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Abstract 

 

Many large scale scientific problems require computing power that goes beyond the capabilities 

of a single machine. The data and compute requirements of these problems demand a high 

performance computing environment such as a cluster, a grid or a cloud platform in order to be 

solved in a reasonable amount of time. In order to efficiently execute workflows and utilize the 

distributed resources in an appropriate way, a scheduling policy needs to be in place.   

 

Application schedulers are driven by different objectives such as minimization of the total 

execution cost, minimization of the total execution time, even utilization of the available 

resources (load balancing),  a combination of these and so forth. This project focuses on 

minimizing the overall execution cost of workflow applications in heterogeneous high 

performance distributed environments.  

 

Specifically, this work focuses on two different types of environments. The first one is a grid 

environment and assumes that a static set of resources is available for executing the application 

workflow. The second one is a cloud environment in which the resources are dynamically leased 

as they are needed by the application. Two algorithms, one for each scenario, are proposed and 

both are based on a Particle Swarm Optimization metaheuristic algorithm.  

 

The algorithm developed for grid environments was integrated into the Cloudbus Workflow 

Management System and its performance was evaluated using different workflows of varying 

sizes. The approach was compared against a baseline round robin algorithm. The findings show 

that the proposed algorithm achieves an average 28.5% cost reduction while distributing the 

workflow tasks more evenly across the available resources.  
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1. Introduction 
 

Many large scale scientific problems require computing power that goes beyond the capabilities 

of a single machine. The data and compute requirements of these problems demand a high 

performance computing environment such as a cluster, a grid or a cloud platform in order to be 

solved in a reasonable amount of time. Furthermore, workflows, which can be defined as a set 

of tasks and a set of dependencies between them, are a common way of expressing these 

scientific applications. In order to efficiently execute workflows and utilize the distributed 

resources in an appropriate way, a scheduling policy needs to be in place.  

 

Application schedulers are driven by different objectives. Some of these objectives include the 

minimization of the total execution cost, minimization of the total execution time, even 

utilization of the available resources (load balancing), a combination of these and so forth. This 

project focuses on minimizing the overall execution cost of workflow applications in 

heterogeneous high performance distributed environments; goal that is achieved by using a 

Particle Swarm Optimization metaheuristic algorithm.  

 

Particle Swarm Optimization (PSO) is a flexible technique widely used nowadays to solve 

optimization problems [1]. This algorithm was proposed by Kennedy and Ebehart in [2] and is 

based on the social behavior of bird and fish flocks; it simulates the behavior of individuals in 

the flock in order to maximize the survival of the species. PSO is similar to other population 

based algorithms such as Genetic Algorithms (GA) in that the system is initialized with a set of 

random solutions; however, it is different in that it relies on the social behavior of the particles 

instead of recombining the individuals of the population [3].   

 

In broad terms, the PSO is based on a swarm of particles moving through space and 

communicating with each other in order to determine an optimal search direction. 

Furthermore, the movement of particles in the algorithm is a stochastic process guided by a 

given current velocity, the particle’s own experience (local best) and that of the whole group 

(global best). PSO has better computational performance than other evolutionary algorithms 

[2] and fewer parameters to tune, which also makes it easier to implement. Many problems in 

different areas have been successfully addressed by adapting PSO to specific domains; for 

instance this technique was used in the reactive voltage control problem [4], pattern 

recognition [5] and data mining [6] among others.  

 

This project investigates the workflow scheduling problem in two different scenarios. The first 

one is a grid environment in which the available computing resources and their characteristics 

are known in advance. The second one is a cloud environment in which there is no predefined 

set of resources and instead these need to be leased at run time in such way that the 

scheduling objective is met. Both of the proposed algorithms are based on PSO and their main 

objective is to minimize the execution cost of the workflow on the distributed resources.  

 

1.1. Background  



 

Applications with ever growing requirements have triggered the development of distributed 

systems; distributed computing has evolved from high performance computing to grid 

computing and now to the most recent paradigm, cloud computing. All these technologies have 

a goal in common, provide large scale applications with a powerful platform on which they can 

be deployed and executed as they might require for instance, computing power that goes 

beyond the capabilities of a single machine. Furthermore, they aim to provide a large number 

of users with a reliable, scalable and efficient service.  

 

Over the years, the way in which this service is provided has evolved towards a utility model in 

which users are charged based on their consumption. One of the main scientists in charge of 

the ARPANET (Advanced Research Projects Agency Network) project foresaw this when he 

stated [28] “As of now, computer networks are still in their infancy, but as they grow up and 

become sophisticated, we will probably see the spread of, ‘computer utilities’, which, like 

present electric and telephone utilities, will service individual homes and offices across the 

country”.  

 

1.1.1 Grid and Cloud Computing Platforms 

 

Grid Computing 

 

Based on a service oriented architecture, grid computing allows heterogeneous resources to be 

accessed in a secure and uniform way and enables the creation and management of virtual 

organizations (VOs) [29]. A virtual organization can be defined as individuals, institutions or 

organizations that share resources such as processing time, software and data in a controlled, 

secure and flexible way in order to achieve a common goal [30]. Therefore, through grid 

computing, distributed networked resources are integrated and coordinated allowing them to 

function as a single virtual whole. One of the main goals of this type of computing is to 

aggregate the processing power of the interconnected machines in order to solve large scale 

problems that cannot be handled by a single machine. Even though the processor is one of the 

most obvious resources shared in a grid, other such as storage systems, sensors and 

applications can also be shared.  

 

There are various definitions of grid computing. For instance, the Globus project (Argonne 

National Laboratory, USA) [31] defines grid as “an infrastructure that enables the integrated, 

collaborative use of high-end computers, networks, databases, and scientific instruments 

owned and managed by multiple organizations.” Another definition is that given by Dr. Buyya et 

al. is “Grid is a type of parallel and distributed system that enables the sharing, selection, and 

aggregation of geographically distributed ‘autonomous’ resources dynamically at runtime 

depending on their availability, capability, performance, cost, and users’ Quality of Service 

(QoS) requirements.” [29].  

 

A high level view of a grid environment is depicted in figure 1. Grid information services are 

used to register grid resources. The grid resource broker receives application requirements 



from end users and based on these, 

suitable resources. After this, the resource broke schedules and monitors the application on the 

selected resources until it completes its execution. Furthermore, grid environments offer 

additional services such as security, directory, resource allocation, execution management and 

resource aggregation among others 

 

Figure 1 High level view of a global grid

There are several challenges that need to be addressed by grid middleware systems in order to 

hide the complexity of the underlying distributed enviro

a grid environment is heterogeneous by nature as resources may have a wide range of 

hardware and software. Secondly, grid resources might be spread across political 

geographical boundaries and they might be under the control of different administration with 

different policies. Finally, the grid environment is dynamic in nature. This means that the 

availability and performance of the resources is unpredictable; for

within an organization may have higher priority or different cost than requests from outside the 

organization.  

 

These challenges have been addressed in various ways by different architectural approaches. 

One of such approaches is based on the creation 

represent different real world organizations that ally in order to share resources and achieve a 

common goal. Each VO defines the assets that will be shared and a set of policies to access 

them; these policies specify how participants are allocated resources and they reflect the 

objectives of the VO.  

 

Another architectural approach is based on 

resource providers compete to provide the best service to the users or resource consumers. 

Users select the resources based on different criteria such as ability to meet specific 

from end users and based on these, queries the grid information services in order to discover 

suitable resources. After this, the resource broke schedules and monitors the application on the 

selected resources until it completes its execution. Furthermore, grid environments offer 

services such as security, directory, resource allocation, execution management and 

ource aggregation among others [29].  

High level view of a global grid [29] 

There are several challenges that need to be addressed by grid middleware systems in order to 

hide the complexity of the underlying distributed environment from the end users 

a grid environment is heterogeneous by nature as resources may have a wide range of 

hardware and software. Secondly, grid resources might be spread across political 

geographical boundaries and they might be under the control of different administration with 

different policies. Finally, the grid environment is dynamic in nature. This means that the 

availability and performance of the resources is unpredictable; for instance, requests from 

within an organization may have higher priority or different cost than requests from outside the 

These challenges have been addressed in various ways by different architectural approaches. 

based on the creation of virtual organizations 

represent different real world organizations that ally in order to share resources and achieve a 

mon goal. Each VO defines the assets that will be shared and a set of policies to access 

them; these policies specify how participants are allocated resources and they reflect the 

Another architectural approach is based on economic principles [34], in this case, the owners or 

resource providers compete to provide the best service to the users or resource consumers. 

