
ARCHITECTURAL STABILITY OF
SELF-ADAPTIVE SOFTWARE SYSTEMS

by

MARIA MOURAD EBEID MELEKA SALAMA

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
July 2018

Abstract

Stakeholders and organisations are increasingly interested in software longevity, given the
increasing dependence on software systems. Stability is a long-term property of utmost
strategic importance for any software system throughout its whole lifecycle, from design
and implementation to actual operation, management, maintenance and evolution. A
system, if engineered and developed with stability in mind, can provide a good basis
for supporting runtime operation, technical changes and cost-effective maintenance and
evolution. As architectures have a profound effect on the operational lifetime of the
software and the quality of service provision, architectural stability could be considered a
primary criterion towards achieving the longevity of the software.

This thesis studies the notion of stability in software engineering with the aim of
understanding its dimensions, facets and aspects, as well as characterising it. The thesis
further investigates the aspect of behavioural stability at the architectural level, as a
property concerned with the architecture’s capability in maintaining the achievement of
expected quality of service and accommodating runtime changes, in order to delay the
architecture drifting and phasing-out as a consequence of the continuous unsuccessful
provision of quality requirements.

The research aims to provide a systematic and methodological support for analysing,
modelling, designing and evaluating architectural stability. The novelty of this research
is the consideration of stability during runtime operation, by focusing on the stable pro-
vision of quality of service without violations. As the runtime dimension is associated
with adaptations, the research investigates stability in the context of self-adaptive soft-
ware architectures, where runtime stability is challenged by the quality of adaptation,
which in turn affects the quality of service. The research evaluation focuses on the effec-
tiveness, scale and accuracy in handling runtime dynamics, using the self-adaptive cloud
architectures.

To all those from whom I have learnt...

Dédié à la mémoire de mon père et ma grand-mère...

Acknowledgements

First and foremost, my enormous gratitude and thanks go to the Almighty God for his
ever blessings.

I am perpetually indebted in thanks to my supervisor Dr. Rami Bahsoon for his
dedicated supervision, helpful and endless support, patience and motivation. His guidance
has provided me with great help throughout my PhD and in every aspect of my research
work. His kindness and care have encouraged me to stay on track. His outlook and
comments have inspired me.

My sincere thanks to my external supervisor Prof. Rajkumar Buyya for his support,
insights and encouragements on my research. This work would never have been com-
pleted without his support, warm welcome and dedication during the research visit and
afterwards. His kindness, prudence and work of ethics have made me enjoy the research
work with him.

Special thanks to the members of my Thesis Group who took time to provide guidance.
I would like to thank Prof. Xin Yao for his timely comments, and Dr. Dave Parker for his
insightful and encouraging comments. Their critical eye, words of insight and perspective
have greatly guided my research and helped in paving the way.

I am also deeply indebted and grateful to Prof. Patricia Lago for lending me time
with her great knowledge. Her enthusiasm for doing research, helpful cooperation and
genuinely constructive comments were valuable and informed my research, in more ways
than one.

Acknowledges are given to all the administrative staff of the School of Computer Sci-
ence for their great support, kindness and welcome throughout the PhD course, especially
Patrycja Adams, Sarah Brookes and Helen Whitby. Thanks also to Peter Hancox, Dave
Parker and Steve Vickers for their role as Research Students Tutor, as well as Jon Rowe
and Andrew Howes for their role as Head of School. Thanks to the Research Committee
for their support and listening, especially Achim Jung.

Thanks to the people I have been fortunate to have throughout this fascinating journey.
I would like to thank Dr. Tao Chen and Dr. Abdessalam Elhabbash for the stimulating
and useful discussions. I would like also to thank Khulood, Bram, Mohab, Sara, Wad,
Carlos and Satich, who made this period of my life so enjoyable.

Special thanks to the people I met during my research visits. Thanks to the CLOUDS
Lab at the University of Melbourne, especially Dr. Maria Rodriguez and Dr. Rodrigo
Calheiros for the useful discussions. Thanks also to Dr. Giuseppe Procaccianti and
Dr. Nelly Condori-Fernandez from the Software and Services research group at Vrije
Universiteit Amsterdam for their support. The experience that I gained during those

visits was very worthwhile and everyone there was very welcoming and always willing to
help.

Many thanks also to Dr. Amir Zeid for his continuous mentorship regardless of distance
and busyness. I would like to express my sincere appreciation to Father John Yanny, who
was always standing by my side, for his kindness, unconditional love and sincere support.
Warm thanks to my friends who were always there, understanding and supportive during
these years.

Gratitude and sincere appreciation to my family for their continuous support. Im-
mense thanks beyond measure to my mother for her dedicated and moral support. My
gratefulness goes to my sister for her continuous encouragements. Never to forget my
father, whom I owe where I am today.

I acknowledge the School of Computer Science for providing me with the scholar-
ship to pursue my doctoral studies. The research visit to the University of Melbourne
was supported by the U21 PhD Scholarship and the CLOUDS Lab. The visits to Vrije
Universiteit Amsterdam were supported by Stevie Jivani Student Development and the
Software Architecture Summer School scholarships.

Contents

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem and Questions . 2
1.3 Research Methodology . 4
1.4 Thesis Contributions . 5

1.4.1 Thesis Roadmap . 5
1.4.2 Summary of Contributions . 7
1.4.3 Publications . 9

1.5 Organisation of the Thesis . 10

2 Stability in Software Engineering: Taxonomy and Survey of the State-
of-the-Art 12
2.1 Introduction . 12
2.2 Background . 13

2.2.1 Preliminaries and Basic Concepts 13
2.2.2 Self-Adaptive Software Architectures 15

2.3 The Notion of Stability . 16
2.4 The Survey Method . 18
2.5 Taxonomy for Characterising Stability as a Software Property 19
2.6 Defining and Characterising Stability . 22

2.6.1 Definitions of Stability . 22
2.6.2 Related Quality Attributes . 26
2.6.3 Related Software Engineering Practices 30

2.7 Stability in Software Engineering . 32
2.7.1 Analysis Results of Primary Studies 32
2.7.2 Levels, Aspects and Purposes of Stability 35
2.7.3 Main Observations and Findings . 46

2.8 Engineering Practices Supporting Architectural Stability 49
2.8.1 Architecture Analysis and Design 49
2.8.2 Architecture Evaluation for Stability 50

2.9 Gap Analysis . 55
2.10 Related surveys . 57
2.11 Summary and Conclusion . 57

iv

3 Characterising the Notion of Stability in Software Engineering 59
3.1 Introduction . 59
3.2 A Working Definition for Stability . 60
3.3 A Multi-Dimensional Perspective for Characterising Stability 60

3.3.1 Dimensions of Stability . 61
3.3.2 Engineering Stability as a Software Property 61

3.4 Requirements for Realising Stability at the Architecture Level 64
3.4.1 Design-time Requirements . 65
3.4.2 Runtime Requirements . 67
3.4.3 Support-related Requirements . 70

3.5 Conceptual Design for Capturing Behavioural Stability 71
3.6 Summary . 72

4 Analysing Architectural Stability 73
4.1 Introduction . 73
4.2 Stability Analysis . 74
4.3 Methodological Support for Analysing Behavioural Stability 76
4.4 An Evaluation of Applicability . 77

4.4.1 Architecture Domain . 77
4.4.2 Application of the Analysis Model 78
4.4.3 Discussion . 80

4.5 Related Work . 81
4.6 Summary . 81

5 Modelling Behavioural Stability of Architectures 82
5.1 Introduction . 82
5.2 Stability Modelling . 83

5.2.1 Stability Probabilistic Model . 84
5.2.2 Stability Runtime Inference . 86
5.2.3 Complexity Analysis of the Model 87

5.3 Methodological Support for Modelling Behavioural Stability 88
5.4 An Evaluation of Applicability . 90

5.4.1 Building the Stability Model . 90
5.4.2 Pre-experiments Setup . 90
5.4.3 Results of the Stability Model . 94

5.5 Experimental Evaluation . 99
5.5.1 Experiments Setup . 99
5.5.2 Results of Stability Goals . 100
5.5.3 Results of Adaptation Properties and Overhead 101
5.5.4 Complexity and Runtime Overhead 103
5.5.5 Discussion . 104

5.6 Related Work . 105
5.7 Summary . 105

v

6 Reference Architecture and Goals Modelling for Stability 107
6.1 Introduction . 107
6.2 Background . 109

6.2.1 Self-Awareness and Self-Expression 109
6.2.2 Runtime Goal Models . 110

6.3 Self-aware Reference Architecture for Stability 110
6.3.1 Quality/Tactics Self-management Generic Components 112
6.3.2 Designing Stability-driven Architecture Patterns 113

6.4 Runtime Goals Modelling for Stability . 113
6.4.1 Runtime Goals and Self-Awareness 114
6.4.2 Runtime Goals Knowledge Representation 116

6.5 An Evaluation of Applicability . 117
6.5.1 Application of the Reference Architecture 117
6.5.2 Application of the Goals Model . 119

6.6 Experimental Evaluation . 120
6.6.1 Experiments Setup . 121
6.6.2 Results of Stability Goals . 121
6.6.3 Results of Adaptation Properties and Overhead 123
6.6.4 Discussion . 123

6.7 Related Work . 124
6.7.1 Architecture Patterns and Tactics 124
6.7.2 Goals Modelling . 125

6.8 Summary . 125

7 Reasoning about Architectural Stability 127
7.1 Introduction . 127
7.2 A Self-Awareness Assisted Framework for Reasoning about Architectural

Stability . 128
7.2.1 Goal-Awareness for Managing Stability Goals 128
7.2.2 Time-Awareness for Stability Online Learning 130
7.2.3 Meta-Self-Awareness for Managing Trade-offs between Stability At-

tributes . 133
7.3 Experimental Evaluation . 139

7.3.1 Experiments Setup. 140
7.3.2 Results of Stability Attributes . 140
7.3.3 Results of Adaptation Properties and Overhead 141
7.3.4 Discussion . 142

7.4 Related Work . 143
7.4.1 Learning for Self-Adaptation . 143
7.4.2 Trade-offs Management . 143

7.5 Summary . 144

8 Systematic Approach for Evaluating Architectural Stability 145
8.1 Introduction . 145
8.2 Architectural Stability Evaluation Framework 146

8.2.1 Conceptual Model . 147
8.2.2 Context of Stability Evaluation . 151

vi

8.2.3 Stability Evaluation . 151
8.2.4 Stability Attributes Analysis . 153

8.3 Stability Evaluation in the Software Lifecycle 154
8.3.1 Design-time Evaluation . 155
8.3.2 Runtime Evaluation . 156

8.4 An Evaluation of Applicability . 158
8.4.1 Context of Stability Evaluation . 158
8.4.2 Stability Evaluation . 159
8.4.3 Stability Attributes Analysis . 162

8.5 Experimental Evaluation of Runtime Stability 162
8.5.1 Developed Evaluation Tools . 163
8.5.2 Experiments Setup . 163
8.5.3 Results of Stability Attributes . 163
8.5.4 Results of Adaptation Properties 164
8.5.5 Discussion . 166

8.6 Related Work . 167
8.7 Summary . 168

9 Conclusions and Future Directions 169
9.1 Summary and Discussion . 169
9.2 Threats to Validity . 171
9.3 Future Directions . 174
9.4 Closing Remarks . 176

A Survey on Stability in Software Engineering: Review Protocol and Anal-
ysis Results 177
A.1 Definition of Research Questions . 177
A.2 Search Strategy . 178

A.2.1 Data sources . 178
A.2.2 Search String . 179
A.2.3 Cross-References Check . 179

A.3 Search Execution . 179
A.4 Selection of Primary Studies . 181
A.5 Data Extraction . 182
A.6 Data Synthesis and Analysis . 191
A.7 Analysis Results of Primary Studies . 191

A.7.1 Demographic Analysis . 191
A.7.2 Quantitative Analysis . 192

B Systematic Literature Review on Self-Awareness in Software Engineer-
ing: Summary of Findings 196
B.1 Summary of the Study . 196
B.2 Motivation for Employing Self-Awareness 196
B.3 Sources of Inspiration . 197
B.4 Approaches for Engineering Self-Awareness 199
B.5 Evaluation of Self-Awareness . 200
B.6 Software Paradigms Employing Self-Awareness 202

vii

B.7 Summary . 203

C Systematic Mapping Study on Managing Trade-offs in Self-Adaptive
Architectures: Summary of Findings 205
C.1 Summary of the Study . 205
C.2 Quality Attributes investigated in Trade-offs Management 209
C.3 Mechanisms used in Trade-offs Management 210
C.4 Time Dimension of Trade-offs Management Approaches 211
C.5 Summary . 212

D Symbiotic Simulation Environment for Self-Adaptive and Self-Aware
Architectures 213
D.1 Background . 213
D.2 SAd-/SAw-CloudSim Architecture . 214

D.2.1 Modelling Self-Adaptation . 214
D.2.2 Modelling Self-Awareness . 216
D.2.3 Modelling QoS Goals and Adaptation Tactics 216

D.3 Design and Implementation . 216
D.3.1 Extensions to CloudSim Core . 217
D.3.2 Self-Adaptation Simulation . 218
D.3.3 Self-Awareness Simulation . 219

D.4 Experimental Validation and Evaluation 222
D.4.1 Experiments Setup . 222
D.4.2 Validation Results . 223
D.4.3 Experiments Results . 223
D.4.4 Performance Evaluation . 225
D.4.5 Evaluation of Adaptation Overhead 225

D.5 Related Work . 226

E Queuing-based Model for Evaluating Runtime Stability 228
E.1 System Model . 228
E.2 Quality Model . 230

Bibliography 233

viii

List of Figures

1.1 Thesis Roadmap . 6

2.1 Taxonomy of Stability as a Software Property 20
2.2 Correlation of Stability Levels, Aspects and Purposes 33
2.3 Correlation of Stability Levels and Time of Consideration 34
2.4 Systematic Map of Stability at the Architecture Level 34

3.1 Dimensions of Stability as a Software Property 61
3.2 Engineering Stability as a Software Property 62
3.3 Requirements for Realising Architectural Stability 65
3.4 Control Design Methodology for Behavioural Stability (inspired from [1]) . 72

4.1 Architectural Stability Analysis Model . 75
4.2 Architectural Stability Analysis Methodology 77
4.3 Evaluation Case: Application of the Stability Analysis Model 78
4.4 Evaluation Case: Stability Analysis Results 80
4.5 Evaluation Case: Stability Attributes Dependencies 80

5.1 Stability Modelling Methodology . 88
5.2 Evaluation Case: Stability Relational Model for the Quality of Service

Viewpoint . 91
5.3 Evaluation Case: Stability Relational Model for the Environmental Viewpoint 91
5.4 Evaluation Case: Stability Relational Model for the Quality of Adaptation

Viewpoint . 92
5.5 Evaluation Case: Stability Bayesian Network for the Quality of Service

Viewpoint . 96
5.6 Evaluation Case: Stability Bayesian Network for the Environmental View-

point . 97
5.7 Evaluation Case: Stability Bayesian Network for the Economical Viewpoint 98
5.8 The World Cup 1998 workload trend . 100
5.9 Average Results of Response Time . 101
5.10 Average Results of Energy Consumption 101
5.11 Average Results of Operational Cost . 102
5.12 Average Results of the Accuracy of Adaptation 102
5.13 Average Results of the Frequency of Adaptation 103
5.14 Average Results of Adaptation Overhead 103

6.1 Self-Aware Computing Node (re-drawn from [2] [3]) 110

ix

6.2 General Scenario for Designing Stability-driven Pattern (adopted from [4]) 112
6.3 Reference Architecture Pattern with Tactics Generic Components 114
6.4 Evaluation Case: Application of the Reference Architecture 118
6.5 Average Response Time of Service Types 1 and 2 during Time Intervals . . 122

7.1 Symbiotic Relation between Runtime Goals and Self-Awareness 129
7.2 Average Results of Response Time . 140
7.3 Average Results of Energy Consumption 141
7.4 Average Results of Operational Cost . 141
7.5 Average Results of the Frequency of Adaptation 142
7.6 Average Results of Adaptation Overhead 142

8.1 Progress of Stability Evaluation . 147
8.2 Conceptual Model of Stability Evaluation Framework 148
8.3 Context of Architectural Stability Evaluation 151
8.4 Conceptual Model of Architectural Stability Evaluation 152
8.5 Conceptual Model of Stability Attributes Analysis 155
8.6 Evaluation Case: Application of Stability Evaluation Framework 158
8.7 Evaluation Case: Context of Stability Evaluation 160
8.8 Using Symbiotic Simulation for Runtime Evaluation 163
8.9 Average Results of Response Time . 164
8.10 Average Results of the Accuracy of Adaptation 164
8.11 Average Results of the Adaptation Settling Time 165
8.12 Average Results of Resources Overshoot 165
8.13 Average Results of the Frequency of Adaptation 166
8.14 Average Results of Adaptation Overhead 166

A.1 Review Protocol . 178
A.2 Number of Studies per Publication Year 191
A.3 Number of Studies per Publication Type 192
A.4 Distribution of Primary Studies per Level 192
A.5 Distribution of Primary Studies per Stability Aspect 193
A.6 Distribution of Primary Studies per Purpose 193
A.7 Distribution of Primary Studies per Time of Consideration 194
A.8 Distribution of Primary Studies per Technique 194
A.9 Distribution of Primary Studies per Responsibility 195

B.1 Summary of Findings . 197
B.2 Distribution of Studies by Self-Awareness Engineering Approaches 200
B.3 Distribution of Studies by Self-Awareness Evaluation Approaches 201
B.4 Distribution of Studies by Software Paradigms 203

C.1 Distribution of Quality Attributes investigated in Trade-offs Management . 209
C.2 Distribution of Time Dimension of Trade-offs Management Mechanisms . . 211

D.1 CloudSim Architecture [5] . 214
D.2 SAd-CloudSim Architecture . 215
D.3 SAw-CloudSim Architecture . 217

x

D.4 Self-Adaptation Simulation Process . 219
D.5 Self-Awareness Simulation Process . 221
D.6 Average Response Time of Service Type 2 during Time Intervals 224
D.7 Average Energy Consumption of Service Type 2 during Time Intervals . . 224
D.8 Average Operational Cost of Service Type 2 during Time Intervals 224
D.9 Average Response Time Violations . 226
D.10 Average Adaptation Overhead . 226

E.1 Dynamic Workload Handling . 229

xi

List of Tables

2.1 Dimensions of Stability Taxonomy . 20
2.2 Definitions of Stability in Software Engineering Literature1 23
2.3 Mapping of Stability Notion, Taxonomy Dimensions and Definitions 25
2.4 Quality Attributes inter-related with Stability 27

5.1 Testbed Configuration . 93
5.2 Catalogue of Architectural Tactics . 94
5.3 Adaptation Rules . 94
5.4 Types of Service Requests . 99
5.5 Settings of Stability Goals . 100

6.1 Variations of Stability-driven Architecture Patterns 114
6.2 Settings of Stability Goals . 121
6.3 Average Results of Stability Attributes . 122
6.4 Average Results of Adaptation Properties 123

8.1 Mapping of the ISO/IEC Standards for General Architectural Evaluation
and the Stability Evaluation Framework 149

8.2 Evaluation Case: Breakdown of Stability Concerns into Measurable Sta-
bility Attributes . 161

A.1 Search Data Sources . 179
A.2 Search Execution (search strings and settings) 180
A.3 Search Results . 181
A.4 Selection Criteria of Primary Studies . 182
A.5 Characterisation of Stability in Primary Studies at the Code Level 183
A.6 Characterisation of Stability in Primary Studies at the Requirements Level 185
A.7 Characterisation of Stability in Primary Studies at the Design Level 186
A.8 Characterisation of Stability in Primary Studies at the Acrchitecture Level 189

B.1 Specific Motivations of using Self-Awareness 198
B.2 Source of Inspiration in Engineering Self-Awareness 199
B.3 Engineering Approaches and Related Studies 199
B.4 Evaluation Approaches and Related Studies 200
B.5 Evaluation Criteria and Related Studies 201
B.6 Software Paradigms employing Self-Awareness 203

C.1 Correlation of Software Paradigms, Quality Attributes and Mechanisms . . 208

xii

C.2 Studies Considering Specific Attributes in Trade-offs Management 210
C.3 Trade-offs mechanisms and related studies 211

D.1 Settings of QoS Attributes . 222
D.2 Initial Deployments of the Experiments . 223
D.3 Experiments Average Results . 225

xiii

Chapter 1

Introduction

A question of need is a question of taste.

— Neil Tennant & Chris Lowe

1.1 Motivation

The increasing dependence on software systems and services is making software longevity
a highly desired feature [6] [7]. Given the different types of dynamics throughout the
software lifetime, long-lived software systems should handle different types of changes
(e.g. evolution, maintenance and runtime changes) [8]. A long-lived system is capable of
remaining largely intact while supporting these changes [8]. Informally, stability refers to
remaining intact or unchanged. As such, it is widely accepted that stability is a property
to reflect longevity concerns. Longevity and stability are essentially two sides of the same
quality issue and affect each other. A stable basis provides a foundation for building
quality and long-living systems [9], as longevity is highly dependent on the ability to
retain stability.

Large industrial software systems require delivering acceptable levels of performance
for their end-users. For instance, end-users of cloud-based systems or Amazon Web Ser-
vices would not tolerate performance levels to disregard their service level agreements
(SLAs) [10] [11]. The dynamic and unpredictable operational conditions of many open
systems challenge the Quality of Service (QoS) provision and its stability. By that, sta-
bility is essential for providers and practitioners to prevent performance degradation and
enforce QoS at runtime, especially in peak demand [10].

From an economic point of view, stability is desirable to safeguard customers’ satisfac-
tion and service provider reputation, as well as to avoid SLAs penalties. The emergence
of new software paradigms (e.g. mobile, cloud, cloud federations, smart environments)
and new architectural styles (e.g. self-adaptive) brings into concerns the need for a shift
to a wider concept of stability that tackles runtime changes of modern software systems
and their environment, as well as the uncertainty faced by architectures during operation.

As software systems undergo many cycles of maintenance changes [12], a stable archi-
tecture can reduce maintenance costs/effort and lessen the ripple effect of changes and the

1

need for re-factoring [13]. As such, software artefacts, designed in a way that the impact
of changes is minimal, i.e. stable, remarkably affect the maintenance process [14].

Since evolution is unavoidable, iterative long-term changes are implemented during
evolution cycles for facing changing requirements [15]. Software artefacts capable of sup-
porting evolutionary changes would bring long-term benefits, delaying phasing out [12].

The interest in software reuse is also increasing, as stakeholders are concerned with
building software systems that are scalable, more reliable, less expensive and within
shorter time-to-market [16]. Evidently, this requires performing modifications for reuse in
multiple contexts and projects. A software artefact (e.g. component, module or architec-
ture) could be easily reused if modifications and ripple changes are controlled; henceforth,
stability is advantageous to effective software reuse [16].

The paramount importance of stability is evident in the industrial context, since it
influences software quality, cost and longevity throughout the software life-time. As stake-
holders and organisations are increasingly looking for software longevity, stability could
be considered a primary criterion towards achieving longevity, and a fundamental prop-
erty to sustain the whole system. Stability could be envisioned as the next step in quality
attributes, combining many related qualities and aspects. Consequently, research and
practice shall witness a growing attention to stability.

1.2 Research Problem and Questions

Modern software systems are increasingly becoming complex, heterogeneous and perva-
sive. They tend to operate in environments undergoing unpredictable changes. Such
challenges can have impact on the software lifetime and the quality of service provisioned.
Stability is an essential property for long-lived software systems, as it indicates the ca-
pability to maintain service provision with expected qualities, accommodate maintenance
and evolutionary changes, and unlock potentials for reuse [13]. Dealing with stability as
a software property poses questions on how to characterise it and consider it during all
software lifecycle phases, i.e. how to design, operate, maintain and cost-effectively evolve
software systems.

Researchers in the field of software engineering have studied stability with respect to
different software artefacts. The term was also found inter-linked with various software
quality attributes (e.g. resilience, robustness), and sometimes within software engineer-
ing practices (such as evolution and maintenance). Stability-related studies are scat-
tered across many research communities within the software engineering discipline that
has widely-spread during the last decades, with many emerging paradigms and domains
(e.g. cloud-based, service-oriented, embedded, real-time systems) [6]. Also, there have
been many stability developments in other disciplines (e.g. control theory, dynamic sys-
tems theory) that could benefit software engineering for realising stability as a software
property. This indicates the need for characterising the notion of stability in software
engineering.

As architectures have a profound effect throughout the software life-span [17] [18],
architectural stability tends to reflect on the success of the system in supporting and tol-
erating continuous changes in the long-term, while reducing the likelihood of architectural

2

drifting and phasing-out [15] [19]. Architecting for stability is becoming a necessity and a
critical requirement for the longevity and dependability of modern software systems over
time [20].

As modern software systems operate in unpredictable environments, self-adaptation
has been motivated as a solution to achieve the necessary level of dynamicity, as well
as to comply with the runtime changes, fluctuations in workloads and environmental
conditions [21] [22] [23]. Self-adaptive architectures are expected to manage themselves
following the principles of autonomic computing, to respond to changes in end-user re-
quirements and the environment coping with uncertainty in runtime operation [24], for
continued satisfaction of quality requirements under changing context conditions [25]. In
this context, stability is a runtime property that has to consider a dynamic view of the
world. This dynamic view shall not consider only intactness during design-time, but also
the runtime behaviour, so that the system can be seamlessly adapted and ensure a con-
stant provision of the intended services. Even though adaptation mechanisms have been
widely investigated, runtime stability was not explicitly tackled [25] [26].

Architectures are used as the basis for self-adaptation (termed architecture-based self-
adaptation) [27] [28]. A self-adaptive architecture is expected to perform adaptations
that converge towards the quality of service objectives (adaptation goals) [25] [26] with-
out performing unnecessary adaptations [22]. An unstable architecture will repeat the
adaptation process indefinitely with the risk of not reaching the adaptation goals, or
probably degrading other quality attributes [25] [26]. Such architectures would result in
not provisioning the expected quality of service and consequent service violations, as well
as inefficient behaviour when performing unnecessary runtime adaptations not converging
towards quality objectives. Despite the influx of research in self-adaptivity, there is a gen-
eral lack of systematic methods for evaluating the stability of self-adaptive architectures’
behaviour.

To tackle behavioural stability of self-adaptive architectures, we argue that stability
should cover both components of the self-adaptive architecture, that are the managed
system and the managing system, i.e. the physical system and the adaptation controller
[25] [26]. In the community of self-adaptive architectures, adaptations mechanisms focus
on the quality attributes delivered, but the properties of adaptations and their implications
on the architecture and their stability are widely ignored [29].

Scope of the thesis. The focus of this thesis is on the stability of the software
product itself. Aspects related to the stability of the development process (e.g. project
management, social aspects, knowledge management), however, should be studied to com-
plement it, as aspects of the product itself and its development process are inter-wined [30].
Stability of software product lines and software ecosystems is not covered, as both are
different in nature from software systems [31] [32] and require special consideration.

Problem Statement. There is a lack of clear characterisation of the term stability
in the software engineering community and systematic treatment of stability for long-
living software systems.

3

Research Questions. The thesis is concerned with the following research questions:

RQ1. How to characterise the notion of stability in software engineering?

RQ2. What are the primitives for realising and engineering stability for self-
adaptive software architectures?

RQ3. How to analyse and model runtime behavioural stability for self-adaptive
software architectures?

RQ4. What are the engineering practices (specifically design and evaluation) to
support runtime behavioural stability for self-adaptive software architec-
tures?

1.3 Research Methodology

The research aims to provide uniform characterisation and systematic support for en-
gineering and reasoning about stability. The research attempts to capture the essence
and nuances of the notion, by characterising the concept, analysing its primitives and
dimensions, with the intent to set the grounds for this new era.

To resolve the research questions and achieve the research aims, this thesis adopts a
classical research design methodology inspired by [33] [34]. The methodology is applied
iteratively to guide the research process, as described below.

• Problem identification. To acquire knowledge about the problem domain, a survey of
the state-of-the-art has been conducted, following the guidelines of systematic liter-
ature reviews. The survey helped in identifying the research landscape, characterise
the notion, and analyse the gap in research. As the understanding of the problem
domain is gained, the research direction converged to the runtime behavioural as-
pect of stability at the architectural level, which is the pivotal problem addressed
in this thesis.

• Objectives of the solution. Driven by the identified problem, the proposed solution
aims to systematically handle architectural stability as a behavioural aspect during
the runtime operation of self-adaptive software systems.

• Design and development. For providing understanding of the concept, the thesis
presents requirements for realising stability and design principles inspired by Con-
trol Theory. Further, a systematic approach for analysing and modelling stability is
developed. As the survey findings revealed the lack of engineering practices in real-
ising runtime behavioural stability, the thesis fundamentally improved and extended
suitable mechanisms for realising stability.

• Demonstration. The thesis adopts the self-adaptive cloud architectures case for
demonstrating the usefulness of the research. The cloud computing paradigm is a
challenging example for stability, due to the dynamics, unpredictability and uncer-
tainty of the operation environment, as well as the on-demand nature of service
provision [35].

4

• Evaluation. The applicability of the proposed research is qualitatively evaluated
using the cloud architectures case. As research in Cloud Computing is experimental
in nature [36], experimental quantitative evaluation is conducted in a controlled
environment using simulations and benchmarks.

1.4 Thesis Contributions

1.4.1 Thesis Roadmap

As stability has been considered by many research communities within the software en-
gineering discipline that has widely-spread during the last decades, the state-of-the-art
is first surveyed (Chapter 2). Findings have revealed that stability has been defined and
treated in many different ways in the software engineering community. This motivated
the need for a taxonomy to analyse the concept and related qualities in order to reach
an agreement on how stability can be positioned as a first-class essential property. The
surveyed literature indicates that future developments in requirements engineering, archi-
tecture design and evaluation may align towards architectural stability, since researchers
and practitioners aim for better quality and long-living software.

In light of such characterisation and findings in the literature, stability has been found
treated across many software artefacts, such as code, design, architectures. Among these
artefacts, the thesis further investigates stability at the architectural level. We argue that
the “architecture” is the appropriate abstract level for understanding stability given the
complexity and scale of modern software systems for many reasons. First, architectures
have been recognised as a key asset in building complex software-intensive systems [6],
and have a profound effect throughout their life-span. Second, architectures have been
recognised as a key for software reuse [37], maintenance and evolution [15]. Third, ar-
chitectures have a strong impact on the quality of service delivered and system quality
attributes [37], as well as could bridge between requirements, design and implementation.
Also, the state-of-practice has shown that architectures help accommodating changes re-
sulting from the high volatility in requirements that is becoming the norm [38] [39]. By
that, stability at the architecture level is a key for modern software longevity.

The review has also revealed that stability was tackled from the structural aspect
during the architecture design stage. Structural stability has been mainly concerned with
the extent to which the architecture “structural design” remains intact without entailing
large and disruptive modification. Meanwhile, an architecture that is not capable of
providing the expected quality of service (i.e. behavioural requirements) during operation
would result in service violations and increase the likelihood of drifting and phasing-
out. In the context of self-adaptive software systems, a stable self-adaptive architecture
is expected to keep the fulfilment of quality stable, while performing adaptations that
converge towards these objectives and eliminating unnecessary ones.

With the vision of stability as an architectural runtime property that should cope
with dynamics, this thesis studies the behavioural aspect of stability as a property that
reflects on the performance of the architecture during runtime and needs to be observed

5

dynamically as a moving target during operation.
To this end, this thesis provides conceptual design principles inspired from Control

Theory (which contributed to designing self-adaptive software systems) for capturing be-
havioural stability (Chapter 3). Based on such principles, the concept is further analysed
to guide understanding of stability (Chapter 4). Guided by the analysis results, the the-
sis presents modelling behavioural stability (Chapter 5) and different engineering prac-
tices for realising stability, as the literature review has revealed that the lack of software
engineering practices supporting the stability problem. These include a reference archi-
tecture design and requirements modelling (Chapter 6), as well as reasoning techniques
for engineering stability-aware adaptations (Chapter 7). The thesis motivates the use of
self-awareness computing for the benefit of stability, as it tends to be general enough to
cover instantiations of self-adaptive environments. On another side, architecture evalu-
ation approaches have been found limited to the architecture’s structure at design-time.
Thus, the thesis provides a systematic approach for evaluating architectural behavioural
stability and developed a suitable tool for evaluation (Chapter 8). The thesis roadmap is
shown in Figure 1.1.

Figure 1.1: Thesis Roadmap

6

1.4.2 Summary of Contributions

The main contributions of this thesis are as follows.

• Survey of the state-of-the-art on stability in software engineering. A systematic
literature review was conducted to survey the current research landscape and build
the required understanding of the concept, related properties and practices. As
stability has been found interpreted in many ways different ways, we proposed a
taxonomy for characterising the concept. Focusing on the architectural level, the
review closely surveyed related engineering practices. The survey has also identified
the gaps in the literature and motivating the need for a new characterisation and
engineering approaches, paving the way to contributions of the next chapters. This
contribution partially addresses the research question RQ1.

• Characterising and engineering the notion of stability. Based on the taxonomy
dimensions, the thesis proposes a multi-dimensional perspective for characterising
and engineering stability as a software property. This perspective contributes to
understanding the facets related to stability, advance the way of understanding the
concept. As such, new requirements are identified. The thesis also draws design-
ing principles for capturing the intended behaviour. This contribution is mainly
concerned with addressing RQ2 and partially addresses RQ1.

• A novel approach for analysing and modelling stability. Based on the stability design
principles, the thesis proposes a novel methodology for the analysis and modelling
of stability. The objective of the analysis is deeply understanding the intended
behaviour, which will guide the course of the research. The proposed methodology
to support architectural stability consists of three subsequent main phases: stability
analysis, stability modelling, and stability runtime support, where the outcome of
each phase is carried towards the next phase. RQ3 is addressed by this contribution.

• Architecture design-support principles for stability. Drawing on the gap analysis
identified in the review regarding the engineering practices related to stability, the
thesis builds a reference architecture and goals modelling for stability. The pro-
posed architecture design leverages self-awareness primitives that have been found
suitable for handling trade-offs and time-related issues of stability attributes. The
architecture incorporates quality self-management generic components and embeds
a catalogue of architecture tactics within self-awareness capabilities. Stability goals
modelling includes fine-grained and dynamic knowledge representation of the run-
time goals, i.e. goals attributes necessary for enabling self-awareness and measures
of goals satisfaction in relation to adaptation decisions. This contribution partially
addresses RQ4.

• Reasoning about stability using computational intelligence techniques. The reference
architecture is further developed by implementing computational intelligence tech-
niques within self-awareness capabilities. The goal-awareness realises the symbiotic
relation between the stability goals model and self-awareness component for manag-
ing stability goals during runtime. The time-awareness level implements an online
learning technique for reasoning about stability in the long-run while learning from

7

historical information. Trade-offs between different stability attributes are managed
at the meta-self-awareness level, using model verification of stochastic games using
PRISM-games 2.0. This contribution partially addresses RQ4.

• Systematic approach for evaluating architectural stability. The evaluation approach
addresses stability evaluation in the different phases of the software lifecycle, where
the outcome of the design-time could be used for making architectural decisions or
is taken forward for use in runtime evaluation during the operation phase. This
contribution partially addresses RQ4.

• Evaluation of applicability and experimentations. For their runtime dynamics, self-
adaptive cloud architectures case is used for evaluation throughout the thesis. The
proposed analysis methodology, reference architecture and evaluation approach are
qualitatively evaluated to show their applicability and added values. Using bench-
marks, the thesis is quantitatively evaluated by simulation-based experiments. The
quantitative results demonstrate the advantage of the proposed work in achieving
behavioural stability in the long-run. This advantage is accompanied with compu-
tational overhead.

Related contributions include:

• Systematic literature review on self-awareness in software engineering. Grounded
by the findings of the stability survey, novel extensions for designing stable archi-
tectures and more intelligence techniques for realising stability are needed. As such,
the latest emerging self- property has been investigated for its computational intel-
ligence primitives. The findings of the systematic literature review have revealed
its effectiveness for stability, yet no explicit attempt has considered self-awareness
in achieving stabilisation. This partially contributes to RQ4. A summary of the
review findings is presented in Appendix B.

• Systematic mapping study on managing trade-offs in self-adaptive architectures. As
the stability analysis revealed contradicting stability attributes, their trade-offs
should be handled in a sensible way when making design and runtime decisions.
Trade-off management has become a non-trivial and challenging issue during run-
time operation. In addressing this challenge, a systematic mapping study was con-
ducted to identify and analyse research work that explicitly addressed trade-off man-
agement for self-adaptive software architectures. The findings call for foundational
work to analyse and manage trade-offs that can explicitly consider specific multiple
quality attributes, the runtime dynamics, the uncertainty of the environment and
the complex challenges of modern architectures. This partially contributes to RQ4.
A summary of the findings is presented in Appendix C.

• Symbiotic simulation environment for self-adaptive software systems. The stability
evaluation framework indicated the need for identifying evaluation tools. Discrete-
event simulations are found to be one of the feasible tools to support design decisions
and runtime operation. As such, a symbiotic simulation tool is designed to support
the runtime evaluation process. This contribution partially addresses RQ4. Details
are presented in Appendix D.

8

1.4.3 Publications

The publications arising from this thesis are:

• M. Salama, “Stability of self-adaptive software architectures,” in 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Doctoral Sym-
posium, 2015, pp. 886–889. 1

• M. Salama and R. Bahsoon, “Quality-driven architectural patterns for self-aware
cloud-based software,” in IEEE 8th International Conference on Cloud Computing
(CLOUD), Applications Track (acceptance rate 14%), 2015, pp. 844–851. 2

• M. Salama and R. Bahsoon, “A taxonomy for architectural stability,” in 31st ACM/SI-
GAPP Symposium on Applied Computing (SAC), Software Architecture: Theory,
Technology, and Applications Track (SATTA), 2016, pp. 1354–1357. 3

• M. Salama, R. Bahsoon, and N. Bencomo, “Managing trade-offs in self-adaptive
software architectures: A systematic mapping study,” in Managing Trade-Offs in
Adaptable Software Architectures, I. Mistŕık, N. Ali, J. Grundy, R. Kazman, and
B. Schmerl, Eds. Boston, MA: Elsevier (Morgan Kaufmann), 2017, pp. 249–297. 4

• M. Salama and R. Bahsoon, “Analysing and modelling runtime architectural sta-
bility for self-adaptive software,” Journal of Systems and Software, vol. 133, pp.
95–112, 2017. 5

• A. Elhabbash, M. Salama, R. Bahsoon, and P. Tino, “Self-awareness in software
engineering: A systematic literature review,” (submitted for publication), 2017. 6 7

• M. Salama, R. Bahsoon, and P. Lago, “Stability in software engineering: Survey of
the state-of-the-art and research directions,” (submitted for publication), 2017. 8

• M. Salama and R. Bahsoon and R. Buyya, “Modelling and simulation environment
for self-adaptive and self-aware cloud architectures,” (submitted for publication),
2018. 9

• M. Salama and R. Bahsoon and R. Buyya, “A reference architecture and modelling
principles for architectural stability based on self-awareness: Case of cloud architec-
tures,” (submitted for publication), 2018. 10

1This publication is part of Chapter 1.
2This publication is part of Chapter 6.
3This publication is part of Chapter 2.
4This publication is part of Chapter 7 and Appendix C.
5This publication is part of Chapter 4 and 5.
6This publication is part of Chapter 7 and Appendix B.
7This paper is equal contribution of the first two authors. The first author focused on the engi-

neering practices and the second author focused on self-awareness concepts to assess their feasibility for
engineering stability.

8This publication is part of Chapter 8.
9This publication is part of Chapter 8 and Appendix D.

10This publication is part of Chapter 6.

9

• M. Salama and R. Bahsoon and R. Buyya, “Architectural stability reasoning using
self-awareness principles: Case of self-adaptive cloud architectures,” (submitted for
publication), 2018. 1

• M. Salama, R. Bahsoon, and P. Lago, “A framework for evaluating architectural
stability,” (submitted for publication), 2018. 2

1.5 Organisation of the Thesis

The rest of the thesis is structured as follows.

• Chapter 2 reviews the state-of-the-art related to stability in software engineering.
The aim is to present the required background and understanding of the notion, ex-
plore current engineering practices and identify gaps in the literature. This chapter
is partially derived from [46], [42].

• Chapter 3 discusses characterisation and engineering stability from a multi-dimensional
perspective, based on the taxonomy proposed in the previous chapter. This chapter
also discusses design concepts for capturing the intended behaviour. This chapter
is partially derived from [46], [40].

• Chapter 4 proposes a novel methodology for analysing architectural stability. The
analysis model aims to capture stability dimensions, stakeholders’ concerns for sta-
bility and related attributes. Representing stability attributes and their dependen-
cies, the analysis supports understanding the intended behaviour. This chapter is
partially derived from [44].

• Chapter 5 proposes a methodology for modelling the architecture’s intended be-
haviour. The modelling aims to support the control design principles, by under-
standing of the expected behaviour in comparison with the desired behaviour. The
modelling accumulates the knowledge and performs runtime inference for reasoning
about the architecture’s behaviour on the long-run. This chapter is partially derived
from [44].

• Chapter 6 proposes design-support principles for stability. The design artefacts
include a reference architecture and goals modelling capable of efficiently achieving
stability objectives. The main purpose is to facilitate and guide the design of sta-
ble architectures for new systems and the improvement of developed systems with
architectural stability. This chapter is partially derived from [48], [41].

• Chapter 7 extends the reference architecture by implementing computational in-
telligence techniques in different self-awareness components. The proposed work
includes algorithms for realising symbiotic relation between goal-awareness and
runtime goals model, online learning technique and trade-offs management using
stochastic games. This chapter is partially derived from [49], [45], [43].

1This publication is part of Chapter 7.
2This publication is part of Chapter 8.

10

• Chapter 8 proposes a framework for conducting architectural stability evaluations.
Architectural stability evaluation aims at enhancing design-time decisions and run-
time operation, delaying the architecture drifting and phasing-out as a consequence
of the continuous unsuccessful provision of quality requirements. This chapter is
partially derived from [50], [47].

• Chapter 9 summarises and evaluates the thesis contributions. Potential threats
to validity related to the proposed work are discussed, as well as future work and
possible extensions.

11

Chapter 2

Stability in Software Engineering:
Taxonomy and Survey of the

State-of-the-Art

We know next to nothing about virtually
everything. It is not necessary to know the
origin of the universe; it is necessary to want
to know. Civilization depends not on any
particular knowledge, but on the disposition to
crave knowledge.

— George Will

2.1 Introduction

This chapter introduces background on the basic concepts adopted throughout the thesis,
as well as self-adaptivity and self-awareness in software engineering. Then, the chapter
reports on a systematic literature review on stability in software systems engineering.
The survey aims to provide a comprehensive overview of the current state-of-the-art and
connect knowledge on stability and related properties in software engineering.

Survey Approach. We conducted a systematic literature review and examined 166
primary studies from multiple research databases. We iteratively developed the taxonomy
from the analysis of the primary studies. The taxonomy is then used to classify and analyse
current research. We also performed cross analysis of different dimensions, to derive gaps
and directions for further research. In light of such characterisation and findings in the
literature, we are interested in further investigating related engineering practices in the
software architecture sub-discipline.

Aims of the Survey. With this review, we aim to achieve the following: (i) provide
a holistic and comprehensive understanding of the notion of stability and related problems,

12

and provide systematic guidance for the use of the term in software engineering, (ii)
motivate the need for a new perspective in considering stability as a software property,
and (iii) help in identifying research gaps, get new insights from the taxonomy, and guide
the research community to develop further methods based on the taxonomy.

Contributions. The contributions of this chapter include:

• a characterisation taxonomy for the notion of stability as a software property emerged
from the current literature of software engineering.

• analysis of the stability definitions found in the literature to study how the property
has been considered and treated, and to shed its relationship with other quality
attributes and software engineering practices.

• an overview of the current state-of-the-art related to stability of the different soft-
ware artefacts.

• a review of the software engineering practices supporting architectural stability.

• an analysis of current research gaps with respect to stability as a software property.

Organisation. This chapter is organised as follows. In section 2.2, we present the
basic concepts. In section 2.3, we present background underlying the notion of stabil-
ity, and briefly describe the survey method in section 2.4. In section 2.5, we present a
taxonomy for characterising stability, and analyse the concept definitions in section 2.6.
In section 2.7, we review the treatment of stability in software engineering, and in sec-
tion 2.8, we present the research findings related to architectural stability. Gap analysis
and related surveys are discussed in sections 2.9 and 2.10 respectively. The chapter is
concluded in section 2.11.

2.2 Background

Before presenting our survey, we introduce the basic concepts and terms. To this aim,
the following sections introduce the basic concepts (section 2.2.1) and the self-adaptive
architecture domain (section 2.2.2).

2.2.1 Preliminaries and Basic Concepts

Software System. A software system comprises a set of software components, com-
puter programs, procedures, rules (and possibly associated documentation and data) per-
taining to the operation of a computing system or an information processing system that

13

satisfies an end-use function [51]. The system boundary is the common frontier between
the system and its operating environment. The function of the system is “what the sys-
tem is intended to do” [52]. The behaviour of such a system is “what the system does to
implement its function” [52]. The service delivered by a system (in its role as a provider)
is its behaviour as it is perceived by end-user(s) [52].

Software Lifecycle. The life cycle of a software system consists basically of the de-
velopment and operation phases [52]. The development phase includes all activities to the
decision that the software is ready for operation to deliver service, such as requirements
elicitation, conceptual design, architectural design, implementation and testing [52]. The
operation phase begins when cutover issues are resolved, the product is launched, and the
system is deployed, configured and put into operation to start delivering the actual service
in the end-users’ environment [52] [51]. The former phase is known as initial development
or design-time, and the latter is usually referred as runtime. After the development and
launch of the first functioning version, the software product enters different cycles of main-
tenance and evolution stages till reaching the phase-out and close-down [15] [12] [52] [51].
During a maintenance cycle, minor defects are repaired, while the system functionalities
and capabilities are extended in major ways in an evolution cycle [12].

Quality Attribute. We use the definition of the IEEE Standard for Software Qual-
ity Metrics [53], defining a quality attribute as “a characteristic of software, or a generic
term applying to quality factors, quality sub-factors, or metric values”. According to
the same standard, a quality requirement is defined as “a requirement that a software
attribute be present in software to satisfy a contract, standard, specification, or other
formally imposed document” [53].

System Behaviour. The behaviour of a system is the “observable activity of the
system, measurable in terms of quantifiable effects on the environment whether arising
from internal or external stimulus” [51]. This is determined by the state-changing opera-
tions the system can perform [51].

Software Architecture. The concept of software architecture has been defined
in different ways in different contexts. In our work, we adopt the definition of the
ISO/IEC/IEEE Standard that defines software architecture as the “fundamental organi-
sation of a system embodied in its components, their relationships to each other, and to
the environment, and the principles guiding its design and evolution” [51]. This defini-
tion is in line with early [54] [55] and later definitions [56]. Software architectures provide
abstractions for representing the structure, behaviour and key properties of a software
system [55]. They are described in terms of software components (computational ele-
ments), connectors (interaction elements), their configurations (specific compositions of
components and connectors) and their relationship to the environment [57] [58].

14

Architectural Structure. Architectural structure is “a physical or logical layout
of the components of a system design and their internal and external connections” [51].

Architectural Style. An architectural style is the pattern of structural organisation
and semantic properties that provides a domain-specific architectural design vocabulary
together with constraints on how the parts may fit together [51] [58] [59]. An architectural
pattern is described by its structure (what are the components) and its behaviour (how
they interact) [60]. Examples include publish-subscribe, peer-to-peer, client-server, pipes
and filters, layers.

Architecturally-Significant Requirements. The architecture should fulfil the
software requirements, both functional requirements (what the software has to do) and
quality requirements (how well the software should perform) [61] [62]. Functional require-
ments are implemented by the individual components, while the quality requirements are
highly dependent on the organisation and communication of these components [63]. In
this context, it is worth mentioning that we focus on the architecturally-significant re-
quirements, as not all requirements have an equal effect on the architecture [64]. This
special category of requirements, describing the key behaviours that the system should
perform, plays the main role in taking architectural decisions and has a measurable effect
on the software architecture [56]. Architecturally-significant requirements are a subset of
requirements technically challenging, technically constraining, or central to the system’s
purpose, and should be satisfied by the architecture [64]. Architecturally-significant re-
quirements are categorised as functional and quality requirements.

Architecture Design Phase. The architecture design phase is “the lifecycle phase
in which a system’s general architecture is developed, thereby fulfilling the requirements
laid down by the software requirements document and detailing the implementation plan
in response to it” [51]. The output of the architectural design phase is an architectural
model that describes how the system is organised as a set of communicating components
[63].

2.2.2 Self-Adaptive Software Architectures

Self-adaptivity is engineered to achieve the level of dynamicity and scalability necessary
for modern and complex software systems, as well as to comply with the changes in
components, fluctuations in workloads, and environmental conditions during runtime [21]
[22] [23]. A self-adaptive software “evaluates its own behaviour and changes behaviour
when the evaluation indicates that it is not accomplishing what the software is intended
to do, or when better functionality or performance is possible” [65] [24] [22]. Intuitively, a
self-adaptive system is one that has the capability of modifying its behaviour at runtime in
response to changes in the dynamics of the environment (e.g. workload) and disturbances
to achieve its goals (e.g. quality requirements) [66]. Self-adaptive systems are composed

15

of two sub-systems: (i) the managed system (i.e. the system to be controlled), and
(ii) the adaptation controller (the managing system) [25]. The managed system structure
could be either a non-modifiable structure or modifiable structure with/without reflection
capabilities (e.g. reconfigurable software components architecture) [25]. The controller’s
structure is a variation of the MAPE-K loop (Monitoring, Analysis, Planning, Execution
- Knowledge) [25].

Self-adaptive architectures are expected to manage themselves following the princi-
ples of autonomic computing, to respond to environmental changes and prevent service
provision violations [24]. Examples of adaptation strategies include architectural tactics,
as mechanisms for better tuning, responding and achieving Quality of Service (QoS) at-
tributes, such as response time, throughput, energy efficiency. Architectural tactics are
inherently architectural decisions, with a measurable response, designed to support quality
attributes subject of interest [56] [67]. For instance, tactics are designed for performance,
greenability, availability, and reliability, e.g. horizontal scaling, vertical scaling and VMs
consolidation [56] [68].

2.3 The Notion of Stability

The Latin origin “stabilitas” refers to both firmness and steadfastness [69]. In modern
English, stability refers to “the condition of being stable or in equilibrium state”, “resis-
tance to change”, and “the tendency to recover from perturbations” [69]. The condition
of being stable, thus, implies that certain properties of interest do not (very often) change
relative to other things that are dynamically changing. These meanings raise further
questions, such as what the stable condition is, what is the equilibrium state, what are
the types of changes to resist (long-, short-term), what are the perturbations to recover
from.

The concept of stability is studied in many disciplines. It has been originated in
Physics, as “the degree of being firm, steadfast and free from change or variation when
outside conditions change” [69] [70]. Different forms of stability have been defined in
many domains, such as ecology, chemistry, economics and mathematics. For instance,
ecological stability is defined as the ability of an ecosystem to resist changes and return
to an equilibrium state in the presence of perturbations [71] [72]. The evolutionary and
dynamic stability have also been introduced in biology [73]. In the Six Sigma method-
ology (developed for manufacturing and business process improvement), the stability of
a business process is defined as “the ability of the process to perform in a predictable
manner over time” [74].

Stability in Systems Theory. In Systems Theory, stability is used to describe “the
ability of a system, when kept under specified conditions, to maintain a stated property
value within specified limits for a specified period of time” [69] [70].

16

Stability in Dynamic Systems Theory. In the context of dynamic systems, sta-
bility is considered as “the ability of a component or system to maintain a fixed level of
operation within specified tolerances under varying external conditions” [69]. The basic
definition is that “a bounded input produces a bounded response” [75]. Several notions
of stability have been introduced in this area, such as Poisson, structural, exponential
and asymptotic stability [76]. The modern mathematical Theory of Stability has been
established by A. M. Lyapunov —also known as “Lyapunov stability” —and has been
widely adopted in dynamic and autonomous systems [77].

Stability in Control Theory. Developed to deal with the behaviour of dynamical
systems and support automatic control of closed-loop (feedback) systems, Control Theory
has extensively studied stability, as an unstable system will not maintain the controlled
variable with the desired value [1] [78] [79]. Stability is an essential property for control
systems to capture the robustness of the system, where most closed-loop systems become
unstable as gains increase with the attempts to achieve high performance [1] [78] [79].
According to the classical notion of Lyapunov stability, small perturbations to the initial
state of the system will affect its behaviour in small variations [1]. Intuitively, in control
theory, a stable system is one that, “when perturbed from an equilibrium state, will tend to
return to that equilibrium state” [77] [1]. In Optimal Control Theory [80], stability refers
to “the continuous behaviour of optimal solutions under perturbations of the problem
data”, where bounded disruptions have bounded effects [81].

Stability in Distributed Systems. In the paradigm of distributed computing, sta-
bility is considered as “a measure of the ability of a mechanism to detect when the effects
of further actions (which potentially consume the resource being scheduled) will not im-
prove the system state as defined by a user-defined objective” [75]. Given the importance
of schedulers for distributed systems, their stability has been explicitly studied, where a
distributed scheduling algorithm has been considered stable if its performance (e.g. re-
sponse time, throughput) is bounded for any reasonable input (e.g. arrival rate) [82], and
would return the system to an equilibrium state following a perturbation [75].

Applying control theory concepts to distributed scheduling, the author has concluded
that a definition for stability should include boundaries for reasonable input and be-
haviour, as well as stability issues of the scheduling algorithm and triggered by the en-
vironment [82]. The proposed scheduling algorithms have demonstrated that handling
stability is subject to the algorithm and environment under consideration (e.g. real-time
environment) [82]. Analysis and experiments conducted on a number of dynamic, glob-
ally distributed scheduling algorithms have shown that absolute stability is not always
needed for dynamic systems, and relatively minimal instabilities could be tolerated (in-
spired by control theory) [75]. A stable scheduling algorithm, “following a perturbation
of the system state from equilibrium, will return the system to a state of equilibrium and
additionally will cease continuing to take actions, which cause changes in system state in
finite time” [75].

Self-stabilisation was initially introduced by Dijkstra in the context of robust dis-
tributed algorithms [83]. This property ensures that the system autonomously recovers

17

and converges to legitimate behaviour in a finite time after any transient fault [83] [84]
[85] [86]. Since Dijkstra’s seminal work, recent work by Dolev et al. [87] [88] [89] [90]
proposed techniques for designing self-stabilising systems and ensuring that the core lay-
ers of the system preserve the property. In more details, Dolev and Rajsbaum [87] have
introduced the notion of stability for long-lived consensus distributed systems to reflect
the sensitivity of the system decisions between consecutive invocations of the consensus
algorithm to input changes. Stability is evaluated using the worst case of output changes
when the input changes at most once for each processor in the system [87]. The study of
Schmid [91] focused on structural (topological) self-stabilisation of distributed systems, to
allow dynamic convergence to the desired structure after performance deterioration and
ensure continuous availability and functionality.

Discussion. From the definitions in the disciplines presented above, one can no-
tice that the notion of stability encompasses different abilities and different facets, e.g.
control theory and distributed systems have mainly focused on the operational side of
stability, while biology focused on evolutionary stability. To summarise, the notion of
stability encompasses the following: (i) the ability to resist to changes, (ii) the ability
to remain unchanged over time or when external conditions change, (iii) the ability to
adapt to changes while remaining intact, (iv) the ability to return to equilibrium state
when perturbed from that state, and (v) the ability to maintain a stated property value
or fixed level of operation within specified limits under varying external conditions. These
abilities have been used to define stability according to the context and purpose of the
system subject of question. For example, the ability to resist to changes has been used in
the context of evolution, while the ability to maintain a stated property or a fixed level
of operation has been used when the system is in operation.

2.4 The Survey Method

To identify the literature related to stability in software engineering, we conducted the
survey following the guidelines of systematic literature reviews [92] [93]. The survey aims
to address the following questions: (i) how stability can be defined and characterised as a
software property? (ii) what is the current state of research on software stability? and (iii)
which engineering practices have been developed by the research community for realising
and evaluating architectural stability?

As various definitions are scattered in the literature review, the aim of the first question
is to identify these definitions, with the goal of getting a sound definition and characteri-
sation of this quality property. The second question aims to provide the current state of
research on software stability. In the third question, we focus on architectural stability,
with the aim of getting a better insight into the current engineering practices support-
ing and evaluating architectural stability. This helps us determine how they can fit new
software paradigms and their dynamics, as well as identify research gaps and potential
directions for future research.

The search process was conducted in the following digital libraries: ACM Digital

18

Library, IEEE Xplore, ScienceDirect and SpringerLink. The snowballing technique –fol-
lowing the guidelines [94] –was used to complement the search process. As a result, we
identified a set of 166 primary studies. The review protocol appears in Appendix A.

In the remainder of this chapter, we first present the taxonomy (section 2.5) defined
to guide the review. We present the findings of the questions in section 2.6, 2.7 and 2.8
respectively.

2.5 Taxonomy for Characterising Stability as a Soft-

ware Property

In reviewing the state-of-the-art in software engineering, we have found that stability has
been interpreted in various ways, at different levels and in relation to several aspects.
Generally, these efforts point to the multi-dimensional nature of stability and the need
for characterisation. In this section, we summarise the different dimensions of stability in
software engineering research in general and present them in a comprehensive taxonomy
that incorporates the results of our literature review.

Purpose of the Taxonomy. Taxonomies of concepts are a basic scientific tool
to structure and advance the understanding [95] [96]. A structured representation for
concepts and relationships in a certain area is fundamental for representing, understanding
and communicating that knowledge, as well as providing the opportunity for further
research advances [96]. Taxonomies are found essential to document and accumulate
knowledge of software engineering phenomena too [97].

We develop the taxonomy with the purpose of: (i) characterising stability as a software
quality property, providing researchers and practitioners with a common vocabulary, and
(ii) analysing software engineering practices, identifying gaps and suggesting research
directions.

Dimensions of the Taxonomy. A plausible way to capture the dimensions of the
taxonomy and systematically study a topic is the widely-adopted 5W+1H pattern (What,
Where, When, Why, Who and How) [98] [21] [99] [100]. But our taxonomy formulates the
questions in a different order, because of the nature of the property under consideration.
The Where question is our starting point in capturing the other dimensions. The Who
and How questions are determined by the other questions.

Figure 2.1 gives an overview of the proposed taxonomy. Table 2.1 shows how the tax-
onomy answers the questions. The answers have been extracted from the primary studies
and clustered based on similarity. If an answer did not belong to an existing category, a
new category has been created and the answers to the previously analysed studies were
revisited for possible re-categorisation. A mapping between the data extracted from pri-
mary studies and the taxonomy dimensions is shown in Appendix A. The dimensions of
the taxonomy and the resulting characterisation of stability are described below.

19

Figure 2.1: Taxonomy of Stability as a Software Property

Table 2.1: Dimensions of Stability Taxonomy

Question Taxonomy Description Details

Where Level At which level/ artefact in the
software is stability considered?

code, requirements, design,
architecture

What Aspect Which aspect of stability is
considered?

structural, functional, logical,
syntactic, behavioural, physical

Why Purpose What is the purpose/ objective
of stability?

operational, maintenance,
evolutionary, reuse

When Time At which phase of the software
lifecycle is stability considered?

development phase, operation
phase, maintenance and evolution
phase

Who Responsibility Who is involved in realising
stability?

human-based (requirements
engineer, software designer,
architect, system administrator),
automated, autonomous

How Approach What is the technique used for
realising stability?

characteristics (online, offline),
temporal aspects (retrospective,
prospective), evaluation,
measurement, validation

• Level (Where). This dimension is concerned with the level at which stability is con-
sidered, i.e. which artefact of the software. Stability can be considered at different
levels of the system, such as code, design, architecture or requirements. In order
to realise stability as a software property, it should be aimed at the different soft-

20

ware artefacts. This dimension sets out to locate the level at which this property is
considered, which in turn determines who is responsible for realising stability (e.g.
architect, system designer, etc.) and how it will be realised (i.e. the techniques to
be used).

• Aspect (What). It is not sufficient to only identify the level at which stability is
considered, the aspect of each level should also be identified. In the literature,
different aspects have been considered, varying between the physical aspect (related
to equipment and physical resources, e.g. malfunction of a physical machine may
put the system into an unstable state), structural (structure of the artefact) and
logical (system’s configuration). Some aspects could be found at different levels,
such as structural stability of the design and the architecture, while other aspects
could be unique within a certain level, such as the syntactic aspect of the code.

• Purpose (Why). This dimension deals with the purpose/ motivation for considering
stability. If we consider stability of the artefact throughout long-term modifications
during software evolution, that is considering stability for an evolutionary purpose.
The maintenance purpose could also be considered for short-term modifications. If
the objective is to stabilise the runtime behaviour, the operational purpose would
be appropriate. Software reuse aims at having stable software artefacts that can be
reused across multiple systems or projects with minimal modifications.

• Time (When). The time of considering stability shall be addressed in this dimen-
sion, i.e. when to consider and evaluate stability. Stability should be considered
in the development phase, throughout the operation of the software, and in the
maintenance and evolution cycles. In more detail, considering stability at the ar-
chitecture level, architects should evaluate the stability of alternative architectural
structures at the development phase. At the operation phase, stability should be
considered while handling the runtime concerns of the software product. The time of
consideration identifies the approach to be used for realising stability and associated
responsibilities. Thus, the distinction between design-time and runtime is essential
for considering stability at different phase throughout the software life cycle.

• Responsibility (Who). This dimension addresses the degree of human interaction
and automation in realising stability, i.e. who is responsible for realising stability
and at which degree the process could be automated without human intervention.
This is also related to the level, time and approach dimensions. Architects or system
designers are responsible for realising this property during the development phase
at different levels. At the operating phase, stability could be considered by system
administrators responsible for managing the operational concerns of the software
product, or by automated processes, or autonomously evaluated in the case of self-
adaptive systems [101].

• Approach (How). This dimension addresses the approach or engineering practices
for realising stability, i.e. how stability is realised. As mentioned in the previous
dimensions, the techniques to be employed for realising stability are to be deter-
mined by the level and the time at which stability is addressed, such as architecture

21

evaluation during development or evolution phases where techniques could be ret-
rospective or predictive. During operation, techniques to evaluate stability could be
online or offline.

Discussion. As mentioned in the scope of the study, our taxonomy focuses on sta-
bility aspects of the software product itself. Meanwhile, the taxonomy should be com-
plemented with stability aspects of the development process, as aspects of the product
itself and its development process are inter-wined [30]. Technical and social aspects of
the development process should also be considered. Knowledge (design, requirements and
architecture knowledge) management, documentation and drift are influencing factors in
extending the software longevity [102] [103] [104] [13]. The well-being of the development
community highly affects the software engineering process [105]. Examples include chang-
ing organisational structure, the social communities in development [106] [107] [108] [109].
Another example is the stability of the maintenance process itself which has proven to
affect the reliability of the maintained software [110]. Such technical and social aspects
are hard to be understood without field and empirical studies and need to be studied in
deep separately to complement the stability of the software product.

In this section, we presented a taxonomy for characterising stability as a software prop-
erty. Stability can be considered at different levels, with different aspects, for different
purposes at different stages through the software life cycle. Researchers and practition-
ers should be aware of these dimensions and integrate these dimensions throughout the
software lifecycle.

2.6 Defining and Characterising Stability

In this section, we present the definitions of stability which have been found in the software
engineering literature, analyse the characteristics of these definitions. We also discuss re-
lated quality attributes and software engineering practices, as well as propose an approach
for defining it as a software quality property.

2.6.1 Definitions of Stability

Many definitions for stability were found in the software engineering literature from dif-
ferent perspectives and for different software paradigms. We collected the definitions
from the literature and analysed them according to our taxonomy (see Table 2.2). A
cell marked with “–” means that this definition does not give information related to this
dimension. It is worth noting that the analysis of the definitions was conducted based on
the wording of the definition (not the contents of the studies where they appeared).

22

Table 2.2: Definitions of Stability in Software Engineering Literature1

Ref. Definition
Dimensions of Stability

Level Aspect Purpose

[111] “the resistance to the amplification/propagation of changes that has been made to
a given program”

C - Mnt

[112] “the resistance to the potential ripple effect that the program would have when it
is modified”

C St Mnt

[112], [113] “a measure of the resistance to the impact of a modification to a module on other
modules in the program in terms of logical considerations”

C L Mnt

[112], [113] “a measure of the resistance to the impact of a modification to a module on other
modules in the program in terms of performance considerations”

C B Mnt

[114] “the extent to which the structure of the design is preserved throughout the evo-
lution of the software from one release to the next”

D St Ev

[115] “requirements stability can be determined using the number of expected changes
based on experience or knowledge of forthcoming events that affect the organisation,
functions, and people supported by the software system”

R - -

[116] “the capability of the software product to avoid unexpected effects from modifica-
tions of the software”

- - -

[116] Stability “characterises the sensitivity to change of a given system that is the
negative impact that may be caused by system changes”

- - -

[117] “a measure of how well it accommodates the evolution of the system without re-
quiring changes to the architecture”

A St Ev

[118], [119] “the ease with which a software system or a component can evolve while preserving
its design as much as possible”

D St Ev

[120], [121],
[122], [123],
[19], [124],
[125], [39]

“a quality that refers to the extent an architecture (structure) is flexible to en-
dure evolutionary changes in stakeholder’s requirements and the environment, while
leaving the architecture intact”

A St Ev

[126] “the resistance to interclass propagation of changes that the design would have
when it is modified”

D L Mnt

[127] “the ease with which a software item can evolve while preserving its design” D St, L Ev
[128] “the degree of modification of the component” C - Re
[129] “the extent to which the structure of the design is preserved throughout the evo-

lution of the software from one release to the next”
D St Ev

23

Table 2.2 (cont.)

Ref. Definition
Dimensions of Stability

Lev. Asp. Purp.

[130] “A design characteristic of software is stable if, when observed over two or more
versions of the software, the differences in the metric associated with that charac-
teristic are considered, in the context, to be small.”

D - Ev

[70] “the ability of a software artefact to keep unchanged along with the time” - - Ev
[70] “the ability to adapt to changes by its flexible configuration mechanism” - - Op
[70] “the probability that a business model or a component remains stable in a given

period of time”
- St Ev

[131] “Design stability encompasses the sustenance of system modularity properties and
the absence of ripple-effects in the presence of change”

D St Ev

[132] “how easy or difficult is it to keep the system in a consistent state during modifi-
cation?”

C - Mnt

[133], [134] “the ability of the high-level design units to sustain their modularity properties
and not succumb to modifications”

A St Mnt

[135] “how well does the system avoid unexpected effects after a modification” C - Mnt
[136] “the ability of a module to remain largely unchanged when faced with newer re-

quirements and/or changes in the environment”
C Sy, St Ev

[16], [137] A software or a module is stable “if its interface or implementation is not undesir-
ably modified and ripple effects do not manifest in the presence of changes”

C St, Sy Mnt, Re

[138] “robustness against input or code perturbations” C B Op
[139] “a quality characteristic that shows a software product’s resilience to changes in

the original requirements of the product”
- - Mnt, Ev

[139] A software system is said to be stable “if changes result in a new version that is
substantially identical to a version that has been thought to be reasonably well
tested and assumed not to have any significant problems”.

- - Op, Mnt, Ev

[140] “the degree to which a class is subject to change, due to changes in other, related
classes, considering the probability of such classes to change as equal to a certain
value”

D St, Sy Mnt

1Within this table, we used the following abbreviations: C = code; D = design; A = architecture; R = requirements; St = structural; L = logical; F =
functional; Sy = syntactic; B = behavioural; Op = operational; Mnt = maintenance; Ev = evolutionary; Re = reuse.

24

Analysing the definitions found in the literature, they partially covered the different
abilities of stability (cf. section 2.3): (i) the ability to resist to (ripple effect of) changes
(e.g. the definitions of [111], [112], [113], [139]), (ii) the ability to remain (largely) un-
changed over time or when external conditions change (e.g. [114], [127], [129]), (iii) the
ability to adapt to changes while remaining intact (to a big extent) (e.g [117], [118], [122],
[136]), (iv) the ability to return to equilibrium state (within a defined time) when per-
turbed from that state ([132]), and (v) the ability to maintain a stated property value
or fixed level of operation (within specified limits) under varying external conditions
([133], [138]). Some definitions encompass more than one ability, such as the definitions
of [133] [134] covered the abilities to resist to changes and to remain unchanged.

Table 2.3 summarises the mapping of the notion of stability abilities, different dimen-
sions and the definitions analysis. Out of the primary studies, 14 papers contributed on
explicitly defining stability. We observe that the majority of the definitions focused on
the first three abilities related to changes, while other abilities explicitly related to the
operational and behavioural side are ignored to a big extent. Precisely, none of the def-
initions has explicitly focused on the ability to maintain a fixed level of operation. On
the terminological side, we noticed that the definitions widely varied between abstraction
(e.g. [128]) and precision (e.g. [117] [120]). Also, stability was defined in different ways
by the same authors according to the perspective of their study, such as [112] and [114]
for maintenance and evolutionary purposes, respectively.

Table 2.3: Mapping of Stability Notion, Taxonomy Dimensions and Definitions

Ability Purpose of
Stability

Definitions

(i) ability to resist to ripple effect of changes Mnt, Ev [111], [112],
[113], [139]

(ii) ability to remain largely unchanged over time Mnt, Ev [114], [127], [129]
(iii) ability to adapt to changes while remaining intact Op, Mnt, Ev [117], [118],

[122], [136]
(iv) the ability to return to equilibrium state when
perturbed from that state

Op, Mnt, Ev [132]

(v) the ability to maintain a stated property value or
fixed level of operation within specified limits under
varying external conditions

Op [133], [138]

Examining the aforementioned definitions, we found that these definitions covered
some of the taxonomy dimensions. Some definitions considered the resistance to ripple
effect of changes for the maintenance or evolutionary purposes, where it was considered
with respect to the changes occurring due to the maintenance or evolution activities
respectively (e.g. [111], [112]). Other definitions considered the ability to remain largely
unchanged over time in the context of evolution, where a software artefact is considered
stable if it remains unchanged over different versions. The ability to adapt to changes while
remaining intact has been used in some definitions in different contexts (i.e. operational,
maintenance and evolutionary purposes), where the software artefact adapts responding to
different types of changes that result from runtime operation, maintenance or evolutionary
activities respectively. The abilities to recover from perturbations and to maintain a fixed

25

level of operation or a stated property within specified tolerances was usually put in the
operational context, where stability was considered with respect to the level of operation
and the operational perturbations during runtime.

