

Gridbus Workflow Management System

and

Aneka Enterprise Middleware

A project on the integration of the two technologies

by

Dileban Karunamoorthy

Submitted in partial fulfillment of the requirements of the course

Masters of Engineering in Distributed Computing

at

The department of Computer Science and Software Engineering

University of Melbourne

June 2009

Supervised by Dr. Rajkumar Buyya

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

1

Dileban Karunamoorthy, Distributed Computing Project, 2009

Abstract

The Gridbus Workflow Management System is an environment for realizing scientific

workflows on computational and data grids. The workflow engine, based on an event driven

scheduling architecture using tuple spaces along with just-in-time scheduling, allows for the

creation and execution of complex workflows on grids that is both scalable and fault-tolerant.

The provision of a workflow language facilitates in the definition of scientific workflows. An

important component underlying the workflow engine is the Gridbus Broker, a resource

broker for managing the execution of independent jobs on heterogeneous environments.

Aneka is a platform independent, enterprise grid and cloud computing middleware for

building and deploying parallel data and compute intensive applications. Aneka is both a

development and execution environment supporting multiple programming models. The file-

based task model provides a coarse-grained abstraction and is ideal for parameter-sweep

applications and grid-enabling legacy applications. Tasks are independent units of work whose

results must be collated by clients.

The requirement for integrating both these technologies is the seamless execution of

workflow tasks on Aneka. Abstract tasks, ordered by any dependency relations, must be

translated into independent concrete task instances for consumption by Aneka. All

communication relating to initiation, monitoring and termination must be bridged between

the two technologies. Resources required for task execution must be staged in and the results

staged out. The solution must also keep to the goals of fault-tolerance and scalability. This

report presents the study, design and implementation on the integration of the Gridbus

Workflow Management System with Aneka.

Keywords: Grid Computing, Cloud Computing, Workflow Management, Aneka

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

2

Dileban Karunamoorthy, Distributed Computing Project, 2009

Acknowledgements

A project of this nature, requiring a clear understanding of the different technologies involved along

with their design and implementation decisions within a short time span, is by no means easy. This is

particularly so when the technologies involved are the result of years of research and development.

Reading past research papers and other documentation, and reviewing code and design diagrams

don’t present a complete picture, particularly when decisions made are not clear or when some of

the documentation is incomplete. Feedback from past engineers, researchers and peers thus

become invaluable and resourceful. This is so not just for this project undertaken, but also for the

many projects I’ve worked on in the past.

I would like to begin by thanking my supervisor, Dr. Rajkumar Buyya, who oversaw the progress of

this project and constantly provided positive feedback and guidance during my reporting. The series

of discussions we had on the project, its aim and objectives, over the past few months set the tone

for the entire project.

I would also like to thank Suraj Pandey with whom I worked with over the past several months as

part of the larger SCALE 2009 project. Suraj has extensive experience with the Gridbus Workflow

Management System, and his input on its design and implementation proved invaluable to this

project. We also spent several hours, including many late nights, solving illusive problems, testing

and meeting deadlines. His support all along is highly appreciated.

Dr. Christian Vecchiola and XingChen Chu with whom I worked with for nearly 6 months on Aneka,

have provided all the advice I needed on the required changes for the integration. Their input on the

pros and cons on different approaches, alternative design choices, and useful tips on undertaking

projects of this nature were invaluable.

This work was partially funded by the Australia Research Council (ARC) and the Department of

Innovation, Industry, Science and Research (DIISR). I also thank GRIDS Lab for the opportunity to

work in the capacity of a research assistant for the past six months.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

3

Dileban Karunamoorthy, Distributed Computing Project, 2009

TABLE OF CONTENTS

Chapter 1 - Introduction

1.1 INTRODUCTION ... 7

1.2 PROJECT BACKGROUND .. 7

1.3 AIM ... 8

1.4 OBJECTIVES ... 8

1.5 MOTIVATION... 8

1.6 SUMMARY .. 9

Chapter 2 - Technology Review

2.1 INTRODUCTION ... 11

2.2 THE GRIDBUS WORKFLOW MANAGEMENT SYSTEM .. 11

2.2.1 GRIDBUS WORKFLOW ENGINE (GWFE) ... 12

Workflow Scheduling ... 13

2.3 THE GRIDBUS BROKER ... 14

2.3.1 THE PLUGIN ARCHITECTURE ... 15

2.4 ANEKA ... 16

2.4.1 PROGRAMMING MODELS .. 18

The Task Programming Model ... 18

Thread Programming Model .. 18

MapReduce Programming Model .. 18

2.4.2 ANEKA SERVICES .. 18

Scheduling Service .. 19

Storage Service ... 19

Execution Service.. 19

2.5 SUMMARY .. 19

Chapter 3 - Design

3.1 INTRODUCTION ... 21

3.2 HIGH-LEVEL ARCHITECTURAL DESIGN .. 21

3.3 TASK WEB SERVICE .. 23

3.3.1 WEB SERVICES AND WEB METHODS .. 23

Application Creation and Job Submission .. 24

Querying Application and Job Status ... 25

3.4 THE GRIDBUS BROKER AND THE ANEKA PLUGIN ... 26

3.5 MAPPING JOB STATUSES TO TASK STATUSES .. 29

3.6 DESIGN CHANGES TO ANEKA ... 29

3.6.1 SCHEDULING SERVICE .. 29

3.6.2 STORAGE SERVICE .. 30

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

4

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.7 INTERACTION DIAGRAMS .. 34

3.7.1 APPLICATION CREATION .. 34

3.7.2 JOB SUBMISSION .. 35

3.8 SUMMARY .. 36

Chapter 4 - Implementation

4.1 INTRODUCTION ... 38

4.2 TASK WEB SERVICE .. 38

4.2.1 ALTERNATIVE APPROACHES .. 39

A Stateful Approach ... 39

A Stateless Approach using “BindApplication” .. 39

A Stateless Approach using TaskManagerHelper .. 39

4.3 SCHEDULING AND STORAGE SERVICES .. 39

4.4 ANEKA PLUGIN FOR GRIDBUS BROKER .. 41

4.4.1 APACHE XMLBEANS VS APACHE AXIS 2 ... 41

4.5 ISSUES AND BUGS DISCOVERED .. 42

4.6 SUMMARY .. 42

Chapter 5 - Testing

5.1 INTRODUCTION ... 44

5.2 UNIT TESTS .. 44

5.3 INTEGRATION AND VERIFICATION TESTING ON AMAZON ... 44

5.3.1 INSTALLATION AND CONFIGURATION .. 44

5.3.2 TEST CASE .. 45

5.3.3 EXECUTION AND RESULTS .. 46

5.4 ANALYSIS... 48

5.5 SUMMARY .. 49

Chapter 6 - Conclusion and Future Work

6.1 CONCLUSION ... 51

6.2 FUTURE WORK .. 51

REFERENCES……...… 53

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

5

Dileban Karunamoorthy, Distributed Computing Project, 2009

TABLE OF FIGURES

Figure 1 - The architecture of the Gridbus Workflow Management System 11

Figure 2 - Activity and data flow during a typical workflow execution .. 12

Figure 3 - The event-driven architecture of the Gridbus Workflow Engine ... 13

Figure 4 - The Gridbus Broker Architecture .. 15

Figure 5 - The Plugin Architecture .. 16

Figure 6 - The Aneka Enterprise Cloud Architecture .. 17

Figure 7 - The Aneka Container Architecture ... 17

Figure 8 - Integrating the Workflow Management System with Aneka Enterprise Cloud 21

Figure 9 - The class diagram for the TaskService, the core component of the Task Web Service 23

Figure 10 - Information exchanged during Application Creation and Job Submission 24

Figure 11 - Definition of a Job ... 24

Figure 12 - The class hierarchy representing the types of pre-defined Tasks 25

Figure 13 - Application and Job Statuses .. 26

Figure 14 - The AnekaComputeServer and dependent classes for interacting with the Task Web S... 27

Figure 15 - The AnekaJobWrapper and dependent classes for interacting with the Task Web Serv ... 28

Figure 16 - The abstract class WorkUnit ... 30

Figure 17 - The Storage Service and File Transfer Messages .. 31

Figure 18 - Controller and handler interfaces for file transfers .. 32

Figure 19 - Implementation of the controller and handler interfaces for file transfers based on F 33

Figure 20 - Interaction diagram show the creation of an application .. 34

Figure 21 - Sequence diagram showing the process of submitting jobs .. 35

Figure 22 - ASP.Net implementation of the Task Web Service ... 38

Figure 23 - Code snippet showing an example of the communication between the Scheduling Se 40

Figure 24 - Code Snippet for the message handler for remote file transfers in the Storage Service ... 40

Figure 25 - Code snippet showing the creation of an application using Axis 2 41

Figure 26 - Code snippet showing the submission a job using Axis 2 ... 42

Figure 27 - GWMS and Aneka Enterprise Cloud setup on Amazon EC2 ... 45

Figure 28 - Workflow Monitoring Graph for EMO .. 46

Figure 29 - Workflow Monitoring Table for EMO ... 46

Figure 30 - Portion of performance graph showing 94% of the collective CPU power of 42 GHz in ... 47

Figure 31 - Plot for 2-Obtective Function ... 48

CHAPTER 1

Introduction

Chapter Contents:

1.1 Introduction

1.2 Project Background

1.3 Aim

1.4 Objectives

1.5 Motivation

1.6 Summary

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

7

Dileban Karunamoorthy, Distributed Computing Project, 2009

1.1 Introduction
The process of integrating the Gridbus Workflow Engine with Aneka Enterprise Middleware requires

many changes to the existing platforms. This chapter puts the project into context by laying down

the underlying goals and expected outcomes. It places the foundation for the rest of the report by

presenting the project aim, objectives to be met, and the underlying motivation.

