
Cost Minimization Heuristics for Scheduling Workflows

on Heterogeneous Distributed Environments

Presented by

María Alejandra Rodríguez Sossa

Submitted in partial fulfillment of the requirements of the course

Masters of Engineering in Distributed Computing

The Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne

November 2011

Supervised by Dr. Rajkumar Buyya

Acknowledgments

I would like to thank my supervisor Professor Rajkumar Buyya for providing me with the

opportunity to work in this project and get hands on experience with technologies which are

the result of years of research and development. He supervised the progress of the project and

provided me with the feedback, resources and tools necessary to successfully fulfill the

project’s objectives.

I would also like to thank Suraj Pandey who provided valuable guidance throughout the project.

He has a vast experience with the Cloudbus Workflow Management System and scheduling

algorithms helped me gain a better understanding on the topics and accomplish the established

goals.

Finally, I would like to thank the researchers at the CLOUDS lab that helped me by either

providing their input or on understanding the architecture of Cloudbus Workflow Management

System.

Abstract

Many large scale scientific problems require computing power that goes beyond the capabilities

of a single machine. The data and compute requirements of these problems demand a high

performance computing environment such as a cluster, a grid or a cloud platform in order to be

solved in a reasonable amount of time. In order to efficiently execute workflows and utilize the

distributed resources in an appropriate way, a scheduling policy needs to be in place.

Application schedulers are driven by different objectives such as minimization of the total

execution cost, minimization of the total execution time, even utilization of the available

resources (load balancing), a combination of these and so forth. This project focuses on

minimizing the overall execution cost of workflow applications in heterogeneous high

performance distributed environments.

Specifically, this work focuses on two different types of environments. The first one is a grid

environment and assumes that a static set of resources is available for executing the application

workflow. The second one is a cloud environment in which the resources are dynamically leased

as they are needed by the application. Two algorithms, one for each scenario, are proposed and

both are based on a Particle Swarm Optimization metaheuristic algorithm.

The algorithm developed for grid environments was integrated into the Cloudbus Workflow

Management System and its performance was evaluated using different workflows of varying

sizes. The approach was compared against a baseline round robin algorithm. The findings show

that the proposed algorithm achieves an average 28.5% cost reduction while distributing the

workflow tasks more evenly across the available resources.

Table of Contents

1. Introduction .. 6

1.1. Background ... 6

1.1.1 Grid and Cloud Computing Platforms ... 7

1.1.2 Workflow Scheduling .. 12

1.2 Related Work .. 13

1.3 Aim .. 14

1.4 Objectives.. 15

1.5 Motivation ... 15

2 Technical Review ... 16

2.1 Cloudbus Workflow Engine Management System ... 16

2.1.1 Cloudbus Workflow Engine ... 18

2.2 Particle Swarm Optimization .. 21

3 Algorithm for Grid Environments.. 23

3.1 Definitions and Assumptions .. 23

3.2 Problem Formulation .. 24

3.3 Workflow Scheduling based on PSO ... 24

3.4 Implementation .. 27

3.5 Experiments and Results ... 31

4 Dynamic Resource Leasing Approach ... 35

5 Conclusion and Future Work .. 41

References .. 43

Table of Figures

Figure 1 High level view of a global grid [29] .. 8

Figure 2 Classification of Cloud Computing Services [37] ... 10

Figure 3 Sample workflow .. 12

Figure 4 Key components of the CWMS ... 16

Figure 5 Cloudbus Workflow Management System Architecture [36]... 18

Figure 6 WE Scheduling Architecture ... 20

Figure 7 WE Event driven communication [44] .. 20

Figure 8 Encoding of a particle’s position ... 25

Figure 9 Cost execution matrix ... 27

Figure 10 Changes made to the application file ... 28

Figure 11 Changes made to the service file .. 28

Figure 12 High level class diagram for the grid heuristic .. 29

Figure 13 Sequence diagram for the grid heuristic .. 30

Figure 14 PSO class diagram ... 31

Figure 15 Execution cost of 8 workflows using PSO and Round Robin .. 33

Figure 16 Percentage in which PSO reduces the Round Robin execution 33

Figure 17 Number of tasks per resource .. 34

Figure 18 Instance Type Selection Heuristic ... 36

Figure 19 Encoding of a particle ... 37

Figure 20 Class diagram for the cloud algorithm .. 39

Table 1 Main differences between cloud and grid computing [35] ... 12

Table 2 PSO results for different values of �1and �2 parameters ... 32

Table 3 PSO results for different ω values .. 32

Table 4 PSO results for different number of particles .. 32

Table 5 Variance and standard deviation of the load distribution ... 34

Table 6 Instance types offered by Amazon EC2.. 40

Table 7 Task 1 and Task 2 description .. 40

Table 8 Execution time and cost details of task 1 ... 40

Table 9 Execution time and cost details of task 2 ... 40

Table 10 Output of the cloud algorithm for two tasks ... 41

Table 11 Output of the cloud algorithm for five tasks ... 41

Algorithm 1 WE Just in Time Scheduling heuristic ... 21

Algorithm 2 PSO .. 23

Algorithm 3 Scheduling heuristic for grid environments .. 27

Algorithm 4 Computation of the cost of executing task t in instance type i 37

Algorithm 5 Cloud Cost Minimization Scheduling Heuristic ... 38

1. Introduction

Many large scale scientific problems require computing power that goes beyond the capabilities

of a single machine. The data and compute requirements of these problems demand a high

performance computing environment such as a cluster, a grid or a cloud platform in order to be

solved in a reasonable amount of time. Furthermore, workflows, which can be defined as a set

of tasks and a set of dependencies between them, are a common way of expressing these

scientific applications. In order to efficiently execute workflows and utilize the distributed

resources in an appropriate way, a scheduling policy needs to be in place.

Application schedulers are driven by different objectives. Some of these objectives include the

minimization of the total execution cost, minimization of the total execution time, even

utilization of the available resources (load balancing), a combination of these and so forth. This

project focuses on minimizing the overall execution cost of workflow applications in

heterogeneous high performance distributed environments; goal that is achieved by using a

Particle Swarm Optimization metaheuristic algorithm.

Particle Swarm Optimization (PSO) is a flexible technique widely used nowadays to solve

optimization problems [1]. This algorithm was proposed by Kennedy and Ebehart in [2] and is

based on the social behavior of bird and fish flocks; it simulates the behavior of individuals in

the flock in order to maximize the survival of the species. PSO is similar to other population

based algorithms such as Genetic Algorithms (GA) in that the system is initialized with a set of

random solutions; however, it is different in that it relies on the social behavior of the particles

instead of recombining the individuals of the population [3].

In broad terms, the PSO is based on a swarm of particles moving through space and

communicating with each other in order to determine an optimal search direction.

Furthermore, the movement of particles in the algorithm is a stochastic process guided by a

given current velocity, the particle’s own experience (local best) and that of the whole group

(global best). PSO has better computational performance than other evolutionary algorithms

[2] and fewer parameters to tune, which also makes it easier to implement. Many problems in

different areas have been successfully addressed by adapting PSO to specific domains; for

instance this technique was used in the reactive voltage control problem [4], pattern

recognition [5] and data mining [6] among others.

This project investigates the workflow scheduling problem in two different scenarios. The first

one is a grid environment in which the available computing resources and their characteristics

are known in advance. The second one is a cloud environment in which there is no predefined

set of resources and instead these need to be leased at run time in such way that the

scheduling objective is met. Both of the proposed algorithms are based on PSO and their main

objective is to minimize the execution cost of the workflow on the distributed resources.

1.1. Background

Applications with ever growing requirements have triggered the development of distributed

systems; distributed computing has evolved from high performance computing to grid

computing and now to the most recent paradigm, cloud computing. All these technologies have

a goal in common, provide large scale applications with a powerful platform on which they can

be deployed and executed as they might require for instance, computing power that goes

beyond the capabilities of a single machine. Furthermore, they aim to provide a large number

of users with a reliable, scalable and efficient service.

Over the years, the way in which this service is provided has evolved towards a utility model in

which users are charged based on their consumption. One of the main scientists in charge of

the ARPANET (Advanced Research Projects Agency Network) project foresaw this when he

stated [28] “As of now, computer networks are still in their infancy, but as they grow up and

become sophisticated, we will probably see the spread of, ‘computer utilities’, which, like

present electric and telephone utilities, will service individual homes and offices across the

country”.

1.1.1 Grid and Cloud Computing Platforms

Grid Computing

Based on a service oriented architecture, grid computing allows heterogeneous resources to be

accessed in a secure and uniform way and enables the creation and management of virtual

organizations (VOs) [29]. A virtual organization can be defined as individuals, institutions or

organizations that share resources such as processing time, software and data in a controlled,

secure and flexible way in order to achieve a common goal [30]. Therefore, through grid

computing, distributed networked resources are integrated and coordinated allowing them to

function as a single virtual whole. One of the main goals of this type of computing is to

aggregate the processing power of the interconnected machines in order to solve large scale

problems that cannot be handled by a single machine. Even though the processor is one of the

most obvious resources shared in a grid, other such as storage systems, sensors and

applications can also be shared.

There are various definitions of grid computing. For instance, the Globus project (Argonne

National Laboratory, USA) [31] defines grid as “an infrastructure that enables the integrated,

collaborative use of high-end computers, networks, databases, and scientific instruments

owned and managed by multiple organizations.” Another definition is that given by Dr. Buyya et

al. is “Grid is a type of parallel and distributed system that enables the sharing, selection, and

aggregation of geographically distributed ‘autonomous’ resources dynamically at runtime

depending on their availability, capability, performance, cost, and users’ Quality of Service

(QoS) requirements.” [29].

A high level view of a grid environment is depicted in figure 1. Grid information services are

used to register grid resources. The grid resource broker receives application requirements

from end users and based on these,

suitable resources. After this, the resource broke schedules and monitors the application on the

selected resources until it completes its execution. Furthermore, grid environments offer

additional services such as security, directory, resource allocation, execution management and

resource aggregation among others

Figure 1 High level view of a global grid

There are several challenges that need to be addressed by grid middleware systems in order to

hide the complexity of the underlying distributed enviro

a grid environment is heterogeneous by nature as resources may have a wide range of

hardware and software. Secondly, grid resources might be spread across political

geographical boundaries and they might be under the control of different administration with

different policies. Finally, the grid environment is dynamic in nature. This means that the

availability and performance of the resources is unpredictable; for

within an organization may have higher priority or different cost than requests from outside the

organization.