2.6.2 Related Quality Attributes

An investigation of the literature has shown the existence of a number of quality attributes
related to similar abilities defined under the stability umbrella, such as maintainability,
resilience, robustness, reliability, etc. Below, we present the definitions of these quality
attributes, shedding lights on their relationship with the different aspects of stability
and discuss their differences. The related quality attributes have been extracted from the
primary studies, but when definitions were not found in the primary studies, we conducted
separate searches to find how these concepts are defined and related to stability. Table 2.4
presents and compares quality attributes inter-related with stability and the respective
dimension of stability.

Resilience. Resilience is defined as “the ability to successfully accommodate un-
foreseen environmental perturbations or disturbances” [141]. Resilience was also consid-
ered a sub-characteristic of dependability, where the former is defined as “the system’s
ability to continue providing available, responsive and reliable services under external
perturbations such as . . . unexpected load spikes or fault-loads” [148], and “the persis-
tence of the avoidance of failures that are unacceptably frequent or severe, when facing
changes” [141] [142] [143] [29]. In the previous definitions, changes are runtime changes
during operation —that is operational stability. Resilience is the concept with high inter-
ference with stability and often used as a synonym in the context of software evolution.
Inspired by ecological systems [158] [141], resilience was seen as the persistence of a prop-
erty and a measure for the ability to absorb changes and still persist. Resilience has been,
then, presented as “the persistence of service delivery that can justifiably be trusted,
when facing changes” [141] [142] [143] [29]. In this context, evolutionary changes are the
concerned ones. Another definition for resilience inter-linked with trustworthiness is that
resilience enables to “assess whether the system is able to maintain trustworthy service
delivery in spite of changes in its environment” [144].

Trustworthiness. Trustworthiness is the “assurance that a system will perform
as expected” [52]. Trustworthiness was not widely used as a term within the research
community, though the concept is usually found expressed informally in the context of
dependability.

Robustness. Robustness is the other synonym for stability found in literature, as
both words have close meaning. Robustness has been commonly accepted as a mean to
differentiate candidate architectures and mitigate the risk of architecture decisions through
the development [145]. A system is considered robust if it “retains its ability to deliver

26

Table 2.4: Quality Attributes inter-related with Stability

Quality
Attribute

Goal Intersecting
Attributes

Ref. Purpose of
Stability

Resilience ability to accommodate
unexpected
perturbations/ absorb
evolutionary change and
still persist

dependability,
robustness,
evolvability,
trustworthiness

[141], [142],
[143], [144], [29]

Op, Ev

Trustworthiness ability to perform as
expected

dependability,
reliability

[52] Op

Robustness ability to operate beyond
normal operational
conditions

resilience,
dependability,
reliability

[145], [146],
[141]

Op

Reliability ability to be available
when required and
behave as expected/
accept corrective actions
effectively

dependability,
fault-tolerance,
maintainability

[116], [147] Op, Mnt

Dependability ability to deliver
justifiably trusted
services in spite of
continuous changes

trustworthiness,
reliability

[52], [141],
[148]

Op

Maintainability capability to be modified modifiability,
changeability

[116], [149] Mnt

Modifiability ability to make changes
quickly and
cost-effectively

maintainability,
changeability,
flexibility

[116], [150] Mnt, Ev, Re

Changeability ability to enable
implementation of
modifications

maintainability,
modifiability,
flexibility

[116] Mnt, Ev

Flexibility ability to be modified for
use beyond the original
design with acceptable
effort

maintainability,
modifiability,
changeability

[51], [151] Ev, Re

Adaptability capacity to adjust to
changes in the
environment

sustainability,
dependability,
trustworthiness

[152], [153] Op, Mnt, Ev

Evolvability capacity to support
adaptation and
accommodate future
changes in requirements
in the long-term

sustainability [154], [155] Ev

Sustainability capacity to preserve the
function over an extended
period of time and to be
cost-effectively
maintained and evolved

evolvability [156], [157] Op, Mnt, Ev

27

service in conditions which are beyond its normal domain of operation” [146] [141]. This
attribute has usually been put in the context of abnormal operating conditions. From
a control-theoretic perspective, robustness has been considered as “the property that a
system only exhibits small deviations from the nominal behaviour upon the occurrence of
small disturbances” [159], that could be behavioural stability.

Reliability. Reliability has earlier been concerned with “how well the software meets
the requirements of the customer” [160] [7]. Following the ISO/IEC/IEEE standards and
vocabulary, reliability is “the capability of the software product to maintain a specified
level of performance when used under specified conditions” [116] for a specified time [51].
According to the seminal work on the taxonomy of dependable and secure computing [52],
reliability is considered as one of the attributes of dependability (where both encompasses
fault-tolerance). It is defined as “the continuity of a correct service”, that is the extent
to which the system is available when required and behave as expected [7]. The pre-
vious definitions are interconnected with the stability abilities for operational purposes.
According to the latest IEEE Recommended Practice on Software Reliability [147], code
stability and release stability are considered measures of the software product reliability.
The former is measured by corrective action effectiveness, while the latter is measured by
the MTBF (mean time between failure) metric. By these definitions, reliability could be
seen as a form of stability in the maintenance setting.

Dependability. Dependability has been considered as “the ability of a system to
provide dependable services in terms of availability, responsiveness and reliability” [148].
A widely adopted definition is “the ability to deliver services that can justifiably be
trusted in spite of continuous changes” [52] [141]. This definition puts emphasis on the
justification of trust of the delivered service. An alternate definition is “the ability to
avoid service failures that are more frequent and more severe than acceptable” [52] [141].
The dependability attribute abstractly encompasses the trustworthiness attribute [161].
In the context of stability, one can characterise dependability as a kind of behavioural
stability that ensures the quality of service provided during operation.

Maintainability. According to the ISO/IEC 9126 standards for software quality
model [116], maintainability is one of the main characteristics of software, defined accord-
ing to the standards as “the capability of the software product to be modified” [116]. It
is divided into a set of attributes related to the ability to make specified modifications
(analysability, changeability, testability and stability) [116]. Modifications may include
corrections to handle errors, improvements or adaptations in response to changes in the
environment and functional requirements [149]. Such modifications could be for operation,
maintenance, or evolution purposes.

Modifiability. Modifiability is the ability of a system to be easily modified quickly
and cost-effective to changes in the environment, requirements or functional specification

28

[150] [162]. Modifications to a system can be categorised as extensibility (the ability
to acquire new features), deleting unwanted capabilities (to simplify the functionality
of an existing application), or restructuring (rationalising system services, modularising,
creating reusable components). Portability (adapting to new operating environments)
was also considered as one of the sub-characteristics of modifiability [150], while it was
identified as one of the main quality characteristics in the ISO/IEC 9126 standards for
software quality model [116]. In both cases, the type of changes concerned is the long-term
evolutionary, which could be regarded as stability for evolutionary and reuse purposes.

Changeability. Another equivalent term to modifiability is changeability, which is
defined in the ISO/IEC 9126 standards for software quality model [116] as “the capability
of the software product to enable a specified modification to be implemented”. According
to this standard [116], changeability reflects the ability of the software artefact to accept
possible future changes, while stability is observed after the change has taken place [163].

Flexibility. Flexibility is “the ease with which a system or component can be mod-
ified for use in applications or environments other than those for which it was specifically
designed” [51]. Flexibility is mainly about future changes of software and is considered
relative to these expected changes, similar to modifiability [151]. Distinguishing it from
other properties like adaptivity and changeability, flexibility is defined as “the property
of a software system to allow conducting certain changes to the system with acceptable
effort for modifying the system’s implementation artefacts” [151].

Adaptability. Adaptability is the capacity of software to dynamically adjust itself
(behaviour, structure or configuration) when reacting to changes in its operating envi-
ronment in order to keep its services in a good condition, i.e. meeting the requirements
(including functionalities and QoS) [152] [153] [164] [165]. Meanwhile, adaptive main-
tenance is the “modification of a software product, performed after delivery, to keep a
software product usable in a changed or changing environment” [51]. Here, adaptability
is put for two different purposes, operational and maintenance, given to the time and type
of adaptation. The difference between adaptability and runtime stability is the former is
concerned with runtime changes only and the latter is concerned with runtime changes
while keeping other attributes unchanged (like the structure of the architecture).

Evolvability. Evolvability is the capacity of software systems to support adapta-
tion and accommodate long-term changes of new requirements and contexts of use over
time with the least possible cost [154] [155]. The continuously changing stakeholders’
requirements make evolvability an important software property to be explicitly addressed
throughout the system’s lifespan [155]. This property focuses mainly on the long-term
evolutionary properties and changes without becoming progressively less useful [154].

29

Sustainability. Sustainability is defined as “the capacity to endure and preserve
the function of a system over an extended period of time” [157]. Tough the concept of
sustainability has usually been considered in the sense of green computing and associ-
ated with the ecological environment [8] as the capability of meeting the present needs
without compromising future needs [156], a modern vision according to Lago et al. [157]
should consider four major dimensions —economic, social, environmental (improving hu-
man welfare by protecting natural resources), and technical (supporting long-term use and
evolution). Also, sustainability is associated with longevity, where a sustainable software
is “a long-living software system which can be cost-efficiently maintained and evolved
over its entire life cycle” [156] and architectural sustainability is “the set of factors that
promote an architecture’s stability and longevity during system evolution” [13].

To comprehensively address these quality attributes, it is worth mentioning that in
some contexts, dependability, trustworthiness and resilience were addressed in the context
of security, i.e. dependability in delivering reliable, secured and confidential services [52],
trustworthiness in delivering confidential and trusted services, and resilience to security
attacks and correlated faults [166] [148], or failures during operations [167]. In this re-
search, we do not consider security as part of these attributes, as the former requires
special attention.

The side-by-side comparison in Table 2.4 elucidates that these concepts are essentially
intersecting in some aspects. For instance, both dependability and performance metrics
were embedded in benchmarking resilience, in order to evaluate “if a system is effective and
efficient in accommodating changes” and thus considered to be resilient [142] [168]. An-
other example is dependability and resilience. While dependability is considered design-
time attribute that deals with possible faults [143], as well as runtime attribute as previ-
ously mentioned in definitions [52] [141], resilience by definition is maintaining the same
properties if evolution takes place in environmental factors [143]. Thus, resilience “encom-
passes the ability to resist and recover from changed environment, operational domains
or requirements unknown at design-time” [143], i.e. dependability.

As developed over the aforementioned concepts and definitions, it could be concluded
that stability as a property partially integrates some aspects of these attributes. As
an example, stability as the ability to adapt while remaining intact partially covers the
adaptability property while considering ripple effect changes or a fixed value for a stated
property. These properties could also be mean to achieve stability (such as flexibility),
or an indicator for stability (e.g evolvability). As Bass et al. pointed out [4], these terms
can be confusing and less meaningful without a concrete scenario, which is the approach
we will adopt in defining and realising stability.

2.6.3 Related Software Engineering Practices

As mentioned above that related software quality attributes could be a mean or an indi-
cator for stability, software engineering practices for achieving these qualities could also
be related to achieving stability. We briefly discuss related engineering practices below.

30

Stability and Software Maintenance. Stability has been considered as an im-
portant factor contributing to the maintenance process [112] [169] [6]. Stability is used
in the maintenance process to indicate the accounting of ripple effects as a consequence
of modifications [112]. Stability measures are used in conjunction with other factors af-
fecting the maintenance process, to estimate maintenance costs and possible errors when
generating maintenance plans [112].

Stability and Evolution Planning. It has been argued that the primary long-
term goal of software artefacts is to guide the system evolution, and stability has been
strongly suggested as a primary criterion for evaluating alternative designs and taking
design decisions [117] [122]. Such decisions are taken based in the long-term impact
on stability when planning for possible evolution paths or in automated planning for
evolution [170] [171]. According to the Lehman’s laws of software evolution [172], stability
“means planned and controlled change, not constancy”.

Stability and Software Ageing. Software ageing is the phenomenon facing long-
running complex systems over time as long as they evolve [173] [174], with a number
of visible signs, such as performance degradation, design degradation, or quality reduc-
tion [175] [173]. It has been attributed in many ways [176], such as architectural/ de-
sign erosion and architectural drift [54] [177]. Architectural and design erosion refers
to conflicts occurring in previous decisions due to changes leading to system brittleness
(i.e. fragility or instability), while architectural drift refers to “a lack of coherence and
clarity of form which may lead to architectural violation and increased inadaptability
of the architecture” [54]. Software ageing has been usually associated with preventive
maintenance, meanwhile, recent research identifies proactive rejuvenation and prevent-
ing premature software ageing (poor decisions made during development phase will age
software quicker) as counteract strategies to software ageing [173] [176]. The challenge
is, then, to keep the architecture or design aligned throughout the system lifetime [178],
which should consider stability as a quality characteristic. As an example, the ability to
adapt to changes while remaining intact is important for a long-running system, i.e. the
architecture structure is said to be eroded when changes become risky, cost-ineffective
and time-consuming [175].

Stability and Software Reuse. Software reuse is the engineering practice of using
existing software artefacts (e.g. architecture, knowledge) or software knowledge to build
new software [37]. The purpose is to increase productivity and software reliability, as well
as reduce development cost and time [37]. Stability is an important factor to consider
both when building software artefacts to be reused later and when selecting the reusable
artefact [179].

Stability and Incremental Software Development. Incremental software devel-
opment has been used in the software industry, as an alternative to the waterfall model,

31

when shorter development periods and time-to-market are required [180]. This requires
dividing the work into increments with prioritised features. When the new features are
added to the previous increments, the resulting design and architecture might change [181].
Stability should, then, be evaluated with each increment, in order to ensure continuity of
the development without difficulty and unnecessary expenses

Stability and Adaptation. Adaptation and self-adaptation have emerged to deal
with dynamic/runtime changes in the system itself or in its operating environment [21]
[99] [182]. As inspirations were drawn from Control Theory in building adaptive systems,
stability has been suggested as primary criteria for evaluation [66] [25]. Stability measures
the system responsiveness, as such a system is said stable “if its response to a bounded
input is itself bounded by a desirable range” [25], i.e. the controlled variables are within a
required range. This is characterised as the stability of the adaptation goal [25]. Stability
is also considered as an observable property for the adaptation process, defined as “the
degree in that the adaptation process will converge toward the control objective”. An
adaptation, indefinitely repeating the action or making frequent adaptations, will risk not
improving or even degrading the system to unacceptable levels [25] [26]. Even though
adaptation mechanisms have been widely investigated, stability was not explicitly tack-
led [25]. The shortcoming of current software engineering practices regarding stability
is that the stable provision of certain quality attributes essential for end-users (e.g. re-
sponse time for real-time systems) is not explicitly considered in the adaptation decision
taken during runtime [182]. Besides, the adaptation process does not address the adapta-
tion properties that affect the quality of adaptation, such as accuracy, settling time and
resources overshoot [25] [26].

2.7 Stability in Software Engineering

In this section, we review stability in software engineering. First, the primary studies are
classified and analysed based on the taxonomy described in section 2.5. Then, we present
the findings at the different levels, perspectives and aspects. As the stability level is the
main dimension identifying the other dimensions, we present the survey on stability based
on the different levels. For each level, we discuss the other dimensions.

2.7.1 Analysis Results of Primary Studies

The demographic and quantitative analysis results are shown in Appendix A. Below, we
present analysis results related to correlating different stability dimensions and architec-
tural stability.

32

2.7.1.1 Correlating Stability Dimensions

To analyse the current research state, we used the levels, aspects and purposes for stability
as crosscutting dimensions, as shown in Figure 2.2. The number of studies appears in the
circle of each two crosscutting dimensions. We can clearly see that maintenance, evolution
and reuse purposes of stability are the most dominant across all levels. The operational
purpose appears to be a research gap on all the levels. It is also noticeable that the design
and code levels have received attention for the different purposes (with the exception of
the operational one) and different aspects. Though it might be argued that stability is
not required in some cases of these correlations, such as the requirements level at the
operation phase, other correlations are strongly required, as in the case of architecture
level during the operation phase.

Figure 2.2: Correlation of Stability Levels, Aspects and Purposes

Correlating the different levels of stability and the phase when stability is considered
(Figure 2.3), the height of each column in the plot represents the number of studies for each
level and phase. The development, maintenance and evolution are the most considered
phases at all levels. Considering stability at the operation phase is another research gap
to be filled for almost all the levels.

2.7.1.2 Architectural Stability

To provide a closer overview of stability at the architectural level, we constructed a sys-
tematic map for the different purposes during the different phases of the software lifecycle,
as shown in Figure 2.4. The references in each circle represent the studies related to both
dimensions for different stability aspects, with the total number of studies appearing

33

Figure 2.3: Correlation of Stability Levels and Time of Consideration

between brackets beside the aspect. The systematic map clearly identifies that studies
focused mainly on the evolutionary perspective during the development phase, as well
as the different purposes during the maintenance and evolution stage. Meanwhile, all
other purposes during the development phase are ignored. Also, the operational purpose
is only considered while at operation, without earlier planning during development or at
later stages. Details of these studies are discussed in section 2.8.

Figure 2.4: Systematic Map of Stability at the Architecture Level

34

2.7.2 Levels, Aspects and Purposes of Stability

In the Software Engineering discipline, explicit discussions about stability are traced back
to 1977, where Soong [111] studied the stability of a program code with respect to the
propagation of changes when maintenance activities are undergoing. Over the following
decades, the software engineering community made significant advances in software re-
quirements, design and architecture. Each of these sub-disciplines has studied stability in
many different ways and provided insights on software engineering practices for improving
the quality of software systems.

2.7.2.1 Code Level

Maintenance purpose. The earliest mention of stability is found at the code level
of software programs [111], where stability has been defined as “the resistance to the
amplification/ propagation of changes that have been made to a given program”. In this
work, the strucutral stability aspect of a program has been considered, where distinc-
tions are made between the logical structure and the information structure of a program.
Quantitative analysis is derived to measure the information structure of a program. The
techniques used are the method of connectivity matrix and random Markovian process,
assuming that stability involves the behaviour of the program undergoing alterations, i.e.
behavioural stability [111].

Following the same concept, Yau and Collofello have considered stability for mainte-
nance and defined it as “the resistance to the potential ripple effect that the program
would have when it is modified” [112]. The two aspects of stability considered are the
logical and performance (behavioural) stability, where the former is “a measure of the
resistance to the impact of a modification to a module on other modules in the pro-
gram in terms of logical considerations”, and the latter is the same measure in terms of
performance considerations [112] [113].

In the studies mentioned above, given the definition and measurement of stability in
relevance to changes made to a program, stability has been considered for maintenance
purpose. The difference between the works of [111] and [112] in defining and considering
stability is that the former is a retrospective approach (i.e. studying the propagation of
changes made) and the latter is a prospective approach (i.e. studying potential effects of
changes).

The work of Yau and Collofello has been applied to literate programs [183]. The
studies of Black [184] [185] have also considered the reformulation of Yau and Collofello’s
ripple-effect algorithm, and proposed an approximation algorithm for automatic compu-
tation of ripple effect measures. Bevan and Whitehead [186] developed an approach for
identifying and classifying unstable components and code regions (identified as a set of re-
lated elements that have changed together many times), using history from configuration
management.

In setting a practical model for measuring maintainability, many studies have consid-
ered source code metrics. For instance, authors in [132] have studied the mapping between
stability —as one of the sub-characteristics of maintainability according to [116] —and
code level properties (such as size of the system, duplication of code, unit complexity,

35

unit length, number of units and number of modules). Meanwhile, the survey of [135] has
refined the mapping of the latter model into a weighted mapping and considered further
system properties, such as unit interfacing, inward and outward coupling. In studying
code quality benchmarking for improving maintainability, Baggen et al. [187] have con-
sidered mapping source code metrics and maintainability sub-characteristics of the ISO
standards [116]. Stability has been related to the unit interfacing and module coupling
properties. The study of [188] have also considered analysis and quantification of main-
tainability sub-characteristics, where stability metrics are based on the change density in
the number of subclasses, coupling between objects, depth of inheritance tree, directly
called components and the number of entry/exit points. The same metrics, along with the
number of unconditional jumps, have been considered in [189] for open-source software.

The development practice known as “code cloning” (i.e. duplication of code fragments
with/out modification) and its stability are known to affect the maintenance efforts. If
the cloned code is changed less often (i.e. more stable), it will require fewer maintenance
efforts. The study of Krinke [190] has measured code clones stability by additions and
deletions to the code. The results of this study suggested that cloned code is more stable
than non-cloned with respect to changes while ignoring the case of deletions. These results
are supported by another study on the age of cloned code, where cloned code is found on
average older than non-cloned code (not changed for longer) [191]. The studies [192] [193]
have also confirmed the same results and showed that clone stability varies by the clones’
characteristics (e.g. length) and the development environment over time. Meanwhile, the
empirical studies [194] [195] [196] have revealed that cloned code is generally unstable
than non-cloned code, owing such result to differences in the development language, de-
velopment strategy, stability scenarios and clones types. Another empirical study [197]
has focused on the different types of clones, types of changes and the frequency of changes
in cloned and non-cloned code, where stability has found differing in each type of change.

In studying the stability of logging statements (code snippets for tracking the execution
of applications, changes in log statements have been found affecting log processing tools
in testing and monitoring. The work of [198] helps in determining the likelihood of change
in logging statements, in order to select which statements to be used in the processing
tools and hence reduce the maintenance efforts.

With the recent shift towards ecosystem-based development, Bogart et al. [199] dis-
cussed the need for an awareness mechanism based on different stability indicators, such
as historical and contextual, to assist developers in analysing stability of the changed code
and evaluating the impact of changes.

Evolutionary purpose. In considering stability for evolutionary purpose, Li et
al. [200] proposed two instability metrics at the implementation level of object-oriented
systems —the Class Implementation Instability metric and the System Implementation
Instability metric. The first metric measures the evolutionary changes in a class imple-
mentation in terms of changes in lines of code (i.e. syntactic) between two successive
versions. The system metric is the summation of the changes in the classes of the en-
tire system. In [201], the author assessed the stability of concerns implementation, by
counting the number of times a given fragment became inconsistent as the code of a sys-
tem evolves. In [136], stability has been defined as “the ability of a module to remain

36

largely unchanged when faced with newer requirements and/or changes in the environ-
ment”. It has been measured based on version differences of evolving software modules,
where the differences in both source code and structure have been represented by the
distance concept (syntactic and structural). The study of [202] has explored the use of
code micro-patterns to evaluate the stability of a system during its evolution and monitor
the development of different releases. Information-level metrics were proposed by [203] for
measuring evolutionary stability of software artefacts at the binary level, such as version
stability, branch stability, structure stability.

Stability has been studied as application- and domain-specific. Hou and Yao [204] have
studied the stability of APIs (Application Programming Interfaces), for their importance
in separating software frameworks and libraries from the implemented applications, where
an application can continue to use the updated libraries as long as there is no change
in the syntax (syntactic) and semantics logical of the APIs. This was performed by
a detailed analysis of the evolution of APIs, by categorising the changes made to the
API according to the domain semantics and design intent. The study of McDonnell
et al. [205] has considered the stability of APIs in the Android ecosystem for studying
their evolution. This study has focused on the co-evolution behaviour of Android APIs
and mobile applications, by examining the relationship between the API stability and
the degree of usage, adoption and bugs in client code. Similarly, logical stability of web
services —with interfaces described using standard XML-based Web Services Description
Language (WSDL) —has been considered in [149]. The WSDL of a web service describes
the interface, operations, exchanged data, and the protocol and endpoint to contact the
service. Stability has been determined by the unchanged elements of the service interface
(syntactic) during its evolution from one version to another.

In the context of incremental software development, release planning involves assigning
functionalities and bug fixes to different releases, while ensuring quality requirements and
factoring efforts needed. Stability analysis for release planning aims at analysing the
alternatives release plans against unanticipated changes, such as functionalities changes
in their tasks size (functional) and dependency (logical) [206] [207].

The functional aspect of stability has been studied in [208] for providing better evolv-
ability characteristic of software systems. The transformation of functional requirements
into implementation-related concepts (e.g. functions or classes) is used to study the
process of software coding and derive theorems for implementation that contribute to
achieving stability.

Reuse purpose. It is widely accepted that stability is an advantageous property
for software reuse. A module is considered stable “if its interface or implementation is
not undesirably modified and ripple effects do not manifest in the presence of changes”
[16] [137], while it is reused in a project “if it is used in more than one context within the
software system” [16]. In the exploratory study [16], authors have analysed the relation
between stability and reuse, for reaching a better trade-off between them. The stability
metrics focused on the degree of modifications in code implementation, considering two
forms of modifications: (i) refactoring (structural changes without modifying the code
semantics), and (ii) modification (adding, removing or modifying functionalities). The
research introduced in [137] focused on analysing the impact of code modularity and

37

composition on stability and reuse. The study of [128] has empirically investigated the
impact of reuse of software components on stability (as the degree of modification), i.e.
syntactic and logical aspects. This study has shown that highly reused components are
less modified (i.e. more stable) and more concrete to be used across several products and
releases.

Operational purpose. According to the latest IEEE Recommended Practice on
Software Reliability [147], code stability is measured by the corrective action effectiveness
(i.e. the percentage of corrective actions that are not adequate) when determining the re-
liability of a software product. Inspired from Dijkstra self-stabilising distributed systems,
self-stabilising has been adopted as an approach for fault-tolerance, where self-stabilising
programs automatically recover from bugs and faults to reach the correct state after a
finite number of steps [209]. The SJava system was proposed for checking that Java pro-
grams are self-stabilising, by adding annotations to the code that captures the flow of
execution and return it to the correct state in case of detecting incorrect values [209].

In the domain of multi-agent systems, Bracciali et al. [210] have proposed semantics
for defining the notion of stability for the set actions performed by the agents, where the
agents’ behaviour is coordinated to reach a state similar to the Nash equilibrium state.

In the context of multi-threaded programs, Cui et al. [211] have realised stable multi-
threading through schedule memorisation, where past working schedules are memorised
and reused on future inputs, which makes the program behaviour stable on different
inputs. Based on this idea and using a small set of working schedulers, the stable multi-
threading (StableMT) approach reuses each schedule on a range of inputs, mapping all
inputs to a reduced set of schedules [212]. By mapping many inputs to the same schedule,
the program behaviour is stable against small input perturbations. Practically realising
StableMT, a runtime tool has been proposed in [138] to make threads stable during
runtime, by allowing developers to write performance hints in their code for changing
schedules when default ones are slow.

2.7.2.2 Requirements Level

The importance of requirements engineering and its role in the success and sustainability
of the software product have been recognised and widely accepted by researchers and
practitioners in the software engineering discipline [213] [214] [215] [216]. According to the
IEEE Recommended Practice for Software Requirements Specifications [115], the degree
of requirements stability can be determined using “the number of expected changes based
on experience or knowledge of forthcoming events that affect the organisation, functions,
and people supported by the software system”.

The earliest mention of stability requirements was found in [217], where the function
point metric was used to measure the rate of change. Also, several techniques were dis-
cussed to stabilise requirements, such as prototypes, requirements inspection, change and
configuration management [217]. Yet, the earliest and simplest measurement of require-

38

ments stability has been performed using the following equation [218]:

Number of initial requirements

Total number of requirements

But this equation does not consider the changes occurring to requirements. The factors
affecting the requirements stability have been analysed in [219], such as user-, developers-
side, system and work environment factors. A process to control requirements change has
also been proposed to ensure the success of the software project.

Evolutionary Purpose. According to the IEEE Standard of Measures to Pro-
duce Reliable Software [220] [221], the Requirements Maturity Index (RMI) has used
changes from a previous release relatively to the current release as an indication of stabil-
ity [222] [223]. These retrospective measurements are assessing requirements stability for
evolutionary purpose.

The RMI was also used for estimating requirements maturity during the development
phase [224] [225]. Such prospective approach used the requirements elicitation history to
derive the Requirements Maturation Efficiency (RME), which represents “how quickly
the requirements reach 100% maturation”. Another prospective approach has been pro-
posed in [226] [227] for assessing requirements stability at early development stages. The
approach used goal-based model and environmental scenarios with the aim of planning
for change and supporting later decisions (design and architecture).

Maintenance Purpose. An empirical analysis has investigated the correlation be-
tween crosscutting concerns and stability at the requirements level, focusing on changes
in functional requirements that affect the maintainability of the system over time [163].
The study provided evidence that certain crosscutting properties have negative effect on
stability.

Operational Purpose. Focusing on the quality requirements during runtime, the
study of [228] proposed a solution for autonomous monitoring and extraction of stable
behavioural patterns. The extracted stable behavioural patterns are used to detect devi-
ations of the expected behaviour.

2.7.2.3 Design Level

Evolutionary Purpose. Stability has been widely studied as a design characteris-
tic. The earliest research is the study of [114], where design stability is defined as “the
extent to which the structure of the design is preserved throughout the evolution of the
software from one release to the next” [114]. Kelly [130] has studied the characteristics
of a design that would be stable for long-term software evolution, defined as “if, when

39

observed over two or more versions of the software, the differences in the metric asso-
ciated with that characteristic are considered, in the context, to be small”. Differently,
Mannaert et al. [229] have considered a system stable with respect to a set of anticipated
evolutionary changes, where a bounded input (i.e. set of anticipated changes) should re-
sult in a bounded output (impact on the system). Meanwhile, authors in [230] proposed
metrics that take into consideration the environmental factors driving software changes
in assessing the stability of design decompositions, beside the conventional metrics (e.g.
coupling). Namely, the “Decision Volatility” metric assesses the stability of a design deci-
sion based on the number of environmental conditions that can cause design change and
their impact scope. The metric sums all the design decisions values and can be formalised
using logical models for automated quantitative assessment.

Some studies have explored stability in evolving designs when adding new features.
The study [231] has been performed for analysing the effect of stability on model com-
position efforts for evolving design models to add new features. Another study has been
performed on comparing different logical stability estimation models of classes in the case
of incremental development, where stability of the design structure is assessed after the
changes of adding each increment [181].

In the context of object-oriented design, Bansiya [232] [233] has studied both the struc-
tural and functional stability of object-oriented framework systems for evolutionary pur-
pose, where stability is determined by the “extent-of-change” between versions. Structural
stability is limited to the classes structuring in inheritance hierarchies, while functional
stability is related to the object’s methods of individual classes between versions. Matts-
son and Bosch [234] [235] extended Bansiya’s work with an additional aggregated metric,
which is the “relative-extent-of-change” metric. Grosser et al. [118] [119] proposed a case-
based reasoning predictive approach for stability of Java classes using evolution knowledge
of previous versions. They defined stability as “the ease with which a software system
or a component can evolve while preserving its design as much as possible”, restricting
such design preservation to the class interfaces. A distance function is defined to compute
the similarity between components and derive stability from it. Similarly, Tsantalis et
al. [236] proposed a probabilistic predictive approach for the same problem, by calculat-
ing the probabilities of changes effect for each class in the case of adding and modifying
functionalities from previous versions (i.e. syntactic and functional).

For capturing the stability of evolving object-oriented designs, the “System Design
Instability” metric has been defined by Li et al. [200], where stability is measured by
the percentage of classes with changing names (syntactic), added and removed (logical
and functional) in two successive designs. This metric has been redefined by [237] [238]
[239] for object-oriented systems developed using the agile software process. The work of
Azar and Vybihal [240] proposed an ant-colony based predictive technique for predicting
syntactic stability of classes in object-oriented software systems at early development
stages. In this work, classes are considered to be stable if their public interfaces (header
of the methods) are kept without changes (sytactic), addition or deletion of methods
(functional) across different versions, i.e. for evolution. The impact of code refactoring
on class and architecture stability has been studied in [241]. Meanwhile, Bouktif et al.
[127] have based their approach for predicting object-oriented class stability on adapting
rule sets, which starts from one stability classifier and adapts its rules using genetic
algorithm. Another stability prediction model for open-source software systems was built

40

using a combination of Bayesian classifiers [139], which allowed interpretations of the class
stability.

In the context of aspect-oriented design, Greenwood et al. [131] studied structural
stability —that “encompasses the sustenance of modularity properties and absence of
ripple-effects in the presence of change” —in evolving applications. Given the impact
of crosscutting concern (critical consideration for stakeholders cutting across the soft-
ware modular structure) patterns on design stability, the work of [242] have studied the
aspect- and object-oriented versions of three evolving systems. Meanwhile, the predic-
tive approach of [243] studied the correlation between crosscutting concerns and design
(in)stability, in order to anticipate design decisions at early stages of software develop-
ment.

Maintenance Purpose. The prospective approach of Yau and Collofello [114] mea-
sures design stability at any point during the design process, in order to examine modular
programs at earlier stages (before producing code) for possible maintenance problems.
Here, stability is calculated as the reciprocal of the potential ripple effect of modifying
the program modules. Potential ripple effects are regarded with respect to the modules
being affected with the modification of a certain module, including the modules that in-
voke that module or are invoked by that module, or share global data with that module,
defined as the total number of assumptions made by other modules.

Elish and Rine [126] [129] have adopted the same perspective of [114]. In [126], the
focus was on the logical stability of object-oriented designs, which indicates “the resistance
to interclass propagation of changes that the design would have when it is modified”
(maintenance). In [129], they studied structural stability of object-oriented design that
refers to “the extent to which the structure of the design is preserved throughout the
evolution of the software from one release to the next”, and provided product-related and
process-related indicators for stability. The impact of structural design patterns (adapter,
bridge, composite and facade) on class diagram stability was discussed in [244], but no
empirical evidence was provided. The relation between class stability (using the previous
metrics) and maintainability has been experimentally studied in [245].

In the context of design patterns, the work of [140] examined stability of classes par-
ticipating in different design patterns, and defined (in)stability in such case as “the degree
to which a class is subject to change, due to changes in other, related classes, considering
the probability of such classes to change as equal to a certain value” (structural, syntac-
tic). This work distinguishes between the propagation of changes and (in)stability, as
they are not correlated in all the cases of design patterns. A class highly depending on
other classes would be unstable; however, if the class does not actually change, change
propagation would be not high.

A recent study analysed the correlation between class stability (measured using the
class stability metric of [238]) and software maintainability [246]. Using one metric for
stability, the experiments showed variations in the correlation, but no direct causality was
concluded.

41

Reuse Purpose. In the column series that appeared in the Communications of the
ACM by Fayad [247] [248] [249], the concept of Enduring Business Themes (EBTs) [250]
has been adopted, and the Business Objects (BOs) and Industrial Objects (IOs) have
been introduced as design artefacts for producing stable software. The idea is to build
the core of the software design of the stable themes (EBTs) and objects (BOs) that
remain unchangeable, while the changing objects are identified as IOs. This will yield to
a stable design to be reused without changing the core. Heuristics for finding EBTs and
BOs were also proposed [249]. By dividing the system into stable and unstable modules,
Chiang [251] has discussed the integration of stability into the re-engineering process, in
order to reduce the impact of maintenance changes, their costs and efforts.

Applying the concepts of EBTs and BOs, the Software Stability Model (SSM) pattern
has been introduced for presenting software stability artefacts [9]. The SSM has been
employed in the context of software reuse to describe the core of a system, which gener-
ates a stable design that is extensible for software reuse [252] [253]. An implementation
method for the BOs was proposed in [254] to facilitate the application of the SSM in real
developments. The SSM has also been applied for building stable real-time systems with
adaptive reconfigurable controls [255], magnetic resonance image (MRI) visual analyser
stable application [256], and for realising unified software engineering reuse [257].

The concept of Software Stability Model (SSM) has been applied in different ways
for the purpose of software reuse. Applied to the software analysis patterns, Stable
Analysis Patterns have been introduced for analysing the system under consideration
and modelling the knowledge of its domain, with the objective of producing stable mod-
els with higher reusability [258] [259]. The Stability Analysis Pattern has been further
developed for specific purposes design and analysis pattern to provide a reusable core
for applications sharing the same core stable for specific purposes. Examples include
the visualisation pattern (identifying and extracting the core knowledge of visualisation
from the application-specific knowledge) [260], the classification pattern [261], AnyLog
pattern [262], AnyTransaction pattern [263], AnyInformationHiding pattern [264], Any-
CorrectiveAction pattern [265], the learning pattern [266], and the reputation analysis
pattern [267].

Another stability pattern, called Stable Atomic Knowledge (SAK) pattern, has been
introduced for representing domain-neutral knowledge to be reused in different domains
[268]. Further, domain-specific and -independent patterns are extracted from existing
systems to be reused in modelling applications that share the same core knowledge of the
domain and the atomic notions knowledge not related to specific domain respectively [269].
Also, an approach for identifying and reusing domain patterns has been proposed in [270].
A domain analysis method driven by stability has been proposed in [271], with the aim
of producing stable design artefacts that can be easily reusable within a specific domain.

Considering the system evolution, the stability model has been applied for separating
crosscutting concerns and encapsulating concerns into stable modules (i.e. less likely to
change) over time [272]; and a semi-automated approach was proposed in [273]. Mean-
while, authors in [274] proposed a probabilistic model for estimating stability, by cor-
relating “function points” (used in estimation techniques) of a system to be developed
to the EBTs, BOs and IOs. The probabilistic model has also been applied for building
autonomic systems [275].

In the context of component-based design, the correlation between the stability of

42

domain business models and components granularity (structural) has been studied in [70],
where stability has been specifically defined as “the probability that a business model or a
component remains stable in a given period of time”. A component identification method
has been proposed for making design decision about components and their granularity
level for reuse purposes.

With respect to the reuse of aspect-oriented design, Van Landuyt et al. have proposed
a design method for maximising the reuse of pointcut interfaces –which expose crosscut-
ting behaviours to be used in multiple aspects of an application –in applications of the
same problem domain [276] [277]. The method is based on the discovery of stable ab-
stractions for the domain model of the application to be mapped onto pointcut interfaces.
Automation of the approach was attempted in [278], where an algorithmic procedure for
each activity was defined with introducing abstract extension points as a human-based
activity.

Meanwhile, adaptation is used to automatically generate adapters for communicating
black-box components (e.g. web services, Software-as-a-Service cloud services), which
functionalities are required in the composition, and have incompatible communicating
interfaces [279] [280]. In such case, a set of components is stable if from some com-
munication buffer bound, the bounded composition is equivalent to any larger bounded
composition [281]. Stability-based adaptation aims at generating an adapter with the
smallest bound satisfying stability [281].

Syntactic Aspect. Different aspects of stability for object-oriented design have
been studied. The earliest studied is the syntactic aspect in [282], which measured the
stability of object-oriented design using simple parameter coupling between different ob-
jects in a program. Coupling and cohesion in a package have also been adopted in [283]
as factors for stability influencing software maintenance and reuse. Based on the number
of methods in a class, Rapu et al. [284] measured stability by the number of added or
removed methods between two versions to be used for automatic identification of design
problems for maintenance activities. Vasa et al. [285] have also studied a number of sta-
bility indicative measures (size, popularity and complexity) of modified and newly added
classes and interfaces in consecutive releases (evolutionary), where more complex classes
are more likely to change over time. The aim is to detect the tendency of complexity and
change of classes for effectively managing the evolution of complex systems.

Structural Aspect. The structural aspect of object-oriented design has been stud-
ied in [286], considering stability as an indicator of the design package resilience to change
to support reuse and evolution activities, where the metric indicates “how much the classes
are linked to their package”, i.e. a package is stable if its classes do not refer to classes in
other packages.

The widely adopted concept of “positional stability” of a software package has been
proposed by Martin [287], and is calculated using the number of dependencies changing
within the package, where a module is less likely to change when modifying other parts of
the system if that module depends only on stable modules, assuming that abstract classes
are generally stable. A preliminary investigation about the correctness of this assumption

43

on Java interfaces has been conducted in [288]. The work of [289] has employed this metric
on the whole software level based on class-to-class dependencies to quantify the stability of
the structure of consecutive releases. The study of [290] has explored the use of time-series
cross-sectional regression model for statistically evaluating the metrics of Martin, where
empirical results have shown that the use of package-level metrics in statistical inference
needs precautions in practice. Also, the works of [14] [291] has aggregated the package
level stability for measuring the structural design stability of open source systems.

Metrics. A metrics suite has been proposed in [292] at the design level for assessing
the stability of the UML diagrams during the development phase, namely class, use case
and sequence diagrams. These diagrams represent the UML structural, functional and
behavioural views respectively.

2.7.2.4 Architecture Level

Evolutionary Purpose. Stability has been considered as the main criterion for as-
sessing the long-term value of software architectures throughout their evolution [123]. The
earliest discussion about stability at the architectural level is found in [117]. Considering
that a primary goal of a software architecture is to guide the evolution of the system,
the stability of an architecture has been defined as “a measure of how well it accommo-
dates the evolution of the system without requiring changes to the architecture” [117].
The retrospective approach proposed by Jazayeri [117] aims at analysing how easily the
evolution occurred over the successive releases of the software. Meanwhile, the prospec-
tive approach [39] aims at predicting how the evolution will take place, by examining
how the architecture will endure the likely changes. Architectural stability has, then,
been defined as “a quality that refers to the extent an architecture (structure) is flexible
to endure evolutionary changes in stakeholder’s requirements and the environment, while
leaving the architecture intact” [122]. Tonu et al. [293] have adopted the same perspective
for evaluating architectural stability using a metric-based approach that combines both
retrospective and predictive approaches.

Adopting the same definition of [122], Aversano et al. [294] have studied the stability of
architecture core design, by analysing evolution historical data with the aim of measuring
to what extent the architecture of a system is stable with respect to its core components
and identifying potential components for reuse and evolution. Using the design stability
metrics (proposed in [239]), Aversano et al. proposed the Core Design Instability (CDI)
and Core Calls Instability (CCI) metrics for measuring the stability of core architectures.
These metrics have been further improved in [179], by considering the stability of the
external and internal architectural elements in consecutive versions. The proposed met-
rics capture the degree of consistency of the architectural elements (external stability)
and the interaction between architectural elements between consecutive versions (internal
stability). Handani and Rochimah have considered the environmental factors to refine
stability metrics with features volatility [295].

Also, an approach based on concern traces has been proposed for assessing and pre-

44

dicting architecture design (in)stability using information about early development stages
for sustaining the architecture throughout the system evolution [296]. The effectiveness of
concern assessment mechanisms to predict architecture (in)stability has been also studied
in evolving architectures [297].

Nord et al. [298] have adopted the change impact view of stability and related struc-
tural metrics used at the code level in analysing architectural dependency and its impact
on the system evolution cost. According to Nord et al., stability, measuring the percent-
age of modules that are not affected by changes in other modules in the system, and
is computed as the inverse of the cumulative component dependency that is the sum of
direct and indirect dependencies modules have on each other.

Reuse Purpose. The stability metrics of [179] have been extended by [299] in the
context of software reuse, introducing the Reuse Oriented Stability (ROS) metric. The
metric has considered the stability of a software system in terms of the structural consis-
tency when introducing new bugs during its evolution, which affects its possible reuse.

Maintenance Purpose. Architectural stability has been defined as “the ability of
the high-level design units to sustain their modularity properties and not succumb to mod-
ifications” [133] [134]. Assessment of stability of aspect-oriented software architectures
design (i.e. structural) has been analysed by studying the effect of aspectual decomposi-
tions in the presence of architecturally-relevant changes carried during the maintenance
phase [133] [134].

Stability of architectural tactics, essential for realising architectural qualities and meet-
ing quality requirements, has been studied in [300]. The study aims to investigate the
architectural solutions (i.e. structural) that erode over time as a result of not maintaining
quality (i.e. behavioural) after modifications and maintenance (maintenance perspective).
By investigating the relation between architectural decisions and changes, the study has
found that tactic-related classes tend to change more frequently than non-tactic ones.

Operational Purpose. In the context of embedded systems, Rafiliu et al. [301]
[302] have studied the stability of online resource managers and adaptive feedback-based
resource managers of distributed embedded systems running real-time applications, where
the resource manager (i.e. controller) is stable if the resource usage is controlled and the
behaviour of the system is within a bounded distance from the desired behaviour under
all possible runtime scenarios. Porter et al. [303] have proposed an online technique to
validate stability and assure correct behaviour under the destabilising conditions caused by
different platform effects, based on the behaviour-bounding stability theory of Zames [304].
Meanwhile, authors in [305] have discussed a layered architecture for embedded systems
capable of self-stabilising and return to correct execution when operating on unreliable
hardware (with a special focus on stabilising memory management), i.e. physical stability.

Adapting the notion of input-output stability (IO-stability) from continuous Control
Theory, Tabuada et al. [159] have captured two properties of behavioural stability for
discrete systems, that are: bounded disturbances lead to bounded deviations, and normal

45

behaviour is resumed after a finite number of steps. Wand and Huhns [11] have em-
ployed simulations for assessing cloud-based systems in delivering stable service, where
simulations are used for predicting stability condition during operation or planning for
resources expansion. Stability is considered with respect to (logical) system configura-
tions, in terms of the arrival rate of requests, the number of servers in the cloud and the
computing capacity of each server.

In the context of adaptive architectures, the study of [306] has considered the stability
of performance and QoS (i.e. runtime behavioural stability) for adaptive software systems.
This work proposed a software service running separately and monitoring performance
degradation of the adaptive system during runtime. Applying control-theoretic concepts
to software performance control, the service provides an automated mechanism to detect
causality assumption –that describe the system behaviour and regulation policies –viola-
tions and recover the system from instability using an online statistical method. Focusing
on the dynamic learning behaviour during runtime operation of adaptive systems, Yer-
ramalla et al. [307] have proposed a stability monitoring approach based on Lyapunov
functions for detecting unstable learning behaviour, and mathematically analysed stabil-
ity to guarantee that the runtime learning converges to a stable state within a reasonable
time depending on the application.

On the other hand, the stability of adaptation itself has been considered to guarantee
more effective and durable adaptation strategies for parallel computations. In [308], the
stability degree of an adaptation strategy is said to reflect “how long this choice will be
useful for the execution”, and “how frequent reconfigurations are issued by the adap-
tation strategy” [309]. A stable adaptation strategy is the one that “avoids oscillating
behaviours and minimises the number of reconfigurations” (i.e. avoid unnecessary modi-
fications) [310]. That is quantitatively measured by the total number of reconfigurations
and the average time between consecutive reconfigurations [311]. The control-theoretic
approach and adaptation strategies proposed in [311] [309] aim at determining the opti-
mal sequence of adaptations in advance over a specific time horizon, while achieving QoS
requirements, and reducing the number of reconfigurations and reconfiguration amplitude
(the difference in computing resources used between consecutive configurations). This
results in performance improvement and operating costs reduction.

Checking the correctness of the system behaviour (i.e. correctness of adaptation),
authors in [312] have defined an unstable adaptation manager “if it switches between
the adaptation and normal modes infinitely without evolving to the enforcement mode”.
If adaptation cycles continue without reaching the desired state, the system is said to
be in an unstable state. Formal analysis and checking of adaptation manager stability
(expressed by linear temporal logic formula) was proposed by reasoning on the policies of
the adaptation manager and detecting a specific class of instabilities.

2.7.3 Main Observations and Findings

Dimensions of Stability. As mentioned in section 2.6, the notion of stability en-
compasses different abilities. The analysed primary studies have mainly focused on the
abilities related to maintenance and evolution purpose (refer to Table 2.3). Meanwhile,

46

there exist a smaller number of studies focusing on the operational- and behavioural-
related abilities (i.e. return to an equilibrium state and maintain a stated property or
fixed level of operation). With the many definitions of stability, the proposed methods
were not profound on clear stability dimensions and founded solid characterisation.

The analysis of primary studies revealed that design is the widely considered level
for stability. While we do not ignore the importance of the design and code artefacts,
we argue that the architectural stability needs much more attention for the different
purposes and aspects, as architectures have a profound effect on the software life-span
and the quality of service provisioned. The syntactic, structural and logical aspects of
stability have been widely considered. Meanwhile, the behavioural aspect requires similar
attention, especially for the quality attributes critical to the developed and running system
(e.g. response time for real-time systems). Similar to the other dimensions, evolution and
maintenance are the widely considered purposes for stability. Yet, the importance of
stability for the operation of software systems should not be ignored, that is keeping the
intended behaviour stable during operation. Stability has been an important characteristic
to be considered during the development, maintenance and evolution phases, where most
of the proposed techniques are human-based activities. Stability during the operation
phase also needs to be studied, due to its importance for the quality of service delivered,
which requires the development of automated and autonomous techniques to be used for
evaluating stability while the system is running.

Stability at the Code Level. At the code level, the “ripple-effect” measure has
been identified as a valid measure for the stability of programs [112], where the changed
program and its modules are compared, during maintenance, before and after changes for
determining the effect of changes on stability [184]. The logical aspect of stability has
been computed based on the impact of these changes but in different ways. One way
considers software stable if the propagation of changes to existing artefacts is minimal,
including adding new artefacts and modifying existing ones, i.e. ripple effect of changes.
Another one views stability with respect to adding new artefacts, making additions to
existing ones and keeping existing artefacts unchanged. Examples of the former approach
are [112], and the latter approach is [149].

Stability at the Requirements Level. Stability at the requirements level was
found limited in the literature, though it is the only artefact which stability is recognised
by IEEE standard and recommended practices [115] [220] [221]. The analysis and metrics
for evaluating requirements stability were mainly human-based activities for evolution and
maintenance purposes focusing mainly on the logical aspect, with the exception of one
study [228] which autonomously monitored stable behavioural requirements. Yet, further
developments focusing on stability requirements traceability and monitoring in dynamic
environments are required to advance the area of requirements stability. Studies focusing
on stability requirements elicitation are also required, similar to other complex quality
attributes, such as scalability [313].

47

Stability at the Design Level. Stability at the design level has been considered in
different ways, similar to the code level; the first considers that stability is resisting to any
changes made to the design, the second avoiding ripple effects with the addition of new
artefacts or modifications to existing ones, and the third is allowing additions to be made
to the existing design. Logical stability has been considered for maintenance in the same
way as the code level. Structural and functional aspects have been extensively considered
for different software paradigms (e.g. object-oriented [232], aspect-oriented [131]).

Stability at the Architecture Level. With respect to architectural stability, this
has been considered mostly as architectural intactness with respect to architecturally-
relevant changes carried out for maintenance, evolution and reuse purposes (e.g. [133]
[134] [295]), i.e. the ability to accommodate changes while remaining intact. It has been
retrospectively analysed over two or more versions of the software ([117]) or predicted for
possible future changes ([122]). It is noticeable that the structural aspect for maintenance
and evolution purposes is the one considered the most at the architecture level. Implicit
consideration of the behavioural aspect for the operational purpose was found for differ-
ent computing paradigms, such as adaptive distributed systems ([309]), and embedded
systems ([301], [302]).

Stability Metrics. It is obvious that stability metrics would widely differ accord-
ing to the level, aspect and purpose considered. For instance, measuring stability for
maintenance is based on analysing the artefact (code or design) and measures the in-
terdependencies between modules/components [112] [114]. Such interdependencies reflect
“the degree of probability that changes made to other modules could require corresponding
changes to this module” [203], i.e. change propagation is associated with weak depen-
dencies. Meanwhile, evolutionary stability is based on evolution history, measuring the
differences between two or more versions of the evolving artefact. The version differences
are measured using program-level metrics at the code level (e.g. the number of lines of
code, variables, common blocks and modules [130], [136]), and using structural differences
at the architecture level (architecture-level metrics) [203]. Meanwhile, the two types of
metrics would complement each other; architecture-level metrics would be appropriate
for measuring the stability of the entire software product as the architectural level, and
program-level metrics would be applicable on a single component at the code level [203].

Stability in Practice. Empirical studies, case studies and experience reports were
not found among the surveyed primary studies. Yet, there is a need for empirical ap-
proaches for studying stability, similar to case studies developed to study architecture
and software evolution (e.g. [314], [315], [316], [174]). Also, application samplers and
simulators are needed for studying operational and behavioural stability in practice.

48

2.8 Engineering Practices Supporting Architectural

Stability

In this section, we discuss software engineering practices that support architectural stabil-
ity, architecture analysis, design and evaluation, during the different phases of the software
lifecycle.

2.8.1 Architecture Analysis and Design

Designing stable architectures for the evolutionary purpose is about making architectural
decisions and selecting architecture styles such that evolution could be possible in the
future and changes are accommodated without architectural breakdown or phase-out [317]
[39]. The universal philosophy “design for change” [317] has been adopted in the early
efforts for designing stable architectures [39]. This concept has been promoted as a value-
maximising strategy, where the stable and evolvable architectures are expected to add
value, throughout the system lifetime, that overbalance the cost of designing for change
and the cost of changes as they occur [318] [39].

By that, an economic-based approach has been adopted to develop flexible architec-
tures that will remain stable while the requirements are changing [318]. This required
linking the structural decisions to the future value creation [39]. Such linking enables to
evaluate the worthiness of designing for change, i.e. comparing the initial cost required to
build a changeable architecture versus the expected added value if the uncertain changes
occur [39]. The economic-based approach called “ArchOption” has adopted the Real
Options Theory from economics to design evolving architectures as a value-maximising
activity under uncertainty [120] [121] [123]. In details, the added value was attributed
to “the flexibility of the architecture in enduring changes in requirements” [19]. Given
the anticipated changes, reaching the design decision for a stable architecture entails
searching for the architecture design that maximises the value of adapted flexibility with
respect to the likely requirements changes [120] [123] [19]. Such reasoning informs the
selection of a stable architecture notwithstanding future changes, and can then be used
to derive insights into design and investment decisions related to architectural stability
and evolution [39].

In this context, we do not ignore architecture analysis and design classical approaches
in the literature. Examples of seminal works include Software Architecture Analysis
Method (SAAM) [319], Architecture Tradeoff Analysis Method (ATAM) [320] [321], Cost
Benefit Analysis Method (CBAM) [322] [323], behaviour analysis [324], the 4+1 view
model [325], viewpoints [326], scenario-based analysis [327]. Yet, none is QA-specific;
they could be tailored to consider stability.

Designing Self-Adaptive Architectures. Architecture-based self-adaptations have
been regarded as a promising approach to improve the quality of service delivered, cope
with runtime changes and improve the system resilience and robustness [27] [328]. Dif-
ferent approaches have been discussed in the literature (e.g. [27], [329], [24]) to help de-
signers building adaptive systems. The agreement about stability as a critical property is

49

yet found in theoretical frameworks of designing self-adaptive architectures. The research
community has not taken it forward towards implementing it in design approaches. Also,
it has not been explicitly considered in designing adaptation policies [66] [25].

Discussion. The architecture design approach found in the literature have focused
on the structural aspect of stability and for the evolutionary purpose only. Yet, it is not
adequate for considering the other aspects and other purposes (behavioural, operational).
Further, the previously mentioned design classical approaches have considered the stabil-
ity in the case of classical architectural styles as design alternatives. Meanwhile, modern
autonomous systems exhibit more complexities. Though some approaches could be ac-
commodated to consider stability among the design attributes and the emerging software
paradigms, yet more sophisticated extensions are required while designing such complex
systems (e.g. designing adaptation policies).

2.8.2 Architecture Evaluation for Stability

At the design phase. Evaluating stability at the design phase aims at measuring to
which extent a particular architecture design is capable of accommodating future changes
while remaining intact [39]. This provides the architect with better understandings for the
architecture design decisions and architecture investment, by addressing the implications
of having a stable architecture design, relevant cost and value [124].

Predictive approaches for evaluating architectural stability are to be used during the
software development stage, to predict the threat of future changes on the architecture
stability [39]. The predictive evaluation aims at supporting the process of valuing the
capability of a particular architecture design relative to the future changes [124]. The
outcome of such evaluation is answering the key question at the design phase: which
architecture design will facilitate future changes and support the software evolution? [124].

An early survey of design-time evaluation approaches [122] indicated that the evalua-
tion approaches focused explicitly on architecture construction and implicitly on evolution.
Examples of architecture evaluation methods include Active Review for Intermediate De-
signs (ARID) [330], Attribute-Based Architectural Styles (ABAS) [331], Scenario-Based
Architecture Reengineering [332], Quality-Attribute-Based Economic Valuation [333], and
CHARMY for verifying architectural specifications [334]. These methods focused on eval-
uating architectural decisions in relevance to traditional quality attributes [39]. Though
they adopted the concern of accommodating changes, none of them explicitly addressed
neither architecture stability along with evolution nor behavioural changes during opera-
tion 1.

ArchOptions explicitly studied evaluating architectures’ stability for evolutionary pur-
pose [120] [121]. The method was built on Real Options Theory for predicting architec-
tural stability. This model has taken the economic perspective in the evaluation, where
the design is judged based on the added value and value creation [318] [122]. The major

1Further details about the critical relation between stability and these evaluation methods could be
found in [122] [39].

50

idea of this approach is value-based reasoning about the capability of the architecture to
withstand the expected evolutionary changes, i.e. the stable design is seen to add value to
the system in the long-term evolution. This added value, under the stability context, can
be measured by: (i) accumulated savings as long as long as the architecture accommodates
changes without being broken, and (ii) benefit from reusing the architecture. The predic-
tive results of the evaluation can be used in assessing the long-term value of architecture
candidates, analysing trade-offs between them for the long-term value, and validating
their opportunity for evolution [124]. Though this approach is suitable for evaluating
architectures of any software paradigm, it requires further extensions to accommodate
the complexity arising when evaluating the stability of adaptive and self-adaptive/ self-*
architectures. Such extensions are necessary to evaluate the effect of adaptivity on sta-
bility, and to determine the possible adaptation strategies that will keep the architecture
structurally and behaviourally stable.

In the context of aspect-oriented architectures, given the assumption that modular-
isation of concerns in architecture design has a direct effect on its stability, the work
of Medeiros et al. [297] have determined the correlation between concerns and instabil-
ity by quantifying the “Spearman Correlation Indicator”. This work has also evaluated
the effectiveness of concern metrics and patterns in evaluating stability [297]. Authors
in [133] [134] proposed a domain-specific evaluation approach for analysing the stabil-
ity of aspect-oriented architecture designs, analysing the influence of the aspect-oriented
composition on the stability of multi-agent software architectures using quantitative in-
dicators.

In the domain of adaptive architectures, stability has been considered a critical prop-
erty for such type of architectures [66] [25]. But stability has not been explicitly considered
when evaluating adaptation policies at design-time. Meanwhile, special attention has been
given to evaluating the robustness and resilience of self-adaptive architectures and their
controllers. Below, we discuss representative work that partially tackled some aspects of
architectural stability, and we show how they intersect with the notion of stability.

Camara et al. [335] considered resilience as the ability to “deliver a service that can
justifiably be trusted when facing changes”, i.e. dependability under varying external con-
ditions (runtime and environmental changes). The architecture-based approach evaluates
to what extent adaptations are resilient, by advocating the use of architectural models
and simulations. The potential changes that the system can encounter during runtime
(including changeloads [168] and environmental changes) are simulated, and the system
responses obtained are collected and aggregated into a probabilistic model that is em-
ployed in the evaluation of system resilience. This approach was developed to be used
before deployment, i.e. an offline design-time prospective approach. This work could be
considered tackling behavioural stability of self-adaptive architectures, as it mainly fo-
cused on the assurance of the service provision, that is “the provision of evidence that the
system satisfies its stated functional and non-functional requirements during its opera-
tion in the presence of self-adaptation” [336]. With respect to the adaptation controllers,
authors in [337] [338] proposed an approach for assessing the robustness of controllers in
self-adaptive systems, in order to identify their design faults.

51

During the operation phase. Runtime evaluation of stability is about assessing
the architecture state of fulfilling runtime requirements while the software is operating.
In the case of adaptive architectures, it would help in identifying adaptation actions when
necessary to fulfil the changing requirements, ensuring the adaptation actions will leave
the architecture stable in the long-term, and avoiding unnecessary repetitive adaptations.
Runtime evaluation approaches tend to do stability evaluation while the system is oper-
ating, either on the system itself or on simulations. The results could be used either to
take offline decisions (changing the architecture’s structure or adaptation policies) or to
perform the adaptation autonomously during runtime.

Runtime stability evaluation has not been addressed explicitly in the evaluation ap-
proaches found in the literature to date. Some runtime evaluation approaches available in
the literature addressed evaluating other attributes related to stability, such as depend-
ability, resilience, reliability and robustness. Here, we also discuss representative work
that partially tackled some aspects of architectural stability.

The survey presented in [148] identified the challenges and opportunities for provi-
sioning dependable and resilient cloud-based software services. The work of Ghosh et
al. [339] considered the cloud dynamics in demand and available capacity in evaluat-
ing the resilience of cloud infrastructure services by “job rejection rate” and “response
delay”. In [143], the impact of environmental changes on resilience was quantitatively
evaluated using Exploratory Data Analysis (EDA). The works of [340] [341] focused on
service-oriented architectures, and investigated their behaviour (in)stability (ability to
guarantee certain response time and performance) and the (in)stability of the communi-
cation medium (physical aspect). But instability, here, was considered as dependability
(i.e. ability to deliver justifiable trusted services). With the aim of considering, not only
the environment as the only source of change, but a wider range of changeloads [168], the
resilience benchmarking presented in [142] has addressed the robustness and resilience
issues.

In the evolution phase. Late evaluation of architectural stability aims to under-
stand the impact of evolutionary changes on the architecture. Such impact could be on
different aspects, such as the architecture’s structure or the runtime behaviour.

The work of Jazayeri [117] has considered architectural stability for the evolutionary
purpose. The retrospective analysis aims at analysing how easily the evolution occurred,
by examining consecutive releases of the software [117]. Such analysis is based on com-
paring properties of different releases next to each other, to assess if the architecture
remained intact through the evolution (i.e. through the different releases of the software).
The approach used simplistic metrics (e.g. software size, modules number) to summarise
the software evolution and coupled these metrics with “colour visualisation” to illustrate
the evolution among the consecutive releases [19]. A distinct contribution of Jazayeri work
is the visualisation of design components, thus it makes understanding stability easier.
But a drawback of this approach is that it appears not to be practical with the absence
of dedicated tools, as it requires information about each release, where such data is not
commonly maintained and analysed [122] [39].

Another retrospective approach is the metric-based approach proposed in [293]. The
approach is based on extracting the architecture from the source code of different software

52

releases. Using the extracted facets, the retrospective analysis is, then, employed to
examine whether the architectural decisions remained intact across the different releases,
i.e. evaluate the stability of the architecture’s structure. This work focused on the source
code as a feature to reflect some aspects of the architectural stability [293], which could
not be considered as a comprehensive view of stability.

Stability metrics. Stability metrics have widely varied between studies according
to the purpose and other aspects of stability. The majority of studies have implicitly
provided metrics for stability according to the context they are studying. As an example,
authors in [120] considered monetary cost, time-to-release, market-value, and interest rate
relative to budget and schedule as metrics when evaluating architectural stability during
design-time for evolutionary purpose. Few studies have explicitly proposed metrics for
architectural stability. Constantinou and Stamelos [179] [299] proposed two sets of metrics
for measuring stability for the evolutionary and reuse purposes: (i) External Stability
and Internal Stability that “capture the degree that the architectural elements remain
stable to consecutive versions of the same system”, (ii) External Evolution and Internal
Evolution that “quantify to what extent a system evolves between consecutive versions
and the degree that the newly developed elements interact with the remaining part of the
system”. These metrics focused on the structural stability and were extended to consider
behavioural evolution (Reuse Oriented Stability (ROS) metric) and related design and
code evolution (Design Complexity Increase (DCI) and Bug Fixing Rate (BFR)).

In the context of dynamic systems, the significant metric of the dynamic behaviour
related to stability is ”the time required, following a perturbation in the system state, to
reach a new equilibrium state” [75].

In the context of adaptive architectures, stability has been considered a critical prop-
erty for evaluation. Many studies have considered resilience and dependability (with
partial intersect with stability notion) for evaluating adaptive architectures [342] [142].
Authors in [342] have additionally considered adaptation overhead for evaluating the ef-
fects of adaptation. The overhead covers the frequency of adaptation, the downtime for
reconfiguration and resources cost, and results in thrashing behaviour, that is the contin-
uous reconfiguration with small runtime changes.

Stability has been discussed in theoretical evaluation frameworks of self-adaptive, with
special insights from Control Theory. In the descriptive evaluation model of [66], the met-
rics used Control Theory have been mapped to self-adaptive architectures, arguing that
the architecture should be evaluated within its embedded problem-solving context, do-
main and goal state. Meng [66] has used the same stability definition of control theory,
where the system is considered stable “if its response to a bounded input is itself bounded
by a desirable range” and “the controlled variables are within allowable range to the set
points”. Thinking of reconfiguration as the control regime for the architecture, concern-
ing its runtime behaviour, Meng [66] has considered stability as avoiding the thrashing
behaviour. In this case, stability evaluation would also require determining whether the
system is approaching its target state after reconfiguration.

Villegas et al. have taken inspirations from Control Theory further, by defining a
set of adaptation properties derived from control theory properties in terms of quality
attributes and metrics widely used in software engineering [25]. In this work, authors

53

clearly differentiated the evaluation of the managed and managing system (adaptation
controller). The former is evaluated by the quality attributes as adaptation goals, and
the latter is evaluated by adaptation properties of the controller. Adaptation goals are
the quality of service (QoS) properties intended to be achieved by the architecture, while
adaptation properties are observed and measured in the adaptation process [25]. In this
context, stability is “the degree in that the adaptation process will converge toward the
control objective” [25]. An unstable adaptation will repeat the action with the risk of
not improving or even degrading the system to unacceptable states [25]. Stability is
measured by: (i) accuracy in terms of “how close the managed system approximates to
the desired state” within given tolerances, (ii) settling time that is “the time required for
the adaptive system to achieve the desired state”, (iii) resources overshoot which expresses
“the utilisation of computational resources during the adaptation process to achieve the
adaptation goal” [25].

Jiao [152] has put the concept of stability in different wording using the adaptation
level, that is “how well the system satisfies the user’s expectations through adjusting
its behaviour or configuration to tackle the changes in the environment”. Considering
the environmental change, adjustment and requirement satisfaction as the key aspects
of adaptation, Jiao [152] has put a mathematical measurement which involves: (i) the
degree of change in the environment, (ii) the degree of adjustment of the system which
“reflects how much a system adjusts its behaviours and structures”, and (iii) the degree
of satisfaction to meet the requirements which “implies how well the system meets the
requirements”.

Discussion. Assuming that the architecture is the primary guide of the system
evolution [39], architectural stability evaluation approaches (for the evolutionary purpose)
can be performed either during the design phase or at later stages of the system lifecycle.
In the former case, the evaluation aims at predicting how the architecture design will
endure the likely evolution changes, where predictive approaches are used (e.g. [122] [39]).
In the latter case, the retrospective evaluation aims at analysing how easily and smoothly
the evolution occurred, by comparing successive releases of the software and checking the
intactness of architectural decisions (e.g. [117]).

Generally, the retrospective evaluation is useful for planned evolution, to be used for
evaluating how the next release of the software will be stable [19], i.e. previous evolution
data extracted from the retrospective analysis can be used to identify the components
most likely to change and anticipate resources required for the next release. But it is not
suitable for use at the early stages of architecture design, as it is done on already existing
systems [39]. Meanwhile, predictive evaluation is seen to be preventive, by proactively
understanding the stability problem and understanding threats related to possible evolu-
tionary changes. It is obvious that using both approaches at their appropriate phases is
good practice for evaluating stability throughout the software lifecycle.

The approaches found in the literature for evaluating architectural stability were lim-
ited to the evolutionary purpose and the structural aspect. The behavioural aspect was
not addressed in the design and runtime phases. Tough the evaluation methods were
systematic, they are human-based activities, relying on the architect experience and own
judgement. Some approaches sound promising for stability evaluation of modern complex

54

systems. But novel extensions are still required to accommodate the complexity of archi-
tectures for autonomous systems. Such complexities mainly arise from the heterogeneity
and dynamism of both the software itself and the environment in which the software is
operating and interacting. Approaches for evaluating architectures and adaptation poli-
cies while designing modern software systems should evaluate the effect of adaptation
strategy on the architecture stability, so that the architectural decisions taken result in a
robust and stable architecture.

In the context of adaptive architectures, stability has been discussed in theoretical
evaluation frameworks, with few mathematical or practical measurements. Approaches for
evaluation can be used during design-time or offline, i.e. not while the system is operating
during runtime. The community still lacks efforts in evaluating architecture adaptation
decisions during runtime to comprehensively consider structural and behavioural stability.

2.9 Gap Analysis

Based on the taxonomy (section 2.5), we identify the research gaps. Though the research
area of software stability has received much attention and significant progress has been
made, many important issues are not tackled yet. The identified gaps related to stability
are:

• Clarity of the concept. From section 2.6.1, the concept of stability has been defined
in many different ways. This indicates that the concept is not fully established
in the software engineering community. The lack of concept clarity could be an
interpretation for less attention to certain aspects or lifecycle phases in considering
stability.

• Integration in the different software lifecycle phases. From the analysis results of
primary studies presented in section 2.7, stability has not received equal attention
in different lifecycle phases. Though there is a lot of work considering stability in
the early design and late evolution phases, the operation phase has benefited less.
Also, operational stability inter-wined with the development phase has not been yet
explored.

• Consideration of the different aspects of software artefacts. Stability has received
good attention for the different software artefacts, with the exception of the require-
ments level. As such, much work has looked into the static aspects of stability, such
as the architecture and design structure. Yet, stability is not only a static property
for software artefacts, it also comprised of behavioural aspects.

• Stability metrics. Tough a valid quality attribute should be quantifiable and falsifi-
able, researchers adopted general metrics from software engineering according to the
definition and dimensions considered. The literature lacks metrics focused explicitly
on stability.

• Benchmarking. Benchmarking provides a generic way of characterising the response
of the artefact (e.g. architecture’s behaviour) when subjected to changes, allowing

55

the quantification of stability. Yet, the literature tends to lack benchmarks explicitly
devoted to stability. With the existence of many quality attributes inter-related with
stability, stability benchmarking could understandably comprehend constructs and
techniques from previous benchmark efforts, such as dependability benchmarking
[343] and resilience benchmarking [142]. It can also benefit from the structure of
established benchmarks [142]. But an interesting and unanswered question is what
are the components that should be added to a stability benchmarking to reflect
the various aspects of stability, or a particular software domain (e.g. behavioural
stability of self-adaptive architectures or real-time systems).

• Support tools. Tough there exist systematic approaches for design and evaluation of
stability (e.g. [120], [299]), the development of support tools is underpinned to a big
extent. Such tools would help designers and architects to make stability approaches
efficient, practical and usable. They could also help in evaluating stability during
runtime.

• Validation in industrial context and empirical studies. While there are many studies
theoretically discussing the notion of stability and proposing solutions, empirical
studies, experience and practice reports are not well-featured in the primary studies.
Such studies, when applied to particular business domains, could reveal the benefits
and associated challenges related to those domains. Even though there is massive
data generated from the industry, there is little attention devoted to the validation
of research studies in the industrial context.