The chapter begins by presenting a brief background to the project. The project aim and the list of

objectives follow next. The chapter ends with the motivation for undertaking this project.

1.2 Project Background
The Gridbus Workflow Management System (GWMS) is a platform for creating and deploying

scientific workflows on grids. The Gridbus Workflow Engine is at the core of the workflow

management system and is responsible for, among many other things, scheduling tasks to resources

on a remote grid environment. The Gridbus Broker [1] is a low-level component of the workflow

management system that provides a gateway to different grid environments. Most communication

with remote grid resources is carried out via the broker. The Gridbus Broker presently supports

middleware environments such as Alchemi [2], Globus [3], SSH and Unicore [4].

Aneka [5] is a new platform independent, enterprise grid and cloud computing middleware

developed by the University of Melbourne, for building and deploying parallel data and compute

intensive applications. Aneka is both a development and execution environment supporting multiple

programming models such as the Task Programming Model, the Thread Programming Model and the

MapReduce Programming Model. The file-based task model provides a coarse-grained abstraction

and is ideal for parameter-sweep applications and grid-enabling legacy applications. Tasks are

independent units of work with no dependence on execution order and whose results must be

collated by clients.

Integrating both these technologies would enable the workflow management system to deploy tasks

on Aneka, taking advantage of the rich set of features that Aneka offers to grid and cloud computing

applications. Naturally, this would require extending the broker with another plugin for accessing

Aneka. The overall requirement for integrating both these technologies therefore is that abstract

tasks, ordered by any dependency relations, must be translated into independent concrete task

instances for consumption by Aneka. All communication between the workflow management system

and Aneka, relating to initiation, monitoring and termination, must be bridged between the two

technologies. As most applications require or produce files as a result of their execution, support

must be provided for transferring files

This report presents in detail a study, design and implementation of the process of integrating the

Gridbus Workflow Management System with Aneka.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

8

Dileban Karunamoorthy, Distributed Computing Project, 2009

1.3 Aim

“The seamless integration of the Gridbus Workflow Management System with Aneka Enterprise

Middleware, enabling the execution of complex workflows on a grid driven by Aneka “

1.4 Objectives
The project objectives provide general guidelines and important milestones for completing the

project. The following are the list of objectives set out for the project.

� Carryout a comprehensive literature and technology study on the essential components of

the Gridbus Workflow Management and Aneka. These include:

- Gridbus Workflow Engine

- The Gridbus Broker

- The plugin architecture of the Gridbus Broker

- Aneka’s Scheduling Service

- Aneka’s Storage Service

- Current file transfer mechanism used within Ankea

� Carryout high-level design changes to the existing infrastructure of the Gridbus Workflow

Management System, the Gridbus Broker and Aneka.

� Carryout a detailed low-level design on new components and changes to existing

components in the Workflow Engine, broker and Aneka.

� Translate the design specification into implementation. The required implementation for the

different technologies will be carried out using the appropriate languages, development

environments, and tools.

� Test and debug the solution. This requires defining a suitable test strategy and using a real-

life application to determine whether the overall project aims have been met.

1.5 Motivation

The primary motivation for undertaking this project was the SCALE 2009 challenge at CCGrid09, a

conference for cluster and grid computing. The goal was to demonstrate a series of workflow

applications deployed on Aneka middleware. Another important reason for pursuing this project lies

in the advantages brought about as a result of integrating the Gridbus Workflow Management

System with a comprehensive grid and cloud computing platform such as Aneka. Aneka is both a

development and execution environment, supporting multiple programming models. Integrating the

two technologies would enable users to take advantage of the rich set of features Aneka has to

offer, through the workflow management system.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

9

Dileban Karunamoorthy, Distributed Computing Project, 2009

1.6 Summary

This chapter laid the foundation for the rest of the report. It began by presenting an overview of the

project in which the Gridbus Workflow Management System and Aneka were discussed briefly, with

the aim of highlighting the need for integrating the two technologies. This was followed by the aims

and objectives for the project. The chapter concluded with a brief note on the motivations behind

the project. The next chapter will delve into the first objective – a detailed study on the different

technologies involved.

CHAPTER 2

Technology Review

Chapter Contents:

2.1 Introduction

2.2 The Gridbus Workflow Management System

2.2.1 Gridbus Workflow Engine (Gwfe)

Workflow Scheduling

2.3 The Gridbus Broker

2.3.1 The Plugin Architecture

2.4 Aneka

2.4.1 Programming Models

The Task Programming Model

Thread Programming Model

Mapreduce Programming Model

2.4.2 Aneka Services

Scheduling Service

Storage Service

Execution Service

2.5 Summary

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

11

Dileban Karunamoorthy, Distributed Computing Project, 2009

2.1 Introduction
The purpose of this chapter is to discuss the salient features of the different technologies involved.

In doing, this chapter hopes to draw the reader’s attention to those features that will be frequently

talked about in the rest of the report. This includes the functioning of the Gridbus Workflow Engine

and its relationship to the Gridbus Broker. A closer look at the Gridbus Broker is essential in order to

understand the architecture and mechanisms involved in communicating with a wide array of

middleware, including Aneka. Naturally, we will then look at Aneka, its architecture and key services

that will be affected in order to bring about this integration.

The chapter begins by presenting a high-level view of the Gridbus Workflow Management System

(GWMS), focusing primarily on the Gridbus Workflow Engine (GWFE). This is followed by a discussion

on the Gridbus Broker (GBB) and the essential components that help in communicating with remote

resources. The chapter ends with a detailed discussion on Aneka.

2.2 The Gridbus Workflow Management System
The figure below shows the high-level architecture of the Gridbus Workflow Management System

(GWMS) [2, 6].

Figure 1 - The architecture of the Gridbus Workflow Management System

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

12

Dileban Karunamoorthy, Distributed Computing Project, 2009

Users interact with the GWMS through the web-based Grid Portal. The portal allows users to

compose and edit workflows through a workflow editor, implemented around an XML-based

workflow language called xWFL. A node in the workflow represents a computational task and a link

specifies the data flow and dependency relationships between tasks.

The submission interface allows the submission of workflows for execution. It provides means for

specifying all necessary resources (such as input files, the workflow description file, the credentials

file and the services file) that are required in order to schedule the workflow tasks for execution.

The monitoring and visualization interface provides a real-time graphical representation of the

workflow during execution. This allows users to observe tasks that have been completed thus far,

tasks that are currently being executed and tasks that are yet to be scheduled. Also available are

details on the site at which a specific task is executing, and a failure history for each task. The

monitor interacts with the GWFE using an event-driven model based on tuple spaces (discussed

below). A database is used to record the status of each task, as it changes, during execution.

The resource monitor shows all resources that are currently available for allocation along with their

properties.

Figure 2 - Activity and data flow during a typical workflow execution

Further discussion on the portal is outside the scope of this report and the reader is referred to [6]

for additional details.

2.2.1 Gridbus Workflow Engine (GWFE)

Workflows defined using xWFL are submitted to the GWFE for execution. These tasks are then

scheduled and managed using various services, on remote grid resources. Figure 1 - The architecture

of the Gridbus Workflow Management Systemabove shows the main components of the workflow

engine. These include the Workflow Submission Handler, the Workflow Language Parser, the

Workflow Scheduler, the Data Movement interface and the Dispatcher. As its name implies the

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

13

Dileban Karunamoorthy, Distributed Computing Project, 2009

Workflow Submission Handler handles workflows submitted via the portal, which is then passed on

to the Workflow Language Parser. The Workflow Language Parser converts workflows defined in the

XML-based xWFL language into artifacts such as “tasks”, “parameters”, “data constraints”

(workflow/task dependencies), and “conditions”, for processing by the scheduler. The resource

discovery service is used to query Grid Information Services (GIS) such as the Globus MDS, directory

catalogs and replica catalogs, in order to identify suitable resources for executing the workflow

tasks, by coordinating with the Gridbus Broker. The Gridbus Broker (discussed in more detail below)

mediates access to the different resources on behalf of the workflow engine. It provides middleware

specific plugins to bridge communication between different remote middleware technologies. In

general, it is responsible for deploying tasks on remote services, transferring data to and from the

resources, monitoring task execution and collating the results. The Data Movement component

facilitates the transfer of data between the workflow engine and remote resources using protocols

such as SFTP and GridFTP. The Resource Discovery component helps in the discovery of suitable

resources for task assignment. The workflow engine also provides mechanisms for specifying the

location of temporary data. Task failures are typically handled by resubmitting tasks to resources

without a significant failure history.

