
Contention-aware Resource Provisioning

in Interconnected Grid Computing
Systems

by

Mohsen Amini Salehi

Submitted in total fulfilment of
the requirements for the degree of

Doctor of Philosophy

Department of Computing and Information Systems
The University of Melbourne, Australia

August 2012

Dedicated to those who enlightened my life.

iii

Contention-aware Resource Provisioning in
Interconnected Grid Computing Systems

Mohsen Amini Salehi
Principal Supervisor: Prof. Rajkumar Buyya

Abstract

Resource sharing environments enable sharing and aggregation of resources across
several resource providers. InterGrid provides an architecture for resource sharing
based on virtual machine technology between Grids. Resource providers in Inter-
Grid serve their local requests as well as external requests assigned by InterGrid.
However, resource providers would like to ensure that the requirements of their
local requests are not delayed because of running external requests. This scenario
leads to contention for resources between the external and local requests.

In this dissertation, preemption mechanism is considered to resolve the con-
tention, while side-effects of this mechanism are taken into account. Particularly,
the number of preempted external requests, their waiting time, and imposed over-
head of preemption are considered. Therefore, this dissertation investigates and
categorises mechanisms for management of resource contention in the existing
systems. Then, it presents a contention management scheme that includes two
main strategies. The first strategy avoids the contentious situation by establish-
ing contention-awareness in the scheduling policies. The second strategy, handles
contention side-effects while considering long waiting time and energy consump-
tion issues. These strategies are proposed within different architectural elements
of the InterGrid platform.

In this dissertation, first feasibility of the preemption mechanism to resolve
resource contention is presented, then overhead time imposed for performing var-
ious preemption scenarios are modelled, and different policies to minimise the
side-effects of resource contention are proposed. To avoid resource contention, a
scheduling policy is proposed in gateway (meta-scheduling) level, that proactively
disseminates external requests on resource providers. Also, a dispatch policy is
proposed to decrease the likelihood of resource contention for more valuable ex-
ternal users. To prevent long waiting time for external requests, an admission
control policy is proposed to limit the number of accepted external requests when
there is a surge in demand. Then, a contention-aware energy management policy
is proposed to adapt energy consumption of resource providers to user demand.
This policy is for situation that resource providers operate at low utilisation and
it considers long waiting time for external requests.

Performance evaluations of the strategies are achieved using discrete-event
simulation. This dissertation also realises the proposed scheme in InterGrid.

v

Declaration

This is to certify that:

(i) the thesis comprises only my original work towards the PhD except where
indicated,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps,
bibliographies, appendices and footnotes.

Mohsen Amini Salehi

vii

Acknowledgements

PhD is a long and amazing journey all about learning. Many people appear in
the path of this journey who enrich your knowledge and life.

To all of them, I would like to extend my most heartfelt thanks:

First and foremost, to Professor Rajkumar Buyya, my principal supervisor
for his intellectual guidance, giving me the opportunity to think freely on my
research, and his continuous support during and after PhD. His endless motivation
has always inspired me.

To Associate Professor Jemal Abawajy, for his advice throughout my candi-
dature. To Dr. Bahman Javadi for his friendly manner, constructive comments,
and providing me with encouragement during rough times. To Adel Nadjarran
Toosi whose companionship and encouragements improved both my research and
life. To William Voorsluys, who taught me far beyond what matters in PhD. To
Dr. Rodrigo Calheiros who was kind to read the dissertation word by word. To
all past and current members of the CLOUDS Laboratory. In particular, Amir
Vahid, Dr. Saurabh Garg, Dr. Marcos Dias de Assuncao, Anton Beloglazov, Atefe
Khosravi, Sare Fotouhi, Nikolay Grozev, Deepak Poola, Sivaram Yoganathan,
Linlin Wu, Mohammed Alrokayan, Dr. Marco Netto, Dr. Mustafizur Rahman,
Dr. Mukaddim Pathan, Dr. Suraj Pandey, Dr. Rajiv Ranjan, Dr. Christian Vec-
chiola, Dr. Srikumar Venugopal for their helpful comments on my work. To the
staff and other friends from the CIS Department for their support, specially Mani
Abedini, Saeed Shahbazi, and Masud Moshtaghi. To the University of Melbourne
and Australian Research Council (ARC) for financial support of my candidature.

I would like to express gratitude to Associate Professor Hossain Deldari and
Assistant Professor Saeid Abrishami my Master and Bachelor degree supervisors
who paved the way of my education in the Melbourne University. Thanks to In-
fosys Company for hosting part of my PhD. I would like to express my gratitude
especially to Dr. Radha Krishna Pisipati, Krishnamurty Sai Deepak, and Inchara
Shanthappa. I am also immensely grateful to my family. My wife who patiently
borne with the student life and my parents who have provided me with lessons
on honesty and ethics that no university could ever rivals. Thanks to my sisters
for their love and support. Thanks to my Iranian friends: Afshin, Ali, Alireza,
Davood, Hoda, Khadije, Mahsa, Naghme, Rozita, and Samira, who relief the
pain of being far from home and make it a joyful journey. Finally, I thank God
for blessing me all these opportunities and a twin lovely girls who sweeten my life.

Mohsen Amini Salehi
August 2012

ix

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Research Problem and Objectives 4

1.2.1 Objectives . 5

1.2.2 Evaluation Methodology 5

1.3 Contributions . 6

1.4 Thesis Organisation . 7

2 Principles, Taxonomy, and Context 11

2.1 Introduction . 11

2.2 Request Management in Interconnected Distributed Systems . . . 14

2.3 Contention in Distributed Systems 15

2.3.1 Request-initiated Resource Contention 15

2.3.2 Inter-domain-initiated Resource Contention 18

2.3.3 Origin-initiated Resource Contention 19

2.4 Contention Management in RMS 20

2.4.1 Resource Provisioning . 21

2.4.2 Scheduling Unit . 24

2.4.3 Admission Control Unit 26

2.4.4 Outsourcing Unit . 27

2.5 Preemption Mechanism . 27

2.5.1 Applications of Preemption Mechanism 28

2.5.2 Challenges of Preemption Mechanism 31

2.5.3 Possibilities for Preempted Requests 34

2.5.4 Checkpointing in Distributed Systems 37

2.6 An Investigation of Existing Works 40

2.6.1 Contention Management in Clusters 40

2.6.2 Contention Management in Desktop Grids 45

xi

CONTENTS

2.6.3 Contention Management in Grids 46

2.6.4 Contention Management in Clouds 48

2.7 Positioning of this Thesis . 52

2.8 Summary . 54

3 Preemption-based Contention Management 57

3.1 Introduction . 57

3.2 Proposed Solution . 60

3.2.1 Introducing Different Lease Types 60

3.2.2 Measuring the Overhead of Lease Preemption 62

3.2.3 Preemption Policy . 65

3.3 Performance Evaluation . 68

3.3.1 Performance Metrics . 68

3.3.2 Experimental Setup . 69

3.3.3 Experimental Results . 70

3.4 Summary . 75

4 Contention Avoidance through Scheduling 77

4.1 Introduction . 77

4.2 Analytical Queuing Model . 79

4.3 Preemption-aware Scheduling . 83

4.3.1 Workload Allocation Policy 84

4.3.2 Dispatch Policy . 87

4.4 Performance Evaluation . 89

4.4.1 Performance Metrics . 89

4.4.2 Experimental Setup . 90

4.4.3 Experimental Results . 94

4.5 Summary . 99

5 Contention Management in Admission Control 103

5.1 Introduction . 103

5.2 Analytical Queuing Model . 105

5.2.1 The Proposed Admission Control Policy 108

5.3 Performance Evaluation . 110

5.3.1 Performance Metrics . 110

5.3.2 Experimental Setup . 111

xii

M. A. Salehi CONTENTS

5.3.3 Experimental Results . 113

5.4 Summary . 116

6 Contention-aware Energy Management 119

6.1 Introduction . 119

6.2 Fuzzy Inference System . 121

6.3 Proposed Mechanism . 123

6.3.1 Preemption-aware Energy Management 123

6.3.2 Energy-awareness in Haizea 127

6.3.3 Preemption-aware Energy Management Policy 128

6.4 Performance Evaluation . 130

6.4.1 Experimental Setup . 130

6.4.2 Experimental Results . 132

6.5 Summary . 136

7 Realising Contention-awareness in InterGrid 137

7.1 Introduction . 137

7.2 InterGrid Architecture . 138

7.2.1 IGG Structure . 139

7.2.2 Resource Allocation Model 140

7.3 System Design and Implementation 142

7.3.1 Virtual Infrastructure Manager 142

7.3.2 Virtualisation Infrastructure 143

7.3.3 Scheduling in IGG . 143

7.3.4 Local Scheduler . 144

7.4 Performance Evaluation . 146

7.4.1 Evaluation Results . 148

7.5 Summary . 150

8 Conclusions and Future Directions 151

8.1 Discussion . 151

8.2 Future Directions . 154

8.2.1 Contention-aware Peering Policy 154

8.2.2 Contention Management for Workflows 154

8.2.3 Price-based Contention Management 155

8.2.4 Contention Management for Adaptive Requests 155

xiii

CONTENTS

8.2.5 Grid Level Admission Control 156

8.2.6 Dynamic Preemption Decisions 156

xiv

List of Tables

2.1 Challenges of preemption mechanism in different resource provi-
sioning models. 33

2.2 Classification of contention management approaches in the existing
Cluster systems. 44

2.3 Classification of contention management approaches in the existing
Grid and Cloud systems. 51

3.1 Mean difference of decrease in local and external requests rejection
rate . 71

4.1 Description of symbols used in the queuing model 80

4.2 Input parameters for the workload model 93

4.3 95% confidence interval of the average differences between PAP-
RTDP and PAP-RND . 101

5.1 Description of symbols used in the queuing model of admission
control . 105

5.2 Parameters of the workload model 112

6.1 Rule-base of the fuzzy system . 126

7.1 Characteristics of lease requests used in the experiments 148

7.2 Number of resource contention, overhead, and makespan resulted
from applying different preemption policies 150

xv

List of Figures

1.1 An interconnected distributed computing system 1

1.2 High level view of InterGrid architecture 4

1.3 Organisation of this dissertation 8

2.1 Interconnected distributed systems 12

2.2 Interconnection mechanisms in distributed computing systems . . 12

2.3 Taxonomy of different types of resource contentions in distributed
systems . 16

2.4 Components of a resource management system for resolving re-
source contention . 21

2.5 Different usages of preemption mechanism in distributed systems . 28

2.6 Preemption candidates . 34

2.7 VM life-cycle by considering different possible preemption deci-
sions in a resource management system. 37

2.8 Different checkpointing methods in distributed systems. 38

3.1 Local and external requests in InterGrid 58

3.2 Impact of resource contention on other requests 59

3.3 Pre-selection and final selection phases of MOML policy 67

3.4 Resource utilisation results from different policies 72

3.5 Number of lease preemption resulted from different policies 73

3.6 Average response time (ART) resulted from different policies . . . 75

4.1 Queuing model for resource provisioning in a Grid 80

4.2 Regression between the number of preemptions and response time 81

4.3 Number of VMs preempted by applying different policies in IGG . 95

4.4 Resource utilisation resulted from different scheduling policies in
IGG . 97

4.5 Average weighted response time resulted from different scheduling
policies in IGG . 98

xvii

LIST OF FIGURES

4.6 Respecting more valuable external users resulted from different
scheduling policies in IGG . 100

5.1 Illustration external requests’queue in each RP of InterGrid . . . 104

5.2 Queuing representation of admission control in a Grid 106

5.3 Violation rates resulted from different admission control policies . 114

5.4 Percentage of completed external requests with different admission
control policies . 116

6.1 The structure of a fuzzy inference system 122

6.2 Fuzzy sets of inputs and output 127

6.3 Energy consumption resulted from different energy management
policies . 133

6.4 Percentage of violations from waiting threshold resulted from dif-
ferent energy management policies 135

7.1 High-level view of InterGrid components 139

7.2 Internal structure of the InterGrid Gateway 140

7.3 Resource allocation steps for external requests in InterGrid 141

7.4 Schedule of external user requests in IGG 144

7.5 Schedule of local requests in the local scheduler 146

7.6 Evaluation scenario based on 3 InterGrid Gateways 147

7.7 Illustration of contention resolution in InterGrid using MOML pol-
icy against a scenario where no contention resolution is applied . . 149

xviii

Chapter 1

Introduction

Distributed computing systems such as Clusters, Grids, and recently Clouds have

become ubiquitous platforms for supporting resource-intensive and scalable ap-

plications. However, surge in demand is still a common problem in distributed

systems [1] in a way that no single system (specially a single Cluster or Grid) can

meet the needs of all users. Therefore, the notion of resource sharing between

interconnected distributed systems has emerged [2].

Figure 1.1: An interconnected distributed system.

In an interconnected distributed system, as depicted in Figure 1.1, organi-

sations (also termed resource providers in this dissertation) share their resources

over the Internet. The advantage of these resource sharing environments is

twofold: Users can access larger resources; resource providers (hereafter termed

RPs) can increase their resource utilisation by accepting requests from other sys-

tems (i.e., external requests) in addition to their local requests.

However, sharing resources with external users from other organisations can

potentially affect the performance demanded by local users of an RP. Therefore,

1

CHAPTER 1. INTRODUCTION

resource providers in interconnected distributed systems, particularly in Grid

computing, would like to ensure that their community has priority access to

resources [3–7]. Under such a circumstance, external requests are welcome to use

resources if they are available. Nonetheless, external requests should not delay

the execution of local requests.

In circumstances that there is a surge in demand, local and external requests

contend to gain access to resources over the same time period. This condition is

generally known as resource contention between requests.

The problem this dissertation addresses is, broadly speaking, “how to resolve

resource contention in an interconnected distributed system”. When these sys-

tems provide distinct priorities for different users, as they almost always do, it

has to be determined who gets the resources and when. Such decisions can be

driven by the priority of various users or the requests’Quality of Service (QoS)

requirements (e.g., deadline).

Preemption mechanism is a common solution for contentious situation and

used by various resource management systems [6–11]. This mechanism stops

the running request and frees the resources for another, possibly higher priority,

request. Specifically, preemption is a promising mechanism due to the prevalence

of Virtual Machine (VM) technology as the execution unit in existing distributed

systems [12, 13]. Utilising VMs facilitates resumption of the preempted request

from the preempted point.

InterGrid [1] provides an architecture for interconnecting Grids. Using In-

terGrid each RP receives requests from other Grids (termed external requests),

while serves its local users’requests. Local and external requests contend to gain

access to computational resources in an RP.

This dissertation concentrates on the resource contention between requests

in InterGrid and investigates mechanisms and techniques to resolve them. The

remaining part of this chapter provides a bird’s-eye view of the research works

presented in this dissertation, including the essence of resolving contention in

InterGrid, the research problem, the objectives of this dissertation, its contribu-

tions, and its organisation.

1.1 Motivations

The main advantage of resource sharing between Grids through platforms such

as InterGrid is to enable RPs to extend their capacity beyond their domain-level

infrastructure limits and utilise the computing power of other providers to run

2

M. A. Salehi 1.1. MOTIVATIONS

resource-intensive applications. From the resource utilisation perspective, RPs

can increase their resource utilisation by accepting requests from other systems

(external requests) in addition to their local requests.

The architecture of InterGrid, as depicted in Figure 1.2, is based on InterGrid

Gateways (IGGs) that coordinate resource acquisition across Grids. Similar to

the Internet Service Providers (ISPs) that establish peering arrangements with

each other, InterGrid establishes peering between Grids using IGGs. The peering

arrangements define the conditions upon which resources are shared between

Grids.

In InterGrid, resource provisioning is achieved based on lease abstraction,

where leases are implemented based on VMs. A lease in InterGrid is an agree-

ment between a resource provider and a resource consumer whereby the provider

agrees to allocate resources to the consumer according to the lease terms pre-

sented by the consumer [13]. InterGrid creates one lease for each user request.

VMs have numerous advantages that make them suitable for implementing lease-

based resource provisioning. Most importantly, VMs enable partitioning of a

single physical machine into several virtual machines. In addition to that, VMs

have their own software stack which can provide various execution environments

for different users on a single physical machine. Finally, the VMs’ability to trans-

parently suspend, resume, and migrate [12–14] without affecting the computation

inside them [15] enables the scheduler to implement efficient scheduling strategies.

In InterGrid, each Grid is composed of several RPs where the resources are

generally Clusters of computers managed by queue-based resource management

systems [1]. These RPs contribute resources to InterGrid, while need to respect

their local users’demands. Local requests in the RPs of InterGrid have priority

to access resources over external requests. This scenario leads to contention for

resources between external users and the RPs local users. To enable resource

sharing in InterGrid, the resource contention between local and external users

has to be resolved. Thus, mechanisms applied in InterGrid have to be aware of

these contentions and provide techniques to efficiently handle them.

One approach to resolve the contention is partitioning of the resources in RPs

and dedicating a part of them to external requests [3]. However, this approach

leads to inefficient resource allocation within the RPs [16]. Another common

approach is to preempt external requests in favour of local requests. Unlike the

former approach, it is demonstrated that preemption mechanism reinforces dy-

namic resource provisioning and utilises resources more efficiently [17], specifically

when the resources are provisioned using VMs.

Nonetheless, preempting VM-based leases involves 2 main side-effects. The

3

CHAPTER 1. INTRODUCTION

LRMS

LRMS

RP1 RP2 RP1 RP2

RP1

RP2
RP3

Grid A

Grid B
Grid C

IGG1

IGG2 IGG3

LRMS LRMS LRMS

LRMS LRMS

Figure 1.2: High level view of InterGrid architecture.

first side-effect is the time overhead imposed on the system for preempting VMs.

The overhead varies based on the type of operation performed on the VMs. For

instance, the overhead of suspending a VM is lower than the overhead of migrating

it. The second side-effect, is increase in the response time of external requests

due to preemption and delay in their execution.

This dissertation resolves the contention between requests in InterGrid based

on the preemption mechanism. To achieve that, this dissertation investigates

strategies that reduce the resource contention as well as its side-effects.

1.2 Research Problem and Objectives

This dissertation tackles the challenge of how resource contention between users’requests

can be resolved in a federated Grid, in particular InterGrid, without disrespecting

local users and without long response time for external users.

Towards that end, this dissertation considers the preemption mechanism to

resolve the resource contention in InterGrid, as a platform for Grid federation.

However, preemption involves side-effects in terms of the overhead time and long

response time for low priority requests. Mechanisms applied in the InterGrid

platform have to be aware of the contention as well as the side-effects of resolving

it using the preemption mechanism. To efficiently handle the resource contention

and its side-effects, this dissertation investigates two main strategies:

4

M. A. Salehi 1.2. RESEARCH PROBLEM AND OBJECTIVES

The first strategy avoids the contentious situation by establishing contention-

awareness in the scheduling of users’requests. Specifically, in this strategy sched-

ulers are aware of the contentions that can take place and try to avoid that

through efficient scheduling of the requests. This strategy involves the contention-

awareness in the local scheduling of the RP and in the global scheduling (gateway)

level.

The second strategy handles resource contention in a way that its impact on

the response time of external (low priority) requests is minimised. More specifi-

cally, the second strategy investigates the waiting time of external requests in two

circumstances: First, when there is a surge in demand from local users; second,

when energy management mechanisms are applied within resource providers.

1.2.1 Objectives

Based on the described challenges, we delineated the following objectives:

1. Model the imposed overhead of VM preemption, the mechanism of resolv-

ing contention in this dissertation, and investigate solutions to reduce the

imposed overhead of resolving contention.

2. Investigate proactive scheduling techniques to avoid contentious situation

that can arise in InterGrid.

3. Explore techniques to handle side-effects of the preemption mechanism,

mainly in terms of the long response time for external requests.

1.2.2 Evaluation Methodology

Evaluation of the proposed mechanisms in this dissertation is carried out through

discrete-event simulation. Simulation enables us to control the experiments and

conduct them with different parameters to examine the behaviour of the mech-

anisms in various circumstances. Reproducibility of the environment as well as

the results are other advantages of simulation-based evaluations. Additionally,

it is difficult to change the configuration of computing resources in production

environments to evaluate the efficacy of different mechanisms.

We implemented and evaluated contention-aware policies in the InterGrid

platform to resolve resource contention between local and external requests.

5

CHAPTER 1. INTRODUCTION

1.3 Contributions

Considering the aforementioned objectives, this dissertation makes the following

contributions:

1. It introduces preemption of external leases in favour of local requests as

a solution for resource contention between them in InterGrid. Later, it

deals with the side-effects of preempting VM-based leases, specifically, the

overhead time, number of resource contentions, and response time. There-

fore, a model for estimating the overhead time of preempting VMs, based

on possible operations on them, is proposed. Additionally, several poli-

cies that determine the proper set of leases for preemption are proposed

in the local scheduler of RPs. These policies sought to either decrease the

preemption overhead or increase the user satisfaction by reducing the num-

ber of resource contentions. A third policy handles the trade-off between

the overhead and the number of resource contentions. Simulation results

demonstrate that the proposed preemption policies can serve local requests

without increasing the rejection of external requests.

2. It investigates how resource contention can be avoided in a Grid with mul-

tiple RPs in the global scheduling (gateway) level. For this purpose, a

preemption-aware workload allocation policy in the IGG is proposed to

proactively distribute external requests amongst RPs in a way that the

overall number of resource contentions decreases.

Additionally, a situation that some external requests are more valuable

(i.e., external requests have different QoS levels) is studied. The proposed

scheduling policy investigates the impact of proactive dispatching of ex-

ternal requests to the RPs on reducing the probability of contention for

valuable external requests. Experiment results indicate that the workload

allocation policy, specifically when it is combined with the proposed dis-

patch policy, significantly decreases the number of resource contentions.

This decrease improves the resource utilisation as well as average weighted

waiting time of external requests.

3. It presents a mechanism for admission control within RPs to prevent the

long response time for external requests. In fact, resource owners are inter-

ested in accepting as many external requests as possible in order to max-

imise their profit. However, accepting many external requests increases the

likelihood of resource contention and preemption, particularly when there is

a surge in demand for local requests. This situation leads to unpredictable

response time for external requests.

6

M. A. Salehi 1.4. THESIS ORGANISATION

The admission control mechanism provides a predictable system by limit-

ing the number of accepted external requests to assure that they can be

completed with a definite waiting time. An analytical queuing model is ap-

plied to find out the ideal number of external requests in an RP. Then, the

preemption-aware admission control policy is derived based on the proposed

model.

Experiment results indicate that the admission control mechanism signifi-

cantly reduces long response times and leads to completing more external

requests comparing to other similar mechanisms.

4. It provides a contention-aware energy management mechanism in RPs. As

mentioned earlier, the admission control mechanism is useful when there is

a surge in demand within an RP. On the contrary, when an RP operates

at low utilisation, there is a potential to reduce the energy consumption by

deactivating lightly loaded resources. However, decreasing the number of

active resources results in more resource contention and long response time

for external requests.

Therefore, an adaptive contention-aware energy management mechanism is

proposed in the RP. It adapts the energy consumption based on the per-

formance demands. For allocating a given request, the mechanism decides

about switching on, preempting, consolidating, or combination of these op-

erations. To avoid the long response time for external requests, the energy

management mechanism takes into account the waiting time of external

requests.

5. The realisation of the contention-aware scheduling in InterGrid is presented.

The aim is to resolve resource contention between external and local re-

quests in the InterGrid platform that uses VM-based leases for resource

provisioning. The implementation enables RPs to increase their resource

utilisation through contributing resources to InterGrid and without delaying

their local users. In addition to that, several contention-aware scheduling

policies are implemented and evaluated in this environment that consider

the amount of resource contention and imposed overhead of preemption.

1.4 Thesis Organisation

The core chapters of this dissertation are derived from several research papers

published during the course of the PhD candidature. The interrelationship be-

tween chapters and the strategy to which they are related to are depicted in

7

CHAPTER 1. INTRODUCTION

Figure 1.3. The remaining part of this dissertation is organised as follows:

Figure 1.3: Organisation of this dissertation.

• Chapter 2 provides a literature review on the current related works in dis-

tributed computing systems area and positions our work in comparison with

them. Chapter 2 derived from:

– M. Amini Salehi, J. Abawajy, and R. Buyya, Taxonomy of Con-

tention Management in Interconnected Distributed Computing Sys-

tems, Computing Handbook Set, CRC Press, 2012 (In Print).

• In Chapter 3, we discuss overheads involved in preempting leases in a re-

source provider of InterGrid. In addition to that, we propose preemption

policies in the local scheduler level that are aware of preemption side-effects

and try to alleviate them. Chapter 3 derived from:

– M. Amini Salehi, B. Javadi, and R. Buyya, Resource Provisioning

Policies in Interconnected Virtualised Grids based on Lease Preemp-

tion. Submitted to Journal of Future Generation Computing Systems

(FGCS), 2012.

– M. Amini Salehi, B. Javadi, and R. Buyya, Resource provisioning

based on leases preemption in InterGrid. In Proceedings of the 34th

Australasian Computer Science Conference (ACSC’11), pages 25–34,

Perth, Australia, 2011.

• Chapter 4 deals with the proactive contention-aware scheduling in the In-

terGrid Gateway (IGG) level. This work sought to avoid the resource

contention within a Grid by proactive scheduling of external requests on

resource providers. Chapter 4 derived from:

– M. Amini Salehi, B. Javadi, and R. Buyya, QoS and preemption-

aware scheduling in federated and virtualised grid computing environ-

8

M. A. Salehi 1.4. THESIS ORGANISATION

ments. Journal of Parallel and Distributed Computing (JPDC), 72(2):231–

245, 2012.

– M. Amini Salehi, B. Javadi, and R. Buyya, Performance analy-

sis of preemption-aware scheduling in multi-cluster grid environments.

In Proceedings of the 11th International Conference on Algorithms

and Architectures for Parallel Processing (ICA3PP’11), pages 419–

432, Australia, 2011.

– M. Amini Salehi and R. Buyya, Contention-aware resource man-

agement system in a virtualised grid federation, in PhD Symposium

of the 18th international conference on High performance computing

(HiPC’11), India, 2011.

• Chapter 5 concentrates on the long response time for external requests in the

resource providers and proposes a contention-aware admission control policy

to prevent long response time for external requests. Chapter 5 derived from:

– M. Amini Salehi, B. Javadi, and R. Buyya, Preemption-aware ad-

mission control in a virtualised grid federation. In Proceedings of 26th

International Conference on Advanced Information Networking and

Applications (AINA’12), pages 854–861, Japan, 2012.

• Chapter 6 considers the impact of energy-efficient mechanisms on the wait-

ing time of external requests in InterGrid and reduces the energy consump-

tion within an RP without affecting the required performance of the system.

Chapter 6 derived from:

– M. Amini Salehi, P. R. Krishna, K. S. Deepak, and R. Buyya,

Preemption-aware energy management in virtualised datacenters, in

Proceedings of 5th International Conference on Cloud Computing (IEEE

Cloud’12), USA, 2012.

• Chapter 7 describes the realisation of resolving contention in InterGrid. We

detail the system implementation and evaluate the performance of differ-

ent preemption policies to reduce the side-effects of applying preemption

mechanism. Chapter 7 derived from:

– M. Amini Salehi, A. N. Toosi, and R. Buyya, Realising Contention-

aware Scheduling in InterGrid, submitted to 5th International Confer-

ence on Utility and Cloud Computing (UCC’12), USA, 2012.

• In Chapter 8, we present general considerations, conclusions, and future

directions.

9

Chapter 2

Principles, Taxonomy, and

Context

This chapter discusses approaches for contention management in resource shar-

ing distributed computing systems. The chapter investigates features of these

approaches, identifies, and categorises their similarities and differences. Key

background information required for better understanding of the topics discussed

in the remaining chapters, in addition to the positioning of this dissertation in

regards to related works, are also provided.

2.1 Introduction

A distributed system is essentially a set of computers that share their resources via

a computer network and interact with each other towards achieving a common

goal [18]. The shared resources in a distributed system vary and can include

data, computational power, and storage capacity. The common goal can also

range from running resource-intensive applications, tolerating faults in a server,

and serving a scalable Internet application.

Distributed systems such as Clusters, Grids, and recently Clouds have be-

come ubiquitous platforms for supporting resource-intensive and scalable appli-

cations. However, surge in demand is still a common problem in distributed sys-

tems [1] in a way that no single system (specially Clusters and Grids) can meet

the needs of all users. This has led to emergence of resource sharing between

distributed systems and the notion of interconnected distributed systems.

In an interconnected distributed system, as depicted in Figure 2.1, organi-

sations (referred as resource providers in this dissertation) share their resources

over the Internet and consequently are able to access larger resources. In fact,

11

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

interconnected distributed systems construct an overlay network on top of the

Internet to facilitate the resource sharing between the constituents.

Figure 2.1: Interconnected distributed systems.

However, there are concerns in interconnected distributed systems regard-

ing contention between requests to access resources, low access level, security,

and reliability. These concerns necessitate a resource management platform that

encompasses these aspects. The way current platforms consider these concerns

depends on the structure of the interconnected distributed system. In practice,

interconnection of distributed systems can be achieved in different levels. These

approaches are categorised in Figure 2.2 and explained over the following para-

graphs.

Interconnection
Mechanism

User Level

Resource Level

Platform Level

Standardisation

Figure 2.2: Interconnection mechanisms in distributed systems.

• User level (Broker-based): In this approach, an end-user employs a soft-

ware tool [19, 20] that is connected to multiple distributed systems and

creates a loosely coupled interconnection between them. This approach

involves repetitive efforts to develop interfaces for different distributed sys-

tems thus, it is difficult to scale to many distributed systems. Gridway [19]

and GridBus broker [20] are examples of broker-based interconnection ap-

proach. The former achieves interconnection in organisation level, whereas

the latter, works in the end-user level.

12

M. A. Salehi 2.1. INTRODUCTION

• Resource level: In this approach, interfaces to different middlewares are

developed on the resource provider side, consequently the resources can be

available to multiple distributed systems. Difficulties of developing inter-

face for different middlewares is an obstacle to scale to many distributed

systems. Additionally, system administrator of the provider has to have the

knowledge of dealing with the different middlewares. Hence, this approach

is suggested for large distributed systems. Interconnection of EGEE, Nor-

duGrid, and D-Grid is carried out based on this approach [18]. Particularly,

D-Grid [21] achieves interconnectivity via implementing interfaces for UNI-

CORE, gLite, and Globus on each provider in a way that resources can be

accessed by any of the middlewares.

• Platform level (Gateway): A third platform (usually called a gateway) han-

dles the arrangements between distributed systems. Ideally, the gateway is

transparent both from users and resources and makes the illusion of single

system for the user. However, in this approach gateways are single points

of failure and also a scalability bottleneck. InterGrid [1] and the intercon-

nection of Naregi and EGEE [22] are instances of this approach.

• Common interfaces: Common and standard interfaces have been accepted

as a comprehensive and sustainable solution for interconnection of dis-

tributed systems [18]. However, current distributed systems (e.g., current

Grid platforms) have already been developed based on different standards

and it is a hard and long process to change them to a common standard in-

terface. Issues regarding creating standards for interconnecting distributed

systems are also known as interoperability of distributed systems.

UniGrid [23] is a large-scale interconnected distributed system implemented

based on a proposed standard and connects more than 30 sites in Taiwan.

It offers a web interface that bridges the user and the lower-level middle-

ware. The core of UniGrid orchestrates different middlewares, including

Globus Toolkit [24], Condor [25], and Ganglia [26] transparently from the

user. Grip [27] is another project that sought to achieve the idea of World

Wide Grid through the development of standards and service-oriented ar-

chitectures.

Grid computing is a prominent example of interconnected distributed sys-

tems. Although Grids include different types of resources, this dissertation fo-

cuses on computational resources, thus a Grid is considered as a collection of au-

tonomous resource providers (e.g., Clusters) that have their own Local Resource

Management Systems [2]. Nowadays, Grids are utilised predominantly in scien-

tific communities to run high performance computing (HPC) applications [28–30].

13

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

Over the last decade, a variety of Grids have emerged based on different inter-

connection mechanisms. TeraGrid in the US [31], DAS in the Netherlands [32],

and Grid5000 in France [33] are such examples.

Generally, in an interconnected environment, such as Grids, requests from

different sources and with different priorities co-exist. Therefore, these systems

are prone to contention between different requests competing to access resources.

There are various types of contentions that can occur in an interconnected dis-

tributed system, accordingly, there are different ways to cope with these con-

tentions.

In addition to Grids, resource contention can also occur in compute Clusters

and Clouds. In this dissertation, we define a compute Cluster as a collection

of connected computers that work together and is managed by a resource man-

agement system, such as Maui [34] and OpenNebula [35]. Also compute Clouds

(Infrastructure as a Service) in this dissertation are considered as large-scale dis-

tributed systems where computational resources are provided in form of virtual

machines as demanded by customers [36].

This chapter concentrates on the field of resource contention within inter-

connected distributed systems, particularly Cluster, Grid, and Cloud platforms.

It summarises the key concepts and provides an overview of the most prominent

approaches.

2.2 Request Management in Interconnected Dis-

tributed Systems

Interconnected distributed systems normally encounter users from various organ-

isations with different usage scenarios. For instance, the following usage scenarios

are expectable:

• Scientists in a research organisation run scientific simulations, which are in

the form of long running batch jobs without specific deadlines.

• A corporate web site needs to be hosted for a long period of time with a

guaranteed availability and low latency.

• A college instructor requires few resources at certain times every week for

demonstration purposes.

In response to such diverse demands, interconnected distributed systems offer dif-

ferent service levels (also called multiple quality of service (QoS) levels). Nowa-

14

M. A. Salehi 2.3. CONTENTION IN DISTRIBUTED SYSTEMS

days, offering a combination of advance-reservation and best-effort schemes [13],

interactive and batch jobs [37], and tight-deadline and loose-deadline jobs [38]

are common practices in interconnected distributed systems.

Requests with diverse QoS levels contend to access resources specially when

there is a surge in demand. This contention is challenging and should be handled

by resource management systems. Specifically, resource contention occurs when

a user request cannot be admitted or cannot receive adequate resources because

the resources are occupied by other (possibly higher priority) requests.

There are different approaches to resolve resource contention in resource man-

agement systems level. One common approach is prioritisation of requests based

on criteria such as Quality of Service (QoS) or origin. For instance, in an intercon-

nected distributed system local requests (i.e., local organisations’users) typically

have priority over requests from external users [39]. Another example is in urgent

computing [40] (urgent applications), such as earthquake and bush-fire prediction

applications, where the applications intend to acquire many resources in an urgent

manner.

In the remainder of this chapter, we explore different aspects of resource

contention in distributed systems and also we investigate the possible solutions

for them.

2.3 Resource Contention in Interconnected Dis-

tributed Systems

In this section, we concentrate on the causes of resource contention in distributed

systems. Additionally, we investigate possible solutions for different types of

contentions. Figure 2.3 demonstrates the taxonomy of different contention types

along with their solutions.

2.3.1 Request-initiated Resource Contention

This type of resource contention occurs when a request monopolises resources

to such an extent that deprives others from accessing them. Request-initiated

contention is prevalent in all forms of distributed systems. Request-initiated

contention takes place for 2 main reasons.

The first reason is imbalance in size of requests, particularly in terms of

number of nodes required or their execution time (duration) [41]. In this circum-

stance, small requests may have to wait for a long time behind a long one to

15

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

Contention
Management

Schemes

Request-
initiated

Inter-domain-
initiated

Origin-
initiated

DiffServ

Economic

Outsourcing Global Scheduling

Incentive-based

Token-based

Preemption

Partitioning

Several Queue

Full

Partial

Hybrid

Auction-based

Utility-based Fairness

Partitioning

Figure 2.3: Taxonomy of different types of resource contentions and possible
solutions in distributed systems.

access resources.

The second reason for request-initiated contention is that requests have QoS

constraints and they selfishly try to satisfy them. Generally, resource manage-

ment systems can support three types of QoS requirements for users’requests:

• Hard QoS: Where the QoS constraints cannot be negotiated. These sys-

tems are prone to QoS violation hence, managing resource contention is

critical [41].

• Soft QoS: Where the QoS constraints are flexible and can be negotiated

based upon the resource availabilities or when there is a surge in demand.

The flexibility enables resource management systems to apply diverse re-

source contention solutions [41].

• Hybrid QoS: Where the resource management system supports a combina-

tion of Hard and Soft QoS requirements for user requests. This manner

is common in commercial resource providers such as Cloud providers. For

instance, Amazon EC2 supports services with distinct QoS requirements in-

cluding reserved (hard QoS), and spot (soft QoS) VM instances. Resource

management systems that support combination of interactive (hard QoS)

and batch requests (usually soft QoS) [37] are other instances of supporting

Hybrid QoS requirements.

Approaches for managing request-initiated contention are mostly applied in

the context of scheduling and/or admission control units of resource manage-

ment systems. Over the next paragraphs, we categorise and describe different

approaches for handling this type of resource contention.

16

M. A. Salehi 2.3. CONTENTION IN DISTRIBUTED SYSTEMS

The Differentiated Services (DiffServ) approach was initially used in Com-

puter Networks and developed to guarantee different QoS levels (with different

priorities) for various Internet services, such as VOIP and Web. In Computer

Networks, DiffServ guarantees different QoSs through division of services into

distinct QoS levels. According to IETF RFC 2474, each level is supported by

dropping TCP packets of lower priority levels.

Similar approach is applied in the context of request-initiated resource con-

tention in distributed systems. For this purpose, the resource management sys-

tem presents different QoS levels for user requests. Then, requests are classified

in one of these levels at the admission time. However, in this scheme there is no

control on the number of requests assigned to each QoS level. As a result, QoS

requirements of request cannot be guaranteed. Therefore, the DiffServ approach

is appropriate for soft QoS requirements.

Variations of the DiffServ approach can be applied when contention occurs

due to imbalance in request characteristics. For example, Silberstein et al. [42]

sought to decrease the response time of short requests in a multi-grid environment.

For that purpose, they apply a multi-level feedback queue (MLFQ) scheduling

policy. In their policy, Grids are placed in different categories based on their

response speed. Requests are all sent to the first queue upon arrival and if they

cannot be completed in the time limit of that level, they are migrated to the lower

level queue which is a larger grid. The process continues until the task finishes

or reaches the bottom of the hierarchy.

In the Partitioning approach, the resources are reserved for requests with

different QoS levels. Unlike DiffServ, in this approach reservations boundaries

(partitions) can adaptively move, based on the demand in different QoS levels.

This approach can also be considered as a specific type of DiffServ that is suitable

for requests with hard QoS requirements.

The Economic approach that works either in auction-based or utility-based

manner. In the former, both resource provider and resource consumer have their

own agents. Through an auctioneer, the consumer bids on the resources and also

provides a valuation function. Then, the provider agent tries to maximise the

utility based on the valuation function and makes available a set of resources for

the user. In the latter, a utility function that generally reflects the revenue earned

by running a request is calculated for all contentious requests. Then, the request

that maximises the utility function has the priority to access resources. These

approaches are commonly applied in market-oriented scheduling [43].

The Fair Scheme guarantees that contentious requests receive their share of

the system resources [44]. This approach is used to resolve resource contentions

17

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

resulting from imbalanced requests in the system and assures an starvation-free

scheduling for the requests.

The Outsourcing approach is applicable in the interconnected distributed

systems. In fact, interconnection of distributed systems creates the opportunity

to employ resources from other distributed systems in the case of resource con-

tention. Outsourcing approach is applied for both causes of request-initiated

resource contention (i.e., request imbalance and QoS levels). Specially, Cloud

providers are extensively employed for outsourcing requests [45]. This issue has

helped in the emergence of hybrid Clouds, which are a combination of private

(organisational) resources and public Clouds [46]. Although we categorise out-

sourcing as a resolution for request-initiated contentions, it can be applied for

inter-domain and origin initiated contentions as discussed next.

2.3.2 Inter-domain-initiated Resource Contention

Inter-domain-initiated resource contention occurs in interconnected distributed

systems, when the proportion of shared resources to the consumed resources by

a constituent distributed system is low. In other words, this type of resource

contention happens when a resource provider contributes few resources while de-

mands a lot of resources from other resource providers. Unlike request-initiated

contention, which merely roots in request’s characteristics and can take place in

any distributed system, inter-domain contention is based on the overall consump-

tion and contribution of each resource provider.

There are several approaches for handling inter-domain-initiated contention,

including global scheduling, incentive, and token-based approaches (see Figure 2.3).

