
Budget-constrained Workflow Applications
Scheduling in Workflow-as-a-Service

Cloud Computing Environments

Muhammad Hafizhuddin Hilman

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

March 2020

ORCID: 0000-0003-2772-9216

Copyright c© 2020 Muhammad Hafizhuddin Hilman

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint,
microfilm or any other means without written permission from the author.

Budget-constrained Workflow Applications Scheduling in
Workflow-as-a-Service Cloud Computing Environments

Muhammad Hafizhuddin Hilman

Principal Supervisor: Prof. Rajkumar Buyya

Co-Supervisor: Dr. Maria Rodriguez Read

Abstract

The adoption of workflow, an inter-connected tasks and data processing application model, in

the scientific community has led to the acceleration of scientific discovery. The workflow facili-

tates the execution of complex scientific applications that involves a vast amount of data. These

workflows are large-scale applications and require massive computational infrastructures. There-

fore, deploying them in distributed systems, such as cloud computing environments, is a necessity

to acquire a reasonable amount of processing time.

With the increasing demand for scientific workflows execution and the rising trends of cloud

computing environments, there is a potential market to provide a computational service for execut-

ing scientific workflows in the clouds. Hence, the term Workflow-as-a-Service (WaaS) emerges

along with the rising of the Everything-as-a-Service concept. This WaaS concept escalates the

functionality of a conventional workflow management system (WMS) to serve a more significant

number of users in a utility service model. In this case, the platform, which is called the WaaS plat-

form, must be able to handle multiple workflows scheduling and resource provisioning in cloud

computing environments in contrast to its single workflow management of traditional WMS.

This thesis investigates the novel approaches for budget-constrained multiple workflows re-

source provisioning and scheduling in the context of the WaaS platform. They address the chal-

lenges in managing multiple workflows execution that not only comes from the users’ perspective,

which includes the heterogeneity of workloads, quality of services, and software requirements,

but also problems that arise from the cloud environments as the underlying computational infras-

tructure. The latter aspect brings up the issues of the heterogeneity of resources, performance

variability, and uncertainties in the form of overhead delays of resource provisioning and network-

related activities. It pushes a boundary in the area by making the following contributions:

iii

1. A taxonomy and survey of the state-of-the-art multiple workflows scheduling in multi-tenant

distributed computing systems.

2. A budget distribution strategy to assign tasks’ budgets based on the heterogeneous type of

VMs in cloud computing environments.

3. A budget-constrained resource provisioning and scheduling algorithm for multiple work-

flows that aims to minimize workflows’ makespan while meeting the budget.

4. An online and incremental learning approach to predict task runtime that considers the per-

formance variability of cloud computing environments.

5. The implementation of multiple workflows scheduling algorithm and its integration to ex-

tend the existing WMS for the development of WaaS platform.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other materials used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies,

and appendices.

Muhammad Hafizhuddin Hilman, March 2020

v

This page intentionally left blank.

Preface

This thesis research has been carried out in the Cloud Computing and Distributed Systems (CLOUDS)

Laboratory, School of Computing and Information Systems, Melbourne School of Engineering,

The University of Melbourne. The main contributions of the thesis are discussed in Chapters 2–6

and are based on the following publications:

• Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Multiple Workflows

Scheduling in Multi-tenant Distributed Systems: A Taxonomy and Future Directions.‘ ACM

Computing Surveys (CSUR), vol. 53, no. 1, Pages 10:1-10:39, 2020.

• Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Task-based Bud-

get Distribution Strategies for Scientific Workflows with Coarse-grained Billing Periods in

IaaS Clouds.‘ In Proceedings of the 13th IEEE International Conference on e-Science (e-

Science), Pages 128-137, 2017.

• Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Resource-sharing

Policy in Multi-tenant Scientific Workflow-as-a-Service Platform.‘ Journal of Computer

and System Sciences (JCSS), 2020 (under review).

• Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Task Runtime Pre-

diction in Scientific Workflows Using an Online Incremental Learning Approach.‘ In Pro-

ceedings of the 11th ACM/IEEE International Conference on Utility and Cloud Computing

(UCC), Pages 93-102, 2018.

• Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Workflow-as-a-

Service Cloud Platform and Deployment of Bioinformatics Workflow Applications.‘ Knowl-

vii

edge Management in Development of Data-Intensive Software Systems (KMDDIS), 2020

(under review).

viii

Acknowledgements

I would like to thank my supervisor, Professor Rajkumar Buyya, for allowing me to pursue this

PhD in CLOUDS Laboratory. I am very grateful for his guidance, advice, and motivation through-

out my candidature. I am also profoundly grateful for my co-supervisor, Dr. Maria Rodriguez

Read for her support in my journey, especially her guidance in solving research technicalities.

I would like to express my gratitude to the PhD committee members, Professor Wally Smith,

for his constructive comments and guidance during my candidature. I would also like to thank all

the past and current members of the CLOUDS Laboratory, at the University of Melbourne for their

friendship and support. In particular, I thank Dr. Rodrigo Calheiros, Dr. Amir Vahid, Dr. Adel

Nadjaran Toosi, Dr. Sukhpal Gill, Dr. Chenhao Qu, Dr. Yasser Mansouri, Dr. Jungmin Son, Dr.

Bowen Zhou, Dr Xunyun Liu, Dr. Minxian Xu, Dr. Safiollah Heidari, Caesar Wu, Sara Kardani

Moghaddam, Redowan Mahmud, Tawfiqul Islam, Shashikant Ilager, TianZhang He, Mohammad

Goudarzi, Mohammadreza Razian, Zhiheng Zhong, Samodha Palewatta, and Amanda Jayanetti.

I acknowledge the Republic of Indonesia and the Indonesia Endowment Fund for Education

(LPDP) for providing me with scholarships to pursue my doctoral studies.

I would like to thank my parents and my sisters for their loving support. The distance does

not hinder their support for my voyage in Australia. I also thank my parents- and family-in-law

for being supportive away from home. Finally, I thank my wife for her selflessness and dedication

to support my PhD. For my kids, Shafiyah, Hamka, and Hanina, I am proud to have your laughter

and happiness accompanying the journey.

Muhammad Hafizhuddin Hilman

Melbourne, Australia

March 2020

ix

x

To my beloved wife, Susan Adella, and the lovely {Shafiyah, Hamka, Hanina} Hafizh.

Without them, this journey would not be as lively as it is.

xi

This page intentionally left blank.

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Multi-tenancy in Cloud Computing . 3
1.1.2 Scientific Workflow as a Service . 4

1.2 Motivation . 7
1.3 Problem Definition: Scheduling Multiple Workflows 8

1.3.1 Challenges . 10
1.4 Thesis Contributions . 12
1.5 Thesis Organization . 13

2 A Taxonomy and Survey of Multiple Workflows Scheduling Problem 17
2.1 Introduction . 17
2.2 Taxonomy . 18

2.2.1 Workload Model . 18
2.2.2 Deployment Model . 22
2.2.3 Priority Assignment Model . 25
2.2.4 Task Scheduling Model . 28
2.2.5 Resource Provisioning Model . 31

2.3 Survey . 32
2.3.1 Planner-Guided Scheduling for Multiple Workflows 33
2.3.2 Multiple QoS Constrained Scheduling for Multiple Workflows 34
2.3.3 Fairness in Multiple Workflows Scheduling 35
2.3.4 Online Multiple Workflows Scheduling Framework 38
2.3.5 Real-time Multiple Workflows Scheduling 40
2.3.6 Adaptive and Privacy-aware Multiple Workflows Scheduling 43
2.3.7 Adaptive Dual-criteria Multiple Workflows Scheduling 44
2.3.8 Multiple Workflows Scheduling on Hybrid Clouds 45
2.3.9 Proactive and Reactive Scheduling for Multiple Workflows 47
2.3.10 Energy Aware Scheduling for Multiple Workflows 50
2.3.11 Monetary Cost Optimization for Workflows on Commercial Clouds . . . 52
2.3.12 Fairness Scheduling for Multiple Workflows 53
2.3.13 Scheduling Trade-off of Dynamic Multiple Workflows 54
2.3.14 Workflow Scheduling in Multi-tenant Clouds 56
2.3.15 Multi-tenant WaaS Platform . 57
2.3.16 Concurrent Multiple Workflows Scheduling 58

xiii

2.3.17 Scheduling Multiple Workflows under Uncertain Execution Time 59
2.3.18 Algorithm Classification . 60

2.4 Summary . 60

3 A Task-based Budget Distribution Strategy for Scheduling Workflows 63
3.1 Introduction . 63
3.2 Related Work . 65
3.3 Application and Resource Model . 66
3.4 Scheduling Algorithm . 68

3.4.1 Budget Distribution . 69
3.4.2 Resource Provisioning and Scheduling 71
3.4.3 Illustrative Example . 73

3.5 Performance Evaluation . 75
3.5.1 Algorithm Performance . 76
3.5.2 VM Utilization . 81

3.6 Summary . 82

4 A Budget-constrained Scheduling Algorithm for Multiple Workflows 85
4.1 Introduction . 85
4.2 Related Work . 87
4.3 Application and Resource Model . 89
4.4 The EBPSM Algorithm . 92
4.5 Performance Evaluation . 96

4.5.1 To Share or Not To Share . 99
4.5.2 Performance Degradation Sensitivity 102
4.5.3 VM Provisioning Delay Sensitivity . 104
4.5.4 Container Initiating Delay Sensitivity 106

4.6 Summary . 107

5 An Online Incremental Learning Approach for Task Runtime Estimation 111
5.1 Introduction . 111
5.2 Related Work . 114
5.3 Problem Definition . 115
5.4 Online Incremental Machine Learning . 116

5.4.1 Recurrent Neural Networks . 117
5.4.2 K-Nearest Neighbor . 118

5.5 Task Runtime Prediction Using Time-Series Monitoring Data 119
5.6 Performance Evaluation . 121

5.6.1 Experimental Setup . 122
5.7 Results and Analysis . 124

5.7.1 Proposed Approach Evaluation . 124
5.7.2 Batch Offline Evaluation . 126
5.7.3 Feature Selection Evaluation . 127

5.8 Summary . 129

xiv

6 A System Prototype of the WaaS Platform 131
6.1 Introduction . 131
6.2 Related Work . 132
6.3 Prototype of WaaS Platform . 133

6.3.1 CloudBus Workflow Management System 134
6.3.2 WaaS Platform Development . 135
6.3.3 Implementation of Multiple Workflows Scheduling Algorithm 138

6.4 Case Studies and Performance Evaluation . 139
6.4.1 Bioinformatics Applications Workload 140
6.4.2 Experimental Infrastructure Setup . 143
6.4.3 Results and Analysis . 145

6.5 Summary . 150

7 Conclusions and Future Directions 151
7.1 Summary . 151
7.2 Future Directions . 153

7.2.1 Advanced Multi-tenancy Using Microservices 153
7.2.2 Reserved vs On-demand vs Spot Instances 155
7.2.3 Multi-clouds vs Hybrid Clouds vs Bare-metal Clouds 156
7.2.4 Fast and Reliable Task Runtime Estimation 156
7.2.5 Integrated Anomaly Detection and Fault-tolerant Aware Platforms 157
7.2.6 Multi-objective Constraints Scheduling 158
7.2.7 Energy-efficient Computing . 158
7.2.8 Privacy-aware Scheduling . 159
7.2.9 Internet of Things (IoT) Workflows . 159

xv

This page intentionally left blank.

List of Figures

1.1 Multi-tenant vs single-tenant clouds . 3
1.2 Workflow-as-a-service architecture . 7
1.3 Two approaches in scheduling multiple workflows 9
1.4 The core structure of the thesis . 13

2.1 Workload model taxonomy . 20
2.2 Deployment model taxonomy . 23
2.3 Priority assignment model taxonomy . 26
2.4 Task scheduling model taxonomy . 29
2.5 Resource provisioning model taxonomy . 31

3.1 Sample of budget insufficiency scenario . 69
3.2 Sample of budget distribution scenario . 73
3.3 Sample of scheduling and resource provisioning scenario 74
3.4 Cost/budget ratio and makespan performance of Montage 77
3.5 Cost/budget ratio and makespan performance of LIGO 78
3.6 Cost/budget ratio and makespan performance of SIPHT 78
3.7 Cost/budget ratio and makespan performance of Cybershake 79
3.8 Cost/budget ratio and makespan performance of Epigenomics 79
3.9 VMs utilization for different workflow applications 81

4.1 Makespan of workflows on various workloads with different arrival rate 100
4.2 Percentage of budget met and VM usage on various workloads with different ar-

rival rate . 101
4.3 Percentage of budget met and makespan of workflows on various CPU perfor-

mance degradation . 103
4.4 VM usage on various CPU performance degradation 104
4.5 Percentage of budget met and makespan of workflows on various VM provisioning

delay . 105
4.6 VM usage on various CPU provisioning delay 106
4.7 EBPSM performance on various container initiating delay 107

5.1 Sample of bioinformatics workflows . 121
5.2 Summary of task estimation errors (RAE) using online incremental learning ap-

proach . 126
5.3 Results of task estimation errors (RAE) with feature selection 129

xvii

6.1 Architectural reference on the WaaS platform 135
6.2 Class diagram reference on Cloudbus Workflow Engine extension 137
6.3 Architectural reference on the WaaS platform nodes deployment 143
6.4 Makespan and cost of 1000 Genome (chr22) workflow on homogeneous environ-

ments . 146
6.5 Cost and budget analysis on workload with different arrival rate 146
6.6 Makespan of workflows on workload with different arrival rate 148
6.7 Average VM utilization and VM usage on workload with different arrival rate . . 149

xviii

List of Tables

2.1 Experimental design of RANK_HYBD algorithm 33
2.2 Experimental design of MQMW algorithm . 35
2.3 Experimental design of MQSS algorithm . 35
2.4 Experimental design of P-HEFT algorithm . 36
2.5 Experimental design of FDWS algorithm . 36
2.6 Experimental design of MW-DBS algorithm . 37
2.7 Experimental design of MQ-PAS algorithm . 38
2.8 Experimental design of OWM algorithm . 39
2.9 Experimental design of MOWS algorithm . 40
2.10 Experimental design of EDF_BF algorithm . 41
2.11 Experimental design of EDF_BF_IC algorithm 42
2.12 Experimental design of EDF_BF In-Mem algorithm 42
2.13 Experimental design of OPHC-TR algorithm 43
2.14 Experimental design of DGR algorithm . 44
2.15 Experimental design of Adaptive dual-criteria algorithm 45
2.16 Experimental design of MLF_ID algorithm . 46
2.17 Experimental design of PRS algorithm . 48
2.18 Experimental design of EDPRS algorithm . 48
2.19 Experimental design of EONS algorithm . 49
2.20 Experimental design of FASTER algorithm . 50
2.21 Experimental design of ROSA algorithm . 51
2.22 Experimental design of CERSA algorithm . 51
2.23 Experimental design of EnReal algorithm . 52
2.24 Experimental design of Dyna algorithm . 53
2.25 Experimental design of FSDP algorithm . 54
2.26 Experimental design of F_DMHSV algorithm 55
2.27 Experimental design of DPMMW & GESMW algorithm 55
2.28 Experimental design of CWSA algorithm . 56
2.29 Experimental design of EPSM algorithm . 57
2.30 Experimental design of MW-HBDCS algorithm 59
2.31 Experimental design of NOSF algorithm . 60
2.32 Taxonomy of workload and deployment model 61
2.33 Taxonomy of priority assignment, task scheduling, and resource provisioning model 62

3.1 Summary of related work . 66
3.2 VM types and prices used . 76

xix

4.1 Characteristics of synthetic workflows . 97
4.2 Configuration of VM types used in evaluation 98
4.3 Cost/budget ratio for EBPSM budget violated cases 102

5.1 Description of runtime resource consumption metrics 116
5.2 Description of pre-runtime configuration . 117
5.3 NeCTAR virtual machines configuration . 122
5.4 Summary of datasets . 123
5.5 Results of task estimation errors (RAE) using online incremental learning approach 125
5.6 Results of task estimation errors (RAE) using batch offline learning approach . . 127
5.7 Results of Pearson’s correlation based feature selection 128

6.1 Summary of various WMS features . 132
6.2 Various budgets used in evaluation . 142
6.3 Configuration of virtual machines used in evaluation 144
6.4 Comparison of 1000 Genome (chr22) workflow in two environments 147

xx

Chapter 1

Introduction

The concept of workflow has evolved from the manufacturing and business process fields to a

broader notion representing a structured process flow design. Within the scientific community,

workflows refer to a model for automating and managing the distributed execution of a complex

problem that requires the flow of data between different applications [1]. Many scientific prob-

lems adopt this model to overcome the limitations of a single scientific application to process a

vast amount of data. Examples include Scientific Workflows [2] that consist of HPC applications

for e-Science and MapReduce Workflows [3] that are used to process Big Data analytics. Such

workflows are large-scale distributed applications and require extensive computational resources

to execute in a reasonable amount of processing time. Therefore, workflows are commonly de-

ployed on distributed systems, in particular, cluster, grid, and cloud computing environments.

The advent of multi-tenant environments like clouds and the shifting trend from the traditional

on-premises to the utility computing era has led to the emergence of platforms that offer work-

flows processing as a service. These platforms continuously receive many requests for workflow

executions from different users along with their various Quality of Service (QoS) requirements.

The provider must then be able to schedule these workflows in a way that each of their require-

ments is fulfilled. A simple way to achieve this is by allocating a set of dedicated resources to

execute each workflow. However, the inter-dependent tasks produce unavoidable idle gaps in the

schedule. Hence, dedicating a set of resources for each user can be considered inefficient in envi-

ronments where multiple workflows are involved, since it leads to resources being underutilized.

This approach, in turn, may cause a significant loss for the providers that generate revenue from the

utilization of resources. Consequently, the strategies implemented in such platforms should aim to

improve resource utilization while still complying with the unique requirements of different users.

1

2 Introduction

Accommodating multi-tenants with different requirements creates a highly complex system.

The first problem lies in how the system handles various workflow applications. A variety of appli-

cations involve different software libraries, dependencies, and hardware requirements. The users

should be able to customize the configurations along with their QoS when submitting the work-

flows. Furthermore, multi-tenant systems must have a general approach to handle different types

of computational requirements from different workflows. Another consideration related to multi-

tenancy is the strategy to maintain fairness between multiple users that should be achieved through

prioritization in scheduling and automatic scaling of the resources. The last aspect that should be

noticed in multi-tenant platforms is the performance variability of computational resources. It is

known that virtualization-based infrastructures might encounter performance degradation due to

multi-tenancy, virtualization overhead, geographical location, and temporal aspects [4].

This thesis addresses problems in managing a platform for executing workflow as a service in

cloud environments referred to as Workflow-as-a-Service (WaaS). It focuses on designing novel

resource provisioning and scheduling strategies to handle multiple users that submit their work-

flows’ jobs continuously in a near real-time scenario. Therefore, the algorithms must take advan-

tage of the cloud resources that can be elastically provisioned on-demand using a pay-as-you-go

model. At the same time, the clouds encounter inherent uncertainties in performance, which must

also be considered by the resource management algorithms.

The research objectives are achieved by conducting a study resulting in a detailed taxonomy

and comprehensive survey based on the state-of-the-art multiple workflow scheduling algorithms.

In addition to the study, a dynamic resource provisioning and scheduling algorithm–includes its

budget distribution strategy–that enforces a resource-sharing policy to increase the resource effi-

ciency when handling multiple workflows, is proposed. It also introduces an online incremental

learning approach for scientific workflows’ resource consumption estimation and runtime predic-

tion, as a pre-requisite to the scheduling. Finally, an existing workflow management system was

extended to support the WaaS platform development. We present its capabilities with a case study

using various real-life scientific applications from the bioinformatics fields.

1.1 Background

This section presents an overview of the concepts which drive the research problem addressed in

the thesis. They are multi-tenancy in cloud computing and scientific workflow as a service.

1.1 Background 3

Fig. 1.1: Multi-tenant vs single-tenant clouds

1.1.1 Multi-tenancy in Cloud Computing

Cloud computing simplifies management of computational resources with its virtualization tech-

nology. In this case, virtualization creates an abstraction layer that hides the underlying software

and hardware complexity of a cloud data center, which enables resource allocation, consolidation,

and auto-scaling [5]. From the perspective of cloud providers, this virtualization technology ex-

pedites further commercialization of cloud resources. The providers can slice their infrastructure

into a smaller allocation of resources easily and lease it to the users with a variety of computational

configurations (i.e., VM types). On the other hand, from the users’ point of view, virtualization

establishes an illusion that they appear to run on a dedicated computer system. Therefore, it is not

uncommon for a particular cloud computing user to utilize the same underlying cloud hardware

infrastructures with hundreds or thousands of other users without any performance dubiety.

Based on this virtualization model, cloud computing is naturally a multi-tenant environment

except, of course, the private clouds, which may lead to a different assumption. Cloud computing

providers market their infrastructure and price the computational unit based on many intrinsic

and extrinsic factors [6]. The intrinsic involves the internal hardware infrastructure, such as the

utilization rate and the energy efficiency, against the extrinsic, which represents the users and

their willingness to pay. The behaviour of these two opposite factors profoundly influences the

decision of cloud computing providers to price their products. The illustration of virtualization

and multi-tenancy in clouds is depicted in Fig. 1.1.

4 Introduction

In this multi-tenant environment, cloud computing providers expect to gain a high data center

utilization rate to create revenue. On the other hand, the users hope for the promised compu-

tational performance based on the service level agreements (SLA) regardless of the sharing of

computational infrastructure. However, multi-tenancy in cloud computing environments creates

a complicated system that results in an inevitable performance variability, as reported by Leitner

and Cito [4]. For example, it is not uncommon for the clouds to exhibit performance degradation

at a particular time when the number of requests is at its highest point (i.e., peak-hours).

The multi-tenancy in cloud computing environments also drives the cloud providers to diver-

sify their products’ heterogeneity to serve various types of users. The cloud providers offer a

bundle of computational capacity in the form of a virtual machine type to serve the different needs

of users. This variety includes CPU speed, memory size, bandwidth capacity, GPU-enabled,

and storage type. However, these variants are within the border of virtualization. Hence, these

virtualization-based products are impacted by inevitable overhead and performance degradation

that are inherently embedded within the technology.

To serve the users that cannot afford the substantial cost of virtualization overhead, the cloud

providers offer another type of resource. Examples of products include the bare-metal server,

which practically eliminates virtualization, or lightweight virtualization products that maintain iso-

lation in the form of microservices such as containers. Recently, the cloud providers also launched

function as a service, providing even higher-level of abstraction for code execution on-demand. In

this scenario, users do not even need to think about infrastructure management.

The heterogeneity of resources is an inevitable consequence of the multi-tenancy aspect of

cloud computing environments. In serving different users, the cloud providers encounter different

needs and requirements that become an essential factor in the creation of the product. In this thesis,

we are interested in exploring the opportunities and challenges in cloud computing environments

that have a significant impact on how the resource management policies must be designed to solve

the problems inherently caused by its multi-tenant architecture and characteristics.

1.1.2 Scientific Workflow as a Service

Scientific workflows are widely used to automate scientific experiments. The latest detection of

gravitational waves by the LIGO project [7] is an example of a scientific breakthrough assisted by

1.1 Background 5

workflow technologies. These workflows are composed of multiple tasks and dependencies that

represent the flow of data between them. Scientific workflows are usually large-scale applications

that require extensive computational resources to process. As a result, distributed systems with an

abundance of storage, network, and computing capacity are widely used to deploy these resource-

intensive applications.

The complexity of scientific workflows execution urges scientists to rely on workflow man-

agement systems (WMS), which manage the deployment of workflows in distributed resources.

Their main functionalities include but are not limited to scheduling the workflows, provisioning

the resources, managing the dependencies of the tasks, and staging the input and output data. A

fundamental responsibility of WMS and the focus of this work is the scheduling of workflow tasks.

In general, this process consists of two stages, i) mapping the execution of tasks on distributed re-

sources and ii) acquiring and allocating the appropriate compute resources to support them. Both

of these processes need to be carried out, while considering the QoS requirements specified by

users and preserving the dependencies between tasks. These requirements make the workflow

scheduling process a challenging problem.

WMS technology has consistently evolved along with the emergence of multi-tenant dis-

tributed systems. ASKALON [8], CloudBus [9], HyperFlow [10], Kepler [11], Pegasus [12],

and Taverna [13] are examples of WMS that have been continuously developed within the sci-

entific community. In the era of cluster and grid environments, the main features of the WMS

focused on the workflow’s representation, utilizing web technology, and providing a Graphical

User Interface for the users. Then, the requirements shifted to the fulfilment of user-defined QoS

in market-oriented cloud computing environments, followed by the need to make workflow’s exe-

cution more lightweight using various microservices technology.