Workflow Scheduling

The Workflow Scheduler is central to scheduling tasks on remote resources. Due to the dynamic and

unreliable nature of grid resources, scheduling decisions for task execution must ideally be made as

late as possible. The workflow engine supports just-in-time scheduling where decisions are made at

runtime as and when tasks are executed. This allows for choosing the best resources for task

execution, based on resource information available at runtime.

The workflow engine uses a decentralized scheduling architecture [7]. Every task belongs to a

scheduler called the Task Manager that implements the scheduling algorithm. The scheduler

handles task processing, resources selection, negotiation, task dispatching, and failure handling. The

Task Manager also uses a Task Monitor to monitor the health of tasks executing on remote

resources. The life-times of Task Managers and the entire workflow are managed by the Workflow

Coordinator.

Figure 3 - The event-driven architecture of the Gridbus Workflow Engine

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

14

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 3 above shows the event-driven architecture of the workflow engine. The Workflow

Coordinator managing the entire workflow execution and the decentralized Task Managers

communicate via the Event Service. The Task Managers may be independent and run in parallel, or

may depend on other Task Managers as a result of task dependencies in the workflow.

The Event Service is based on tuple spaces as defined in the Linda Coordination Model [8]. The

particular implementation used in the workflow engine is IBM’s TSpaces [9]. The Event Service uses

the subscribe-notify idiom for communication, enabling just-in-time scheduling. The Workflow

Coordinator and the collection of Task Managers avoid communicating directly with each other and

instead generate or listen to events of interest. When an event of interest occurs, all subscribed

listeners will be notified. This decouples the listeners from each other providing a flexible design.

2.3 The Gridbus Broker
The Gridbus Broker [1], a low-level component of the workflow engine, provides the gateway for

interacting with remote grid services. Figure 4 illustrates the architecture of the Gridbus Broker.

Understanding the architecture is important to the present discussion as it will help in shedding light

on the mechanisms used to communicate with remote services such as Aneka.

The Gridbus Broker is a full-fledged resource broker by itself. However, when used in conjunction

with the workflow engine, some of its functionality is “by-passed”. For instance the workflow engine

does not rely on the broker for data transfers or service discovery, but instead uses other

mechanisms to achieve this, as discussed above. On the other hand, features such as job dispatching

and job monitoring are critical broker functionalities that the workflow engine relies on. The

discussion to follow will highlight the broker functionality in its entirety, irrespective of the

functionality provided by the workflow engine.

The Interface Layer provides the public interface to external applications, such as the workflow

engine, that need to use the broker. Driving the broker requires providing a description of the

application (the jobs to be executed), a list of services to use for job execution, and the required

credentials to access those services. The application description is specified using the XML-Based

language called XPML (eXtensible Parametric Modelling Language). Alternatively, the application

description can be specified using APIs exposed by the broker. The service description and

credentials are specified in a similar manner. Services can alternatively be discovered using remote

grid services such as the Grid Market Directory (GMD) [10] or Grid Index Information Services (GIIS)

[11]. These inputs are translated by the respective interpreters into entity objects that are stored in

the persistence layer.

The Core Layer represents various properties of the grid infrastructure independent of the

underlying middleware used. The interaction between the Core Layer and the Execution Layer is

driven by functional components that can be broadly classified into workers and entities. Entities are

information containers and represent various artifacts on the grid, such as jobs and services. They

are persisted in the database and periodically updated. Workers represent the broker functionality

that actually manipulates the entities. The scheduler, service monitor and job monitor shown in the

diagram below are examples of workers. Workers are thus active objects while entities are passive.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

15

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 4 - The Gridbus Broker Architecture

The Execution Layer is responsible for dispatching jobs to remote middleware services for execution.

The jobs must typically be translated into middleware-specific objects for consumption. Various

middleware plugins are used to bridge the communication with remote services. The Gridbus Broker

provides a number of such plugins pre-built, such as plugins for Aneka, Alchemi, Globus, Ssh and

Unicore. During execution, the Job Monitor keeps track of the job statuses (i.e. queued, executing,

completed successfully or failed) on the remote resource. On job completion, the associated agent

on the remote resource returns any results back to the broker, and provides additional debugging

information in case of job failure.

2.3.1 The Plugin Architecture

Integrating the workflow engine with Aneka requires a closer look at plugins. Figure 5 depicts a

simplified view of the plugin architecture. Accessing a remote resource such as the Aneka Enterprise

Resource

Catalog

Data

Catalog

Grid Info.

Service

Network

Info. Service

Persistence

Output

Scheduler Service Monitor

Dispatcher Job Monitor

Application

Interpreter

Credentials

Interpreter

Service

Interpreter

Data

Jobs
Services

Remote Grid

Services

Unicore Globus Aneka Condor

Remote Grid Services

Application, Credentials and Service Specification

Middleware Plugins

Interface Layer

Core Layer

Execution Layer

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

16

Dileban Karunamoorthy, Distributed Computing Project, 2009

Cloud requires creating a new plugin by extending the abstract JobWrapper and ComputeServer

types.

Figure 5 - The Plugin Architecture

The essential functionality of the plugin is to communicate with services using the underlying

protocol and messaging formats understood by the remote grid environment. The plugin is

responsible for maintaining a communication session to the remote resource, and translating broker

requests into requests that are meaningful to the remote environment. It bridges incompatibilities

between the two environments and facilitates the lifetime of jobs, from creation to termination, on

the remote services. The chapter on design discusses in detail the plugin for Aneka Enterprise Cloud.

2.4 Aneka
Aneka is a platform independent, enterprise grid and cloud computing middleware for building and

deploying parallel data and compute intensive applications [12]. Aneka is both a development and

execution environment supporting multiple programming models. The figure below presents a high-

level view of the Aneka Enterprise Cloud Architecture. The Aneka Enterprise system consists of a

number of services working in cohesion, in order to execute parallel applications

The client is represented by an instance of the ApplicationManager (or simply Manager as shown

below. The ApplicationManager submits a set of work units to the Scheduling Service, also known as

the master. The Scheduling Service maintains a list of available services on the grid using a

Membership Catalog. Before dispatching the work units to the execution nodes the Scheduling

Service interrogates the work units to determine whether any files need to be staged in. If so, the

Storage Service and the client Manager initiate the file transfers. Once the required files have been

transferred to the Storage Service, the Scheduling Service dispatches the work units to executors

based on the scheduling algorithm used. Any output files produced by the work units are staged out

to the client via the Storage Service.

Broker

JobWrapper

ComputeServer

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

17

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 6 - The Aneka Enterprise Cloud Architecture

Figure 7 - The Aneka Container Architecture

Aneka containers

Communication

Security

Resource Allocation

Service Negotiation

Scheduling

Indexing

Execution

Heartbeat

Storage

Discovery

Licensing

Accounting

Services

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

18

Dileban Karunamoorthy, Distributed Computing Project, 2009

2.4.1 Programming Models

Aneka’s role in the cloud architecture is a Platform as a Service (PaaS). It provides a development

environment by exposing various APIs, and an execution environment for running applications

developed using these APIs. The current programming models supported by Aneka include:

- Task Programming Model

- Thread Programming Model

- MapReduce Programming Model

- Parameter Sweeping Model (based on the Task Programming Model)

The Task Programming Model

The Task Programming Model is used to model “Independent Bag of Tasks” (BoT) applications. Such

an application is composed of a collection of work units that are independent of each other and may

execute in any given order. If there is any ordering to be imposed, this must be done by the client

application.

The task programming model is of particular importance to the current discussion, as it will be used

in order to execute jobs forwarded by the Workflow Management System. The chapter on Design

discusses this model in more detail. For now it is suffice to say that an application using the Task

Programming Model composes one or more GridTask instances that “contain” the implementation

that is to be executed on remote execution nodes. To support the Task Programming Model, the

runtime environment provides two specialized runtime services. These are the Task Scheduling

Service and the Task Execution Service. One of the benefits of the Task Programming Model is that it

can be used to run legacy applications on remote nodes, by wrapping legacy code in GridTask

instances. The manner in which this can be done will be discussed in more detail in the Design and

Implementation chapters.