Global schedulers: In this approach there are local (domain) schedulers and

global (meta) schedulers. Global schedulers are in charge of routing user requests

to local schedulers and ultimately, local schedulers, such as Condor [25] or Sun

Grid Engine (SGE) [47], allocate resources to the requests. A global scheduler

handles inter-domain contention by admitting requests from various organisations

based on the number of requests it has redirected to them. Since global sched-

ulers usually are not aware of the instantaneous load variations in the resource

providers, it is difficult for them to guarantee QoS requirements of users [3].

Incentive approach: In this approach, which is mostly used in peer-to-peer

systems [48], resource providers are encouraged to share resources to be able

to access more resources. Reputation Index Scheme [49] is a type of incentive-

based approach in which the organisation cannot submit requests to another

organisation while it has less reputation than that organisation. Therefore, in

18

M. A. Salehi 2.3. CONTENTION IN DISTRIBUTED SYSTEMS

order to gain reputation, organisations are motivated to contribute more resources

to resource sharing environment.

Quality-service incentive scheme [50] is a famous type of incentive-based ap-

proach. Quality-service is an extension of Reputation Index Scheme. The differ-

ence is that depending on the number of QoS levels offered by a participant, a

set of distinct ratings is presented where each level has its own reputation index.

Token-based approach: Where resource contention is resolved based on the

number of tokens allocated to resource providers. The number of tokens for each

provider is proportional to its resource contribution. If a user wants to get access

to another organisation resources, her consumer agent must spend an amount of

tokens to get the access.

This approach can resolve request-initiated contention as well as inter-domain

contentions. To resolve the request-initiated resource contention, valuation func-

tions can be used to translate the QoS demands of a user to the number of tokens

should be used for a request. The provider agent can use its own valuation

functions to compute the admission price for the request. The request will be

admitted only if the admission price is less or equal to the number of tokens that

the requesting organisation is willing to spend [41].

2.3.3 Origin-initiated Resource Contention

In interconnected distributed systems, users’requests originate from distinct or-

ganisations. Therefore, these systems are prone to resource contention between

local requests of the organisation and requests arriving from other organisations

(i.e., external requests). Typically, local requests of each organisation have pri-

ority over external requests [39]. In other words, the organisation that owns

the resources would like to ensure that its community has priority access to the

resources. Under such a circumstance, external requests are welcome to use re-

sources if they are available. Nonetheless, external requests should not delay the

execution of local requests.

In fact, origin-initiated resource contention is a specific case of inter-domain-

initiated and request-initiated resource contentions. Consequently, the approaches

of tackling this type of resource contention are similar to the already men-

tioned approaches. Particularly, partitioning approach both in static and dy-

namic forms and global scheduling are applicable to resolve origin-initiated re-

source contentions. There are also other approaches to cope with origin-initiated

contentions that are discussed in this section.

Preemption: This approach interrupts the execution of a request and frees

19

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

resources for another, possibly of higher priority, or urgent request. The higher

priority request can be a local request or a hard QoS request in an interconnected

distributed system. The preempted request may be able to resume its execution

from the preempted point. If checkpointing is not supported in a system, then

the preempted request can be killed (canceled) or restarted. For parallel requests,

usually full preemption is performed, in which the whole request leaves the re-

sources. However, some systems support partial preemption, in which part of

resources allocated to a parallel request is preempted [51].

Although preemption mechanism is a common solution for origin-initiated

contention, it is also widely applied to solve request-initiated resource contention.

Due to the prominent role of preemption in resolving different types of resource

contentions, in Section 2.5 we explain it in details.

Partitioning: Both static and dynamic partitioning of resources, as men-

tioned in Section 2.3.1, can be applied to tackle origin-initiated contention.

In dynamic partitioning of resources the local and external partitions can

borrow resources from each other when there is a high demand of local or external

requests [3].

Several Queues: In this approach when requests arrive [4], they are cate-

gorised in distinct queues, based on their origin. Each queue can have its own

scheduling policy. Then, another policy determines the appropriate queue that

can dispatch a request to resources.

Combinations of the aforementioned contentions (mentioned as hybrid in

Figure 2.3) can occur in an interconnected distributed system. Particularly, the

combination of origin-initiated and request-initiated resource contention com-

monly occurs in interconnected distributed systems. For instance, in federated

Grids and federated Clouds, origin-initiated contention occurs between local and

external requests. At the same time, external and local requests can also have

distinct QoS levels, which is a request-initiated resource contention [16, 52, 53].

Generally, resolution of hybrid resource contentions is a combination of different

strategies mentioned above.

2.4 Contention Management in Resource Man-

agement Systems

Resource management system in a distributed system is responsible for resolving

resource contention. In this section, we explore how architectural elements of a

resource management system can contribute in resolving various types of resource

20

M. A. Salehi 2.4. CONTENTION MANAGEMENT IN RMS

contention. Figure 2.4 summarises this section by presenting different components

of a resource management system and the way they handle resource contention.

Contention
Management
in Resource
Management

System

Provisioning
Model

Scheduling

Admission
Control

Job-based

VM-based

Lease-based

Level

Global Management
level

Local Management
level

Local Scheduling

Global Scheduling

Operational
Model

Reactive
Proactive

Off-line

On-line

Outsourcing

Figure 2.4: Components of a resource management system that can help in re-
solving resource contention in interconnected distributed systems.

2.4.1 Resource Provisioning

The resource provisioning component of a resource management system is in

charge of procuring resources based on user application requirements. Resource

provisioning in a system is performed based on a provisioning model that defines

the execution unit in that system. Resource provisioning models do not directly

deal with resource contention. However, the way other components of resource

management system function depends on the resource provisioning model.

Provisioning resources for users’requests in distributed systems has 3 dimen-

sions as follows:

• Hardware resources.

• Software available on the resources.

• Time during which the resources are available (availability).

Satisfying all of these dimensions in a resource provisioning model has proved to

be challenging. Past resource provisioning models in distributed systems were

unable to fulfil all of these dimensions [13]. Emergence of virtual machine (VM)

technology as a resource provisioning model recently has created an opportunity

to address these dimensions. Over the next subsections, we discuss common

resource provisioning models in current distributed systems.

21

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

Job Model

In this model, jobs are pushed or pulled across different schedulers in the system to

reach the destination node, where they can run. In job-based systems, scheduling

of a job is the consequence of a request to run the job. Job model resource

provisioning has been widely employed in distributed systems. However, this

model cannot perfectly support all resource contention solutions [2].

Job-based systems provision hardware resources for jobs while they offer a

limited support for software availability. In fact, in job-based model users do not

have administrative access to resources, therefore, it is difficult to install and use

required software packages. Many job-based systems support availability based on

queuing theory along with scheduling algorithms. However, queue-based systems

usually do not assure specific time availabilities.

To support availability and hardware dimensions, Nurmi et al. [54], presented

advance-reservation model over the job-based provisioning model. They support

advance-reservation through prediction of waiting time of jobs in the queue. Hov-

estadt et al. [55], enabled advance-reservation through plan-based scheduling that

finds the place of each job to instead of waiting in the queue. In this system,

upon arrival of each job, the whole schedule is re-planned to optimise the resource

utilisation.

Falkon [56], Condor glidin [57], MyCluster [58], and Virtual Workspace [59]

apply a multi-level/hierarchical scheduling on top of a job-based system to of-

fer other provisioning models (such as the lease-based model described in Sec-

tion 2.4.1). In these systems, one scheduler allocates resources to another sched-

uler and the second scheduler runs the jobs on the allocated resources [60].

Virtual Machine Model

Virtual Machines (VMs) are considered an ideal vehicle for resource provisioning

in distributed systems. In VM model, hardware, software, and availability can be

provisioned for user requests. Additionally, VMs’capability in getting suspended,

resumed, or migrated without major utilisation loss has proved to be useful in

resource management. Therefore, VM-based provisioning model is extensively

used in current distributed systems.

The VM-based resource provisioning model is used for creation of Virtual

Clusters on top of an existing infrastructure. Virtual Clusters (VC) are usually

utilised for job-based batch processing. For example, in MOSIX [61], Clusters

of VMs are transparently created to run high performance computing (HPC)

22

M. A. Salehi 2.4. CONTENTION MANAGEMENT IN RMS

applications. The Nimbus toolkit [62] provides “one-click Virtual Cluster” au-

tomatically on heterogeneous sites through contextualised disk images. Amazon

EC2 provides VM-based Cluster instances1 that offer supercomputer services to

expedite the execution of HPC applications. Automatic VM creation and config-

uration is also considered in In-VIGO [63] and VMplants [64]. An extension of

Moab [65] creates VM-based Virtual Clusters to run HPC batch applications.

Many commercial datacenters use the VM-based provisioning model to pro-

vide their services to resource consumers. Such datacenters offer services such as

Virtual Clusters, or hosting servers including web, email, and DNS.

Datacenters usually contain large-scale computing and storage resources (or-

der of 100s to 1000s) and consume a significant amount of energy. A remarkable

benefit of deploying VM-based provisioning model in datacenters is the consoli-

dation feature of VMs that can potentially reduce energy consumption [66]. How-

ever, VM consolidation requires accurate workload prediction in the datacenters.

Moreover, the impact of consolidation on service level agreements (SLA) needs

to be considered. VM consolidation can be performed in static (also termed cold

consolidation) or dynamic (hot consolidation) manner. In the former, VMs are

suspended and resumed on another resource, which involves time overhead. In

the latter approach, live migration [67] of VMs is used, thus, it is transparent for

the user.

Solutions such as VMware, Orchestrator, Enomalism, and OpenNebula [35]

provide resource management for VM-based data centres.

There are also concerns in the deployment of VM-based provisioning model

and Virtual Clusters. Networking and load balancing amongst physical Clusters is

one of the challenges that is considered in Vio-Cluster [9]. Power efficiency aspect

and effectively utilisation of VMs capability during suspension and migration are

also considered by many researchers [68–70]. Overhead and performance issues

involved in utilisation of VMs to run compute-intensive and IO-intensive jobs,

fault tolerance, and security aspects of VMs are also of special importance in the

deployment of VM-based provisioning model.

Lease Model

This model is considered as an abstraction for utility computing in which the user

is granted a set of resources for a specific interval and with an agreed quality of

service [71]. In this model job execution is independent from resource allocation,

whereas in the job model resource allocation is the consequence of a job execution.

1http://aws.amazon.com/hpc-applications/

23

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

Formally, a lease is defined by Sotomayor [13] as: “a negotiated and renego-

tiable contract between a resource provider and a resource consumer, where the

former agrees to make a set of resources available to the latter, based on a set of

lease terms presented by the resource consumer”. If lease extension is supported

by the resource management system, then users are able to extend their lease

for a longer time. This is particularly useful in circumstances that users have

inaccurate estimation of required time. Virtual Machines are suitable vehicles for

implementing lease-based model. Depending on the contract and the features of

resource management system, resource procurement for leases can be achieved

from a single provider or multiple providers.

2.4.2 Scheduling Unit

The way user requests are scheduled in an interconnected distributed system

affects types of resource contentions occurring. Efficient scheduling decisions

can prevent resource contention or reduce its impact whereas poor scheduling

decisions can increase the amount of resource contention.

In an interconnected distributed system, we can recognise two levels of schedul-

ing, namely local (domain level) scheduling and global scheduling (meta-scheduling).

The global scheduler is generally in charge of assigning incoming requests to re-

source providers within its domain (e.g., Clusters). In the next step, the local

scheduler performs further tuning to run the assigned requests efficiently on re-

sources.

From the resource contention perspective, scheduling methods can either

react to resource contention or proactively prevent their occurrence.

Local Scheduling

Local scheduler is the main component of the local resource management sys-

tem (LRMS) in each resource provider. Scheduling policies in this level mainly

deal with request-initiated and origin-initiated contentions. There are few local

schedulers that handle inter-domain-initiated contention in this level.

Backfilling is a common scheduling strategy applied in LRMS. The aims of

backfilling is to reduce queuing fragmentation, as a result it increases resource

utilisation and minimises the average response time of requests. In fact, back-

filling is an improved version of FCFS policy in which requests that arrive later,

possibly are allocated earlier in the queue, if there is enough space for them.

Variations of the backfilling policy are applied in local schedulers:

24

M. A. Salehi 2.4. CONTENTION MANAGEMENT IN RMS

• Conservative: In which a request can be brought forward if it does not delay

any other request in the queue.

• Aggressive (EASY): The reservation of the first element in the queue cannot

be postponed. However, the arriving request can shift the rest of scheduled

requests.

• Selective: If the slowdown of a scheduled request exceeds a threshold, then

it is given a reservation, which cannot be altered by other arriving requests.

There are also variations of backfilling method that are specifically designed to

resolve request-initiated resource contentions. Snell et al. [10] applied preemption

on the backfilling policy. They provide policies to select the set of requests for

preemption in a way that the requests with higher priority are satisfied and the

resource utilisation increases. The preempted request is restarted and rescheduled

in the next available time-slot.

Multiple resource partitioning is another scheduling approach for local sched-

ulers proposed by Lawson et al. [4]. In this approach, resources are divided into

partitions that potentially can borrow resources from each other. Each partition

has its own scheduling policy. For example, if each partition uses EASY backfill-

ing, then one request from another QoS level can borrow resources, if it does not

delay the pivot request of that partition.

In the FCFS and backfilling scheduling policies the start time of a request is

not predictable (not determined). Nonetheless, in practice, we need to guarantee

timely access to resources for some requests (e.g., deadline-constraint requests

in a QoS-based system). Therefore, many local schedulers support Advance-

reservation (AR) allocation model that guarantees resource availability for a re-

quested time period. Advance-reservation is supported in resource management

systems such as LSF [72], PBSPRO [73], and Maui [34].

Advance-reservation is prone to low resource utilisation specially if the re-

served resources are not used. Additionally, it increases the response time of

normal requests [74, 75]. These side-effects of advance-reservation can be min-

imised by limiting the number of advance-reservation, and leveraging flexible

advance-reservation (in terms of start time, duration, or number of processing

elements needed).

Global Scheduling (Meta-scheduling)

Global scheduler in an interconnected distributed system, such as InterGrid, usu-

ally has two aspects. On the one hand, the scheduler is in charge of assigning

25

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

incoming requests to RPs (e.g., Clusters) within its domain. On the other hand,

it is responsible to deal with other distributed systems through schedulers or

gateways that delegate them. These aspects of global schedulers are useful in

resolving inter-domain-initiated and origin-initiated resource contention.

Global schedulers in interconnected distributed systems are the entry points

to each constituent distributed system. Accounting information regarding re-

quests that are sent or received to/from other distributed systems can be used

to resolve the inter-domain contentions in these schedulers. Global schedulers

can also proactively schedule requests within their domain in a way that origin-

initiated resource contention is avoided. For that purpose, the scheduler has to

consider the likelihood of contention in each provider based on the local workload

condition in each provider.

The global scheduler either works off-line (i.e., batches incoming requests and

assigns each batch to an LRMS), or on-line (i.e., assign each request to an LRMS

upon arrival).

2.4.3 Admission Control Unit

Controlling the admission of requests prevents imbalanced resource deployment.

By employing an appropriate admission control policy, various types of resource

contentions can be either avoided or handled. An example of the situation without

admission control in place is when two requests share a resource but one of them

demands more time. In this situation, the other request will face low resource

availability and subsequently, high response time. Thus, lack of admission control

can potentially lead to request-initiated contention.

Admission control behaviour should depend on the workload condition in an

RP. Applying a strict admission control in a lightly loaded system results in low

resource utilisation and high rejection of requests. Nonetheless, the consequence

of applying less strict admission control in a heavily loaded resource is more QoS

violation and user dissatisfaction [76].

One common way to tackle request-initiated contention in admission control

is introducing a valuation function [41]. The function relates the quality con-

strains of users to a single quantitative value. The value indicates the amount a

user is willing to spend for a given QoS. Resource management systems use the

valuation functions to allocate resources with the aim of maximising aggregate

valuation for all users.

Admission control can be applied to resolve inter-domain-initiated contention

by limiting the amount of accepted requests of each organisation proportional to

26

M. A. Salehi 2.5. PREEMPTION MECHANISM

their resource contribution. Admission control can be applied to avoid origin-

initiated resource contention. For this purpose, an admission control policy would

accept external requests that their QoS constraints can be fulfilled based on the

workload of local requests.

In an interconnected distributed system, admission control can be performed

in the LRMS and/or along with the global scheduler. In the former, for rejecting

a request there should be an alternative policy to manage the rejected request.

For instance, the rejected request can be redirected to another resource provider

or even queued in a separate queue and scheduled in a later time. Admission

control in the global scheduler level can reject an external request by notifying

the requester peer scheduler. However, the drawback of employing admission

control with global scheduler is that the global scheduler may not have updated

information about the workload situation in the resource providers.

2.4.4 Outsourcing Unit

Interconnectivity of distributed systems creates the opportunity to resolve re-

source contention via deployment of resources from other distributed systems.

Therefore, resource management systems in interconnected distributed systems

usually have a unit that decides about details of outsourcing requests (i.e., redi-

recting arriving requests to other distributed systems) such as when to outsource

and which requests should be outsourced. In terms of implementation, in many

systems, the outsourcing unit is incorporated into admission control, scheduling,

or both of these units [46].

Outsourcing is generally applied when there is a peak demand or there is

a resource contention (specially request-initiated contention) [77]. In this situ-

ation, to serve requests without contention, some of them (e.g., requests with

long waiting time) are selected to be redirected to other distributed systems.

Cloud computing providers are of special interest to be employed for outsourcing

(off-loading) requests [45].

2.5 Preemption Mechanism

Preemption mechanism in a resource management system vacates resources for

another, possibly higher priority, request. Preemption is a useful mechanism

to resolve request-initiated and origin-initiated contentions. Preemption of a

running process can be performed manually or automatically through the resource

management system.

27

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

The way the preemption mechanism is implemented depends on the way

the checkpointing operation is performed. If the checkpointing is not supported,

then the preempted process has to be cancelled and restarted at a later time. If

checkpointing is supported both in the process level and in the scheduler levels,

then the preempted request can be suspended and resumed at a later time. How-

ever, checkpointing is not a trivial task in distributed systems. We will deal with

checkpointing hurdles in Section 2.5.4.

Due to the critical role of preemption mechanism in as an approach to resolve

resource contention, in this section, we investigate preemption in distributed sys-

tems from various angles. Particularly, we consider various usages of preemption

mechanism and the way they resolve resource contention. Then, we investigate

possible side-effects of preemption mechanism. Finally, we discuss how a pre-

empted request (which can be in form of a job, VM, or a lease) can be resumed

in a distributed system.

2.5.1 Applications of Preemption Mechanism

In this part, we investigate the preemption in distributed systems and identify

how different types of resource contentions can be resolved using preemption.

Additionally, we discuss other usages of preemption in distributed systems. The

taxonomy of preemption usages is presented in Figure 2.5.

Preemption
Usages

Energy
 Saving

Request-init
Contention

Origin-init
Contention Managing

Wrong Estimations

Scheduling Improving Optimality

Managing Peak Load

Controlling
Thresholds

Figure 2.5: Different usages of preemption mechanism in distributed systems.

Preemption mechanism is used to resolve request-initiated resource con-

tentions. One approach is to employ preemption along with the local scheduling

policy (e.g., backfilling) to prevent unfairness in the scheduling [78]. For instance,

when a backfilled request exceeds the allocated time-slot and interferes with the

reservation of other requests, the preemption mechanism can suspend the back-

filled requests to start scheduled reservations on time [12, 79]. The preempted

request can be allocated another time-slot to finish its computation at a later

28

M. A. Salehi 2.5. PREEMPTION MECHANISM

time.

MOSIX is a job-based platform for high performance computing on Linux-

based Clusters. A preemptive scheduling algorithm is implemented in MOSIX [79]

to allocate excess resources to jobs that require more resources than their share.

However, these resources are released as soon as they are reclaimed.

Scojo-PECT [80] provides a limited response time for several job classes

within a virtualised Cluster. To cope with the request-initiated resource con-

tention, it employs the DiffServ approach that is implemented via coarse-grained

preemption. The preemptive scheduler aims at creating a fair-share scheduling

between different job classes of a Grid. The scheduler works based on a coarse-

grained time-sharing and for preemption it suspends VMs on the disk.

Walters et al. [37] introduced a preemption-based scheduling policy for batch

and interactive jobs within a virtualised Cluster. In this work, batch jobs are pre-

empted in favour of interactive jobs. The authors introduce various challenges in

preempting jobs including selecting a proper job to be preempted, checkpointing

the preempted job, VM provisioning, and resuming the preempted job. Their

preemption policy is based on weighted summation of factors, including the time

requests spent in the queue.

Haizea [13], is a lease scheduler that schedules a combination of advance-

reservation and best-effort leases. Haizea preempts best-effort leases in favour of

advance-reservation requests. Haizea also considers the overhead time imposed by

preempting a lease, including the time for suspending and resuming VMs within

a Cluster.

Preemption of parallel jobs has been implemented in the Catalina job sched-

uler [74] in San-Diego Supercomputer Center (SDSC) by adding preemption to

the conservative backfilling scheduling policy. The job preemption is carried out

based on job priorities which is determined based on weighted summation of fac-

tors such as the time a request waits in the queue, the size (number of processing

elements) required by the request, and expansion factor of the request. In general,

the policy tries to preempt jobs that require fewer processing elements because

they impose less overhead to the system for preemption. In fact, preemption

of jobs with larger size (wide jobs) implies more overhead because of the time

needed for saving messages between nodes.

Isard et al. [81] investigated the problem of optimal scheduling for data-

intensive applications, such as Map-Reduce, on Clusters where computing and

storage resources are close together. To achieve the optimal resource allocation,

their scheduling policy preempts the currently running job in order to maintain

29

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

data locality for an arriving job.

Preemption can be applied to resolve origin-initiated resource contention.

Ren et al. [8], proposed a prediction method for unavailable periods in fine-grained

cycle sharing systems where there is mixture of local jobs and global (guest) jobs.

The prediction is used to allocate global requests in a way that they do not delay

local requests.

Gong et al. [7] have considered preemption of external tasks in favour of local

tasks in a Network of Workstations (NOW) where local tasks have preemptive

priority over external tasks. They provided a performance model to work out the

run time of an external task that is getting preempted by local tasks in a single

processor. The performance model also covers the average runtime of the whole

external job that is distributed over a NOW.

MOSIX resolves origin-initiated contention between local and guest (exter-

nal) jobs by providing preemptive priority for the local jobs and migrating pre-

empted external jobs [39].

Apart from resolving resource contention, preemption mechanism has other

usages such as improving the quality of scheduling policies. Preemption mecha-

nism can be used as a tool by scheduler to enforce its decisions.

Scheduling algorithms in distributed systems are highly dependent on the

user estimations of the requests’runtime. There are studies (e.g., [82]) that

demonstrate the inefficiency of these estimations and how these wrong estimation

can compromise the scheduling performance. In the presence of inaccurate esti-

mations, preemption mechanism can be used to help the scheduler in enforcing

its decision through preempting the process that has wrong estimations. Par-

ticularly, this is critical for systems that support strict reservation model such

as advance-reservation. In this situation preemption mechanism abstracts the

scheduling policy from the obstacles in enforcing that policy [12].

Preemption can be applied to improve the optimality of resource scheduling.

Specifically, online scheduling policies are usually not optimal because jobs are

constantly arriving over time and the scheduler does not have a perfect knowl-

edge about them [79]. Therefore, preemption can potentially mitigate the non-

optimality of the scheduling policy.

Preemption mechanism can be employed for managing peak load. In these

systems, resource-intensive applications or batch applications are preempted to

free the resources during the peak time. Accordingly, when the system is not

busy and the load is low, the preempted requests can be resumed [15].

Preemption mechanism can be employed to improve the system and/or user

30

M. A. Salehi 2.5. PREEMPTION MECHANISM

centric criteria, such as resource utilisation and average response time. Ket-

timuthu et al. [83] investigated the impact of preemption of parallel jobs in su-

percomputers for improving the average and worst case slowdown of jobs. They

propose a preemption policy, called Selective Suspension, where an idle job can

preempt a running job if the suspension factor is adequately more than the run-

ning job.

A recent application of preemption mechanism is in energy conservation of

datacenters. One prominent approach in energy conservation of virtualised data-

centers is VM consolidation, which takes place when resources in the datacenter

are not utilised efficiently. In VM consolidation, VMs running on under-utilised

resources are preempted (suspended) and resumed on other resources. VM con-

solidation can also occur through live migration of VMs [67] to minimise the

unavailability time of the VMs. When a resource is evacuated, it can be powered

off to reduce the energy consumption of the datacenter.

Preemption can be used for controlling administrative (predetermined) thresh-

olds. The thresholds can be configured on any of the available metrics. For in-

stance, the temperature threshold for CPUs can be established that leads the sys-

tem to automatically preempt part of the load and reschedule on other available

nodes. Bright Cluster Manager [84] is a commercial Cluster resource management

system that offers the ability to establish preemption rules based on metrics and

thresholds.

2.5.2 Challenges of Preemption Mechanism

Operating systems of single processor computers have been applying preemp-

tion mechanism for a long time to offer interactivity to end-users. However,

since interactive requests are not prevalent in distributed systems, there has been

less demand for preemption in these systems. More importantly, achieving pre-

emption in distributed systems entails challenges that discourage researchers to

investigate deeply on that. These challenges are different based on the resource

provisioning model.

In this part, we present details of challenges that distributed systems en-

counter in preempting requests based on their resource provisioning models.

Moreover, a summary of preemption challenges based on different provisioning

models is provided in Table 2.1.

• Coordination: Distributed requests are scattered on several nodes by na-

ture. Preemption of distributed requests has to be coordinated between

nodes that execute them, regardless of the type resource provisioning model

31

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

is used. Lack of such coordination leads to inconsistent situation (e.g., be-

cause of message loss) for the running request.

• Security: Preemption in job-based systems implies security concerns re-

garding files that remain open and swapping-in the memory contents before

job resumption. Since VM- and lease-based systems are self-contained (iso-

lated) by nature, there is not usually security concern in their preemption.

• Checkpointing: The absense of checkpointing facilities is a substantial

challenge in job-based resource provisioning model. Because of this prob-

lem, in job-based systems the preempted job is generally cancelled, which

is a waste of resources [10]. Checkpointing problem is obviated in VM- and

lease-based resource provisioning models [17]. Due to the fundamental role

of checkpointing in preemption, in Section 2.5.4 we discuss it in details.

• Time overhead: In VM- and lease-based resource provisioning models,

the time overhead imposed to the system to perform preemption is a major

challenge. If preemption takes place frequently and the time overhead is

not negligible, then the resource utilisation will be affected.

Additionally, ignoring preemption time overhead in scheduling prevents re-

quests to start at the scheduled time [17]. In practice, resource manage-

ment systems that support preemption must have an accurate estimation of

preemption time overhead. Overestimating the preemption time overhead

results in idling resources. However, underestimating the preemption time

overhead delays the start of leases, which subsequently might violate QoS

requirements.

Sotomayor et al. [17] have presented a model to predict the preemption time

overhead for VMs in a Cluster. They identified that the size of memory

that should be de-allocated, number of VMs mapped to each physical node,

local or global memory used for allocating VMs, and the delay related to

commands being enacted are effective on the time overhead of preempting

VMs. To decrease the preemption overhead, the number of preemptions in

the system has to be reduced [85].

• Permission: In the lease-based resource provisioning model, preemption

of leases is not allowed by default. In fact, one difference between lease-

based and other resource provisioning models is that jobs and VMs can be

preempted without notification of user (requester), whereas leases require

the requester’s permission for preemption [71]. Therefore, there must be

regulations in the lease terms to make lease preemption possible. These

terms can be in the form of QoS constraints of the requests or can be bound

32

M. A. Salehi 2.5. PREEMPTION MECHANISM

to pricing schemes. For instance, requests with tight deadline, advance-

reservations, or requests with tight security possibly choose to pay more

instead of getting preempted while they are running.

Table 2.1: Challenges of preemption mechanism in different resource provisioning
models.

Resource Provisioning Model
Challenge Job-based VM-based Lease-based

Coordination 3 3 3

Security 3 7 7

Checkpointing 3 7 7

Time overhead 3 3 3

Permission 7 7 3

Impact on queue 3 3 3

Long response time 3 3 3

Preemption candidates 3 3 3

• Impact on other requests: Most of the current distributed systems use a

variation of backfilling policy as the scheduling policy. In backfilling, future

resource availabilities are reserved for other requests that are waiting in the

queue. Preemption of the running processes and allocation of resources to a

new request affects the running job/lease as well as the reservations waiting

in the queue. Re-scheduling of the preempted requests in addition to the

affected reservations are side-effects of preemption in distributed systems.

• Long response time: Preemption leads to increasing the waiting time for

low priority requests [83]. There is a possibility that low priority requests

get preempted as soon as they start running. This leads to unpredictable

waiting time and unstable situation for low priority requests. Efficient

scheduling policies can prevent the instablity and long response time. One

approach to cope with the long response time challenge is restricting the

number of requests admitted in a distributed system. A preemption policy

was presented by Walter et al. [37] in a VM-based system with the objective

of avoiding long response time for batch requests where a combination of

batch and interactive requests co-exist in the system.

• Preemption Candidates: By allowing preemption in a distributed sys-

tem, there is a possibility that several low priority requests have to be

preempted to make sufficient vacant resources for high priority requests.

Therefore, there are several sets of candidate requests whose preemption

can create adequate space for high priority requests. As it is expressed in

Figure 2.6, there are several candidate sets (Figure 2.6(b)) whose preemp-

tion can vacate resources for the required time interval (i.e., from t1 to t2

as indicated in Figure 2.6(a)).

33

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

Selecting distinct candidate sets affects the amount of unused space (also

termed scheduling fragment) in the schedule. Furthermore, preemption of

different candidate sets imposes different time overhead to the system be-

cause of the nature of the requests preempted (e.g., being data-intensive).

In this situation, choosing the optimal set of requests for preemption is

challenging. To cope with this challenge, the backfilling policy has been ex-

tended with preemption ability in the Maui scheduler [10] to utilise schedul-

ing fragments.

4

2

3 5 7

1

6

Requested Time
Period

Time

Node

t1 t2

(a)

3 2

3 4

2 4

(b)

Figure 2.6: Preemption candidates for a request for two nodes. Figure 2.6(a)
shows collision of the requested time interval with running requests within a
scheduling queue. Figure 2.6(b) presents different candidate sets whose preemp-
tion creates space for the new request.

2.5.3 Possibilities for Preempted Requests

Issues discussed thus far are related to the preemption mechanism and its chal-

lenges. However, making a proper decision for the preempted request is also

important. This decision depends on the administrative policies of resource

providers as well as their resource provisioning model. For example, migration

may not be possible in a particular job-based distributed system.

Thanks to the flexibility offered by VM-based resource provisioning models,

resource managers are capable of considering various possibilities for the pre-

empted request. Nonetheless, in job-based systems, if preemption is possible, the

possible action on the preempted job is usually limited to cancelation or suspen-

sion and resuming of the preempted job. Focusing on the VM-based resource

provisioning model, we introduce various cases that can possibly happen for pre-

empted requests. Additionally, Figure 2.7 expresses the VM’s life-cycle based on

different cases for VM preemption.

• Cancelation: VMs can be canceled (terminated) with or without notifi-

cation of the request owner. VMs offered in this fashion are suitable for

34

M. A. Salehi 2.5. PREEMPTION MECHANISM

situation that the resource provider does not have to guarantee the avail-

ability of the resources for a specific duration. Spot instances offered by

Amazon EC2 are an example of cancelation of VMs. Cancelling VMs im-

poses the minimum overhead time that is related to the time needed to

terminate VMs allocated to the request.

In job-based systems, cancelling jobs is a common practice [10] because of

the difficulty of performing other approaches.

• Restarting: In both job-based and VM-based systems, the preempted

request can be cancelled and restarted either on the same resource or on

another resource. The disadvantage of this choice is the loss of preliminary

results and wasting of computational power. Restarting can be applied for

best-effort and deadline-constraint requests. In the former, restarting can

be performed at any time whereas, in the latter, deadline of the request has

to be taken into account for restarting.

• Malleability (partial preemption): In this approach, the number of

nodes/VMs allocated to a request might vary while it is executing. The

running request should be able to tolerate such variations. Specifically, this

operation can be performed on malleable jobs [86] in job-based systems.

In VM and lease-based systems, frameworks such as Cluster-on-Demand

(COD) [11], support this manner of preemption via cancelation of a fraction

of VMs of a request. Malleability is also known as partial-preemption and

can be used to implement dynamic partitioning (see Section 2.3.1).

• Pausing: When a VM is paused, it does not get any CPU share, however, it

remains in the host memory. Resumption of the VM, in this case, happens

by getting the CPU share and is very fast (Figure 2.7). In fact, pausing

is not considered as a complete preemption operation. Nonetheless, the

main usage of pausing is to perform lease-level preemption. When a lease is

preempted, in order to prevent inconsistency or message loss, all VMs are

paused and then, the suspension takes place [12]. This is shown in Figure 2.7

as a link between pause state and sleep (suspended) state. More details on

the usage of pausing for preempting leases are discussed in Section 2.5.4.

• Suspending: When a VM is suspended, its state, including the memory

contents as well as the state of all processes running within the VM, is saved

to the disk. The suspended request has to be rescheduled to find another

free time-slot for the remainder of its execution. At resumption time, the

disk image is re-loaded into the memory and the VM resumes from the

35

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

suspended point. In job-based systems, the operating system should retain

the state of the preempted process and resume the job.

An important question after suspension is where to resume a VM/lease.

Answering this question is important particularly for data-intensive appli-

cations. A suspended request can be resumed in one of the 3 following

ways:

– Resuming on the same resource; This case does not yield to optimal

utilisation of whole resources.

– Resuming on the same resource provider but not essentially on the

same resource; In this case, usually data transfer is not required.

– Resuming on different resource provider: This case leads to migra-

tion to another provider and entails data transfer operation; This is

particularly not recommended for data-intensive applications.

Based on the Figure 2.7, suspension VMs can be performed directly from

the running state. However, as mentioned earlier, to suspend a lease that

includes several VMs, pause operation should be performed before the sus-

pension to assure the consistency of the jobs running inside the lease.

• Migration: VMs of the preempted request are moved to another resource

provider to resume the computation (also called cold migration). According

to Figure 2.7, migration involves suspending the VM on the disk, transfer-

ring its disk image, and resuming VMs in the destination resource provider.

Transferring the disk image over the network is the major overhead in the

migrating operation [87]. One solution to mitigate this overhead in inter-

connected distributed systems is migrating to a resource provider, which

has a high bandwidth connection available (e.g., within different Clusters

of a datacenter). In terms of scheduling, multiple reservation strategies can

be applied to assure that the request will access resources in the destination

resource provider [13].

• Live-Migration: As shown in Figure 2.7, with live migration, preemption

can be carried out without major interruption in running VMs. This is

particularly essential in conditions that interruption cannot be tolerated,

such as Internet servers. Current techniques for live migration just transfer

the dirty pages of VMs to decrease the overhead.

Apart from the above choices, there are requests that cannot be preempted

(i.e., non-preemptable requests). For example, critical tasks in workflows that

have to be started and finished at exact times to prevent delaying the execution

36

M. A. Salehi 2.5. PREEMPTION MECHANISM

Queued

New
Requests

Running

Terminated

Suspended

Paused

Migrating

Activate

Finished/
Cancel

Live
Migration

Su
sp

en
d

Suspend

Resume

Resume

Figure 2.7: VM life-cycle by considering different possible preemption decisions
in a resource management system.

of the workflow [88]. Another example is secure applications that cannot be

moved to any other provider and cannot also be interrupted in the middle of

their execution.

In a particular resource management system, one or combination of the men-

tioned operations can be performed on the preempted request. The performed

action can be based on QoS constraints of the requests or restrictions that user

declares for the request. Another possibility is that the resource management

system dynamically decides the appropriate operation to be performed on the

preempted request.

2.5.4 Checkpointing in Distributed Systems

Checkpointing is the function of storing the latest state of a running process

and is required in all types of resource provisioning models. Checkpointing is an

indispensable part of preemption, if the preempted request is going to resume

its execution from the preempted point. In fact, checkpointing is the vehicle

of implementing preemption. Apart from preemption, checkpointing has other

usages, including providing fault-tolerance for requests.

A checkpointed process can be stored on a local storage, or carried over the

network to a backup machine for future recovery/resume. Checkpointing has to

be achieved in an atomic way, which means either all or none of the modifica-

tions are checkpointed (transferred to the backup machine). There are various

approaches to achieve checkpointing which are presented briefly in Figure 2.8. In

this section, we explain checkpointing strategies for different provisioning models

in distributed systems.

37

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

Checkpointing

Application
 Assisted

Application
Transparent

Library Level

Source Code
 Level

Thorough

Incremental

Figure 2.8: Different checkpointing methods in distributed systems.

Checkpointing in Job-based Provisioning Model

According to Figure 2.8 checkpointing approaches are categorised as application-

transparent and application-assisted. In application-assisted (user-level) check-

pointing, the application defines the necessary information (also called critical

data area) that has to be checkpointed. The disadvantage of this approach is

that it entails modification of the application by the programmer. However,

this approach imposes little overhead to the system because it just checkpoints

the necessary parts of the application; additionally, the frequency of performing

checkpointing is determined by the user. User-level checkpointing can be further

categorised as follows:

• Source-code level: In this manner, checkpointing codes are hard-coded by

developers. There are also some source code analysis tools [89,90] that help

developers to find out the suitable places where checkpointing codes can be

inserted.

• Library level: There are libraries for checkpointing, such as Libckpt [91]

and Condor libraries [92]. To use this kind of checkpointing, developers

have to recompile the source code by including the checkpointing library in

their program.

As expressed in Figure 2.8, checkpointing can also be performed in application-

transparent manner. This approach is also known as system level, Operating Sys-

tem level, or kernel level in the literature. As the name implies, in this approach

the application is not aware of checkpointing process and it is not needed to be

modified to be checkpointable. Application-transparent checkpointing technique

is particularly applied in preemption whereas application-assisted scheme is more

used for fault-tolerance purposes. BLCR [93] and CRAK [94] are examples of

system level checkpointing.

Since application-transparent checkpointing methods have to checkpoint the

whole application state, they impose significant time overhead to the system.

38

M. A. Salehi 2.5. PREEMPTION MECHANISM

Another drawback of this approach is dependency on a specific version of the

operating system that they are operating on, hence, it is not entirely portable.

In order to mitigate the checkpointing overhead, incremental checkpointing

technique is used [95] in which just the changes since the previous state are

checkpointed. Typically, a page-fault technique is used to find the dirty pages

and write them to the backup [95,96].

Checkpointing of distributed applications is more complicated. For these

applications, not only the state of the application on each running node has

to be checkpointed, but it has to be assured that the state of the whole ap-

plication across several nodes remains consistent. Therefore, the checkpointing

process across nodes that run the application must be synchronized in a way that

there would be neither message loss nor message reordering. Checkpointing of

the distributed applications (also termed coordinated checkpointing) tradition-

ally is developed based on the global distributed snapshot concept [97]. These

solutions are generally application-level, dependent on a specific version of op-

erating system, and also dependent on the platform implementation (e.g., MPI

implementation). Cocheck [98], BLCR [93], MPICHV [99] are examples of these

solutions.

There are various approaches for managing the connections between processes

running on different nodes while the checkpointing is performed. In MPICHV [99],

the connection amongst processes has to be disconnected before each process saves

its local state to the checkpoint file. In this approach, connections should be re-

established before processes can resume their computation. Another approach,

which is used in LAM/MPI, uses bookmarking mechanism between sender and

receiver processes to guarantee message delivery at the checkpointing time.

Checkpointing in VM-based Systems

Virtualisation technique provides application-transparent checkpointing as an in-

herent feature that involves saving (suspending) and restoring (resuming) of the

VM state [100–102].

In a virtualised platform, the hypervisor is an essential component that man-

ages different VMs concurrently running on the same host. Generally, the hyper-

visor is in charge of VM checkpointing. To checkpoint a VM, its internal state

including memory, cache, and data related to the virtual devices have to be stored

on the disk. The disk image snapshot also has to be stored, especially when the

checkpointed VM is transferred and sharing the image is not possible. Current

hypervisors, such as VMware, Xen, and KVM, support saving/restoring the state

39

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

of VMs to/from a file. However, taking a copy of the disk image is not practi-

cally possible because of the disk size [15]. Therefore, currently, checkpointing is

mostly carried out within resources with a shared storage, such as NFS.