The advancement of e-Science infrastructure in the form of scientific applications empowers

a large number of scientists around the world to start the shifting trend of scientific experiments.

They are part of a broader community that is called the Long Tail of Science. The smaller group

of scientists that run their scientific experiments on a far smaller scale than the LIGO project but

generating a more significant number of scientific data and findings [14]. However, not many

scientists can afford to build their dedicated computational infrastructure for their experiments. In

this case, there is a potential market for providing such services to the scientific community.

6 Introduction

WaaS is an emerging paradigm that offers the execution of scientific workflow as a ser-

vice. The service provider lies either in the Platform-as-a-Service (PaaS) or Software-as-a-Service

(SaaS) layer based on the cloud service model. WaaS providers make use of distributed compu-

tational resources to serve the enormous need for computing power in the execution of scientific

workflows. They provide a holistic service to scientists starting from the user interface in the sub-

mission portal, applications installation, and configuration, staging of input/output data, workflow

scheduling, and resource provisioning. WaaS platforms are designed to process multiple work-

flows from different users. The workload is expected to arrive continuously, and workflows must

be handled as soon as they arrive due to the QoS constraints defined by the users. Therefore, WaaS

platforms must deal with a high level of complexity derived from their multi-tenant and dynamic

nature, contrary to a traditional WMS that is commonly used for managing a single workflow

execution.

Several variations of WaaS framework–which extend the WMS–are found in the literature.

Wang et al. [15] described a service-oriented architecture that separates the components into user

management, scheduler, storage, and VM management layer. Meanwhile, a framework with a

similar division that emphasized on distributed storage was proposed by Esteves and Veiga [16].

Another architecture for multi-tenant scientific workflows execution in clouds emplaced the pro-

posed framework as a service layer above the Infrastructure-as-a-Service (IaaS) [17]. In general,

we identified three primary layers in WaaS platforms: the tenant layer, the scheduler layer, and the

resource layer. Based on the identified requirements of WaaS platforms, we propose an architec-

ture for this system focusing on the scheduler component, as depicted in Fig. 1.2.

Firstly, the tenant layer manages the workflows submission, where users can configure their

preferences and define the QoS of their workflows. The scheduler layer is responsible for placing

the tasks on either existing or newly acquired resources and consists of four components: task

runtime estimator, task scheduler, resource provisioner, and resource monitor. The task runtime

estimator is used to predict the amount of time a task will take to complete within a specific

computational resource. Another component, the task scheduler, is used to map a task into a

selected virtual machine for execution. Meanwhile, resource provisioner is used to acquire and

release virtual machines from third-party providers. The resource monitor is used to collect the

resource consumption data of a task executed in a particular virtual machine. These data are stored

1.2 Motivation 7

Fig. 1.2: Workflow-as-a-service architecture

in a monitoring database and are used by the task runtime estimator to build a model to estimate

the task’s runtime. The third-party infrastructure, with which the platforms interact, fall into the

resource layer. In this thesis, the investigation is based on the assumption of the WaaS platform

and its relations to multi-tenant aspects in cloud computing environments.

1.2 Motivation

The latest report by Gartner [18] presented public cloud computing trends in 2020 and its forecast

for the next five years. It is expected that 60% of organizations all over the world will migrate their

computational load to external cloud providers by 2022 and this number is expected to rise as high

as 90% by 2025. This means that within five years, almost all services will be hosted on clouds.

In addition, Gartner estimated that the revenue of cloud providers would grow to US$266.4 billion

(A$387.83 billion) in 2020.

Furthermore, the popularity of using workflows to automate and manage complex scientific ap-

plications has risen as this increasing trend of migrating computational load from the on-premises

8 Introduction

datacenter to the cloud computing environments. This demand drives the market to provide many

kinds of computational infrastructure as a service, including but not limited to compute resources,

platforms, and the software. Therefore, there is a potential market to provide the execution of

workflows as the utility services for the scientific community.

The existing WMSs are designed to manage the execution of a single workflow. As platform

providing services to multiple users, they must incorporate specific design principles to take ad-

vantage of the opportunities and handle the challenges derived from the multi-tenancy aspect. In

this case, we argue that an approach must be designed to manage the workflow’s execution differ-

ent to the traditional way in which current WMS are capable of, as discussed in Section 1.1.2. To

the best of our knowledge, this kind of platform is still in progress, and no working system has

provided this particular service to the market yet.

Various theoretical works address the problems in designing the WaaS platform [15] [16].

Nevertheless, there still is a large gap to fill, and room for improvement for as many issues have

not been considered in the existing solutions. Two primary keywords in this research are multi-

tenancy and heterogeneity. There is an abundance of problem derivations that need to be solved

related to those keywords which apply to two different actors, i) the WaaS cloud providers and its

relations with the cloud computing environments as their backbone services, and ii) the users and

their various workflow applications, which imply a diverse spectrum of the requirements.

The progress of the WaaS platform development and the research gap in this area motivates

us to undertake this research. Based on our expertise and experience, we choose to contribute to

one particular aspect of resource provisioning and scheduling area, while also considering other

elements related to the development of the WaaS platform.

1.3 Problem Definition: Scheduling Multiple Workflows

The scope of this thesis is limited to the multiple workflows that are modelled as directed acyclic

graphs (DAGs) where a workflow W consists of a set of tasks T = (t1, t2, . . . , tn) and a set of

directed edges E = (e12,e13, ...,emn) in which an edge ei j represents a data dependency between

task ti (parent task) and task t j (child task). Hence, t j will only be ready for execution after

ti has completed. The workflow is completed the execution when the exit task texit (i.e., task

without successors) is finished being processed. The purpose of DAG scheduling is allocating

1.3 Problem Definition: Scheduling Multiple Workflows 9

(a) Independent scheduling (b) Simultaneous scheduling

Fig. 1.3: Two approaches in scheduling multiple workflows

the tasks to computational resources in a way that the precedence constraints among the tasks are

preserved. Specifically, the workflows submitted to multi-tenant computing platforms belong to

different users and are not necessarily related to each other. As a result, heterogeneity becomes

a defining characteristic of the workload that covers various aspects of workflows, including the

type of applications, the size of the workflows, and the user-defined QoS.

When these workflows arrive into the platforms, planning the schedule by exploiting the infor-

mation (i.e., topological structure, computational requirement, size, input) as being implemented

in a static workflow scheduling is not always beneficial. For example, a strategy of partition-

ing tasks before runtime to minimize the data transfer is proven to be efficient for data-intensive

workflows [19]. This strategy can be adopted in multi-tenant computing platforms. However,

then, it faces an inevitable bottleneck, since the time required for partitioning a workflow may

delay the next queue of arriving workflows for scheduling. The waiting time may significantly

increase when involving a metaheuristic technique–which is known for its compute-intensive pre-

processing–in the planning phase. As the size of the workflow increases, this pre-processing time

may become longer and produce a larger queue with significant waiting time delay. Hence, we

did not consider solutions that schedule each workflow independently, depicted in Fig. 1.3a, since

this approach is no different from scheduling a single workflow.

10 Introduction

Instead, we considered scheduling algorithms designed to schedule multiple workflows simul-

taneously, as shown in Fig. 1.3b. Within this context, the addressed multiple workflows sche-

duling problem focuses on how to allocate the tasks T = (t1, t2, . . . , tn) from different workflows

W = {w1,w2,w3, ...,wn} on a multi-tenant distributed computing systems with several computa-

tional resources R = {r1,r2,r3, ...,rn} so that the idle time slots generated from executing a work-

flow wi, on a resource ri, can be allocated to the task t j from another workflow w j. There are many

benefits and challenges of scheduling multiple workflows using this approach. The main benefits

are related to reusing and sharing of the idle time slots and the reduction of waiting time from

queueing delay of scheduled workflows. On the other hand, the challenges to achieve these are

not trivial. Handling the workloads heterogeneity, managing the continuous arriving workflows,

implementing general scheduling approaches that deal with different requirements, and dealing

with performance variability in distributed systems are questions that must be answered.

1.3.1 Challenges

In this section, we address several challenges related to the multiple workflows scheduling within

the context of the WaaS platform. The problems come from the heterogeneity of workload, which

is inflicted by the diversity of users and their specified QoS requirements. Thus, the providers must

design the platform that carefully considers the fairness for each user while taking a precaution of

uncertainties that may be encountered from the underlying cloud computing infrastructures.

Workload Heterogeneity

A multi-tenant platform that receives multiple requests from various users is expected to face the

problems in managing the heterogeneous workload. This workload heterogeneity may take in

numerous forms. From the workflow applications perspective, the workload in the WaaS platform

may include the different types of scientific applications, which implies the possible existence

of software dependencies and library conflicts. The workload may also consist of a variety of

workflows’ sizes related to the number of nodes, input data needed, and output data generated.

How the platform anticipates the heterogeneity of the workflow applications is a big challenge.

Furthermore, the heterogeneity may arise from the users’ perspective, as each of them must bring

up various QoS requirements. In this case, the providers cannot provide one type of service level

agreements for all users. They have to tailor the platform to different users’ characteristics.

1.3 Problem Definition: Scheduling Multiple Workflows 11

Quality of Service Diversity

Workflow scheduling algorithms are designed to find the optimal configuration of task-resource

mapping. However, each user in the WaaS platform may have different QoS requirements. In

general, there are two common QoS in scheduling workflows, time and cost. The majority of

the scheduling cases require the algorithms to minimize the overall workflow execution time (i.e.,

makespan). On the other hand, the cost of executing workflows significantly affects the scheduling

decisions in utility-based computational infrastructures such as utility grids and cloud computing

environments. In this case, the providers also want to minimize their operational costs for execut-

ing the workflows.

These two objectives have opposing goals, and a trade-off between them must be considered.

This trade-off then drives the various scheduling objectives, which includes minimizing cost while

meeting the deadline (i.e., time limit for execution), minimizing makespan while meeting the

budget (i.e., cost limit for execution), and a more flexible objective of meeting deadline and budget.

In the WaaS platforms, QoS diversity is inevitable due to the different needs of users to execute

their workflows. The diversity is not only related to the value of the user-defined QoS, but also rise

in the form of different scheduling objectives. The various QoS requirements must be handled in

a way that each user’s need can be fulfilled without sacrificing others who are served by the same

system. This issue implies the challenge of maintaining fairness between users.

Fairness and Priority

Tailoring the service to different users’ requirements must be equipped by the algorithm’s ability

to maintain the fairness of treatment for each user. While it is commonly understood that fairness

does not always mean the same, there must be a standard in defining the priority in scheduling

workflows to ensure the fulfilment of different SLA without having anyone to be sacrificed. For

example, the platform should be able to manage between the users who prefer faster execution

time and willing to spend more monetary cost with the ones that have a cost restriction but relaxed

time limit. The platform may prioritize the first user and postponed the latter as long as both

SLAs are not violated. This kind of priority assignment is crucial, since it will impact the fairness

treatment between different users within the platform.

12 Introduction

Performance Variability

The virtualization-based cloud computing environments create an inevitable overhead issue. The

isolation that hides the underlying hardware in the data center generates overhead performance

delays. The multi-tenancy aspect in a cloud computing environment that exploits the virtualization

to serve many users is one of the sources of the uncertainties within the cloud’s performance

variability. Therefore, it is uncommon for cloud instances to exhibit performance degradation at

different times when the users’ requests are at its highest. Since most of the scheduling relies on

the estimate of the tasks’ runtime, the performance variability in cloud computing environments

creates an issue to be considered when designing algorithms for WaaS platform.

1.4 Thesis Contributions

Based on the research problem definition and its challenges, this thesis makes the following key

contributions:

• The identification and description of the challenges of the WaaS platform that must be ad-

dressed by the scheduling and resource provisioning algorithm;

• A taxonomy based on workload, deployment, priority assignment, task scheduling, and

resource provisioning model of state-of-the-art multiple workflow scheduling algorithms in

multi-tenant distributed systems;

• A survey and detailed discussion of state-of-the-art approaches in scheduling and resource

provisioning algorithms within the thesis’ scope;

• A budget distribution strategy to assign tasks’ budget based on various types of heteroge-

neous resources to fit into the specific granularity of cloud instances leasing periods;

• A heuristic algorithm that dynamically schedules tasks driven by their sub-budget while

enforcing a resource-sharing policy for multiple workflows, which is capable of minimizing

the makespan while meeting the user-defined budget;

• An online and incremental learning approach in resource estimation and runtime prediction

for scientific workflows that takes into consideration the temporal aspect of cloud resources

performance degradation;

1.5 Thesis Organization 13

Fig. 1.4: The core structure of the thesis

• The implementation of multiple workflows scheduling algorithm and their integration to an

existing cloud workflow management system for the workflow-as-a-service cloud platform.

1.5 Thesis Organization

The chapters of this thesis are derived from several conference and journal papers produced during

the PhD candidature. The core structure of the thesis is depicted in Fig. 1.4 and organized as

follows:

• Chapter 1 presents identification and description of challenges to the workflow-as-a-service

cloud platform based on the definition of the problems previously discussed.

• Chapter 2 presents a comprehensive taxonomy and survey on multiple workflows scheduling

algorithms in multi-tenant distributed systems. This chapter is derived from:

14 Introduction

– Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Multiple Work-

flows Scheduling in Multi-tenant Distributed Systems: A Taxonomy and Future Direc-

tions.‘ ACM Computing Surveys (CSUR), vol. 53, no. 1, Pages 10:1-10:39, 2020.

• Chapter 3 presents a task-based budget distribution strategy that takes into consideration the

granularity of cloud resources billing periods set by the cloud providers. This chapter is

derived from:

– Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Task-based

Budget Distribution Strategies for Scientific Workflows with Coarse-grained Billing

Periods in IaaS Clouds.‘ In Proceedings of the 13th IEEE International Conference on

e-Science (e-Science), Pages 128-137, 2017.

• Chapter 4 presents a budget-constrained scheduling algorithm that incorporates the resource

sharing policy to minimize the makespan, while meeting the budget in multiple workflows

scenarios. The algorithm dynamically allocates tasks to the cloud resources driven by its

sub-budget, which is distributed based on the strategies introduced in Chapter 3. This chap-

ter is derived from:

– Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Resource-

sharing Policy in Multi-tenant Scientific Workflow-as-a-Service Platform.‘ Journal of

Computer and System Sciences (JCSS), 2020 (under review).

• Chapter 5 presents an online and incremental learning approach to resource consumption

and runtime prediction of scientific workflows in the WaaS platform, which considers the

performance variability of clouds based on their temporal provision and computational ca-

pacity (i.e., VM type). This chapter is derived from:

– Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Task Runtime

Prediction in Scientific Workflows Using an Online Incremental Learning Approach.‘

In Proceedings of the 11th ACM/IEEE International Conference on Utility and Cloud

Computing (UCC), Pages 93-102, 2018.

• Chapter 6 presents the functionality of existing workflow management systems and its ex-

tension to schedule multiple workflows for the workflow-as-a-service cloud platform. A

1.5 Thesis Organization 15

case study is presented using two bioinformatics workflows application, which includes the

real-system implementation of approaches discussed in Chapter 4 and 5. This chapter is

derived from:

– Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Workflow-as-

a-Service Cloud Platform and Deployment of Bioinformatics Workflow Applications.‘

Knowledge Management in Development of Data-Intensive Software Systems (KMD-

DIS), 2020 (under review).

• Chapter 7 concludes the thesis, summarizes its findings, and provides directions for future

research.

This page intentionally left blank.

Chapter 2

A Taxonomy and Survey of Multiple
Workflows Scheduling Problem

In this chapter, we propose a taxonomy that classifies multiple workflows scheduling algorithms

based on their workloads, platform deployment, scheduling, and resource provisioning model. Fur-

thermore, we present a comprehensive survey of multiple workflows scheduling strategies that covers

various aspects, including QoS-constrained, energy-aware, and fault-tolerant scheduling solutions.

In this way, we display not only state-of-the-art solutions, but also provide future insights and foster

the research in the scheduling area for the development of the WaaS platform.

2.1 Introduction

Workflow scheduling was studied and surveyed extensively during the cluster and grid computing

era [20] [21]. Subsequently, when cloud computing emerged as a new paradigm with market-

oriented focus, the scientific community got a promising deployment platform for workflow appli-

cations offering multiple benefits. However, this emerging paradigm also brought forth additional

challenges. Solutions for cloud workflow scheduling have been extensively researched, and a va-

riety of algorithms have been developed [22] [23]. Furthermore, various existing taxonomies of

workflow scheduling in clouds focus on describing the particular scheduling problem as well as

its unique challenges and ways of addressing them [24] [25] [26]. Contrary to these previous

studies that focus mostly on a single workflow scheduling, this chapter addressed the scheduling

problem from a higher level perspective–it considered the scheduling of multiple workflows that

arrive continuously to a WaaS platform.

This chapter is derived from: Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Multiple
Workflows Scheduling in Multi-tenant Distributed Systems: A Taxonomy and Future Directions.‘ ACM Computing
Surveys (CSUR), vol. 53, no. 1, Pages 10:1-10:39, 2020.

17

18 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

In this chapter, various aspects of existing multiple workflows scheduling algorithms are dis-

cussed. In particular, we present the workload, deployment, priority assignment, task scheduling,

and resource provisioning models. These taxonomy models correspond to the inherent challenges

in managing multi-tenant distributed systems which includes the heterogeneity in computational

requirements, the various types of underlying infrastructures, the fairness and priority policy, and

the trade-off between various QoS requirements in scheduling and resource provisioning phase.

Finally, the classification of surveyed algorithms to the taxonomy is presented to provide a com-

prehensive understanding of the state-of-the-art algorithms in multiple workflows scheduling.

2.2 Taxonomy

The scope of this chapter is limited to the theoretical algorithms developed for multiple workflows

scheduling that represent the problem in the WaaS platforms. In this section, we described various

challenges of scheduling multiple workflows and their relevancy for each taxonomy classifica-

tion. This section is limited to the discussion of each taxonomy definition; the classification and

references of algorithms are presented later in Section 2.3.18.

2.2.1 Workload Model

Multiple workflows scheduling algorithms are designed to handle workloads with a high level

of heterogeneity that represents a multi-tenant characteristic in the platforms. Workload hetero-

geneity can be described from several aspects, including the continuous arrival of workflows at

different times, the various types of workflow applications that differ in computational require-

ments, the difference in workflow sizes, and the diversity in software libraries and dependencies.

The different arrival time of multiple workflows in the platforms resembles the problem of

streaming data processing that deals with continuous incoming tasks to be processed. In contrast

with some static single workflow scheduling algorithms that make use of information (e.g., work-

flow structure, the runtime of tasks, computational requirements) to create a near-optimal schedule

plan, the continuous arrival of workflows in WaaS platforms makes this an unsuitable approach.

Furthermore, conventional techniques to achieve near-optimal schedules such as metaheuristics

are computationally intensive, and the complexity will grow as the workflow size increases. The

time for planning may take longer than the actual workflow execution. Hence, a lightweight dy-

namic scheduling approach is the most suitable for WaaS platforms, since the algorithms must be

2.2 Taxonomy 19

able to deal with the dynamicity of the workload. For instance, at peak time, the concurrency of re-

quests may be very high, whereas, at other times, the submission rate may reduce to a point where

the inter-arrival time between workflows is long enough to execute each workflow in a dedicated

set of resources.

The variety of application types is another issue to be addressed. A study by Juve et al. [27]

shows a variety of workflow applications with different characteristics. The Montage astronomy

workflow [28] that is used to reconstruct mosaics of the sky is considered as a data-intensive

application with high I/O activities. The Cybershake workflow [29] that is used to characterize

earthquake hazards using the Probabilistic Seismic Hazard Analysis (PSHA) techniques is catego-

rized as a compute-intensive workflow with multiple reads on the same input data. The Broadband

workflow that is used to integrate a collection of simulation codes and calculations for earthquake

engineers has a relative balance of CPU and I/O activities in its tasks. These three samples show

different types of workflow applications that may have different strategies for scheduling to be

carried out. For example, an approach of clustering tasks with a high dependency of input/output

data (i.e., data-intensive) and allocating them on the same resource to minimize data transfer.

Furthermore, heterogeneity is also related to the size of the workflows. The size represents

the number of tasks in a workflow and may differ even between instances of the same type of

workflow application due to different input datasets. For example, the Montage workflow takes

the parameters of width and height degree of a mosaic of the sky as input. The higher the degree,

the larger the Montage workflow size to be executed as it resembles the size and shape of the sky

area to be covered and the sensitivity of the mosaic to produce. A large-scale workflow may raise

another issue in scheduling such as high volume data transfer that may cause a bottleneck in the

network, which will affect other smaller scale workflows being executed in the platform.

Another heterogeneity issue is the various software libraries and dependencies required for

different workflow applications. This problem is related to the deployment and configuration of

workflow applications in the systems. Deploying different software libraries and dependencies

requires technical efforts in installing the software and managing conflicts between software de-

pendencies. The most important implication related to this case is the resource sharing between

workflows to utilize idle time slots produced during the scheduling. In cluster and grid envi-

ronments where every user uses shared installed software systems on a physical machine, the

20 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Workload Model

QoS Requirement
Heterogeneous

Homogeneous

Workflow Type
Heterogeneous

Homogeneous

Fig. 2.1: Workload model taxonomy

conflicting dependencies are inevitable. This problem can be avoided by isolating applications in

virtualized environments (i.e., cloud computing environments).

However, in clouds where the workflow’s deployment and configuration can be isolated in a

virtual machine, the possibility to share the computational power between users in a particular

virtual machine is limited. This problem is due to the virtual machine capacity (i.e., memory,

storage) limitation and possible conflicting dependencies if we want to have as much as software

configured in a virtual machine. The trade-off between the isolation and the resource sharing in

clouds can be solved using containers as successfully implemented using Kubernetes on Docker

containers [30], Singularity and CVMFS at OSG [31] and Shifter at Blue Waters [32]. In this

case, container, a lightweight operating system-level virtualization, is used to isolate the workflow

application before deploying them on virtual machines. Therefore, both isolation and resource

sharing objectives can be achieved. Based on the heterogeneity issue, these workloads can be

differentiated by their workflow type and user-defined QoS requirements, as shown in Fig. 2.1.

Workflow Type

Scheduling algorithms for WaaS platforms must consider the fact that the users in this system

may submit a single type or different workflow applications. These variations can be categorized

into homogeneous and heterogeneous workflow types. A homogeneous workflow type assumes

all users submit the same kind of workflow applications (e.g., multi-tenant platforms for Montage

workflow). In this case, the algorithms can be tailored to handle a specific workflow application

by exploiting its characteristics (e.g., topological structure, computational requirements, software

dependencies, and libraries). For example, related to a topological structure, a workflow with a

large number of tasks in a level may raise an issue of data transfer. This issue can potentially

2.2 Taxonomy 21

become a communication bottleneck when all of the tasks in a level concurrently transfer the data

input needed to execute the tasks. Therefore, clustering the tasks may result in a reduction in data

transfer and eliminates the bottleneck in the system.

Furthermore, the heterogeneity from the resource management perspective affects how the

scheduling algorithms handle software dependencies and libraries installed in computational re-

sources. The algorithms for a homogeneous workflow type can safely assume that all resources

contain the same software for a workflow application. In this way, the constraints for choosing

appropriate resources for particular tasks related to the software dependencies can be eliminated

since all of the resources are installed and configured for the same workflow application.

On the other hand, to handle a heterogeneous workflow type, the algorithms must be able to

tackle all various possibilities of workflow type submitted into the platforms. In a WaaS platform,

where the heterogeneous workflow type is considered, tailoring the algorithms to the specific

workflow application characteristics is impractical. The scheduling algorithms must be designed

using a more general approach. For example, related to the topological structure, a workflow’s

task is considered ready for the execution when all of its predecessors are executed, and its data

input is available in a resource allocated for execution. In this way, the algorithms can exploit a

heuristic to build a scheduling queue by throwing in all tasks with this specification.

Therefore, a variety of software dependencies required for different workflow applications

increases the possible conflict of software dependencies in platforms that consider heterogeneous

workflow type. In this case, the algorithms must include some rules in the resource selection

step to determine what relevant resources can be allocated for specific tasks. For example, the

algorithms can define a rule that is only allowing a task to be assigned a resource based on its

software dependencies and libraries’ availability.

QoS Requirements

Workloads in WaaS platforms must be able to accommodate multiple users’ requirements. These

requirements are represented by the QoS parameters defined when users submit their workflows

to the platforms. We categorized the workloads based on the users’ QoS requirements into homo-

geneous and heterogeneous QoS requirements.