Thread Programming Model

The Thread Programming Model is based on the concept of distributed threads. This is similar in

principle to local threads, except that these threads run on different nodes. Composing an

application using this model requires creating a one or mode GridThread instances, each of which

implement typical thread operations such as Start, Stop, Join, and methods to query the thread

state. The specialized runtime services for supporting the Thread Programming Model include the

Thread Scheduling Service and the Thread Execution Service.

MapReduce Programming Model

The MapReduce Programming Model is based on Google’s MapReduce model for data intensive

parallel applications. A distributed application is composed using a collection of map and reduce

operations. These are implemented using the Mapper and Reducer classes within Aneka. The

specialized runtime services provided for executing applications based on this model include the

MapReduce Scheduling Service and the MapReduce Execution Service.

2.4.2 Aneka Services

Three important Aneka services requiring further attention come into play in this project. These

include the Scheduling Service, the Storage Service and the Execution Service. In a typical workflow

execution, tasks will be forwarded as jobs by the broker to Aneka’s Scheduling Service. These tasks

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

19

Dileban Karunamoorthy, Distributed Computing Project, 2009

are then interrogated for file requirements which are staged in via the Storage Service. The

Execution Service executes the tasks. The following discussion takes a brief look these services.

More details can be found in the chapters to follow.

Scheduling Service

The Scheduling Service schedules work units to execution nodes based on availability, capability, QoS

requirements, and the particular scheduling algorithm used. Some of the features supported by the

Scheduling Service include different pluggable scheduling algorithms, advance reservation,

automatic/custom resubmission of failed tasks, and quarantine or black listing failed tasks.

A client’s request for execution is first authenticated using one of the security models supported.

Any files required for execution is then staged in to the storage server. Appropriate executors are

then discovered using the Membership Catalog (also known as the Indexing Service). Once suitable

executors are found, the tasks are dispatched for execution. The Scheduling server will also monitor

the task’s execution, initiate steps to stage out the results, and notify the client of its completion.

Storage Service

The Storage Service is responsible for staging files required for execution. Tasks requiring files must

provide a fully qualified URI to the location of the file prior to submission to the scheduler. Currently

Ankea only supports local file URIs. An obvious requirement is therefore to support URIs to remote

files using protocols such as FTP, GridFTP and HTTP. The Storage Service triggers the file transfer

process automatically using reflection by injecting code into the client’s memory space. Once all

required files have been staged in, the scheduler is notified so that the task which is now ready, can

be dispatched to a suitable executor.

Execution Service

The Execution Service provides an environment for executing work units. As discussed, Aneka

supports three types of execution services. These include the Task Execution Service, the Thread

Execution Service and the MapReduce Exectuion Service. The Execution Service stages in all required

files for execution from the Storage Service, runs the work unit in a sandboxed environment

(excepting legacy code) and stages out the results back to the Storage Service. While an

understanding of the Execution Service is important, it is suffice to say that these services will not be

affected by the integration.

2.5 Summary
This chapter provided a sufficiently detailed study on the different technologies that are part of this

integration. It began by discussing the architecture of the Gridbus Workflow Management System

and its internals. Particular attention was paid to the Gridbus Workflow Engine and its scheduling

architecture based on an event-driven mechanism using tuple spaces. The Gridbus Broker was

discussed next. The architecture of the plugins to various remote middleware services gave a brief

insight into its responsibility as a mediator between incompatible technologies. Finally, this chapter

presented a fairly detailed discussion on the Aneka Enterprise Middleware. The architecture of the

Aneka grid environments, the different services involved and the different programming models

supported were discussed. The next chapter will delve into the details of the design changes

required to make this integration possible.

CHAPTER 3

Design

Chapter Contents:

3.1 Introduction

3.2 High-Level Architectural Design

3.3 Task Web Service

3.3.1 Web Services and Web Methods

Application Creation and Job Submission

Querying Application and Job Status

3.4 The Gridbus Broker and the Aneka Plugin

3.5 Mapping Job Statuses to Task Statuses

3.6 Design Changes to Aneka

3.6.1 Scheduling Service

3.6.2 Storage Service

3.7 Interaction Diagrams

3.7.1 Application Creation

3.7.2 Job Submission

3.8 Summary

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

21

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.1 Introduction
A high-level design of the integration of the Gridbus Workflow Management System and Aneka

Enterprise Middleware will provide the necessary architectural understanding of the different

components involved and their interactions. This will naturally lead into the low-level component

and class design of the different modules involved. A detailed design is essential for two reasons.

First it makes it makes it easier to understand how the implementation should be carried out.

Second it will help in understanding how the design changes will affect the existing code, providing a

safety net.

This chapter begins by presenting a high-level architectural design of the integration. This is followed

by a detailed design of the Task Web Service. The Aneka plugin for the broker is discussed next. The

chapter then looks at the design changes to the different Aneka services. The chapter ends with a

series of sequence diagram showing how the overall integration is realized.

3.2 High-level Architectural Design
The figure below illustrates the high-level view of the Gridbus Workflow Management System and

Aneka Enterprise Cloud working in cohesion. This section will present a component-wise discussion

on the process of executing a workflow application on Aneka.

Figure 8 - Integrating the Workflow Management System with Aneka Enterprise Cloud

Central to the integration of both these technologies is the Task Web Service. The Task Web Service,

based on the Task Programming Model, provides a means to bridge the incompatibilities between

the two technologies by translating conceptual entities understood by the workflow engine and

FTP

T
a

sk
 W

e
b

 S
e

rv
ic

e

Workflow Engine

Gridbus Broker

Aneka Plugin

P
e

rs
is

te
n

ce

Aneka Cloud

File Transfer

F
ile

 T
ra

n
sf

e
r

SOAP

Gridbus Workflow Management System

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

22

Dileban Karunamoorthy, Distributed Computing Project, 2009

broker into those understandable by Aneka. The stateless nature of Web Services requires that any

stateful information must be passed back-and-forth between the broker and Aneka.

The workflow engine translates tasks defined in the workflow language into a set of jobs

understandable by the broker. The service configuration specifies the need to use an instance of the

Ankea Enterprise Cloud for task execution. This would initiate the Gridbus Broker to create an

instance of the Aneka Plugin for creating and managing jobs on the remote resources. In Aneka, all

jobs must belong to an application. An application has a globally unique identifier (or GUID), and all

jobs (or tasks) associated with an application in Ankea are linked via this GUID. The first step for the

broker therefore is to create an Aneka application. This is done by way of instantiating the Aneka

Plugin. This results in a SOAP request to the Task Web Service, which creates and returns the GUID

of a new application. All jobs subsequently submitted to Aneka via the Web Service would now use

this GUID.

A job submission involves composing a SOAP message specifying the command to execute, its

parameters, the required input files, the list of output files produced and the application’s GUID. This

message is forwarded to the Task Web Service. The Task Web Service would now create Aneka

GridTask instances on behalf of the plugin based on a set of pre-defined base tasks. The new Aneka

tasks are subsequently submitted to the scheduler for execution and the corresponding task IDs

returned to the broker. The scheduler would then interrogate the work unit in order to determine

whether the task requires any remote files for execution. Note that this is a deviation from the

standard behavior in which the client would automatically begin staging in local files after submitting

the work unit. This behavioral change in the scheduler for dealing with remote files in particular

requires further discussion.

Remote files refer to those hosted on remote servers on the Internet. Local files in contrast are

hosted on the client’s local machine, which Aneka assumes to be running on the .Net runtime. This

enables Aneka to migrate .Net code to the client’s process space, initiating an automatic transfer of

files to the Storage Service. Support for remote files on the other hand would enable clients written

in any technology to interact with Aneka and stage-in files using standard Internet protocols such as

FTP and HTTP. The behavioral changes introduced to the Scheduling Service would now trigger the

Storage Service to pull in all files required by the work unit from remote locations. These files are

hosted locally and made available to the execution nodes. When a work unit is ready for execution,

it is dispatched to an execution node. All files are staged in to the execution service, the task is

executed, and the results staged out back to the Storage Service. The output files now have to be

staged back to the remote server for collecting by the client.

The Scheduling Service coordinates the entire process controlling the state of the work unit as it

goes through the different stages of execution. In order to allow remote clients, including the

broker, to monitor the application and work units, the Task Web Service provides web methods to

query their statuses. An issue that needs to be dealt with when exchanging status information is that

they should make sense within different contexts, i.e. within Aneka and within the broker. Although

in general, it is possible to make a one-to-one mapping between the statuses in the two different

contexts, this is not always the case.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

23

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.3 Task Web Service
The Task Web Service exposes Aneka as a service to non-.Net applications. Based on the Task

Programming Model, the Task Web Service allows clients to submit generic jobs to Aneka for

execution. Note that the Task Web Service will be an extension to an older existing implementation

based on .Net, and as such the following discussion on its design will be based on designing Web

Services using Microsoft’s ASP.Net. The following are the design specifications for the Task Web

Service.