Accordingly, distributed applications running on VMs across several nodes

within a Cluster can be checkpointed [103]. Checkpointing of such applications is

complicated because of the possible correlations between VMs (e.g., TCP pack-

ets and messages exchanged between VMs). The checkpointing process should

be aware of these correlations, otherwise the checkpointing process leads to in-

consistency in execution of distributed applications.

To handle the checkpointing, when a checkpointing event is initiated, all the

nodes that run a process of the distributed application receive the event. Upon

receiving the event, the hypervisor pauses computation within VMs in order to

preserve the internal state of VM and also to stop submitting any new network

message (see Figure 2.7). In the next step, checkpointing protocols save the mes-

sages in transit (i.e., network packets). For this purpose, the hypervisor collects

all the incoming packets and queue them. Finally, a local VM checkpointing is

performed through which the VM’s internal state, VM disk image, and queued

messages for that VM are saved in the checkpoint file [12].

2.6 An Investigation of Existing Works

In this section, we study various distributed systems from the resource contention

perspective and the way their resource management systems handle the con-

tention. Particularly, we review contention management in Clusters, Grids, and

Clouds. We identify and categorise properties of the reviewed systems and sum-

marise them in Table 2.2 for Clusters and in Table 2.3 for Grids and Clouds.

2.6.1 Contention Management in Compute Clusters

Compute Clusters are broadly categorised as dedicated and shared Clusters. In

dedicated Clusters, a single application exclusively runs on the Cluster’s nodes.

Mail servers, and web servers are examples of dedicated Clusters.

By contrast, in a shared Cluster the number of requests is significantly higher

than the number of Cluster nodes. Therefore, nodes have to be shared between

the requests by means of a resource management system [104]. From the resource

contention perspective, shared Clusters are generally prone to request-initiated

contention.

40

M. A. Salehi 2.6. AN INVESTIGATION OF EXISTING WORKS

A Virtual Cluster is another variation of Clusters that work based on VMs

and recently has attracted many users and providers. Although users of these

Clusters are given root access to the VMs, these resources are not dedicated to

one user in hardware level because several VMs on the same node can be allocated

to different users.

A Multi-Cluster is an interconnected distributed system that consists of sev-

eral Clusters possibly belonging to different organisations. Multi-Clusters are

prone to origin-initiated contentions as well as request-initiated contention.

Shirako [105], is a lease-based platform for on-demand allocation of resources

across several Clusters. In Shirako, a broker receives user’s application and pro-

vides it with tickets that are redeemable at the provider Cluster. In fact, Shirako

broker handles inter-domain-initiated contentions by coordinating resource allo-

cation across different Clusters. However, the user application should decide how

and when to use the resources.

VioCluster [9], is a VM-based platform across several Clusters. It uses lend-

ing and borrowing policies to trade VMs between Clusters. VioCluster is equipped

with a machine broker that decides when to borrow/lend VMs from/to another

Cluster. The machine broker also implement policies for reclaiming resources

that react to origin-initiated contention by preemption of a leased VM to another

domain. A machine property policy monitors the machine properties that should

be allocated to the VMs such as CPU, memory, and storage capacity. Location

policy in the VioCluster proactively determines if it is better to borrow VMs from

other Cluster or waiting for nodes on a single domain.

Haizea [13], is a lease manager that is able to schedule a combination of

advance-reservation, best-effort, and immediate leases. Haizea acts as a schedul-

ing back-end for OpenNebula [35]. The advantage of Haizea is considering and

scheduling the preparation overhead of deploying VM disk images. For schedul-

ing advance-reservation and Immediate leases, leases with lower priority (i.e.,

best-effort) are suspended and resumed after the reservation is finished. In fact,

Haizea provides a reactive resource contention mechanism for request-initiated

contentions where requests have diverse QoS constraints.

Sharc [104] is a platform that works in conjunction with nodes’operating

system and enables resource sharing within Clusters. Architecturally, Sharc in-

cludes two components namely, control plane and nucleus. The former is in charge

of managing Cluster-wide resources and removing request-initiated contentions;

whereas the latter interacts with the operating system of each node and reserves

resources for requests. Control plane uses a tree structure to keep information

of resources are currently in use in the Cluster. The root of the tree shows all

41

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

the resources in the Cluster and each child indicates one job. The nucleus uses

a hierarchy that keeps information about what resources are in use on a node

and by whom. The root of hierarchy shows all the resources on that node and

each child represents a job on that node. In fact, there is a mapping between

the control plane hierarchy and the nucleus hierarchy that helps Sharc to tolerate

faults.

Cluster-on-Demand [11] (COD) is a resource management system for shared

Clusters. COD supports lease-based resource provisioning in the form of Virtual

Clusters where each Virtual Cluster is an isolated group of hosts inside a shared

hardware base. COD is equipped with a protocol that dynamically resizes Virtual

Clusters in cooperation with middleware components. COD uses group-based pri-

ority and partial preemption approach to manage request-initiated resource con-

tention. Specifically, when resource contention takes place, COD preempts nodes

from a low-priority Virtual Cluster. For preemption, the selected Virtual Cluster

returns those nodes that create minimal disruption to the Virtual Clusters.

Cluster Reserves [106] provides services to the clients based on the notion

of service class (partitioning). This is performed by allocation of resource par-

titions to parallel applications and dynamically adjusting the partitions on each

node based on the user demand. Indeed, Cluster Reserve applies the partitioning

scheme to cope with request-initiated contention problems. The resource man-

agement problem is considered as a constrained optimisation problem where the

inputs of the problem are periodically updated based on the resource consump-

tion.

Muse [107], is an economy-based architecture for dynamic resource procure-

ment within a job-based Cluster. Muse is prone to request-initiated contention

and applies a utility-based, economic solution to resolve that. In the model, each

job has a utility function based on its throughput that reflects the revenue earned

by running the job. There is a penalty that the job charges the system when its

constrains are not met. Resource allocation is worked out through solving an

optimisation problem that maximises the overall profit. Muse considers energy

as a driving issue in resource management of server Clusters.

MUSCLE [108] is an off-line, global scheduler for multi-Clusters that batches

parallel jobs with high packing potential (i.e., jobs that can be packed into a

resource space of a given size) to the same Cluster. In the next step, a local

scheduler (called TITAN) performs further tuning to run the assigned jobs with

minimised make span and idle times.

Lee et al. [109] proposed a global and a local scheduler for a multi-Cluster.

The local scheduler is a variant of the backfilling that grants priority to jobs

42

M. A. Salehi 2.6. AN INVESTIGATION OF EXISTING WORKS

that need many nodes to decrease their waiting time and resolves the request-

initiated contention. The global dispatcher assigns requests to the proper Cluster

by comparing the proportion of requests with the same size at each participant

Cluster. Therefore, a fairly uniform distribution of requests in the Clusters is

created which leads to a considerable impact on the performance.

Percival et al. [41] applied an admission control policy for shared Clusters.

Such approach causes a request-initiated contention because some large jobs takes

precedence over many small jobs that are waiting in the queue. Resource providers

determine the resource prices based on the degree of contention and instantaneous

utilisation of resources. Consumers also bid for resources based on their budget.

In general, a job can get a resource if it can compensate the loss of earning

resulting from not admitting several small jobs.

43

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

T
ab

le
2.

2:
C

la
ss

ifi
ca

ti
on

of
co

n
te

n
ti

on
m

an
ag

em
en

t
ap

p
ro

ac
h
es

in
th

e
ex

is
ti

n
g

C
lu

st
er

sy
st

em
s.

S
y
st
e
m

P
ro

v
is
io
n
in
g

M
o
d
e
l

O
p
e
ra

ti
o
n
a
l

M
o
d
e
l

C
o
n
te
x
t

C
o
n
te
n
ti
o
n

In
it
ia
ti
o
n

C
o
n
te
n
ti
o
n

M
a
n
a
g
e
m
e
n
t

R
M

S
C
o
m
p
o
n
e
n
t

H
ai

ze
a

[1
3]

L
ea

se
R

ea
ct

iv
e

C
lu

st
er

R
eq

u
es

t
P

re
em

p
ti

o
n

L
o
ca

l
S

ch
ed

V
io

C
lu

st
er

[9
]

V
M

P
ro

ac
ti

ve
&

R
ea

ct
iv

e
M

u
lt

iC
lu

st
er

O
ri

gi
n

P
re

em
p

ti
o
n

L
o
ca

l
S

ch
ed

S
n

el
l

et
a
l.

[1
0]

J
ob

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

P
re

em
p

ti
o
n

L
o
ca

l
S

ch
ed

L
aw

so
n

et
a
l.

[4
]

J
ob

P
ro

ac
ti

ve
&

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

P
ar

ti
ti

o
n

in
g

L
o
ca

l
S

ch
ed

W
al

te
rs

et
al

.
[3

7
]

V
M

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

P
re

em
p

ti
o
n

L
o
ca

l
S

ch
ed

S
co

jo
-P

E
C

T
[8

0]
V

M
R

ea
ct

iv
e

C
lu

st
er

R
eq

u
es

t
D

iff
S

er
v

&
P

re
em

p
ti

on
L

o
ca

l
S

ch
ed

M
O

S
IX

[7
9]

V
M

R
ea

ct
iv

e
C

lu
st

er
O

ri
gi

n
F

a
ir

n
es

s
&

(P
re

em
p

ti
on

)
L

o
ca

l
S

ch
ed

S
h

a
rc

[1
04

]
J
ob

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

P
ar

ti
ti

o
n

in
g

L
o
ca

l
S

ch
ed

&
A

d
m

is
si

o
n

C
tr

l

C
O

D
[1

1]
L

ea
se

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

P
ar

ti
a
l

P
re

em
p

ti
on

L
o
ca

l
S

ch
ed

C
lu

st
er

R
es

er
ve

s
[1

06
]

J
ob

P
ro

ac
ti

ve
C

lu
st

er
R

eq
u

es
t

P
ar

ti
ti

o
n

in
g

L
o
ca

l
S

ch
ed

M
u

se
[1

0
7]

J
ob

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

E
co

n
o
m

ic
(U

ti
li

ty
)

L
o
ca

l
S

ch
ed

S
h

ir
a
ko

[1
05

]
L

ea
se

R
ea

ct
iv

e
M

u
lt

iC
lu

st
er

In
te

r-
d

om
ai

n
T

o
ke

n
L

o
ca

l
S

ch
ed

L
ee

et
a
l.

[1
09

]
J
ob

P
ro

ac
ti

ve
&

R
ea

ct
iv

e
M

u
lt

iC
lu

st
er

R
eq

u
es

t
F

a
ir

n
es

s
G

lo
b

a
l

&
L

o
ca

l
S

ch
ed

M
U

S
C

L
E

[1
0
8]

J
ob

P
ro

ac
ti

ve
M

u
lt

iC
lu

st
er

R
eq

u
es

t
U

ti
li

ty
G

lo
b

a
l

S
ch

ed

P
er

ci
va

l
et

al
.

[4
1
]

J
ob

R
ea

ct
iv

e
C

lu
st

er
R

eq
u

es
t

E
co

n
o
m

ic
(U

ti
li

ty
)

A
d

m
is

si
o
n

C
tr

l

44

M. A. Salehi 2.6. AN INVESTIGATION OF EXISTING WORKS

2.6.2 Contention Management in Desktop Grids

This form of distributed computing, which is also known as volunteer computing,

inherently relies on participation of resources, mainly Personal Computers. In

desktop Grids resources become available during their idle periods to leverage

the execution of long running jobs. They usually use specific events such as

screen-saver as an indicator for idle cycles. SETI@home [110] is a famous desktop

Grid project that works based on the BOINC [111] software platform and was

originally developed to explore the existence of life out of the earth. Desktop

Grids are prone to origin-initiated resource contentions that take place between

the guest requests (come from the Grid environment) and local requests (initiated

by the resource owner) in a node.

In desktop Grids, the guest applications are running in the user (owner)

environment. Running the external jobs along with other owner’s processes raised

the security concern in desktop Grids and became an obstacle in prevalence of

these systems. However, by utilisation of emulated platforms, such as Java, and

sand-boxing the security concern were mitigated.

Another approach in desktop Grids is rebooting the machine and run an en-

tirely independent operating system for the guest request. As a result, the guest

request does not have access to the user environment. HP’s I-cluster [112,113] is

an instance of this approach. However, this approach can potentially interrupt

interactive users (owners). Therefore, idle cycle prediction has to be done conser-

vatively to avoid interrupting the interactive user. Both of these approaches are

heavily dependent on accurate prediction of and efficient harvesting of idle cycles.

Indeed, these approaches operate efficiently where there are huge idle cycles.

Recently, the VM technology has been employed in desktop Grids. The

advantages of using VMs in these environments are three-fold. First and foremost

is the security that VMs provide through an isolated execution environment.

Second, VMs offer more flexibility in terms of the running environment demanded

by the guest application. The third benefit is that by using VMs, fragmented

(unused) idle cycles, such as cycles at the time of typing or other lightweight

processes, can be harvested.

NDDE [6] is a platform that utilises VMs to exploit idle cycles for Grid

or Cluster usage in corporations and educational institutions. This system is

able to utilise idle cycles that appear even while the user is interacting with the

computer. Indeed, in this system guest and owner applications run concurrently.

This approach increases the harvested idle cycle to as many as possible with minor

impact on the interactive user’s applications. The NDDE has more priority than

45

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

idle process in the host operating system. Therefore, it will run instead of idle

process when the system is idle. At the time the owner has a new request, the

VM and all the processes belonging to NDDE are preempted and changed to

“ready-to-run” state.

Fine-grained cycle sharing system (FGCS) [8] runs a guest request concur-

rently with the local request whenever the guest process does not degrade the

efficiency of the local request. However, FGCS are prone to unavailability be-

cause of the following reasons:

1. Guest jobs are killed or migrated off the resource because of a local request;

2. Host suddenly discontinue contributing resource to the system.

To cope with these problems, they define unavailability times in the form of a

state diagram where each state is a condition that resource becomes unavailable

(e.g., contention between users, and host unavailability). The authors applied a

Semi-Markov Chain process to predict the availability. The goal of this predictor

engine is determining the probabilities of not transferring to unavailable states in

a given time period of time in future.

2.6.3 Contention Management in Computational Grids/Grid

Federations

Grids were initially structured based on the idea of the virtual organisations

(VOs). A VO is a set of users from different organisations who collaborate towards

a common objective. Several organisations constitute a VO by contributing a

share of their resources to that and as a result their users gain access to the VO

resources. Contributing resources to a VO is carried out via an agreement upon

that an organisation gets access to the VO resources according to the amount of

resources it offers to the VO.

Organisations usually retain part of their resources for their organisational

(local) users. In other words, VO (external) requests are welcome to use resources

if they are available. However, VO requests should not delay the execution of local

requests.

Indeed, Grids are huge interconnected distributed systems that are prone

to all kinds of resource contention [114]. Particularly, inter-domain-initiated re-

source contention arises when organisations need to access VO’s resources based

on their contributions. Origin-initiated resource contention occurs when there

is a conflict between local and external users within the resources of an organ-

46

M. A. Salehi 2.6. AN INVESTIGATION OF EXISTING WORKS

isation. Finally, request-initiated contention exists between different types of

requests (short/long, parallel/serial, and etc.).

Gruber/Di-Gruber [115] is a Grid broker that deals with the problem of

resource procurement from several VOs and assigns them to different user groups.

Gruber provides monitoring facilities that can be used for inter-domain-initiated

contention. It also manages the enforcement of usage policies (SLA) as well

as monitoring the enforcement. Another component of Gruber sought to cope

with request-initiated resource contention through monitoring resources’loads and

outsourcing of jobs to a suitable site (site selector component). Di-Gruber is the

distributed version of Gruber that supports multiple decision points.

InterGrid [1] is a federation of Grid systems where each Grid receives lease re-

quests from other Grids based on peering arrangements between InterGrid Gate-

ways (IGG) of the Grids. Each Grid serves its own users (e.g., organisational/local

users) as well as users coming from other Grids (external). InterGrid is prone to

origin-initiated (between local and external requests) and inter-domain-initiated

(between different Grids) resource contention.

Peering arrangements between Grids coordinate exchange of resources and

functions based on peer-to-peer relations established amongst Grids. Each peer

is built upon a pre-defined contract between Grids and handles inter-domain-

initiated contentions between the two Grids. Outsourcing unit of InterGrid is

incorporated in the scheduling and determines when to outsource a request to a

public Cloud provider.

Delegated-matchmaking [77], proposes an architecture which delegates the

ownership of resources to users in a transparent and secure way. More specifi-

cally, when a site cannot satisfy its local users, the matchmaking mechanism of

Delegated-matchmaking adds remote resources to the local resources. In fact, in

Delegated-matchmaking, the ownership of resources is delegated in different sites

of Grids. From the resource contention perspective, the matchmaking mechanism

is in charge of dealing with request-initiated contentions through an outsourcing

scheme.

Li [5], analyzed the load distribution problem in a Cluster, that is a resource

provider of a Grid, and origin-initiated contention takes place between local (ded-

icated) and external (generic) requests. He applied a preemption mechanism to

resolve the contention and proposed a probabilistic scheduling policy for the Clus-

ter that determines the probability of sending external jobs to each Cluster node.

The aim of the scheduling policy is to minimise the response time of external

requests.

47

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

GridWay [19], is a project that creates loosely coupled connection between

Grids via connecting to their meta-schedulers. GridWay is specifically useful

when a job does not receive the required processing power or the job waiting

time is more than an appointed threshold. In this situation, GridWay migrates

(outsource) the job to another Grid in order to provide the demanded resources

to the job. We can consider GridWay as a global scheduler that deals with

request-initiated resource contentions.

OurGrid [116] is a Grid that operates based on a P2P network between sites

and share resources based on reciprocity. OurGrid uses network of favours as

the resource exchange scheme between participants. According to this network,

each favour to a consumer should be reciprocated by the consumer site at a later

time. The more favour participants do, the more reward they expect. From the

resource contention perspective, OurGrid uses incentive-based approach to figure

out the problem of inter-domain-initiated contentions in a Grid.

Sandholm et al. [51] investigated how admission control can increase user

fulfilment in a computational market. Specifically, they considered the mixture

of best-effort (to improve resource utilisation) and QoS-constrained requests (to

improve revenue) within a virtualised Grid. They applied a reactive approach

through partial preemption of best-effort requests to resolve request-initiated con-

tentions. However, the admission control proactively accepts a new request if the

QoS requirements of the current requests can still be met.

2.6.4 Contention Management in Computational Clouds

Advances in virtual machine and network technologies led to the establishment of

commercial providers that offer numerous computational resources to users and

charge them in a pay-as-you-go fashion. Since the physical infrastructure is un-

known to the users in these providers they are known as Cloud Computing [117].

There are various models for delivery Cloud services, which are generally known

as XaaS (X as a Service). Among these services, Infrastructure as a Service (IaaS)

offers resources in the form of VM to users.

From the availability perspective, Cloud providers are broadly categorised as

public, private, and hybrid Clouds [118]. To cope with the shortage of resource

availability, particularly in private Clouds, the idea of federated Cloud has been

presented [117]. Cloud federation is a possible solution for a Cloud provider in

order to obtain access to a larger pool of resources.

Similar to Grid environments, Clouds are also prone to different types of

resource contention. However, as Clouds are more profit-oriented in comparison

48

M. A. Salehi 2.6. AN INVESTIGATION OF EXISTING WORKS

to Grids, the resource contentions solutions are also mostly commercially driven.

Amazon offers spot instances to sell the unused capacity of their data cen-

tres [119]. Spot instances are priced dynamically based on users’bids. If the

bid price is beyond the current spot instance price, the VM instance is created

for the user. The spot instance’s price fluctuates and if the current price goes

beyond the bid price, the VM instance is terminated or alternatively suspended

until the current price becomes lower than the bid. Indeed, the spot market

presents a request-initiated resource contention where the contention is solved

via an auction-based scheme. Kondo et al. [119] evaluated dynamic checkpoint-

ing schemes in such a market, which is adaptive to the current instance price,

and achieves cost efficiency and reliability when utilising spot instances.

Van et al. [120] proposed a multi-layer, contention-aware resource manage-

ment system for Cloud infrastructures. The resource management system takes

into account both request’s QoS requirements and energy consumption costs in

VM placement. In the request (user) level a local decision module (LDM) mon-

itors the performance of each request and calculates a utility function that indi-

cates the performance satisfaction of that request. LDM interacts with a global

decision module (GDM), which is the decision-making component in the archi-

tecture. GDM considers the utility functions of all LDMs along with system-level

performance metrics and decides about the appropriate action. In fact, GDM

provides a global scheduling solution to resolve request-initiated contentions be-

tween requests. The output of the GDM can be management commands to the

server hypervisor and notifications for LDMs. The notifications for LDM include

adding a new VM to the application, upgrading or downgrading an existing VM,

preempting a VM belonging to a request. Management actions for hypervisors

include the starting, stopping, or live migration of VMs.

RESERVOIR [121] is a research initiative that aims at developing the tech-

nologies required to address scalability problems existing in the single provider

Cloud computing model. To achieve this goal, Clouds with excess capacity offer

their resources, based on an agreed price, to the Clouds that require extra re-

sources. Decision making about where to allocate resources for a given request is

carried out through an outsourcing component, which is called placement policy.

Therefore, the aim of project is providing an outsourcing solution for request-

initiated resource contention.

InterCloud [117] aims to create a computing environment that offers dynamic

scaling up and down capabilities (for VMs, services, storage, and database) in

response to users’demand variations. The central element in InterCloud archi-

tecture is the Cloud Exchange, which is a market that gathers service providers

49

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

and users’requests. It supports trading of Cloud services based on competitive

economic models, such as financial options [122]. Toosi et al. [123] consider cir-

cumstances that each Cloud offers on-demand and spot VMs. The admission

control unit evaluates the cost-benefit of outsourcing an on-demand request to

the InterCloud or allocates resource to that via termination of spot VMs (request-

initiated contention). Their ultimate objective is to decrease the rejection rate

and having access to seemingly unlimited resources for on-demand requests.

50

M. A. Salehi 2.6. AN INVESTIGATION OF EXISTING WORKS

T
ab

le
2.

3:
C

la
ss

ifi
ca

ti
on

of
co

n
te

n
ti

on
m

an
ag

em
en

t
ap

p
ro

ac
h
es

in
th

e
ex

is
ti

n
g

G
ri

d
an

d
C

lo
u
d

sy
st

em
s.

S
y
st
e
m

P
ro

v
is
io
n
in
g

M
o
d
e
l

O
p
e
ra

ti
o
n
a
l

M
o
d
e
l

C
o
n
te
x
t

C
o
n
te
n
ti
o
n

In
it
ia
ti
o
n

C
o
n
te
n
ti
o
n

M
a
n
a
g
e
m
e
n
t

R
M

S
C
o
m
p
o
n
e
n
t

G
ri

d
W

ay
[1

9]
J
ob

R
ea

ct
iv

e
G

ri
d

F
ed

er
at

io
n

R
eq

u
es

t
O

u
ts

o
u

rc
in

g

G
lo

b
a
l

sc
h

ed
(O

u
ts

o
u

rc
in

g
)

A
m

az
on

S
p

ot
M

ar
-

ke
t

V
M

R
ea

ct
iv

e
C

lo
u

d
R

eq
u

es
t

E
co

n
o
m

ic
(A

u
ct

io
n

)
G

lo
b

a
l

sc
h

ed

V
an

et
al

.
[1

20
]

V
M

R
ea

ct
iv

e
C

lo
u

d
R

eq
u

es
t

E
co

n
o
m

ic
(U

ti
li

ty
)

G
lo

b
a
l

sc
h

ed

O
u

rG
ri

d
[1

16
]

J
ob

R
ea

ct
iv

e
G

ri
d

In
te

r-
d

om
ai

n
In

ce
n
ti

ve
G

lo
b

a
l

sc
h

ed

R
en

et
al

.
[8

]
J
ob

P
ro

ac
ti

ve
D

es
k
to

p
G

ri
d

O
ri

gi
n

P
re

em
p

ti
o
n

L
o
ca

l
sc

h
ed

L
i

[5
]

J
ob

P
ro

ac
ti

ve
G

ri
d

O
ri

gi
n

P
re

em
p

ti
o
n

L
o
ca

l
sc

h
ed

In
te

rG
ri

d
[1

]
L

ea
se

P
ro

ac
ti

ve
G

ri
d

F
ed

er
at

io
n

O
ri

gi
n

P
a
rt

it
io

n
in

g
G

lo
b

a
l

sc
h

ed

In
te

rC
lo

u
d

[1
23

]
V

M
R

ea
ct

iv
e

C
lo

u
d

F
ed

er
at

io
n

R
eq

u
es

t
E

co
n

o
m

ic
(U

ti
li

ty
)

A
d

m
is

si
o
n

ct
rl

R
E

S
E

R
V

O
IR

[1
21

]
V

M
R

ea
ct

iv
e

C
lo

u
d

F
ed

er
at

io
n

R
eq

u
es

t
O

u
ts

o
u

rc
in

g
O

u
ts

o
u

rc
in

g

S
an

d
h

ol
m

et
al

.
[5

1]
V

M
R

ea
ct

iv
e

G
ri

d
R

eq
u

es
t

P
ar

ti
a
l

P
re

em
p

ti
o
n

A
d

m
is

si
o
n

ct
rl

In
te

rG
ri

d
P

ee
ri

n
g

[1
]

L
ea

se
R

ea
ct

iv
e

G
ri

d
F

ed
er

at
io

n
In

te
r-

d
om

ai
n

G
lo

b
a
l

sc
h

ed
u
li

n
g

G
lo

b
a
l

sc
h

ed

N
D

D
E

[6
]

V
M

R
ea

ct
iv

e
D

es
k
to

p
G

ri
d

O
ri

gi
n

P
re

em
p

ti
o
n

L
o
ca

l
sc

h
ed

G
on

g
et

al
.

[7
]

J
ob

P
ro

ac
ti

ve
N

O
W

O
ri

gi
n

P
re

em
p

ti
o
n

L
o
ca

l
sc

h
ed

D
el

eg
at

ed
-

m
at

ch
m

ak
in

g
[7

7]
J
ob

R
ea

ct
iv

e
G

ri
d

F
ed

er
at

io
n

R
eq

u
es

t
O

u
ts

o
u

rc
in

g
O

u
ts

o
u

rc
in

g

G
ru

b
er

[1
15

]
J
ob

R
ea

ct
iv

e
G

ri
d

In
te

r-
d

om
ai

n
&

R
eq

u
es

t

G
lo

b
a
l

sc
h

ed
u
li

n
g

&
O

u
ts

o
u

rc
in

g

G
lo

b
a
l

sc
h

ed
&

O
u

t-
so

u
rc

in
g

51

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

2.7 Positioning of this Thesis

A solution for resource contention in an interconnected distributed system re-

quires strategies to avoid contentious situation in a way that the number of re-

source contentions decreases to the minimum possible. As there are always cir-

cumstances that resource contention takes place, the solution requires remedial

strategies to handle the contentious situation. As discussed in this chapter, these

strategies can be implemented in different components of resource management

systems.

This dissertation proposes a solution for origin-initiated contention in Inter-

Grid, as a platform that enables resource sharing between computational Grids,

and meets the aforementioned requirements. InterGrid employs VM-based leases

as the resource provisioning model.

The idea of InterGrid is inspired by the manner Internet Service Providers

(ISPs) establish peering arrangements in the Internet [2]. Similar arrangements

are established between InterGrid Gateways (IGGs) in InterGrid that facilitate

resource sharing between Grids. IGGs are considered global schedulers (meta-

scheduler) for each Grid. They handle resource sharing with other peer Grids

based on peering agreements. Additionally, provisioning rights over resource

providers (RPs) within each Grid are delegated to the IGG which enables it

to schedule arriving external requests on the RPs. External requests scheduled in

an RP contend with local requests of the RP to gain access to the computational

resources. Therefore, RPs in InterGrid are prone to origin-initiated resource con-

tention between local and external requests.

Similar to VioCluster [9] and Haizea [13], we consider VM preemption mech-

anism to resolve the origin-initiated resource contention. This mechanism stops

the running request and frees the resources for the higher priority request. Later,

the preempted request can resume its execution from the preempted point. Specif-

ically, preemption is an appropriate mechanism, due to using VM technology in

InterGrid and the VMs’ability to suspend, resume, and migrate without affecting

the computation inside them.

We introduce the preemption of external requests in favour of local requests

in InterGrid when there are not sufficient resources to serve local requests. We

consider the side-effects of preempting VM-based leases in terms of the imposed

overhead time, number of resource contention, and response time for external

requests. Different proposed strategies in this dissertation operate within various

components of the InterGrid platform and try to handle these side-effects.

With regard to the imposed overhead time for preempting VMs, we investi-

52

M. A. Salehi 2.7. POSITIONING OF THIS THESIS

gated and modelled the overhead time based on various possible operations that

can be performed on VMs. Our proposed model extends the existing model of the

Haizea [17] scheduler and considers communication between the VMs of a lease.

Another extension in comparison to the model proposed by Sotomayor et al. [17]

is that we model the overhead of migrating VMs in addition to suspending and

resuming.

We propose a preemption policy in the local scheduler of the RPs that is

aware of resource contention between requests. The policy proactively selects

a set of leases for preemption in a way that the resource contention decreases.

An idea similar to the preemption policy was investigated by Snell et al. [10],

however, they have not taken into account the overhead side-effect in their deci-

sion making. Indeed, they terminate the job for preemption, which reduces the

imposed overhead to zero.

We propose a contention-aware scheduling in IGG, that aims at avoiding re-

source contention via scheduling of arriving external requests on different resource

providers within its domain. It is an on-line scheduling policy that proactively

schedules the external requests with regard to the local workload characteristics,

such as arrival rate, in each RP. The scheduling policy also considers the situ-

ation that some external requests are more valuable and reduces the likelihood

of contention for them. The most similar research work to this scheduling policy

is the one proposed by Li [5]. Nonetheless, Li’s scheduling goal is to minimise

the response time of external requests whereas our goal is to minimise the overall

number of resource contentions. The other significant difference is that Li has

solved the problem for the local scheduler of a Cluster whereas our scheduling

policy works in the global scheduler of a Grid.

As the occurrence of origin-initiated contention is inevitable, we propose

remedial strategies that react to the contentions and try to handle their side-

effects, such as long response time for low priority requests. More specifically, we

propose a contention-aware policy in the admission control unit of the resource

providers in InterGrid. The policy reduces the impact of preemption mechanism

on the response time of external requests and prevents long response time for

them. The admission control policy works based on limiting the queue length for

external requests in a way that their response time would be limited. According

to the policy, external requests are accepted until their predicted response time

is less than a threshold value.

The proposed policy is different from the one proposed by Sandholm et al. [51]

in the sense that it performs the feasibility test for each arriving request. Con-

versely, our proposed policy finds out the ideal queue length and does not impose

53

CHAPTER 2. PRINCIPLES, TAXONOMY, AND CONTEXT

overhead to the system for each arriving request. Although our scenario share

similarities with the research undertaken by Gong et al. [7], the main difference

is that we consider several parallel external requests whereas their policy handles

one sequential external request that is allocated to a node. In other words, they

do not consider queuing external requests, whereas our policy concentrates on

finding the number of external requests that can be accepted while their response

time is limited.

Recently, many research works were conducted on energy-aware manage-

ment of resources in a provider. Energy management policies commonly utilise

resource consolidation mechanism and switch off lightly loaded resources in or-

der to preserve energy. However, reducing the number of active resources in a

contention-prone system raises the likelihood of contentions within RPs. More

importantly, an aggressive energy saving policy that switches on few resources

can lead to long response time for external (low priority) requests.

We propose a contention-aware energy management policy for resource providers

in InterGrid that employs consolidation to save energy while it considers the

contention side-effect for external requests. Specifically, the policy tries to min-

imise the energy consumption of resource providers while external requests can

be served within a limited response time. Based on the classifications provided

in this chapter, the proposed contention-aware energy management policy reacts

to the contentious situation to handle its side-effect in terms of response time.

Additionally, this policy is applied in the resource provider level along with the

local scheduler.

2.8 Summary

Focusing on interconnected distributed systems, in this chapter we introduced

different possible types of resource contentions along with common approaches to

resolve them. Then, we investigated the potential role of different components in a

resource management system to resolve various types of contention. Particularly,

we recognised the role of resource provisioning model, local scheduling, global

scheduling, and admission control unit in a resource management system.

We realised that the emergence of VM-based resource provisioning model has

posed the preemption mechanism as a predominant solution for different types

of resource contention. Therefore, in this chapter, we also dealt with the chal-

lenges and opportunities of preempting VMs. We reviewed existing approaches

in Clusters, Grids, and Clouds from the contention management perspective and

categorised them based on their operational model, the type of contention they

54

M. A. Salehi 2.8. SUMMARY

deal with, the component of resource management system involved in resolving

the contention, and the provisioning model where the contention is considered.

We also presented the requirements for handling resource contention between dis-

tributed systems and positioned this dissertation with regards to existing works.

In the next chapters, we describe the contention management strategies, aim-

ing to provide resources to external requests without impacting the performance

of providers local users.

55

Chapter 3

Preemption-based Contention

Management in InterGrid

The contention problem in InterGrid is resolved with preemption of requests from

external users in favour of local users’requests. However, preemption of VM-based

requests entails side-effects in terms of time overhead and long response time for

external requests. In this chapter, we model the imposed overhead of preempting

VMs based on different operations on them. Then, we propose and compare

preemption policies that determine the proper set of request(s) for preemption in

a way that the side-effects are reduced.

3.1 Introduction

As discussed in Chapter 2, and shown in Figure 3.1, in InterGrid computational

resources in each RP are shared between external and local users. Hence, resource

provisioning in InterGrid is performed for two types of users, namely: local users

and external users. As illustrated in Figure 3.1, local users refer to users who ask

their local RP for resources by submitting a local request to the Local Resource

Management System (LRMS). External users send external requests to IGG to

access larger amount of resources through resources from other Grids.

Therefore, there is a mixture of local and external requests in an RP that

try to access resources. This scenario leads to origin-initiated resource contention

within the RP. In this situation, the RP considers a higher priority for its local

requests than external requests [124]. In other words, the organisation that owns

the resources would like to ensure that its community has priority access to the

resources. In this circumstance, external requests are welcome to use resources if

they are available. Nonetheless, external requests should not delay the execution

57

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

of local requests.

IGG1

LRMS

IGG2 IGG3

Local Request

External

Request

Resources

allocated to

External request

Free Resource

E

L

E

F

E

E

E

L

L

E

F

L

Resources

allocated to Local

requests

LRMS

RP1 RP2

Figure 3.1: A scenario that shows 2 resource providers (RP1 and RP2) within a
Grid of InterGrid. The scenario also depicts the position of local and external
requests.

In this chapter, we deal with the problem of origin-initiated resource con-

tention between local and external requests in each RP of InterGrid. More

specifically, the problem we are dealing with is resource procurement for local

requests when existing resources have been allocated to external requests and the

available resources are not adequate to serve the local requests. In this situa-

tion, one solution is to preempt external leases and allocate the resources to local

requests. However, preempting VM-based leases involves 2 main side-effects.

The first side-effect is the time overhead imposed on the system for preemp-

tion of VM-based leases. The overhead varies based on the type of operation

performed on the VMs. For instance, the overhead of VM suspension is lower

than the overhead of VM migration. The imposed overhead of VM preemption

can affect the resource utilisation of an RP. This impact is particularly remarkable

when the arrival rate of local requests is high [77]. Additionally, a precise estima-

tion of the imposed overhead is necessary for implementation of preemption-based

resource scheduling [17].

Existing works on modelling the time overhead of VM preemption [17] con-

sider the amount of memory that should be de-allocated, the number of VMs

mapped to each physical node, and the use of local or shared storage. However,

there are other factors such as communication between VMs of a lease that also

have to be considered. Therefore, one problem we address in this chapter is to

model the overhead time of preempting VM-based leases by taking into account

58

M. A. Salehi 3.1. INTRODUCTION

communication between VMs.

The second side-effect of lease preemption is on increase in the waiting time

and consequently response time of external requests. Indeed, many of the current

distributed systems use a variation of the backfilling strategy [10] for scheduling.

In the this strategy, future resource availabilities are reserved for other requests

that are waiting in the queue. Preemption of leases and vacation of resources for

local requests can potentially affect these reservations. For instance, in Figure 3.2

vacation of resources between t1 and t2 affect the currently running leases (leases 1

and 4) as well as reservation waiting in the queue (leases 2, 3, and 5). The affected

leases and reservations are scheduled at a later time in the scheduling queue.

Therefore, preemption of external leases delays their execution and increases their

response time.

Lease 4

Lease 3 Lease 5

Lease 6

Currently running leases

Time

P
ro

ce
ss

in
g

E
le

m
en

ts

t1 t2

Scheduling Queue Current
Time

Requested Time
Period

Future reservations

Lease 1
Lease 2

Lease 7

Figure 3.2: Resource contention occurs when the interval t1 to t2 is requested by
a local request. In this situation, both running and waiting leases are affected.

When lease preemption is enabled in an RP, there is a possibility that sev-

eral leases have to be preempted to create sufficient vacant resources for a local

request. Therefore, there are potentially several sets of candidate leases that can

be preempted. We term each set of candidate leases a Candidate Set. For exam-

ple, in Figure 3.2 if a local request needs 1 VM for the duration of t1 to t2 the

candidate sets are leases {1, 2}, {1, 3, 5}, {4}. Selection of different candidate sets

for preemption affects the amount of imposed overhead as well as the response of

external requests. Therefore, another problem we address in this chapter is how

to choose an optimal candidate set for preemption in a way that the side-effects

of lease preemption are reduced.

The formal definition of the problem is:

• Li: Lease i.

• Rj: Local request j

59

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

• τ(Li): Type of external request. As will be discussed in this chapter:

τ(Li) ∈ {extCancellable, extSuspendable, extMigratable, extNonPreemptable,

localNonPreemptable}

• v(Li): Number of VMs in the lease/request i.

• h(Li): Overhead for preemption of lease i.

• p(Li): Category of lease i (local or external) and defined as follows:

p(Li) =

{
1 if external request

0 if local request

According to the above definitions, a candidate set Cm is a set of external leases

that their preemption vacates enough resources for allocation of a local request

Rj. If there are S candidate sets, then all candidate sets can be presented as:

A : {Cm | 0 ≤ m ≤ S − 1} (3.1)

Finally, a preemption policy can be presented as a function that selects an ap-

propriate candidate set out of all candidate sets (i.e., policy(A) = Cm).

3.2 Proposed Solution

3.2.1 Introducing Different Lease Types

One difference between job-based resource provisioning and lease-based resource

provisioning is that jobs can be preempted without notification to the user (job

owner), whereas preemption of leases is restricted by definition [71].

Therefore, first we introduce regulations in the lease terms to make the lease

preemption possible. For that purpose, we introduce different request (lease)

types in InterGrid. A request issued by a user in InterGrid has the following

information:

• Virtual Machine (VM) template requested by the user.

• Number of VMs needed.

• Ready time: the earliest time that request can be started.

• Duration of the lease.

• Deadline: the latest time for request completion.

60

M. A. Salehi 3.2. PROPOSED SOLUTION

We extend InterGrid request by adding the “request type” to it. In practice, the

type of a request expresses the Quality of Service (QoS) level required by that

request. The types we consider for requests in InterGrid are broadly classified as

best-effort and deadline-constraint requests. More details of the different request

types are as follows:

• Best-Effort-Cancellable: these requests can be scheduled at any time af-

ter their ready time. However, they can be canceled without notification

of the lease owner. Cancellable leases neither guarantee the deadline nor

the duration of the lease. Such leases are applicable for map-reduce-like

requests [81]. Spot instances in Amazon EC21 are another example of can-

cellable leases.

• Best-Effort-Suspendable: This type guarantees the duration of the lease but

not within a specific deadline. Suspendable leases are flexible in start time

and they can be scheduled at any time after their ready time. In the case

of preemption, these leases are suspended and then rescheduled in another

free time-slot to resume their execution. Suspendable leases are suitable for

Bag-of-task (BOT) and Parameter Sweep applications [125].

• Deadline-Constraint-Migratable: This type guarantees both the duration

and the deadline for a lease. However, there is no guarantee that the lease

will be run on a specific resource(s). In other words, there is always a chance

for the lease to be preempted but it will be resumed and finished before its

deadline, either on the same resource or on another resource. Migratable

leases are needed by steerable applications [126]. In these applications, the

workload can be migrated to more powerful RPs to meet user constraints

such as deadline [126].