• Engineering approaches considering the different aspects of architectural stability for
different purposes. From the closer analysis of the architecture level (figure 2.4), we
identified the lack of engineering approaches considering all architectural aspects for
different purposes in the different lifecycle phases. For the development phase, stud-
ies related to architecture analysis, reasoning and design focused on either quality
impact for architecture construction [344], or the provision of specific quality at-
tributes (e.g. dependability and reliability) [345] [346] [347] [348]. Architecture
evaluation methods focused on the structural aspect of architectures for evolution-
ary purposes. Meanwhile, architecture analysis methods should focus on predicting
the different aspects of stability, as the case of architecture-level modifiability analy-
sis (ALMA) [349]. Architecture reasoning and design should also explicitly consider
stability when translating requirements to an architecture solution [350]. There is
also significant lack in considering the behavioural aspect during operation. Run-
time adaptation mechanisms proposed in the literature focused on some adaptation
properties, such as tactics latency (the time it takes since an adaptation is started
until its effect is observed) [351], settling time (the amount of time the controller
takes to achieve the adaptation goal) [352] [353]. Yet, other properties reflecting
the quality of adaptation, i.e. how well the adaptation process converges towards
the adaptation goal, are not explicitly considered [354] [25], while properties re-
flecting the behaviour of the controller have impact on the stability of the whole
architecture [25].

56

2.10 Related surveys

There are several related surveys in the field of software engineering, but to the best of
our knowledge, they do not focus on stability. There are studies reviewing related quality
attributes in software engineering, such as sustainability [355] [356] [357], maintainabil-
ity [358], reliability [359]. Other studies reviewed related engineering practices, such as
software reuse [360], self-stabilisation [361], software ageing and rejuvenation [173]. In
the area of software evolution, authors in [362] presented a review on the research of
architecture evolution, and [363] presented a framework for classifying and comparing
architecture evolution.

With respect to software architecture, there are many surveys, such as [364] [365].
Others focused on architecture related practices, such as architecture optimization meth-
ods [366], architecture design rationale [367], decision-making techniques for architecture
design [368], analysis methods [369], evaluation methods [370], and methods that handle
multiple quality attributes in architecture-based self-adaptive systems [371]. There are
other studies reviewed architectural concepts similar to architectural stability, such as
architecture erosion (the result of modifications that violate architectural principles and
can degrade system performance and shorten its lifespan) [372], architectural degenera-
tion [373] and architectural decay [374]. With respect to architecture properties, authors
in [375] presented a survey on reliability and availability prediction methods for software
architectures, maintainability prediction in [358], and sustainability evaluation in [376].

2.11 Summary and Conclusion

This chapter has contributed to a systematic literature review of the state-of-art on sta-
bility in software engineering and has converged to closely look at stability in software
architectures. We proposed a taxonomy for characterising the concept, analysed defini-
tions found in the literature. Such characterisation paves the way for better understanding
of the concept and consequently motivates future research directions. We discussed how
stability was treated for the different software artefacts in the software engineering com-
munity. As architectures have a profound effect throughout the software lifetime, we
closely reviewed the related engineering practices.

As long-lived software systems are becoming highly desirable, stability is the property
to reflect such concerns, hence, could be considered a primary criterion towards achieving
longevity, and a fundamental property to sustain the whole system. We envision that
stability could be a new dimension to software properties, as it combines many related
qualities and aspects. For instance, the behavioural aspect of stability is related to per-
formance in the long-term. Consequently, research and practice shall witness a growing
attention to stability. Although it will take considerable time and effort to achieve a
comprehensive framework for measuring, evaluating and achieving stability, the surveyed
literature indicates that future developments in requirements engineering, architecture
design and evaluation may align towards architectural stability, since researchers and
practitioners aim for better quality and long-living software.

The review indicates a shift from a narrow concept of the stability (architecture intact-

57

ness) to a multi-dimensional concept, including many aspects (structural, behavioural).
This survey could serve as a primary investigation for deeply characterising the notion
of stability as a software property, to take it further towards handling the wider concept
and the related challenges.

58

Chapter 3

Characterising the Notion of Stability in
Software Engineering

True stability results when presumed order and
presumed disorder are balanced.

— Tom Robbins

3.1 Introduction

The literature review findings have revealed that the notion of stability has been defined
and characterised in many different ways and that the different dimensions of stability are
not fully considered. Grounded on such findings, this has hindered the need for proper
consideration of stability as a quality attribute that is strategically important for the
longevity of software systems. Hence, we contribute to a working definition and a prag-
matic view of stability based on the taxonomy dimensions (proposed in section 2.5). We
further discuss a proposal for engineering stability as a software property. These con-
tribute to understanding the facets related to stability, advance the way of understanding
the concept, and presents a compilation of different understandings from the literature.
As such, we identify new requirements and challenges that have been imposed for re-
alising architectural stability. Focusing on the behavioural aspect of stability, we draw
conceptual designing principles for capturing the intended behaviour.

Organisation. This chapter is organised as follows. Section 3.2 presents a working
definition for stability. Section 3.3 discusses a multi-dimensional perspective for char-
acterising and engineering stability as a software property. In section 3.4, we elaborate
requirements for realising architectural stability. Section 3.5 sketches design principles for
capturing behavioural stability. The chapter is concluded in Section 3.6.

59

3.2 A Working Definition for Stability

In developing a working definition for stability, the task has proved to be challenging
when balancing between abstraction, precision and comprehensiveness. Given the multi-
dimensional, case- and context-specific nature of stability, we argue that a unique def-
inition for stability might not be possible or accurate. We opt, instead, for a working
definition, based on a set of principles that help consider stability as a software property.
The approach is, therefore, to select an ability and build the definition around the tax-
onomy dimensions. Such approach allows building a conceptual framework for thinking
about stability and a set of dimensions to approach.

A working definition should, then, include an ability (e.g. ability to keep unchanged)
and the different dimensions of the taxonomy (level, aspect, purpose). As an example, one
possible definition could be the ability of the architecture’s structure to keep unchanged
along with the time to endure evolutionary changes. Such definition targets stability at
the architecture level for evolution purpose and focuses on the structural aspect. On the
same level, another possible definition could be the ability of the architecture’s behaviour
to maintain a fixed level of operation (or recover from operational perturbations) within
specified tolerances under varying external conditions, to consider the behavioural aspect
at the architecture level for operational purpose. Considering the design level and struc-
tural aspect from the maintenance perspective, a possible definition could be the ability
of the design’s structure to resist to changes (or adapt to changes) due to maintenance
activities.

The sensible treatment for stability depends, then, on the system of interest, its do-
main and context, the attribute(s) in question of stability, and the time of consideration.
For instance, the treatment of the architecture’s structural stability could be considered
during the development phase (i.e. a prospective approach by the architect) to plan
for possible future evolution, or later during the maintenance and evolution phase (i.e.
retrospective approach) for possible lessons learnt. Similarly, the treatment of the archi-
tecture’s behavioural stability could be considered at design-time (for making architecture
decisions capable of keeping the desired level of operation), or during runtime (either by
autonomous online adaptation or offline maintenance). Yet, the desired level of operation
depends on the attribute(s) subject of interest (e.g. response time for real-time systems
should be kept stable), and on the software artefact (i.e. architectural stability considers
architecturally-significant requirements only).

3.3 A Multi-Dimensional Perspective for Character-

ising Stability

In this section, we discuss our multi-dimensional perspective for characterising and engi-
neering stability as a software property.

60

3.3.1 Dimensions of Stability

While we believe the literature covered important aspects of stability which are scattered,
we argue that a multi-dimensional pragmatic view is required to offer a systematic way for
practitioners and researchers to deal with stability as a software property. We integrated
the taxonomy dimensions (section 2.5) to create a pragmatic view for stability, as shown
in Figure 3.1.

Considering this view could help the community to identify the dimensions ignored in
the literature and motivate possible research directions. Also, rather than thinking in an
isolated manner about stability, we should be looking for methods and tools to explore
inter-dependencies between the different dimensions throughout the software lifecycle for
a more integrated thinking to achieve software longevity.

Figure 3.1: Dimensions of Stability as a Software Property

3.3.2 Engineering Stability as a Software Property

Our engineering proposal, illustrated in Figure 3.2, is based on the proposed working def-
inition for the concept of stability, where we consider the different dimensions (5W+1H)
of the taxonomy (section 2.5). Engineering stability as a software property requires ad-
dressing the following issues:

• Stability analysis. As stability is not an absolute property and given its different
dimensions, this requires further case- and context-dependent analysis. Such analy-
sis should depend on the system in question, its architecture, the variables subject
of interest (e.g. behavioural attributes that should be kept stable) and the system
context (i.e. contextual aspects influencing the system and its stability). By the
system in question, we mean the type of application and/or the software domain

61

Figure 3.2: Engineering Stability as a Software Property

that determine the associated dynamics and contextual aspects, while the architec-
ture type determines the aspects that should be kept stable. As an example, in the
case of adaptive architectures, the behaviour of the adaptation controller would be
considered in the stability analysis.

• Integration in the different lifecycle phases. The integration of stability in the differ-
ent phases would render strategic benefits throughout the software lifetime. We ar-
gue that the realisation of stability in the different phases is complementary. A good
realisation plan should, for instance, include evaluating architecture alternatives for
long-term evolution and defining runtime adaptation policies in advance, which will
ease the evolution process in the long-term and render stable runtime adaptation
actions. Meanwhile, putting the architecture in operation with less design-time
planning for stability will degrade the architecture performance during runtime.
Though stability analysis could be foundational, engineering practices should be
distinct for each phase. During the design phase, a candidate architecture should
be evaluated by the ability of its structure (structural stability) to maintain fulfilling
the functional and behavioural requirements that are known at this stage, as well
as the likely changes to occur in the future when put into operation (functional and
behavioural stability). While the software is operating, the architecture ability to
fulfil the changing requirements and workloads (behavioural requirements) should

62

be continuously assessed during runtime. The evaluation of architecture alternatives
during the design phase is evidently different from the retrospective evaluation for
evolution planning. Runtime evaluation approaches can vary between online and
offline techniques.

• Integration in the different software artefacts.

– Design and architecture. As architectures typically play a key role in achiev-
ing quality requirements [319] [63] [377] [378] and guiding the software evo-
lution [17] [117], we can evidently agree that realising stability at the design
and architecture levels should be based on the quality requirements subject to
stability [319] [378] [379], where requirements are the key to long-term stability
and sustainability [215] [380]. In other words, the outward requirements goal
is concerned with what the system will accomplish for its end-users [61], which
will be achieved by the architecture.

– Requirements engineering. Realising stability should start in an earlier stage
prior the design, i.e. in the requirements engineering phase [4], where qual-
ity requirements are assessed throughout the architecture’s lifespan and will
be used in informing architecture decisions, so that the architecture will not
break-down easily when coping with increased runtime load demands or evo-
lution [381] [19]. Hence, a “behaviourally stable” architecture design should
be based on the requirements subject to stability. Requirements engineering
for stability will help in capturing and analysing the quality attributes sub-
ject to stability while building stable architectures. Such requirements subject
to stability should be modelled as goals at an abstract level, then technically
fine-grained to be allocated to single specific components [382] [383]. Explicit
relation between the requirements model and the architecture should also be
present to consider the architectural stability [384] [381] [385] [39]. As runtime
requirements engineering has the main role in monitoring the satisfaction of
requirements during runtime [386], they should explicitly consider stability at-
tributes, their dynamic traces to architecture components, and the historical
information related to the fulfilment of these attributes. The link between the
requirements and architecture during runtime should be explicit and symbi-
otic. From the requirements side, if the architecture will change/adapt in light
of the changing requirements, this will ensure fulfilling the changing runtime
requirements. From the architecture side, this will ensure that the architec-
ture will have the expected behaviour, avoiding performance degradation and
phasing-out.

• Contextual aspects influencing architectural stability. Dealing with stability should
be associated with the contextual aspects of the system, which should be tackled in
the different engineering practices during design-time and runtime. This includes
changes and uncertainty. Practices should be moving towards a new era, where
architectures are considered in the environment of unpredictability. Designing and
evaluating under the unknown should benefit from the information value [387] to
evaluate the risk, value perception and quantify the unpredictability.

63

– Changes. Changes have been classified by timing: (i) short-term, dynamic
changes in the system or requirements, (ii) medium-term, reconfigurations for
maintenance, and (iii) long-term, radical changes, reconfigurations and reor-
ganisations for evolution [141]. Changes differ also in their nature, they could
be functional changes, quality requirements changes, operational (changing
behaviour of a service component when sharing resources) and technological
(either software or hardware) [141]. Different types of changes are affecting the
architectural stability at the different time phases and should be handled. For
instance, architects should consider the long-term evolutionary changes when
designing architectures for stability. In designing adaptive architectures, it is
important to capture the possible changes that will drive adaptations [388].
Dealing with the operational and behavioural aspects of stability, architects
should also cater to the runtime changes in user and quality requirements.
Evaluating adaptation decisions during runtime would require estimating pos-
sible future changes, in order to avoid unnecessary frequent adaptations.

– Uncertainty. Modern complex systems exhibit uncertainty from many sources,
arising from the heterogeneity and dynamism of both the system itself and the
operating environment [329] [22] [23]. Runtime uncertainty is associated with
changes in workload [168], runtime requirements [389] [390] and the nature of
the software paradigm. As an example, considering the cloud paradigm, that
offers pay-per-use service for the end-users, the architecture exhibits a high de-
gree of uncertainty in the workload received from different users with different
SLAs. In the case of adaptive and self-adaptive software, added the uncer-
tainty arising from the effect of the adaptation actions [391] [392]. Although
major advances have been made for handling uncertainty, existing works do
not systematically address the stability of the architecture notwithstanding
uncertainty. Requirements engineering should consider the uncertainty asso-
ciated with the requirements subject to stability according to the stability
purpose, which will be passed to the architecture design phase. Evaluating
architectures (and their adaptations) during runtime should consider how sta-
bility will be affected by any form of uncertainty. This could be done either
online or offline. Like other quality attributes (e.g. reliability, robustness and
resilience) [393], sensitivity analysis for parameters of the probabilistic quality
models is needed for the stability of these attributes. Online evaluation ap-
proaches should consider the stability of the architecture decisions and relate
their evaluation results to the online autonomous architectural decisions.

3.4 Requirements for Realising Stability at the Ar-

chitecture Level

Engineering stability as a software property throughout the software lifecycle, along with
the analysis of the current research status, have revealed new requirements for realising
it. Description of these challenges is presented as follows (summarised in Figure 3.3)

64

1. We differentiate between challenges related to design-time and pre-deployment of the
architecture, runtime while the architecture is under operation, and support tools.

Figure 3.3: Requirements for Realising Architectural Stability

3.4.1 Design-time Requirements

• Modelling stability requirements. As discussed in section 3.3, requirements are the
starting point for long-term stability and sustainability [215] [380]. Requirements
engineering for stability has reflected some challenges that still need to be addressed.
The first issue is extending requirements models to explicitly consider modelling sta-
bility requirements and their trace to architecture artefacts, as the case of scalability
requirements [313]. The second issue is predicting and modelling the changes in sta-
bility requirements that the systems are likely to experience during their lifetime [19],
which requires a systematic way to predict the changes, quantify their likelihood [19]
and their impact on the architecture. The third issue is the traceability of stability

1Though we discuss here requirements related to different aspects of architectural stability (e.g. be-
havioural and evolutionary), we address in the thesis onward the requirements related to the behavioural
aspect.

65

requirements to the architecture components. Designing for stability needs trace-
ability (forward and backward) techniques to trace and model dependencies from
the requirements and their likely changes to the architecture design [39]. The for-
ward dependencies shall demonstrate which architectural element(s) is responsible
for satisfying a specific requirement. The backward dependencies shall demonstrate
which requirement(s) are related to an architectural element. Modelling such de-
pendencies allows managing the change across software artefacts. Traceability is
important for managing the changes of requirements and the evolution of the ar-
chitecture [381] [388], which will help in attaining architectural stability. The ideas
of assessing the quality requirements throughout the architecture’s lifespan and the
traceability of requirements to architectures have been promoted in [381] [384] [19].
But modelling stability requirements has not been approached yet. Stability require-
ments should be differentiated to reflect the quality attributes essential for end-users
to be kept stable without violations (e.g. response time for real-time systems). Such
requirements should be modelled taking into consideration both the short-term and
long-term impact of the changes in these requirements, so that the architecture will
not break-down easily when coping with increasing load demands [381] [19]. The sta-
bility ranges for these requirements will, then, be used to better inform architecture
design decision when selecting the architecture style and component technologies to
induce the selected style. These issues become more relevant with the emergence of
more complex systems, the wide mode of uses, and the higher degrees of uncertainty
that the system will encounter in the future once in operation.

• Designing for architectural stability. Architecture design requires novel approaches
for guiding the architectural decisions and exploring architecture solution space,
where this guidance should explicitly consider architectural stability [394] [395].
Approaches should also consider the uncertainty of the future that poses a consid-
erable challenge when designing architectures. Design decisions can be articulated
in terms of utility and risk. For instance, structural stability needs to be linked to
the utility for designing intact architecture structure. This calls for systematic ap-
proaches for managing, handling and rectifying uncertainty to achieve the long-term
stability.

• Architecture evaluation for stability. While there exist notable efforts in the liter-
ature for architecture evaluation, yet there is still need for systematic evaluation
approaches that explicitly consider stability, as the case of modifiability [349] and
scalability [396] [397]. We call for extending the evaluation approaches available in
the literature that addressed other attributes related to stability. Also, approaches
that partially considered certain aspects of stability could be extended to cover
stability evaluation in more depth. With respect to related contextual aspects,
design-time evaluation should also address and anticipate the uncertainties arising
from the future changes that the architecture might face [329] [387], their likelihood
and their expected effect on the architecture. These should be quantified from the
architecture perspective to be suitable for use in stability evaluation. Though there
exist many attempts in the literature in addressing different facets of uncertainty,
there is still need for novel approaches to quantify and rectify uncertainty from
the architecture perspective, so that these approaches would be suitable to be used

66

when evaluating the long-term stability of the architecture. As part of stability
evaluation, risk assessment needs to be performed, as such risk associated with the
architecture in the shed of different uncertainty factors is analysed and stability is,
then, explicitly evaluated [387]. Such evaluation calls for novel approaches with the
capability of evaluating under the unknown.

• Analysis and assessment of evolutionary stability. Architecting for long-term stabil-
ity (i.e. evolutionary stability) requires evidently analysing and assessing potential
evolutions, by assessing the ranges of changes in stability requirements, elucidated
and known during design-time [388]. This includes assessing the timing of likely
changes, the long-term cost of materialising these changes, and the long-term value
of the architecture capability in enduring these changes [124]. Evolution assess-
ment can make use of several existing techniques, including the use of emerging
implied scenarios and technology roadmaps. Scenario-based techniques can employ
several types of scenarios in the assessment process of evolution, such as antici-
patory scenarios and exploratory scenarios [398] [155] [362]. But these techniques
are human-centric, thus their effectiveness tends to be sensitive to human’s exper-
tise, and previous knowledge of the domain. Alternatively, the architecture can be
simulated, where scenarios can be inferred through analysing execution traces to
learn more about emerging requirements that may call for change and drive evo-
lution [362]. Long-term evolutionary changes, such as moving to a new paradigm
or operating environment, can make use of evolutionary paths [362]. As a fact,
treatment of evolution assessment and related long-term changes can differ across
different domains. Change impact analysis is also useful to perform what-if-analysis
for architectural analysis, i.e. which component or requirement will be affected by
an architectural change [399] [400]. Change impact analysis might also include:
(i) assessment of the cost-effectiveness of the design for change, where the upfront
costs incurred from “designing for change” (to include flexibility in the architecture
design relative to the likely changes) are traded-off against the long-term benefits,
and (ii) assessing the cost-effectiveness of the architecture change, where a trade-off
analysis is undertaken between the decision of leaving the architecture structure
intact and changing the architecture to accommodate future changes. Architecture
change impact analysis should also be accompanied by automated reasoning tools
for handling changes and guiding the architecture evolution [39], where an effec-
tive change impact analysis would assist in taking design decisions leading to stable
architectures.

3.4.2 Runtime Requirements

• Runtime requirements modelling for stability. Modern software systems are op-
erating with continuously changing requirements during runtime. Managing re-
quirements during runtime is evidently becoming an important matter [389] [386].
Certain software paradigms impose more challenges from their nature. For instance,
cloud-based software needs to handle emerging requirements as a result of operat-
ing in dynamic, open and uncertain contexts. With the advances and complexity of
systems, these requirements might also include requirements from the environment

67

where the system is operating, as in the case of cloud federations [401]. Though
there has been growing research in requirements engineering handling runtime re-
quirements, authors are not aware of any work tackling the runtime behavioural
stability problem from requirements engineering perspective. Meanwhile, runtime
requirements models should explicitly consider stability requirements, their dynamic
traces to architecture components, and the historical information related to their ful-
filment. The link between the requirements and architecture during runtime should
be explicit and symbiotic, where the traceability links between requirements and ar-
chitectures should be kept updated. From the requirements side, if the architecture
adapts in light of the changing requirements, this will ensure fulfilling the changing
runtime requirements. From the architecture side, the adaptation takes place ac-
cording to the changing requirements, which will ensure that the architecture will
keep its intended behaviour.

• Runtime trade-offs management. Having architectures that efficiently manage trade-
offs between multiple quality attributes is becoming a pressing need with the ad-
vancements of different software paradigms [402] [403]. Achieving such good trade-
offs is challenging, due to the complexity of the imposed trade-offs, arising from the
conflicts that might appear between different stability requirements and the consid-
eration of multiple dimensions of stability. The architecture type might also impose
trade-offs, as the case of self-adaptive architectures (i.e. adapting to achieve quality
requirements vs. frequency of adaptations that might cause instability) [25]. Thus,
we call for novel approaches for managing trade-offs during runtime that result in
fulfilling multiple qualities and sustaining behavioural stability.

• Designing stable architecture-based adaptations. Architecture-based adaptations
employ architectural models for designing software with robust behaviour and ac-
commodating runtime changes [404] [405]. Adaptations strategies and policies are
defined by the architect/designer at the development phase, and enactment decisions
are taken autonomously during runtime. Among the wide literature on autonomic
computing, there are studies that tackled designing robust self-adaptive architec-
tures, as robustness is considered as the ability to recover (return to equilibrium
state) when perturbed by any kind of problems, which is intersecting with the notion
of physical stability (e.g. [406] [407]). Efforts for designing adaptation controllers
also need to be directed towards considering properties reflecting the behaviour of
the controller, which have an impact on the stability of the whole architecture [25],
as the upper limit of the performance of the architecture is often set by stability
considerations [1].

• Stable runtime architecture-based adaptation decisions. Stability has been defined as
one of the properties reflecting the quality of adaptation, i.e. how well the adaptation
process converges towards the adaptation objective, but not explicitly considered
by adaptation mechanisms [354] [25]. Adaptation mechanisms proposed in the lit-
erature focused on some adaptation properties, such as tactics latency (the time it
takes since an adaptation is started until its effect is observed) [351], settling time
(the amount of time the controller takes to achieve the adaptation goal) [352] [353].
Meanwhile, runtime adaptations, if engineered with stability in mind, can render

68

benefits towards architectures intended behaviour. Runtime decisions should be
seen as a continuous realisation and assessment of behavioural stability. More chal-
lenges are imposed by the nature of the architecture, as in the case of self-adaptive
architectures where the continuous runtime adaptation might cause architecture
instability. As computational intelligence has proven to be promising to enable
intelligent behaviour in adaptive systems [408], its paradigms (e.g. evolutionary
computation, swarm intelligence) are promising to be applied for stability problem.
Self-stabilisation of distributed systems [83] [84] [87] could also be employed for
guaranteeing requirements satisfaction and ensuring a stable behaviour in a finite
time following workload perturbations.

• Runtime stability analysis. Runtime adaptation decisions, engineered with stability
in mind, call for novel approaches that can complement design-time with runtime
analysis for stability. Practical approaches are needed to: (i) assess if an archi-
tecture will maintain its stability at runtime in spite of the unexpected changes
in requirements and the environment, and (ii) evaluate alternative adaptations for
retaining the stability of the architecture. Such approaches should not cause extra
unnecessary overhead, i.e. it should rely on self-awareness capabilities to run only
when necessary. Runtime analysis for stability can be performed in different modes:
either offline, online or symbiotic simulators. Execution can be mined, analysed
and/or visualised offline to consider areas which are likely to cause instability by
examining the behavioural and/or structural aspects of the architecture.

• Runtime learning for stability. The consideration of stability in runtime decisions
should be complemented with online learning approaches and runtime dynamic im-
pact analysis [409]. Such learning approaches are capable of using historical monitor-
ing data about the fulfilment of requirements and the stable states of the architecture
to predict the stability state prior to performing changes in the architecture or its
configurations. Such further advancement would lead to a more stable architecture
that would sustain for longer. Stability analysis can also employ machine learning
techniques to mine execution logs and predict areas that require improvements for
stabilising future runs.

• Runtime evaluation for stability. Modern software systems, relying on runtime
adaptations, require runtime evaluation approaches during operation that explic-
itly consider how the behaviour is stable during runtime. This requires continuous
assessment prior to and after taking the adaptation action. The pre-assessment
aims to evaluate its effect on the current state and its expected effect on the future
state given expected workloads. The post-assessment aims to evaluate the actual
effect of the adaptation action to ensure the fulfilment of runtime requirements and
call for further adaptation actions if necessary. Stability assessment for corrective,
preventive, or adaptive changes may require a different method for the likelihood,
magnitude and significance of the change [388]. At runtime, architectures can be
simulated for testing the continuous fulfilment of stability requirements.

• Runtime verification for stability. Runtime verification is “the process of evaluat-
ing, while the system operates, whether it meets certain expected behaviour and

69

goals” [410] [411] [412]. Such quantitative verification is essential for self-* sys-
tems [413] [414] [415]. Given the uncertain operating environment of these systems,
probabilistic model checking could be employed for continuous assurances of the
intended behaviour [416].

• Runtime evolution management for stability. In situations where the costs and
risks associated with shutting down and updating the system, runtime evolution
in unavoidable [417] [24] [141]. In such case, evolutionary stability is becoming
an important topic to be considered when performing runtime modifications in the
architecture.

• Managing runtime changes and uncertainty. In considering runtime stability, changes
in workload and runtime requirements should be considered [389] [168]. As the ar-
chitecture performs adaptations during runtime, the runtime decisions should take
into consideration the possible future changes, not only current changes, which will
decrease the frequency of adaptations that might cause architectural instability [25].
Associated with the runtime changes is the uncertainty of these changes [335]. With
the increasing complexity and heterogeneity of software systems, the uncertainty
arising from the environment where the architecture is operating should also be
considered [329]. The case of adaptive and self-adaptive software adds another facet
of uncertainty that is the uncertainty arising from the effect of adaptation actions,
that should be considered explicitly.

3.4.3 Support-related Requirements

• Support tools. Stability-related support tools give the opportunity for practical
application and validation of the solutions developed in the research community.
This could be approached by either developing new tools that are stability-specific,
or by extending existing tools to support stability.

• Benchmarking. A stability benchmark should provide a generic way for character-
ising the different aspects (structure, behaviour) of the architecture when subjected
to changes, allowing for the quantification of stability. Stability benchmarking shall
understandably comprehend constructs and techniques from previous benchmark
efforts, such as performance, dependability, and resilience [343] [142] [52], based on
their interlink with the stability concept. A stability benchmark can benefit from
the structure of established benchmarks [142] but should additionally consider the
various aspects of stability.

• Metrics and indicators. Qualitative indicators might be a good practice for design-
time, where the experts’ judgements can be considered when differentiating between
candidate architectures. But quantitative metrics would be a good practice to over-
come the subjectivity of the experts’ judgements and the time required to consolidate
their judgements [362] [145]. We suggest that metrics for stability would consider
metrics from other inter-related attributes, such as resilience and dependability, as
a base. Metrics should also consider the different dimensions of stability (structural

70

and behavioural). For instance, metrics for behavioural stability would measure to
what extent a candidate architecture would satisfy the quality requirements and
would keep satisfying them when subjected to changes. Runtime evaluation of
architectural stability calls for rapid feedback regarding the stability of the archi-
tecture during operation. It is evident that qualitative indicators are not suitable
for runtime unless offline decisions are required for a significant change in the archi-
tecture [362] [145]. Quantitative metrics would be the practical case for continuous
evaluation of the architecture while the system is operating at runtime [418].

• Empirical studies. As noted in the gap analysis, the literature lacks to a big extent
empirical studies documenting the stable states of designed architectures, i.e. the
extent to which architectures had succeeded or failed in attaining their structure
and objectives [39] [419]. This calls for systematic empirical studies to analyse real-
life cases, where there was an architecture breakage upon accommodating changes.
Such case studies shall improve the state-of-the-art by learning from the state-
of-practice, as lessons learnt from these studies will improve engineering practices
towards stability.

3.5 Conceptual Design for Capturing Behavioural Sta-

bility

A fundamental question related to understanding the architecture’s behaviour arises when
engineering behavioural stability. This requires at first capturing the intended behaviour.
Thus, we investigate and draw inspirations from the Control Theory discipline. The
latter is one of the related disciplines that studied the notion of stability [77] [1] (refer
to section 2.3) and has been widely used to incorporate self-adaptive capabilities into
software systems [420].

Control Theory is mainly interested in systems behaviour and concerns itself with
“means by which to alter the future behaviour of systems” [1], as such it has contributed
in designing self-adaptive software systems [421]. In this context, a stable system is one
that,“ when perturbed from an equilibrium state, will tend to return to that equilibrium
state” [1]. To this end, we consider an architecture is behaviourally stable if it is able to
fulfil the architecturally-significant requirements and when perturbed from its steadiness
state, will tend to return to that steadiness state. Given the general definition of stability,
behavioural stability for self-adaptive architectures is correlated with the quality of service
subject to provision and encompasses the architecture’s adaptations that tend to return
the architecture to its stable state when perturbed.

Elements of Control Design. According to Control Theory principles [1], control-
ling (or stabilising) a system (or architecture)’s behaviour requires the following:

(i) an objective linked to the future state of the system, which is the desired behaviour
(i.e. architecturally-significant requirements).

71

(ii) a set of possible actions for the system to be modified (i.e. adaptation actions).

(iii) means choosing the correct actions to achieve the desired behaviour (i.e. reasoning
techniques).

Control Design Methodology. Putting forward the elements of control design,
we set a possible design methodology for inspired by control design principles. Figure 3.4
shows the design concept. The main idea is based on a “model of the system” to compare
the desired behaviour with the actual one and help in finding the optimal possible action
(from the set of possible actions).

Figure 3.4: Control Design Methodology for Behavioural Stability (inspired from [1])

Given these pre-requisites and design principles, we are mainly concerned with: (i)
understanding the architecture’s desired behaviour (which we study in Chapter 4), (ii)
modelling the behaviour (which we study in Chapter 5) (iii) designing architectures that
exhibit certain behaviour (which we study in Chapter 6), and (iii) influencing or modifying
the architecture to achieve the desired behaviour (studied in Chapter 7).

3.6 Summary

In this chapter, we discussed the characterisation of the stability notion based on the
taxonomy dimensions. A multi-dimensional perspective for stability as a software property
is discussed. The architectural level is taken forward, where related requirements are
identified. Narrowing the scope to the behavioural aspect, the requirements related to
this aspect are used to guide the research course of the thesis. Other requirements could
serve to direct future research efforts in the community.

Further, we have sketched design principles inspired from Control Theory for capturing
the architecture’s intended behaviour subject to stability. Critically evaluating the work
presented in this chapter, these concepts are employed to guide the research in the next
chapters, where each contribution is evaluated separately, and reflective evaluation is
discussed in Chapter 9.

72

Chapter 4

Analysing Architectural Stability

Stability leads to instability. The more stable
things become and the longer things are stable,
the more unstable they will be when the crisis
hits.

— Hyman Minsky

4.1 Introduction

Guided by stability new perspective (discussed in Chapter 3), understanding the architec-
ture’s intended behaviour is essential for realising architectural stability. Yet the survey
findings have shown inadequacy in understanding architectural behaviour and related
practices. The challenge we address in this chapter is how to systematically analyse the
runtime behavioural aspect of architectural stability. To address this challenge, we propose
a systematic approach for analysing architectural stability, focusing on the runtime be-
havioural aspect. The analysis model aims to capture stability dimensions, stakeholders’
concerns for stability and related attributes, in order to capture the intended behaviour
subject to stability.

Contributions. The specific contributions of this chapter are as follows.

• We propose a model for analysing stability based on architectural concerns and
viewpoints. Stability viewpoints frame the stakeholders’ concerns for the system’s
behaviour along with the dimensions of stability that reflect the architecture type.
Stability attributes are, then, defined to present the details of the intended behaviour
needed to be kept stable.

• We describe a systematic approach for considering stability as an architectural prop-
erty. The analysis approach aims at building the stability qualitative model that
analyses and presents the intended behaviour.

73

• We apply the proposed approach to the self-adaptive cloud architecture case study.
The analysis model has shown promising capability in exploring dimensions, con-
cerns and attributes related to stability, and hence, drawing a comprehensive and
explicit consideration of stability as an architectural property.

Organisation. This chapter is organised as follows. Section 4.2 elaborates the tech-
nical contribution of behavioural stability analysis. Section 4.3 presents our holistic ap-
proach for supporting runtime behavioural stability. In section 4.4, we apply our approach
to the evaluation case study. Finally, related work is briefly discussed in section 4.5, and
the chapter is concluded in section 4.6.

4.2 Stability Analysis

Stability is not an absolute property, it is treatment shall be approached using inputs from
the architecture domain and intended behaviour. In particular, the architecture type (i.e.
self-adaptive) and the application domain (e.g. mobile-, web-, cloud-based) have direct
inputs to behavioural stability. As an example of behaviour, one architecture could be
intended to keep the response time stable (as it is a crucial quality attribute for the
end-users in the case of real-time systems), while energy consumption could be another
critical requirement for stability. We argue that stability is a relative matter subject to the
concerns of stability and the type of the architecture. Thus, stability should be considered
relatively to these concerns. This calls for more expressive abstractions to represent the
concerns and their related attributes subject to stability. The analysis aims to capture
the relevant attributes that characterise stability concerns and stability dimensions, as
well as their influence on each other’s stability.

To consider the architecture type in the analysis, different components of the architec-
ture should be considered. We view stability dimensions with respect to both the intended
behaviour (e.g. quality of service for end-users) and the behaviour of the architecture com-
ponents. The distinct dimensions allow considering both the intended behaviour and the
architecture type in the analysis of behavioural stability of the architecture as a whole.

For analysing stability, we exploit one of the holistic reasoning methods for quality
analysis in software architectures. In particular, we extend the “ISO/IEC/IEEE 42010 –
Systems and software engineering - Architecture description” standards [422], as outlined
in Figure 4.1). 1

According to the ISO/IEC/IEEE 42010 [422], a system has one or more stakeholders,
where each stakeholder has interest (i.e. concerns) for that system. Concerns are “those
interests which pertain to the system’s development, its operation or any other aspects
that are critical or otherwise important to one or more stakeholders” [422]. Examples
of concerns include quality of service, environmental regulations and economic concerns.
We envision mapping the stability analysis to the well-known architecture related concept
“architectural concerns” that refer to the requirements of different stakeholders [422].

1The figure uses UML notation of ISO/IEC 19501:2005, Information Technology — Open distributed
processing — Unified Modelling Language (UML) Version 1.4.2.

74

Figure 4.1: Architectural Stability Analysis Model

Considering stability, stakeholders’ concerns for stabilising the architecture behaviour
can be seen as architectural concerns or stability concerns.

Having different stakeholders, viewpoints have been introduced to support the mod-
elling, understanding and analysis of software architectures for different stakeholders [423],
delineating the architectural information that addresses stakeholders’ concerns [424]. Ar-
chitectural viewpoints refer to the conventions for constructing and using architectural
representation addressing the requirements of different stakeholders [422] [425] [426].
Analysing stability from different perspectives can be seen as architectural viewpoints
or stability viewpoints. We consider stability viewpoints as a model for framing stakehold-
ers’ concerns and representing architectural stability from different perspectives.

Realising runtime behavioural stability requires continuous provision of quality re-
quirements. Following the approach of well-established architectural methods, which
considers quality attributes [427] [320] [333] as the base for architectural analysis, we
analyse stability in relation to the attributes that are required to be kept stable through-
out the operation of the architecture, i.e. stability attributes. Attributes that are subject
to stability are defined for different viewpoints reflecting stakeholders’ concerns, includ-
ing traditional quality of service attributes, which are the adaptation goals [25]). Since
adaptations are motivated by the need of continued satisfaction of quality requirements,
the analysis should also consider attributes of the adaptation properties [25], in order to
reflect how adaptations converge towards adaptation goals.

Stability attributes are interdependent, i.e. may influence each other, either by sup-
porting or by contradicting each other. So, architects should, for explicitly targeting sta-
bility, analyse the interdependency and correlation between different stability attributes
(appearing as influences relation between stability attributes in Figure 4.1) and resolve
related trade-offs.

While traditional architecture analysis considers dependencies and trade-offs analysis

75

between traditional quality attributes, such as performance and availability [428], stability
analysis involves multiple viewpoints and related attributes, as well as analyses their in-
terdependencies and trade-offs. These include not only traditional quality attributes but
also adaptation properties that affect the architecture’s behaviour for continuously satis-
fying quality requirements. Using the analysis model for identifying stability viewpoints,
attributes and their dependencies explicit would help architects appreciate behavioural
stability beyond traditional quality attributes.

4.3 Methodological Support for Analysing Behavioural

Stability

The proposed methodology supports the initial analysis of stability as an architectural
property. The outcome of this phase is the stability qualitative model that will contribute
to the model structure for quantitatively modelling stability (presented in the next chap-
ter). The proposed analysis methodology, illustrated in Figure 4.2, includes the following
activities:

Step 1. identify stability dimensions. Dimensions for stability could be related to the end-
users or the architecture itself. Other dimensions could be considered for the
domain-specific application.

Step 2. identify stability stakeholders. Stability analysis entails architects to first identify
the system’s stakeholders that have interest in the system under consideration and
hence input for stability.

Step 3. identify stability concerns. In this step, the stability interests and concerns of stake-
holders are considered in order to build a well-balanced solution, as it is important
to have a good understanding of the different concerns that the stability analysis
should reflect.

Step 4. derive stability viewpoints. Stakeholders concerns are consolidated to derive stability
viewpoints, in order to consider stability from different perspectives for building a
stability solution relative to multiple concerns. The analysis also takes into consid-
eration concerns from the components of the self-adaptive system (i.e. the managed
system and the adaptation controller).

Step 5. define stability attributes and their evaluation criteria. Stability attributes are,
then, defined for different viewpoints reflecting the stakeholders’ concerns for sta-
bility. The set of stability attributes also includes attributes belonging to the adap-
tation properties, as one of the main stability dimensions for self-adaptive software
architectures. Evaluation criteria can inform the choice of suitable metrics for as-
sessing the fulfilment of these attributes. The choice of the metrics is highly depen-
dent on the analysis, where the metric can be structural, behavioural, quantitative,
qualitative, economic-driven in nature. Practitioners often utilise commonly used
metrics. ISO standards documents [429], guidelines and quality models [53] [430],

76

white papers and benchmarks are among the credible sources for extracting these
metrics. Systematic approaches could also be employed, such as goal-driven mea-
surement [431] [218] and Goal Question Metric (GQM) approach [432].

Step 6. extract interdependencies between stability attributes. Interdependent quality at-
tributes may influence one another. The dependencies between stability attributes
are captured, in order to analyse how stabilising one attribute would affect the
stability of related attributes.

Figure 4.2: Architectural Stability Analysis Methodology

4.4 An Evaluation of Applicability

In this section, we show the applicability of the proposed approach using the self-adaptive
cloud architectures case. We first describe the evaluation case study used throughout the
thesis and introduce the architecture’s domain (in section 4.4.1). We, then, present the
step-by-step application of the approach (in section 4.4.2).

4.4.1 Architecture Domain

Cloud-based software architectures are a suitable example of dynamism, unpredictability
and uncertainty [35]. The execution environment of cloud architectures is highly dynamic,
due to the on-demand nature of the cloud. Cloud architectures operate under continuous
changing conditions, e.g. changes in workload (number/size of requests), end-user quality
requirements, unexpected circumstances of execution (peak demand) [3] [26]. The on-
demand service provision in clouds imposes performance unpredictability and makes the
elasticity of resources an operational requirement.

Due to the on-demand and dynamic nature of the cloud, there is an increasing de-
mand for cloud services, where the realisation of quality requirements should be man-
aged without human interventions. This type of architecture tends to highly leverage on
adaptation (e.g. changing behaviour, reconfiguration, provisioning additional resources,
redeployment) to regulate the satisfaction of end-users requirements under the changing
contexts of execution [21] [26]. The self-adaptation process is meant to make the sys-
tem behaviour converges towards the intended behaviour, i.e. quality requirements of the

77

end-users without SLA violation [26]. The purpose of adaptation is to satisfy the runtime
demand of multi-tenant users, by changing configuration and choosing optimal tactics
for adaptation. An unstable architecture will risk not improving or even degrading the
system to unacceptable states [25]. In such case, there are more dynamics to observe,
and stability is challenging with the continuous runtime adaptations in response to the
perception of the execution environment and the system itself [26].

Further, the economic model of clouds (pay-as-you-go) imposes on providers economic
challenges for SLA profit maximisation by reducing their operational costs [35]. Also,
providers face monetary penalties in case of SLA violations affecting their profit, which
push them towards stabilising the quality of service provisioned. With the rising demand
of energy, increasing use of IT systems and potentially negative effects on the environ-
ment, the environmental aspect (in terms of energy consumption) has emerged as a factor
affecting the software quality and sustainability [157]. While sometimes imposed by laws
and regulations, decreasing energy consumption does not have only potential financial
savings but also affects the ecological environment and the human welfare [157]. So, envi-
ronmental requirements should be considered and traded off against business requirements
and financial constraints [157].

4.4.2 Application of the Analysis Model

The outcome of the application of the analysis model is depicted in Figure 4.3. For sim-
plicity, the information relating stability attributes with the stability concerns and their
stakeholders is not included in the figure. The step-by-step application of the approach
is detailed below.

Figure 4.3: Evaluation Case: Application of the Stability Analysis Model

78

Step 1. identify stability dimensions. For the case of self-adaptive software, we identify
two main stability dimensions, that are adaptation goals and adaptation properties.
Both underlies the functioning of a self-adaptive system, that we intend to stabilise
its architectural behaviour (i.e. the managed system and the managing system) [25]
[26]. Adaptation goals are the quality of service (QoS) properties intended to be
achieved by the architecture, while adaptation properties are observed and measured
in the adaptation process [25] [26]. These two distinct dimensions allow considering
both the quality requirements and the behaviour of the adaptation controller in the
analysis of behavioural stability of the architecture as a whole.

Step 2. identify stability stakeholders. The main stakeholders that we consider are the end-
users, the environment and the business.

Step 3. identify concerns for stability. The concerns for each stakeholder are listed as fol-
lows: (i) end-users’ concern is the provision of QoS defined in their Service Level
Agreements (SLAs), (ii) the environmental regulations are concerned with the en-
ergy consumption constraints, and (iii) the business is concerned with operational
costs.

Step 4. derive stability viewpoints. Given the stability dimensions and the stakeholders’
concerns, we identify the following viewpoints for stability: quality of service, envi-
ronmental, economic and quality of adaptation viewpoints. The former three denote
the adaptation goals, and the latter represents the adaptation property dimension.
The quality of service viewpoint mainly covers the quality requirements of end-users.
The environmental viewpoint covers aspects related to energy consumption and sav-
ings [157] [433]. The economical viewpoint is related to the business concerns about
monetary operational cost.

Step 5. define stability attributes and their evaluation criteria. Based on the stability view-
points, we define related attributes. Stability attributes could, then, include tra-
ditional quality requirements specified in end-users SLAs. Here, we consider per-
formance (measured by response time in milliseconds), and throughput (measured
by the number of completed requests per second). For the environmental aspect,
we use the greenability attribute [157] [433] measured by energy consumption in
kWh. For the economic constraints, we define the operational cost by the cost of
computational resources (CPUs, memory, storage and bandwidth). Regarding the
adaptation properties, we consider the settling time - that is the time required by
the adaptation system to achieve the adaptation goal [25]. In order to capture the
negative impact of adaptation on the system’s behaviour, we consider the overhead
of adaptation, measured by the frequency of adaptation cycles to achieve the adap-
tation goals [22] [25]. The analysis results of this step are illustrated in Figure
4.4.

Step 6. extract interdependencies between stability attributes. Dependencies between stabil-
ity attributes are defined based on the architect’s domain experience, as depicted in
Figure 4.5. For example, performance and greenability could contradictorily affect
each other, i.e. stabilising performance shall demand more computational resources

79

Figure 4.4: Evaluation Case: Stability Analysis Results

that consume more power and eventually have a negative effect on stabilising green-
ability. Meanwhile, greenability and operational cost could support each other,
i.e. decreasing the usage of computational resources for saving power consumption
would, in turn, decrease the operational costs.

Figure 4.5: Evaluation Case: Stability Attributes Dependencies

4.4.3 Discussion

The proposed analysis model is generic enough to be applied to architecture-centric soft-
ware systems. As an example, the components of the self-adaptive software (i.e. managed
system and adaptation controller) could be replaced by domain-specific components of
the architecture under evaluation. Domain-specific characteristics could further enrich
the analysis as stability concerns and stability attributes, such as latency access for cloud
federations [434]. As a general case, the stability analysis model could include any set of
viewpoints and attributes subject to stability. Other stakeholders and stability dimen-
sions could also be identified depending on the context, domain of the system and the

80

architecture type. On a wider perspective, the stability analysis approach could be ap-
plied to non-adaptive architectures for offline maintenance purposes. Architects can also
employ the analysis model for making architectural decisions during design-time.

4.5 Related Work

The architecture analysis community has developed methods for predicting the quality
provision of architecture design alternatives during design-time [369]. Examples include
Scenario-based Architecture Analysis Method (SAAM) [327], Architecture Tradeoff Anal-
ysis Method (ATAM) [320] and quality impact analysis [344] which focused on traditional
quality attributes, with no explicit focus on stability. Other studies focused on estimat-
ing system failures or predicting the probability that the system will perform its intended
functionality aiming at reducing or eliminating failures [345] [346] [347] [348]. Architecture
analysis methods cannot be used to support the runtime provision of quality requirements
and their stability, given the uncertainty during operation and the automation and quan-
titative analysis required for runtime operation.

4.6 Summary

In this chapter, we presented a systematic approach for analysing behavioural stability.
The analysis consolidates multiple stakeholders’ concerns and architectural viewpoints for
explicitly revealing attributes subject to stability, taking into consideration the software
and architecture domain. The analysis introduced a qualitative model for representing
the knowledge related to the attributes subject to stability and their dependencies. One
feature of the analysis is making explicit consideration of the architecture type, domain
and its environment while understanding the intended behaviour.

81

Chapter 5

Modelling Behavioural Stability of
Architectures

Essentially, all models are wrong, but some are
useful.

— George E. P. Box

5.1 Introduction

Following the control design principles (discussed in section 3.5), the desired behaviour
captured by the Stability Analysis Model (the outcome of Chapter 4) should be modelled
to support the control design principles, by understanding of the expected behaviour in
comparison with the desired behaviour.

In this chapter, we propose a methodology for modelling architectural stability, fo-
cusing on the runtime behavioural aspect. Given the non-deterministic behaviour of the
systems, modelling stability is based on probabilistic relational model for knowledge rep-
resentation of stability multiple viewpoints and related attributes. The mathematical
model leverages on the quantitative analysis of Bayesian networks for modelling dynamic
impact and correlation assessment among stability attributes and analysing associated
trade-offs. This approach can effectively conduct runtime inference to reason about sta-
bility attributes given the continuous runtime uncertain changes. Such reasoning improves
the quality of adaptation for achieving the intended behaviour and supporting seamless
operation. We show how the approach can be realised as an integral part of self-adaptive
software systems runtime operation, as such the field of self-adaptive software can make
a notable beneficiary of our contribution.

Contributions. The specific contributions of this chapter are as follows.

• We mathematically model the non-deterministic behaviour of stability attributes
using probabilistic modelling. We present the interdependencies between stability
attributes using probabilistic relational model. Based on that, we quantitatively

82

measure the strengths of dependence relations and sensitivity among stability at-
tributes and construct the Bayesian network using observed data. With the help
of Bayesian networks, we conduct runtime inference to measure the probable effect
of stability attributes for reasoning about the whole architecture’s behaviour under
runtime uncertainty.

• We describe a systematic approach for considering stability as an architectural prop-
erty. The approach complements the analysis approach (proposed in Chapter 4),
and consists of two subsequent main phases: (i) stability modelling that captures
the probabilistic relation between interdependent stability attributes by building
the stability quantitative model, and (ii) runtime support which employs the model
for runtime inference and reasoning about stability under runtime uncertainty.

• We apply the proposed approach to the self-adaptive cloud architecture case. We
build the probabilistic model and conduct the experimental evaluation. The results
show that reasoning about stability using the runtime inference has improved the
adaptation decision and achieved the intended behavioural requirements with fewer
violations.

Organisation. This chapter is organised as follows. Section 5.2 elaborates the tech-
nical contributions of behavioural stability modelling. Section 5.3 presents our holistic
approach for modelling behavioural stability. In section 5.4, we apply our approach to
the evaluation case study, followed by the experimental evaluation in section 5.5. Finally,
related work is discussed in section 5.6 and the chapter is concluded in section 5.7.

5.2 Stability Modelling

Achieving runtime architectural stability for different viewpoints should involve a care-
ful understanding of the relationship, impact, correlation and sensitivity among stability
attributes, as well as handling potential conflicts between different viewpoints. Such
attributes are non-deterministic given the uncertainty associated with the runtime op-
eration. Uncertainty, affecting the architecture’s operation, can be attributed to many
facets, such as changes in workload, quality requirements, runtime goals, and the envi-
ronment where the architecture is operating [435] [42]. Therefore, probabilistic modelling
is appropriate for modelling stability given the runtime operational uncertainties, since
deterministic analysis is limited when dealing with such operational uncertainties.

Modelling the correlation among stability attributes requires asserting changes to at-
tributes’ values, which could be informed by expert judgement or accompanied with care-
ful assessment of the application domain. One potential problem, however, is that the
analysis tends to be human-centred, subjective and can miss potential cases that are
change-revealing, as such techniques rely on human judgement and sensitivity analysis.
Furthermore, the analysis can be difficult to scale and handle in cases where more than one
attribute can potentially change, or a higher number of attributes are under evaluation.

83

It worth noting that our method can complement existing architecture analysis and eval-
uation methods (e.g. Architecture Tradeoff Analysis Method (ATAM) [320] and quality
impact analysis [344]) to provide automatic and probabilistic assessment, which replace
and improve human assertions for attribute value and its likely influence on the trade-offs
analysis and the choice of decisions. Probabilistic assessment is especially important for
architectures that exhibit a high degree of uncertainty in their operation which is the case
of self-adaptive systems.

Hence, we adhere to the Bayesian choice in the automated reasoning about stability
during runtime for many reasons. As a consistent and complete representational tool, it
is guaranteed to define a unique probability distribution over the network variables [436].
Also, the Bayesian network is a compact representation, as it allows one to specify an expo-
nentially sized probability distribution using a polynomial number of probabilities [436].
The coherence of the Bayesian statistical inference is another important feature. By
modelling the unknown parameters of the sampling distribution through a probability
structure, i.e. by probabilistic uncertainty, the Bayesian approach authorises a quantita-
tive discourse on these parameters [437]. The Bayesian approach is also known to be the
only system allowing for conditioning on the observations, effectively implementing the
Likelihood Principle and frequented optimality notions of Decision Theory [437].

5.2.1 Stability Probabilistic Model

Probabilistic modelling consists of two components: (i) the structure, often referred to as
the qualitative model, and (ii) the parameters (i.e. conditional probabilities) referred to
as the quantitative model [438]. For the former, we use Probabilistic Relational Models
that are able to harness the expressive power of architecture analysis. For the latter,
Bayesian networks feature the ability to quantitatively perform dynamic impact analysis
and correlation assessment among stability attributes under runtime uncertainty [428].
Generally, Bayesian networks have proven to be ideally suited knowledge representations
for reasoning and decision making under uncertainty [438], i.e. reasoning over probabilistic
causal models under uncertainty [439]. Bayesian networks have been widely used for the
modelling and analysis of uncertain phenomena which are known to be causally connected
[440]. With the capability of representing probabilistic behaviours in a compact and
intuitive way [345], Bayesian networks are applicable for domain areas with inherent
uncertainty [438], which is applicable to the case of architecture’s behaviour at runtime.

Stability attributes as the “knowledge” to be presented by Probabilistic Relational
Models, as these attributes tend to vary during runtime. Probabilistic modelling, empow-
ered by the quantitative analysis of Bayesian networks, aims to model the wide variations
of probable values linked to stability attributes that we are interested in, as well as un-
derstand their likely ramifications on other attributes and their trade-offs under runtime
uncertainty.

Our approach for modelling stability follows the formalism process of probabilistic re-
lational models [438], that is suitable for representing and processing probabilistic knowl-
edge of runtime behavioural stability. For each viewpoint, a probabilistic relational model
is constructed using the stability attributes identified earlier in the analysis. The model
represents the relation between the attributes of the viewpoint and interdependent at-

84

tributes. The approach for eliciting the model structure relies on the notion of cause-effect
relations between the variables of the problem domain [438]. In practice, such relations
are modelled using a graph of nodes representing the variables and links representing the
cause-effect relations between the entities.

The construction of probabilistic networks usually proceeds according to an iterative
procedure, where the set of nodes and the set of links are updated iteratively as the
model becomes more and more refined [438]. Modelling causal dependence relations re-
quires careful consideration, as sometimes it is not quite obvious in which direction a link
should point [438]. In the case of architectural stability, we can rely on the architect’s
experience, subject matter experts and pre-experiments in defining the dependency re-
lations between different stability attributes. Structure learning could also make use of
data-driven approaches, where data could be acquired from pre-experiments and simula-
tions. There exist different classes of algorithms for learning the structure of Bayesian
networks, such as search-and-score and constraint-based algorithms [438]. Background
knowledge of domain experts and architects can be specified in the form of constraints on
the structure of the model.

Having the probabilistic relational model established, this defines the structure of the
Bayesian network, where the elicitation of the quantitative information will take place.
We use Bayesian networks to model the dynamic non-deterministic behaviour of stability
attributes, that change with a range of values at runtime and tend to interfere with each
other, collectively influencing the behaviour of the architecture.

A Bayesian network is a directed acyclic graph (DAG), where the nodes represent
stochastic uncertain variables [441] [345], which are the stability attributes. The edges of
the graph are the dependencies between the nodes, showing influential relations between
the variables [441] [345]. The nodes’ dependencies are specified qualitatively by the edges
and quantitatively by the conditional probability distributions. The underlying joint prob-
ability is decomposed as a product of local conditional probability distributions (CPDs)
associated with each node and its respective parents. The CPDs are represented as node
probability tables (NPTs), which list the probability that the child node takes on each of
its different values for each combination of values of related nodes.

Formally (following [442] [438]), a discrete Bayesian network N = (X ,G,P) consists
of a set of n discrete random variables (stability attributes) X , a directed acyclic graph
G = (V,E), and a set of conditional probability distributions P . Each variable Xi ∈
X , 1 ≤ i ≤ n is represented by a node vi of G and has a finite set of mutually exclusive
states dom(Xi). The directed edges E of G specify assumptions of conditional dependencies
between the nodes, where a directed edge from Xi to Xj is in E iif Xi is a parent of Xj.
Each variable Xi ∈ X has a conditional probability distribution P(Xi|Xpa(vi)) ∈ P , that
specifies the probabilistic dependence between the node vi and its parents pa(vi) ∈ V.

Definition. A discrete Bayesian network N = (X ,G,P) consists of

• a set of discrete random variables X = {X1, ...,Xn}

• a directed acyclic graph G = (V,E) with nodes V = {v1, ..., vn} representing the
variables of X and directed edges E ⊆ V × V

• a set of conditional probability distributions P containing probability distribution
P(Xv|Xpa(v)) for each variable Xv ∈ X

85

The joint probability distribution of the Bayesian network N is obtained by the mul-
tiplicative factorisation of the joint probability distributions P over the set of variables
X as represented by the chain rule of Bayesian networks:

P(X) =
∏
v∈V

P(Xv|Xpa(v)) (5.1)

The Bayesian network is constructed by computing prior probabilities, i.e. P(X) for all X ∈
X , collected from empirical data in order to get initial probability values.

Capturing dependency factors between stability attributes, the constructed Bayesian
network for stability provides a powerful tool for reasoning and decision support, as it
can be used to reason about the effect of stabilising a specific attribute on the stability of
other attributes. By that, an adaptation action achieving the stability of the whole archi-
tecture’s intended behaviour could be derived for multiple stability concerns, viewpoints
and attributes. Also, behavioural stability could be estimated under changing runtime
workloads.

5.2.2 Stability Runtime Inference

The Bayesian network model representation of a problem domain can be used as the basis
for drawing inference and performing analysis about the domain, in order to support rea-
soning under uncertainty. Decision options and utilities associated with these options can
be incorporated explicitly into the model, where the model becomes capable of comput-
ing expected utilities of all decision options given the information known [438]. Since a
Bayesian network encodes all relevant qualitative and quantitative information contained
in a full probability model, it is a well-suited tool for many types of probabilistic inference.

The Bayesian model is used to support reasoning about stability under runtime uncer-
tainty, which requires dynamically computing the probability states of stability attributes
given the runtime changes. That is the task of computing the posterior probability dis-
tribution of some variables of interest conditioned on some other variables that have been
observed [438].

A Bayesian inference approach starts with the priori knowledge about the model
structure. This initial knowledge, represented in the form of prior probability distribution
gathered during the construction of the model, is updated to obtain posterior probability
distribution over the model. By observing which states the nodes of the Bayesian network
assume, known as events, we obtain the evidence ε for a subset of these nodes. With the
help of evidence, we can compute the posterior marginals given a set of evidence ε, which
are P(X|ε) for all X ∈ X . If the evidence set is empty ε = φ, then the task is to compute
all prior marginals, i.e. P(X) for all X ∈ X .

Exploiting the independence relations induced by the structure of G and the evidence,
let us consider the general case of computing the posterior marginal P(Xi|ε) of a variable
Xi given evidence ε. Let ε = {ε1, ..., εm} be a non-empty set of evidence over variables
X (ε). For a non-observed variable Xj ∈ X , the task to compute the posterior probability
distribution P(Xj|ε) can be done by exploiting the chain rule factorisation of the joint

86

probability distribution (equation 5.1):

P(Xj|ε) =
P(ε|Xj)P(Xj)

P(ε)

=
∑

X∈X\{Xj}

∏
Xi∈X

P(Xi|Xpa(vi))
∏

X∈X (ε)

εX (5.2)

for each Xj 6∈ X (ε), where εX is the evidence function for X ∈ X (ε) and vi is the node
representing Xi. By that, we can observe the state of all stability attributes, and hence the
stability state of the whole architecture’s behaviour, while the architecture is operating
at runtime. The runtime inference is performed based on the Pearl’s Message-Passing
Algorithm [443] [444] [440].

5.2.3 Complexity Analysis of the Model

Given that the Bayesian analysis should be executed at runtime, this requires considering
the complexity of the stability model.

The specification of conditional probability distribution P(Xv|Xpa(v)) can be an inten-
sive task, as the number of parameters grows exponentially with the size of dom(Xfa(v)).
The complexity of the network is defined in terms of the family fa(v) with the largest
state space size ‖Xfa(v)‖ , |dom(Xfa(v))|, where fa(v) = pa(v) ∪ {v}. As the state space
of a family of variables grows exponentially with the size of that family, a technique to
reduce the complexity of Bayesian networks is to reduce the size of the parent sets pa(v)
to a minimum. This is, in fact, the case of the stability model, where the number of
variables, i.e. stability attributes of each viewpoint, is limited. In such cases, estimat-
ing parameters from data could be a useful technique to simplify the intensive task of
knowledge acquisition when operating at runtime.

While the Bayesian network is placed into operation, the model stores probability
distributions and calculates various marginal distributions subject of interest [445]. So,
it is important to understand the storage capabilities of the network. Given that the
variables are discrete and have a finite state space, to fully specify the model, we need
to elicit P(Xv) — which is the marginal probability mass function of Xv together with
the conditional mass function P(Xv|Xpa(v)) — of each of the variables conditioned on each
possible configuration of values of its parents that might occur. The practical difficulty
appears when the number of different configurations of parents, and hence the number of
probability vectors that need to be elicited, is extremely large. In the case of a Bayesian
network for a stability viewpoint, there is one variable subject of stability X1, and its
dependant variables {X2,X3, ...,Xn}. If the number of possible stability values of X1 is
m1 and for Xi is mi, i = 2, 3, ..., n + 1, then the number of probabilities we need to elicit
P(X1) is m1 − 1. And to elicit all the conditional tables P(Xi|Xpa(vi)) we need mi − 1 for
each possible stability value. Summing these, we have the total number of probabilities

87

that need to be elicited, as follows:

m1

{ n+1∑
i=2

(mi − 1 + 1)

}
− 1 (5.3)

which is practically feasible, due to the structure of the Bayesian network. Also, storing
stability values in ranges, rather than single values, is useful for reducing the complexity
of the stability model. For instance, response time is to be considered as ranges of 1-5,
5-10 ms. instead of multiple single values.

Considering the complexity of runtime inference, though probabilistic inference is an
NP-hard problem in general, the complexity is polynomial in the number of variables of
the network when the Bayesian network a singly connected graph [444] [438]. This is valid
in the case of stability models, where we have one stability attribute directly connected
to its dependent attributes for each stability viewpoint.

5.3 Methodological Support for Modelling Behavioural

Stability

Our methodology for modelling architectural stability consists of two subsequent main
phases: (i) stability modelling, and (ii) stability runtime support. For each step, we iden-
tify the human-based efforts required for the qualitative analysis and potential automated
tools to be used in the quantitative modelling. The approach is illustrated in Figure 5.1.

Figure 5.1: Stability Modelling Methodology

Phase 1: Stability Modelling. This phase uses the outcome of the stability qual-
itative model. In this phase, the stability model is built, and stability attributes are
quantitatively assessed. This phase includes the following activities:

Step 1. build the probabilistic relational model. For each viewpoint, a probabilistic relational
model is built, based on the attributes dependencies identified in the last step of the
stability analysis. Each probabilistic relational model, representing the relations be-
tween the attributes of a viewpoint, defines the structure of the Bayesian network.

88

The problem of inducing the structure of the Bayesian network is NP-complete,
thus, heuristic methods are considered appropriate. Building the probabilistic re-
lational models should go through an iterative process by the architects, domain
experts and subject matter experts. This could be complemented with mechanisms
and tool support to facilitate the adoption of the method. Examples include tools
for documenting architecture knowledge and detecting patterns of use where similar
problems could exhibit similar modelling, as well as platforms for sharing experi-
ences, guidelines and recommended practices [446].

Step 2. build the stability Bayesian network. The Bayesian network is built for quantitatively
modelling the interdependency impacts of different stability attributes. Bayesian
network specifies the strengths of interdependencies and correlations between differ-
ent attributes, using probability theory and preference relations quantified by the
utility associated with these attributes. This task is inducing the Bayesian network
for modelling stability by fusion of observed data and domain experts’ knowledge
is undertaken. Building the Bayesian network could leverage on operational pre-
experiments and/or simulations of the system.

The outcome of this phase is the stability quantitative model that will be used for
reasoning about stability during runtime. The model provides a basis for what-if analysis
covering probable runtime behaviour that ranges from likely to extreme scenarios.

Phase 2: Stability Support at runtime. The stability quantitative model is used
during runtime for estimating probable variations in stability attributes and associated
trade-offs under the dynamically changing workload. This, consequently, improves the
quality of decision making under runtime uncertainty for achieving the intended behaviour
of the architecture and supports seamless runtime operation of the system. This phase is
the continuous runtime process of:

Step 1. conducting the runtime inference. During runtime, posterior probabilities are ob-
tained using the Bayesian network that allows measuring the probable effect of
stabilising different stability attributes and their impact on each other. The poste-
rior probabilities, contributing to the adaptation decision making, help in improving
the quality of adaptation and ensuring the stability of quality attributes and hence
the architecture intended behaviour.

Step 2. performing online learning. When the system is operating, new cases arise, and it is
recommended to learn from these cases, assuming that the structure of the Bayesian
network will remain unchangeable [447] [438]. The conditional probabilities are
dependent on the context and operation environment which change dynamically.
The situation may also be that the simulation results used to extract the conditional
probabilities do not reflect accurately the actual runtime workloads. This calls
for online learning and updating the conditional probability distributions of the
Bayesian network to reflect the real world, e.g. reasoning about quality requirements
satisfaction as the system evolves dynamically [448] and learning for adaptation
[449]. 1

1The online learning algorithm is not discussed in this chapter, but we introduce it in our method for
the purpose of completeness. An online learning algorithm is proposed in Chapter 7, and our future work
will focus on integrating this algorithm with the Bayesian analysis (as discussed in section 9.3).

89

The runtime support for stability can be conducted online while the system is oper-
ating, by embedding the Bayesian analysis into the adaptation controller. The runtime
inference and online learning can also be conducted through symbiotic simulation along
with the adaptation controller. Symbiotic simulations shall run close to the physical
system, benefiting from real-time measurements from the actual system, and provide
feedback to the system [450] [451] [452]. The results of the simulation shall be used for
taking adaptation decisions autonomously during runtime by the adaptation controller
(managing system). While the former approach can achieve effective immediate results,
it can place extra computational overhead onto the system while running. Conversely is
the case of the latter approach. A balanced solution would be conducting the inference
online (using a threshold prior to violation) and employing the symbiotic simulation for
online learning.

5.4 An Evaluation of Applicability

In this section, we show the applicability of the proposed approach using the self-adaptive
cloud architectures case described earlier in section 4.4.1.

5.4.1 Building the Stability Model

Below, we present the step-by-step application of the approach.

Step 1. build probabilistic relational model. Based on the interdependencies between sta-
bility attributes (from the analysis results presented in section 4.4.2), we deduce
the relational model for each stability viewpoint. For instance, the probabilistic
relational models related to the stability viewpoints (quality of service, environ-
mental and quality of adaptation viewpoints) are shown in Figure 5.2, 5.3 and 5.4
respectively. The quality of service model could be read as follows: stabilising the
performance would affect the stability of related attributes that are greenability,
operational cost and quality of adaptation attributes. Regarding the environmental
model, such representation reflects that stabilising the energy consumption would
affect the stability of performance, operational cost and some quality of adaptation
properties.

Step 2. build stability Bayesian network. To quantitatively measure the dependency factors
between stability attributes and getting the prior knowledge to build the stability
Bayesian network, we conducted the pre-experiments described in section 5.4.2, and
the results of the stability model are presented in section 5.4.3.

5.4.2 Pre-experiments Setup

The pre-experiments were conducted using the evaluation tool, testbed configuration and
architecture configurations described below.

90

Figure 5.2: Evaluation Case: Stability Relational Model for the Quality of Service View-
point

Figure 5.3: Evaluation Case: Stability Relational Model for the Environmental Viewpoint

5.4.2.1 Evaluation tool

As research in Cloud Computing is experimental in nature [36], it is almost practically
not achievable to get highly scalable configurations and constant extensive workload to
conduct repeatable and scalable experiments. Therefore, as most researchers do, we resort
to simulation-based evaluations [36] [5], so that repeatable and scalable experimentation
is manageable. However, the simulation results can be used to guide the application of

91

Figure 5.4: Evaluation Case: Stability Relational Model for the Quality of Adaptation
Viewpoint

the selection approaches in of real-world scenarios.
To this end, we implemented the architecture of a self-adaptive cloud node, extend-

ing the widely adopted CloudSim simulation platform for cloud environments [5]. Our
evaluation tool implements a foundational adaptation controller of the IBM architectural
blueprint for autonomic computing, that is the MAPE feedback loop [453] [25], imple-
mented as monitor, detector, adaptation engine and adaptation executor components.
The simulation was built using Java JDK 1.8 and was run on a 2.9 GHz Intel Core i5 16
GB RAM computer.

5.4.2.2 Testbed configuration

The cloud architecture is configured with maximum capacity of 1000 hosts (physical
machines/ server). The configuration of each server is 2 x Xeon X5675 3067 MHz, 6 cores
and 256 GB RAM. The frequency of the servers’ CPUs is mapped onto MIPS ratings:
3067 MIPS each core [454] and their energy consumption is calculated using power models
of [454]. The maximum capacity of the architecture is 1000 hosts.

The characteristics of the virtual machines (VMs) types correspond to the latest gener-
ation of General Purpose Amazon EC2 Instances [455]. In particular, we use the m4.large
(2 core vCPU 2.4 GHz, 8 GB RAM), m4.xlarge (4 core vCPU 2.4 GHz, 16 GB RAM),
and m4.2xlarge (8 core vCPU 2.4 GHz, 32 GB RAM) instances. The operational cost
of different VMs types is 0.1, 0.2 and 0.4 $/hour respectively. Initially, the VMs are
allocated according to the resource requirements of the VM types. However, VMs utilise
fewer resources according to the workload data during runtime, creating opportunities for
dynamic consolidation. The testbed configuration of the experiments is shown in Table
5.1.

5.4.2.3 Architecture Configuration

The Catalogue of Architectural Tactics. We defined the catalogue of architec-
tural tactics to fulfil the quality attributes subject to stability. Table 5.2 lists the tactics

92

Table 5.1: Testbed Configuration

Configuration

Max. hosts 1000
Host type IBM x3550 server
Host Specs 2 x Xeon X5675 3067 MHz,

6 cores, 256 GB RAM
VMs type General Purpose Amazon EC2 Instances
VMs Specs m4.large: 2 core CPU 8 GB RAM,

m4.xlarge: 4 core CPU 16 GB RAM,
m4.2xlarge: 8 core CPU 32 GB RAM

and their definitions. We have based this work on the description tactics by Bass et al. [4].
The tactics include: (i) horizontal scaling (increasing/decreasing the number of physical
machines), (ii) vertical scaling (increasing/decreasing the number of virtual machines or
their CPU capacities), (iii) virtual machines consolidation (running the virtual machines
on less number of physical machines for energy savings), (iv) concurrency (by process-
ing different streams of events on different threads or by creating additional threads to
process different sets of activities), (v) dynamic priority scheduling (scheduling policy is
implemented, where the scheduler handles requests according to a scheduling policy), and
(vi) energy monitoring (providing detailed energy consumption information).

Adaptation Rules. Adaptation rules are defined as such tactics related with quality
attributes. Adaptation rules are summarised in Table 5.3.

5.4.2.4 Pre-experiments Settings

We conducted the pre-experiments using the testbed configuration described above and
the initial deployment of 10 running hosts. We run the pre-experiments for 300 time
intervals, each interval is of 200 seconds, in order to get sufficient data for building the
Bayesian network. In each time interval, we generate a random number of requests, and
the length of each request randomly varies between 1,000 and 20,000 Million Instructions
Per Second (MIPS).