3.3.1 Web Services and Web Methods

Web Services enable heterogenous systems to communicate with each other using a common

language. While Web Services provide a loose coupleing of different systems, older technolgoies

such as DCOM, CORBA (IIOP) and Java RMI enforce tight coupling and as a result dictate the

technologies used to integrate them. Web Services however require that the communicating

systems understand the messages exchanged. These messages are defined via a contract using

WSDL and XSD. The XML-based protocol (such as SOAP) used to communicate with one another also

provides additional flexibility through easy extensibility. Error! Reference source not found. below

shows the Web Methods exposed by the Task Web Service.

Methods exposed by the Task

Web Service.

Figure 9 - The class diagram for the TaskService, the core component of the Task Web Service

Optional base class for XML Web

services, which provides direct access

to common ASP.NET objects, such as

application and session state.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

24

Dileban Karunamoorthy, Distributed Computing Project, 2009

Application Creation and Job Submission

Creating an application requires sending an ApplicationCreation request to the Task Web Service.

This message encapsulates details of the application, including the application’s display name and

user credentials (required to create an application on the Aneka cloud), as shown in Figure 10. The

result of this request is a response message containing the globally unique application ID.

Figure 10 - Information exchanged during Application Creation and Job Submission

Clients submit jobs by sending a SubmitJobs message to the Task Web Service. This message

encapsulates the required details of the submission, as shown above, in order to execute them on

Aneka. The AppId, obtained from the response to ApplicationCreation, links the jobs submitted to

the Aneka application. The SubmissionInfo also contains the collection of Jobs to be executed. These

jobs will be translated into GridTask instances for consumption by Aneka. The NegotiationId is used

in the event an advance resource reservation is made, using the Alternative Offers Protocol [13].

More details regarding advance resource reservation in Aneka can be found in [14].

Figure 11 - Definition of a Job

Figure 11 above shows the definition of a Job. A Job is composed of Tasks (see below) and a set of

Files. A Task corresponds to a task in the Task-based Programming Model. The collection of files

represents the input and output files required for the execution of the job. The property LocalPath

refers to a relative path in the local file system. This would enable tasks to refer to files already

present on the execution node (such as a pre-installed legacy application) or to refer to the output

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

25

Dileban Karunamoorthy, Distributed Computing Project, 2009

files created on the disk during the execution of a task. The property RemotePath refers to the fully

qualified Internet URI of a remote file to be staged in or staged out.

Figure 12 - The class hierarchy representing the types of pre-defined Tasks

Figure 12 shows the class hierarchy for pre-defined tasks defined by the Task Web Service. The tasks

in a SubmitJobs message must correspond to one of the tasks define above. These pre-defined tasks

are then translated into concrete Aneka GridTasks. Of the tasks shown above, the ExecuteTaskItem

is what is most relevant to the present discussion. It contains two properties, Command and

Arguments. The Command property allows clients to specify the name of a legacy application, and

the arguments to the application are specified in the Arguments property. The GridTask instance

created by the Task Web Service acts a wrapper around the ExecuteTaskItem. On the execution

node, the command (and arguments) specified is run as an external process.

Querying Application and Job Status

The Task Web Service exposes the QueryJob and QueryApplication web methods to allow clients to

query the status of the jobs and application as a whole. Figure 13 below shows an enumeration of

the different statuses that an Application and a Job can have. It is important to note that while these

statuses make sense in the context of an Aneka environment, they may not mean the same thing in

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

26

Dileban Karunamoorthy, Distributed Computing Project, 2009

the client environment. An important characteristic of the Task Web Service is therefore to map the

statuses to “generic” versions that make sense in client environments such as the Broker.

Figure 13 - Application and Job Statuses

3.4 The Gridbus Broker and the Aneka Plugin
The previous chapter gave an overview of the plugin architecture used by the broker to

communicate with various remote grid environments. This section delves deeper into the

implementation details by outlining the design of the plugin for Aneka. As discussed, Aneka exposes

a Web Service interface to its Task Programming Model. The Broker plugin for Aneka is simply a Web

Service client that communicates using SOAP messages. Figure 14 and Figure 15 shows the

implementation of the abstract types ComputeServer and JobWrapper as AnekaComputeServer and

AnekaJobWrapper, and the dependent classes used for communicating with the Task Web Service.

The AnekaComputeServer represents an application instance on the Aneka Enterprise Cloud. When

an instance of the AnekaComputeServer is created, a CreateApplication SOAP request, containing

information about the application creation, is sent to the Task Web Service. The Web Service in turn

responds with a CreateApplicationResponse SOAP message. This message contains the unique

application identifier. The compute server also provides methods for querying the status of a job

using the QueryJob and QueryJobResponse message pairs. The QueryTaskCallback handler handles

the response messages sent by the Web Service automatically, returning the status of the Job or

raising an exception in the event the response was not received.

The AnekaJobWrapper provides methods for managing the lifetime of the job on the Aneka Cloud.

Submitting a job requires composing a SubmitJobs message containing details of the jobs

encapsulated in an instance of SubmissionInfo. The Task Web Service responds with a

SubmitJobsResponse message containing IDs of the tasks created on the Aneka Cloud. A Job is

composed using a collection of ExecuteTaskItems and may have a list of input and output Files that

must be staged-in prior to execution and staged-out after execution. The TaskWebServiceStub acts

as a proxy to the remote Task Web Service.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

27

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 14 - The AnekaComputeServer and dependent classes for interacting with the Task Web Service

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

28

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 15 - The AnekaJobWrapper and dependent classes for interacting with the Task Web Service

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

29

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.5 Mapping Job Statuses to Task statuses
The Broker and Aneka assign different status values to jobs (or work units), even though the

semantics of the status is essentially the same. Table 1 below shows the mapping of work unit status

from Aneka to the Broker.

Aneka Broker

Running Active

Queued Active

StagingIn Active

StagingOut Active

Stopped Active

Completed Done

Failed Failed

Rejected Failed

Table 1 - Mapping job statues from Aneka to the Gridbus Broker

This mapping can either be the responsibility of the Task Web Service or the Broker plugin, as long as

the Job Monitor is provided with the correct statuses. Logically though, this mapping would reside in

the Aneka plugin.

3.6 Design Changes to Aneka
While not many design changes to Aneka are necessary, many implementation changes will have to

be made to two core services, the Scheduling Service and the Storage Service. The changes need to

ensure adherence to the design and principles behind Aneka’s current architecture. This requires

refactoring the existing methods and adding several new methods. The following highlights some of

the important changes made.

3.6.1 Scheduling Service

The Scheduling Service dispatches jobs submitted by the Task Web Service to available execution

nodes. The scheduling decision is made by the particular scheduling algorithm pre-configured. Aneka

currently supports two scheduling algorithms: FIFO scheduling, and scheduling based on processing

capability of a node. The changes to the scheduling service require dealing with remote file transfers,

and therefore need not affect its interface or its scheduling decisions. As all jobs submitted by the

Task Web Service are forwarded to directly to the Scheduling Service, the work units must be

examined for the need to stage in remote resources, and control must be passed to the Storage

Service in order to do so. Further, the Scheduling Service must constantly examine the status of the

work unit until all required resources are available, before the work unit can be dispatched for

execution. The chapter on implementation discusses some of the required changes to the existing

scheduling service.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

30

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.6.2 Storage Service

Figure 17 shows the class diagram of the Storage Service. Several new methods are included for

managing the transfer and host of remote files to execution nodes. Events are used to trigger

automatic staging out of files to the remote servers after execution is complete. The

RemoteFileTransferMessage and FileTransferMessage are used to coordinate actions with the

Scheduling Service.

Figure 16 - The abstract class WorkUnit

The methods OnFileDownloadCompleted, OnFileDownloadError, OnFileUploadCompleted and

OnFileUploadError are event handlers that trigger a series of interactions with the Scheduling Service

updating the status of the work unit. The methods StageInRemoteFiles and StageOutRemoteFiles

carry out the actual movement of files from and to the remote repositories. Figure 18 shows the

interfaces to the file channel controller and handler, for handling local and remote file transfers. The

IFileChannelControlerEx is an extension to the IFileChannelControler and provides methods for

downloading and uploading to remote servers. Figure 19 provides an implementation of these

interfaces for the FTP protocol, the only file transfer protocol Aneka currently supports.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

31

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 17 - The Storage Service and File Transfer Messages

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

32

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 18 - Controller and handler interfaces for file transfers

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

33

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 19 - Implementation of the controller and handler interfaces for file transfers based on FTP

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

34

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.7 Interaction Diagrams
This section presents a series of interaction diagrams showing the sequence of actions that take

place in the process of creating an application and submitting a job.

3.7.1 Application Creation

Figure 20 - Interaction diagram show the creation of an application

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

35

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.7.2 Job Submission

Figure 21 - Sequence diagram showing the process of submitting jobs

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

36

Dileban Karunamoorthy, Distributed Computing Project, 2009

3.8 Summary
This chapter began by presenting a high-level architecture of the integration of the Gridbus

Workflow Management System and Aneka Enterprise Middleware. The high-level architecture

provided an overall understanding of the process of creating and submitting jobs from the workflow

engine to Aneka. This was followed by a detailed discussion on the design of the Task Web Service.