• Deadline-Constraint-Non-Preemptable: The leases associated with such re-

quests cannot be preempted. These leases guarantee both deadline and

duration without preemption during the lease. This type of lease is useful

for critical tasks in workflows where some tasks have to be started and com-

pleted at exact times to prevent delaying the execution of the workflow [88].

Advance-reservation requests is another example that can be served by this

type of lease.

Local requests have priority over external requests and they should not be pre-

empted. Therefore, we consider them as non-preemptable. However, external

users can make requests of any of the types mentioned above.

1http://aws.amazon.com/ec2/spot-instances

61

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

In practice, different request types imply different prices. Thus, users are

motivated to associate their requests to different request types. Unarguably, the

more flexible request type, the less expensive the lease. Additionally, the type of

request affects the operations that can be performed on it at preemption time.

3.2.2 Measuring the Overhead of Lease Preemption

The time overhead imposed for preemption of a candidate set depends on the

type of leases contained in the candidate set. In other words, the overhead is

driven by the operations performed on the VMs of leases involved in a candidate

set. In this part, we discuss the worst-case time overhead of possible operations

on the VMs of a lease.

Preemption of cancellable leases imposes the minimum time overhead. This

overhead concerns the time needed to stop VMs of a lease. The duration of the

stop operation is independent from the VM characteristics, such as memory size

of the VM, and it is almost negligible [12,17].

Preemption of a suspendable lease is more complicated than a cancellable

lease. One complexity relates to the message exchange between the VMs of the

lease. In fact, execution of a distributed application in the VMs of a lease implies

exchanging messages between the VMs. However, suspension of a lease occurs in

the VM level, which is unaware of the communication. Therefore, suspension of

a lease can interrupt the message communication and lead to inconsistent state

of jobs running inside VMs [12].

More specifically, message passing is commonly performed through the TCP

protocol to assure the message delivery. If the sender host does not receive an

acknowledgement after a certain number of retransmissions, the connection with

the receiver is terminated. At the suspension time, there is a possibility that some

VMs become unreachable and consequently some connections are lost. Therefore,

it is important to coordinate the suspension and resumption operations to avoid

inconsistency for the jobs executing within VMs.

One possible way to reduce the impact of the suspend and resume opera-

tions on the jobs running within the VMs, is pausing them before suspension and

unpausing VMs after resumption. Pausing a VM prevents it from accessing the

processor and is supported in current hypervisors such as Xen [127]. This opera-

tion is quick (takes few milliseconds) and can be completed before the unreachable

delay of TCP [12].

Therefore, the time overhead of preempting a suspendable lease broadly in-

cludes the time to pause its VMs, suspending (i.e., writing the memory image of

62

M. A. Salehi 3.2. PROPOSED SOLUTION

the VMs to the disk), and rescheduling the lease. Accordingly, resuming the lease

includes the time for VM resumption (i.e., the time for loading the VMs’memory

image from the disk), and then unpausing VMs.

Since pausing and unpausing operations take a short time, usually they are

performed sequentially on VMs (e.g., based on the VM identifier) [12]. If a lease

Li contains v(Li) VMs, then the time for pausing the VMs is v(Li)· tp where tp

is the time to pause a VM. In our analysis, we consider the same amount of time

for pausing and unpausing operations. Therefore, the overall time overhead of

pausing and unpausing is 2v(Li)· tp.

Suspension of a lease requires its reschedule for the remainder of the exe-

cution. The time overhead of rescheduling depends on the time complexity of

the rescheduling algorithm. The complexity usually depends on factors such as

number of physical nodes and current workload condition. Since our model does

not assume any particular scheduling policy, we consider a constant value (δ) for

the rescheduling time overhead.

The major time overhead in suspendable leases is caused by the time for

suspension and resumption of VMs. The time for these operations is driven by

the memory size of each VM. Specifically, the suspension time for one VM (ts)

and resumption time (tr) are defined based on Equations 3.2 and 3.3, respectively.

ts =
mem

s
(3.2)

tr =
mem

r
(3.3)

where mem is the memory size of VM, s is the rate of suspending megabytes

of VM memory per second, and r is the rate of re-allocating megabytes of VM

memory per second [17].

We consider a shared storage for an RP to be able to resume the suspended

lease on any of its hosts. In this circumstance, to avoid contention on the shared

storage, the suspension and resumption operations are performed sequentially for

all VMs of lease. Therefore, for lease L with v(L) VMs, the suspension time

overhead is
∑v(L)

i=1 t
i
s [17].

It is worth noting that this is the worst-case analysis for the suspension and

resumption time overheads. We expect that considering other factors, such as

overlapping, can result in lower overheads for these operations.

By taking into account all the above factors the overall time overhead for sus-

pending (Ls) and resuming a lease (Lr) are calculated according to Equations 3.4

63

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

and 3.5, respectively.

Ls = v(L)· tp +

v(L)∑
i=1

tis + δ (3.4)

Lr = v(L)· tp +

v(L)∑
i=1

tir (3.5)

where tp is the time for pausing a VM; tis is the time overhead of suspending the

i-th VM of a lease; and tir is the time overhead of resuming the i-th VM of a

lease. Therefore, the overall time overhead for preemption of a suspendable lease

(h(L)) is:

h(L) = 2v(L)· tp + δ +

v(L)∑
i=1

(tis + tir) (3.6)

The time overhead imposed for preemption of migratable leases includes VM

image transferring overhead in addition to all overheads considered for suspend-

able leases [14]. More specifically, migration of a VM includes a VM suspension

on the source host, transfer of the suspended VM to the destination RP, and

resume of the VM in the destination host. The overheads caused by pausing,

unpausing, and rescheduling of VMs (i.e., finding a proper destination) also have

to be taken into account.

In the transferring phase, the disk memory image of the suspended VM is

transferred to the destination host over the network [14]. The time for transferring

depends on the size of the suspended VM and the network bandwidth, therefore,

tjcopy = memj/b where memj is the size of disk memory image for VMj and b is

the network bandwidth.

During the migration of VMs of a lease, suspension of VMs in the source RP

can be overlapped with resuming them in the destination RP. Particularly, while

the second VM is being suspended in the source RP, the first VM that has already

been transferred to the destination RP can be resumed without conflicting with

other operations. The overhead of these operations for the j-th VM of the lease

is driven by the max{tjs, tj−1
r }. Additionally, the time for suspension of the first

VM (t1s) and resuming the last VM of the lease (t
v(Li)
r) cannot be overlapped.

Thus, the overall time for suspend and resume phases of migrating VMs for lease

i is t1s +
∑v(Li)−1

i=1 max{tis, ti−1
r }+ t

v(Li)
r .

Additionally, the time for transferring VMs (tcopy) cannot be overlapped and

has to be carried out sequentially for all the VMs to avoid any contention on

the shared storage. Therefore, the overall time for the transferring phase of a

migrating lease i is:
∑v(Li)

j=1 tjcopy.

64

M. A. Salehi 3.2. PROPOSED SOLUTION

The overheads regarding rescheduling, pausing, and unpausing of VMs are

the same as those discussed for suspendable leases. The overall overhead for

migration of VMs of lease i (Li) is defined based on Equation 3.7.

h(Li) =

v(Li)∑
j=1

tjcopy + t1s +

v(Li)−1∑
j=1

max{tjs, tj−1
r }+ tv(Li)

r + 2v(Li)· tp + δ (3.7)

It is worth noting that we assume that the destination host stores the disk

image of the VM, therefore it is not needed to be transferring over the network.

3.2.3 Preemption Policy

When an LRMS cannot find sufficient vacant resource to allocate an arriving

local request, it forms all candidate sets where each candidate set contains leases

whose preemption creates enough space for the local request. The preemption

policy determines the proper candidate set for preemption.

From the user perspective, the selection of different candidate sets is decisive

for the amount of resource contention within an RP between local and external

requests. Additionally, preemption of various candidate sets affects the number

of external leases to be preempted and their waiting times.

From a system centric perspective, the choice of different candidate sets

determines the number of VMs to be preempted as well as the operation that has

to be enacted on them (e.g., suspension or migration). Therefore, the choice of

different candidate sets influences the amount of time overhead imposed to the

system.

In this part, we evaluate the impact of various preemption policies in terms

of time overhead and resource contention. The first policy focuses on the system

centric criteria by trying to minimise time overhead and, consequently, increase

resource utilisation. The second policy focuses on user centric criteria and sought

to minimise the resource contention by preempting fewer leases and affecting

fewer users. The third policy makes a trade-off between resource utilisation and

user satisfaction.

Minimum Overhead Policy (MOV)

To consider system centric metrics such as resource utilisation, this policy aims

at minimising the imposed time overhead to the underlying system.

65

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

For that purpose, the total overhead imposed to the system by each candidate

set is calculated based on the analysis provided in Section 3.2.2. Then, the set

with minimum overhead is selected for preemption. The MOV policy formally is

presented based on Equation 3.8.

MOV (A) =
S−1

min
m=0
{h(Cm)} (3.8)

Minimum Leases Involved Policy (MLIP)

MLIP is a contention-aware preemption policy that aims at minimising the num-

ber of contentions between local and external leases. For that purpose, MLIP

selects the candidate set that contains the minimum number of leases for pre-

emption. This policy disregards the type of leases involved in the candidate set.

We can consider MLIP as a user-centric policy. In fact, preemption of leases

increases waiting times, hence, users do not desire that their leases be preempted.

Therefore, MLIP sought to satisfy more users by preempting fewer leases.

Formally, MLIP can be presented according to Equation 3.9.

MLIP (A) =
S−1

min
m=0
{|Cm|} (3.9)

where |Cm| gives the number of leases involved (cardinality) in each candidate

set Cm.

Minimum Overhead Minimum Lease Policy (MOML)

The two proposed policies mentioned earlier aim to either improve resource util-

isation (as a system centric criterion) or minimise the resource contention (as

a user centric criterion). However, MOML policy fulfils both system and user

centric criteria at the same time.

The way this policy operates is depicted in Figure 3.3 and its pseudo code

is illustrated in Algorithm 1. In fact, MOML is a trade-off between MOV, which

minimises the imposed overhead, and MLIP, that minimises the resource con-

tention.

According to Figure 3.3 and Algorithm 1, in MOML the selection of a can-

didate set is carried out in two phases. In the first phase (pre-selection phase)

all candidate sets whose total overhead smaller than a certain threshold (α) are

pre-selected for the second phase (lines 5 to 8 in Algorithm 1). In fact, the pre-

selection phase increases the tolerance of acceptable overhead in comparison with

66

M. A. Salehi 3.2. PROPOSED SOLUTION

L3 L6 L9L1

L1 L12

L7 L6 L1

L5 L7 L2L4

L17

~
~

~
~

Candidate Sets

L1 L12

L5 L7 L2L4

P
re

-Selectio
n

Selectio
n

L7 L6 L1

L1 L12

Figure 3.3: Pre-selection and final selection phases of MOML policy.

MOV. In the second phase, to have fewer resource contentions between requests,

a candidate set that contains the minimum number of leases is selected (lines 9

to 11 in Algorithm 1).

Selection of a proper value for α determines the behaviour of MOML policy.

Particularly, if the α → ∞, then MOML behaves as MLIP. On the other hand,

if α→ 0, then MOML approaches to MOV. To keep the trade-off between MOV

and MLIP, we consider α as the median value of the overheads (lines 1, 2, and

4 in Algorithm 1). By choosing α = median we ensure that just half of the

candidate sets that have lower overheads are considered in the second phase to

have a minimum number of leases (i.e., cause minimum resource contention).

Algorithm 1: MOML Preemption Policy.

Input: Candidate Sets
Output: Selected Candidate Set

1 foreach candidateSet ∈ Candidate Sets do
2 Overheads.Add(getOverhead(candidateSet));

3 min←∞;
4 α← getMedian(Overheads);
5 foreach candidateSet ∈ Candidate Sets do
6 ovhd← getOverhead(candidateSet);
7 NoLeases← Cardinality(candidateSet);
8 if ovhd ≤ α then
9 if NoLeases < min then

10 selected← candidateSet;
11 min← NoLeases;

67

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

3.3 Performance Evaluation

3.3.1 Performance Metrics

Local and External Requests Rejection Rate

The initial objective of this part of our research is to serve more local requests by

preempting resources from external leases. Therefore, it is interesting to deter-

mine the efficiency of different preemption policies in terms of serving more local

requests.

We define the “local request rejection rate” as the fraction of local requests

that are rejected, possibly because of allocation of resources to non-preemptable

external requests or other local requests.

Additionally, we want to investigate if decreasing of local request rejection

rate causes rejection of more external requests. External request rejection rate

describes this metric and shows the percentage of external requests that are re-

jected. The ideal case is that local request rejection rate is reduced without

increasing the external request rejection rate.

Resource Utilisation

Time overhead is a side-effect of VM preemption that degrades resource utilisa-

tion. Therefore, we investigate how different preemption policies affect the re-

source utilisation. Resource utilisation is defined according to the Equation 3.10.

Utilisation =
computationT ime

totalT ime
∗ 100 (3.10)

where:

computationT ime =

|λ|∑
i=1

v(Li)· d(Li) (3.11)

where |λ| is the number of leases, v(Li) is the number of VMs in lease Li, d(Li)

is the duration of the lease Li.

Number of Lease Preemptions (Resource Contention)

As preemption is the consequence of resource contention, the total number of

lease preemptions is a proper metric to measure the resource contention. This

metric presents user satisfaction resulted from different preemption policies.

68

M. A. Salehi 3.3. PERFORMANCE EVALUATION

Response Time

Response time is a user-centric metric that is affected by preemption. This met-

ric is prominent for best-effort external requests that are in the risk of getting

preempted several times that increases their response time. This metric measures

the amount of time on-average a best-effort lease should wait beyond its ready

time to be completed. Average response time of best-effort external requests

(ART) is calculated based on Equation 3.12.

ART =

∑
L∈β

(cL − sL)

|β|
(3.12)

where, β is the set of best-effort external leases and |β| is the number of leases in

this set. cl and sl show completion time and ready time of lease L, respectively.

Although best-effort requests are not bound to any deadline, users are more

satisfied to wait less for their requests to be completed.

3.3.2 Experimental Setup

For simulation, we used GridSim [128] as a discrete event simulator. In the

experiments, Lublin99 [129] has been configured to generate a two-week-long

workload that includes 3000 parallel requests.

Lublin99 is a workload model based on the San Diego Super Computer

(SDSC) Blue Horizon machine. Job traces collected from this supercomputer

are publicly available and have been studied extensively in the past.

To simulate an RP within InterGrid, we consider a Cluster with 32 worker

nodes. We assume all nodes of the RP have a single core with one VM. We also

assure that the number of VM(s) needed by requests would not be more than the

number of Cluster nodes. It is worth noting that our proposed model and policies

are not limited to this configuration and can support multi-core architectures and

several VMs on each worker node.

We consider each VM of 1024 MB and a 100 Mbps network bandwidth. We

also assume a shared file system (e.g., NFS) for the Cluster where the disk images

for VMs and memory snapshots for suspended VMs are maintained. We assume

each VM disk image is 2 GB. Since we consider that the disk images are replicated

on all RPs in InterGrid, they do not need to be transferred.

Based on the research by Sotomayor et al. [17] and considering the 100 Mbps

network bandwidth, the suspending rate of VM memory is s = 6.36 MB/second,

69

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

and the re-allocating rate is r = 8.12 MB/second (see Section 3.2.2). Hence,

in our experiments, suspension time (ts) and resumption time (tr) for a lease

with 1 VM are 161.0 and 126.1 seconds, respectively. During the migration of a

VM with similar configuration, the time overhead for transferring a suspended

VM to another RP (tcopy in Equation 3.7) of InterGrid is 160.2 seconds [14].

Based on our experiments, pausing and unpausing operations on each VM takes

5 milliseconds. Finally, we employ a conservative backfilling as the scheduling

policy in the LRMS. During the initial experiments, we noticed that the average

overhead time of rescheduling is 2.3 seconds.

We study the behaviour of different policies when they face workloads with

different characteristics. For this purpose, we modified the characteristics of the

workloads when:

• The number of best-effort external requests (i.e., Cancellable and Suspend-

able) varies.

• The number of deadline-constraint external requests (i.e., Migratable and

Non-Preemptable) varies.

• The number of local requests varies.

Since the Lublin workload does not provide information about request types, we

generated these types uniformly and assigned them to the generated workloads.

We changed the percentage of best-effort and deadline-constraint requests from

10% to 50% of the external requests while the number of local requests remains

constant (1000). In another configuration, local requests are changed from 20%

to 70% of the whole workload. In fact, we experimented conditions where local

requests are below and above these limits. However, we noticed that not many

preemptions occur in those points, therefore, there is no major difference between

policies. To have a realistic evaluation, in the Lublin workload we adjusted the

average number of VMs to 4 and the average duration of requests 2 hours, which

are obtained based on default values of parameters in the workload.

3.3.3 Experimental Results

Local and External Request Rejection Rate

In Table 3.1, the mean difference of decrease in local requests rejection rate is

reported along with a 95% confidence interval of the difference. We report the

difference between rejection rate in two situations; First, when no preemption

policy is in place, and second, when the MOML policy is used as the preemption

70

M. A. Salehi 3.3. PERFORMANCE EVALUATION

policy. We use a T-test to determine the mean difference between these two

policies. To perform the T-test we have ensured that the distribution of differences

is normal.

According to Table 3.1, local request rejection rate significantly decreased

statistically and practically by applying preemption in all cases. More impor-

tantly, this reduction in the local request rejection rate was achieved without

rejection of more external requests. Based on Table 3.1, external request rejec-

tion rate does not change significantly in any of the experiments.

Table 3.1: Mean difference and 95% confidence interval (CI) of decrease in local
requests rejection rate and external requests rejection rate as a result of lease
preemption in an RP of InterGrid.

Modified Parame-
ter

Mean Decrease in
Local Requests Re-
jection Rate

CI of Decrease in Lo-
cal Requests Rejection
Rate

Change in External
Requests Rejection
Rate

Percentage of BE Ex-
ternal Requests

72.0% (51.1,92.8), P-Value=0.001 Not statistically signifi-
cant, P-Value=0.6

Percentage of DC Ex-
ternal Requests

54.3% (35.0,73.7), P-Value=0.001 Not statistically signifi-
cant, P-Value=0.3

Percentage of Local
Requests

58.2% (40.3,75.9), P-Value<0.001 Not statistically signifi-
cant, P-Value=0.6

Based on this experiment, the maximum reduction in the local request re-

jection rate occurs when the percentage of best-effort external requests is higher

(the first row in Table 3.1). In this circumstance, more local requests can be

accommodated with preemption of best-effort leases.

Resource Utilisation

In this experiment, we measure the resources utilisation when different preemp-

tion policies are applied.

In all sub-figures of Figure 3.4, it is observed that the MOV policy results

in better utilisation comparing with the other policies. However, in a few points

(e.g., in Figure 3.4(a) when 40% of the requests are best-effort), MOV has slightly

less utilisation than MOML. The reason is resource fragmentations (i.e., unused

spaces) in the scheduling queue, which leads to lower resource utilisation. Sub-

figures of Figure 3.4 also demonstrates that the resource utilisation MOML lies

between MLIP and MOV.

Figure 3.4(a) indicates that increasing the percentage of best-effort requests

improves the resource utilisation; however, after a certain point (i.e., best-effort>20%)

resource utilisation does not fluctuate significantly in different policies. Indeed,

in this situation unused spaces are allocated to the preempted leases.

71

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

Best Effort Ext. Request (%)

U
ti
li
z
a
ti
o
n
 (
%
)

5040302010

50.0

47.5

45.0

42.5

40.0

37.5

35.0

Policy

MOV

MLIP

MOML

(a)

Deadline Constraint Ext. Requests (%)

U
ti
li
z
a
ti
o
n
 (
%
)

5040302010

48

47

46

45

44

43

Policy

MOV

MLIP

MOML

(b)

Local Requests (%)

U
ti
li
z
a
ti
o
n
 (
%
)

706050403020

55

50

45

40

35

Policy

MOV

MLIP

MOML

(c)

Figure 3.4: Resource utilisation results from different policies. The experiment
was carried out by modifying (a) the percentage of best-effort external requests,
(b) the percentage of deadline-constraint external requests, and (c) percentage of
local requests.

In Figure 3.4(b) shows that resource utilisation increases by increasing the

percentage of deadline-constraint requests in all policies. In fact, more deadline-

constraint requests imply fewer preemptions and more resource utilisation. As

expected, the MOV policy outperforms other policies due to preemption of leases

that impose less overhead.

In Figure 3.4(c), it is expressed that by increasing the percentage of local

requests, the number of preemption and subsequently the amount of overhead is

increased. Therefore, resource utilisation decreases almost linearly in all policies.

Another reason for the reduction in resource utilisation is that local requests

are not preemptable and their scheduling leads to many fragmentations in the

scheduling queue.

72

M. A. Salehi 3.3. PERFORMANCE EVALUATION

Number of Lease Preemptions (Resource Contention)

The number of external leases that are preempted in different preemption policies

indicates the amount of resource contention in the system.

Figure 3.5(a) shows that when the percentage of best-effort requests in-

creases, the number of preemptions rises almost linearly. For the lower percent-

ages of best-effort external requests (best-effort<30%), MOML behaves similarly

to MOV, however, after that point MOML approaches MLIP. The reason is that

when the percentage of best-effort leases is high, the likelihood of having a can-

didate set with the minimum number of leases and not large overall overhead is

high. Thus, MOML approaches MLIP.

Best Effort Ext. Request (%)

N
o
.
L
e
a
s
e
 P
re
e
m
p
ti
o
n

5040302010

1400

1300

1200

1100

1000

900

800

700

Policy

MOV

MLIP

MOML

(a)

Deadline Constraint Ext. Requests (%)

N
o
.
L
e
a
s
e
 P
re
e
m
p
ti
o
n

5040302010

1400

1300

1200

1100

1000

900

Policy

MOV

MLIP

MOML

(b)

Local Requests (%)

N
o
.
L
e
a
s
e
 P
re
e
m
p
ti
o
n

706050403020

1500

1250

1000

750

500

Policy

MOV

MLIP

MOML

(c)

Figure 3.5: Number of lease preemption resulted from different policies by chang-
ing (a) percentage of best-effort external requests, (b) percentage of deadline-
constraint external requests, and (c) percentage of local requests.

Figure 3.5(b) demonstrates that the number of preemptions does not vary

significantly when the percentage of deadline-constraint requests is less than 40%.

In fact, in this situation there is enough best-effort requests for preemption and

changes in the percentage of deadline-constraint requests does not play an im-

portant role.

73

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

Figure 3.5(c) reveals the impact of number of local requests on the resource

contention. It shows that in all policies the number of lease preemptions is in-

creased almost linearly with the increase in the percentage of local requests.

In general, in all sub-figures of Figure 3.5, MLIP results in fewer number of

lease preemptions (resource contention) and MOML operates between MLIP and

MOV.

Average Response Time

In this experiment, we investigate the impact of different preemption policies on

the average response time of best-effort external requests. The results of the

experiment under different workloads are illustrated in Figure 3.6.

All subfigures of Figure 3.6 show that MLIP leads to smaller response time

in comparison to other policies. The reason is that MLIP disregards the type of

leases for preemption. This means that, comparing with MOV, it is less likely

that MLIP will preempt best-effort requests. Therefore, the best-effort requests

are completed earlier and their average response time is lower in MLIP.

Figure 3.6(a) demonstrates that, by increasing the percentage of best-effort

requests, the average response time decreases after a certain point. When 20%

of external requests are best-effort, the average response time reaches its peak

because of numerous preemptions occur. However, after that point we notice a

decrease in average response time of best-effort requests. This decrease occurs due

to fewer deadline-constraint requests and more opportunities for local requests to

be allocated. When 10% of the external requests are best-effort, since there are

not many preemptable requests in the system, many local requests are rejected

and few preemption occurs. Hence, the average response time is low in that point.

Figure 3.6(b) shows that, by increasing the percentage of deadline-constraint

requests, the average response time decreases. In fact, increasing the percentage

of deadline-constraint requests implies fewer best-effort external requests in the

system. Therefore, the average response time for best-effort external requests

decreases.

Figure 3.6(c) illustrates that, by increasing the percentage of local requests in

the system (and consequently increasing the number of preemptions), the average

response time increases. However, the reason for stable situation in ART, when

local requests are more than 50%, is that there are many local requests in the

system that collide and rejected. Therefore, the number of local requests after

that point does not vary significantly and the impact on ART is not substantial.

74

M. A. Salehi 3.4. SUMMARY

Best Effort Ext. Request (%)

A
R
T
(h
)

5040302010

7

6

5

4

3

Policy

MOV

MLIP

MOML

(a)

Deadline Constraint Ext. Requests (%)

A
R
T
(h
)

5040302010

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

Policy

MOV

MLIP

MOML

(b)

Local Requests (%)

A
R
T
(h
)

706050403020

8

7

6

5

4

3

Policy

MOV

MLIP

MOML

(c)

Figure 3.6: Average response time (ART) resulted from different policies. The ex-
periment is carried out by altering (a) percentage of best-effort external requests,
(b) percentage of deadline-constraint external requests, and (c) percentage of
local requests.

3.4 Summary

In this chapter, we investigated how origin-initiated resource contention between

local and external requests can be resolved in the local scheduler of a resource

provider (RP) in InterGrid. For this purpose, we applied preemption mechanism

to preempt external leases in favour of local requests. We observed that preemp-

tion of leases substantially decreases the rejection of local requests (up to 72%)

without increasing external requests rejection rate. Furthermore, we investigated

the side-effects of the preemption mechanism when VMs are utilised for resource

provisioning. Specifically, we modelled the overhead of suspension and migration

operations on VMs of leases.

Then, we proposed 3 policies to decide which lease(s) are better choices for

preemption. The MOV policy aims at minimising the imposed overhead time

and improving resource utilisation. The MLIP policy results in less resource

contention and increases user satisfaction. However, it does not lead to a high re-

75

CHAPTER 3. PREEMPTION-BASED CONTENTION MANAGEMENT

source utilisation. Finally, the MOML policy makes a trade-off between resource

utilisation and resource contention.

This chapter tackles the problem of resolving resource contention using pre-

emption mechanism at the local scheduler level through preemption policies. In

the next chapter, we investigate how resource contention can be avoided by proac-

tive scheduling of external requests in the meta-scheduler level of InterGrid (i.e.,

in the IGG).

76

Chapter 4

Proactive Resource Contention

Avoidance in InterGrid Gateway

In this chapter we focus on the question of how resource contention can be avoided

or reduced to the minimum possible in a Grid. We consider the problem in a

scenario where some external requests are more valuable than others. Therefore,

another research question answered in this chapter is how we can further decrease

the likelihood of contention and preemption for the valuable external requests. To

address these questions, we propose a proactive scheduling policy in the InterGrid

Gateway (IGG) that reduces the amount of resource contention. Additionally,

the scheduler dispatches external requests to RPs in a way that less resource

contention occurs for valuable external requests.

4.1 Introduction

In Chapter 3, we demonstrated how resource contention between local and ex-

ternal requests can be resolved with preemption of external requests in favour of

local requests. However, the side-effects of the preemption mechanism is twofold:

• From the system’s owner perspective, VM preemption imposes overhead to

the underlying system and degrades resource utilisation [13].

• From the external user perspective, preemption of leases causes resource

contention and increases the response time of the requests.

As a result, both resource owner (who prefers to increase resource utilisation)

and external users (who are interested in less contention and shorter response

time) benefit from fewer contention and preemptions in the system. Therefore,

77

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

one objective of this research is to decrease the number of preemptions that take

place in a Grid environment.

The objective becomes challenging further when external requests have dif-

ferent levels of Quality of Service (QoS) requirements (also termed different re-

quest types in this chapter). For instance, some external requests have deadlines

whereas others do not. Preemption affects the QoS constraints of such requests.

This implies that some external requests are more valuable than others, therefore,

more precedence should be given to valuable requests by reducing the likelihood

of preempting them.

To address these problems, in this chapter, we propose a QoS- and contention-

aware scheduling policy in IGG level of InterGrid. Based on the taxonomy pre-

sented in Chapter 2, the solution proposed in this chapter is a meta-scheduling

level solution for origin-initiated resource contention. This scheduling policy is

comprised of two parts.

The first part, called workload allocation policy, determines the fraction of

external requests that should be allocated to each RP (e.g., a Cluster) in a way

that the number of VM preemptions is minimised. The proposed policy is based

on the stochastic analysis of routing in parallel, non-observable queues. More-

over, this policy is a knowledge-free (i.e., it is not dependent on the availability

information of the RPs). Thus, this policy does not impose any overhead on the

system. However, it does not decide the RP that each single external request

should be dispatched upon arrival. In other words, dispatching of the external

requests to RPs is random.

Therefore, in the second part, called dispatch policy, we propose a policy

to determine the RP to which each request should be allocated. The dispatch

policy has the awareness of request types and aims to reduce the likelihood of

contention (preemption) on valuable requests. In summary, this chapter makes

the following contributions:

• It provides an analytical queuing model for a Grid, based on the routing in

parallel non-observable queues.

• It adapts the proposed analytical model to a preemption-aware workload

allocation policy.

• It proposes a deterministic dispatch policy to give more priority to more

valuable users and meet their QoS requirements.

• It presents an evaluation of the proposed policies under realistic workload

models and considering performance metrics such as number of VM pre-

78

M. A. Salehi 4.2. ANALYTICAL QUEUING MODEL

emptions, utilisation, and average weighted response time.

The existing contention management policy in IGG level is based on adaptive

partitioning of the availability times between local and external requests in each

RP. In the current policy there is a communication overhead between RPs and

IGG for submission of availability information. In addition to that, some RPs

may not be willing to share their availability information for security reasons.

Finally, there is a possibility that the availability information is inaccurate which

deteriorates the scheduling results. By contrast, our scheduling method is non-

observable and does not rely on availability information of RPs.

4.2 Analytical Queuing Model

The queuing model that represents a gateway (IGG) along with several RPs is

depicted in Figure. 4.1. We consider each RP as a non-dedicated Cluster (i.e.,

Cluster with shared resources between local and external requests). There are N

Clusters where Cluster j receives requests from two independent sources. One

source is a stream of local requests with arrival rate λj and the other source is

a stream of external requests which are sent by IGG with arrival rate Λ̂j. IGG

receives external requests from other peer IGGs [130] (G1,..,Gpeer in Figure 4.1).

Therefore, external request arrival rate to IGG is Λ = Λ̄1 + Λ̄2 + ...+ Λ̄peer where

peer indicates the number of IGGs that can potentially send external requests to

IGG.

Local requests submitted to Cluster j must be executed on Cluster j un-

less the requested resources are occupied by another local request or by a non-

preemptable external request (see Chapter 3). The first and second moments of

service time of local requests in Cluster j are τj and µj, respectively. An external

request can be allocated to any Cluster but it might be subject to future pre-

emption. We consider θj and ωj as the first and second moments of service time

of external requests on Cluster j, respectively. For the sake of clarity, Table 4.1

provides the list of symbols we use in this chapter along with their meaning.

The analytical model aims at distributing the total original arrival rate of

external requests (Λ) amongst the Clusters. In this situation, if we consider

each Cluster as a single queue and IGG as a meta-scheduler that redirects each

incoming external request to one of the Clusters, then the problem of scheduling

external requests in IGG can be considered as a routing problem in distributed

parallel queues [131].

Considering this situation, the goal of the scheduling in IGG is to schedule

79

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

Table 4.1: Description of symbols used in the queuing model.
Symbol Description

N Number of Clusters
Mj Number of computing elements in Cluster j where 1 ≤ j ≤ N
Λ̄j Original arrival rate of external requests to Cluster j

Λ̂j Arrival rate of external requests to Cluster j after load distribution

Λ =
∑peer

i=1 Λ̄i =
∑N

j=1 Λ̂j

θj Average service time of a external request on Cluster j
ωj Second moment of external requests service time on Cluster j

γj = θj· Λ̂j

λj Arrival rate of local requests on Cluster j
κj Arrival rate of local requests plus external requests to Cluster j
τj Average service time of local requests on Cluster j
µj Second moment of local requests service time on Cluster j
ρj = τj·λj
mj =

Λ̂j

κj
ωj +

λj
κj
µj

uj Utilisation of Cluster j (= γj + ρj)
rj Average response time of local requests on Cluster j
ηj Number of VM preemptions that happen in Cluster j
T Average response time of all external requests
Tj Average response time of external requests on Cluster j
v̄j Average number of VMs required by external requests
d̄j Average duration of external requests
sij Processing speed (MIPS) of processing element i in Cluster j

Meta-Sched
(Gateway)

Local Sched
1

M
1

1

.

.

.

Local Sched
N

M
n

1

.

.

.

.

.

.

.

.

.

.

.

S
1

S
N

.

.

.

.

Λ̅
1

Λ̅
peer

Λ

λ
1

λ
n

Λ̂
1

Λ̂
n

G1

G
peer

Figure 4.1: Queuing model for resource provisioning in a Grid with N RPs (Clus-
ters).

the external requests amongst the Clusters in a way that minimises the overall

number of VM preemptions in a Grid. Therefore, our primary objective function

can be expressed as follows:

min
N∑
j=1

ηj (4.1)

To the best of our knowledge, there is no scheduling policy for such an

environment with the goal of minimising number of VM preemptions. However,

several research works have been undertaken in similar circumstances to minimise

the average response time of external requests.

Initial experiments intuitively suggest that there is an association between

80

M. A. Salehi 4.2. ANALYTICAL QUEUING MODEL

Number of VM Preemption

R
e
s
p
o
n
s
e
 T
im
e
 (
m
in
)

6000500040003000200010000

90

80

70

60

50

40

30

20

10

S 7.25234

R-Sq 78.7%

R-Sq(adj) 78.7%

Figure 4.2: Regression between the number of VMs preempted and response time
of the external requests.

response time and number of VM preemptions in the Grid. The regression analy-

sis with least squares method (depicted in Figure 4.2 and shown in Equation 4.2)

demonstrates the positive correlation between the two factors. In Equation 4.2,

R and η indicate the response time of external requests and number of VM pre-

emptions, respectively.

R = 3.09 + 0.012η (4.2)

Therefore, we expect that a reduction in the average response time has similar

impact on the overall number of VM preemptions. Simulation results, which

are discussed in Section 4.4.3, also confirm the correlation of response time and

number of VM preemptions in the system. Details of the analysis are discussed

over the next paragraphs.

For this purpose, we extend the approach developed by Li [5], which has been

applied within a Cluster, for circumstances where there is a Grid system where

some external requests are more valuable than others (i.e., they have different

QoS levels).

Thus, we can define a new objective function that aims at minimising the

average response time of the external requests (Equation 4.3):

T =
1

Λ

N∑
j=1

Λ̂j·Tj (4.3)

Given the M/G/1 queue for each Cluster, and considering preemption of external

requests in favour of local requests, the response time of external requests in

81

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

Cluster j (Tj) is defined based on Equation 4.4 [132].

Tj =
1

1− ρj

(
θj +

κjmj

2(1− uj)

)
(4.4)

The constraint for Equation 4.3 is:

N∑
j=1

Λ̂j − Λ = 0 (4.5)

The Lagrange multiplier method is applied to minimise Equation 4.3. We

consider Equation 4.3 as f(Λ̂j), Equation 4.5 as g(Λ̂j)− c, and z as the Lagrange

multiplier. Then, the Lagrange function is defined as follows:

h(Λ̂j, z) = f(Λ̂j) + z·
(
g(Λ̂j)− c

)
=

1

Λ

N∑
j=1

Λ̂j·Tj + z·
(N∑
j=1

Λ̂j − Λ
)

(4.6)

By solving the equations resulted from partial derivatives of all Λ̂j(1 ≤ j ≤ N)

and z, the input arrival rate of each Cluster is calculated based on Equation 4.7:

Λ̂j =
(1− ρj)
θj

− 1

θj

√
(1− ρj)(ωj(1− ρj)) + θjλjµj

2θj(1− ρj)z + (ωj − 2θ2
j)

(4.7)

Considering that Λ = Λ̂1 + Λ̂1 + ...+ Λ̂N , then z can be calculated using the

following Equation:

N∑
j=1

1

θj

√
(1− ρj)(ωj(1− ρj)) + θjλjµj

2θj(1− ρj)z + (ωj − 2θ2
j)

=

(N∑
j=1

(1− ρj)
θj

)
− Λ (4.8)

In fact, Equation 4.8 expresses the relation between different parameters of

the system in which z is unknown. By solving Equation 4.8 for all Clusters and

calculating z, Equation 4.7 can be solved. However, finding a generic closed form

solution for z in Equation 4.8 is not possible [5]. Nonetheless, z can be found in

the range [lb,ub] numerically. For this purpose, considering that Λ̂j ≥ 0 and from

Equation 4.7, we can infer that:

z ≥ λjµj
2(1− ρj)2

+
θj

(1− ρj)
(4.9)

82

M. A. Salehi 4.3. PREEMPTION-AWARE SCHEDULING

Therefore, for all 1 ≤ j ≤ N the lower bound (lb) of the interval is:

lb =
N

max
j=1

(
λjµj

2(1− ρj)2
+

θj
(1− ρj)

)
(4.10)

If we define φj(z) according to Equation 4.11:

φj(z) =
1

θj

√
(1− ρj)(ωj(1− ρj)) + θjλjµj

2θj(1− ρj)z + (ωj − 2θ2
j)

(4.11)

and considering Equation 4.8, then we have:

N∑
j=1

φj(lb) ≥
(N∑

j=1

(1− ρj)
θj

)
− Λ (4.12)

The upper bound also can be determined based on Equation 4.13. ub can be

reached by doubling lb up until the following condition is met.

N∑
j=1

φj(ub) ≤
(N∑

j=1

(1− ρj)
θj

)
− Λ (4.13)

If condition in Equation 4.12 is not met, then lb has to be decreased by

removing Clusters which are heavily loaded. Load of the Cluster j is comprised

of local requests that have been received and external requests which are already

assigned to the Cluster. The load can be calculated as follows:

ψj =
λjµj

2(1− ρj)2
+

θj
(1− ρj)

(4.14)

For the sake of simplicity, in Equation 4.15 we assumed that ψ1 ≤ ψ2... ≤ ψN .

k∑
j=1

φj(ψk) ≥
(k∑

j=1

(1− ρj)
θj

)
− Λ (4.15)

It is worth mentioning that Clusters exceeding the value of k would not

receive any external request from IGG (i.e., Λ̂k+1 = Λ̂k+2 = ... = Λ̂N = 0).

4.3 QoS- and Preemption-aware Scheduling

The proposed scheduling policy is comprised of two parts. The first part discusses

how the analysis mentioned in previous section can be adapted as the workload

83

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

allocation policy for external requests in IGG. The second part is a dispatch

policy that determines the sequence of dispatching external requests to different

Clusters considering the type of external requests.

4.3.1 Workload Allocation Policy

The analysis provided in Section 4.2 was based on some widely accepted as-

sumptions. Here, we state these assumptions and discuss if they are valid in the

InterGrid scenario. In the analysis provided in Section 4.2 we assumed that:

• Each Cluster is an M/G/1 queue.

• All requests need one VM (i.e., they were sequential).

• Each queue runs in FCFS fashion.

• External requests are type-less (no superiority between external requests).

On the other hand, in our scenario we encounter parallel requests (requests

that require more than one VM) that follow a general distribution. Additionally,

we apply conservative backfilling [133] policy as the local scheduler of each Clus-

ter. The reason of using conservative backfilling is that it increases the number of

requests being served at each moment with respect to the FCFS policy [10]. More-

over, it is proved that conservative backfilling performs better in multi-Cluster

environments compared to other scheduling policies [134]. Given Mj processing

elements in Cluster j, and v̄j the average number of VMs required by external

requests, the number of simultaneous requests that are served within Cluster j is

approximately Ij ' Mj/v̄j. We can infer that the queuing model of Cluster j is

G/G/Ij.

However, in the analyses of Section 4.2 we applied the M/G/1 queuing model

instead of G/G/Ij. This approximation can be justified by the fact that if we

consider the normalised response time in Equation 4.3, then the proportion of

external workload to each Cluster remains unchanged. In other words, scaling up

or down of the service times in the Clusters does not change the proportion of

external requests allocated to each Cluster. In Section 4.4, we validate this ap-

proximation through extensive simulations in the context of workload allocation

policy.

Considering the above differences, we do not expect that the preemption-

aware workload allocation policy performs optimally. In fact, we examine how

efficient the proposed analysis is in the InterGrid environment by relaxing these

assumptions.