These challenges have been addressed in various ways by different architectural approaches.

One of such approaches is based on the creation

represent different real world organizations that ally in order to share resources and achieve a

common goal. Each VO defines the assets that will be shared and a set of policies to access

them; these policies specify how participants are allocated resources and they reflect the

objectives of the VO.

Another architectural approach is based on

resource providers compete to provide the best service to the users or resource consumers.

Users select the resources based on different criteria such as ability to meet specific

from end users and based on these, queries the grid information services in order to discover

suitable resources. After this, the resource broke schedules and monitors the application on the

selected resources until it completes its execution. Furthermore, grid environments offer

services such as security, directory, resource allocation, execution management and

ource aggregation among others [29].

High level view of a global grid [29]

There are several challenges that need to be addressed by grid middleware systems in order to

hide the complexity of the underlying distributed environment from the end users

a grid environment is heterogeneous by nature as resources may have a wide range of

hardware and software. Secondly, grid resources might be spread across political

geographical boundaries and they might be under the control of different administration with

different policies. Finally, the grid environment is dynamic in nature. This means that the

availability and performance of the resources is unpredictable; for instance, requests from

within an organization may have higher priority or different cost than requests from outside the

These challenges have been addressed in various ways by different architectural approaches.

based on the creation of virtual organizations

represent different real world organizations that ally in order to share resources and achieve a

mon goal. Each VO defines the assets that will be shared and a set of policies to access

them; these policies specify how participants are allocated resources and they reflect the

Another architectural approach is based on economic principles [34], in this case, the owners or

resource providers compete to provide the best service to the users or resource consumers.

Users select the resources based on different criteria such as ability to meet specific

queries the grid information services in order to discover

suitable resources. After this, the resource broke schedules and monitors the application on the

selected resources until it completes its execution. Furthermore, grid environments offer

services such as security, directory, resource allocation, execution management and

There are several challenges that need to be addressed by grid middleware systems in order to

nment from the end users [32]. Firstly,

a grid environment is heterogeneous by nature as resources may have a wide range of

hardware and software. Secondly, grid resources might be spread across political and

geographical boundaries and they might be under the control of different administration with

different policies. Finally, the grid environment is dynamic in nature. This means that the

instance, requests from

within an organization may have higher priority or different cost than requests from outside the

These challenges have been addressed in various ways by different architectural approaches.

of virtual organizations [33]; these VOs

represent different real world organizations that ally in order to share resources and achieve a

mon goal. Each VO defines the assets that will be shared and a set of policies to access

them; these policies specify how participants are allocated resources and they reflect the

in this case, the owners or

resource providers compete to provide the best service to the users or resource consumers.

Users select the resources based on different criteria such as ability to meet specific

requirements, price of the resources and quality of service (QoS) expectations. For instance a

user may need to execute an application under a certain budget or before a specified deadline;

both of these constraints are QoS requirements that drive the user when selecting an

appropriate resource provider.

Grid computing however poses several limitations that bound users and applications deployed

on them. In general, grid platforms are limited to a specific set of users and IT resources;

furthermore, these resources are shared mostly on a volunteer manner with the sole purpose

of achieving a common goal [35]. Cloud computing is a new flexible trend that overcomes all

these limitations by delivering infrastructure and software as services in a pay per use basis.

Cloud Computing

Cloud computing is an emerging technology that enables the delivery of services over the

Internet; specifically, it aims to deliver IT resources on a pay per use basis. In the modern

society, utility services such as water, gas and electricity are massively deployed and they can

be accessed from almost anywhere and at anytime; these services reach billions of people who

are charged based on their consumption of the services. Cloud computing is part of the

infrastructure that makes possible the use of computing resources under the utility model [37].

Through Cloud Computing, vendors make CPU cycles, storage and application hosting accessible

under a service level agreement; these resources are exposed as standards based Web services

and follow the utility pricing model as mentioned before [36]. The offered computing

infrastructure is viewed as a “cloud” from which applications can be accessed from anywhere

and on demand [38].

There are many definitions of Cloud Computing and its characteristics; Buyya et al. [38] describe

it as “a parallel and distributed computing system consisting of a collection of inter-connected

and virtualized computers that are dynamically provisioned and presented as one or more

unified computing resources based on service-level agreements (SLA) established through

negotiation between the service provider and consumers”.

The main idea behind Cloud Computing is to provide computing, storage and software as-a-

service [36]. Therefore, product offerings are classified into a hierarchy of as-a-service terms:

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

Each of these classes represent a different abstraction level and as a whole, they can be

understood as a layered architecture where the layers above leverage from the services

provided by the layers below [36]; this is depicted in figure 2.

Figure 2 Classification of Cloud Computing Services [37]

At the bottom layer of the cloud computing stack is Infrastructure as a Service, IaaS. At this

level, virtualized resources such as computation, storage and communication are provided. It is

common to lease these resources by means of virtual machines so that users can deploy or run

any software and in general, manage them in the same way they manage a physical machine.

Amazon Web Service is an example of an IaaS provider.

The next layer in the stack is Platform as a Service, PaaS. Vendors who offer this type of service

provide an environment on which developers can easily create and deploy applications. These

applications can scale automatically as needed and therefore developers do not have to be

aware of the amount of resources it will consume. Another features offered at this level are the

provision of different programming models and specialized services that make the creation of

applications simpler and more robust. Google App Engine is an example of PaaS.

Finally, at the top of the stack is Software as a Service, SaaS. It provides services or applications

that can be accessed through the Web; this allows users to use on-line software instead of

locally installed software. Salesforce.com [39], a SaaS provider that offers CRM applications,

describes software as a service and its benefits as “a way of delivering applications over the

Internet—as a service. Instead of installing and maintaining software, you simply access it via

the Internet, freeing yourself from complex software and hardware management.”

A Cloud Computing platform should be able to fulfill a set of basic features expected from its

consumers, namely, a cloud should offer self service, per usage metered and billing, elasticity

and customization [36]. Self service means that customers should be able to request, customize,

pay and use services without intervention of human operators [40]. Per usage metered and

billing implies that customers should be able to use and get charged only the necessary

amount. Elasticity refers to the ability of increasing the number of resources at any time if the

application requires it. Finally, in the case of IaaS, customizable means that the users should be

able to deploy specialized applications and have privileged access to the virtual servers; in the

case of PaaS and SaaS the level of customization is not so high as they offer less flexibility and

control over the resources.

Despite the great acceptance that Cloud Computing has had in the recent years, a number of

challenges and risks are inherent to it and should be taken into account by end users and

providers. First, Cloud Computing is based on the use of third party services (from the user’s

point of view) which are used to host or manipulate sensitive data and to perform critical

operations. Therefore, privacy and security are important challenges that need to be addressed

by providers so that customers can trust them and their products. Second, because Cloud

Computing is a recent technology, there are no established standards that dictate the way data

or applications should be handled in cloud platforms; as a consequence, different platforms

have different implementations that do not interoperate which leads to data and application

lock in. Third, users have certain expectations when they move their resources to the cloud, in

particular they expect availability, fault tolerance and disaster recovery; thus, a SLA that acts as

a warranty must be arranged between clients and providers. Finally, an important challenge is

the efficient management of virtualized resources; physical resources need to be shared

efficiently among virtual machines which have different workloads [36].

To summarize, cloud and grid computing are distributed computing paradigms which enable

the aggregation of valuable resources as well as the deployment and execution of large scale

applications with requirements that cannot be met by a single machine. Cloud computing is

considered to be the evolution of grid computing; unlike grid computing, clouds are meant for

the masses and offer unlimited resources in an elastic way, charging on a pay per use basis.

Table 1 summarizes the differences between both approaches.

Grid Computing Cloud Computing

• Based on ability to negotiate resource-

sharing arrangements

• Coordinates independent resources

• Uses open standards and interfaces

• Allows for heterogeneity of computers

• Resources distributed across large

geographical boundaries

• Resources often leased from Cloud

service providers on a pay-as-you-go

(PAYG) basis

• Resources are managed in virtualized

data centers

• Service provider uses virtualized

resources that may be using services

from multiple data centers

• Loose coupling of computers and

storage services

• Physical resource-sharing among large

number of users

• usually limits dynamic provisioning and

scalability within a single

administrative domain

Table 1 Main differences between cloud and grid computing

1.1.2 Workflow Scheduling

In broad terms, a workflow is a set of tasks with dependencies between them. The process of

scheduling a workflow in a set of resources consists of mapping tasks or group of tasks to an

available compute resource and scheduling their execution so that the dependencies betwee

them are preserved. Most workflows can be expressed as a Directed Acyclic Graph (DAG); by

definition, such graphs have no cycles or conditional dependencies.

workflow represented as a graph.

Figure 3 Sample workflow

Different architectures may support the wor

are three major categories in which these architectures may fall: centralized, hierarchical and

Loose coupling of computers and

sharing among large

usually limits dynamic provisioning and

single

• Service oriented

• Dynamically provisioned, elastic and

highly scalable

Main differences between cloud and grid computing [35]

orkflow is a set of tasks with dependencies between them. The process of

scheduling a workflow in a set of resources consists of mapping tasks or group of tasks to an

and scheduling their execution so that the dependencies betwee

ost workflows can be expressed as a Directed Acyclic Graph (DAG); by

definition, such graphs have no cycles or conditional dependencies. Figure 3 depicts a sample

workflow represented as a graph.

Different architectures may support the workflow scheduling infrastructure. In particular, there

are three major categories in which these architectures may fall: centralized, hierarchical and

Dynamically provisioned, elastic and

orkflow is a set of tasks with dependencies between them. The process of

scheduling a workflow in a set of resources consists of mapping tasks or group of tasks to an

and scheduling their execution so that the dependencies between

ost workflows can be expressed as a Directed Acyclic Graph (DAG); by

depicts a sample

n particular, there

are three major categories in which these architectures may fall: centralized, hierarchical and

decentralized [41]. In the centralized scheme there is a unique, central scheduler that decides

the mapping for every task in the workflow. The hierarchical approach on the other hand,

defines a main scheduler which manages a set of low level schedulers in charge of a subset of

the workflow tasks. Finally, in the decentralized architecture only a set of independent,

decentralized schedulers exist and each of them is responsible of a sub workflow [42].

