20. In summary, the impressive benchmark

results demonstrate that Frangipani is a capable high performance distributed

storage system, whilst being resilient to component failure.

2.2.7 GFS

The Google File System [57] is a distributed storage solution which scales in

performance and capacity whilst being resilient to hardware failures. GFS is

successfully being utilised by Google to meet their vast storage requirements. It

has proven to scale to hundreds of terabytes of storage, utilising thousands of

nodes, whilst meeting requests from hundreds of clients. GFS design was primarily

influenced by application workload. In brief, GFS is tailored to a workload that

consists of handling large files (> 1GB) where modifications are mainly appends,

possibly performed by many applications. With this workload in mind, the authors

propose interesting unique algorithms. Existing applications may need to be

customised to work with GFS as the custom interface provided does not fully comply

to POSIX file I/O. Whilst GFS has proven to be scalable, its intended use is within

the bounds of an institution and in a Trusted Environment.

Architecture

In the process of designing GFS, the authors focused on a selection of requirements

and constraints. GFS was designed to utilise Commodity Off The Shelf (COTS)

hardware. COTS hardware has the advantage of being inexpensive, although failure

is common and therefore GFS must accommodate for this. Common file size will be

in the order of Gigabytes. Workload profile, whether reading or writing, is almost

always handled in a sequential streaming manner, as apposed to random. Reads

consist of either large streaming reads (MB+) or small random reads. Writes mainly

consist of appending data, with particular attention made to supporting multiple
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clients writing records to the same file.

Bearing all these constraints and requirements in mind, GFS proposes an

interesting solution. Replication is used to accommodate for node failures. As

most of the workload is based upon streaming, caching is non-existent, this in turn

simplifies the consistency, allowing a more “relaxed model”. A special atomic append

operation is proposed to support multiple concurrent clients appending without the

need to provide synchronisation mechanisms. Having described the core concepts

behind GFS, we shall now discuss the architecture.

GFS has three main components (Figure 2.15), a Master Server, Chunk Servers

and a Client Module. For an application to utilise the GFS, the Client Module needs

to be linked in at compile time. This allows the application to communicate with the

Master Server and respective Chunk Servers for its storage needs. A Master Server

is responsible for maintaining meta-data. Meta-data includes namespace, access

control information, mapping information used to establish links between filenames,

chunks (which make up files contents) and their respective Chunk Server locations.

The Master Server plays an important role in providing autonomic management

of the storage the Chunk Servers provide. It monitors the state of each Chunk

Server and in the event of failure, maintains a level of replication by using remaining

available replicas to replicate any chunks that have have been lost in the failure. The

Chunk Servers are responsible for servicing data retrieval and storage requests from

the Client Module and the Master Server.

Having a single Master Server introduces a Single Point of Failure (SPF) and

consequently a performance and reliability hot-spot. In response to these challenges,

the Master Server replicates its meta-data across other servers, providing redundancy

and a means to recover in the event of failure. To avoid the Master Server becoming

a performance hot-spot, the Client Module interaction with the Master Server is kept

to a minimum. Upon receiving the Chunk Server location from the Master Server,

the Client Module fetches the file data directly from the corresponding Chunk Server.

The choice of using a large chunk size of 64MB also reduces the frequency with which

the Master Server needs to be contacted.

A large chunk size also has the following advantages: it is particularly suited to a
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Figure 2.15: GFS architecture

workload consisting of large streaming reads or appends such as GFS, lower network

overhead as it allows the Client Module to sustain an established TCP connection

with a Chunk Server for a longer period. A disadvantage normally associated with

a large chunk size is the wasted space, which GFS avoids by storing chunks as files

on a Linux filesystem.

GFS follows an optimistic consistency model, which suites their application re-

quirements well and allows for a simple solution whilst enabling multiple concurrent

writers to append to a particular file. This feature is particularly suited to storage

requirements of distributed applications, enabling them to append their results in

parallel to a single file.

GFS supports two types of file modifications, writes and record appends. Writes

consist of data being written at a specified offset. “A record append causes data to be

appended atomically at least once even in the presence of concurrent mutations, but

at an offset of GFS’s choosing.” Adopting an optimistic approach to consistency (as

apposed to implementing distributed locking) introduces the possibility that not all

replicas are byte-wise identical, allowing for duplicate records or records that may

need to be padded. Therefore, the client is left with the responsibility of handling

padded records or duplicate records. The authors acknowledge that consistency and
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concurrency issues do exist, but that their approach has served them well.

Implementation

Unfortunately, due to the commercial nature of GFS the source code has not been

released and limited information is available. The authors discuss the Client Module

utilises RPC for data requests. A discussion into the challenges which they have

encountered whilst interfacing to the Linux kernel is also documented. This suggests

that a large portion of code, if not all, was written in C.

Summary

GFS was designed to suit a particular application workload, rather than focusing on

building a POSIX-compliant filesystem. GFS is tailored to the following workload:

handling large files, supporting mostly large streaming reads/writes and supporting

multiple concurrent appends. This is reflected in the subsequent design decisions,

large chunk size, no requirement for caching (due to streaming nature) and a relaxed

consistency model. GFS maintains replication allowing it to continue operation even

in the event of failure. The choice of using a centralised approach simplified the

design. A single Master Server approach meant that it was fully aware of the state

of its Chunk Servers and allowed it to make sophisticated chunk placement and

replication choices. Benchmarks have shown GFS to scale well providing impressive

aggregate throughput for both read and write operations. GFS is a commercial

product successfully being used to meet the storage requirements within Google.

2.2.8 SRB

Data can be stored under many types of platforms in many different formats.

Federating this heterogeneous environment is the primary job of the Storage

Resource Broker (SRB) [7, 106]. The SRB provides a uniform interface for

applications to access data stored in a heterogeneous environment. SRB aims to

simplify the operating environment under which scientific applications access their

data. Applications accessing data via the SRB need not concern themselves with
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locations or data formats, instead they are able to access data with high level ad-hoc

queries. Whilst providing a uniform interface, the SRB also enables applications to

access data across a wide area network, increasing data availability. The SRB was

designed and developed to provide a consistent and transparent means for scientific

applications to access scientific data stored across a variety of resources (filesystems,

databases and archival systems).

Architecture

The SRB architecture consists of the following main components; the SRB server,

Meta-data Catalog (MCAT) and Physical Storage Resources (PSRs). The SRB

server is middleware which sits between the PSRs and the applications which access

it (Figure 2.16). MCAT manages meta-data on stored data collections, PSRs and

an Access Control List (ACL). PSRs refer to the Physical Storage Resource itself,

which could be a database, a filesystem or any other type of storage resource for

which a driver has been developed. Applications read and write data via the SRB

server, issuing requests which conform to the SRB server API. Data stored via the

SRB needs to be accompanied by an description which is stored in MCAT. The SRB

server receives requests from applications, consults the MCAT to map the request

to the correct PSR, retrieves the data from the PSR and finally forwards the result

back to the application. SRB servers have a federation mode of operation where one

SRB server behaves as a client of another SRB server. This allows applications to

retrieve data from PSRs that may not necessarily be under the control of the SRB

server they communicate with.

Now that we have a high level understanding of how the major components

of SRB work together, we shall provide more details about security, MCAT and

the data structures used to manage stored data. Security is broken down into two

main areas, authentication and encryption between the application and the SRB

server and amongst the SRB servers. The SRB server supports password-based

authentication with data encryption based on SEA [129], which employs public and

private keys mechanisms and a symmetric key encryption algorithm (RC5). When

SRB servers operate in federated mode, the communication between them is also
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encrypted using the same mechanisms. During authentication the SRB server queries

MCAT for authentication details. Data access is controlled by a ticketing scheme

whereby users with appropriate access privileges may issue tickets to access objects

to other users. These tickets may expire based on duration or the number of times

they have been used to access data.

MCAT organises data in a collection hierarchy. The hierarchy is governed by the

following axioms: A collection contains zero or more sub-collections or data items. A

sub-collection may contain zero or more data items or other sub-collections. A data

item is a file or a binary object. This hierarchy scheme extends to data access control.

Users, be-it registered or unregistered, are issued with a ticket for every collection

they wish to access. This ticket will grant them access to the collection and the

subsequent data objects contained within the hierarchy of that collection. PSRs are

also organised in a hierarchical manner, where one or more PSRs can belong to a

single Logical Storage Resource (LSR). PSRs which belong to the same LSR may be

heterogeneous in nature, and therefore the LSR is responsible for providing uniform

access to a heterogeneous set of PSRs. Data written to a LSR is replicated across

all PSRs and can be read from any PSR as its final representation is identical.

As data is replicated amongst PSRs, there is a possibility for inconsistencies

to arise when a PSR fails on a write. SRB handles this scenario by setting the

“inconsistent” flag for that replica, preventing any application from accessing dirty

data. Replicas which become inconsistent can re-synchronise by issuing a replicate

command, which duplicates data from an up to date replica.
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When a client connects to an SRB server, it sends a connect request. Upon

receiving a connect request, the SRB server will authenticate the client and fork off

an SRB agent. The SRB agent will then handle all subsequent communication with

the client. SRB allows different SRB servers to communicate between each other,

allowing the federation of data across different SRB servers. The SRB agent will

query MCAT to map high level data requests to their physical stored locations and

if the data request can be serviced by local PSRs the SRB agent will initiate contact

with the PSR which is known to have the data.

Implementation

SRB binaries and source code are available for download6. Downloading the

software requires registration, upon which a public key can be used to decrypt

and install SRB. SRB is currently being used across the United States, a major

installation being the BIRN Data Grid, hosting 27.8 TB of data across 16 sites. SRB

has been developed using a combination of C and Java, providing many modules

and portals which support a multitude of platforms, including the web.

Summary

SRB was built to provide a uniform homogeneous storage interface across multiple

administrative domains which contain heterogeneous storage solutions and data

formats. The homogeneous interface provided by SRB aims to simplify data storage

and retrieval for scientific applications which have to deal with many data-sets. This

simplification removes the need for scientists to individually implement modules to

access data in different formats or platforms. The authors of SRB have identified a

possible centralisation bottleneck associated with the MCAT server and wish to do

a performance impact study with a large number of concurrent users.

6SRB Homepage: http://www.sdsc.edu/srb/
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2.2.9 Freeloader

Scientific experiments have the potential to generate large data-sets, beyond

the storage capability of end-user workstations, typically requiring a temporary

storing hold as scientists analyse the results. Freeloader [143] aims to provide

an inexpensive way to meet these storage requirements whilst providing good

performance. Freeloader is able to provide inexpensive, mass-storage by aggregating

scavenged storage from existing workstations and through the use of striping, is

able to aggregate network bandwidth providing an inexpensive but fast alternative

to storage offered by a file server. Freeloader is intended to operate within a partially

trusted environment and scale well within the bounds of an institution.

Architecture

Freeloader was designed with the following assumptions in mind: (i) usage pattern is

expected to follow a write-once/read-many profile, (ii) scientists will have a primary

copy of their data stored in another repository, (iii) data stored is temporary (days-

weeks) in nature, before new data is generated. Freeloader aims to fulfill these

assumptions rather than being a general purpose filesystem. Data is stored in 1MB

chunks called Morsels, this size was found to be ideal for GB-TB data-sets.

Freeloader consists of three main components (Figure 2.17); Freeloader Client,

Freeloader Manager and Benefactor. The Freeloader Client is responsible for

servicing user storage requests, in doing so communicates with the Freeloader

Manager and respective Benefactors. A Benefactor is a host which donates its

available storage, whilst servicing Freeloader Clients’ storage requests and meta-

data requests from the Freeloader Manager. The Freeloader Manager component is

responsible for maintaining system meta-data whilst overseeing the overall operation

of the system. The overall architecture of Freeloader shares many similarities to GFS

[57] and PVFS [16], even though each system has distinct operational objectives and

algorithms. We now discuss each of the main components in greater detail.

The Freeloader Client is responsible for servicing application storage requests

by translating incoming function calls to requests, which are then routed to the
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Manager or Benefactor depending on the operation. Before a Freeloader Client is

able to read/write data, it needs to contact the Freeloader Manager for details on

the nodes which it is able to read/write data to/from. The Freeloader Client receives

pairs of values containing chunk id and the Benefactor id. The Freeloader Client is

then able to route its storage request to the correct Benefactor. When retrieving

data-sets, the Freeloader Client will issue requests for chunks in parallel, aggregating

network transfer from Benefactors. Whilst retrieving chunks, the Freeloader Client

assembles them and presents a stream of data to the application.

Benefactor hosts run a daemon which is responsible for advertising its presence

to the Freeloader Manager whilst servicing requests from Freeloader Clients and the

Freeloader Manager. The Benefactor utilises local storage to store chunks; chunks

relating to the same data-set are stored in the same file. The Benefactor services

operations to create and delete data-sets from the Freeloader Manager and put

and get operations from the Freeloader Client. The Benefactor monitors the local

host’s performance allowing it to throttle its service so as not to impede the host’s

operation.

The Freeloader Manager component is responsible for storing and maintaining

the system’s meta-data. The meta-data includes chunk ids and their Benefactor
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locations, replication, checksums for each of the chunks and the necessary data

to support client side encryption. The Freeloader Manager is responsible for chunk

allocation utilising two algorithms: round robin and asymmetric striping. The round

robin approach consists of striping data evenly across Benefactors, but as resource

availability will vary from Benefactor to Benefactor, the algorithm has been altered

to bias Benefactors with more available storage. The asymmetric approach involves

striping data across Benefactors and the Freeloader Client itself, storing part of

the data set locally. A local/remote ratio determines the proportion of chunks

which are to be stored locally and on remote Benefactors. The ratio which yields

optimal performance, roughly corresponds to the local I/O rate and aggregate network

transfer rate from the remote Benefactors. Although this ratio may result in optimal

operation, constraints imposed by limited local storage may not permit this ratio.

Implementation

The TCP Protocol is used to transfer chunks between the Freeloader Client and

Benefactor, due to its reliability and its congestion/flow control mechanisms it was

deemed suitable for larger transfers. The rest of the communication between the

components is performed in UDP, as the messages are short and bursty in nature.

An application utilising storage services will need to call the Freeloader library which

implements some of the standard UNIX file I/O functions.

Benchmarks show the capability of asymmetric striping to aggregate disk I/O

performance up to network capacity. A machine with a local disk speed throughput

of 30MB/Sec was able to attain approx 95MB/Sec whilst striping data across remote

nodes. At the moment, Freeloader has not been released, although it is documented

that the Freeloader Client library has been written in C and implements the standard

I/O function calls. Otherwise, it is unclear what languages were used to develop the

Benefactor and Freeloader Manager components.

Summary

Freeloader’s target audience includes scientists engaged in high performance comput-

ing that seek an inexpensive alternative to storing data whilst providing performance
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associated with a parallel filesystem. Freeloader is designed to accommodate a

transient flow of scientific data which exhibits a write-once/read-many workload.

In doing so, it utilises existing infrastructure to aggregate storage and network

bandwidth to achieve a fast, inexpensive storage solution providing scientists with

an alternative to more expensive storage solutions like SANs.

2.2.10 PVFS

PVFS [16] is a parallel filesystem designed to operate on Linux clusters. The authors

identify an absence of production quality, high-performance parallel filesystem for

Linux clusters. Without a high-performance storage solution, Linux clusters cannot

be used for large I/O intensive parallel applications. PVFS was designed to address

this limitation and provide a platform for which further research into parallel

filesystems. PVFS is designed to operate within the bounds of an institution in

a trusted environment.

Architecture

PVFS was designed with three operational goals in mind, (i) provide high-

performance access and support concurrent read/write operations from multiple

processes to a common file, (ii) provide multiple interfaces/API’s, (iii) allow existing

applications which utilise POSIX file I/O to utilise PVFS without the need to

modified or recompiled. The PVFS architecture is designed to operate as a client-

server system (Figure 2.18). There are three main components which make up the

PVFS system: PVFS Manager, PVFS Client and PVFS I/O daemon. A typical

cluster environment has multiple nodes dedicated to storage and computation.

Nodes responsible for storage run the PVFS I/O daemon and nodes responsible

for computation will have the PVFS Client installed. An extra node is dedicated to

running the PVFS Manager.