The Web Service interface was illustrated. The chapter then detailed the design of the Aneka plugin

for the Gridbus Broker. The two main classes, AnekaComputeServer and AnekaJobWrapper, along

with their dependencies were shown. Finally, the chapter discussed the design changes to Aneka, in

particular to the Scheduling and Storage services. The chapter ended by showing two sequence

diagrams to illustrate the sequence of actions involved in the processing creating an application and

submitting jobs. The next chapter discusses some of the implementation details.

CHAPTER 4

Implementation

Chapter Contents:

4.1 Introduction

4.2 Task Web Service

 4.2.1 Alternative Approaches

 A Stateful Approach

 A Stateless Approach Using “Bindapplication”

 A Stateless Approach Using Taskmanagerhelper

4.3 Scheduling and Storage Services

4.4 Aneka Plugin for Gridbus Broker

 4.4.1 Apache Xmlbeans Vs Apache Axis 2

4.5 Issues and Bugs Discovered

4.6 Summary

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

38

Dileban Karunamoorthy, Distributed Computing Project, 2009

4.1 Introduction
Although this chapter follows the chapter on design, in practice, implementation was carried out

iteratively with design and testing. The implementation changes to the Task Web Service, the Aneka

plugin and the Scheduling and Storage services were carried out in stages, and the process was

supported through the use of various tools. Many new issues relating to thread synchronization and

logical errors were discovered in both the workflow engine and Aneka, as a result of testing new

code paths that went untested.

This chapter begins by presenting the implementation of the Task Web Service and the alternative

design approaches considered. This is followed by the implementation changes made to the

Scheduling and Storage services. The implementation of the Aneka plugin is presented next. The

chapter ends with a discussion on some of the critical issues found.

4.2 Task Web Service
The previous chapter discussed extensively, the design of the Task Web Service. The following

highlights some of the implementation details of this service. The Task Web Service implementation

was a revival of the existing implementation done earlier. Some of the implementation was

rewritten, internal design changes were made, alternative solutions were tried out, and extensions

added. Figure 22 shows the interface to the Web Service written with C# using Microsoft’s ASP.Net

technology.

Figure 22 - ASP.Net implementation of the Task Web Service

ASP.Net is Microsoft’s web framework for building web applications, including Web Services, on the

Common Language Runtime (CLR). Web Services are based on industry standards such as XML, SOAP

and WSDL enabling applications developed on different platforms to interoperate by sending

messages. The public methods above, annotated using the WebMethod attribute, represent the

Web Service interface.

[WebMethod]

public string CreateApplication(ApplicationInfo info)

[WebMethod]

public string[] SubmitJobs(SubmissionInfo info)

[WebMethod]

public JobStatus QueryJob(string jobId, string appId, ApplicationInfo info)

[WebMethod]

public ApplicationStatus QueryApplication(string appId, ApplicationInfo

 appInfo)

[WebMethod]

public bool AbortJob(string jobId, string appId, ApplicationInfo appInfo)

[WebMethod]

public bool AbortApplication(string appId, ApplicationInfo appInfo)

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

39

Dileban Karunamoorthy, Distributed Computing Project, 2009

4.2.1 Alternative Approaches

While implementing the Task Web Service a number of alternative approaches were tried out

initially. Some of these approaches had drawbacks but nevertheless, it was interesting to experiment

and test the viability of the approach. The following lists two of the approaches that were

implemented and later discarded in preference to the third.

A Stateful Approach

A stateful approach by caching an instance of GridApplication (a client side representation of a grid

application on Aneka) was an initial design that was tried out. In this approach, the first time a

CreateApplication request was received a new GridApplication was created and cached in a global

data structure in the Web Service. A subsequent request received for submitting jobs would initiate

the Web Service to lookup the corresponding GridApplication instance based on the application

identifier. The actual submission to the Aneka network would then be made via the GridApplication

instance. The same would apply to query and abort requests. The obvious problem with using a

stateful approach is dealing with failures. In the even the Web Service crashes, the client loses

control over the application running on Aneka. Save the state to permanent storage would rectify

this problem, but would require a major overhaul in the design and changes to the core Aneka

middleware as well.

A Stateless Approach using “BindApplication”

The second alternative that was tried out, was to use a stateless approach in which the Web Service

would bind to an existing GridApplication instance by invoking its BindApplication() method. Initially,

on a CreateApplication request, a new GridApplication instance would be created and the

application started. Subsequent requests to submit, query or abort jobs were invoked on the

GridApplication’s BindApplication method. Once bound, the Web Service would have a concrete

GridApplication instance to work with. The downside of this approach was that the initial goal of the

BindApplication method was to deal with failing clients, enabling clients to re-bind on recovery.

Using the “side effects” of this approach for the Web Service brought many issues that conflicted in

principle. The other drawback of using this approach is that all remote files to be staged in must be

made available to the Web Service locally. This required either hosting a Web application on the

same host as the Web Service for managing file transfers, or transferring files over SOAP directly to

the Web Service. Both these methods were not viable.

A Stateless Approach using TaskManagerHelper

The solution implemented makes use of a utility class called the TaskManagerHelper. This class

provides a set of utility methods for interacting with the Aneka Enterprise Cloud without the use of a

GridApplication instance. By simply forwarding job creation, query and abortion requests directly to

the scheduler, this approach simplified the overall architecture, and also made it easy to transfer

files from remote locations without any dependence on a local Web application or the SOAP request

itself. This approach was ultimately implemented.

4.3 Scheduling and Storage Services
The previous chapter looked extensively at the design changes to the Scheduling Service and the

Storage Service. A detailed discussion of the new and changed implementation to these services is

beyond the scope of this report. However, in order to shed some light on the process of managing

remote file transfers, Figure 23 and Figure 24 show code snippets of the Scheduling and Storage

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

40

Dileban Karunamoorthy, Distributed Computing Project, 2009

services respectively. The HandleWorkUnitSubmission() method of the of the Scheduling Service

handles work units submitted by the Task Web Service. It checks the work unit for remote files and

dispatches a request to the Storage Service requesting it to stage them in.

Figure 23 - Code snippet showing an example of the communication between the Scheduling Service and the Storage

Service for managing file transfers

Figure 24 - Code Snippet for the message handler for remote file transfers in the Storage Service

IList<FileData> remoteInputFiles = this.GetRemoteFiles(workUnit.InputFiles);

if (remoteInputFiles.Count > 0)

{

 ApplicationData application = ApplicationStore.GetApplication(workUnit

 .ApplicationId);

 if (application != null)

 {

 // get the storage server to stage them in from the remote server

 RemoteFileTransferMessage transferMsg = new RemoteFileTransferMessage

 (SchedulingHandler.SchedulerServiceName,

 Constants.StorageService, application.Id,

 remoteInputFiles);

 transferMsg.RemoteTransferAction = RemoteFileTransferMessage.

 TransferAction.Download;

 Message returnMsg = MessageDispatcher.SendMessage(

 Container.NodeInfo.Uri,

 application.MainStorageServer.Uri,

 transferMsg);

 }

}

private Message HandleRemoteFileTransfer(RemoteFileTransferMessage

 remoteFileTransferMessage)

{

 Message message;

 if (remoteFileTransferMessage.RemoteTransferAction ==

 RemoteFileTransferMessage.TransferAction.Download)

 {

 // download remote files to local store

 message = StageInRemoteFiles(remoteFileTransferMessage.ApplicationId,

 remoteFileTransferMessage.RemoteFiles);

 }

 else

 {

 // upload files from local store to remote location

 message = StageOutRemoteFiles(remoteFileTransferMessage.ApplicationId,

 remoteFileTransferMessage.RemoteFiles);

 }

}

 return message;

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

41

Dileban Karunamoorthy, Distributed Computing Project, 2009

The HandleRemoteFileTransfer() method of the Storage Service is a handler for

RemoteFileTransferMessage messages and takes appropriate action depending on whether the

request was for an upload or download.

4.4 Aneka Plugin for Gridbus Broker
A discussion on the plugin architecture, the main classes involved and its communication with the

Task Web Service were discussed previously. This section highlights some of the important

implementation decisions that were made while implementing the plugin.

4.4.1 Apache XMLBeans Vs Apache Axis 2

The existing implementation of the plugin was based on Apache’s XMLBeans technology. XMLBeans

is used to access XML by binding to Java types. It allows you to compile an XML Schema into Java

interfaces and classes, which can be used to bind and modify XML data. While the main use of

XMLBeans is to access and modify XML data, XMLBeans can also be used to access remote Web

Services, although this is really a secondary feature. The existing implementation of the Aneka plugin

was based on XMLBeans.