84

M. A. Salehi 4.3. PREEMPTION-AWARE SCHEDULING

To adapt the analysis in a way that covers requests that need several VMs, we

modify the service time of external requests on Cluster j (θj) and local requests

on Cluster j (τj) in the following way:

θj =
v̄j· d̄j
Mj∑
i=1

sij

(4.16)

τj =
ζ̄j· ε̄j
Mj∑
i=1

sij

(4.17)

where ζ̄j and ε̄j show the average number of VMs needed and average duration of

the local requests. Also,
∑Mj

i=1 sij indicates the overall computing power offered by

different processing elements within the Cluster j. Nonetheless, if the processing

elements of a Cluster are homogeneous
∑Mj

i=1 sij becomes Mj· sij.

The second moment of the service time for both local and external re-

quests are also accordingly changed. We use the coefficient of variance (CV =

StDev/Mean) to obtain the modified second moment. Assuming that the CV

is given, the second moment of service time for external and local requests on

Cluster j is calculated according to Equation 4.18 and 4.19, respectively.

ωj = (αj· θj)2 + θ2
j (4.18)

µj = (βj· τj)2 + τ 2
j (4.19)

where αj and βj show the CV of the external requests and CV of the local

requests’service time on Cluster j.

The preemption-aware workload allocation policy (PAP) is presented in the

form of pseudo-code in Algorithm 2. According to Algorithm 2, at first ψ is

calculated for all Clusters. Then, in steps 4 to 10, to exclude the heavily loaded

Clusters, they are sorted based on the ψ value in ascending order. Next, the

value of k is increased until the condition defined in Equation 4.15 (step 7) is

met. ub is found by starting from 2· lb and is doubled until the condition in step

13 is met. Steps 16-21 show the bisection algorithm mentioned in Section 4.2 for

finding the proper value for z. Finally, in steps 22 and 23 the arrival rate to each

Cluster is determined. Steps 24 and 25 guarantee that Clusters k+1 to N, which

are heavily loaded, do not receive any external request.

It is worth mentioning that, in practice, IGG can obtain the required param-

eters for this policy by analysing the Clusters’workload. Such parameters have

85

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

Algorithm 2: Preemption-aware workload allocation Policy (PAP).

Input: Λ̄j,θj,ωj,λj,τj,µj, for all 1 ≤ j ≤ N .

Output: (Λ̂j) load distribution of the external requests to different
Clusters, for all 1 ≤ j ≤ N .

1 for j ← 1 to N do

2 ψj =
λjµj

2(1−ρj)2
+

θj
(1−ρj)

;

3 //Sort array ψ in ascending order;
4 Sort (ψ);
5 k ← 1;
6 while k < N do

7 if
∑k

j=1 φj(ψk) ≥
(∑k

j=1
(1−ρj)

θj

)
− Λ then

8 break;
9 else

10 k ← k + 1;

11 lb← ψk;
12 ub = 2 ∗ lb;

13 while
∑k

j=1 φj(ub) >

(∑k
j=1

(1−ρj)

θj

)
− Λ do

14 ub = 2 ∗ ub;
15 //ε is the expected precision;
16 while ub− lb > ε do
17 z ← (lb+ ub)/2;

18 if
∑k

j=1 φj(z) ≥
(∑k

j=1
(1−ρj)

θj

)
− Λ then

19 lb← z;
20 else
21 ub← z;

22 for j ← 1 to k do

23 Λ̂j =
(1−ρj)

θj
− 1

θj

√
(1−ρj)(ωj(1−ρj))+θjλjµj

2θj(1−ρj)z+(ωj−2θ2j)
;

24 for j ← k + 1 to N do

25 Λ̂j = 0;

86

M. A. Salehi 4.3. PREEMPTION-AWARE SCHEDULING

been used in similar research works [135–137].

4.3.2 Dispatch Policy

The algorithm proposed in the previous subsection determines the routing prob-

ability to each Cluster (i.e., Λ̂j/Λ). However, it does not offer any deterministic

sequence for dispatching each external request to Clusters (i.e., dispatching the

external requests is memory-less). More importantly, as mentioned earlier, ex-

ternal requests are in different QoS levels and some external requests are more

valuable. Hence, we would like to decrease the likelihood of contention (and

therefore preemption) for more valuable requests to the minimum possible. We

put this precedence in place through the dispatch policy.

In this part, we propose a policy that, firstly, reduces the number of VM

contentions for more valuable external requests; Secondly, this policy makes a

deterministic sequence for dispatching the external requests. It is worth noting

that the dispatch policy uses the same routing probabilities that calculated for

each Cluster using the workload allocation policy. The only difference is in the

sequence of requests dispatched to each Cluster. For that purpose, we adapt the

Billiard strategy [138] as the dispatch policy.

The Billiard strategy is a generalised form of Round Robin and considers the

sequence of routing, which is called Billiard sequence. Suppose that a billiard ball

bounces in an n-dimensional cube where each side and opposite side is assigned

by an integer value in a range of {1, 2, ..., n}. Then, the billiard sequence is gen-

erated by a series of integer values that show the sides hit by the ball when shot.

This sequence is deterministic, and is different from the sequence of probabilistic

strategy, which is entirely random.

Hordikj [138], proposed a method to implement this strategy and generate

the billiard sequence as follows:

js = min
∀j

{
Xj + Yj
Pj

}
(4.20)

where js is the target queue, and Y and X are vectors of integers with size n.

Yj keeps track the number of requests that have been sent to the queue j. Xj

reflects which queue is fastest, and is set to one for the fastest queue and zero

for all other queues [131]. Yj is initialised to zero, and after the target queue is

found, it is updated as Yjs = Yjs + 1. Pj is the fraction of external requests that

are sent to the queue j and is determined as the result of the workload allocation

policy in Section 4.3.1.

87

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

It is worth mentioning that minimisation of the likelihood of preemption

valuable requests depends on the scheduling policy in IGG (which is investigated

in this chapter) as well as the local scheduling policy in each Cluster. The local

scheduling policy we use in the Clusters has the awareness of the request types and

preempts leases that belong to less valuable users (e.g., MOV policy in Chapter 3).

Assuming such policy as the local scheduler of each Cluster, more valuable leases

are preempted if and only if there is not (sufficient) leases of less valuable request

types to be preempted. We can infer that the likelihood of contention for

Algorithm 3: Request Type Dispatch Policy (RTDP).

Input: Pj,θj for all 1 ≤ j ≤ N .
Output: SelectedCluster(js)

1 fastestCluster ← findFastestCluster(θ);
2 foreach Cluster j do
3 Xj ← 0;
4 foreach RequestType i do
5 P i

j ← Pj ∗ GetProportion(i);

6 Y i
j ← 0;

7 XfastestCluster ← 1;
8 foreach external request received do
9 i← GetRequestType();

10 min←MaxV alue;
11 foreach Cluster j do
12 if (P i

j 6= 0) then
13 D = (Xj + Y i

j)/P i
j ;

14 if (D < min) then
15 min← D;
16 tmpCluster ← j;

17 Y i
tmpCluster ← Y i

tmpCluster + 1;

18 js ← tmpCluster;

valuable external requests would be low if a mixture of valuable and less valuable

external requests are dispatched to each Cluster. Therefore, in the dispatch policy

we keep track of number of external requests of each type that are dispatched

to each Cluster. The pseudo-code developed for this purpose is presented in

Algorithm 3.

In Algorithm 3, at first the fastest Cluster is found based on the average

service time for external requests in each Cluster (step 1). We consider P i
j as the

probability of dispatching request type i to Cluster j. P i
j is determined based

on Pj and the proportion of request type i in external requests (steps 4, 5). In

step 7, we assign 1 to the fastest Cluster. Y i
j expresses the number of external

requests of type i that are dispatched to Cluster j and initially is zero (step 6).

88

M. A. Salehi 4.4. PERFORMANCE EVALUATION

By receiving an external request, the value of the adapted billiard sequence for

all Clusters are determined and a Cluster with minimum value is chosen (steps

9-16). Finally, Y i is updated for the selected Cluster (step 17).

4.4 Performance Evaluation

4.4.1 Performance Metrics

User Satisfaction

As mentioned earlier, both resource owners and users benefit from fewer VM

preemptions. From the resource owner perspective, less VM preemption leads

to less overhead on the underlying system and improves the resource utilisation.

From the external user perspective, fewer VM preemptions imply less resource

contentions.

As one of the objectives of this chapter is giving more precedence to more

valuable external users, we also investigate how distinct scheduling policies affect

more valuable leases (i.e., deadline-constraint (DC) leases). To this end, for

migratable leases we consider migration rate (percentage of migratable leases

that are migrated) and for non-preemptable leases we consider the rejection rate

(percentage of non-preemptable leases that are rejected).

Resource Utilisation

Time overhead due to VM preemptions leads to low resource utilisation. Thus,

from the system owner perspective, we are interested to see how different schedul-

ing policies affect the resource utilisation. Resource utilisation for one Grid sys-

tem in InterGrid is defined as follows:

Utilisation = (1−

N∑
j=1

overheadj

N∑
j=1

computationT imej

)· 100 (4.21)

where:

computationT imej =

|L|∑
i=1

v(li)· d(li) (4.22)

where |L| is the number of leases allocated in Cluster j, v(li) is the number of

VMs in lease li, d(li) is the duration of lease li.

89

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

Average Weighted Response Time (AWRT)

Preemption-based scheduling policies are usually prone to long response time for

best-effort (BE) requests (i.e., suspendable and cancellable requests). Therefore,

in our study we are interested in the AWRT metric to see how the investigated

scheduling policies affect the response time of the BE requests. Smaller values of

AWRT indicate more (external) user satisfaction.

In fact, this metric measures the amount of time on average a BE lease

should wait beyond its ready time to be completed. The AWRT in each Cluster

is calculated based on Equation 4.23 [139].

AWRTj =

∑
l∈∆j

v(l)· d(l)· (cl − bl)∑
l∈∆j

v(l)· d(l)
(4.23)

where, ∆j is the set of BE leases on Cluster j. cl and bl show completion time

and ready time, v(l) and d(l) represent number of VMs and duration of lease l,

respectively. Then, AWRT over all Clusters is defined as follows:

AWRT =

N∑
j=1

(Mj·AWRTj)

N∑
j=1

Mj

(4.24)

4.4.2 Experimental Setup

To evaluate the performance of the scheduling policies, in GridSim [128], we con-

sider a Grid with 3 Clusters with 64, 128, and 256 processing elements with

different computing speeds (s1 = 2000, s2 = 3000, s3 = 2100 MIPS). This means

that in the experiments we assume computing speed homogeneity within each

Cluster. This assumption helps us to focus more on the preemption aspect of

resource provisioning. Moreover, considering that the resources are provisioned

in the form of VMs, the assumption of homogeneous resources within the Clus-

ters is not far from reality [140]. It is worth noting that the analysis provided in

Sections 4.2 and 4.3 are generic and do not consider homogeneity within Cluster

nodes. The Cluster sizes are selected in accordance with the average demand of

the current scientific applications [141]. LRMS of each Cluster employs conser-

vative backfilling policy for scheduling. Clusters are interconnected using a 100

Mbps network bandwidth. We assume all processing elements of each Cluster as

90

M. A. Salehi 4.4. PERFORMANCE EVALUATION

a single core CPU with one VM. The maximum number of VMs in the generated

requests of each Cluster does not exceed the number of processing elements in

that Cluster. We consider size of each VM as 1024 MB [14].

The overhead time imposed by preempting VMs varies based on the type of

external leases involved in preemption [17] and is calculated based on the model

provided in Chapter 3. In our experiments, suspension time (ts) and resumption

time (tr) are considered as 161.0 and 126.1 seconds, respectively [17]. The time

overhead for migrating a VM with similar configuration is 447.3 seconds.

Baseline Policies

We evaluate the proposed policies against other basic policies as well as recent

policies which have been posed in other similar works [142]. These policies are

described below:

• Round Robin (RR): In this policy IGG distributes external requests between

Clusters in a round-robin fashion with a deterministic sequence. Formally,

this policy is demonstrated as follows:

Λ̂j =
Λ

N
(4.25)

• Least Rate First (LRF): In this policy the routing probability to each Clus-

ter has inverse relation with arrival rate of local requests to that Cluster.

Hence, IGG distributes the external requests with a random sequence be-

tween Clusters. In other words, Clusters that have larger arrival rate of local

requests are assigned fewer external requests by IGG. Formal presentation

of the policy is as follows:

Λ̂j = (1− λj∑N
j=1 λj

)·Λ (4.26)

• Biggest Cluster First (BCF): In this policy, the external requests assigned

to Clusters with the probability proportional to their processing capability.

This policy is commonly used in distributed systems [142]. This policy can

be formally described as follows:

Λ̂j = (

∑Mj

i=1 sij∑N
j=1

∑Mj

i=1 sij
)·Λ (4.27)

We have also implemented the workload allocation policy (PAP) with the

following details:

91

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

• We assumed that in step 16 of Algorithm 2 the precision is 0.001 (ε = 0.001).

In fact, from the experiments we noticed that values greater than 0.001 do

not change the results significantly.

• In Equations 4.18 and 4.19, to determine the second moment of service time

for local and external requests, we assumed that in all Clusters αj = 0.5

and βj = 0.1 (i.e., CV of service time for external requests is more than for

local requests which implies that we expect more diversity in service time

of external requests).

• To have a mixture of different external request types, in each workload there

is a 25% of each external request type which are distributed uniformly over

the generated requests.

We have implemented two dispatch policies for PAP. The first one in entirely ran-

dom (PAP-RND in the experiments) and the other one which is the one described

in Algorithm 3 (PAP-RTDP in the experiments).

Workload Model

In the experiments conducted, the DAS-2 workload model [32] has been config-

ured to generate two-day-long workload of parallel requests. This workload model

is based on the DAS-2 multi-Cluster Grid in the Netherlands.

We intend to study the behaviour of different policies when they face work-

loads with different characteristics. For this purpose, we change the specifications

of external and local requests. Particularly, we study situations where:

• External requests have different number of VMs: In this case for external

requests, we keep average duration=420 seconds (similar to DAS-2 [32]),

average arrival rate=0.15 ; and average local request arrival rate=0.12. In

fact, local request arrival rate should not be too low (in this case few pre-

emptions occur) and should not be too high (in this case there is no room for

external requests). However, external request arrival rate should be higher

than local arrival rate.

• The duration of external requests varies: In this case for external requests,

we keep average number of VMs=5 (similar to DAS-2 [32]), average arrival

rate=0.15, and average local request arrival rate=0.12.

• The external requests’arrival rate varies: In this case for external requests,

we keep average number of VMs=5, and average duration=420 seconds,

and average local request arrival rate=0.12.

92

M. A. Salehi 4.4. PERFORMANCE EVALUATION

• The local requests’arrival rate varies: In this case for external requests,

we keep average number of VMs=5, average duration=420 seconds, and

average request arrival rate=0.15.

More details about the generated workloads are mentioned in Table 4.2. To gen-

erate these workloads, we modify parameters of DAS-2 model. As it is shown

in Table 4.2, the distribution of local requests in each Cluster and also the dis-

tribution of external requests arriving to IGG are independent from each other.

Based on the workload characterisation [32], the inter-arrival rate, request size,

Table 4.2: Input parameters for the workload model (C:Cluster).
Input Parameter Distribution Values Site

No. of VMs Log-uniform (l = 0.8, 2.5 ≤ m ≤ 3.5, h = 6, q = 0.9) Grid
(l = 0.8,m = 2.5, h = 6, q = 0.9) C64
(l = 0.8,m = 3.5, h = 7, q = 0.9) C128
(l = 0.8,m = 4.5, h = 8, q = 0.9) C256

Request Duration Log-normal (3.0 ≤ a ≤ 5.4,b = 1.7) Grid
(a = 5.0,b = 1.7) C64
(a = 5.35,b = 1.7) C128
(a = 5.5,b = 1.7) C256

Inter-arrival Rate External Requests Weibull (3.8 ≤ α ≤ 7.0,β = 0.5) Grid
(α = 2.0, β = 0.35) C64
(α = 1.6, β = 0.35) C128
(α = 1.2, β = 0.35) C256

Average Inter-arrival Rate Local Requests Weibull (α = 7.0, β = 1.1) Grid
(0.1 ≤ α ≤ 7.0,β = 0.35) C64
(0.08 ≤ α ≤ 6.0,β = 0.35) C128
(0.06 ≤ α ≤ 4.5,β = 0.35) C256

Pone N/A 0.2 Grid
0.3 All Clusters

Ppow2 N/A 0.5 Grid
0.6 All Clusters

and request duration follow Weibull, two-stage Log-uniform, and Log-normal dis-

tributions, respectively. These distributions with their parameters are listed in

Table 4.2.

Pone and Ppow2 are probabilities of request with one VM and power of two

VMs in the workload, respectively. Hence, the mean number of VMs required by

requests is given as follows:

v̄j = Pone + 2dre(Ppow2) + 2r (1− (Pone + Ppow2)) (4.28)

where r is the mean value of the two-stage uniform distribution with parameters

(l,m, h, q) as listed in Table 4.2 and can be found as follows:

r =
ql +m+ (1− q)h

2
(4.29)

Additionally, the mean request duration is the mean value of the Log-normal

93

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

distribution with parameters (a, b) which is given by:

dj = ea+ b2

2 (4.30)

Therefore, we are able to calculate the mean request size in Equations 4.16

and 4.17.

Each experiment is carried out on each of these workloads separately. For

the sake of accuracy, each experiment is carried out 100 times by using different

workloads and the average of the results is reported. In all the reported results

the CV is less than 0.01. The results of the experiments are investigated from

practical and statistical perspectives. In statistical analyses, we applied Two-way

ANOVA and T-student tests. In doing these tests, we have ensured the normal

distribution of the underlying data and the equity of variance.

4.4.3 Experimental Results

Number of VM Preemptions

The primary objective in this chapter is to express the impact of scheduling

policies on the resource contention, which is measured by the number of VMs

preempted within a Grid of InterGrid. Therefore, in this experiment we report

the number of VMs preempted by applying different scheduling policies.

As we can see in all sub-figures of Figure 4.3, the number of VMs preempted

rises by increasing the average number of VMs (Figure 4.3(a)), duration (Fig-

ure 4.3(b)), arrival rate of external requests (Figure 4.3(c)), and arrival rate

of local requests (Figure 4.3(d)). In all of them PAP-RTDP statistically and

practically significantly outperforms other policies (two-way ANOVA results in

P-value<0.001 in all the cases).

The result of a T-test analysis between PAP-RTDP and PAP-RND in Fig-

ure 4.3(a) represents a significant difference. 95% confidence interval (CI) of the

average difference between these policies is (2737.97, 3896.95) where P-value<0.001.

Moreover, the 95% CI of the average difference between PAP-RND and LRF-RND

is (168.2, 1561.1) (P-value=0.02). This indicates that PAP-RND significantly

outperforms other policies.

In Figure 4.3(b), we witness a sharp decrease in PAP-RTDP when the average

run time is more than 300 seconds. 95% CI of the average difference between PAP-

RTDP and PAP-RND is (342, 2354.6) using T-test (P-value=0.012). Normally, as

average duration increases, less free space is available, therefore, the arriving local

94

M. A. Salehi 4.4. PERFORMANCE EVALUATION

Request Size

N
o
.
V
M
 P
re
e
m
p
ti
o
n
s

5.65.45.25.04.84.64.44.24.0

13000

12000

11000

10000

9000

8000

7000

6000

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(a)

Duration (sec)

N
o
.
V
M
 P
re
e
m
p
ti
o
n
s

700600500400300200100

12000

11000

10000

9000

8000

7000

6000

5000

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(b)

Ext. Request Inter-Arrival Rate

N
o
.
V
M
 P
re
e
m
p
ti
o
n
s

0.
24

0.
22

0.
20

0.
18

0.
16

0.
14

0.
12

0.
10

15000

12500

10000

7500

5000

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(c)

Avg Inter-Arrival Rate Local

N
o
.
V
M
 P
re
e
m
p
ti
o
n
s

0.
15

0.
14

0.
13

0.
12

0.
11

0.
10

0.
09

0.
08

15000

12500

10000

7500

5000

policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(d)

Figure 4.3: Number of VMs preempted by applying different policies. The ex-
periment is carried out by modification of (a) the average number of VMs, (b)
the average duration, (c) the arrival rate of external requests, and (d) the arrival
rate of local requests.

requests result in more preemptions. Similar issue takes place in Figure 4.3(c)

and 95% CI of the average difference between PAP-RTDP and PAP-RND using

T-test is (380.5, 4570) and P-value=0.02 This means around 60% improvement

over LRF-RND for durations more than 300 seconds. In fact, in the case of PAP-

RTDP, better sequencing of the external requests resulted in balanced allocation,

which leads to fewer preemptions and contentions.

Figures 4.3(c) and 4.3(d) reveal the efficacy of PAP-RND and PAP-RTDP,

particularly where the arrival rate of external requests or the arrival rate of local

requests increase. 95% CI of the average difference between these policies in

Figure 4.3(c) is (380.5,4570) (P-value=0.02) and in Figure 4.3(d) for rates more

than 0.12 is (469.12, 3826.45) (P-value=0.02).

As we noted, the difference between PAP-RTDP and PAP-RND is more

remarkable in Figure 4.3(c) than Figure 4.3(d). However, in general, there is

a larger difference between PAP (both RND and RTDP) and other policies in

Figure 4.3(d) (95% CI of the average difference between PAP-RND and LRF-

RND is (230.7, 4823.9) where P-value=0.03). We can conclude that workload

allocation policy (PAP) has more impact where inter-arrival rate of local requests

95

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

is high whereas dispatch policy has more influence where external requests’arrival

rate is high.

Generally, the difference between PAP (specially PAP-RTDP) and other poli-

cies become more significant when there is more load in the system which shows

the efficiency of PAP when the system is heavily loaded.

Resource Utilisation

In this experiment, we explore the impact of preempting VMs on the resource

utilisation as a system-centric metric.

In general, resource utilisation resulted from applying PAP-RTDP is drasti-

cally better than other policies as depicted in Figure 4.4. In Figure 4.4(a), 95%

CI of the average difference of utilisation between PAP-RTDP and LRF-RND is

(12.5, 14.7) (P-value<0.001) and the average difference between LRF-RND and

PAP-RND is (2.2, 4.6) (P-value=0.001) using T-test.

However, the difference is more substantial when the average duration or

arrival rate of external requests increases (Figures 4.4(b) and 4.4(c)). In Fig-

ure 4.4(b), 95% CI of the average difference between PAP-RTDP and LRF-

RND for the durations more than 300 seconds using T-test is (7.3, 14.5) (P-

value=0.002). Additionally, 95% CI of the average difference between LRF-RND

and PAP-RND is (0.9, 7.4) with P-value=0.01. Also, in Figure 4.4(c), 95% CI

of the average difference between LRF-RND and PAP-RTDP is (1.5, 15.1) (P-

value=0.02). In Figures 4.4(b) and 4.4(c), the reason that LRF-RND leads to

better utilisation comparing with PAP-RND is that LRF-RND rejects fewer re-

quests and consequently utilises more resources than PAP-RND (see Figure 4.6(d)

and 4.6(f)). Expectedly, PAP-RTDP performs better than other policies in Fig-

ure 4.4(d); 95% CI of the average difference between PAP-RTDP and PAP-RND

for rates more than 0.12 is (11.3, 18.3)(P-value=0.001).

In Figure 4.4(b), we observe that PAP-RTDP results in better utilisation.

The first reason is that PAP workload allocation policy is applied, which de-

creases the number of VM preemptions and consequently the overall overhead.

The second reason is that PAP-RTDP is directed to prevent preempting migrat-

able leases (as a valuable lease) that impose significant overhead when compared

with other lease types to migrate VMs. In other words, PAP-RTDP dispatches

a balanced mixture of all request types to different Clusters. Therefore, the local

scheduler can preempt BE leases that are less valuable and inherently impose less

overhead to the system. In all other policies, in Figure 4.4(b), resource utilisation

remains constant when external requests become longer (duration more than 300

96

M. A. Salehi 4.4. PERFORMANCE EVALUATION

seconds). The reason is that when requests are longer, the useful computation

time dominates the overhead of VM preemptions. We can infer that VM pre-

emption does not significantly affect resource utilisation when requests are long

(more than 300 seconds).

Request Size

U
ti
li
z
a
ti
o
n
 (
%
)

5.65.45.25.04.84.64.44.24.0

80

75

70

65

60

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(a)

Duration (sec)

U
ti
li
z
a
ti
o
n
 (
%
)

700600500400300200100

80

75

70

65

60

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(b)

Ext. Request Inter-Arrival Rate

U
ti
li
z
a
ti
o
n
 (
%
)

0.240.220.200.180.160.140.120.10

80

75

70

65

60

55

50

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(c)

Avg Inter-Arrival Rate Local

U
ti
li
z
a
ti
o
n
 (
%
)

0.
15

0.
14

0.
13

0.
12

0.
11

0.
10

0.
09

0.
08

85

80

75

70

65

60

55

50

policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(d)

Figure 4.4: Resource utilisation resulted from different policies. The experiment
is carried out by modification of (a) the average number of VMs, (b) the average
duration, (c) the arrival rate of external requests, and (d) the arrival rate of local
requests.

Average Weighted Response Time (AWRT)

The results of this experiment for BE requests are shown in Figure 4.5 when dif-

ferent workload aspects vary. These results demonstrate that PAP-RND leads to

minimum average weighted response time comparing to other policies. The rea-

son that PAP-RTDP has longer response time than PAP-RND, is that the former

leads to more preemptions on cancellable and suspendable leases. Consequently,

the average response time of these requests increase.

Based on the results, we can conclude that PAP-RND results in better aver-

age response time for BE requests, which implies more satisfaction of BE users.

More specifically, 95% CI of the average difference between PAP-RTDP and PAP-

RND in Figure 4.5(a) is (3814.7, 4417) seconds (P-value<0.001). This difference

in Figure 4.5(b) is (654.1, 4158) seconds (P-value=0.02) for requests longer than

97

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

300 seconds. However, there is not a statistically significant difference for re-

quests shorter than 300 seconds (P-value=0.8). 95% CI of the average difference

between PAP-RTDP and PAP-RND in Figure 4.5(c) is (673.8, 4753.5) seconds

(P-value=0.02). Finally, 95% CI of the average difference between PAP-RTDP

and PAP-RND in Figure 4.5(d) is (1516.4, 3784) seconds with P-value=0.005 for

rates more than 0.12.

Request Size

A
W
R
T
 (
s
e
c
)

5.65.45.25.04.84.64.44.24.0

16000

14000

12000

10000

8000

6000

4000

2000

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(a)

Duration (sec)

A
W
R
T
 (
s
e
c
)

700600500400300200100

16000

14000

12000

10000

8000

6000

4000

2000

0

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(b)

Ext. Request Inter-Arrival Rate

A
W
R
T
 (
s
e
c
)

0.
24

0.
22

0.
20

0.
18

0.
16

0.
14

0.
12

0.
10

16000

14000

12000

10000

8000

6000

4000

2000

0

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(c)

Avg Inter-Arrival Rate Local

A
W
R
T
 (
s
e
c
)

0.
15

0.
14

0.
13

0.
12

0.
11

0.
10

0.
09

0.
08

14000

12000

10000

8000

6000

4000

2000

0

policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(d)

Figure 4.5: Average weighted response time resulted from different policies. The
experiment is carried out by modification of (a) the average number of VMs, (b)
the average duration, (c) the arrival rate of external requests, and (d) the arrival
rate of local requests.

However, in all cases, PAP-RTDP performs significantly and practically bet-

ter than other policies. More specifically, 95% CI of the average difference be-

tween PAP-RTDP and BCF-RND, in Figure 4.5(b), is (1863, 6456.2) seconds

(P-value=0.002), in Figure 4.5(c) is (1665, 6115) seconds (P-value=0.004), and

in Figure 4.5(d) is (3595.8, 7661) seconds with P-value<0.001. The reason that

BCF-RND leads to lower AWRT than other policies (i.e., LRF-RND and RR), in

spite of more preempted VMs (Figure 4.3), is that according to Figure 4.6, BCF-

RND results in more migrations and rejections comparing with other policies.

Another point in this experiment is that the AWRT does not change sig-

nificantly by rising the average number of VMs in the external requests (Fig-

ure 4.5(a)) or their inter-arrival rate (Figure 4.5(c)). The reason is that in both

98

M. A. Salehi 4.4. PERFORMANCE EVALUATION

cases, by increasing the average number of VMs of the external requests or their

inter-arrival rate, more DC external requests and even more local requests are

rejected. This makes more room for other requests to fit in. Hence, although the

average number of VMs rises, AWRT does not increase.

Prioritising More Valuable External Users

In this experiment, we measure how different scheduling policies respect valuable

users. We consider DC external requests (migratable and non-preemptable) as

valuable users. For migratable requests we measure the number of times that

VM migration happens (migration rate). For non-preemptive external requests

we consider the rejection rate as the measurement criterion. The results of the

experiments are illustrated in Figure 4.6.

This experiment expresses the efficacy of PAP-RTDP policy in migrating

and rejecting fewer external requests. In all sub-figures of Figure 4.6, we notice

that PAP-RTDP dispatch policy has substantially reduced the percentage of mi-

grations and rejections. Details of the 95% CI of the average differences between

PAP-RTDP and PAP-RND are presented in Table 4.3. According to Table 4.3, in

almost all experiments PAP-RTDP leads to statistically and practically significant

difference with PAP-RND. Except in Figure 4.6(h); Figures 4.6(c), and 4.6(d)

where request duration is less than 300 seconds. P-values in these points are

0.8 and 0.7 respectively, which proves the null hypothesis (i.e., PAP-RTDP and

PAP-RND are not statistically different).

In Figure 4.6(h), although PAP-RTDP is not statistically better than PAP-

RND, we observe a marginal improvement in the rejection rate mainly for rates

more than 0.12. We also witness a sharp decrease both in sub-figures 4.6(c)

and 4.6(d) for requests that last more than 300 seconds. This is because the

overall resource contention (number of preemptions) in that point has decreased

(see Figure 4.3(b)).

In Figures 4.6(e) and 4.6(f) as the inter-arrival rate of external requests

increases, we observe a decrease in the migration and rejection rates. In fact, more

external requests raise the probability of having diverse leases at each time. This

issue reduces the probability of migration and rejection. The issue is observed in

Figures 4.6(a), 4.6(b) and thus we notice a slight decrease in rejection rate mainly

in Figure 4.6(b).

99

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

Request Size

M
ig
ra
ti
o
n
 R
a
te
 (
%
)

5.65.45.25.04.84.64.44.24.0

17.5

15.0

12.5

10.0

7.5

5.0

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(a)

Request Size

R
e
je
c
ti
o
n
 R
a
te
 (
%
)

5.65.45.25.04.84.64.44.24.0

40

35

30

25

20

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(b)

Duration (sec)

M
ig
ra
ti
o
n
 R
a
te
 (
%
)

700600500400300200100

15.0

12.5

10.0

7.5

5.0

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(c)

Duration (sec)

R
e
je
c
ti
o
n
 R
a
te
 (
%
)

700600500400300200100

45

40

35

30

25

20

15

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(d)

Ext. Request Inter-Arrival Rate

M
ig
ra
ti
o
n
 R
a
te
 (
%
)

0.240.220.200.180.160.140.120.10

17.5

15.0

12.5

10.0

7.5

5.0

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(e)

Ext. Request Inter-Arrival Rate

R
e
je
c
ti
o
n
 R
a
te
 (
%
)

0.240.220.200.180.160.140.120.10

40

35

30

25

20

Policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(f)

Avg Inter-Arrival Rate Local

M
ig
ra
ti
o
n
 R
a
te
 (
%
)

0.
15

0.
14

0.
13

0.
12

0.
11

0.
10

0.
09

0.
08

15

14

13

12

11

10

9

8

7

6

policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(g)

Avg Inter-Arrival Rate Local

R
e
je
c
ti
o
n
 R
a
te
 (
%
)

0.
15

0.
14

0.
13

0.
12

0.
11

0.
10

0.
09

0.
08

50

40

30

20

10

policy

PAP-RND

PAP-RTDP

RR

BCF-RND

LRF-RND

(h)

Figure 4.6: Respecting more valuable (deadline-constraint) users resulted from
different policies. The experiment is carried out by modifying (a),(b) the average
number of VMs, (c),(d) the average duration, (e),(f) the arrival rate of external
requests, and (g),(h) the arrival rate of local requests.

100

M. A. Salehi 4.5. SUMMARY

Table 4.3: 95% confidence interval (CI) of the average differences between PAP-
RTDP and PAP-RND related to Figure 4.6.

Figure 95% CI P-value

4.6(a) (2.4,3.8) <0.001
4.6(b) (9.3,12.7) <0.001
4.6(c) (2.6,4.3) 0.001
4.6(d) (5.9,12.5) 0.003
4.6(e) (0.14,7.8) 0.04
4.6(f) (2.1,16) 0.02
4.6(g) (0.02,3.2) 0.04
4.6(h) Not statistically significant 0.2

4.5 Summary

In this chapter we explored how resource contention can be avoided through re-

duction of the number of preemptions in InterGrid. Particularly, we consider

situations where some external requests are more valuable than others. For this

purpose, we proposed a preemption-aware workload allocation policy (PAP) in

IGG to proactively distribute external requests amongst RPs in a way that re-

source contention is reduced. Additionally, we investigated a dispatch policy that

regulates dispatching of external requests in a way that the probability of con-

tention for valuable requests is reduced. The proposed policies are knowledge-free

and do not impose any communication overhead to the underlying system.

We compared the performance of the proposed policies with a variety of other

policies. Experiment results indicate that PAP-RND and specifically PAP-RTDP

significantly decreases the number of preemptions. We observed that PAP-RTDP

leads to at least 60% improvement in VM preemptions comparing with other

policies. This decrease in number of preemptions improves the utilisation of the

resources and decreases average weighted response time of the external requests

(by more than 50%). PAP-RTDP, particularly, is better for more valuable ex-

ternal requests and effectively leads to fewer preemptions for valuable external

requests. Although PAP-RTDP, in general, preempts fewer VMs, PAP-RND re-

sults in better average response time for best-effort external requests. In fact, in

case of PAP-RTDP, since most of the preempted leases are best-effort, it does not

lead to minimum average response time. This indirectly represents the efficacy of

PAP-RTDP for more valuable external requests. We also noticed that changing

request size has little effect on the performance of scheduling policies.

This chapter provided scheduling policies in IGG to avoid and reduce resource

contentions. However, resource contention is inevitable, particularly when there

is a surge in demand from local and external requests. Therefore, in the next

chapter we provide an admission control policy that handles the side-effects of

101

CHAPTER 4. CONTENTION AVOIDANCE THROUGH SCHEDULING

resource contention, in terms of long response time for external requests.

102

Chapter 5

Contention Management Using

Admission Control in InterGrid

Resource owners are interested in accepting as many external requests as possi-

ble in order to maximise the utilisation. This increases the number of resource

contentions and preemption of external requests which in turn leads to long and

unpredictable response time for them. In these circumstances, the question that

arises is: what is the maximum number of external requests that can be ac-

cepted by an RP in a way that they can be completed within specified response

times. Admission control mechanisms can be employed to establish a predictable

contention management system through limitation on the number of external re-

quests accepted by an RP. In this chapter, we apply analytical queuing model to

derive a preemption-aware admission control policy that addresses this question.

5.1 Introduction

In Chapter 3, we leveraged preemption of external requests in favour of local

requests in InterGrid to assure that the local requests of an RP have priority

access to the resources. However, preemption mechanism increases the waiting

time and response time of external requests.

Long response time of external requests become more critical when an RP is

over-subscribed to the external requests. In this situation, arrival of local requests

causes more preemptions, and external requests are postponed in the scheduling

queue. This increases the waiting time of external requests in the queue and

consequently their average response time as shown in Figure 5.1.

In one hand, external users do not desire their requests being delayed because

of resources’oversubscription. On the other hand, resource owners are interested

103

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

Figure 5.1: Illustration of queue for external requests in each RP of InterGrid.

to accept as many external requests as possible to maximise their resource util-

isation. Therefore, the question that arises is: what is the maximum number of

external requests an RP can accept in a way that long response time is avoided?

In general, there are several approaches in resource sharing environments to

prevent long response times for requests. One approach is application of an ad-

mission control mechanism that prevents resources’oversubscription. As a result,

the average response time decreases.

Sandholm et al. [51] investigate how admission control can fulfil users’QoS

demands where there is a mixture of best-effort and QoS-constrained jobs. This

admission control policy accepts a new request if current requests can still re-

spect their QoS. Therefore, the overhead of feasibility test should be tolerated for

each arriving request. However, we investigate an admission control policy that

imposes less overhead on the system.

Gong et al. [7], provided a performance model to determine the run time of

an external task in a single processor of a Network of Workstations (NOW) [7]

where local and external requests coexist. Although the scenario is similar to the

one we consider, the main difference is that they assume one external request at

each moment (i.e., there is not any queue). Nonetheless, we focus on a scenario

where a stream of external requests arrives to the RP.

Other research works on admission control either assumes non-prioritised

environment, or did not consider the impact of VM preemption [41, 143, 144].

In this chapter we considers these issues and find out the ideal queue length

of external requests (i.e., ideal number of external requests) in each RP. In a

situation where the RP receives external requests beyond the ideal queue length,

104

M. A. Salehi 5.2. ANALYTICAL QUEUING MODEL

the external requests are sent back to IGG (presented as “Reject” in Figure 5.1)

for an alternative decision.

In this chapter, we propose a preemption-aware admission control policy

within the LRMS of an RP. The objective of the policy is to maximise the num-

ber of accepted external requests and prevent long response times for external

requests. We apply analytical queuing model to address this question.

5.2 Analytical Queuing Model

In this section, we describe an analytical model to determine the ideal queue

length for external requests within the LRMS of each RP (we consider each RP

as a Cluster). This section is followed by the proposal of an admission control

policy, built upon the analytical model provided. Table 5.1 gives the list of

symbols we use in this section along with their meanings.

Table 5.1: Description of symbols used in the queuing model.
Symbol Description
E(Wj) Expected waiting time of external requests in the LRM queue Cluster j
E(Tj) Expected service time of external requests in Cluster j
E(Rj) Expected response time of external requests in Cluster j
D Waiting threshold for external requests
Λj Arrival rate of external requests to Cluster j

µjl Service rate of local requests in Cluster j
µje Service rate of external requests in Cluster j
ω Mean duration of external requests
λj Arrival rate of local requests to Cluster j
ρje Λj/µ

j
e

ρjl λj/µ
j
l

α Scale parameter in Gamma distribution
β Shape parameter in Gamma distribution
θj Coefficient of Variance (CV) for service time of local requests in Cluster j

eji ith running slice for an external request in Cluster j

lji Mean duration of local request i in Cluster j
ratel Low-urgency rate
ul Average deadline ratio for low-urgency requests
uh Average deadline ratio for high-urgency requests

The queuing model that represents a gateway (IGG in InterGrid) along with

several non-dedicated Clusters (i.e., Clusters with shared resources between local

and external requests) is depicted in Figure 5.2. According to this figure, Cluster

j receives requests from two independent sources. One source is a stream of local

requests with mean arrival rate λj and the other is a stream of external requests,

which are sent by the gateway with mean arrival rate Λj.

The analytical model aims at determining the ideal queue length for external

requests in each Cluster in a way that the response time of external requests is

limited and the number of completed external requests is maximised. Our analysis

is based on the following assumptions:

105

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

λ1

LRMn

LRM1
Rej Λ1

Yes

No

λ

Λ
AC

 AC

GW

Λn

Yes

No

λ

Λ
AC

Rej

λn

 AC

.

.

.

Λg

K1

Cluster

1

Cluster

n

Kn

Figure 5.2: Queuing model for resource provisioning in a Grid with n Clusters.

• Requests can spread over all available resources in the Cluster (i.e., they

are moldable).

• Local requests are deadline-constraint non-preemptable and must be pro-

cessed when they are submitted. We assume an M/G/1 queue to model

the service time of local requests.

• External requests are submitted to a queue in each Cluster that can be

modelled as an M/G/1/K queue model.

In this situation, the analysis goal is finding the suitable value of Kj for

Cluster j in a way that the average response time for the requests in that queue

will be less than an appointed threshold (called waiting threshold). Thus, our

primary objective function is expressed as follows:

E(Rj) = E(Wj) + E(Tj) ≤ D (5.1)

where E(Rj) is the expected response time; E(Wj) and E(Tj) are the expected

waiting time and expected service time for external requests in Cluster j, respec-

tively. D is the threshold for average response time of external requests. We call

this factor as the waiting threshold. Over the next few paragraphs we discuss how

E(Wj), E(Tj) are obtained for Cluster j.