The PVFS Manager is responsible for storing meta-data and answering location

requests from PVFS Clients. Meta-data stored by the PVFS Manager include

filenames and attributes such as file size, permissions and striping attributes
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(segment size, segment count, segment location). The PVFS Manager does not

service read/write requests, instead, this is the responsibility of the I/O daemon.

Striping chunks of data across multiple I/O nodes allows parallel access. The

PVFS Manager is responsible for enforcing a cluster wide consistent namespace.

To avoid overheads associated with distributed locking and the possibilities of lock

contention, PVFS employs a minimalistic approach to consistency with meta-data

operations being atomic. Beyond enforcing atomic meta-data operations, PVFS

does not implement any other consistency mechanisms. APIs provided by PVFS

include a custom PVFS API, a UNIX POSIX I/O API and MPI-IO.

The PVFS Client is responsible for servicing storage requests from the appli-

cation. Upon receiving a storage request, it will contact the PVFS Manager to

determine which PVFS I/O daemons to contact. The PVFS Client than contacts

the PVFS I/O daemons and issues read/write request. The PVFS Client library

implements the standard suite of UNIX POSIX I/O API and when in place, traps

any system I/O calls. The PVFS Client library than determines if the call should be

handled by itself, or passed onto the kernel. This ensures that existing applications

need not be modified or recompiled. The PVFS I/O daemon is responsible for
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servicing storage requests from PVFS Clients whilst utilising local disk to store

PVFS files.

Implementation

PVFS is distributed as open source under the GPL agreement and is available for

download7. All components have been developed using C. PVFS uses TCP for

all its communication so as to avoid any dependencies on custom communication

protocols. Benchmarks conducted with 32 I/O daemons and 64MB files have shown

to achieve 700MB/Sec using Myrinet and 225MB/Sec using 100Mbits/Sec Ethernet.

PVFS is in use by the NASA Goddard Space Flight Centre, Oak Ridge National

Laboratory and Argonne National Laboratory.

Summary

PVFS is a high-performance parallel filesystem designed to operate on a Linux

clusters. It provides an inexpensive alternative utilising Commodity Off The Shelf

(COTS) products allowing large I/O intensive applications to be run on Linux

clusters. Benchmarks provided indeed show that PVFS provides a high-performance

storage service. Some future work identified include a migration away from TCP, as

it is deemed to be a performance bottleneck. Other areas of future research include:

scheduling algorithms for I/O daemons, benchmarks show a performance flat spot,

potential for further tuning and replication.

2.3 Survey of markets in Distributed Storage

Systems

In this section we survey distributed storage systems which apply a market model

to manage various aspects of their operation. During the survey we shall observe

how: MojoNation [151] applies a market based on pseudo currency to instill good

behaviour, SAV [25] employs a barter model to preserve archives, Mungi [70] applies

7PVFS Homepage: http://www.pvfs.org/



2.3. SURVEY OF MARKETS IN DISTRIBUTED STORAGE SYSTEMS 71

a commodity market model to manage storage quota and how OceanStore [82]

presents a case for a storage utility.

2.3.1 Mungi

Mungi[70] employs marketing principles to ensure that storage is fairly allocated

amongst local users. One of the primary design goals behind the way that they

share storage was to ensure that any user is unable to starve other users of storage.

Each user is issued with a bank account and the system provides income using a

pay master and collects rent for storage used via a rent collector. To ensure users

cannot amass a large number of credits over time and allocate vast amounts of

storage potentially starving other users of storage, Mungi employs the following tax

equation.

τ(β) = b

[

1− exp

(

−
β

b

)]

(2.1)

where:

b: balance maximum, an account may never exceed this value.
Equivalent to a storage quota.

β: account balance.

The tax equation ensures users’ balance tapers off and has virtually no effect on

balances which are much lower than income. The cost function used by the rent

collector to collect a fee from each of the user accounts is:

ρ(ξ) = 1 + 4ρξ2exp

(

ξ

1− ξ
− 1

)

(2.2)

where:

ξ: ξ(0 ≤ ξ ≤ 1) storage utilisation (ξ = 0 : empty; ξ = 1 : full)
ρ: a parameter used to determine how quickly storage costs

increases in relation to system wide storage utilisation.

The cost of storage grows exponentially as storage is being used up preventing

the system from ever running out of storage. As users’ credit runs out they are forced
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to free up used storage. By employing a commodity market model, Mungi is able

to share storage services more efficiently than otherwise possible with a fixed quota

system. A fixed quota system is rather inflexible, users are forced to free storage

when they reach their allocated quota even though there is plenty of free storage

available system wide. A quota system limits administrators to allocate quotas such

that the total sum of all quotas does not breach system storage capacity. Whilst this

approach guarantees that users will always be granted storage, if within their quota,

it results in much storage being wasted as most users will not reach their quota.

Alternatively, administrators may choose to over commit the quotas and whilst this

has the potential for better utilisation it runs the risk of exhausting system wide

storage resulting in users being denied storage even if they are within their quota.

There are two main advantages associated with the approach employed by Mungi,

(i) users have the potential to use a large quantity of storage temporarily and (ii)

the crediting and debiting is run periodically rather than for every operation as with

a quota system. An interesting observation made by the authors of Mungi [70] was

that employing a bidding process, carries a significant overhead as users are forced

to play the market ; a limiting factor.

2.3.2 Stanford Archival Repository Project

The Stanford Archival Repository Project [25, 26, 27] aims to provide a way for

institutions such as libraries to remotely archive their data repositories to improve

reliability. As these institutions all possess some level of local storage and require

remote storage there is a double coincidence of wants [110], ideal for bartering. With

this in mind, the Stanford Archival Repository Project applies a bartering market

model, allowing institutions to barter amongst each other effectively, remotely

archiving each other’s repositories.

The process of trading involves institutions calling auctions when they require

remote storage. When an institution (A) calls an auction it advertises the size of

storage (R) it requires. Institutions are invited to submit bids, their bids consist

of the amount of storage they require in return from institution (A). Therefore, the

lower the bid, the less storage institution (A) is required to provide in return for the
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barter to happen, making lower bids more attractive.

Cooper et. al. [26] proposes the following two algorithms under which this

auction may take place: Collection Trading and Deed Trading. Collection Trading

involves bartering storage based on collection size, hence for a trade to be successful,

both sites must be able to store each other’s selected collection. On the other hand,

Deed Trading is based on available blocks of data, this allows for extra flexibility,

but as a consequence is more complicated, requiring institutions to keep records of

deeds. Deed Trading allows a collection to be stored across many deeds, effectively

splitting the collection across many distributed sites, otherwise not possible in

Collection Trading. Deed Trading recognises that some deeds may have available

space, allowing institutions to sub divide and create another deed from the available

space. Results from simulations comparing Collection and Deed Trading algorithms,

show that Deed Trading is more efficient, achieving higher global reliability whilst

using less space.

In a more recent study [27] the following four biding algorithms were investigated:

1. FreeSpace: A site bids more, the more free space it has, therefore as its local

storage becomes scarce it bids less and tends to wins more auctions. The aim

of this algorithm is to encourage trading as storage becomes scarce.

2. UsedSpace: A site bids more, the less space it has available. Under this

bidding policy a site begins to bid low when local space is abundant, and

begins by winning most of the auctions. The idea behind this algorithm is to

hold on to local storage as it becomes scarce.

3. AbundantCollection: A site bids more as its collections become more

abundant. The effect of this bidding policy allows the institution to win

auctions when replicas are low and therefore help to replicate its rare

collections. As these rare collections get replicated (and become not as rare)

the site starts to bid higher as the requirement to win auctions and replicate

collections is not as urgent.

4. RareCollection: A site bids more when its collections are rare. Event though
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with this strategy a site will win fewer auctions, when it does so it will have

access to a large amount of storage (due to the high bid) therefore being able

to archive many collections.

Simulations conducted varied a local storage factor (F) whilst paying particular

attention to the resulting Mean Time To Failure (MTTF). The local storage factor

(F) determines how much available storage a local site has compared with the size

of its collection. A high value of F indicates an abundance of storage. Results from

the simulation comparing the above four algorithms show that not any one of the

bidding policies was outright best for all values of F. For low values of F (2 <= F <=

3.5) FreeSpace achieves excellent results, when F is between (3.5 < F <= 4.5) all

the algorithms perform fairly similarly and for high values of F (4.5 < F <= 6)

UsedSpace becomes the dominant strategy.

The Stanford Archival Repository Project possesses unique requirements and

qualities, users with common objectives, barter amongst each other for remote

store, in the process preserving their collections. Each user has local store, which if

made available to remote users is deemed valuable, its a situation that is ideal for

bartering. Cooper et. al. investigate a framework for data trading, employing an

economic mechanism structured around reliability, rather than access performance.

The bartering model employed is symmetric and suits a Peer to Peer architecture

where every site is autonomous, capable of providing archival storage as well as

requiring it. The result of this investigation is a framework which allows institutions

to replicate collections amongst each other effectively creating a global platform for

data archiving.

2.3.3 MojoNation

MojoNation [151] is a peer-to-peer file sharing network functionally much like

Gnutella and Napster. The major difference over earlier systems and its relevance to

our investigation is its use of market principles to balance load on the network and

instill good behaviour amongst users in an otherwise untrusted environment. Storage

space, bandwidth and processing cycles are all services recognised by MojoNation
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and translate to Mojo, a pseudo currency. When users contribute these services,

they are issued with Mojo and when services are used they are charged.

Every service provided or consumed requires a transaction to be performed.

To ensure honest transfers amongst peers, a trusted third party entity (Broker)

is employed. The Broker oversees user transactions and behaviour. Any interaction

amongst peers, be-it a hello message or request for a service will result in an offer

of Mojo being made. The initiating peer offers Mojo and the receiving agent (A)

extends the initiating peer credit in order to complete the transaction. When the

credit limit is reached, receiving agent (A) contacts the Broker to complete the

transaction. Interactions with the Broker are limited to either when a credit limit is

reached or when a transaction sums up to a coin. There are two benefits for limiting

interactions with the Broker: (i) peers are able to continue to function even if the

Broker is temporarily unavailable and (ii) reduce the load on the Broker, allowing

it to service more peers. The Broker is responsible for maintaining accounts and

balances and establishes trust by overseeing transactions whilst keeping account of

reputation.

The market model employed by MojoNation is based on a brokering model where

pseudo currency is used as a temporary medium to exchange services amongst peers.

Whilst communication and capabilities of peers corresponds to what is typical of a

peer-to-peer system, the Broker introduces centralisation, which has been recognised

as a source of performance and scalability issues.

2.3.4 OceanStore

OceanStore [82] proposed an architecture for a globally scalable storage utility,

whereby consumers would pay a fee in exchange for access to persistent storage.

Providing a storage utility inherently means that data must be highly available,

secure, easy to access and provide guarantees on Quality of Service (QoS). A user

must be able to access their data easily from any geographic location. Hence data

must be cached in geographically distant locations, in effect travelling with the user,

and giving rise to the term nomadic data. OceanStore provides a mount point

providing users with a transparent, easy to use interface, hiding all the underlying
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complexities, enabling existing applications to access storage.

OceanStore aims to provide high performance and availability guarantees whilst

operating across a global untrusted infrastructure. Providing a storage utility implies

the need for accountability mechanisms to be employed, a pricing scheme and

payment system. Keeping track of transactions and managing accountability within

a distributed untrusted environment is a challenging task and requires a trusted

platform to function. The OceanStore architecture has the potential to implement

a market model within the Byzantine set of nodes, unfortunately no details are

supplied.

2.4 Discussion and Summary

We have presented a taxonomy of distributed storage systems including a survey of

systems which apply market models to manage various aspects of their operation.

In our study we have found that distributed storage systems are evolving, providing

richer functionality (Section 2.1.1), operating across untrusted environments with

tougher constraints (Section 2.1.3), adopting more scalable ad-hoc architectures

(Section 2.1.2), employing dynamic routing (Section 2.1.9), optimistic consistency

(Section 2.1.5) and cryptographic algorithms to provide security (Section 2.1.6).

With the emergence of many different distributed storage systems, federating and

managing globally distributed data is becoming an increasingly challenging task,

sparking research into Data Grids (Section 2.1.8). All these factors are making

DSSs increasingly complex and consequently harder to maintain and administer.

This complexity dilemma has been identified as one of the toughest hurdles facing

computer systems [80] and to address this we have seen the emergence of Autonomic

Computing (Section 2.1.7). Autonomic computing has inspired much innovative

research proposing many unique ways to address issues relating to complexity; from

structured methods like introspection [82] and the four axioms of self configuration,

optimisation, healing and protection [72] to more ad-hoc approaches inspired by

biological [134] and economic [52, 152, 15] systems. The focus in our thesis is

on distributed storage systems which apply economic principles to manage various
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aspects of their operation. A survey (Section 2.3) of distributed storage systems

systems that apply market models to manage various aspects of operation was

presented, in summary we discussed: quota management (Mungi [70]), encouraging

the sharing of storage for data preservation (SAV [25]), instilling cooperative

behaviour (MojoNation [151]), and provision of a global storage utility (OceanStore

[82]). It is in this context that we propose the Storage Exchange platform.

Essentially, the Storage Exchange [104] platform allows storage to be treated

as a tradeable resource. Consumers and providers are able to submit their storage

requirements and services along with budgetary constraints to the Storage Exchange,

which in turn employs a market model to determine successful trades. The Storage

Exchange encourages the sharing of unused storage services much like SAV but is

more dynamic allowing storage services to not only be bartered but traded as storage

utility. As a utility, the Storage Exchange can be compared to OceanStore. Whilst

OceanStore provides many invaluable insights into providing a reliable global storage

service, it shies away from applying a market model enabling storage services to be

automatically traded. Whilst the Storage Exchange can be likened to OceanStore

or SAV, it has been designed to be a platform for future research into autonomic

management of storage services. We envisage consumers and providers will employ

brokers to automatically trade storage based upon organisational requirements. The

Storage Exchange is discussed in detail in the next chapter.
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Chapter 3

STORAGE EXCHANGE PLATFORM

In this chapter we discuss the Storage Exchange platform in detail. We begin with

a system overview where we introduce the Storage Exchange and discuss various

roles an institution may choose to adopt when using our platform. We then present

the architecture, where we introduce the Storage Provider, Storage Client, Storage

Broker and Storage Marketplace. Upon discussing each of the main components,

we introduce Virtual Volumes and how they can be traded and utilised. This is

followed by a series of sections dedicated to each of the main components covering

architectural and design details. The chapter continues by providing an insight

into implementation, before discussing our evaluation and subsequent performance

results. We conclude by summarising the main aspects of the platform.

3.1 Introduction

The Storage Exchange [104] is a platform allowing storage to be treated as a

tradeable resource. Organisations with available storage are able to use the Storage

Exchange to lease it out to consumer organisations. The Storage Exchange platform

has been designed to operate on a global network such as the Internet, allowing

organisations across geographic and administrative boundaries to participate.

“Commerce in every era consists of sellers finding buyers at mutually beneficial

prices” [17]. The Storage Exchange platform is no different, providing consumers

and providers with a place to advertise their requirements whilst employing a market

model to efficiently allocate trades which are mutually beneficial. There are three

important functions which make the Storage Exchange platform a reality; (i) the

ability to harness available storage (Storage Provider), (ii) provide an interface to

the storage (Storage Client), (iii) manage and trade the storage (Storage Broker and

79
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Figure 3.1: Storage Exchange: platform overview

Storage Marketplace). The Storage Exchange has many applications, to illustrate

we discuss the possible roles an organisation may choose to adopt when using our

platform (Figure 3.1):

1. Provider: Organisations with an abundance of storage may participate as

providers selling their available storage, consequently better utilising their

existing infrastructure.

2. Consumer: Organisations which require storage beyond the capacity of

internal storage services may participate as consumers and purchase the

storage services. Purchased storage may be used for remote archival, day

to day file store or just temporary storage.

3. Provider and Consumer: Organisations adopting this role actively buy and

sell storage services. Some possible reasons for adopting this role include:

(a) Barter: Organisations choosing to barter aim to sell storage to cover

expenses accrued from purchasing storage. Participants adopting this

role need not pay to participate. If all participants were configured to

barter, the system would operate under similar principles to the Standford
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Archival Repository Project [25], where institutions barter with each

other to archive each other’s repositories.