Apache’s Axis 2 technology on the other hand is a first class Java implementation of the client and

server sides of the Web Service architecture. It enables the sending and receiving of SOAP messages,

to create Web Services, to create implementation classes for servers and clients using WSDL, and

provides numerous useful features such as WS security, addressing, coordination, and transactions.

The use of Axis 2 for interacting with the Task Web Service was therefore an obvious choice, and it

provided a more natural means to access and process SOAP messages compared to XMLBeans. The

Ankea plugin was re-implemented using Axis 2, simplifying the implementation and making the

resulting code clearer.

Figure 25 - Code snippet showing the creation of an application using Axis 2

Figure 25 and fFigure 26 show sample code snippets for creating an application and submitting a job

to the Task Web Service. They illustrate the simplicity of using Axis 2 for accessing remote Web

Services.

// Create and submit a new application

TaskServiceStub taskStub = new TaskServiceStub(taskServiceURL);

CreateApplicationResponse response = taskStub.CreateApplication

 (application);

this.anekaAppID = response.getCreateApplicationResult();

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

42

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 26 - Code snippet showing the submission a job using Axis 2

4.5 Issues and bugs discovered
During development, a number of issues within Aneka were discovered. Many of these issues were

existing bugs within Aneka and were not discovered because some scenarios and code paths were

untested. This integration project provided an opportunity to test these features using different

variables and inputs. The following highlights some of the many issues found.

One of the more serious issues was a design flaw in the CustomThreadPool, which went

undiscovered when tested on Windows XP. While the CustomThreadPool was used extensively to

test many existing parallel applications, testing it on a Windows 2003 server instance resulted in

synchronization problems. A possible reason for the difference in behavior could be attributed to the

fact that thread scheduling in server operating systems are optimized for background tasks, unlike

desktop operating systems, which are optimized for interactive applications. Another critical issue

was the failure of the Execution Service to deal with scenarios where work units do not have input

files, but produce output files. This resulted in the Execution Service raising null-pointer exceptions.

A third critical issue was a series of problems in the FTPClient and FTPServer classes, whose behavior

did not conform to standard FTP. This resulted in problems when staging in files from remote hosts

such as Microsoft’s IIS FTP Server and Appache FTP Server. Since the two classes were compatible

with each other, the problem was undiscovered when used within Aneka.

4.6 Summary
This chapter discussed the implementation details. The chapter began by presenting the

implementation of the Task Web Service and alternative implementation approaches. The

implementation of the Scheduling and Storage services and the managing of remote file transfers

were discussed next. It then looked at some of the details on the Ankea plugin, in particular the

benefits of using Apache’s Axis 2 technology over XMLBeans. The next chapter will discuss the steps

taken to test much of the implementation.

// Create submission info to contain job details

SubmissionInfo submissionInfo = new SubmissionInfo();

submissionInfo.setAppId(acs.getAnekaAppID());

submissionInfo.setNegotiationId(job.getReservationId());

submissionInfo.setJobs(jobsList);

// Create new SubmitJobs soap request

SubmitJobs jobs = new SubmitJobs();

jobs.setInfo(submissionInfo);

// Submit jobs to remote web service

TaskServiceStub stub = new TaskServiceStub(acs.getTaskServiceURL());

SubmitJobsResponse response = stub.SubmitJobs(jobs);

// Get list of task ids from response

ArrayOfString taskIds = response.getSubmitJobsResult();

CHAPTER 5

Testing

Chapter Contents:

5.1 Introduction

5.2 Unit Tests

5.3 Integration and Verification Testing on Amazon

 5.3.1 Installation and Configuration

 5.3.2 Test Case

 5.3.3 Execution and Results

5.4 Analysis

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

44

Dileban Karunamoorthy, Distributed Computing Project, 2009

5.1 Introduction
Testing was an integral part of the entire development process. All code written was continuously

tested to ensure validity and conformance to the existing functionality. The strategies for testing

differed depending on where the code was written and the technologies used. The component

changes made were first tested component-wise, and then a series of integration and verification

tests were performed to validate the entire process of executing a workflow.

This chapter begins by describing some of the test tools used during early development to carry out

basic unit tests. It then discusses the process of setting up and carrying out integration and

verification tests on Amazon EC2. The chapter ends with an analysis on the tests carried out.

5.2 Unit Tests
Microsoft’s Visual Studio was used to perform initial tests on the Task Web Service. Its built-in web

server allowed for easy launching and debugging of the Web Service within the development

environment. The HTML based Web Service interface, generated from the Task Web Service’s WSDL

definition, provided a quick approach to test and view the results of basic functionalities. The SOAP

UI tool [15], an Eclipse plugin, was used to test the functionality of the Task Web Service from within

Eclipse’s IDE. This provided a means to test the functionality of the Aneka plugin as it was being

developed. The changes to the Scheduling and Storage Services were tested using some of the

example applications distributed with Aneka. One of the useful outcomes of handling remote file

transfers is that existing applications to Aneka can now benefit from the use of files located

remotely.

5.3 Integration and Verification Testing on Amazon
The integration and verification tests were performed using an application based on genetic

algorithms known as Evolutionary Multi-objective Optimization (EMO) [16]. Genetic algorithms are

search algorithms used for finding optimal solutions in a large space where deterministic or

functional approaches are not viable. Genetic algorithms use heuristics to find an optimal solution

that is acceptable within a reasonable amount of time. In the presence of many variables and

complex heuristic functions, the time consumed in finding an acceptable solution can be too large.

However when multiple instances are run in parallel in a distributed setting using different variables,

the optimization time can be drastically reduced.

5.3.1 Installation and configuration

The integration and verification tests were performed on Amazon’s Elastic Compute Cloud (EC2)

[17]. Both, the Gribus Workflow Management System and Aneka Enterprise Middleware were

installed on VM instances created on Amazon EC2. The deployment configuration included a single

Linux (Ubuntu) instance for hosting the Gridbus Workflow Management System and 19 other

Windows 2003 Server instances. The master node consisting the Scheduling Service, also hosted the

Task Web Service (running on Microsoft’s Internet Information Server (IIS)) and Apache’s FTP server

[18] for hosting remote files. The worker nodes consisted of Aneka instances hosting the Execution

Service and the EMO executables (legacy application).

The nodes instances were created from pre-packaged Amazon Machine Images (AMI) [17]. Once an

instance consisting of the desired operating system (and other software) was launched from an

existing AMI, the node was reconfigured by installing the workflow system or Aneka and other

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

45

Dileban Karunamoorthy, Distributed Computing Project, 2009

services as desired. The resulting instance was bundled and registered as a new private AMI and

stored in Amazon’s Simple Storage Server (S3) [19]. New instances were then launched from the

private AMIs.

5.3.2 Test Case

In order to test the integration, an EMO workflow consisting of a varying number of tasks, was

created and executed in parallel on the Aneka network setup on Amazon EC2. The EMO application

was preinstalled on the execution nodes (or alternatively, can be staged in as an ordinary input file),

and the results of the optimizations were staged out. The figure below provides a high-level view of

the entire system setup on Amazon EC2.

Figure 27 - GWMS and Aneka Enterprise Cloud setup on Amazon EC2

Multiple tests were carried out, with varying problem sizes. The workflows consisted of two

iterations, with each iteration in a single workflow containing either 10, 20, 100 or 1000 tasks. This

resulted in the entire workflow containing a total of 22, 42, 202, or 2002 tasks (including the 2 extra

merge operations in each case). Each of the tasks was submitted individually, as a separate job to

the Task Web Service, which in turn forwarded the task to the Scheduling Service. The Scheduling

Service then dispatched the tasks to the execution nodes. With 19 execution nodes available, at

most 19 tasks execute in parallel. Once all tasks in the first iteration are complete, a merge operation

is executed to merge the results of these tasks. The output of the merge operation in turn forms the

input to the second iteration. Figure 28 below shows a graphical representation of the workflow,

consisting of 2 iterations.

FTP

Amazon EC2

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

46

Dileban Karunamoorthy, Distributed Computing Project, 2009

5.3.3 Execution and Results

Figure 28 - Workflow Monitoring Graph for EMO

Figure 29 - Workflow Monitoring Table for EMO

EMO
EMO Merge

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

47

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 30 - Portion of performance graph showing 94% of the collective CPU power of 42 GHz in use

Figure 29 depicts a monitoring table for the workflow just submitted. The fields worth noticing

include the job status (Finished, Failed etc) and, the submit and finish times. The second table

indicates that all tasks are submitted to the same server, which in this case is the Task Web Service.

This has the advantage of relieving the workflow engine of all responsibilities relating to managing

and communicating with the individual compute resources. The execution nodes in Aneka are

private and are not visible to clients. Figure 30 illustrates a portion of the performance graph

showing that 94% of the collective computing power (of a total of 42 GHz) is in use.

The plot of the final output shown in Figure 31 below is the optimization for a 2-objective function.