The majority of algorithms designed for the platforms surveyed in this study consider a ho-

mogeneous QoS requirement. They are designed to achieve the same scheduling objective (e.g.,

22 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

minimizing the makespan, meeting the budget) for all workflows. Meanwhile, a heterogeneous

QoS requirement is addressed by the system’s ability to be aware of various objectives and QoS

parameters demanded by a particular user. The algorithms may consider several strategies to

handle workflows with different QoS requirements. For example, to process workflows that are

submitted with the deadline constraints, the algorithms may exploit the option to schedule them

into the cheapest resources to minimize operational cost as long as their deadlines can be met.

At the same time, the algorithms can also handle workflows with the budget constraints by using

another option to lease as much as possible the fastest resources within the available budget.

2.2.2 Deployment Model

Handling the performance variability in multi-tenant distributed computing systems is essentials

to the multiple workflows scheduling problems as the scheduling highly relies on the accurate

estimation of workflow‘s performance on a particular computational infrastructure. Attempts to

increase the quality of scheduling by accurately estimating the time needed for completing a task,

as one of the strategies for taking care of the uncertainty has been extensively studied [33]. Specific

work designed for scientific workflows includes a work by Nadeem and Fahringer [34] that utilized

the template to predict the scientific workflow application execution time. Another work by da

Silva et al. [35] introduced an online approach to estimate the resource consumption for scientific

workflows. Meanwhile, Pham et al. [36] worked on machine learning techniques to predict task

runtime in workflows using a two-stage prediction approach.

When we specifically discuss cloud environments, the uncertainty becomes higher than cluster

and grid environments. The virtualization of clouds is the primary source of the performance

variability, as reported by Leitner and Cito [4] and also previously discussed by Jackson et al.

[37]. The cloud instances performance varies over time due to several aspects, including the

virtualization overhead, the geographical location of the data center, and especially the multi-

tenancy of clouds. For example, it is not uncommon for a task to have a longer execution time

during a specific time in cloud instances (i.e., peak hours) due to the number of users served by

a particular cloud provider at that time. The main conclusions from their works substantiate our

assumption that the predictability of clouds is something that is not easy to address.

Another variable of uncertainty in clouds is the provisioning and de-provisioning delays of

VMs. When a user requests to launch a cloud’s instance, there is a delay between the request

2.2 Taxonomy 23

Platform
Deployment

Virtualized
Container-based

VM-based

Non-virtualized

Fig. 2.2: Deployment model taxonomy

and when the VM is ready to use, which is called as provisioning delay. There also exists a de-

lay in releasing the resource, called as de-provisioning delay. Not considering the provisioning

and de-provisioning delays in the scheduling phase may cause a miscalculation of when to ac-

quire and to release the VM. This error may cause an overcharging bill of the cloud services. A

study by Mao and Humphrey [38] reported that the average provisioning delay of a VM, observed

from three cloud providers–Amazon EC2, Windows Azure, and Rackspace–was 97 seconds while

more recently, Jones et al. [39] presented a study which shows that three different cloud manage-

ment frameworks–OpenStack, OpenNebula, and Eucalyptus–produced VM provisioning delays

between 12 to 120 seconds. However, delays are not only derived from acquiring and releasing

instances. Since most of the WMS treat cloud instances (i.e., virtual machines) as virtual clusters

using third-party tools (e.g., HTCondor1), there exists a delay in integrating a provisioned VM

from cloud providers into a virtual cluster. An upper bound delay of 60 seconds for this process

was observed by Murphy et al. [40] for an HTCondor virtual cluster. These delays are one of

the sources of uncertainty in clouds, and therefore, the algorithms should consider then to get an

accurate scheduling result.

Hence, the scheduling algorithms for WaaS platforms can be differentiated based on its de-

ployment model. We identified two types of algorithms based on their deployment model, as

illustrated in Fig. 2.2. Several issues and challenges that arise from these models are worthy of

being considered by the scheduling algorithms.

Non-virtualized

The majority of works in our survey design are scheduling algorithms for cluster and grid envi-

ronments. These two environments are the traditional way of establishing multi-tenant distributed

computing systems where a large number of computational resources are connected through a fast

1https://research.cs.wisc.edu/htcondor/

24 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

network connection so that many users in a shared fashion can utilize the infrastructure. How-

ever, in this way, there is no isolation between software installed related to their dependencies and

libraries within the same physical machine.

Accommodating multi-tenant users in a non-virtualized environment is limited by the compu-

tational infrastructure static capacity. This staticity makes it very hard to auto-scale the resources

in non-virtualized environments. Thus, the algorithms cannot efficiently serve a dynamic work-

load without having a queueing mechanism to schedule overloaded requests at a particular time.

For example, adding a node into an established cluster infrastructure is possible but may involve

technicalities that cannot be addressed in a short period. This environment also does not allow the

users to shrink and expand their allocated resources quickly since the changes need to go through

the administrator intermediaries. Therefore, the primary concern of scheduling algorithms de-

signed for this environment is to ensure for maximum utilization of available resources, so the

algorithms can reduce the queue of users waiting to execute their workflows. In this case, tech-

niques such as task rearrangement [41] and backfilling [42] can be used to fill the gaps produced

by scheduling a particular workflow, by allocating these idle slots to other workflows.

Virtualized

The algorithms designed for virtualized environments (i.e., clouds) can gain advantages from a

flexible configuration of VM as it isolates specific software requirements needed by a user in a

virtualized instance. A fully configured virtual machine can be used as a template and can be

shared between multiple users to run the same workflows. This isolation ensures little disturbance

to the platforms and the other users whenever a failure occurs. However, in this way, the possible

computational sharing of a virtual machine is limited. It is not plausible to configure a virtual

machine for several workflow applications at the same time. In this case, containers can be used

to increase configuration flexibility in virtualized environments. The container is an operating-

system-level virtualization method to run multiple isolated processes on a host using a single

kernel. The container is initially a feature built for Linux that is further developed and branded

as a stand-alone technology (e.g., Docker2) that not only it can run on Unix kernel, but also on

Windows NT kernel (e.g., windows container3). A full workflow configuration can be created in a

2https://www.docker.com/
3https://docs.microsoft.com/en-us/virtualization/windowscontainers/

2.2 Taxonomy 25

container before deploying it on top of virtual machines. In this way, the computational capacity

of VMs can be shared between users with different workflows.

In the context of scalability, algorithms designed for virtualized environments can comfort-

ably accommodate multi-tenant requirements. The algorithms can acquire more resources in on-

demand fashion whenever requests are overloading the system. Furthermore, this on-demand

flexibility supported by the pay-as-you-go pricing scheme reduces the burden for the WaaS plat-

form providers to make upfront payments for reserving a large number of resources that may only

be needed at a specific time (i.e., peak hours). Even if a particular cloud provider cannot meet

the demand of the WaaS platform providers, the algorithms can provision resources from different

cloud providers.

However, this environment comes with a virtualization overhead that implies a significant

performance variability. The overhead not only occurs from the communication bottleneck when

a large number of users deal with high volume data but also the possible degradation of CPU

performance since the computational capacity is shared between several virtual machines in the

form of virtual CPU. The other overheads are the delay in provisioning and de-provisioning virtual

machines and the delay in initiating and deploying the container. The scheduling algorithms have

to deal with these delays and consider them in the scheduling to ensure accurate results.

2.2.3 Priority Assignment Model

Fairness and priority issues are unavoidable in multiple workflows scheduling. Given two work-

flows that arrive at the same time, the decision to execute a particular workflow must be determined

using a policy to ensure that limited computational resources can be fairly allocated. This fairness

can be identified from the slowdown, a difference of expected makespan between the execution of

a workflow in dedicated resources vs resource sharing environments [43]. In this case, the schedul-

ing algorithms are designed to gain a slowdown value as low as possible. Since the computational

resources are limited, the slowdown is inevitable. Therefore, the algorithms assigned a priority to

the workflows to ensure the fulfilment of QoS. The priority can be derived from several aspects,

including the QoS defined by users, the type of workflow application, the user’s preference, and

the size of the workflows.

Priority assignment can be determined based on the user-defined QoS. It is evident for sche-

duling algorithms to prioritize workflow with the earliest deadline, as this can ensure the fulfilment

26 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Priority Assignment

Workflow Size

User-defined Priority

QoS Constraint

Application Type

Fig. 2.3: Priority assignment model taxonomy

of QoS requirements. In this way, algorithms may introduce a policy based on the deadline that

delays the scheduling of a workflow with a more relaxed deadline to improve resource sharing in

the system without violating the fairness aspect. On the other hand, the priority assignment can

be defined from the budget. In real-world practice, it is common to prioritize the users with more

budget to do a particular job compared to the lower one (e.g., priority check-in for business class

passengers). This policy also can be implemented in multiple workflows scheduling.

Assigning priority based on the type of application can be done by defining application or user

classes. For example, workflows submitted for education or tutorial purpose may have a lower

priority than the workflows executed in a scientific research project. Meanwhile, a workflow that

is used to predict the typhoon occurrence may be performed first compared to a workflow for

creating the mosaic of the sky. This policy can be defined out of the scheduling process based on

some strategies adopted by the providers.

Moreover, the priority assignment can also be determined based on the size of workflows. This

approach is the most traditional way of priority scheduling that has been widely implemented, such

as the Shortest Job First (SJF) policy, which prioritizes the smaller workflows over a larger one

to avoid starvation. Another traditional scheduling algorithm like Round-Robin (RR) also can be

constructed based on the size of the workflows to ensure both of the small and large workflows get

fair treatment in the systems.

Fairness between users in WaaS platforms can be achieved through priority assignments. This

assignment is crucial as the ultimate goal of the providers is to fulfil users’ QoS requirements. We

identified various priority assignment models from surveyed algorithms that consider the type of

workflow application, users QoS constraints, user-defined priority, and size of workflows in their

design, as shown in Fig. 2.3.

2.2 Taxonomy 27

Application Type

Different types of workflow applications can be used to define the scheduling priority based on

their context and critical functionality. The same workflow application can differ in priority when

it is used in a different environment. Montage workflow used for an educational purpose may have

a lower priority than a solar research project using the same workflow. Meanwhile, considering

the different critical functions of workflows and some events (e.g., earthquake), some workflow

applications can be prioritized from the others. For example, Cybershake workflow to predict the

ground motion after an earthquake may be prioritized compared to the Montage workflow that

is used to create a mosaic of the sky image. This priority assignment needs to be designed in a

specific policy of the providers that can regulate the fairness of the scheduling process.

QoS Constraint

Deriving priority assignments from users’ QoS constraints can be done within the scheduling algo-

rithms. This assignment is included in the logic of algorithms to achieve the scheduling objectives.

For example, an algorithm that aims to minimize cost while meeting the deadline may consider to

de-prioritize and delay the task of a particular workflow that has a more relaxed deadline to re-use

the cheapest resources available. In this way, the algorithms must be designed to be aware of the

QoS constraints of the tasks to derive these parameters into a priority assignment process.

Furthermore, the challenge of deriving priority assignment from QoS constraints may come

from a heterogeneous QoS requirement workload. The algorithms must be able to determine a

priority assignment for multiple workflows with different QoS requirements. For example, given

two workflows with different QoS parameters, a workflow was submitted with a deadline, while

another was included with a budget. The priority assignment can be done by combining these

constraints with its application type, user-defined priority, or workflow structure.

User-defined Priority

On the contrary to the application type priority model that may be arranged through a specific pol-

icy, the priority assignment must also consider the user-defined priority in scheduling algorithms.

This priority can be defined by users with appropriate compensations for the providers. For exam-

ple, it is not uncommon in real-world practice to spend more money to get a prioritized treatment

that affects the speed of process and quality of service (e.g., regular and express postal service).

28 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

It is possible in WaaS platforms to accommodate such a mechanism where the users are given the

option to negotiate their priority through a monetary cost compensation for the providers. This

mechanism is a standard business practice adopted in WaaS platforms (e.g., reserved, on-demand,

and spot instances pricing schemes).

Workflow Size

Another approach on priority assignment is based on the structure of workflows (e.g., size, parallel

tasks, critical path). Prioritizing workflows based on their sizes resembles a traditional way of

priority scheduling, such as Shortest Job First (SJF) policy that gives priority to the shortest tasks,

and Round Robin (RR) policy that attempts to balance the fairness between tasks with different

sizes. This prioritization can be combined with the QoS constraint to produce better fairness. For

example, a large-scale workflow may have an extended deadline. Therefore, smaller workflows

with tight deadlines can be scheduled between the tasks’ execution of this larger workflow.

2.2.4 Task Scheduling Model

Task-resource mapping is the primary activity of scheduling. All of the workflow scheduling al-

gorithms have the purpose of finding the most optimal configuration of task-resource mapping.

However, each scheduling problems may have different requirements regarding the QoS. In gen-

eral, there are two standard QoS requirements in workflow scheduling, time and cost. Most of the

cases require the algorithms to minimize the overall execution time (i.e., makespan).

On the other hand, the cost of executing the workflows significantly affects the scheduling de-

cisions in utility-based computational infrastructures such as utility grids and cloud environments.

Every user wants to minimize the cost of executing their workflows. These two objectives have op-

posing goals, and a trade-off between them must be considered. This trade-off then is derived into

various scheduling objectives such as minimizing cost while meeting the deadline (i.e., time limit

for execution), minimizing makespan while meeting the budget (i.e., cost limit for execution), or

a more flexible objective, meeting deadline, and budget.

In WaaS platforms, QoS diversity is inevitable due to the different users’ needs in executing

their workflows. The variety is not only related to the QoS values the users define but also raise in

the form of different scheduling objectives. The various user-defined QoS requirements must be

handled in a way that each user’s need can be fulfilled without sacrificing the other users.

2.2 Taxonomy 29

Task Scheduling

Periodic Scheduling
Resource Type
Configuration Search

Gap Search

Immediate Scheduling

Fig. 2.4: Task scheduling model taxonomy

All algorithms in this study avoid metaheuristics approaches that are known for their com-

plexity in planning the schedule before runtime. This planning creates an overhead waiting delay

as the continuous arriving workflows have to wait for pre-processing before the actual scheduling

takes place. Therefore, they use dynamic approaches that reduce the need for intensive computing

at the planning phase and aim to achieve a fast scheduling decision by considering the current

status of the systems. These approaches can be divided into immediate and periodic scheduling,

as illustrated in Fig. 2.4.

Immediate Scheduling

Immediate scheduling or just-in-time scheduling is a dynamic scheduling approach in which tasks

are scheduled whenever they are ready for scheduling. In the case of multiple workflows, this

scheduling approach collects all of the ready tasks from different workflows in a task pool before

deciding to schedule based on some particular rules. The immediate scheduling tries to overcome

the fast dynamic changes in the environments by adapting the decision based on the current status

of the system. However, as the algorithm schedules the tasks based on a limited amount of infor-

mation (i.e., a limited view of the previous and future information), this approach cannot achieve

an optimal scheduling plan. On the other hand, it is an efficient way for multi-tenant platforms

that deal with uncertain and dynamic environments.

The immediate scheduling resembles list-based heuristics scheduling. This scheduling ap-

proach, in general, has three scheduling phases, task prioritization, task selection, and resource

selection. The algorithms repeatedly select a particular task from the scheduling queue that is

constructed based on some prioritization method and then pick the appropriate resource for that

specific task. For example, in deadline constraint-based heuristics algorithms that aim to minimize

the cost while meeting the deadline, the scheduling queue is constructed based on the earliest dead-

30 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

line first (EDF) of the tasks, and the cheapest resources that can meet the deadline are chosen to

minimize the cost. The time complexity for heuristic algorithms is low. Therefore, it is suitable

for multiple workflows scheduling algorithms that deal with the speed to manage the scheduling.

Periodic Scheduling

This approach schedules the tasks periodically to exploit the possibility of optimizing a set of

tasks’ scheduling within a period. While in a general batch scheduling, a particular set is con-

structed based on the size of workload (i.e., schedule the tasks after reaching a certain number),

the periodic approach schedules the tasks in a set of timeframe. In this case, the periodic sche-

duling acts as a hybrid approach between static and dynamic scheduling methods. Static means

that, the algorithms exploit the information of a set of tasks (i.e., structures, estimated runtime) to

create an optimal plan, but it does not need to wait for a full workload of tasks to be available. The

dynamic sense of algorithms, however, adapts and changes the schedule plan periodically. Hence,

periodic scheduling refers to a scheduling technique that utilizes the schedule plan of a set of tasks

available in a certain period to produce a better scheduling result. This method is more adaptable

to changes and has faster pre-runtime computation than static scheduling techniques since it only

includes a small fraction of workload to be optimized rather than the entire workload. On the

other hand, this approach can achieve a better result from having an optimized schedule plan than

typical immediate scheduling but with less speed in scheduling.

One of the approaches in periodic scheduling is identifying the gaps between tasks during the

schedule. The identification uses an estimated runtime of tasks and their possible position in a

resource during runtime. The most common methods to fill the gap are task rearrangement and

backfilling strategy. Task arrangement strategy re-arranges the tasks scheduling plan to ensure the

minimal gap in a schedule plan. At the same time, backfilling allocates the ordering list of tasks

and then backfills the holes produced between the allocation using the appropriate tasks. Both

strategies do not involve an optimization algorithm that requires intensive computation since the

WaaS platforms consider speed in the schedule to cope with the users’ QoS requirements.

While gap search is related to the strategy for improving resource utilization, another approach

utilizes resource type configuration to optimize the cost spent on leasing computational resources.

In a heterogeneous environment where resources are leased from third-party providers with some

monetary costs (i.e., utility grids, clouds), determining resource type configuration to optimize

2.2 Taxonomy 31

Resource Provisioning

Dynamic Provisioning
Performance-aware

Workload-aware

Static Provisioning

Fig. 2.5: Resource provisioning model taxonomy

the cost of leasing resources is necessary. For example, Dyna algorithm [44] that considers the

combination use of on-demand and spot instances in Amazon EC2, utilizes heuristics to find the

optimal resource type configuration to minimize the cost.

2.2.5 Resource Provisioning Model

Resource provisioning forms an essential pair with task scheduling. In this stage, scheduling algo-

rithms acquire and allocate resources to execute the scheduled tasks. We derived the categorization

of resource provisioning based on the ability of scheduling algorithms to expand and shrink the

number of resources within the platforms to accommodate the dynamic workloads of the WaaS

platforms, as shown in Fig. 2.5.

Static Provisioning

The static provisioning refers to scheduling algorithms where the number of resources used is

relatively constant along the scheduling process. Therefore, the primary issue is related to the

algorithms’ ability to optimize the available resources to accommodate multiple users. This con-

dition can be observed from the algorithms that emphasize heavily on the prioritization technique

for workflows to be scheduled due to the limited available resources contested by many users. An-

other aspect is the improvement of resource utilization of the systems, which describes the ability

of algorithms to allocate a limited number of resources efficiently.

This static provisioning is not exclusive to the non-virtualized environment (e.g., clusters,

grids), where the number of resources is hardly changing over time. This case also prevails in cloud

environments where the providers determine the number of VMs to be leased before initiating

the platforms, and the number remains unchanged over time. In this scenario, the scheduling

algorithms do not consider any resource provisioning strategy to scale up and down resources

when facing a dynamic workload of workflows.

32 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Dynamic Provisioning

As the clouds provide elastic provisioning of virtual machines, the scheduling algorithms of WaaS

platforms in clouds take advantage of the dynamic provisioning approach. The automated scaling

of resources that can be easily implemented in clouds has been widely adopted. Specifically, the

scheduling algorithms that deal with a dynamic workload, where the need for resources can be

high at a point (i.e., peak hours), while at the same time, the operational cost must be kept at the

minimum. To minimize the operational cost, the leased VMs have to be released when the request

is low. From the existing algorithms, at least, there are two different approaches to auto-scale the

cloud instances, workload-aware and performance-aware.

Workload-aware dynamic provisioning is related to the ability of algorithms to become aware

of the workload status in WaaS platforms, and then to act according to the situation. For example,

the platforms are acquiring more VMs to accommodate the peak condition. One of the heuristics

used in this scenario is based on the deadline constraints of the workload. For example, the al-

gorithms use a task’s deadline to decide whether a task should re-use available VMs, provision a

new VM that can finish before the deadline, or delay the schedule to re-use future available VMs

as long as it does not violate the deadline. This decision is essential, since the dynamic workload

is typical in WaaS platforms, where the systems cannot predict the future status of the workload.

Using this heuristic provisioning, additional VMs are more accurate as the acquired new VM is

based on the requirement of a particular task being scheduled.

On the other hand, the performance-aware dynamic provisioning refers to an approach of

VMs auto-scaling based on total resource utilization of current provisioned VMs. The algorithms

monitor the system’s status and acquire additional VMs when the usage is high and release several

idle VMs when the utilization is low. Maintaining resource utilization at a threshold ensures the

efficiency of WaaS platforms in the scheduling process. The majority of works considering this

approach are the ones that consider only homogeneous VM types in their systems. In this way, the

algorithms do not need to perform the complicated selection process of the VM types.

2.3 Survey

In this section, we discuss a number of surveyed multiple workflows scheduling algorithms pub-

lished between 2008 to 2019 that are relevant to our scope.

2.3 Survey 33

Table. 2.1: Experimental design of RANK_HYBD algorithm

Experiment Type Simulation

Workload
Synthetic workflows : Taken from Hönig et al. [47]
Number of workflows : 25 workflows
Arrival intervals : Poisson distribution

Workflow Properties

Node (175–249) : Number of tasks
Meshing degree : Nodes connectivity
Edge-length : Average number of nodes between two connected nodes
CCR : Ratio of computation and communication time

Performance Metrics
Makespan : Total execution time
Turnaround time : Makespan and waiting time
Resource utilization : Percentage of time when computational resources are busy

2.3.1 Planner-Guided Scheduling for Multiple Workflows

RANK_HYBD algorithm [45] was introduced to overcome the impracticality of the ensemble

approach (i.e., merging multiple workflows) to handle different submission time of workflows

to the system by scheduling individual tasks dynamically. The algorithm put together all ready

tasks from different workflows into a pool. Then, the algorithm used a modified upward rank-

ing [46], which calculated the weight of a task based on its relative position from the exit tasks

and estimated computational length to assign individual tasks priorities. This task ranking time

complexity is O (Tw .Ps) for all tasks in a workflow Tw given a set of static processors Ps. In con-

trast with the original upward ranking implementation in HEFT algorithm that chooses tasks with

higher rank value, RANK_HYBD prefers tasks with the lowest rank in the pool which creates a

time complexity of O (Tr .Ps) for re-prioritizing all ready tasks Tr. In this case, HEFT prefers the

tasks from later arriving workflows and the tasks with the most extended estimated runtime, which

creates an unfair pre-emptive policy for the running workflows. By using the opposite approach,

the RANK_HYBD algorithm avoids the pre-emptive scheduling delay of a nearly finished work-

flow if a new workflow is submitted in the middle of the execution. Finally, it schedules each task

to the processor that can give the earliest processing time with O (Tr (Tr .Ps)) time complexity.

The detailed experimental design for RANK_HYBD algorithm is depicted in Table. 2.1.

In general, the time complexity is quadratic to the number of tasks. The report shows that

RANK_HYBD outperformed RANDOM and FIFO algorithms by 1.77x average speedup on work-

loads up to 25 multiple workflows. This algorithm is the first solution for multiple workflows

34 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

scheduling. Many later algorithms have adopted the approach to tackle the dynamic workload

of workflows using dynamic prioritization for tasks within a workflow and between workflows.

Although many aspects, such as QoS constraints, performance variability, and real workflow ap-

plications, have not been included in the experiment, this work becomes an important benchmark.

2.3.2 Multiple QoS Constrained Scheduling for Multiple Workflows

Multiple QoS Constrained Scheduling Strategy of Multi-Workflows (MQMW) algorithm [48] in-

corporated a similar strategy of RANK_HYBD to schedule multiple workflows. MQMW prior-

itized tasks dynamically based on several parameters, including resource requirement of a task,

time and cost variables, and covariance value between time and cost constraint. This task ranking

time complexity is O (Tw .Cs) for all tasks in a workflow Tw given a set of static cloud instances Cs.

The algorithm preferred the tasks with a minimum requirement of resources to execute, minimum

time and cost limit, and a task with minimum covariance between its time and cost limit (i.e.,

when time limit decreases, the cost will increase). Each time the scheduling takes place, MQMW

re-compute all ready tasks Tr by O (Tr .Cs) time complexity. Finally, MQMW schedules each task

to the best fit idle cloud instances with O (Tr (Tr .Cs)) time complexity.