(b) Temporary access to storage: Some organisations may require access to

storage services temporarily, an example scenario would be to briefly store

results generated from scientific simulations [143]. To cover these spikes in

storage requirements, organisations mostly behave as providers, providing

storage services and acquiring credits, then when they require storage

they have the ability to purchase storage with the acquired credits. This

behaviour allows an organisation to temporarily access storage services

beyond their own without the need to pay.

4. In-house Storage Scavenging: In this configuration, an organisation

chooses not to communicate with the Storage Marketplace and instead

meets their storage requirements by utilising available storage within the

organisation. In this configuration the Storage Exchange platform would be

functionally similar to that of the Farsite [2] system.

All roles except In-house Storage Scavenging need to interact with the Storage

Marketplace. From a computer systems view point, the Storage Marketplace is an

entity responsible for resource discovery, allowing consumers to find resources. From

an economic angle, it allows providers to find consumers. In our discussion thus far,

we have seen the possible uses of the Storage Exchange. The following sections will

focus on its architecture and individual components.

3.2 System Architecture

In this section we shall introduce the basic ideas which allow the Storage Exchange

platform to function. We begin by briefly discussing each of the four main compo-

nents (Storage Provider, Storage Client, Storage Broker and Storage Marketplace),

followed by a discussion of Virtual Volumes and the process of utilising and trading

them.
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There are four main components which make up the Storage Exchange platform

(Figure 3.2): (i) Storage Provider: harnesses available storage on installed host

whilst servicing requests from Storage Client, (ii) Storage Client: provides an

interface for the user to access storage services, (iii) Storage Broker: manages in-

house storage capacity and trades storage based upon storage service requirements

of institution, (iv) Storage Marketplace: a trading platform used by Storage

Brokers to trade storage. The Storage Marketplace and Storage Broker are mainly

responsible for exchanging trading information, the Storage Client and Storage

Provider communicate with each other when storage services are being accessed.

Both the Storage Provider and Storage Client communicate with the Storage Broker,

the Storage Provider does so to inform of storage usage and the Storage Client is

required to authenticate itself with the Storage Broker before being able to access

storage services.

3.2.1 Storage Provider

The Storage Provider is deployed on hosts within an organisation chosen to

contribute their available storage. Whilst we envision the Storage Provider to be

used to scavenge available storage from workstations, there is no reason why it
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cannot be installed on servers or dedicated hosts. The Storage Provider is responsible

for keeping the organisation’s broker up to date with various usage statistics and

servicing incoming storage requests initiated by Storage Clients.

3.2.2 Storage Client

A Storage Client enables an organisation to utilise storage services, be it internally

or from an external organisation. The user needs to configure the Storage Client

with their user credentials, storage contract details and the Storage Broker it should

contact. The Storage Client then transmits the user and contract details to the

specified Storage Broker. Upon successful authentication, the Storage Broker looks

up the Storage Providers responsible for servicing the storage contract and instructs

them to connect to the Storage Client. Once the Providers establish a connection

with the Client, the Client then provides a filesystem like interface, much like an NFS

[121] mount point. The filesystem interface provided by the Storage Client allows

applications to access the storage service like any other file system and therefore

applications need not be modified or linked with special libraries.

3.2.3 Storage Broker

For an organisation to be able to participate in the Storage Exchange platform they

will need to use a Storage Broker. The Broker enables the organisation to manage

their available storage, buy and sell storage services and allow Storage Clients to

utilise storage services. The Broker needs to be configured to reflect how it should

best serve the organisation’s interests. From a consumer’s perspective, the Broker

will need to know the organisation’s storage requirements and the budget it is allowed

to spend in the process of acquiring them. From the Provider’s perspective the

Storage Broker needs to be aware of the available storage and the financial goals

it is required to reach. Upon configuration, a Storage Broker contacts the Storage

Marketplace with its requirements.

The Storage Broker is the largest component and is responsible for:

1. Keeping track of bought and sold storage contracts.
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2. Monitoring system activity, covering status of Storage Providers and storage

contract usage.

3. Authenticating both internal and external Storage Clients.

4. Maintaining routing information; mapping storage services to Storage

Providers.

The Storage Broker uses statistics received from Storage Providers to make

decisions on how best to manage the infrastructure (e.g. allocate storage amongst

Storage Providers) to ensure continuous operation. These statistics can be used to

determine which providers are deemed unavailable, and can be used to maintain a

level of redundancy, increasing availability whilst reducing the risk of losing data.

3.2.4 Storage Marketplace

The Storage Marketplace provides a platform for Storage Brokers to advertise their

storage services and requirements. The Storage Marketplace is a trusted entity

responsible for executing a market model and determining how storage services are

traded. When requests for storage are assigned to available storage, the Storage

Marketplace generates a storage contract. The storage contract will contain a

configuration of the storage policy and form a contract binding the provider to

fulfill the service for the determined price. In a situation where either the provider

or consumer breaches a storage contract, the Storage Marketplace has the potential

to keep a record of reputation for each organisation which can be used to influence

future trade allocations.

3.2.5 Virtual Volume

A Virtual Volume refers to a storage device a Storage Client accesses when

communicating with a Storage Provider. A Storage Client only communicates

with a single Storage Provider (Primary) who is responsible for providing a single

homogeneous interface to the Virtual Volume. A Virtual Volume has the potential

to be distributed across multiple Storage Providers and it is the responsibility of the
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Primary Storage Provider to service Storage Client requests by routing them to the

relevant Secondary Storage Providers (Figure 3.3). Our implementation of Virtual

Volumes supports replication, that is a Virtual Volume can be replicated across

multiple Storage Providers, ensuring better reliability and availability in the face of

outages. Other future possibilities would be to support various modes of striping

to improve performance, erasure codes for more efficient replication or Distributed

Hash Tables (DHT) for their excellent distribution properties.

To support a replicated Virtual Volume, the Primary Storage Provider is required

to establish connections to all the Secondary Storage Providers containing replicas.

When the Primary Storage Provider receives a write operation it needs to route it

to all the Secondary Storage Providers ensuring all replicas remain consistent. In

Figure 3.3 we can see Virtual Volume A and B, both have been configured with

three way replication. Storage Provider(1) is currently behaving as the Primary for

Virtual Volume A and a Secondary for Virtual Volume B. If a Primary Provider is

to fail, a Secondary Storage Provider can take its place as the Primary and service

for that Virtual Volume may resume. Storage Providers have the ability to service

multiple Volumes and in doing so are able to adopt different roles for each. As any

Storage Provider with a replica can be chosen to be the Primary Storage Provider,

improved load balancing is achieved. A possible future extension would be to allow

Primary Storage Providers to store replicas on Secondary Storage Providers outside

the organisation. Replicating across organisations would provide offsite redundancy,

allowing data to be accessed even in the event an organisation’s network were to be

made unavailable.

Our implementation of the Storage Provider has been designed to adopt a

strong consistency methodology, therefore the Primary Provider only notifies the

Storage Client of a successful write operation if the write operation was successfully

executed on all replicas. Whilst such a pessimistic approach to consistency decreases

performance and availability, it reduces the risk of inconsistencies arising amongst

replicas. A future development would be to support a more optimistic approach to

consistency and provide automated recovery mechanisms to detect inconsistencies

and resolve them.
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Figure 3.3: System architecture: virtual volume

3.2.6 Mounting a Virtual Volume

Before a user is able to utilise a Virtual Volume, they first need to mount it. In this

section we shall discuss this process. It is assumed the user requiring access to the

Virtual Volume has either purchased a storage contract from the hosting institution

or the Virtual Volume is hosted within the institution by that user. The user needs

to configure the Storage Client with authentication details and the Virtual Volume

they wish to mount. The process of mounting a volume can be broken down into

the following four steps (Figure 3.4):

1. Request to Mount: Storage Client sends a mount request to the institution’s

Storage Broker which is responsible for hosting the Virtual Volume.

2. Service Volume: Storage Broker than queries its database, ensuring the

Storage Client has the correct credentials. Upon successful authentication, it

queries the database for the IP addresses of the Storage Providers allocated to

service the Virtual Volume. The Storage Broker than selects a Storage Provider

to be the Primary and relays the Storage Client request along with the IP

address of the Storage Client and participating Secondary Storage Providers.

3. Build Volume: Upon receiving the request to service the volume from the
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Figure 3.4: System architecture: mounting a virtual volume

Storage Broker, the Primary Storage Provider establishes connections to the

specified Secondary Storage Providers.

4. Ready to service volume: Once the Primary Provider receives connections from

all Secondary Providers and it is satisfied it may service the Virtual Volume,

it initiates a connection to the Storage Client which originally requested the

mount of the Virtual Volume. Once the Primary Storage Provider establishes

contact with the Storage Client, the user is then able to utilise the Virtual

Volume.

The process of mounting a Virtual Volume has been designed to limit incoming

connections to the Storage Broker. This allows Storage Providers to operate behind

a firewall configured to block incoming connections. Hence an institution need only

configure their firewall to only allow incoming connections to their Storage Broker

IP address and port number. The Storage Broker is the institution’s gateway, a

single point of access to the outside world allowing intuitions to participate in the

Storage Exchange platform. Although having the Storage Broker as the gateway

has its disadvantages, particularly being a Single Point of Failure (SPF), it allows

the institution to participate securely without undermining established security

mechanisms.
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3.2.7 Trading Virtual Volumes

In this section we discuss the process behind trading Virtual Volumes. We begin

by outlining Storage Policies; which provide a way to quantify storage being traded.

Our discussion then continues with a look at how the Storage Broker and the Storage

Marketplace communicate to permit the trading of storage.

A Storage Broker uses Storage Policies to quantify the service which they wish to

lease or acquire. When a trade is determined, the storage policy will form the basis

for a storage contract containing details of the SLA (Service Level Agreement). The

Storage Policy (SP) used by the Storage Marketplace is defined as SP = (C, U, D, T )

where:

C : Storage Capacity (GB) of volume.
U : Upload Rate (KB/sec).
D : Download Rate (KB/sec).
T : Duration.

Storage Brokers submit bids and asks, each containing a SP, to the Storage

Marketplace, which accepts these bids, and allocates trades by applying a market

model discussed in chapter 4. The trading process can be broken down into the

following events (Figure 3.5):

1. SRB: Storage Brokers wishing to purchase storage do so by submitting a

Storage Request Bid (SRB). A SRB contains a SP detailing the service to be

purchased along with a bid price SRB = (SPSRB, $).

2. SSA: A Storage Broker wishing to sell storage may do so by submit-

ting a Storage Service Ask (SSA). An SSA also contains a SP which

details the storage service being sold, along with a cost function SSA =

(SPSSA, CostFunction(SPSRB)). The CostFunction is used by the Storage

Marketplace to determine the ask price for a service configuration specified

by an SRB’s SP (SPSRB). This allows services provided by a SSA to be

configured to the specific requirements of an SRB. It also allows a single SSA

to potentially service multiple SRBs, assuming it has the capacity (large SP

attributes).
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3. Allocating Trades: The Storage Marketplace applies a market model

to allocate trades and notifies all the participating Storage Brokers of the

outcome. Storage Brokers that submitted successful SRBs are supplied with

the details of the Provider’s Storage Broker along with a Virtual Volume

identifier. Storage Brokers which submitted successful SSAs are notified of

all the storage services they will need to host.

The rest of this chapter discusses each component within the Storage Exchange

platform in greater detail, covering architecture and design. A section discussing

implementation details, is followed by performance evaluation and concludes with a

summary leading to our next chapter on market models.

3.3 Storage Provider

The Storage Provider is responsible for servicing storage requests from Storage

Clients and does so by utilising locally available storage. Whilst servicing Storage

Clients, the Storage Provider is also responsible for reporting back storage usage

statistics to the Storage Broker. Upon successful installation, the Storage Provider

needs to be configured with the address of the institution’s Storage Broker, along
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with a registered user account.

3.3.1 Architecture

The Storage Provider architecture is based on six main components (Figure 3.6);

Client Manager, Broker Manager, Provider Router, Primary Provider Manager,

Local Provider Storage, Secondary Provider Manager. We discuss each in detail.

1. Client Manager: The Client Manager is responsible for initiating an

outbound connection to the Storage Client as part of the process of mounting

a Virtual Volume (Section 3.2.6: Step 4). Once a connection is established, the

Storage Provider is able to service storage requests from the Storage Client.

The storage protocol used between the Storage Provider and Storage Client is

described in Appendix B.2.3.

2. Broker Manager: When the Storage Provider is first executed, the Broker

Manager contacts the specified Storage Broker presenting the user account.

Upon successful authentication, the Storage Broker will issue the Broker

Manager with a unique identifier (Storage Entity ID). The Broker Manager

will then use that Storage Entity ID for every subsequent sign-on to the

Storage Broker. During a sign-on, the Broker Manager is also responsible for
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reporting current storage capacity and usage statistics to the Storage Broker.

The handshake used by the Broker Manager to sign-on with the Storage Broker

is described in Appendix B.2.1.

The Storage Broker uses these sign-on messages to gauge availability and

storage capacity of all Storage Providers. This information allows the Storage

Broker to determine which Storage Provider is available to be the Primary

Provider and service a Storage Client’s requests. The reported storage capacity

is also used by the Storage Broker when allocating Storage Providers to newly

created Virtual Volumes. The Broker Manager component may also receive a

request from the Storage Broker to service a volume (Section 3.2.6: Step 2).

This request is simply passed onto the Provider Router component.

3. Secondary Provider Manager: Is used by the Storage Provider to initiate

connections to Secondary Storage Providers. The Secondary Provider Manager

receives storage requests from the Provider Router component and relays them

to be serviced by Secondary Storage Providers. In response to these storage

requests, the Secondary Storage Providers send replies to the Secondary

Provider Manager which are forwarded to the Provider Router.

4. Local Store Manager: This component is responsible for using local

file I/O system calls to service incoming storage requests from either the

Primary Provider Manager or Provider Router. The Local Storage Manager

is configured with a local directory to use for particular storage. Each virtual

volume is assigned a directory and the Local Store Manager ensures that each

volume is sand-boxed in their respective directory and cannot effect other

volumes or be used to access other files on the host.

5. Provider Router: The Provider Router is the core component in the Storage

Provider architecture, responsible for receiving storage events (Appendix B.1)

and routing them to the corresponding components. The Provider Router may

receive events from the following components:

(a) Broker Manager: A request to service a volume may be received from
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the Broker Manager. If it is the first time this volume is mounted, the

Provider Router contacts the Local Store Manager to create a directory

for the volume, effectively sand-boxing any storage requests for the

volume to that directory. If the request to service details secondary

providers, the Broker Manager sends events to the Secondary Provider

Manager to establish connections to the necessary Secondary Providers.

Once the Provider Router is satisfied that it may service the volume,

it sends an event to the Client Manager to initiate a connection to the

Storage Client that requested to mount that volume.

(b) Client Manager: Storage requests issued by the Storage Client are

received by the Client Manager which relays them to the Provider Router.

Depending on the type of storage request, the Provider Router needs

to adopt a different approach. To illustrate (Figure 3.3), if the storage

request is a read-only type operation, the Storage Provider need only

route it to the Local Store Manager, otherwise if it is a write operation it

will need be executed on the other replicas and thus is forwarded to the

Secondary Provider Manager.

(c) Secondary Provider Manager: The Secondary Provider Manager relays

events from Secondary Storage Providers to the Provider Router. The

Provider Router uses these replies to ensure storage requests have

been successfully executed and can relay, via the Client Manager, a

corresponding reply back to the Storage Client.

(d) Local Store Manager: The Local Store Manager sends replies back to the

Provider Router for storage requests it has serviced.

6. Primary Provider Manager: The Primary Provider Manager is responsible

for accepting connections from Primary Providers. When a Primary Provider

Manager accepts a connection it means that it will behave as a Secondary

Storage Provider when servicing requests for that volume.



3.4. STORAGE CLIENT 93

3.3.2 Design

The Storage Provider is a multi-threaded application that was developed using the

C language. Every thread, including the types of messages relayed amongst the

threads are detailed (Figure 3.7). The Storage Provider’s design is consistent with

our architecture, with each component in the architecture translating to a thread(s)

in the design. To ensure data structures remain consistent whilst being passed

between threads, we employ thread safe fifos. The Client Manager, Primary Provider

Manager and Secondary Provider Manager have been designed to spawn threads

for every connection, allowing storage events to be serviced from multiple Storage

Clients, Primary Storage Providers and Secondary Storage Providers concurrently.