If we suppose that an external request, with overall runtime ω, is subject to

n preemptions before getting completed, then the service time (T) of the external

request e can be formulated as follows:

Tj = ej1 + lj1 + ej2 + lj2 + ...+ ejn + ljn + ε (5.2)

where lji is the duration of the local request i and eji is the ith running slice of

106

M. A. Salehi 5.2. ANALYTICAL QUEUING MODEL

the external request e in Cluster j and we have ej1 + ej2 + ... + ejn + ε = ω. Also,

ε is the last running slice of e. Given that the arrival rate of requests follows the

Poisson distribution, we can conclude that eji follows the exponential distribution

and n follows Gamma distribution [132]. Therefore, we have E(n) = λjω where

λj is the arrival rate of local requests in Cluster j. Thus, E(Tj) is determined

based on Equation 5.3.

E(Tj) = E(E(Tj|n)) = E(ω + lj1 + lj2 + ...+ ljn|n)

= E(ω + n·E(lj1))

= ω + λjωE(lj1)

(5.3)

where E(lj1) = 1/(µjl −λj) since it follows the M/G/1 queuing system. Hence, the

expected service time and variance of service time for external requests (E(Tj)

and V (Tj) respectively) are defined through Equations 5.4 and 5.5 [7]:

E(Tj) =
µjl ·ω
µjl − λj

=
ω

1− ρjl
(5.4)

V (Tj) =
ρjl

(1− ρjl)3
·
θ2
j + 1

µje
·ω (5.5)

where θj is the coefficient of variance (CV) of service time for local requests;

µje is the service rate of external requests; and ρjl is the queue utilisation for

local requests in Cluster j. According to Bose [145], the average waiting time of

external requests in the M/G/1/K queue is obtained based on Equation 5.6:

E(Wj) =
1

Λj

Kj−1∑
k=0

k·P j
d,k +

Kj

Λj

(P j
d,0 + ρje − 1)− E(Tj) (5.6)

where, ρje is the queue utilisation for external requests and is calculated based on

Equations 5.4 as follows:

ρje = Λj·E(Tj) =
ω·Λj

1− ρjl
(5.7)

Also in Equation 5.6, P j
d,k is the probability that a newly arriving external

request observes k requests waiting in the queue of Cluster j. This is irrespec-

tive of whether or not the external request joins the queue. P j
d,k is obtained as

follows [145]:

P j
d,k =

P j
∞,k

Kj−1∑
i=0

P j
∞,i

, k = 0, 1, ..., Kj − 1 (5.8)

107

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

Based on Equation 5.8, to obtain P j
d,0, we need P j

∞,0 and P j
∞,k. P j

∞,0 is

equivalent to the probability of zero length queue in an M/G/1 queue, which is:

P j
∞,0 = 1− ρje [132]. However, P j

∞,k is obtained according to Equation 5.9 [145].

P j
∞,k =

1

µje
·
(
ak−1·P j

∞,0 +
k−1∑
i=1

aKj−i·P
j
∞,i
)

(5.9)

where ajk is defined as follows:

ajk =

∫ ∞
0

(tλj)
k

k!
· e−tλj · bj(t)· dt (5.10)

bj(t) in Equation 5.10 is the probability density function (PDF) of the service

time for external requests in the Cluster j.

Gong et al. [7] showed that the service time of external requests in the pres-

ence of preemption in a Cluster follows a Gamma distribution. Therefore, we can

apply the moment matching to acquire the parameters of the Gamma distribu-

tion (scale(α) and shape(β)). In this case, αβ = E(Tj) and α2β = V (Tj) and

consequently α and β are obtained as follows:

αj =
ρjl (θ

2
j + 1)

µje(1− ρjl)2
, βj =

(1− ρjl)µ
j
l ·ω

ρjl (θ
2
j + 1)

(5.11)

Hence, bj(t) in Equation 5.10 can be calculated as follows:

bj(t) =
(t/α)β−1· e−t/α

α·Γ(β)
(5.12)

where Γ(β) is the Gamma function.

5.2.1 The Proposed Admission Control Policy

The analysis mentioned in the previous section can be adapted as the admission

control policy for external requests within the LRMS. The positioning of this

policy is demonstrated as “AC ” (admission control) in Figure 5.2.

According to Equation 5.1, solving the queuing model requires determining

the value of the waiting threshold (D), which is the upper bound of average

response time that can be tolerated for external requests. The value of D is

normally determined based on the amount of time each external request can

possibly wait. It is also possible for the RP’s administrator to appoint the value

of the waiting threshold. In this case, the proposed model and the policy can

108

M. A. Salehi 5.2. ANALYTICAL QUEUING MODEL

adaptively find the queue length for the external request in a way that the average

response time of the external requests will be less than the waiting threshold.

In this dissertation, to express the time that each external request can wait,

we define a deadline for each of them. Then, the waiting threshold is worked out

based on the deadline of the external requests.

To generates the deadlines for external requests we have categorised external

requests into low-urgency and high-urgency [38,146]. In practice, such categorisa-

tion can be based on the requests’criticality. In low-urgency requests the deadline

is significantly greater than the runtime of the requests (i.e., deadlineRatio =

deadline/runtime is high). By contrast, in high-urgency requests the deadline

ratio is low. Having the average deadline ratio for the low-urgency and high-

urgency requests, the value of waiting threshold in Equation 5.1 (D) is:

D = (ratel·ul·ω) + ((1− ratel)·uh·ω) (5.13)

where ratel determines the percentage of external requests with low-urgency; also

ul and uh are deadline ratios for low-urgency and high-urgency external requests,

respectively.

Then, the preemption-aware admission control policy (PACP), which is built

upon the analysis of Section 5.2, can be constructed. This policy is presented in

the form of pseudo-code in Algorithm 4. In the beginning of the Algorithm (step

1), waiting threshold (D) is defined as described earlier. Next, in steps 4-10, in

each iteration of the loop the queue length is increased by one until the average

response time (E(R)), in step 9, exceeds D.

Algorithm 4: Preemption-aware Admission Control Policy (PACP) in
Cluster j.

Input: Λj,θj,ω,λj,µ
j
e,µ

j
l ,ratel,ul,uh

Output: Kj (Queue length)
1 D ← (ratel ∗ ul ∗ ω) + ((1− ratel) ∗ uh ∗ ω);
2 Kj ← 0;
3 ExpectedResponsej ← 0;
4 while ExpectedResponsej < D do
5 /*calculating E(R) for a queue with length Kj in Cluster

j*/
6 σ ← 0;
7 for N j

q ← 0 to Kj − 1 do

8 σ+ = N j
q ·P

j

d,Nj
q
;

9 ExpectedResponsej ← 1
Λj
·σj +

Kj

Λj
(P j

d,0 + ρje − 1);

10 Kj ← Kj + 1;

109

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

The output of the algorithm is Kj, which is the ideal number of external

requests that can be admitted by Cluster j. Once Kj is obtained for Cluster j,

the LRMS of the Cluster will not accept any external requests beyond Kj.

In practice, the LRMS in a Cluster can obtain the required parameters for

PACP by analysing the Clusters’workload. Such parameters have been used in

similar researches [135,137].

Although we considered the Poisson arrival in the analysis, in the next section

we examine how efficient the provided analysis and the proposed policy is under

a real arrival model (i.e., non-Poisson).

5.3 Performance Evaluation

The performance evaluation of the policies are achieved in the context of Inter-

Grid. For this purpose, we consider the workload received by an IGG through

peering arrangements with other IGGs. IGG distributes the workloads amongst

the RPs (Clusters) where each RP has its own local users. The admission control

policy is embedded into the LRMS of each RP.

5.3.1 Performance Metrics

Violation Rate

This metric measures the percentage of external requests that waited beyond the

waiting threshold. Users are interested in a policy that results in less violation

rate. High values of this metric express less user satisfaction. The violation rate

of external requests in a Grid is calculated based on Equation 5.14.

V R =
(a· v) + r

a+ r
· 100 (5.14)

where a and r are the number of accepted and rejected external requests in

a Grid. v is the violation rate within the accepted external requests (0 ≤ v ≤ 1).

Completed External Requests

Admission control policies usually limit the number of requests accepted in a

Cluster. This, however, conflicts with the resource owner’s aim who benefits

from accepting as many requests as possible. Therefore, we analyse how different

admission control policies affect the number of completed external requests within

110

M. A. Salehi 5.3. PERFORMANCE EVALUATION

each Cluster and subsequently within a Grid.

5.3.2 Experimental Setup

We use GridSim [128], to evaluate the performance of the admission control pol-

icy. We consider a Grid of InterGrid with 3 RPs (Clusters) with 64, 128, and

256 processing elements and with different computing speeds (s1 = 2000, s2 =

3000, s3 = 2100 MIPS) respectively. These sizes are in accordance with the aver-

age demand of current scientific high performance computing applications [141].

Each Cluster is managed by an LRMS with a conservative backfilling sched-

uler to improve the resource utilisation [134]. All processing elements of each

Cluster have a single core CPU with one VM. Since we consider requests that

contain moldable applications, the number of VMs required by a request adapts to

the number of VMs available in the allocated Cluster and the duration (execution

time) of the request changes accordingly.

The performance of our admission control policy also depends on the schedul-

ing policy in the gateway (IGG) where incoming external requests are allocated

to different Clusters (see Figure 5.1). To focus on the impact of admission control

policies, we apply the round robin policy as the scheduling policy in IGG. Based

on this policy, the arrival rate of external requests to Cluster j is: Λj = Λg/n

where Λg is the arrival rate to a Grid and n is the number of Clusters within that

Grid.

Baseline Policies

We evaluate PACP against 3 other policies. Details of these policies are described

below:

• Conservative Admission Control Policy (CACP): As a baseline policy, this

policy admits as many requests as assigned by IGG. In fact, this policy

favours resource owners since it does not reject any external request with

the aim of maximising the number of completed external requests. From

the queuing model perspective, this policy considers an M/G/1/∞ queue

within each Cluster, where the queue length is infinite.

• Aggressive Admission Control Policy (AACP): The other baseline policy

considers the other extreme of spectrum where each Cluster accepts one

external request at any time and tries to finish it within its threshold. We

can argue that this policy favours accepted requests since it just tries to

minimise violation rate of accepted requests.

111

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

• Rate-based Admission Control Policy (RACP): Sharifian et al. [147] pro-

posed this policy which is the most similar to our policy in the area. In this

policy, the queue length is determined based on the service rate for external

requests and local request arrival rate in a Cluster (i.e., Nq = µe/λ). We

compare our proposed policy (PACP) with RACP to show its performance

in comparison with recent works in the area.

Workload Model

In the experiments conducted, a workload model based on the Grid Workload

Archive (GWA) [77] has been configured to generate a two-day-long workload of

bag-of-tasks requests. This model is based on traces of 7 Grids over a year and

is a good representative for Grid workloads.

For the sake of accuracy, each experiment is carried out 10 times by using

different workloads. The results of the experiments are analyzed from practical

and statistical perspectives. In the statistical analysis we applied T-student test

and we have verified the normality of the underlying data as well as equity of

variance. Also, we assured that the CV of all the reported results is less than

0.1.

In Table 5.2, different characteristics of the workload are described. Since the

distribution of local requests and external requests are independent of each other

in each Cluster, we mention them in distinct columns. The values of parameters

in Table 5.2 are chosen based on realistic values collected and analyzed by Iosup

et al. [77].

Table 5.2: Parameters of the workload model.
Input Parameter Distribution external Requests Local Requests

Inter-arrival Time Weibull (0.2 ≤ αe ≤ 3.2, βe = 7.86) (2 ≤ αl ≤ 10, βl = 7.86)
No. of Tasks Weibull (ae = 1.76, be = 2.11) (al = 1.76, bl = 2.11)

Task Duration Normal (60 ≤Me ≤ 110, σe = 6.1) (60 ≤Ml ≤ 110, σl = 6.1)

In each experiment, we change one characteristic of the workload, while other

characteristics are unchanged as follows:

• Arrival rate of local requests varies through changing αl (we term it local

scale which stands for the scale parameter in the Weibull distribution). For

external requests, we keep Me = 90 seconds and αe=1.7 (called external

scale). For local requests we keep Ml = 90 seconds.

• Task duration of local requests varies: We keep αe = 1.7, Me = 90 seconds,

and αl = 4.

112

M. A. Salehi 5.3. PERFORMANCE EVALUATION

• Arrival rate of external requests varies: We keep αl = 4, Ml = 90 seconds,

and Me = 90 seconds.

• Task duration of external requests varies: We keep αl = 4, Ml = 90, and

αe = 1.7.

There are also some points on the value of parameters in the workloads:

• In Table 5.2, by increasing αl and αe the inter-arrival time increases (i.e.,

requests arrive less often). Therefore, as we expect that external requests

arrive more frequently, we assign lower values of α to them.

• Mean duration of external tasks (ω), which is needed in Algorithm 4, is

ω = meanNumberofTasks ∗meanTaskDuration.

• To be realistic, the local workload assigned to each Cluster is proportional

to the Cluster capacity (i.e., bigger Clusters receive more and bigger local

requests). In fact, the values mentioned in Table 5.2 are the average charac-

teristics of the local workload on the Cluster with 128 processing elements.

On the Cluster with 64 processing elements, the mean task duration is de-

creased by 1 and the scale parameter (αl) is increased by 1. In the Cluster

with 256 processing elements, the mean task duration is increased by 1 and

the αl parameter is decreased by 1.

The GWA workload model does not have deadline for requests. Thus, similar

to [38, 146], we synthetically assign deadlines to low-urgency and high-urgency

external requests. The deadline ratio is distributed normally within each class of

the requests. In our experiments, we consider the deadline ratio for low-urgency

as: N(4, 1) and for high-urgency external requests as: N(2, 1). We executed the

experiments for different values of deadline ratio in low and high-urgency requests

and we got similar results. Finally, the arrival sequences of high-urgency and low-

urgency request classes are distributed uniformly throughout the workload.

5.3.3 Experimental Results

Violation Rate

In this experiment we report the violation rate for external requests when different

admission control policies are applied.

As we can see in all sub-figures of Figure 5.3, PACP resulted in less violation

rate when compared with other policies. Specifically, we observe a rise in the

113

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

violation rate as the average duration of tasks in the local and external requests

increases (Figures 5.3(a) and 5.3(c)). In Figure 5.3(b) and 5.3(d) we notice that

the violation rate in all policies decreases when the inter-arrival time of local and

external requests increase. In fact, in Figure 5.3(b), when the inter-arrival time of

local requests increases, fewer preemptions occur for external requests and thus

the violation rate decreases.

On the other hand, in Figure 5.3(d), as the external requests become less

frequent, fewer external requests join the queue and existing external requests

have more opportunities to complete before their deadline.

Task Duration Local Requests (sec)

V
io
la
ti
o
n
 R
a
te
 (
%
)

11010090807060

40

30

20

10

0

Policy

PACP

RACP

AACP

CACP

(a)

Local Scale

V
io
la
ti
o
n
 R
a
te
 (
%
)

10987654321

60

50

40

30

20

10

0

Policy

PACP

RACP

AACP

CACP

(b)

Task Duration Ext. Requests (sec)

V
io
la
ti
o
n
 R
a
te
 (
%
)

11010090807060

40

30

20

10

0

Policy

PACP

RACP

AACP

CACP

(c)

External Scale

V
io
la
ti
o
n
 R
a
te
 (
%
)

3.53.02.52.01.51.00.50.0

40

30

20

10

0

Policy

PACP

RACP

AACP

CACP

(d)

Figure 5.3: Violation rates resulted from different policies. The experiment is
carried out by modifying (a) the average local task duration (Ml) and (b) the
scale parameter (αl) in local requests. In (c) and (d) for external requests with
altering the mean task duration (Me) and the scale parameter (αe) as mentioned
in Table 5.2.

In all cases, the difference between PACP and other policies is more signifi-

cant when there is heavier load in the system, which shows the efficiency of PACP

when the system is heavily loaded. The only exception is when task duration for

external requests is long (more than 100 seconds in Figure 5.3(c)), which indicates

that when the external requests are long, the queuing policies cannot affect the

violation rate significantly. In the best case (in Figure 5.3(c), where the average

114

M. A. Salehi 5.3. PERFORMANCE EVALUATION

task duration is 80 seconds) we observe that PACP results in around 20% less

violation rate when compared to RACP. In other points (between 70 and 90), the

95% confidence interval (CI) of the average difference between RACP and PACP

is (14.79,18.56) where P-value<0.001.

This experiment also shows that although AACP accepts few external re-

quests, its violation rate is the highest. This is because in Equation 5.14, the

number of rejections is very high, therefore, the value of r dominates the result.

RACP in these experiments performs similarly to the CACP. Particularly, in Fig-

ure 5.3(d), since inter-arrival time of external requests is increased, admission rate

of RACP increases and approaches CACP. However, in Figure 5.3(a) and 5.3(c),

as service rate of external requests decreases, a greater difference appears between

RACP and CACP. In Figure 5.3(a), the 95% CI of the average difference between

RACP and PACP is (14.12,17.86) and P-value<0.001.

Completed External Requests

In this experiment, we report the percentage of external requests that are served.

Different sub-figures in Figure 5.4 show how various policies affect the number of

completed external requests from various aspects.

In general, we observe in all sub-figures of Figure 5.4 that AACP leads to

the least number of completed external requests (because of an excessive number

of rejections) whereas CACP results in the biggest number of completed external

requests (always 100%) because it does not reject any of the external requests.

We also notice that PACP outperforms RACP in almost all cases. The su-

periority of PACP is particularly remarkable when the local/external requests

are not long. According to Figures 5.4(a) and 5.4(c), the percentage of com-

pleted external requests reduces by increasing the task duration for both local

and external requests. Since PACP adaptively decreases the queue length, the

violation rate is minimised. Hence, the percentage of completed external requests

decreases. Similarly, in RACP, by increasing task duration of local or external re-

quests, service rate for external requests decreases and consequently, the number

of completed external requests reduces. However, these figures show that PACP

performs better in comparison with RACP.

The result of the 95% CI of the average difference between RACP and PACP

in Figure 5.4(a) is (14.12,17.86) where P-value<0.001; In this figure, the maxi-

mum difference between the two policies is around 25% when task duration for

local requests is 70 to 80 seconds. Moreover, the 95% CI of the average difference

between RACP and PACP in Figure 5.4(c) is (17.09,21.3) and P-value<0.001.

115

CHAPTER 5. CONTENTION MANAGEMENT IN ADMISSION CONTROL

Task Duration Local Requests (sec)

C
o
m
p
le
te
d
 E
x
t.
 R
e
q
u
e
s
ts
 (
%
)

11010090807060

100

90

80

70

60

Policy

PACP

RACP

AACP

CACP

(a)

Local Scale

C
o
m
p
le
te
d
 E
x
t.
 R
e
q
u
e
s
ts
 (
%
)

10987654321

100

90

80

70

60

50

40

Policy

PACP

RACP

AACP

CACP

(b)

Task Duration Ext. Requests (sec)

C
o
m
p
le
te
d
 E
x
t.
 R
e
q
u
e
s
ts
 (
%
)

11010090807060

100

90

80

70

60

Policy

PACP

RACP

AACP

CACP

(c)

External Scale

C
o
m
p
le
te
d
 E
x
t.
 R
e
q
u
e
s
ts
 (
%
)

3.53.02.52.01.51.00.50.0

100

90

80

70

60

Policy

PACP

RACP

AACP

CACP

(d)

Figure 5.4: Percentage of completed external requests resulted from different
policies. The experiment is performed by modifying: (a) the mean task duration
for local requests (Ml) and (b) the scale parameter (αl) for local requests. Also,
in (c) and (d) with altering the mean task duration for external requests (Me);
and scale parameter (αe) of inter-arrival time for external requests.

Figure 5.4(d) shows that PACP leads to completion of more external requests

in comparison with RACP. We notice that, as the external requests become less

frequent, PACP and RACP approach CACP. Finally, when the external scale

parameter is more than 2.0, all the external requests are accepted.

5.4 Summary

In this chapter, we explored a predictable admission control policy that deter-

mines the ideal number of external requests within an RP of InterGrid. The ideal

queue length is determined based on a proposed performance model in queuing

theory. Then, we proposed a preemption-aware admission control policy (PACP)

in the LRMS based on the performance model. We compared the performance

of the proposed policy (PACP) with 3 other policies. Results of the experiments

indicate that the PACP significantly decreases the violation rate for external re-

quests (up to 20%). Additionally, PACP leads to completion of more external

requests (up to 25%) in a two-day-long workload.

116

M. A. Salehi 5.4. SUMMARY

This chapter considers a situation where there is a surge in external requests

in RPs and provides an admission control policy to handle that. In the next

chapter, we investigate a situation where resources in an RP operate at low

utilisation and propose a contention-aware energy management mechanism for

that.

117

Chapter 6

Contention-aware Energy

Management in InterGrid

A considerable portion of the consumed energy in RPs is wasted because of idling

resources. Indeed, one main motivation for the RPs to share their resources with

external users in InterGrid is to avoid the resource wastage. Energy management

mechanisms can be deployed in RPs to deactivate lightly loaded resources and de-

crease the wastage. However, decreasing the number of active resources increases

the number of contentions and leads to long waiting time for external requests.

The question we investigate in this chapter is how the energy consumption of an

RP can be reduced without causing long waiting time for external requests. To

answer this question we propose an adaptive energy management policy within

the LRMS of an RP. The proposed policy adjusts the energy consumption of the

RP based on the performance demands.

6.1 Introduction

In general, resource providers often function at low utilisation due to resource

stranding and fragmentation [148]. Research studies revealed that the average

utilisation of current resource providers is between 30% to 50% [66,149] and the

rest of resources are wasted. This wastage incurs a remarkable operational cost

to resource providers, mainly because of their energy consumption. Particularly,

as providers are rapidly growing in size and power, efficient management of their

energy consumption is becoming more substantial.

This remarkable cost has recently raised the awareness about the energy

consumption within resource providers. Thus, both industry and academia are

seeking for energy efficient solutions in resource providers. Their overall goal is

119

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

reducing the energy consumption and adapting that to the user demands. Their

proposed solutions encompass a spectrum from efficiency in cooling infrastructure

and the hardware level to the resource management and algorithm design level.

Resource management solutions, in particular, were proven to be influential

on reducing the energy consumption of resource providers [150]. Utilisation of Vir-

tual Machine (VM) technology, as the resource provisioning unit, facilitates imple-

mentation of energy management policies in resource management systems [151].

VMs’capabilities in preemption and consolidation have been of special interest of

researchers to implement energy management policies [66,152–154]. VM consoli-

dation [66] is a resource management functionality through which under-utilised

resources are switched off and VMs running on them are migrated to other re-

sources.

In InterGrid, one reason that RPs are motivated to share their resources

with external requests is decreasing the resource wastage. However, there is still

possibility that resources in an RP operate at low utilisation. This specifically

can occur when there are many RPs within a Grid of InterGrid or the RP has

many resources while there is not a huge demand for them. However, switching

off resources and decreasing the number of active resources aggressively in an

RP, raises the likelihood of resource contention and leads to long waiting time

for external requests due to many preemptions. Arrangements are required in

RPs to dynamically switch on resources in a way that their energy consumption

is reduced, while external requests do not suffer from long waiting times.

Therefore, the research question that we investigate in this chapter is: How

the energy consumption of an RP in InterGrid can be reduced in a way that

external requests wait for a limited time and do not suffer from long waiting

time?

We answer this question by proposing an adaptive energy management pol-

icy that dynamically increases and decreases the number of switched on resources

in an RP. Specifically, the policy determines whether a new arriving local request

should be served via preemption of other requests, or through reactivation of

switched off resources. The proposed policy applies VM consolidation to save en-

ergy in circumstances that do not lead to long waiting time for external requests.

The policy employs fuzzy logic in order to adaptively derive the appropriate de-

cision.

Over the last few years, energy efficient resource management was exten-

sively studied. Many of these studies employed VM consolidation for energy

conservation. Another well-studied approach is the utilisation of dynamic volt-

age/frequency scaling (DVFS) technique.

120

M. A. Salehi 6.2. FUZZY INFERENCE SYSTEM

For instance, pMapper [66] provides an energy-aware application placement

platform in heterogeneous data centres that minimises energy and live migration

costs while meeting performance guarantees.

In this chapter, we consider Haizea [13] as the local scheduler of the RP, as

it is described in Chapter 7. We extend Haizea by adding energy management

components to it and incorporated our proposed policy into that. Extensive

experiments under realistic conditions indicate that the proposed policy signifi-

cantly reduces energy consumption without any major waiting time for external

requests.

6.2 Fuzzy Inference System

Fuzzy systems are based on fuzzy logic, which is a mathematical logic that deals

with degrees of truth rather than true/false values as in the Boolean logic. In

other words, fuzzy logic defines the concept of partial truth by values that range

between completely true (1) and completely false (0). Hence linguistic values

such as low, rather low, and high can be mathematically defined and employed

for expressing rules and facts in a human-like way of thinking [155]. Nowadays,

fuzzy logic is employed in numerous practical applications, such as control [156],

prediction [157], and inference [158] systems.

A fuzzy inference system maps a set of given inputs to an output using the

fuzzy logic [159]. This system utilises the concept of fuzzy sets in its mapping

process. A fuzzy set is a set in which elements have partial degree of membership.

A membership function is used to describe how each input value is mapped to a

degree of membership. More importantly, fuzzy systems carry out the mapping

through a set of condition statements which are in the general form of If-then

rules. In fact, these rules capture the imprecise mode of reasoning and describe

how human behave in similar situation in the system under consideration. An

example of a rule in a two-input, single-output fuzzy inference system can be in

the following form:

IF risk is very low AND consumption is high

THEN decision is low consolidation
(6.1)

where risk, consumption and decision are linguistic variables that charac-

terise the fuzzy sets of inputs and output. very low, high, and low consolidation

are linguistic values.

The maximum number of fuzzy rules in a fuzzy system depends on the num-

121

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

ber of inputs to the fuzzy system as well as the number of fuzzy sets defined for

each input. In fact, the maximum number of rules in a system is the product of

the number of fuzzy sets of the input variables. For example, if a fuzzy system has

A < p, q, r > and B < m,n > as inputs, then the maximum number of rules will

be 6. Rules can be created from mapping each element in the Cartesian product

of input fuzzy sets to the output fuzzy set. However, it is not compulsory that

the rules cover the whole possible combinations of the input fuzzy sets.

The structure of a fuzzy inference system, which is shown in Figure 6.1,

contains 4 main components as follows:

• Fuzzifier, which determines the membership degree of an input value for

each input fuzzy set.

• Fuzzy rule-base, which contains a set of If-then rules.

• Inference engine, that carries out the inference operations based on the

input values and the fuzzy rules.

• Defuzzifier, which converts the result of a fuzzy inference into a numeric

value. In practice, systems require only numeric values to function, there-

fore, the defuzzifier is needed [160].

In addition to these 4 main elements, in some systems preprocessing and/or post-

processing steps are also required to adapt the input and output values based on

the system conditions. According to this structure, the fuzzy inference is carried

Fuzzifier Defuzzifier
Inputs Output

Rule-base

Inference
Engine

P
reprocessing

P
ostprocessing

Figure 6.1: The structure of a fuzzy inference system.

out through the following steps:

1. For each input value, the fuzzifier obtains the membership value of that

variable for each input fuzzy set.

2. Firing strength (weight) of each rule is determined based on the resulting

value in step 1.

122

M. A. Salehi 6.3. PROPOSED MECHANISM

3. Based on the firing strength of each rule, the qualified output fuzzy set is

determined.

4. The defuzzifier generates a numeric output by aggregating the qualified

output fuzzy sets.

6.3 Proposed Energy Management Mechanism

In this section, we initially describe the proposed energy management policy.

Then, we discuss the implementation details of energy-aware Haizea (i.e., the

local scheduler of the RP) and how our proposed policy is incorporated into that.

6.3.1 Preemption-aware Energy Management Policy

The objective of the energy management policy is to reduce the energy consump-

tion within an RP, while the local requests served within their requested time

and external requests do not suffer from long waiting time [52].

To avoid long waiting time, we consider a situation where external requests

also have a predictable and limited waiting time. For that purpose, the system

administrator defines a maximum average waiting time (termed waiting threshold)

for the external requests. The value of the waiting threshold shows the amount of

time each external request can wait without suffering from long waiting time. It

is also possible for the RP’s administrator to appoint a value for waiting threshold

based on his/her discretion. In any case, the proposed model should consider the

threshold and schedule the external requests in a way that their average waiting

time will be less than that.

Here, we assume waiting threshold to be α times longer than the average

duration of external requests (i.e., waiting threshold = α· |duration| and α is

termed waiting factor). For example, the administrator can choose the waiting

threshold to be 5 times of the average duration of the external requests.

In this situation, resource acquisition for an arriving local request can be car-

ried out either via preemption of currently running external requests, or switching

on resources. Also, in circumstances that the resource wastage is high, VM con-

solidation can be applied to reduce the energy consumption.

Specifically, preemption is applied when the risk of waiting threshold viola-

tion for external requests is low. By contrast, when the violation risk is high, the

policy should switch on resources and offload the requests to them. As a result,

external requests are not preempted and their average waiting time does not in-

123

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

crease. Finally, when the energy consumption is high and the average waiting

time of external requests is sufficiently less than the waiting threshold, then the

VM consolidation can be applied to save energy.

The risk of violating waiting threshold and the energy consumption are de-

cisive variables for choosing an appropriate operation. These variables can be

expressed using linguistic values such as low, medium, high, and etc. Consider-

ing the fuzzy logic power in modelling the linguistic variables in a system [161],

we employ it to model the variables and infer the proper decision. Moreover, the

fuzzy approach provides the adaptable solution that rapidly reacts to workload

variations in the system.

The inputs of the proposed fuzzy engine are the violation risk and energy

consumption. The output of the fuzzy engine is a value that drives the decision

on how to allocate resources for an arriving local request. The output broadly

can be switching on resources, preemption, consolidation, or a combination of

these operations. We define violation risk of the waiting threshold as follows:

V =
τ

α·E
(6.2)

where α is the waiting factor, and E and τ are the average duration and av-

erage waiting time of external requests, respectively. E is calculated based on

Equation 6.3.

E =

N∑
i=1

ni· di

N∑
i=1

ni

(6.3)

where N is the number of external requests waiting in the system, ni is the

number of requested resources, and di is the duration required by the external

request i.

Also, τ in Equation 6.2 is defined based on Equation 6.4.

τ =

N∑
i=1

ni·wi

N∑
i=1

ni

(6.4)

where wi is the waiting time of the external request i. Values more than one for

violation risk (V > 1) indicates that external requests are waiting for more than

the threshold.

124

M. A. Salehi 6.3. PROPOSED MECHANISM

The second input of the fuzzy inference system helps in deciding about pre-

emption or switching on/off resources. For that purpose, we should know how

the currently switched on resources are being utilised. Therefore, we consider the

utilisation of the currently switched on resources (C) as the second input. C is

defined according to Equation 6.5:

C =
L

P∑
j=1

Tj

(6.5)

where P is the number of switched on resources; T is the latest completion time

of the current requests on resource j, and L is the total current load which is

calculated based on Equation 6.6.

L =
N∑
i=1

di·ni (6.6)

Values of C vary between [0, 1]. Low values for C shows that the switched on

resources are operating at low utilisation. By contrast, values near to 1 indicate

higher utilisation of the currently switched on resources. Based on the description,

the fuzzy reasoning system can be expressed as follows:

V × C → D

C = {V L,L,M,H, V H}

V = {LR,MR,HR, V HR}

D = {NP,QP,HP, 3QP,AP, LC,MC,HC}

(6.7)

where V L,L,M,H, V H indicate very low, low, medium, high, and very high

fuzzy sets for C. LR,MR,HR, V HR are fuzzy sets of V and stand for very low

risk, low risk, high risk, and very high risk, respectively.

D shows the output fuzzy sets of the fuzzy inference system which can range

from NP , which means no preemption and resources should be switched on,

QP , which means that quartile of the requested resources should be allocated

through preemption and the rest has to be allocated via switching on resources.

Similarly, HP and 3QP stand for half preemption and 3 quartile preemption.

AP fuzzy set stands for all preemption and indicates that all resources should be

allocated through preemption which implies that no additional resources should

be switched on. Finally, LC, MC, and HC fuzzy sets indicate low, medium,

and high consolidation of VMs, which help in the determination of the number

125

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

of resources that can be switched off.

Since there are 2 inputs with 4 and 5 fuzzy sets, the fuzzy rule-base has 20

rules. For instance, one rule in the fuzzy rule base is as follows:

if V is M and C is H then D is HP (6.8)

which means that if V is medium and C is high, then D is HP . This means

that half of the requested resources have to be allocated via preemption and the

other half through switching on resources. The fuzzy rule-base was formed based

on our expectation from the system behaviour. Then, these rules were fine-

tuned through extensive experiments and evaluating the outcomes in different

conditions. The entire rule-base is listed in Table 6.1.

Table 6.1: List of rules used in the fuzzy rule-base.
Number Violation Risk Utilisation Decision

1 LR VL HC
2 LR L HC
3 LR M MC
4 LR H LC
5 LR VH AP
6 MR VL MC
7 MR L LC
8 MR M LC
9 MR H HP
10 MR VH 3QP
11 HR VL HP
12 HR L HP
13 HR M QP
14 HR H QP
15 HR VH NP
16 VHR VL QP
17 VHR L QP
18 VHR M NP
19 VHR H NP
20 VHR VH NP

The functionality of the fuzzy inference system is expressed in Equation 6.9:

f(x) =

R∑
r=1

ȳr·µrC(x1)·µrV (x2)

R∑
r=1

µrC(x1)·µrV (x2)

(6.9)

where r indicates a fuzzy rule and R is the total number of rules in the rule-

base (i.e., R = 20); x1 and x2 are the current values of C and V , respectively, and

µrC(x1) and µrV (x2) show the membership value of the x1 and x2 in the membership

126

M. A. Salehi 6.3. PROPOSED MECHANISM

function of r th rule. Finally, ȳr expresses the center of fuzzy membership function

fired by rth rule from the output fuzzy set. f(x) covers values more than −1.

We used triangular membership function for all inputs and output variables,

as shown in Figure 6.2. Also, we implemented the fuzzy system using a singleton

fuzzifier, product inference engine, and center of gravity defuzzifier [161].

LR MR HR

0 0.25 0.5 0.75 1.0

μ

V

VHR

(a)

VL L M H VH

0 0.2 0.4 0.5 0.8 0.9 1.0

μ

C

(b)

NP QP HP 3QP AP LC MC HC

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

μ

D

(c)

Figure 6.2: Fuzzy sets considered for inputs and output in the proposed system.
(a) Violation risk (V), (b) Utilisation (C), and Decision (D).

It is worth noting that the proposed policy is not a scheduling policy. Indeed,

it is the “energy management” component of the LRMS, which works closely with

the scheduler but it is not the scheduler. The proposed policy determines how

resources should be allocated for a new local (high priority) request. Then, a

scheduling policy, such as backfilling, handles the scheduling of requests on the

existing resources.

6.3.2 Energy-awareness in Haizea

Haizea [13] is an open source platform that can be used as the scheduling backend

of a virtual infrastructure manager, such as OpenNebula [35], within an RP.

Haizea, by default, assumes that all resources are switched on and are ready

to be utilised. To add energy-awareness to the Haizea scheduler, this assumption

has to be relaxed. In the energy-aware Haizea, the assumption is that resources

are switched off initially. Then, as the time passes and the demand increases,

the resources are switched on. Accordingly, when there is not any scheduled

127

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

request on a resource, the resource is switched off. Adding these capabilities

entails significant modification in the architecture of Haizea.

As a result of these modifications, Haizea lease scheduler is equipped with

the following main functionalities:

• Switching on resources in an on-demand manner. Here, on-demand refers to

situation that the number of switched on resources is not adequate to serve

local requests. In our energy management policy, we have extended the on-

demand switching on resources also to situation that the risk of violation is

high.

• Switching off the resources when they are not required. This occurs when

there is not any scheduled request on a resource.

• VM consolidation which takes place when some resources operate at low

utilisation. In these circumstances, the VMs running on the target resources

have to be rescheduled and re-allocated. Then, the resource can be deac-

tivated. In the implementation, we apply VM consolidation on resources

that have the fewest number of leases scheduled on them.

• The scheduler was also modified in a way that it just considers switched

on resources at each moment. In other words, the scheduler is enabled to

dynamically add and remove resources from the scheduling.

Apart from adding the major functionalities mentioned above, there are many

other minor changes in the new structure. We uploaded the energy-aware version

of the Haizea to our web site1. Interested readers should be able to understand the

modifications clearly by downloading and reviewing the code and documentations.

We developed our system in a pluggable way that enables other researchers to

develop their own energy management policies.

6.3.3 Incorporating the Preemption-aware Energy Man-

agement Policy (PEMP) into the LRMS

After implementing the basic functionalities for energy-awareness in Haizea, the

policy proposed in Subsection 6.3.1 can be implemented and incorporated into the

Haizea. The pseudo code of the implemented policy is illustrated in Algorithm 5.

The algorithm is executed for each arriving local request and decides about

the resource allocation for the request. Additionally, it runs periodically to avoid

long waiting time for external requests or resource wastage in the RP.

1http://ww2.cs.mu.oz.au/∼mohsena

128

M. A. Salehi 6.3. PROPOSED MECHANISM

The algorithm inputs are: the average waiting time (τ), the average duration

(E), and the appointed waiting factor (α) for the external leases. The arriving

local request that has to be scheduled (req) is the other input of the algorithm.

The result of the algorithm is the proper operation that should be performed.

As we can see in the beginning of the algorithm, V and C are calculated

based on Equations 6.2 and 6.5, respectively. In line 3, the fuzzy reasoning is

invoked based on the values of C and V and the details discussed in Subsec-

tion 6.3.1. Then, from lines 4 to 18, the appropriate operation is performed via

post-processing on the output of the fuzzy engine (f , where f ≥ −1).

Algorithm 5: Preemption-aware Energy Management Policy (PEMP).

Input: α,τ ,P ,E,L,req
1 V ← τ/(α·E);
2 C ← L/(P ·T);
3 f ← FuzzyReasoning(V,C);
4 if f ≤ 1 then
5 if f < 0 then
6 Num← getNumNodes(req);

7 else if f > 0 and f ≤ 1 then
8 Num← getNumNodes(req) ∗ (1− f);

9 SwitchOnNodes(Num);
10 Preempt(getNumNodes(req)− Num);

11 else
12 /*Consolidation*/

13 if f > 2 then
14 Num← getNumNodes(req);

15 else Num← getNumNodes(req) ∗ (f − 1);
16 minNode← Required(req.strtTime);
17 if minNode ≤ (NumSwitchOnNodes− Num) then
18 Consolidate(Num);

The way resources are allocated to an arriving local request is driven by the

value of f . 0 < f < 1 shows the situation where resources should be provided via

switching on resources. As f approaches 1, fewer resources should get switched

on (line 8) and more resources should be allocated via preemption. Specifically,

f = 1 does not lead to switching on any resource and all resources should be

allocated via preemption. In lines 9 and 10, for a given request it is determined

how many of the VMs should be allocated through switching on resources and

how many should be provided through preemption of running VMs.

There are also some specific cases that we did not mention in the algorithm to

keep it simple and readable, however, we considered them in our implementation.

129

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

For example, in line 9, there may not be adequate resources in the RP to be

switched on. In this situation we switch on as many resources as we can and the

rest of the resources are allocated through preempting VMs.

f > 1 shows the situation that the violation risk is low in a way that VM

consolidation can be carried out. For consolidation (line 12 onwards), after decid-

ing how many of the resources can be consolidated (lines 13 to 15), the algorithm

must determine if switching off that many resources affect currently scheduled

local leases or not. Therefore, it calculates the minimum number of resources

required at that time (line 16). If switching off resources do not affect the local

leases (line 17), then the consolidation is carried out (line 18). For consolidation,

the algorithm uses a greedy approach and considers the resources that have min-

imum leases scheduled on them. Also, the algorithm assumes that in line 18 the

function Consolidate(Num) includes handling affected leases (i.e., preempting

and rescheduling them) within itself.

6.4 Performance Evaluation

Performance evaluation is achieved using the energy-aware Haizea, which has

been adopted as the local scheduler of the RPs. To be able to achieve extensive

experiments and evaluate the performance of the system under various workload

conditions, we conducted the experiments in the emulation mode of the Haizea.