The decision to map a task to a resource can be made based on the information available to the

scheduler. There are two main types of decisions, local and global. Local decisions are made

based solely on the information of the single task (or group of tasks) being handled by a

particular scheduler. Conversely, global decisions are those made considering the entire

workflow as opposed to a single, isolated task.

The problem of finding an optimal workflow schedule in distributed environments has been

widely studied and in most cases is an NP-complete problem [7]. In general, the scheduling

process is driven by a QoS constraint imposed by the user; many heuristics have been proposed

in order to obtain solutions that are near optimal and meet these QoS requirements. The QoS

or objectives of the scheduling process vary from application to application; they include

restrictions such as minimization of the overall execution cost, minimization of the total

execution time or a combination of both among others.

1.2 Related Work

As mentioned earlier, a workflow can be represented as a DAG in which the nodes correspond

to tasks and the edges to the dependencies between the tasks. A workflow scheduling process

would then be responsible for managing the execution of these interdependent tasks on the

heterogeneous distributed resources; particularly, it would be responsible of allocating each

workflow task to a suitable resource so that the desired objective function is satisfied when the

execution is completed. The job to resource allocation problem has been widely studied for

many years and is known to be an NP-complete problem [7]. Such problems are those for

which no known algorithm is capable of generating an optimal solution in polynomial time. The

brute force approach would be to generate all possible schedules by trying all the possible task

-resource combinations and select the optimal solution; however, the high overhead this

technique implies makes of it an impractical approach. For this reason, more efficient heuristic

based approximation algorithms have been used to address this problem.

The Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic for solving

combinatorial optimization problems; in broad terms, an iterative randomized search is

performed in order to find a good approximation to the optimal solution for a given problem

[8]. This technique has been used to solve the job shop scheduling problem by [9] and to

schedule workflows on grids by [10]. Furthermore, a scheduling algorithm for workflow

allocation based on GRASP [11] is implemented in Pegasus [12], a framework for mapping

complex workflows into grid resources proposed by Deelman et al.

Simulated Annealing (SA) [13] is another metaheuristic global optimum search technique. As its

name implies, the technique is based on the steel and ceramic annealing process in which the

materials are slowly heated and cooled in order to alter their physical properties. Lenstra et al.

[15] investigates an approach to the job shop scheduling problem using an SA approach and

finally, the authors in [14] implemented a simulated annealing scheduler based on their ICENI

grid middleware and found that it outperformed other algorithms such as random and best of n

random.

Genetic Algorithms (GA) [16] have also been used to solve the mentioned problem. Based on

the principle of evolution, a genetic algorithm is basically a stochastic search technique that

allows a near optimal solution to be derived from a large search space in polynomial time. This

algorithm has been applied extensively to the resource allocation problem. For instance, [17],

[18] and [19] use GAs to schedule workflows on homogeneous distributed environments

whereas [20] uses them for scheduling workflows on heterogeneous resources. Additionally,

ASKALON [21], a grid environment for the execution of scientific workflow applications uses

genetic algorithms for scheduling purposes [22].

In addition to this work, there have been some comparative studies that demonstrate that PSO

performs better than GAs in when applied to the mentioned scheduling problem. The authors

of [23] experimented with PSO and a GA for solving the task assignment problem in an

homogeneous environment and concluded that PSO converges faster than the implemented

GA. Additionally, the research in [24] concludes that a PSO based approach is capable of

generation better schedules than GA based one. Even though both approaches are valid and

similar to each other, PSO was chosen in this project for several reasons. Firstly, studies

demonstrate that it is faster than GA. Secondly, it has fewer operators to define, in GA for

instance the reproduction, crossover and mutation functions need to be defined and hence

makes of application’s performance more dependant to the fine tuning of these parameters.

Finally, the nature of the problem makes it simple to use discrete numbers in PSO so that the

particle’s position can easily be associated to task-resource mappings.

1.3 Aim

This project aims to develop two algorithms:

1. Propose a scheduling heuristic that finds a task to resource mapping in such way that

the total execution cost of the workflow application is minimized and the available

resources are evenly utilized. In other words, the algorithm will find a balance between

the minimum execution cost and an even load distribution among all the resources.

2. Develop a set of heuristics that consider the elastic cloud leasing model in order to decrease the

cost of executing workflows on an IaaS cloud provider. The algorithm will dynamically

acquire new resources from a cloud platform and will select the best type of resource

(instance) to lease based on the characteristics of the task it is intended for.

1.4 Objectives

• Study the Cloudbus Workflow Management System thoroughly with emphasis in the

following components:

o Workflow Engine

o Scheduling and task management modules

o Cloudbus Broker

• Learn how to configure and run application workflows on the Cloudbus Workflow

Management System

• Investigate the pricing model of IaaS cloud providers

• Investigate different workflow scheduling techniques on grid and cloud environments

• Study and understand the Particle Swarm Optimization algorithm

• Model a Particle Swarm Optimization approach that tackles the workflow scheduling

problem based on static resources. Propose a high level scheduling heuristic that

embeds this model

• Model a Particle Swarm Optimization approach that tackles the workflow scheduling

problem based on dynamic resources. Propose a high level scheduling heuristic that

embeds this model

• Implementation (due to time constraints only one of the algorithms will be

implemented as part of the CWMS, this algorithm will be the static resource approach)

o Design the integration of the static resource approach with the CWMS

o Implement the static resource solution as a part of the CWMS

o Test and debug the algorithm

o Evaluate the performance of the algorithm and compare it with another

scheduling technique

1.5 Motivation

Distributed environments such as grids and clouds provide large scale applications with a

powerful platform on which they can be deployed and executed. However, the resources

offered by these platforms are generally

can incur in large costs if not planned properly. T

that reduce the overall execution cost of these applications.

2 Technical Review

2.1 Cloudbus Workflow Engine Management Sys

The Cloudbus Workflow Management System (CWMS)

express their applications as workflows and ex

particular, the CWMS enables the creation, monitoring and execution of large scale scientific

workflows on distributed environments such as grids and clouds. The main feature of the

system is its capability of transp

the orchestration and integration details a

components of the system are depicted in

Figure 4 Key components of the CWMS

The Workflow Portal is the entry point to the system. It provides a web based user interface for

the users to create, edit, submit and monitor their applications. A workflow editor is embedded

in this component, the editor enables user to graphically creat

tasks and their dependencies as well as modify existing ones. Additionally, the Workflow Portal

provides a submission page that allows users to upload any necessary data and configuration

offered by these platforms are generally charged on a pay per use basis and user applications

e costs if not planned properly. Therefore, it is important to have mechanisms

that reduce the overall execution cost of these applications.

Engine Management System

The Cloudbus Workflow Management System (CWMS) [43] is a platform that allows scientist to

express their applications as workflows and execute them on distributed resources. In

particular, the CWMS enables the creation, monitoring and execution of large scale scientific

workflows on distributed environments such as grids and clouds. The main feature of the

system is its capability of transparently managing computational processes and data by hiding

the orchestration and integration details among the distributed resources

e system are depicted in figure 4 and the detailed architecture on

Key components of the CWMS

The Workflow Portal is the entry point to the system. It provides a web based user interface for

the users to create, edit, submit and monitor their applications. A workflow editor is embedded

in this component, the editor enables user to graphically create new workflows by defining

tasks and their dependencies as well as modify existing ones. Additionally, the Workflow Portal

provides a submission page that allows users to upload any necessary data and configuration

charged on a pay per use basis and user applications

herefore, it is important to have mechanisms

is a platform that allows scientist to

ecute them on distributed resources. In

particular, the CWMS enables the creation, monitoring and execution of large scale scientific

workflows on distributed environments such as grids and clouds. The main feature of the

arently managing computational processes and data by hiding

mong the distributed resources [44]. The key

and the detailed architecture on figure 5.

The Workflow Portal is the entry point to the system. It provides a web based user interface for

the users to create, edit, submit and monitor their applications. A workflow editor is embedded

e new workflows by defining

tasks and their dependencies as well as modify existing ones. Additionally, the Workflow Portal

provides a submission page that allows users to upload any necessary data and configuration

input files needed to run a workflow. Another important feature is the monitoring and output

visualization page which allows users to observe the execution progress of multiple workflows

and to view the final output of an application. Furthermore, the portal offers users a resource

information page which displays the information of all the current available computing

resources.

The Workflow Editor is accessed through the portal and it provides a GUI that enables users to

create or modify a workflow using drag and drop facilities. The workflow is modeled as a

Directed Acyclic Graph (DAG) with nodes and links which represent tasks and dependencies

between tasks. Moreover, the editor converts the graphical model designed by the users into

an XML based workflow language called xWFL which is the format understood by the

underlying workflow engine.

The Workflow Monitor is also accessed through the portal and it provides a GUI for monitoring

the status of every task in a specific workflow. For instance, tasks can be on a ready, executing,

stage in or completed status, each of which is represented in a different color. Additionally,

users have access to information such as the host in which a task is running, the number of jobs

being executed (in case of parameter sweep applications) and the failure history of each task.

The Workflow Monitor displays and hence relies on the information produced by the Workflow

Engine, the interaction between these two components takes place via an event mechanism

using tuple spaces. In broad terms, whenever the state of a task changes, the monitor is

notified and as a response to the event, it retrieves the new state and any relevant task

metadata from a central database.

At the core of the CWMS is the Workflow Engine (WFE). This component interprets a workflow

described in xWFL language and schedules the corresponding tasks on the available resources.

This project focuses on this component and hence it will be detailed in section 2.1.1.

Figure 5 Cloudbus Workflow Management System Architecture [36]

2.1.1 Cloudbus Workflow Engine

The workflow engine is the core of the workflow management system; its main responsibilities

include scheduling tasks, dispatching, monitoring and managing their execution on remote

resources. As shown in figure 5, the workflow engine has six main subsystems: workflow

submission, workflow language parser, resource discovery, dispatcher, data movement and

workflow scheduler.