The Storage Provider is able to service multiple Virtual Volumes concurrently.

The Provider Router sits at the core of the design and is responsible for handling

all incoming storage events, with the exception of events emanating from Primary

Storage Providers. Algorithm 1 shows the manner by which the Provider Router

thread processes incoming storage events. The Provider Router ensures that if a

storage event modifies the Virtual Volume, it is relayed to all Secondary Storage

Providers storing replicas. Before a reply is sent back to the Storage Client the

Provider Router must receive replies from each of the Secondary Storage Providers.

3.4 Storage Client

The Storage Client is responsible for providing a mount point interface to the

underlying Virtual Volume. The Virtual Volume can be hosted by an external

institution, requiring the Storage Client contact that institution’s Storage Broker in

the process of mounting it (Section 3.2.6).

3.4.1 Architecture

The Storage Client architecture is made up of four main components (Figure 3.8),

the Storage Broker Manager, File Interface Manager, Provider Manager and the

Client Router.
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Algorithm 1 Provider Router Main Loop

1: Input: Incoming storage events on thread safe fifo ISE
2: Output: Local Provider Storage thread safe fifo LPS,

Remote Secondary Storage Provider thread safe fifo, SSP
Client Manager thread safe fifo CM

3: PSR← {∅} // a set used to keep track of pending storage requests
4: for all StorageEvent ∈ ISE do
5: if StorageEvent is of type file IO then
6: if StorageEvent is a request from a client then
7: PSR← R ∪ StorageEvent
8: if StorageEvent is a read-only storage request then
9: if StorageEvent can be serviced locally then

10: LPS ← LPS ∪ StorageEvent
11: else
12: sendToOneSecondaryStorageProvider(SSP , StorageEvent)
13: end if
14: else if StorageEvent is a write request then
15: multiCastToAllSecondaryStorageProvider(SSP , StorageEvent)
16: end if
17: else if StorageEvent is a reply then
18: OSR← {∅} // Original storage request
19: OSR←findTheOrigRequestThisReplyIsFor(PSR, StorageEvent)
20: if StorageEvent is a reply to read-only request ∨

replies received from all Providers then
21: PSR← PSR \ OSR // remove from pending list
22: CM ← CM ∪ StorageEvent // put reply on queue to be sent to client
23: end if
24: end if
25: else if StorageEvent is of type management request then
26: if StorageEvent is a request for provider then
27: SSPC ← {∅} // Secondary Storage Providers to Connect to
28: SSPC ← getAllSecondaryProvidersConnDetails(StorageEvent)
29: establishConnectionsToSecondaryProviders(SSPC)
30: else if StorageEvent is notify of secondary provider connection then
31: if All necessary Secondary Storage Providers connected for volume then
32: connectToClientVolumeIsReady()
33: end if
34: end if
35: end if
36: end for

1. Broker Manager: When the user starts the Storage Client, the Broker

Manager is responsible for initiating a connection and sending a request to

mount (Section 3.2.6: Step 1) to the Storage Broker managing the Virtual
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Volume.

2. File Interface Manager: The File Interface Manager interfaces to the FUSE

[56] kernel module. FUSE is an open source effort, allowing users to develop

and mount file systems in user space. The File Interface Manager complies

with the FUSE API, which closely resembles the file system I/O calls. When an

application accesses the FUSE file system, the FUSE kernel module executes

functions within the File Interface Manager which implement the API. The File

Interface Manager then translates these calls to Virtual Volume storage events

and relays them to the Provider Manager to send to the Storage Provider. The

protocol that is subsequently used by the Provider Manager to communicate

with the Storage Provider is based upon the FUSE API (Appendix B).

3. Provider Manager: The Provider Manager is responsible for sending storage

requests to the Storage Provider, who services these requests and sends replies

back to the Provider Manager. It is the responsibility of the Storage Provider

to establish a connection with the Provider Manager, as part of the mounting

process (Section 3.2.6: Step 4).

4. Client Router: The Client Router sits at the core of the Storage Client

architecture. It is responsible for processing incoming storage events and

routing them to the correct components.

3.4.2 Design

Like the Storage Provider the Storage Client is a multi-threaded application that

was developed using the C language. Every thread, including the types of messages

relayed amongst the threads are detailed (Figure 3.9). The Storage Client’s design

closely follows its architecture. There are a few details the architecture hides,

these include the MonitorPendingStorageRequests thread and how the File Interface

Manager module interfaces with FUSE:

1. File Interface Manager: Each time an application accesses the Virtual

Volume mount point, a call is made to the Virtual File System (VFS) kernel
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module, which in turn routes these file operations to the FUSE kernel module

to process. The FUSE kernel module than starts a Light Weight Thread

(LWT), executing a function in the File Interface Manager that is equivalent

to the file operation. The File Interface Manager generates a request storage

event which is registered with MonitorPendingStorageRequests and is placed

on the Client Router thread safe fifo before blocking the Light Weight Thread

and waiting for a reply. Upon receiving the reply storage event, the Client

Router wakes the blocked Light Weight Thread passing it the reply storage

event. Upon waking and receiving the reply storage event, the Light Weight

Thread removes the corresponding requesting storage event from the pending

list, retrieves data from the reply storage event and returns to the FUSE

module. The FUSE module than relays this information to the VFS which

presents it to the application that was accessing the Virtual Volume mount

point.

2. MonitorPendingStorageRequests: This thread is responsible for moni-

toring a list of pending storage requests which are waiting to be serviced.

Storage requests added to the list are assigned a configured retry time out.

Every second the MonitorPendingStorageRequests traverses the list of pending

storage requests decrementing the retry timers. Pending storage requests

whose timer reaches 0 are reissued to the Client Router to be processed again

and their retry timeout is reset. This ensures that if a storage request is

lost (e.g. due to loss of connectivity with the Primary Storage Provider) the

storage request is re-issued. As each requesting storage event is assigned a

unique identifier, multiple requesting storage events can be executed in parallel,

allowing multiple applications accessing the Virtual Volume to be serviced in

parallel. The unique identifier also ensures that duplicate requests received by

the Primary Storage Provider are ignored.

The Client Router is positioned at the core of the Storage Client design and

receives all incoming storage events. Algorithm 2 details how the Client Router

processes these incoming storage events and how it manages losing connectivity
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Figure 3.9: Storage Client: threading and message passing

with the Storage Broker and Primary Storage Provider.

3.5 Storage Broker

The Storage Broker was designed to be an institution’s gateway to the outside

world, responsible for initiating trade negotiations with the Storage Marketplace,

authenticating connections from external Storage Clients and monitoring internal

storage services. Within the institution, the Storage Broker accepts connections from

(i) Storage Providers which report status information, (ii) Storage Clients wishing to

access storage in-house and (iii) administrators wishing to configure storage services.

In the following three sections, we discuss the architecture, object oriented design

and data modelling used in the development of the Storage Broker.
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Algorithm 2 Client Router Main Loop

1: Input: Incoming storage events on thread safe fifo ISE
2: Output: Provider Storage thread safe fifo PS,

Reply storage event thread safe fifo RSE
3: PSR← {∅} // a set used to keep track of pending storage requests
4: for all StorageEvent ∈ ISE do
5: if StorageEvent is of type file IO then
6: if StorageEvent is a reqeust then
7: if isStorageProviderConnected then
8: PS ← PS ∪ StorageEvent
9: else if isStorageBrokerConnected then

10: sendRequestForProviderToBroker()
11: else
12: connectToBroker()
13: end if
14: else if StorageEvent is a reply then
15: OSR← {∅} // Original storage request
16: OSR←findTheOrigRequestThisReplyIsFor(PSR, StorageEvent)
17: if OSR 6= ∅ then
18: PSR← PSR \ OSR // remove from pending list
19: wakeUpBlockingFuseThread(StorageEvent) // reply passed to File
20: // Interface Manager
21: end if
22: end if
23: else if StorageEvent is of type management request then
24: if StorageEvent is of type Storage Provider connected then
25: isStorageProviderConnected=true
26: else if StorageEvent is of type Storage Broker connected then
27: isStorageBrokerConnected=true
28: end if
29: end if
30: end for

3.5.1 Architecture

The Storage Broker architecture consists of the following six main components

(Figure 3.10): Command Console Manager, Storage Trader, Client Manager, Storage

Event Router, Provider Manager and Storage Broker Database Manager.

1. Command Console Manager: The Command Console Manager enables the

institution to configure the Storage Broker to meet their storage requirements.

The administrator is permitted to create user accounts for internal and external

users. There are two ways internal users can create available storage entries,
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(i) by registering Storage Providers with available store, or (ii) by submitting a

request to purchase storage external to the institution. An internal user is able

to configure virtual volumes which utilise their available store. These Virtual

Volumes can then be flagged for internal use or be sold to external institutions.

External users of the Command Console Manager are restricted to viewing

their purchased Virtual Volume information. The Command Console Manager

uses the Storage Broker Database Manager to store storage requirements and

user account changes.

2. Storage Trader: The Storage Trader is responsible for establishing commu-

nications with the Storage Marketplace and relaying storage requirements in

the form of bids and asks. It achieves this by querying the Storage Broker

Database Manager for either Virtual Volumes that have been flagged for sale

or Available Store entries flagged to be purchased, it then advertises these

trades to the Storage Marketplace.

The Storage Trader has much potential for future research and development, as

we envisage this component to play a key role in providing autonomic storage.

In the future, the Storage Trader could be designed to trade storage services

autonomously, rather than waiting for direct user input for trades. Its trading
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behaviour may be influenced by volume usage patterns or market status.

3. Client Manager: The Client Manager component accepts connections from

Storage Clients wishing to access the storage services (Section 3.2.6: Step

1). Upon authenticating the Storage Client, the Client Manager submits the

Client’s request to mount to the Storage Event Router.

4. Storage Event Router: The Storage Event Router is responsible for building

a routing table mapping virtual volumes to Storage Providers. When the

Client Manager submits a request to mount, the Storage Event Router selects

a Primary Provider to service the virtual volume and relays the request to

mount to the Provider Manager component. If there are multiple Providers

capable of servicing the virtual volume, the first Provider is selected from

an unordered list. The process of selecting the Primary Provider has much

potential for development as the selection process could take into account load

sharing or biasing selection to reliable providers.

5. Provider Manager: The Provider Manager component accepts connections

from Storage Providers allowing them to register and report their available

capacity. A Storage Provider registers by reporting the id of the user it belongs

to. Each time a Storage Provider registers, the Provider Manager updates the

database with the information provided. When a Provider Manager receives

a request to mount from the Storage Event Router, it relays it to the Storage

Provider (Section 3.2.6: Step 2), if this is unsuccessful it will need to notify

the Storage Event Router.

6. Storage Broker Database Manager: Is responsible for servicing queries

from each of the components discussed. The Storage Broker Database Manager

ensures persistence in the event the Storage Broker is restarted. The Storage

Broker Database Manager stores information on virtual volume configurations,

user accounts and available storage.
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3.5.2 Object Oriented Design

The Storage Broker was designed using an using an Object Oriented (OO)

methodology. This section details the Storage Broker’s class diagram (Figure 3.11)

and where possible traces back to the architecture:

1. StorageBroker: The StorageBroker class contains the main method which

is responsible for starting up all the main threads in the system. These

include the StorageMarketplaceTrader, StorageConnectionManager and the

BrokerConsoleManager.

2. StorageMarketplaceTrader, StorageMarketplaceSocketManager,

TcpClientSocketManager: The StorageMarketplaceTrader class traces

back to the StorageTrader in our architecture and is responsible for initiating

trades with the Storage Marketplace. The StorageMarketplaceSocketManager

inherits the TcpClientSocketManager to provide the TCP communications

used by the StorageMarketplaceTrader to communicate with the Storage Mar-

ketplace. The StorageMarketplaceTrader queries the StorageBrokerDatabase

to determine what storage should be purchased or sold. If there is any storage
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to be traded, this information is relayed to the StorageMarketplace. Upon allo-

cating trades, the Storage Marketplace notifies the StorageMarketplaceTrader

of the outcome.

3. StorageBrokerDatabase, CsvDatabase: The StorageBrokerDatabase in-

herits from the CsvDatabase class. The CsvDatabase class provides a layer of

abstraction, hiding how the data is stored from other classes. The CsvDatabase

class imitates database functionality, but stores table information in a csv file

format. This layer of abstraction allows for future integration to production

based databases e.g. Oracle or MySQL.

4. StorageConnectionManager,StorageRouter,StorageSocketManager,

TcpServerSocketManager and StorageSocket: These classes are respon-

sible for handling communications with the Storage Provider and Storage

Client components. The StorageConnectionManager handles multiple Storage

Providers and Storage Clients connecting concurrently. The StorageConnec-

tionManager manages multiple open sockets by using the StorageSocketMan-

ager and uses the StorageRouter to route Storage Clients’ requests to mount

volume to the correct Storage Provider. TcpServerSocketManager initialises

TCP listener ports and accepts connections by notifying the StorageSocket-

Manager with StorageSockets. Much of the functionality provided by these

classes traces to the Storage Event Router component in the architecture.

5. StorageEventHandler, ClientEventHandler, ProviderEventHandler:

These classes are responsible for processing Storage Events from both the

Storage Provider and Storage Broker. These classes trace back to the

Storage Client Manager and Provider Manager components discussed in the

architecture section.

6. BrokerConsoleManager: Accepts TCP connections from administrators

wishing to configure the Storage Broker. Administrators may use a telnet

client to connect to the BrokerConsoleManager which will present them with

a command prompt. This class traces to the Command Console Manager
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discussed in the architecture section.

3.5.3 Data Modelling

A relational approach was used for the Storage Broker’s data modelling. The tables,

fields and cardinality is illustrated in our Entity Relationship Diagram (Figure 3.12).

We shall describe each of the tables.

1. Users: This table stores user account details, ensures that only registered

users are able to access the Storage Broker. Users can be assigned many

AvailableStore and VirtualVolume entries.

2. AvailableStore, Contract: The AvailableStore table is responsible for

storing information about the available storage the Storage Broker can utilise.

There are two main types of available store, (i) contract: purchased from an

external institution or (ii) local: storage provider within the institution. If
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an AvailableStore record is a contract, then, contract details are stored in the

Contract table.

3. VirtualVolume, Segment, SegmentAvailableStore: A VirtualVolume

can be stored across many segments, with each segment able to be referenced

back to an AvailableStore record via the SegmentAvailableStore table. When

a VirtualVolume is created it is assigned a single Segment. Based on

the VirtualVolume’s replicationLevel (N), the Segment will reference (N)

AvailableStore entries via the SegmentAvailableStore table. We introduce the

concept of segments to allow the future possibility of Virtual Volumes growing

and shrinking as Segments are added and removed.

A field by field description of each table can be found in Appendix A.

3.6 Storage Marketplace

The Storage Marketplace is responsible for accepting bids and asks from Storage

Brokers and employing a market model to allocate trades and notify Storage Brokers

of the results. In the following two sections, we discuss the architecture and object

oriented design used to develop the Storage Marketplace.

3.6.1 Architecture

The Storage Marketplace architecture consists of the following four main components

(Figure 3.13) the Market Manager, Storage Broker Manager, Command Console

Manager and the Storage Marketplace Database Manager.

1. Command Console Manager: The administrator of the Storage Market-

place may use the Command Console Manager to query the database to analyse

the trading process.

2. Market Manager: The Market Manager is responsible for executing a market

model, it periodically queries the Storage Marketplace Database Manager for
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Figure 3.13: Storage Marketplace: component diagram

bids and asks and allocates trades. The trade allocation results are written

back to the Storage Marketplace Database Manager.

3. Broker Manager: The Broker Manager accepts connections from Storage

Brokers, allowing them to submit bids and asks. When a Storage Broker first

connects, it is assigned a Broker ID which it uses for all future connections.

Bids and asks accepted by the Storage Broker are forwarded to the Storage

Marketplace Database Manager to be stored. The Broker Manager also queries

the Storage Marketplace Database Manager for trades which have been cleared

and relays the results to the respective Storage Brokers.