Users select the resources based on different criteria such as ability to meet specific 
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suitable resources. After this, the resource broke schedules and monitors the application on the 
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services such as security, directory, resource allocation, execution management and 
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different policies. Finally, the grid environment is dynamic in nature. This means that the 

instance, requests from 

within an organization may have higher priority or different cost than requests from outside the 

These challenges have been addressed in various ways by different architectural approaches. 

of virtual organizations [33]; these VOs 

represent different real world organizations that ally in order to share resources and achieve a 

mon goal. Each VO defines the assets that will be shared and a set of policies to access 

them; these policies specify how participants are allocated resources and they reflect the 

in this case, the owners or 

resource providers compete to provide the best service to the users or resource consumers. 

Users select the resources based on different criteria such as ability to meet specific 



requirements, price of the resources and quality of service (QoS) expectations. For instance a 

user may need to execute an application under a certain budget or before a specified deadline; 

both of these constraints are QoS requirements that drive the user when selecting an 

appropriate resource provider.  

 

Grid computing however poses several limitations that bound users and applications deployed 

on them. In general, grid platforms are limited to a specific set of users and IT resources; 

furthermore, these resources are shared mostly on a volunteer manner with the sole purpose 

of achieving a common goal [35]. Cloud computing is a new flexible trend that overcomes all 

these limitations by delivering infrastructure and software as services in a pay per use basis.   

 

Cloud Computing 

 

Cloud computing is an emerging technology that enables the delivery of services over the 

Internet; specifically, it aims to deliver IT resources on a pay per use basis. In the modern 

society, utility services such as water, gas and electricity are massively deployed and they can 

be accessed from almost anywhere and at anytime; these services reach billions of people who 

are charged based on their consumption of the services. Cloud computing is part of the 

infrastructure that makes possible the use of computing resources under the utility model [37].  

 

Through Cloud Computing, vendors make CPU cycles, storage and application hosting accessible 

under a service level agreement; these resources are exposed as standards based Web services 

and follow the utility pricing model as mentioned before [36]. The offered computing 

infrastructure is viewed as a “cloud” from which applications can be accessed from anywhere 

and on demand [38].  

 

There are many definitions of Cloud Computing and its characteristics; Buyya et al. [38] describe 

it as “a parallel and distributed computing system consisting of a collection of inter-connected 

and virtualized computers that are dynamically provisioned and presented as one or more 

unified computing resources based on service-level agreements (SLA) established through 

negotiation between the service provider and consumers”. 

 

The main idea behind Cloud Computing is to provide computing, storage and software as-a-

service [36]. Therefore, product offerings are classified into a hierarchy of as-a-service terms: 

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). 

Each of these classes represent a different abstraction level and as a whole, they can be 

understood as a layered architecture where the layers above leverage from the services 

provided by the layers below [36]; this is depicted in figure 2. 

 



 
Figure 2 Classification of Cloud Computing Services [37] 

At the bottom layer of the cloud computing stack is Infrastructure as a Service, IaaS. At this 

level, virtualized resources such as computation, storage and communication are provided. It is 

common to lease these resources by means of virtual machines so that users can deploy or run 

any software and in general, manage them in the same way they manage a physical machine. 

Amazon Web Service is an example of an IaaS provider.   

 

The next layer in the stack is Platform as a Service, PaaS. Vendors who offer this type of service 

provide an environment on which developers can easily create and deploy applications. These 

applications can scale automatically as needed and therefore developers do not have to be 

aware of the amount of resources it will consume. Another features offered at this level are the 

provision of different programming models and specialized services that make the creation of 

applications simpler and more robust. Google App Engine is an example of PaaS. 

 

Finally, at the top of the stack is Software as a Service, SaaS. It provides services or applications 

that can be accessed through the Web; this allows users to use on-line software instead of 

locally installed software. Salesforce.com [39], a SaaS provider that offers CRM applications, 

describes software as a service and its benefits as “a way of delivering applications over the 

Internet—as a service. Instead of installing and maintaining software, you simply access it via 

the Internet, freeing yourself from complex software and hardware management.” 

 

A Cloud Computing platform should be able to fulfill a set of basic features expected from its 

consumers, namely, a cloud should offer self service, per usage metered and billing, elasticity 

and customization [36]. Self service means that customers should be able to request, customize, 



pay and use services without intervention of human operators [40]. Per usage metered and 

billing implies that customers should be able to use and get charged only the necessary 

amount. Elasticity refers to the ability of increasing the number of resources at any time if the 

application requires it. Finally, in the case of IaaS, customizable means that the users should be 

able to deploy specialized applications and have privileged access to the virtual servers; in the 

case of PaaS and SaaS the level of customization is not so high as they offer less flexibility and 

control over the resources.  

 

Despite the great acceptance that Cloud Computing has had in the recent years, a number of 

challenges and risks are inherent to it and should be taken into account by end users and 

providers. First, Cloud Computing is based on the use of third party services (from the user’s 

point of view) which are used to host or manipulate sensitive data and to perform critical 

operations. Therefore, privacy and security are important challenges that need to be addressed 

by providers so that customers can trust them and their products. Second, because Cloud 

Computing is a recent technology, there are no established standards that dictate the way data 

or applications should be handled in cloud platforms; as a consequence, different platforms 

have different implementations that do not interoperate which leads to data and application 

lock in. Third, users have certain expectations when they move their resources to the cloud, in 

particular they expect availability, fault tolerance and disaster recovery; thus, a SLA that acts as 

a warranty must be arranged between clients and providers. Finally, an important challenge is 

the efficient management of virtualized resources; physical resources need to be shared 

efficiently among virtual machines which have different workloads [36].  

 

To summarize, cloud and grid computing are distributed computing paradigms which enable 

the aggregation of valuable resources as well as the deployment and execution of large scale 

applications with requirements that cannot be met by a single machine. Cloud computing is 

considered to be the evolution of grid computing; unlike grid computing, clouds are meant for 

the masses and offer unlimited resources in an elastic way, charging on a pay per use basis. 

Table 1 summarizes the differences between both approaches.  

 

Grid Computing Cloud Computing 

 

• Based on ability to negotiate resource-

sharing arrangements 

 

• Coordinates independent resources 

 

• Uses open standards and interfaces 

 

• Allows for heterogeneity of computers 

 

• Resources distributed across large 

geographical boundaries 

 

• Resources often leased from Cloud 

service providers on a pay-as-you-go 

(PAYG) basis 

 

• Resources are managed in virtualized 

data centers 

 

• Service provider uses virtualized 

resources that may be using services 

from multiple data centers 

 



 

• Loose coupling of computers and 

storage services 

 

• Physical resource-sharing among large 

number of users 

 

• usually limits dynamic provisioning and 

scalability within a single 

administrative domain 

 

Table 1 Main differences between cloud and grid computing

1.1.2 Workflow Scheduling 

 

In broad terms, a workflow is a set of tasks with dependencies between them. The process of 

scheduling a workflow in a set of resources consists of mapping tasks or group of tasks to an

available compute resource and scheduling their execution so that the dependencies betwee

them are preserved. Most workflows can be expressed as a Directed Acyclic Graph (DAG); by 

definition, such graphs have no cycles or conditional dependencies.

workflow represented as a graph.

 

 
Figure 3 Sample workflow 

Different architectures may support the wor

are three major categories in which these architectures may fall: centralized, hierarchical and 

Loose coupling of computers and 

sharing among large 

usually limits dynamic provisioning and 

single 

• Service oriented 

 

• Dynamically provisioned, elastic and 

highly scalable 

Main differences between cloud and grid computing [35] 

orkflow is a set of tasks with dependencies between them. The process of 

scheduling a workflow in a set of resources consists of mapping tasks or group of tasks to an

and scheduling their execution so that the dependencies betwee

ost workflows can be expressed as a Directed Acyclic Graph (DAG); by 

definition, such graphs have no cycles or conditional dependencies. Figure 3 depicts a sample 

workflow represented as a graph. 