In general, the time complexity is quadratic to the number of tasks processed. It is tested

against RANK_HYBD, even though the RANK_HYBD did not consider the cost in the sche-

duling constraint. The evaluation results show that MQMW outperformed the success rate of

RANK_HYBD [45] algorithm by 22.7%. MQMW is the first attempt to provide the solution of

multiple workflows scheduling on the cloud computing environment. However, their cloud model

does not resemble the real characteristics that are inherent in clouds such as elastic scalability of

instances, on-demand resources, pay-as-you-go pricing schemes, and performance variability of

cloud computing environments.

MQSS algorithm [49] was proposed to overcome shortcomings from the MQMW algorithm,

which considered additional QoS in the scheduling and the adoption of a more optimal scheduling

strategy. With the relatively same approaches, the MQSS includes other QoS parameters into

the scheduling’s attributes (e.g., time, cost, availability, reputation, and data quality). In general,

MQSS has the same time complexity as MQMW, with 12.47% success rate improvement for the

same workloads. The detailed experimental design for MQMW and MQSS algorithms is depicted

in Table. 2.2 and Table. 2.3 respectively.

2.3 Survey 35

Table. 2.2: Experimental design of MQMW algorithm

Experiment Type Simulation

Workload Synthetic workflows : Randomly generated
Number of workflows : 25 workflows

Performance Metrics
Makespan : Total execution time
Cost : Cloud resource monetary cost
Success rate : Percentage of successfully executed workflows

Table. 2.3: Experimental design of MQSS algorithm

Experiment Type Simulation

Workload Synthetic workflows : Randomly generated
Number of workflows : 30 workflows

Performance Metrics Relative weight of resource : Different computational capacity of resources
Success rate : Percentage of successfully executed workflows

2.3.3 Fairness in Multiple Workflows Scheduling

Parallel Task HEFT (P-HEFT) algorithm [50] was the first work of a group from the Universidade

do Porto that modelled the non-monotonic tasks (i.e., the execution time of a task might differ on

the different number of resources). The algorithm used a relative length position of a task from

the entry task (i.e., top-level) and exit task (i.e., bottom-level) to assign the priorities between

tasks. This ranking time complexity is O (Tw .Ps) for all tasks in a workflow Tw given a set of

static processors Ps. In their case, the task model is different from other works as it allows parallel

execution of a task in several processors. Furthermore, the processor selection and task scheduling

for all ready tasks Tr is O (Tr (Tr .Ps)). In general, the complexity is quadratic to the number of

tasks processed. The evaluation results show that P-HEFT outperformed static algorithm HPTS

[51] by 1.52x average speedup on workloads of 12 multiple workflows. The detailed experimental

design for P-HEFT algorithm is depicted in Table. 2.4.

The next work from this group was the Fairness Dynamic Workflow Scheduling (FDWS) al-

gorithm [43]. FDWS chose a single ready task from each workflow into the pool instead of putting

all ready tasks together. Local prioritization within a workflow utilized upward-rank mechanism.

Furthermore, the task selection from different workflows was based on a percentage of remaining

task number of workflow the task belongs to (PRT) and a task position in its workflow’s critical

36 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.4: Experimental design of P-HEFT algorithm

Experiment Type Simulation

Grid Settings

Number of processors : 50 processors
Maximum processor speed : 400 Mflops/s
Network bandwidth : 100 Mbps
Network latency : 50 µs

Workload
Synthetic workflows : Randomly generated
Number of workflows : 12 workflows
Arrival intervals : 40% elapsed time of the last job

Workflow Properties

Width : Number of task on the largest level
Regularity : Uniformity of the number of task in each level
Density : Number of edges between two levels
Jumps : Edge connection between two consecutive levels

Performance Metrics Makespan : Total execution time
Efficiency : Ratio of sequential execution and parallel time

Table. 2.5: Experimental design of FDWS algorithm

Experiment Type Simulation using SimGrid [53]

Grid Settings
Number of processors : 280 processors
Maximum processor speed : 13–30 Gflops/s
Platforms derivation : Based on Grid5000 deployed in France [54]

Workload
Synthetic workflows : Randomly generated
Number of workflows : 50 workflows
Arrival intervals : 0–90% elapsed time of the last job

Workflow Properties

Width (20–50) : Number of task on the largest level
Regularity (0.2–0.8) : Uniformity of the number of task in each level
Density (0.2–0.8) : Number of edges between two levels
Jumps (1–3) : Edge connection between two consecutive levels

Performance Metrics

Makespan : Total execution time
Turnaround time : Total execution and waiting time
Turnaround time ratio : Ratio of turnaround time and the minimum makespan
Normalized turnaround time : Ratio of minimum and actual turnaround time
Win : Percentage of a workflow got the shortest makespan

path (CPL). This prioritization time complexity is O (Tw .Ps) for all tasks in a workflow Tw given

a set of static processors Ps. Meanwhile, resource selection and task scheduling for all ready tasks

Tr in FDWS is O (Tr (Tr .Ps)). In general, the complexity is quadratic to the number of tasks

processed. The evaluation results show that FDWS outperformed RANK_HYBD [45] and OWM

[52] by 1.1x and 1.15x average speedup respectively on workloads of 50 multiple workflows. The

detailed experimental design for FDWS algorithm is depicted in Table. 2.5.

2.3 Survey 37

Table. 2.6: Experimental design of MW-DBS algorithm

Experiment Type Simulation using SimGrid [53]

Grid Settings Number of processors : 20–64 processors
Platforms derivation : Based on Grid5000 deployed in France [54]

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 50 workflows
Arrival intervals : 10–50% elapsed time of the last job

Workflow Properties

Node (30–100) : Number of task on the largest level
Regularity (0.2–0.5) : Uniformity of the number of task in each level
Density (0.2–0.5) : Number of edges between two levels
Jumps (1–4) : Edge connection between two consecutive levels
Deadline (1–2) : Based on min. and max. execution time
Budget (0–1) : Based on min. and max. execution cost

Performance Metrics Planning successful rate : Ratio of successfully planed and executed workflows

Multi-Workflow Deadline-Budget Scheduling (MW-DBS) algorithm [55] was their work that

addressed the utility aspect of a heterogeneous multi-tenant distributed system. This algorithm

includes deadline and budget as constraints. Furthermore, local priority is assigned using the same

method from FDWS which creates O (Tw .Ps) time complexity. However, instead of using PRT and

CPL, MW-DBS uses the task’s deadline and workflow’s scheduled tasks ratio for assigning global

priority. Finally, MW-DBS modifies the processor selection phase, in which it includes a budget

limit for task processing as a quality measure with O (Tr .Ps) time complexity. Furthermore, the

complexity of resource selection and task scheduling for all ready tasks Tr is O (Tr (Tr .Ps)). In

general, the time complexity is quadratic to the number of tasks processed. The evaluation results

show that MW-DBS outperformed the success rate of FDWS [43] and its variants by 43% on

workloads of 50 multiple real-world application workflows. The detailed experimental design for

MW-DBS algorithm is depicted in Table. 2.6.

The latest work was the Multi-QoS Profit-Aware Scheduling (MQ-PAS) algorithm [56]. MQ-

PAS was designed not only for the cloud computing environment but also for the general utility-

based distributed system. Task ranking and selection complexity in MQ-PAS is O (Tw .Cs) for all

tasks in a workflow Tw given a set of static cloud instances Cs. Meanwhile, the quality measure in

cloud instances selection is O (Tr .Cs). Furthermore, the complexity of resource selection and task

scheduling for all ready tasks Tr is O (Tr (Tr .Cs)). In general, the time complexity is quadratic

to the number of tasks processed. The evaluation results show that MQ-PAS outperformed the

38 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.7: Experimental design of MQ-PAS algorithm

Experiment Type Simulation using SimGrid [53]

Grid Settings Number of processors : 20–64 processors
Platforms derivation : Based on Grid5000 deployed in France [54]

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 50 workflows
Arrival intervals : 10–50% elapsed time of the last job

Workflow Properties

Node (40–120) : Number of task on the largest level
Regularity (0.2–0.8) : Uniformity of the number of task in each level
Density (0.2–0.8) : Number of edges between two levels
Jumps (1–4) : Edge connection between two consecutive levels
Deadline (1–2) : Based on min. and max. execution time
Budget (0–1) : Based on min. and max. execution cost

Performance Metrics Planning successful rate : Ratio of successfully planed and executed workflows

success rate of FDWS [43] by only 1%, but there was a significant 20% improvement of profit on

workloads of 50 multiple real-world application workflows. The detailed experimental design for

MQ-PAS algorithm is depicted in Table. 2.7.

Several variations of scheduling scenarios are covered in their works. One of the specific

signatures from this group is the strategy of choosing a single ready task from workflow to compete

in the scheduling cycle with the other workflows. This strategy represents the term "Fairness"

that becomes the primary concern in most of their works. However, with their broad scenarios

that are intended to cover the general process in a multi-tenant distributed computing systems,

the different requirements in clouds from utility grids (e.g., billing period schemes, dynamic and

uncertain environment) are not considered in their works.

2.3.4 Online Multiple Workflows Scheduling Framework

A group from the National Chiao-Tung University focused on developing a scheduling framework

for multiple workflows scheduling. Their first algorithm called the Online Workflow Management

(OWM) [52] consisted of four phases–critical path workflow Scheduling (CPWS), task schedul-

ing, multi-processor task rearrangement, and adaptive allocation (AA). The CPWS phase ranks

all tasks Tw based on their relative position in their workflows before they were submitted to the

scheduling queue to create a schedule plan with O (Tw .Ps) time complexity. Task rearrangement

took place to improve resource utilization that generates O (Tr
2) time complexity whenever the

2.3 Survey 39

Table. 2.8: Experimental design of OWM algorithm

Experiment Type Simulation

Grid Settings Number of processors : 120 processors

Workload
Synthetic workflows : Randomly generated
Number of workflows : 100 workflows
Arrival intervals : Poisson distribution

Workflow Properties

Node (20–100) : Number of task
Shape (0.5–2.0) : Workflow’s degree of parallelism
OutDegree (1–5) : Maximum number of immediate descendants of a task
CCR (0.1–2.0) : Ratio of computation and communication time
BRange (0.1–1.0) : Distribution range of computation cost of tasks on processors
WDAG (100–1000) : Average computation cost of a workflow

Performance Metrics
Makespan : Total execution time
Schedule length ratio : Ratio of makespan and critical path length
Win : Percentage of a workflow got the shortest makespan

plan produces the scheduling gaps. Furthermore, AA schedules the highest priority task from

the queue that is constructed based on the near-optimal schedule plan which time complexity is

O (Tr (Tr .Ps + Ps) . In general, the time complexity is quadratic to the number of tasks pro-

cessed. The evaluation results show that OWM outperformed RANK_HYBD [45] by 1.15x aver-

age speedup on workloads of 100 multiple workflows. The detailed experimental design for OWM

algorithm is depicted in Table. 2.8.

In their following work, they extended OWM into Mixed-Parallel Online Workflow Schedul-

ing (MOWS) algorithm [42]. They modified the CPWS phase using the Shortest-Workflow-First

(SWF) policy combined with the critical path prioritization. Then, MOWS used priority-based

backfilling to fill the hole of a schedule in the task rearrangement stage. The pre-emptive task

scheduling policy was introduced in the AA phase, so the algorithm allowed the system to sched-

ule the shortest workflow first and stopped it when higher priority workflow was ready to run. The

difference between MOWS and OWM is the task rearrangement phase, which uses the priority-

based backfilling that takes a lower time complexity of O (Tr). In general, the time complexity is

quadratic to the number of tasks processed. The evaluation results show that MOWS outperformed

OWM [52] by 1.25x average speedup on workloads of 100 multiple workflows. The detailed ex-

perimental design for MOWS algorithm is depicted in Table. 2.9.

Both OWM and MOWS utilize periodic scheduling, which periodically creates a schedule plan

for a set of ready tasks before submitting it to the scheduling queue. In this way, the algorithm can

40 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.9: Experimental design of MOWS algorithm

Experiment Type Simulation

Workload
Synthetic workflows : Randomly generated
Number of workflows : 100 workflows
Arrival intervals : Poisson distribution

Workflow Properties

Node (20–100) : Number of task
Shape (0.5–2.0) : Workflow’s degree of parallelism
OutDegree (1–5) : Maximum number of immediate descendants of a task
CCR (0.1–2.0) : Ratio of computation and communication time
BRange (0.1–1.0) : Distribution range of computation cost of tasks on processors
WDAG (100–1000) : Average computation cost of a workflow

Performance Metrics
Turnaround time : Total execution and waiting time
Schedule length ratio : Ratio of makespan and critical path length
Ratio of Shortest turnaround time : Ratio of a workflow got the shortest turnaround time

produce better scheduling results without having intensive computation beforehand. However,

this approach may still create a bottleneck if the number of ready tasks in the pool increases.

Implementing a strategy to create a fairness scenario when selecting ready tasks to reduce the

complexity of calculating a schedule plan may work to enhance this scheduling framework.

2.3.5 Real-time Multiple Workflows Scheduling

One of the active groups that focused on real-time and uncertainty aspects of multiple workflows

scheduling was the group from The Aristotle University of Thessaloniki, Greece. They did im-

pressive works on multiple workflows scheduling that explicitly addressed the uncertainty in cloud

computing environments.

Their first work was the Earliest Deadline First with Best Fit (EDF_BF) algorithm [57]. EDF

policy was used for the task selection phase, and the BF was the strategy for exploiting the schedule

gap. EDF_BF incorporated schedule gap exploitation that can be identified through the estimated

position of a task’s execution in a specified resource. From all of the possible positions, the al-

gorithm exploited the holes using a bin packing technique to find the best fit for a task’s potential

position. The result can also be used to determine which resource should be selected for that spe-

cific task. Given a set of ready tasks Tr processed each time and static processor Ps available, task

selection complexity in EDF_BF is O (Tr .Ps). Meanwhile, the processor selection and schedule

gap exploitation is O (Tr (Tr + Tr .Ps). In general, the complexity is quadratic to the number of

tasks processed. The evaluation results show that EDF_BF outperformed the guarantee ratio (i.e.,

success rate) of its variants with HLF (Highest-Level First) and LSFT (Least-Space-Time First)

2.3 Survey 41

Table. 2.10: Experimental design of EDF_BF algorithm

Experiment Type Simulation

Grid Settings

Number of processors : 32 processors
Heterogeneity level (0–2) : Difference in processors’ speed
Mean execution rate of processors (µ =1) : Processors’ speed
Mean data transfer rate (v =1) : Data transfer’s speed

Workload
Synthetic workflows : Randomly generated based on Stavrinides and Karatza [58]
Number of workflows : 100 workflows
Arrival intervals : Poisson distribution

Workflow Properties
Node (1–64) : Number of tasks
Relative deadline (1–2) : Based on critical path length (CPL)
CCR (0.1–10) : Ratio of computation and communication time

Performance Metrics Job guarantee ratio : Ratio of successfully executed workflows

policies on task selection by an average of 10%. The detailed experimental design for EDF_BF

algorithm is depicted in Table. 2.10.

Another work was the algorithm called the Earliest Deadline First with Best Fit and Imprecise

Computation (EDF_BF_IC) [59], which extended the previous algorithm with imprecise computa-

tion. The imprecise computation was firstly introduced in [58] to tackle the problem in a real-time

environment that was often needed to produce an early proximate result within a specified time

limit. The imprecise computation model is implemented by dividing the task’s components into

a mandatory and optional component. A task is considered meeting the deadline if its mandatory

part was completed, while the optional component may be fully executed, partially executed, or

skipped. The evaluation results show that EDF_BF_IC outperformed the success rate of its base-

line EDF by an average of 16% and cost-saving improvement by 12%. The detailed experimental

design for EDF_BF_IC algorithm is depicted in Table. 2.11.

Furthermore, this group explored data-locality and in-memory processing for multiple work-

flow scheduling [61]. In this case, they combine the EDF_BF algorithm with a distributed in-

memory storage solution called Hercules [62] to evaluate a different way of communication of

workflow tasks. They consider two different communication scenarios, communication through a

network, and via temporary files utilizing the Hercules in-memory storage solution. The results

show that scheduling performance increased when the I/O to computation ratio was reduced by

using in-memory storage, which enforces the locality of data. The evaluation results show that the

application completion ratio (i.e., success rate) improves as the tardiness bound (i.e., soft deadline

ratio) increases while the average makespan deteriorates. In addition, the average makespan of the

42 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.11: Experimental design of EDF_BF_IC algorithm

Experiment Type Simulation

Cloud Settings

Number of VMs : 64 VMs
Heterogeneity level (0.5) : Difference in VMs’ computational capacity
Mean VM execution rate (µ =1) : VM’s computational capacity
Mean data transfer rate (v =1) : Data transfer’s speed
Price per time unit ($0.01) : VM leased fee per time unit

Workload
Synthetic workflows : Randomly generated based on Stavrinides and Karatza [60]
Number of workflows : 105 workflows
Arrival intervals (λ = 0.2) : Poisson distribution

Workflow Properties
Node (1–64) : Number of tasks
Relative deadline (1–2) : Based on critical path length (CPL)
CCR (0.1–10) : Ratio of computation and communication time

Performance Metrics Overal provided Quality of Service : Guarantee ratio × average result precision
Average cost per application : Average makespan × price per time unit

Table. 2.12: Experimental design of EDF_BF In-Mem algorithm

Experiment Type Simulation

Grid Settings

Number of processors : 64 processors
Heterogeneity level (0–2) : Difference in processors’ speed
Mean execution rate of processors (µ =1) : Processors’ speed
Mean data transfer rate (v =1) : Data transfer’s speed
Mean file system throughput rate (ρ =1) : File system access’ speed

Workload
Synthetic workflows : Randomly generated based on Stavrinides and Karatza [58]
Number of workflows : 106 workflows
Arrival intervals : Poisson distribution

Workflow Properties

Node (1–64) : Number of tasks
Relative deadline (1–2) : Based on critical path length (CPL)
CCR (0.1–10) : Ratio of computation and communication time
IOCR (0.25–1) : Ratio of I/O and communication time

Performance Metrics
Application completion ratio : Ratio of successfully completed workflows
Application guarantee ratio : Ratio of completed workflows within the deadline
Tardiness : Exceeding degree of the expected completion time

completed workflows improves as the I/O activities decrease. The detailed experimental design

for EDF_BF In-Mem algorithm is depicted in Table. 2.12.

Despite the variation, their algorithms’ main idea is to schedule all ready tasks using EDF

policy for resources that can allow the tasks to finish at their earliest time. The algorithm maintains

a local queue for each resource and then optimizes the local allocated queue using gaps filling

techniques and, in one of the works, manipulates a small portion of the tasks that may have a little

significance (i.e., imprecise computation). Their algorithms are designed for a multi-tenant system

with a static number of resources. Therefore, the design may not be suitable for clouds–in which

is suffered most by the uncertainty problems–where the auto-scaling of resources is possible.

2.3 Survey 43

Table. 2.13: Experimental design of OPHC-TR algorithm

Experiment Type Real experiments

Workload
Medical research application : Based on the study by Watson [64]
Number of workflows : 1000 workflows
Arrival intervals (200–700) : Poisson distribution

Workflow Properties
Node (9–9000) : Number of task
Deadline (0–1) : Based on workflow execution time in a dedicated fast resources
Private instance limitation : Private cloud resource restriction for a workflow

Performance Metrics Cost : Cloud resource monetary cost

2.3.6 Adaptive and Privacy-aware Multiple Workflows Scheduling

A group from The University of Sydney introduced an excellent work of multiple workflows sche-

duling that concerned with the privacy of users [63]. They developed two algorithms; Online

Multiterminal Cut for Privacy in Hybrid Clouds using PCP Ranking (OMPHC-PCPR) and Online

Scheduling for Privacy in Hybrid Clouds using Task ranking (OPHC-TR). OMPHC-PCPR was

merging multiple workflows into one single workflow before scheduling. Hence, this solution is

out of our scope. However, the other one, OPHC-TR, uses an approach that is inclusive of our

study. Both algorithms calculate the privacy level of each workflow before they decide to sched-

ule them in private or public clouds. The private clouds are used mainly for the workflow that

comprised a high level of privacy parameters.

The main differences between the two algorithms are their input. While OMPHC-PCPR con-

siders a single merged workflow from several workflows, OPHC-TR processes each task using a

rank mechanism to decide which tasks are submitted into the scheduling queue. Given a set of

tasks in a workflow Tw and static processors Ps available, task ranking and selection complexity in

OPHC-TR is O (Tw .Ps). Meanwhile, the resource selection and task scheduling for all ready tasks

Tr is O (Tr (Tr .Ps)). In general, the time complexity is quadratic to the number of tasks processed.

The evaluation results show that OMPHC-PCPR outperformed the cost-saving of the OPHC-TR

algorithm by 50%. However, the overhead of merging several workflows in OMPHC-PCPR is

not being evaluated thoroughly. Such an approach may result in a bottleneck when the workflows

arriving, reach a certain high number. The detailed experimental design for OPHC-TR algorithm

is depicted in Table. 2.13.

Another work from this group was the DGR algorithm [41]. This algorithm uses heuristics,

which started the solution with the initial reservation of resources for particular scheduling tasks

44 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.14: Experimental design of DGR algorithm

Experiment Type Simulation

Grid Settings

Number of processors : 1000 processors
Computing capacity : Normalized value (1–10)
Computing speed : Normalized value (1–8)
Network bandwidth : Normalized value (1–8)

Workload Synthetic workflows : Randomly generated
Arrival intervals : Poisson distribution

Workflow Properties

Node (20–100) : Number of task
Shape (0.5–2.0) : Workflow’s degree of parallelism
CCR (0.1–10) : Ratio of computation and communication time
Tasks’ length (10–800) : Tasks’ execution time based on a time unit distribution

Performance Metrics

Makespan : Total execution time
Makespan speedup : Makespan improvement percentage against HEFT
Acceptance rate : Percentage of successfully executed workflows
Resource utilization : Percentage of time when computational resources are busy

which time complexity is O (Tw .Ps) for all tasks in a workflow Tw given a set of static proces-

sors Ps. During the execution, uncertainty (i.e., performance and execution time variation) may

profoundly affect the initial reservation and break the schedule plan. In this case, the algorithm

reschedules the tasks to handle the broken reservation. DGR utilizes task rearrangement tech-

niques and exploits a dynamic search tree to fix this reservation with O (Tr (Ps + Tr .Ps)) time

complexity. In general, the time complexity is quadratic to the number of tasks processed. The

evaluation results show that DGR outperformed a traditional HEFT algorithm by 1.43x average

speedup on workloads of 300 multiple workflows. The detailed experimental design for DGR

algorithm is depicted in Table. 2.14.

2.3.7 Adaptive Dual-criteria Multiple Workflows Scheduling

Another adaptive approach in scheduling multiple workflows was an adaptive dual-criteria algo-

rithm [65]. This algorithm used heuristics that utilized scheduling adjustment via task rearrange-

ment. An essential strategy to this algorithm was the clustering of tasks and treated them as an

integrated set in scheduling to minimize the critical data movement within tasks. Hence, any rear-

rangement or adjustment to fill the schedule holes involved the set of tasks to be moved. Given a

set of tasks in a workflow Tw processed each time, task group after clustering Tg where Tg ≤ Tw,

and static processors Ps available, the task initial clustering process complexity is O (Tw
2). Mean-

2.3 Survey 45

Table. 2.15: Experimental design of Adaptive dual-criteria algorithm

Experiment Type Simulation

Grid Settings Number of processors : 30 processors

Workload
Synthetic workflows : Randomly generated based on Bharathi et al. [66]
Number of workflows : 100 workflows
Arrival intervals : 1–1000 seconds

Workflow Properties
Node (20–30) : Number of task
Workflow applications : LIGO [7]
CCR (0.1–10) : Ratio of computation and communication time

Performance Metrics Makespan : Total execution time
Scheduling overhead : Delay in the scheduling process

while, the adjustment of idle time gap selection is O (Tg (Tg + Ps)), it get a higher complexity

compared to a simple Best-Fit and EFT calculation of single task due to the Tg constraint. Finally,

the complexity of adaptive task group re-arrangement is O (Tg Ps). In general, the time complexity

is quadratic to the number of tasks and task groups processed. The evaluation results show that

this algorithm outperformed a similar process using traditional Best-Fit and EFT approaches up to

1.41x speedup in various scenarios. The detailed experimental design for Adaptive dual-criteria

algorithm is depicted in Table. 2.15.