4. Storage Marketplace Database Manager: Is responsible for servicing

queries from each of the components discussed. The Storage Marketplace

Database Manager ensures persistence in the event the Storage Marketplace is

restarted. The Storage Marketplace Database Manager stores bids, asks and

allocated trades.
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3.6.2 Object Oriented Design

Like the Storage Broker, the Storage Marketplace was designed using an Object

Oriented (OO) methodology. This section details the Storage Marketplace’s class

diagram (Figure 3.14) and where possible traces back to the architecture:

1. StorageMarketplace: The StorageMarketplace class contains the main

method which is responsible for starting up all the main threads in the system.

These include the StorageMarketplacePriceRegulator, BrokerEventHandler

and StorageMarketplaceConsoleManager.

2. StorageMarketplacePriceRegulator, StorageContractManager,

StorageContract: The StorageMarketplacePriceRegulator instantiates four

instances of the StorageContractManager, one for every type of Storage

Contract: (i) Available Storage Contracts (asks), (ii) Requested Storage

Contracts (bids), (iii) Negotiated Storage Contracts (successfully allocated)

and (iv) Unfeasible Storage Contracts (unsuccessfully allocated). The Stor-

ageMarketplacePriceRegulator determines the available and requested storage

contracts by querying the StorageMarketplaceDatabase. Periodically, the

StorageMarketplacePriceRegulator executes a clearing algorithm across the

Available and Requested storage contracts to determine the Negotiated and
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Unfeasible Storage Contracts. The results of the clearing algorithm are also

submitted to the StorageMarketplaceDatabase. Much of the functionality

provided by these classes traces back to the Market Manager component in

the architecture.

3. StorageMarketplaceDatabase, CsvDatabase: The StorageMarketplace-

Database inherits from the CsvDatabase. The CsvDatabase has been reused

from the Storage Broker, providing a layer of abstraction, hiding how the data

is stored from other classes. The StorageMarketplaceDatabase manages the

following two tables: (i) Broker - A registry of all Storage Brokers (ii) Storage

Contract - Stores information on contracts currently being processed.

4. BrokerEventHandler,StorageEventHandler, StorageSocketManager,

StorageSocket,StorageEvent,TcpServerSocketManager: These classes

are responsible for handling communications with Storage Brokers. All these

classes with the exception of the BrokerEventHandler, have been reused from

the Storage Broker. The StorageSocketManager manages multiple connections

from Storage Brokers. The BrokerEventHandler receives storage events

(containing bids and asks) from the StorageSocket, and upon processing,

registers the bids and asks with the StorageMarketplaceDatabase.

5. StorageMarketplaceConsoleManager: Accepts TCP connections from

users wishing to observe the Storage Marketplace’s operation. Users may

access the Storage Marketplace by using a telnet client to connect to the

StorageMarketplaceConsoleManager, which will present them with a command

prompt. This class traces to the Command Console Manager discussed in the

architecture.

3.7 Implementation

The Storage Provider and Storage Client components have been written in C. A

quick prototype written in Java proved troublesome on two fronts, JNI bindings

which interfaced with FUSE were unstable and the poor performance mirrored
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experiences found by OceanStore [109]. The Storage Client relies on the FUSE [56]

kernel module to provide a local mount point of the storage volume. The decision

to use FUSE was based on its ability to:

1. Provide a simple and clean file-system API.

2. Code developed runs in user space which has the benefit of protecting users

and developers from buggy code having access to kernel address space, bugs

which would otherwise result in the system to crash.

3. Its potential to integrate with EncFS [48], which would allow all file operations

to be encrypted on the fly before leaving the Storage Client.

Both the Storage Client and Storage Provider are dependant on file system

I/O calls, unix socketing and threading libraries. The network protocol used for

communication amongst all components is done via TCP/IP sockets. Messages

passed between threads and over sockets are based upon storage event protocol

(Appendix B).

To increase speed of development, the Storage Broker and Storage Marketplace

were written in Java. Interactions between the Broker, Provider and Client

have been implemented and tested. We have been able to successfully mount a

replicated storage volume utilising scavenged storage made available by Providers.

However, communication between the Storage Marketplace and Storage Broker is

not complete. Whilst clearing algorithms proposed in later chapters have been

developed and incorporated into the Storage Marketplace, bids and asks are read

from file, rather then being submitted by a remote broker.

3.8 Evaluation

In this section we evaluate the file system performance provided by the Storage

Exchange platform, using various block sizes.
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3.8.1 Experiment Setup

The benchmark we provide involved the Storage Broker, Storage Provider and

Storage Client components. The Virtual Volume was configured to replicate twice,

across two Storage Providers. Our configuration consisted of three machines, two -

(Athlon 900, 256MB RAM, 80Gb HD, Debian 3.0) were the two Storage Providers

and one - (P4 1.7Ghz, 1GB RAM, 120GB HD, Debian 3.0) was the Storage Client

and Broker. Our benchmark consisted of copying a 5MB file from the virtual volume

and repeating this operation for different sizes of read block (configured within

FUSE). We varied the read block size by continually doubling it from 4KB, to

128KB. All machines had 100Mbit network cards and were connected to a single

100MB 8-port switch.

3.8.2 Benchmark

We observed the read performance improved in proportion to the block size (Figure

3.15, Table 3.1). With the exception of when block size was increased from 8KB to

16KB, there was a 404% increase in performance. The reason for a 404% increase

is difficult to explain, especially as all the other increases in performance are in

proportion to block size. The proportionate increases in performance with respect

to block size is due to (i) the fact that storage requests are issued synchronously and

(ii) network latency. The Storage Client issues a read storage request equal to the

maximum set block size and waits for the reply before issuing the next read request.

A small block size requires a higher number of requests be issued to read the 5MB

file than if a larger block size was used. Even though the block size is small, the cost

of latency ensures that it takes the same time for a round trip of a 8k block as a 128k

block. Thus explains the proportionate increase in performance in relation to the

block size. A 100Mbit LAN is capable of ≈ 10MBytes/Sec, in our benchmark only

31% of network capacity was used, highlighting the limitation of the synchronous

approach.
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Figure 3.15: Storage Exchange: sequential read performance - varying block size

block size read performance

(KB) (KB/Sec)

4 51
8 101
16 408
32 807
64 1582
128 3115

Table 3.1: Storage Exchange: sequential read performance - varying block size

3.9 Discussion and Summary

In this chapter we proposed a unique global trading platform for distributed storage

services. The Storage Exchange allows institutions to share and exchange storage

services across global and administrative boundaries.

1. Interface: The storage client provides a filesystem like interface and therefore

existing applications can utilise storage services without being modified.

2. Architecture: The Storage Exchange adopts a centralised architecture, which

follows a hierarchical pattern with the Storage Marketplace component at the

top followed by the Broker and finally the Client and Provider. Whilst the
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Storage Marketplace is a central component and admittedly poses a scalability

and reliability bottleneck, it is solely responsible for clearing trades. Hence,

if the Storage Marketplace were to become unavailable it will not affect the

operation of storage contracts, institutions will continue to be able to mount

and access storage services. If an institution’s Storage Broker were to fail,

volumes already mounted would continue to be serviced by the respective

providers, although requests to mount new volumes would fail. Whilst

centralised architectures do pose limits, if carefully designed a centralised

architecture can be made to scale extremely well [50], the GFS [57] is an

example.

3. Consistency: To simplify consistency, only a synchronous mode of operation

is supported leaving issues of consistency to be resolved by the provider’s

filesystem. For volumes with multiple replicas, even with synchronous

operation, it is still possible for replicas to become inconsistent. To limit the

inconsistency, the Storage Provider restricts access if any replica is unavailable,

but if a file operation were to succeed on one replica and fail on another there

is no capability to rollback changes. One way to overcome this dilemma would

be to employ a leasing protocol, allowing changes which fail on one replica to

be rolled back on the other.

4. Performance: Due to only supporting a synchronous mode of operation,

performance is well below network capacity and much slower than distributed

file systems like NFS.

At the centre of the Storage Exchange platform is the market model responsible

for allocating trades based upon provider’s and consumer’s storage requests. The

process of selecting and applying a suitable market model forms the basis of our

next chapter.



Chapter 4

STORAGE EXCHANGE CLEARING ALGORITHMS

The aim of this chapter is to find a suitable market model for the Storage

Exchange platform proposed in the previous chapter. This chapter begins by

comparing auctions with other market models and continues by discussing One Sided

Auctions and Double Auctions. For each auction, we outline the trading process

involved, applications in practice, and adopt a distributed systems perspective

when discussing implications on architecture, communication overhead and clearing

complexity. We provide a summary of auction market models and relate it to

distributed storage services. We identify the Double Auction approach to best

suit the requirements of the Storage Exchange, despite its practical application

being limited to clearing trades where demand is divisible. Clearing trades in a

Double Auction, where demand is indivisible, is classified as an NP-hard problem

[79] and thus computationally intractable. To overcome this limitation we propose

and evaluate four different clearing algorithms with polynomial complexity. We

conclude by summarising our results and discuss various trade-offs.

4.1 Auctions

Auctions have proved to be an efficient and flexible market mechanism which quickly

converges to a competitive equilibrium [145, 147, 55] under a variety of conditions1.

Other market mechanisms such as bartering and commodity markets have also

proved to be very applicable in practice and within computer systems. The bartering

model has been successfully applied by SAV [25] who have found that “A barter

system is simpler and more appropriate for an autonomous, peer-to-peer network

1Competitive Equilibrium (CE) [55]: A set of prices which equate the demands of utility-
maximizing consumers to the supplies of profit maximizing firms. The intersection point of demand
and supply curves.

113
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than a system that requires some central entity to control the money supply.” Whilst

the barter system is ideal for a cooperative environment where entities possess a

double coincidence of wants [110], it does not accommodate participants which seek

to only purchase or sell services.

In a commodity market model, the provider of the services sets the price. The

price may be fixed or variable based on supply and demand. Consumers choosing to

use a provider service pay at the advertised rate for the amount they use. Commodity

market models are widely used, setting prices for electricity, gas, phone and Internet

services. The application of fixed or flat rate pricing results have been successfully

applied to High Performance Computing (HPC) environments and have shown to

scale well whilst maintaining a simple scheduling algorithm [23]. Although a fixed

pricing scheme has its limitations, there are no incentives for consumers to limit their

usage of the service and thus the allocation strategies suffer from service congestion

problems [92, 52]. To overcome congestion problems associated with a fixed price

model, providers may employ a congestion based pricing scheme [70]. Unfortunately

even though this may overcome some shortfalls in a fixed price model, it still results

in allocations which are economically inefficient and unpredictable [23].

In comparison with bartering and commodity market models, auctions provide

the necessary flexibility and market efficiency we seek in the Storage Exchange. We

now investigate and compare various auction mechanisms.

4.2 One Sided Auctions

An auction is deemed one-sided if only bids or asks are accepted during the life of

the auction [55]. There are four basic types of auctions which fall into the one-sided

category [91]: English Auction, Dutch Auction, First Price Sealed Bid and Vickrey.

Our discussion of each of the auctions inherits the same assumptions presented in

[91], these include:

1. Bidders are risk neutral.

2. Bidders make a private independent value of the good.
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3. Bidders are symmetric.

4. Payment is a function of the bids alone.

A comparison of one-sided auctions [91] shows that all four auctions yield, on

average, the same revenue to the seller. One-sided auctions result in allocations

which are Pareto efficient [122]2. As bidding strategies employed in First Price

Sealed Bid and Dutch Auctions require speculation about other bidders, they do

not have a dominant strategy. Bidders waste effort on counterspeculation, thus are

less efficient than auctions with dominant strategies (English Auctions and Vickrey)

[122].

4.2.1 English Auction

An English Auction [91] is an outcry ascending auction, where the auctioneer

initiates the auction by advertising the good that is up for sale, consumers then

participate by submitting bids in an ascending fashion. The auction concludes when

the bidding stops and the consumer with the highest bid is declared the winner.

There are a few conditions which may be applied to the way English Auctions are

executed, these include:

1. Reserve Price: An auctioneer may set a reserve price which is unknown

to bidders. If the auction concludes without exceeding the reserve, the good

remains unsold.

2. Time Duration: An auctioneer may set a time limit for how long they are

willing to accept bids before concluding the auction.

3. Incrementation: An auctioneer may set a minimum increment by which

participating consumers need to increment their bid.

4. Limiting Bids: An auctioneer may limit the number of bids a consumer is

able to submit.

2A market model is deemed Pareto efficient if no entity can be made better off without making
some other entity worse off.
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English Auctions are widely used in practice and are ideal for situations where

the seller is uncertain of the value of their goods, or the nature of the goods are

unique. An interesting behavioural observation shows the excitement generated by

the outcry nature of the English Auction results in bidders bidding higher than

compared to the rational auctioned good value; hence the winner is left with a good

they paid too much for, and suffer from what is deemed as the winner curse [93, 138].

The dominant strategy employed when participating in an English Auction is to bid

a small amount more than the current highest bid and stop when the private value

price is reached.

Communication Overhead

The number of messages that need to be relayed in an English Auction are relatively

high, [5] shows an exponential relationship in the number of messages which need to

relayed as the number of resources increase. Compared with First Price Sealed Bid,

Dutch Auctions and Double Auctions, English Auctions are shown to require the

the highest rate of messages [5]. There are a number of reasons why this is so: (i)

an English Auction follows an outcry method of communication, in a network this

translates to broadcasting messages amongst participants, (ii) if no limit is enforced

on the number of bids submitted, bidders may potentially submit numerous bids

adding to the number of messages relayed in an auction. From our analysis we see

the number of messages exchanged per auction (Figure 4.1) to follow:

M = Cn(B + 1) + 1 (4.1)

where:

M : is the number of messages relayed per auction.
Cn : is the number of participating consumers.
B : is the total number of bids placed by all consumers.

We observe the number of messages exchanged in the process of an English

Auction has the potential to be high. To illustrate, if each participant Cn is limited

to a single bid (B = Cn), then the total number of messages transferred during
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1
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relayed

Cn

Figure 4.1: English Auction: messages relayed

that auction would be polynomial (C2
n + Cn + 1), with respect to the number of

consumers participating. Such a high communication overhead would pose a limit

on scalability.

An interesting bidding behaviour observed on Ebay is last-minute bidding [115]

otherwise known as sniping, where a wave of consumers rush to submit bids as the

the auction is set to conclude. This behaviour has the potential to congest the

node hosting the auction, as a result it is not uncommon for consumers to find that

they are unable to bid in the closing moments of an auction. Research [89] into

discouraging sniping proposes introducing incentives for consumers to bid early and

avoid the last-minute rush.

4.2.2 First Price Sealed Bid

A First Price Sealed Bid Auction [91] involves the auctioneer initiating the auction

by advertising the good that is up for sale, consumers than participate by submitting

a single sealed bid, unknown to other consumers, the consumer with the highest bid

is the winner. The First Price Sealed Bid auction is similar to an English Auction.

Whilst in an English Auction, bidders have the ability to revise their bids based on

rivals bids, in a First Price Sealed Bid, bidders may only submit one sealed bid.

In practice, First Price Sealed Bids are frequently used by governments when

they advertise contracts via a Request for Tender (RFT). Firms than submit bids

and the Government, by law [91], chooses the lowest qualified bidder.
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Figure 4.2: First Price Sealed Bid Auction: messages relayed

Communication Overhead

Simulations show that First Price Sealed Bid carries less of a communication burden

than an English Auction [5]. As bidders are limited to a single bid and because the

bids are sealed, the need to broadcast current highest bids to other participant is

not required. We can see the possible number of messages exchanged per auction

(Figure 4.2) to follow this relationship:

M = 2Cn + 1 (4.2)

From this, we can deduce the number of messages exchanged in a First Price

Sealed Bid auction to follow a linear relationship. This supports simulation results

from [5], showing this auction model to have far less communication overhead than

an English Auction.

4.2.3 Vickrey

Vickrey [145] auctions are also referred to as Second Price Sealed Bid auctions.

Participating bidders submit a single sealed bid, the bidder with the highest bid

wins but at the price of the second highest bid. A bidders dominant strategy in a

private value auction is to bid his true valuation. Whilst Vickrey auctions poses nice

theoretical properties, they are seldom used in practice [117, 116].