The workflow portal or any other client application submits a workflow for execution to the

workflow engine. The submitted workflow must be specified in an xml based language called

xWFL. This language enables users to define all the characteristics of a workflow such as tasks

and dependencies among others. This xml expressed workflow is then processed and

interpreted by a subsystem called the workflow language parser. This subsystem creates

objects representing tasks, parameters, data constraints and conditions based on the

information contained on the xml file. From this point, these objects will constitute the base of

the workflow engine as they are the ones containing all the information regarding the workflow

that needs to be executed. Once this information is available, the workflow is scheduled and

tasks are mapped to resources based on a specific scheduling policy. After this, the engine uses

the Cloudbus Broker as a dispatcher; this component deploys and manages the execution of

tasks on the remote resources.

The Cloudbus Broker [45] provides a set of services that enable the interaction of the workflow

engine with remote resources. It mediates access to distributed resources by discovering them,

deploying and monitoring tasks on specific resources, accessing the required data during task

execution and consolidating results. Two additional components that aid in the execution of the

workflow are the resource discovery service and the data movement service. The resource

discovery service helps in the discovery of suitable resources by querying information services

such as the Globus MDS, directory catalogs and replica catalogs. Finally, the data movement

component offers services that allow the transfer of data between the engine and remote

resources based on protocols such as FTP and GridFTP.

Workflow Scheduling Component

The workflow engine has a decentralized scheduling system that supports just in time planning

and allows resource allocation to be determined at run time [43]. Each task has its own

scheduler called Task Manager (TM). The TM may implement any scheduling heuristic and is

responsible for managing the task processing, resource selection and negotiation, task

dispatching and failure handling. At the same time, a Workflow Coordinator (WCO) is

responsible for managing the lifetime of every TM as well as the overall workflow execution.

Based on this, the architecture offers flexibility in the sense that the scheduling can be done at

workflow level by the WCO, task level by each TM or a combination of both, depending on the

requirements of the application.

Figure 6 shows the interaction between the different components involved in the scheduling

process. The WCO creates and starts a TM based on the task’s dependencies and any other

specific scheduling heuristic being used. Each TM has a task monitor which constantly checks

the status of the remote task and a pool of available resources to which the task can be

assigned. The communication between the WCO and the TMs takes place via events registered

in a central event service.

Figure 6 WE Scheduling Architecture

Each TM is independent and may have its own scheduling policy, this means that several task

managers may run in parallel. Additionally, the behavior of a TM can be influenced by the

status of other task managers. For instance, a task manager may need to put its task execution

in hold until its parent task finishes running in order for the required input data to be available.

For this reason, TMs need to interact with each other just as the WCO needs to interact with

every TM; once again this is achieved through events using a tuple space environment.

Figure 7 WE Event driven communication [44]

Currently, the workflow engine has a basic scheduling heuristic implemented [35]. First level

tasks, which are tasks that have no parents, are the first ones to be scheduled and executed;

these are assigned to the first available resources. As parent tasks finish running and produce

any necessary output, children tasks become ready for execution. These tasks are then queued

and after polling time the scheduler assigns them to any available resource to which they get

dispatched for execution. The choice of polling time is left up to the user and it depends on the

number of tasks in the workflow, the scheduling technique, and resource management policies

among other factors. The pseudo code for this algorithm is shown in algorithm 1. The

contribution of this project is a scheduling policy designed to minimize the total execution cost

and evenly utilize the available resources and it is described in subsequent sections.

Algorithm 1 Just In Time Scheduler

�� For each root task

���� Assign root task to an available compute resource

�� Repeat until all tasks are scheduled

���� For each task that is ready for execution

������ Assign the ready task to any available compute resource

���� Dispatch all the mapped tasks

���� Wait for POLLING&TIME

2.4. Update the ready task list

Algorithm 1 WE Just in Time Scheduling heuristic

2.2 Particle Swarm Optimization

Particle Swarm Optimization is an evolutionary computational technique based on the behavior

of animal flocks. It was developed by Eberhart and Kennedy [2] in 1995 and has been widely

researched and utilized ever since [2]. The algorithm is a stochastic optimization technique in

which the most basic concept is that of particle. A particle simply represents an individual (i.e.

fish or bird) which has the ability to move or fly through the defined problem space; based on

this, each particle represents a candidate solution to the optimization problem. At a given point

in time, the movement of particles is defined by their velocity which is represented as a vector

and therefore has magnitude and direction. This velocity is determined by the best position in

which the particle has been so far and the best position in which any of the particles has been

so far. Based on this, it is imperative to be able to measure how good (or bad) a particle’s

position is; this is achieved by using a fitness function which measures the quality of the

particle’s position and varies from problem to problem, depending on the context and

requirements.

Each particle is represented by its position and velocity. Additionally, particles keep track of

their best position pbest and the global best position gbest; values that are determined based

on the fitness function. The algorithm will then at each step, change the velocity of each

particle towards the pbest and gbest locations. How much the particle moves towards these

values is weighted by a random term, with different random numbers generated for

acceleration towards pbest and gbest locations [1]. The algorithm will continue to iterate until a

stopping criterion is met; this is generally a specified maximum number of iterations or a

predefined fitness value considered to be good enough. On each iteration, the position and

velocity of a particle are updated based on equations 1 and 2 respectively. The pseudo code for

the algorithm is shown in algorithm 2.

����� + 1
 = �����
 + �����
 Equation 1

����� + 1
 = ∙ �����
 + ��������
∗��
 − �����
� + �������∗��
 − �����

 Equation 2

Where:

 = �������
�� = �����������	�����������, � = 1,2
�� = ����� 	�! "��, � = 1,2	���	�� ∈ [0,1]
���
∗ = "�'�	(�'�����	��	(�������	�
��∗ = (�'�����	��	�ℎ�	"�'�	(�������	��	�ℎ�	(�(!������
��� = �!�����	(�'�����	��	(�������	�

The velocity equation contains various parameters that affect the performance of the

algorithm; moreover, some of them have a significant impact on the convergence of the

algorithm. One of these parameters is	, it is also known as the inertia factor or weight and it is

crucial for the algorithm’s convergence. This weight determines how much previous velocities

will impact the current velocity and defines a tradeoff between the local cognitive component

and global social experience of the particles. On one hand, a large inertia weight will make the

velocity increase and therefore will favor global exploration. On the other hand, a smaller value

would make the particles decelerate and hence favor local exploration. For this reason, a

value that balances global and local search implies fewer iterations in order for the algorithm to

converge.

Conversely, �� and �� do not have a critical effect in the convergence of PSO. However, tuning

them properly may lead to a faster convergence and may prevent the algorithm to get caught in

local minima. Parameter �� is referred to as the cognitive parameter as ����defines how much

the previous best position matters. On the other hand, �� is the social parameter as ����

determines the behavior of the particle relative to other neighbors.

There are other parameters that are not part of the velocity definition and are used as input to

the algorithm. The first one is the number of particles; a larger value generally increases the

likelihood of finding the global optimum. This number varies depending on the complexity of

the optimization problem but a typical range is between 20 and 40 particles. Other two

parameters are the dimension of the particles and the range in which they are allowed to

move, these values are solely determined by the nature of the problem being solved and how it

is modeled to fit into PSO. Finally, the maximum velocity which defines the maximum change a

particle can have in one iteration can also be a parameter to the algorithm; however this value

is usually set to be as big as the half of the position range of the particle.

Algorithm 2 Particle Swarm Optimization Algorithm

�� Set the dimension of the particles to *

�� Initialize the population of particles with random positions and velocities

�� For each particle. calculate its fitness value

�� Compare the particle’s fitness value with the particle’s	+,-./� If the current value is better

than +,-./ then set +,-./ to the current value and location

�� Compare the particle’s fitness value with the global best	0,-./� If the particle’s current

value is better than 0,-./ then set 0,-./ to the current value and location

�� Update the position and velocity of the particle according to equations � and �

�� Repeat from step 2 until the stopping criterion is met�

Algorithm 2 PSO

3 Algorithm for Grid Environments

This section describes the proposed algorithm targeting grid environments in which the set of

resources that are to be used to execute the workflow tasks is known in advance.

3.1 Definitions and Assumptions

Before presenting the problem formulation it is important to introduce some definitions and

assumptions made.

Workflow

A workflow 1 can be represented as an acyclic directed graph (DAG) in which	1 = �2, 3
. In

this definition, 2 = 4��, ��, … , �67 is the set of tasks that comprise the workflow and 3 =
8���, �9�:∀	�, <	 ∈ [1, �]	���	=ℎ��ℎ	�	����	��(������>	���'�'	"��=���	��'?'	��	���	�97
corresponds to the set of dependencies between the workflow tasks.

Resources

The set of available heterogeneous resources is defined as	@ = 4��, ��, … , �A7.

Execution Cost

The execution cost B�9 of task �� in resource	�9 is calculated based on the size of the task, the

processing capacity and the cost of the resource.

The algorithm proposed makes a series of assumptions in order to calculate	B�9:

1. The size C� of each task (in number of floating point operations FLOP) is known in

advance.
2. The processing capacity D9 (in number of floating point operations per second FLOPS) for

each resource is known in advance.
3. The cost per unit of time E9 for each available resource is available in advance.

With this information, B�9 can be calculated as shown in equation 3.

	B�9 = �C�/D9
 ∗ 	E9 Equation 3

3.2 Problem Formulation

Scheduling heuristics may have different objectives, this work focuses on finding a task to

resource mapping in such way that the total execution cost of the workflow application is

minimized and the available resources are evenly utilized. This means that a balance between

the minimum execution cost and an even load distribution among all the resources is desired;

ideally all the resources should be utilized.

Based on the previous formal definitions and the stated goals, the scheduling problem

addressed in this section can be stated as follows:

Assign each task in 2 to a resource in @ such that each resource gets a similar number of tasks

and the total cost B = 	∑ B�9
6
�H� for executing the workflow is minimized.