 

Different architectures may support the workflow scheduling infrastructure. In particular, there 

are three major categories in which these architectures may fall: centralized, hierarchical and 

Dynamically provisioned, elastic and 

orkflow is a set of tasks with dependencies between them. The process of 

scheduling a workflow in a set of resources consists of mapping tasks or group of tasks to an 

and scheduling their execution so that the dependencies between 

ost workflows can be expressed as a Directed Acyclic Graph (DAG); by 

depicts a sample 

n particular, there 

are three major categories in which these architectures may fall: centralized, hierarchical and 



decentralized [41]. In the centralized scheme there is a unique, central scheduler that decides 

the mapping for every task in the workflow. The hierarchical approach on the other hand, 

defines a main scheduler which manages a set of low level schedulers in charge of a subset of 

the workflow tasks. Finally, in the decentralized architecture only a set of independent, 

decentralized schedulers exist and each of them is responsible of a sub workflow [42].  

 

The decision to map a task to a resource can be made based on the information available to the 

scheduler. There are two main types of decisions, local and global. Local decisions are made 

based solely on the information of the single task (or group of tasks) being handled by a 

particular scheduler. Conversely, global decisions are those made considering the entire 

workflow as opposed to a single, isolated task.  

 

The problem of finding an optimal workflow schedule in distributed environments has been 

widely studied and in most cases is an NP-complete problem [7]. In general, the scheduling 

process is driven by a QoS constraint imposed by the user; many heuristics have been proposed 

in order to obtain solutions that are near optimal and meet these QoS requirements. The QoS 

or objectives of the scheduling process vary from application to application; they include 

restrictions such as minimization of the overall execution cost, minimization of the total 

execution time or a combination of both among others. 

 

 

1.2 Related Work 
 

As mentioned earlier, a workflow can be represented as a DAG in which the nodes correspond 

to tasks and the edges to the dependencies between the tasks. A workflow scheduling process 

would then be responsible for managing the execution of these interdependent tasks on the 

heterogeneous distributed resources; particularly, it would be responsible of allocating each 

workflow task to a suitable resource so that the desired objective function is satisfied when the 

execution is completed. The job to resource allocation problem has been widely studied for 

many years and is known to be an NP-complete problem [7].  Such problems are those for 

which no known algorithm is capable of generating an optimal solution in polynomial time. The 

brute force approach would be to generate all possible schedules by trying all the possible task 

-resource combinations and select the optimal solution; however, the high overhead this 

technique implies makes of it an impractical approach. For this reason, more efficient heuristic 

based approximation algorithms have been used to address this problem.  

 

The Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic for solving 

combinatorial optimization problems; in broad terms, an iterative randomized search is 

performed in order to find a good approximation to the optimal solution for a given problem 

[8]. This technique has been used to solve the job shop scheduling problem by [9] and to 

schedule workflows on grids by [10]. Furthermore, a scheduling algorithm for workflow 

allocation based on GRASP [11] is implemented in Pegasus [12], a framework for mapping 

complex workflows into grid resources proposed by Deelman et al.  

 



Simulated Annealing (SA) [13] is another metaheuristic global optimum search technique. As its 

name implies, the technique is based on the steel and ceramic annealing process in which the 

materials are slowly heated and cooled in order to alter their physical properties. Lenstra et al. 

[15] investigates an approach to the job shop scheduling problem using an SA approach and 

finally, the authors in [14] implemented a simulated annealing scheduler based on their ICENI 

grid middleware and found that it outperformed other algorithms such as random and best of n 

random.  

 

Genetic Algorithms (GA) [16] have also been used to solve the mentioned problem. Based on 

the principle of evolution, a genetic algorithm is basically a stochastic search technique that 

allows a near optimal solution to be derived from a large search space in polynomial time.  This 

algorithm has been applied extensively to the resource allocation problem. For instance, [17], 

[18] and [19] use GAs to schedule workflows on homogeneous distributed environments 

whereas [20] uses them for scheduling workflows on heterogeneous resources. Additionally, 

ASKALON [21],   a grid environment for the execution of scientific workflow applications uses 

genetic algorithms for scheduling purposes [22].   

 

In addition to this work, there have been some comparative studies that demonstrate that PSO 

performs better than GAs in when applied to the mentioned scheduling problem. The authors 

of [23] experimented with PSO and a GA for solving the task assignment problem in an 

homogeneous environment and concluded that PSO converges faster than the implemented 

GA. Additionally, the research in [24] concludes that a PSO based approach is capable of 

generation better schedules than GA based one. Even though both approaches are valid and 

similar to each other, PSO was chosen in this project for several reasons. Firstly, studies 

demonstrate that it is faster than GA. Secondly, it has fewer operators to define, in GA for 

instance the reproduction, crossover and mutation functions need to be defined and hence 

makes of application’s performance more dependant to the fine tuning of these parameters. 

Finally, the nature of the problem makes it simple to use discrete numbers in PSO so that the 

particle’s position can easily be associated to task-resource mappings.  

 

 

1.3 Aim 
 

This project aims to develop two algorithms: 

 

1. Propose a scheduling heuristic that finds a task to resource mapping in such way that 

the total execution cost of the workflow application is minimized and the available 

resources are evenly utilized. In other words, the algorithm will find a balance between 

the minimum execution cost and an even load distribution among all the resources.  

 
2. Develop a set of heuristics that consider the elastic cloud leasing model in order to decrease the 

cost of executing workflows on an IaaS cloud provider. The algorithm will dynamically 

acquire new resources from a cloud platform and will select the best type of resource 

(instance) to lease based on the characteristics of the task it is intended for. 



 

1.4 Objectives 
 

• Study the Cloudbus Workflow Management System thoroughly with emphasis in the 

following components: 

o Workflow Engine 

o Scheduling and task management modules 

o Cloudbus Broker  

 

• Learn how to configure and run application workflows on the Cloudbus Workflow 

Management System 

 

• Investigate the pricing model of IaaS cloud providers 

 

• Investigate different workflow scheduling techniques on grid and cloud environments 

 

• Study and understand the Particle Swarm Optimization algorithm 

 

• Model a Particle Swarm Optimization approach that tackles the workflow scheduling 

problem based on static resources. Propose a high level scheduling heuristic that 

embeds this model 

 

• Model a Particle Swarm Optimization approach that tackles the workflow scheduling 

problem based on dynamic resources. Propose a high level scheduling heuristic that 

embeds this model 

 

• Implementation (due to time constraints only one of the algorithms will be 

implemented as part of the CWMS, this algorithm will be the static resource approach) 

 

o Design the integration of the static resource approach with the CWMS 

 

o Implement the static resource solution as a part of the CWMS 

 

o Test and debug the algorithm 

 

o Evaluate the performance of the algorithm and compare it with another 

scheduling technique 

 

 

1.5 Motivation 
 

Distributed environments such as grids and clouds provide large scale applications with a 

powerful platform on which they can be deployed and executed. However, the resources 



offered by these platforms are generally 

can incur in large costs if not planned properly. T

that reduce the overall execution cost of these applications. 

 

 

2 Technical Review 
 

 

2.1 Cloudbus Workflow Engine Management Sys
 

The Cloudbus Workflow Management System (CWMS) 

express their applications as workflows and ex

particular, the CWMS enables the creation, monitoring and execution of large scale scientific 

workflows on distributed environments such as grids and clouds. The main feature of the 

system is its capability of transp

the orchestration and integration details a

components of the system are depicted in 

 

Figure 4 Key components of the CWMS

The Workflow Portal is the entry point to the system. It provides a web based user interface for 

the users to create, edit, submit and monitor their applications. A workflow editor is embedded 

in this component, the editor enables user to graphically creat

tasks and their dependencies as well as modify existing ones. Additionally, the Workflow Portal 

provides a submission page that allows users to upload any necessary data and configuration 

offered by these platforms are generally charged on a pay per use basis and user applications 
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Engine Management System 

The Cloudbus Workflow Management System (CWMS) [43] is a platform that allows scientist to 

express their applications as workflows and execute them on distributed resources. In 

particular, the CWMS enables the creation, monitoring and execution of large scale scientific 

workflows on distributed environments such as grids and clouds. The main feature of the 

system is its capability of transparently managing computational processes and data by hiding 

the orchestration and integration details among the distributed resources 

e system are depicted in figure 4 and the detailed architecture on 

 
Key components of the CWMS 

The Workflow Portal is the entry point to the system. It provides a web based user interface for 

the users to create, edit, submit and monitor their applications. A workflow editor is embedded 
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The Workflow Portal is the entry point to the system. It provides a web based user interface for 

the users to create, edit, submit and monitor their applications. A workflow editor is embedded 

e new workflows by defining 

tasks and their dependencies as well as modify existing ones. Additionally, the Workflow Portal 

provides a submission page that allows users to upload any necessary data and configuration 



input files needed to run a workflow. Another important feature is the monitoring and output 

visualization page which allows users to observe the execution progress of multiple workflows 

and to view the final output of an application. Furthermore, the portal offers users a resource 

information page which displays the information of all the current available computing 

resources.  