6.4.1 Experimental Setup

To have a realistic evaluation, the experiments are carried out based on real traces

from the Blue Horizon cluster [162] in San-Diego Supercomputer Center (SDSC).

Therefore, we consider an RP with 512 single-CPU nodes, each having 1GB of

memory, and 1Gbps bandwidth between them.

Conservative backfilling [10] is used as the scheduling policy of the RP. We

also assume that each node can run one VM. However, our proposed policy en-

compasses multi-core systems where multiple VMs can exist on the same node.

Baseline Policies

We evaluate the proposed policy against 2 other policies, which are used as a

benchmarks. Details of these policies are described below:

• Greedy Energy Saver Policy (GESP): In order to maximise energy conser-

130

M. A. Salehi 6.4. PERFORMANCE EVALUATION

vation, this policy switches on the minimum number of resources required

for the local requests. Then, the external requests can be scheduled in the

remaining time slots (we call it scheduling fragments) of local leases.

• Starvation-aware Energy Saving Policy (SESP): This policy favours exter-

nal requests by trying to ensure that the waiting threshold is not violated.

Therefore, whenever the violation risk is high (V ≥ 1), the policy switches

on resources based on the number of resources required by the request.

In the implementation of PEMP, we have considered waiting factor as 5 (α = 5).

Workload Model

To have a combination of local and external requests, similar to Sotomayor et

al. [13, 17], we extract 30 days of job submissions from the trace (5545 submis-

sions). These requests are treated as external requests and then, an additional

set of local requests are interleaved into the trace.

For the sake of accuracy, we evaluate the performance of different policies un-

der various workload conditions. For that purpose, we keep the external requests

fixed and generate 72 different workloads by varying local request characteristics

as follows:

• ρ, the aggregate duration of all local requests within a workload, which is

computed as a percentage of the total CPU hours in the whole workload.

We investigate values of ρ = 5%, 10%, 15%, 20%, 25%, 30%. The reason that

we do not explore larger values for ρ is that, in practice, the RPs’utilisation

is between 30% to 50% [66, 149]. Considering that the trace’s utilisation

(external requests) is 34.8%, the overall utilisation (external and local) is

between 39.8% and 64.8%.

• δ, the average duration of local requests. In the experiments we explore

the values of δ = 1, 2, 3, 4 hours which is similar to the trace’s duration.

For generation of the duration of the local requests, we select the duration

randomly in the range of δ ± 30 minutes.

• θ, the number of nodes requested by each request. For this parameter we

use 3 distinct ranges, namely, small (between 1 and 24), medium (between

25 and 48), and large (between 49 and 72). We choose the number of

requested nodes for each request based on a uniform distribution.

• To realise the impact of RP size, we conducted the same experiments when

131

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

the number of nodes in the RP is different. Specifically, we consider situa-

tion that the RP has 144, 256, and 512 nodes.

Based on the above parameters, we can determine how many local requests

are generated. Using the number of generated local requests in 30 days, we can

find out the average arrival rate of the local requests in each day (λ). Then, the

individual interval between two local requests is randomly selected in the range

of (λ− 1 hour and λ+ 1 hour).

To investigate the impact of each parameter, in each experiment, we modify

one of the above parameters while keeping the rest constant. When we modify ρ,

we keep δ = 3 hours and θ = medium. When δ is changed, we keep ρ = 15% and

θ = medium. Finally, when θ is modified, the values of other parameters are:

ρ = 15% and δ = 3 hours. It is worth mentioning that changes in δ and θ are

performed in a way that the aggregate duration of all local requests (ρ) remains

constant. This implies that increasing δ or θ lead to fewer local requests.

The results of the experiments are studied from the practical and statistical

perspectives. In statical analyses we applied T-student tests and we ensured the

normality of the underlying data.

Overheads involved in dealing with VMs such as suspend/resume time, and

boot up and shut down time are also considered by the scheduler and they are cal-

culated according to Chapter 3. To measure the energy consumption of the clus-

ter, we use the consumption information provided by the results of SPECpower

benchmark2. Based on these information, the consumption of a resource with

similar configuration is on average 117 watts, when it is utilised.

6.4.2 Experimental Results

Energy Consumption

In this experiment we measure the amount of energy consumed by each policy

to run the workload trace. To measure the energy consumption, we calculate the

overall time that the RP’s resources were switched on and we report the results

in kWh.

Figure 6.3, expresses the amount of energy consumed when different policies

are applied. In all subfigures of this figure, we notice that GESP leads to the

lowest energy consumption since it conservatively switches on resources just when

they are required by the local requests.

2http://www.spec.org/power-ssj2008/

132

M. A. Salehi 6.4. PERFORMANCE EVALUATION

More specifically, Figure 6.3(a) illustrates that the PEMP remarkably con-

sumes less energy than SESP (around 18% or 4000 kWh) when a considerable

portion of requests are local (more than 25%). However, PEMP and SESP have

a similar performance when the proportion of local requests is low (less than

25%). In fact, when the proportion of local requests is low, preemption does

not take place frequently, therefore, external requests have more opportunity for

running. Thus, policies that try to avoid violation are not applied and result into

the similar amount of consumed energy.

Proportion of Local Request (%)

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
k
W
h
)

30252015105

20000

18000

16000

14000

12000

10000

Policy

SESP

GESP

PEMP

(a)

Local Request Duration (hrs)

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
k
W
h
)

4.03.53.02.52.01.51.0

18000

17000

16000

15000

14000

13000

12000

11000

Policy

SESP

GESP

PEMP

(b)

Average Request Size

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
k
W
h
)

large medium small

17000

16000

15000

14000

13000

12000

11000

10000

Policy

SESP

GESP

PEMP

(c)

No. of Nodes

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
k
W
h
)

500400300200100

16000

15000

14000

13000

12000

11000

10000

Policy

SESP

GESP

PEMP

(d)

Figure 6.3: Energy consumption of different policies. The experiment is per-
formed by modification of: (a) the percentage of time taken by local requests (ρ)
where δ = 3 hours and θ = medium, (b) the average duration of local requests
(δ) changes (in hours) where ρ = 15% and θ = medium, (c) the average size of
local requests (θ) where ρ = 15% and δ = 3, and (d) the number of nodes in the
RP varies where ρ = 15% and θ = medium and δ = 3.

In Figure 6.3(b) and 6.3(c), we observe a decrease in the energy consumption

of GESP. The reason is that the GESP switches on resources when there is a local

request. However, when local requests are long (Figure 6.3(b)) or their size are big

(Figure 6.3(c)), fewer local requests are generated, as discussed in Section 6.4.1,

to keep the proportion of local requests constant. Accordingly, fewer resources

are switched on and thus the energy consumption is reduced.

133

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

Additionally, in Figure 6.3(b) and 6.3(c), we notice that PEMP considerably

consumes less energy than SESP. Particularly, when local requests are short (Fig-

ure 6.3(b)), the difference is more significant. T-test analysis between PEMP and

SESP, in Figure 6.3(b), for durations smaller than 4 hours shows that 95% confi-

dence interval of the average difference is (193.5, 2830.1) kWh (P-value<0.001).

Also, 95% confidence interval of the average difference between PEMP and SESP,

in Figure 6.3(c), is (360.8, 2030) kWh (P-value=0.04). These values suggest that

the difference between PEMP and SESP is statistically and practically significant.

In fact, when the local requests are small or short, more gaps remain for external

requests to be scheduled. Thus, the violation risk of external requests is reduced

and leads to more consolidation opportunities and less energy consumption.

In Figure 6.3(b), we notice that the energy consumption resulted from PEMP

rises as the duration of the local requests increases (when the duration is 4 hours).

The reason is that when the local requests are long (i.e., their average duration

increases), external leases are postponed in scheduling for a long time. Therefore,

resources have to remain switched on for longer time, which causes more energy

consumption.

In Figure 6.3(d), we observe that GESP energy consumption changes when

the number of nodes increases to 256. However, further increase of the nodes

to 512 does not change its consumption. The reason is that GESP performs

independently from number of nodes and the increase of consumption from 144

to 256 is because 144 nodes were not sufficient even to serve local requests. Also,

we notice that the difference between PEMP and SESP becomes more significant

as the number of nodes in the RP increases. This shows the efficiency of PEMP,

specifically for larger RPs.

Results of the experiment, in all subfigures of Figure 6.4, reveal that PEMP

is performing very close to SESP. However, the energy consumption resulted from

these policies (see Figure 6.3) show that PEMP leads to less energy consump-

tion without increasing the violation rate. Additionally, in all of the subfigures,

as expected, GESP leads to very high violation rates due to switching on few

resources.

In Figure 6.4(d), we observe a sharp decrease of violation rate in all policies

when the number of nodes in the RP increases from 144 to 256. The reason is

that 144 nodes were not sufficient to run this workload. Therefore, in all the

policies we notice a high violation rate (more than 70%). However, when there

are adequate number of nodes the impact of different policies is visible.

134

M. A. Salehi 6.4. PERFORMANCE EVALUATION

Violation Rate

This experiment measures the percentage of violations from the appointed waiting

threshold. For this purpose, we report the percentage of the external requests

whose waiting times were beyond the waiting threshold.

Proportion of Local Request (%)

V
io
la
ti
o
n
 R
a
te
 (
%
)

30252015105

90

80

70

60

50

40

30

20

10

0

Policy

SESP

GESP

PEMP

(a)

Local Request Duration (hrs)

V
io
la
ti
o
n
 R
a
te
 (
%
)

4.03.53.02.52.01.51.0

90

80

70

60

50

40

30

20

10

0

Policy

SESP

GESP

PEMP

(b)

Average Request Size

V
io
la
ti
o
n
 R
a
te
 (
%
)

large medium small

90

80

70

60

50

40

30

20

10

0

Policy

SESP

GESP

PEMP

(c)

No. of Nodes

V
io
la
ti
o
n
 R
a
te
 (
%
)

500400300200100

90

80

70

60

50

40

30

20

10

0

Policy

SESP

GESP

PEMP

(d)

Figure 6.4: Percentage of violations from waiting threshold when different policies
are applied. The experiment is performed by modification of: (a) the percentage
of time taken by local requests (ρ) where δ = 3 hours and θ = medium, (b)
the average duration of local requests (δ) changes (in hours) where ρ = 15% and
θ = medium, (c) the average size of local requests (θ) where ρ = 15% and δ = 3,
and (d) the number of nodes in the RP varies where ρ = 15% and θ = medium
and δ = 3.

Subfigures of Figure 6.4, express that the violation rate of SESP and PEMP

are almost unchanged as ρ, δ, and θ vary. This does not mean that the violation

rate is not dependent on these parameters. In fact, it explains how adaptively

resources are added to the system, in a way that the violation rate does not

change significantly. In other words, in these policies the number of switched on

resources are changed as ρ, δ, and θ varied (see Figure 6.3) and, therefore, the

violation rate does not vary significantly.

135

CHAPTER 6. CONTENTION-AWARE ENERGY MANAGEMENT

6.5 Summary

In this chapter, we investigated a contention-aware energy management policy

for RPs in InterGrid. Our proposed energy management policy (PEMP) ap-

plies a fuzzy inference system to determine if the resources for a request have

to be allocated through switching on resources, preemption, consolidation, or a

combination of these operations.

We extended the Haizea scheduler to consider the energy consumption issues

in its scheduling. Then, we implemented the proposed energy management policy

(PEMP) in the Haizea and evaluated that under realistic conditions. In the

next chapter, we will explain how preemption mechanism can be implemented in

InterGrid to resolve the contention between local and external requests.

136

Chapter 7

Realising Contention-awareness

in InterGrid

This chapter presents the realisation of the contention-aware scheduling in Inter-

Grid where resource contention occurs between external and local requests within

the RPs. InterGrid uses a lease-based provisioning model where each lease con-

sists of several virtual machines. The implementation enables RPs to increase

their resource utilisation through contributing resources to InterGrid without de-

laying local users. Additionally, several contention-aware scheduling policies are

implemented and evaluated in this environment.

7.1 Introduction

InterGrid aims to provide a software platform for interconnecting islands of vir-

tualised Grids. It provides resources in the form of VM-based leases that enable

users to have customised execution environments [130].

A lease in the context of InterGrid is an agreement between resource provider

and resource consumer whereby the provider agrees to allocate resources to the

consumer according to the lease terms presented by the consumer [13]. InterGrid

creates one lease for each user request. Virtual Machine (VM) technology is a

way to implement lease-based resource provisioning [13].

RPs in InterGrid are motivated to contribute resources to the InterGrid envi-

ronment to increase their resource utilisation and revenue. However, they would

like to ensure that the requirements of their local requests are met. Therefore,

resource provisioning in InterGrid is carried out for two types of users, namely lo-

cal users and external users. Local users send their requests to the local resource

management system (LRMS) of the RP to access resources. External users send

137

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

their requests to IGG to access larger amount of resources. In InterGrid, each

request is contiguous and must be served with resources of a single RP.

The mixture of local and external requests within RPs of InterGrid leads to

origin-initiated resource contention. The problem of origin-initiated contention

in InterGrid is addressed through preemption of external requests in favour of

local requests. However, VM preemption has considerable side-effects, includ-

ing preemption overhead and long waiting time for external requests. However,

contention-aware scheduling can proactively resolve the contention to alleviate

preemption side-effects.

To realise the contention-aware scheduling in InterGrid, we consider a sce-

nario where local and external users’leases are created on top of the physical

infrastructure in form of VMs. Users can request leases with different character-

istics in terms of number of VMs, memory size, and execution environment (i.e.

operating system).

The work in this chapter describes the design and implementation of the

contention-aware scheduling for InterGrid. The work specifically realises the ar-

chitecture proposed in Chapters 1 and 3.

7.2 InterGrid Architecture

This thesis is proposed based on the InterGrid architecture, which enables re-

source sharing across multiple Grids. The architecture of InterGrid, which is

illustrated in figure 7.1, presumes that each Grid is composed of several resource

providers (RPs). RPs can be in the form of a Cluster, SMP, or a combination

of them. Each RP is managed independently and has its own local users while

contributes resources to InterGrid. The Local Resource Management System

(LRMS) is the resource manager that handles resource provisioning for local and

external requests within each RP.

Resource sharing amongst the Grids is achieved through predefined arrange-

ments, known as peering, in addition to a coordinator for each Grid, known as

InterGrid Gateway (IGG). Figure 7.1 illustrates how multiple Grids can be in-

terconnected through InterGrid Gateways (IGGs). Peering arrangement between

IGGs was initially inspired from principles of the Internet’s policy-based rout-

ing. Similar idea is applied to interconnections of Grids in activities involving

offload and redirection of resource requests from one Grid to another. Nonethe-

less, there are prominent differences between packet routing and redirection of

Grid requests. While Internet routing considers only data packets, Grid inter-

138

M. A. Salehi 7.2. INTERGRID ARCHITECTURE

LRMS

LRMS

RP1 RP2 RP1 RP2

RP1

RP2
RP3

Grid A

Grid B
Grid C

IGG1

IGG2 IGG3

LRMS LRMS LRMS

LRMS LRMS

Figure 7.1: High-level view of the InterGrid components.

connection involves managing requests with numerous attributes, which implies

more complexity. Furthermore, a Grid infrastructure has its policies regarding

how resources are allocated to users of that Grid and to peering Grids.

Peering arrangements with other grids is handled by IGGs. This arrangement

coordinates the adoption of resources from different Grids. An IGG is aware of the

peering terms between Grids, selects suitable Grids that can provide the required

resources, and replies to resource requests from other IGGs through allocation of

resources to them. Provisioning rights over RPs inside a Grid are delegated to

IGG and enable it to schedule arriving external requests on the RPs.

Distributed Virtual Environment Manager (DVE Manager) is a user level tool

in the InterGrid architecture. Users who wish to access InterGrid level resources

(i.e. external users) employ this tool to interact with IGG and acquire resources.

The DVE Manager handles monitoring of the resources that are allocated to

the user and the adaption of resource allocations based on the user application’s

demands.

7.2.1 IGG Structure

IGG is the core part of InterGrid and has been implemented in Java. A high-level

view of its components is depicted in Figure 7.2.

One important component in this structure is the Scheduler, which imple-

139

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

Scheduler
(Provisioning and Peering)

P
e
rs

is
te

n
ce

 (

Ja
va

 D
e
rb

y)

Virtual Machine Management

Emulator

Management and Monitoring

C
o

m
m

u
n

ic
a
to

r

IaaS
provider Eucalyptus OpenNebula

Figure 7.2: Internal structure of the InterGrid Gateway.

ments provisioning policies and peering with other IGGs. The scheduler schedules

arriving external requests on the available RPs. The scheduling decisions are or-

dered to the RPs through the Virtual Machine Manager (VMM) interface.

VMM implementation is generic, so RPs can implement their own virtual in-

frastructure manager such as OpenNebula. Within the LRMS of an RP, a specific

virtual infrastructure manager along with a local scheduler performs operations

such as creation, start, and stop of VMs. Currently, the VMM was implemented

in the LRMS to interact with OpenNebula [35] and Eucalyptus [54] to manage

local resources. Moreover, interfaces have been implemented for IGG that enable

it to interact with Grid’5000 [33] as a Grid middle-ware and a Cloud Amazon

EC21 as a Cloud Infrastructure as a Service (IaaS) provider. An emulated LRMS

for testing and debugging purposes was also developed.

The persistence database is used for storing information of IGG such as VM

templates and peering arrangements. The Management and Monitoring provide

command-line tools to configure and manage IGG. The Communication Mod-

ule provides an asynchronous message-passing mechanism between IGGs, which

makes IGGs loosely coupled and fault-tolerant.

7.2.2 Resource Allocation Model

In this section, we describe the resource acquisition steps for a request in Inter-

Grid. The process is different for external and local users. The workflow for

1http://aws.amazon.com/ec2

140

M. A. Salehi 7.2. INTERGRID ARCHITECTURE

resource allocation for external requests in InterGrid is illustrated in Figure 7.3,

and can be described as follows:

LRMS InterGrid
Gateway

(IGG)

DVE
Manager

InterGrid
Gateway

(IGG)

LRMS

1.  Delegate
Provisioning Rights

1.  Delegate
Provisioning Rights

2. External
User Request

3. Resource
Request

LRMS

1.  Delegate
Provisioning Rights

4. Allocate Resources
Based on Peering

arrangements

5. Allocation
Details

6. Allocation
Details

7. Deployment

Figure 7.3: Resource allocation steps for external user requests in InterGrid.

1. Periodically, an RP advertises resources availabilities in the registry of IGG.

The advertisement also implies delegation of the provisioning rights of the

resource to IGG.

2. An external user initiates a request through a DVE Manager to acquire

resources from InterGrid. The request is in the form of a lease that describes

the required resources to deploy. Each request in InterGrid has the following

characteristics:

• Number of virtual machines.

• Duration of the request.

• Deadline of the request (optional).

3. If the individual Grid cannot provide the required resources possibly be-

cause of oversubscription, then IGG chooses a peering Grid, based on the

peering agreements, from which the resources can be allocated.

4. Once the VMs are allocated by IGG, the DVE is given permission and other

deployment information (e.g., IP address) to deploy them at the scheduled

time.

The resource acquisition procedure for local users of the RP is less complicated

and can be explained as follows:

141

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

1. Local users send their requests to the LRMS of their RP. This can be

achieved using any user-level interface provided by each RP.

2. The local scheduler serves requests using the available resources.

3. In case the resources of the RP are leased to external requests, the LRMS

preempts external leases in favour of local requests, using the policies de-

scribed in Chapter 3.

7.3 System Design and Implementation

This section provides implementation details of the contention-awareness in In-

terGrid. We describe design and implementation choices used in InterGrid.

7.3.1 Virtual Infrastructure Manager

Since InterGrid operates based on virtualisation technology, RPs also operate

based on VM resource provisioning. In our implementation, we consider the

open source OpenNebula [35] as the virtual infrastructure manager to handle the

VMs life-cycle across an RP. OpenNebula operates as the main component of

the LRMS and provides a software layer on top of the hypervisor, and enables

dynamic provisioning of resources in an RP.

The OpenNebula architecture has been designed to be flexible and modular

in order to support various hypervisors and infrastructure configurations within

an RP. It provides web and command-line interfaces that allows local users to

conveniently request leases. For each user request, OpenNebula starts, manages,

and stops VMs according to the provisioning policies in place. OpenNebula ar-

chitecture includes three main elements.

The core, which is responsible for managing the VMs’life-cycle by performing

basic operations such as start, migrate, monitoring, and terminate [163].

The capacity manager consists of pluggable policies that determine the VM

placement across an RP. The default capacity manager in OpenNebula provides

a simple VM placement and load balancing policies. In particular, it uses an im-

mediate provisioning model, where virtualised resources are allocated at the time

they are requested, without the possibility of requesting resources at a specific

future time.

Virtualiser access drivers provide the abstraction for the underlying virtual-

isation layer by exposing the general functionalities of the hypervisor (e.g. start,

142

M. A. Salehi 7.3. SYSTEM DESIGN AND IMPLEMENTATION

migrate, terminate). As a result of this component, OpenNebula is able to work

with various hypervisors such as Xen, KVM, and VMware.

OpenNebula is equipped with databases for keeping VM templates. A tem-

plate file consists of a set of attributes that defines a Virtual Machine. Open-

Nebula needs a shared storage to operate. The shared storage model requires

the head node and hosts to share the VM directories and the Image Repository.

Typically, these storage areas are shared using a distributed file system such

as NFS [164], GlusterFS [165], and etc. A shared storage reduces VM deploy-

ment times and enables live-migration, but it can also become a bottleneck in

the infrastructure and degrade the VMs performance, especially for performing

disk-intensive workloads.

7.3.2 Virtualisation Infrastructure

Along with the virtual infrastructure manager, a virtualisation infrastructure (i.e.

hypervisor) is required in each node of the RP to provide VMs. Specifically, the

utilisation of OpenNebula enables deployment of different hypervisors in an RP.

In our implementation, we use Kernel-based Virtual Machine (KVM) [100]

as the hypervisor within each node of the RPs. KVM is a hardware-assisted, fully

virtualised platform for Linux on X86 hardware that has virtualisation extensions.

By installing KVM, multiple execution environments (guest virtual machines from

different disk images) can be created on top of each physical node. Each of these

virtual machines has a private virtualised hardware, including a network card,

storage, memory, and graphics adapter.

7.3.3 Scheduling in IGG

The sequence diagram of invocations in IGG classes to accept and schedule an

external request is shown in Figure 7.4. For the sake of clarity, this figure just

shows parts of the whole provisioning process that occurs in IGG.

When a message is received by an IGG, it is handled by a central compo-

nent, called Post Office, which spawns one thread for each message. In the case

that the received message is an external request, the spawned thread invokes the

scheduler in the Request Scheduler class. At this stage, the scheduling is carried

out by invocation of the handleRequest method, which extracts the request from

the message and determines the appropriate RP for dispatching it. This invoca-

tion calls the appropriate method based on the configured virtual infrastructure

managers (OpenNebula in our setting). In the last step, the virtual infrastructure

143

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

Post Office ReqScheduler OpenNebula LocalManager

enableSched(msg)

submit(req)

rcvMsg(msg)

handleReq(req)

assign(req)

acknowledge

Figure 7.4: Schedule of external user requests in IGG.

manager submits the request to the local scheduler located in the RP.

7.3.4 Local Scheduler

The critical part of an LRMS is a scheduler that has to allocate resources across

an RP efficiently. The local scheduler should be aware of the contention between

local and external requests within an RP.

As mentioned earlier, OpenNebula, as the virtual infrastructure manager

in the RPs, offers an immediate provisioning model, where virtualised resources

are allocated at the time they are requested. However, resource provisioning in

InterGrid implies requirements that cannot be supported within this model, such

as resource requests that are subject to priorities, capacity reservations at specific

times, and variable resource usage throughout a VM’s lifetime. Additionally,

in smaller RPs not all requests can be allocated immediately due to resource

shortage.

Haizea is an open source scheduler developed by Sotomayor et al. [17] that

employs VM-based leases for resource provisioning. The advantage of Haizea is

that is considers overheads of deploying VMs (e.g., suspension and resumption)

in the scheduling. It enables resource providers to provide advance-reservation

leases (to guarantee resource availability) along with best-effort leases (to increase

resource utilisation) where advance-reservation leases have preemptive priority

over best-effort leases.

We adopt Haizea as the local scheduler of the LRMS in RPs. As a result, the

144

M. A. Salehi 7.3. SYSTEM DESIGN AND IMPLEMENTATION

scheduling capability of the virtual infrastructure manager (i.e. OpenNebula) is

extended and enables the LRMS to recognise the contention between local and

external requests that occurs in the RP. More importantly, adopting Haizea as

the local scheduler enables lease of resources to external requests in a best-effort

manner while respecting allocation of resources to local requests in their requested

time interval. When a contention occurs, the scheduler resolves it through pre-

emption of external lease(s) and vacation of resources to serve the local request.

In this way, the local scheduler operates as the scheduling back-end of OpenNeb-

ula. It also employs backfilling scheduling strategy along with VMs’management

abilities (i.e., suspend, resume, and migrate) to efficiently schedule the leases and

increase the resource utilisation.

Although the local scheduler described enables recognition of the contention

between local and external requests and resolves it using preemption, the policy

used does not consider the side-effects caused by preemption. Therefore, in the

next step, we implemented different preemption policies (as discussed in Chap-

ter 3) in the local scheduler that proactively detects the resource contentions and

try to reduce their impact. These policies decrease the number of resource con-

tentions take place and increase the resource utilisation in an RP. We have imple-

mented the following contention-aware preemption policies for the local scheduler:

• MLIP (Näıve): This policy tries to minimise the contention by reducing the

number of requests affected by the preemption. Thus, this policy preempts

large leases regardless of the overhead imposed for their preemption.

• MOV: The second preemption policy that we have implemented sought to

minimise the overall overhead time imposed to the system by preempting

VMs. Implementation of this policy is based on the selection of a set of

leases for preemption that result in the minimum overhead time. For such

purpose, we calculate the overhead imposed by preemption of each lease,

then preempt leases with minimum overhead.

• MOML: This policy takes into account both the number of contentions as

well as the overhead time imposed to the system by preemption of different

leases. Implementation of this policy involves two rounds. In the first round,

the overhead imposed by preempting each external lease is calculated. In

the second round, leases are sorted based on the imposed overhead, then,

the minimum number of leases are selected by considering the overhead of

preempting each lease.

The sequence diagram of invocations between local scheduler classes is shown

in Figure 7.5. The scheduling process in the local scheduler starts by receiving a

145

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

LocalManager LeaseSched VMsched Mapper PreemptionPolicy ResourcePool

assign(Req)

reqLease(req)
schedule(req)

map(req)

sortLeases()

preemptOrder

mapping

VMRsrv(req)

reservation

startVMs(req)

Figure 7.5: Schedule of local requests in the local scheduler.

lease request either from local or external user (through IGG) in the LocalManager

class.

The manager requests the LeaseScheduler class to schedule the lease request.

Then, the schedule method in the VMScheduler class is called which schedules

local and external requests. For local requests VMs are scheduled based on the

requested time interval. External requests are allocated in the first vacant space.

The map function in the mapper class maps requested resources to the physi-

cal resources based on their availability times. When the mapper class handles a

local requests, if there is not enough resources, then the mapper calls the Preemp-

tionPolicy to determine the preferred order of preempting external leases. The

order is determined based on the preemption policy discussed above. Then, the

mapper can perform the mapping and returns the mapping list to the VMSched-

uler. Using the mapping information, the VMScheduler calls the VMRsrv and

updates the scheduling information of the resources. After that, the lease can be

started by calling the startVMs method in the ResourcePool class. Additionally,

the LeaseScheduler is informed to update all the affected leases in the scheduling

table.

7.4 Performance Evaluation

The testbed for performance evaluation of the implemented system is as follows:

• A four-node cluster as the RP. Worker nodes are 3 IBM System X3200 M3

machines, each with a quad-core Intel Xeon x3400, 2.7 GHz processor and

4 GB memory. The head node, where the LRMS resides, is a Dell Optiplex

146

M. A. Salehi 7.4. PERFORMANCE EVALUATION

755 machine with Intel Core 2 Duo E4500, 2.2 GHz processor and 2 GB of

memory.

• The host operating system installed in the server nodes is the CentOS 6.2

Linux distribution. Also, the operating system in the head node is Ubuntu

12.4.

• All the nodes are connected through a 100 Mbps switched Ethernet network.

• We used OpenNebula 3.4 and Haizea version 1.1 as the virtual infrastructure

manager and the local scheduler, respectively.

• Qemu-KVM 0.12.1.2 is used as the hypervisor on each server.

• GlusterFS is used as the cluster file system. It aggregates commodity stor-

ages across a cluster and forms a large parallel network file system [165].

The disk images needed by the VMs and the memory image files (created

when a VM is suspended) are stored on the shared file system.

The scenario we consider in our experiment involves an InterGrid with 3 IGGs

with peering arrangements established between them, as illustrated in Figure 7.6.

IGG1 has the cluster as the RP and users from IGG2 and IGG3 request leases

through their DVE manager. Based on the peering arrangements, IGG1 provides

them resources. IGG1 receives these requests in form of external requests and

they are allocated resources through the LRMS of the RP. However, the RP has

its own local requests that have more priority than the external ones. Information

of the lease requests received by the LRMS are explained in the Table 7.1.

LRMS

IGG2

IGG1

IGG3

RP

Local
User

External
User

Figure 7.6: Evaluation scenario based on 3 InterGrid Gateways.

To be able to follow the order of events occurring in the system and demon-

strate their impact, we perform the evaluation on 7 lease requests that are submit-

147

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

ted to the RP. Each row of the table shows the arrival time, number of requested

processing elements, amount of memory, duration, and request type (i.e., local or

external). We consider 00:00:00 as the start of the experiment (i.e., the arrival

of the first request) and the arrival time of other requests are proportional to the

start time of the experiment. All of these lease requests use a ttylinux disk image

located on the shared storage.

Table 7.1: Characteristics of lease requests used in the experiments.
Request ID Arrival Time No. Nodes Memory (MB) Duration (s) Type

1 00:00:00 3 256 3600 External
2 00:05:00 1 128 5400 External
3 00:06:00 2 128 5400 External
4 00:08:00 1 256 5400 External
5 00:08:50 2 64 2400 External
6 00:09:40 3 128 3600 External
7 00:12:00 5 128 3600 Local

7.4.1 Evaluation Results

In the first experiment, we demonstrate how our implementation enables Inter-

Grid to resolve the origin-initiated contention between local and external requests.

It shows the effect of preempting existing external leases on a virtualised physical

testbed to satisfy the requirements of an arriving local request. For such purpose,

we compare the situation where there is not any preemption policy (NOP) against

the situation where the MOML preemption policy is applied. In the former, the

local request (request ID: 7) is rejected, whereas in the latter, external leases

(request ID: 5, 6) are preempted and vacate resources for the local requests. We

notice that the local request request is served without being delayed. Addition-

ally, the RP could utilise its resources more efficiently by leasing them to the

external requests.

More specifically, Figure 7.7 indicates how the MOML contention resolution

policy allocates resources to the local request in comparison with NOP. In fact,

the vertical axis in this figure shows how the resource utilisation varies while the

workload is running while the horizontal axis presents the overall makespan of

the workload execution.

In the beginning, the resource utilisation rapidly increases to 100% for both

policies due to allocation of resources to the arriving external requests (requests

1 to 6 in Table 7.1). As the time passes, we observe that the resource utilisation

gradually drops to 0% as the requests are completed. However, we can see that

the resource utilisation reduction is sharper for NOP than MOML. Indeed, when

the resources are 100% utilised and the local request arrives, the MOML policy

148

M. A. Salehi 7.4. PERFORMANCE EVALUATION

Makespan (s)

U
ti
li
z
a
ti
o
n
 (
%
)

80
00

70
00

60
00

50
00

40
00

30
00

20
00

10
000

100

80

60

40

20

0

Policy

MOML

NOP

Figure 7.7: Illustration of contention resolution in InterGrid using MOML policy
against a scenario where no contention resolution is applied (NOP). The vertical
axis shows how the resource utilisation varies over the time using these policies.
The horizontal axis shows the overall makespan to execute the requests.

preempts external requests and schedules them after the local request. After

completing the local request, the preempted external requests are resumed. As

a result, the MOML policy operates with high utilisation for longer time to run

the local request. Additionally, as it is presented in the Figure 7.7, preemption

of external request in favour of local requests, and resuming at a later time leads

to longer makespan for the MOML policy. We expect that an increase in the

number of local requests raises the resource utilisation as well as makespan of the

external requests.

As discussed in Chapter 3, various contention resolution policies (preemp-

tion policies) preempt different leases that result in different amount of resource

contention and overhead time. Hence, in the second experiment we evaluate the

efficacy of the implemented policies from the overhead and resource contention

aspects. Specifically, we measure how many resource contentions are resulted

from different policies and how the makespan is affected in each policy. Addi-

tionally, we determine the overhead imposed to the system by suspension and

resumption operations on the preempted leases.

In Table 7.2 the number of resource contentions as well as the amount of

overhead resulted from MLIP, MOV, and MOML policies are listed. As we can

see, the MLIP policy affects 2 leases and the overall size of memory should be

written/read to/from memory is 1152 MB. Knowing that the read/write through-

put of our Gluster file system is 40MB/s [165], the overhead of suspending and

149

CHAPTER 7. REALISING CONTENTION-AWARENESS IN INTERGRID

Table 7.2: Number of resource contention (lease preemption), overhead, and
makespan resulted from applying different preemption policies.

Policy Preempted Leases Overhead (s) Makespan (s)

MLIP {1, 6} 57.6 7800
MOV {5, 2, 3} 25.6 8479

MOML {5, 6} 25.6 7800

resuming these leases is 57.6 seconds. The MOV policy aims at minimising the

overall preemption overhead. Therefore, it preempts leases that impose mini-

mum overhead to the system (i.e., {5, 2, 3}) and the amount of memory that is

de-allocated and snapshot on the disk is 512 MB, which implies 25.6 seconds over-

head. MOML affects just two leases ({5, 6}) while results in 512 MB of memory

suspension and resumption overhead. The comparison of the results from differ-

ent policies indicates that the selection of different preemption policies affects the

number of contentions and time overhead imposed to the system.

7.5 Summary

This chapter presented the realisation of the contention resolution in InterGrid

where local and external leases coexist in RPs. The system prototype shows

how an RP can increase its resource utilisation by accepting external requests

without affecting the local requests. The provided implementation also realises

the contention-aware preemption policies for the RPs discussed in Chapter 3.

Evaluation of these preemption policies indicated the impact of these policies on

the number of resource contentions as well as amount of imposed overhead.

150

Chapter 8

Conclusions and Future

Directions

This chapter summarises the research work as well as the major findings of this

dissertation. Moreover, research topics that have emerged during this research

but have not been addressed in this dissertation are discussed.

8.1 Discussion

At the outset of this dissertation, we focused on a general challenge: requests

from different origins contend to access resources in a federated Grid environ-

ment. Particularly, the case of InterGrid, where resources are provided based on

virtual machines (VMs), was considered. In InterGrid, resource contention oc-

curs between local and external requests within each resource provider and local

requests have priority over external ones. We approached the challenge by consid-

ering preemption mechanism to resolve the contention and to meet requirements

of local (i.e., high priority) requests. However, preemption mechanism affects

the performance of external (i.e., low priority) requests. Therefore, side-effects of

preemption mechanism, including long waiting time for external requests, as well

as imposed overhead of preemption were taken into consideration in the proposed

solutions.

In this regard, this dissertation explored research works undertaken on con-

tention management in distributed systems, including Clusters, Grids, and Clouds,

and enumerated several characteristics of existing mechanisms, such as their op-

erational model, architectural views, context, type of resource contention, and

placement of the mechanism in the resource management system. This explo-

ration revealed:

151

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

• Various types of resource contentions and approaches to resolve them.

• The impact of different elements of a resource management system in re-

solving the contention.

• The applicability and challenges of preemption mechanism to resolve dif-

ferent types of resource contentions.

The exploration also revealed a lack of a comprehensive scheme that considers all

side-effects of resource contention and meets the requirements described earlier.

Based on the lessons learned, we recognised the potential impact of local

scheduling, global scheduling (meta-scheduling), admission control, and energy

management units on the resource contentions in a resource management sys-

tem. We also learned that emergence of resource provisioning based on virtual

machine technology has posed the preemption as a predominant solution for re-

source contentions.

Therefore, we proposed a comprehensive contention management scheme

that handles the resource contention through different components of resource

management system. This scheme includes two main strategies; the first strategy

avoids contentious situation by establishing contention-awareness in the schedul-

ing of users’ requests. The second strategy handles side-effects of resource con-

tention mainly in terms of long waiting time for external requests. Specifically,

the second strategy considers two main circumstances that lead to long waiting

time for external requests. One situation deals with the scenario where there is a

surge in demand from local users in resource providers. The other one deals with

situation that energy management mechanisms are applied within the resource

providers. The proposed strategies reside in the local scheduler, meta-scheduler

(InterGrid Gateway), admission control, and energy management units of the

resource management system.

We first presented the feasibility of the VM preemption approach in resolving

resource contention between local and external requests within the local scheduler

of resource providers. We recognised two side-effects caused by the preemption

mechanism, that are increase in the waiting time of external requests and overhead

time imposed to the system. To understand the overhead time of preempting

VMs, we modelled the overhead time imposed for performing different operations

on the preempted VMs, such as suspension, and migration.

We also noticed that preemption of different external requests impacts the

number of request contentions takes place, waiting time of external requests,

and overall overhead time imposed to the system. Considering these impacts, we

proposed preemption policies that determine appropriate requests for preemption.

152

M. A. Salehi 8.1. DISCUSSION

Specifically, we proposed the MOML policy that mitigates both the imposed

overhead time and the number of resource contentions.

To avoid resource contention, in the gateway level (IGG), we proposed a

probabilistic scheduling policy, called workload allocation policy that proactively

distributes external requests on different resource providers in a way that reduces

the number of resource contentions occurring in a Grid. Moreover, we investigated

a situation where some of external requests are more valuable than others and

we would like to further decrease the likelihood of preemption for them. Thus, a

dispatch policy is proposed along with the scheduler that regulates the dispatching

order of external requests in a way that the probability of preemption for more

valuable external requests is decreased.

Results of the comparison with other scheduling policies indicate that the

workload allocation policy, specifically when it is applied along with the dispatch

policy, significantly (at least 60%) decreases the number of resource contentions.

Additionally, the workload allocation policy along with the dispatch policy signif-

icantly reduces the likelihood of preemption for more valuable external requests.

Preemption mechanism resolves the resource contention. However, it in-

creases the risk of long waiting time for external (low priority) requests. This

particularly can occur when there is a surge in demand from external and local

users. To manage this side-effect, we proposed a policy in the admission control

unit of resource providers that determines the ideal number of external requests

that can be accepted and completed within a limited waiting time and without

being starved. Experimental results indicated that the proposed policy signifi-

cantly reduces the rate of long waiting time for external requests (up to 20%)

comparing to a situation where all requests are accepted. Additionally, this pol-

icy leads to completion of more external requests (up to 25%) comparing with a

situation where external requests are accepted conservatively.

In contrast to circumstances that there is a surge in demand, when the re-

source providers operate at low utilisation they desire to decrease their energy

consumption. However, decreasing the number of active resources increases re-

source contention and its side-effects, mainly in terms of long waiting time for

external requests. To counter such effect, we proposed a contention-aware energy

management policy that adapts the energy consumption of a resource provider

based on users’ performance demands and without causing long waiting time for

external requests. For an arriving request, the policy determines if the resources

should be allocated through switching on resources, preemption of current ex-

ternal requests, consolidation, or a combination of these operations. Experimen-

tal results reveal that the policy reduces the energy consumption in a resource

153

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

provider up to 18% (4000 kWh), over the course of 30 days, and without signif-

icant violation from waiting threshold for external requests, when compared to

other baseline policies.

We realised the preemption-based contention management scheme by pre-

senting a system prototype in InterGrid. The system demonstrates how a re-

source provider can increase the utilisation of its resources by accepting external

requests and preempting them when there are not sufficient resources to serve lo-

cal requests. The prototype also realises the contention-aware preemption policies

within the resource provider. Evaluation of these preemption policies indicated

the impact of these policies on number of resource contentions as well as amount

of imposed overhead.

8.2 Future Directions

The focus of this dissertation was on contention management in virtualised fed-

erated Grids. There are still open issues that have not been addressed in this

dissertation and can serve as a starting point for future research.

8.2.1 Contention-aware Peering Policy

This dissertation studied contention-aware scheduling in the local scheduler level

and meta-scheduling (i.e., IGG) levels. It would be relevant to consider contention-

aware scheduling between Grids.