To measure the stability ranges for different viewpoints, we configured the architec-
ture to take adaptation actions to stabilise specific attributes within different ranges, by
setting this attribute as the single adaptation goal. The adaptation controller selects an
adaptation tactic from the tactics catalogue based on the adaptation rules, in order to
achieve the quality requirement within the desired range. We, then, measured the impact
of such stability actions on the stability of related attributes.

93

Table 5.2: Catalogue of Architectural Tactics

No. Tactic Description Object Limits Variations

1 Vertical
scaling

increasing the number of
virtual machines (VMs)
or their CPU capacities

VMs maximum CPU
capacity of
hosts running
in the
datacenter

+1, 2, 3,... VMs or
increase the CPU
capacity of running
VMs

2 Vertical
de-scaling

decreasing the number of
virtual machines (VMs)
or their CPU capacities

VMs minimum one
running VM

+1, 2, 3,... VMs

3 Horizontal
scaling

increasing the number of
running hosts

Hosts maximum
number of
hosts in the
datacenter

+1, 2, 3,... hosts

4 Horizontal
de-scaling

decreasing the number of
running hosts

Hosts minimum one
running host

-1, 2, 3,... hosts

5 VMs consol-
idation

shut down hosts running
least number of VMs and
migrate their VMs to
other hosts

Hosts,
VMs

minimum one
running host
and one VM

-1, 2, 3,... hosts

6 Concurrency processing different
streams of events on
different threads or by
creating additional
threads to process
different sets of activities

datacenter
scheduler

maximum CPU
capacity of
hosts running
in the
datacenter

single, multiple
threads

7 Dynamic
scheduling

scheduling policy is
implemented, where the
scheduler handles
requests according to a
scheduling policy

datacenter
scheduler

maximum
number of
running hosts
and VMs

earliest deadline first
scheduling, least slack
time scheduling, single
queueing, multiple
queueing, multiple
dynamic queueing

Table 5.3: Adaptation Rules

Tactic Related Quality Attributes Priority

Dynamic scheduling response time 1
Concurrency response time 2
Vertical scaling response time 3
Horizontal scaling response time 4
VMs consolidation operational cost, energy consumption 1
Vertical de-scaling operational cost, energy consumption 2
Horizontal de-scaling operational cost, energy consumption 3

5.4.3 Results of the Stability Model

Samples of the Bayesian networks for different viewpoints when stabilising their attributes
for one range are shown in Figure 5.5, 5.6 and 5.7. For instance, to capture stability from
the quality of service viewpoint, we run the architecture with the adaptation goal of

94

having the performance response time stable for different ranges. Figure 5.5 shows the
Bayesian network for the quality of service viewpoint when response time is stabilised
for a range of 10-15 ms. The impact of such stability actions is, then, measured on the
related quality attributes, i.e. energy consumption, operational cost, adaptation settling
time and overhead. The attributes selected for stability, i.e. performance, is indicated
by probability = 1 for the range of 10-15 ms. With respect to the environmental view-
point, Figure 5.6 shows the probabilities of impacts of this viewpoint when the energy
consumption is stabilised in the range of 50-75 kWh. The energy consumption range
50-75 kWh is indicated with probability = 1. Then, the probabilities of related attributes
are calculated.

95

Figure 5.5: Evaluation Case: Stability Bayesian Network for the Quality of Service Viewpoint

96

Figure 5.6: Evaluation Case: Stability Bayesian Network for the Environmental Viewpoint

97

Figure 5.7: Evaluation Case: Stability Bayesian Network for the Economical Viewpoint

98

5.5 Experimental Evaluation

The main objectives of the experimental evaluation are to examine the quality of service
delivered and the quality of adaptation when employing the stability model during runtime
and to assess the associated runtime overhead.

5.5.1 Experiments Setup

The experiments were conducted using the simulation tool and testbed configuration
described above in section 5.4.2.1 and 5.4.2.2 respectively. The initial deployment of the
experiments is: 30 hosts running 30 VMs (10 x m4.large, 10 x m4.xlarge, 10 x m4.2xlarge).
Initially, the VMs are allocated according to the resource requirements of the VM types.
However, VMs utilise fewer resources according to the workload data during runtime,
creating opportunities for dynamic consolidation.

5.5.1.1 Benchmarks

We used benchmarks to stress the architecture with highly frequent changing demand and
observe stability goals. To simulate runtime dynamics, we used the RUBiS benchmark
[456] and the World Cup 1998 trend [457] in our experiments1.

The RUBiS benchmark [456] is an online auction application defining different ser-
vices categorised in two workload patterns: the browsing pattern (read-only services, e.g.
BrowseCategories), and the bidding pattern (read and write intensive services, e.g. Put-
Bid, RegisterItem, RegisterUser). For fitting the simulation parameters, we mapped the
different services of the RUBiS benchmark into Million Instructions Per Second (MIPS),
as listed in Table 5.4.

Table 5.4: Types of Service Requests

Service Pattern S# Service Type Required MIPS

browsing only 1 read-only 10,000
bidding only 2 read and write 20,000

mixed with adjustable
composition of the two
service patterns

3 70% browsing, 30% bidding 12,000
4 50% browsing, 50% bidding 15,000
5 30% browsing, 70% bidding 17,000

To simulate a realistic workload, we generated the number of requests based on the
World Cup 1998 workload trend [457]. The fluctuation of the workload is depicted in
Figure 5.8. To fit within the capacity of our testbed, we compressed the trend in a way
that the fluctuation of one day (=86400 sec) in the trend corresponds to one time instance
of 864 seconds in our experiments, and varied the number of requests proportionally. This
setup can generate up to 700 parallel requests during one time instance, which is large
enough to challenge stability.

1inspired by the earlier work of Chen et al. [3] [458] on self-adaptive and self-aware cloud architectures.

99

Figure 5.8: The World Cup 1998 workload trend

5.5.1.2 Stability Goals

We performed the runtime analysis based on the following stability goals defined in Table
5.5. The objectives are defined to be challenging. The choice of the weights is hypo-
thetical for the purpose of showing the applicability of the work. The weights reflect the
importance of stability attributes, as such the end-users related attributes are given the
highest weight, followed by the environment and the cost. Adaptation tactics are chosen
according to the stability attributes. The runtime adaptation options and adaptation
rules are described in section 5.4.2.3 and 5.4.2.3 respectively.

The architecture was configured to select adaptations (by order of preference), in-
formed by the stability analysis in one experiment and in another one without stability
analysis, which we note as stability-based adaptations and conventional adaptations re-
spectively. We, then, examined the quality of service provisioned and closely observed
the quality of adaptation in both cases.

Table 5.5: Settings of Stability Goals

Attribute Description Weight Metric Objective

Performance Response time 0.50 ms 25
Greenability amount of energy consumed

for operating hosts
0.20 kWh 25

Operational cost cost of computational
resources (CPUs, memory,
storage, bandwidth)

0.20 $ 50

5.5.2 Results of Stability Goals

The average of response time, energy consumption and operational costs are depicted in
Figure 5.9, 5.10 and 5.11 respectively. Generally, the adaptations informed by stability

100

analysis have achieved better performance in stabilising the three attributes. In more
details, as shown in Figure 5.9, the response time achieved by the stability case has varied
with different service types within the objective, while the average of both cases in very
close.

Figure 5.9: Average Results of Response Time

Regarding energy consumption, the stability-adaptive was capable of consuming less
energy varying with the processing requirements of each service type. This reflects the
minimal number of PMs running (resources overshoot). Similar to energy consumption
and following the same trend, operational costs (reflecting the number of VMs running)
was better achieved by stability-adaptive. This is due to performing adaptations that are
capable of keeping stability goals for longer periods.

Figure 5.10: Average Results of Energy Consumption

5.5.3 Results of Adaptation Properties and Overhead

To observe the accuracy of adaptation, we closely examined the achievement of all service
requests and we calculated the percentage of requests achieved without response time
violations. As shown in Figure 5.12, the accuracy of adaptations is better achieved by

101

Figure 5.11: Average Results of Operational Cost

the stability-adaptive analysis. This is due to taking into consideration the quality of
adaptation properties in the analysis.

Figure 5.12: Average Results of the Accuracy of Adaptation

Given the direct impact of the frequency of adaptation on architectural stability, we
evaluate the number of adaptation cycles taken by each capability. As shown in Figure
5.13, the frequency is much less in stability-adaptive case, due to making adaptation
decisions that can persist longer and avoid unnecessary adaptations. Meanwhile, the self-
adaptive was performing the same number of cycles for all service requests, given the
same fluctuation of the workload.

We also evaluated the adaptation overhead by calculating the total time spent by the
architecture in the adaptation process. Figure 5.14 shows the overhead of each service
type and their average. With fewer adaptations frequency, the overhead is on average
minimised by the stability-adaptations compared to the self-adaptive.

102

Figure 5.13: Average Results of the Frequency of Adaptation

Figure 5.14: Average Results of Adaptation Overhead

5.5.4 Complexity and Runtime Overhead

Considering the complexity and overhead of Bayesian analysis, the performance of the
Bayesian network is directly related to the number of nodes [445]. In the case of sta-
bility model, the number of stability attributes of each viewpoint and their parents is
limited. Thus, we can claim that running the stability model during runtime is not an
overhead on the system, compared with the expected benefits when achieving stability of
the architecture.

With respect to the storage requirements of the Bayesian network, let us consider
the case of the environmental viewpoint. There is one variable subject of stability X1, i.e.
greenability, and its dependent variables (performance, throughput, cost) {X2, ...,Xn+1}, n =
3. If each attribute can take 10 possible ranges for stability, then we have 279 probabilities
(from equation (5.3)), to be elicited in the stability model. For the case of the economical
viewpoint, where cost is the variable subject of stability with 4 dependent variables, we
have 359 probabilities to store in the stability network, which is just about practically
feasible.

Meanwhile, the state space of the variables will grow exponentially, as the Bayesian
network will accumulate knowledge during runtime. As such growth will affect the per-

103

formance of the analysis during runtime, one possible technique could be prioritising the
stability viewpoints. The highly-prioritised viewpoints could be kept running online, while
the less prioritised could be considered offline using symbiotic simulations and adaptation
decisions will be taken forward online. Such approach will limit the overhead of running
the analysis at runtime while preserving the benefits of the stability analysis.

5.5.5 Discussion

Probabilistic Relational Models for different stability viewpoints have provided a natural
representation for capturing the semantics of dependencies between different attributes
subject to stability. The modelling allows reasoning about a stable state for the archi-
tecture that satisfies multiple attributes essential for stability. Such consideration would
prevent SLA violations, excessive runtime adaptations, and consequently architecture
drifting or phasing-out. Whereas, the Bayesian networks have presented a quantification
of the dependence relations strengths and the preferences for runtime decision, as well as
provided quantitative evaluation for reasoning under uncertainty.

Capturing dependency factors that affect the attributes subject to stability, the Bayesian
networks for different viewpoints provide a powerful decision-support tool; it can be used
to measure and predict the effect of an adaptation action on stabilising a specific attribute
on other interdependent attributes. The knowledge obtained from the model can also pro-
vide insights for runtime adaptations that are linked to stabilising multiple qualities. This
also prevents unnecessary adaptations that could lead to instability.

Conducting stability inference for self-adaptive architectures, as part of their runtime
operation, ensures more effective and efficient adaptations that contribute to the contin-
uous fulfilment of quality requirements and eliminate SLA violations. As the objective of
self-adaptivity is to seamlessly manage the runtime quality requirements and their trade-
offs, the stability model allows verifying to what extent the adaptation actions are able
to converge towards their goals, i.e. the quality of adaptation. Combining the adapta-
tion properties with the adaptation goals in the process would result in a more efficient
self-adaptive system. Compared with adaptations not informed by stability analysis, even
with multi-objectives optimisation, stability analysis would ensure the constant provision
of these requirements with fewer violations, while the former might result in frequent
unnecessary adaptations leading to instability.

Integrating the stability model into the adaptation process of such dynamic archi-
tectures provides valuable support for reasoning about the adaptation decision and the
operation of the architecture during runtime. The reasoning aims to satisfy not only the
adaptation goals but also to ensure the constant provision in addition to the adaptation
properties of the controller. The optimal of adaptations required tend to fulfil multiple
stability properties and converge quickly towards adaptation goals. Such optimality of
adaptation decisions can lead to the desired stable state. However, it is possible to reach
and maintain stability by reaching sub-optimal stages. Henceforth, the problem would be
what is the range that can keep the system stable, which could vary between minimum
sub-optimal to optimal. Yet, the results are sensitive to the analysis step and the accuracy
of data used to build the model.

Our method for modelling stability can make use of “sensitivity analysis” [459] [438],

104

in order to test the extent to which small perturbations to the inputs of the model, i.e.
entries of the conditional probability distributions, can affect the stability of the whole
architecture. Two types of sensitivity analysis could be performed in probabilistic models:
(i) evidence sensitivity analysis, in which how the result of an evidence is sensitive to the
variations in the set of evidence, and (ii) parameter sensitivity analysis, in which how
the result of an evidence is sensitive to the variations in a parameter of the model. The
sensitivity analysis could be easily embedded in the steps of building the stability model.

Regarding the proposed methodological support, the level of automation generally
varies between steps. For instance, the qualitative analysis depends on the human ca-
pabilities (stakeholders’ input and architects’ decision), which is different from the au-
tomated reasoning during runtime. Though extensive efforts have been taken to ensure
re-reproducibility of the method by providing systematic guidance, this would be subject
to further empirical studies to determine the practicality of the method, where factors,
such as availability of information, stakeholders’ experience would be examined. Though,
we believe that the presented case study for evaluation exemplifies the working procedure
of the approach and reflect the potential usability.

5.6 Related Work

The runtime behavioural stability of software architectures was not explicitly tackled as
an architectural property in the literature to date, to the best of our knowledge, with the
exception of [340]. This study investigated the instability of service-oriented architectures,
focusing on the instability of three attributes: performance, response time and communi-
cation delays. Though this work could be considered partially tackling the stability of the
architecture’s behaviour (performance characteristics) during runtime, the explicit focus
of this work was on dependability and resilience, not explicitly considering stability as an
architectural property.

Considering self-adaptive architectures, the adaptation mechanisms proposed in the
literature focused on some adaptation properties, such as tactics latency (the time it
takes since an adaptation is started until its effect is observed) [351], settling time (the
amount of time the controller takes to achieve the adaptation goal) [352] [353]. Yet, prop-
erties reflecting the quality of adaptation, i.e. how well the adaptation process converges
towards the adaptation objective, are not explicitly considered [354] [25]. Meanwhile,
properties reflecting the behaviour of the controller have impact on the stability of the
whole architecture [25].

5.7 Summary

In this chapter, we presented a systematic approach for analysing and modelling be-
havioural stability. The stability analysis, based on architectural concerns and viewpoints,
introduced a qualitative model for representing the knowledge related to the attributes
subject to stability and their dependencies. One feature of the analysis is making ex-

105

plicit consideration of the architecture type, domain and its environment. For modelling
stability, we employed probabilistic relational models that capture the correlations be-
tween stability attributes of different viewpoints. Bayesian networks are, then, used for
quantitatively calculating probability distributions of the impact of stabilising specific at-
tributes on interdependent attributes, as well as reasoning about stability under runtime
uncertainty. The approach enables the continuous realisation of the intended behaviour;
hence it could be used to take preventative actions for maintaining the required QoS and
preventing violations that could lead to penalties and reputation damage.

106

Chapter 6

Reference Architecture and Goals
Modelling for Stability

All fine architectural values are human values,
else not valuable.

— Frank Lloyd Wright

6.1 Introduction

Grounded on the survey findings (Chapter 2), there is a lack of engineering practices ex-
plicitly addressing architectural stability. Meanwhile, achieving behavioural stability for
long-living software calls for stability planning starting in an early development stage, i.e.
in the requirements engineering and architecture design phase [4], where stability require-
ments are assessed throughout the architecture’s lifespan and will be used in informing
architecture decisions, so that the architecture will not break-down easily when coping
with increased runtime load demands or evolution [381] [19]. Hence, designing for a poten-
tially stable architecture can be probed at design-time based on the requirements subject
to stability. Requirements engineering for stability will help in capturing and analysing
the quality attributes subject to stability while building stable architectures. Stability
requirements should be modelled as goals at an abstract level, then technically refined
to a fine-grained level that can be allocated to single components [382] [383]. Explicit
relation between the requirements model and the architecture should also be present to
consider the architectural stability [384] [381] [385] [39]. This will result in having the
necessary runtime actions to keep the architecture stable, more effective and less cost in
the long-term.

Even though architecture design has been widely investigated and derived from quality
attributes [427], stability was not explicitly tackled. The shortcoming of current software
engineering practices regarding stability is that the stable provision of certain quality
attributes essential for end-users (e.g. response time for real-time systems) is not explicitly
considered in requirements modelling and architecture design. To address this challenge,
we propose a reference architecture and requirements modelling for stability based on the
self-awareness computing [460]. The main purpose is to facilitate and guide the design

107

of stable architectures for new systems and the improvement of developed systems with
architectural stability.

Contributions. The main contributions in this chapter are as follows.

• We propose a reference architecture for stability. The architecture leverages on the
principles of self-awareness and self-expression —that have recently emerged in the
field of software engineering as a mechanism to seamlessly improve the quality of
runtime adaptations, the fulfilment of runtime requirements and the management of
complex dynamic trade-offs [460]. The proposed architecture incorporates quality
self-management generic components and embeds a catalogue of architecture tactics
within self-awareness capabilities. Such architecture would take adaptation decisions
for better tuning, responding and achieving stability goals.

• We present runtime goals modelling for stability featuring novel extensions for the
Runtime Goal Models [461] —that is based on the Goal-Oriented Requirements
Engineering (GORE) —in order to enable efficient use of self-awareness and self-
expression in achieving stability goals. The extensions include finer-grained and
dynamic knowledge representation of the runtime goals, i.e. goals attributes nec-
essary for enabling self-awareness and measures of goals satisfaction in relation to
adaptation decisions.

• We apply the reference architecture and model to the case of cloud architectures,
where the continuous satisfaction and provision of quality requirements without
SLA violations in the highly dynamic operating environment are challenging. Ex-
perimental results have shown that the proposed design artefacts have improved the
stability in delivering the quality of service goals.

The proposed design-support artefact would assist architects and practitioners in plan-
ning for stability, as well as designing stable and long-living systems. Such design-support
would increase the efficiency of the architecture runtime operation, preventing the archi-
tecture from drifting and phasing-out as a consequence of the continuous unsuccessful
provision of quality requirements. As reference architectures refer to “a special type
of software architecture that has become an important element to systematically reuse
architectural knowledge” [462], the reference architecture makes it possible to more sys-
tematically design stable architectures.

Organisation. This chapter is organised as follows. Section 6.3 and 6.4 elaborate
the technical contributions on reference architecture and goals modelling respectively. In
section 6.5, we instantiate the architecture to show the applicability of our work, followed
by experimental evaluation in section 6.6. We discuss related work in section 6.7 and
concluded the chapter in section 6.8.

108

6.2 Background

In this section, we present an overview on self-awareness (section 6.2.1) and Runtime Goal
Models (section 6.2.2) on which we base our work.

6.2.1 Self-Awareness and Self-Expression

As self-adaptive software systems are increasingly becoming heterogeneous with dynamic
requirements and complex trade-offs [463], engineering self-awareness and self-expression
is an emerging trend in the design and operation of these systems. Inspired from psy-
chology and cognitive science, the concept of self-awareness has been re-deduced in the
context of software engineering to realise autonomic behaviour for software exhibiting
these characteristics, with the aim of improving the quality of adaptation and seamlessly
managing these trade-offs [464] [2].

The principles of self-awareness are employed to enrich self-adaptive architectures with
awareness capabilities. As the architectures of such software exhibit complex trade-offs
across multiple dimensions emerging internally and externally from the uncertainty of the
operation environment, a self-aware architecture is designed in a fashion where adaptation
and execution strategies for these concerns are dynamically analysed and managed at
runtime using knowledge from awareness.

Self-aware architecture style is defined based on a self-aware node unit [2] [3]. A
self-aware computational node is defined as a node that “possesses information about
its internal state and has sufficient knowledge of its environment to determine how it is
perceived by other parts of the system” [464] [2]. A node is said to have self-expression
capability “if it is able to assert its behaviours upon either itself or other nodes, this
behaviour is based upon a nodes sense of its personality” [460]. Different levels of self-
awareness, called capabilities, were identified to better assist the self-adaptive process
[460] [2] [3]:

• Stimulus-awareness : a computing node is stimulus-aware when having knowledge of
stimuli, enabling the system’s ability to adapt to events. This level is a prerequisite
for all other levels of self-awareness.

• Goal-awareness : if having knowledge of current goals, objectives, preferences and
constraints, in such a way that it can reason about it.

• Interaction-awareness : when the node’s own actions form part of interactions with
other nodes and the environment.

• Time-awareness : when having knowledge of historical information and/or future
phenomena.

• Meta-self-awareness : the most advanced of the self-awareness levels, which is aware-
ness of own self-awareness capabilities.

109

Figure 6.1: Self-Aware Computing Node (re-drawn from [2] [3])

6.2.2 Runtime Goal Models

Goal-oriented requirements engineering (GORE) has become a widely used paradigm for
elicitation, modelling, analysis and reasoning of systems requirements [465] [466]. Goals
are objectives to be achieved by the system under consideration [382], i.e. prescriptive
statements of intent whose satisfaction requires the cooperation of different components
in software and its environment [381] [383]. Goals range from high-level to fine-grained
technical prescriptions that can be assigned as responsibilities to single components [383]
[382]. Goals, thereby, provide a rationale for requirements and allow tracing low-level
details back to high-level concerns [382].

Runtime Requirements Models —denoting requirements models that are used at run-
time —have a key role to support monitoring requirements satisfaction and the consequent
adaptations during runtime. Runtime Goal Models, extending design-time goals, were
proposed to analyse the runtime behaviour of a system with respect to the satisfaction
of requirements and consequently refine the goals specification model, its assumptions
and operationalisation decisions [461] [467] [468]. Runtime goals were employed in self-
adaptive software catering for uncertainty [469].

6.3 Self-aware Reference Architecture for Stability

As the architecture design plays an essential role in delivering the quality requirements [4],
architectural behavioural stability is directly related to the intended behaviour of the

110

architecture. As an example of behaviour, one architecture could be intended to keep the
response time stable (as it is a crucial quality attribute for the end-users in the case of
real-time systems), while throughput could be a critical requirement attribute to be kept
stable for another architecture. Having the architecture’s intended behaviour stable, by
assuring the delivery of some quality attributes, is highly desirable.

The reference architecture is based on an architecture pattern enriched with self-
awareness and self-expression components, quality self-management components and cat-
alogue of architectural adaptation tactics for achieving the intended behaviour. Self-
awareness capabilities are employed to safeguard the stability of these attributes, where
the selection of the appropriate tactic leading to stability will be performed during runtime
by the awareness capabilities. Incorporating the tactics, as adaptation actions to meet
the quality requirements, will improve and enrich the quality of self-expression, i.e. the
adaptation actions taken during runtime [41]. Such reference architecture allows instan-
tiation of different patterns suitable for different software domain applications interested
in stability.

Achieving such stable behaviour requires adaptation actions to cope with the runtime
changes. Adaptability is known to be the current routine to consider various “ilities”
–subject to stability –when architecting systems [470]. Architecting for adaptability is
meant to make adaptability part of the architecture design reviews, by creating a cata-
logue of adaptability-enhancing design tactics [470]. As such, our reference architecture
is enriched with a catalogue of architectural tactics as adaptation actions designated to
fulfil quality attributes subject to stability. The architectural pattern is also enriched
with quality self-management capabilities, in order to achieve the desired behavioural
stability [41].

We envision that self-awareness and self-expression are the most convenient capabil-
ities for realising behavioural stability. The self-awareness capabilities, embedded in the
architecture pattern, own the necessary knowledge for achieving stability and keeping
the stable state. For instance, the stimulus- and goal-awareness could provide knowledge
about stability goals relevant to the system. The time-awareness could help with the
historical information and/or future phenomena about achieving stability.

To design the reference pattern for achieving stability attributes, we follow the general
quality scenario presented at [4] to formally capture stability requirements. The general
scenario, illustrated in Figure 6.2, is described as follows:

1. The Stability Monitor (source of stimulus) monitors changes in stability attributes
(stimulus) during runtime and collect relevant data.

2. The architecture pattern (artefact) is responsible for realising stability. Stimulus-
awareness is responsible for detecting violations (or possible violations as per thresh-
old) in stability attributes and notifying the self-awareness component to consider
adaptation action. The self-awareness responds by selecting an architectural tactic
from the Tactics Catalogue, embedded in the pattern, to meet stability requirements
and accordingly perform the adaptation actions.

3. The Self-expression component is, by its turn, responsible for composing the tactic
(response) and instantiating it as an adaptation action.

111

4. The response, after the execution of the tactic, is measured by the Architecture
Evaluator which in turn feeds the different levels of awareness to take further actions
if needed and keep history.

Figure 6.2: General Scenario for Designing Stability-driven Pattern (adopted from [4])

6.3.1 Quality/Tactics Self-management Generic Components

The reference architecture aims at supporting the process of architecture design for sta-
bility. Figure 6.3 illustrates the architecture pattern with self-awareness capabilities and
tactics generic components. To achieve the envisioned quality self-management capability,
the generic components added within self-awareness capabilities are:

• Stability Monitor component : responsible for monitoring changes in workload and
stability attributes during runtime.

• Tactics Catalogue: a catalogue of runtime tactics designated to achieve different
quality attributes subject to stability. As stimulus-awareness is the base of all self-
awareness capabilities, the catalogue of architectural tactics is embedded at the
stimulus-awareness component.

• Tactics Rule Manager : embedded at the stimulus-awareness level, it defines if-
condition-then-action adaptation rules, where the conditions are stability require-
ments and the actions are response tactics. Rules include priorities for tactics to
reflect the order of executing tactics (e.g. vertical scaling is used first before hori-
zontal scaling for faster response and less cost).

• Adaptation Engine: could be seen as a more complex version of the Tactic Rule
Manager present in different levels of awareness. A goal-oriented adaptation engine
uses knowledge about design-time and runtime goals available at the goal-awareness
component to make decisions about tactic selection in line with the system’s cur-
rent goals. Interaction-oriented adaptation engine contributes to the selection of
the adaptation decision according to runtime conditions of the other nodes in the
interacting environment where the node is collaborating.

112

• Adaptation Trainer : helps in improving the selection of the adaptation decision
using historical information. Historical data, received from the Stability Monitor
and the Architecture Evaluator, include tactics responses under different runtime
conditions to improve the quality and accuracy of adaptation in the future.

• Adaptation Manager : in the meta-self-awareness level, is responsible for managing
trade-offs between stability attributes during runtime and switching between differ-
ent behavioural strategies in the interaction-, time- and goal-awareness capabilities.
The dynamic selection of the appropriate tactic at runtime is performed based on
the reasoning about the benefits and costs of selecting a tactic based on a certain
level of awareness in order to meet stability attributes while managing trade-offs
between them.

• Tactic Executor : responsible for managing the process of tactic composition and
execution during runtime at the self-expression level. In more details, it makes
instructions about the composition and instantiation of the components required to
execute the tactic, and the actual execution of the tactic components and connectors
during runtime.

• Architecture Evaluator : evaluates the response after executing of the tactic, and
feeds the different levels of awareness to take further actions if needed and accumu-
late historical information.

6.3.2 Designing Stability-driven Architecture Patterns

We discuss how the reference architecture could be instantiated. A variety of patterns
could be designed using different combinations of self-awareness capabilities, so that the
pattern used when designing the software would include capabilities relevant to the soft-
ware requirements [41]. This could follow the methodology for designing self-aware and
self-expressive systems proposed in [3]. We use the set of self-aware and self-expressive
patterns of [3] and [41] that are Basic Pattern (P1), Basic Information Sharing Pattern
(P2), Coordinated Decision-making Pattern (P3), Temporal Knowledge Aware Pattern
(P4), Temporal Knowledge Sharing Pattern (P5), Goal Sharing Pattern (P6), Temporal
Goal Aware Pattern (P7), Temporal Goal Sharing Pattern (P8), Meta-self-aware Pattern
(P9), as examples of different possible combinations. The generic components added in
different self-aware patterns are summarised in Table 6.1.

6.4 Runtime Goals Modelling for Stability

In this section, we present the finer-grained knowledge representation of our proposed
SAwGoals@run.time for modelling runtime stability goals.

113

Figure 6.3: Reference Architecture Pattern with Tactics Generic Components

Table 6.1: Variations of Stability-driven Architecture Patterns

Component
Patterns

P1 P2 P3 P4 P5 P6 P7 P8 P9

Stability Monitor
√ √ √ √ √ √ √ √ √

Tactics Catalogue
√ √ √ √ √ √ √ √ √

Tactics Rule Manager
√ √ √ √ √ √ √ √ √

Goal Adaptation Engine - - - - -
√ √ √ √

Interaction Adaptation Engine -
√ √

-
√ √

-
√ √

Adaptation Trainer - - -
√ √

-
√ √ √

Adaptation Manager - - - - - - - -
√

Tactic Executor
√ √ √ √ √ √ √ √ √

Architecture Evaluator
√ √ √ √ √ √ √ √ √

6.4.1 Runtime Goals and Self-Awareness

We propose enriching the architecture pattern with SAwGoals@run.time component (as
illustrated in Figure 6.3). As runtime goals drive the architecture in reasoning about
adaptation during runtime [471], SAwGoals@run.time extends the GORE model to suit

114

the needs of self-awareness capabilities and stability requirements. The objectives of the
proposed modelling are: (i) fine-grained dynamic knowledge representation of stability
goals to enable efficient use of the different levels of self-awareness, (ii) monitoring the
satisfaction of stability goals and the performance of tactics, (iii) better informed decision
of the optimal tactic for realising architectural stability, and (iv) continuous accumulation
of historical information to update the knowledge for future learning using time-awareness.

We refine the Runtime Goal Models with fine-grained dynamic knowledge representa-
tion that reflects self-awareness needs for new attributes of the goals, operationalisation,
tracing down to architecture and runtime satisfaction measures. Specifically, additional
runtime behavioural details relevant to different levels of self-awareness are integrated,
such as node information for interaction-awareness, and trace history for time-awareness,
as well as information about the execution environment in different time instances. Oper-
ationalisation of stability attributes is realised by self-expression, through runtime tactics
which are defined within the proposed model. The model would better operate in the pres-
ence of historical information about the ability of operationalisation decisions. In the case
of instantiation, it is imperative that the designer considers what-if analysis, simulation or
scenarios to test the suitability of the choice. Models which rely on decision-making under
uncertainty can also be sensible to employ. Given relevant information about goals and
the operating environment, conflict management between goals during runtime is handled
by meta-self-awareness capabilities.

The proposed SAwGoals@run.time overcomes the limitations of GORE with respect
to self-awareness and self-expression as follows:

• Goal Attributes. Operating different levels of self-awareness requires detailed infor-
mation about the goals during runtime. Such information should include attributes
about the interacting node, time instance, the execution traces, the adaptations
and their performance to satisfy the goal, as well as the operating environment. For
instance, information about goals from other nodes and adaptations taking place in
the operating environment is required for the interaction-awareness level. Having
this information for different time instances would form historical information useful
for the time-awareness level to improve the accuracy of adaptation.

• Goal Operationalisation. Operationalisation is performed at the self-expression level
using Runtime Goal Model operationalisation, as follows. For operationalising sta-
bility attributes, we extend the Runtime Goal Model to introduce alternative of
runtime tactics, designed to stabilise and operationalise changes in stability goals
at runtime. QoS provision under runtime uncertainty could be handled using al-
ternative operationalisation strategies/ tactics designated for various quality at-
tributes [56] [67]. For instance, self-aware systems encounter during runtime uncer-
tain changes in stability goals due to the changing workloads and size of jobs from
users with different SLAs. Runtime tactics designed for performance, like vertical
and horizontal scaling, are candidate artefacts for handling stability goals, from
which self-awareness can select the optimal handling tactic. The extent to which
goals are satisfied is subject to the choice of the tactic.

• Conflict Management. As the system encounter operationalisation decisions dur-
ing runtime for multiple goals, conflicts are likely to exist. Conflict management

115

in dynamic environments exhibits numerous uncertainties and trade-offs requiring
intelligent strategies for negotiating conflicts, prioritising and reconciling decisions.
Conflict management, through active negotiation, can rely on information related
to the historical performance of the tactics in meeting the goals. Negotiation is
continuously live in the self-aware system, as such: once reconciliation is reached
and a decision is taken, a trace of the decision is monitored for its ability to satisfy
the goal and possible dependencies. This information can feed into subsequent cy-
cles of negotiation, with the objective of better resolving conflicts the system learns
through self-awareness.

6.4.2 Runtime Goals Knowledge Representation

Runtime goals in SAwGoals@run.time are defined along with an execution trace and
traced to runtime tactics for operationalisation. A Runtime Goal (e.g. performance)
G ∈ G, where G is the set of goals in a self-aware and self-expressive node. A goal is
defined by the following attributes:

• Unique identifier id of the goal G.

• Definition. formally and informally defining the goal and its satisfaction in an
absolute sense.

• Node identifier N , the unique identifier of the self-aware node responsible for real-
ising the goal.

• Weight w to consider the priority of the goal.

• Metric M a measurable unit (e.g. response time measured in milliseconds) that can
be used to measure the satisfaction of the goal while the system is running.

• Objective f(G) defines the measures for assessing levels of the goal satisfaction
with respect to values defined in SLAs of different end-users (e.g. objective for
performance are response time 15 ms and 25 ms for dedicated and shared clients).

• Set of tactics T (G) ∈ T to be used in case of violation of the goal. The goal semantic
is the set of system behaviours, i.e. runtime tactics, that satisfy the goal’s formal
definition.

A Runtime Tactic T ∈ T (e.g. vertical scaling) is defined as follows:

• Unique identifier id of the tactic T .

• Definition includes the description and informal definition for when to apply the
tactic and how to execute it.

• Object in the architecture in which the tactic is executed (e.g. VMs).

• Pre-condition defines the current condition of the operating environment in which
the tactic could be applied.

116

• Limits defines the minimum and maximum limits of the architecture for executing
the tactic (e.g. the maximum number of servers).

• Functionality defines how the tactic should be executed.

• Post-condition. This characterises the state of the operating environment after
applying the tactic.

• Variantions of the tactics includes different forms or possible configurations for ap-
plying the tactic (e.g. earliest deadline first scheduling, least slack time scheduling).

A Runtime Goal Instance G(n, ti) is an instance of the runtime goal G in the
self-aware node n at a certain time instance ti, and is defined as follows:

• Client c issuing the service request r.

• Objective denotes the quality value defined in the SLA of the client c.

• Tactic T and its configuration executed as an adaptation action to satisfy the goal.

• Actual value v denotes the degree of satisfaction achieved after the execution of the
tactic T that is measured by the Architecture Evaluator.

• Set of environment runtime goals Ge, that are the goals from other self-aware nodes
nx running at the same time instance ti with which the node n is interacting, where
Ge = {G1(n1, ti), G2(n2, ti), ..., Gx(nx, ti)}.

• Set of environment runtime tactics Te, that are the tactics taking place at the same
time instance ti in the environment, where Te = {T1, T2, ..., Tx} for ∀ G ∈ Ge.

For each goal G, change tuples are created at different time instances ti to form the
history of this goal H(G) for keeping record of the goal satisfaction and related tactics
performance over time. This history shall be used by time-awareness to reason about
adaptation actions in the future.

6.5 An Evaluation of Applicability

In this section, we show the applicability of the proposed work through the case of cloud
architectures described in section 4.4.1.

6.5.1 Application of the Reference Architecture

We created the architecture of a cloud node using the reference architecture to perform
stability-driven adaptations, as illustrated in Figure 6.4. To this end, this architecture
should dynamically perform architecture-based adaptation, which would use the knowl-
edge available at different levels of awareness in choosing optimal tactics to meet stability
requirements during runtime. The instantiated architecture pattern embeds different

117

awareness components, with exception of the interaction-awareness, to focus of a single
cloud node with no interaction with other nodes. To focus on the evaluation of the pro-
posed architecture, only the goal-awareness components is enabled in these experiments.
Other awareness components are used in the next chapter for reasoning about stability.

The architecture embeds the catalogue of architectural tactics (defined in section
5.4.2.3) to fulfil the stability goals. Architectural tactics are defined in the Tactics Cat-
alogue component. Adaptation rules (listed in Table 5.3) are embedded in the stimulus-
awareness component. Monitors for stability attributes are implemented in the Stability
Monitor component. Components necessary for checking possible violation of stability
attributes are implemented in the stimulus-awareness component, e.g. SLA Violation
Checker and Green Performance Indicator. The scheduler component of the scheduling
tactic was embedded into the stimulus-aware. Management components of tactics were
configured into the Tactic Executor for running the tactics, e.g. auto-scaler.

Figure 6.4: Evaluation Case: Application of the Reference Architecture

118

6.5.2 Application of the Goals Model

We define, hereunder, stability goals and runtime tactics determined above using our
runtime goals modelling. Then, we provide an example of a runtime goal instance.

Stability goals Performance and QualityOfAdaptation are dedined as follows.

Goal Achieve [Performance]
Informal Definition

For every request received, the request processing should be accom-
plished within the performance parameters defined in the SLA of the
client issuing the request.

Formal Definition
∀ r:Request, c:Client

ExecuteRequest (r) ⇒ ♦ ≤ c.SLA(ResponseTime)
Node identifier n1:Self-awareArchitectureNode
Weight w = 1.0
Metric ResponseTime: Request → Time

def: the duration of processing request starting from client submit-
ting the request till submitting the response back to the client

Objective
ResponseTime = ResponseTime ≤ c.SLA(ResponseTime)

Tactics T1: VerticalScaling
T3: HorizontalScaling
T6: Concurrency
T7: DynamicScheduling

Goal Achieve [QualityOfAdaptation]
Informal Definition

Any quality attribute should not be worse than 20% of the threshold
in SLA for more than 300 seconds.

Formal Definition
∀ r:Request, c:Client

QualityAttributes(r) ⇒ ♦5min ≤ 20% c.SLA(QualityAttributes)
Node identifier n1:Self-awareArchitectureNode
Weight w = 0.7
Metric QualityAttribute: Request → Time

def: the quality attributes of processing requests should not be worse
than 20% of the threshold in the client SLA for more than 300ms.

Objective
ResponseTime = ResponseTime ♦300sec ≤ 20% c.SLA(ResponseTime)

Tactics T1: VerticalScaling
T3: HorizontalScaling
T6: Concurrency
T7: DynamicScheduling

Runtime tactics VerticalScaling and VMsConsolidation are dedined as follows.

119

Tactic VerticalScaling
Unique identifier T1
Informal Definition

increase the number of VMs or their capacities
Object VMs
Pre-condition

TotalCPUcapacity of running VMs ≤
TotalCPUcapacity of hosts running in the datacenter

Limits max(TotalCPUcapacity) of hosts running in the datacenter
Functionality

increaseCPUCapacity(vm: VM) ∨
increaseCoresNum(vm: VM) ∨
runNewVM()

Post-condition Waiting Requests are migrated to the new VM
Variations T1.1: increase CPU capacity of 1 running VM

T1.2: increase the number of cores of 1 running VM
T1.3: add 1 VM to running VMs

Tactic VMsConsolidation
Unique identifier T4
Informal Definition

shut down hosts running least number of VMs and migrate their VMs
to other hosts

Object Hosts, VMs
Pre-condition number of hosts running in the datacenter ≥ 2
Limits min 1 host running in the datacenter ∧

min 1 VM running
Functionality

migrateVMs(host: Host) ∨
shutdown(host: Host)

Post-condition Requests are migrated to VMs
Variations T4.1: shutdown 1 host

An instance of the Runtime Goal Performance is defined as follows.

Goal G1(n1, ti)
Client c:Client
Request r:Request
Objective ResponseTimec = ResponseTime(r) ≤ 15ms
AdaptationAction T1.3

SatisfactionDegree v = 14ms
Environment Runtime Goals Ge(ti) = {G1(N2, ti), G1(N3, ti), ...}
Environment Runtime Tactics Te(ti) = {N2.T4.1, N3.T1.3}

6.6 Experimental Evaluation

The main objective of the experimental evaluation to examine the stability goals and
assess associated overhead when using the instantiated architecture and goals modelling
in comparison with a foundational self-adaptive architecture (described in section 5.4.2.1).

120

6.6.1 Experiments Setup

To conduct the experimental evaluation, we implemented the instantiated architecture
using the widely adopted CloudSim simulation platform for cloud environments [5]. The
benchmarks and testbed configuration of these experiments are as described in section
5.5.1.1 and 5.4.2.2 respectively. The initial deployment of the experiments is: 10 hosts
running 15 VMs (5 x m4.large, 5 x m4.xlarge, 5 x m4.2xlarge). Initially, the VMs are
allocated according to the resource requirements of the VM types. However, VMs utilise
fewer resources according to the workload data during runtime, creating opportunities for
dynamic consolidation.

We set the runtime goals model with stability attributes from the stability analysis
results (section 4.4). Regarding the quality of adaptation, we challenge the experiments
with the settling time (the time required by the adaptation system to achieve the adap-
tation goal to assure stable provision of attributes) and the accuracy of adaptation (how
well the adaptation converges towards adaptation goals) [25]. The stability objectives and
weights are hypothetical to stress the architecture, as defined in Table 6.2.

Table 6.2: Settings of Stability Goals

Attribute Description Weight Metric Objective

Performance Response time 0.50 ms 25
Greenability amount of energy consumed

for operating hosts
0.20 kWh 25

Operational cost cost of computational
resources (CPUs, memory,
storage, bandwidth)

0.20 $ 50

Settling time time required by the
adaptation system to achieve
stability goals

0.10 ms

Accuracy of
adaptation

how close adaptation goals are
met within given tolerances

0.10 %

6.6.2 Results of Stability Goals

We report, first, on the average of stability goals at each time interval. The average
response time results for service types 1 and 2 are depicted in Figure 6.5. As shown in the
figure, the self-aware architecture was able to result in more stable response time compared
with the self-adaptive architecture in both service types, while the latter caused violation
in response time in early time intervals when the peak workload started. At the same
time, the self-aware architecture was also capable of stabilising the operational cost for
longer time intervals than the self-adaptive architecture. It is worth noting that stabilising
response time with energy consumption and cost at the same time is very challenging in
case of peak workload, that is why the self-aware architecture had some violations during
the highest peak load.

Next, we report the results of stability goals on average 30 runs of the experiments
total results in Table 6.3. The average response time of all requests for each service type

121

Figure 6.5: Average Response Time of Service Types 1 and 2 during Time Intervals

is much better achieved by the self-aware architecture (average 62.85 ms compared to
20.02 ms). This came with the price of higher operational cost (168.94 $ vs. 205.84
$) and adaptation overhead (as shown below). In such case, the self-aware architecture
considered keeping the response time without violations while not fully stabilising the cost
within the constraint, as the response time weight is higher. Meanwhile, the difference
in response time is much bigger than the difference in cost and energy. While the energy
consumption in self-adaptive architecture was less (24.96 kWh), the self-aware architecture
was capable of keeping it within the stability goal (28.52 khW).

Table 6.3: Average Results of Stability Attributes

Stability Attributes S# Architecture Pattern
Self-adaptive Self-aware

Response time (ms) 1 73.73 16.00
2 63.49 22.92
3 58.41 18.56
4 58.90 21.10
5 59.74 21.54
avg. 62.85 20.02

Energy consumption (kWh) 1 23.80 28.52
2 25.33 28.52
3 25.02 28.52
4 25.33 28.52
5 25.33 28.52
avg. 24.96 28.52

Operational cost ($) 1 137.18 193.44
2 184.08 230.88
3 159.02 199.38
4 180.66 199.68
avg. 168.94 205.84

122

6.6.3 Results of Adaptation Properties and Overhead

Table 6.4 shows the average results of adaptation properties. The accuracy of adaptation
is shown in terms of the violation percentage in response time for all service types, and
the settling time is shown as total time periods where the response time was violated. As
shown in the table, the percentage of violations in response time is slightly higher in the
case of self-aware architecture in all service types. But regarding the total periods of time
where the response time was violated, the self-aware architecture was capable of keeping
it much less than the self-adaptive architecture. For instance, response time violation in
the case of service type 1 was 12.96% and 14.23% for the self-adaptive and self-aware
architectures respectively, while the total time of violations was 11232 sec compared to
4320 sec. Meanwhile, the self-aware architecture violations were less for service types 2
and 4, with better settling time. This reflects the higher quality of adaptations and tactics
selection.

With respect to the associated adaptation overhead (calculated by the time spent in
the adaptation process), the average overhead of self-aware architecture is 251.62 sec on
average of all service types, compared to 164.90 sec of the self-adaptive architecture. Yet,
the difference in response time is much bigger than the difference in overhead (compared
with Table 6.3).

Table 6.4: Average Results of Adaptation Properties

Adaptation Property S# Architecture Pattern
Self-adaptive Self-aware

Accuracy of adaptation (%) 1 12.96 14.23
2 26.44 24.40
3 15.78 17.19
4 20.90 20.91
5 27.51 28.31
avg. 20.72 21.01

Settling time (ms) 1 11232 4320
2 24192 9504
3 13824 5184
4 19872 6048
5 19008 8640
avg. 72921.60 6739.20

Adaptation overhead (sec) 1 157.80 247.40
2 168.50 260.60
3 162.70 249.00
4 167.40 249.60
5 168.10 251.50
avg. 164.90 251.62

6.6.4 Discussion

The proposed architecture with its generic components to embed runtime tactics have
successfully instantiated many tactics for different quality and stability attributes and

123

enriched the self-aware patterns with self-management quality capabilities to meet the
changing workload and stabilise quality requirements during runtime. Applied to the
evaluation case, the hypothetical case has shown the potential to deliver values on the
following attributes:

• Efficiency. The ability to incorporate a range of tactics for different stability at-
tributes into the patterns diversify the catalogue space from which the adaptation
actions could be selected and implemented during runtime to meet stability require-
ments under a dynamic workload.

• Ease of application and use. The structure of the tactics for different quality at-
tributes was embedded efficiently within the generic components of the reference
architecture. Their interaction specification also took place within the process flow
while taking advantage of the self-awareness knowledge available from different self-
awareness levels.

• Multiple uses. The generic approach for instantiating the architecture allowed fea-
turing different combinations of self-awareness capabilities. Thus, incorporating tac-
tics approach could be used in any of these patterns according to the requirements
of the system, without unnecessary overhead caused by self-awareness components.

Generally, the proposed architecture and goals modelling for stability have proven
feasibility when embedding tactics for different stability attributes. The proposed archi-
tecture tends to diversify the possible adaptation actions to be taken during runtime.
The quantitative evaluation has proven the ability of the architecture and goals model to
efficiently realise stability and enhance the quality of adaptation.

6.7 Related Work

In this section, we discuss related work in the context of architecture patterns and goals
modelling.

6.7.1 Architecture Patterns and Tactics

A large body of research in architecture design has yielded the development of approaches
for incorporating and using tactics in the context of software architectures. For instance, a
systematic approach for building software architecture that embodies quality requirements
using architectural tactics has been proposed [472] [473]. Other efforts focused on tactics
for certain quality attributes, such as modifiability tactics [474], performance tactics [475].
Others tackled the application of tactics, such as analysing the application of tactics [476]
and recommendation [477]. But stability has not been explicitly considered as a property
in designing software architectures.

The self-adaptive architecture community has developed in the area of quality man-
agement. For instance, the Rainbow framework [478] was proposed to support such adap-
tation, where strategies in the adaptation engine are architectural tactics. A framework

124

for evaluating quality-driven self-adaptive software systems was proposed using a set of
metrics to evaluate quality attributes and adaptation properties [25]. While literature has
widely covered the incorporation of tactics in the context of software architectures, yet till
recently, architecture patterns and tactics for self-adaptive and self-aware software have
received little attention, as to the best of our knowledge [479] [3]. A reference architecture
for self-adaptive software has been proposed based on reflection [462], but designing for
stability with self-awareness has not been tackled yet.

6.7.2 Goals Modelling

Related work, geared towards runtime requirements modelling, are “models@run.time”
and “self-explanation”.

Models@run.time rethinks adaptation mechanisms in a self-adaptive system by lever-
aging on model-driven engineering approaches to the applicability at runtime [468]. This
approach supports requirements monitoring and control, by dynamically observing the
runtime behaviour of the system during execution. Models@run.time can interleave and
support runtime requirements, where requirements and goals can be observed during ex-
ecution by maintaining a model of the requirements in conjunction with its realisation
space. The aim is to monitor requirements satisfaction and provide support for unan-
ticipated runtime changes by tailoring the design and/or invoking adaptation decisions
which best satisfy the requirements. Meanwhile, authors in [480] proposed a goal-oriented
approach for systematically building architecture design from system goals.

In the context of self-adaptive systems, self-explanation was introduced to adaptive
systems to offer interpretation of how a system is meeting its requirements, using goal-
based requirements models [390]. Self-explanation focused mainly on explaining the self-
adaptive behaviour of the running system, in terms of satisfaction of its requirements, so
that developers can understand the observed adaptation behaviour and garner confidence
to its stakeholders. Authors in [481] have theoretically revisited goal-oriented models for
self-aware systems-of-systems. Goal models were also introduced as runtime entities in
adaptive systems [482] and context-aware systems [483].

Though there has been growing research in runtime requirements engineering in the
context of self-adaptive software systems, yet these models and approaches have limita-
tions in enabling the newly emerged self-properties, i.e. self-awareness and self-expression.
To the best of our knowledge, there is no research that tackled goals modelling for self-
aware and self-expressive software systems, as well as realising the symbiotic relation
between both.

6.8 Summary

In this chapter, we presented a reference architecture for architectural stability, using a
generic approach for incorporating architecture tactics and QoS self-management com-
ponents in self-aware architecture patterns. The approach is based on providing the
self-aware patterns with a catalogue of architectural tactics designated to fulfil different

125

stability attributes. The stability-based adaptation will be performed during runtime by
the awareness capabilities available in different patterns. Using the case of cloud archi-
tecture, quantitative experiments have proven enhancements in achieving stability and
quality of adaptation using the reference architecture and goals modelling for stability.

126

Chapter 7

Reasoning about Architectural Stability

In questions of science, the authority of a
thousand is not worth the humble reasoning of
a single individual.

— Galileo Galilei

7.1 Introduction

Achieving behavioural stability for long-living software calls for more intelligent reason-
ing about stability on the long-run. We propose reasoning about stability based on
self-awareness principles. Even though self-* properties have been widely investigated,
no explicit attempt has considered self-awareness in achieving stabilisation. The latest
emerging paradigm has proven effectiveness in managing trade-offs and deal with uncer-
tainties. Benefiting from self-awareness primitives, self-adaptive architectures are enriched
with goal-, time- and meta-self-awareness capabilities for managing stability goals, sta-
bility learning and managing associated trade-offs. We embed different computational
intelligence techniques in self-awareness components for reasoning about stability.

Contributions. In more details, the main contributions are as follows.

• Goal-awareness for managing stability goals. With the typical key role of archi-
tectures in achieving quality requirements [319] [63] [377] [378], we can evidently
agree that realising stability at the architecture level should be based on the quality
requirements subject to stability [319] [378] [379], where requirements are the key
to long-term stability and sustainability [215] [380]. We implement algorithms for
realising symbiotic relation between runtime goals model (proposed in section 6.4)
and self-awareness.

• Time-awareness using online learning. Stability learning is essential for achieving
stability in the long-term by learning from historical information. We propose a
learning technique based on Q-learning, a reinforcement learning technique that can

127

handle problems with stochastic transitions while learning how to act optimally in a
controlled Markovian context [484] [485] [486]. Time-awareness is, then, capable of
taking adaptation decisions converging towards stability by learning from historical
information about adaptation actions and stability states.

• Meta-self-awareness for managing trade-offs using model verification of stochastic
games. Achieving a stable state for the architecture requires an explicit trade-offs
management between different quality attributes, so that the adaptation process
converges towards runtime goals given runtime uncertainty. We build a runtime
approach for managing trade-offs based on automatic verification of stochastic multi-
players games (SMGs) using PRISM-games 2.0 [487] [488]. The approach allows
reasoning about possible adaptations for multiple attributes on the long-run.

Organisation. The rest of this chapter is organised as follows. In section 7.2, we
elaborate the technical contributions on self-awareness techniques for stability reasoning.
Section 7.3 discusses experimental results of the evaluation case. We discuss related work
in section 7.4. Section 7.5 concludes the chapter.

7.2 A Self-Awareness Assisted Framework for Rea-

soning about Architectural Stability

We employ the different awareness capabilities for reasoning about architectural stability.
The goal-awareness embeds the symbiotic relation between the self-awareness component
and runtime goals (discussed in section 7.2.1). The time-awareness implements an online
learning algorithm to assist in making adaptation decisions leading to stability using
historical information (discussed in section 7.2.2). The meta-self-awareness is assisted by
probabilistic game-theoretic approach for managing trade-offs between different stability
goals (discussed in section 7.2.3).

7.2.1 Goal-Awareness for Managing Stability Goals

As end-users’ requirements change during runtime, there is a need to maintain the syn-
chronisation between the goals model and the architecture [471]. We envision enriching
the proposed architecture patterns and goals modelling by incorporating the symbiotic
relation between runtime goals and self-awareness capabilities. The symbiotic relation
promises more optimal adaptations and better-informed trade-off management decisions.
It aims to keep the runtime goal model “live” and up-to-date, reflecting on the extent
to which adaptation decisions satisfied the goal(s). The symbiotic relation, illustrated in
Figure 7.1, is realised during runtime as follows.

1. Goals are defined and modelled in the SAwGoals@run.time component, with fine-
grained knowledge representation relevant to the different levels of awareness.

128

2. Having goals information fed to the self-awareness component, a better-informed
adaptation decision would be taken based on the learning of time-awareness and
the runtime environment of interaction-awareness capabilities.

3. The selected tactic is executed by the self-expression component.

4. The execution trace is, then, fed back to the goals model to be kept in the log of
the goal history.

5. The goal satisfaction is evaluated by the Architecture Evaluator component to be
logged in the goal history.

6. The goal history is used, in turn, by time-awareness at the next time instance when
selecting the appropriate tactic.

Figure 7.1: Symbiotic Relation between Runtime Goals and Self-Awareness

7.2.1.1 Algorithms for Realising Symbiotic Relation Between Runtime Sta-
bility Goals and Self-awareness

To realise the symbiotic relation, we provide algorithms to process the Runtime Goal
Instance (Algorithm 7.3) and construct the Goal History (Algorithm 7.2).

Algorithm 1: Processing Runtime Stability Goal. This algorithm is launched
to process the Runtime Goal Instance G(n, ti) at time instance ti.

129

Algorithm 7.1 Process Runtime Stability Goal

1: procedure ProcessGoal(Gi = (Gid, Nid, ti))
2: get ObjectiveFunction(client c)
3: QoSMonitor :
4: get MonitoringData(G)
5: Self-awarenessComp:
6: if violation(G) then
7: Identify set of possible tactics T (G)
8: if TimeAwareness is enabled then
9: get goal hisotry H(G)

10: end if
11: select tactic Tx ∈ T (G)
12: Self-expressionComp :
13: execute tactic Tx
14: get ExecutionTrace τ(Gi)
15: ArchitectureEvaluator :
16: get GoalSatisfaction v(G)
17: end if
18: end procedure

Algorithm 2: Constructing Stability Goal History. This algorithm constructs
a change tuple for the goal G at each time instance ti. Each change tuple records a
log of the objective function, goals from the environment, set of tactics executed in the
environment, the tactic executed, the execution trace and the goal satisfaction measure.
These change tuples would form the goal history over the different time instances.

Algorithm 7.2 Construct Stability Goal History

1: procedure ConstructHistory(Goal G = (Gid, Nid))
2: for each ti do
3: log time instance ti
4: log ObjectiveFunction(client c)
5: log executed Tactic Tx
6: log ExecutionTrace τ(G)
7: get GoalSatisfaction v(G)
8: if InteractionAwareness is enabled then
9: log Environment Goals Ge = {G1(n1, i), G2(n2, i), ..., Gx(nx, i)}

10: log Environment Tactics Te = {T1, T2, ..., Tx} for ∀ G ∈ Ge

11: end if
12: end for
13: end procedure

7.2.2 Time-Awareness for Stability Online Learning

Learning from historical information about adaptation actions and stability states, time-
awareness is capable of taking adaptation decisions converging towards stability. We use a
form of model-free reinforcement learning technique, that is “Q-learning”. The technique
does not require a model of the system (i.e. priori knowledge and computational demands)
and can handle problems with stochastic transitions with the capability of learning how
to act optimally in a controlled Markovian context [484] [485] [486].

130

Given the runtime uncertainty, we consider the system as a finite Markov decision
process (FMDP), where the Q-learning can identify an optimal action-selection policy (i.e.
adaptation action), where the expected value of the total reward return is the maximum
achievable at the current state. The technique works during runtime by successively
improving its evaluations of the quality of particular adaptation actions at particular
states (i.e. online learning) [484] [485] [486].

7.2.2.1 Learning Model

Formally, the learning process involves a set of states S and a set of adaptation actions
A, where each state s ∈ S present the status of stability attributes and each action a ∈ A
is one of the possible different configurations of the architecture. A state s is a tuple
of the different stability attributes, as such < rt, c, ... > for response time and cost are
the stability attributes. An action a is a tuple of the architecture configuration settings
subject to adaptation, such as the number of PMs and the number of VMs < pm, vm, ... >.

When performing an action a ∈ A, the system transitions from state st to state st+1.
Executing an action in a specific state is evaluated by a reward r value, where r could be a
positive or negative value according to the benefit of the executed action. The Q-Learning
algorithm has a function that calculates the quality of a state-action combination:

Q : S × A→ R (7.1)

where R is the reward Q-matrix. The matrix is in the following format:

R =

rs1,a1 rs1,a2 . . . rs1,an
rs2,a1 rs2,a2 . . . rs2,an

. . .

rsm,a1 rsm,a2 . . . rsm,an

where the rows of the matrix represent the different states s of the system, the columns

represent the possible adaptation actions a, and the matrix values are the learnt reward
values r.

The Q function returns the reward used to provide the reinforcement and stand for
the quality of an action taken in a given state. At each time instance t, the algorithm
selects an action at, observes a reward rt, enters to a new state st+1 that depends on
the previous state st and the selected action at, and the Q-matrix is updated using the
weighted average of the old value and the new information, as follows:

Q(st, at)← (1− α)Q(st, at) + α
(
rt + γ max

a
Q(st+1, a)

)
(7.2)

where rt is the reward observed for the current state st, α is the constant learning
rate (0 < α ≤ 1) that determines the extent to which the newly acquired information
overrides old information, and γ is the discount factor (0 < α ≤ 1) that determines the
importance of future rewards. If the learning factor α is set = 1, the algorithm uses only
the most recent information, and if α = 0, this forces the algorithm to learn nothing and
use historical information only. If the discount factor γ = 0, the algorithm will consider

131

only current rewards, and if γ = 1, the algorithm will use long-term high reward, which
is the case of stability.

7.2.2.2 Online Learning Algorithm

The goal of the learning algorithm is to maximise the total reward in the future, by
learning which action is optimal for each state. The optimal action for each state is the
one that has the highest long-term reward, in order to achieve stability in the long-run.
The reward is a weighted sum of the expected values of the rewards of all future steps
starting from the current state.

The matrix is initialised with a possibly arbitrary fixed value. For simplicity, we
assume a certain number of states with ranges of each stability attribute and a certain set
of configurations. These ranges of stability attributes and possible configurations could
be easily refined by adding more columns and rows in the Q-matrix.

The algorithm keeps running while the system is online. First, the current state is
observed, and the algorithm selects an action with the highest reward value among the set
of actions for the current state using equation 7.2. Then, the new state and new reward
are observed, and the Q-matrix is updated with new reward value.

Algorithm 7.3 Stability Q-Learning

1: procedure QLearning(S,A, α, γ)
2: Input:
3: S : set of states
4: A : set of actions
5: γ : discount factor
6: α : learning rate
7: Output:
8: a′ : new action
9: Local variables:

10: Q[S,A] : Q-matrix
11: s : previous state
12: a : previous action
13: r : reward
14: s′ : new state
15: initialise:
16: S = {s1 < rt, c, ... >, s2 < rt, c, ... >, ...}
17: A = {a1 < pm, vm, ... >, a2 < pm, vm, ... >,}
18: get current state s
19: repeat . while online
20: select action a′ from possible actions for s
21: Q(s, a)← (1− α)Q(s, a) + α (r + γ maxa′Q(s′, a′))
22: observe reward r and new state s′

23: s← s′

24: until termination
25: end procedure

132

7.2.3 Meta-Self-Awareness for Managing Trade-offs between Sta-
bility Attributes

We investigate the use of game theory to achieve an equilibrium point between differ-
ent stability quality attributes, i.e. modelling and analysing the consequent trade-offs
between stability attributes given the uncertainty of the running environment. The pro-
posed methodology considers the value implications of choosing an architectural tactic for
adaptation with respect to multiple quality attributes subject to stability and potentially
uncertain future runtime conditions. In more details, we tend to evaluate architectural
tactics for their pay-off values and based on such an evaluation, an architectural tactic is
selected in a way that supports the management of trade-offs between different stability
goals. The goal is to select the tactic for better adaptation leading to the long-term wel-
fare of the architecture. Architectural tactics are intended to aid in creating architectures
that meet quality requirements [68]. Such tactics are employed to achieve a desired qual-
ity attribute behaviour, which, in turn, imparts utility to the architecture. The utility
should not be in terms of one quality attribute, yet an aggregate utility comprehending
multiple quality attributes.

We consider the continuous runtime process of managing trade-offs under the uncer-
tainty of the environment as a stochastic game, where the players are the runtime stability
attributes and their strategies are the possible adaptation actions. A central idea is that
architectural decision, such as the application of a tactic for adaptation, is analogous to
a game strategy. Quality attributes and their expected utility under uncertainty act as
underlying assets for the valuation of architectural decisions, similar to the valuation of
game strategies. This approach provides a quantitative decision for selecting architec-
tural tactic based on the utility objectives and uncertainty of runtime workloads, quality
goals and environmental changes. Part of the objectives is to evaluate the overall adap-
tation process and its implication for the long-term welfare of the architecture and goals
fulfilment.

7.2.3.1 Problem formulation

Achieving runtime architectural stability among different stability attributes should in-
volve a careful understanding of the relationship, impact, correlation and sensitivity
among attributes subject to stability, as well as handling potential conflicts. Given the
runtime uncertainty arising from many sources, the runtime stability is seen to be a
probable behaviour rather than deterministic.

The proposed approach builds upon the framework for modelling, analysing and au-
tomatic verification of turn-based stochastic multi-players games (SMGs) [487]. A nat-
ural fit for modelling systems that exhibit probabilistic behaviour is using stochastic
games [487] [489]. Probabilistic model checking provides verification of quantitative prop-
erties (stability gaols) and provides a means to synthesise optimal strategies to achieve
these goals [489] and leave the architecture stable on the long-run.

A natural fit for modelling systems that exhibit probabilistic behaviour is adopting a
game-theoretic perspective [487] [489]. In particular, stochastic games can used to model
the self-adaptive (stochastic) system and its (conflicting) stability goals. Probabilistic
model checking provides a means to model and analyse these systems, by providing ver-

133

ification of quantitative properties in probabilistic temporal logic [489]. PRISM-games
tool, built on the code-base of PRISM model checker, provides modelling of quantitative
verification for SMGs, where the games are specified using the PRISM modelling lan-
guage [489]. In this tool, SMGs are described as a model composed of modules, where
their state is determined by a set of variables and their behaviour is specified by a set
of guarded commands, containing an optional action label, a guard and a probabilistic
update for the module variables [489]:

[action] guard − > prob1 : update1 + . . . + probn : updaten

PRISM-games’ properties specification are written using a probabilistic temporal logic
with rewards called rPATL [489] [487]. rPATL is an extension of the logic PATL [490],
which is itself an extension of ATL [491], a widely used logic for reasoning about multi-
player games and multi-agent systems [489]. Properties, quantitatively specified, in
rPATL can state that a coalition of players has a strategy which can ensure that ei-
ther the probability of an event’s occurrence or an expected reward measure meets some
threshold [487]. rPATL is a CTL-style branching time temporal logic that incorporates
the coalition operator 〈〈C〉〉 of ATL [491], the probabilistic operator P./q of PCTL [492],
and the reward operator Rr./x from [493] for reasoning goals related to reward/cost mea-
sures [489]. Beside the precise value operators, rPATL also supports the quantification
of maximum and minimum accumulated reward until a φ-state is reached that can be
guaranteed by players in coalition C, noted as 〈〈C〉〉Rrmax=?[F

∗φ] and 〈〈C〉〉Rrmin=?[F
∗φ]

respectively.
By expressing properties that enable us to quantify the maximum and minimum re-

wards a player can achieve, we can reason about different adaptation strategies and syn-
thesise strategies that optimise stability rewards. This allows to choose an optimal adap-
tation action that would achieve stability attributes, and hence leave the architecture in
a stable state in the long-run. The approach consists of SMG model (discussed in section
7.2.3.2) and strategy synthesis (section 7.2.3.3). Then, we describe the model specification
(in section 7.2.3.4).

7.2.3.2 Stochastic Multi-Player Game Model

We model the self-adaptive system and its environment as two players of an SMG, in which
the system’s objective is reaching stability state, that is a goal state that maximises a
utility/reward (i.e. achieve stability attributes), and the environment as an opponent
whose actions cannot be controlled. In each turn, only one player can choose between
different strategies, and the outcome can be probabilistic. The system can choose between
a set of adaptation actions, i.e. adaptation tactics, to achieve stability goals, while the
environment is considered as an adversary to the system.

Definition. (SMG) A turn-based stochastic multi-player game (SMG) is a tuple G =
〈Π, S, A, (Si)i∈π,∆, AP ,X , r〉, where Π is a finite set of players, S 6= ∅ is a finite set of
states, A 6= ∅ is a finite set of actions, (Si)i∈π is a partition of S, ∆ : S × A → D(S)
is a partial transition function (D(S) denotes the set of discrete probability distributions
over finite set S), AP is a finite set of atomic propositions, X : S → 2AP is a labeling

134

function, and r : S → Q≥0 is a reward structure mapping each state to a non-negative
rational reward.

In each state s ∈ S, the set of available actions is denoted by A(s) = {a ∈ A|∆(s, a) 6=
⊥}, assuming that A(s) 6= ∅ for all states. The choice of action in each state s is under
control of one player i ∈ Π, for which s ∈ Si.

The set of players Π = {sys, env} is formed by the self-adaptive system and its
environment. The set of states S = Ssys ∪ Senv is formed of the states of the system Ssys
and the states of the environment Senv (Ssys∩Senv 6= ∅). The set of actions A = Asys∪Aenv
is formed of the set of actions available for the system and the environment denoted by
Asys and Aenv respectively. AP is the subset of all predicates that can be built over the
state variables and includes the goal that is satisfied when achieving stability goals.

Definition. (Path) A path of SMG G is a possibly infinite sequence λ = s0a0s1a1 . . . ,
such that aj ∈ A(sj) and ∆(sj, aj)(sj+1) > 0 for all j. Ω+

G is used to denote the set of
finite states in G.

r denotes the reward for labelling goal states with their associated utility. The reward
of a state s is defined as r(s) = Σq

i=1ui(v
s
i) if s |= (satisfies) goal, where ui ∈ [0, 1] is the

utility function for the stability goal i ∈ {1, . . . , q}, and vsi is the value of the state variable
associated with the architectural property representing stability attribute i in state s.

Definition. (Reward structure) A reward structure for G is a function r : S → R≥0 or
r : S → R≤0.

The reward structure is used to maximise or minimise the goals. A reward structure
assigns values to pairs of states and actions.

Players of the game can follow strategies for choosing actions that result in achieving
their goals.

Definition. (Strategy) A strategy for player i ∈ Π in G is a function σi : (SA)∗Si → D(A)
which, for each path λ.s ∈ Ω+

G where s ∈ Si, selects a probability distribution σi(λ.s) over
A(s).

A strategy σi is memoryless if σi(λ.s) = σi(λ
′.s) for all paths λ.s, λ′.s ∈ Ω+

G , and
deterministic if σi(λ.s) is a Dirac distribution for all λ.s ∈ Ω+

G .

7.2.3.3 Strategy Synthesis

Reasoning about strategies is an fundamental aspect of SMGs model checking. rPATL
queries check for the existence of a strategy that is able to optimise an objective or
satisfies a given probability/reward bound [489]. Model checking also supports optimal
strategy synthesis [489] for a given property. In our case, we use memoryless deterministic
strategies, that resolve the choices in each state selecting actions based on the current
state [489]. Such strategies are guaranteed to achieve the optimal expected rewards [489].

We perform strategy synthesis using multi-objectives queries supported by PRISM-
games 2.0, by computing Pareto set or optimal strategies for managing trade-offs between
multi-objective properties [488]. Multi-objectives queries are expressed as a boolean com-
bination of reward-based objectives with appropriate weights [488], which allows reasoning

135

about the long-run average reward. Generally, higher weights are given to the stability
of quality of service attributes (e.g. response time), as these are the main objective of
adaptation.

Properties are specified as follows: 〈〈sys〉〉Rrmax=?[F
cφ], to synthesise a strategy that

maximises the utility rewards from all stability attributes, where φ state represents the
state where adaptation goals are achieved. The multi-objective query to reason about
stability multi-objective property is specified as follows:

〈〈sys〉〉(R{response time}≤v1 [C] ∧ R{energy}≤v2 [C])

where the targets v1, v2, . . . for the stability objectives are defined from Service Level
Agreements (SLAs).

7.2.3.4 Model Specification

Our formal model is implemented using PRISM-games 2.0 [489] [488]. The state space
and behaviours of the game are generated from the stochastic processes under the control
of the two players of the game, the system and the environment. In more details:

The self-adaptive system (player sys) controls the process that models the
adaptation controller of the self-adaptive system, which is responsible about triggering
and executing adaptation actions. The set of actions available to the system Asys are
the set of adaptation tactics defined in the adaptation controller, e.g. horizontal scaling,
vertical scaling, increasing VM capacity. Each action a ∈ Asys command follows the
pattern:

[a] Ca ∧ ¬goal ∧ t = sys − > prob1a :

update1a ∧ t′ = env + . . . + probna : updatena ∧ t′ = env (7.3)

where Ca is the constraints for executing the tactic a (e.g. capacity of a physical
machine (PM) to accommodate virtual machines (VMs)), a predicate ¬goal to prevent
expanding the state space beyond the satisfaction of the adaptation goal, t = env con-
straints the execution of actions of the player in turn t to states s ∈ Ssyss. The command
includes the possible updates updateia, corresponding to one probabilistic outcome for the
execution of a, along with their associated probabilities probia. And the turn is given back
to the env player by the control variable t′.