 

The Workflow Editor is accessed through the portal and it provides a GUI that enables users to 

create or modify a workflow using drag and drop facilities. The workflow is modeled as a 

Directed Acyclic Graph (DAG) with nodes and links which represent tasks and dependencies 

between tasks. Moreover, the editor converts the graphical model designed by the users into 

an XML based workflow language called xWFL which is the format understood by the 

underlying workflow engine.  

 

The Workflow Monitor is also accessed through the portal and it provides a GUI for monitoring 

the status of every task in a specific workflow. For instance, tasks can be on a ready, executing, 

stage in or completed status, each of which is represented in a different color. Additionally, 

users have access to information such as the host in which a task is running, the number of jobs 

being executed (in case of parameter sweep applications) and the failure history of each task. 

The Workflow Monitor displays and hence relies on the information produced by the Workflow 

Engine, the interaction between these two components takes place via an event mechanism 

using tuple spaces. In broad terms, whenever the state of a task changes, the monitor is 

notified and as a response to the event, it retrieves the new state and any relevant task 

metadata from a central database.   

 

At the core of the CWMS is the Workflow Engine (WFE). This component interprets a workflow 

described in xWFL language and schedules the corresponding tasks on the available resources. 

This project focuses on this component and hence it will be detailed in section 2.1.1.   

 

 



 
Figure 5 Cloudbus Workflow Management System Architecture [36]  

2.1.1 Cloudbus Workflow Engine 

 

The workflow engine is the core of the workflow management system; its main responsibilities 

include scheduling tasks, dispatching, monitoring and managing their execution on remote 

resources. As shown in figure 5, the workflow engine has six main subsystems: workflow 

submission, workflow language parser, resource discovery, dispatcher, data movement and 

workflow scheduler. 

 



The workflow portal or any other client application submits a workflow for execution to the 

workflow engine. The submitted workflow must be specified in an xml based language called 

xWFL. This language enables users to define all the characteristics of a workflow such as tasks 

and dependencies among others. This xml expressed workflow is then processed and 

interpreted by a subsystem called the workflow language parser. This subsystem creates 

objects representing tasks, parameters, data constraints and conditions based on the 

information contained on the xml file. From this point, these objects will constitute the base of 

the workflow engine as they are the ones containing all the information regarding the workflow 

that needs to be executed. Once this information is available, the workflow is scheduled and 

tasks are mapped to resources based on a specific scheduling policy. After this, the engine uses 

the Cloudbus Broker as a dispatcher; this component deploys and manages the execution of 

tasks on the remote resources.  

 

The Cloudbus Broker [45] provides a set of services that enable the interaction of the workflow 

engine with remote resources. It mediates access to distributed resources by discovering them, 

deploying and monitoring tasks on specific resources, accessing the required data during task 

execution and consolidating results. Two additional components that aid in the execution of the 

workflow are the resource discovery service and the data movement service. The resource 

discovery service helps in the discovery of suitable resources by querying information services 

such as the Globus MDS, directory catalogs and replica catalogs. Finally, the data movement 

component offers services that allow the transfer of data between the engine and remote 

resources based on protocols such as FTP and GridFTP.  

 

Workflow Scheduling Component 

 

The workflow engine has a decentralized scheduling system that supports just in time planning 

and allows resource allocation to be determined at run time [43]. Each task has its own 

scheduler called Task Manager (TM). The TM may implement any scheduling heuristic and is 

responsible for managing the task processing, resource selection and negotiation, task 

dispatching and failure handling. At the same time, a Workflow Coordinator (WCO) is 

responsible for managing the lifetime of every TM as well as the overall workflow execution. 

Based on this, the architecture offers flexibility in the sense that the scheduling can be done at 

workflow level by the WCO, task level by each TM or a combination of both, depending on the 

requirements of the application.  

 

Figure 6 shows the interaction between the different components involved in the scheduling 

process. The WCO creates and starts a TM based on the task’s dependencies and any other 

specific scheduling heuristic being used. Each TM has a task monitor which constantly checks 

the status of the remote task and a pool of available resources to which the task can be 

assigned. The communication between the WCO and the TMs takes place via events registered 

in a central event service.  

 



 
Figure 6 WE Scheduling Architecture 

Each TM is independent and may have its own scheduling policy, this means that several task 

managers may run in parallel. Additionally, the behavior of a TM can be influenced by the 

status of other task managers. For instance, a task manager may need to put its task execution 

in hold until its parent task finishes running in order for the required input data to be available. 

For this reason, TMs need to interact with each other just as the WCO needs to interact with 

every TM; once again this is achieved through events using a tuple space environment.  

 

 
Figure 7 WE Event driven communication [44] 



Currently, the workflow engine has a basic scheduling heuristic implemented [35]. First level 

tasks, which are tasks that have no parents, are the first ones to be scheduled and executed; 

these are assigned to the first available resources. As parent tasks finish running and produce 

any necessary output, children tasks become ready for execution. These tasks are then queued 

and after polling time the scheduler assigns them to any available resource to which they get 

dispatched for execution. The choice of polling time is left up to the user and it depends on the 

number of tasks in the workflow, the scheduling technique, and resource management policies 

among other factors. The pseudo code for this algorithm is shown in algorithm 1. The 

contribution of this project is a scheduling policy designed to minimize the total execution cost 

and evenly utilize the available resources and it is described in subsequent sections.  

 

Algorithm 1 Just In Time Scheduler 

�� For each root task  

���� Assign root task to an available compute resource 

�� Repeat until all tasks are scheduled 

���� For each task that is ready for execution 

������ Assign the ready task to any available compute resource 

���� Dispatch all the mapped tasks 

���� Wait for POLLING&TIME 

2.4. Update the ready task list 

Algorithm 1 WE Just in Time Scheduling heuristic  

 

2.2 Particle Swarm Optimization 
 

Particle Swarm Optimization is an evolutionary computational technique based on the behavior 

of animal flocks. It was developed by Eberhart and Kennedy [2] in 1995 and has been widely 

researched and utilized ever since [2]. The algorithm is a stochastic optimization technique in 

which the most basic concept is that of particle. A particle simply represents an individual (i.e. 

fish or bird) which has the ability to move or fly through the defined problem space; based on 

this, each particle represents a candidate solution to the optimization problem. At a given point 

in time, the movement of particles is defined by their velocity which is represented as a vector 

and therefore has magnitude and direction. This velocity is determined by the best position in 

which the particle has been so far and the best position in which any of the particles has been 

so far. Based on this, it is imperative to be able to measure how good (or bad) a particle’s 

position is; this is achieved by using a fitness function which measures the quality of the 

particle’s position and varies from problem to problem, depending on the context and 

requirements. 

 



Each particle is represented by its position and velocity. Additionally, particles keep track of 

their best position pbest and the global best position gbest; values that are determined based 

on the fitness function. The algorithm will then at each step, change the velocity of each 

particle towards the pbest and gbest locations. How much the particle moves towards these 

values is weighted by a random term, with different random numbers generated for 

acceleration towards pbest and gbest locations [1]. The algorithm will continue to iterate until a 

stopping criterion is met; this is generally a specified maximum number of iterations or a 

predefined fitness value considered to be good enough. On each iteration, the position and 

velocity of a particle are updated based on equations 1 and 2 respectively. The pseudo code for 

the algorithm is shown in algorithm 2.  
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The velocity equation contains various parameters that affect the performance of the 

algorithm; moreover, some of them have a significant impact on the convergence of the 

algorithm. One of these parameters is	, it is also known as the inertia factor or weight and it is 

crucial for the algorithm’s convergence. This weight determines how much previous velocities 

will impact the current velocity and defines a tradeoff between the local cognitive component 

and global social experience of the particles. On one hand, a large inertia weight will make the 

velocity increase and therefore will favor global exploration. On the other hand, a smaller value 

would make the particles decelerate and hence favor local exploration. For this reason, a  

value that balances global and local search implies fewer iterations in order for the algorithm to 

converge.  