As mentioned earlier, in InterGrid resource sharing between Grids is achieved

based on pre-defined peering agreements that denote the conditions for resource

sharing. In a practical setting, an InterGrid Gateway (IGG) has peering arrange-

ments with several other IGGs. In this situation, an IGG should choose the

best peer Grid to redirect a given request. Currently, IGG chooses the provider

that offers earlier start time for the request. However, it does not consider the

probability of resource contention in the destination Grid. A contention-aware

peering policy that proactively schedules requests on other Grids by considering

the likelihood of resource contention in the destination Grid can be effective and

is worth of investigation.

8.2.2 Contention Management for Workflow Applications

This dissertation proposes contention resolution mechanisms for situation where

requests are independent of each other.

154

M. A. Salehi 8.2. FUTURE DIRECTIONS

One important case to investigate is a system where users’ requests are in

form of workflow applications [166], where a precedence order exists between

tasks. Therefore, a task cannot start until all its parent tasks complete. Running

a workflow application requires creation of multiple requests, where there are

dependencies between them. Contention management in such a system requires

investigation of specific policies that consider the dependency between multiple

requests.

8.2.3 Price-based Contention Management Policies

Although we studied the resource contention challenge in the InterGrid context,

the problem exists in any form of distributed system that supports distinct QoS

levels for users’ requests. Particularly, the resource contention problem exists in

Cloud computing (IaaS1 providers) where there are certain priorities and pricing

between their different service levels. For instance, Amazon EC22 provides Spot,

On-demand, and Reserved VM instances. Spot instances in Amazon EC2 can be

terminated (canceled), if the price goes beyond the user bid. In a smaller Cloud

(e.g., a private Cloud), Spot VM instances can potentially be terminated in favour

of On-demand or Reserved requests [123]. In these circumstances, application

of an appropriate contention-aware scheduling policy can help in reducing the

number of VM preemptions, which results in more user satisfaction and increases

resource utilisation and revenue for the Cloud provider. Therefore, contention-

aware scheduling policies are required to optimally fulfill this demand of Cloud

providers.

Another possibility towards priced-based policies can be exploring admission

control mechanisms that decide whether or not a low priority request can be

accepted or not. An example of a similar work in the area is the research un-

dertaken by Percival et al. [41], where a resource intensive request is accepted if

it can compensate the loss of earning resulting from not admitting several small

requests.

8.2.4 Contention Management for Co-allocated and Adap-

tive Requests

This dissertation considers situation that the requests are rigid and have to be

served within one resource provider. Accordingly, for preemption, the whole

request has to be preempted.

1Infrastructure as a Service
2http://aws.amazon.com/ec2

155

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

A possible future direction is relaxing these assumptions. Relaxing the first

assumption implies having Moldable [167] and Malleable [168] requests. In the

former, the number of required resources can be determined at its start time.

In the latter, the number of allocated resources can vary during its execution.

Resolving resource contention in both cases requires new mechanisms due to the

features of these requests. Particularly, malleable requests enable performing

partial preemption of requests, which affects the way contention management

policies operate.

By relaxing the second assumption, requests can be co-allocated [169], which

means serving requests with resources from several providers at the same time.

Contention management and preemption for these requests needs coordination of

different parts of a request co-allocated on several resource providers. Addition-

ally, the cost of performing various preemption scenarios, such as suspension and

migration, should be determined for this circumstance.

8.2.5 Grid Level Admission Control

In Chapter 5, an admission control mechanism was applied in the resource provider

level. The idea of applying admission control mechanisms can be extended to the

InterGrid Gateway (IGG) level. In this circumstance, the admission control mech-

anism would be able to prevent resource contentions by not accepting requests

from other peer Grids. In fact, such admission control mechanism adapts the

amount of resources that can be offered to peer Grids to the workload condition

of the resource providers.

Another usage of such mechanism can be resolving the inter-domain-initiated

contention (as describe in Chapter 2) between peer Grids.

8.2.6 Dynamic Preemption Decisions

In Chapter 3, possible scenarios for VM preemption, such as suspension and

migration, were discussed. In fact, in that case the operation to be performed on

the preempted VM was determined based on the type of user request.

As a future direction, it would be interesting to investigate mechanisms that

dynamically decide about the appropriate operation to be performed on a pre-

empted VM. This decision can be based on characteristics of the request and

the system. For instance, for a data-intensive request, it might be better to

suspend and queue it in the source provider rather than migrate it to another

provider. Nonetheless, for a request whose QoS demands cannot be met in the

156

M. A. Salehi 8.2. FUTURE DIRECTIONS

source provider, it would be useful to migrate it to a more powerful provider to

satisfy its QoS demand.

157

References

[1] M. De Assunção, R. Buyya, and S. Venugopal, “InterGrid: A case for
internetworking islands of Grids,” Concurrency and Computation: Practice
and Experience, vol. 20, no. 8, pp. 997–1024, 2008.

[2] M. de Assunçao, “Provisioning techniques and policies for resource sharing
between grids,” Ph.D. dissertation, University of Melbourne, Department
of Computer Science and Software Engineering, 2009.

[3] M. D. Assunção and R. Buyya, “Performance analysis of multiple site re-
source provisioning: effects of the precision of availability information,”
in Proceedings of the 15th International Conference on High Performance
Computing (HiPC’08), 2008, pp. 157–168.

[4] B. Lawson and E. Smirni, “Multiple-queue backfilling scheduling with pri-
orities and reservations for parallel systems,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 29, no. 4, pp. 40–47, 2002.

[5] K. Li, “Optimal load distribution in nondedicated heterogeneous cluster and
grid computing environments,” Journal of System Architecture, vol. 54, pp.
111–123, 2008.

[6] R. Novaes, P. Roisenberg, R. Scheer, C. Northfleet, J. Jornada, and
W. Cirne, “Non-dedicated distributed environment: A solution for safe
and continuous exploitation of idle cycles,” Scalable Computing: Practice
and Experience, vol. 6, no. 3, pp. 15–26, 2001.

[7] L. Gong, X. Sun, and E. Watson, “Performance modeling and prediction
of nondedicated network computing,” IEEE Transactions on Computers,
vol. 51, no. 9, pp. 1041 – 1055, 2002.

[8] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi, “Prediction of resource avail-
ability in fine-grained cycle sharing systems empirical evaluation,” Journal
of Grid Computing, vol. 5, no. 2, pp. 173–195, 2007.

[9] P. Ruth, P. McGachey, and D. Xu, “Viocluster: Virtualization for dynamic
computational domain,” in Proceedings of International IEEE Conference
on Cluster Computing (Cluster’05), USA, 2005, pp. 1–10.

[10] Q. Snell, M. J. Clement, and D. B. Jackson, “Preemption based backfill,”
in Proceedings of 8th International Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP), 2002, pp. 24–37.

159

REFERENCES

[11] J. Moore, D. Irwin, L. Grit, S. Sprenkle, and J. Chase, “Managing mixed-
use clusters with cluster-on-demand,” Duke University Department of Com-
puter Science, Tech. Rep., 2002.

[12] F. Hermenier, A. Lèbre, and J. Menaud, “Cluster-wide context switch of
virtualized jobs,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC ’10), USA, 2010, pp.
658–666.

[13] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution and
leasing using virtual machines,” in Proceedings of the 17th International
Symposium on High Performance Distributed Computing, USA, 2008, pp.
87–96.

[14] M. Zhao and R. Figueiredo, “Experimental study of virtual machine migra-
tion in support of reservation of cluster resources,” in Proceedings of the 3rd
International Workshop on Virtualization Technology in Distributed Com-
puting, 2007, pp. 5–11.

[15] H. Ong, N. Saragol, K. Chanchio, and C. Leangsuksun, “Vccp: a trans-
parent, coordinated checkpointing system for virtualization-based cluster
computing,” in IEEE International Conference on Cluster Computing and
Workshops, (CLUSTER’09), 2009, pp. 1–10.

[16] M. Amini Salehi, B. Javadi, and R. Buyya, “Qos and preemption aware
scheduling in federated and virtualized grid computing environments,”
Journal of Parallel and Distributed Computing (JPDC), vol. 72, no. 2, pp.
231–245, 2012.

[17] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Resource
leasing and the art of suspending virtual machines,” in Proceedings of the
11th IEEE International Conference on High Performance Computing and
Communications, USA, 2009, pp. 59–68.

[18] L. Field and M. Schulz, “Grid interoperability: the interoperations cook-
book,” in Journal of Physics: Conference Series, vol. 119. IOP Publishing,
2008, pp. 120–139.

[19] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and I. M. Llorente, “A
comparison between two grid scheduling philosophies: EGEE WMS and
grid way,” Multiagent Grid Systems, vol. 3, pp. 429–439, 2007.

[20] S. Venugopal, R. Buyya, and L. Winton, “A grid service broker for schedul-
ing e-science applications on global data grids,” Concurrency and Compu-
tation: Practice and Experience, vol. 18, no. 6, pp. 685–699, 2006.

[21] S. Gabriel, “Gridka tier1 site management,” International Conference on
Computing in High Energy and Nuclear Physics (CHEP’07), pp. 94–103,
2007.

[22] H. Nakada, H. Sato, K. Saga, M. Hatanaka, Y. Saeki, and S. Matsuoka,
“Job invocation interoperability between naregi middleware beta and glite,”

160

M. A. Salehi REFERENCES

in Proceedings of the 9th International Conference on High Performance
Computing, Grid and e-Science in Asia Pacific Region (HPC Asia’07),
2007.

[23] P. Shih, H. Chen, Y. Chung, C. Wang, R. Chang, C. Hsu, K. Huang, and
C. Yang, “Middleware of Taiwan UniGrid,” in Proceedings of the ACM
Symposium on Applied Computing. ACM, 2008, pp. 489–493.

[24] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” International Journal of High Performance Computing Applica-
tions, vol. 11, no. 2, pp. 115–128, 1997.

[25] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: The condor experience,” Concurrency and Computation: Practice and
Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[26] F. Sacerdoti, M. Katz, M. Massie, and D. Culler, “Wide area cluster moni-
toring with ganglia,” in Proceedings of International Conference on Cluster
Computing, 2003, pp. 289–298.

[27] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid infor-
mation services for distributed resource sharing,” in Proceedings of 10th
IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC’01), 2001, pp. 181–194.

[28] T. Hey and A. E. Trefethen, “The UK e-science core programme and the
Grid,” Future Generation Computer Systems (FGCS), vol. 18, no. 8, pp.
1017 – 1031, 2002.

[29] R. Kubert and S. Wesner, “Service level agreements for job control in high-
performance computing,” in International Multiconference on Computer
Science and Information Technology, 2010, pp. 655 –661.

[30] R. Schneider, G. Faust, U. Hindenlang, and P. Helwig, “Inhomogeneous,
orthotropic material model for the cortical structure of long bones modelled
on the basis of clinical ct or density data,” Computer Methods in Applied
Mechanics and Engineering, vol. 198, no. 27-29, pp. 2167 – 2174, 2009.

[31] C. Vázquez, E. Huedo, R. S. Montero, and I. M. Llorente, “Federation
of TeraGrid, EGEE and OSG infrastructures through a metascheduler,”
Future Generation Computing Systems, vol. 26, no. 7, pp. 979–985, 2010.

[32] H. Li, D. L. Groep, and L. Wolters, “Workload characteristics of a multi-
cluster supercomputer,” in Proceedings of 10th International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP’04), 2004, pp.
176–193.

[33] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: a large scale
and highly reconfigurable experimental Grid testbed,” International Jour-
nal of High Performance Computing Applications, vol. 20, no. 4, p. 481,
2006.

161

REFERENCES

[34] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of the Maui Sched-
uler,” in Job Scheduling Strategies for Parallel Processing, 2001, vol. 2221,
pp. 87–102.

[35] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and I. M. Llorente,
“OpenNebula: The open source virtual machine manager for cluster com-
puting,” in Open Source Grid and Cluster Software Conference, USA, 2008.

[36] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[37] J. Walters, B. Bantwal, and V. Chaudhary, “Enabling interactive jobs in
virtualized data centers,” Cloud Computing and Applications, vol. 1, 2008.

[38] S. Garg, C. Yeo, A. Anandasivam, and R. Buyya, “Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers,”
Journal of Parallel and Distributed Computing, vol. 71, no. 6, pp. 732 – 749,
2011.

[39] A. Barak and A. Shiloh, “The mosix2 management system for linux clusters
and multi-cluster organizational grids,” Hebrew University of Jerusalem,
Tech. Rep., 2007.

[40] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh, “Spruce: A system
for supporting urgent high-performance computing,” Grid-Based Problem
Solving Environments, pp. 295–311, 2007.

[41] X. Percival, C. Wentong, and L. Bu-Sung, “A dynamic admission control
scheme to manage contention on shared computing resources,” Concurrency
and Computing: Practice and Experience, vol. 21, pp. 133–158, 2009.

[42] M. Silberstein, D. Geiger, A. Schuster, and M. Livny, “Scheduling mixed
workloads in multi-grids: the grid execution hierarchy,” in Proceedings of
15th Symposium on High Performance Distributed Computing, 2006, pp.
291–302.

[43] S. Garg, S. Venugopal, and R. Buyya, “A meta-scheduler with auction based
resource allocation for global grids,” in 14th IEEE International Conference
on Parallel and Distributed Systems, (ICPADS’08), 2008, pp. 187–194.

[44] L. Amar, A. Barak, E. Levy, and M. Okun, “An on-line algorithm for
fair-share node allocations in a cluster,” in Proceedings of the 7th IEEE
International Symposium on Cluster Computing and the Grid, Brazil, 2007,
pp. 83–91.

[45] M. Salehi and R. Buyya, “Adapting market-oriented scheduling policies for
cloud computing,” in Proceedings of the 10th international conference on
Algorithms and Architectures for Parallel Processing-Volume Part I, 2010,
pp. 351–362.

162

M. A. Salehi REFERENCES

[46] M. D. Assunção, A. D. Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,” in
Proceedings of the 19th International Symposium on High Performance Dis-
tributed Computing (HPDC09), 2009, pp. 141–150.

[47] B. Beeson, S. Melniko, S. Venugopal, and D. G. Barnes, “A portal for grid-
enabled physics,” in Proceeding of the 28th Australasian Computer Science
Week (ACSW’05), 2005, pp. 13–20.

[48] A. Oram, Ed., Peer-to-Peer: Harnessing the Power of Disruptive Technolo-
gies. Sebastopol, CA, USA: O’Reilly & Associates Inc., 2001.

[49] Y. Kwok, S. Song, K. Hwang et al., “Selfish grid computing: game-theoretic
modeling and nas performance results,” in IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’05), vol. 2, 2005, pp. 1143–
1150.

[50] S. Ontañón and E. Plaza, “Cooperative case bartering for case-based rea-
soning agents,” Topics in Artificial Intelligence, pp. 294–308, 2002.

[51] T. Sandholm, K. Lai, and S. Clearwater, “Admission control in a compu-
tational market,” in Proceedings of 8th IEEE International Symposium on
Cluster Computing and the Grid, 2008, pp. 277–286.

[52] M. Amini Salehi, B. Javadi, and R. Buyya, “Resource provisioning based
on leases preemption in InterGrid,” in Proceeding of the 34th Australasian
Computer Science Conference (ACSC’11), Australia, 2011, pp. 25–34.

[53] M. A. Salehi, B. Javadi, and R. Buyya, “Performance analysis of
preemption-aware scheduling in multi-cluster grid environments,” in Pro-
ceedings of the 11th International Conference on Algorithms and Architec-
tures for Parallel Processing (ICA3PP’11), 2011, pp. 419–432.

[54] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing sys-
tem,” in Proceedings of 9th IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGRID’09), 2009, pp. 124–131.

[55] M. Hovestadt, O. Kao, A. Keller, and A. Streit, “Scheduling in HPC re-
source management systems: Queuing vs. planning,” in Proceedings of 9th
International Workshop on Job Scheduling Strategies for Parallel Process-
ing, 2003, pp. 1–20.

[56] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a
fast and light-weight task execution framework,” in Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’07), 2007, pp. 1–12.

[57] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, no. 3, pp. 237–246, 2002.

163

REFERENCES

[58] E. Walker, J. Gardner, V. Litvin, and E. Turner, “Creating personal adap-
tive clusters for managing scientific jobs in a distributed computing environ-
ment,” in Proceedings of the Challenges of Large Applications in Distributed
Environments (CLADE’06), 2006, pp. 95–103.

[59] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron, “Virtual
workspaces in the grid,” Proceeding of the 11th International Euro-Par Con-
ference on Parallel Processing, pp. 421–431, 2005.

[60] M. D. Assunção and R. Buyya, “Architectural elements of resource sharing
networks,” Handbook of Research on Scalable Computing Technologies, pp.
517–550, 2009.

[61] A. Barak, A. Shiloh, and L. Amar, “An organizational grid of federated
mosix clusters,” in IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 05), vol. 1, 2005, pp. 350–357.

[62] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa, “Science
clouds: Early experiences in cloud computing for scientific applications,”
Proceeding of Cloud Computing and Applications, vol. 1, 2008.

[63] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao et al., “From virtualized re-
sources to virtual computing grids: the in-vigo system,” Future Generation
Computer Systems, vol. 21, no. 6, pp. 896–909, 2005.

[64] I. Krsul, A. Ganguly, J. Zhang, J. Fortes, and R. Figueiredo, “Vmplants:
Providing and managing virtual machine execution environments for grid
computing,” in Proceedings of the ACM/IEEE Conference Supercomputing,
2004, pp. 7–17.

[65] W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione, “Dynamic vir-
tual clustering with Xen and Moab,” in Frontiers of High Performance
Computing and Networking–ISPA Workshops, 2006, pp. 440–451.

[66] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migration cost
aware application placement in virtualized systems,” in Proceedings of the
9th ACM/IFIP/USENIX International Conference on Middleware, 2008,
pp. 243–264.

[67] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual
machine live migration in clouds: A performance evaluation,” Cloud Com-
puting, pp. 254–265, 2009.

[68] R. Nathuji and K. Schwan, “Virtualpower: coordinated power management
in virtualized enterprise systems,” in ACM SIGOPS Operating Systems Re-
view, vol. 41(6), 2007, pp. 265–278.

[69] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proceedings of the 1st ACM
Symposium on Cloud Computing, 2010, pp. 39–50.

164

M. A. Salehi REFERENCES

[70] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of
HPC applications,” in Proceedings of the 22nd Annual International Con-
ference on Supercomputing, 2008, pp. 175–184.

[71] L. Grit, L. Ramakrishnan, and J. Chase, “On the duality of jobs and leases,”
Duke University, Department of Computer Science, Tech. Rep. CS-2007-00,
April 2007.

[72] M. Xu, “Effective Metacomputing using LSF MultiCluster,” in Proceedings
of 1st IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2001, pp. 100–105.

[73] B. Nitzberg, J. M. Schopf, and J. P. Jones, “Grid resource management.”
Kluwer Academic Publishers, 2004, ch. PBS Pro: Grid computing and
scheduling attributes, pp. 183–190.

[74] M. Margo, K. Yoshimoto, P. Kovatch, and P. Andrews, “Impact of reser-
vations on production job scheduling,” in Proceedings of 13th International
Workshop on Job Scheduling Strategies for Parallel Processing, 2008, pp.
116–131.

[75] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced reserva-
tions,” in Proceedings of the 14th International Parallel and Distributed
Processing Symposium, 2000, pp. 127–132.

[76] M. Zwahlen, “Managing contention in collaborative resource sharing sys-
tems using token-exchange mechanism,” Ph.D. dissertation, Royal Institute
of Technology (KTH), Stockholm, Sweden, 2007.

[77] A. Iosup, O. Sonmez, S. Anoep, and D. Epema, “The performance of bags-
of-tasks in large-scale distributed systems,” in Proceedings of the 17th In-
ternational Symposium on High Performance Distributed Computing, 2008,
pp. 97–108.

[78] I. Grudenić and N. Bogunović, “Analysis of scheduling algorithms for com-
puter clusters,” in Proceeding of 31th International Convention on Infor-
mation and Communication Technology. Electronics and Microelectronics
(MIPRO), 2008, pp. 13–20.

[79] L. Amar, A. Mu’Alem, and J. Stober, “The power of preemption in eco-
nomic online markets,” in Proceedings of the 5th International Workshop
on Grid Economics and Business Models (GECON ’08), 2008, pp. 41–57.

[80] A. Sodan, “Service control with the preemptive parallel job scheduler scojo-
pect,” Journal of Cluster Computing, vol. 14, pp. 165–182, 2011.

[81] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in Pro-
ceedings of the 22nd Symposium on Operating Systems Principles (SOSP),
ACM SIGOPS, 2009, pp. 261–276.

[82] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling using system-generated
predictions rather than user runtime estimates,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 6, pp. 789–803, 2007.

165

REFERENCES

[83] R. Kettimuthu, V. Subramani, S. Srinivasan, T. Gopalsamy, D. K. Panda,
and P. Sadayappan, “Selective preemption strategies for parallel job
scheduling,” International Journal of High Performance and Networking
(IJHPCN), vol. 3, no. 2/3, pp. 122–152, 2005.

[84] “Bright cluster manager.” http://www.brightcomputing.com.

[85] H. Shachnai, T. Tamir, and G. Woeginger, “Minimizing makespan and
preemption costs on a system of uniform machines,” Algorithmica Journal,
vol. 42, no. 3, pp. 309–334, 2005.

[86] E. Parsons and K. Sevcik, “Implementing multiprocessor scheduling disci-
plines,” in Proceedings of 3rd International Workshop on Job Scheduling
Strategies for Parallel Processing, 1997, pp. 166–192.

[87] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe, “Cloud-
net: dynamic pooling of cloud resources by live wan migration of virtual ma-
chines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments (VEE ’11), USA, 2011, pp.
121–132.

[88] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors,” IEEE Transaction
Parallel and Distributed Systems, vol. 7, no. 5, pp. 506–521, 1996.

[89] A. Ferrari, S. Chapin, and A. Grimshaw, “Heterogeneous process state
capture and recovery through process introspection,” Cluster Computing,
vol. 3, no. 2, pp. 63–73, 2000.

[90] K. Chanchio and X. Sun, “Data collection and restoration for heterogeneous
process migration,” Software: Practice and Experience, vol. 32, no. 9, pp.
845–871, 2002.

[91] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent check-
pointing under unix,” in Proceedings of the USENIX Technical Conference.
USENIX Association, 1995, pp. 18–28.

[92] M. Litzkow and M. Solomon, “The evolution of condor checkpointing,” in
Mobility: Processes, Computers, and Agents. ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 163–174.

[93] P. Hargrove and J. Duell, “Berkeley lab checkpoint/restart (BLCR) for
linux clusters,” in Journal of Physics: Conference Series, vol. 46. IOP
Publishing, 2006, pp. 494–502.

[94] H. Zhong and J. Nieh, “Crak: Linux checkpoint/restart as a kernel module,”
Department of Computer Science, Columbia University, Tech. Rep., 2001.

[95] J. Heo, S. Yi, Y. Cho, J. Hong, and S. Shin, “Space-efficient page-level
incremental checkpointing,” in Proceedings of the ACM symposium on Ap-
plied Computing, 2005, pp. 1558–1562.

166

http://www.brightcomputing.com

M. A. Salehi REFERENCES

[96] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Antfarm: Tracking
processes in a virtual machine environment,” in Proceedings of the USENIX
Annual Technical Conference, 2006, pp. 1–14.

[97] K. Chandy and L. Lamport, “Distributed snapshots: Determining global
states of distributed systems,” ACM Transactions on Computer Systems
(TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[98] G. Stellner, “CoCheck: Checkpointing and process migration for MPI,” in
Proceedings of the the 10th International Parallel Processing Symposium,
1996, pp. 526–531.

[99] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez,
and F. Cappello, “Blocking vs. non-blocking coordinated checkpointing for
large-scale fault tolerant MPI,” in Proceedings of the ACM/IEEE Confer-
ence on Supercomputing, 2006, pp. 127–1233.

[100] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the linux
virtual machine monitor,” in Linux Symposium, 2007, pp. 225–232.

[101] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[102] K. Chanchio, C. Leangsuksun, H. Ong, V. Ratanasamoot, and A. Shafi,
“An efficient virtual machine checkpointing mechanism for hypervisor-based
HPC systems,” in Proceedings of the High Availability and Performance
Computing Workshop (HAPCW), 2008, pp. 29–35.

[103] W. Huang, Q. Gao, J. Liu, and D. Panda, “High performance virtual ma-
chine migration with RDMA over modern interconnects,” in Proceedings of
the 9th IEEE International Conference on Cluster Computing, 2007, pp.
11–20.

[104] B. Urgaonkar and P. Shenoy, “Sharc: Managing CPU and network band-
width in shared clusters,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 1, pp. 2–17, 2004.

[105] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum,
“Sharing networked resources with brokered leases,” in USENIX Annual
Technical Conference, USA, 2006, pp. 199–212.

[106] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: a mechanism
for resource management in cluster-based network servers,” in Proceedings
of the International Conference on Measurement and Modelling of Com-
puter Systems (SIGMETRICS ’00), 2000, pp. 90–101.

[107] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing
energy and server resources in hosting centers,” in ACM SIGOPS Operating
Systems Review, vol. 35 (5), 2001, pp. 103–116.

167

REFERENCES

[108] L. He, S. Jarvis, D. Spooner, X. Chen, and G. Nudd, “Dynamic scheduling
of parallel jobs with qos demands in multiclusters and grids,” in Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing, 2004,
pp. 402–409.

[109] H. Lee, D. Lee, and R. Ramakrishna, “An enhanced grid scheduling with
job priority and equitable interval job distribution,” Advances in Grid and
Pervasive Computing, pp. 53–62, 2006.

[110] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@
home: an experiment in public-resource computing,” Communications of
the ACM, vol. 45, no. 11, pp. 56–61, 2002.

[111] D. Anderson, “Boinc: A system for public-resource computing and stor-
age,” in Proceedings of 5th IEEE/ACM International Workshop on Grid
Computing, 2004, pp. 4–10.

[112] B. Richard and P. Augerat, “I-cluster: Intense computing with untapped
resources,” in Proceedings of 4th International Conference on Massively
Parallel Computing Systems, 2002, pp. 127–140.

[113] C. De Rose, F. Blanco, N. Maillard, K. Saikoski, R. Novaes, O. Richard,
and B. Richard, “The virtual cluster: a dynamic network environment for
exploitation of idle resources,” in Proceedings 14th Symposium on Computer
Architecture and High Performance Computing, 2002, pp. 141–148.

[114] M. Salehi, H. Deldari, and B. Dorri, “Balancing load in a computational
grid applying adaptive, intelligent colonies of ants,” Informatica: An Inter-
national Journal of Computing and Informatics, vol. 33, no. 2, pp. 151–159,
2009.

[115] C. Dumitrescu, I. Raicu, and I. Foster, “Di-gruber: A distributed approach
to grid resource brokering,” in Proceedings of ACM/IEEE Conference on
Supercomputing, 2005, pp. 38–45.

[116] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray, “Automatic grid
assembly by promoting collaboration in peer-to-peer grids,” Journal of Par-
allel and Distributed Computing, vol. 67, no. 8, pp. 957–966, 2007.

[117] R. Buyya, R. Ranjan, and R. Calheiros, “InterCloud: Utility-Oriented Fed-
eration of Cloud Computing Environments for Scaling of Application Ser-
vices,” in Proceedings of the 10th international conference on Algorithms
and Architectures for Parallel Processing-Volume Part I, 2010, pp. 13–31.

[118] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud com-
puting and emerging it platforms: Vision, hype, and reality for deliver-
ing computing as the 5th utility,” Future Generation Computer Systems,
vol. 25, no. 6, pp. 599–616, 2009.

[119] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances via
checkpointing in the amazon elastic compute cloud,” in Proceedings of 3rd
IEEE International Conference on Cloud Computing (IEEE CLOUD ’10),
2010, pp. 236–243.

168

M. A. Salehi REFERENCES

[120] H. Van, F. Tran, and J. Menaud, “SLA-Aware Virtual Resource Manage-
ment for Cloud Infrastructures,” in Proceedings of the 9th Conference on
Computer and Information Technology- Volum 02, 2009, pp. 357–362.

[121] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin,
J. Tordsson, C. Ragusa, M. Villari, S. Clayman et al., “Reservoir-when one
cloud is not enough,” Computer Journal, vol. 44, no. 3, pp. 44–51, 2011.

[122] A. Toosi, R. Thulasiram, and R. Buyya, “Financial option market model for
federated cloud environments,” Department of Computing and Information
System, Melbourne University, Tech. Rep., 2012.

[123] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya, “Resource Provision-
ing Policies to Increase IaaS Provider’s Profit in a Federated Cloud Environ-
ment,” in Proceeding of 13th International Conference on High Performance
Computing and Communications (HPCC ’11), 2011, pp. 279–287.

[124] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, “Dy-
namic Virtual Clusters in a Grid Site Manager,” in Proceedings of the 12th
IEEE International Symposium on High Performance Distributed Comput-
ing, USA, 2003, pp. 90–98.

[125] R. Buyya, M. M. Murshed, D. Abramson, and S. Venugopal, “Schedul-
ing parameter sweep applications on global Grids: a deadline and budget
constrained cost-time optimization algorithm,” Software: Practice and Ex-
perience, vol. 35, no. 5, pp. 491–512, 2005.

[126] A. d. Costanzo, C. Jin, C. A. Varela, and R. Buyya, “Enabling Computa-
tional Steering with an Asynchronous-Iterative Computation Framework,”
in Proceedings of the 5th IEEE International Conference on e-Science, USA,
2009, pp. 255–262.

[127] N. Fallenbeck, H. Picht, M. Smith, and B. Freisleben, “Xen and the art
of cluster scheduling,” in Proceedings of the 1st International Workshop on
Virtualization Technology in Distributed Computing (VTDC ’06), 2006, pp.
4–12.

[128] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, “A toolkit for
modelling and simulating data grids: an extension to GridSim,” Concur-
rency and Computation: Practice and Experience (CCPE), vol. 20, no. 13,
pp. 1591–1609, 2008.

[129] U. Lublin and D. Feitelson, “The workload on parallel supercomputers:
modeling the characteristics of rigid jobs,” Journal of Parallel and Dis-
tributed Computing (JPDC), vol. 63, no. 11, pp. 1105–1122, 2003.

[130] A. D. Costanzo, M. D. Assuncao, and R. Buyya, “Harnessing cloud tech-
nologies for a virtualized distributed computing infrastructure,” IEEE In-
ternet Computing, vol. 13, no. 5, pp. 24–33, 2009.

[131] J. Anselmi and B. Gaujal, “Optimal Routing in Parallel, non-Observable
Queues and the Price of Anarchy Revisited,” in Proceedings of the 22nd
International Teletraffic Congress (ITC ’10), Netherlands, 2010.

169

REFERENCES

[132] L. Kleinrock, Queueing systems: Computer applications. Wiley-
interscience, 1976.

[133] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting
user runtime estimates to improve job scheduling on the Blue Gene/P,”
in IEEE International Symposium on Parallel and Distributed Processing
(IPDPS’10), 2009, pp. 1–11.

[134] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan, “Scheduling of
Parallel Jobs in a Heterogeneous Multi-site Environment,” in Job Schedul-
ing Strategies for Parallel Processing (JSSPP ’03), 2003, pp. 87–104.

[135] L. He, S. Jarvis, D. Spooner, H. Jiang, D. Dillenberger, and G. Nudd,
“Allocating non-real-time and soft real-time jobs in Multi-Clusters,” IEEE
transactions on Parallel and Distributed Systems (TPDS), pp. 99–112, 2006.

[136] M. Colajanni, P. Yu, and V. Cardellini, “Dynamic load balancing in ge-
ographically distributed heterogeneous web servers,” in Proceedings of the
18th International Conference on Distributed Computing Systems, 2002, pp.
295–302.

[137] S. Zhou, “A trace-driven simulation study of dynamic load balancing,”
IEEE Transactions on Software Engineering, vol. 14, no. 9, pp. 1327–1341,
2002.

[138] A. Hordijk and D. V. Laan, “Periodic routing to parallel queues and billiard
sequences,” Mathematical Methods of Operations Research, vol. 59, pp. 173–
192, 2004.

[139] C. Grimme, J. Lepping, and A. Papaspyrou, “Prospects of collaboration
between compute providers by means of job interchange,” in Job Scheduling
Strategies for Parallel Processing (JSSPP ’08), 2008, pp. 132–151.

[140] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen, “Dynamic Provision-
ing of Virtual Organization Clusters,” in Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID
’09), 2009, pp. 364–371.

[141] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for Many-
Tasks Scientific Computing,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. 22, no. 6, pp. 931–945, 2011.

[142] L. He, S. Jarvis, D. Spooner, X. Chen, and G. Nudd, “Dynamic scheduling
of parallel jobs with QoS demands in multiclusters and grids,” in Proceed-
ings of the 5th IEEE/ACM International Workshop on Grid Computing,
2004, pp. 402–409.

[143] J. Almeida, V. Almeida, D. Ardagna, i. Cunha, C. Francalanci, and
M. Trubian, “Joint admission control and resource allocation in virtual-
ized servers,” Journal of Parallel and Distributed Computing, vol. 70, pp.
344–362, April 2010.

170

M. A. Salehi REFERENCES

[144] M. Islam, P. Balaji, P. Sadayappan, and D. Panda, “Qops: A QoS based
scheme for parallel job scheduling,” in Proceedings of 9th International
Workshop on Job Scheduling Strategies for Parallel Processing, 2003, pp.
252–268.

[145] S. Bose, An introduction to queueing systems. Springer, USA, 2001.

[146] D. Irwin, L. Grit, and J. Chase, “Balancing risk and reward in a market-
based task service,” in Proceedings of the 13th IEEE International Sympo-
sium on High performance Distributed Computing (HPDC ’04), 2004, pp.
160 – 169.

[147] S. Sharifian, S. Motamedi, and M. Akbari, “A content-based load balancing
algorithm with admission control for cluster web servers,” Future Genera-
tion Computer Systems, vol. 24, no. 8, pp. 775–787, 2008.

[148] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The cost of a cloud:
research problems in data center networks,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 68–73, 2008.

[149] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell,
and R. Rajamony, “The case for power management in web servers,” Power
aware computing, pp. 261–273, 2002.

[150] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolida-
tion of virtual machines in cloud data centers,” Concurrency and Compu-
tation: Practice and Experience, 2011.

[151] H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble,
E. De Lara, M. Brudno, and M. Satyanarayanan, “Snowflock: rapid vir-
tual machine cloning for cloud computing,” in Proceedings of the 4th ACM
European conference on Computer systems, 2009, pp. 1–12.

[152] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments via
lookahead control,” Cluster Computing, vol. 12, no. 1, pp. 1–15, 2009.

[153] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang, and Y. Chen, “Green-
Cloud: a new architecture for green data center,” in Proceedings of the 6th
International Conference on Autonomic Computing and Communications,
2009, pp. 29–38.

[154] J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson, and
C. Lefurgy, “Coordinating multiple autonomic managers to achieve speci-
fied power-performance tradeoffs,” in Proceedings of the 4th International
Conference on Autonomic Computing, 2007, pp. 24–32.

[155] M. Hellmann, “Fuzzy logic introduction,” Laboratoire Antennes Radar
Telecom, Equipe Radar Polarimetrie, Universite de Rennes 1, France., Tech.
Rep., 2001.

171

REFERENCES

[156] J. Lagorse, M. Simões, and A. Miraoui, “A multiagent fuzzy-logic-based
energy management of hybrid systems,” IEEE Transactions on Industry
Applications, vol. 45, no. 6, pp. 2123–2129, 2009.

[157] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic re-
source management in virtualized data centers using fuzzy logic-based ap-
proaches,” Cluster Computing, vol. 11, no. 3, pp. 213–227, 2008.

[158] R. E. Precup and H. Hellendoorn, “A survey on industrial applications of
fuzzy control,” Computers in Industry, vol. 62, no. 3, pp. 213–226, 2011.

[159] J. Jang, “Anfis: Adaptive-network-based fuzzy inference system,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–
685, 1993.

[160] A. Toosi and M. Kahani, “A new approach to intrusion detection based
on an evolutionary soft computing model using neuro-fuzzy classifiers,”
Computer Communications, vol. 30, no. 10, pp. 2201–2212, 2007.

[161] L. Wang, Adaptive fuzzy systems and Control Design and Stability Analysis.
Prentice Hall, 1994.

[162] “Parallel workloads archive,” http://www.cs.huji.ac.il/labs/parallel/
workload/.

[163] B. Sotomayor, R. Montero, I. Llorente, and I. Foster, “Capacity leasing
in cloud systems using the opennebula engine,” in Workshop on Cloud
Computing and its Applications, vol. 1, 2008.

[164] D. Hitz, J. Lau, and M. Malcolm, “File system design for an nfs file server
appliance,” in Proceedings of the USENIX Technical Conference. USENIX
Association, 1994, pp. 235–246.

[165] R. Noronha and D. K. Panda, “IMCa: A High Performance Caching Front-
End for GlusterFS on InfiniBand,” in Proceedings of the 37th International
Conference on Parallel Processing (ICPP ’08), USA, 2008.

[166] S. Garg, “Meta scheduling for market-oriented grid and utility computing,”
Ph.D. dissertation, University of Melbourne, Department of Computer Sci-
ence and Software Engineering, 2010.

[167] L. Barsanti and A. Sodan, “Adaptive Job Scheduling Via Predictive Job
Resource Allocation,” in Job Scheduling Strategies for Parallel Processing
(JSSPP ’07), 2007, pp. 115–140.

[168] G. Utrera, J. Corbalan, and J. Labarta, “Implementing malleability on
mpi jobs,” in Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’04), USA, 2004, pp.
215–224.

[169] A. Bucur and D. Epema, “Priorities among multiple queues for processor
co-allocation in multicluster systems,” in Proceedings of the 36th Annual
Symposium on Simulation, 2003, pp. 15–23.

172

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

	Introduction
	Motivations
	Research Problem and Objectives
	Objectives
	Evaluation Methodology

	Contributions
	Thesis Organisation

	Principles, Taxonomy, and Context
	Introduction
	Request Management in Interconnected Distributed Systems
	Contention in Distributed Systems
	Request-initiated Resource Contention
	Inter-domain-initiated Resource Contention
	Origin-initiated Resource Contention

	Contention Management in RMS
	Resource Provisioning
	Scheduling Unit
	Admission Control Unit
	Outsourcing Unit

	Preemption Mechanism
	Applications of Preemption Mechanism
	Challenges of Preemption Mechanism
	Possibilities for Preempted Requests
	Checkpointing in Distributed Systems

	An Investigation of Existing Works
	Contention Management in Clusters
	Contention Management in Desktop Grids
	Contention Management in Grids
	Contention Management in Clouds

	Positioning of this Thesis
	Summary

	Preemption-based Contention Management
	Introduction
	Proposed Solution
	Introducing Different Lease Types
	Measuring the Overhead of Lease Preemption
	Preemption Policy

	Performance Evaluation
	Performance Metrics
	Experimental Setup
	Experimental Results

	Summary

	Contention Avoidance through Scheduling
	Introduction
	Analytical Queuing Model
	Preemption-aware Scheduling
	Workload Allocation Policy
	Dispatch Policy

	Performance Evaluation
	Performance Metrics
	Experimental Setup
	Experimental Results

	Summary

	Contention Management in Admission Control
	Introduction
	Analytical Queuing Model
	The Proposed Admission Control Policy

	Performance Evaluation
	Performance Metrics
	Experimental Setup
	Experimental Results

	Summary

	Contention-aware Energy Management
	Introduction
	Fuzzy Inference System
	Proposed Mechanism
	Preemption-aware Energy Management
	Energy-awareness in Haizea
	Preemption-aware Energy Management Policy

	Performance Evaluation
	Experimental Setup
	Experimental Results

	Summary

	Realising Contention-awareness in InterGrid
	Introduction
	InterGrid Architecture
	IGG Structure
	Resource Allocation Model

	System Design and Implementation
	Virtual Infrastructure Manager
	Virtualisation Infrastructure
	Scheduling in IGG
	Local Scheduler

	Performance Evaluation
	Evaluation Results

	Summary

	Conclusions and Future Directions
	Discussion
	Future Directions
	Contention-aware Peering Policy
	Contention Management for Workflows
	Price-based Contention Management
	Contention Management for Adaptive Requests
	Grid Level Admission Control
	Dynamic Preemption Decisions