3.3 Workflow Scheduling based on PSO

There are two key steps when modeling a particle swarm optimization problem. The first one is

defining how the problem will be encoded, that is defining how the solution will be

represented. The second one is defining how the goodness of a particle will be measured, that

is defining the fitness function.

The first representation that needs to be

particle. For the scheduling scenario presented here, one particle would represent the set of

tasks that need to be allocated; hence, the dimension of a particle would be equal to the

number of tasks that need to be a

particle would represent a compute resource assigned to the task represented by that

particular dimension. In particular,

corresponds to the computing resources index. Therefore,

a resource to a task. A sample particle and its position

that needs to be determined is the range in which a particle is allowed to move, because

position represents compute resources then this range is defined to be between one and the

number of available resources.

Figure 8 Encoding of a particle’s position

Since the fitness function is used to determine how good a potential solution is, it needs to

reflect the objectives of the scheduling problem. In this case, we want to minimize the

execution cost while distributing the tasks evenly on the resources. Based

function will be minimized and it will have two components; the first one will represent the

execution cost and the second one will represent how evenly the resources are being used.

The first component is straightforward; the execu

the cost of each task on its assigned resource. If the fitness function was defined as this single

component then the algorithm would tend to assign every task to the cheapest resource. To

avoid this, a second component is added. When calculating the fitness function for a particular

mapping, if a task is assigned to a resource that already had a task assigned to it then a

penalization value is added to the fitness value. This grows proportionally to the number of

tasks a resource has assigned to it. This is depicted in the fitness function presented in

4. The function takes as input a particle’s position, which is an array of size

dimension of the particle and in this particular scenari

mapped onto a resource.

I�(�'�����
 = ∑ �J�B�,KLM�N�L6
O
�HP

Where:

The first representation that needs to be established is the meaning and the dimension of a

particle. For the scheduling scenario presented here, one particle would represent the set of

tasks that need to be allocated; hence, the dimension of a particle would be equal to the

number of tasks that need to be assigned to a resource. Based on this, each dimension of a

particle would represent a compute resource assigned to the task represented by that

In particular, the value assigned to each dimension of a particle

ing resources index. Therefore, the particle represents a mapping of

A sample particle and its position are depicted in figure 8

that needs to be determined is the range in which a particle is allowed to move, because

position represents compute resources then this range is defined to be between one and the

Encoding of a particle’s position

Since the fitness function is used to determine how good a potential solution is, it needs to

reflect the objectives of the scheduling problem. In this case, we want to minimize the

execution cost while distributing the tasks evenly on the resources. Based on this, the fitness

function will be minimized and it will have two components; the first one will represent the

execution cost and the second one will represent how evenly the resources are being used.

The first component is straightforward; the execution cost of a mapping is simply the sum of

the cost of each task on its assigned resource. If the fitness function was defined as this single

component then the algorithm would tend to assign every task to the cheapest resource. To

mponent is added. When calculating the fitness function for a particular

mapping, if a task is assigned to a resource that already had a task assigned to it then a

penalization value is added to the fitness value. This grows proportionally to the number of

tasks a resource has assigned to it. This is depicted in the fitness function presented in

input a particle’s position, which is an array of size �
dimension of the particle and in this particular scenario, the number of tasks that need to be

KLM�N�L6[�]
 + �1 − J
��KLM�N�L6[�] ∗ Q

 Equation 4

is the meaning and the dimension of a

particle. For the scheduling scenario presented here, one particle would represent the set of

tasks that need to be allocated; hence, the dimension of a particle would be equal to the

ssigned to a resource. Based on this, each dimension of a

particle would represent a compute resource assigned to the task represented by that

ch dimension of a particle

the particle represents a mapping of

8. Another factor

that needs to be determined is the range in which a particle is allowed to move, because the

position represents compute resources then this range is defined to be between one and the

Since the fitness function is used to determine how good a potential solution is, it needs to

reflect the objectives of the scheduling problem. In this case, we want to minimize the

on this, the fitness

function will be minimized and it will have two components; the first one will represent the

execution cost and the second one will represent how evenly the resources are being used.

tion cost of a mapping is simply the sum of

the cost of each task on its assigned resource. If the fitness function was defined as this single

component then the algorithm would tend to assign every task to the cheapest resource. To

mponent is added. When calculating the fitness function for a particular

mapping, if a task is assigned to a resource that already had a task assigned to it then a

penalization value is added to the fitness value. This grows proportionally to the number of

tasks a resource has assigned to it. This is depicted in the fitness function presented in equation

� where � is the

o, the number of tasks that need to be

�9 = �! "��	��	��'?'	�''�I���	��	�ℎ�	��'�!���	<
Q = (�����R�����	���!�	���	�''�I���I	�	��'?	��	�	(�����!'�>	!'��	��'�!���
J = ���!�	"��=���	0	���	1	�ℎ��	I���'	 ���	=��Iℎ�	��	���ℎ��	�ℎ�	����	
							"�������I	�� (�����	��	�ℎ�	��'�	 ��� �R�����	���

In the approach presented here, Q was taken to be the average computation cost of each task

on each resource multiplied by 10. The reasoning behind this is that this number is a value that

increases the fitness value by a high enough amount so that the algorithm also consider options

that are more costly but on which resources are better utilized.

Having modeled the PSO problem, a higher level scheduling heuristic that embeds the PSO

algorithm is needed. The pseudo code for this heuristic is shown in algorithm 3. The first step is

to estimate the execution cost of every workflow task on every resource. This can be expressed

as a matrix in which the rows represent the tasks, the columns the resources and the entry

B��E�'�[�, <] contains the cost of executing task � in resource	<. This cost is calculated using

equation 4 and it is the basis for calculating the fitness value in the PSO algorithm. A sample

matrix is illustrated in figure 9. The second step consists in getting the list of all the tasks that

are ready for execution; these tasks are those which have no incoming dependencies (i.e. first

level tasks) or child tasks whose parent or parents finished executing and hence have the

necessary input available. In the third step, the compute resources available are retrieved. At

this point, the information required to execute the PSO algorithm is available and hence the

task to resource mapping is computed in step four. In step 5 every task is assigned to the

corresponding resource and dispatched so that its execution begins. After this, the scheduler

waits for a predefined amount of time before checking the status of executing tasks and

updating the list of tasks ready for execution. This (�����I_�� � can be defined by the user as

its optimum value may be influenced by the number of tasks and topology of the workflow. The

list of ready tasks is updated based on the tasks completed so far, this enables the algorithm to

execute the workflow tasks on a specific order which is dictated by the dependencies defined

between them. Finally, the algorithm loops back to step two and iterates until all the tasks have

been scheduled and dispatched.

Algorithm 3 Scheduling Heuristic

�� Compute the execution cost of each task on every resource according to equation 3

�� Get the set of tasks ready for execution TU

�� Get the set of available resources V

�� Get the task to resource mapping by running WXY�TU, V

�� For each task / in TU

���� Assign / to UZ ∈ V based on the mapping produced in step 435

���� Dispatch / for execution

�� Wait for +[\\Z]0_/Z^-

�� Update TU with new tasks ready for execution

8. Repeat from step 6 until there are no more tasks to be scheduled

Algorithm 3 Scheduling heuristic for

Figure 9 Cost execution matrix

3.4 Implementation

The cost minimization algorithm was implemented and

Management System. In particular, several extensions and changes were made to the workflow

engine component in order to add the new scheduling policy.

and interaction between component

In order to execute applications, the workflow engine requires three xml files to be provided.

The first one is the application file and it specifies the workflow tasks and dependencies. The

second is the service file and it describes

one is the credentials file and it defines the

These files are parsed into objects that are used

processes.

For the scheduling component, only the application and service files are relevant. The schemas

and parsers for these files were extended in order to provide the extra information required by

the PSO algorithm. The application file was modified s

operations (FLOP) for each task was included in the task definition.

to include the processing capacity in floating point operations per second (FLOPS) in the

compute resource definition. These changes are illustrated in

both xml files were updated to support the new schemas. Additional to this, the WfTask and

with new tasks ready for execution

until there are no more tasks to be scheduled

Scheduling heuristic for grid environments

The cost minimization algorithm was implemented and integrated into the Cloudbus Workflow

Management System. In particular, several extensions and changes were made to the workflow

engine component in order to add the new scheduling policy. However, the overall architecture

and interaction between components remains the same.

In order to execute applications, the workflow engine requires three xml files to be provided.

The first one is the application file and it specifies the workflow tasks and dependencies. The

describes the resources available for processing tasks

defines the security credentials needed to access the

These files are parsed into objects that are used later on used in the scheduling and execution

For the scheduling component, only the application and service files are relevant. The schemas

and parsers for these files were extended in order to provide the extra information required by

the PSO algorithm. The application file was modified so that the number of floating point

operations (FLOP) for each task was included in the task definition. The service file was updated

to include the processing capacity in floating point operations per second (FLOPS) in the

These changes are illustrated in figures 10 and 11

were updated to support the new schemas. Additional to this, the WfTask and

integrated into the Cloudbus Workflow

Management System. In particular, several extensions and changes were made to the workflow

However, the overall architecture

In order to execute applications, the workflow engine requires three xml files to be provided.

The first one is the application file and it specifies the workflow tasks and dependencies. The

the resources available for processing tasks. The third

edentials needed to access the resources.

scheduling and execution

For the scheduling component, only the application and service files are relevant. The schemas

and parsers for these files were extended in order to provide the extra information required by

o that the number of floating point

The service file was updated

to include the processing capacity in floating point operations per second (FLOPS) in the

11. The parsers for

were updated to support the new schemas. Additional to this, the WfTask and

ComputeServer classes which represent a workflow task and compute resource respectively,

were extended to support the new properties.

 Application File

Old Version

New Version

Figure 10 Changes made to the application file

 Service File

Old Version

New Version

Figure 11 Changes made to the service file

The workflow engine’s architecture allows for scheduling decisions to be made base on either

local or global information. The classes that make this possible are the WorkflowCoordinator

and TaskManager, these are the core of the scheduling component. On one hand, the workflow

coordinator has access to the information of all tasks and hence is responsible for managing the

high level scheduling of the workflow. On the other hand, each task is assigned to a task

manager which means that it only has access to the information of that task and is responsible

for the task level or local scheduling. The heuristic depicted in algorithm 3 uses the information

of the entire workflow to schedule the tasks and therefore is implemented in the

WorkflowCoordinator class. The class hierarchy that supports the implementation of algorithm

3 is explained in the class diagram depicted in figure 12 and the sequence diagram in figure 13.