Communication Overhead

Identical to First Price Sealed Bid.
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4.2.4 Dutch Auction

In a Dutch Auction [91], the auctioneer begins the auction by announcing a high

price and slowly lowers the price until a bidder accepts the current price. Hence,

Dutch Auctions are also referred to as descending auctions. Dutch Auctions have

the potential to achieve a higher price for the auctioneer than English Auctions

[91]. In an English Auction the bidder increases the item price by submitting small

increments over previous bids, potentially resulting in the winner paying well below

their true valuation. Comparing this to a Dutch Auction, a bidder that really wants

the item cannot afford to wait too long and will bid at or near his true valuation.

Dutch Auctions are used in practice in the Netherlands to auction produce and

flowers and both England and Israel use them to sell fish. Another not so obvious

application of Dutch Auctions can be seen in use by a store in Boston (Filene’s)

where each item on sale has a price tag with a date attached. The longer the item

remains unsold the more discounted it becomes. Therefore when a customer pays at

the register, the final price of the item is determined by subtracting the initial with

a discount based on how long ago the item was tagged.

Communication Overhead

Simulations show that Dutch Auctions result in relatively high communication

overhead, higher than sealed one-sided auctions although less than an English

Auction [5]. As the auctioneer is required to broadcast D descending prices to all

participating bidders Cn, we can see (Figure 4.3) this has the potential to require a

high number of messages. Simulations [5] show that the typical number of messages

relayed by Dutch Auctions to follow a linear-polynomial relationship, which coincides

with our analytical analysis:

M = Cn(D + 1) + 1 (4.3)
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Figure 4.3: Dutch Auction: messages relayed

4.2.5 Summary: One Sided Auctions

In this section we summarise and compare one-sided auctions based upon architec-

ture, clearing complexity and communication overhead.

1. Architecture: In practice, one-sided auctions employ a centralised architecture

(e.g. Ebay) where auctions are hosted by a central entity where providers

and consumers advertise goods for sale and submit bids respectively. Whilst

this example demonstrates that one-sided auctions function in a centralised

configuration, there is no reason why a more decentralised approach could not

be adopted. To illustrate, an auctioneer could host the auction themselves

and invite consumers to bid, eliminating the need for a central entity to

host the auction. Therefore, one-sided auctions could be employed across a

decentralised architecture, like peer-to-peer, where a participating entity could

behave as an auctioneer (hosting their own auctions) and as a consumer.

2. Clearing Complexity: With the exception of Dutch Auctions where the trade

is awarded to the first consumer to accept a price, the process of clearing a

trade in one-sided auctions requires a linear scan of bids. In the case of English

and First Price Sealed Bid auctions, this means finding the highest bid and

for Vickrey, the second highest bid.

3. Communication Overhead: In a one-sided sealed auction, there is no advantage

to be gained by submitting bids faster than a competitor. Therefore, partici-

pants with slow connectivity are not disadvantaged. Also, due to their sealed
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nature, these auctions do not require information to be broadcast amongst

participants, thus markedly reducing the communication overhead. On the

contrary, auctions which are outcry based (English/Dutch) require information

to be broadcast amongst participants resulting in higher communication

overhead then sealed based auctions. These type of auctions also encourage

sniping and give advantage to consumers with high speed connectivity.

4.3 Double Auction

A Double Auction (DA) [55] market allows both buyers (consumers) and sellers

(providers) to submit offers to buy (bid) and sell (ask) respectively. Providers

and consumers submit asks and bids simultaneously and hence participate in

a double-sided auction. The process of clearing determines the way in which

trades are allocated amongst the asks and bids. There are two ways in which

clearing may take place, continuously or periodically. Double Auctions cleared

continuously are referred to as Continuous Double Auctions (CDA), where bids

and asks are submitted in an outcry fashion; with compatible bids and asks cleared

instantaneously. Double Auctions cleared periodically operate by accepting sealed

bids and asks, and at the end of the period allocating trades amongst the queued

up bids and asks. Double Auctions of this nature are referred to as Clearinghouse

(CH), call market or sealed Double Auctions.

Decades of research and experiments [132, 55, 59, 120] show that Double

Auctions are an effective and efficient market model, quickly converging towards

a Competitive Equilibrium (CE). The CE is the intersection point of true demand

and supply curves, yielding allocations which are near 100% efficient. A market

that is 100% efficient has no other possible allocation that would result in a larger

aggregate benefit to both consumers and providers. Rustichini et. al. [120]

provide an analytical study of a sealed Double Auction (k -DA) showing that in

any equilibrium the amount by which a trader misreports is O(1/m) and the

corresponding inefficiency is O(1/m2). From an economic stand point, DAs are

a sound and efficient market model. The New York Stock Exchange (NYSE) and
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Chicago Commodities market both employ a CDA market model. Sealed Double

Auctions are used to determine the daily opening price of each stock listed on the

NYSE where bids and asks are collected overnight and cleared in the morning. Sealed

Double Auctions are also used twice a day to fix copper and gold prices in London.

Architecture

In practice, DAs are executed by a trusted central entity, responsible for accepting

bids and asks and clearing trades. The same trusted central entity is required

when applying DAs to computer systems. This centralised architecture may pose a

scalability and performance bottleneck if not carefully considered. Although there is

research [36, 101] which applies a DA approach in a peer-to-peer environment, it is

in its early stages of development and the authors acknowledge that many challenges

remain to making it a reality. An alternative solution to address centralisation would

be to employ a Byzantine agreement protocol [21, 18].

Computational Complexity

In practice, DAs are used with goods which are abstract and divisible. For a

stock exchange that would be currency and shares. If DAs are applied to goods

with divisible constraints, the process of clearing becomes non trivial requiring a

prohibitive amount of computation. A study by Kalagnanam [79] provides an insight

into the computational complexity associated with clearing sealed Double Auctions:

1. Indivisible Demand: If demand is indivisible, the request in a single bid

may only be met using the supply from a single ask. Finding an optimal

clearing allocation becomes computationally intractable and requires solving

an NP-hard optimisation problem.

2. Assignment Constraints: If assignment constraints exist between bids and

asks, they can only be cleared optimally in polynomial time using network flow

algorithms.

3. Divisible and No Assignment Constraints: If demand can be supplied
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from many asks and there are no assignment constraints then clearing trades

can be done in log-linear time. This scenario is most employed in practice.

Communication Overhead

A study [5] shows that sealed DAs relay a near linear number of messages with

respect to the number of resources and have the lowest communication overhead

than any one-sided auction. Let us take an analytical approach to derive the number

of messages transferred per transaction. Assuming consumers and providers are

participating in a sealed DA where only one sealed bid is allowed per period (∆t),

we can see that the total number of messages relayed during that period to be

(Figure 4.4):

Mtotal =
3

2
(Cn + An) (4.4)

Although, during one period of a sealed DA, it is possible for multiple

transactions to be allocated and therefore we extend our analysis to how many

messages are relayed per transaction MperTransaction. An acceptable assumption

when analysing DAs [55] is to let the number of consumers and auctioneers be

equal Cn = An and the bids and asks follow a uniform relationship where the supply

and demand graph is linear. With these assumptions only half the number of Cn

bids can be successful and we find:

MperTransaction =
TotalNumberOfMessages

TotalNumberOfTransactions
=

3
2
(Cn + An)

1
2
(Cn)

= 6 (4.5)

As DAs have the ability to clear multiple transactions instantaneously, the

number of messages required per transaction is constant. This is a remarkable

property, backing up results from [5] which show DAs to require the least

communication.
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Figure 4.4: Double Auction: messages relayed

4.4 Storage Exchange: A Market Perspective

In this section we discuss market level requirements of our Storage Exchange,

covering consumer and provider requirements and compare these with related work

discussed in the previous section. We then draw upon our earlier discussions of

auction models and evaluate which model best meets the requirements imposed by

the Storage Exchange.

The primary goal of the Storage Exchange is to provide institutions with a

platform in which they may trade and exchange distributed storage services. In any

market there are providers and consumers, in the Storage Exchange providers aim

to lease distributed storage services and consumers seek to purchase these services.

A key step in choosing a suitable market model and trading storage services is

understanding the nature of the goods being traded. The Storage Exchange shall

only trade distributed storage services and therefore does not aim to be a universal

trading platform for unique individual items. Both consumers and providers have

unique service configurations and budgetary constraints and through the use of

storage policies are able to specify them.

Storage policies incorporate the necessary attributes for providers and consumers

to specify their requirements and are essential regardless of market model. Systems

such as the one proposed in [38] use storage policies as a way in which to specify high-

level Quality of Service (QoS) attributes, hiding low-level error prone administration

configurables from the user. Our use of storage policies is similar, encompassing the

following attributes:

1. Storage Policy Attributes (SPA):
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(a) Capacity: Storage Capacity (GB).

(b) Upload Rate: Rate (KB/sec) of transfer to the volume.

(c) Download Rate: Rate (KB/sec) of transfer from the volume.

(d) Time Frame: Lifetime/Duration (sec) of storage policy.

Understanding the marketing requirements posed by the Storage Exchange, our

discussion shall now re-visit the market models discussed earlier and select a market

model which most suites our circumstance.

One-Sided Auctions:

One-sided auctions are ideal for providers selling unique goods with uncertain value.

Whilst they exhibit relatively high communication overheads (Table 4.1), one-sided

auctions do not require a central entity to oversee their execution, allowing a

decentralised architecture to be employed where any peer can host an auction.

One-sided auctions require consumers to find an auction which best suites their

requirements, for the Storage Exchange, this introduces two inefficiencies, extra

communication required to find a suitable auction and as each consumer has unique

requirements, it is unlikely they will find an auction to perfectly suit. In one-

sided auctions, there may only be one winner leaving all other bidders to search

for another auction and thus resulting in further communication overheads. If

consumers have time constraints, then meeting these constraints is made difficult

in one-sided auctions as consumers are left with participating in auctions which end

soon or forced into buy now auction. It is likely that in both scenarios, the consumer

will pay a higher price.

Double Auction:

As well as being economically sound there are two attractive features of sealed

Double auctions which come to our attention, (i) many trades can be cleared

instantaneously and (ii) by applying a sealed approach, the need to continuously

3Although DAs require an element of centralisation, research into overcoming this exists [36,
101].
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Market Model Architecture Clearing

Complexity

Communication

Overhead

English Auction

Decentralised

Linear Polynomial-unbounded
First Price Linear Linear
Sealed Bid
Second Price Linear Linear
Sealed Bid
Dutch Auction Constant Linear-polynomial
Double Auction Centralised3 Linear-NPhard Constant-linear

Table 4.1: comparison of auction market models

broadcast current market status is eliminated. Studies comparing Double Auctions

[5, 94] with one-sided auction protocols (Dutch, English, Vickrey, First Price Sealed

Bid) found that Double Auctions possess the least communication overhead, which

is in-line with our analysis showing that under certain circumstances, a constant

number of messages are relayed per transaction. Double Auctions do not require

consumers to search for auctions which match their requirements, instead both

consumers and providers submit their bids and asks and leave the clearing algorithm

to allocate trades.

Whilst Double Auctions possess many attractive attributes, (Table 4.1) their

conventional application is limited to trading abstract and divisible entities (e.g.

currency and shares as found in today’s stock exchanges). Upon first glance it

would seem the DA market model would be the ideal solution. With distributed

storage being a divisible entity, its application to the Storage Exchange should

be straight forward. Unfortunately, this statement happens to be naive: (i) it

may not be practical to purchase storage for a particular volume across multiple

different providers, resulting in demand that is indivisible and (ii) storage policies

contain multiple attributes, further complicating the clearing process by introducing

assignment constraints.

Kalagnanam’s [79] study into Double Auctions shows that if demand is indivisible

in auctions, then finding an optimal clearing solution becomes computationally

intractable and requires solving an NP-hard optimisation problem. The same

study also shows that clearing trades with assignment constraints is a polynomial

time process. Clearing challenges aside, the DA market model is an ideal trading
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mechanism for the purposes of the Storage Exchange; with comparatively low

communication overheads and a symmetric market model allowing both consumers

and providers to specify their exact requirements thus eliminating the need to search

for matching resources. These attractive properties motivate our investigation

and proposal of computationally feasible clearing algorithms allowing the DA to

allocate trades where demand is indivisible and goods contain multiple attributes.

The research described in the following section proposes polynomial time clearing

algorithms.

4.5 Clearing Algorithms

Periodically, the Storage Exchange will match queued up Storage Request Bids

(SRBs) with Storage Service Asks (SSAs), the manner in which it does so is

determined by the clearing algorithm it employs. We propose and investigate the

following clearing algorithms in the context of our Storage Exchange platform:

4.5.1 First Fit

SRBs are allocated to SSAs on a First Fit basis. An SSA is deemed to fit if it has the

storage resources required by the SRB and the SSA’s cost function returns a price

within the SRB’s bid amount. SRBs are processed in the order in which they have

been queued. This algorithm cannot be applied in practice as its allocation strategy

does not take into consideration market surplus, resulting in allocations which are

unfair to both consumers and providers. This algorithm serves to provide a sanity

check of sorts for the algorithms subsequently proposed.

4.5.2 Maximise Surplus

This clearing algorithm aims to maximise the profit of the auction. An SRB is

allocated to an SSA which results in the maximum difference between a consumer’s

bid price and result of the provider’s cost function.
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4.5.3 Optimise Utilisation

This algorithm focuses on achieving better utilisation by trying to minimize the

left overs that remain after an SRB is allocated to an SSA. A measure of fit is

calculated (Algorithm 3) between an SRB and each SSA. A large measure of fit

indicates that the remaining ratios have a large spread amongst each of the Storage

Service Attributes and therefore would result in an SSA with potentially more waste.

Whereas a small population variance would indicate that the remaining Storage

Service Attributes within the SSA would have less waste. Upon calculating a measure

of fit between the considered SRB and each SSA, we allocate it to the SSA which

returned the smallest measure of fit. SRBs are processed in the order in which they

have been queued.

To illustrate, we provide an example scenario with one SRB and two SSAs (Figure

4.5). From the example we can see that if SRB1 is allocated to SSA1 the remaining

resources upon allocation would result in SSA1 having capacity=4, upload=17,

download=4, we can see there is much potential for waste as remaining upload

is very high at 17 and capacity and download is low at 4. If SRB1 is allocated to

SSA2 the left overs are more even with capacity=8, upload=7, download=8 and less

chance of waste due to one attribute running out and leaving large values remaining

and wasted as with allocating SRB1 to SSA1. We can see that allocating SRB1

to SSA1 would result in a relatively high measure of fit with 0.045 as compared to

0.0038 if SRB1 were to be allocated to SSA2. Applying the Optimise Utilisation

would result in SRB1 being allocated to SSA2 as this has the lowest measure of fit.

Much like the First Fit algorithm, the Optimise Utilisation allocations do not take

into account market surplus and thus would result in allocations which are unfair

to consumers and providers. This algorithm is the platform for the next algorithm

which tries to balance achieving good utilisation and a good auction surplus.

4.5.4 Max-Surplus/Optimise Utilisation

This clearing algorithm (Algorithm 4) incorporates the last two allocation strategies

and aims to draw a balance between them. Parameter (k) serves to bias the balance,
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Figure 4.5: Optimise Utilisation Algorithm

Algorithm 3 MeasureOfFit(S,A)

1: Input: Storage Request Bid S, Storage Service Ask A
2: Output: Measure of Fit F
3: A = {a1, a2, ..., an}//Storage Service Attributes
4: //belonging to Available Storage Policy
5: S = {s1, s2, ..., sn}//Storage Service Attributes belonging to Storage Request
6: // calculate a remaining ratio for each of Storage Service Attributes
7: R = {r1 = a1−s1

a1

, r2 = a2−s2

a2

, ..., rn = an−sn

an
}

8: // calculate the population variance amongst the remaining ratios
9: F = 1

n

∑n

i=1(ri − uR)2, where uR = 1
n

∑n

i=1 ri

(0 <= k < 0.5) means importance will be given to utilisation, whereas (0.5 < k <=

1) will give importance to achieving a better surplus. Algorithm 4 is applied to every

SRB, in the order in which they have been queued.