Since the approach used is the periodic scheduling, the frequency of scheduling cycle be-

comes critical. The infrequent scheduling cycle implies to the broader set of tasks to be processed,

which may result in a more optimized scheduling plan but potentially required a more intensive

computation for creating the plan. Meanwhile, a perpetual cycle may fasten the scheduling plan

computation due to its size of tasks but may reduce the quality of a schedule. This variation is not

being addressed and explored in-depth by the authors. In addition, the treatment of a cluster of

tasks increases the coarse-granularity of scheduling that may widen the gaps. In this way, the task

rearrangement may hardly find the holes that can be fit by a coarse-grained set of clustered tasks.

2.3.8 Multiple Workflows Scheduling on Hybrid Clouds

Another work designed for hybrid clouds was the Minimum-Load-Longest-App-First with the

Indirect Transfer Choice (MLF_ID) algorithm [67]. The term Load-Longest-App had a similar

concept to the critical path. Therefore, MLF_ID was a heuristic algorithm that incorporated the

workflows prioritization based on their critical path and exploited the use of private clouds before

46 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.16: Experimental design of MLF_ID algorithm

Experiment Type Simulation

Cloud Settings Number of Public Cloud VM type : 6 types
Number of Private Cloud Instances : 512 CPUs

Workload Synthetic workflows : Randomly generated based on Bharathi et al. [66]
Number of workflows : 1000 workflows

Workflow Properties
Node (997–1000) : Number of task
Deadline (0.2–5 hours) : Based on selected range of instance types for executing tasks
Input dataset size : 0–300 GB

Performance Metrics
Deadline met : Number of workflows met their deadline
Number of Application : Number of workflows executed in private clouds
Cost : Public cloud resource monetary cost

leasing the resources in public clouds. MLF_ID partitioned the workflow based on a hierarchical

iterative application partition (HIAP) to eliminate data dependencies between a set of tasks by

clustering tasks with dependencies into the same set before scheduling them into either private or

public clouds. The detailed experimental design for MLF_ID algorithm is depicted in Table. 2.16.

Given a set of tasks in a workflow Tw processed each time, static private cloud resources Cs,

and dynamic public cloud resources Cd , the application partition complexity is O (Tw (Cs + Cd)).

Meanwhile, the ready tasks Tr scheduling which included the decision to schedule on public cloud

is O (Tr .Cd) or private cloud is O (Tr (Tr + Cs). In general, the time complexity is quadratic to

the number of tasks processed. The evaluation results show that the combined resources of hybrid

clouds can minimize the total execution cost when the number of workflows can be allocated as

much as possible to the private resources. However, the private cloud capacity is restrained as the

scaling process is not as simple as such an approach in public clouds.

The use of hybrid clouds in this work is emphasized to extend the computational capacity

when the available on-premises infrastructure (i.e., private clouds) are not enough to serve the

workloads. Firstly, the tasks are scheduled for private clouds, and whenever the capacity is not

possible to process, they are being transferred to public clouds. Even though the tasks have been

partitioned to make sure that the data transfer between them is minimum, the decision to move

to public clouds evokes a possible transfer overhead problem. Therefore, some improvements

can be made by implementing a policy to decide whether a set of tasks is considered impractical

to process in private clouds that include some intelligence, which can be designed to predict the

possible overhead in the future of the system. In this way, instead of directly transferring the

2.3 Survey 47

execution to the public clouds that incite not only the additional cost but also the transfer overhead,

the algorithm can decide whether it should move the execution or delay the process waiting for

the next available resources.

2.3.9 Proactive and Reactive Scheduling for Multiple Workflows

Another group that focused on real-time and uncertainty problems in scheduling was a group

from The National University of Defense Technology, China. They proposed the algorithms that

dynamically exploited proactive and reactive methods in scheduling.

Their first work was the Proactive Reactive Scheduling (PRS) algorithm [68]. The proactive

phase calculated the estimated earliest start and the execution time of tasks and then scheduled

them dynamically based on a list-based heuristic. This method has been incorporated into many

algorithms for multiple workflows scheduling. However, using only the proactive method was

unable to tackle the uncertainties (e.g., performance variation, overhead delays) that led to sudden

changes in the system. Then, PRS introduced a reactive phase whenever two disruptive events

occurred (i.e., arrival of new workflow and finishing time of a task). The reactive phase was

triggered by two disruption events to update the scheduling process based on the latest system

status. Given a set of tasks in a workflow Tw processed each time and dynamic cloud resources Cd

available, the time complexity of task ranking is O (Tw). Meanwhile, the VM selection and task

scheduling for all ready tasks Tr is O (Tr (Tr .Cd). In general, the time complexity is quadratic

to the number of tasks. The evaluation results show that PRS outperformed the cost-savings of

modified SHEFT [69] and RTC [70] algorithms for multiple workflows by 50.94% and 67.23%

respectively on workloads of 1000 multiple workflows. The detailed experimental design for PRS

algorithm is depicted in Table. 2.17.

They then extended PRS into Event-driven and Periodic Rolling Strategies (EDPRS) algorithm

[71]. EDPRS tackled a flaw in PRS, that, if none of the two disruption events happened, the

scheduling process could not be pushed forward. They introduced a periodic rolling strategy (i.e.,

scheduling cycle) that drove the re-iteration of the schedule. In this way, albeit no disruption

events occurred, the algorithm repeated their scheduling activities after a specific periodic rolling

time. In general, the time complexity is similar to the PRS algorithm. The evaluation results show

that EDPRS outperformed the cost-savings of modified SHEFT [69] and RTC [70] algorithms for

multiple workflows by 12.98% and 21.57% respectively. Both PRS and EDPRS work well in

48 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.17: Experimental design of PRS algorithm

Experiment Type Simulation using CloudSim [72]

Cloud Settings

Number of VM type : 6 types
Network bandwidth : 1 Gbps
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1000 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (30–100) : Number of task
Deadline : Generated based on the fastest execution time

Performance Metrics
Cost : Cloud resource monetary cost
Resource utilization : Percentage of time when computational resources are busy
Deviation : Cost of time deviation between predicted and actual finish time

Table. 2.18: Experimental design of EDPRS algorithm

Experiment Type Simulation using CloudSim [72]

Cloud Settings
Number of VM type : 6 types
VM provisioning delay : 120 seconds
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1000 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (30–100) : Number of task
Deadline : Generated based on the fastest execution time

Performance Metrics
Cost : Cloud resource monetary cost
Resource utilization : Percentage of time when computational resources are busy
Deviation : Cost of time deviation between predicted and actual finish time

handling the uncertainty in cloud computing environments. The detailed experimental design for

EDPRS algorithm is depicted in Table. 2.18.

This group also worked on energy-efficient multiple workflow scheduling algorithms. Their

work was the Energy-Efficient Online Scheduling (EONS) algorithm [73]. EONS was different

from the other energy-efficient scheduling algorithms due to its focus on fast and real-time oriented

scheduling. EONS utilized simple auto-scaling techniques to lower energy consumption instead

of optimizing energy usage using techniques such as VM live migration and VM consolidation.

The scaling method used simple heuristics that considered the load of the physical host and the

hardware efficiency. Given a set of tasks in a workflow Tw processed each time and dynamic cloud

resources Cd available, task ranking complexity in EONS is O (Tw). Meanwhile, the VM selection

2.3 Survey 49

Table. 2.19: Experimental design of EONS algorithm

Experiment Type Simulation using CloudSim [72]

Data center Settings

Number of Server type : 10 types
Number of VM types : 10 types
CPU resource requirements : 200–2000 MHz
Inter-VM bandwidth : 1 Gbps
VM provisioning delay : 90 seconds

Workload Synthetic workflows : Randomly generated based on Juve et al. [27]
Arrival intervals : Poisson distribution

Workflow Properties Node (30–100) : Number of task
CCR (0.5–5.5) : Ratio of computation and communication time

Performance Metrics Resource utilization : Percentage of time when computational resources are busy
Energy Consumption : Data center energy consumption

and task scheduling for all ready tasks Tr is O (Tr (Tr .Cd). In general, the time complexity is

quadratic to the number of tasks processed. The evaluation results show that EONS outperformed

the energy-savings of modified EASA [74] and ESFS [75] algorithms for multiple workflows

by 45.64% and 35.98% respectively. The detailed experimental design for EONS algorithm is

depicted in Table. 2.19.

Another work from this group addressed the failure in multiple workflows scheduling. The

algorithm, called FASTER [76], utilized the primary backup technique to handle the failure. To

the best of our knowledge, this is the only fault-tolerant algorithm for multiple workflows sche-

duling. As part of the pre-processing phase, they scheduled two copies of a task (i.e., primary and

backup copies) based on the FCFS policy. The workflows were accepted for execution when both

primary and backup copies successfully met their deadlines. Whenever a task was not able to meet

its deadline, the algorithm re-calculates its earliest start time. This estimation takes O (Tw
2) given

a set of tasks in a workflow Tw processed each time. FASTER ensured that the primary copy was

distributed among all available hosts as part of its fault-tolerant strategy. This heuristic requires

periodic scanning of all VMs Cd within the available physical host Hd in the system. The com-

plexity of host monitoring phase is O (Hd (Cd .Tw)) for each primary and backup type of tasks. In

general, the time complexity is quadratic to the number of tasks. The evaluation results show that

FASTER outperformed the modified eFRD [77] algorithm for multiple workflows by 239.66%

in terms of guarantee ratio (i.e., success rate) and 63.79% in terms of resource utilization. The

detailed experimental design for FASTER algorithm is depicted in Table. 2.20.

50 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.20: Experimental design of FASTER algorithm

Experiment Type Simulation using CloudSim [72]

Cloud Settings
Number of VM type : 4 types
VM Provisioning delay : 105 seconds
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 400 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (50–500) : Number of task
Deadline : Uniformly distributed based on minimal execution time

Performance Metrics
Guarantee ratio : Percentage of successfully executed workflows
Host active time : Total active time of all hosts
Ratio of task time over hosts time : Ratio of tasks’ execution time over hosts active time

Their next algorithms were called ROSA [78] and CERSA [79]. These algorithms were the

improvement of PRS and EDPRS algorithms that specifically tackle the uncertainties in executing

multiple real-time workflows. While their previous algorithm EDPRS relies on a periodic trigger

to clear a task pool beside the arrival of new workflows, ROSA and CERSA initiate the scheduling

based on specific disturbance events. ROSA defined triggering events like the arrival of new

workflows and the completion of a task in a particular cloud instance. On the other hand, CERSA

added the arrival of the urgent task as one of the triggering events. In general, CERSA and ROSA

time complexity is quadratic, similar to PRS and EDPRS. The evaluation results show that in terms

of monetary cost, ROSA outperformed EPSM [80] and CWSA [17] by 10.07% and 23.18% while

CERSA outperformed CWSA [17] and OPHC-TR [63] by 8.31% and 17.22% respectively. The

detailed experimental design for ROSA and CERSA algorithms is depicted in Table. 2.21 and

Table. 2.22 respectively.

These algorithms emphasize a specific strategy to handle real-time scenarios by using an im-

mediate scheduling approach, which includes the update strategy to adapt to changes dynamically.

However, this dynamic approach, especially on the energy-efficient and fault-tolerant problem,

can be improved by optimizing the VM placement since the algorithms may have access to the

information of the physical infrastructure.

2.3.10 Energy Aware Scheduling for Multiple Workflows

A group from Nanjing University, China, proposed an algorithm for multiple workflows schedul-

ing that was called EnReal, an energy-aware resource allocation method for workflow in the cloud

2.3 Survey 51

Table. 2.21: Experimental design of ROSA algorithm

Experiment Type Simulation

Cloud Settings

Number of VM type : 4 types
Network bandwidth : 1 Gbps
VM provisioning delay : 30 seconds
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1000 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (25–100) : Number of task
Deadline : Generated based on the fastest execution time

Performance Metrics Cost : Cloud resource monetary cost
Makespan : Total execution time

Table. 2.22: Experimental design of CERSA algorithm

Experiment Type Simulation

Cloud Settings Number of VM type : 4 types
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1000 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (30–100) : Number of task
Deadline : Generated based on the fastest execution time

Performance Metrics Cost : Cloud resource monetary cost
Resource utilization : Percentage of time when computational resources are busy

environment [81]. While the previous energy-aware algorithm–EONS–utilized auto-scaling tech-

niques to lower the energy consumption, EnReal exploited the VM live migration-based policy.

The algorithm partitioned all of the ready tasks in the queue based on their requested start time

and allocated them to the resources on the same physical machine. The adjustment was made

whenever a load of physical machine was exceeding the threshold, and then, VM live migration

took place. The detailed experimental design for EnReal algorithm is depicted in Table. 2.23.

EnReal also adjusted the VM allocation dynamically whenever a task was finished. Combined

with the physical machine resource monitoring, the global resource allocation method emphasized

the platform’s energy saving. However, its partitioning method did not consider the dependencies

between tasks that imply a data transfer overhead when they were allocated to different physical

52 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.23: Experimental design of EnReal algorithm

Experiment Type Simulation

Data center Settings Number of Server type : 4 types
Energy consumption rate : 86–342 W

Workload Synthetic workflows : Randomly generated based on Liu et al. [82]
Number of workflows : 50–300 workflows

Workflow Properties
Node (5–25) : Number of task
Resource requirement (1–15) : Number of required VMs for each task
Task length (0.1–5.0) : Task execution time in hours

Performance Metrics Resource utilization : Percentage of time when computational resources are busy
Energy Consumption : Data center energy consumption

machines. The energy-aware resource allocation policy in EnReal should have complemented by

an ability to aware of data-locality. This policy not only minimizes energy consumption but also

improves the scheduling results in terms of total execution cost and makespan. In general, the

most intensive phase is resource monitoring that takes quadratic time complexity. Furthermore,

the performance evaluation results show that EnReal outperformed the modified energy-aware

Greedy-D [83] algorithm in terms of energy efficiency by 18% on average.

2.3.11 Monetary Cost Optimization for Workflows on Commercial Clouds

A group from the National University of Singapore proposed Dyna [44], an algorithm that focuses

on the clouds’ dynamicity nature. They introduced a probabilistic guarantee of any defined SLAs

of workflow users as it was the closest assumption to the uncertainty environment in clouds. This

approach was a novel contribution since the majority of the works assumed deterministic SLAs

in their algorithms. Dyna aimed to minimize multiple workflows scheduling execution cost by

utilizing VMs with spot instances pricing scheme in Amazon EC2 along with its on-demand in-

stances. Dyna started with the initial configuration of different cloud instance types and refined

the arrangement iteratively to get the better scenario that minimizes the cost while meeting the

deadline. In general, the time complexity is quadratic to the number of tasks. The evaluation

results show that Dyna outperformed the cost of the modified MOHEFT algorithm [84] by 74%

on average. The detailed experimental design for Dyna algorithm is depicted in Table. 2.24.

Dyna presents an exploration of possible cost reduction in executing multiple workflows by

utilizing spot instances in Amazon EC2. Since WaaS platforms that are assumed in their work act

as a service provider, the reserved instances may further reduce the cost of running the platform.

2.3 Survey 53

Table. 2.24: Experimental design of Dyna algorithm

Experiment Type Simulation using CloudSim [72]

Cloud Settings

Number of VM type : 4 types
Provisioning delay (on-demand instances) : 120 seconds
Provisioning delay (spot instances) : 420 seconds
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 100 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (997–1000) : Number of task
Workflow applications : LIGO [7], Montage [28], and Epigenomics [27]

Performance Metrics
Deadline met : Number of workflows met their deadline
Cost : Cloud resource monetary cost
Cloud instances type : Breakdown of cloud instances type during execution

Comparison between on-demand, spot, and reserved instances in Amazon EC2 needs to be done

to deepen the plausible scenario on minimizing the cost of multiple workflows in clouds.

2.3.12 Fairness Scheduling for Multiple Workflows

Fairness Scheduling with Dynamic Priority for Multi Workflow (FSDP) [85] was an algorithm

proposed by a group from Dalian University of Technology, China. FSDP emphasized the fairness

aspect as it incorporated slowdown metrics into their algorithm’s policy. Slowdown value was

the ratio of the makespan of a workflow when it was being scheduled in dedicated service to the

makespan of it being scheduled in a shared environment with the other workflows—the closest

slowdown value to 1, the fairest the algorithm, scheduled the workflows in the system. FSDP

also included an urgency metric, a value that represented the priority of each workflow based on

its deadline. The slowdown and urgency were updated periodically when a workflow finished

ensuring the refinement in the scheduling process. The detailed experimental design for FSDP

algorithm is depicted in Table. 2.25.

However, the fairness scenario is not explored in-depth by the authors. FSDP is only evaluated

using two different workflows on a various number of resources (i.e., processor). The issue of

fairness will arise when the number of submitted workflows was high enough to represent the con-

dition of peak hour in multi-tenant distributed computing systems. In general, the time complexity

is quadratic to the number of tasks processed. The evaluation results show that FSDP slightly

outperformed the overall makespan of the MMHS algorithm [86].

54 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.25: Experimental design of FSDP algorithm

Experiment Type Simulation

Workload Synthetic workflows : Randomly generated based on Wang et al.[87]
Number of workflows : 25 workflows

Workflow Properties

Width (4–12) : Number of task on the largest level
Regularity (0.2–0.8) : Uniformity of the number of task in each level
Density (0.2–0.8) : Number of edges between two levels
Jumps (1–4) : Edge connection between two consecutive levels
CCR (0.1–10) : Ratio of computation and communication time

Performance Metrics Makespan : Total execution time
Win : Percentage of a workflow got the shortest makespan

2.3.13 Scheduling Trade-off of Dynamic Multiple Workflows

A group from Hunan University presented two algorithms. The first one was the Fairness-based

Dynamic Multiple Heterogeneous Selection Value (F_DMHSV) algorithm [88]. The algorithm

consisted of six steps, which were task prioritization, task selection, task allocation, task sche-

duling, new workflow arrival handling, and task monitoring. Task prioritization used a descend-

ing order of heterogeneous priority rank value (HPRV) [89], which included the out-degree (i.e.,

number of successors) of the task. This prioritization complexity is O (Tw .Ps) for all tasks in a

workflow Tw given a set of static processors Ps. The task was selected from the ready tasks pool

based on the maximum HPRV. Furthermore, the task was allocated to the processor with mini-

mum heterogeneous selection value (HSV) [89] that optimized the task allocation criteria using

the combination of upward and downward ranks which creates a complexity of O (Tr .Ps) for all

ready tasks Tr. The task, then, was scheduled to the earliest available processor with minimum

HSV. The evaluation results show that F_DMHSV outperformed RANK_HYBD [45], OWM [52],

and FDWS [43] algorithms by 1.37x, 1.11x, and 1.03x average speedup respectively. The detailed

experimental design for F_DMHSV algorithm is depicted in Table. 2.26.

In the same year, this group published energy-efficient algorithms which combined the Deadline-

driven Processor Merging for Multiple Workflow (DPMMW) algorithm that aimed to meet the

deadline, and the Global Energy Saving for Multiple Workflows (GESMW) algorithm sought to

lower the energy consumption [90]. DPMMW was a clustering algorithm which allocated the

clustered tasks in a minimum number of processors so that the algorithm can put idle processors

2.3 Survey 55

Table. 2.26: Experimental design of F_DMHSV algorithm

Experiment Type Simulation

Workload
Synthetic workflows : Randomly generated
Number of workflows : 50 workflows
Arrival intervals : 0–200 time units

Workflow Properties

Node (10–50) : Number of task
Shape (0.5–2.0) : Workflow’s degree of parallelism
OutDegree (1–5) : Maximum number of immediate descendants of a task
CCR (0.1–2.0) : Ratio of computation and communication time

Performance Metrics
Schedule length ratio : Ratio of makespan and critical path length
Unfairness : Difference between a workflow’s slowdown and average slowdowns
Deadline missed ratio : Ratio of workflows missing the deadline

Table. 2.27: Experimental design of DPMMW & GESMW algorithm

Experiment Type Simulation

Data center Settings Number of processors : 64 processors

Workload Synthetic workflows : Randomly generated
Number of workflows : 10–50 workflows

Workflow Properties

Node (40–55) : Number of task
Deadline (0–2) : Increment of the workflow lower bound execution

Workflow applications
: Gaussian elimination [46], fast fourier transform [46],
: linear algebra [92], diamond graph [92], complete binary tree [92]

Performance Metrics Deadline missed ratio : Ratio of workflows missing the deadline
Energy Consumption : Data center energy consumption

into sleep mode. Meanwhile, GESMW re-assigned and adjusted the tasks to any processor with

minimum energy consumption in the global scope. The combination of DPMMW and GESMW

was exploited to get lower energy consumption. This approach was different from the previous

two energy-efficient algorithms that focused on virtual machine level manipulation. In general, the

most intensive phase in this algorithm is the invoking of the HEFT algorithm to create a baseline

scheduling plan and traverse all processors, which take quadratic time complexity. Furthermore,

the performance evaluation results show that DPMMW & GESMW outperformed the energy sav-

ing of the reusable DEWTS, a modified version of the DEWTS algorithm [91] by 8.1% on average.

The detailed experimental design for DPMMW & GESMW algorithm is depicted in Table. 2.27.

This group presents two opposite approaches to scheduling with different objectives. In both

methods, the algorithms emphasize a strategy of resource selection. In their first work, the al-

gorithm focuses on selecting various resources to minimize the makespan. At the same time, it

56 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.28: Experimental design of CWSA algorithm

Experiment Type Simulation using CloudSim [72]

Cloud Settings
Number of VM type : 4 types
Provisioning delay : 97 seconds
Cloud billing period : 1 hour

Workload Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1–20 workflows

Workflow Properties
Node (30–1000) : Number of task
Workflow applications : Cybershake [29] and SIPHT [93]
Deadline (2–4) : Based on critical path length (CPL)

Performance Metrics

Makespan : Total execution time
Tardiness : Exceeding degree of the expected completion time
Laxity : Degree of a task’s urgency execution
Mean scheduling execution time : Average time taken by the scheduler to execute workflow
Resource utilization rate : Percentage of time when computational resources are busy
Makespan standard deviation : Standard deviation of the workflow’s makespan
Skewness of makespan : Symmetry measurement of the makespan distribution
Cost : Cloud resource monetary cost

chooses different machines with various energy efficiency to reduce energy consumption. These

strategies can improve the overall result by combining them with efficient task scheduling.

2.3.14 Workflow Scheduling in Multi-tenant Clouds

Another algorithm for multiple workflows scheduling was Cloud-based Workflow Scheduling

(CWSA) [17]. This work used the term "multi-tenant clouds" in its paper for describing the

multi-tenancy aspect that was generally considered in cloud computing environments, whereas

the definition itself was similar to the multiple workflows we used in this survey. The algorithm

was intended for compute-intensive workflows applications. Hence, CWSA ignored data-related

overhead and focused on compute resource management. The algorithm was aimed to minimize

the total makespan, which in the result, decreased the cost of execution. In general, the time

complexity of CWSA is O (Tw .Cd), given a set of workflow tasks Tw and a number of dynamic

cloud instances Cd . The performance evaluation results show that CWSA outperformed both the

makespan and cost of standard FCFS, EASY Backfilling, and Minimum Completion Time policy.

The detailed experimental design for CWSA algorithm is depicted in Table. 2.28.

However, CWSA does not further optimize its cost minimization strategy using a cost-aware

resource provisioning technique. CWSA auto-scales the resources using a resource utilization

threshold, in which it acquires and releases the resources if their utilization exceeded or below a

2.3 Survey 57

Table. 2.29: Experimental design of EPSM algorithm

Experiment Type Simulation using CloudSim [72]

Cloud Settings

Number of VM type : 4 types
VM Provisioning delay : 0–250 seconds
Container Provisioning delay : 0–100 seconds
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1000–4000 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (30–1000) : Number of task
Deadline : Randomly generated based on simulated execution time

Performance Metrics

Deadline met : Number of workflows met their deadline
Cost : Cloud resource monetary cost
Avg. VM utilization : Percentage of time when a VM is busy
Makespan/Deadline Ratio : Ratio of actual makespan and assigned deadline
Cloud instances type : Breakdown of cloud instances type during execution

specific number. For example, they implemented the following rule: if the usage is ≥ 70% for

10 minutes, then it is scaled-up by adding 1 VM of small size. In this case, the algorithms with

cost-aware auto-scaling strategy–that specifically acquires and releases particular VMs based on

the workload–may outperform CWSA that only considers overall system utilization based auto-

scaling. This type of auto-scaling is not accurately provisioning resources that are tailored to the

need of workloads.

2.3.15 Multi-tenant WaaS Platform

Another solution for multiple workflow scheduling was Elastic Resource Provisioning and Sche-

duling Algorithm for Multiple Workflows designed for WaaS Platforms (EPSM) [80]. This work

used a specific term of "multi-tenant" to describe the platform for executing multiple workflows in

the clouds. However, the "multi-tenant" term and "multiple workflows" can be used interchange-

ably in this case. The EPSM introduced a scheduling algorithm for WaaS platforms that utilized a

container to bundle workflow’s application before deploying it into VMs. In this way, the users can

share the same VMs without having any problem related to software dependencies and libraries.