Figure 12 High level class diagram for the grid heuristic

Figure 13 Sequence diagram for the grid heuristic

The PSO algorithm was implemented as a separate component. It was developed using the Java

library JSwarm-PSO [27]. The algorithm takes as input two lists, one of WfTask objects

representing the tasks to be scheduled and another of ComputeServer objects representing the

resources available. As a first step, all the parameters required by PSO are initialized. The

particle’s dimension is set to be the number of input tasks. The position range in which the

particle can move is set to between zero and the number of resources minus one; this creates

an implicit mapping between the index of the resources and the particle’s position. Other

parameters such as ��	, �� and are also initialized in this stage. The required fitness function

that the algorithm will use is implemented in the ComputeFitness class and it is based on

equation 4. The JSarm-PSO library is used to execute the core logic of the algorithm and after it

finishes, the output is interpreted and translated into a resource to task mapping usable by the

workflow engine. In particular, the output of the algorithm is a list of TaskToResourceMapping

objects. A TaskToResourceMapping object has two properties, the first one is of type Wftask

and the second one of ComputeServer. The class diagram for the PSO component is depicted in

figure 14.

Figure 14 PSO class diagram

3.5 Experiments and Results

The proposed heuristic was contrasted with two different approaches. The first one is a round

robin algorithm, a simple approach in which each task is scheduled in the next available

resource. When comparing the PSO approach with this one, the total workflow execution cost

was used as a metric. To evaluate the load balance feature of the algorithm, a simpler version

of it in which the fitness function comprises only of the execution cost was implemented and

used to evaluate the algorithm. Additionally, experiments with different values of the PSO

parameters where held.

The first set of experiments carried out were those that varied the different PSO parameters,

this was done in order to find the best configuration for the given problem. These experiments

were held with a simulated workflow of 20 heterogeneous tasks and 10 heterogeneous

resources; each experiment was repeated 10 times and the values shown are an average of

these results. Different values for the number of particles,	��,	�� and were tried and the

results are shown in tables 2, 3 and 4.The best configuration found was for 25 particles,

,	�� = 0.9,	�� = 0.9 and = 0.95. The rest of the experiments held were done using these

parameter values.

particles c1 c2 w cost

25 0.9 0.9 0.95 22.68809

25 1.4 1.4 0.95 23.13056

25 1.9 1.9 0.95 23.18673

25 2.4 2.4 0.95 22.93031

25 2 1 0.95 22.78724

25 1 2 0.95 22.94646

25 0.5 1.5 0.95 23.00431

25 1.5 0.5 0.95 23.04111

Table 2 PSO results for different values of ��and �� parameters

particles c1 c2 w cost

25 0.9 0.9 0.95 22.68809

25 0.9 0.9 1 22.88573

25 0.9 0.9 1.05 23.0757

25 0.9 0.9 1.1 23.0146

25 0.9 0.9 2 23.26383

25 0.9 0.9 3 23.4639

25 0.9 0.9 4 23.45969

Table 3 PSO results for different ω values

particles c1 c2 w cost

5 0.9 0.9 0.95 23.38486

10 0.9 0.9 0.95 23.18674

15 0.9 0.9 0.95 22.95487

20 0.9 0.9 0.95 22.7174

25 0.9 0.9 0.95 22.89023

30 0.9 0.9 0.95 22.82647

Table 4 PSO results for different number of particles

An additional set of experiments, comparing the proposed PSO approach with a round robin

one were performed. These tests were done using the workflow engine mentioned before.

Eight different workflows with the number of tasks ranging from 5 to 20 were used; the tasks

had varied sizes ranging from 10 to 50000 MFLOP. Five different resources were used to

schedule the workflows; each compute resource had different processing capacities in terms of

MFLOPS and different costs per hour. Figures 15 and 16 show the achieved results. On average,

by using PSO, the overall workflow execution cost was reduced by 28.5%.

Figure 15 Execution cost of 8 workflows using PSO and Round Robin

Figure 16 Percentage in which PSO reduces the Round Robin execution

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 C

o
st

Workflow

Execution Cost

PSO

RR

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

C
o

st
 r

e
d

u
ct

io
n

 (
%

)

Workflow

Cost Percentage Reduction

To test the load balancing mechanism experiments were held with a version of the algorithm in

which only the execution cost was part of the fitness function. The results show that the

proposed heuristic greatly improves the distribution of the tasks over the different reductions.

Results are shown in table 5 and figure 17.

Figure 17 Number of tasks per resource

PSO

PSO without

load

balancing

20 tasks - 10 resources

Standard

Deviation 0.447214 1.897366596

Variance 0.2 3.6

20 tasks - 5 resources

Standard

Deviation 0 0.894427191

Variance 0 0.8

20 tasks - 20 resources

Standard

Deviation 0.547723 1.264911064

Variance 0.3 1.6

Table 5 Variance and standard deviation of the load distribution

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

re
 o

f
T

a
sk

s

Resource #

Load Distribution

PSO

PSO without load

balancing

Even though the performance of PSO greatly depends on the value of the input parameters, the

experiments held show that the final outcome of the algorithm was not greatly impacted by

changing these values (for the range of values tested). However, for larger scale problems, the

difference between two set of parameters can mean a considerable cost reduction. The reason

for the results not changing much from one configuration to the other might be the scale of the

problem, the tests were held with 20 tasks and 10 resources which had an hourly cost between

1.1 and 1.3. If the number of resources and tasks was higher and the difference in machine

costs was higher, the search space would be sparser and probable a slight change in the

parameter values could greatly impact the result; however, this was considered a reasonable

setting for the studied problem.

Regarding the cost minimization strategy proposed, only the processing time of each task on a

resource was considered when calculating the workflow cost. Even though that is one of the

components of the total execution cost, other aspects such as the data transmission cost

should also be considered in order for the scheduling heuristic to be as accurate as possible.

4 Dynamic Resource Leasing Approach

Traditional distributed systems such as clusters and grids are mostly dedicated and static;

however, IaaS clouds offer elasticity as the number of resources used can grow and shrink

depending on the applications’ needs, furthermore, different type of resources are available in

terms of memory, number of cores, etc. and these resources are leased on a pay per use basis.

Unlike more traditional systems, in the cloud, resources are highly dynamic and heterogeneous

and this represents a further challenge when scheduling workflows on these infrastructures.

The resource leasing model offered by cloud providers needs to be considered when scheduling

jobs. For instance, the number of resources to be leased needs to be determined and the fact

that different tasks can be assigned to different types of virtual machines needs to be

considered.

Before the advent of cloud computing, distributed environments consisted mostly of dedicated

private resources or community grids on which the user application was not charged by using

the resources; in these systems the goal was to execute the application as fast as possible and

hence, scheduling algorithms were developed to consider only the execution time. The main

objective of this algorithm is to develop a set of heuristics that consider the elastic cloud leasing

model in order to decrease the cost of executing scientific workflows on an IaaS cloud provider.

IaaS platforms offer various types of virtualized resources with different characteristics and

cost. These resources are provided in the form of virtual machines (VMs); theoretically, users

have access to an infinite number of VMs. These VMs can be leased and used for as long as they

are needed and released when they’re not required anymore. This gives the users the flexibility

to configure their environment according to their specific needs by choosing several features

such as the number and types of virtual machine to lease and the period of time for which they

will be acquired.

Most research until now has focused on diff

require a set of machines and their information to be available previous to the scheduling

process. The algorithm presented in this section is specifically tailored for dynamic

environments based on cloud IaaS

resources is available, it dynamically selects the best type of instances to lease based on the

characteristics of the workflow tasks and the instances offered by the cloud provider.

The algorithm requires certain information to be available in order for it to make appropriate

decisions. First, a description of the instances offered by the cloud provided is required; this

description must contain at least the name of the instance as recognized

environment, its cost per hour and its processing capacity in terms of FLOPS. Second, every task

in the workflow needs to be described, among other things, in terms of its size specified as

number of FLOPs.

The basis of the algorithm is the instance type selection heuristic. This heuristic is based on a

single task and a set of instances of different types; the aim is to determine the instance type

which will lead to the minimum execution cost of the task. To achieve this, the cost of the

on each instance type is calculated; this cost is calculated based on the time the task will take to

execute in the particular instance and the cost per hour of the instance.

the cost of executing a task in an instance type is calculated.

Figure 18 Instance Type Selection Heuristic

Algorithm 4 Computation of b[./

�� time 78 t�size 9 i�processingCapacity

Most research until now has focused on different scheduling problems and techniques that

require a set of machines and their information to be available previous to the scheduling

process. The algorithm presented in this section is specifically tailored for dynamic

environments based on cloud IaaS providers. Instead of assuming that an initial set of compute

resources is available, it dynamically selects the best type of instances to lease based on the

characteristics of the workflow tasks and the instances offered by the cloud provider.

rithm requires certain information to be available in order for it to make appropriate

decisions. First, a description of the instances offered by the cloud provided is required; this

description must contain at least the name of the instance as recognized

environment, its cost per hour and its processing capacity in terms of FLOPS. Second, every task

in the workflow needs to be described, among other things, in terms of its size specified as

he instance type selection heuristic. This heuristic is based on a

single task and a set of instances of different types; the aim is to determine the instance type

which will lead to the minimum execution cost of the task. To achieve this, the cost of the

on each instance type is calculated; this cost is calculated based on the time the task will take to

execute in the particular instance and the cost per hour of the instance. Algorithm

the cost of executing a task in an instance type is calculated.