The environment (player env) controls the process that models potential dis-
turbances to the stability of the system that are out of the system’s control, e.g. VM
failure, server fault, network latency. The environment process is specified as a set of
commands with asynchronous actions a ∈ Aenv, and its local choices are specified non-
deterministically to obtain a rich specification of the environment’s behaviour. Each

136

command follows the pattern:

[a] Cea ∧ ¬end ∧ t = env − > prob1a :

update1a ∧ t′ = sys + . . . + probna : updatena ∧ t′ = sys (7.4)

where Cea is the environment constraints for the execution of action a, ¬end prevents
the generation of further states, and t = env constraints the execution of actions of the
player in turn to states s ∈ Senv. The command includes the possible updates updateia,
corresponding to one probabilistic outcome for the execution of a, along with their asso-
ciated probabilities probia. And the turn is given back to the system player.

The SMG model consists of the following modules:

Players definition. Listing 7.1 shows the definition of the stochastic game players:
player env which is control of the actions that the system environment can take, and
player sys which controls the actions to be taken by the adaptation controller and the
execution of adaptation tactics. The global variable t is used to control turns in the
game, alternating between the system and the environment.

Listing 7.1: Players definition in PRISM-games 2.0

1 player env environment [] endplayer
2 player sys system [increase_pm_num], [decrease_pm_num], [increase_vm_num],

[decrease_vm_num], [increase_vm_cap], [decrease_vm_cap] endplayer
3 const TURN_SYS, TURN_ENV;
4 global t:[TURN_SYS..TURN_ENV] init TURN_ENV;

Environment. The environment module (encoding shown in Listing 7.2) allows ob-
taining a representative specification of the system’s environment, introducing disturbance
to the stability of the system. This is done using variables that represent configurations
that might affect stability, e.g. changing the number of VMs, changing the number of
PMs. These behaviours are parametrised by the constants: MAX TOTAL VM NUM and
MAX TOTAL PM NUM that constraints the maximum number of VMs and PMs respec-
tively that the environment can use to introduce disturbance, MAX TOTAL VM CAP
and MAX TOTAL PM CAP that constraints the maximum capacity of VMs and PMs
respectively, MAX VM CHANGE is the maximum numbers of virtual machines (VMs)
that the environment can change to interrupt the system execution and cause instabil-
ity, MAX PM CHANGE is the maximum number of physical machines (PMs) that the
environment can change to cause instability in QoS provision (e.g. response time). For
simplicity, we consider all PMs and VMs are of the same capacity.

The current state of the environment is defined using the variables: current vm num,
current pm num corresponding to the changes introduced by the environment at the cur-
rent turn with respect to the number of VM and PM respectively, total vm cap and to-
tal pm cap that keep track of the total capacity of VM and PM respectively.

At each turn, the environment action is setting the disturbance variables (changing
system configurations) using the command in Listing 7.2 line 12. First, the guard checks

137

that: (i) it is the turn of the environment (t=TURN ENV), (ii) an absorbing state has not
been reached yet (!end), and (iii) the total number of VMs and PMs as well as their total
capacities will not exceed the maximum specified for all types of disturbance. If the guard
conditions are satisfied, the command: (i) sets the current configuration variables (e.g.
dvm), (ii) updates the total capacity variables with the current disturbance variables, and
(iii) gives the turn to the system (t’=TURN SYS).

Listing 7.2: Environment module

1 const MAX_VM_CHANGE, MAX_PM_CHANGE;
2 const MAX_TOTAL_VM_NUM, MAX_TOTAL_PM_NUM,
3 MAX_TOTAL_VM_CAP, MAX_TOTAL_PM_CAP;
4

5 module environment
6 current_vm_num: [1..MAX_TOTAL_VM_NUM] init 1;
7 current_pm_num: [1..MAX_TOTAL_PM_NUM] init 1;
8 total_vm_cap: [1..MAX_TOTAL_VM_CAP] init 1;
9 total_pm_cap: [1..MAX_TOTAL_PM_CAP] init 1;

10 [] (t=TURN_ENV)&(!end)&
11 (dvm<MAX_VM_CHANGE)&
12 (dpm<MAX_PM_CHANGE)&
13 (dvm+current_vm_num<MAX_TOTAL_VM_NUM)&
14 (dpm+current_pm_num<MAX_TOTAL_PM_NUM) ->
15 (current_vm_num=current_vm_num+dvm)&
16 (current_pm_num=current_pm_num+dpm)&
17 (total_vm_cap=current_vm_num*cap)&
18 (total_pm_cap=current_pm_num*cap)&
19 (t’=TURN_SYS);
20 endmodule

System. The system module models the behaviour of the system, including the
adaptation controller and the execution of adaptation tactics (Listing 7.3). This is
parametrised by the constants: (i) MIN PM NUM and MAX PM NUM whcich specify
the minimum and maximum number of PMs, (ii) MIN VM NUM and MAX VM NUM
which are the minimum and maximum number of VMs that PMs can accommodate, (iii)
MIN PM CAP and MAX PM CAP is the minimum and maximum computational capac-
ity of a PM configuration, (iv) MIN VM CAP and MAX VM CAP is the minimum and
maximum computational capacity of a VM configuration, (v) STEP NUM and STEP CAP
which are used to increase or decrease configuration, and (vi) INIT PM NUM, INIT VM NUM,
INIT VM CAP, INIT PM CAP for the initial configuration of the architecture with respect
to PMs, VMs and VMs capacity.

The variables of the module represent the current configuration of the architecture
(pm num, vm num, pm cap, vm cap), the current provisioned quality of service (respnse tine,
energy, cost), and quality of adaptation (settling time, resources overshoot, adaptation frequency).
To update the value of quality variables, we employ multiple M/M/1 queueing model
(from our earlier work [48]) to compute them based on the current architecture configu-
ration and the request arrivals.

Listing 7.3: System module

138

1 const MIN_PM_NUM, MAX_PM_NUM, MIN_VM_NUM, MAX_VM_NUM,
2 MIN_VM_CAP, MAX_VM_CAP, MIN_PM_CAP, MAX_PM_CAP,
3 STEP_NUM, STEP_CAP;
4 const INIT_PM_NUM, INIT_VM_NUM, INIT_PM_CAP, INIT_VM_CAP;
5

6 module system
7 pm_num: [1..MAX_PM_NUM] init INIT_PM_NUM;
8 vm_num: [1..MAX_VM_NUM] init INIT_VM_NUM;
9 pm_cap: [1..MAX_PM_CAP] init INIT_PM_CAP;

10 vm_cap: [1..MAX_VM_CAP] init INIT_VM_CAP;
11

12 respnse_tine, energy, cost;
13 settling_time, resources_overshoot, adaptation_frequency;
14

15 [] (t=TURN_SYS)&(goal)&(!end) -> (t’=TURN_ENV);
16 [increase_pm_num](pm_num<MAX_PM_NUM) ->
17 (pm_num=pm_num+STEP_NUM);
18 [decrease_pm_num](pm_num>MIN_PM_NUM) ->
19 (pm_num=pm_num-STEP_NUM);
20 [increase_vm_num](vm_num<MAX_VM_NUM) ->
21 (vm_num=vm_num+STEP_NUM);
22 [decrease_vm_num](vm_num>MIN_VM_NUM) ->
23 (vm_num=vm_num-STEP_NUM);
24 [increase_vm_cap](vm_cap<MAX_VM_CAP) ->
25 (vm_cap=vm_cap+STEP_CAP);
26 [decrease_vm_cap](vm_cap>MIN_VM_CAP) ->
27 (vm_cap=vm_cap-STEP_NUM);
28 endmodule

Properties and Rewards. To perform adaptations leading to stability and man-
aging trade-offs between its attributes, we use rPATL for the specification stability prop-
erties. These properties are used as input to PRISM-games, which can synthesise optimal
adaptation actions for the attributes subject to stability. We use long-run properties from
PRISM-games 2.0 (an extension for PRISM-games) [488], which allow expressing proper-
ties of autonomous systems that run for long periods of time and specify measures, such
as energy consumption per time unit [488].

The effect of adaptation strategies on stability goals is encoded using a reward struc-
ture that assigns real-values of stability goals [488]. We use long-run average reward for
expressing cumulative rewards towards stability. Each stability goal has a target value v

for a reward value as a maximum or minimum. Goals for the expected long-run average
reward r is expressed as R{“r”}≥v[S], where S denotes long-run rewards. Satisfaction
objectives for long-run rewards are expressed as P≥1[R(path){“r”}≥v[S]].

7.3 Experimental Evaluation

The main objective of the experimental evaluation is to examine stability when using
different self-awareness capabilities for reasoning about stability and to assess associated

139

overhead. We compare goal-, time- and meta-self-awareness with stimulus-awareness (as
a foundational self-adaptive capability).

7.3.1 Experiments Setup.

We use the cloud architecture instantiated in section 6.5 and stability objectives defined in
Table 6.2. The proposed self-awareness techniques are implemented in the corresponding
components, i.e. goals management and online learning are implemented in the goal- and
time-awareness component. Regarding the trade-offs management, we used PRISM-games
2.0.beta3 off-the-shelf, where we implemented our model and run it on the same machine
with OS X10.13.4 and exported the outcome strategies to the simulator for performing
adaptations.

The benchmarks and testbed configuration used are described in section 5.5.1.1 and
5.4.2.2. The initial deployment of the experiments is: 10 hosts running 15 VMs (5 x
m4.large, 5 x m4.xlarge, 5 x m4.2xlarge). Initially, the VMs are allocated according to the
resource requirements of the VM types. However, VMs utilise fewer resources according
to the workload data during runtime, creating opportunities for dynamic consolidation.

7.3.2 Results of Stability Attributes

The average of response time, energy consumption and operational costs are depicted in
Figure 7.2, 7.3 and 7.4 respectively. On average, the self-awareness capabilities outper-
formed the self-adaptive one in keeping response time (highest priority) within stability
objective. As shown in Figure 7.2, time-awareness achieved the best response time for all
service types. Meanwhile, meta-self-awareness was capable of achieving the best perfor-
mance for service type 2 and 5 which require the higher computational resources.

Figure 7.2: Average Results of Response Time

Regarding energy consumption, while all awareness algorithms succeeded in maintain-
ing the energy consumption stability objective, time-awareness has consumed less energy
reflecting the minimal number of PMs running (resources overshoot). This is due to per-
forming adaptations that are capable of keeping stability goals for longer periods. Mean-
while, goal-awareness used the highest number of hosts, due to more frequent adaptation

140

(frequent shut-down and re-run of hosts) to keep stability goals. Meta-self-awareness was
capable of maintaining the trade-offs between energy consumption and response time.

Figure 7.3: Average Results of Energy Consumption

Similar to energy consumption, operational costs (reflecting the number of VMs run-
ning) was better achieved by time-awareness, followed by meta-self-awareness. Goal-
awareness has the highest cost, even though within stability objective.

Figure 7.4: Average Results of Operational Cost

7.3.3 Results of Adaptation Properties and Overhead

Given the direct impact of the frequency of adaptation on architectural stability, we
evaluate the number of adaptation cycles taken by each capability. As shown in Figure 7.5,
time-awareness performed the least number of adaptation cycles, followed by meta-self-
awareness. Meanwhile, goal-awareness is higher and close to self-adaptive, but achieved
better response time than self-adaptive.

We also evaluated the adaptation overhead by calculating the total time spent by the
architecture in the adaptation process. Figure 7.6 shows the overhead of each service
type and their average. As goal-awareness performs pro-active adaptations for keeping
stability gaols, its overhead is higher than self-adaptive (127.78 vs. 123.78 sec on average),
which obviously resulted in better response time. Meta-self-awareness is on average of all

141

Figure 7.5: Average Results of the Frequency of Adaptation

capabilities (103.78 sec on average), while time-awareness has achieved the lower overhead
(75.42 sec on average).

Figure 7.6: Average Results of Adaptation Overhead

7.3.4 Discussion

The proposed framework with different self-awareness capabilities has successfully achieved
stability in terms of quality attributes and adaptation properties under runtime changing
workload. Evaluating the features of the proposed framework is summarised as follows.
First, different self-awareness principles were capable of successfully achieving stability
attributes, combining quality attributes subject to stability and quality of adaptation.
The generic framework allowed featuring different combinations of self-awareness capabil-
ities for reasoning about long-term stability using machine learning and stochastic games
techniques. Further, these reasoning techniques could be extended easily. Also, differ-
ent stability goals could be easily configured, and other reasoning techniques could be
employed. The proposed framework and architecture are generic for using one single
self-aware capability, as well as switching between different capabilities during runtime.

Generally, the proposed approaches have proven feasibility in reasoning about stabil-
ity during runtime, where the implemented components tend to make more intelligent
adaptation actions. The quantitative evaluation has proven their ability to efficiently

142

reason about stability, avoid unnecessary frequent adaptations and minimise adaptation
overhead and resources overshoot.

7.4 Related Work

In this section, we discuss related work to learning for self-adaptation (section 7.4.1) and
trade-offs management in self-adaptive systems (section 7.4.2).

7.4.1 Learning for Self-Adaptation

Learning for self-adaptation has been studied by a number of researchers using differ-
ent learning techniques for different purposes. For instance, a learning approach for
engineering feature-oriented self-adaptive systems has been proposed in [494], learning
revised models for planning self-adaptive systems [495], modelling self-adaptive systems
with Learning Petri Nets [496], and handling uncertainty using self-learning fuzzy neural
networks [497],

Focusing on the dynamic learning behaviour during runtime operation of adaptive
systems, Yerramalla et al. [307] have proposed a stability monitoring approach based
on Lyapunov functions for detecting unstable learning behaviour, and mathematically
analysed stability to guarantee that the runtime learning converges to a stable state within
a reasonable time depending on the application. Yet, quality of adaptation has not been
considered in the stability behaviour. A reinforcement learning-based approach has also
been proposed for planning architecture-based self-management [498]. Meanwhile, the
behavioural stability aspect we are seeking has not been learnt online.

7.4.2 Trade-offs Management

Research has encountered many efforts for managing architectural trade-offs and the field
has attracted a wide range of researchers and practitioners. Seminal works for trade-offs
management include Architecture Tradeoff Analysis Method (ATAM) [320], Cost Benefit
Analysis Method (CBAM) [323], PerOpteryx [403], the work of Kazman et al. [427] and
the Quality-attribute-based Economic Valuation of Architectural Patterns [333]. Despite
the maturity of research in evaluating and analysing architecture trade-offs, self-adaptive
architectures call for special treatment, since self-adaptation has been primarily driven
by the need to achieve and maintain quality attributes in the face of the continuously
changing requirements and uncertain demand at runtime, as a result of operating in
dynamic and uncertain contexts.

In our systematic review on trade-offs management for self-adaptive architectures
(summary in Appendix C), we differentiated between approaches for design-time and
runtime. By design-time, we mean trade-offs management is considered while evaluating
the architectural design alternatives and making architectural decisions. The runtime is
meant to be managing trade-offs while the system is operating, and the change requests

143

are implemented. Our findings show some attention given for explicit consideration of
trade-offs management at runtime. Examples include [499] [500] [501] [502] [503]. But
analysing the research landscape [43], our observation is that there is an adoption for the
general “self-adaptivity” property without a discrete specialisation on self-* properties.
The generality also applies to the quality attributes considered in trade-offs management.
When considering certain qualities, they tend to be limited to two or three attributes,
as explicit examples. As a general conclusion, the current work tends to be a solution
for trade-offs management that act on trade-offs, not fundamental work that changes
the architectural self-adaptivity. Although the studies found have provided much that
is useful in contributing towards self-adaptive architectures, it has not yet resolved some
of the general and fundamental issues in order to provide a comprehensive, systematic
and integrated approach for runtime support for change and uncertainty while managing
trade-offs.

With respect to considering multiple quality concerns, Cheng et al. [504] have pre-
sented a language for expressing adaptation strategies to calculate the best strategy for
decision-making to be carried out by system administrators. Though this work has con-
sidered multiple QoS objectives and represented uncertainties in adaptation outcome, it
is useful only for human operators use, not autonomous use during runtime. The work of
Camara et al. [351] [505] has employed stochastic games for proactive adaptation, to bal-
ance between the cost and benefits of a proactive approach for adaptation. Meanwhile,
self-adaptive architectures need to ensure the provision of multiple quality attributes.
This also requires considering the quality of adaptation [25], as well as the cost and over-
head of adaptation. Yet, our work considers architectural stability in terms of quality
provision and quality of adaptation, using stochastic games with multi-objectives queries
and long-run rewards.

7.5 Summary

In this chapter, we proposed self-awareness techniques for reasoning about architectural
behavioural stability during runtime. We proposed symbiotic relation between goals model
and goal-awareness for managing stability goals during runtime. We also implemented an
online learning technique for reasoning about stability in the long-run while learning from
historical information. Trade-offs between different stability attributes are managed using
model verification of stochastic games. Using the case of cloud architecture, quantitative
experiments have proven enhancements in achieving stability and quality of adaptation
when using different self-awareness techniques.

144

Chapter 8

Systematic Approach for Evaluating
Architectural Stability

True genius resides in the capacity for
evaluation of uncertain, hazardous, and
conflicting information.

— Sir Winston Churchill

8.1 Introduction

Given the architectures evaluation approaches found in the literature, stability evaluation
was limited to the architecture’s structure at design-time, and evaluation of behavioural
stability was not explicitly tackled. Further, while architectures have been derived and
evaluated for their fitness to quality attributes [427] [370], yet stability is also not ex-
plicitly considered. The shortcoming of current software engineering practices regarding
stability is that the stable provision of certain critical quality attributes (e.g. response
time for real-time systems) has not been explicitly considered in architecture evaluation,
neither during design-time nor at runtime. This imposes new questions on how to evaluate
architecture stability during design-time and while the system is in operation. In partic-
ular, practitioners and architects are challenged by how they can systematically evaluate
stability and make architectural decisions that are stable and dependable in supporting
likely changes in requirements and the environment.

To address this problem, we propose an evaluation framework for evaluating architec-
tural behavioural stability. The proposed framework contributes to the gap of misconcep-
tion when evaluating stability and helps in unifying concerns when evaluating stability.
The proposed framework can assist architects and practitioners in explicitly addressing
stability as a software property. Such evaluation would help in enhancing the efficiency of
the architecture decisions and runtime operation, preventing the architecture from drift-
ing and phasing-out as a consequence of the continuous unsuccessful provision of quality
requirements.

145

Contributions. The main contributions of this chapter include:

• a systematic approach for evaluating architectural stability, following the “ISO/IEC
42030, Systems and Software Engineering —Architecture Evaluation” standards for
general architectural evaluation [506]. Following such standards allows having a
near-to-completeness standards-conforming systematic approach for stability eval-
uation. The framework explicitly addresses the process of planning, execution and
documentation of behavioural stability evaluations. The main components of the
framework are: context of evaluation, stability evaluation and stability attributes
analysis.

• addressing stability evaluation in the different phases of the software lifecycle. We
explicitly discuss the framework components to evaluate architectural stability dur-
ing design-time and runtime for making architectural and operational decisions re-
spectively.

• evaluation of applicability to self-adaptive cloud architectures case and experimental
evaluation of runtime stability.

• a novel symbiotic simulation environment for self-adaptive and self-aware cloud ar-
chitectures, to be employed for stability evaluation. As part of the evaluation,
assessment approaches are required by the ISO standards [506] that have suggested
discrete-event simulations as one of the feasible tools for architects to collect as-
sessment results and to make decisions or draw conclusions about the architecture
performance. We consider symbiotic simulation as a powerful tool for stability
assessment, because of their ability to dynamically incorporate real-time data, pro-
viding the system with the effects of decisions on stability made by the simula-
tion [450] [451] [452].

Organisation. The chapter is organised as follows. Section 8.2 describes the frame-
work and its components. In section 8.3, we discuss stability evaluation in the software
lifecycle. Section 8.4 evaluates our framework using the case of self-adaptive cloud archi-
tectures. We discuss related work in section 8.6. Section 8.7 concludes the chapter.

8.2 Architectural Stability Evaluation Framework

The framework aims to provide a systematic approach for evaluating architectural sta-
bility, in order to complement and usefully support architecture evaluations. Employing
this systematic approach provides the basis on which to compare, select or create stabil-
ity assessment and related attributes analysis. The framework addresses the planning,
execution and documentation of architectural stability evaluations.

146

8.2.1 Conceptual Model

Various methods for evaluating software architectures have been defined to support holis-
tic reasoning and decision making. We adhere to the holistic ethos in defining our frame-
work for evaluating architectural stability. Our framework extends the “ISO/IEC 42030,
Systems and Software Engineering —Architecture Evaluation” [507] [506]. More specif-
ically, we follow the overall conceptual framework of the ISO/IEC standards for general
architectural evaluation [507] [506] to generate a standards-conforming framework for sta-
bility evaluation. Following such standards allows having a near-to-completeness system-
atic approach for stability evaluation. We borrow the basic concepts from the ISO/IEC
standards to be employed with the focus on architectural stability.

Figure 8.1 traces the progress of architectural stability evaluation through the concep-
tual framework. Following the ISO/IEC standards [507] [506], which considers stakehold-
ers’ concerns as a base of the evaluation, we adopt the concept of concerns to represent
the assurances about the behaviour of the architecture that stakeholders expect to obtain.
These concerns are framed into stability evaluation objectives, that drive the evaluation
approach. Stability evaluation objectives are traced down to stability attributes analysis
and assessment objectives, in order to express them in terms of attributes of interest.
Stability attributes of interest cover the attributes that the architecture’s behaviour is
expected to exhibit while operating in its environment. The results of the attributes
analysis and assessment are used to inform the stability evaluation approach, in order to
determine whether stability concerns of the stakeholders are satisfied, for decision making
and reporting purposes.

Figure 8.1: Progress of Stability Evaluation

The overall conceptual model is depicted in Figure 8.21. Table 8.1 illustrates the
mapping between the ISO/IEC standards for general architectural evaluation and the
Stability Evaluation Framework2. The Stability Evaluation Framework aggregates three
main components: (i) context of evaluation, (ii) stability evaluation approaches and their
assessment criteria, and (iii) stability attributes analysis methods and their analysis cri-
teria. Details of these components are presented in the next sections respectively.

1Figures use the conventions for class diagrams defined in ISO/IEC 19501 [508]. We use coloured fill
shapes to indicate entities that are outside the boundaries of the model depicted in the figure.

2Concepts in the Architecture evaluation column are referenced from [507] [506]

147

Figure 8.2: Conceptual Model of Stability Evaluation Framework

148

Table 8.1: Mapping of the ISO/IEC Standards for General Architectural Evaluation and the Stability Evaluation Framework

Concept Architecture Evaluation Stability Evaluation

Evaluation the degree to which the architecture meets end-user
needs, expectations or requirements

the degree to which the architecture is able to
maintain the expected behaviour stable

Stakeholders individual, team, organisation, or classes thereof,
having an interest in a system

the entities that have interest in the architecture’s
behaviour and related concerns

Concerns interest in a system relevant to one or more of its
stakeholders

represent the assurances about the behaviour of the
architecture that stakeholders expect to obtain

Evaluation Objective manifests one or more stakeholder concerns define how stability concerns will be addressed
Evaluation Approach defines value assessment objectives deriving them

from the evaluation objectives, and specify value
assessment methods and related information
sources to address evaluation objectives

describes how stability information will be gathered
and processed

Factor represents one or more stakeholder concerns,
traceable to one or more architecture evaluation
objectives, is used by a set of value assessment
objectives to drive the value assessment

expresses a stability concern or stability advantage
associated with the architecture

Evaluation Plan includes the architecture evaluation objectives, and
their relative importance, and the evaluation scope

guides the derivation of stability evaluation

Evaluation Report documents the scope and objectives for the
architecture evaluation, stakeholders’ concerns
addressed by the architecture evaluation, and the
derivation of the final conclusions from the value
assessment results

documents the scope and objectives for stability
evaluation, stakeholders’ stability concerns, and the
overall conclusions of the stability evaluation

Information sources useful for creating an understanding of the
architecture as a basis for making judgements and
drawing conclusions for an architecture evaluation

useful for creating an understanding of the
architecture’s behaviour

Assessment Method describes how information will be gathered and
processed, and how value assessment criteria will be
applied to the processed information to yield value
assessment results

describes how behavioural stability information will
be gathered and processed, and how stability
assessment criteria will be applied on the processed
information to yield stability assessment results

Attribute some characteristic or property of the architecture a behavioural property of the architecture’s
intended behaviour that needs to be considered for
stability

149

Table 8.1 (cont.)

Concept Architecture Evaluation Stability Evaluation

Attribute Analysis Objectives express the value assessment objectives in terms of
conditions on attributes of interest

are down-traces of Stability Evaluation Objectives
to express them in terms of attributes of interest

Attribute Analysis Criteria are conditions that must be met by or the tests
that must be passed by the measured values of the
attributes of interest

are stability conditions that must be met or the
tests that must be passed by the system

Attribute Analysis Method describes the method for analysing one or more
attributes of interest to address the attribute
analysis objectives

describes the method for analysing one or more
stability attributes to address the Stability
Attribute Analysis Objectives

Attribute Analysis Results are used as evidence in a value assessment method
to make decisions or draw conclusions as to how
well the architecture and/or the system
characterised by the architecture addresses concerns

are the outcomes of attribute analysis methods,
used as evidence on how well the architecture’s
behaviour addresses the concerns for stability

150

8.2.2 Context of Stability Evaluation

Architectural stability evaluation is a judgement about how an architecture is stable in
provisioning the intended behaviour, considered in the context of its respective environ-
ment. Figure 8.3 depicts the context of architectural stability evaluation in terms of key
concepts and their relationships.

Figure 8.3: Context of Architectural Stability Evaluation

Generally, stakeholders of a system have interests (i.e. stakes) in that system and its
associated architecture [507] [506]. We borrow from the ISO/IEC standards [507] [506] the
term of “stakeholders” to express the entities that have interest in the architecture’s be-
haviour and related concerns. Stability Stakeholders could include: end-users, architects,
maintainers. They could also include evaluators and authorities engaged in certifying the
system for a variety of purposes, such as the system’s conformance to legal provisions,
the regulatory compliance of the system and the system’s compliance to environmental
impact or other relevant policies. Architecture evaluation for stability is highly driven by
stakeholders’ concerns. Such concerns can cross-cut one or more dimension that could be
technical, economic, business, strategic, market, etc. dimensions.

Stakeholders, having interests in a system, ascribe concerns regarding the behaviour of
that system and its associated architecture. Stability Concerns represent the assurances
about the behaviour of the architecture that stakeholders expect to obtain. Examples
include stability of the quality of service provisioned, stability in complying with environ-
mental regulations and stability of economic concerns. Architectural Stability Evaluation
focuses on these concerns.

The architecture of the system of interest is situated and operating in its environment
throughout its lifecycle [507] [506]. This environment can contain external entities that
interact with or relate to the system and its architecture. The environment determines
all external influences on the stability of the architecture.

8.2.3 Stability Evaluation

Stability evaluation is meant to examine the behaviour of one or more candidate architec-
tures for the system of interest. Architectural stability evaluation aims to: (i) evaluate the

151

extent to which the candidate architecture can meet its expected behaviour (ii) validate
that the architecture addresses stakeholders’ concerns for stability, and (iii) support and
inform architectural decision making for design, maintenance and evolution. Figure 8.4
depicts architectural stability evaluation in terms of key concepts and their relations. The
Architectural Stability Evaluation central component is the mean for determining whether
stability concerns of the stakeholders are satisfied.

Figure 8.4: Conceptual Model of Architectural Stability Evaluation

From the context, Architectural Stability Evaluation focuses on Stability Concerns
(the focuses on relation (appearing in Figure 8.3). This relation is further refined by
introducing Stability Evaluation Objectives (in Figure 8.4). Stability Evaluation Objec-
tives frame one or more of these concerns for evaluation. Stability Evaluation Objectives
define how stability concerns will be addressed, i.e. what questions about stability factors
will be answered by the Stability Evaluation Approach. Heuristics can help to determine
the appropriate Stability Evaluation Objectives to express a stability concern or stability
advantage associated with the architecture in terms of Stability Factors.

The Stability Evaluation Plan guides the derivation of evaluation, and the Stability
Evaluation Report documents it. In more details, the Stability Evaluation Plan docu-
ments the context and scope of the evaluation, as well as the stability evaluation ob-
jectives that will be addressed to manifest the stakeholders’ concerns. The plan also
describes the Stability Evaluation Approaches that will be adopted to address these ob-
jectives. The specification of stability evaluation approaches for a particular assessment
can be influenced by the nature of stability evaluation objectives or relevant architecture
viewpoints. Stability objectives help to determine what to be included in or excluded by
the evaluation approach. The plan also identifies information sources useful for creating
an understanding of the architecture’s behaviour as a basis for making judgements and
drawing conclusions for the stability evaluation.

A Stability Evaluation Approach describes how information will be gathered and pro-
cessed, as well as how Stability Assessment Criteria will be applied on the processed
information to yield Stability Assessment Results. Stability evaluation approaches vary

152

between design-time and runtime assessment and may include manual or tool-based tech-
niques, suitable enablers and resources for conducting the stability assessment. They
come in various forms, such as quality workshops, expert panels, design walk-through and
quality assurance, modelling and simulation, prototype demonstration, system experi-
ment, technical analysis, multi-attribute utility analysis (MAUA), business case analysis,
socio-economic analysis, subject matter experts. Additional resources, such as test envi-
ronments, discrete event simulations or queuing theory models could also be used.

Following the Quality Function Deployment methodology, Stability Assessment Cri-
teria could be based on “Quality Factors” that are derived from end-users desired at-
tributes [509]. Examples of Stability Assessment Criteria could be “within budget con-
straints” for the affordability/ economic concern, or “consistent all or none behaviour of
transactions” for reliability concern.

The Stability Evaluation Objectives and the Stability Evaluation Approaches form
the elements of architectural stability evaluation. The latter results in two evaluation
work products —Stability Evaluation Plan and Stability Evaluation Report. The overall
conclusions of the stability evaluation are expressed in the Stability Evaluation Report
along with any supporting findings. The stability evaluation report, if following the ISO
standards, could be turned into “Architectural Knowledge” to be reused in the evaluation
of other architectures of the same software paradigm or in other contexts [446] [510].

8.2.4 Stability Attributes Analysis

Figure 8.5 depicts the Stability Attribute Analysis in terms of key concepts and their
relations. Stability Evaluation Objectives are traced down to Stability Attribute Analysis
Objectives that are expressed in terms of attributes of interest. The attributes of interest
cover attributes of the architecture’s intended behaviour that should be kept stable while
the architecture is operating. A Stability Attribute is a behavioural property that needs
to be considered for stability and can be determined quantitatively or qualitatively. Ex-
amples include response time, throughput, latency, energy consumption. Each attribute
analysis objective should enable the selection of usable measurement protocols for the
attribute it describes.

The Stability Evaluation Approach selects Stability Attribute Analysis Methods de-
pending on the information needed for assessing stability. Stability Attribute Analysis
Methods describe the method for analysing one or more attributes of interest to address
the Stability Attribute Analysis Objectives, i.e. they specify the particular ways in which
attributes are examined, suitable analysis scale and analysis protocol. Stability Attribute
Analysis Methods use manual or tool-based techniques and other suitable tools, such as
test environments, to measure and analyse the attributes of interest. They come in various
forms, such as performance analysis, behavioural analysis, risk and opportunity analysis,
failure, modes, effects and criticality analysis (FMECA) [507] [506]. Stability Analysis
methods can borrow the kinds of analysis protocols frequently used for architecture anal-
ysis, such as check-list based examination, scenario-based examination, experimentation,
model-based examination and benchmarking [507] [506]. Our analysis method (proposed
in Chapter 4) could also be used in this context. But instead of using these methods to
simply check if the architecture is capable of achieving an attribute, they will be used to

153

check whether the architecture is constantly achieving it in a stable manner.
The Stability Attribute Analysis Criteria are stability conditions that must be met

or the tests that must be passed by the system. These conditions could be informed by
threshold, benchmarks, expert opinions or Service Level Agreements (SLAs). They are
applied as part of the analysis, and their application will yield attribute analysis results
as an output.

The Stability Attribute Analysis Results are the outcomes of attribute analysis meth-
ods. These are used as evidence in a Stability Evaluation Approach to make decisions
or draw conclusions on how well the architecture’s behaviour addresses the concerns for
stability. The analysis can deliver information about attribute values in different scenarios
and conditions in which the architecture is evaluated. The results might include determi-
nation of a “Measure of Performance” for the architecture attribute. ISO/IEC 15939 [509]
can be used as the basis for such measurements. Here it is worth to note that quantitative
measurements can sometimes be no more accurate than qualitative measurements due to
uncertainty in the measurement devices, methods or tools, or from uncertainty in the
contextual conditions where the measurements were taken [507] [506]. For this reason,
both quantitative and qualitative measurements should be accompanied by an indicator
or estimate of uncertainty in the measurement [507] [506].

The Stability Evaluation Approach specifies the mechanisms through which the Sta-
bility Assessment Criteria will be applied on results produced by the attribute analysis
methods. The mechanism for using the information produced by attribute analysis can
include a specific function for combining the various results, such as a linear weighted
sum, harmonic average or other integrative mechanisms [507] [506].

The distinction between Stability Assessment Criterion and Stability Attribute Anal-
ysis Criterion is their scope [507] [506]. The Attribute Analysis Criterion depends on
architecture attribute(s) and determines a measurement and analysis of those attributes
pertinent to Attribute Analysis Objectives in the scope of the Attribute Analysis Method.
The Stability Assessment Criterion is used to determine whether the aggregation of the
results of the attribute analysis is aligned with the Architecture Evaluation Objectives.
The Attribute Analysis Criterion usually can involve far more quantification, whereas the
process of aggregating results from the attribute analysis can involve a degree of expert
judgement.

8.3 Stability Evaluation in the Software Lifecycle

Architectural stability evaluation can be conducted at one or more stages in the lifecycle of
a system and stakeholders are motivated for various reasons. Generally, stakeholders can
use stability evaluation to support decisions related to maintenance, evolution, refactoring,
replacement and phasing out, further investment etc., throughout the lifecycle of a system.
Architects are motivated for stability evaluation to take architectural decisions in the
design phase, while maintainers are motivated by taking decisions for maintaining and
updating the system while in operation. The characteristics of a particular lifecycle stage
can influence the evaluation, e.g. evaluation objectives, method, stakeholders involved.
Conversely, the evaluation can inform the iterative and further refinements needed to

154

Figure 8.5: Conceptual Model of Stability Attributes Analysis

reach a good enough architecture.
As stakeholders have varying levels of involvement with the system of interest [507]

[506], their concerns for the stability of the architecture’s behaviour and the lifecycle stages
where they need stability evaluations are different. The Stability Evaluation Framework
tends to be used at different stages during the software lifecycle for: (i) addressing specific
stability objectives, (ii) evaluating certain stakeholders’ concerns for the architecture’s be-
haviour, and (iii) addressing specific stability attributes. We focus on the framework com-
ponents with respect to behavioural stability evaluation during design-time and runtime
(in the next sections 8.3.1 and 8.3.2 respectively).

General uses of stability evaluation. The uses of stability evaluation outcomes
include: (i) supporting architectural decision making for the system of interest, (ii) de-
termining if the architecture’s behaviour addresses stakeholders’ concerns for stability,
(iii) determining the degree to which the architecture’s behaviour meets the end-users’
requirements, and (iv) making inferences and decisions about changes or evolution of the
architecture. The outcome of the evaluation framework could be turned to constitute
the “Architectural Body of Knowledge” to be reused in other contexts for guiding the
evaluation of other architectures or benchmarking [446] [510].

8.3.1 Design-time Evaluation

In this context, the evaluation is meant to be conducted at the design stage of the software.
This could include evaluating one or more architectures to make architectural decisions.
The evaluation can be conducted to justify the choice of the architecture among other can-
didate alternatives. Here it is worth to note the difference between architecture evaluation
and stability evaluation. The former is the “judgment of the value, worth, significance,
importance, or quality of architectures” [507] [506] that aims to determine the degree to

155

which the architecture meets end-user needs, expectations or requirements [507] [506].
The latter focuses on the degree to which the architecture is able to maintain the stability
of the expected behaviour. As an example, architecture evaluation can determine that a
certain architecture complies to the environmental regulations, while stability evaluation
determines if the architecture’s behaviour will remain “stable” with respect to energy
consumption under varying operational workloads. The evaluation is also concerned with
understanding the impact of stability of different attributes on each other. Stability eval-
uation can help in determining the possible set of adaptation strategies that allow the
architecture to keep its stability.

The design-time evaluation aims to capture the stability evaluation objectives that re-
flect stability concerns, identify evaluation approaches and relevant attributes that charac-
terise the expected architecture’s behaviour. A stable architecture is expected to provide
constant satisfaction of certain quality and performance levels, as well as sustain other
expected behavioural aspects. An architecture that will fail to sustain its expected be-
haviour will be phased-out.

Context. At the design stage, stakeholders that could have stability concerns in-
clude end-users, finance managers and authorities certifying the system’s compliance to
regulations. Other stakeholders could be identified depending on the context and domain
of the system. Examples of their stability concerns include quality of service, economic
and environmental concerns.

Stability Evaluation. Stability Evaluation Approaches in design-time could be
quality workshops, subject matter expert panels, end-users’ workshops, prototype demon-
stration, technical analysis, multi-attribute utility analysis (MAUA), business case anal-
ysis, socio-economic analysis, architects or expertise judgements. Modelling and simula-
tions could also be used, if possible.

Stability Attributes Analysis. Stability Attributes Analysis Methods that could
be used in the design-time evaluation are check-list based examination, scenario-based
examination, model-based examination and benchmarking. These methods shall specify
suitable analysis scale and analysis protocol for analysing stability attributes. For in-
stance, some attributes might be noted as true/false, some use a formula or algorithm to
determine the needed information about the attribute. Other attributes might be mea-
sured on a fabricated scale from very low to very high with each level in the scale defined
to have specific characteristics or using the measurement protocol that has been specified
by the attributes analysis method.

8.3.2 Runtime Evaluation

The runtime evaluation is performed while the system is in operation; the objective is to
assess the stability of runtime adaptations, maintenance or evolution purposes. In this

156

context, we focus on keeping the architecture’s intended behaviour stable during runtime,
considering the attributes critical to be kept stable without violations. Behavioural stabil-
ity also encompasses the architecture’s runtime decisions that would leave the architecture
stable in the long-term. Runtime decisions could be either automatic or interactive (e.g.
set by the architect).

The runtime evaluation could be conducted either on the system itself or on symbiotic
simulations. Symbiotic simulations run close to a physical system, benefiting from real-
time measurements from the physical system, and provide feedback to the system [450]
[451] [452]. The results of stability evaluation could be used for taking adaptation decisions
autonomously during runtime by the adaptation controller (managing system) or to be
taken for further offline analysis and decisions.

Context. Stakeholders with concerns for runtime stability could include the system
administrators responsible about the operation, maintenance or evolution of the system,
added to the stakeholders of the design-time evaluation. Examples of system administra-
tors concerns could be the stability of runtime autonomous decisions and changes required
to converge the architecture to a stable state.

Stability Evaluation. Realising runtime behavioural stability requires both contin-
uous provision of quality requirements and stable runtime decisions. Quality requirements
include the critical attributes that are required to be kept stable throughout the operation
of the architecture without violations. Evaluation approaches in the case of runtime could
be automated while the architecture is operating or based on architects and system main-
tainers judgements. Simulation-based decision support could be also considered [451].
Runtime stability assessment methods could be modelling and simulation, system experi-
ment, technical analysis, multi-attribute utility analysis (MAUA), business case analysis,
socio-economic analysis, subject matter experts. Additional resources such as test en-
vironments, discrete event simulations, or queuing theory models could also be used.
Symbiotic simulation is also a powerful tool to be considered for stability assessment,
because of their ability to dynamically incorporate real-time data, providing the system
with the effects of decisions on stability made by the simulation [450] [451] [452].

Stability Attributes Analysis. Stability Attributes Analysis Methods that could
be used at runtime evaluation are scenario-based examination, experimentation, perfor-
mance analysis, behavioural analysis, model-based examination and benchmarking. The
what-if-analysis, which is concerned with the evaluation of a number of what-if scenarios
by means of simulation, would complement symbiotic simulations.

157

8.4 An Evaluation of Applicability

The proposed framework is applied to evaluate the behavioural stability of self-adaptive
cloud architectures case (described in section 4.4.1). The result of the applied conceptual
model is depicted in Figure 8.6, and the framework components are presented in the next
sections.

Figure 8.6: Evaluation Case: Application of Stability Evaluation Framework

8.4.1 Context of Stability Evaluation

Self-adaptivity has been motivated as a solution to achieve the level of dynamicity and
scalability necessary for these systems, as well as to comply with the changes in compo-
nents, fluctuations in workloads and environmental conditions during runtime [21] [22]
[23]. Self-adaptive architectures are expected to manage themselves following the princi-
ples of autonomic computing, to respond to changes in end-users requirements and the

158

environment coping with uncertainty in runtime operation [24], for continued satisfaction
of quality requirements under changing context conditions [25]. In such case, the archi-
tecture is required to sustain a stable level of the expected service quality throughout
the operation. Meanwhile, the quality of adaptations taking place has impact on the
overall behaviour. An adaptation indefinitely repeating the action will risk not reaching
the adaptation goals, or even degrading the system’s behaviour to unacceptable levels, or
probably degrading other stability attributes [25] [26]. Continuous and frequent runtime
adaptations might also cause architectural instability leading to performance degrada-
tion [25] [26].

In this case, stability is considered as an architectural property concerned with the
behaviour of the architecture with respect to QoS provision and the behaviour of the
adaptation controller [25]. QoS provision is concerned with ensuring the continuous sat-
isfaction of architecturally significant quality requirements [64]. The behaviour of the
adaptation controller focuses on observable properties or qualities that are particular to
the adaptation process [25] [26].

The context of stability evaluation for the case of self-adaptive cloud architectures is
shown in Figure 8.7. Stakeholders having stability concerns include end-users, environ-
ment authorities (responsible about the compliance to environmental impact regulations),
operational managers and system administrators. End-users concerns for stability are
mainly the provision of quality attributes as defined in their SLAs. Here, we focus on
attributes critical for end-users which their provision need to be kept stable without vi-
olations. Other properties could be stabilised within a given tolerance. These properties
vary from one system to another. For instance, responsiveness in a real-time system is
a critical attribute, while throughput in a data analytics system is the critical one. The
environmental impact concerns are mainly related to stabilising energy consumption and
CO2 emission during operation [157]. Operational managers are concerned about the
operational overhead, i.e. ensuring that operational costs are within the identified bud-
get (to ensure a minimum profit) without encountering penalties due to SLAs violations.
Concerns of system administrators are related to the stability of the adaptation process,
that is the degree in which the adaptation process will converge toward the adaptation
goals [25] citeVillegas2017.

8.4.2 Stability Evaluation

Behavioural stability evaluation is about assessing the architecture stability state of ful-
filling the runtime quality requirements during operation and assessing the stability of
the adaptation process [25]. Such evaluation can help in identifying adaptation actions
when necessary to fulfil the changing workload, ensuring the adaptation actions will leave
the architecture stable in the long term and avoiding unnecessary adaptations. Table
8.2 summarises how the stakeholders’ concerns for stability are framed into evaluation
objectives. These objectives indicate qualities representing the architecture’s expected
behaviour. The qualities are tangibly expressed with the help of one or more attributes
subject to stability. By analysing the stability of these attributes and applying relevant
analysis criteria, it is possible to address the stability objectives.

In more details, to manifest the previously identified stability concerns, evaluation

159

Figure 8.7: Evaluation Case: Context of Stability Evaluation

objectives focus on:

(i) the capability of the architecture to keep the QoS provision stable without SLA
violations,

(ii) the capability of the architecture to retain the environmental impact stable accord-
ing to the regulations,

(iii) the capability of the architecture to keep operational overhead stable with the vary-
ing workload and consequent adaptations, and

(iv) the capability of the architecture to perform adaptations that converge toward adap-
tation goals without indefinitely repeating adaptations or performing unnecessary
adaptations.

By these evaluation objectives, the first three objectives could be assessed with the
following criteria: (i) Service Level Objectives (SLOs) defined in SLAs for the attributes
subject to stability, (ii) energy consumption levels defined in environmental regulations,
and (iii) the operational budget. Stability of the adaptation process can be assessed by the
degree to which the adaptation process converges towards quality of service (adaptation
goals) [25] without unnecessary adaptations that might cause architectural instability.
Stability can also be assessed by the degree of supporting the increase in demands [25].

In the case of runtime evaluation, stability evaluation methods could be either offline
or online. In the case of offline evaluations, we can rely on the architect’s expertise. In the
case of online evaluations, evaluations could be automated in the architecture managing
component, i.e. adaptation controller. In both cases, tool-based methods are needed for
stability assessment. Discrete-event simulations could be a feasible tool for architects to
collect assessment results and to make decisions or draw conclusions as to how well the
architecture is stable. In case of automated evaluations, the core of the simulation could
be integrated as part of the architecture managing component.

160

Table 8.2: Evaluation Case: Breakdown of Stability Concerns into Measurable Stability Attributes

Stability
Concerns

Stability Evaluation Objectives Stability Assessment
Criteria

Stability
Attributes

Stability Attribute Analysis
Criteria

Stability of
QoS provision

Will the architecture keep the
provisioned QoS stable without SLA
violations?

Service Levels Objectives
(SLOs) defined in SLAs

Performance Response Time < 15 ms,
Throughput < x req./sec,
Latency < 1 sec

Stability of
environmental
impact

Will the architecture retain the
environmental impact stable
according to the regulations?

energy consumption levels
defined in regulations

Energy consumption Consumed energy < x kWh

Stability of
operational
overhead

Will the architecture retain the
operational overhead stable with
the varying workload and
consequent adaptations?

within operational budget Operational cost
(cost of CPU,
memory, storage,
bandwidth)

Operational cost/hour within a
certain limit

Stability of
adaptation
process

Will the architecture adaptations
converge toward adaptation goals
without indefinitely repeating
controlling actions?

Degree to which the
adaptation process converges
towards adaptation goals with
finite discrete controlling
actions

Quality of
Adaptation

Accuracy of adaptation,
Settling time,
Resources overshoot,
Frequency of adaptation

Will the architecture adaptation be
able to support increasing demands
with sustained performance?

Support of increasing demands
within expected peak loads

Scalability All requests serviced with a
sustained performance at peak load,
90% requests serviced with a
sustained performance at
unexpected peak load

161

8.4.3 Stability Attributes Analysis

The above stability evaluation objectives and criteria are traced down and analysed to
the following stability attributes of interest: (i) performance (considering performance
attributes critical to the end-user to be subject to stability), (ii) energy consumption
(measured by kWh), (iii) operational cost (calculated by the monetary cost of CPU,
memory, storage and bandwidth), and (iv) quality of adaptation that affect stability.

Adaptations properties include: accuracy of adaptation, settling time, resources over-
shoot and frequency of adaptations [25]. The accuracy of adaptation is measured in terms
of how close adaptation goals are met within given tolerances [25], or stability objectives
in our case. Higher accurate adaptations would leave the architecture in a stable state and
eliminates frequent adaptations that might cause architectural instability. Settling time
is the time required by the adaptation system to achieve the adaptation goal, reflecting
how fast the architecture adapts and reaches adaptation goals [25]. Long settling time can
leave the architecture in unstable states, as a result of slow adaptations or reaching goals.
Resources overshoot expresses the number of resources used in excess by the adaptation
process to achieve the adaptation goals in a required settling time [25]. Managing the util-
isation of computational resources is important to avoid reaching instability states. The
frequency of adaptations reflects that the architecture produces finite discrete controlling
actions for adaptations, i.e. not indefinitely repeating adaptations. As adaptations are
motivated by continuous provision of quality requirements (adaptation goals) [25], the
continuous runtime adaptations to meet these requirements might lead to architectural
instability, due to the high frequency of adaptations or unnecessary continuous adapta-
tions [22] [21] [23] [25]. Given the latency of adaptations —“the time it takes for an
adaptation to cause its intended effect” — [29], more adaptations could be performed
unnecessarily, leading to an unstable state. A stable architecture would perform less fre-
quent adaptations and eliminates unnecessary adaptations that might cause instability.
Scalability of adaptations reflects the capability of the architecture to adapt for servicing
end-users during peak loads.

Methods to be adopted for Stability Attributes Analysis could be performance analysis
and scenario-based examination. We identify change scenarios, that are the most relevant
(sequences of) system or environmental changes that might affect stability. A scenario is
”a postulated sequence of events that captures the state of the system, its environment,
and its goals during a given time frame, as well as changes affecting all the aforementioned
elements” [29]. It is defined in terms of state (system and environment), changes applied
to that state, and system goals. The change scenarios are employed by stability analysis
method (simulation in our case) for analysing stability attributes.

8.5 Experimental Evaluation of Runtime Stability

The main objective of the experimental evaluation is to examine the behaviour of the
architecture when considering stability evaluation during runtime while making adapta-
tion decisions, in comparison with a foundational self-adaptive architecture (described in
section 5.4.2.1).

162

8.5.1 Developed Evaluation Tools

To conduct stability runtime evaluation, we developed (i) a symbiotic simulator for the
self-adaptive cloud architectures as an example of stability runtime evaluation tools, and
(ii) a dynamic model for evaluating stability during runtime.

The symbiotic simulation environment was built using the widely adopted CloudSim
simulation platform for self-adaptive and self-aware cloud architectures [5]. The proposed
environment extends CloudSim with novel extensions useful for modelling and testing self-
adaptivity and self-awareness. The toolkit allows running dynamic runtime workload and
can be used as a symbiotic simulator during runtime. Details of the symbiotic simulator
and its validation appear in Appendix D. The concept of using symbiotic simulations
during runtime is illustrated in Figure 8.8.

Figure 8.8: Using Symbiotic Simulation for Runtime Evaluation

We also developed a queuing theory-based model for evaluating runtime stability. The
dynamic modelling of tactics impact on stability is based on Markov analytical model and
queueing theory. The premise is that the model can enable the analysis and evaluation of
the extent to which candidate tactics can meet stability goals and keep the architecture
in stable behaviour. The model is detailed in Appendix E.

8.5.2 Experiments Setup

We used the developed simulation environment in conducting our experimentations. The
benchmarks and testbed configuration used are as described in section 5.5.1.1 and 5.4.2.2
respectively. The initial deployment of the experiments is: 20 hosts running 20 m4.2xlarge
VMs. In order to closely observe the adaptation properties, we set one stability attribute,
which is response time (25 ms). In these experiments, the architecture is configured once
with the foundational self-adaptation controller, and once with the stability-evaluation
controller. The latter implements the proposed stability evaluation framework.

8.5.3 Results of Stability Attributes

Considering the experiments total results, we report the average response time of 30 runs
in Figure 8.9. Generally, the average response time of all requests for each service type

163

is better achieved by the stability-evaluated architecture due to proactive adaptations,
compared to self-adaptive architecture.

Figure 8.9: Average Results of Response Time

8.5.4 Results of Adaptation Properties

The accuracy of adaptation is shown, here, by the percentage of requests completed with-
out violation in response time, and settling time is shown by the total time periods where
the response time was violated until the adaptation actions became effective. As shown
in Figure 8.10, the accuracy of adaptation is highly achieved in the stability-evaluated
case for service type 1 and is generally better for all other service types. Regarding the
settling time shown in Figure 8.11, the stability-evaluated case was capable of keeping
it much less than the self-adaptive architecture. This reflects the quality of adaptation
decision in achieving its objectives and avoiding possible violations.

Figure 8.10: Average Results of the Accuracy of Adaptation

Resources overshoot is expressed by the total number of hosts and VMs utilised by
the adaptation process. As shown in Figure 8.12, the stability-evaluated controller was
capable of considering the resources consumed beside achieving the stability attribute.
This is due to the pro-active adaptations that are capable of keeping a longer effect and
avoid unnecessary adaptations. Resources overshoot implicitly reflects the less energy

164

Figure 8.11: Average Results of the Adaptation Settling Time

consumption and operational costs, as they directly related to the number of hosts and
VMs respectively.

Figure 8.12: Average Results of Resources Overshoot

Regarding the frequency of adaptation, it is shown here in terms of the number of
adaptation cycles. As shown in Figure 8.13, the self-adaptive architecture was performing
adaptation cycles constantly for all service, as per the workload fluctuation. Meanwhile,
the frequency of adaptation is found much less in the stability-evaluated adaptations,
and sensible to the size of the requests. This is due to the evaluation that is taking
into consideration the long-term effect of adaptation on stability. Evidently, adaptation
overhead is directly proportional to the frequency of adaptation (evaluated by the total
time spent by the architecture in the adaptation process). This is shown in Figure 8.14,
where the overhead in case of stability evaluation, nearly following the same pattern of
the adaptation frequency, is less than the overhead of self-adaptive.

Generally, evaluating stability when taking adaptation decisions has successfully re-
alised stability attributes (performance) without violations, and has taken into consider-
ation quality of adaptation properties, resulting in better settling time and fewer adapta-
tions frequency and overhead.

165

Figure 8.13: Average Results of the Frequency of Adaptation

Figure 8.14: Average Results of Adaptation Overhead

8.5.5 Discussion

The evaluation case has illustrated the importance of evaluating the stability of critical
qualities that are needed to be kept stable without violations, where our framework is
found useful for understanding, addressing and analysing such qualities, avoiding danger-
ous pitfalls like instability states and indefinitely repeated adaptations. The framework
helped in explicitly capturing stability concerns that might be ignored in classical ar-
chitecture evaluation or might be considered without considering their stability. In our
approach, various stakeholders are taken into consideration, explicitly the ones related to
the operation of the system, e.g. system administrators. Using the stability evaluation in
the self-adaptive cloud architecture case has revealed stability of the adaptation process
as an explicit concern that should be taken into consideration. This concern has been
widely ignored in the self-adaptivity literature.

The case study has also illustrated how our stability evaluation approach has success-
fully linked the stakeholders’ concerns for stability to software qualities and attributes
that the architecture exhibits. Analysing and assessing stability attributes allows making
operational decisions that would leave the architecture in a stable state in the long-term.
The framework enables software practitioners to consider trade-offs across qualities that
are critical to being kept stable. Generally, our systematic evaluation approach has added-
value to the architecture evaluation. That is by making more-informed architectural and
operational decisions for the well-being of the architecture in the long-term. While the in-

166

stantiated case has served the illustrative purpose, the framework could be further refined
after application to practical cases.

On the other side, the symbiotic simulator of self-adaptive cloud architectures illus-
trates how the stability evaluation framework can be applied during runtime operation of
large, complex systems that operate in an uncertain continuously changing environment.
Integrating our stability evaluation framework into the operation of cloud architectures
provides valuable support to managers and system engineers trying to maintain techni-
cal, economic, and environmental requirements on the long-run. These decisions could
be either taken autonomously by the adaptation controller or the system administrators.
Such evaluation also gives insights for possible maintenance, changes and upgrades.

8.6 Related Work

Evaluating stability at the design phase aims at measuring to which extent a partic-
ular architecture design is capable of accommodating future changes while remaining
intact [39], i.e. structural aspect for evolution purpose. This provides the architect with
better understandings for the architecture design decisions and architecture investment,
by addressing the implications of having a stable architecture design, relevant cost and
value [124]. Approaches of stability evaluation could be categorised as: (i) retrospective,
and (ii) predictive [117] [121] [511]. Retrospective approaches aim at analysing how easily
the evolution occurred [39]. Predictive approaches aim at predicting how the evolution
will take place, by examining how the architecture will endure the likely changes [39].

An early survey of design-time evaluation approaches [121] indicated that the evalua-
tion approaches focused explicitly on architecture construction and implicitly on evolution.
Examples of architecture evaluation methods include Active Review for Intermediate De-
signs (ARID) [330], Attribute-Based Architectural Styles (ABAS) [331], Scenario-Based
Architecture Reengineering [332], Quality-Attribute-Based Economic Valuation [333], and
CHARMY for verifying architectural specifications [334]. These methods focused on eval-
uating architectural decisions in relevance to traditional quality attributes [39]. Though
they adopted the concern of accommodating changes, none of them explicitly addressed
neither architecture stability along with evolution nor behavioural changes during oper-
ation 1. The “ArchOptions” approach, based on Real Options Theory and taking the
economic perspective in evaluation, explicitly studied evaluating architectures’ stability
for evolutionary purpose [120] [121].

Runtime stability evaluation has not been addressed explicitly in the evaluation ap-
proaches found in the literature to date. Some runtime evaluation approaches available
in the literature addressed evaluating other attributes related to stability, such as de-
pendability, resilience, reliability and robustness. Some representative work that partially
tackled aspects related to architectural stability include the work of Ghosh et al. [339]
that considered the cloud dynamics in demand and available capacity in evaluating the
resilience of cloud infrastructure services by “job rejection rate” and “response delay”.
In [143], the impact of environmental changes on resilience was quantitatively evaluated

1Further details about the critical relation between stability and these evaluation methods could be
found in [121] [39].

167

using Exploratory Data Analysis (EDA). The works of [340] [341] focused on service-
oriented architectures, and investigated their behaviour (in)stability (ability to guaran-
tee certain response time and performance) and the (in)stability of the communication
medium (physical aspect). But instability, here, was considered as dependability (i.e.
ability to deliver justifiable trusted services). With the aim of considering, not only the
environment as the only source of change, but a wider range of “changeloads” [168], the
resilience benchmarking presented in [142] has addressed the robustness and resilience
issues. The survey presented in [148] identified the challenges and opportunities for pro-
visioning dependable and resilient cloud-based software services.

Tough the evaluation methods were systematic, they are human-based activities, re-
lying on the architect experience and own judgement. Some approaches sound promising
for stability evaluation of modern complex systems. But novel extensions are still required
to accommodate the complexity of architectures for autonomous systems. Such complex-
ities mainly arise from the heterogeneity and dynamism of both the software itself and
the environment in which the software is operating and interacting. Yet, the behavioural
aspect of stability was not addressed in the design and runtime phases.

8.7 Summary

In this chapter, we presented a framework for evaluating architecture behavioural stability,
based on the ISO/IEC Architecture Evaluation standards. The main components of the
framework are: context of evaluation, stability evaluation and stability attributes analysis.
The framework explicitly addresses the process of planning, execution and documentation
of behavioural stability evaluations. The framework has been applied to the self-adaptive
cloud architectures case. One feature of the framework is making explicit consideration of
stakeholders’ concerns for stability and environment factors. The systematic evaluation
approach has added-value to architectures evaluation practices. That is by making better
informed architectural and operational decisions for the well-being of the architecture in
the long-term. The design-time evaluation has shown that our approach has revealed
stability and quality of adaptation as explicit concerns. When considering stability in
runtime adaptations, the experimental evaluation has proven enhancements in achieving
stability and quality of adaptation.

Architectural stability evaluation is particularly important for long-living software
systems. Evaluating stability is beneficial for many reasons, including: (i) determining if
the system is architected in a way that it keeps its behaviour stable, (ii) evaluating the
architecture’s effectiveness and suitability in keeping its intended behaviour stable and
maintaining stability over time while the system is in operation and as it evolves, and (iii)
identifying risks which can threaten the structural and/or behavioural stability of the sys-
tem, and (iv) identifying preventive measures for maintaining stability. Such evaluations
allow to keep the architecture’s intended behaviour and maintain long-living architecture
without phasing-out. Architectural stability evaluation can also be an instrument of ar-
chitecture governance [507] [506] to conduct recurring evaluations in a systematic manner
at different stages of the software lifecycle, e.g. architectural design decision, runtime
operation, continuous maintenance and evolution.

168

Chapter 9

Conclusions and Future Directions

I may not have gone where I intended to go, but
I think I have ended up where I needed to be.

— Douglas Adams

9.1 Summary and Discussion

This thesis tackles the problem of characterising and engineering the notion of stability in
software engineering. One of the main motivations of our work is the strategic importance
of stability for software longevity.

To characterise the notion of stability in software engineering (RQ1), we reviewed
the state-of-the-art related to stability as a software property, with a special focus on
software architectures. Having found that stability has been interpreted in various ways,
we proposed a taxonomy for characterising the concept. Such characterisation paves the
way for better understanding of the concept, and consequently motivate research. We
discussed how stability was treated for the different software artefacts by the software
engineering community. As architectures have a profound effect throughout the software
lifetime, we closely reviewed the related engineering practices. This survey serves as a
primary investigation for deeply characterising architectural stability, to take it further
towards handling the wider concept and the related challenges.

As the review indicates the need to shift from a narrow concept of stability (archi-
tecture intactness), we discussed a multi-dimensional perspective for characterising sta-
bility as a software property (RQ1). The multi-dimensional perspective contributes to
advancing the state-of-the-art and improving the state-of-the-practice of stability. This
perspective contributes also to determine the primitives and requirements for realising
and engineering stability as a software property (RQ2). Focusing on the behavioural as-
pect of stability, we have drawn conceptual design principles inspired by Control Theory
to capture the intended behaviour (RQ2).

For analysing and modelling stability (RQ3), the thesis performed stability analysis
inspired by the ISO/IEC/IEEE 42010 Architecture description standards. The stability
analysis introduced a qualitative model for representing the knowledge of attributes sub-
ject to stability synthesised from multiple stakeholders concerns and architectural view-

169

points. In modelling stability, we employed probabilistic relational models that capture
the correlations between stability attributes of different viewpoints. Bayesian networks
are, then, used for quantitatively calculating probability distributions of the impact of
stabilising specific attributes on interdependent attributes, as well as reasoning about
stability under runtime uncertainty. The approach can effectively conduct runtime infer-
ence to reason about stability attributes given the continuous runtime uncertain changes.
Such reasoning improves the achievement of the intended behaviour and supports seamless
operation.

Regarding the engineering practices to support runtime behavioural stability for self-
adaptive architectures (RQ4), the thesis presented a reference architecture and goals
modelling for stability, as well as online reasoning mechanisms. In this context, self-
awareness computing has been found as a potential mechanism for dealing with stability
attributes on the long-run and their associated trade-offs.

Therefore, the reference architecture leverages on self-awareness and self-expression
primitives. The architecture also embeds the SAwGoals@run.time component for mod-
elling stability runtime goals, in order to enable efficient use of self-awareness and self-
expression in achieving stability goals. The proposed design-support artefacts would assist
architects and practitioners in planning for stability, as well as designing stable and long-
living systems. Such design principles would increase the efficiency of the architecture
runtime operation, delaying the architecture drifting and phasing-out as a consequence of
the continuous unsuccessful provision of quality requirements.

Further, we extended the architecture to dynamically reason about stability, where
we implemented different computational intelligence techniques in self-awareness compo-
nents. The goal-awareness was capable of managing stability goals, by realising the sym-
biotic relation between the runtime goals model and self-awareness. The online learning
technique in time-awareness has efficiently provided insights for stability on the long-run.
Stochastic games have managed trade-offs between stability attributes, allowing the archi-
tecture to take adaptation decisions for better tuning, responding and achieving stability
goals.

Given the particular importance of architectures evaluation and the lack of behavioural
stability evaluation practices, the thesis proposed a framework for evaluating architecture
behavioural stability, based on the ISO/IEC Architecture Evaluation standards (RQ4).
The framework explicitly addresses the process of planning, execution and documentation
of behavioural stability evaluations. The use of this framework shall enable more effective
architecture evaluations and enhance the body of knowledge on architecture evaluation.
Such evaluation approach could be considered as a guide for architectural stability eval-
uation.

In terms of evaluation, we used the self-adaptive cloud architectures case through-
out the thesis for its runtime dynamics. We have demonstrated the applicability of the
proposed analysis methodology, reference architecture and stability evaluation approach.
The qualitative evaluations have shown the added values of our approaches, where archi-
tectural and operational decisions are better informed for the long-term well-being of the
architecture. Our approaches have revealed stability and quality of adaptation as explicit
concerns, where the latter properties have been widely ignored in the literature. We have
also shown the feasibility of the probabilistic modelling and computational intelligence
techniques for reasoning about stability. The quantitative experimentations have proven

170

enhancements in achieving stability and quality of adaptation on the long-run.

9.2 Threats to Validity

In this section, we discuss potential threats to validity common to this research. The
Threats are identified according to the classification of [512] and [513]. We describe these
threats below.

1. Threats to Validity Related to the Literature Review. Though we followed
the guidelines of secondary studies [92] [93] when conducting our literature review on
stability (in Chapter 2), trade-offs management (in Chapter C) and self-awareness
(in Appendix B), common threats to validity are:

• Construct validity. This relates to sources investigated and data collection,
including:

– Missing relevant studies. One of the main threats of this review is in-
completeness. The search was based on meta-data (abstract, title, and
keywords) only, and might have missed some relevant studies that consid-
ered stability as part of their proposed work and have not mentioned this
explicitly in their titles, abstract and keywords. Though the meta-data
are specified by the authors of the papers, we reasonably rely on how well
the digital databases classify and index papers. We have used multiple
data sources, that are basically academic indexing services. These are
considered as the largest and most complete scientific databases for con-
ducting literature reviews [93] [514] and most relevant electronic databases
to computer science and software engineering [515]. The search strings
were carefully tried and verified. We also used the cross-referencing to find
potentially relevant studies.

– Primary studies selection bias. In the selection of primary studies, we
cannot guarantee that all relevant studies were selected, some relevant
publications might have been excluded. The biased selection might be
related to subjectivity in finding primary studies, as the selection was con-
ducted by one researcher. To avoid selection bias, we defined the purpose
of the study and the questions in advance and adopted a guided selection
process under the supervision of the other two researchers. Defining clear
inclusion and exclusion criteria helps in mitigating this threat.

– Inaccuracy in extracted data. As data extraction was conducted by one
researcher, inaccuracy can be introduced in the process due to different
reasons, such as the background of the researcher and the researcher’s
subjectivity. The way the authors’ studies used to present their approaches
and findings might also be a factor. Tough it was necessary to fulfil the
targeted schedule, data extracted by the main researcher was validated by
the thesis supervisor, which lead us to believe that the effect of this error
is minimal.

171

• Internal validity. This is concerned with the methods used in conducting
the above-mentioned surveys and related conclusions. The following could
threaten internal validity:

– Scope of the review. The questions defined might not have covered the
whole research area. More specifically, the third question focused on the
engineering practices for the architecture. This implies that relevant in-
formation may not be found in the review if one is concerned with other
artefacts, such as software design. For this issue, we had several discussions
to refine the questions and decided to focus on the architecture, for it plays
an important role during software operation, maintenance and evolution.
Yet, our review could be used as a base to conduct similar studies for the
other software artefacts.

– Completeness of the review. As the review is mainly focused on a quality
attribute that is related to different software artefacts, it is hard to identify
a set of primary studies to be included in the review for completeness. We
acknowledge that the included primary studies might not cover the entire
research area. In discussing the engineering practices that support archi-
tectural stability (section 2.8), we presented seminal and/or representative
work when we did not find studies that explicitly considered stability, but
found studies considered attributes related to stability, or partially dis-
cussing aspects of stability. We do not claim completeness in this part.
But the review is mainly based on the concepts and questions defined ear-
lier. Tough we argue that the search strategy (defined in Appendix A)
ensure that the selected primary studies constitute a good representative
of the research done in the software engineering community. The set of
concepts and taxonomy proposed shall help in mitigating this threat in
the future.

– Robustness of the taxonomy. An important threat is whether the con-
structed taxonomy is robust and comprehensive for the analysis and clas-
sification. First, we believe that we constructed the taxonomy in a plausi-
ble and systematic way, using the widely-adopted 5W+1H pattern (What,
Where, When, Why, Who and How) [98] [21] [99] [100]. After formulat-
ing the initial taxonomy, we used an iterative approach to continuously
refine taxonomy when new concepts are extracted from primary studies
(as indicated in Figure A.1).

• External validity. This is concerned with the generalisation and applica-
bility of the study findings, including:

– Publication bias. The scope of our review is the academic research domain.
The threat is that relevant engineering practices in the industry are not
included, if not reported in academic publications. Nevertheless, we con-
sider this review as a starting foundation, and we will complement it with
an industrial study as future work.

– Validation and evaluation of primary studies. In the review protocol, we
did not validate or evaluate the research reported in the primary studies.
However, the quality of data sources used, where publications from peer-

172

reviewed conferences and journals only are published, have a direct impact
on the quality of the research reported in the primary studies, and thus
our review.

• Conclusion validity. This is concerned with the degree to which the conclu-
sions drawn from data extracted are reasonable and valid. We derived our con-
clusions based on logical reasoning and sound analysis of the primary studies.
Further, all the conclusions were drawn by the three researchers and double-
checked against related studies. We have also been careful in not making
conclusions based on a single study. Discussions and conclusions are related to
the whole research area. Most importantly, the review protocol specification
(details in Appendix A) makes it possible to replicate the study. But the selec-
tion and data extraction, based on reading the whole papers, is subjective and
might lead to different selection, classification and findings. Yet, this includes
research creativity and forms part of the research contribution.

2. Threats to Validity Related to Proposed Approaches. Though we proposed
systematic approaches for engineering stability (in Chapter 3, 4, 5, 6 and 8), poten-
tial threats to validity could be:

• The dependency on the human capabilities in the analysis step of the proposed
method (in Chapter 4) would form a threat to validity on the end results when
using the proposed approach. This might be due to the lack of information
or expert knowledge. Yet, our approach could be complemented with formal
methods of causality discovery [516] [517], structuring causal trees [443] and
learning structure from data [444]. Similarly, depending on the human in se-
lecting the architecture pattern (in Chapter 6) would form a threat to validity
on the end results. This might be due to the lack of information or expert
knowledge. Yet, our approach could be complemented with symbiotic simula-
tions for testing the architecture design [451] [452].

• With respect to the generalisability of the proposed work, we believe the
method provides systematic guidance to architects and practitioners. Yet,
customisation might be needed if the adaptation controller of the self-adaptive
system has different components. As the application of the method tends to
be subject of the system under consideration, applicability and generalisabil-
ity of the method to different software domains can uncover new modalities,
customisation, simplification or extension to the method.

3. Threats to Validity Related to Evaluation. The potential threats to validity
to our evaluation case and experiments (in Chapter 4, 5, 6, 7 and 8) are:

• Subjectivity might be considered a threat to validity in setting the stability
attributes. This was conducted based on the author’s background and knowl-
edge, i.e. we have chosen the stability goals thresholds purely based on our
observations. Our mitigation strategy for this issue is to base the evaluation
case on others previous work [3], this makes us believe that the case study is
practical and reflects the nature of cloud-based software systems. Also, these
goals have proved to be challenging when running the experiments.