The detailed experimental design for EPSM algorithm is depicted in Table. 2.29.

The algorithm consisted of two-phase, resource provisioning which included a flexible ap-

proach of scaling up and down the resources to cope with the dynamic workload of workflows,

and scheduling which exploited a delay policy based on the task’s deadline to re-use the cheapest

58 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

resources as much as possible to minimize the cost. In the resource provisioning phase, EPSM

incorporated an overhead detection in the form of provisioning delay and de-provisioning delay of

the VMs. This strategy was able to reduce unnecessary costs due to violating a coarse-grain billing

period of clouds. The algorithm made an update of the unscheduled tasks’ deadline whenever a

task finished the execution. In this way, the algorithm dynamically adapted the gap between the

estimated and actual execution plans to ensure scheduling objectives. In the scheduling phase,

EPSM considered re-using available VMs before provisioning the new one to minimize the delay

of acquiring new VMs and possible cost minimization by re-using the cheapest VMs available.

In general, the time complexity of the EPSM algorithm is quadratic to the number of tasks pro-

cessed. Furthermore, the performance evaluation results show that this algorithm outperformed

the cost-saving of the Dyna algorithm [44] by 19% on average for various scenarios.

2.3.16 Concurrent Multiple Workflows Scheduling

The latest work on deadline- and budget-constrained multiple workflows scheduling was Multi-

workflow Heterogeneous budget-deadline-constrained Scheduling (MW-HBDCS) algorithm [94]

that was introduced by a group from Guangzhou University, China. This work used the term

"concurrent multiple workflows" as it emphasized the concurrent condition of multiple workflows,

which means tackling several workflows that arrived at the same time or overlapped on a dense

condition. MW-HBDCS was designed to improve the flaw on the previous similar algorithm,

MW-DBS [55]. Significant enhancement was the inclusion of a budget in the ranking process to

prioritize the tasks for scheduling. The algorithm was also designed to tackle uncertainties in the

environments. In this work, the authors use the terms "consistent" and "inconsistent" environments

to describe various dynamicity in multi-tenant distributed computing systems. In general, the time

complexity is quadratic, similar to MWDBS time complexity. The evaluation results show that

MW-HBDCS outperformed the success rate of MW-DBS by 46% and 52% on synthetic and real-

world workflow applications, respectively. The detailed experimental design for MW-HBDCS

algorithm is depicted in Table. 2.30.

MW-HBDCS tackles many flaws that are not considered in the previous deadline- and budget-

constrained scheduling algorithms. These enhancements are the model that incorporated high un-

certainties and dynamicity, the improvement of task’s ranking mechanism that enclosed the budget

as one of the primary constraints besides the deadline, while previously only acted as a comple-

2.3 Survey 59

Table. 2.30: Experimental design of MW-HBDCS algorithm

Experiment Type Simulation using SimGrid [53]

Grid Settings Number of processors : 20–64 processors
Platforms derivation : Based on Grid5000 deployed in France [54]

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 50 workflows
Arrival intervals : 10–50% elapsed time of the last job

Workflow Properties

Node (10–100) : Number of task on the largest level
Regularity (0.2–0.6) : Uniformity of the number of task in each level
Density (0.2–0.6) : Number of edges between two levels
Jumps (1–4) : Edge connection between two consecutive levels
CCR (0.1–5) : Ratio of computation and communication time
BRange (0.1–2) : Distribution range of computation cost of tasks on processors
Deadline (0.5–0.9) : Based on min. and max. execution time
Budget (0.4–0.8) : Based on min. and max. execution cost

Performance Metrics Planning successful rate : Ratio of successfully planed and executed workflows

mentary constraint. Since the authors highly considered the budget as crucial as the deadline, it

is essential to include the trade-off analysis between the values of budget and deadline related to

the success rate of workflows execution. One of the techniques to such an approach is the Pareto

analysis that is used for multi-objective workflow scheduling (e.g., MOHEFT [84]). However, this

algorithm adopts static resource provisioning. It may not achieve optimal performance in cloud

computing environments where the auto-scaling of resources is possible.

2.3.17 Scheduling Multiple Workflows under Uncertain Execution Time

The latest deadline-aware multiple workflows scheduling algorithm is NOSF [95]. This algorithm

adopted a similar strategy to several previous algorithms (e.g., EDPRS, EPSM, ROSA) designed

to tackle the uncertainties in cloud computing environments. The NOSF aims to minimize the

cost of leasing cloud instances by optimizing resource utilization using the sharing strategy of

the VM billing period. To further distribute a fair share of sub-deadlines between tasks, NOSF

made use of PCP to create end-to-end scheduling of several tasks during the deadline distribution

process. Therefore, traversing workflows for detecting the PCP is the most intensive phase that

takes quadratic time complexity. The detailed experimental design for NOSF algorithm is depicted

in Table. 2.31.

NOSF relies on the strategy to maintain the minimum growth of the leased cloud instances

instead of auto-scaling the resources dynamically by eliminating future idle VMs. This strategy

60 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.31: Experimental design of NOSF algorithm

Experiment Type Simulation

Cloud Settings

Number of VM type : 7 types
Network bandwidth : 100 Mbps
VM provisioning delay : 97 seconds
Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve et al. [27]
Number of workflows : 1000 workflows
Arrival intervals : Poisson distribution

Workflow Properties Node (30–1000) : Number of task
Deadline : Generated based on the fastest execution time

Performance Metrics Resource utilization : Percentage of time when computational resources are busy
Deadline violation : Percentage of exceeding workflow deadlines

may cause a problem of waiting overhead in a very dense workflows’ arrival (i.e., high concurrent

workflows). Combining dynamic auto-scaling and maintaining a low growth of VM leased may

become an essential strategy for WaaS platforms with quite high uncertainties situation. Further-

more, the performance evaluation results show that NOSF outperformed ROSA [78] in terms of

reducing the cost and deadline violation probability by an average of 50.5% and 55.7% respec-

tively while improving resource utilization by 32.6% on average.

2.3.18 Algorithm Classification

This section presents the mapping between the state-of-the-art algorithms and their specific char-

acteristics. Each algorithm is classified based on the taxonomy presented in Section 2.2. Further-

more, Table 2.32 displays the workload and deployment models taxonomy along with the unique

keyword for each algorithm. Table 2.33 depicts the classification from the scheduling perspec-

tive, which includes the priority assignment, task scheduling, and resource provisioning models

taxonomy.

2.4 Summary

This chapter presents a study on algorithms for multiple workflows scheduling in multi-tenant dis-

tributed systems. In particular, the research focuses on the heterogeneity of workloads, the model

for deploying multiple workflows, the priority assignment for multiple users, the scheduling tech-

niques for multiple workflows, and the resource provisioning strategies in multi-tenant distributed

systems. It presents a taxonomy covering the focus of the study based on a comprehensive review

2.4 Summary 61

Table. 2.32: Taxonomy of workload and deployment model

Algorithms Refs Keywords
Workload Model Deployment Model

Workflow Type QoS Requirements Non-virtualized Virtualized
Homo Hetero Homo Hetero VM-based Container-based

RANK_HYBD [45]
Dynamic-guided

- X X - X - -
scheduling

OWM [52] Scheduling - X - X X - -
MOWS [42] framework - X - X X - -

P-HEFT [50]
Dynamic-parallel

- X X - X - -
scheduling

MQMW [48] Multi-QoS - X X - - X -
MQSS [49] scheduling - X X - X - -

EDF_BF [57]
Exploiting

- X X - X - -
EDF_BF_IC [59]

schedule gaps
- X X - X - -

CWSA [17] - X X - - X -

FSDP [85]
Fairness &

- X X - X - -
F_DMHSV [88]

priority
- X X - X - -

FDWS [43] - X X - X - -

Adaptive
[65] Partition-based - X X - X - -

dual-criteria
scheduling

MLF_ID [67] - X X - X - -

OPHC-TR [63]
Privacy

X - X - - X -
constraint

Dyna [44] Deadline - X X - - X -
EPSM [80] constraint - X X - - - X

DGR [41]
Task

- X X - X - -
rearrangement

FASTER [76] Fault-tolerant - X X - - X -

EnReal [81] - X X - - X -
EONS [73] Energy- - X X - - X -

DPMMW &
[90]

efficient
- X X - - X -

GESMW

PRS [68] - X X - - X -
EDPRS [71] Uncertainty- - X X - - X -
ROSA [78] aware - X X - - X -
NOSF [95] - X X - - X -

EDF_BF
[61]

Data-locality
- X X - X - -

In-Mem perspective

MW-HBDCS [94] Deadline-budget - X X - X - -
MW-DBS [55] constraints - X X - X - -

MQ-PAS [56] Profit-aware - X X - - X -

CERSA [79]
Real-time

- X X - - X -
scheduling

of multiple workflows scheduling algorithms. The taxonomy is accompanied by a classification

from surveyed algorithms to show the existing solution’s coverage in various aspects. The current

algorithms within the scope of the study are reviewed and classified to open up the problems in

this area. Some descriptions and discussions of various solutions are covered in this chapter to

give a more detailed and comprehensive understanding of the state-of-the-art techniques and even

to get an insight into further research and development in this area.

62 A Taxonomy and Survey of Multiple Workflows Scheduling Problem

Table. 2.33: Taxonomy of priority assignment, task scheduling, and resource provisioning model

Algorithms Refs

Priority Assignment Model Task Scheduling Model Resource Provisioning Model

App. QoS User- Wf Immediate
Periodic

Static
Dynamic

Type Const. defined Structure Gap Conf. Workload PerformanceSearch Search
RANK_HYBD [45] - - - X X - - X - -

OWM [52] - - - X - X - X - -
MOWS [42] - - - X - X - X - -

P-HEFT [50] - - - X X - - X - -

MQMW [48] - X - - X - - X - -
MQSS [49] - X - - X - - X - -

EDF_BF [57] - X - - - X - X - -
EDF_BF_IC [59] - X - - - X - X - -

CWSA [17] - X - - - X - - - X

FSDP [85] - X - - X - - X - -
F_DMHSV [88] - - - X - X - X - -

FDWS [43] - - - X X - - X - -

Adaptive
[65] - X - X - X - X - -

dual-criteria
MLF_ID [67] - X - - X - - - X -

OPHC-TR [63] X X - - X - - - X -

Dyna [44] - X - - - - X - X -
EPSM [80] - X - - X - - - X -

DGR [41] - X - - - X - X - -

FASTER [76] - X - - - X - - X -

EnReal [81] - X - - - - X - X -
EONS [73] - - - - X - - - X -

DPMMW &
[90] - X - - - X - - X -

GESMW

PRS [68] - X - - X - - - X -
EDPRS [71] - X - - X - - - X -
ROSA [78] - X - - X - - - X -
NOSF [95] - X - X X - - - X -

EDF_BF
[61] - X - - - X - X - -

In-Mem

MW-HBDCS [94] - X - X X - - X - -
MW-DBS [55] - X - X X - - X - -

MQ-PAS [56] - X - X X - - X - -

CERSA [79] - X X - X - - - X -

Chapter 3

A Task-based Budget Distribution
Strategy for Scheduling Workflows

This chapter proposes a budget-distribution algorithm that assigns a portion of the overall workflow

budget to the individual tasks. This sub-budget then guides the dynamic scheduling process and is

continuously refined to reflect any unexpected costs. The algorithm is evaluated using the simulation

toolkit for clouds, CloudSim. The performance evaluation results demonstrate that in 88% of the

cases, this approach achieves equal or better performance in terms of meeting the budget constraint

and achieves lower execution times in 84% of the cases compared to the state-of-the-art algorithm.

3.1 Introduction

IaaS clouds offer a convenient way for WMS to access computational resources. These VMs can

be accessed on-demand and users are charged only for what they use, usually in increments of a

billing period defined by the provider. This flexibility and ability to easily scale the number of

resources leads to a trade-off between two conflicting QoS requirements: time and cost. There

has been extensive research [26] on this topic, with most works proposing algorithms that aim to

minimize the total execution cost, while finishing the workflow execution before a user-defined

deadline. In this chapter, we focus on optimizing the usage of resources so that the total execution

time of the workflow (i.e., makespan) is minimized while meeting a budget constraint.

Various strategies can be used to achieve these scheduling objectives when deploying work-

flows in IaaS clouds. A popular one is using meta-heuristics to produce a static mapping of tasks

to resources in advance. In this way, an estimate of the total cost and makespan of the workflow

This chapter is derived from: Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Task-based
Budget Distribution Strategies for Scientific Workflows with Coarse-grained Billing Periods in IaaS Clouds.‘ In Pro-
ceedings of the 13th IEEE International Conference on e-Science (e-Science), Pages 128-137, 2017.

63

64 A Task-based Budget Distribution Strategy for Scheduling Workflows

execution is known as well as the required resources and their leasing period. This technique, how-

ever, is computationally intensive and does not scale well with the number of tasks in the workflow.

Also, because the schedule is produced before runtime and remains unchanged throughout the ex-

ecution, these algorithms are unable to adapt to the inherent dynamicity and uncertainty of the

IaaS clouds environment. Other algorithms use lighter-weight heuristics to produce static sched-

ules to address the scalability issue. However, they still fail to respond to environmental changes.

Some strategies choose to dynamically schedule the tasks as they become ready for execution to

overcome the responsiveness issue. This dynamic approach enables the algorithm to scale easily

and to adapt and make decisions based on the state of the system. Since the scheduling is task-

based, the overall workflow budget must be distributed to each task. This budget allocation guides

the scheduling process, since it determines the type of resources that can be allocated to each task

as well as the time when they should be deployed. Budget distribution is a challenging problem

mainly due to the pricing model offered by IaaS cloud providers.

It is not uncommon for the average execution time of tasks to be considerably smaller than

the billing periods (e.g., one hour) offered by IaaS vendors. Thus, scheduling algorithms aim to

efficiently utilize idle time slots on leased VMs as a cost-controlling mechanism. Coarse-grained

billing periods make it difficult to estimate the portion of the budget that should be allocated to each

task; the reason being that the cost of a single task must be overestimated by either rounding up

its execution time to one (or more) billing periods or (potentially) underestimated by determining

their cost in time units. Deciding how to factor VM provisioning delays when estimating the costs

of tasks is another challenge. Some algorithms choose to consolidate tasks per workflow level and

assign a corporate budget to them to be spent greedily to avoid time slots wastage. Depending on

how the budget is split, this may result in the insufficient budget allocated to some levels, violating

budget constraints due to tasks in a level taking longer to execute, and inefficient use of the budget.

In this chapter, we explore distributing the budget to each task by rounding their cost to billing

periods. We argue that this enables the algorithm to spend the budget more efficiently as it has

a better awareness of the remaining budget and hence can better utilize it. Furthermore, such an

algorithm can respond faster to unexpected delays. Also, to avoid underutilizing resources, this

strategy is combined with policies that encourage the reuse of time slots in already-leased VMs.

3.2 Related Work 65

Thus, we focus on distributing a portion of the budget to individual tasks and spending it only

when necessary, that is when free idle time slots on existing VMs cannot be reused. Our approach

considered the inherent features of clouds, such as the abundance of heterogeneous computing re-

sources, VM provisioning delays, and the dynamic and uncertain behaviour of VMs performance.

Our solution consists of two components, a budget distribution strategy and scheduling. For the

budget distribution, we propose an algorithm with two variants, Fastest-First Task-based Distri-

bution (FFTD) and Slowest-First Task-based Distribution (SFTD). For the scheduling, we adapt

EPSM [80], an existing approach designed to schedule multiple workflows with deadline con-

straints. We modify it so that it considers a single workflow and aims to complete its execution

as fast as possible with the given budget. Our simulation results demonstrate that our algorithm

adapts to unexpected delays and meets the budget constraint while achieving lower makespans

compared to the state-of-the-art budget distribution algorithm.

The rest of this chapter is organized as follows. Section 3.2 reviews works that are related

to our discussion. Section 3.3 describes the considered resource and application models. The

proposed algorithms are explained in Section 3.4 followed by their performance evaluation and a

discussion of the results in Section 3.5. Finally, Section 3.6 summarizes the findings.

3.2 Related Work

The scheduling of scientific workflows in IaaS clouds has been extensively researched. The ma-

jority of existing algorithms have the objective to meet a deadline constraint and minimize the

cost of renting the cloud computing infrastructures. Examples include the solutions by Mao and

Humphrey [96], Abrishami et al. [97], Malawski et al. [98], Arabnejad et al. [99], Cai et al. [100],

and Chen et al. [71].

Only a few of the existing algorithms focused on meeting budget constraints while minimiz-

ing the makespan. An example is the Partial Critical Paths Budget Balanced (PCP-B2) [101]

algorithm. It partitioned a workflow into pipelines of partial critical paths and found the optimal

resource type that maximizes the budget utilization. Contrary to our work, PCP-B2 assumed a time

unit pricing model as opposed to the conventional model of billing periods. The Critical-Greedy

[102] algorithm found a workflow’s schedule by iteratively refining an initial schedule plan that

encourages the use of more powerful VM types if there is budget remaining. Other works with the

66 A Task-based Budget Distribution Strategy for Scheduling Workflows

Table. 3.1: Summary of related work

Strategies [101] [102] [103] [104] [105] [106] [107] Ours
Static Heuristic X X - - X - - -
Static Metaheuristic - - X X - - - -
Dynamic Level-based - - - - - X X -
Dynamic Task-based - - - - - - - X

same objectives used Particle Swarm Optimization [103] and Genetic Algorithms [104] to gener-

ate a static plan before runtime. These algorithms relied on calculating a near-optimal schedule by

using computationally intensive meta-heuristic techniques. The strategy differs from our solution

in that we use a lightweight, adaptive, heuristic-based dynamic approach that makes scheduling

decisions at runtime based on the systems’ state. The DBD-CTO [105] algorithm considered bud-

get as a constraint. However, contrary to our solution, the deadline is also a part of its constraint.

BAGS [106] is another example of existing budget-constrained algorithm. It partitioned the

workflow into bags of tasks (BoTs) that are on the same workflow level. BAGS was based on

an online budget distribution strategy that guides the resource provisioning and scheduling plans

of BoTs dynamically, as tasks become ready for execution. However, contrary to ours, BAGS

assumed one minute billing periods that are not much longer than the average execution time of

tasks. Finally, the Budget Distribution Trickling (BDT) [107] algorithm used a similar strategy by

consolidating tasks on the same workflow level. The budget is distributed to each level, and the

algorithm trickles down any remaining budget to the next level. It assumes an hourly billing period,

but ignores the VMs performance variation. BDT explored several budget distribution strategies

according to parameters such as the number of tasks in the level and the number of levels in the

workflow. The algorithms differ from ours in that our solution scheduled tasks independently

when they are ready for execution, that is, whenever the task’s parents have finished executing,

and the input data is available. We present a summary of the works in Table 3.1.

3.3 Application and Resource Model

VMs are leased using an on-demand pricing model and are charged per billing period bp, with

any partial usage being rounded up to the nearest billing period. Our work considered a heteroge-

neous environment with various VM types vmt that have different processing capacity PCvmt and

different cost per billing period cvmt . The processing capacity of a VM is measured in Million

3.3 Application and Resource Model 67

of Instruction per Second (MIPS). We assumed the CPU performance of VMs is not stable as re-

ported by Leitner and Cito [4] and that providers advertise the maximum CPU capacity achievable

by VMs. Furthermore, we assumed an unlimited VMs could be leased from the provider.

The runtime of a task t in a VM of type vmt is denoted as RT t
vmt and is calculated based on the

task’s size St and the processing capacity PCvmt of the VM. This definition is shown in Eq. 3.1.

RT t
vmt = St/PCvmt (3.1)

Note that this value is an estimate, and our approach did not rely on it being completely accurate.

We assumed the St , is always available to the scheduler and is measured in Millions of Instructions

(MI). Also, we assumed that VMs with more CPU capacity are more expensive to lease than VMs

with less capacity. In this way, the task runtime estimated using the cheapest VM type leads to the

slowest runtime but potentially the lowest cost.

We considered a global storage system such as Amazon S3 for data sharing between tasks.

Each task retrieves its input data Dt
in from the global repository and stores its output data Dt

out

on the same. The read and writing speeds of the global storage are stated as GSread and GSwrite

respectively. Additionally, each VM has a bandwidth Bvmt associated with it. This bandwidth and

the I/O speeds of the storage system change over time, based on the number of transactions Tr

running at time t. This is depicted in Eqs. 3.2, 3.3 and 3.4.

Bvmt(t) = (Bvmt/Trt) (3.2)

GSread(t) = (GSread/Trread
t) (3.3)

GSwrite(t) = (GSwrite/Trwrite
t) (3.4)

The time it takes to retrieve the input data from the global storage to a VM is shown in Eq. 3.5.

T Dt
in

vmt = (Dt
in/Bvmt)+ (Dt

in/GSread) (3.5)

Similarly, the time it takes to transfer the output data from a VM into the global storage is shown

in Eq. 3.6.

68 A Task-based Budget Distribution Strategy for Scheduling Workflows

T Dt
out

vmt = (Dt
out/Bvmt)+ (Dt

out/GSwrite) (3.6)

We considered a model in which the global storage system and VMs are located in the same

region or availability zone. Hence, data transfer between storage and VMs is free of charge, as is

the case for most IaaS providers. Nevertheless, we assumed that the output data of a task is also

stored on the VM’s local storage. In this way, child tasks executing on the same VM did not need

to read their input data from the global storage. By implementing this mode, the amount of time

spent transferring data can be considerably reduced. Hence, the total processing time PT t
vmt of a

task on a VM of type vmt is shown in Eq. 3.7.

PT t
vmt = RT t

vmt +T Dt
in

vmt +T Dt
out

vmt (3.7)

Furthermore, the cost Ct
vmt of a task that runs on a VM of type vmt considering the VMs provi-

sioning delay Tpdelay and deprovisioning delay Tddelay is shown in Eq. 3.8.

Ct
vmt = d(PT t

vmt +Tpdelay +Tddelay)/bpe∗ cvmt (3.8)

3.4 Scheduling Algorithm

The algorithm consists of two steps, budget distribution, then it is followed by resource provi-

sioning and scheduling. First, the workflow’s budget is distributed to each task using FFTD and

SFTD. Furthermore, the tasks are selected based on the ascending order of their Earliest Finish

Time (EFT), and the VMs are provisioned based on the task’s sub-budget whenever there are no

idle VMs to reuse.

Our resource provisioning and scheduling strategy are based on the EPSM algorithm [80], a

dynamic heuristic-based algorithm for Workflow-as-a-Service (WaaS) frameworks that can handle

a continuously arriving workload of heterogeneous workflows. The algorithm’s objective is meet-

ing the deadline constraint of each workflow while minimizing the cost. To achieve this, EPSM

uses containers as a means to reuse VMs across different workflows. We modified it to consider

budget as a constraint and schedule a single workflow, eliminating the need for containers.

3.4 Scheduling Algorithm 69

Fig. 3.1: Sample of budget insufficiency scenario

3.4.1 Budget Distribution

The amount of available budget drives the scheduling process. It determines the resources that can

be used to run a task and hence has a direct impact on the workflow’s makespan. Our strategy is

based on the intuitive idea that by choosing the fastest VMs that are affordable within the budget,

the probability that a task’s runtime exceeds the billing period of a VM because of performance

degradation is decreased. In this way, the likelihood of having higher costs and exceeding the

budget is also decreased, since the chances of incurring additional billing periods are reduced.

This budget distribution is a challenging problem, mainly due to the coarse-grained billing

periods enforced by IaaS vendors. For instances, in some cases, assigning a budget to a task,

based solely on its runtime estimation without considering billing periods, may lead to budget

insufficiency. This is a condition in which the task’s sub-budget is not enough to provision a new

VM for it, since the cost of the VM is higher than the estimated value.

Consider the illustration in Fig. 3.1. Suppose there are two VM types available, a small type

which costs $1/hour and a large type that costs $3/hour. Then, we have a workflow that consists of

seven tasks with the estimated runtime for each task being RTA = 100s, RTB = 400s, RTC = 400s,

RTD = 200s, RTE = 100s, RTF = 100s, and RTG = 100s. The budget for this workflow is $7. If we

distribute the budget based on the task’s runtime and ignore the billing period, the budget for tasks

A, E, F and G will be insufficient because the allocated budget ($0.5) would be less than the cost

of small type VM ($1). Since task A and E are the entry tasks of workflow, if their sub-budgets

are insufficient to provision the resources, the workflow cannot be further executed.