Instance Type Selection Heuristic

b[.//,Z (Cost of executing task / in instance type Z

i�processingCapacity

erent scheduling problems and techniques that

require a set of machines and their information to be available previous to the scheduling

process. The algorithm presented in this section is specifically tailored for dynamic

providers. Instead of assuming that an initial set of compute

resources is available, it dynamically selects the best type of instances to lease based on the

characteristics of the workflow tasks and the instances offered by the cloud provider.

rithm requires certain information to be available in order for it to make appropriate

decisions. First, a description of the instances offered by the cloud provided is required; this

description must contain at least the name of the instance as recognized by the cloud

environment, its cost per hour and its processing capacity in terms of FLOPS. Second, every task

in the workflow needs to be described, among other things, in terms of its size specified as

he instance type selection heuristic. This heuristic is based on a

single task and a set of instances of different types; the aim is to determine the instance type

which will lead to the minimum execution cost of the task. To achieve this, the cost of the task

on each instance type is calculated; this cost is calculated based on the time the task will take to

Algorithm 4 shows how

Z)

�� if time :8 2;<< then b[.//

 else b[.//,Z78 Math�ceil4time92;<<�<5 = i�costPerHour45?

Algorithm 4 Computation of the cost of executing task t in instance type i

The instance type selection heuristic defines which is the most appropriate instance type for a

particular task; however, this does not solve the stated scheduling problem and hence it needs

to be embedded into a more robust algorithm so that given a set of ta

set (i.e. that which minimizes the total execution cost) of instance types is selected. Since PSO is

an optimization technique that can be adapted to several problems; this algorithm was used to

solve the task to instance type map

The encoding of the problem is as follows.

the workflow, each dimension of

by that particular dimension. Based on this,

type to a task. A sample particle and its position are depicted in

particle is allowed to move is defined to be between one and the number of

types available.

Figure 19 Encoding of a particle

The fitness function is used to measure how good a potential solution or particle is. In this

particular case we want to minimize the total execution cost and therefore the fitness value is

calculated as the sum of the execution cost of each task on its assigned resource; a cost of a

task in a particular resource is computed based on

equation 5; it takes as input a particle’s position, which is an array of size

dimension of the particle and in this particular scenario, the number of tasks in the workflow.

I�(�'�����
 = ∑ E�'�Nc,KLM�N�L6
O
�HP

Where

(�'�����[�] 	 ∈ [0, �! C�'�����'

The pseudo code for the algorithm is depicted in

/,Z78 i�costPerHour

4time92;<<�<5 = i�costPerHour45?

Computation of the cost of executing task t in instance type i

instance type selection heuristic defines which is the most appropriate instance type for a

particular task; however, this does not solve the stated scheduling problem and hence it needs

to be embedded into a more robust algorithm so that given a set of tasks, the most appropriate

set (i.e. that which minimizes the total execution cost) of instance types is selected. Since PSO is

an optimization technique that can be adapted to several problems; this algorithm was used to

solve the task to instance type mapping problem.

The encoding of the problem is as follows. The dimension of a particle is the number of tasks in

the workflow, each dimension of represents the instance type assigned to the task represented

Based on this, the particle represents a mapping of

A sample particle and its position are depicted in figure 19. The range in which

is defined to be between one and the number of different instance

The fitness function is used to measure how good a potential solution or particle is. In this

particular case we want to minimize the total execution cost and therefore the fitness value is

ted as the sum of the execution cost of each task on its assigned resource; a cost of a

task in a particular resource is computed based on algorithm 4. The function presented in

it takes as input a particle’s position, which is an array of size �
dimension of the particle and in this particular scenario, the number of tasks in the workflow.

KLM�N�L6[�] Equation 5

�! C�'�����' − 1]	���	��(��'���'	�ℎ�	�����	��	��	��'�����

The pseudo code for the algorithm is depicted in algorithm 5.

instance type selection heuristic defines which is the most appropriate instance type for a

particular task; however, this does not solve the stated scheduling problem and hence it needs

sks, the most appropriate

set (i.e. that which minimizes the total execution cost) of instance types is selected. Since PSO is

an optimization technique that can be adapted to several problems; this algorithm was used to

The dimension of a particle is the number of tasks in

assigned to the task represented

article represents a mapping of an instance

he range in which a

different instance

The fitness function is used to measure how good a potential solution or particle is. In this

particular case we want to minimize the total execution cost and therefore the fitness value is

ted as the sum of the execution cost of each task on its assigned resource; a cost of a

function presented in

� where � is the

dimension of the particle and in this particular scenario, the number of tasks in the workflow.

��'�����	�>(�

Algorithm 5 Cloud Cost Minimization Scheduling Heuristic

�� Let T78 the set of all tasks in the workflow

�� Let d78 the set of descriptions of all the available instance types

�� Run PSO4T. d5

���� Set the particle dimension equal to the number of tasks in the workflow

���� Initialize all particle’s position and velocity randomly

���� For each particle. calculate its fitness value based on equation 6

���� Compare the particle’s fitness value with the particle’s	+,-./� If the current value is

better than +,-./ then set +,-./ to the current value and location

���� Compare the particle’s fitness value with the global best	0,-./� If the particle’s

current value is better than 0,-./ then set 0,-./ to the current value and location

���� Update the position and velocity of the particle according to equations � and �

���� Repeat from step 2�2 until the stopping criterion is met�

�� Lease the required instances based on the output of step 2

�� For each / in T which is ready for execution

���� Assign / to resource UZ which corresponds to the type assigned to the task in step 2

���� Dispatch / for execution

�� Wait for +[\\Z]0_/Z^-

�� Update T with new tasks ready for execution

8. Repeat from step 6 until there are no more tasks to be scheduled

Algorithm 5 Cloud Cost Minimization Scheduling Heuristic

Figure 20 Class diagram for the cloud

A simplified version of the algorithm which includes steps 1, 2 and 3 was implemented in order

to evaluate its efficiency. The class diagram is depicted in

using the Amazon EC2 instances and pricing policy.

resource types used for the simulation. As mentioned earlier, the algorithm requires the

processing capacity of each instance to be specified in terms of MFLOPS. To identify the

MFLOPS each used instance is capable of processi

the authors, at peak performance, one ECU (Amazon Compute Unit) equals 4.4 gigaflops per

second (GFLOPS); this data is based on Amazon’s ECU definition. An

equivalent CPU power of a 1.0-1.2 GHz 2007 Opteron or Xeon processor which can perform 4

flops per cycle at full pipeline.

cloud algorithm

A simplified version of the algorithm which includes steps 1, 2 and 3 was implemented in order

The class diagram is depicted in figure 20. The evaluation was

using the Amazon EC2 instances and pricing policy. Table 6 shows the description of the

resource types used for the simulation. As mentioned earlier, the algorithm requires the

processing capacity of each instance to be specified in terms of MFLOPS. To identify the

MFLOPS each used instance is capable of processing, the work in [46] was used. According to

the authors, at peak performance, one ECU (Amazon Compute Unit) equals 4.4 gigaflops per

ased on Amazon’s ECU definition. An ECU is defined to have the

1.2 GHz 2007 Opteron or Xeon processor which can perform 4

A simplified version of the algorithm which includes steps 1, 2 and 3 was implemented in order

. The evaluation was done by

shows the description of the

resource types used for the simulation. As mentioned earlier, the algorithm requires the

processing capacity of each instance to be specified in terms of MFLOPS. To identify the

was used. According to

the authors, at peak performance, one ECU (Amazon Compute Unit) equals 4.4 gigaflops per

ECU is defined to have the

1.2 GHz 2007 Opteron or Xeon processor which can perform 4

Instance Type ECUs Cost per Hour MFLOPS Instance

Description

m1.small 1 0.08 4400 Standard small

m1.large 4 0.3 17600 Standard large

m1.extraLarge 8 0.6 35200 Standard extra

large

c1.medium 5 0.17 22000 High CPU medium

c1.large 20 0.8 88000 High CPU large

Table 6 Instance types offered by Amazon EC2

A simple experiment with two tasks that illustrates how the algorithm works was done. Tables 8

and 9 show the execution time and cost details for two different tasks on each type of instance.

Task 1 consists of 10000000 MFLOPs whereas task 2 consists of 100000000. From table 8 it is

clear that the instance type on which task 1 would cost the least to execute is m1.small,

equivalently, table 9 shows that the best instance type for task 2 is c1.medium. Figure 10 shows

the output produced when the proposed algorithm was ran for tasks 1 and 2 and the instance

types depicted in figure 7. The mapping created is as expected as the results match those

depicted in tables 8 and 9 and the chosen instances are those which minimize the total

execution cost.

Task Name MFLOPs

Task 1 10000000

Task 2 100000000

Table 7 Task 1 and Task 2 description

Task 1

 m1.small m1.large m1.extraLarge c1.medium c1.large

execution time

(hrs)

0.631313131 0.157828283 0.078914141 0.126262626 0.031565657

cost 0.08 0.3 0.6 0.17 0.8

Table 8 Execution time and cost details of task 1

Task 2

 m1.small m1.large m1.extraLarge c1.medium c1.large

execution time

(hrs)

6.313131313 1.578282828 0.789141414 1.262626263 0.315656566

cost 0.56 0.6 0.6 0.34 0.8

Table 9 Execution time and cost details of task 2

Task Instance

Type

Cost

Task 1 m1.small 0.08

Task 2 c1.medium 0.34

Total 0.42

Table 10 Output of the cloud algorithm for two tasks

Additional experiments were held and in general, the algorithm maps tasks to instance types

which minimize the cost. The output of an experiment ran with 5 tasks of varying sizes and 3

instance types (m1.small, m1.large, m1.extraLarge) is depicted in table 11. The integration of

the algorithm and further experiments and evaluation are left as future work.

Task MFLOPs Instance

Type

Task 1 10000000 m1.small

Task 2 20000000 m1.small

Task 3 30000000 m1.small

Task 4 40000000 m1.medium

Task 5 50000000 m1.medium

Table 11 Output of the cloud algorithm for five tasks

5 Conclusion and Future Work

This project presented two PSO based heuristics for scheduling application workflows on

heterogeneous distributed environments in such way that the total execution cost is minimized.

The main difference between the two approaches lies on the environment which provides the

required computing resources. The first one, referred to as the grid approach, assumes a set of

finite resources is available before the scheduling process begins. The second one, referred to

as the cloud approach, assumes there are no resources available when the scheduling process

begins and instead, machines should be dynamically selected and acquired from a potentially

infinite set of heterogeneous resources.