173

• Another threat to the validity of our evaluation lies in the fact that the ap-
proach was evaluated using one case. Yet, the dynamics presented in cloud
architectures is an appropriate case study representing the dynamics of mod-
ern software systems, and we plan to conduct other cases in industrial contexts
and different business segments.

• Experiments were conducted in a controlled environment and have not consid-
ered the real-life scenario of switching between different service patterns and
changing stability goals during runtime for different end-users. Given the use
of a real-world workload trend and the RUBiS benchmark, we consider that
our experiments have given good enough indication and approximation of likely
scenarios in a practical setting.

• The fact that the proposed work is evaluated by its author presents a threat
to objectivity. Yet, the evaluation case has served as an illustration for the
potential value of this research. This could be further evaluated in industrial
contexts by independent practitioners without bias

9.3 Future Directions

There are many possible directions in which the work of this thesis could be further
developed. These fall into a number of distinct areas, as follows.

• Stability Modelling. As seen in Chapter 5, stability modelling was based on
Bayesian networks. It would be beneficial if online learning techniques are em-
ployed to update prior knowledge and obtain posterior stability probabilities. We
are also interested in modelling temporal (dynamic) relationships among stability
attributes, i.e. representing how the value of an attribute may be related to its
value and the values of other attributes at previous points in time. In the same
vein, learning the structure of parameters when building stability Bayesian network
would advance our methodological analysis.

• Reasoning about Stability. Our reasoning about stability could be augmented with
other computational intelligence techniques to support self-awareness capabilities
and engineer stability-aware adaptations. A number of directions could be investi-
gated:

– Different online learning techniques could be investigated to compare their
efficiency in given scenarios.

– Our development of trade-offs management could be further extended by defin-
ing heterogeneous properties to consider real-world scenarios of PMs and VMs
with different capacities.

– Another possible improvement for reasoning about stability using self-awareness
is switching between different self-awareness techniques during runtime. This
would achieve better results by using the technique with the highest benefit in
each given scenario.

174

– It would also be interesting to extend the proposed work for interaction-
awareness in relevant environments, such as cloud federations and geo-distributed
clouds. Interaction-awareness techniques would support the stability of multi-
ple cloud nodes when interacting with each other.

• Stability evaluation. It would be beneficial to extend the approach for evaluating
architectural stability (proposed in Chapter 8) to reconcile different views in order
to get a comprehensive evaluation of architectures. As the proposed approach could
be considered as a guide for architectural stability evaluation, it could be further
extended by the 4+1 View Model [325] [518].

• Domain-specific extensions. The proposed work could be further extended in a
domain-specific way. Possible extensions include:

– This work could be further tailored to be aligned for certain types of archi-
tectures, such as enterprise architectures and System-of-Systems architectures.
The type and complexity of the architecture would reveal new results when
analysing architectural stability.

– This research, which is concerned with software architectures, could be taken
further towards alignment of software architectures with the deployment do-
main (such as grid, volunteer, mobile computing), where other factors could
affect stability.

• Practical setting. The practicality of this work could be investigated in an industrial
setting. Potential future work is:

– The state-of-the-art survey on stability in software engineering (presented in
Chapter 2) would be complemented with a review in an industrial setting to
cover related state-of-practice. An industrial survey would be beneficial to
provide an overview of the industry needs for researching about stability and
developing techniques that will better match the demands from industry.

– The practical verification of our work is another potential. For characterising
the notion of stability, it would be interesting to investigate the maturity of
our taxonomy, characterisation and working definitions of stability (proposed
in Chapter 3). From our point of view, a working workshop for researchers,
practitioners and educators would help in advancing this matter and creating
a widely-adopted set of concepts in the software engineering community. Our
stability analysis methodology (Chapter 4), proposed reference architecture
(Chapter 6) and stability evaluation approach (Chapter 8) could also benefit
from verification by other researchers and academics, as well as practitioners
in industrial settings.

– We also plan to practically validate the proposed work by implementing its
elements for cloud infrastructure-as-a-service (IaaS) management software sys-
tems, such as OpenStack [519].

• Evaluation and Application. On the evaluation side, different case studies and
applications could give extra insights for considering stability. For instance:

175

– Conducting experimental evaluation using other benchmarks would be useful
in finding possible strengths and weaknesses of the proposed work. Exam-
ple include the Wikipedia workload [520], workload of e-commerce sites [521],
static Web sites [522], content delivery websites [523] and multimedia delivery
systems [524] [525]. While being another realistic workload, such benchmarks
would stress the architecture by different functionalities, requests types and
fluctuations.

– We would also like to exploit other evaluation case studies in different re-
search domains, such as scientific computing [526]. In this domain, Scien-
tific Workflows have been widely used by the scientific community to model
large-scale scientific problems in areas, such as bioinformatics, astronomy, and
physics, where they are used to analyse and process large amounts of data
efficiently [526] [527]. As workflows are commonly interconnected via data
or computing dependencies, they require a distributed platform in order to
be executed in a reasonable amount of time, and they are often data- and
resource-intensive applications [527]. Their processing is mainly related to the
orchestration of the tasks on the distributed computing resources and is guided
by a collection of QoS requirements defined by the application users (such as
total execution time) or meeting a specified budget or deadline. Evidently, this
case has different stability dimensions and attributes.

9.4 Closing Remarks

In conclusion, this thesis has contributed to characterising and engineering the notion of
architectural behavioural stability. The thesis has introduced a new multi-dimensional
way for engineering stability as a long-term software property. Focusing on the archi-
tectural level, we proposed novel techniques and extensions for analysing, modelling,
engineering and evaluating runtime stability. The proposed work would assist architects
and practitioners in explicitly addressing stability as a software property. The conducted
experiments have shown evidence on the effectiveness of the proposed work in dealing
with runtime dynamics and uncertainty on the long-run. The findings of this thesis can
provide a better understanding of stability property and the requirements for engineering
long-living software systems.

To this end, the thesis provides systematic support for characterising and reasoning
about the stability of software architectures during runtime under uncertainty. The ben-
efits of this research are: (i) continuously meeting behavioural requirements, (ii) assisting
in software adaptation under uncertainty, (iii) engineering for long-lived architectures, and
(iv) minimising ramifications of architectural erosion. Particularly, the runtime yield is
enhancing the adaptation process, by informing it during runtime for the choice of adap-
tation strategies that keep the architecture stable in the long-term, while the long-term
yield is having long-lived software, which keeps the intended behaviour.

176

Appendix A

Survey on Stability in Software
Engineering: Review Protocol and

Analysis Results

In this appendix, we present the research method and systematic process we followed in
conducting the review (depicted in Figure A.1).

The procedure of this study followed the guidelines for conducting systematic literature
reviews [92] [93]. In more details, the following steps were undertaken: (1) defining the
research questions, (2) defining the search strategy, (3) executing the search, (4) selecting
primary studies, (5) extracting data and analysing results, and (6) reporting the review.
Details of each step are presented in the following sections.

A.1 Definition of Research Questions

The overall objective is to identify the current state-of-the-art related to stability as a
software property, with a special focus on architectural stability. This review focuses on
addressing the following questions: (i) how stability could be defined and characterised as
a software property? what is the current state of research on software stability? and (iii)
which engineering practices have been developed by the research community for realising
and evaluating architectural stability?

In the first question, we identify the definitions of stability proposed in the literature,
with the goal of getting a sound definition and characterisation of this quality property.
The second question provides information on the current state of research on software
stability. By studying and categorising related studies, we can identify research gaps
and potential directions with respect to software stability. In the third question, we aim
to get better insight into the current engineering practices supporting and evaluating
architectural stability, to help us to determine how they can fit new software paradigms
and their dynamics.

177

Figure A.1: Review Protocol

A.2 Search Strategy

A.2.1 Data sources

We conducted the search process using the automated search in the following digital
libraries and indexing systems: ACM Digital Library, IEEE Xplore, ScienceDirect, and
SpringerLink (details in Table A.1). These are considered as the largest and most complete
scientific databases for conducting literature reviews [93] [514] and most relevant electronic
databases to computer science and software engineering [515]. The selected trustworthy
search sources have a direct impact on the quality of conferences and journals when
retrieving the search results.

178

Table A.1: Search Data Sources

Database Location

ACM Digital Library http://dl.acm.org/
IEEE Xplore http://ieeexplore.ieee.org/
ScienceDirect (Elsevier) http://www.sciencedirect.com/
SpringerLink http://link.springer.com/

A.2.2 Search String

The aim of the search string is to capture all results related to stability in software
engineering. In order to check the feasibility of the search string and adjust it accordingly,
we performed trial searchers in each database checking the number of returned papers and
their relevance.

In the course of the search, we used a simple search string that places fewer restrictions
with the aim to capture all results related to stability. The general search terms used
in all databases are: (stability OR stable) AND (software). The first two
terms capture the different ways stability could be used. The third term makes it explicit
for software. The keywords system(s) returned a huge number of results related to
computing systems, hardware, robots and networks. Other combined keywords, such as
software engineering and software systems led to a vast wide set of irrelevant results.

A.2.3 Cross-References Check

Furthermore, in order to ensure a more comprehensive set of primary studies, we used
the snowballing technique –following the guidelines of [94] —to complement the search
process, i.e. checking the references of the selected primary studies to find potentially rel-
evant studies. When other quality attributes and engineering practices related to stability
(e.g. resilience, robustness) were found in the selected primary studies, we have conducted
separate searches to find how these concepts are defined and related to stability (reported
in sections 2.6.2 and 2.6.3).

A.3 Search Execution

We used the search strings in the automated search engines of the data sources, searching
by meta-data (i.e. title, abstract and keywords). For each data source, we conducted two
rounds of search, one using the keyword stability and the other using the keyword
stable.

The search was executed during October 2017 by the main researcher according to
the search strategy under the supervision of the other researchers. In practice, particular
settings were built for each search engine (details in Table A.2), since each digital library
works in a specific manner. This was attempted to minimise duplications and rejections

179

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://link.springer.com/

by setting the appropriate options in each search engine. Particularly, filters were applied
–when available –for setting the search engine to retrieve only studies published by its
own engine or to retrieve documents in English language only. Minimising results by
excluding irrelevant disciplines was also used, whenever available.

Table A.2: Search Execution (search strings and settings)

Database Search query and settings

ACM Digital
Library

(+stability +software)
Publisher: ACM
Content Formats: PDF

(+stable +software)
Publisher: ACM
Content Formats: PDF

IEEE Xplore stability AND software in Metadata only
Publisher: IET, IEEE
Content Type: Conference Publications, Journals & Magazines, Books & eBooks
Publication Title: International Conference on Computational Intelligence and
Software Engineering (CiSE) 2009, International Conference on Computer
Science and Software Engineering 2008, IEEE Transactions on Software
Engineering, IEEE Software, IEEE Transactions on Computers, Eighth ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD) 2007, IEEE
International Conference on Information Reuse and Integration (IRI) 2007,
International Conference on Computer Application and System Modeling
(ICCASM) 2010, IEEE Transactions on Industry Applications,

stable AND software in Metadata only
Publisher: IET, IEEE
Content Type: Conference Publications, Journals & Magazines, Books & eBooks
Publication Title: IEEE Transactions on Software Engineering, International
Conference on Computer Science and Software Engineering 2008, International
Conference on Computational Intelligence and Software Engineering (CiSE)
2009, Eighth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD) 2007,
Computer, IEEE Transactions on Computers, IEEE Transactions on Parallel
and Distributed Systems, IEEE Software, IEEE Transactions on Reliability,
IEEE Transactions on Knowledge and Data Engineering,

ScienceDirect TITLE-ABSTR-KEY(stability) and TITLE-ABSTR-KEY(software)
[All Sources(Computer Science)]

TITLE-ABSTR-KEY(stable) and TITLE-ABSTR-KEY(software)
[All Sources(Computer Science)]

SpringerLink with all of the words: software
where the title contains: stability
within Discipline: Computer Science
Subdiscipline: Software Engineering

with all of the words: software
where the title contains: stable
within Discipline: Computer Science
Subdiscipline: Software Engineering

During the course of the search execution, we used a spreadsheet to keep track of the

180

search execution process. This spreadsheet contains:

• Data source –the name of the data source;

• URL –the URL of the data source;

• Search query and filters –the query string as entered to the search engine and filters
used to refine the search results (e.g. language, discipline);

• Search results –the total number of search results retrieved;

• Search results file –the bibliography files exported of the search results

As a result of this step, we obtained a total of 2418 papers (details in Table A.3).
Search results were extracted as bibliography in BibTeX format, having a final collection
of bibliographies for each data source. We, then, used JabRef [528], an open source
reference manager system that is able to manage BibTeX databases, to merge the search
results files into one bibliography file after detecting and removing duplicates.

Table A.3: Search Results

Database Search results

ACM Digital Library 1222
IEEE Xplore 342
ScienceDirect 668
SpringerLink 186

Total 2418

A.4 Selection of Primary Studies

During the screening of the search results, we closely examined the title, abstract, intro-
duction and conclusion for each candidate paper to determine the relevance of the paper.
In some cases when these do not provide enough information to decide the relevance of the
paper, we read the whole paper. When similar studies are reported in several papers as
work-in-progress, the most comprehensive version is considered, unless significant details
were reported in the earlier version.

The selection was performed with respect to the inclusion and exclusion criteria defined
in Table A.4. The references to the selected primary studies were checked to find possible
missed relevant studies, where these papers are, then, taken through the same process of
primary studies selection. A total of 166 papers have been selected as primary studies
after the study selection and cross-referencing steps.

181

Table A.4: Selection Criteria of Primary Studies

Inclusion Criteria

I1. Papers published in conferences and journals, as full research paper, short and
position paper presenting new and emerging ideas, as well as doctoral
symposiums

I2. Literatures published as books and book chapters
I3. Papers including definitions of stability in software engineering
I4. Papers discussing general or particular aspects of software stability
I4. Papers defining and characterising other quality attributes related to stability
I5. Papers implementing or extending software engineering practices for stability
I6. Papers discussing aspects influencing stability

Exclusion Criteria

E1. Papers not in the form of a full research paper, i.e. in the form of abstract,
tutorials, presentation, or essay.

E2. Papers with abstract not available
E3. Papers not written in English language
E4. Papers focusing on stability in other computer science areas (e.g. operating

systems, robotics, networks, hardware, algorithms, logic programming,
computational logic)

E5. Papers focusing on stability in other disciplines (e.g. control theory or
dynamic systems)

E6. Papers focusing on stability of software product lines, project management or
development process

A.5 Data Extraction

For each selected primary study, the whole paper was read to extract the relevant informa-
tion answering the research questions. The data extraction and analysis were motivated by
finding information for defining stability, describing different aspects of stability, related
software engineering practices, and contextual aspects affecting stability. For each study,
data items were extracted and recorded in a spreadsheet. Stability data extracted from
the primary studies according to the taxonomy dimensions is shown in Table A.5, A.6,
A.7, A.8 for the different levels (code, requirements, design, architecture respectively).
A study may appear in multiple tables if it considers stability at more than one level,
with the exception of the ISO/IEC 9126-1 standard [116] and the IEEE Recommended
Practice on Software Reliability [147], which are not listed in any table.

Within the tables in this appendix, we used the following abbreviations: St = struc-
tural; L = logical; F = functional; Sy = syntactic; B = behavioural; DevPh = Develop-
ment phase; OpPh = Operation phase; M&EvPh = Maintenance and Evolution phase;
Op = Operational; Mnt = Maintenance; Ev = Evolutionary; Re = Reuse; Retro =
Retrospective; Pro = Prospective; H = Human-involved; Auto = Automated; Auton
= Autonomous.

182

Table A.5: Characterisation of Stability in Primary Studies at the Code Level

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[111] x x x x x x x
[112] x x x x x x
[113] x x x x x x
[183] x x x x x x
[200] x x x x x
[184] x x x x x x
[186] x x x x x x
[128] x x x x x x
[210] x x x x x x
[206] x x x x x x
[201] x x x x x
[132] x x x x x
[207] x x x x x x
[185] x x x x x x
[190] x x x x x
[189] x x x x
[135] x x x x x
[136] x x x x x x
[211] x x x x x
[16] x x x x
[137] x x x x
[192] x x x x x
[204] x x x x x x
[191] x x x x x
[208] x x x x x
[187] x x x x
[209] x x x x x
[194] x x x x x
[195] x x x x x
[138] x x x x x
[193] x x x x x
[205] x x x x x

183

Table A.5 (cont.)

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[197] x x x x x
[212] x x x x x
[199] x x x x x
[188] x x x x
[149] x x x x x x
[202] x x x x x x
[203] x x x x x x
[198] x x x x x
[299] x x x x x x
[196] x x x x x

184

Table A.6: Characterisation of Stability in Primary Studies at the Requirements Level

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[217] x
[218] x x x x
[115]
[222] x x x x x x
[223] x x x x x x
[226] x x x x x
[227] x x x x x
[224] x x x x x
[219] x x x
[163] x x x x
[228] x x x x x
[225] x x x x x

185

Table A.7: Characterisation of Stability in Primary Studies at the Design Level

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[114] x x x x x
[282] x x
[232] x x x x x x
[234] x x x x x x
[233] x x x x x x
[200] x x x x x
[235] x x x x x x
[247] x x x x x x
[248] x x x x x x
[249] x x x x x x
[253] x x x x x x
[118] x x x x
[259] x x x x x x
[258] x x x x x x
[9] x x x x x x
[252] x x x x x x
[287] x x x x x x
[126] x x x x x
[262] x x x x x x
[119] x x x x
[269] x x x x x x
[268] x x x x x x
[127] x x x x x
[263] x x x x x x
[271] x x x x x x
[270] x x x x x x
[284] x x x x
[237] x x x x x
[129] x x x x x
[264] x x x x x x
[266] x x x x x x
[272] x x x x x x

186

Table A.7 (cont.)

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[273] x x x x x x
[236] x x x x x x
[244] x x x
[130] x x x x x
[239] x x x x x
[70] x x x x x
[251] x x x x x x x
[260] x x x x x x
[261] x x x x x x
[131] x x x x
[289] x x x x x x
[285] x x x x x
[254] x x x x x x
[243] x x x x
[242] x x
[255] x x x x x
[275] x x x x x
[230] x x x x
[276] x x x x x
[278] x x x x x
[274] x x x x x
[265] x x x x x x
[238] x x x x x
[241] x x x x x
[240] x x x x x
[288] x x x x x x
[286] x x x x x x
[229] x x x x x
[277] x x x x x
[245] x x x x x
[256] x x x x x
[139] x x x
[231] x x x x x x

187

Table A.7 (cont.)

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[181] x x x x x x
[14] x x x x x x
[291] x x x x x x
[140] x x x
[283] x x x x x
[290] x x x x x
[292] x x x x x x
[246] x x x
[281] x x x x x
[257] x x x x x x
[267] x x x x x x
[299] x x x x x x

188

Table A.8: Characterisation of Stability in Primary Studies at the Acrchitecture Level

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[66] x x x
[117] x x x x x
[120] x x x x x
[121] x x x x x
[122] x x x x x
[123] x x x x x
[19] x x x x x
[307] x x x x x
[124] x x x x
[125] x x x x x
[293] x x x x x
[133] x x x x
[39] x x x x x
[296] x x x x x
[306] x x x x x
[312] x x x x
[297] x x x x x
[134] x x x x
[303] x x x x
[11] x x x x x
[241] x x x x x
[308] x x x x x x
[301] x x x x x
[25] x x x
[305] x x x x x
[159] x x
[294] x x x x x x
[152] x x x
[310] x x x x x
[311] x x x x x
[302] x
[309] x x x x x

189

Table A.8 (cont.)

Ref.
What When Why How Who

St L F Sy B DevPh OpPh M&EvPh Op Mnt Ev Re Retro Pro H Auto Auton

[298] x x x x x
[179] x x x x x x
[295] x x x x x x
[300] x x x x x x
[299] x x x x x x

190

A.6 Data Synthesis and Analysis

Data synthesis involved collating and summarising data extracted from primary studies.
In this stage, we further analysed the results and extracted statistics. For the data
synthesis, the extracted data was inspected for similarities, in order to define how results
could be encapsulated. Our approach for synthesising findings is based on the synthesis
method “thematic analysis/synthesis” [529], where we identified themes derived from data
extracted from primary studies and targeted to answer the research questions.

The analysis of extracted information aims at investigating the notion of stability, its
characteristics, and how software engineering practices can contribute to achieving it. We
also performed quantitative analysis on the results (reported in section A.7).

A.7 Analysis Results of Primary Studies

In this section, we present analysis results of the primary studies.

A.7.1 Demographic Analysis

Figure A.2 shows the distribution of the selected primary studies over time. It is noted
that the interest in stability as a software property started back to 1977, with a few
number of studies throughout the next two decades. The hype has remarkably started to
increase since 1998. As the search was performed during September 2017, this interprets
the decrease in the number of studies in 2017. The studies focusing on architectural
stability fall almost under the same distribution.

Figure A.2: Number of Studies per Publication Year

The distribution of the type of publications (Figure A.3) is: 97 conference papers,
48 journal articles, 18 book chapters, and 3 technical reports (ISO and IEEE standard
documents). The good percentage of journal articles and book chapters relatively indicates
the maturity of the subject.

191

Figure A.3: Number of Studies per Publication Type

A.7.2 Quantitative Analysis

In the following analysis, we put a study under the N/A category when we found that no
information is given in that study with respect to a certain dimension.

Level (Where). Figure A.4 shows the distribution of studies considering stability
at the different levels. The results show that a significant number of studies for the
design level (77 studies), followed by a less significant number for the code (42 studies)
and architecture (37 studies) levels. The requirements level is ignored to a big extent
compared to the other levels (12 studies).

Figure A.4: Distribution of Primary Studies per Level

192

Aspect (What). Analysing the different aspects of stability found in the studies,
Figure A.5 shows this distribution. The majority of the studies covered the structural,
logical and syntactic aspects (91, 81 and 38 studies respectively). The behavioural and
functional aspects of stability received much less attention (30 and 14 studies respectively).

Figure A.5: Distribution of Primary Studies per Stability Aspect

Purpose (Why). The distribution of studies considering stability for different pur-
poses is shown in Figure A.6. We found that 61, 42 and 37 studies were concerned about
stability for evolutionary maintenance and reuse purposes respectively. The operational
purpose was not extensively considered as the other purposes (21 studies).

Figure A.6: Distribution of Primary Studies per Purpose

Time of consideration (When). Analysing the time dimension, Figure A.7 shows
the distribution of studies according to the time where stability has been considered in
the studies. This shows that 36% of the studies were concerned about stability during the

193

development phase, and 38% during maintenance and evolution, whereas the operation
phase received much less attention (10%).

Figure A.7: Distribution of Primary Studies per Time of Consideration

Technique (How). The distribution of techniques by their temporal characteristics
found in the studies is shown in Figure A.8. The results show a significant number of
prospective techniques (49%) in comparison with retrospective ones (26%), with a similar
percentage of studies not proposing techniques (i.e. standard documents, philosophical
papers describing the concept). The percentage of prospective technique could be inter-
preted as studies discussing design techniques and design patterns fall under this category.

Figure A.8: Distribution of Primary Studies per Technique

Responsibility (Who). Figure A.9 shows the distribution of studies for stability
related to the who dimension. For most of the studies (113 studies, 65%), the proposed
techniques are human-based, i.e. the analysis or evaluation for stability is performed

194

manually or using human judgement. The next largest sets are automated (20 studies,
12%) and autonomous approaches (15 studies, 9%).

Figure A.9: Distribution of Primary Studies per Responsibility

195

Appendix B

Systematic Literature Review on
Self-Awareness in Software Engineering:

Summary of Findings

In this appendix, we present the summary of findings —related to stability engineering—of
the systematic literature review on self-awareness in software engineering. The aim of this
systematic review is to investigate how current research has adopted computational self-
awareness to enrich the self-adaptation capabilities of autonomous software systems.

B.1 Summary of the Study

The contribution of this work is a Systematic Literature Review that compiles the studies
related to the adoption of self-awareness in software engineering. The aim is to investigate
the adoption of computational self-awareness concepts in autonomic software systems and
explore how self-awareness is engineered and incorporated in software systems.

To this end, we conducted a systemic literature review following the guidelines for
conducting systematic literature reviews [92]. From 591 studies found in search results,
70 studies have been selected as primary studies. We have analysed the studies from
multiple perspectives, including: (i) motivations for employing self-awareness in software
engineering, (ii) sources of inspiration in engineering self-awareness, (iii) approaches for en-
gineering self-awareness, (iv) evaluation of self-awareness, and (v) the software paradigms
that employed self-awareness. The findings of the review are summarised in Figure B.1.

B.2 Motivation for Employing Self-Awareness

The general motivation that has directed researchers towards self-awareness is the com-
plexity, heterogeneity, large size of modern software systems, evolving functionality and
quality requirements during run-time, emergent behaviours, and unpredictable changes
of the highly dynamic operating environment [383] [530] [2] [531] [532].

More specifically, the motivation of employing self-awareness in software systems var-
ied between a general one related to realising better autonomy for software systems, and

196

Figure B.1: Summary of Findings

others that are more specific. With respect to the former, researchers considered self-
awareness for: (i) reasoning and engineering better adaptations with guaranteed func-
tionalities and quality of service during runtime [533] [534] [464] [535] [383] [536] [537]
[538] [539] [530] [532] [540] [541], (ii) managing complex systems without human inter-
vention [542] [543] [414], (iii) dealing with real-world situations, operational contexts and
dynamic environments of modern software systems to respond to such fluctuating environ-
ment and associated uncertainty [544] [383] [545] [546] [531] [532] [547] [548] [549] [550],
(iv) managing complex trade-offs arising from adaptation due to conflicting goals [551]
and the heterogeneity of the system [2] [552], and (v) realising intelligent software systems
with sophisticated abilities [553] [464] [554] [555] [556].

Specific motivations (summarised in Table B.1) varied between domain-specific ac-
cording to the software paradigm (e.g. ubiquitous applications, pervasive services, cloud-
based services, mobile computing) and others driven by software engineering practices
(e.g. formal specification, performance management, data access, security).

B.3 Sources of Inspiration

Few studies have clearly identified their source of inspiration in engineering self-awareness.
Generally, nature and sciences inspired by nature are the main sources of inspiration in
all studies. Examples of nature’s inspiration include: biological systems [533] [553] [464],
natural ecosystems [571] [559] [560] and human beings [533] [566] [554]. Sciences inspiring
self-awareness are control theory [573], biology [464], psychology [460] [383] [2] [3] [548]
[550], and cognitive science [464]. Table B.2 summarises inspirations cited in primary
studies.

Within the studies mentioning their source of inspiration, we have found that the
majority of studies named only their source of inspiration. More details, albeit in an
abstract form, on about how self-awareness approaches are inspired by nature or sciences
are found in a few number of studies; such as [533] [553] [554] [460] [383] [560]. The
exception that could be found is [464], where the authors have explicitly mentioned how

197

Table B.1: Specific Motivations of using Self-Awareness

Study Motivation

Driven by Software Paradigm
[557] Autonomous adaptations of hardware/software functionalities in ubiquitous

computing applications to meet the dynamic requirements of various
environmental situations and provide better QoS

[558] Creating cloud markets platforms with self-* properties harmoniously working
together in order to be capable to adapt effectively to dynamic changes in user
requirements, services, and variability in resources.

[559] Modelling integrated pervasive services and their execution environments, in a
way that diverse issues of context-awareness, dependability, openness, flexible
and robust evolution, can be addressed

[560] The need for runtime self-adaptive interactions between pervasive computing
services

[561] Achieving parallelism within a reasonable cost and time range for data
streaming applications operating in distributed environments

[562] Acceleration and efficiency of biocollections’ information extraction, while
keeping the quality of the results similar to what capable humans can provide

[552] The limitations of the security measures on mobile devices, and the lack of
cooperation between different security solutions running on the same device

Driven by Engineering Practices
[563] The motivation of including the notion of self within object-oriented formal

specification languages is to facilitate reasoning about object interaction.
[564] The detection anomalies in the functioning of internet-based services and fault

localisation (i.e., locating the responsible sub-services) are easier if service
elements are aware of their own health status, determined by whether the
current observed behaviour is consistent with expectations.

[565] The need to access distributed and dynamic high-dimensional data about
resources heterogeneity in a timely fashion in large, decentralised,
resource-sharing environments

[566] The invention of new abstractions as conceptualisation necessary to determine
the behaviour of a software needed by users and the implementation details.

[567] Enabling change at run-time for evolution purposes
[568],

[569], [570]
The need to predict the performance of running services at run-time and related
resources management

[571] Balancing resources usage in order to improve performance, utilisation,
reliability and programmability

[531] Solving problems caused by QoS interference in shared resources environment
to achieve auto-scaling for cloud-based services

[548], [550] Dynamic context management
[572] The complexity of managing end-to-end application performance
[549] performance prediction that is necessary for efficient resource management
[556] The need to re-arrange own knowledge structures for compactness and

efficiency to survive for long periods in a demanding environment
[552] The limitations of the security measures on mobile devices, and the lack of

cooperation between different security solutions running on the same device

self-awareness have been inspired by biology and cognitive science. The mapping between
the source of inspiration and the research work conducted in the study is expected to be
clearly communicated. Further, studies investigating how self-awareness could be inspired
by nature and other sciences can help to advance self-aware software systems.

198

Table B.2: Source of Inspiration in Engineering Self-Awareness

Study Inspiration

By Nature
[533] Biological cell and the system of a human organisation

(e.g. a company or government department)
[553] Biological systems: the immune system and ant colonies
[566] Human beings
[571] Biological organic nature
[554] Human wisdom
[559], [560] Natural ecosystems

By Sciences
[573] Control Theory
[464] Biology and cognitive science
[460], [2], [3] Psychology
[383] Psychology, philosophy and medicine
[548], [550] Psychology and philosophy

B.4 Approaches for Engineering Self-Awareness

Engineering self-awareness aims for encoding self-aware properties within the software
systems in an attempt to provide systematic treatment for managing the software sys-
tem state, knowledge and execution environment. This research question looks for the
approaches that have been used to engineer self-aware software systems and categorise
these approaches.

In the literature, different approaches to engineering self-awareness in software engi-
neering are found. On one hand, we have observed that 19 out of the 70 primary studies
did not provide any engineering approaches for self-awareness in software engineering.
These works have presented visions, outlined challenges, and raised questions. On the
other hand, the remaining 51 studies claimed to provide engineering approaches for self-
awareness. We have categorised these approaches into: model-driven, architecture-centric,
programming-driven, knowledge-centric, and development lifecycle-based approaches. Ta-
ble B.3 lists the engineering approaches categories and their related studies.

Table B.3: Engineering Approaches and Related Studies

Engineering Approach Studies

Model-driven [568], [558], [569], [535], [570], [532],
[540], [548], [574], [572], [562], [575],
[414], [576], [550], [556], [549]

Architecture-centric [564], [577], [544], [557], [571], [578],
[551], [545], [559], [383], [536], [543],
[546], [3], [538], [579], [2], [539], [560],
[531], [547], [580], [581], [582], [552]

Programming-driven [563], [561]
Knowledge-centric [565], [554], [555], [583], [530]
Development lifecycle-based [537]

199

Figure B.2 shows the distribution of studies with respect to the classification of en-
gineering approaches. Architecture-centric and model-driven approaches are found the
most dominant approaches in the current literature. Other categories of approaches have
taken less attention in the research community.

Figure B.2: Distribution of Studies by Self-Awareness Engineering Approaches

B.5 Evaluation of Self-Awareness

We observed that 28 papers out of the 39 (that proposed engineering approaches) have
provided some kind of evaluation for their approaches. We categorise these approaches
into the following categories: analysis-, illustrative example-, illustrative application-, and
simulation-based evaluation. Figure B.3 illustrates the distribution of studies by evalua-
tion approach categories. The majority of studies have evaluated their work using either
illustrative example or illustrative application. Simulation-based evaluation, featuring
scalability, is significantly less used. Table B.4 lists the evaluation approaches categories
and their related studies.

Table B.4: Evaluation Approaches and Related Studies

Evaluation Approach Studies

Analysis [563]
Illustrative example [577], [568], [571], [569], [545], [535],

[536], [530], [570], [2], [540], [532], [584]
Illustrative application [564], [557], [573], [551], [383], [543],

[546], [3], [539], [538], [560], [561], [572],
[576], [549], [550], [562], [575], [414], [585]

Simulation [558], [579], [547]

We also investigated the evaluation criteria that have been used in the mentioned
studies, and then we present how each of the approaches addressed them. Table B.5 lists
the evaluation criteria and the corresponding studies.

200

Figure B.3: Distribution of Studies by Self-Awareness Evaluation Approaches

Table B.5: Evaluation Criteria and Related Studies

Study Evaluation Criteria

[564] Accuracy
[573], [551], [543] Accuracy, Efficiency
[557] Processing time
[558] Number of bids, tasks, allocations, average price,

market revenue
[383] Reduction in communication
[579] Number of violations
[539] Power efficiency, execution time
[546] Power consumption
[538] Lookahead, latency, number of achieved goals
[3] Accuracy, adaptation quality, overhead, reliability
[560] Local resources consumption, time performance
[561] Performance per Watt
[572] Number of violations
[549] Prediction accuracy of response time
[550] Lines of code, complexity, technical debt
[562] Number of required humans, cost

With respect to the overhead resulting from adopting self-awareness in software sys-
tems, only 8 of the studies have reported the overhead of adopting self-awareness. All of
them considered overhead in terms of computation time. In more details:

• Authors in [571] reported that the proposed approach is low-overhead without pre-
senting experimentation results to demonstrate this claim.

• In [551] and [543], the authors reported that the overhead of the proposed approach
is very low and that the system can take adaptation decisions in 20.09 nanoseconds.
However, other overheads related to adopting self-awareness, e.g. the overhead of
monitoring, registering events and taking an action, have not been considered.

• [539] reported on the overhead related to the monitoring component of the approach.

201

The reported runtime overhead is within 1-2%, which the authors consider it to be
negligible compared to the normal system’s execution time.

• [560] reported the overhead of propagating the monitoring information across a
network and stated that the overhead is “acceptable” and limited. These approaches
consider only the overhead of the monitoring activity.

• [550] reported a slight increase in the execution time due to the time needed to
build contextual models and considered that increase as negligible.

• The study of [572] has provided a more profound analysis of the overhead. The
authors reported on the overhead of analysing the captured information and fore-
casting, as well as the overhead of the adaptation process. They reported that
both overheads depend on the data, configuration settings, the techniques used for
performance forecasting and the application specifications.

B.6 Software Paradigms Employing Self-Awareness

Table B.6 lists the software paradigms found in the primary studies and related studies.
Figure B.4 shows the distribution of studies by software paradigms (note that some stud-
ies appear multiple times under different categories, which interprets the total number
of studies appearing in the figure is greater than the number of primary studies). The
majority of studies considered self-awareness for autonomous computing (49%), i.e. en-
gineering self-adaptive software systems as a general software paradigm, not explicitly
designed for a particular paradigm or application type. Service-oriented systems and
cloud-based services also received attention in a good number of studies (15% each), and
less attention to ubiquitous and pervasive computing (9%) and distributed systems (7%).
Within distributed systems, some studies considered a certain type of applications operat-
ing in decentralised environments, such as artificial intelligence systems [553], distributed
smart cameras [383] [3]. Single works focused on software-intensive systems [555], stream
programming [561], mobile computing [552] and Internet of Things [585].

The observation that the majority of the proposed work tends to be generic and not
explicitly designed for a particular paradigm or application type implies that generality
can come with advantages and disadvantages. Generality can imply the application and
evaluation of the proposed work under different contexts and applications, reflection on
their strengths and weaknesses in dealing with the said paradigm. This can consequently
provide inputs for further improvements and extensions. On the other hand, employing
self-awareness can take simplistic assumptions, or tend to be limited when addressing
the requirements of some paradigms, where speciality and customisation are desirable
for more effective adaptations. Self-awareness that considers characteristics of particular
software paradigms will result in advancing these paradigms. Yet, the validity of these
observations can be subject to further empirical studies.

202

Table B.6: Software Paradigms employing Self-Awareness

Software Paradigms Studies

Self-adaptive Software Systems [577], [533], [534], [566], [567], [573],
[571], [551], [554], [535], [383], [536], [543],
[538], [539], [530], [532], [583], [574], [572],
[580], [575], [586], [587], [581], [582], [588],
[549], [584], [589], [590], [556], [591], [592]

Service-oriented Systems [564], [542], [568], [545], [546], [579],
[570], [540], [414], [550]

Cloud-based Services [569], [558], [578], [383], [2], [3], [531],
[547], [585]

Distributed Systems [565], [553], [383], [537], [3]
Ubiquitous and Pervasive Computing [544], [557], [464], [559], [560], [576]
Software-Intensive Systems [555]
Stream Programming [561]
Mobile Computing [552]
Internet of Things [585]

Figure B.4: Distribution of Studies by Software Paradigms

B.7 Summary

The main findings of this systematic review are summarised as follows. There is a grow-
ing attention to adopt self-awareness in modern software systems. Self-awareness has
been used to enable self-adaptation in systems that exhibit uncertain and dynamic be-
haviour during their operation. Motivations for employing self-awareness varied between
the general purpose of realising better autonomy for software systems and domain-specific
purposes. Self-awareness was considered for self-adaptive software systems as a general
software paradigm, with few studies focusing on a particular software paradigm or ap-
plication type. The approaches for engineering self-aware software systems can be cate-
gorised as model-driven, architecture-centric, programming-driven, knowledge-centric and
development lifecycle-based approaches. Yet, most of the approaches for engineering
self-awareness tend to be architectural in nature. Evaluating self-awareness engineer-
ing approaches and exclusive mapping with their sources of inspiration still need to be
addressed. Self-awareness was considered for self-adaptive software systems as a gen-

203

eral software paradigm, with few studies focusing on a particular software paradigm or
application type. The review reveals that self-awareness for software systems is still a for-
mative field and that there is a growing attention to incorporate self-awareness for better
reasoning about the adaptation decision in autonomic systems.

204

Appendix C

Systematic Mapping Study on Managing
Trade-offs in Self-Adaptive

Architectures: Summary of Findings

In this appendix, we present the findings of the systematic mapping study on manag-
ing trade-offs in self-adaptive architectures. The study aims at analysing the research
landscape that has explicitly addressed trade-offs management for self-adaptive software
architectures, to obtain a comprehensive overview of the current state of research on this
specialised area.

C.1 Summary of the Study

The contribution of this work is a Systematic Mapping Study analysing the research
landscape related to managing trade-offs of self-adaptive software architectures. The aim
was to draw a picture of the current state of the research in this specialised topic, to
help researchers and developers identify what has been established so far, to understand
which techniques have seen particular emphasis, as well as what is still under research
and warrant greater attention.

To this end, the study was conducted methodologically, following the standard guide-
lines for conducting secondary studies [515] [593] [594], in order to ensure the quality of
the analysis. The search was conducted in five main publications databases resulting in
462 studies that have been reviewed, and 20 relevant studies have been selected as pri-
mary studies for this study. The contributions of the studies that explicitly considered
trade-offs management for self-adaptive software architectures are summarised below:

• [595] employed analysis-oriented models to support analysing and reasoning about
non-functional system properties; precisely performance and reliability.

• [596] work resulted in optimised trade-offs between system design complexity, sys-
tem performance and power impact, by proposing on-line self-test features in a
multi-/many-core architecture.

• [597] attempted engineering resource-adaptive software systems targeted at small
mobile devices, by empowering users to control trade-offs among service-specific

205

aspects of quality of service and coordinating resource usage among several appli-
cations.

• [598] further developed their earlier research [597]by presenting a framework for en-
gineering resource-adaptive systems that empowers users to control trade-offs among
a set of quality aspects, and coordinates resource usage among several applications.

• [499] presented a paradigm of parallel computing for giving embedded systems
the ability to explore and claim resources in a certain neighbourhood, where the
trade-off between flexibility and cost is considered.

• [500] introduced a dynamic adaptation for service-based systems that minimise
the adaptation costs and guarantees the required quality of service, based on an
optimisation model.

• [471] presented a research agenda for self-adaptive systems towards being able to
dynamically adapt to new environmental uncertain contexts. This work called for
research into how self-adaptive systems envisage runtime trade-offs of requirements
that are present as the environment changes; i.e. how self-adaptive systems can have
runtime flexibility to temporarily ignore some requirements in favour of others.

• [599] studied trade-offs between safety and capability in the autonomic agent infras-
tructure of self-organising real-time systems. This work used off-line simulations to
tune the trade-off at deployment time – based on what is known or expected of the
environment – as well as to monitor and change those assumptions when necessary.

• [600] presented a model-driven framework targeted at dynamic settings for self-
architecting service-oriented systems in which requirements might change, taking
into consideration trade-offs that reflect stakeholders’ priorities.

• [601] proposed an adaptation process for service-based self-adaptive systems, which
guarantees a trade-off between energy consumption and quality of service offered
while maintaining suitable revenues for the service provider.

• [502] proposed a control-theoretic method for self-tuning software systems, com-
bining goal models with feedback controllers, to dynamically tune the preferences
of different quality requirements and make dynamic trade-off among conflicting soft
goals. That was achieved through preference-based goal reasoning procedure, in
order to find Pareto optimal configurations for the dynamic quality trade-off.

• [501] extended their previous work [601] by developing an adaptation framework for
service-based applications that can be used to reduce power consumption according
to the observed workload. This work aimed at guaranteeing a trade-off between
energy consumption and performance, using stochastic Petri nets for the modelling
where their analyses give results about the trade-offs.

• [503] proposed a quality-driven self-adaptation approach for designing architectures
of self-adaptive software systems, which incorporates design decisions as the bridge
between requirements- and architecture-level adaptations. This was based on mak-
ing value-based quality trade-off decisions with the aim of maximising system-level

206

value propositions and using a preference-driven goal reasoner to reconfigure the
runtime goal models based on the results of dynamic quality trade-off.

• [602] defined a model-based approach for design spaces representation and explo-
ration which entails a search-based mechanism that points out decision trade-offs
between feedback controls and performance overhead to find out a set of Pareto-
optimal candidate architectures for self-adaptive software systems.

• [603] proposed an approach for service selection in a pervasive environment, framed
as a quality of service optimisation problem. The approach evaluates at runtime
the services optimal binding as well as the trade-off between the remote execution
of software fragments and their dynamic deployment on local nodes of the compu-
tational environment.

• [604] reported the results of a controlled experiment that evaluates the design of
self-adaptive systems using a search-based approach, in contrast to the use of a
style-based non-automated approach, for finding out subtle effective designs and
providing well-informed means to reveal quality attributes trade-offs.

• [458] addressed trade-offs between the global benefit of the cloud and local opti-
misation of virtual machines from one side, and between the global benefit of the
cloud and overhead in the design for selecting an elastic strategy from another side,
in order to dynamically and efficiently determine an architectural elastic strategy
that produces globally-optimal benefit.

• [605] proposed an approach for analysing and evaluating trade-offs between the sys-
tem adaptability and other system quality attributes, like availability or cost. The
approach was based on a set of metrics that allows evaluating the system adaptabil-
ity at the architecture level to guide architecture decisions on system adaptation for
fulfilling system quality requirements.

• [606] proposed a reference architecture for context-aware adaptive systems, where
the heuristics and metrics of design architecture strategies are used to refine con-
ceptual architectures in trade-off analysis to deal with non-functional requirements.

• [607] reported the results of another controlled experiment, following their earlier
work [604]. This experiment evaluated the design of self-adaptive systems using
a search-based approach for explicitly eliciting design trade-offs, in contrast to a
non-automated approach based on architectural styles catalogues, with the goal
of investigating to which extent the adoption of search-based design approaches
impacts on the effectiveness and complexity of resulting architectures.

A comprehensive view about the research landscape is shown by the correlation matrix
in Table C.1, summarising the research conducted in the primary studies with respect to
the software paradigms, the quality attributes and the mechanisms for trade-offs manage-
ment.

207

Table C.1: Correlation of Software Paradigms, Quality Attributes and Mechanisms

Mechanism
Software Paradigm

self-adaptive embedded pervasive large-scale real-time
distributed

mobile cloud-based service-based

Utility theory [597] quality
attributes; [598]
flexibility, cost

[600] quality attributes

Stochastic Petri [605] quality
attributes,
adaptation cost

[601] safety, adaptation
cost; [501] performance,
energy consumption

Multi-objective
optimisation

[602] feedback
control loop,
cost; [604] quality
attributes, cost

[603]
flexibility,
cost

[596] per-
formance,
reliability

[602] feedback
control loop, cost

[500] quality attributes

Pareto-optimal
solutions

[502] quality soft
goals; [607] quality
attributes

Value-based
reasoning

[502] quality soft
goals; [503] quality
attributes

Analysis-oriented
method

[595] performance,
energy consumption,
design complexity

Invasive
algorithms

[499]
quality
attributes

Requirements
reflection

[471] quality
attributes,
adaptation cost

Simulations [599]
performance,
energy
consumption

Objective
functions

[458] quality
attributes

Heuristics [606] quality attributes

208

C.2 Quality Attributes investigated in Trade-offs Man-

agement

Analysing the details of research found in the literature, we have listed the quality at-
tributes investigated in trade-offs management. Figure C.1 illustrates the statistics of
these attributes among the primary studies. The major case of trade-offs management
considered quality attributes on a general level. Special attention was given to per-
formance and cost. Other attributes, such as adaptation cost, safety, reliability, were
considered in single research efforts.

Figure C.1: Distribution of Quality Attributes investigated in Trade-offs Management

In the case of considering specific attributes, Table C.2 summarises the related studies
and the attributes considered. Beside quality attributes, we have also considered feedback
loops in trade-offs management, for feedback loops become a crucial element of the over-
all architecture in engineering self-adaptive software systems. Feedback loops can carry
information about emerging or implied behaviour of the system and imply new trade-off
that needs to be managed. Considering multiple feedback loops, or multiple decisions
from a feedback loop, or internal and external feedback loops, more trade-offs will arise
and need to be managed.

Another observation is that the majority of the studies, considering specific attributes,
were concerned only with two attributes for trade-offs as examples in illustrating their
approaches. Examples include [595] considered performance and reliability only, [601] and
[501] considered performance and energy only. However, the formalism behind their trade-
offs management process might not be limited to treating only two quality attributes.

Considering multiple quality attributes in trade-offs management will result in select-
ing better adaptation action that is able to fulfil multiple qualities. With many efforts and
claims indicating the validity of this statement, we still need formal and rigorous investi-
gations. Empirical studies provide the means for this, but no controlled experiments have
been performed to provide that evidence. Afterwards, we call for more comprehensive
trade-offs management approaches that consider multiple specific quality attributes.

209

Table C.2: Studies Considering Specific Attributes in Trade-offs Management

Study Attributes

[595] performance, reliability
[596] design complexity, performance, power impact
[499] flexibility, cost
[500] adaptation cost, quality attributes
[599] safety, resources
[600] stakeholders’ priorities
[601] performance, energy
[501] energy consumption, performance
[602] feedback control loop, performance overhead
[603] flexibility, cost
[458] global QoS, cost

C.3 Mechanisms used in Trade-offs Management

The trade-offs mechanisms and their related studies are listed in Table C.3. Analysing
the extracted mechanisms, we identified that utility theory and multi-objective optimi-
sation appeared to be the most used techniques. Some efforts approached the use of
stochastic Petri nets, value-based reasoning and Pareto-optimality. We have identified
these mechanisms, listed as follows:

• Utility theory was used to model and quantify the quality of service trade-offs [597]
[598] [600] for engineering resource-adaptive software systems targeted at small mo-
bile devices in order to coordinate resource usage among several applications.

• Stochastic Petri nets were proposed for modelling trade-offs for service-based appli-
cations [601] [501] [605].

• Multi-objective optimisation was employed for optimising trade-offs between system
design complexity, system performance and power impact [596], for minimising the
adaptation costs while guaranteeing the quality of service [500], for pointing out
decision trade-offs between feedback controls and performance overhead [602] [604],
as well as for optimising service selection [603].

• Pareto-optimal solutions were also used to point out trade-offs decision using a
search-based mechanism [607], and to find optimal configurations for the dynamic
quality trade-off for self-tuning [502]

• Value-based reasoning was used to make design decisions that bridge between requirements-
and architecture-level adaptations [503] and to dynamically make trade-off among
quality requirements [502].

210

Table C.3: Trade-offs mechanisms and related studies

Mechanism Related Studies

Utility theory [597], [598], [600]
Stochastic Petri [601], [501], [605]
Multi-objective optimisation [596], [500], [602], [603], [604]
Pareto-optimal solutions [502], [607]
Value-based reasoning [502], [503]
Analysis-oriented method [595]
Invasive algorithms [499]
Requirements reflection [471]
Simulations [599]
Objective functions [458]
Heuristics [606]

C.4 Time Dimension of Trade-offs Management Ap-

proaches

Analysing the time dimension of these mechanisms (see Figure C.2), i.e. when these
mechanisms tend to operate; we found 50% of the mechanisms were design-time mech-
anisms, approximately equals to 45% runtime ones and 5% off-line. Design-time and
runtime mechanisms studied and analysed above are meant to be either design deci-
sions or runtime adaptation decisions respectively. For both types of decisions, linkage
of architectures with requirements is expected to enrich and better-inform the trade-offs
decisions. More precisely, design-time trade-offs management requires linkage with re-
quirements elucidated while designing the system, and runtime trade-offs management
requires runtime monitoring of requirements changes. Such linkage should, then, employ
requirements reflection, as proposed in [471].

Figure C.2: Distribution of Time Dimension of Trade-offs Management Mechanisms

211

C.5 Summary

The study contributes to the understanding of the state of the research in this area and
paves the way for solutions from both academia and industry. The results show a constant
interest in finding solutions for trade-offs management at design-time and runtime, as well
as the success of research initiatives even when new research challenges are found. Yet,
the findings call for a foundational framework to analyse and manage trade-offs for self-
adaptive software architectures, both while designing self-adaptive systems and at runtime
during their operation, that can explicitly consider specific multiple quality attributes,
the runtime dynamics, the uncertainty of the environment and the complex challenges of
modern and ultra-large-scale systems.

212

Appendix D

Symbiotic Simulation Environment for
Self-Adaptive and Self-Aware

Architectures

In this appendix, we present the modelling and simulation environments for self-adaptive
and self-aware cloud architectures, namely SAd-CloudSim and SAw-CloudSim. The pro-
posed toolkits build on the widely adopted cloud simulation environment CloudSim [36]
[5], due to its modular architecture that allows further extensions.

Organisation. The rest of this appendix is organised as follows. In section D.1, we
describe relevant background about CloudSim the cloud simulation toolkit on which we
build our simulation environment. Section D.2 presents the architecture of the proposed
framework. Section D.3 presents technical details about the design and implementation.
In section D.4, we experimentally validate and evaluate the performance and overhead of
the tool. In section D.5, we discuss work related to simulators of self-adaptive, self-aware
and cloud systems.

D.1 Background

The CloudSim simulation toolkit [5] [36] is currently one of the mostly-used general pur-
pose cloud simulation environments [608], and the most sophisticated discrete event sim-
ulator for clouds [609]. Due to its modular architecture, it has been widely adopted and
used in many further extensions modelling and simulating cloud-related problems.

Figure D.1 shows a cloud environment represented by the architecture of CloudSim.
CloudSim defines the core entities of a cloud environment, such as datacenters, hosts
physical machines (PMs), virtual machines (VMs), applications or user requests (called
cloudlets) [36] [5]. Datacenter is the resources provider, simulating the infrastructure of
the cloud, and hosts which run virtual machines responsible for processing user requests.
Computational capacities of PMs and VMs (CPU unit) are defined by Pe (Processing
Element) in terms of million instructions per second (MIPS) [36] [5]. Processing elements
in a PM are shared among VMs, and among requests in a VM. The Datacenter Broker

213

is responsible about the allocation of requests to VMs. Once the simulation period is
started, the requests are scheduled for execution, and the cloud behaviour is simulated.

Figure D.1: CloudSim Architecture [5]

D.2 SAd-/SAw-CloudSim Architecture

In this section, we outline the architecture of SAd/SAw-CloudSim, the extensions made
to CloudSim core framework and the rationale behind them. Figure D.2 and D.3 show
the multi-layered design of CloudSim with the architectural components of SAd-CloudSim
and SAw-CloudSim respectively (new components are shown in dark boxes).

Generally, the proposed environments are built on top of the CloudSim core simu-
lation engine and CloudSim core. Extensions for some core classes of CloudSim were
necessary for adaptation and awareness capabilities (more details in section D.3). The
Self-Adaptation layer is added on top of the cloud core architecture, to model the adap-
tation controller of a self-adaptive software system. Researchers and practitioners, willing
to design an adaptation technique or study the efficiency of an existing one, would need
to implement their techniques in this layer. The Self-Awareness layer combines the self-
awareness and self-expression capabilities, as well as necessary monitoring components.
The top-most layer is the Simulation Application, inherited from CloudSim, that models
the specification of the simulation to be conducted using the tool. Such specifications
allow configuring the simulation of dynamic workloads, different service types and user
requirements.

D.2.1 Modelling Self-Adaptation

A foundational self-adaptation controller consists of: (i) monitor for correlating quality
data, (ii) detector for analysing the data provided by the monitor and detecting violations
in order to trigger adaptation when necessary, (iii) adaptation engine to determine what

214

needs to be changed and select the optimal adaptation strategy, and (iv) adaptation execu-
tor responsible for applying the adaptation action on the underlying infrastructure. Our
initial implementation of SAd-CloudSim includes this foundational version of adaptation
controller. Such components could be further extended to study more complex adaptation
mechanisms, such as pro-active adaptations or MAPE-K adaptation process [21].

The Monitor component is responsible for monitoring the achievement of quality re-
quirements. The Detector checks any violations occurring during runtime against quality
goals. Whenever a violation is detected, adaptation is triggered. The Adaptation Engine
is responsible for analysing the current situation and selecting the optimal adaptation
strategy that would achieve the quality targets, e.g. increasing VMs capacity, increase
the number of PMs. The selected adaptation tactic is executed dynamically during run-
time on the cloud infrastructure by the Adaptation Executor.

Figure D.2: SAd-CloudSim Architecture

215

D.2.2 Modelling Self-Awareness

Modelling self-awareness capabilities in a cloud architecture requires the following compo-
nents: (i) QoS monitoring, (ii) different self-awareness capabilities as the system requires,
and (iii) self-expression capability to execute adaptations. The monitoring component is
composed of sensors responsible for measuring actual quality data, and the QoS moni-
tor responsible for correlating data from sensors and monitoring changes in workload and
quality attributes during runtime. The self-awareness component contains different aware-
ness capabilities enabled according to the system requirements. The stimulus-awareness
is the basic awareness capability responsible for triggering adaptations when a violation
is detected and selecting an adaptation tactic from the tactics catalogue. Other self-
awareness capabilities help in selecting the optimal tactic using their owned information.
For instance, time-awareness can provide historical information about the performance of
a tactic under similar conditions. The goal-awareness is capable to detect possible viola-
tions within a threshold. The meta-self-awareness decides on which awareness level the
architecture would operate. The selected tactic is executed by the Adaptation Executor of
the self-expression component. The Architecture Evaluator evaluates the new state after
executing the tactic, where such information is passed to the time-awareness component.

D.2.3 Modelling QoS Goals and Adaptation Tactics

Goals are the main objective or trigger for self-adaptation. QoS Goals represent the
quality of service targets required to be fulfilled. Whenever violated, an adaptation should
take place to achieve the quality goals. For each QoS Goal, a set of possible adaptation
tactics is implemented in the tactics catalogue. Also, adaptation rules are defined as if-
condition-then-action rules, where the conditions are quality requirements and the actions
are response tactics.

In SAd-CloudSim, the Goals Model combines these quality targets. For self-adaptive
architectures, goals are specified as static values for quality attributes required to be
fulfilled. These values are checked during runtime against the actual quality measured
data, and adaptations are triggered whenever a violation is detected.

Employing self-awareness capabilities requires a more sophisticated goals model, where
Runtime Goals can be dynamically settled at runtime or specified for different users. The
Runtime Goals Model keeps historical information about the satisfaction of goals and the
performance of adaptation tactics to be used for better informed decision when choosing
the optimal tactic and for future learning using the time-awareness capability.

D.3 Design and Implementation

In this section, we provide details related to the classes and implementation of SAd-
CloudSim and SAw-CloudSim.

216

Figure D.3: SAw-CloudSim Architecture

D.3.1 Extensions to CloudSim Core

We have extended some core classes of CloudSim by adding necessary quality and power
(energy) metrics, namely AdaptiveDatacenter, AwareDatacenter, AdvancedHost and Ad-
vancedVM. The DatacenterBroker —responsible for workload distribution and resources
provisioning —is also extended by queueing models necessary for adaptation and aware-
ness capabilities. A RuntimeWorkload is added to allow conducting experiments for con-
secutive time intervals, and user requirements are added to configure QoS requirements.

We use the Service Type class to model an SaaS service offered by the cloud provider.
A service type is configured by the computational resources it requires (MIPS). A Service
Request is used to model a request made by an end-user for a specific service type. This
allows modelling dynamic workloads by multiple end-users for a variety of services.

217

D.3.2 Self-Adaptation Simulation

The Self-Adaptation package encapsulates the components necessary for modelling and
simulating a self-adaptive architecture. Our initial implementation includes the basic
functionalities of these components. Figure D.4 depicts the flow of the simulation process
in case of self-adaptation. These components could be further extended with more so-
phisticated implementations, such as MAPE-K. This package is composed of the following
classes:

• Self-Adaptive Architecture class is the main class responsible for instantiating and
managing the adaptation components, i.e. monitor, detector, adaptation engine,
adaptation executor. Once instantiated, it loads the goals model from the user
configuration xml file. It is also responsible for keeping track of the adaptation
history and overhead for performance evaluation. This class is designed using the
singleton pattern.

• Goals Model class is the list of goals objects loaded from a configuration file. Each
Goal object contains the list of attributes, that are: goal id, name, constraint value,
metric (e.g. ms), objective (if the objective is to minimise or maximise the attribute),
weight, a boolean indicator whether it is violated. The constraint value is the
requirement to be achieved.

• Monitor class runs as a thread in the background. It contains methods sensing,
measuring and collecting actual data of the QoS parameters of the executed requests,
e.g response time, throughput, energy consumption. The monitor is configured with
the monitoring frequency to run and collect data. After cleaning the queue of the
previous monitoring cycle, the collected data is put in the queue to be sent to the
detector.

• Detector class contains a method triggered to run after receiving data from the
monitor. It checks the runtime values of the quality metrics against the Goals
Model. If a violation is detected, adaptation is triggered.

• Adaptation Engine class is responsible for selecting the optimal adaptation action
after receiving the adaptation trigger. The adaptation action is selected from the
Adaptation Tactics Catalogue according to the adaptation rules. Adaptations rules
list object is set in this class using xml configuration file that contains the quality at-
tributes, their associated tactics and their order of execution. The selection is based
on a simple rule-based algorithm and could be further extended with knowledge-
based models.

• Adaptation Tactics Catalogue class contains a list of adaptation tactics, loaded from
xml configuration file. Examples of tactics could be increasing VMs capacity, the
number of VMs or PMs for better response time and consolidating VMs for less
energy consumption. Each Adaptation Tactic object contains the attributes of a
tactic, that are: id, description, affected object (e.g., host, VM), change (increase or
decrease) and the minimum and maximum limits (e.g. minimum one running host
and maximum capacity of the datacenter).

218

• Adaptation Rule class links quality attributes with their adaptation tactics. It con-
tains the details of an adaptation rule, that are: id, description, quality attribute,
adaptation tactic and its priority in execution.

• Adaptation Executor class performs the actual execution of the selected adaptation
action on the relevant object, i.e. VM instances, list of VMs, list of PMs.

Figure D.4: Self-Adaptation Simulation Process

D.3.3 Self-Awareness Simulation

Figure D.5 depicts the flow of the simulation process in case of employing self-awareness
and self-expression capabilities. The Self-Awareness package encapsulates the components
necessary for modelling and simulating a self-aware and self-expressive architecture, as
follows.

• Self-aware Architecture class is the main class responsible for instantiating and
managing the main components, i.e. QoS Monitoring, Self-Awareness and Self-
Expression components. Once instantiated, it loads the runtime goals model from
the user configuration xml file. It is also responsible for keeping track of the adap-
tation history and overhead for performance evaluation. This class is designed using
the singleton pattern.

• Runtime Goals Model class contains the list of runtime goals objects loaded from
the configuration file. Each Runtime Goal object is inherited from the Goals Model
class and contains a new set of attributes: user id (to mark the runtime goals of
different users) and violation threshold (to reflect the threshold to take pro-active
adaptations). The Runtime Goal Model contains history records to keep track of the

219

goals fulfilment (i.e. time instance, average violation value, tactic executed, average
value after adaptation).

• QoS Monitoring component is composed of sensors for different quality require-
ments, QoS Monitor and Architecture Evaluator, as described below:

– Internal Sensor and External Sensor classes contain methods running in the
background for continuously sensing data about QoS parameters. The internal
sensors are for sensing the actual quality parameters in the self-aware node.
The external sensors are required for interaction-awareness for sensing data
from the other nodes with which the node is interacting.

– QoS Monitor class contains another background method is for correlating data
received from the sensors. Such data is sent to the self-awareness component
to take necessary actions. The basic version of the QoS Monitor constantly
sends data to the self-awareness component. More sensitive monitors can vary
the interval of data correlation according to sensed data.

– Architecture Evaluator class continuously evaluates the response after execut-
ing the adaptation action and feeds the different levels of awareness for further
actions if needed.

• Self-Awareness component encompasses the different levels of self-awareness. These
levels that could be enabled as per the relevance to the system requirements us-
ing a configuration file. Each self-awareness component is designed using the Self-
Awareness abstract class to implement the act method. Self-awareness components
are:

– Stimulus-awareness class embeds rules for selecting and composing optimal
adaptation actions or tactics, by defining “if-condition-then-action” rules where
the conditions are quality parameters subject of violation and actions are re-
sponse tactics. The adaptation is triggered when violations are detected.

– Goal-awareness class contains the act method operating as a “goal-oriented
adaptation engine” that uses knowledge about runtime goals to make decisions
about the tactic selection in line with the system’s goals. This version of the
adaptation engine is more sensitive towards violations and can take pro-active
actions before violations.

– Time-awareness class contains the adaptation trainer method that uses histor-
ical data about tactics responses under different runtime conditions to improve
the quality of adaptation. Implementing machine learning techniques is useful
for realising time-awareness.

– Interaction-awareness class contains the interaction-oriented adaptation engine
that should contribute to the selection of the tactic according to the runtime
environmental conditions of other nodes. This, currently implemented as an
abstract, could be implemented in cases of distributed clouds or cloud federa-
tions. 1

1currently beyond the scope of this work

220

– Meta-self-awareness class contains the adaptation manager method to reason
about the benefits and costs of maintaining a certain level of awareness (and
degree of complexity with which it exercises this level), as well as the benefits
and costs of selecting a tactic based on a certain level of awareness. This can
also dynamically select a particular adaptation out of a set of possibilities for
realising one or more levels, in order to manage trade-offs between different QoS
attributes. Trade-offs management algorithms could be implemented here. A
more sophisticated act method can adapt the way in which the level(s) of
self-awareness are realised, e.g. by changing algorithms realising the level(s),
thus changing the degree of complexity of realisation of the level(s).

• Self-expression component is responsible for the execution of the adaptation decision
made by the self-awareness component. It is composed of the Adaptation Executor
responsible for managing the process of adaptation execution during runtime. In
more details, it makes necessary instructions about the composition and instanti-
ation of the components required for the adaptation decision. As an example, in
the case of VMs consolidation, it decides which VMs should be consolidated, where
these VMs should be placed, which PMs should be switched off. Then, it performs
the actual instantiation of the tactic components during runtime, such as creating
new VMs or switching off PMs.

Figure D.5: Self-Awareness Simulation Process

221

D.4 Experimental Validation and Evaluation

This section aims to examine the capability of the proposed framework to instantiate dif-
ferent architectures of cloud nodes, validate the self-adaptation and self-awareness com-
ponents, and assess associated overhead. In the course of the validation process, we do
not contribute with new scheduling policies. We use current scheduling policies to test
the new simulation toolkits.

D.4.1 Experiments Setup

We instantiated the architectures of a self-adaptive and self-aware cloud nodes using
the proposed simulation environments. The architectures are configured to dynamically
perform architecture-based adaptation to achieve the following QoS challenging objectives:
(i) quality requirements, (ii) environmental restrictions, and (iii) economic constraints.
Table D.1 lists details of the QoS attributes. With respect to the quality requirements,
we consider performance (measured by response time from the time the user submits the
request until the cloud submits the response back to the user in milliseconds). For the
environmental aspect, we use the greenability property [157] [433] measured by energy
consumption in kWh. For the economic constraints, we define the operational cost by the
cost of computational resources (CPUs, memory, storage and bandwidth). The weights
are hypothetical for testing purpose.

Table D.1: Settings of QoS Attributes

Attribute Weight Metric Objective

Response time 0.50 ms 25
Energy
Consumption

0.20 kWh 25

Operational cost 0.20 $ 50

We defined the catalogue of architectural tactics (described in section 5.4.2.3) to fulfil
the quality attributes subject to consideration. Adaptation rules (listed in Table 5.3) are,
then, embedded in the adaptation engine and the stimulus-awareness component. We
embedded the tactics catalogue in the self-adaptive and self-aware architectures and the
relationships are made implicit within the interaction between different components.

The testbed configurations and benchmarks used are described in section 5.4.2.2 and
5.5.1.1 respectively. The initial deployment of the experiments is shown in Table D.2.
When running self-adaptive, stimulus-aware and goal-aware architectures, the initial de-
ployment is 10 hosts running 15 VMs. Initially, the VMs are allocated according to the
resource requirements of the VM types. However, VMs utilise fewer resources according
to the workload data during runtime, creating opportunities for dynamic consolidation.
For the non-adaptive architecture, the deployment is 70 hosts running 210 VMs (the max-
imum number used by the self-adaptive architecture) to allow processing the maximum
number of requests during peak load.

222

Table D.2: Initial Deployments of the Experiments

Configuration

No. of hosts non-adaptive: 70
adaptive: 10

No. of VMs non-adaptive: 210 x m4.xlarge
adaptive:
5 x m4.large, 5 x m4.xlarge, 5 x m4.2xlarge

The experiments were run on a 2.9 GHz Intel Core i5 16 GB RAM computer. To
examine the accuracy of simulation results, we examined quality attributes at each time
interval of 864 seconds in the cases of self-adaptive, stimulus-aware, goal-aware and non-
adaptive architectures, i.e. we run the entire workload for each service type and measured
the quality attributes.

D.4.2 Validation Results

To validate the simulation environment, we compare the average response time, energy
consumption and operational cost of all architectures during the experiment time inter-
vals. Figure D.6, D.7 and D.8 show the results of service type 2 (the service type with
the most processing requirements) of the quality attributes respectively. As the non-
adaptive architecture was running on a static configuration (the same number of hosts
and VMs required to handle the highest load), the results of response time are the same
for all time intervals. The adaptive and aware architectures have similar values like the
non-adaptive architecture during off-peak intervals, where they were able to handle the
workload with fewer resources. During peak intervals, response time started to fluctuate,
where adaptations took place to meet the goal. It is noticed that the self-adaptive archi-
tecture was not able to achieve good response time once the workload started to increase
compared to the stimulus- and goal-aware, as the adaptations of the former are reactive.
As expected, the operational cost and energy consumption of the latter architectures are
lower than the non-adaptive architecture, with a maximum equal to the values of the non-
adaptive architecture. These are the expected behaviours for all architectures considering
the testbed configurations. Hence, the results reflected that architectures components
are correctly implemented. Obviously, the results showed the benefits of adaptivity and
awareness with respect to achieve the required performance, while saving operational cost
and energy consumption.

D.4.3 Experiments Results

Considering the experiments total results, we report the average results of the whole exper-
iment (for 30 runs) for each service type in case of each architecture in Table D.3. The non-
adaptive architecture has a fixed value for all attributes, due to the static configuration.
The average response time of all requests for each service type is much better achieved

223

Figure D.6: Average Response Time of Service Type 2 during Time Intervals

Figure D.7: Average Energy Consumption of Service Type 2 during Time Intervals

Figure D.8: Average Operational Cost of Service Type 2 during Time Intervals

by the goal-aware architecture due to proactive adaptations, followed by stimulus-aware
and self-adaptive architecture (average 20.02, 20.53, 62.85 ms respectively). While achiev-
ing better performance, energy consumption (calculated based on the number of running
hosts) and operational cost (calculated based on the number of running VMs) were found
less on average than non-adaptive. For instance, average energy consumption is 17.42,
17.32, 11.37 kWh versus 28.14 kWh for the non-adaptive architecture, due to consolida-
tion performed during off-peak periods and scaling during peak load only. Operational
cost is found less in the case of stimulus-aware architecture (31.88 $), followed by the
goal-aware (56.26 $) and self-adaptive (79.57 $) compared to non-adaptive (224.34 $).
As the stimulus- and goal-aware architectures were running nearly the same number of
hosts, their energy consumption was close. But, each was running a different number of

224

VMs, which caused the difference in operational cost. The goal-aware architecture used
a higher number of VMs in pro-active adaptations.

Table D.3: Experiments Average Results

Quality
Attributes

S# Architecture

Non-adaptive Self-adaptive Stimulus-aware Goal-aware

Response
Time (ms)

1 4.17 73.73 16.54 16.00
2 8.33 63.49 23.01 22.92
3 5.00 58.41 19.18 18.56
4 6.25 58.90 21.69 21.10
5 7.08 59.74 22.24 21.54
avg. 6.17 62.85 20.53 20.02

Energy con-
sumption
(kWh)

1 28.14 10.42 17.42 17.56
2 28.14 11.61 17.30 17.37
3 28.14 11.61 17.35 17.41
4 28.14 11.61 17.29 17.39
5 28.14 11.61 17.27 17.36
avg. 28.14 11.37 17.32 17.42

Operational
cost ($)

1 224.34 64.54 29.36 52.40
2 224.34 84.41 34.08 64.47
3 224.34 82.61 30.43 53.68
4 224.34 82.61 31.65 56.29
avg. 224.34 79.57 31.88 56.26

D.4.4 Performance Evaluation

In order to evaluate the performance of self-adaptive and self-aware architectures, we
observe the processing of all service requests and compared the percentage of response
time violations for different service types, as shown in Figure D.9. As expected, the goal-
aware architecture has the less violation percentage (e.g. 24.40% in the case of service
type 2). This is due to the proactive adaptation taken prior to violations. While the
self-adaptive had better performance than stimulus-aware (e.g. 26.44% versus 28.86%
in the case of service 2), the operational cost was remarkably higher in the former case
starting from the peak time.