70 A Task-based Budget Distribution Strategy for Scheduling Workflows

Our budget distribution algorithm is based on the execution order of tasks. Entry tasks in the

first level of the workflow are executed first, followed by their children on the next level, and so

on. Hence, we assign each task a level based on the Deadline Top Level (DTL) [108] technique, as

seen in Eq. 3.9, as opposed to Deadline Bottom level (DBL) [109] which starts the level allocation

from the exit task.

level(t) =


0 i f Pred(t) = /0

max
p∈Pred(t)

level(p)+ 1 otherwise
(3.9)

Let us consider the example of Fig. 3.1, DTL allocates task A and task E to the same level (1)

while DBL assigns the tasks to a level starting from task D as level (1). Consequently, using DBL,

task A is assigned to level (3), which would be different from the level of task E (4). Although

a workflow is being processed starting from the entry tasks, allocating them into different levels

has an impact on those algorithms that execute the tasks based on their level. Also, to determine

the tasks’ order at a level, we sort them based on the ascending order of their Earliest Finish Time

(EFT), as shown in Eq. 3.10.

e f t(t) =


PT t

vmt i f Pred(t) = /0

max
p∈Pred(t)

e f t(p)+PT t
vmt otherwise

(3.10)

The tasks in the workflow in Fig. 3.1 were sorted in the following order: A [level(1)] → E

[level(1)]→ F [level(2)]→ B [level(2)]→ C [level(2)]→G [level(3)]→D [level(4)]. The budget

distribution algorithm then iterates over this sorted list. It distributes the budget to each task, while

considering the task’s estimated runtime and the cost per billing period of each VM type. As a

result, the sub-budget allocated to a task is equivalent to at least the cost of one full billing period.

With this approach, we are overestimating the cost of a task, and as a result, it is possible that

several tasks do not get any sub-budget allocation. In these cases, the algorithm delays the tasks

with no budget so that they can reuse existing idle VMs. The budget distribution algorithm is

shown in Algorithm 1.

The algorithm used two approaches to estimate the task sub-budget based on the VM type

chosen, Fastest First Task-based Budget Distribution (FFTD) and Slowest First Task-based Budget

3.4 Scheduling Algorithm 71

Algorithm 1 Budget Distribution
1: procedure DISTRIBUTEBUDGET(β , T)
2: S = task’s estimated execution order
3: for each task t ∈ T do
4: allocateLevel(t, l)
5: initiateBudget(0, t)
6: for each level l do
7: Tl = set of all tasks in level l
8: sort Tl based on ascending Earliest Finish Time (EFT)
9: put(Tl , S)

10: while β > 0 do
11: t = S.poll
12: vmt = chosen VM type
13: allocateBudget(Ct

vmt , t)
14: β = β − Ct

vmt

Distribution (SFTD). The FFTD approach selects the fastest VM type that is affordable within the

workflow’s budget. Since the algorithm allocates the fastest resources to the earlier tasks, their

successors have the opportunity to reuse these VMs, which may be faster than what they can

afford. Hence, it also increases the possibility of obtaining lower task processing times, even

though it may involve a waiting delay for the VMs to become available. On the contrary, the

SFTD approach chooses the cheapest resources for the tasks. Whenever there is any remaining

additional budget after all tasks are allocated sub-budgets, the algorithm uses this extra budget

to greedily lease VMs with more CPU capacity than what is affordable by the individual task’s

sub-budget. SFTD ensures that most of the tasks get a portion of the budget allocated, so they do

not need to wait for the VMs to become idle. In both approaches, allocating resources to the entry

tasks guarantees the execution of the workflow.

3.4.2 Resource Provisioning and Scheduling

Once the sub-budgets are assigned to each task, the algorithm processes entry tasks of the work-

flow and puts them into the queue sorted by their EFT in ascending order. Then, it schedules each

task in the queue in the following ways. First, the algorithm tries to reuse an idle VM that has

the input data of the task in its cache. If such a VM exists, then the task is assigned to it, always

favouring VMs in which executing the task would lead to the lowest cost. Notice that the lowest

cost ($0) is achieved when a VM can finish the task before its next billing period. If there is no

idle VM with cached input data, then the algorithm tries to reuse any currently idle VM. If no

72 A Task-based Budget Distribution Strategy for Scheduling Workflows

Algorithm 2 Resource Provisioning and Scheduling
1: procedure SCHEDULEQUEUETASKS(q)
2: sort q by ascending Earliest Finish Time (EFT)
3: sb = spare budget
4: while q is not empty do
5: t = q.poll
6: vm = null
7: delayFlag = false
8: if there are idle VMs then
9: VMidle = set of all idle VMs

10: VMinput
idle = set of vm ∈ VMidle that have t’s input data

11: vm = vm ∈ VMinput
idle that can finish t with minimum risk of incurring

a new billing period
12: if vm = null then
13: vm = vm ∈ VMidle that can finish t with minimum risk of incurring

a new billing period
14: else
15: vmt = cheapest VM type
16: if t.budget < Ct

vmt then
17: delayFlag = true
18: if delayFlag = false then
19: vmt = fastest VM type within t.budget
20: if there are faster VM type than vmt AND sb is enough then
21: vmt = leaseFasterVMT()
22: vm = provisionVM(vmt)
23: scheduleTask(t, vm)

Algorithm 3 Budget Update
1: procedure UPDATEBUDGET(T)
2: t f = completed task
3: Tc = set of t ∈ T that are children of t f
4: βc = total sum of t.budget, where t ∈ Tc
5: Tu = set of unscheduled t ∈ (T − Tc)
6: βu = total sum of t.budget, where t ∈ Tu
7: sb = spare budget
8: if C

t f
vmt ≤ (t f .budget + sb) then

9: sb = (t f .budget + sb) − C
t f
vmt

10: else
11: debt = C

t f
vmt − (t f .budget + sb)

12: βc = βc − debt
13: DISTRIBUTEBUDGET(βc, Tc)
14: if βc < 0 then
15: βu = βu + βc
16: DISTRIBUTEBUDGET(βu, Tu)

3.4 Scheduling Algorithm 73

(a) FFTD (b) SFTD

Fig. 3.2: Sample of budget distribution scenario

idle VMs are available, then a new VM of the fastest affordable type with the task’s sub-budget is

provisioned. The resource provisioning and scheduling algorithm are shown in Algorithm 2.

After a task is completed, the algorithm updates the budget distribution of all the remaining

tasks to reflect the budget spent so far. Also, it maintains any unused sub-budgets of the tasks that

have reused idle VMs as a spare budget. This extra budget is used either when updating the budget

distribution or in the provisioning phase to lease faster VM types. The budget-updating algorithm

can be seen in the Algorithm 3.

3.4.3 Illustrative Example

This section explains how the workflow shown in Fig. 3.1 would be scheduled using the proposed

strategies. In this example, we assumed that PCvmt of each VM type is linearly proportional to cvmt .

The resulting budget distribution produced by FFTD and SFTD is shown in Fig. 3.2a and Fig. 3.2b

respectively and their corresponding schedules are shown in Fig. 3.3a and 3.3b. Furthermore, the

Queue of Ready Tasks column represents the tasks that are ready for execution. In contrast, the

Deployment of Tasks & VMs presents the deployment of the ready task to the leased VMs and the

spare budget shown presents the values after the tasks are deployed in each step.

We can see that steps 1 to 3 for FFTD and SFTD are similar except for the VM type provisioned

and the spare budget. The VM type chosen is different based on the sub-budget allocated to the

entry tasks for which new VMs are provisioned. In Step 4 of FFTD, the algorithm delays task

B because its sub-budget is $0. After task F finishes, task G becomes ready for execution. The

algorithm prioritizes task G to be scheduled because it has lower EFT than task B. Then, task G

74
A

Task-based
B

udgetD
istribution

Strategy
forScheduling

W
orkflow

s

(a) FFTD (b) SFTD

Fig. 3.3: Sample of scheduling and resource provisioning scenario

3.5 Performance Evaluation 75

reuses v2(large), and task B reuses the same VM after task G finishes. Task D becomes ready

for execution after tasks B and C execute and reuses v1(large). Finally, FFTD costs $6 for the

execution; it has $1 spare budget left and obtains a makespan of 900s.

In Step 4 of SFTD, the algorithm schedules task B and provisions a new small VM based on

its sub-budget. Eventually, there is enough extra budget for leasing a faster VM type. Hence, the

algorithm leases a new large VM for task B. After task F completes, task G becomes ready for

execution and reuses v2(small). Then, task D becomes ready for execution after tasks B and C

finish and reuses v3(large), In the end, SFTD costs $5 for the execution–it has $2 spare budget left

and produces a 1700s makespan.

3.5 Performance Evaluation

To evaluate the algorithms’ performance, we used synthetic workflows created based on the char-

acteristics of five well-known real workflow applications from different scientific areas. They were

generated using the WorkflowGenerator1 tool. The runtime estimate produced by this tool for each

task was used as the size of the task instead.

The Montage (astronomy) workflow is used to produce sky mosaics from a set of input images.

Most of its tasks are I/O intensive, and they do not require much CPU processing. The LIGO

(astrophysics) workflow is used to detect gravitational waves. It consists of mostly CPU intensive

tasks with high memory requirements. The SIPHT (bioinformatics) workflow is used for the

automatic searching of sRNA encoding-genes. Most of the tasks in SIPHT have high CPU and

low I/O utilization. Epigenomics (bioinformatics) is a CPU intensive workflow that is used for

executing various genome-sequencing operations. Finally, the Cybershake (earthquake science)

workflow generates synthetic seismograms to characterize earthquake hazards and is considered

data-intensive with substantial memory and CPU requirements.

Different budget intervals were used in the experiments. We assumed that the minimum budget

to run the workflow is equal to the cost of running all tasks on a single VM of the cheapest type.

Based on this budget, we defined ten different budget intervals, as seen in Eq. 3.11.

budget = α ∗minbudget where 0 < α < 11 (3.11)

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

76 A Task-based Budget Distribution Strategy for Scheduling Workflows

Table. 3.2: VM types and prices used

Name Memory (GB) vCPU ECU Price per Hour ($)
small 3.75 2 7 1
medium 7.5 4 14 2
large 15 8 28 4
xlarge 30 16 56 8

The tightest budget in the range corresponds to a budget estimated with α = 1, while the most

relaxed one was calculated using α = 10.

We used CloudSim [72] to model an IaaS provider with a single data center and four VM

types. The VM type configurations are shown in Table 3.2. Their configurations are a simplified

version of the compute-optimized (c4) instance types offered by Amazon EC2 that have a linear

relationship between the processing capacity and price. An hourly billing period was modelled for

all VM types, and the provisioning delays were set to 97 seconds based on the study by Mao and

Humphrey [38]. The CPU performance of VMs was degraded by at most 24% based on a normal

distribution with a 12% mean and a 10% standard deviation, as reported by Jackson et al. [37].

3.5.1 Algorithm Performance

The goal of these experiments was to evaluate the algorithm’s performance regarding cost and

makespan. The cost performance was measured using the cost to budget ratio to assess the algo-

rithm’s ability to meet the budget constraint. Ratio values higher than one indicate a cost higher

than the budget, values equal to one mean a cost equal to the budget, and values smaller than one

represent a cost lesser than the budget. Furthermore, the experiments for each budget interval were

repeated 100 times, and we plotted the mean value in the charts.

We compared our algorithm with Budget Distribution with Trickling (BDT) [107], a dynamic

level-based budget distribution algorithm that has similar objectives to our solution. BDT sched-

ules the tasks based on their Earliest Start Time (EST) and introduces a Time-Cost Trade-off Factor

(TCTF), which calculates the trade-off ratio between cost and time for executing a task in a VM

type. Then, it selects the VM type with the largest value in the resource provisioning phase. BDT

executes all tasks in a level using the available budget and then trickles down the leftover budget

to the level below. It delays tasks whenever the budget is not enough to lease new VMs and forces

3.5 Performance Evaluation 77

(a) Cost/Budget Ratio (b) Makespan

Fig. 3.4: Cost/budget ratio and makespan performance of Montage

them to reuse VMs when possible. The authors of BDT introduce several budget distribution

strategies, and the ‘All-In’ scenario presents the best performance. Hence, we used BDT-AI (BDT

All-In), to evaluate our proposed algorithm.

Budget Constraint Evaluation

To analyze how the algorithms perform in terms of meeting the budget constraint, we plotted the

cost/budget ratio values for each workflow and budget interval in Fig. 3.4a, 3.5a, 3.6a, 3.7a, and

3.8a. For the Montage workflow, the results are presented in Fig. 3.4a. SFTD performs better

than the other algorithms in the strictest budget interval–this is probably due to its choice of the

cheapest VM type when making provisioning decisions.

Interestingly, the performance of the algorithms is the same for the remaining intervals, with

the ratio values being equal in every case. A possible reason for this is related to the coarse-

grained billing period. We can see in Fig. 3.4b that the makespan obtained by all the algorithms

starting from β2 is much smaller than the length of a billing period. This result means that VM

performance degradation is not significantly affecting the cost because the difference between

the makespan and the billing period is wide enough to tolerate this degradation. Although there

is no difference in the performance between FFTD and BDT-AI in terms of meeting the budget

constraint, we found that FFTD outperforms BDT-AI in terms of the makespan–this is further

discussed in the Makespan Evaluation subsection.

The results obtained for the LIGO workflow are shown in Fig. 3.5a. We can see that the first

budget interval is too strict. Hence, all algorithms violate budget constraints. In general, SFTD

78 A Task-based Budget Distribution Strategy for Scheduling Workflows

(a) Cost/Budget Ratio (b) Makespan

Fig. 3.5: Cost/budget ratio and makespan performance of LIGO

(a) Cost/Budget Ratio (b) Makespan

Fig. 3.6: Cost/budget ratio and makespan performance of SIPHT

produces lower cost/budget ratio values even though the other two algorithms are also able to meet

the budget constraint for the remaining cases. Meanwhile, Fig. 3.6a depicts the results for the

SIPHT workflow. All algorithms violate the first budget interval with FFTD exceeding the budget

by the smallest value. We can observe that the performance variation affects the algorithms’ ability

to meet the budget constraint from the marginal difference between the cost and the budget in the

graphs. In general, FFTD outperforms the other two algorithms in meeting the budget constraints

for the SIPHT workflow.

Fig. 3.7a shows the results obtained for the Cybershake workflow. In general, all algorithms

fail to meet the budget constraint in every case except for BDT-AI, which succeeds in achieving

its goal in the last three intervals. A possible explanation for these results is the Cybershake

3.5 Performance Evaluation 79

(a) Cost/Budget Ratio (b) Makespan

Fig. 3.7: Cost/budget ratio and makespan performance of Cybershake

(a) Cost/Budget Ratio (b) Makespan

Fig. 3.8: Cost/budget ratio and makespan performance of Epigenomics

workflow characteristics as a data-intensive workflow that involves extensive I/O activities. This

I/O overhead is evidence in the SFTD results–the cost/budget ratio values increase as the number

of VMs increases. The larger the number of VMs is, the higher the number of files that have to

be transferred over the network, and even though all algorithms consider data transfer times when

estimating a task’s processing time, network traffic congestion causes unpredicted costs. As a

result, with SFTD being the algorithm that provisions the highest number of VMs, its schedules

are profoundly impacted by network congestion. It is worthwhile mentioning that the ratio values

for FFTD and BDT-AI decrease as the budget increases. While SFTD allocates more VMs as the

budget increases, FFTD and BDT-AI use the additional budget to provision faster VMs instead.

80 A Task-based Budget Distribution Strategy for Scheduling Workflows

The Epigenomics workflow results are shown in Fig. 3.8a. Contrary to the Cybershake, in the

Epigenomics case, SFTD leases faster VMs rather than increasing the number of leased VMs. It

produces a high cost/budget ratio value for the earlier budget intervals; however, the ratios consis-

tently decrease as the budget increases. A possible reason is that the number of VMs provisioned

by SFTD remains relatively constant throughout the budget intervals. However, FFTD outper-

forms the other two algorithms regarding meeting the budget constraint for most of the cases.

Overall, FFTD demonstrates equal or better performance than BDT-AI in 88% of the cases

regarding cost/budget ratio values. The only case where BDT-AI outperforms FFTD is for the

Cybershake workflow, within which 90% of the cases BDT-AI obtains equal or better performance.

However, it needs to be mentioned that the difference in performance is marginal in some cases,

such as in the SIPHT workflow.

Makespan Evaluation

The first half of the budget intervals in the Montage workflow (Fig. 3.4b) shows a marginal

difference in makespan. This result is due most likely to the characteristics of the tasks in the

Montage workflow that highly depend on I/O rather than CPU processing (I/O-bound workflows).

Hence, choosing faster VM types does not significantly affect the makespan. However, as the

budget increases, the second half of the budget intervals lead to a larger makespan difference. A

possible reason is due to a large number of VMs provisioned by SFTD at runtime that contributes

to the communication overhead. Finally, FFTD obtains lower makespan than BDT-AI in 70% of

the cases in which both algorithms achieve the same performance regarding cost/budget ratio.

Fig. 3.5b depicts the results obtained for the LIGO workflow. Although the graph’s trend is

similar to the Montage results, the difference between all algorithms is more clearly observed in

this case. FFTD shows the lowest makespan for all cases. The results obtained for the SIPHT

workflow are depicted in Fig. 3.6b. Similar to the previous results, FFTD obtains the lowest

makespan and displays more stable results than BDT-AI. Morover, the results for the Cybershake

workflow are shown in Fig. 3.7b. FFTD produces slightly lower makespans in 60% of the cases

when compared to BDT-AI, while SFTD performs the worst. Cybershake is considered as a data-

intensive workflow that involves a high number of data transfer activities. This degradation ex-

plains SFTD’s performance as it provisions a larger number of VMs as the budget increases.

3.5 Performance Evaluation 81

(a) Montage (b) LIGO (c) SIPHT

(d) Cybershake (e) Epigenomics

Fig. 3.9: VMs utilization for different workflow applications

The Epigenomics workflow results are shown in Fig. 3.8b. The makespan trend is different

from the other scenarios in which both FFTD and BDT-AI have a larger makespan as the budget

increases. A possible explanation is a fact that Epigenomics consists of tasks that are both CPU

and I/O intensive. Having a small number of VMs provisioned is probably the best approach for

executing this workflow. It needs to be noted that this behaviour should be a guide for the users

when defining the budget for Epigenomics workflow. Finally, FFTD shows the lowest makespan

in all scenarios.

Overall scenario, FFTD demonstrates lower makespan in 84% of all cases. In the case where

FFTD gets an equal performance to BDT-AI in terms of meeting the budget constraint, it obtains

a lower makespan in 80% of the cases. Meanwhile, in the cases in which FFTD achieves lower

cost/budget ratios, which is usually accompanied by higher makespans, it also successfully obtains

lower makespans than BDT-AI in 93% of the cases. Nevertheless, in some cases, the difference in

makespan is marginal.

3.5.2 VM Utilization

To better understand the behaviour of the algorithms, we analyzed the average VM utilization for

each workflow. High VM utilization means the algorithm is capable of mapping tasks to VMs

82 A Task-based Budget Distribution Strategy for Scheduling Workflows

efficiently by utilizing idle time slots. Hence, this performance metric is suitable to evaluate the

algorithms’ ability to deal with coarse-grained IaaS cloud billing periods. The VMs utilization

results are shown in Fig. 3.9.

For the Montage workflow, FFTD presents higher VM utilization in 50% of the cases than

BDT-AI. Meanwhile, in the LIGO workflow scenario, FFTD achieves the highest VM utilization

in all cases. On average, the SIPHT workflow shows the lowest VM utilization for all of the

experiments. However, FFTD obtains a higher VM utilization in 90% of the cases when compared

to BDT-AI for SIPHT. Furthermore, BDT-AI presents a higher VM utilization in 60% of the cases

than FFTD for the Cybershake workflow–this supports the cost/budget ratio and makespan results.

Finally, in the Epigenomics workflow, FFTD produces higher VM utilization than BDT-AI in 80%

of the cases.

Overall, in 72% of the cases, FFTD demonstrates better performance than BDT-AI regarding

VM utilization. However, for the Cybershake workflow, BDT-AI performs better than FFTD. A

possible explanation is because the level-based strategy of BDT-AI works best for data-intensive

workflows that have a high degree of parallelism.

3.6 Summary

In this chapter, we presented a task-based budget distribution strategy for executing scientific

workflows in IaaS clouds with coarse-grained billing periods. The problem was modelled as a

workflow resource provisioning and scheduling problem, which aims to minimize the makespan

while meeting the user-defined budget. Furthermore, the proposed strategy exploits the indepen-

dent task readiness for executing the workflow.

The algorithm distributes the workflow budget to each task and drives the resource usage

through the sub-budget of each task. It schedules tasks individually based on their earliest finish

time whenever their parent tasks have completed execution, and their input data are available.

The algorithm implements a VM reusing policy to utilize the idle time slots that occur due to

the coarse-grained billing periods. It provisions the fastest VM type possible within the budget

whenever it is necessary due to the unavailability of reusable idle VMs. Every time a task finishes,

the algorithm considers the budget spent so far and adjusts the next task scheduling decision if

necessary. For each task that reuses idle VMs, its unused sub-budget is kept as a spare budget and

3.6 Summary 83

utilized to update the budget distribution or to lease faster VMs in the resource provisioning phase.

The performance evaluation results demonstrate that our solution has an overall better perfor-

mance than the state-of-the-art algorithm. It successfully obtains 88% equal or better performance

regarding cost/budget ratio values and achieves lower makespans in 84% of the cases. It gets

higher VM utilizations in 72% of the experiments. In the next chapter, we investigate this approach

on dynamic workloads of multiple workflows with finer-grained billing periods (i.e., seconds). In

those scenarios, there is an opportunity to enhance the scheduling processes that can be achieved

from the sharing and reusing VMs between different workflows.

This page intentionally left blank.

Chapter 4

A Budget-constrained Scheduling
Algorithm for Multiple Workflows

In this chapter, we propose a resource-sharing policy to improve system utilization and to fulfil

various QoS requirements from multiple users in WaaS platforms. We develop an Elastic Budget-

constrained resource Provisioning and Scheduling algorithm for Multiple workflows (EBPSM) that

can reduce the computational overhead by enforcing resource sharing to minimize workflows’

makespan while meeting a user-defined budget. Our experiments show that the EBPSM algorithm can

utilize the resource-sharing policy to achieve higher performance in terms of minimizing the makespan

compared to the state-of-the-art budget-constraint scheduling algorithm.

4.1 Introduction

Designing algorithms for scheduling scientific workflow executions in clouds is not trivial. The

problems have attracted many computer scientists into cloud workflow scheduling research to fully

utilize the clouds’ capabilities for efficient scientific workflows execution [110] [26]. The majority

of those studies focus on the scheduling of a single workflow in cloud computing environments. In

this model, they assume an individual user utilizes a WMS to execute a particular workflow’s job

in the cloud. The WMS manages the execution of the workflow so that it can be completed within

the defined QoS requirements. Along with the growing trend of scientific workflows adoption in

the community, there is a need for platforms that provide workflow execution as a service.

To fulfil the users’ various QoS requirements, a traditional WMS may process the workflows

individually in a dedicated set of VMs, as discussed in Chapter 1 in Fig. 1.3a. This approach, after

all, is the simplest way to ensure the QoS fulfilment of each job. In this scenario, a WMS manages

This chapter is derived from: Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Resource-
sharing Policy in Multi-tenant Scientific Workflow-as-a-Service Platform.‘ Journal of Computer and System Sciences
(JCSS), 2020 (under review).

85

86 A Budget-constrained Scheduling Algorithm for Multiple Workflows

different types of tasks’ execution by tailoring their specific software configurations and require-

ments to a VM image. The VM containing this image can then be quickly deployed whenever

a particular workflow is submitted. However, this model cannot easily be implemented in WaaS

platforms, where many users with different workflow applications are involved. We cannot naively

simplify the assumption where every VM image can be shared between multiple users with dif-

ferent requirements. Multiple workflow applications may need different software configurations,

which implies a possible dependency conflict if they are fitted within a VM image. This assump-

tion also creates a more complex situation where, at any given time, a new workflow application

type needs to be deployed. This newly submitted job cannot reuse the already provisioned VMs

as they may not contain its software configurations.

Therefore, adopting an appropriate resource-sharing policy and, at the same time schedul-

ing multiple workflows simultaneously, as explained in Chapter 1 in Fig. 1.3b, is considerably

preferred for WaaS platforms. We argue that introducing this strategy creates a more efficient plat-

form as it reduces the unnecessary overhead during the execution. The efficiency may be gained

from sharing the same workflow application software for different users by tailoring a specific

configuration in a container image instead of a VM image. This strategy enables (i) sharing and

reusing already provisioned VMs between users to utilize the inevitable scheduling gaps from

intra-workflow’s dependency and (ii) sharing local cached images and datasets within a VM that

creates a locality, which eliminates the need for network activities before the execution.