4.6 Performance and Evaluation

The aim of our experiments is to evaluate each clearing algorithm based upon

utilisation and auction surplus. It is important to consider utilisation as this will

gauge the efficiency of resource allocation, whilst auction surplus indicates the

market efficiency of the algorithm. It is imperative that the clearing algorithm

maintains market efficiency as otherwise allocations not only become inefficient but

also impractical. The First Fit algorithm is used to confirm that the Maximise
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Algorithm 4 Max-Surplus/Optimise Utilisation Algorithm

1: Input: Storage Request Bid S, Storage Service Asks A, Balance k
2: Output: Selected Storage Policy P
3: F ← {∅} // a set to store MeasureOfFit values
4: M ← {∅} // a set to store Surplus calculations
5: for all availableStoragePolicy ∈ A do
6: if availableStoragePolicy has greater resource attributes than S and

S bid price is greater than availableStoragePolicy reserve then
7: F ← F ∪ MeasureOfFit(S, availableStoragePolicy)
8: M ←M ∪ surplus(S, availableStoragePolicy)
9: end if

10: end for
11: minSurplus = min(M)
12: worseF it = max(F )
13: deltaMeasureF it = worseF it − min(F )
14: deltaSurplus = max(M) − minSurplus
15: currentHighScore = Large Negative Number
16: for all availableStoragePolicy ∈ A do
17: ratioBetterF it = worseF it−MeasureOfF it(S,availableStoragePolicy)

deltaMeasureF it

18: ratioBetterSurplus = surplus(S,availableStoragePolicy)−minSurplus

deltaSurplus

19: score = (1− k) ∗ ratioBetterF it + k ∗ ratioBetterSurplus
20: if score > currentHighScore then
21: currentHighScore = score
22: P ← {availableStoragePolicy} // assign Storage Policy with max score
23: end if
24: end for

Surplus and Optimise Utilisation algorithms actually improve market surplus and

utilisation respectively. Finally, Max-Surplus/Optimise Utilisation algorithm is

evaluated with the following values of k = {0.25, 0.5, 0.75}.

Our experiments cover three scenarios. For every scenario each algorithm is

executed, allowing us to evaluate how each algorithm performs in different scenarios.

Every experiment consists of a single clearing period, where the set of bids and

asks processed is equivalent to being queued up over some period of time. Our

experiments focus on evaluating the process of clearing at the end of that period.

Details of each scenario and the parameters used to generate the data is covered

in Section 4.6.1. Section 4.6.2 and Section 4.6.3 present results and discuss their

significance.
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4.6.1 Experiment Setup

For each scenario, a series of bids (SRBs) and asks (SSAs) are generated by a perl

script which complies to the posting protocol otherwise used by consumers and

providers. The parameters used to configure the perl script are defined in Table

4.2. Parameters with ranges are assigned with randomly generated numbers within

the specified range. The budget assigned to each SRB or SSA is derived from the

following linear budget function:

BudgetFunction(C, U, D, T ) = ((C + U + D)T )pv (4.6)

C : Storage Capacity (GB) of volume.
U : Upload Rate (KB/sec).
D : Download Rate (KB/sec).
T : Duration.
pv : percentage variance (50% <= pv <= 150%).

For each scenario, every clearing algorithm is executed with the same set of bids

and asks, which are loaded in the same order in the Storage Exchange. This ensures

that for each scenario the clearing algorithm is executed in exactly the same manner.

Parameter Description

SRB Number of Storage Request Bids
SRCrange Storage Request Capacity range (GB)
SRUrange Storage Request Up Rate range (KB/sec)
SRDrange Storage Request Down Rate range (KB/sec)
SRDU Storage Request Duration (sec)
SRBBbudget Storage Request Budget

SSA Number of Storage Service Asks
SACrange Storage Ask Capacity range (GB)
SAUrange Storage Ask Up Rate range (KB/sec)
SADrange Storage Ask Down Rate range (KB/sec)
SADU Storage Ask Duration (sec)
SSABbudget Storage Ask Budget

Table 4.2: experiment parameters

For each scenario we vary the range of the Storage Policy Attributes (SPA) (Table

4.3) for bids SRBSPA = {SRCrange, SRUrange, SRDrange} and asks SSASPA =

{SACrange, SAUrange, SADrange} with the exception of duration, which is kept



132 Chapter 4. STORAGE EXCHANGE CLEARING ALGORITHMS

constant. The duration is kept constant as otherwise it posed an overbearing

constraint on the clearing process, eliminating most of the trades. The three

scenarios we cover are used to determine how each algorithm performs when varying

SSASPA and SRBSPA:

1. Scenario A: (SSASPA ≈ SRBSPA): In this scenario SSASPA attributes

ranges are the same as found in SRBSPA attributes. Therefore, it is most likely

that a single ask will serve a single bid, rarely any more. This implies that

both provider’s and consumer’s storage service requirements are approximately

equivalent.

2. Scenario B: (SSASPA > SRBSPA): In this scenario SSASPA attributes

ranges are ten times greater than SRBSPA and therefore it will be common

for multiple bids to be serviced by a single ask. This implies that providers

have a larger quantity of storage they wish to sell to consumers which require

relatively smaller amounts of storage.

3. Scenario C: (SSASPA >> SRBSPA): In this scenario SSASPA attributes

ranges are one hundred times greater than SRBSPA and therefore it will

be very common for multiple bids to be serviced by a single ask. Clearly

resulting in a large discrepancy between provider’s and consumer’s storage

service requirements, with providers submitting asks with significantly larger

quantities of storage than consumers.

Whilst the SPA ranges vary for consumers and providers in Scenario B and C,

we ensure that demand and supply for all the scenarios is relatively even, such that

the totals for each of the attributes is ≈ ±2%. Maintaining a balanced supply and

demand for all scenarios allows results across each of the scenarios to be compared.

To balance the supply and demand, we ensure the ratio between SSAs and SRBs is

proportionately opposite to their SPAs (Table 4.3). Note that the simulation does

not cover SSASPA < SRBSPA as all the trades would fail to clear because demand

is indivisible, which requires a single SRB to be serviced by a single SSA.
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Parameter Scenario A Scenario B Scenario C

SRB 500 500 5000
SRCrange 5 - 50 5 - 50 5 - 50
SRUrange 5 - 50 5 - 50 5 - 50
SRDrange 5 - 50 5 - 50 5 - 50

SSA 500 50 50
SACrange 5 - 50 50 - 500 500 - 5000
SAUrange 5 - 50 50 - 500 500 - 5000
SADrange 5 - 50 50 - 500 500 - 5000

Table 4.3: experiment scenarios

4.6.2 Performance Results

This section provides performance benchmarks for each of the scenarios described.

The experiment was conducted on (P4 1.7Ghz, 1GB RAM, 120GB HD, Debian 3.0).

The results (Table 4.4) show the clearing algorithms to be of polynomial complexity

with the number of bids and the number asks being the main influence on processing

time taken to allocate trades. The performance results between Scenario A and

Scenario B show an anomaly. According to the complexity analysis Scenario A

should take ten times longer to compute than Scenario B, however, the performance

results indicate similar times for the two. Upon further investigation, we found

the reason for this anomaly was due to the fact that Scenario B had a greater

rate of successful trades than Scenario A. We found successful trades to require

extra computation for allocating storage contracts and calculating left over storage

services, thus extending the computation time for Scenario B. When comparing

Scenario B and Scenario C, which have similar rates of successfully allocated trades,

the computation time increases consistently with the complexity analysis.

4.6.3 Market Results

For each scenario, results have been broken down into four plots which help us

evaluate how each algorithm performs with respect to auction surplus and utilisation

efficiency. The horizontal axis represents the number of bids (SRBs) that have been

processed during that clearing process. The four plots used are detailed below:

4The average time taken was calculated across the different runs for (k=0.25,k=0.5,k=0.75)
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Clearing Algorithm Complexity
Scen. A Scen. B Scen. C
A=500 A=50 A=50
B=500 B=500 B=5000

First Fit O1(BA) 1129ms 1099ms 10168ms
Maximise Surplus O2(BA) 1037ms 1031ms 9974ms
Optimise Utilisation O3(BA(C2)) 2794ms 3528ms 37673ms
Max-Surplus
Optimise Utilisation4

O4(O2 + O3 + A) 10043ms 7652ms 70562ms

Where:
A: the number of asks
B: the number of bids
C: number of attributes in storage policy

Table 4.4: clearing algorithm performance

1. Auction Surplus: For each SRB that is allocated to an SSA, the difference

between the consumer’s bid price and the provider’s ask price is the auction

surplus. The Auction Surplus plot aggregates this difference as each SRB

is being processed. This plot will indicate how each algorithm performs in

auction surplus, with Maximise Surplus expected to do well in all scenarios.

2. Percentage of Ask Budget Met: Every SSA is assigned a budget

constraint. From this budget, the Storage Exchange determines the rate at

which it should charge out the service. Therefore, it is possible and likely that

the entire SSA will not be utilised and hence the ask budget will not be fully

met. This plot shows the percentage of total ask budget met across all the

SSAs being processed.

3. Percentage of Unsold Storage: Every SSA is assigned a capacity (SAC)

representing the amount of storage it has up for lease. This plot shows the

percentage of that capacity which remains unsold.

4. Percentage of Unfeasible Bids: A bid is deemed to be unfeasible if there

does not exist an SSA which can service it for the price requested. This plot

will indicate how each algorithm performs in utilisation rates, with Optimise

Utilisation expected to perform well.
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Auction Surplus and Percentage of Ask Budget met focus on budget aspects

whilst the Percentage of Unsold Storage and Percentage of Unfeasible Bids focus on

utilisation achieved. As the supply and demand in each scenario is approximately

equal, the DA allocation [55, 120] should result in approximately 50% of bids and

asks to be successful allocated. Therefore, our experiment results should result

in approximately 50% of ask budget met, 50% of unsold storage and 50% of bids

deemed to be unfeasible.

Scenario A

In this scenario the generated SRB and SSA service attributes closely match each

other. As a result, on average a single ask will only be able to service a single bid. We

expect this to be a worst case scenario, as fragmentation will be unavoidable leading

to poor utilisation and inefficient allocation. For the Optimise Utilisation algorithm

to perform well, asks should be large enough to service multiple bids, allowing it to

better fit bids. This scenario effectively nullifies the Optimise Utilisation algorithm

and we can see from the percentage plots (Figure 4.7) and table of results (Table 4.5)

where there is little difference between each algorithm (±5%) results. At the end of

the clearing period, the percentage plots results show that ≈ 40% of ask budget is

met, ≈ 55% of storage remains unsold and ≈ 45% bids failed to clear (unfeasible).

Algo. Scenario A (%) Scenario B(%) Scenario C(%)
ABM US UFB ABM US UFB ABM US UFB

FirstFit 43.3 52.9 45.4 63.0 37.8 36.8 57.4 40.3 41.4
OptUtil 41.0 53.7 46.4 72.6 25.3 23.2 70.4 23.4 24.2
MaxSur 34.9 57.9 48.6 47.1 49.8 49.2 42.3 50.9 51.9
k=0.25 38.7 54.7 48.6 56.1 38.3 37.2 50.0 41.1 41.9
k=0.5 36.5 56.2 50.2 52.8 41.3 39.4 47.5 44.7 45.5
k=0.75 35.3 57.5 51.4 49.9 44.7 44.2 46.2 46.1 47.1

Table 4.5: market allocation results

The auction surplus plot is the only graph where a notable difference amongst

the algorithms is made, with Maximise Surplus, k=0.75 and k=0.5 achieving the

best auction surplus, followed by k=0.25, Optimise Utilisation and First Fit. In this

scenario there is no significant benefit in using Max-Surplus/Optimise Utilisation
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Figure 4.6: Scenario A: auction surplus

and therefore the Maximise Surplus algorithm is the most appropriate approach for

this scenario.

Scenario B

In this scenario a single SSA has the potential to serve multiple SRBs and because of

this the utilisation algorithm is able to better allocate the bids to asks. The impact

is significant (Table 4.5) when compared to Scenario A, with 53.7% of unsold storage

in Scenario A dropping to 25.3% and 46.4% of unfeasible bids in Scenario A dropping

to 23.2%. We can see that Max-Surplus/Optimise Utilisation achieves better auction

surplus (Figure 4.8) even bettering Maximise Surplus. The results (Table 4.5) show

that Max-Surplus/Optimise Utilisation (k=0.25) achieves 9% better ask budget met,

11.5% less unsold storage and 12% less unfeasible bids than Maximise Surplus.

We can see from the percentage plots that trading off auction surplus for better

utilisation achieves much better storage utilisation which in turn achieves a greater

auction surplus.
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Figure 4.7: Scenario A: percentage of ask budget met, unsold storage and unfeasible
bids
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Figure 4.8: Scenario B: auction surplus
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Figure 4.9: Scenario B: percentage of ask budget met
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Figure 4.10: Scenario B: percentage of unsold storage

Scenario C

The results in this scenario follow a similar pattern to that of scenario B with Max-

Surplus/Optimise Utilisation achieving better results (higher ask budget met, lower

rate of unsold storage and unfeasible bids) than Maximise Surplus for all values of k.
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Figure 4.11: Scenario B: percentage of unfeasible bids
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Figure 4.12: Scenario C: auction surplus and percentage of ask budget met

However, when comparing this scenario with scenario B there were subtle differences

with Optimise Utilisation achieving 1% less unfeasible bids in Scenario B, but this

was contradicted by 1.9% more storage remaining unsold in scenario B than in this

scenario, suggesting that a greater rate of capacity was sold across less bids than

in scenario B. This contradiction held for Max-Surplus/Optimise Utilisation (for all

values of k) with higher unsold storage and lower unfeasible bids in Scenario B than

in this scenario. With results between Scenario B and C so similar the Optimise

Utilisation seems to have a similar impact, suggesting that it remains effective even

when there is a large difference in service attributes (SSASPA >> SRBSPA).
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Figure 4.13: Scenario C: percentage of unsold storage and percentage of unfeasible
bids

4.7 Summary

When applying a market model to a computer system there are many factors

which need to be taken into consideration. These include but are not limited

to: architecture, communication overhead, clearing complexity, market efficiency

and understanding the nature of the goods being traded. This chapter follows the

process of selecting a market model, proposing clearing algorithms and evaluating

them through simulations. In the investigation of various auction models, we found

the sealed Double Auction market protocol to be effective and efficient, with a low

communication overhead allowing multiple transactions to be cleared in an instant.

It allows both consumers and providers to submit their exact requirements and its

responsibility is to match bids and asks and allocate trades.

The application of sealed Double Auctions in practice is limited to dealing

with divisible single attribute goods which do not possess assignment constraints

(e.g. shares and currency). Distributed storage, as a tradeable entity in the

Storage Exchange, contains many attributes and carries a clearing constraint where

demand is indivisible. The process of optimally clearing goods of this nature,

in a Double Auction, normally requires solving an NP-hard problem and thus

is considered computationally intractable. This chapter proposes algorithms to

Optimise Utilisation, Maximise Surplus and by combining these proposes the Max-

Surplus/Optimise Utilisation algorithm. The Max-Surplus/Optimise Utilisation

algorithm is able to clear trades with indivisible demand constraints in polynomial
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time achieving promising empirical results (Scenario 2, k=0.25, 56.1% of ask budget

met, 38.3% of storage capacity remain unsold and 37.2% of bids are unfeasible).
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Chapter 5

CONCLUSION

This thesis began as a study of distributed storage systems, categorising the wide

array of research from the past and present. The study showed that modern

day distributed storage systems have evolved into complex systems providing a

variety of services from archiving, publishing and anonymity to federating storage

services across geographic and institutional boundaries. Furthermore, distributed

storage systems are required to function in an unreliable shared environment such

as the Internet, posing challenging operational constraints. To meet the demands

of operating across a challenging infrastructure such as the Internet, many advances

in architecture, security, routing and consistency have been made. The taxonomy

distills the plethora of work on DSS, providing a clearer insight into functionality,

architecture, operating environment, usage patterns, security, routing, consistency,

autonomic management and federation. Following the taxonomy a survey of

unique distributed storage systems served to exemplify topics covered earlier in the

taxonomy.

In the process of conducting the taxonomy, a study identified the rapid increase

in software complexity as the next major obstacle to face future research and

development of IT systems [72]. A subsequent feature article [80] outlines a vision

for autonomic computing, identifying the need for systems to be self governing,

lessening the burden of complexity imposed on administrators and developers. These

works laid the foundations for the research and proposal of the Storage Exchange

platform. The Storage Exchange applies a market model to automatically allocate

storage services based on consumer and provider requirements. The market model

sits at the core of the Storage Exchange and the process of selecting an efficient and

suitable market model forms much of the research in this thesis. The process of

applying a market model to the trading of distributed storage involves:
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1. Understanding the Goods being Traded: Distributed storage, as a

tradeable entity, contains multiple attributes, collectively defined as Storage

Policy Attributes (capacity, upload rate, download rate and duration). Whilst

further attributes such as replication, consistency even attributes regarding

rates of availability could be incorporated into the storage policy attributes,

these place further constraints and complicate the process of trading.