 

Conversely, �� and �� do not have a critical effect in the convergence of PSO. However, tuning 

them properly may lead to a faster convergence and may prevent the algorithm to get caught in 

local minima. Parameter �� is referred to as the cognitive parameter as ����defines how much 

the previous best position matters. On the other hand, �� is the social parameter as ���� 

determines the behavior of the particle relative to other neighbors.  

 

There are other parameters that are not part of the velocity definition and are used as input to 

the algorithm. The first one is the number of particles; a larger value generally increases the 

likelihood of finding the global optimum. This number varies depending on the complexity of 



the optimization problem but a typical range is between 20 and 40 particles. Other two 

parameters are the dimension of the particles and the range in which they are allowed to 

move, these values are solely determined by the nature of the problem being solved and how it 

is modeled to fit into PSO. Finally, the maximum velocity which defines the maximum change a 

particle can have in one iteration can also be a parameter to the algorithm; however this value 

is usually set to be as big as the half of the position range of the particle.  

 

Algorithm 2 Particle Swarm Optimization Algorithm 

�� Set the dimension of the particles to *  

�� Initialize the population of particles with random positions and velocities 

�� For each particle. calculate its fitness value  

�� Compare the particle’s fitness value with the particle’s	+,-./� If the current value is better 

than +,-./ then set +,-./ to the current value and location 

�� Compare the particle’s fitness value with the global best	0,-./� If the particle’s current 

value is better than 0,-./ then set 0,-./ to the current value and location 

�� Update the position and velocity of the particle according to equations � and � 

�� Repeat from step 2 until the stopping criterion is met�  

Algorithm 2 PSO 

 

3 Algorithm for Grid Environments 
 

This section describes the proposed algorithm targeting grid environments in which the set of 

resources that are to be used to execute the workflow tasks is known in advance. 

 

 

3.1 Definitions and Assumptions 
 

Before presenting the problem formulation it is important to introduce some definitions and 

assumptions made.  

 

Workflow 

 

A workflow 1 can be represented as an acyclic directed graph (DAG) in which	1 = �2, 3
. In 

this definition, 2 = 4��, ��, … , �67 is the set of tasks that comprise the workflow and 3 =
8���, �9�:∀	�, <	 ∈ [1, �]	���	=ℎ��ℎ	�	����	��(������>	���'�'	"��=���	��'?'	��	���	�97 
corresponds to the set of dependencies between the workflow tasks. 

 



Resources 

 

The set of available heterogeneous resources is defined as	@ = 4��, ��, … , �A7. 
 

Execution Cost 

 
The execution cost B�9 of task �� in resource	�9 is calculated based on the size of the task, the 

processing capacity and the cost of the resource.  

 
The algorithm proposed makes a series of assumptions in order to calculate	B�9:  
 

1. The size C� of each task (in number of floating point operations FLOP) is known in 

advance. 
2. The processing capacity D9 (in number of floating point operations per second FLOPS) for 

each resource is known in advance.  
3. The cost per unit of time E9 for each available resource is available in advance.  

 
With this information, B�9 can be calculated as shown in equation 3. 

 
	B�9 = �C�/D9
 ∗ 	E9  Equation 3 

 

 

3.2 Problem Formulation 
 

Scheduling heuristics may have different objectives, this work focuses on finding a task to 

resource mapping in such way that the total execution cost of the workflow application is 

minimized and the available resources are evenly utilized. This means that a balance between 

the minimum execution cost and an even load distribution among all the resources is desired; 

ideally all the resources should be utilized.   

 

Based on the previous formal definitions and the stated goals, the scheduling problem 

addressed in this section can be stated as follows:  

 

Assign each task in 2 to a resource in @ such that each resource gets a similar number of tasks 

and the total cost B = 	∑ B�9
6
�H�  for executing the workflow is minimized. 

 

 

3.3 Workflow Scheduling based on PSO 
 

There are two key steps when modeling a particle swarm optimization problem. The first one is 

defining how the problem will be encoded, that is defining how the solution will be 

represented. The second one is defining how the goodness of a particle will be measured, that 

is defining the fitness function. 



 

The first representation that needs to be 

particle. For the scheduling scenario presented here, one particle would represent the set of 

tasks that need to be allocated; hence, the dimension of a particle would be equal to the 

number of tasks that need to be a

particle would represent a compute resource assigned to the task represented by that 

particular dimension. In particular, 

corresponds to the computing resources index. Therefore,

a resource to a task. A sample particle and its position 

that needs to be determined is the range in which a particle is allowed to move, because 

position represents compute resources then this range is defined to be between one and the 

number of available resources.  

 

 

Figure 8 Encoding of a particle’s position

Since the fitness function is used to determine how good a potential solution is, it needs to 

reflect the objectives of the scheduling problem. In this case, we want to minimize the 

execution cost while distributing the tasks evenly on the resources. Based

function will be minimized and it will have two components; the first one will represent the 

execution cost and the second one will represent how evenly the resources are being used. 

 

The first component is straightforward; the execu

the cost of each task on its assigned resource. If the fitness function was defined as this single 

component then the algorithm would tend to assign every task to the cheapest resource. To 

avoid this, a second component is added. When calculating the fitness function for a particular 

mapping, if a task is assigned to a resource that already had a task assigned to it then a 

penalization value is added to the fitness value. This grows proportionally to the number of

tasks a resource has assigned to it. This is depicted in the fitness function presented in 

4. The function takes as input a particle’s position, which is an array of size 

dimension of the particle and in this particular scenari

mapped onto a resource.  
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Where: 

The first representation that needs to be established is the meaning and the dimension of a 

particle. For the scheduling scenario presented here, one particle would represent the set of 

tasks that need to be allocated; hence, the dimension of a particle would be equal to the 

number of tasks that need to be assigned to a resource. Based on this, each dimension of a 

particle would represent a compute resource assigned to the task represented by that 

In particular, the value assigned to each dimension of a particle

ing resources index. Therefore, the particle represents a mapping of 

A sample particle and its position are depicted in figure 8

that needs to be determined is the range in which a particle is allowed to move, because 

position represents compute resources then this range is defined to be between one and the 

 

Encoding of a particle’s position 

Since the fitness function is used to determine how good a potential solution is, it needs to 

reflect the objectives of the scheduling problem. In this case, we want to minimize the 

execution cost while distributing the tasks evenly on the resources. Based on this, the fitness 

function will be minimized and it will have two components; the first one will represent the 

execution cost and the second one will represent how evenly the resources are being used. 

The first component is straightforward; the execution cost of a mapping is simply the sum of 

the cost of each task on its assigned resource. If the fitness function was defined as this single 
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mponent is added. When calculating the fitness function for a particular 

mapping, if a task is assigned to a resource that already had a task assigned to it then a 
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Since the fitness function is used to determine how good a potential solution is, it needs to 

reflect the objectives of the scheduling problem. In this case, we want to minimize the 
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In the approach presented here, Q was taken to be the average computation cost of each task 

on each resource multiplied by 10. The reasoning behind this is that this number is a value that 

increases the fitness value by a high enough amount so that the algorithm also consider options 

that are more costly but on which resources are better utilized.  

 

Having modeled the PSO problem, a higher level scheduling heuristic that embeds the PSO 

algorithm is needed. The pseudo code for this heuristic is shown in algorithm 3. The first step is 

to estimate the execution cost of every workflow task on every resource. This can be expressed 

as a matrix in which the rows represent the tasks, the columns the resources and the entry 

B��E�'�[�, <] contains the cost of executing task � in resource	<. This cost is calculated using 

equation 4 and it is the basis for calculating the fitness value in the PSO algorithm. A sample 

matrix is illustrated in figure 9. The second step consists in getting the list of all the tasks that 

are ready for execution; these tasks are those which have no incoming dependencies (i.e. first 

level tasks) or child tasks whose parent or parents finished executing and hence have the 

necessary input available. In the third step, the compute resources available are retrieved. At 

this point, the information required to execute the PSO algorithm is available and hence the 

task to resource mapping is computed in step four. In step 5 every task is assigned to the 

corresponding resource and dispatched so that its execution begins. After this, the scheduler 

waits for a predefined amount of time before checking the status of executing tasks and 

updating the list of tasks ready for execution. This (�����I_�� � can be defined by the user as 

its optimum value may be influenced by the number of tasks and topology of the workflow. The 

list of ready tasks is updated based on the tasks completed so far, this enables the algorithm to 

execute the workflow tasks on a specific order which is dictated by the dependencies defined 

between them. Finally, the algorithm loops back to step two and iterates until all the tasks have 

been scheduled and dispatched.  