D.4.5 Evaluation of Adaptation Overhead

We evaluate the adaptation overhead by calculating the total time spent by the architec-
ture in monitoring quality attributes, detecting violations, making and executing adap-
tation decisions. Figure D.10 shows the overhead of each service type and their average.
As goal-aware architecture is performing pro-active adaptations, its overhead is the high-
est (251.62 sec on average). Stimulus-aware is close to goal-aware due to the intelligent

225

Figure D.9: Average Response Time Violations

reactions (239.47 sec). The overhead of self-adaptive is lower (164.90 sec) due to reactive
adaptations, which obviously resulted in lower performance.

Figure D.10: Average Adaptation Overhead

D.5 Related Work

In the context of self-adaptive software systems, Abuseta et al. [610] proposed a simulation
environment for testing self-adaptive systems designed around the feedback control loop
proposed by IBM architecture blueprint. A review for the state-of-the-art related to
self-awareness in software engineering [45] has confirmed the lack of simulation tools for
designing and evaluating such systems, with the exception of the work of [611]. This
work proposed a simulation environment for systems with self-aware and self-expressive

226

capabilities, focusing on hardware aspects and precise process chronology execution. The
simulation environment suits industrial relevant system sizes of the avionic and space-
flight industry.

With respect to cloud computing, there have been some notable proposals for simula-
tion environments. An early survey has enlisted simulation approaches used for research
in cloud computing [612]. Examples include CloudSim [36] [5] a modular and extensible
open-source simulator, able to model very large scale clouds, GreenCloud [613] a packet-
level simulator of energy-aware cloud data centers, MDCSim [614] simulates multi-tier
data centres in detail, and iCanCloud [615] [616] simulates cloud infrastructures flexi-
bility and scalability. Other tools focused on simulating specific issues, such as power
consumption and scientific workflows [612].

CloudSim has been widely adopted and used in many further extensions modelling and
simulating cloud-related problems, due to its modular architecture. Examples include vi-
sually modelling and analysing cloud environments and applications (CloudAnalyst) [617],
modelling parallel applications (NetworkCloudSim) [609], simulating scientific workflows
(WorkflowSim) [618], concurrent and distributed cloud (Cloud2Sim) [608], adaptive scal-
ing cloud and MapReduce simulations (Cloud2Sim) [619], simulating heterogeneity in
computational clouds (DynamicCloudSim) [620], and simulating containers in cloud data
centres (ContainerCloudSim) [621].

Despite the influx of research in self-adaptivity and cloud computing, as well as the
various simulations environments proposed so far, there is a general lack, to the best of
our knowledge, of modelling and simulation environments for self-adaptive and self-aware
cloud architectures.

227

Appendix E

Queuing-based Model for Evaluating
Runtime Stability

In this appendix, we present a queuing theoretic-based model for evaluating stability
during runtime. A self-adaptive software system is dynamic and exhibits probabilistic
behaviour during runtime. Such behaviour is mainly due to the uncertain fluctuation
of the workload at runtime, the constraints on available resources and changes in the
environment. Behaviour can also be affected by prior decisions and adaptation actions.

Given the runtime dynamics and the probabilistic behaviours of such systems, a
Markov-based analytical modelling can provide a generic and scalable model for this
probabilistic behaviour. Based on multiple parallel dynamic queues, the model can cap-
ture instance-related information at a finer-grained level of tactics’ configurations, given
the heterogeneity of the environment. The model can, then, measure and predict quality
attributes for a scenario of interest. Such measurements and predictions, in conjunction
with the goal-awareness capability, can assist in choosing the optimal tactics and their
configurations to achieve behavioural stability.

E.1 System Model

Assume that a software system is running on a computing node using m hosts (Physi-
cal Machines PMs). A PMi, where i = {1, ...,m} runs ni VMs sharing computational
resources. The number of running VMs varies from one PM to another according to its
computational capacity. Service requests are received and processed on the infrastructure,
where the workload tends to vary in the number of incoming requests, the length of each
request, and quality requirements according to the end-user SLA.

We assume the total incoming workload λ will be divided among the m PMs resulting
{λ1, λ2, λi, ..., λm}. Several algorithms have been proposed to manage the jobs placement
in PMs and VMs [622] [623]. Though we follow a simple approach for requests place-
ment, the same principle can apply to other placement mechanisms. The distribution of
workload, in our case, is based on either the PM computational capacity in case PMs
computational capacity are different or equally on all PMs based on their availability.

Each PM, by its turn, will distribute its workload share on its n running VMs. The
workload is distributed on VMs level either based on VM computational capacity in case

228

Figure E.1: Dynamic Workload Handling

the incoming request is constrained by certain computational requirements, or equally
in case of no constraints. The workload is denoted by λij, where i indicates the PM, j
indicates the VM, and j = {1, ..., ni}. For a VMij, an m/m/1 queue will be formed for
the incoming requests to be processed, where the incoming rate of requests constitutes
a Poisson process of rate λi/n (assuming equal workload distributed on all VMs), and
the service process is Markovian exponentially distributed, with parameter µij and mean
1/µij that is handled by that VM. Thus, the total service handled by the self-aware node

is
m∑
i=1

n∑
j=1

µij. The handling of the workload in a self-aware node is illustrated in Figure

E.1.
Unlike most of the prior models that have employed only single queues, we employ

multiple parallel dynamic queues, where the queuing can discipline the way we analyse
the workload in relation to heterogeneous environments with varying configurations of
PMs, VMs, and their computational capacities. The model also features scalability into
the analysis, as well as helps in tracking and predicting the behaviour at a given time
instance.

For VMij, the formed queue of incoming requests can be described as a continuous
time Markov chain with transition rate matrix

Qij =

−λi/n λi/n
µij −(µij + λi/n) λi/n

µij −(µij + λi/n) λi/n
. . .

on the state space Sij {0, 1, 2, 3, ...}, and the rate from state k to the state k+1 is denoted
by qk,k+1. Thus, q0 = λi/n , q00 = −λi/n , and q01 = λi/n . In general, we must have

qk,k+1 ≥ 0 for all k 6= k + 1 ∈ Sij

where qk,k+1 denotes the k, k + 1th diagonal element in the Qij matrix.
Let Xt denote the number of requests in the VMij queue at time t. If Xt = 0, then

229

the next event has to be the arrival of a new request, and the time of its arrival is
exponential λi/n. At run-time, the next event could be either the arrival of a new request
or the departure of the request currently being processed. Thus, the time to the next
event is exponentially distributed with the parameter λi/n + µij. Hence, qk = λi/n + µij,
qk,k+1 = λi/n, and qk,k−1 = µij. So, the probability of the arrival of a new request is
λi/n/

(
λi/n + µij

)
, and the complementary probability µij/

(
λi/n + µij

)
is the probability

of the departure of the request currently being processed.
Having fully specified the transition rate matrix Qij, {Xt, t ≥ 0} is, then, a Markov

process with the following transition rates:

qk,k+1 = λi/n , qk,k−1 = µij , qk, k = −
(
λi/n + µij

)
for all k ≥ 1

with an invariant distribution π, where

πkqk,k+1 = πk+1qk+1,k for all k, k + 1 (E.1)

along with the normalisation condition

∞∑
k=0

πk = 1 (E.2)

We obtain from (E.1) that

πk =
(
λi/n/µij

)
πk−1 for all k ≥ 1

Denoting
(
λi/n/µij

)
by ρij , we get

πk = ρkijπ0 (E.3)

Substituting in (E.2), we get

πk = (1− ρij) ρkij , k = 0, 1, 2, ..., if ρij < 1 (E.4)

which represents the invariant distribution of the Markov process transition rate of our
imposed problem.

E.2 Quality Model

The Markov-based analytical model allows estimating the quality of service. Given the
expected workload λ, the number of PMs m, VMs, and the capacity of both of them, the
model approximates different quality attributes; such as response time (R), mean queue
(W), throughput (T), utilisation (ρ), cost (C) and energy consumption (E).

For the VMij, given the incoming rate of requests λi/n and the mean service time

230

1/µij, the invariant queue length distribution computed in (E.4) gives us

P (N = n) = (1− ρ)ρn, n = 0, 1, 2, 3, ...

In particular, P (N = 0) = 1− ρ, that is the probability that the queue is empty is steady
state. Hence, the utilisation of the VMij should be:

ρij = λi/n/µij

Therefore, the probability for VMij to be idle can be expressed by π0 from (E.3) as:

π0 = 1− ρij = 1− (λi/n/µij)

By applying Little’s law E(S) = (1/µ)/(1 − ρ), the following performance metrics
could be deduced:
The mean response time for VMij is estimated by:

Rij = 1/(µij(1− ρij)) = 1/(µijρij)

The mean queue length is:
Wij = ρ2

ij/(1− ρij)

The mean throughput is basically the departure rate; i.e. the rate at which the requests
finish being processed successfully at the VM; that is:

Tij = λi/nπk/
∞∑
k=0

λi/nπk

Having performance metrics of each VM independently, all performance metrics for a
given PM could be deduced, as well as for the self-adaptive computing node. The mean
response time for PMi is the mean response time for the ni VMs running on that PM.
Also, the mean utilisation and the throughput can be calculated as the sum of the related
measures of the ni VMs.

On the node level, same metrics could also be calculated as the sum of related metrics
for the m PMs operating on the node. Operational cost could also be calculated among
the node, that is the cost of processing the incoming workload:

C =
m∑
i=1

n∑
j=1

Cost(CPU)ij + Cost(memory)ij

And, the total power consumption of all running PMs, given the varying number of VMs
and their allocated CPU threads, would be:

C =
m∑
i=1

Ei

As an architectural tactic represents codified knowledge about the relationship between
architectural decisions and quality attributes [624], our analytical model can accommodate

231

the impact of a diverse range of tactics on the stability of these quality attributes, as
follows.

• Tactics related to PMs, such as horizontal scaling and consolidation, are reflected in
our model by varying the value of m PMs. That is, scaling with a certain number
of PMs will be reflected in our model when dividing the incoming workload λ on
more PMs; i.e. m + 1. This would influence the stability of performance (response
time) and greenability (energy consumption).

• Tactics related to VMs, such as vertical scaling and consolidation, are reflected in
our model by increasing or decreasing the total value of n VMs. This influences the
average latency of processing the incoming requests.

• Tactics related to computational capacity; i.e., CPU threads of a specific VMij; are
reflected in the increase or decrease of the corresponding service rate µij, and hence
influence the throughput. Also, the utilisation of VMs, determined by our model,
allows consolidating the less utilised VMs (e.g. x VMs are less than 10% utilised)
and re-checking the performance metrics given the new number of VMs (n− x).

Aiming to stabilise a certain quality attribute, the impact of related tactic could be
predicted under different configurations of the tactic, in order to select the optimal config-
uration. Unlike prior related work, which considered a case of homogeneity, we consider
the heterogeneity of environment in PMs, VMs, and their computational capacity. The
proposed model is capable to model the sensitivity of quality parameters behaviour with
different scenarios varying the number of PMs, computational capacities of PMs, number
of VMs, allocated CPU threads and requests constraints. Besides, our model allows mea-
suring the cost and energy consumption of the self-adaptive computing node under these
different scenarios. Also, information from self-awareness capabilities is employed in our
model. More specifically, we rely on the goal-awareness level in informing the adaptation
process to select the adaptation tactic that converges towards the adaptation goal. This
influences the deduced performance metrics, and consequently leas to the choice of the
optimal tactics.

232

Bibliography

[1] J. R. Leigh, Control theory, 2nd ed., ser. IEE Control Engineering Series. London,
UK: Institution of Electrical Engineers, 2004, vol. 64.

[2] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao, “Architecting self-aware software
systems,” in IEEE/IFIP Conference on Software Architecture (WICSA), 2014, pp.
91–94.

[3] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. Minku, and L. Esterle, “The
handbook of engineering self-aware and self-expressive systems,” School of Computer
Science, University of Birmingham, Technical Report, 2014.

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.
Addison-Wesley Professional, 2012.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms,” Software: Practice and Experi-
ence, vol. 41, no. 1, pp. 23–50, 2011.

[6] M. Mattsson, H. Grahn, and F. Mårtensson, “Software architecture evaluation meth-
ods for performance, maintainability, testability, and portability,” in 2nd International
Conference on the Quality of Software Architectures, 2006.

[7] F. Febrero, C. Calero, and M. A. Moraga, “Software reliability modeling based on
ISO/IEC SQuaRE,” Information and Software Technology, vol. 70, pp. 18–29, 2016.

[8] C. Becker, “Sustainability and longevity: Two sides of the same quality?” in 3rd In-
ternational Workshop on Requirements Engineering for Sustainable Systems co-located
with 22nd International Conference on Requirements Engineering (RE), 2014.

[9] A. Mahdy and M. E. Fayad, “A software stability model pattern,” in 9th Conference
on Pattern Language of Programs (PLoP02), 2002, Conference Proceedings.

[10] A. Avritzer, A. Bondi, and E. J. Weyuker, “Ensuring stable performance for systems
that degrade,” in 5th International Workshop on Software and Performance. ACM,
2005, pp. 43–51.

[11] J. Wang and M. N. Huhns, “Using simulations to assess the stability and capacity
of cloud computing systems,” in 48th Annual Southeast Regional Conference. ACM,
2010, Conference Proceedings, pp. 1–6.

233

[12] V. T. Rajlich and K. H. Bennett, “A staged model for the software life cycle,”
Computer, vol. 33, no. 7, pp. 66–71, 2000.

[13] R. Capilla, E. Y. Nakagawa, U. Zdun, and C. Carrillo, “Toward architecture knowl-
edge sustainability: Extending system longevity,” IEEE Software, vol. 34, no. 2, pp.
108–111, 2017.

[14] M. Alenezi and F. Khellah, “Architectural stability evolution in open-source sys-
tems,” in International Conference on Engineering & MIS. ACM, 2015, Conference
Proceedings, pp. 1–5.

[15] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: A roadmap,”
in Conference on The Future of Software Engineering. ACM, 2000, pp. 73–87.

[16] F. Dantas and A. Garcia, “Software reuse versus stability: Evaluating advanced
programming techniques,” in Brazilian Symposium on Software Engineering, 2010,
Conference Proceedings, pp. 40–49.

[17] D. Garlan, “Software architecture: A roadmap,” in Conference on The Future of
Software Engineering, 2000, pp. 91–101.

[18] D. Garlan, “Software architecture: a travelogue,” in International Conference on
Future of Software Engineering. ACM, 2014, pp. 29–39.

[19] R. Bahsoon, W. Emmerich, and J. Macke, “Using real options to select stable
middleware-induced software architectures,” IEE Proceedings - Software, vol. 152,
no. 4, pp. 167–186, 2005.

[20] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a taxonomy
of software change,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 17, no. 5, pp. 309–332, 2005.

[21] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research chal-
lenges,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 4,
no. 2, pp. 1–42, 2009.

[22] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli,
D. Weyns, and J. Whittle, “Software engineering for self-adaptive systems: A re-
search roadmap,” in Software Engineering for Self-Adaptive Systems, B. H. C. Cheng,
R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer-Verlag, 2009, pp.
1–26.

[23] R. de Lemos et al., Software engineering for self-adaptive systems: A second research
roadmap, ser. Lecture Notes in Computer Science. Springer-Verlag, 2013, vol. 7475,
pp. 1–32.

234

[24] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An architecture-based approach to
self-adaptive software,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 54–62, 1999.

[25] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas, “A framework
for evaluating quality-driven self-adaptive software systems,” in 6th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
ACM, 2011, Conference Proceedings, pp. 80–89.

[26] N. M. Villegas, G. Tamura, and H. A. Müller, “Architecting software systems for
runtime self-adaptation: Concepts, models, and challenges,” in Managing Trade-Offs
in Adaptable Software Architectures, I. Mistŕık, N. Ali, J. Grundy, R. Kazman, and
B. Schmerl, Eds. Boston: Elsevier (Morgan Kaufmann), 2017, pp. 17–43.

[27] D. Garlan, B. Schmerl, and S. W. Cheng, “Software architecture-based self-
adaptation,” in Autonomic Computing and Networking, Y. Zhang, L. T. Yang, and
M. K. Denko, Eds. Springer US, 2009, pp. 31–55.

[28] D. Weyns and T. Ahmad, Claims and Evidence for Architecture-Based Self-
adaptation: A Systematic Literature Review, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 7957, book section 22, pp. 249–265.

[29] J. Cámara, P. Correia, R. d. de Lemos, and M. Vieira, “Empirical resilience evaluation
of an architecture-based self-adaptive software system,” in 10th International ACM
SIGSOFT Conference on Quality of Software Architectures. ACM, 2014, pp. 63–72.

[30] C. Hollenbach, R. Young, A. Pflugrad, and D. Smith, “Combining quality and soft-
ware improvement,” Communications of the ACM, vol. 40, no. 6, pp. 41–45, 1997.

[31] A. Gurgel, F. Dantas, A. Garcia, and C. Sant’Anna, “Integrating software product
lines: A study of reuse versus stability,” in IEEE 36th Annual Computer Software and
Applications Conference, 2012, pp. 89–98.

[32] J. Bosch, “Architecture challenges for software ecosystems,” in 4th European Con-
ference on Software Architecture: Companion Volume. ACM, 2010, pp. 93–95.

[33] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” Journal of Management In-
formation Systems, vol. 24, no. 3, pp. 45–77, 2007.

[34] J. W. Creswell, Research design: Qualitative, quantitative, and mixed method ap-
proaches, 2nd ed. Thousand Oaks, California London: Sage, 2003.

[35] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of Cloud Computing,”
ACM Communications, vol. 53, no. 4, pp. 50–58, 2010.

[36] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable
cloud computing environments and the cloudsim toolkit: Challenges and opportu-
nities,” in International Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2009, pp. 1–11.

235

[37] W. B. Frakes and K. Kyo, “Software reuse research: Status and future,” IEEE
Transactions on Software Engineering, vol. 31, no. 7, pp. 529–536, 2005.

[38] H. Ji, “Dynamic and static views of software evolution,” in IEEE International Con-
ference on Software Maintenance (ICSM). IEEE Computer Society, 2001, p. 592.

[39] R. Bahsoon and W. Emmerich, Architectural Stability, ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2009, vol. 5872, book section 43, pp.
304–315.

[40] M. Salama, “Stability of self-adaptive software architectures,” in 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Doctoral Sym-
posium, 2015, pp. 886–889.

[41] M. Salama and R. Bahsoon, “Quality-driven architectural patterns for self-aware
cloud-based software,” in IEEE 8th International Conference on Cloud Computing
(CLOUD), Applications Track (acceptance rate 14%), 2015, pp. 844–851.

[42] M. Salama and R. Bahsoon, “A taxonomy for architectural stability,” in 31st
ACM/SIGAPP Symposium on Applied Computing (SAC), Software Architecture:
Theory, Technology, and Applications Track (SATTA), 2016, pp. 1354–1357.

[43] M. Salama, R. Bahsoon, and N. Bencomo, “Managing trade-offs in self-adaptive soft-
ware architectures: A systematic mapping study,” in Managing Trade-Offs in Adapt-
able Software Architectures, I. Mistŕık, N. Ali, J. Grundy, R. Kazman, and B. Schmerl,
Eds. Boston, MA: Elsevier (Morgan Kaufmann), 2017, pp. 249–297.

[44] M. Salama and R. Bahsoon, “Analysing and modelling runtime architectural stability
for self-adaptive software,” Journal of Systems and Software, vol. 133, pp. 95–112,
2017.

[45] A. Elhabbash, M. Salama, R. Bahsoon, and P. Tino, “Self-awareness in software
engineering: A systematic literature review,” (submitted for publication), 2017.

[46] M. Salama, R. Bahsoon, and P. Lago, “Stability in software engineering: Survey of
the state-of-the-art and research directions,” (submitted for publication), 2017.

[47] M. Salama and R. Bahsoon and R. Buyya, “Modelling and simulation environment
for self-adaptive and self-aware cloud architectures,” (submitted for publication), 2018.

[48] M. Salama and R. Bahsoon and R. Buyya, “A reference architecture and modelling
principles for architectural stability based on self-awareness: Case of cloud architec-
tures,” (submitted for publication), 2018.

[49] M. Salama and R. Bahsoon and R. Buyya, “Architectural stability reasoning using
self-awareness principles: Case of self-adaptive cloud architectures,” (submitted for
publication), 2018.

[50] M. Salama, R. Bahsoon, and P. Lago, “A framework for evaluating architectural
stability,” (submitted for publication), 2018.

236

[51] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC/IEEE 24765:2010(E) Systems and Software En-
gineering – Vocabulary,” International Organization for Standardization and Interna-
tional Electrotechnical Commission (ISO/IEC), Geneva, Switzerland, Report, 2010.

[52] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[53] Software Engineering Standards Committee of the IEEE Computer Society, “IEEE
standard for a software quality metrics methodology,” The Institute of Electrical and
Electronics Engineers, Inc., Report IEEE Std 1061-1998, 1998.

[54] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,”
SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52, 1992.

[55] M. Shaw and D. Garlan, Software Architecture: Perspectives on an emerging disci-
pline. Prentice-Hall, Inc., 1996.

[56] L. Bass, P. Clements, and R. Kazman, Software architecture in practice, 2nd ed.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[57] N. Medvidovic and R. N. Taylor, “A classification and comparison framework for
software architecture description languages,” IEEE Transactions on Software Engi-
neering, vol. 26, no. 1, pp. 70–93, 2000.

[58] C. Seo, G. Edwards, S. Malek, and N. Medvidovic, “A framework for estimating the
impact of a distributed software system’s architectural style on its energy consump-
tion,” in 7th Working IEEE/IFIP Conference on Software Architecture (WICSA),
2008, pp. 277–280.

[59] J. S. Kim and D. Garlan, “Analyzing architectural styles,” Journal of Systems and
Software, vol. 83, no. 7, pp. 1216–1235, 2010.

[60] S. Balsamo, A. di Marco, P. Inverardi, and M. Simeoni, “Model-based performance
prediction in software development: a survey,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 5, pp. 295–310, 2004.

[61] B. I. Witt, Software Architecture and Design : Principles, models, and methods.
New York: New York : Van Nostrand Reinhold, 1994.

[62] H. Gomaa, Software modeling and design: UML, use cases, architecture, and pat-
terns. Cambridge: Cambridge University Press, 2010.

[63] I. Sommerville, Software Engineering. Boston, Mass. London: Boston, Mass. London
: Pearson Education, 2011.

[64] C. Lianping, M. A. Babar, and B. Nuseibeh, “Characterizing architecturally signifi-
cant requirements,” IEEE Software, vol. 30, no. 2, pp. 38–45, 2013.

[65] R. Laddaga, “Self-adaptive software,” DARPA BAA, Technical Report 98-12, 1997.

237

[66] A. C. Meng, On Evaluating Self-Adaptive Software. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 65–74.

[67] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, “A tactic-centric approach
for automating traceability of quality concerns,” in 34th International Conference on
Software Engineering (ICSE), 2012, pp. 639–649.

[68] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural tactics for the cloud,”
in IEEE/IFIP Conference on Software Architecture (WICSA), 2014, pp. 41–44.

[69] “Oxford english dictionary online.” [Online]. Available: http://www.oed.com/

[70] Z. J. Wang, D. C. Zhan, and X. F. X., “STCIM: a dynamic granularity oriented and
stability based component identification method,” SIGSOFT Software Engineering
Notes, vol. 31, no. 3, pp. 1–14, 2006.

[71] K. S. McCann, “The diversity-stability debate,” Nature, vol. 405, no. 6783, pp. 228–
233, 2000.

[72] A. R. Ives and S. R. Carpenter, “Stability and diversity of ecosystems,” Science, vol.
317, no. 5834, p. 58, 2007.

[73] G. W. Rowe, I. F. Harvey, and S. F. Hubbard, “The essential properties of evolu-
tionary stability,” Journal of Theoretical Biology, vol. 115, no. 2, pp. 269–285, 1985.

[74] iSixSigma, “iSixSigma.” [Online]. Available: https://www.isixsigma.com

[75] T. L. Casavant and J. G. Kuhl, “Effects of response and stability on scheduling in
distributed computing systems,” IEEE Transactions on Software Engineering, vol. 14,
no. 11, pp. 1578–1588, 1988.

[76] N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems. Springer Science
& Business Media, 2002.

[77] A. M. Lyapunov, The general problem of the stability of motion. London: Taylor &
Francis, 1992.

[78] P. Prabhakar and M. G. Soto, “Foundations of quantitative predicate abstraction for
stability analysis of hybrid systems,” in Verification, Model Checking, and Abstract
Interpretation: 16th International Conference, VMCAI 2015, Mumbai, India, Jan-
uary 12-14, 2015, Proceedings, D. D’Souza, A. Lal, and K. G. Larsen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 318–335.

[79] P. Prabhakar and M. G. Soto, “Hybridization for stability analysis of switched linear
systems,” in 19th International Conference on Hybrid Systems: Computation and
Control. ACM, 2016, pp. 71–80.

[80] L. D. Berkovitz, Optimal control theory. New York: Springer-Verlag, 1974.

[81] R. Griesse, “Stability and sensitivity analysis in optimal control of partial differential
equations,” Thesis, University of Graz, 2007.

238

http://www.oed.com/
https://www.isixsigma.com

[82] J. A. Stankovic, “Stability and distributed scheduling algorithms,” IEEE Transac-
tions on Software Engineering, vol. SE-11, no. 10, pp. 1141–1152, 1985.

[83] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Communi-
cations of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[84] E. W. Dijkstra, “Self-stabilization in spite of distributed control,” in Selected Writings
on Computing: A personal Perspective. New York, NY: Springer New York, 1982,
pp. 41–46.

[85] S. Ghosh, “An alternative solution to a problem on self-stabilization,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 15, no. 4, pp. 735–742,
1993.

[86] Y. Yamauchi and S. Tixeuil, “Brief announcement: Monotonic stabilization,” in 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. ACM,
2010, pp. 406–407.

[87] S. Dolev and S. Rajsbaum, “Stability of long-lived consensus (extended abstract),” in
19th annual ACM Symposium on Principles of Distributed Computing. ACM, 2000,
pp. 309–318.

[88] S. Dolev and R. Yagel, “Toward self-stabilizing operating systems,” in 15th Inter-
national Workshop on Database and Expert Systems Applications. IEEE Computer
Society, 2004, pp. 684–688.

[89] S. Dolev and Y. A. Haviv, “Self-stabilizing microprocessor: analyzing and overcoming
soft errors,” IEEE Transactions on Computers, vol. 55, no. 4, pp. 385–399, 2006.

[90] S. Dolev, Y. Haviv, and M. Sagiv, “Self-stabilization preserving compiler,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 31, no. 6, pp.
1–42, 2009.

[91] S. Schmid, “Robust architectures for open distributed systems and topological self-
stabilization: Invited paper,” in 3rd International Workshop on Reliability, Availabil-
ity, and Security. ACM, 2010, pp. 1–6.

[92] B. A. Kitchenham and S. Charters, “Guidelines for performing systematic literature
reviews in software engineering,” Keele University, UK, Technical Report, 2007.

[93] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons
from applying the systematic literature review process within the software engineering
domain,” Journal of Systems and Software, vol. 80, no. 4, pp. 571 – 583, 2007.

[94] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering,” in 18th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2014, pp. 1–10.

[95] R. L. Glass and I. Vessey, “Contemporary application-domain taxonomies,” IEEE
Software, vol. 12, no. 4, pp. 63–76, 1995.

239

[96] B. H. Kwasnik, “The role of classification in knowledge representation and discovery,”
Library trends, vol. 48, no. 1, p. 22, 1999.

[97] D. I. K. Sjøberg, T. Dyb̊a, and M. Jørgensen, “The future of empirical methods in
software engineering research,” in Conference on The Future of Software Engineering
(FOSE). IEEE Computer Society, 2007, pp. 358–378.

[98] R. Laddaga, “Active software,” in 1st international workshop on Self-adaptive soft-
ware. Springer-Verlag New York, Inc., 2000, pp. 11–26.

[99] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A survey on
engineering approaches for self-adaptive systems,” Pervasive and Mobile Computing,
vol. 17, Part B, pp. 184–206, 2015.

[100] C. Jia, Y. Cai, Y. T. Yu, and T. H. Tse, “5W+1H pattern: A perspective of
systematic mapping studies and a case study on cloud software testing,” Journal of
Systems and Software, vol. 116, pp. 206–219, 2016.

[101] Q. Gu, F. Cuadrado, P. Lago, and J. C. Dueñas, “3d architecture viewpoints on
service automation,” Journal of Systems and Software, vol. 86, no. 5, pp. 1307–1322,
2013.

[102] I. Ozkaya, P. Wallin, and J. Axelsson, “Architecture knowledge management during
system evolution: Observations from practitioners,” in ICSE Workshop on Sharing
and Reusing Architectural Knowledge. ACM, 2010, pp. 52–59.

[103] P. R. Anish, B. Balasubramaniam, A. Sainani, J. Cleland-Huang, M. Daneva, R. J.
Wieringa, and S. Ghaisas, “Probing for requirements knowledge to stimulate architec-
tural thinking,” in 38th International Conference on Software Engineering. ACM,
2016, pp. 843–854.

[104] P. Avgeriou, P. Lago, and P. Kruchten, “Towards using architectural knowledge,”
SIGSOFT Software Engineering Notes, vol. 34, no. 2, pp. 27–30, 2009.

[105] D. A. Tamburri, P. Kruchten, P. Lago, and H. V. Vliet, “Social debt in software
engineering: insights from industry,” Journal of Internet Services and Applications,
vol. 6, no. 1, p. 10, 2015.

[106] D. A. Tamburri, P. Lago, H. V. Vliet, and E. di Nitto, “On the nature of gse organi-
zational social structures: An empirical study,” in IEEE 7th International Conference
on Global Software Engineering, 2012, pp. 114–123.

[107] D. A. Tamburri, P. Kruchten, P. Lago, and H. V. Vliet, “What is social debt in
software engineering?” in 6th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), 2013, pp. 93–96.

[108] D. A. Tamburri, P. Lago, and H. V. Vliet, “Organizational social structures for
software engineering,” ACM Computing Surveys, vol. 46, no. 1, pp. 1–35, 2013.

[109] D. A. Tamburri, P. Lago, and H. V. Vliet, “Uncovering latent social communities
in software development,” IEEE Software, vol. 30, no. 1, pp. 29–36, 2013.

240

[110] N. F. Schneidewind, “Measuring and evaluating maintenance process using relia-
bility, risk, and test metrics,” IEEE Transactions on Software Engineering, vol. 25,
no. 6, pp. 769–781, 1999.

[111] N. L. Soong, “A program stability measure,” in Annual Conference (ACM). ACM,
1977, Conference Proceedings, pp. 163–173.

[112] S. S. Yau and J. S. Collofello, “Some stability measures for software maintenance,”
IEEE Transactions on Software Engineering, vol. SE-6, no. 6, pp. 545–552, 1980.

[113] S. S. Yau and S. C. Chang, “Estimating logical stability in software maintenance,”
in IEEE Computer Society’s International Computer Software & Applications Con-
ference, 1984, Conference Proceedings, pp. 109–119.

[114] S. S. Yau and J. S. Collofello, “Design stability measures for software maintenance,”
IEEE Transactions on Software Engineering, vol. SE-11, no. 9, pp. 849–856, 1985.

[115] Software Engineering Standards Committee of the IEEE Computer Society, “IEEE
Recommended Practice for Software Requirements Specifications,” IEEE Std 830-
1998, pp. 1–40, 1998.

[116] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC 9126-1 - Software engineering – Product quality –
Part 1: Quality model,” ISO/IEC, Geneva, Switzerland, Report ISO/IEC 9126-1:2001,
2001.

[117] M. Jazayeri, “On architectural stability and evolution,” in 7th Ada-Europe Interna-
tional Conference on Reliable Software Technologies. Springer-Verlag, 2002, Confer-
ence Proceedings, pp. 13–23.

[118] D. Grosser, H. A. Sahraoui, and P. Valtchev, “Predicting software stability using
case-based reasoning,” in 17th IEEE International Conference on Automated Software
Engineering (ASE), 2002, Conference Proceedings, pp. 295–298.

[119] D. Grosser, H. A. Sahraoui, and P. Valtchev, “An analogy-based approach for pre-
dicting design stability of java classes,” in 9th International Software Metrics Sympo-
sium, 2003, Conference Proceedings, pp. 252–262.

[120] R. Bahsoon and W. Emmerich, “Evaluating software architectures for stability: A
real options approach,” in 25th International Conference on Software Engineering,
Doctoral Symposium, 2003, Conference Proceedings.

[121] R. Bahsoon and W. Emmerich, “ArchOptions: a real options-based model for pre-
dicting the stability of software architectures,” in 5th Workshop on Economics-driven
Software Engineering Research (EDSER), co-located with 25th International Confer-
ence of Software Engineering (ICSE), 2003, Conference Proceedings.

[122] R. Bahsoon and W. Emmerich, “Evaluating software architectures: development,
stability, and evolution,” in ACS/IEEE International Conference on Computer Sys-
tems and Applications, Book of Abstracts, 2003, Conference Proceedings, p. 47.

241

[123] R. Bahsoon and W. Emmerich, “Evaluating architectural stability with real op-
tions theory,” in 20th IEEE International Conference on Software Maintenance, 2004,
Conference Proceedings, pp. 443–447.

[124] R. Bahsoon and W. Emmerich, “Requirements for evaluating architectural sta-
bility,” in IEEE International Conference on Computer Systems and Applications
(AICCSA), 2006, Conference Proceedings, pp. 1143–1146.

[125] R. Bahsoon and W. Emmerich, “Architectural stability and middleware: An
architecture-centric evolution perspective,” in ECOOP Workshop on Architecture-
Centric Evolution, 2006, Conference Proceedings.

[126] M. O. Elish and D. Rine, “Investigation of metrics for object-oriented design logical
stability,” in 7th European Conference on Software Maintenance and Reengineering,
2003, Conference Proceedings, pp. 193–200.

[127] S. Bouktif, D. Azar, D. Precup, H. Sahraoui, and B. Kegl, “Improving rule set based
software quality prediction: A genetic algorithm-based approach,” Journal of Object
Technology, vol. 3, no. 4, pp. 227–241, 2004.

[128] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical study of
software reuse vs. defect-density and stability,” in 26th International Conference on
Software Engineering (ICSE), 2004, Conference Proceedings, pp. 282–291.

[129] M. O. Elish and D. Rine, “Indicators of structural stability of object-oriented de-
signs: A case study,” in 29th Annual IEEE/NASA Software Engineering Workshop,
2005, Conference Proceedings, pp. 183–192.

[130] D. Kelly, “A study of design characteristics in evolving software using stability as
a criterion,” IEEE Transactions on Software Engineering, vol. 32, no. 5, pp. 315–329,
2006.

[131] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. F. Garcia, N. Cacho,
C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, and A. Rashid, On the Impact of
Aspectual Decompositions on Design Stability: An Empirical Study, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007, vol. 4609, book section 9,
pp. 176–200.

[132] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring maintain-
ability,” in 6th International Conference on the Quality of Information and Commu-
nications Technology (QUATIC), 2007, Conference Proceedings, pp. 30–39.

[133] A. Molesini, “On the quantitative analysis of architecture stability in aspectual
decompositions,” in 7th Working IEEE/IFIP Conference on Software Architecture
(WICSA), A. F. Garcia, C. v. F. G. Chavez, and T. V. Batista, Eds., vol. 0, 2008,
Conference Proceedings, pp. 29–38.

[134] A. Molesini, A. F. Garcia, C. v. F. G. Chavez, and T. V. Batista, “Stability as-
sessment of aspect-oriented software architectures: A quantitative study,” Journal of
Systems and Software, vol. 83, no. 5, pp. 711–722, 2010.

242

[135] J. P. Correia, Y. Kanellopoulos, and J. Visser, “A survey-based study of the map-
ping of system properties to ISO/IEC 9126 maintainability characteristics,” in IEEE
International Conference on Software Maintenance, 2009, Conference Proceedings,
pp. 61–70.

[136] L. Yu and S. Ramaswamy, “Measuring the evolutionary stability of software systems:
case studies of linux and freebsd,” IET Software, vol. 3, no. 1, pp. 26–36, 2009.

[137] F. Dantas, “Reuse vs. maintainability: revealing the impact of composition code
properties,” in 33rd International Conference on Software Engineering. ACM, 2011,
Conference Proceedings, pp. 1082–1085.

[138] H. Cui, J. Simsa, Y. H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson, and R. E.
Bryant, “Parrot: A practical runtime for deterministic, stable, and reliable threads,”
in 24th ACM Symposium on Operating Systems Principles. 2522735: ACM, 2013,
Conference Proceedings, pp. 388–405.

[139] S. Bouktif, H. Sahraoui, and F. Ahmed, “Predicting stability of open-source software
systems using combination of bayesian classifiers,” ACM Transactions on Management
Information Systems, vol. 5, no. 1, pp. 1–26, 2014.

[140] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P. Avgeriou, “The ef-
fect of gof design patterns on stability: A case study,” IEEE Transactions on Software
Engineering, vol. 41, no. 8, pp. 781–802, 2015.

[141] J. C. Laprie, “From dependability to resilience,” in 38th IEEE/IFIP International
Conference On Dependable Systems and Networks, 2008.

[142] R. Almeida and M. Vieira, “Benchmarking the resilience of self-adaptive software
systems: perspectives and challenges,” in 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 2011, pp. 190–195.

[143] A. Pataricza, I. Kocsis, A. Salánki, and L. Gönczy, “Empirical assessment of re-
silience,” in Software Engineering for Resilient Systems, ser. Lecture Notes in Com-
puter Science, A. Gorbenko, A. Romanovsky, and V. Kharchenko, Eds. Springer
Berlin Heidelberg, 2013, vol. 8166, pp. 1–16.

[144] J. Cámara and R. de Lemos, “Evaluation of resilience in self-adaptive systems using
probabilistic model-checking,” in 7th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems. IEEE Press, 2012, pp. 53–62.

[145] F. Chauvel, H. Song, N. Ferry, and F. Fleurey, “Robustness indicators for cloud-
based systems topologies,” in IEEE/ACM 7th International Conference on Utility and
Cloud Computing. IEEE Computer Society, 2014, pp. 307–316.

[146] T. Anderson, Resilient computing systems; vol. 1. Wiley-Interscience, 1985.

[147] Standards Committee of the IEEE Reliability Society, “IEEE Recommended Prac-
tice on Software Reliability,” IEEE Std 1633-2016 (Revision of IEEE Std 1633-2008),
pp. 1–261, 2017.

243

[148] S. Kounev, P. Reinecke, F. Brosig, J. T. Bradley, K. Joshi, V. Babka, A. Stefanek,
and S. Gilmore, “Providing dependability and resilience in the cloud: Challenges
and opportunities,” in Resilience Assessment and Evaluation of Computing Systems,
K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, Eds. Springer Berlin Heidel-
berg, 2012, pp. 65–81.

[149] A. Chomchumpol and T. Senivongse, “Stability measurement model for service-
oriented systems,” in 9th Malaysian Software Engineering Conference (MySEC), 2015,
Conference Proceedings, pp. 54–59.

[150] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 1st ed.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[151] M. Naab and J. Stammel, “Architectural flexibility in a software-system’s life-cycle:
systematic construction and exploitation of flexibility,” in 8th international ACM SIG-
SOFT conference on Quality of Software Architectures. ACM, 2012, pp. 13–22.

[152] W. Jiao, “Measurements for adaptation level and efficiency of adaptive software
systems,” in 18th International Conference on Engineering of Complex Computer Sys-
tems, 2013, Conference Proceedings, pp. 37–45.

[153] H. M. Wang, B. Ding, D. X. Shi, J. N. Cao, and A. T. S. Chan, “Auxo: an
architecture-centric framework supporting the online tuning of software adaptivity,”
Science China Information Sciences, vol. 58, no. 9, pp. 1–15, 2015.

[154] C. L. Nehaniv and P. Wernick, “Introduction to software evolvability,” in 3rd In-
ternational IEEE Workshop on Software Evolvability. IEEE CS Press, 2007, pp.
vi–vii.

[155] H. P. Breivold, I. Crnkovic, and M. Larsson, “Software architecture evolution
through evolvability analysis,” Journal of Systems and Software, vol. 85, no. 11, pp.
2574–2592, 2012.

[156] C. C. Venters, C. Jay, L. Lau, M. K. Griffiths, V. Holmes, R. R. Ward, J. Austin,
C. Dibsdale, and J. Xu, “Software sustainability: The modern tower of babel,” in
3rd International Workshop on Requirements Engineering for Sustainable Systems co-
located with 22nd International Conference on Requirements Engineering (RE), 2014.

[157] P. Lago, S. A. Kocak, I. Crnkovic, and B. Penzenstadler, “Framing sustainability
as a property of software quality,” Communications of the ACM, vol. 58, no. 10, pp.
70–78, 2015.

[158] C. S. Holling, “Resilience and stability of ecological systems,” Annual Review of
Ecology and Systematics, vol. 4, no. 1, pp. 1–23, 1973.

[159] P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majumdar, “Input-
output robustness for discrete systems,” in 10th ACM International Conference on
Embedded Software. ACM, 2012, Conference Proceedings, pp. 217–226.

[160] J. D. Musa and W. W. Everett, “Software-reliability engineering: technology for
the 1990s,” IEEE Software, vol. 7, no. 6, pp. 36–43, 1990.

244

[161] N. Guelfi, “A formal framework for dependability and resilience from a software
engineering perspective,” Central European Journal of Computer Science, vol. 1, no. 3,
pp. 294–328, 2011.

[162] P. O. Bengtsson and J. Bosch, “Architecture level prediction of software main-
tenance,” in 3rd European Conference on Software Maintenance and Reengineering
(CSMR), 1999, pp. 139–147.

[163] J. M. Conejero, E. Figueiredo, A. Garcia, J. Hernández, and E. Jurado, “On the
relationship of concern metrics and requirements maintainability,” Information and
Software Technology, vol. 54, no. 2, pp. 212–238, 2012.

[164] N. T. Huynh, M. T. Segarra, and A. Beugnard, “A development process based
on variability modeling for building adaptive software architectures,” in Federated
Conference on Computer Science and Information Systems (FedCSIS), 2016, pp. 1715–
1718.

[165] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira, “Robustness-
driven resilience evaluation of self-adaptive software systems,” IEEE Transactions on
Dependable and Secure Computing, vol. 14, no. 1, pp. 50–64, 2017.

[166] J. Sterbenz and P. Kulkarni, “Diverse infrastructure and architecture for datacenter
and cloud resilience,” in 22nd International Conference on Computer Communications
and Networks (ICCCN), 2013, pp. 1–7.

[167] H. Seung Yeob, K. Marais, and D. DeLaurentis, “Evaluating system of systems
resilience using interdependency analysis,” in IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC), 2012, pp. 1251–1256.

[168] R. Almeida and M. Vieira, “Changeloads for resilience benchmarking of self-
adaptive systems: A risk-based approach,” in 9th European Dependable Computing
Conference (EDCC), 2012, pp. 173–184.

[169] L. C. Briand, S. Morasca, and V. R. Basili, “Measuring and assessing maintainability
at the end of high level design,” in Conference on Software Maintenance, 1993, pp.
88–87.

[170] K. S. Herzig, “Capturing the long-term impact of changes,” in ACM/IEEE 32nd
International Conference on Software Engineering, vol. 2, 2010, pp. 393–396.

[171] J. M. Barnes, A. Pandey, and D. Garlan, “Automated planning for software ar-
chitecture evolution,” in 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2013, pp. 213–223.

[172] M. M. Lehman and J. F. Ramil, “Rules and tools for software evolution planning
and management,” Annals of Software Engineering, vol. 11, no. 1, pp. 15–44, 2001.

[173] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of software aging
and rejuvenation studies,” Journal on Emerging Technologies in Computing Systems
(JETC), vol. 10, no. 1, pp. 1–34, 2014.

245

[174] F. A. Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla, “An experience
report on detecting and repairing software architecture erosion,” in 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), 2016, pp. 21–30.

[175] C. B. Jaktman, J. Leaney, and M. Liu, “Structural analysis of the software archi-
tecture — a maintenance assessment case study,” in Software Architecture: TC2 First
Working IFIP Conference on Software Architecture (WICSA1) 22–24 February 1999,
San Antonio, Texas, USA, P. Donohoe, Ed. Boston, MA: Springer US, 1999, pp.
455–470.

[176] M. Lavallée and P. N. Robillard, “Causes of premature aging during software de-
velopment: an observational study,” in 12th International Workshop on Principles
of Software Evolution and the 7th annual ERCIM Workshop on Software Evolution.
ACM, 2011, pp. 61–70.

[177] J. van Gurp and J. Bosch, “Design erosion: problems and causes,” Journal of
Systems and Software, vol. 61, no. 2, pp. 105–119, 2002.

[178] J. van Gurp, S. Brinkkemper, and J. Bosch, “Design preservation over subsequent
releases of a software product: A case study of Baan ERP,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 17, no. 4, pp. 277–306, 2005.

[179] E. Constantinou and I. Stamelos, “Architectural stability and evolution measure-
ment for software reuse,” in 30th Annual ACM Symposium on Applied Computing
(SAC). ACM, 2015, Conference Proceedings, pp. 1580–1585.

[180] T. Abbas and A. Ahsan, “Value based incremental software development,” in 17th
IEEE International Multi Topic Conference, 2014, pp. 155–160.

[181] A. Sangpuwong and P. Muenchaisri, Comparison of Stability Models in Incremental
Development. Springer International Publishing, 2014, pp. 322–331.

[182] F. A. Moghaddam, R. Deckers, G. Procaccianti, P. Grosso, and P. Lago, “A domain
model for self-adaptive software systems,” in 11th European Conference on Software
Architecture: Companion Proceedings. ACM, 2017, pp. 16–22.

[183] L. M. Smith and M. H. Samadzadeh, “Measuring complexity and stability of web
programs,” Structured Programming, vol. 13, no. 1, pp. 35–50, 1992.

[184] S. Black, “Computing ripple effect for software maintenance,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 13, no. 4, pp. 263–279, 2001.

[185] S. Black, “Deriving an approximation algorithm for automatic computation of ripple
effect measures,” Information and Software Technology, vol. 50, no. 7–8, pp. 723–736,
2008.

[186] J. Bevan and E. J. Whitehead, “Identification of software instabilities,” in 10th
Working Conference on Reverse Engineering (WCRE), 2003, Conference Proceedings,
pp. 134–144.

246

[187] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality bench-
marking for improving software maintainability,” Software Quality Journal, vol. 20,
no. 2, pp. 287–307, 2012.

[188] M. K. Chawla and I. Chhabra, “Sqmma: Software quality model for maintainability
analysis,” in 8th Annual ACM India Conference. ACM, 2015, Conference Proceed-
ings, pp. 9–17.

[189] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, The SQO-OSS Quality
Model: Measurement Based Open Source Software Evaluation. Boston, MA: Springer
US, 2008, pp. 237–248.

[190] J. Krinke, “Is cloned code more stable than non-cloned code?” in 8th IEEE In-
ternational Working Conference on Source Code Analysis and Manipulation, 2008,
Conference Proceedings, pp. 57–66.

[191] J. Krinke, “Is cloned code older than non-cloned code?” in Proceedings of 5th
International Workshop on Software Clones. ACM, 2011, Conference Proceedings,
pp. 28–33.

[192] N. Göde and J. Harder, “Clone stability,” in 15th European Conference on Software
Maintenance and Reengineering, 2011, Conference Proceedings, pp. 65–74.

[193] J. Harder and N. Göde, “Cloned code: stable code,” Journal of Software: Evolution
and Process, vol. 25, no. 10, pp. 1063–1088, 2013.

[194] M. Mondal, C. K. Roy, and K. A. Schneider, “An empirical study on clone stability,”
ACM SIGAPP Applied Computing Review, vol. 12, no. 3, pp. 20–36, 2012.

[195] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A. Schneider,
“Comparative stability of cloned and non-cloned code: an empirical study,” in 27th
Annual ACM Symposium on Applied Computing. ACM, 2012, Conference Proceed-
ings, pp. 1227–1234.

[196] M. Mondal, M. S. Rahman, C. K. Roy, and K. A. Schneider, “Is cloned code really
stable?” Empirical Software Engineering, 2017.

[197] M. S. Rahman and C. K. Roy, “A change-type based empirical study on the stability
of cloned code,” in IEEE 14th International Working Conference on Source Code
Analysis and Manipulation, 2014, Conference Proceedings, pp. 31–40.

[198] S. Kabinna, W. Shang, C. P. Bezemer, and A. E. Hassan, “Examining the stability
of logging statements,” in IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1, 2016, Conference Proceedings, pp.
326–337.

[199] C. Bogart, C. Kästner, and J. Herbsleb, “When it breaks, it breaks: How ecosystem
developers reason about the stability of dependencies,” in 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering Workshop (ASEW), 2015,
Conference Proceedings, pp. 86–89.

247

[200] W. Li, L. Etzkorn, C. Davis, and J. Talburt, “An empirical study of object-oriented
system evolution,” Information and Software Technology, vol. 42, no. 6, pp. 373–381,
2000.

[201] M. P. Robillard, “Tracking concerns in evolving source code: An empirical study,”
in 22nd IEEE International Conference on Software Maintenance, 2006, Conference
Proceedings, pp. 479–482.

[202] M. Ortu, G. Destefanis, M. Orru, R. Tonelli, and M. L. Marchesi, “Could micro
patterns be used as software stability indicator?” in IEEE 2nd International Work-
shop on Patterns Promotion and Anti-patterns Prevention (PPAP), 2015, Conference
Proceedings, pp. 11–12.

[203] D. Threm, L. Yu, S. Ramaswamy, and S. D. Sudarsan, “Using normalized compres-
sion distance to measure the evolutionary stability of software systems,” in IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE), 2015, Confer-
ence Proceedings, pp. 112–120.

[204] D. Hou and X. Yao, “Exploring the intent behind API evolution: A case study,” in
18th Working Conference on Reverse Engineering, 2011, Conference Proceedings, pp.
131–140.

[205] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability and
adoption in the Android ecosystem,” in IEEE International Conference on Software
Maintenance. IEEE Computer Society, 2013, Conference Proceedings, pp. 70–79.

[206] D. Pfahl, A. Al-Emran, and G. Ruhe, Simulation-based stability analysis for software
release plans. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 262–273.

[207] D. Pfahl, A. Al-Emran, and G. Ruhe, “A system dynamics simulation model for
analyzing the stability of software release plans,” Software Process: Improvement and
Practice, vol. 12, no. 5, pp. 475–490, 2007.

[208] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements into soft-
ware primitives: Studying evolvability based on systems theoretic stability,” Science
of Computer Programming, vol. 76, no. 12, pp. 1210–1222, 2011.

[209] Y. Eom and B. Demsky, “Self-stabilizing Java,” ACM SIGPLAN Notices, vol. 47,
no. 6, pp. 287–298, 2012.

[210] A. Bracciali, P. Mancarella, K. Stathis, and F. Toni, Engineering Stable Multi-agent
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 322–334.

[211] H. Cui, J. Wu, C. C. Tsai, and J. Yang, “Stable deterministic multithreading
through schedule memoization,” in 9th Symposium on Operating Systems Design and
Implementation (OSDI), vol. 10. UseniX Association, 2010, Conference Proceedings.

[212] J. Yang, H. Cui, J. Wu, Y. Tang, and G. Hu, “Making parallel programs reliable
with stable multithreading,” Communications of the ACM, vol. 57, no. 3, pp. 58–69,
2014.

248

[213] D. M. Berry, B. H. C. Cheng, and J. Zhang, “The four levels of requirements
engineering for and in dynamic adaptive systems,” in 11th International Workshop on
Requirements Engineering Foundation for Software Quality (REFSQ), 2005.

[214] M. I. Kamata and T. Tamai, “How does requirements quality relate to project
success or failure?” in 15th IEEE International Requirements Engineering Conference
(RE), 2007, pp. 69–78.

[215] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S. M. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Requirements: The key to sustainability,” IEEE Soft-
ware, vol. 33, no. 1, pp. 56–65, 2016.

[216] R. Mohanani, “Implications of requirements engineering on software design: A cog-
nitive insight,” in IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), 2016, pp. 835–838.

[217] C. Jones, “Strategies for managing requirements creep,” Computer, vol. 29, no. 6,
pp. 92–94, 1996.

[218] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Ap-
proach. PWS Publishing Co., 1998.

[219] C. Ting, The Control and Measure of Requirements Stability in Software Project.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 387–394.

[220] Software Engineering Standards Subcommittee of the Technical Committee on Soft-
ware Engineering of the IEEE Computer Society, “IEEE Standard Dictionary of Mea-
sures to Produce Reliable Software,” IEEE Std 982.1-1988, 1988.

[221] Software Engineering Standards Subcommittee of the Technical Committee on Soft-
ware Engineering of the IEEE Computer Society, “IEEE Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable Software,” IEEE Std 982.2-1988,
1988.

[222] S. Anderson and M. Felici, Controlling Requirements Evolution: An Avionics Case
Study. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 361–370.

[223] S. Anderson and M. Felici, Requirements Evolution From Process to Product Ori-
ented Management. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 27–41.

[224] T. Nakatani, T. Tsumaki, M. Tsuda, M. Inoki, S. Hori, and K. Katamine, “Re-
quirements maturation analysis by accessibility and stability,” in 18th Asia-Pacific
Software Engineering Conference, 2011, Conference Proceedings, pp. 357–364.

[225] T. Nakatani, K. Katamine, M. Tsuda, and T. Tsumaki, “Estimation of the matura-
tion type of requirements from their accessibility and stability,” IEICE Transactions
on Information and Systems, vol. 97, no. 5, pp. 1039–1048, 2014.

[226] D. Bush and A. Finkelsteiin, “Environmental scenarios and requirements stabil-
ity,” in International Workshop on Principles of Software Evolution. ACM, 2002,
Conference Proceedings, pp. 133–137.

249

[227] D. Bush and A. Finkelsteiin, “Requirements stability assessment using scenarios,”
in 11th IEEE International Conference on Requirements Engineering (RE). IEEE
Computer Society, 2003, Conference Proceedings, p. 23.

[228] M. Brünink, “Autonomous compliance monitoring of non-functional properties,” in
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE). ACM, 2014, Conference Proceedings, pp. 795–798.

[229] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software architectures
based on systems theoretic stability,” Software: Practice and Experience, vol. 42,
no. 1, pp. 89–116, 2012.

[230] K. Sethi, C. Yuanfang, S. Wong, A. F. Garcia, and C. Sant’Anna, “From retrospect
to prospect: Assessing modularity and stability from software architecture,” in Joint
Working IEEE/IFIP Conference on Software Architecture & European Conference on
Software Architecture (WICSA/ECSA), 2009, Conference Proceedings, pp. 269–272.

[231] K. Farias, A. Garcia, and C. Lucena, “Effects of stability on model composition
effort: An exploratory study,” Software & Systems Modeling, vol. 13, no. 4, pp. 1473–
1494, 2014.

[232] J. Bansiya, Evaluating Structural and Functional Stability. John Wiley & Sons,
Inc., 1999, pp. 599–616.

[233] J. Bansiya, “Evaluating framework architecture structural stability,” ACM Com-
puting Surveys, vol. 32, no. 1es, p. 18, 2000.

[234] M. Mattsson and J. Bosch, “Characterizing stability in evolving frameworks,”
in Technology of Object-Oriented Languages and Systems. TOOLS 29 (Cat.
No.PR00275), 1999, Conference Proceedings, pp. 118–130.

[235] M. Mattsson and J. Bosch, “Stability assessment of evolving industrial object-
oriented frameworks,” Journal of Software Maintenance, vol. 12, no. 2, pp. 79–102,
2000.

[236] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting the probability
of change in object-oriented systems,” IEEE Transactions on Software Engineering,
vol. 31, no. 7, pp. 601–614, 2005.

[237] M. Alshayeb and W. Li, “An empirical study of system design instability metric
and design evolution in an agile software process,” Journal of Systems and Software,
vol. 74, no. 3, pp. 269–274, 2005.

[238] M. Alshayeb, M. Naji, M. O. Elish, and J. Al-Ghamdi, “Towards measuring object-
oriented class stability,” IET Software, vol. 5, no. 4, pp. 415–424, 2011.

[239] H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, “Assessing design instability
in iterative (agile) object-oriented projects,” Journal of Software Maintenance and
Evolution, vol. 18, no. 4, pp. 237–266, 2006.

250

[240] D. Azar and J. Vybihal, “An ant colony optimization algorithm to improve soft-
ware quality prediction models: Case of class stability,” Information and Software
Technology, vol. 53, no. 4, pp. 388–393, 2011.

[241] M. Alshayeb, “The impact of refactoring on class and architecture stability,” Journal
of Research and Practice in Information Technology, vol. 43, no. 4, pp. 269–284, 2011.

[242] E. Figueiredo, B. Silva, C. Sant’Anna, A. Garcia, J. Whittle, and D. Nunes, “Cross-
cutting patterns and design stability: An exploratory analysis,” in IEEE 17th Interna-
tional Conference on Program Comprehension (ICPC), 2009, Conference Proceedings,
pp. 138–147.

[243] J. M. Conejero, E. Figueiredo, A. F. Garcia, J. Hernández, and E. Jurado, Early
Crosscutting Metrics as Predictors of Software Instability, ser. Lecture Notes in Busi-
ness Information Processing. Springer Berlin Heidelberg, 2009, vol. 33, book section 9,
pp. 136–156.

[244] M. Elish, “Do structural design patterns promote design stability?” in 30th Annual
International Computer Software and Applications Conference (COMPSAC), vol. 1,
2006, Conference Proceedings, pp. 215–220.

[245] M. Alshayeb, “On the relationship of class stability and maintainability,” IET Soft-
ware, vol. 7, no. 6, pp. 339–347, 2013.

[246] A. Baqais, M. Amro, and M. Alshayeb, “Analysis of the correlation between class
stability and maintainability,” in 7th International Conference on Computer Science
and Information Technology (CSIT), 2016, Conference Proceedings, pp. 1–4.

[247] M. E. Fayad and A. Altman, “An introduction to software stability,” Communica-
tions of the ACM, vol. 44, no. 9, p. 95, 2001.

[248] M. E. Fayad, “Accomplishing software stability,” Communications of the ACM,
vol. 45, no. 1, pp. 111–115, 2002.

[249] M. E. Fayad, “How to deal with software stability,” Communications of the ACM,
vol. 45, no. 4, pp. 109–112, 2002.

[250] M. Cline and M. Girou, “Enduring business themes,” Communications of the ACM,
vol. 43, no. 5, pp. 101–106, 2000.

[251] C. C. Chiang, “Software stability in software reengineering,” in IEEE International
Conference on Information Reuse and Integration, 2007, Conference Proceedings, pp.
719–723.

[252] A. Mahdy, M. E. Fayad, D. Hamza, and P. Tugnawat, “Stable and reusable model-
based architectures,” in Workshop on Model-based Software Reuse, co-located with 16th
European Conference on Object-Oriented Programming (ECOOP), A. Speck, E. Pul-
vermüller, M. Clauß, R. V. D. Straeten, and R. Reussner, Eds., 2002, Conference
Proceedings.

251

[253] M. E. Fayad, S. Wu, and M. Nabavi, “Stable model-based software reuse,” in
Workshop on Model-based Software Reuse, co-located with 16th European Conference
on Object-Oriented Programming (ECOOP), A. Speck, E. Pulvermüller, M. Clauß,
R. V. D. Straeten, and R. Reussner, Eds., 2002, Conference Proceedings.

[254] S. Wu, “Implementation method for business objects in software stability model-
ing,” in IEEE International Conference on Information Reuse and Integration, 2007,
Conference Proceedings, pp. 730–733.

[255] E. R. Naganathan and X. P. Eugene, “Software Stability Model (SSM) for building
reliable real time computing systems,” in 3rd IEEE International Conference on Secure
Software Integration and Reliability Improvement, 2009, Conference Proceedings, pp.
431–435.

[256] E. Yavari and M. E. Fayad, “A stable software model for mri visual analyzer,” in
Companion of the 18th annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications. ACM, 2013, Conference Proceed-
ings, pp. 324–325.

[257] M. E. Fayad and C. A. Flood, “Unified software engineering reuse (user) using
stable analysis, design and architectural patterns,” in Future Technologies Conference
(FTC), 2016, Conference Proceedings, pp. 706–711.

[258] H. S. Hamza and M. E. Fayad, “Model-based software reuse using stable analysis
patterns,” in Workshop on Model-based Software Reuse, co-located with 16th European
Conference on Object-Oriented Programming (ECOOP), A. Speck, E. Pulvermüller,
M. Clauß, R. V. D. Straeten, and R. Reussner, Eds., 2002, Conference Proceedings.

[259] H. S. Hamza, “Towards stable software analysis patterns,” in Companion of the
17th annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications. ACM, 2002, Conference Proceedings, pp. 110–111.

[260] M. E. Fayad and S. Das, “The visualization stable analysis pattern,” in IEEE In-
ternational Conference on Information Reuse and Integration, 2007, Conference Pro-
ceedings, pp. 701–706.

[261] M. E. Fayad and S. Das, “The classification stable analysis pattern,” in IEEE
International Conference on Information Reuse and Integration, 2007, Conference
Proceedings, pp. 707–712.

[262] M. E. Fayad, J. Rajagopalan, and A. Ranganath, “Anylog stable design pattern,” in
5th IEEE Workshop on Mobile Computing Systems and Applications, 2003, Conference
Proceedings, pp. 566–571.

[263] R. Goverdhana and M. E. Fayad, “Any transaction stable design pattern,” in IEEE
International Conference on Information Reuse and Integration (IRI), 2004, Confer-
ence Proceedings, pp. 54–59.

[264] M. E. Fayad and H. Kilaru, “AnyInformationHiding: a stable design pattern,” in
IEEE International Conference on Information Reuse and Integration (IRI), 2005,
Conference Proceedings, pp. 108–113.

252

[265] S. K. Singh and M. E. Fayad, “The AnyCorrectiveAction stable design pattern,”
in 17th Conference on Pattern Languages of Programs. ACM, 2010, Conference
Proceedings, pp. 1–20.

[266] M. E. Fayad and T. Sujatha, “The learning stable analysis pattern,” in IEEE In-
ternational Conference on Information Reuse and Integration (IRI), 2005, Conference
Proceedings, pp. 597–602.

[267] M. E. Fayad and C. A. Flood, “Using reputation stable analysis patterns as model
based software reuse,” in Future Technologies Conference (FTC), 2016, Conference
Proceedings, pp. 725–730.

[268] H. S. Hamza and M. E. Fayad, “Engineering and reusing stable atomic knowledge
(SAK) patterns,” in Companion of the 18th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. ACM, 2003,
Conference Proceedings, pp. 308–309.

[269] H. S. Hamza, A. Mahdy, M. E. Fayad, and M. Cline, Extracting Domain-Specific
and Domain-Neutral Patterns Using Software Stability Concepts, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2003, vol. 2817, book section 18,
pp. 191–201.

[270] A. M. Mahdy, H. S. Hamza, M. E. Fayad, and M. Cline, “Identifying domain
patterns using software stability,” in IEEE International Conference on Information
Reuse and Integration (IRI), 2004, Conference Proceedings, pp. 18–23.

[271] H. S. Hamza, “SODA: a stability-oriented domain analysis method,” in Compan-
ion to the 19th annual ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications. ACM, 2004, Conference Proceedings, pp.
220–221.

[272] H. S. Hamza, “Separation of concerns for evolving systems: a stability-driven ap-
proach,” SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[273] H. S. Hamza, “A semi-automated approach for analyzing, separating, and modeling
of concerns in evolving systems,” in Companion to the 20th annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications.
ACM, 2005, Conference Proceedings, pp. 220–221.

[274] P. E. Xavier and E. R. Naganathan, “Productivity improvement in software projects
using 2-dimensional Probabilistic sSoftware Stability Model (PSSM),” SIGSOFT Soft-
ware Engineering Notes, vol. 34, no. 5, pp. 1–3, 2009.

[275] E. R. Naganathan and P. E. Xavier, “Architecting autonomic computing systems
through Probabilistic Software Stability Model (PSSM),” in 2nd International Con-
ference on Interaction Sciences: Information Technology, Culture and Human. ACM,
2009, Conference Proceedings, pp. 643–648.

[276] D. Van Landuyt, S. Op de beeck, E. Truyen, and W. Joosen, “Domain-driven discov-
ery of stable abstractions for pointcut interfaces,” in 8th ACM international conference

253

on Aspect-oriented software development. ACM, 2009, Conference Proceedings, pp.
75–86.

[277] D. Van Landuyt, S. Op de beeck, E. Truyen, and W. Joosen, Domain-Driven Dis-
covery of Stable Abstractions for Pointcut Interfaces. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 1–52.

[278] D. Van Landuyt, E. Truyen, and W. Joosen, “Automating the discovery of stable
domain abstractions for reusable aspects,” in ICSE Workshop on Aspect-Oriented
Requirements Engineering and Architecture Design, 2009, Conference Proceedings,
pp. 1–7.

[279] C. Canal, J. Murillo, and P. Poizat, “Software adaptation,” L’Objet, vol. 12, no. 1,
p. 9–31, 2006.

[280] S. Becker, C. Canal, N. Diakov, J. M. Murillo, P. Poizat, and M. Tivoli, “Coordi-
nation and adaptation techniques: Bridging the gap between design and implementa-
tion,” in Object-Oriented Technology. ECOOP 2006 Workshop Reader: ECOOP 2006
Workshops, Nantes, France, July 3-7, 2006, Final Reports, M. Südholt and C. Consel,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 72–86.

[281] C. Canal and G. Salaün, Stability-Based Adaptation of Asynchronously Communi-
cating Software. Springer International Publishing, 2016, pp. 321–336.

[282] M. H. Samadzadeh and S. J. Khan, “Stability, coupling, and cohesion of object-
oriented software systems,” in 22nd Annual ACM Computer Science Conference on
Scaling up: Meeting the challenge of complexity in real-world computing applications.
ACM, 1994, Conference Proceedings, pp. 312–319.

[283] U. S. Poornima and V. Suma, An Investigation on Coupling and Cohesion as Con-
tributory Factors for Stable System Design and Hence the Influence on System Main-
tainability and Reusability. Springer International Publishing, 2015, pp. 645–650.

[284] D. Rapu, S. Ducasse, T. Girba, and R. Marinescu, “Using history information to
improve design flaws detection,” in 8th European Conference on Software Maintenance
and Reengineering (CSMR), 2004, Conference Proceedings, pp. 223–232.

[285] R. Vasa, J. G. Schneider, and O. Nierstrasz, “The inevitable stability of software
change,” in IEEE International Conference on Software Maintenance, 2007, Confer-
ence Proceedings, pp. 4–13.

[286] F. A. Fontana and S. Maggioni, “Metrics and antipatterns for software quality eval-
uation,” in IEEE 34th Software Engineering Workshop, 2011, Conference Proceedings,
pp. 48–56.

[287] R. C. Martin, Agile software development: principles, patterns, and practices. New
Jersey: Prentice Hall, 2002.

[288] J. Chow and E. Tempero, “Stability of Java interfaces: a preliminary investigation,”
in 2nd International Workshop on Emerging Trends in Software Metrics. ACM, 2011,
Conference Proceedings, pp. 38–44.

254

[289] S. Jenkins and S. R. Kirk, “Software architecture graphs as complex networks: A
novel partitioning scheme to measure stability and evolution,” Information Sciences,
vol. 177, no. 12, pp. 2587–2601, 2007.

[290] J. Ruohonen, S. Hyrynsalmi, and V. Leppänen, “Exploring the stability of software
with time-series cross-sectional data,” in 2nd International Workshop on Software
Architecture and Metrics. IEEE Press, 2015, Conference Proceedings, pp. 41–47.

[291] M. Alenezi and F. Khellah, “Evolution impact on architecture stability in open-
source projects,” International Journal of Cloud Applications and Computing, vol. 5,
no. 4, pp. 24–35, 2015.

[292] A. AbuHassan and M. Alshayeb, “A metrics suite for UML model stability,” Soft-
ware & Systems Modeling, 2016.

[293] S. A. Tonu, A. Ashkan, and L. Tahvildari, “Evaluating architectural stability using
a metric-based approach,” in 10th European Conference on Software Maintenance and
Reengineering (CSMR), 2006, Conference Proceedings, pp. 10 pp.–270.

[294] L. Aversano, M. Molfetta, and M. Tortorella, “Evaluating architecture stability of
software projects,” in 20th Working Conference on Reverse Engineering (WCRE),
2013, Conference Proceedings, pp. 417–424.

[295] F. Handani and S. Rochimah, “Relationship between features volatility and software
architecture design stability in object-oriented software: Preliminary analysis,” in In-
ternational Conference on Information Technology Systems and Innovation (ICITSI),
2015, Conference Proceedings, pp. 1–5.

[296] E. Figueiredo, I. Galvao, S. S. Khan, A. F. Garcia, C. Sant’Anna, A. Pimentel,
A. L. Medeiros, L. Fernandes, T. V. Batista, R. Ribeiro, P. van den Broek, M. Ak-
sit, S. Zschaler, and A. Moreira, “Detecting architecture instabilities with concern
traces: An exploratory study,” in Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture (WICSA/ECSA), 2009,
Conference Proceedings, pp. 261–264.

[297] A. L. Medeiros, E. Figueiredo, I. Galvao, A. F. Garcia, T. V. Batista, and
C. Sant’Anna, “Concern-based assessment of architectural stability: A comparative
study,” in 4th Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS), 2010, Conference Proceedings, pp. 130–139.

[298] R. L. Nord, I. Ozkaya, R. S. Sangwan, and R. J. Koontz, “Architectural dependency
analysis to understand rework costs for safety-critical systems,” in Companion Pro-
ceedings of 36th International Conference on Software Engineering (ICSE). ACM,
2014, Conference Proceedings, pp. 185–194.

[299] E. Constantinou and I. Stamelos, “Identifying evolution patterns: A metrics-based
approach for external library reuse,” Software: Practice and Experience, vol. 47, no. 7,
pp. 1027–1039, 2017.

255

[300] M. Mirakhorli and J. Cleland-Huang, “Modifications, tweaks, and bug fixes in ar-
chitectural tactics,” in IEEE/ACM 12th Working Conference on Mining Software
Repositories, 2015, Conference Proceedings, pp. 377–380.

[301] S. Rafiliu, P. Eles, and Z. Peng, “Stability conditions of on-line resource managers
for systems with execution time variations,” in 23rd Euromicro Conference on Real-
Time Systems, 2011, Conference Proceedings, pp. 151–161.

[302] S. Rafiliu, P. Eles, and Z. Peng, “Stability of adaptive feedback-based resource
managers for systems with execution time variations,” Real-Time Systems, vol. 49,
no. 3, pp. 367–400, 2013.

[303] J. Porter, G. Hemingway, N. Kottenstette, G. Karsai, and J. Sztipanovits, “Online
stability validation using sector analysis,” in 10th ACM international conference on
Embedded software. ACM, 2010, Conference Proceedings, pp. 29–38.