2. Selecting a Market Model: Before a market model can be successfully

applied to a computer system, it is important to consider economic efficiency,

communication overhead, clearing complexity and the architectural require-

ments it may have on the system. Sealed Double Auctions are used widely in

practice, known to be economically efficient and due to their ability to clear

multiple transactions at an instant, possess remarkably low communication

overheads. DAs require a central entity to oversee the trading process and

whilst this is a limitation to scalability, it eliminates the need for providers

and consumers to search for suitable trades.

In practice Double Auctions are limited to trading goods with single attributes

that are divisible. Although Kalagnanam [79] shows optimally clearing goods

where demand is indivisible is possible, it is an NP-hard problem. This poses

a dilemma for the Storage Exchange, as not only do storage policies contain

multiple attributes, the demand is indivisible as storage requests for a volume

may only be serviced by a single provider. This motivated research into a

clearing algorithm that is computationally feasible.

3. Clearing Algorithms: This thesis presents a polynomial time clearing algo-

rithm which balances auction surplus with optimising utilisation. Simulation

results are promising, showing improved levels of utilisation, resulting in best

overall auction surplus.

Research into the Storage Exchange platform has identified many challenges

facing autonomic management of distributed storage. In the process of employing a

market approach to automatically allocate storage services, important realisations
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were made to allow distributed storage services to become a tradeable entity.

Research presented in this thesis takes a step towards realising an autonomic storage

system and is a foundation for future research into employing a market approach to

achieve this objective.

5.1 Lessons Learnt About Research

The Storage Exchange has the potential to be a large, all-time consuming system.

With so many components, it is easy to be carried away with issues relating to

consistency, security, protocol design and multi-threaded design. All exciting topics

to investigate and engineer, and all too easy to get side tracked with.

Whilst initial intentions were to build this platform in its entirety, right from

providing a mount point to submitting bids and asks to the Storage Marketplace, this

soon proved to be an overly ambitious goal. The Storage Broker, Storage Provider

and Storage Client and the interactions between these components are functionally

complete, the communication between the Storage Marketplace and Storage Broker

however are not. Whilst the passion to engineer the system never dulled, due to

time constraints, a more rapid simulation approach was used to evaluate the clearing

algorithms. During simulation, the Storage Marketplace would load bids and asks

from file rather than have having a remote Storage Broker connect and relay them

via a posting protocol.

This approach proved to be a quick and effective way to test the feasibility of our

clearing algorithms and allowed us to further investigate them. With hindsight, more

effort should have been applied to the interactions between the Storage Marketplace

and the Storage Broker rather than worrying about the details of the storage service

itself.

5.2 Future Directions

The work presented in this thesis represents the beginning of a journey of discovery

into autonomic management of storage and whilst many important insights were
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made, many questions remain unanswered:

1. Determining a clearing price in a DA where demand is indivisible remains open

[79]. It is important when setting a price structure that the market remains

incentive compatible, fair and efficient [60].

2. An Investigation of how a combinatorial auction [103] could be applied to

the Storage Exchange. Whilst this would substantially increase the clearing

complexity [127], consumers and providers would have the flexibility of

submitting combinations of bids and asks.

3. A conventional DA market model requires a trusted central entity to collect

bids and asks and allocate trades. The presence of a central entity in computer

systems poses a scalability and reliability bottleneck, the same applies in our

system. Research [36] into executing a DA across a peer-to-peer architecture

would provide a more scalable and resilient solution. Another option would be

to apply a DA market over a byzantine agreement [21].

4. Allowing volumes to be serviced by multiple providers would simplify the

clearing process by eliminating the demand indivisible constraint. Although,

managing volume spread across multiple institutions would complicate data

management and the manner in which operations are executed.

5. This thesis investigates the clearing process of a single clearing cycle. This

could be extended to cover a series of clearing periods across a time period

where supply and demand and the clearing interval could be made to fluctuate.

6. Whilst the storage policies incorporate duration, the simulations conducted in

our investigation assumed a constant duration. Incorporating duration into

the clearing process could introduce too much of an assignment constraint.

A possible solution would be to introduce coarse grain time allocation, e.g.

short, medium and long term duration. Even an investigation into a futures

market, where storage is purchased based on expected usage demand, could

be interesting and worthwhile.
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7. The Max-Surplus/Optimise Utilisation algorithm provides a parameter (k)

allowing allocations to be biased towards achieving auction surplus or better

optimisation. Biasing allocations completely towards utilisation (k=0) will

yield allocations which are economically inefficient, unfair and impractical.

This opens the question of how far allocations can be biased away from max-

surplus before the market is deemed too inefficient.

8. Research [38] into allowing systems to be configured with high-level objectives

could be incorporated into the storage broker, simplifying administration and

taking a step towards realising autonomic storage management.

9. The Storage Provider supports a simple mode of replication, whereby volumes

are replicated across multiple hosts. Ultimately a volume’s storage capacity is

limited to a single host and whilst the data structure (segments) to support

volumes being stretched across multiple host is present, the Storage Provider

does not support it. More flexible methods to distribute and replicate data

could be employed, such as DHT [105].
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Appendix A

STORAGE BROKER DATA DICTIONARY

Table A.1: user table description
Table Name: User

Field Name Description

userINDEX Primary key.
userLoginName Users login name.
userPassword Password used to login.
userType External or Internal: External users a limited to only viewing Virtual

Volume information. Internal users are allowed to add new entries in
the available storage table and create Virtual Volumes.

Table A.2: available storage table description
Table Name: AvailableStorage

Field Name Description

availableStoreINDEX Primary Key.
userINDEX Owner of available storage.
entityID Unique identifier of available store. If isContract field is

true than this field represents the ContractID otherwise
its the StorageEntityID.

contactHostIP Is the host’s IP address responsible for servicing this
available store. If isContract field is true then this field
represents the Storage Broker IP, otherwise this field
storage the Storage Provider IP.

contactHostListenPortNumber Is the portnumber of the host responsible for servicing this
available store.

Capacity MB Device storage capacity in Megabytes.
Used MB Raw used storage on device in Megabytes.
Free MB Available storage on device in Megabytes.
UploadRate kB Maximum allowable upload rate in Kilobytes. if 0, then

no limit.
DownloadRate kB Maximum allowable download rate in Kilobytes. if 0, then

no limit.
IsContract If true, this record is a storage contract and will have a

reference to the contract table containing contract specific
attributes, otherwise this record represents a storage
provider.

Status Only applicable if isContract is false, that is we are
dealing with a local Storage Provider. The status of a
Storage Provider is considered “Available” if it is currently
connected to the Storage Broker, otherwise it is flagged as
“ Unavailable”.
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Table A.3: contract table description
Table Name: Contract

Field Name Description

availableStoreINDEX Foreign key, used to reference the available storage table.
AllocatedBudget Budget allocated to purchase contract.
ContractCost The actual negotiated cost of acquiring this contract, must be <=

to allocated budget.
Duration Contract lifetime in seconds.

Table A.4: virtual volume table description
Table Name: Virtual Volume

Field Name Description

virtualVolumeINDEX Primary Key.
userINDEX Index to user which owns this Vitual Volume.
VolumeID Name of the Volume.
Capacity MB Virtual Volume storage capacity in Megabytes..
UploadRate kB Maximum allowable upload rate in Kilobytes. if 0, then no limit.
DownloadRate kB Maximum allowable download rate in Kilobytes. if 0, then no limit.
Duration Virtual Volume duration in seconds.
replicationLevel Replication level for this volume. Each segment allocated to this

volume will inherit this replication level.
isForSale If false, Virtual Volume is not be sold, most probably as it is to be

used within the institution, otherwise Virtual Volume is to be put
up for trade.

askBudget If isForSale is true, than this field represents the asking price for
the service.

sellStatus If isForSale is true, than this field determines if this volume has
been “sold” or remains “unsold”.

numUsers Used to limit the number of users accessing Virtual Volume. This
field has been added in for future functionality, where if numUsers is
1 then a weak approach to consistency could be applied, otherwise
if numUsers > 1 than a stronger approach to consistency will need
to be applied.

Table A.5: segment table description
Table Name: Segment

Field Name Description

segmentINDEX Primary key.
virtualVolumeINDEX Foreign key.
Mode Can be one of replication, stripe (unimplemented), DHT

(unimplemented).
Capacity MB Segment storage capacity in Megabytes.
Used MB Segment used storage capacity in Megabytes, to be reported by

Storage Provider.

Table A.6: segment available store table description
Table Name: Segment Available Store

Field Name Description

segmentAvailableStoreINDEX Primary key.
segmentINDEX Foreign key.
availableStoreINDEX Foreign key.
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STORAGE EVENT PROTOCOL

The Storage Event Protocol is used for all the communication amongst the components which make
up the Storage Exchange platform. In this section we discuss the details the protocol behaviour
and the structure of each storage event message.

B.1 Storage Event Message

Each Storage Event message comprises of a header and a payload. The header contains a fixed
number of attributes which are globally required in every Storage Event Message. The payload
on the other hand is a variable length field which itself may contain many fields depending on the
message type specified by the header.

HEADER BODY
MessageType UniqueID Length ConnID Payload

4 bytes 4 bytes 4 bytes 4 bytes specified by the Length field

Table B.1: storage event message structure

B.1.1 Header

The header comprises of the following four 32 bit fields:

1. Message Type: This field is used to determine the message type. We describe each of the
possible message types in Section B.2.

2. Unique ID: Most of the communication consists of two messages being exchanged. A
request is sent and a reply is expected. The Unique ID field is used to uniquely identify
a pair of request and reply messages. This is particularly useful when dealing with
asynchronous communication which is the case between the Storage Client and Storage
Provider components.

3. Length: Length of the payload.

4. ConnID: A unique identifier representing the connection id between two components, the
id is assigned by the party that accepted the connection. If the assigned connection ID is
less than 0 than there is a problem with how the two components have handshaked (Section
B.2.1).

B.1.2 Payload

Payload can be arbitrary length and may contain many fields of arbitrary types. The message type
field in the header can be used to determine what fields are to be expected and the length field in
the header determines the length of the payload.
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B.2 Storage Event Types

There three categories of Storage Events (i) Handshakes - used when any two components initiate
communication, (ii) Trading Protocol - used by Storage Broker and Storage Marketplace to
exchange trade information. (iii) Storage Protocol - used between the Storage Client and Storage
Provider.

B.2.1 Handshakes

A pair of handshake Storage Event messages are exchanged anytime two components establish a
connection. When a connection is established, the party that initiated the connection (A party) is
responsible for sending a sign-on storage event, which the receiving party (B party) replies to with
a reply storage event. There are five different types of handshakes, which include:

Storage Client and Storage Broker

This handshake is used when a Storage Client initiates a connection to a Storage Broker, as part
of the process of mounting a Virtual Volume (Section 3.2.6 : Step 1). This handshake (Table
B.2) is used by the Storage Client to authenticate itself with the Storage Broker. Upon successful
authentication the Storage Client is able to send request to mount volume for the specified Virtual
Volume for servicing.

Storage Client sends storage event with the following structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

52 specified specified Unused User ID

Storage Broker replies with a storage event following this structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

52 specified specified specified Error Message

If connID > 0, than storage client has been successfully authenticated.
If connID = 0, than error and an error message will be specified.

Table B.2: storage client and storage broker handshake

Primary Provider and Secondary Provider

This handshake is used when a Primary Provider initiates a connection to a Secondary provider,
as part of the process of mounting a Virtual Volume (Section 3.2.6 : Step 3). This handshake
(Table B.3) is used to notify the Secondary Provider of the Virtual Volume and Segment it will be
servicing.

Primary Provider and Storage Client

This handshake is used when a Primary Provider initiates a connection to the Storage Client,
as part of the process of mounting a Virtual Volume (Section 3.2.6 : Step 4). This handshake
(Table B.4)is used to notify the Storage Client the Primary Provider is ready to service the Virtual
Volume.

Storage Provider and Storage Broker

This handshake is used by all Storage Provider to register and connect with the Storage Broker.
A Storage Provider needs to be registered and connected with the Storage Broker to receive a
request to mount a Virtual Volume (Section 3.2.6 : Step 2). This handshake is used to inform
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Primary Storage Provider sends storage event with the following structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

54 specified specified Unused StorageEntityID,VolumeID,SegmentID

Secondary Storage Provider replies with a storage event following this structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

54 specified specified specified Error Message

If connID > 0, than handshake was successful.
If connID = 0, than error and an error message will be specified.

Table B.3: primary storage provider and secondary storage provider handshake

Primary Storage Provider sends storage event with the following structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

53 specified specified Unused StorageEntityID

Storage Client replies with a storage event following this structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

53 specified specified specified Error Message

If connID > 0, than handshake was successful.
If connID = 0, than error and an error message will be specified.

Table B.4: primary storage provider and storage client handshake

the Storage Broker of the Primary Provider’s storage potential and provider listen port number,
allowing primary providers to connect to it (Table B.5).

Storage Provider sends storage event with the following structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

51 specified specified unused UserID,StorageEntityID,

ProvListenPortNum,

diskFreeSpace,diskCapacity

If StorageEntityID=0 then provider is signing on for the first time and
reply payload will specify its StorageEntityID.

Storage Broker replies with a storage event following this structure:
HEADER BODY

MessageType UniqueID Length ConnID Payload

51 specified specified specified StorageEntityID

If connID > 0, than handshake was successful, and if its the first sign
on the payload will contain unique StorageEntityID
If connID = 0, than error and an error message will be specified in the payload.

Table B.5: storage provider and storage broker handshake

Storage Broker and Storage Marketplace

Protocol used between the Storage Broker and Storage Marketplace is incomplete1.

1Refer to Lessons Learnt About Research for details.
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B.2.2 Trading Protocol

Trading Protocol used between the Storage Broker and Storage Marketplace is incomplete.

B.2.3 Storage Protocol

The Storage Protocol consists of the Storage Client issuing storage requests and for each request
the Storage Provider transmits a reply. The protocol is based on the FUSE API [56] which follows
system file Input/Output calls found in modern operating systems. In Table B.6 we iterate through
each of the message types and outline the attributes contained in both the requesting storage event
and the reply storage event. For example: the GETATTR message type is issued by the Storage
Client by transmitting a storage request with a payload consisting of the path. Upon receiving the
GETATTR storage request the storage provider issues the system stat command for the specified
path and transmits a storage reply with a payload containing the return code and stat struct.
Details of the exact fields within the stat struct and all other structs in Table B.6 are supplied in
man pages.
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Message Request Payload Attributes Equivalent
Type /Reply system call

GETATTR
request char *path

stat
reply int returnCode, struct stat *buf

READLINK
request int sizeOfBuf, char *path

readlink
reply int returnCode, char *buf

GETDIR
request char *path

readdir
reply int returnCode, struct dirent *buf

MKNOD
request mode t mode, dev t dev, char *path

mknod
reply int returnCode

MKDIR
request mode t mode, char *path

mkdir
reply int returnCode

CHMOD
request mode t mode, char *path

chmod
reply int returnCode

UNLINK
request char *path

unlink
reply int returnCode

RMDIR
request char *path

rmdir
reply int returnCode

CHOWN
request uid t owner, gid t group, char *path

chown
reply int returnCode

SYMLINK
request char *from, char *to

symlink
reply int returnCode

RENAME
request char *from, char *to

rename
reply int returnCode

LINK
request char *from, char *to

link
reply int returnCode

TRUNCATE
request off t length, char *path

truncate
reply int returnCode

UTIME
request struct utimbuf *buf, char *path

utime
reply int returnCode

STATFS
request struct statfs *buf, char *path

statfs
reply int returnCode

OPEN
request int flags, char *path

open
reply int returnCode

READ
request size t count, off t offset, char *path

pread
reply int returnCode

WRITE
request size t count, off t offset, char *buf, char *path

pwrite
reply int returnCode

Table B.6: storage protocol operations