 

Algorithm 3 Scheduling Heuristic 

�� Compute the execution cost of each task on every resource according to equation 3 

�� Get the set of tasks ready for execution TU  

�� Get the set of available resources V 

�� Get the task to resource mapping by running WXY�TU, V
 

�� For each task / in TU 

���� Assign / to UZ ∈ V based on the mapping produced in step 435 

���� Dispatch / for execution 



�� Wait for +[\\Z]0_/Z^- 

�� Update TU with new tasks ready for execution

8. Repeat from step 6 until there are no more tasks to be scheduled

Algorithm 3 Scheduling heuristic for 

 

Figure 9 Cost execution matrix 

 

3.4 Implementation 
 

The cost minimization algorithm was implemented and 

Management System. In particular, several extensions and changes were made to the workflow 

engine component in order to add the new scheduling policy. 

and interaction between component

 

In order to execute applications, the workflow engine requires three xml files to be provided. 

The first one is the application file and it specifies the workflow tasks and dependencies. The 

second is the service file and it describes

one is the credentials file and it defines the 

These files are parsed into objects that are used

processes.   

 

For the scheduling component, only the application and service files are relevant. The schemas 

and parsers for these files were extended in order to provide the extra information required by 

the PSO algorithm. The application file was modified s

operations (FLOP) for each task was included in the task definition. 

to include the processing capacity in floating point operations per second (FLOPS) in the 

compute resource definition. These changes are illustrated in 

both xml files were updated to support the new schemas. Additional to this, the WfTask and 

with new tasks ready for execution 

until there are no more tasks to be scheduled 

Scheduling heuristic for grid environments 

 

The cost minimization algorithm was implemented and integrated into the Cloudbus Workflow 

Management System. In particular, several extensions and changes were made to the workflow 

engine component in order to add the new scheduling policy. However, the overall architecture 

and interaction between components remains the same.  

In order to execute applications, the workflow engine requires three xml files to be provided. 

The first one is the application file and it specifies the workflow tasks and dependencies. The 

describes the resources available for processing tasks

defines the security credentials needed to access the

These files are parsed into objects that are used later on used in the scheduling and execution 

For the scheduling component, only the application and service files are relevant. The schemas 

and parsers for these files were extended in order to provide the extra information required by 

the PSO algorithm. The application file was modified so that the number of floating point 

operations (FLOP) for each task was included in the task definition. The service file was updated 

to include the processing capacity in floating point operations per second (FLOPS) in the 

These changes are illustrated in figures 10 and 11

were updated to support the new schemas. Additional to this, the WfTask and 

integrated into the Cloudbus Workflow 

Management System. In particular, several extensions and changes were made to the workflow 

However, the overall architecture 

In order to execute applications, the workflow engine requires three xml files to be provided. 

The first one is the application file and it specifies the workflow tasks and dependencies. The 

the resources available for processing tasks. The third 

edentials needed to access the resources. 

scheduling and execution 

For the scheduling component, only the application and service files are relevant. The schemas 

and parsers for these files were extended in order to provide the extra information required by 

o that the number of floating point 

The service file was updated 

to include the processing capacity in floating point operations per second (FLOPS) in the 

11. The parsers for 

were updated to support the new schemas. Additional to this, the WfTask and 



ComputeServer classes which represent a workflow task and compute resource respectively, 

were extended to support the new properties.  
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Figure 10 Changes made to the application file 
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Figure 11 Changes made to the service file 



The workflow engine’s architecture allows for scheduling decisions to be made base on either 

local or global information. The classes that make this possible are the WorkflowCoordinator 

and TaskManager, these are the core of the scheduling component. On one hand, the workflow 

coordinator has access to the information of all tasks and hence is responsible for managing the 

high level scheduling of the workflow. On the other hand, each task is assigned to a task 

manager which means that it only has access to the information of that task and is responsible 

for the task level or local scheduling. The heuristic depicted in algorithm 3 uses the information 

of the entire workflow to schedule the tasks and therefore is implemented in the 

WorkflowCoordinator class. The class hierarchy that supports the implementation of algorithm 

3 is explained in the class diagram depicted in figure 12 and the sequence diagram in figure 13. 
 

 
Figure 12 High level class diagram for the grid heuristic 



 
Figure 13 Sequence diagram for the grid heuristic 

The PSO algorithm was implemented as a separate component. It was developed using the Java 

library JSwarm-PSO [27]. The algorithm takes as input two lists, one of WfTask objects 



representing the tasks to be scheduled and another of ComputeServer objects representing the 

resources available. As a first step, all the parameters required by PSO are initialized. The 

particle’s dimension is set to be the number of input tasks. The position range in which the 

particle can move is set to between zero and the number of resources minus one; this creates 

an implicit mapping between the index of the resources and the particle’s position. Other 

parameters such as ��	, �� and  are also initialized in this stage. The required fitness function 

that the algorithm will use is implemented in the ComputeFitness class and it is based on 

equation 4. The JSarm-PSO library is used to execute the core logic of the algorithm and after it 

finishes, the output is interpreted and translated into a resource to task mapping usable by the 

workflow engine. In particular, the output of the algorithm is a list of TaskToResourceMapping 

objects. A TaskToResourceMapping object has two properties, the first one is of type Wftask 

and the second one of ComputeServer. The class diagram for the PSO component is depicted in 

figure 14. 

 

 
Figure 14 PSO class diagram  

 

3.5 Experiments and Results 
 

The proposed heuristic was contrasted with two different approaches. The first one is a round 

robin algorithm, a simple approach in which each task is scheduled in the next available 

resource. When comparing the PSO approach with this one, the total workflow execution cost 

was used as a metric. To evaluate the load balance feature of the algorithm, a simpler version 

of it in which the fitness function comprises only of the execution cost was implemented and 

used to evaluate the algorithm. Additionally, experiments with different values of the PSO 

parameters where held. 

 



The first set of experiments carried out were those that varied the different PSO parameters, 

this was done in order to find the best configuration for the given problem. These experiments 

were held with a simulated workflow of 20 heterogeneous tasks and 10 heterogeneous 

resources; each experiment was repeated 10 times and the values shown are an average of 

these results. Different values for the number of particles,	��,	�� and  were tried and the 

results are shown in tables 2, 3 and 4.The best configuration found was for 25 particles, 

,	�� = 0.9,	�� = 0.9 and  = 0.95. The rest of the experiments held were done using these 

parameter values. 

 
particles c1 c2 w cost 

25 0.9 0.9 0.95 22.68809 

25 1.4 1.4 0.95 23.13056 

25 1.9 1.9 0.95 23.18673 

25 2.4 2.4 0.95 22.93031 

25 2 1 0.95 22.78724 

25 1 2 0.95 22.94646 

25 0.5 1.5 0.95 23.00431 

25 1.5 0.5 0.95 23.04111 

Table 2 PSO results for different values of ��and �� parameters 

 

particles c1 c2 w cost 

25 0.9 0.9 0.95 22.68809 

25 0.9 0.9 1 22.88573 

25 0.9 0.9 1.05 23.0757 

25 0.9 0.9 1.1 23.0146 

25 0.9 0.9 2 23.26383 

25 0.9 0.9 3 23.4639 

25 0.9 0.9 4 23.45969 

Table 3 PSO results for different ω values 

particles c1 c2 w cost 

5 0.9 0.9 0.95 23.38486 

10 0.9 0.9 0.95 23.18674 

15 0.9 0.9 0.95 22.95487 

20 0.9 0.9 0.95 22.7174 

25 0.9 0.9 0.95 22.89023 

30 0.9 0.9 0.95 22.82647 

Table 4 PSO results for different number of particles 

An additional set of experiments, comparing the proposed PSO approach with a round robin 

one were performed. These tests were done using the workflow engine mentioned before. 