The algorithm for grid environments was implemented and integrated into a workflow

management system called CWMS. This solution focused on two objectives, the first one was

minimizing the overall execution cost and the second one was balancing the number of tasks

assigned to each resource. The results achieved demonstrate the efficacy of the algorithm;

compared to a round robin based approach, it decreased the cost in 28% and at the same time

distributed the tasks more evenly among the available resources. As future work, the multi

objective nature of the problem (minimize cost and load balancing) could be addressed with

more sophisticated evolutionary multi objective optimization techniques such as criterion and

dominance based

The cloud algorithm was not implemented as part of the CWMS; however, a simplified

implementation capable of simulating the main steps of the algorithm was made. Results show

that in most of the cases, for a given task, the algorithm selects the instance type that leads to

the task’s minimum execution cost and hence, the set of selected instances is optimal in terms

of cost minimization. It is left as future work to extend the CWMS so that cloud environments

are supported and integrate the algorithm to the system. Additionally, more robust

experiments and evaluation are required to properly analyze the performance of the algorithm.

An important aspect that contributes to the total execution cost of a workflow in a set of

distributed resources is the cost of transferring data from one machine to another. This was not

considered in this work and should be part of future work. Another desirable feature missing in

both approaches is the enforcement of a user quality of service requirement such as budget

and deadline. For instance, a user may want to minimize the execution cost and still require

that the execution finishes before a predefined deadline.

The leasing model considered in the cloud algorithm is a simplified version compared to the

current pricing policies of cloud providers. For instance, providers define different zones in

which virtual machines can be started and the price varies from zone to zone. Additionally, the

cost of transferring data from one instance to the other as well as the storage services offered

should be considered when estimating the total cost.

Finally, a workflow management system does not necessarily have to select resources from a

single source. Instead, it can have access to resources in two different ways; the first one is

through a static pool of resources and the second one through a public cloud provider. The

static pool would be composed of private resources or any other resource that is available for

use (for example an instance previously leased from an IaaS provider). This set of resources

meets the requirements of the algorithm for grid environments. On the other hand, the

resources offered by the public cloud provider meet the requirements of the algorithm for

cloud environments. This implies that both algorithms could be integrated in such way that the

utilization of the resources is optimal in terms of the scheduling objective (cost minimization,

time minimization, etc.). In such scenario, the static resources would be used to schedule the

workflow tasks, and if these are unable to meet the QoS requirement or scheduling objective

then the algorithm would turn to the public cloud resources to successfully finish the execution

of the application.

References

[1] A. Lazinica. Particle Swarm Optimization, Ed. In- Tech. Vienna (Austria). 2009. pp. 1-486.

[2] J. Kennedy and R. C. Eberhart, ”Particle swarm optimization”, Proceedings of the 1995 IEEE

International Conference on Neural Networks, vol. 4, 1942–1948. IEEE Press.

[3] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, Rajkumar Buyya, "A Particle Swarm

Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing

Environments," aina, pp.400-407, 2010 24th IEEE International Conference on Advanced

Information Networking and Applications, 2010.

[4] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi. A particle swarm optimization for

reactive power and voltage control considering voltage stability. In the International

Conference on Intelligent System Application to Power System, pages 117–121, 1999.

[5] C. u. O. Ourique, E. C. J. Biscaia, and J. C. Pinto. The use of particle swarm optimization for

dynamical analysis in chemical processes. Computers and Chemical Engineering,

26(12):1783–1793, 2002.

[6] T. Sousa, A. Silva, and A. Neves. Particle swarm based data mining algorithms for

classification tasks. Parallel Computing, 30(5-6):767–783, 2004.

[7] J. D. Ullman. Np-complete scheduling problems. J. Comput.Syst. Sci., 10(3), 1975.

[8] T. A. Feo and M. G. C. Resende, Greedy Randomized Adaptive Search Procedures, Journal of

Global Optimization, 6:109-133, 1995.

[9] S. Binato et al., A GRASP for job shop scheduling. Essays and surveys on meta-heuristics,

pp.59-79, Kluwer Academic Publishers, 2001.

[10] J. Blythe et al., Task Scheduling Strategies for Workflow-based Applications in Grids, IEEE

International Symposium on Cluster Computing and the Grid (CCGrid 2005), 2005

[11] J. Blythe and et al., Task scheduling strategies for workflow based applications in grids.

In Proc. of CCGRid ’05.

[12] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.

Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A framework for mapping

complex scientific workflows onto distributed systems. Sci. Program., 13(3):219–237, 2005.

[13] N. Metropolis et al., Equations of state calculations by fast computing machines. Journal

of Chemistry and Physics, 21:1087-1091, 1953.

[14] L. Young et al., Scheduling Architecture and Algorithms within the ICENI Grid

Middleware, UK e-Science All Hands Meeting, IOP Publishing Ltd, Bristol, UK, Nottingham,

UK, Sep. 2003, pp. 5-12.

[15] P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by simulated

annealing. Operations Research, 40:113{125, 1992.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, 1989.

[17] H. H. Hoos and T. StÄutzle, Stochastic Local Search: Foundation and Applications,

Elsevier Science and Technology, 2004.

[18] A. S. Wu, et al., An Incremental Genetic Algorithm Approach to Multiprocessor

Scheduling, IEEE Transactions on Parallel and Distributed Systems, 15(9):824- 834,

September 2004.

[19] A. Y. Zomaya, C.Ward, and B. Macey, Genetic Scheduling for Parallel Processor Systems:

Comparative Studies and Performance Issues, IEEE Transactions on Parallel and Distributed

Systems, 10(8):795-812, Aug. 1999.

[20] L. Wang et al., Task Mapping and Scheduling in Heterogeneous Computing

Environments Using a Genetic-Algorithm-Based Approach, Journal of Parallel and

Distributed Computing, 47:8-22, 1997.

[21] Rubing Duan, Thomas Fahringer, Radu Prodan, Jun Qin, Alex Villazon, and Marek

Wieczorek. Real World Workflow Applications in the Askalon Grid Environment. In European

Grid Conference (EGC 2005), Lecture Notes in Computer Science. Springer Verlag, February

2005

[22] M. Wieczorek, R. Prodan, and T. Fahringer, Scheduling of Scientific Workflows in the

ASKALON Grid Environment, ACM SIGMOD Record, 34(3):56-62, Sept. 2005.

[23] A. Salman. Particle swarm optimization for task assignment problem. Microprocessors

and Microsystems, 26(8):363– 371, November 2002.

[24] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang. A task scheduling algorithm based on pso

for grid computing. International Journal of Computational Intelligence Research, 4(1), 2008.

[25] The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University of

Melbourne. Cloudbus Workflow Engine. http://cloudbus.org/workflow.

[26] The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University of

Melbourne. http://cloudbus.org.

[27] JSwarm-PSO. http://jswarm-pso.sourceforge.net.

[28] L. Kleinrock, “An Internet Vision: The Invisible Global Infrastructure,” Ad Hoc Networks,

vol. 1, no. 1, pp. 3–11, July 2003.

[29] Buyya, R. and Venugopal, S.(2009) Market-Oriented Computing and Global Grids: An

Introduction, in Market-Oriented Grid and Utility Computing (eds R. Buyya and K.

Bubendorfer), John Wiley & Sons, Inc., Hoboken, NJ, USA.

[30] Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S. (2003) The Physiology of the Grid, in

Grid Computing: Making the Global Infrastructure a Reality (eds F. Berman, G. Fox and T.

Hey), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/0470867167.ch8

[31] The Globus Alliance. http://www.globus.org/. Accessed October 2011.

[32] M. Baker, R. Buyya, and D. Laforenza, Grids and Grid technologies for wide-area

distributed computing, Software: Practice and Experience 32(15):1437–1466 (Dec. 2002).

[33] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the Grid: Enabling scalable virtual

organizations, International Journal of High Performance Computing Applications,

15(3):200–222 (2001).

[34] R. Buyya, D. Abramson, and J. Giddy, An economy driven resource management

architecture for global computational power Grids, Proc. 7th International Conf. Parallel and

Distributed Processing Techniques and Applications, Las Vegas, June 26–29, 2000.

[35] S. Pandey, Scheduling and Management of Data Intensive Application Workflows in Grid

and Cloud Computing Environments. 2010.

[36] Buyya, R., Broberg, J., and Goscinski, A. (ed), Cloud Computing Principles and Paradigms,

Wiley, NJ, USA, 2011.

[37] Christian Vecchiola, Xingchen Chu, and Rajkumar Buyya, Aneka: A Software Platform for

.NET-based Cloud Computing, High Speed and Large Scale Scientific Computing, 267-295pp,

W. Gentzsch, L. Grandinetti, G. Joubert (Eds.), ISBN: 978-1-60750-073-5, IOS Press,

Amsterdam, Netherlands, 2009.

[38] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, Cloud Computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility,

Future Generation Computer Systems, 2009.

[39] SalesForce. http://www.salesforce.com/au/saas/. May 2011.

[40] P. Mell and T. Grance, The NIST Definition of Cloud Computing, National Institute of

Standards and Technology, Information Technology Laboratory, Technical Report Version

15, 2009.

[41] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.

SIGMOD Record, 34(3), 2005.

[42] V. Hamscher et al. Evaluation of Job-Scheduling Strategies for Grid Computing. In 1st

IEEE/ACM International Workshop on Grid Computing (Grid 2000), Springer-Verlag,

Heidelberg, Germany, 2000; 191-202.

[43] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dobson, and K. Chiu, A Grid Workflow

Environment for Brain Imaging Analysis on Distributed Systems, in Concurrency and

Computation: Practice and Experience, 21(16):2118-2139, Wiley Press, New York, USA,

November 2009.

[44] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using Tuple Spaces.

In 5th IEEE/ACM International Workshop on Grid Computing (GRID 2004), Pittsburgh, USA,

IEEE CS Press, Los Alamitos, CA, USA, Nov. 8, 2004.

[45] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya, "Designing a Resource Broker for

Heterogeneous Grids," Software: Practice and Experience, vol. 38, pp. 793-825, July 10

2008.

[46] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, "A

Performance Analysis of EC2 Cloud Computing Services for Scientific Computing,"

Proceedings of Cloudcomp 2009, Munich, Germany: 2009.