Although not shown, repeated outputs can be plotted on the same graph to compare the

optimizations. A good optimization is one which satisfies both objectives as much as possible. In

other words, plots that tend towards the point of origin of the graph are closer to objectives 1 and 2.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

48

Dileban Karunamoorthy, Distributed Computing Project, 2009

Figure 31 - Plot for 2-Obtective Function

5.4 Analysis
The tests described above demonstrate many of the desired objectives in this integration. The

architectural pattern also provided a number benefits compared to using other middleware systems

as described below.

The access to a vast collection of compute resources through a single Task Web Service simplifies the

architecture compared to accessing multiple resources via protocols such as SSH, where the broker

must establish connections to each of the resources and manage their stateful sessions. In such

situations, security can be further complicated by the fact that access to different resources could

require separate credentials making it hard to manage them. On the contrary a secure connection to

the Web Service using secure HTTP (HTTPS), together with Aneka’s built-in security enables for a

simpler approach.

The use of a stateless Web Service to mediate communication between the Gidbus Workflow

Management System and the Aneka Cloud eliminates failure concerns at the Web Service. Alternate

replicas of the service can easily be made available in order to mask such failures. Further, the failure

of a task (as a result of a disconnected resource for example) within the Aneka cloud are managed by

the Scheduling Service, relieving the workflow engine of much of the work needed to reschedule the

task to a new resource, as is the case with some middleware platforms.

O
b

je
ct

iv
e

 1

Objective 2

2-Objective Function

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

49

Dileban Karunamoorthy, Distributed Computing Project, 2009

Another benefit of using a middleware platform like Aneka is the dynamic provisioning of resources

while a workflow is executing. While the only requirement to access compute resources is the URL to

the Task Web Service, additional execution nodes can be started on demand, shielding the workflow

engine from any responsibility in managing these new resources and scheduling tasks to them.

The scalability of the integration was amply demonstrated by submitting workflows with 2000 tasks.

While the integration does not impact the scalability of the Gridbus Workflow Management System

or Aneka Enterprise Middleware directly, the scalability in integrating the two technologies is

retained.

5.5 Summary
This chapter began by discussing the tools and initial tests carried out during early development. It

then discussed the integration and verification tests performed on Amazon EC2. Details of setting up

and configuring the Gridbus Workflow Management System and Aneka Cloud on Amazon EC2 were

presented, followed by a discussion on the use the EMO optimization application to setup and test

workflows of varying sizes. The chapter ended with an analysis on the results and a look at some of

the advantages brought about as a result of this integration.

CHAPTER 666

Conclusion and Future Work

Chapter Contents:

6.1 Conclusion

6.2 Future Work

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

51

Dileban Karunamoorthy, Distributed Computing Project, 2009

6.1 Conclusion
The process of integrating different platforms requires a careful understanding of the technologies

involved. This is particularly so when the technologies involved are mature and based on well-

defined principles. The integration would not only require bridging the differences between the two

technologies, but the changes must also be coherent with the current principles, and the design

must fit in elegantly. On the contrary, a design that is short-sighted would lead a brittle solution that

would easily break as the two technologies evolve over time. This report presented a detailed study

on the design and implementation of integrating the Gridbus Workflow Management System with

Aneka Enterprise Middleware. The main components affected by this integration include the Aneka

plugin for the Gridbus Broker, the Task Web Service and the Scheduling and Storage services within

Aneka. The Task Web Service was central to the integration of the two platforms. It exposed Aneka’s

Task Programming Model as a service, making it accessible to clients written in technologies other

than .Net. The Task Web Service was based on a stateless model, as most Web Services are, and was

thus resilient to failure. The Aneka plugin for the Gridbus Broker provided the necessary bridging

between the workflow system and Aneka. Being a SOAP client to the Task Web Service, the plugin

translated all requests, from application creation to job submission and monitoring, into a series of

SOAP messages. Conceptual entities and states that had different semantics in the two platforms

were remapped. The behavior of the Scheduling and Storage services in Aneka were changed to

manage, among other things, the transfer of remote files. This integration now allows the Gridbus

Workflow Management System to take advantage of the rich set of features Aneka has to offer.

Some of these benefits including platform independence, dynamic provisioning of additional

services, scalability, and reduced overhead and administration as a result of interacting with a single

remote service to execute all tasks. In addition, a useful outcome of handling remote file transfers is

that existing .Net Aneka clients can now benefit from the use of files located remotely. The Task

Web Service also exposes Aneka to clients other than the Gridbus Workflow Management System.

The overall integration also helped discover many new issues that were previously overlooked. A

series of tests were subsequently carried out using real world applications in order to verify the

integration of the two platforms. The tests showed that the integration was seamless and fault-

tolerant.

6.2 Future Work
As for future work, the work done on advance resource reservation for Aneka [14] using the

alternate offers protocol, can be integrated with the current solution in order to support various QoS

requirements. Although Aneka only supports the inherently unsecure FTP protocol for local and

remote file transfers, additional support for enabling more secure protocols such as SFTP and HTTPS

would be advantageous. The process of staging-in and staging-out files can be further streamlined by

allowing execution nodes to access files directly, by-passing the Storage Service. This however can

pose administrative challenges to users requiring more nodes to be exposed to the Internet. The

Thread and MapReduce Programming Models can also be exposed via new Web Services (or by

refactoring the existing Task Web Service) enabling fuller access to Aneka’s distinctive features. This

would make non-.Net clients have access to the same set of features currently available exclusively

to .Net clients.

 Integration of Gridbus Workflow Management System with Aneka Enterprise Middleware

52

Dileban Karunamoorthy, Distributed Computing Project, 2009

REFERENCES

[1] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya, "Designing a Resource Broker for

Heterogeneous Grids," Software: Practice and Experience, vol. 38, pp. 793-825, July 10 2008.

[2] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, "Alchemi: A .NET-Based Enterprise Grid

Computing System," in Proceedings of the 6th International Conference on Internet

Computing, Las Vegas, USA, 2005.

[3] "The Globus Alliance". [Online]. Available: http://www.globus.org/. [Accessed: Jun. 3, 2009].

[4] "UNICORE - Distributed Computing and Data Resources". [Onlline]. Availeble: http://www.

unicore.eu/. [Accessed: Jun. 3, 2009].

[5] "Manjrasoft Pty Ltd: Cloud Computing Solutions". [Online]. Available: http://www.

manjrasoft.com. [Accessed: Jun. 7, 2009].

[6] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dobson, and K. Chiu, "A Grid Workflow

Environment for Brain Imaging Analysis on Distributed Systems," Concurrency and

Computation: Practice and Experience (to appear), 2009.

[7] J. Yu and R. Buyya, "A Novel Architecture for Realizing Grid Workflow using Tuple Spaces," in

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh,

USA, 2004.

[8] D. Gelernter, "Generative communication in Linda," ACM Transactions on Programming

Languages and Systems, vol. 7, pp. 80-112, 1985.

[9] IBM, "TSpaces - Computer Science Research at Almaden". Online. Available: http://www

.almaden.ibm.com /cs/tspaces/. [Accessed: Jun 8, 2009].

[10] J. Yu, S. Venugopal, and R. Buyya, "A Market-Oriented Grid Directory Service for Publication

and Discovery of Grid Service Providers and their Services," The Journal of Supercomputing,

vol. 36, pp. 17-31, April 2006.

[11] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid information services for

distributed resource sharing," in Proceedings of 10th IEEE International Symposium on High

Performance Distributed Computing, 2001.

[12] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya, "Aneka: Next-Generation Enterprise

Grid Platform for e-Science and e-Business Applications," in Proceedings of the 3rd IEEE

International Conference on e-Science and Grid Computing, Bangalore, India, 2007.

[13] S. Venugopal, X. Chu, and R. Buyya, "A Negotiation Mechanism for Advance Resource

Reservation using the Alternate Offers Protocol," in Proceedings of the 16th International

Workshop on Quality of Service, wente, The Netherlands, 2008.

[14] Y. Lai and R. Buyya, "Reservation Infrastructure," Technical Report, University of Melbourne

2009.

[15] "the Web Service, SOA and SOAP Testing Tool - soapUI". [Online]. Available:

http://www.soapui.org/. [Accessed: Jun 17, 2009]..

[16] A. S. Netto and C. Vecchiola, "Executing an Evolutionary Alogrithm in Multi-Cluster

Environments," Presentation Slides, 2009.

[17] " Amazon Elastic Compute Cloud (Amazon EC2)". Online. Available: http://aws.amazon.

com/ec2/. [Accessed: Jun 27, 2009].

[18] "Apache FtpServer,". [Online]. Available: http://mina.apache.org/ftpserver/. [Accessed: Jun

27, 2009].

[19] "Amazon Simple Storage Service (Amazon S3)". [Online]. Available: http://aws.amazon.com/

s3/. [Accessed: Jun 27, 2009].