Eight different workflows with the number of tasks ranging from 5 to 20 were used; the tasks 



had varied sizes ranging from 10 to 50000 MFLOP. Five different resources were used to 

schedule the workflows; each compute resource had different processing capacities in terms of 

MFLOPS and different costs per hour. Figures 15 and 16 show the achieved results. On average, 

by using PSO, the overall workflow execution cost was reduced by 28.5%.  

 

 
Figure 15 Execution cost of 8 workflows using PSO and Round Robin 

 

 
Figure 16 Percentage in which PSO reduces the Round Robin execution 
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To test the load balancing mechanism experiments were held with a version of the algorithm in 

which only the execution cost was part of the fitness function. The results show that the 

proposed heuristic greatly improves the distribution of the tasks over the different reductions. 

Results are shown in table 5 and figure 17.  

 

 
Figure 17 Number of tasks per resource 
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20 tasks - 10 resources 

Standard 

Deviation 0.447214 1.897366596 

Variance 0.2 3.6 

 

20 tasks - 5 resources 

Standard 

Deviation 0 0.894427191 

Variance 0 0.8 

 

20 tasks - 20 resources 

Standard 

Deviation 0.547723 1.264911064 

Variance 0.3 1.6 

Table 5 Variance and standard deviation of the load distribution 
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Even though the performance of PSO greatly depends on the value of the input parameters, the 

experiments held show that the final outcome of the algorithm was not greatly impacted by 

changing these values (for the range of values tested). However, for larger scale problems, the 

difference between two set of parameters can mean a considerable cost reduction. The reason 

for the results not changing much from one configuration to the other might be the scale of the 

problem, the tests were held with 20 tasks and 10 resources which had an hourly cost between 

1.1 and 1.3. If the number of resources and tasks was higher and the difference in machine 

costs was higher, the search space would be sparser and probable a slight change in the 

parameter values could greatly impact the result; however, this was considered a reasonable 

setting for the studied problem.  

 

Regarding the cost minimization strategy proposed, only the processing time of each task on a 

resource was considered when calculating the workflow cost. Even though that is one of the 

components of the total execution cost, other aspects such as the data transmission cost 

should also be considered in order for the scheduling heuristic to be as accurate as possible.  

 

 

4 Dynamic Resource Leasing Approach 
 

Traditional distributed systems such as clusters and grids are mostly dedicated and static; 

however, IaaS clouds offer elasticity as the number of resources used can grow and shrink 

depending on the applications’ needs, furthermore, different type of resources are available in 

terms of memory, number of cores, etc. and these resources are leased on a pay per use basis. 

Unlike more traditional systems, in the cloud, resources are highly dynamic and heterogeneous 

and this represents a further challenge when scheduling workflows on these infrastructures. 

The resource leasing model offered by cloud providers needs to be considered when scheduling 

jobs. For instance, the number of resources to be leased needs to be determined and the fact 

that different tasks can be assigned to different types of virtual machines needs to be 

considered. 

 

Before the advent of cloud computing, distributed environments consisted mostly of dedicated 

private resources or community grids on which the user application was not charged by using 

the resources; in these systems the goal was to execute the application as fast as possible and 

hence, scheduling algorithms were developed to consider only the execution time. The main 

objective of this algorithm is to develop a set of heuristics that consider the elastic cloud leasing 

model in order to decrease the cost of executing scientific workflows on an IaaS cloud provider. 

IaaS platforms offer various types of virtualized resources with different characteristics and 

cost. These resources are provided in the form of virtual machines (VMs); theoretically, users 

have access to an infinite number of VMs. These VMs can be leased and used for as long as they 

are needed and released when they’re not required anymore. This gives the users the flexibility 

to configure their environment according to their specific needs by choosing several features 

such as the number and types of virtual machine to lease and the period of time for which they 

will be acquired.  



 

Most research until now has focused on diff

require a set of machines and their information to be available previous to the scheduling 

process. The algorithm presented in this section is specifically tailored for dynamic 

environments based on cloud IaaS 

resources is available, it dynamically selects the best type of instances to lease based on the 

characteristics of the workflow tasks and the instances offered by the cloud provider. 

  

The algorithm requires certain information to be available in order for it to make appropriate 

decisions. First, a description of the instances offered by the cloud provided is required; this 

description must contain at least the name of the instance as recognized

environment, its cost per hour and its processing capacity in terms of FLOPS. Second, every task 

in the workflow needs to be described, among other things, in terms of its size specified as 

number of FLOPs.  

  

The basis of the algorithm is the instance type selection heuristic. This heuristic is based on a 

single task and a set of instances of different types; the aim is to determine the instance type 

which will lead to the minimum execution cost of the task. To achieve this, the cost of the 

on each instance type is calculated; this cost is calculated based on the time the task will take to 

execute in the particular instance and the cost per hour of the instance. 

the cost of executing a task in an instance type is calculated.

 

 

Figure 18 Instance Type Selection Heuristic
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Algorithm 4 Computation of the cost of executing task t in instance type i

The instance type selection heuristic defines which is the most appropriate instance type for a 

particular task; however, this does not solve the stated scheduling problem and hence it needs 

to be embedded into a more robust algorithm so that given a set of ta

set (i.e. that which minimizes the total execution cost) of instance types is selected. Since PSO is 

an optimization technique that can be adapted to several problems; this algorithm was used to 

solve the task to instance type map

 

The encoding of the problem is as follows. 

the workflow, each dimension of 

by that particular dimension. Based on this,

type to a task. A sample particle and its position are depicted in 

particle is allowed to move is defined to be between one and the number of 

types available. 

 

Figure 19 Encoding of a particle 

The fitness function is used to measure how good a potential solution or particle is. In this 

particular case we want to minimize the total execution cost and therefore the fitness value is 

calculated as the sum of the execution cost of each task on its assigned resource; a cost of a 

task in a particular resource is computed based on 

equation 5; it takes as input a particle’s position, which is an array of size

dimension of the particle and in this particular scenario, the number of tasks in the workflow. 
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The pseudo code for the algorithm is depicted in 
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Computation of the cost of executing task t in instance type i 

instance type selection heuristic defines which is the most appropriate instance type for a 

particular task; however, this does not solve the stated scheduling problem and hence it needs 

to be embedded into a more robust algorithm so that given a set of tasks, the most appropriate 

set (i.e. that which minimizes the total execution cost) of instance types is selected. Since PSO is 

an optimization technique that can be adapted to several problems; this algorithm was used to 

solve the task to instance type mapping problem. 

The encoding of the problem is as follows. The dimension of a particle is the number of tasks in 

the workflow, each dimension of represents the instance type assigned to the task represented 

Based on this, the particle represents a mapping of 

A sample particle and its position are depicted in figure 19. The range in which

is defined to be between one and the number of different instance 

The fitness function is used to measure how good a potential solution or particle is. In this 

particular case we want to minimize the total execution cost and therefore the fitness value is 

ted as the sum of the execution cost of each task on its assigned resource; a cost of a 

task in a particular resource is computed based on algorithm 4. The function presented in 

it takes as input a particle’s position, which is an array of size �
dimension of the particle and in this particular scenario, the number of tasks in the workflow. 

KLM�N�L6[�]  Equation 5 
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The pseudo code for the algorithm is depicted in algorithm 5. 
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an optimization technique that can be adapted to several problems; this algorithm was used to 
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assigned to the task represented 
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The fitness function is used to measure how good a potential solution or particle is. In this 

particular case we want to minimize the total execution cost and therefore the fitness value is 

ted as the sum of the execution cost of each task on its assigned resource; a cost of a 

function presented in 

� where � is the 

dimension of the particle and in this particular scenario, the number of tasks in the workflow.  