[304] G. Zames, “On the input-output stability of time-varying nonlinear feedback
systems–part ii: Conditions involving circles in the frequency plane and sector non-
linearities,” IEEE Transactions on Automatic Control, vol. 11, no. 3, pp. 465–476,
1966.

[305] T. Weis and A. Wacker, “Self-stabilizing embedded systems,” in Workshop on Or-
ganic computing. ACM, 2011, Conference Proceedings, pp. 59–66.

[306] J. Heo and T. Abdelzaher, “Adaptguard: guarding adaptive systems from instabil-
ity,” in 6th international conference on Autonomic computing. ACM, 2009, Confer-
ence Proceedings, pp. 77–86.

[307] S. Yerramalla, B. Cukic, M. Mladenovski, and E. Fuller, “Stability monitoring and
analysis of learning in an adaptive system,” in International Conference on Dependable
Systems and Networks (DSN), 2005, Conference Proceedings, pp. 70–79.

[308] G. Mencagli and M. Vanneschi, “QoS-control of structured parallel computations:
A predictive control approach,” in IEEE 3rd International Conference on Cloud Com-
puting Technology and Science, 2011, Conference Proceedings, pp. 296–303.

[309] G. Mencagli, M. Vanneschi, and E. Vespa, “A cooperative predictive control ap-
proach to improve the reconfiguration stability of adaptive distributed parallel appli-
cations,” ACM Transactions on Autonomous and Adaptive Systems, vol. 9, no. 1, pp.
1–27, 2014.

[310] G. Mencagli and M. Vanneschi, “Analysis of control-theoretic predictive strategies
for the adaptation of distributed parallel computations,” in 1st ACM workshop on
Optimization techniques for resources management in clouds. ACM, 2013, Conference
Proceedings, pp. 33–40.

[311] G. Mencagli, M. Vanneschi, and E. Vespa, “Control-theoretic adaptation strategies
for autonomic reconfigurable parallel applications on cloud environments,” in Inter-
national Conference on High Performance Computing & Simulation (HPCS), 2013,
Conference Proceedings, pp. 11–18.

256

[312] N. Khakpour, R. Khosravi, M. Sirjani, and S. Jalili, “Formal analysis of policy-
based self-adaptive systems,” in ACM Symposium on Applied Computing. ACM,
2010, Conference Proceedings, pp. 2536–2543.

[313] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks, “A case study in eliciting
scalability requirements,” in 16th IEEE International Requirements Engineering (RE),
2008, pp. 247–252.

[314] C. F. Kemerer and S. Slaughter, “An empirical approach to studying software evo-
lution,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 493–509,
1999.

[315] C. Del Rosso, “Continuous evolution through software architecture evaluation: A
case study,” Journal of Software Maintenance and Evolution: Research and Practice,
vol. 18, no. 5, pp. 351–383, 2006.

[316] E. Y. Nakagawa, E. P. M. de Sousa, K. d. B. Murata, G. d. F. Andery, L. B.
Morelli, and J. C. Maldonado, “Software architecture relevance in open source software
evolution: A case study,” in 32nd Annual IEEE International Computer Software and
Applications Conference (COMPSAC), 2008, pp. 1234–1239.

[317] D. L. Parnas, “Designing software for ease of extension and contraction,” IEEE
Transactions on Software Engineering, vol. SE-5, no. 2, pp. 128–138, 1979.

[318] B. W. Boehm and K. J. Sullivan, “Software economics: A roadmap,” in Conference
on The Future of Software Engineering, 2000, pp. 319 – 343.

[319] R. Kazman, L. Bass, M. Webb, and G. Abowd, “SAAM: a method for analyzing
the properties of software architectures,” in 16th International Conference on Software
Engineering (ICSE). IEEE Computer Society Press, 1994, pp. 81–90.

[320] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, “The
architecture tradeoff analysis method,” in 4th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS), 1998, pp. 68–78.

[321] M. Barbacci, P. Feiler, M. Klein, H. Lipson, T. Longstaff, C. Weinstock, and
S. Carriere, “Steps in an architecture tradeoff analysis method: Quality attribute
models and analysis,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, Technical Report CMU/SEI-97-TR-029, 1998. [Online].
Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12927

[322] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits of archi-
tectural decisions,” in 23rd International Conference on Software Engineering (ICSE),
2001, pp. 297–306.

[323] R. Nord, M. Barbacci, P. Clements, R. Kazman, M. Klein, L. O’Brien, and
J. Tomayko, “Integrating the Architecture Tradeoff Analysis Method (ATAM)
with the Cost Benefit Analysis Method (CBAM),” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, Technical Report CMU/SEI-2003-
TN-038, 2003. [Online]. Available: http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=6557

257

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12927
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6557
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6557

[324] J. Magee, J. Kramer, and D. Giannakopoulou, “Behaviour analysis of software archi-
tectures,” in Software Architecture: TC2 First Working IFIP Conference on Software
Architecture (WICSA1) 22–24 February 1999, San Antonio, Texas, USA, P. Donohoe,
Ed. Boston, MA: Springer US, 1999, pp. 35–49.

[325] P. B. Kruchten, “The 4+1 view model of architecture,” IEEE Software, vol. 12,
no. 6, pp. 42–50, 1995.

[326] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke, “View-
points: A framework for integrating multiple perspectives in system development,”
International Journal of Software Engineering and Knowledge Engineering, vol. 2,
no. 01, pp. 31–57, 1992.

[327] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based analysis of soft-
ware architecture,” IEEE Software, vol. 13, no. 6, pp. 47–55, 1996.

[328] J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, and R. Ven-
tura, “Incorporating architecture-based self-adaptation into an adaptive industrial
software system,” Journal of Systems and Software, vol. 122, pp. 507–523, 2016.

[329] J. Kramer and J. Magee, “Self-managed systems: An architectural challenge,” in
Future of Software Engineering (FOSE), 2007, pp. 259–268.

[330] P. Clements, “Active reviews for intermediate designs,” Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA, USA, Technical Report CMU/SEI-
2000-TN-009, 2000.

[331] M. Klein and R. Kazman, “Attribute-based architectural styles,” Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA, USA, Technical Report
CMU/SEI-99-TR-022, 1999.

[332] P. O. Bengtsson and J. Bosch, “Scenario-based software architecture reengineering,”
in 5th International Conference on Software Reuse. IEEE Computer Society, 1998,
p. 308.

[333] I. Ozkaya, R. Kazman, and M. Klein, “Quality-attribute-based economic valuation
of architectural patterns,” Software Engineering Institute, Carnegie Mellon University,
Technical Report CMU/SEI-2007-TR-003, 2007.

[334] P. Pelliccione, P. Inverardi, and H. Muccini, “CHARMY: a framework for designing
and verifying architectural specifications,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 3, pp. 325–346, 2009.

[335] J. Cámara, R. de Lemos, M. Vieira, R. Almeida, and R. Ventura, “Architecture-
based resilience evaluation for self-adaptive systems,” Computing, vol. 95, no. 8, pp.
689–722, 2013.

[336] J. Cámara, R. de Lemos, C. Ghezzi, and A. Lopes, Assurances for self-adaptive
systems : Principles, models, and techniques, J. Cámara, R. de Lemos, C. Ghezzi,
and A. Lopes, Eds. Berlin New York: Springer, 2013.

258

[337] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira, “Robustness
evaluation of controllers in self-adaptive software systems,” in 6th Latin-American
Symposium on Dependable Computing, 2013, pp. 1–10.

[338] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira, “Testing the
robustness of controllers for self-adaptive systems,” Journal of the Brazilian Computer
Society, vol. 20, no. 1, pp. 1–14, 2014.

[339] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Quantifying resiliency of IaaS
cloud,” in 29th IEEE Symposium on Reliable Distributed Systems, 2010, pp. 343–347.

[340] A. Gorbenko, V. Kharchenko, O. Tarasyuk, Y. Chen, and A. Romanovsky, “The
threat of uncertainty in service-oriented architecture,” in RISE/EFTS Joint Interna-
tional Workshop on Software Engineering for Resilient Systems. ACM, 2008, pp.
49–54.

[341] A. Gorbenko, V. Kharchenko, S. Mamutov, O. Tarasyuk, Y. Chen, and A. Ro-
manovsky, “Real distribution of response time instability in service-oriented architec-
ture,” in 29th IEEE Symposium on Reliable Distributed Systems, 2010, pp. 92–99.

[342] J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Modeling dimensions of
self-adaptive software systems,” in Software Engineering for Self-Adaptive Systems,
ser. Lecture Notes in Computer Science, B. H. C. Cheng, R. de Lemos, H. Giese,
P. Inverardi, and J. Magee, Eds. Springer Berlin Heidelberg, 2009, vol. 5525, pp.
27–47.

[343] K. Kanoun and L. Spainhower, Dependability Benchmarking for Computer Systems.
Wiley-IEEE Computer Society Pr, 2008.

[344] T. Keuler, D. Muthig, and T. Uchida, “Efficient quality impact analyses for itera-
tive architecture construction,” in 7th Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2008, pp. 19–28.

[345] M. Neil, M. Tailor, D. Marquez, N. E. Fenton, and P. Hearty, “Modelling dependable
systems using hybrid bayesian networks,” Reliability Engineering & System Safety,
vol. 93, no. 7, pp. 933–939, 2008.

[346] D. Marquez, M. Neil, and N. E. Fenton, “A new bayesian network approach to relia-
bility modelling,” in 5th International Mathematical Methods in Reliability Conference
(MMR), 2007.

[347] A. Bobbio, D. Codetta-Raiteri, S. Montani, and L. Portinale, “Reliability analysis
of systems with dynamic dependencies,” in Bayesian Networks. John Wiley & Sons,
Ltd, 2008, pp. 225–238.

[348] R. Roshandel, N. Medvidovic, and L. Golubchik, “A bayesian model for predicting
reliability of software systems at the architectural level,” in Quality of Software Ar-
chitectures 3rd International Conference on Software Architectures, Components, and
Applications (QoSA). Springer-Verlag, 2007, pp. 108–126.

259

[349] P. O. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-Level Mod-
ifiability Analysis (ALMA),” Journal of Systems and Software, vol. 69, no. 1-2, pp.
129–147, 2004.

[350] L. Bass, J. Ivers, M. Klein, P. Merson, and K. Wallnau, “Encapsulating quality
attribute knowledge,” in 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2005, pp. 193–194.

[351] J. Cámara, G. A. Moreno, and D. Garlan, “Stochastic game analysis and latency
awareness for proactive self-adaptation,” in 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). ACM, 2014, pp.
155–164.

[352] J. A. Stankovic, H. Tian, T. Abdelzaher, M. Marley, T. Gang, S. Sang, and
L. Chenyang, “Feedback control scheduling in distributed real-time systems,” in 22nd
IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420), 2001, pp.
59–70.

[353] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A multi-model framework
to implement self-managing control systems for QoS management,” in 6th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). ACM, 2011, pp. 218–227.

[354] J. L. Hellerstein, S. Singhal, and Q. Wang, “Research challenges in control engineer-
ing of computing systems,” IEEE Transactions on Network and Service Management,
vol. 6, no. 4, pp. 206–211, 2009.

[355] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch, “Sustainability in software
engineering: A systematic literature review,” in 16th International Conference on
Evaluation & Assessment in Software Engineering (EASE), 2012, pp. 32–41.

[356] B. Penzenstadler, A. Raturi, D. Richardson, C. Calero, H. Femmer, and X. Franch,
“Systematic mapping study on software engineering for sustainability (se4s),” in 18th
International Conference on Evaluation and Assessment in Software Engineering.
ACM, 2014, pp. 1–14.

[357] N. J. E. Wolfram, P. Lago, and F. Osborne, “Sustainability in software
engineering,” VU University Amsterdam, Report, 2017. [Online]. Available:
https://research.vu.nl/en/publications/c0b3f46f-58d0-400a-a345-8b55e53a72a1

[358] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software maintain-
ability prediction and metrics,” in 3rd International Symposium on Empirical Software
Engineering and Measurement, 2009, pp. 367–377.

[359] F. Febrero, C. Calero, and M. A. Moraga, “A systematic mapping study of software
reliability modeling,” Journal Information and Software Technology, vol. 56, no. 8,
pp. 839–849, 2014.

[360] C. W. Krueger, “Software reuse,” ACM Computing Surveys, vol. 24, no. 2, pp.
131–183, 1992.

260

https://research.vu.nl/en/publications/c0b3f46f-58d0-400a-a345-8b55e53a72a1

[361] M. Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25, no. 1, pp.
45–67, 1993.

[362] H. P. Breivold, I. Crnkovicb, and M. Larsson, “A systematic review of software ar-
chitecture evolution research,” Journal Information and Software Technology, vol. 54,
no. 1, pp. 16–40, 2012.

[363] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl, “A framework for classifying
and comparing architecture-centric software evolution research,” in 17th European
Conference on Software Maintenance and Reengineering, 2013, pp. 305–314.

[364] M. Shaw and P. Clements, “The golden age of software architectures: A comprehen-
sive survey,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, USA, Technical Report CMU-ISRI-06-101, 2006.

[365] M. A. Babar and I. Gorton, “Software architecture review: The state of practice,”
Computer, vol. 42, no. 7, pp. 26–32, 2009.

[366] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya, “Software archi-
tecture optimization methods: A systematic literature review,” IEEE Transactions
on Software Engineering, vol. 39, no. 5, pp. 658–683, 2013.

[367] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture design
rationale,” Journal of Systems and Software, vol. 79, no. 12, pp. 1792–1804, 2006.

[368] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques
for software architecture design: A comparative survey,” ACM Computing Surveys,
vol. 43, no. 4, pp. 1–28, 2011.

[369] L. Dobrica and E. Niemela, “A survey on software architecture analysis methods,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 638–653, 2002.

[370] A. Patidar and U. Suman, “A survey on software architecture evaluation methods,”
in 2nd International Conference on Computing for Sustainable Global Development
(INDIACom), 2015, pp. 967–972.

[371] S. Mahdavi-Hezavehi, V. H. S. Durelli, D. Weyns, and P. Avgeriou, “A systematic
literature review on methods that handle multiple quality attributes in architecture-
based self-adaptive systems,” Information and Software Technology, vol. 90, no. Sup-
plement C, pp. 1–26, 2017.

[372] L. de Silva and D. Balasubramaniam, “Controlling software architecture erosion: A
survey,” Journal of Systems and Software, vol. 85, no. 1, pp. 132–151, 2012.

[373] L. Hochstein and M. Lindvall, “Combating architectural degeneration: a survey,”
Information and Software Technology, vol. 47, no. 10, pp. 643–656, 2005.

[374] M. Riaz, M. Sulayman, and H. Naqvi, “Architectural decay during continuous soft-
ware evolution and impact of ’design for change’ on software architecture,” in Advances
in Software Engineering: International Conference on Advanced Software Engineering
and Its Applications, ASEA 2009 Held as Part of the Future Generation Information

261

Technology Conference, FGIT 2009, Jeju Island, Korea, December 10-12, 2009. Pro-
ceedings, D. Slezak, T. Kim, A. Kiumi, T. Jiang, J. Verner, and S. Abrahão, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 119–126.

[375] A. Immonen and E. Niemela, “Survey of reliability and availability prediction meth-
ods from the viewpoint of software architecture,” Journal Software and Systems Mod-
eling, vol. 7, no. 1, pp. 49–65, 2008.

[376] H. Koziolek, “Sustainability evaluation of software architectures: A systematic re-
view,” in Joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium –
ISARCS on Quality of software architectures – QoSA and architecting critical systems
– ISARCS. ACM, pp. 3–12.

[377] K. S. Barber, T. Graser, J. Holt, and G. Baker, “Arcade: early dynamic property
evaluation of requirements using partitioned software architecture models,” Require-
ments Engineering, vol. 8, no. 4, pp. 222–235, 2003.

[378] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional requirements in
architectural decision making,” IEEE Software, vol. 30, no. 2, pp. 61–67, 2013.

[379] K. Angelopoulos, V. E. S. Souza, and J. Pimentel, “Requirements and architec-
tural approaches to adaptive software systems: A comparative study,” in 8th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2013, pp. 23–32.

[380] R. Chitchyan, C. Becker, S. Betz, L. Duboc, B. Penzenstadler, N. Seyff, and
C. C. Venters, “Sustainability design in requirements engineering: State of practice,”
in IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), 2016, pp. 533–542.

[381] A. van Lamsweerde, “Requirements engineering in the year 00: A research perspec-
tive,” in 22nd International Conference on Software Engineering (ICSE). 337184:
ACM, 2000, pp. 5–19.

[382] E. Letier and A. van Lamsweerde, “Agent-based tactics for goal-oriented require-
ments elaboration,” in 24th International Conference on Software Engineering (ICSE).
ACM, 2002, pp. 83–93.

[383] T. Becker, A. Agne, P. R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, A. Keller,
A. Chandra, A. R. Jensenius, and S. C. Stilkerich, “Epics: Engineering proprioception
in computing systems,” in IEEE 15th International Conference on Computational
Science and Engineering (CSE), 2012, pp. 353–360.

[384] B. Nuseibeh, “Weaving together requirements and architectures,” Computer, vol. 34,
no. 3, pp. 115–119, 2001.

[385] W. Emmerich, “Distributed component technologies and their software engineering
implications,” in 24th International Conference on Software Engineering (ICSE), 2002,
pp. 537–546.

262

[386] A. Borgida, F. Dalpiaz, J. Horkoff, and J. Mylopoulos, “Requirements models for
design- and runtime: A position paper,” in 5th International Workshop on Modeling
in Software Engineering (MiSE), 2013, pp. 62–68.

[387] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information value in
software requirements and architecture,” in 36th International Conference on Software
Engineering. ACM, 2014, pp. 883–894.

[388] B. Williams and J. Carver, “Characterizing software architecture changes: A sys-
tematic review,” Journal Information and Software Technology, vol. 52, no. 1, pp.
31–51, 2010.

[389] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier, “Requirements
reflection: requirements as runtime entities,” in ACM/IEEE 32nd International Con-
ference on Software Engineering, vol. 2, 2010, pp. 199–202.

[390] K. Welsh, N. Bencomo, P. Sawyer, and J. Whittle, “Self-explanation in adaptive
systems based on runtime goal-based models,” in Transactions on Computational Col-
lective Intelligence XVI, ser. Lecture Notes in Computer Science, R. Kowalczyk and
N. T. Nguyen, Eds. Springer Berlin Heidelberg, 2014, book section 5, pp. 122–145.

[391] B. Chen, X. Peng, Y. Yu, and W. Zhao, “Uncertainty handling in goal-driven self-
optimization – limiting the negative effect on adaptation,” Journal of Systems and
Software, vol. 90, no. 0, pp. 114–127, 2014.

[392] N. Esfahani and S. Malek, “Uncertainty in self-adaptive software systems,” in Soft-
ware Engineering for Self-Adaptive Systems II, ser. Lecture Notes in Computer Sci-
ence, R. de Lemos, H. Giese, H. A. Müller, and M. Shaw, Eds. Springer Berlin
Heidelberg, 2013, vol. 7475, pp. 214–238.

[393] I. Meedeniya, I. Moser, A. Aleti, and L. Grunske, “Architecture-based reliability
evaluation under uncertainty,” in Joint ACM SIGSOFT conference – QoSA and ACM
SIGSOFT symposium – ISARCS on Quality of software architectures – QoSA and
architecting critical systems – ISARCS. ACM, 2011, pp. 85–94.

[394] K. D. Evensen, “Reducing uncertainty in architectural decisions with aadl,” in 44th
Hawaii International Conference on System Sciences (HICSS), 2011, pp. 1–9.

[395] O. Celiku, D. Garlan, and B. Schmerl, “Augmenting architectural modeling to cope
with uncertainty,” in International Workshop on Living with Uncertainties (IWLU),
co-located with 22nd International Conference on Automated Software Engineering
(ASE), 2007.

[396] G. Brataas and P. Hughes, “Exploring architectural scalability,” SIGSOFT Software
Engineering Notes, vol. 29, no. 1, pp. 125–129, 2004.

[397] L. Duboc, D. Rosenblum, and T. Wicks, “A framework for characterization and
analysis of software system scalability,” in 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, 2007, pp. 375–384.

263

[398] G. Buchgeher and R. Weinreich, “An approach for combining model-based and
scenario-based software architecture analysis,” in 5th International Conference on
Software Engineering Advances (ICSEA), 2010, pp. 141–148.

[399] J. Zhao, H. Yang, L. Xiang, and B. Xu, “Change impact analysis to support ar-
chitectural evolution,” Journal of Software Maintenance, vol. 14, no. 5, pp. 317–333,
2002.

[400] F. Tie and J. I. Maletic, “Applying dynamic change impact analysis in component-
based architecture design,” in 7th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
2006, pp. 43–48.

[401] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud archi-
tectures to enable cross-federation,” in IEEE 3rd International Conference on Cloud
Computing (CLOUD), 2010, pp. 337–345.

[402] A. Koziolek, Q. Noorshams, and R. Reussner, “Focussing multi-objective software
architecture optimization using quality of service bounds,” in Models in Software En-
gineering, ser. Lecture Notes in Computer Science, J. Dingel and A. Solberg, Eds.
Springer Berlin Heidelberg, 2011, vol. 6627, pp. 384–399.

[403] A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx: automated application of
tactics in multi-objective software architecture optimization,” in Joint ACM SIGSOFT
conference – QoSA and ACM SIGSOFT symposium – ISARCS on Quality of software
architectures – QoSA and architecting critical systems – ISARCS (QoSA-ISARCS),
I. Crnkovic, J. A. Stafford, D. Petriu, J. Happe, and P. Inverardi, Eds. ACM, 2011,
pp. 33–42.

[404] R. Laddaga, “Creating robust software through self-adaptation,” IEEE Intelligent
Systems and their Applications, vol. 14, no. 3, pp. 26–29, 1999.

[405] J. C. Georgas, “Knowledge-based architectural adaptation management for self-
adaptive systems,” in 27th International Conference on Software Engineering. ACM,
2005, pp. 658–658.

[406] B. A. Caprarescu, “Robustness and scalability: a dual challenge for autonomic archi-
tectures,” in 4th European Conference on Software Architecture: Companion Volume.
ACM, 2010, pp. 22–26.

[407] M. E. Shin, “Self-healing components in robust software architecture for concurrent
and distributed systems,” Science of Computer Programming, vol. 57, no. 1, pp. 27–44,
2005.

[408] A. P. Engelbrecht, Computational intelligence: An introduction. Chichester: J.
Wiley & Sons, 2002.

[409] P. R. Lewis, Computational Self-awareness and Learning Machines. London, UK:
Imperial College Press, 2014, pp. 267–280.

264

[410] M. Leucker and C. Schallhart, “A brief account of runtime verification,” The Journal
of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.

[411] Y. Falcone, J. C. Fernandez, and L. Mounier, “Runtime verification of safety-
progress properties,” in Runtime Verification: 9th International Workshop, RV 2009,
Grenoble, France, June 26-28, 2009, Selected Papers, S. Bensalem and D. A. Peled,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 40–59.

[412] G. Chatzikonstantinou and K. Kontogiannis, “Run-time requirements verification
for reconfigurable systems,” Information and Software Technology, vol. 75, pp. 105–
121, 2016.

[413] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-adaptive soft-
ware needs quantitative verification at runtime,” Communications of the ACM, vol. 55,
no. 9, pp. 69–77, 2012.

[414] R. Calinescu, M. Autili, J. Cámara, A. Di Marco, S. Gerasimou, P. Inverardi, A. Pe-
rucci, N. Jansen, J. P. Katoen, M. Kwiatkowska, and et. al., “Synthesis and verification
of self-aware computing systems,” in Self-Aware Computing Systems. Springer, 2017,
pp. 337–373.

[415] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adaptive software:
Continuous assurance of non-functional requirements,” Formal Aspects of Computing,
vol. 24, no. 2, pp. 163–186, 2012.

[416] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient probabilistic model
checking,” in 33rd International Conference on Software Engineering. ACM, 2011,
pp. 341–350.

[417] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime software
evolution,” in 20th International Conference on Software Engineering. IEEE Com-
puter Society, 1998, pp. 177–186.

[418] R. L. Nord, I. Ozkaya, H. Koziolek, and P. Avgeriou, “Quantifying software archi-
tecture quality: Report on the First International Workshop on Software Architecture
Metrics,” SIGSOFT Software Engineering Notes, vol. 39, no. 5, pp. 32–34, 2014.

[419] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Applying empirical soft-
ware engineering to software architecture: challenges and lessons learned,” Empirical
Software Engineering, vol. 15, no. 3, pp. 250–276, 2010.

[420] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic survey on the
design of self-adaptive software systems using control engineering approaches,” in 7th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2012, pp. 33–42.

[421] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos, A. B.
Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava, S. Mis-
ailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma, and

265

T. Vogel, “Software engineering meets control theory,” in 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE Press, 2015, pp. 71–82.

[422] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC/IEEE 42010 – Systems and software engineering
– Architecture description,” ISO/IEC, Report ISO/IEC/IEEE 42010:2011(E), 2011.

[423] B. Tekinerdogan and H. Sozer, “Variability viewpoint for introducing variability
in software architecture viewpoints,” in WICSA/ECSA Companion Volume. ACM,
2012, pp. 163–166.

[424] H. Koning and H. van Vliet, “A method for defining IEEE Std 1471 viewpoints,”
Journal of Systems and Software, vol. 79, no. 1, pp. 120–131, 2006.

[425] G. Qing and P. Lago, “On service-oriented architectural concerns and viewpoints,”
in Joint Working IEEE/IFIP Conference on Software Architecture & European Con-
ference on Software Architecture (WICSA/ECSA), 2009, pp. 289–292.

[426] P. Kruchten, R. Capilla, and J. C. Dueas, “The decision view’s role in software
architecture practice,” IEEE Software, vol. 26, no. 2, pp. 36–42, 2009.

[427] R. Kazman and L. Bass, “Toward deriving software architectures from quality at-
tributes,” Software Engineering Institute, Carnegie Mellon University, Technical Re-
port CMU/SEI-94-TR-010, 1994.

[428] P. Narman, M. Buschle, J. Konig, and P. Johnson, “Hybrid probabilistic relational
models for system quality analysis,” in 14th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), 2010, pp. 57–66.

[429] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC 9126-1 – Information technology – Software prod-
uct quality – Quality model,” ISO/IEC, Report ISO/IEC 9126-1:2001, 2000.

[430] T. Hall and N. E. Fenton, “Implementing effective software metrics programs,”
IEEE Software, vol. 14, no. 2, pp. 55–65, 1997.

[431] R. E. Park, W. B. Goethert, and W. A. Florac, “Goal-driven software measurement.
a guidebook,” Software Engineering Institute, Carnegie Mellon University, Report
Technical Report CMU/SEI-96-HB-002, 1996.

[432] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal question metric
(gqm) approach,” in Encyclopedia of Software Engineering. John Wiley & Sons, Inc.,
2002.

[433] C. Calero and M. Piattini, “Introduction to green in software engineering,” in Green
in Software Engineering, C. Calero and M. Piattini, Eds. Springer, 2015, pp. 3–27.

[434] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud computing
environments: Challenges, taxonomy, and survey,” ACM Computing Surveys, vol. 47,
no. 1, pp. 1–47, 2014.

266

[435] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy of uncertainty
for dynamically adaptive systems,” in 7th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS). IEEE Press, 2012, pp.
99–108.

[436] A. Darwiche, Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, 2009.

[437] C. P. Robert, The Bayesian choice: from decision-theoretic foundations to compu-
tational implementation. Springer Science & Business Media, 2007.

[438] U. B. Kjaerulff and A. L. Madsen, Bayesian Networks and Influence Diagrams: A
guide to construction and analysis, ser. Information Science and Statistics. New York
London: Springer, 2008.

[439] N. Bencomo, A. Belaggoun, and V. Issarny, “Bayesian artificial intelligence for tack-
ling uncertainty in self-adaptive systems: The case of dynamic decision networks,” in
2nd International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE), 2013, pp. 7–13.

[440] R. E. Neapolitan, Learning Bayesian Networks. Pearson Prentice Hall, 2004.

[441] J. Pearl, “Graphical models, causality, and intervention,” Statistical Science, vol. 8,
no. 3, pp. 266–273, 1993.

[442] F. V. Jensen, Bayesian Networks and Decision Graphs. Springer-Verlag New York,
Inc., 2001.

[443] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artificial Intel-
ligence, vol. 29, no. 3, pp. 241–288, 1986.

[444] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., 1988.

[445] J. Q. Smith, Bayesian Decision Analysis: Principles and Practice. Cambridge
University Press, 2010.

[446] P. Lago, P. Avgeriou, and P. Kruchten, “Fifth international workshop on shar-
ing and reusing architectural knowledge (shark),” in ACM/IEEE 32nd International
Conference on Software Engineering (ICSE), vol. 2, 2010, pp. 437–438.

[447] F. V. Jensen, An Introduction to Bayesian Networks. London: UCL Press, 1996.

[448] C. Ghezzi and G. Tamburrelli, “Reasoning on non-functional requirements for in-
tegrated services,” in 17th IEEE International Requirements Engineering Conference
(RE), 2009, pp. 69–78.

[449] M. Hölzl and T. Gabor, “Reasoning and learning for awareness and adaptation,”
in Software Engineering for Collective Autonomic Systems: The ASCENS Approach,
M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, Eds. Springer International Publishing,
2015, pp. 249–290.

267

[450] H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low, “Research issues in symbiotic
simulation,” in Winter Simulation Conference (WSC), 2009, pp. 1213–1222.

[451] S. J. Turner, “Symbiotic simulation and its application to complex adaptive systems
(keynote),” in IEEE/ACM 15th International Symposium on Distributed Simulation
and Real Time Applications (DS-RT), 2011, pp. 3–3.

[452] B. Tjahjono and J. Xu, “Linking symbiotic simulation to enterprise systems: Frame-
work and applications,” in Winter Simulation Conference (WSC), 2015, pp. 823–834.

[453] IBM, “An architectural blueprint for autonomic computing,” Technical Report,
2003.

[454] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adap-
tive heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers,” Concurrency and Computation: Practice and Expe-
rience, vol. 24, no. 13, pp. 1397–1420, 2012.

[455] Amazon Web Services, Inc., “Amazon EC2 Instance Types,” accessed: 2017-10-01.
[Online]. Available: https://aws.amazon.com/ec2/instance-types/

[456] “Rice University Bidding System (RUBiS).” [Online]. Available: www.rubis.ow2.org

[457] M. Arlitt and T. Jin, “A workload characterization study of the 1998 World Cup
web site,” IEEE Network, vol. 14, no. 3, pp. 30–37, 2000.

[458] T. Chen and R. Bahsoon, “Symbiotic and sensitivity-aware architecture for globally-
optimal benefit in self-adaptive cloud,” in 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). ACM, 2014, pp.
85–94.

[459] A. Ekárt and S. Z. Neméth, “Stability analysis of tree structured decision functions,”
European Journal of Operational Research, vol. 160, no. 3, pp. 676–695, 2005.

[460] S. Parsons, R. Bahsoon, P. R. Lewis, and X. Yao, “Towards a better understanding
of self-awareness and self-expression within software systems,” University of Birming-
ham, School of Computer Science, Tech. Rep. CSR-11-03, April 2011.

[461] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos, “Runtime goal models:
Keynote,” in IEEE Seventh International Conference on Research Challenges in In-
formation Science (RCIS), 2013, pp. 1–11.

[462] F. J. Affonso and E. Y. Nakagawa, “A reference architecture based on reflection
for self-adaptive software,” in VII Brazilian Symposium on Software Components,
Architectures and Reuse, 2013, pp. 129–138.

[463] T. Nya, S. Stilkerich, P. R. Lewis, and X. Yao, “Self-aware and self-expressive
systems,” Awareness Magazine, 2014.

268

https://aws.amazon.com/ec2/instance-types/
www.rubis.ow2.org

[464] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, J. Tor-
resen, and X. Yao, “A survey of self-awareness and its application in computing sys-
tems,” in 5th IEEE Conference on Self-Adaptive and Self-Organizing Systems Work-
shops (SASOW), 2011, pp. 102–107.

[465] A. van Lamsweerde, Requirements Engineering: From system goals to UML models
to software specifications. Wiley, 2009.

[466] W. Heaven and E. Letier, “Simulating and optimising design decisions in quantita-
tive goal models,” in 19th IEEE International Requirements Engineering Conference
(RE), 2011, pp. 79–88.

[467] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos, “Aware-
ness requirements for adaptive systems,” in 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 2011, pp. 60–69.

[468] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” Computer, vol. 42,
no. 10, pp. 22–27, 2009.

[469] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Reconciling sys-
tem requirements and runtime behavior,” in 9th International Workshop on Software
Specification and Design, 1998, pp. 50–59.

[470] D. Garlan, “A 10-year perspective on software engineering self-adaptive systems
(keynote),” in 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). IEEE Press, 2013, pp. 2–2.

[471] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein, “Requirements-
aware systems: A research agenda for re for self-adaptive systems,” in 18th IEEE
International Requirements Engineering Conference (RE), 2010, pp. 95–103.

[472] S. Kim, K. Dae-Kyoo, L. Lunjin, and P. Soo-Yong, “A tactic-based approach to
embodying non-functional requirements into software architectures,” in 12th Interna-
tional IEEE Enterprise Distributed Object Computing Conference (EDOC), 2008, pp.
139–148.

[473] S. Kim, D.-K. Kim, L. Lu, and S. Park, “Quality-driven architecture development
using architectural tactics,” Journal of Systems and Software, vol. 82, no. 8, pp. 1211–
1231, 2009.

[474] F. Bachmann, L. Bass, and R. Nord, “Modifiability tactics,” Software Engineering
Institute, Carnegie Mellon University, Report Technical Report CMU/SEI-2007-TR-
002, 2007.

[475] R. Champagne and S. Gagne, “Towards automation of performance architectural
tactics application,” in 9th Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2011, pp. 157–160.

[476] A. Sanchez, A. Aguiar, L. S. Barbosa, and D. Riesco, “Analysing tactics in architec-
tural patterns,” in 35th Annual IEEE Software Engineering Workshop (SEW), 2011,
pp. 32–41.

269

[477] M. Mirakhorli, J. Carvalho, J. Cleland-Huang, and P. Mader, “A domain-centric
approach for recommending architectural tactics to satisfy quality concerns,” in 3rd
International Workshop on the Twin Peaks of Requirements and Architecture (Twin-
Peaks), 2013, pp. 1–8.

[478] D. Garlan, C. Shang-Wen, H. An-Cheng, B. Schmerl, and P. Steenkiste, “Rain-
bow: Architecture-based self-adaptation with reusable infrastructure,” IEEE Com-
puter, vol. 37, no. 10, pp. 46–54, 2004.

[479] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,
J. Andersson, H. Giese, and K. Goschka, “On patterns for decentralized control in self-
adaptive systems,” in Software Engineering for Self-Adaptive Systems II, ser. Lecture
Notes in Computer Science, R. de Lemos, H. Giese, H. Müller, and M. Shaw, Eds.
Springer Berlin Heidelberg, 2013, vol. 7475, book section 4, pp. 76–107.

[480] A. van Lamsweerde, “From system goals to software architecture,” in Formal Meth-
ods for Software Architectures, ser. Lecture Notes in Computer Science, M. Bernardo
and P. Inverardi, Eds. Springer Berlin Heidelberg, 2003, vol. 2804, book section 2,
pp. 25–43.

[481] E. Cavalcante, T. Batista, N. Bencomo, and P. Sawyer, “Revisiting goal-oriented
models for self-aware systems-of-systems,” in IEEE International Conference on Au-
tonomic Computing (ICAC), 2015, pp. 231–234.

[482] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and D. Hughes, “Goal-based
modeling of dynamically adaptive system requirements,” in 15th Annual IEEE Inter-
national Conference and Workshop on the Engineering of Computer Based Systems
(ECBS), 2008, pp. 36–45.

[483] M. Vrbaski, G. Mussbacher, D. Petriu, and D. Amyot, “Goal models as run-time
entities in context-aware systems,” in 7th Workshop on Models@run.time. ACM,
2012, pp. 3–8.

[484] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, 1992.

[485] P. Dayan and C. J. C. H. Watkins, “Reinforcement learning: A computational
perspective,” in Encyclopedia of Cognitive Science. John Wiley & Sons, Ltd, 2006.

[486] D. L. Poole and A. K. Mackworth, Artificial Intelligence: Foundations of Compu-
tational Agents. Cambridge University Press, 2010.

[487] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis, “Automatic verifi-
cation of competitive stochastic systems,” Formal Methods in System Design, vol. 43,
no. 1, pp. 61–92, 2013.

[488] M. Kwiatkowska, D. Parker, and C. Wiltsche, “Prism-games 2.0: A tool for multi-
objective strategy synthesis for stochastic games,” in Tools and Algorithms for the
Construction and Analysis of Systems: 22nd International Conference, TACAS 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software,

270

ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, M. Chechik
and J. F. Raskin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
560–566.

[489] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis, “Prism-games:
A model checker for stochastic multi-player games,” in Tools and Algorithms for the
Construction and Analysis of Systems: 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, N. Piterman and S. A.
Smolka, Eds. Springer Berlin Heidelberg, 2013, pp. 185–191.

[490] T. Chen and J. Lu, “Probabilistic alternating-time temporal logic and model check-
ing algorithm,” in 4th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), vol. 2, 2007, pp. 35–39.

[491] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal logic,”
Journal of the ACM (JACM), vol. 49, no. 5, pp. 672–713, 2002.

[492] A. Bianco and L. de Alfaro, “Model checking of probabilistic and nondeterministic
systems,” in Foundations of Software Technology and Theoretical Computer Science:
15th Conference Bangalore, India, December 18–20, 1995 Proceedings, P. S. Thiagara-
jan, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 499–513.

[493] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated verification
techniques for probabilistic systems,” in Formal Methods for Eternal Networked Soft-
ware Systems: 11th International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-
18, 2011. Advanced Lectures, M. Bernardo and V. Issarny, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 53–113.

[494] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based framework for engineer-
ing feature-oriented self-adaptive software systems,” IEEE Transactions on Software
Engineering, vol. 39, no. 11, pp. 1467–1493, 2013.

[495] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and K. Inoue, “Learning
revised models for planning in adaptive systems,” in International Conference on
Software Engineering (ICSE). IEEE Press, 2013, pp. 63–71.

[496] Z. Ding, Y. Zhou, and M. Zhou, “Modeling self-adaptive software systems with
learning petri nets,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 46, no. 4, pp. 483–498, 2016.

[497] D. Han, J. Xing, Q. Yang, J. Li, and H. Wang, “Handling uncertainty in self-
adaptive software using self-learning fuzzy neural network,” in IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), vol. 2, 2016, pp. 540–
545.

[498] K. Dongsun and P. Sooyong, “Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software,” in ICSE Workshop

271

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2009,
pp. 76–85.

[499] J. Teich, “From dynamic reconfiguration to self-reconfiguration: Invasive algorithms
and architectures,” in International Conference on Field-Programmable Technology
(FPT), 2009, pp. 11–12.

[500] R. Mirandola and P. Potena, “Self-adaptation of service based systems based on
cost/quality attributes tradeoffs,” in 12th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (Synasc), 2010, pp. 493–501.

[501] D. Perez-Palacin, R. Mirandola, and J. Merseguer, “Qos and energy management
with petri nets: A self-adaptive framework,” Journal of Systems and Software, vol. 85,
no. 12, pp. 2796–2811, 2012.

[502] X. Peng, B. Chen, Y. Yu, and W. Zhao, “Self-tuning of software systems through
dynamic quality tradeoff and value-based feedback control loop,” Journal of Systems
and Software, vol. 85, no. 12, pp. 2707–2719, 2012.

[503] L. W. Shen, X. Peng, and W. Y. Zhao, “Quality-driven self-adaptation: Bridging
the gap between requirements and runtime architecture by design decision,” in IEEE
36th Annual Computer Software and Applications Conference (COMPSAC), X. Bai,
F. Belli, E. Bertino, C. K. Chang, A. Elci, C. Seceleanu, H. Xie, and M. Zulkernine,
Eds., 2012, pp. 185–194.

[504] S. W. Cheng and D. Garlan, “Stitch: A language for architecture-based self-
adaptation,” Journal of Systems and Software, vol. 85, no. 12, pp. 2860–2875, 2012.

[505] J. Camara, D. Garlan, B. Schmerl, and A. Pandey, “Optimal planning for
architecture-based self-adaptation via model checking of stochastic games,” in 30th
Annual ACM Symposium on Applied Computing (SAC). ACM, 2015, pp. 428–435.

[506] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “Iso/iec 42030 – architecture evaluation (draft),” ISO/IEC,
Report ISO/IEC JTC 1/SC 7/WG 42 N0153, 2016.

[507] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC 42030 – systems and software engineering, archi-
tecture evaluation,” ISO/IEC, Report WD3, 2013.

[508] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC 19501 – Information technology – Open Dis-
tributed Processing – Unified Modeling Language (UML),” ISO/IEC, Report ISO/IEC
19501:2005, 2005.

[509] International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC), “ISO/IEC 33001:2015 Information technology – Process
assessment – Concepts and terminology,” ISO/IEC, Report, 2015. [Online].
Available: http://www.iso.org/iso/home/store/catalogue ics/catalogue detail ics.
htm?csnumber=54175

272

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54175
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54175

[510] P. Avgeriou, P. Lago, J. Grundy, I. Mistrik, and J. Hall, Relating Software Require-
ments and Architectures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[511] R. Bahsoon and W. Emmerich, “Architectural stability,” University College London,
Technical Report, 2006.

[512] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-
imentation in software engineering: an introduction. Kluwer Academic Publishers,
2000.

[513] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software engi-
neering: A roadmap,” in Conference on The Future of Software Engineering. ACM,
2000, pp. 345–355.

[514] T. Dyba, T. Dingsoyr, and G. Hanssen, “Applying systematic reviews to diverse
study types: An experience report,” in 1st International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2007, pp. 225–234.

[515] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in
software engineering,” in 12th international conference on Evaluation and Assessment
in Software Engineering. British Computer Society, 2008, pp. 68–77.

[516] P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and search, 2nd ed.
Cambridge, Mass.: MIT Press, 2000.

[517] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A linear non-gaussian
acyclic model for causal discovery,” Journal of Machine Learning Research, vol. 7, pp.
2003–2030, 2006.

[518] K. Fukuzawa and T. Kobayashi, “Specifying and evaluating software architectures
based on 4+1 View Model,” in Engineering Information Systems in the Internet Con-
text, ser. IFIP — The International Federation for Information Processing, C. Rolland,
S. Brinkkemper, and M. Saeki, Eds. Springer US, 2002, vol. 103, book section 3, pp.
31–51.

[519] “The openstack cloud platform.” [Online]. Available: http://openstack.org/

[520] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis for decen-
tralized hosting,” Computer Networks, vol. 53, no. 11, pp. 1830–1845, 2009.

[521] M. Arlitt, D. Krishnamurthy, and J. Rolia, “Characterizing the scalability of a large
web-based shopping system,” ACM Transactions on Internet Technology, vol. 1, no. 1,
pp. 44–69, 2001.

[522] M. F. Arlitt and C. L. Williamson, “Web server workload characterization: the
search for invariants,” ACM SIGMETRICS Performance Evaluation Review, vol. 24,
no. 1, pp. 126–137, 1996.

[523] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao, “Characterization of a large
web site population with implications for content delivery,” World Wide Web, vol. 9,
no. 4, pp. 505–536, 2006.

273

http://openstack.org/

[524] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “Analysis of multimedia workloads with
implications for internet streaming,” in 14th international conference on World Wide
Web. ACM, 2005.

[525] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live streaming work-
loads on the internet,” in 4th ACM SIGCOMM conference on Internet measurement.
ACM, 2004, pp. 41–54.

[526] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, and J. Myers, “Examining the challenges of scientific workflows,”
Computer, vol. 40, no. 12, pp. 24–32, 2007.

[527] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioningand schedul-
ing algorithm for scientific workflows on clouds,” IEEE Transactions on Cloud Com-
puting, vol. 2, no. 2, pp. 222–235, 2014.

[528] JabRef Development Team, JabRef. [Online]. Available: http://www.jabref.org

[529] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in soft-
ware engineering,” in International Symposium on Empirical Software Engineering
and Measurement, 2011, pp. 275–284.

[530] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “A formal approach to auto-
nomic systems programming: The scel language,” ACM Transactions on Autonomous
and Adaptive Systems (TAAS), vol. 9, no. 2, pp. 7:1–7:29, 2014.

[531] T. Chen and R. Bahsoon, “Toward a smarter cloud: Self-aware autoscaling of cloud
configurations and resources,” Computer, vol. 48, no. 9, pp. 93–96, 2015.

[532] M. Hölzl and T. Gabor, Reasoning and Learning for Awareness and Adaptation.
Springer International Publishing, 2015, pp. 249–290.

[533] P. Andras and B. G. Charlton, “Self-aware software - will it become a reality?”
in Self-Star Properties in Complex Information Systems: Conceptual and Practical
Foundations, ser. Lecture Notes In Computer Science, 2005, vol. 3460, pp. 229–259.

[534] R. Sterritt and M. Hinchey, “Why computer-based systems should be autonomic,” in
12th IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS), 2005, pp. 406–412.

[535] D. B. Abeywickrama, F. Zambonelli, and N. Hoch, “Towards simulating archi-
tectural patterns for self-aware and self-adaptive systems,” in IEEE 6th International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2012,
pp. 133–138.

[536] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, “Simsota: Engineering and
simulating feedback loops for self-adaptive systems,” in International C* Conference
on Computer Science and Software Engineering (C3S2E). ACM, 2013, pp. 67–76.

[537] N. Šerbedžija, T. Bureš, and J. Keznikl, “Engineering autonomous systems,” in
17th Panhellenic Conference on Informatics (PCI). ACM, 2013, pp. 128–135.

274

http://www.jabref.org

[538] D. Dannenhauer, M. T. Cox, S. Gupta, M. Paisner, and D. Perlis, “Toward meta-
level control of autonomous agents,” Procedia Computer Science, vol. 41, pp. 226 –
232, 2014, 5th Annual International Conference on Biologically Inspired Cognitive
Architectures (BICA).

[539] R. Gioiosa, G. Kestor, D. J. Kerbyson, and A. Hoisie, “Cross-layer self-adaptive/self-
aware system software for exascale systems,” in IEEE 26th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), 2014, pp.
326–333.

[540] E. Riccobene and P. Scandurra, “Formal modeling self-adaptive service-oriented
applications,” in 30th Annual ACM Symposium on Applied Computing (SAC). ACM,
2015, pp. 1704–1710.

[541] H. Giese, T. Vogel, A. Diaconescu, S. Götz, N. Bencomo, K. Geihs, S. Kounev, and
K. L. Bellman, “State of the art in architectures for self-aware computing systems,”
in Self-Aware Computing Systems. Springer, 2017, pp. 237–275.

[542] S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso, and F. Zambonelli,
“A roadmap towards sustainable self-aware service systems,” in ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). ACM,
2010, pp. 10–19.

[543] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, “A gen-
eralized software framework for accurate and efficient management of performance
goals,” in International Conference on Embedded Software (EMSOFT), 2013, pp. 1–
10.

[544] E. E. Veas, K. Kiyokawa, and H. Takemura, “Self-aware framework for adaptive
augmented reality,” in International Conference on Augmented Tele-existence (ICAT).
ACM, 2005, pp. 70–77.

[545] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, “On self-
adaptation, self-expression, and self-awareness in autonomic service component ensem-
bles,” in 5th IEEE Conference on Self-Adaptive and Self-Organizing Systems Work-
shops (SASOW), 2011, pp. 108–113.

[546] N. Bicocchi, D. Fontana, and F. Zambonelli, “A self-aware, reconfigurable architec-
ture for context awareness,” in IEEE Symposium on Computers and Communications
(ISCC), 2014, pp. 1–7.

[547] M. Salama and R. Bahsoon, “Quality-driven architectural patterns for self-aware
cloud-based software,” in IEEE 8th International Conference on Cloud Computing,
2015, pp. 844–851.

[548] E. Gerbert-Gaillard, S. Chollet, and P. Lalanda, “Model-driven approach for self-
aware pervasive systems,” in IEEE/ACIS 15th International Conference on Computer
and Information Science (ICIS), 2016, pp. 1–6.

275

[549] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Baehr, “Model-based self-aware
performance and resource management using the descartes modeling language,” IEEE
Transactions on Software Engineering, vol. 43, no. 5, pp. 432–452, 2017.

[550] P. Lalanda, E. Gerber-Gaillard, and S. Chollet, “Self-aware context in smart home
pervasive platforms,” in 2017 IEEE International Conference on Autonomic Comput-
ing (ICAC), 2017, pp. 119–124.

[551] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, “Seec: A
general and extensible framework for self-aware computing,” Computer Science and
Artificial Intelligence Laboratory MIT, Technical Report MIT-CSAIL-TR-2011-046,
2011.

[552] N. K. Thanigaivelan, E. Nigussie, S. Virtanen, and J. Isoaho, “Towards self-aware
approach for mobile devices security,” in Computer Network Security, J. Rak, J. Bay,
I. Kotenko, L. Popyack, V. Skormin, and K. Szczypiorski, Eds. Springer International
Publishing, 2017, pp. 171–182.

[553] M. Mitchell, “Self-awareness and control in decentralized systems.” in AAAI Spring
Symposium: Metacognition in Computation, 2005, pp. 80–85.

[554] E. Vassev and M. Hinchey, “Knowledge representation and reasoning for intelligent
software systems,” Computer, vol. 44, no. 8, pp. 96–99, 2011.

[555] E. Vassev and M. Hinchey, “Awareness in software-intensive systems,” Computer,
vol. 45, no. 12, pp. 84–87, 2012.

[556] C. Landauer and K. L. Bellman, “An architecture for self-awareness experiments,”
in IEEE International Conference on Autonomic Computing (ICAC), 2017, pp. 255–
262.

[557] C. H. Huang, J. S. Shen, and P. A. Hsiung, “A self-adaptive hardware/software
system architecture for ubiquitous computing applications,” in Ubiquitous Intelligence
and Computing, ser. Lecture Notes in Computer Science, Z. Yu, R. Liscano, G. L.
Chen, D. Q. Zhang, and X. S. Zhou, Eds., vol. 6406. Nokia; Ind Corp China, 2010,
pp. 382–396, 7th International Conference on Autonomic and Trusted Computing,
NW Polytechn Univ, Xian, PEOPLES R CHINA, OCT 26-29, 2010.

[558] I. Breskovic, C. Haas, S. Caton, and I. Brandic, “Towards self-awareness in cloud
markets: A monitoring methodology,” in IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing (DASC), 2011, pp. 81–88.

[559] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. D. Marzo, M. Risoldi,
A. E. Tchao, S. Dobson, G. Stevenson, J. Ye, E. Nardini, A. Omicini, S. Montagna,
M. Viroli, A. Ferscha, S. Maschek, and B. Wally, “Self-aware pervasive service ecosys-
tems,” Procedia Computer Science, vol. 7, pp. 197 – 199, 2011.

[560] G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli, “Engineering pervasive service
ecosystems: The sapere approach,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 10, no. 1, pp. 1:1–1:27, 2015.

276

[561] Y. Su, F. Shi, S. Talpur, Y. Wang, S. Hu, and J. Wei, “Achieving self-aware paral-
lelism in stream programs,” Cluster Computing - The Journal of Networks Software
Tools and Applications, vol. 18, no. 2, SI, pp. 949–962, 2015.

[562] I. Alzuru, A. Matsunaga, M. Tsugawa, and J. A. B. Fortes, “Selfie: Self-aware in-
formation extraction from digitized biocollections,” in IEEE 13th International Con-
ference on e-Science (e-Science), 2017, pp. 69–78.

[563] A. Griffiths, “ldquo;self rdquo;-conscious objects in object-z,” in Technology of
Object-Oriented Languages and Systems (TOOLS 25), 1997, pp. 210–224.

[564] A. Bronstein, J. Das, M. Duro, R. Friedrich, G. Kleyner, M. Mueller, S. Singhal,
and I. Cohen, “Self-aware services: using bayesian networks for detecting anomalies in
internet-based services,” in IEEE/IFIP International Symposium on Integrated Net-
work Management, 2001, pp. 623–638.

[565] A. G. Beltran, P. Milligan, and P. Sage, “Heterogeneity-aware distributed access
structure,” in 5th IEEE International Conference on Peer-to-Peer Computing (P2P),
2005, pp. 152–153.

[566] R. Abbott and C. Sun, “Abstraction abstracted,” in 2nd International Workshop
on The Role of Abstraction in Software Engineering (ROA). ACM, 2008, pp. 23–30.

[567] O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, and D. Röthlisberger, Change-
Enabled Software Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
64–79.

[568] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-aware performance
and resource management in modern service-oriented systems,” in IEEE International
Conference on Services Computing (SCC), 2010, pp. 621–624.

[569] S. Kounev, F. Brosig, and N. Huber, “Self-aware qos management in virtualized
infrastructures,” in 8th ACM International Conference on Autonomic Computing
(ICAC). ACM, 2011, pp. 175–176.

[570] S. Kounev, F. Brosig, and N. Huber, “The descartes modeling language,” Depart-
ment of Computer Science, University of Wuerzburg, Technical Report, 2014.

[571] M. D. Santambrogio, H. Hoffmann, J. Eastep, and A. Agarwal, “Enabling technolo-
gies for self-aware adaptive systems,” in NASA/ESA Conference on Adaptive Hard-
ware and Systems (AHS), 2010, pp. 149–156.

[572] S. Kounev, N. Huber, F. Brosig, and X. Zhu, “A model-based approach to designing
self-aware it systems and infrastructures,” Computer, vol. 49, no. 7, pp. 53–61, 2016.

[573] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, “Seec: A
framework for self-aware computing,” 2010.

[574] E. Gerbert-Gaillard and P. Lalanda, “Self-aware model-driven pervasive systems,”
in IEEE International Conference on Autonomic Computing (ICAC), 2016, pp. 221–
222.

277

[575] K. L. Bellman, C. Landauer, P. Nelson, N. Bencomo, S. Götz, P. R. Lewis, and
L. Esterle, Self-modeling and Self-awareness. Springer International Publishing, 2017,
pp. 279–304.

[576] E. Gerbert-Gaillard, P. Lalanda, S. Chollet, and J. Demarchez, “A self-aware ap-
proach to context management in pervasive platforms,” in IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom Workshops),
2017, pp. 256–261.

[577] A. Egyed, “Architecture differencing for self management,” in 1st ACM SIGSOFT
Workshop on Self-managed Systems, ser. WOSS ’04. New York, NY, USA: ACM,
2004, pp. 44–48.

[578] F. Faniyi, R. Bahsoon, A. Evans, and R. Kazman, “Evaluating security properties
of architectures in unpredictable environments: A case for cloud,” in 9th Working
IEEE/IFIP Conference on Software Architecture (WICSA), 2011, pp. 127–136.

[579] A. Elhabbash, R. Bahsoon, and P. Tino, “Towards self-aware service compo-
sition,” in IEEE International Conference on High Performance Computing and
Communications, IEEE 6th International Symposium on Cyberspace Safety and Se-
curity, IEEE 11th International Conference on Embedded Software and Systems
(HPCC,CSS,ICESS), 2014, pp. 1275–1279.

[580] M. Autili, K. L. Bellman, A. Diaconescu, L. Esterle, M. Tivoli, and A. Zisman,
Transition Strategies for Increasing Self-awareness in Existing Types of Computing
Systems. Springer International Publishing, 2017, pp. 305–336.

[581] H. Giese, T. Vogel, A. Diaconescu, S. Götz, and S. Kounev, “Architectural concepts
for self-aware computing systems,” in Self-Aware Computing Systems. Springer, 2017,
pp. 109–147.

[582] H. Giese, T. Vogel, A. Diaconescu, S. Götz, and K. L. Bellman, “Generic architec-
tures for individual self-aware computing systems,” in Self-Aware Computing Systems.
Springer, 2017, pp. 149–189.

[583] E. Vassev and M. Hinchey, Knowledge Representation for Adaptive and Self-aware
Systems. Springer International Publishing, 2015, pp. 221–247.

[584] J. O. Kephart, M. Maggio, A. Diaconescu, H. Giese, H. Hoffmann, S. Kounev,
A. Koziolek, P. R. Lewis, A. Robertsson, and S. Spinner, Reference Scenarios for
Self-aware Computing. Springer International Publishing, 2017, pp. 87–106.

[585] K. Tammemäe, A. Jantsch, A. Kuusik, J. Preden, and E. Õunapuu, Self-Aware Fog
Computing in Private and Secure Spheres. Springer International Publishing, 2018,
pp. 71–99.

[586] R. Birke, J. Cámara, L. Y. Chen, L. Esterle, K. Geihs, E. Gelenbe, H. Giese,
A. Robertsson, and X. Zhu, Self-aware Computing Systems: Open Challenges and
Future Research Directions. Springer International Publishing, 2017, pp. 709–722.

278

[587] L. Esterle, K. L. Bellman, S. Becker, A. Koziolek, C. Landauer, and P. R. Lewis,
Assessing Self-awareness. Springer International Publishing, 2017, pp. 465–481.

[588] N. Herbst, S. Becker, S. Kounev, H. Koziolek, M. Maggio, A. Milenkoski, and
E. Smirni, Metrics and Benchmarks for Self-aware Computing Systems. Springer
International Publishing, 2017, pp. 437–464.

[589] J. O. Kephart, A. Diaconescu, H. Giese, A. Robertsson, T. Abdelzaher, P. R. Lewis,
A. Filieri, L. Esterle, and S. Frey, Self-adaptation in Collective Self-aware Computing
Systems. Springer International Publishing, 2017, pp. 401–435.

[590] S. Kounev, P. R. Lewis, K. L. Bellman, N. Bencomo, J. Camara, A. Diaconescu,
L. Esterle, K. Geihs, H. Giese, S. Götz, P. Inverardi, J. O. Kephart, and A. Zisman,
The Notion of Self-aware Computing. Springer International Publishing, 2017, pp.
3–16.

[591] S. Linkola, A. Kantosalo, T. Männistö, and H. Toivonen, “Aspects of self-awareness:
An anatomy of metacreative systems,” in 8th International Conference on Computa-
tional Creativity (ICCC), 2017.

[592] J. Walter, A. Di Marco, S. Spinner, P. Inverardi, and S. Kounev, Online Learning
of Run-Time Models for Performance and Resource Management in Data Centers.
Springer International Publishing, 2017, pp. 507–528.

[593] D. Budgen, M. Turner, P. Brereton, and B. A. Kitchenham, “Using mapping studies
in software engineering,” in 20th Annual Meeting of the Psychology of Programming
Interest Group (PPIG). Lancaster University, 2008, pp. 195–204.

[594] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using mapping studies as the
basis for further research: A participant-observer case study,” Journal Information
and Software Technology, vol. 53, no. 6, pp. 638–651, 2011.

[595] D. Ardagna, C. Ghezzi, and R. Mirandola, Rethinking the Use of Models in Software
Architecture, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, vol. 5281, book section 1, pp. 1–27.

[596] H. Inoue, Y. Li, and S. Mitra, “VAST: Virtualization-assisted concurrent au-
tonomous self-test,” in IEEE International Test Conference (ITC), 2008, pp. 1–10.

[597] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan, “User
guidance of resource-adaptive systems,” in 3rd International Conference on Software
and Data Technologies (ICSOFT), J. Cordeiro, B. Shishkov, A. Ranchordas, and
M. Helfert, Eds., 2008, pp. 36–44.

[598] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan, A
Software Infrastructure for User-Guided Quality-of-Service Tradeoffs, ser. Communi-
cations in Computer and Information Science. Springer, 2009, vol. 47, pp. 48–61.

[599] C. Landauer, “Abstract infrastructure for real systems: Reflection and autonomy
in real time,” in 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011, pp. 102–109.

279

[600] D. Menasce, H. Gomaa, S. Malek, and J. P. Sousa, “Sassy: A framework for self-
architecting service-oriented systems,” IEEE Software, vol. 28, no. 6, pp. 78–85, 2011.

[601] D. Perez-Palacin, R. Mirandola, and J. Merseguer, “Enhancing a qos-based self-
adaptive framework with energy management capabilities,” in Joint ACM SIGSOFT
conference - QoSA and ACM SIGSOFT symposium - ISARCS on Quality of software
architectures - QoSA and architecting critical systems - ISARCS. ACM, 2011, pp.
165–170.

[602] S. S. Andrade and R. J. De A Macedo, “A search-based approach for architectural
design of feedback control concerns in self-adaptive systems,” in IEEE 7th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2013, pp.
61–70.

[603] C. Sandionigi, D. Ardagna, G. Cugola, and C. Ghezzi, “Optimizing service selection
and allocation in situational computing applications,” IEEE Transactions on Services
Computing, vol. 6, no. 3, pp. 414–428, 2013.

[604] S. S. Andrade and R. J. D. Macedo, “Do search-based approaches improve the design
of self-adaptive systems ? a controlled experiment,” in 28th Brazilian Symposium on
Software Engineering (SBES), 2014, pp. 101–110.

[605] D. Perez-Palacin, R. Mirandola, and J. Merseguer, “On the relationships between
qos and software adaptability at the architectural level,” Journal of Systems and
Software, vol. 87, pp. 1–17, 2014.

[606] A. Sutcliffe, An Architecture Framework for Self-Aware Adaptive Systems. Boston:
Morgan Kaufmann, 2014, pp. 59–80.

[607] S. S. Andrade and R. J. De A Macedo, “Assessing the benefits of search-based
approaches when designing self-adaptive systems: A controlled experiment,” Journal
of Software Engineering Research and Development, vol. 3, no. 1, pp. 1–27, 2015.

[608] P. Kathiravelu and L. Veiga, “Concurrent and distributed cloudsim simulations,” in
IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2014, pp. 490–493.

[609] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling parallel applications in
cloud simulations,” in 4th IEEE International Conference on Utility and Cloud Com-
puting (UCC), 2011, pp. 105–113.

[610] Y. Abuseta and K. Swesi, “Towards a framework for testing and simulating self
adaptive systems,” in 6th IEEE International Conference on Software Engineering
and Service Science (ICSESS), 2015, pp. 70–76.

[611] T. D. Nya, S. C. Stilkerich, and P. R. Lewis, “A modelling and simulation environ-
ment for self-aware and self-expressive systems,” in IEEE 7th International Conference
on Self-Adaptation and Self-Organizing Systems Workshops (SASOW), 2013, pp. 65–
70.

280

[612] G. Sakellari and G. Loukas, “A survey of mathematical models, simulation ap-
proaches and testbeds used for research in cloud computing,” Simulation Modelling
Practice and Theory, vol. 39, no. 0, pp. 92–103, 2013.

[613] D. Kliazovich, P. Bouvry, and S. Khan, “GreenCloud: A packet-level simulator of
energy-aware cloud computing data centers,” The Journal of Supercomputing, vol. 62,
no. 3, pp. 1263–1283, 2012.

[614] S. H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “Mdcsim: A multi-
tier data center simulation, platform,” in IEEE International Conference on Cluster
Computing and Workshops, 2009, pp. 1–9.

[615] A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero, G. G. Castane, J. Carretero, and
I. M. Llorente, “icancloud: A flexible and scalable cloud infrastructure simulator,”
Journal of Grid Computing, vol. 10, no. 1, pp. 185–209, 2012.

[616] A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero, J. Carretero, and I. M. Llorente,
“Design of a new cloud computing simulation platform,” in Computational Science and
Its Applications - ICCSA 2011: International Conference, Santander, Spain, June 20-
23, 2011. Proceedings, Part III, B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, and
B. O. Apduhan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
582–593.

[617] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A cloudsim-
based visual modeller for analysing cloud computing environments and applications,”
in 24th IEEE International Conference on Advanced Information Networking and Ap-
plications, 2010, pp. 446–452.

[618] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating scientific work-
flows in distributed environments,” in IEEE 8th International Conference on E-
Science (e-Science), 2012, pp. 1–8.

[619] P. Kathiravelu and L. Veiga, “An adaptive distributed simulator for cloud and
mapreduce algorithms and architectures,” in IEEE/ACM 7th International Conference
on Utility and Cloud Computing (UCC), 2014, pp. 79–88.

[620] M. Bux and U. Leser, “Dynamiccloudsim: Simulating heterogeneity in computa-
tional clouds,” Future Generation Computer Systems, vol. 46, pp. 85–99, 2015.

[621] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Container-
CloudSim: An environment for modeling and simulation of containers in cloud data
centers,” Software: Practice and Experience, vol. 47, no. 4, p. 505–52, 2016.

[622] W. Yean-Fu and C. Chih-Lung, “Load balancing job assignment for cluster-based
cloud computing,” in 6th International Conference on Ubiquitous and Future Networks
(ICUFN), 2014, pp. 199–204.

[623] M. Paul and G. Sanyal, “Survey and analysis of optimal scheduling strategies in
cloud environment,” in World Congress on Information and Communication Tech-
nologies (WICT), 2011, pp. 789–792.

281

[624] F. Bachmann, L. Bass, and M. Klein, “Illuminating the fundamental contributors
to software architecture quality,” Software Engineering Institute, Carnegie Mellon
University, Report CMU/SEI-2002-TR-025, 2002.

282

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Problem and Questions
	Research Methodology
	Thesis Contributions
	Thesis Roadmap
	Summary of Contributions
	Publications

	Organisation of the Thesis

	Stability in Software Engineering: Taxonomy and Survey of the State-of-the-Art
	Introduction
	Background
	Preliminaries and Basic Concepts
	Self-Adaptive Software Architectures

	The Notion of Stability
	The Survey Method
	Taxonomy for Characterising Stability as a Software Property
	Defining and Characterising Stability
	Definitions of Stability
	Related Quality Attributes
	Related Software Engineering Practices

	Stability in Software Engineering
	Analysis Results of Primary Studies
	Levels, Aspects and Purposes of Stability
	Main Observations and Findings

	Engineering Practices Supporting Architectural Stability
	Architecture Analysis and Design
	Architecture Evaluation for Stability

	Gap Analysis
	Related surveys
	Summary and Conclusion

	Characterising the Notion of Stability in Software Engineering
	Introduction
	A Working Definition for Stability
	A Multi-Dimensional Perspective for Characterising Stability
	Dimensions of Stability
	Engineering Stability as a Software Property

	Requirements for Realising Stability at the Architecture Level
	Design-time Requirements
	Runtime Requirements
	Support-related Requirements

	Conceptual Design for Capturing Behavioural Stability
	Summary

	Analysing Architectural Stability
	Introduction
	Stability Analysis
	Methodological Support for Analysing Behavioural Stability
	An Evaluation of Applicability
	Architecture Domain
	Application of the Analysis Model
	Discussion

	Related Work
	Summary

	Modelling Behavioural Stability of Architectures
	Introduction
	Stability Modelling
	Stability Probabilistic Model
	Stability Runtime Inference
	Complexity Analysis of the Model

	Methodological Support for Modelling Behavioural Stability
	An Evaluation of Applicability
	Building the Stability Model
	Pre-experiments Setup
	Results of the Stability Model

	Experimental Evaluation
	Experiments Setup
	Results of Stability Goals
	Results of Adaptation Properties and Overhead
	Complexity and Runtime Overhead
	Discussion

	Related Work
	Summary

	Reference Architecture and Goals Modelling for Stability
	Introduction
	Background
	Self-Awareness and Self-Expression
	Runtime Goal Models

	Self-aware Reference Architecture for Stability
	Quality/Tactics Self-management Generic Components
	Designing Stability-driven Architecture Patterns

	Runtime Goals Modelling for Stability
	Runtime Goals and Self-Awareness
	Runtime Goals Knowledge Representation

	An Evaluation of Applicability
	Application of the Reference Architecture
	Application of the Goals Model

	Experimental Evaluation
	Experiments Setup
	Results of Stability Goals
	Results of Adaptation Properties and Overhead
	Discussion

	Related Work
	Architecture Patterns and Tactics
	Goals Modelling

	Summary

	Reasoning about Architectural Stability
	Introduction
	A Self-Awareness Assisted Framework for Reasoning about Architectural Stability
	Goal-Awareness for Managing Stability Goals
	Time-Awareness for Stability Online Learning
	Meta-Self-Awareness for Managing Trade-offs between Stability Attributes

	Experimental Evaluation
	Experiments Setup.
	Results of Stability Attributes
	Results of Adaptation Properties and Overhead
	Discussion

	Related Work
	Learning for Self-Adaptation
	Trade-offs Management

	Summary

	Systematic Approach for Evaluating Architectural Stability
	Introduction
	Architectural Stability Evaluation Framework
	Conceptual Model
	Context of Stability Evaluation
	Stability Evaluation
	Stability Attributes Analysis

	Stability Evaluation in the Software Lifecycle
	Design-time Evaluation
	Runtime Evaluation

	An Evaluation of Applicability
	Context of Stability Evaluation
	Stability Evaluation
	Stability Attributes Analysis

	Experimental Evaluation of Runtime Stability
	Developed Evaluation Tools
	Experiments Setup
	Results of Stability Attributes
	Results of Adaptation Properties
	Discussion

	Related Work
	Summary

	Conclusions and Future Directions
	Summary and Discussion
	Threats to Validity
	Future Directions
	Closing Remarks

	Survey on Stability in Software Engineering: Review Protocol and Analysis Results
	Definition of Research Questions
	Search Strategy
	Data sources
	Search String
	Cross-References Check

	Search Execution
	Selection of Primary Studies
	Data Extraction
	Data Synthesis and Analysis
	Analysis Results of Primary Studies
	Demographic Analysis
	Quantitative Analysis

	Systematic Literature Review on Self-Awareness in Software Engineering: Summary of Findings
	Summary of the Study
	Motivation for Employing Self-Awareness
	Sources of Inspiration
	Approaches for Engineering Self-Awareness
	Evaluation of Self-Awareness
	Software Paradigms Employing Self-Awareness
	Summary

	Systematic Mapping Study on Managing Trade-offs in Self-Adaptive Architectures: Summary of Findings
	Summary of the Study
	Quality Attributes investigated in Trade-offs Management
	Mechanisms used in Trade-offs Management
	Time Dimension of Trade-offs Management Approaches
	Summary

	Symbiotic Simulation Environment for Self-Adaptive and Self-Aware Architectures
	Background
	SAd-/SAw-CloudSim Architecture
	Modelling Self-Adaptation
	Modelling Self-Awareness
	Modelling QoS Goals and Adaptation Tactics

	Design and Implementation
	Extensions to CloudSim Core
	Self-Adaptation Simulation
	Self-Awareness Simulation

	Experimental Validation and Evaluation
	Experiments Setup
	Validation Results
	Experiments Results
	Performance Evaluation
	Evaluation of Adaptation Overhead

	Related Work

	Queuing-based Model for Evaluating Runtime Stability
	System Model
	Quality Model

	Bibliography