��'�����	�>(� 



Algorithm 5  Cloud Cost Minimization Scheduling Heuristic 

�� Let T78 the set of all tasks in the workflow 

�� Let d78 the set of descriptions of all the available instance types 

�� Run PSO4T. d5 

���� Set the particle dimension equal to the number of tasks in the workflow 

���� Initialize all particle’s position and velocity randomly 

���� For each particle. calculate its fitness value based on equation 6 

���� Compare the particle’s fitness value with the particle’s	+,-./� If the current value is 

better than +,-./ then set +,-./ to the current value and location 

���� Compare the particle’s fitness value with the global best	0,-./� If the particle’s 

current value is better than 0,-./ then set 0,-./ to the current value and location 

���� Update the position and velocity of the particle according to equations � and � 

���� Repeat from step 2�2 until the stopping criterion is met�  

�� Lease the required instances based on the output of step 2 

�� For each / in T which is ready for execution 

���� Assign / to resource UZ which corresponds to the type assigned to the task in step 2 

���� Dispatch / for execution 

�� Wait for +[\\Z]0_/Z^- 

�� Update T with new tasks ready for execution 

8. Repeat from step 6 until there are no more tasks to be scheduled 

Algorithm 5 Cloud Cost Minimization Scheduling Heuristic 



Figure 20 Class diagram for the cloud

A simplified version of the algorithm which includes steps 1, 2 and 3 was implemented in order 

to evaluate its efficiency. The class diagram is depicted in 

using the Amazon EC2 instances and pricing policy. 

resource types used for the simulation. As mentioned earlier, the algorithm requires the 

processing capacity of each instance to be specified in terms of MFLOPS. To identify the 

MFLOPS each used instance is capable of processi

the authors, at peak performance, one ECU (Amazon Compute Unit) equals 4.4 gigaflops per 

second (GFLOPS); this data is based on Amazon’s ECU definition. An 

equivalent CPU power of a 1.0-1.2 GHz 2007 Opteron or Xeon processor which can perform 4 

flops per cycle at full pipeline. 

cloud algorithm 

A simplified version of the algorithm which includes steps 1, 2 and 3 was implemented in order 

The class diagram is depicted in figure 20. The evaluation was

using the Amazon EC2 instances and pricing policy. Table 6 shows the description of the 

resource types used for the simulation. As mentioned earlier, the algorithm requires the 

processing capacity of each instance to be specified in terms of MFLOPS. To identify the 

MFLOPS each used instance is capable of processing, the work in [46] was used. According to 

the authors, at peak performance, one ECU (Amazon Compute Unit) equals 4.4 gigaflops per 

ased on Amazon’s ECU definition. An ECU is defined to have the 

1.2 GHz 2007 Opteron or Xeon processor which can perform 4 

 

A simplified version of the algorithm which includes steps 1, 2 and 3 was implemented in order 
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the authors, at peak performance, one ECU (Amazon Compute Unit) equals 4.4 gigaflops per 

ECU is defined to have the 

1.2 GHz 2007 Opteron or Xeon processor which can perform 4 



 

 
Instance Type ECUs Cost per Hour MFLOPS Instance 

Description 

m1.small 1 0.08 4400 Standard small 

m1.large 4 0.3 17600 Standard large 

m1.extraLarge 8 0.6 35200 Standard extra 

large 

c1.medium 5 0.17 22000 High CPU medium 

c1.large 20 0.8 88000 High CPU large 

Table 6 Instance types offered by Amazon EC2 

A simple experiment with two tasks that illustrates how the algorithm works was done. Tables 8 

and 9 show the execution time and cost details for two different tasks on each type of instance. 

Task 1 consists of 10000000 MFLOPs whereas task 2 consists of 100000000. From table 8 it is 

clear that the instance type on which task 1 would cost the least to execute is m1.small, 

equivalently, table 9 shows that the best instance type for task 2 is c1.medium. Figure 10 shows 

the output produced when the proposed algorithm was ran for tasks 1 and 2 and the instance 

types depicted in figure 7. The mapping created is as expected as the results match those 

depicted in tables 8 and 9 and the chosen instances are those which minimize the total 

execution cost.  

 

Task Name MFLOPs 

Task 1 10000000 

Task 2 100000000 

Table 7 Task 1 and Task 2 description 

 

Task 1 

 m1.small m1.large m1.extraLarge c1.medium c1.large 

execution time 

(hrs) 

0.631313131 0.157828283 0.078914141 0.126262626 0.031565657 

cost 0.08 0.3 0.6 0.17 0.8 

Table 8 Execution time and cost details of task 1 

 

Task 2 

 m1.small m1.large m1.extraLarge c1.medium c1.large 

execution time 

(hrs) 

6.313131313 1.578282828 0.789141414 1.262626263 0.315656566 

cost 0.56 0.6 0.6 0.34 0.8 

Table 9 Execution time and cost details of task 2 

 

 



 

 

Task Instance 

Type 

Cost 

Task 1 m1.small 0.08 

Task 2 c1.medium 0.34 

Total  0.42 

Table 10 Output of the cloud algorithm for two tasks 

Additional experiments were held and in general, the algorithm maps tasks to instance types 

which minimize the cost. The output of an experiment ran with 5 tasks of varying sizes and 3 

instance types (m1.small, m1.large, m1.extraLarge) is depicted in table 11. The integration of 

the algorithm and further experiments and evaluation are left as future work. 
 

Task MFLOPs Instance 

Type 

Task 1 10000000 m1.small 

Task 2 20000000 m1.small 

Task 3 30000000 m1.small 

Task 4 40000000 m1.medium 

Task 5 50000000 m1.medium 

Table 11 Output of the cloud algorithm for five tasks 

 

5 Conclusion and Future Work 
 

This project presented two PSO based heuristics for scheduling application workflows on 

heterogeneous distributed environments in such way that the total execution cost is minimized. 

The main difference between the two approaches lies on the environment which provides the 

required computing resources. The first one, referred to as the grid approach, assumes a set of 

finite resources is available before the scheduling process begins. The second one, referred to 

as the cloud approach, assumes there are no resources available when the scheduling process 

begins and instead, machines should be dynamically selected and acquired from a potentially 

infinite set of heterogeneous resources.  

 

The algorithm for grid environments was implemented and integrated into a workflow 

management system called CWMS. This solution focused on two objectives, the first one was 

minimizing the overall execution cost and the second one was balancing the number of tasks 

assigned to each resource. The results achieved demonstrate the efficacy of the algorithm; 

compared to a round robin based approach, it decreased the cost in 28% and at the same time 

distributed the tasks more evenly among the available resources. As future work, the multi 

objective nature of the problem (minimize cost and load balancing) could be addressed with 

more sophisticated evolutionary multi objective optimization techniques such as criterion and 

dominance based 



 

The cloud algorithm was not implemented as part of the CWMS; however, a simplified 

implementation capable of simulating the main steps of the algorithm was made. Results show 

that in most of the cases, for a given task, the algorithm selects the instance type that leads to 

the task’s minimum execution cost and hence, the set of selected instances is optimal in terms 

of cost minimization. It is left as future work to extend the CWMS so that cloud environments 

are supported and integrate the algorithm to the system. Additionally, more robust 

experiments and evaluation are required to properly analyze the performance of the algorithm. 

 

An important aspect that contributes to the total execution cost of a workflow in a set of 

distributed resources is the cost of transferring data from one machine to another. This was not 

considered in this work and should be part of future work. Another desirable feature missing in 

both approaches is the enforcement of a user quality of service requirement such as budget 

and deadline. For instance, a user may want to minimize the execution cost and still require 

that the execution finishes before a predefined deadline.  

 

The leasing model considered in the cloud algorithm is a simplified version compared to the 

current pricing policies of cloud providers. For instance, providers define different zones in 

which virtual machines can be started and the price varies from zone to zone. Additionally, the 

cost of transferring data from one instance to the other as well as the storage services offered 

should be considered when estimating the total cost.  

 

Finally, a workflow management system does not necessarily have to select resources from a 

single source. Instead, it can have access to resources in two different ways; the first one is 

through a static pool of resources and the second one through a public cloud provider. The 

static pool would be composed of private resources or any other resource that is available for 

use (for example an instance previously leased from an IaaS provider). This set of resources 

meets the requirements of the algorithm for grid environments. On the other hand, the 

resources offered by the public cloud provider meet the requirements of the algorithm for 

cloud environments. This implies that both algorithms could be integrated in such way that the 

utilization of the resources is optimal in terms of the scheduling objective (cost minimization, 

time minimization, etc.). In such scenario, the static resources would be used to schedule the 

workflow tasks, and if these are unable to meet the QoS requirement or scheduling objective 

then the algorithm would turn to the public cloud resources to successfully finish the execution 

of the application.  
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