Based on these problems and requirements, we propose EBPSM, an Elastic Budget-constrained

resource Provisioning and Scheduling algorithm for Multiple workflows designed for WaaS plat-

forms. An elaboration to the resource sharing policy that has been introduced in [80] by further

utilizing container technology and VM local storage to share datasets and computational resources.

This proposed algorithm focused more on a budget-constrained scheduling scenario where its bud-

get distribution strategy has been discussed in Chapter 3.

The EBPSM algorithm can make a quick decision to schedule the workflow tasks dynami-

cally and empower the sharing of software configuration and reuse of already provisioned VMs

between users using container technology. Our algorithm also considered the inherent features of

clouds that affect multiple workflows scheduling, such as performance variation of VMs [4] and

provisioning delay [39] into the VMs auto-scaling policy. Furthermore, EBPSM implemented an

4.2 Related Work 87

efficient budget distribution strategy that allows the algorithm to provision the fastest VMs possi-

ble. This is meant to minimize the makespan and adopt the container images and datasets sharing

policy to eliminate the need for network transfer between tasks’ execution. Our extensive exper-

iments showed that EBPSM, which utilizes the resource-sharing system, can significantly reduce

the overhead. This, in turn, implies the minimization of workflows’ makespan.

The rest of this chapter is organized as follows: Section 4.2 reviews works that are related to

this proposal. Section 4.3 explains the problem formulation of multiple workflow scheduling in

WaaS platforms, including the assumption of application and resource models. The proposed al-

gorithm is described in Section 4.4 followed by the performance evaluation in Section 4.5. Finally,

the Section 4.6 summarizes the findings.

4.2 Related Work

The majority of works in multiple workflows scheduling pointed out the necessity of reusing al-

ready provisioned VMs to reduce the idle gaps and increase system utilization. Examples include

the CWSA [17] that uses a depth-first search technique to find potential schedule gaps between

tasks’ execution. Another work is the CERSA [79] that dynamically adjusts the VM allocation for

tasks in a reactive fashion whenever a new workflow job is submitted to the system. These works’

idea to fill the schedule gaps between tasks’ execution of a workflow to be utilized for schedul-

ing tasks from another workflow is similar to our proposal. However, they assume that different

workflow applications could be deployed into any existing VM available without considering the

possible complexity of software dependency conflicts. Our work differs in the way that we model

the software configurations into a container image before deploying it to the VMs for execution.

The use of the container for deploying scientific workflows has been intensively researched.

Examples include the work of Qasha et al. [111] that deployed a TOSCA-based workflow1 using

Docker2 container on e-Science Central platform3. Although their work is done on a single VM,

the result shows a promising future scientific workflows reproducibility using container technol-

ogy. A similar result is presented by Liu et al. [112] that convinces less overhead performance

and high flexibility of deploying scientific workflows using Docker containers. Finally, the adCFS

1https://github.com/ditrit/workflows
2https://www.docker.com/
3https://www.esciencecentral.org/

88 A Budget-constrained Scheduling Algorithm for Multiple Workflows

[113] is designed to schedule containerized scientific workflows that encourage a CPU-sharing

policy using a Markov-chain model to assign the appropriate CPU weight to containers. Those

solutions are the early development of containerized scientific workflows execution. Their results

show high feasibility to utilize container technology for efficiently bundling software configura-

tions for workflows that are being proposed for WaaS platforms.

One of the challenges of executing scientific workflows in the clouds is related to the data

locality. The communication overhead for transferring the data between tasks’ execution may take

a considerable amount of time that might impact the overall makespan. A work by Stavrinides and

Karatza [61] shows that the use of distributed in-memory storage to store the datasets locally for

tasks’ execution can reduce the communication overhead. Our work is similar regarding the data

locality policy to minimize the data transfer. However, we propose the use of cached datasets in

VMs local storage to endorse the locality of data. We enhance this policy so that the algorithm

can intelligently decide which task to be scheduled in specific VMs that can provide the minimum

execution time given the available cached datasets.

Two conflicting QoS requirements in scheduling (e.g., time and cost) have been a significant

concern when deploying scientific workflows in clouds. A more relaxed constraint to minimize

the trade-off between these requirements is shown in several works that consider scheduling work-

flows within the deadline and budget constraints. They do not attempt to optimize one or both of

the QoS requirements, but instead maximizing the success rate of workflows execution within the

constraints. Examples of these works include MW-DBS [55] and MW-HBDCS [94] algorithms.

Another similar work is the MQ-PAS [56] algorithm that emphasizes on increasing the providers’

profit by exploiting the budget constraint as long as the deadline is not violated. Our work con-

siders the user-defined budget constraint. However, it differs in the way that the algorithm aims to

optimize the overall makespan of workflows while meeting their budget.

Several works specifically focus on handling the real-time workload of workflows in WaaS

platforms. This type of workload raises uncertainty issues, since the platforms have no knowledge

of the arriving workflows. EDPRS [71] adopts a dynamic scheduling approach using event-driven

and periodic rolling strategies to handle the uncertainties in real-time workloads. Another work,

called ROSA [78], controls the queued jobs–which increase the uncertainties along with the per-

formance variation of cloud resources–in the WaaS platforms to reduce the waiting time that can

4.3 Application and Resource Model 89

prohibit the uncertainties propagation. Both algorithms are designed to schedule multiple work-

flows dynamically to minimize the operational cost while meeting the deadline. Our algorithm

has the same purpose of handling the real-time workload and reducing the effect of uncertain-

ties in WaaS platforms. However, we differ in that our scheduling objectives are minimizing the

workflows’ makespan while meeting the user-defined budget.

The majority of works in workflow scheduling that aim to minimize the makespan, while

meeting the budget constraints, adopt a static scheduling approach. This approach finds a near-

optimal solution of mapping the tasks to VMs–with various VM types configuration–to get a

schedule plan before runtime. Examples of these works include MinMRW-MC [114], HEFT-

Budg, and MinMin-Budg [115]. However, this static approach is considered inefficient for WaaS

platforms as it might increase the waiting time of arriving workflows due to the intensive pre-

processing computation time to generate a schedule plan.

On the other hand, several works consider the available user-defined budget dynamically drives

scheduling budget-constrained workflows. In this area, examples include BAT [116], which dis-

tributes the budget of a particular workflow to its tasks by trickling down the available budget based

on the depth of tasks. Another work, MSLBL [117] algorithm allocates the budget by calculating

a proportion of the sub-budget efficiently to reduce the unused budget. However, those solutions

are designed for a single cloud workflow scheduling scenario. To the best of our knowledge,

none of these types of budget-constrained algorithms that aim to tackle the problem in multiple

workflows–which resembles the problem in WaaS platforms–has been proposed.

4.3 Application and Resource Model

We considered a workload of workflows that are modelled as DAGs (Directed Acyclic Graphs).

Each workflow w is associated with a budget βw that is defined as a soft constraint of cost repre-

senting users’ willingness to pay for the execution of the workflows.

The task t is executed within a container–that bundles software configurations for a workflow

in a container image–which is then deployed on VMs. A container provisioning delays provc

is acknowledged to download the image, setup, and initiate the container on an active VM. In

this chapter, we set aside the idea of co-locating several running containers within a VM for

further study, due to the focus of the work is to explore the sharing policy of VMs in terms of

90 A Budget-constrained Scheduling Algorithm for Multiple Workflows

its computing, storage, and network capacities. Therefore, we assumed that only one container

could run on top of a VM at a particular time. Therefore, the same host VM performance of CPU,

memory, and bandwidth can be achieved for a container. Once the container is deployed, VM

local storage maintains the images, so it can be reused without the need to re-download them. We

assumed the scheduler sends custom signals by using commands in the container to trigger tasks’

execution within containers to avoid the necessity of container redeployment.

We considered a pay-as-you-go scheme in IaaS clouds, where VMs are provisioned on-demand

and are priced per billing period bp (i.e., per-second, per-minute, per-hour). Hence, any partial use

of the VM is rounded up and charged based on the nearest bp. In this chapter, we assumed a fine-

grained per-second bp because it is lately being adopted by the majority of IaaS cloud providers

including Amazon EC24, Google Cloud5, and Azure6. We modelled a data center within a partic-

ular availability zone from a single IaaS cloud provider to reduce the network overhead and elim-

inate the cost associated with data transfer between zones. Our work considers a heterogeneous

cloud environment model where VMs with different VM types V MT = {vmt1,vmt2,vmt3, ...,vmtn}

which have various processing power pvmt and different cost per billing period cvmt can be leased.

We considered that all types of VM always have an adequate memory capacity to execute the vari-

ous type of workflows’ tasks. Finally, we could safely assume that the VM type with a higher pvmt

has more expensive cvmt than the less powerful and slower ones.

Each VM has a bandwidth bvmt that is relatively the same between different VM types as they

come from a single availability zone. We did not restrict the number of VMs to be provisioned

during the execution, but we also acknowledged the delay in acquiring VMs provvmt from the IaaS

provider. We assumed that the VMs could be eliminated immediately from the WaaS platform

without additional delay. Furthermore, we considered the performance variation of VMs that

might come from a virtualized backbone technology of clouds, geographical distribution, and

multi-tenancy [4] and that CPU of VM advertised by IaaS provider is the highest CPU capacity

that can be achieved by the VMs. We did not assume another degradation of using containerized

environments because Kozhirbayev and Sinnott [118] have reported its near-native performance.

4https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-amazon-ec2-per-second-billing/
5https://cloud.google.com/blog/products/gcp/extending-per-second-billing-in-google
6https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/

4.3 Application and Resource Model 91

A global storage system GS is modelled for data sharing between tasks (e.g., Amazon S3)

with unlimited storage capacity. This global storage has reading rates GSr and writing rates GSw

respectively. In this model, the tasks transfer their outputs from the VMs to the storage and re-

trieve their inputs from the same place before the execution. Therefore, the network overhead is

inevitable and is one of the uncertainties in clouds as the network performance degradation can be

observed due to the amount of traffic and the virtualized backbone [119]. To reduce the need for

accessing storage GS for retrieving the data, VMs local storage LSvmt is also modelled to main-

tain din
t and dout

t after particular tasks’ execution using FIFO policy. It means the earliest stored

data will be deleted whenever the capacity of LSvmt cannot accommodate new data needing to be

cached. Furthermore, the time taken to retrieve the input data for a particular task’s execution from

global storage is shown in Eq. 4.1.

T din
t

vmt = (din
t /bvmt)+ (din

t /GSr) (4.1)

It is worth noting that there is no need to transfer the input data from the global storage whenever

it is available in the VM as cached data from previous tasks execution. Similarly, the time needed

for storing the output data in the storage is depicted in Eq. 4.2.

T dout
t

vmt = (dout
t /bvmt)+ (dout

t /GSw) (4.2)

The runtime RT t
vmt of a task t in a VM of type vmt is assumed available to the scheduler

as part of the scheduling process. The fact is that this runtime can be estimated using various

approaches including machine learning techniques [36], but we simplified the assumption where

it is calculated based on the task’s size St in Million Instructions (MI) and the processing capacity

pvmt of the particular VM type in Million Instructions Per Second (MIPS) as shown in Eq. 4.3.

RT t
vmt = St/pvmt (4.3)

It needs to be noted that this RT t
vmt value is only an estimate and the scheduler does not depend on it

being 100% accurate as it represents one of the uncertainties in clouds. Furthermore, a maximum

processing time of a task in a VM type PT t
vmt consists of reading the input data required from the

92 A Budget-constrained Scheduling Algorithm for Multiple Workflows

storage, executing the task, and writing the output to the storage which are depicted in Eq. 4.4.

PT t
vmt = T din

t
vmt +RT t

vmt +T dout
t

vmt (4.4)

From the previous equations, we calculated the maximum cost Ct
vmt of executing a task t on a

particular vmt as shown in Eq. 4.5.

Ct
vmt = d(provvmt + provc +PT t

vmt)/bpe∗ cvmt (4.5)

The budget-constrained scheduling problem that is being addressed in this paper is concerned

with minimizing the makespan (i.e., actual finish time of texit) of workflow while meeting the

user-defined budget as depicted in Eq. 4.6.

min AFT (texit) while
T

∑
n=1

Ctn
vmt ≤ βw (4.6)

Intuitively, the budget βw will be spent efficiently on PT t
vmt if the overhead components provvmt and

provc that burden the cost of a task’s execution can be discarded. This implies to the minimization

of AFT (texit) as the fastest VMs can be leased based on the available budget βw. Another important

note is that, further minimization can be achieved when the task t is allocated to the VM with din
t

available, so the need for T din
t

vmt which is related to the network factor that becomes one of the

sources of uncertainties can be eliminated.

However, it needs to be noted that there exist some uncertainties in RT t
vmt as the estimate of St

is not entirely accurate, and the performance of VMs PCvmt can be degraded at any time. Hence,

there must be a control mechanism to ensure that these uncertainties do not propagate throughout

the tasks’ execution and cause a violation of βw. This control can be done by evaluating the real

value of a task’s execution cost Ct
vmt right after the task is completed. In this way, its successors

can adjust their sub-budget allocation so that the total cost will not violate the budget βw.

4.4 The EBPSM Algorithm

In this chapter, we propose a dynamic heuristic resource provisioning and scheduling algorithm

designed for WaaS platforms to minimize the makespan while meeting the budget. The algorithm

4.4 The EBPSM Algorithm 93

is developed to efficiently schedule scientific workflows in multi-tenant platforms that deal with

dynamic workload heterogeneity, the potential of resource inefficiency, and uncertainties of over-

heads along with performance variations. Overall, the algorithm enhances the reuse of software

configurations, computational resources, and datasets to reduce the overheads that become one

of the critical uncertainties in cloud environments. This policy implements a resource-sharing

model by utilizing container technology and VMs local storage in the decision-making process to

schedule tasks and auto-scale the resources.

When a workflow is submitted to the WaaS portal, its owner may define the software require-

ments by creating a new container image or choosing an existing template. Whenever the user

selects the existing images, the platform will identify the possibly relevant information that is

maintained from the previous workflows’ execution, including analyzing previous actual runtime

execution and its related datasets. Furthermore, the user then defines the budget βw that is highly

likely different from various users submitting the same type of workflow.

Next, the workflow is forwarded to the WaaS scheduler and is preprocessed to assign sub-

budget for each task based on the user-defined βw. This sub-budget along with the possible sharing

of software configurations and datasets will lead the decisions made at runtime to schedule a task

onto either an existing VM in the resource pool or a new VM from the cloud providers. The first

phase of the budget distribution algorithm is to estimate the potential tasks’ execution order within

a workflow. The entry task(s) in the first level of a workflow is scheduled first, followed by their

children until it reaches the exit task(s). In this case, we assign every task to a level within a

workflow based on the Deadline Top Level (DTL) approach, as seen in Eq. 4.7

level(t) =


0 if pred(t) = /0

max
p∈pred(t)

level(p)+ 1 otherwise
(4.7)

Furthermore, to determine the tasks’ priority within a level, we sort them based on their Earliest

Finish Time (EFT) in an ascending order as shown in Eq. 4.8

e f t(t) =


PT t

vmt if pred(t) = /0

max
p∈pred(t)

e f t(p)+PT t
vmt otherwise

(4.8)

94 A Budget-constrained Scheduling Algorithm for Multiple Workflows

After estimating the tasks’ execution order, the algorithm iterates over the tasks and distributes

the budget. This budget distribution algorithm estimates the sub-budget of a task based on the cost

cvmt of particular VM types. At first, the algorithm chooses VMs with the cheapest types for the

task. Whenever there is any extra budget left after all tasks get their allocated sub-budgets, the

algorithm uses this extra budget to upgrade the sub-budget allocation for a faster VM type starting

from the earliest tasks in the order. This approach is called the Slowest First Task-based Budget

Distribution (SFTD) and its details is described in Chapter 3 in Algorithm 1.

Once a workflow is pre-processed, and its budget is distributed, the scheduler begins the sche-

duling process, this step is illustrated in Algorithm 4. The primary objective of this algorithm is to

reuse the VMs that have datasets and containers–with software configurations available–in VMs

local storage that may significantly reduce the overhead of retrieving the particular input data and

container images from GS. This way, the algorithm avoids the provisioning of new VMs as much

as possible, which reduces the VM provisioning delay and minimizes the network overhead from

data transfer and downloading container images that contribute to the uncertainties.

Furthermore, the WaaS scheduler releases all entry tasks of multiple workflows into the queue.

As the tasks’ execution proceeds, the child tasks–which parents are completed–become ready for

execution and are released into the queue. As a result, at any point in time, the queue contains all

tasks from different workflows submitted to the WaaS platform that is ready for execution. The

queue is periodically being updated whenever one of the two events triggered the scheduling cycle,

the arrival of a new workflow’s job, and the completion of a task’s execution.

In every scheduling cycle, each task in the queue is processed as follows. The first step is

to find a set of V Midle on the system that can finish the task’s execution with the fastest time

within its budget. The algorithm estimates the execution time by not only calculating PT t
vmt but

also considering possible overhead provc caused by the need for initiating a container in case the

V Midle does not have a suitable container deployed.

At first attempt, V Midle with input datasets V Minput
idle are preferred. The V Minput

idle that has the

datasets available in its local storage must also cache the container image from the previous execu-

tion. In this way, two uncertain factors T din
t

vmt and provc are eliminated. In this case, the sub-budget

for this particular task can be spent well on using the fastest VM type to minimize its execution

time. This scenario is always preferred since the retrieval of datasets from GS and downloading

4.4 The EBPSM Algorithm 95

Algorithm 4 Scheduling
1: procedure SCHEDULEQUEUEDTASKS(q)
2: sort q by ascending Earliest Finish Time (EFT)
3: while q is not empty do
4: t = q.poll
5: container = t.container
6: vm = null
7: if there are idle VMs then
8: VMidle = set of all idle VMs
9: VMinput

idle = set of vm ∈ VMidle that have
t’s input data

10: vm = vm ∈ VMinput
idle that can finish t within t.budget

with the fastest execution time
11: if vm = null then
12: VMidle = VMidle \ VMinput

idle
13: VMcontainer

idle = set of vm ∈ VMidle that have
container deployed

14: vm = vm ∈ VMcontainer
idle that can finish t within

t.budget with the fastest execution time
15: if vm = null then
16: VMidle = VMidle \ VMcontainer

idle
17: vm = vm ∈ VMidle that can finish t within

t.budget with the fastest execution time
18: else
19: vmt = fastest VM type within t.budget
20: vm = provisionVM(vmt)
21: if vm ! = null then
22: if vm.container ! = container then
23: deployContainer(vm, container)
24: scheduleTask(t, vm)

Algorithm 5 Resource Provisioning
1: procedure MANAGERESOURCE
2: VMidle = all leased VMs that are currently idle
3: thresholdidle = idle time threshold
4: for each vmidle ∈ VMidle do
5: tidle = idle time of vm
6: if tidle ≥ thresholdidle then
7: terminate vmidle

the container images through networks has become a well-known overhead that poses a significant

uncertainty as its performance also may be degraded over time [119].

If VM has not been found in V Minput
idle , the algorithm finds a set of V Midle that have container

deployed. This set of V Mcontainer
idle may not have the input data available as they may have been

cleared from VMs local storage. If the set still does not contain the preferred VM, any VM from

96 A Budget-constrained Scheduling Algorithm for Multiple Workflows

the remaining set of V Midle is chosen. In the latter scenario, the overhead of provisioning delay

provvm can be eliminated. It is still better than having to acquire a new VM. Whenever a suitable

VM in the resource pool is found, the task then is immediately scheduled on it. If reusing an

existing VM is not possible, the algorithm provisions a new VM of the fastest type that can finish

the task within its sub-budget. This approach is the utmost option to schedule a task.

For better adaptation to uncertainties that come from performance variation and unexpected

delays during execution, there is a control mechanism within the algorithm to adjust sub-budget

allocations whenever a task finishes. This mechanism defines a spare budget variable that stores

the residual sub-budget calculated from the actual cost execution. Whenever a task is completed,

the algorithm calculates the actual cost of execution using the Eq. 4.5 and redistributes the left-

over sub-budget to the unscheduled tasks. If the actual cost exceeds the allocated sub-budget, the

shortfall will be taken from the sub-budget of unscheduled tasks. Therefore, the budget redistribu-

tion will take place every time a task is finished. In this way, the uncertainties (e.g., performance

variation, overhead delays) that occur to a particular task do not propagate throughout the rest of

the following tasks. The details of this budget update are depicted in Chapter 3 in Algorithm 3.

Regarding the resource provisioning strategy, the algorithm encourages a minimum number

of VMs usage by reusing as much as possible existing VMs. The new VMs are only acquired

whenever idle VMs are not available due to the high density of the workload to be processed.

In this way, the VM provisioning delays overhead can be reduced. As for the deprovisioning

strategy, all of the running VMs are monitored every provint , and all VMs that have been idle

for more than thresholdidle time are terminated as seen in Algorithm 5. The decision to keep or

terminate a particular VM should be carefully considered as the cached data within its local storage

is one of the valued factors that impact the performance of this algorithm. Therefore, the provint

and thresholdidle are configurable parameters that can lead to a trade-off between performance in

terms of resource utilization and makespan along with the VMs local storage caching policy.

4.5 Performance Evaluation

To evaluate our proposal, we used five synthetic workflows derived from the profiling of workflows

[27] from various scientific areas generated using WorkflowGenerator tool7. The first workflow is

7https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

4.5 Performance Evaluation 97

Table. 4.1: Characteristics of synthetic workflows

Workflow Parallel Tasks CPU Hours I/O Requirements Peak Memory
Cybershake Very High Very High Very High Very High
Epigenome Medium Low Medium Medium

LIGO Medium High Medium High High
Montage High Low High Low
SIPHT Low Low Low Medium

Cybershake that makes synthetic seismograms to differentiate various earthquakes hazards. This

earth-science workflow is data-intensive with very high CPU and memory requirements. The sec-

ond workflow is Epigenome, a bioinformatics application with CPU-intensive tasks for executing

genome-sequencing related research. The third workflow is an astrophysics application called

Inspiral–part of the LIGO project–that is used to analyze the data from gravitational waves detec-

tion. This workflow consists of CPU-intensive tasks and requires a high memory capacity. The

next workflow is Montage. This workflow is an astronomy application used to produce a sky mo-

saics image from several different angles on sky observation images. Most of the Montage tasks

are considered I/O intensive while involving less CPU. Finally, we included a bioinformatics ap-

plication to encode sRNA genes called SIPHT. Its tasks have relatively low I/O utilization with

medium memory requirements. The resume of these workflows can be seen in Table 4.1.

The experiments were conducted with various workloads composed of a combination of work-

flows mentioned above in three different sizes: approximately 50 tasks (small), 100 tasks (medium),

and 1000 tasks (large). Each workload contains a different number and various types of workflows

that were randomly selected based on a uniform distribution, and the arrival rate was modelled

based on a Poisson distribution. Every workflow in a workload was assigned a budget that is

always assumed sufficient. Budget insufficiency can be managed by rejecting the job from the

platform or re-negotiating the budget with the users. This budget was randomly generated based

on a uniform distribution from a range of minimum and maximum cost of executing the workflow.

The minimum cost was estimated from simulating the execution of all of its tasks in sequential

order on the cheapest VM type. On the other hand, the maximum cost was estimated based on

the parallel execution of each task on multiple VMs. In this experiment, we used the runtime

generated from the WorkflowGenerator for the task’s size measurement.

We extended CloudSim [72] to support the simulation of WaaS platforms. Using CloudSim,

we modelled a single IaaS cloud provider that offers a data center within a single availability zone

98 A Budget-constrained Scheduling Algorithm for Multiple Workflows

Table. 4.2: Configuration of VM types used in evaluation

Name vCPU (MIPS) Storage (GB) Price per second (cent)
Small 2 20 1

Medium 4 40 2
Large 8 80 4

XLarge 16 160 8

with four VM types that are shown in Table 4.2. These four VM types configurations are based on

the compute-optimized (c4) instance types offered by the Amazon EC2, where the CPU capacity

has a linear relationship with its respective price. We modelled the per-second billing period for

leasing the VMs, and for all VM types, we set the provisioning delay to 45 seconds based on the

latest study by Ullrich et al. [120]. On the other side, using the model published by Piraghaj et al.

[121], the container provisioning delay was set to 10 seconds based on the average container size

of 600 MB, a bandwidth 500 Mbps, and a 0.4 seconds delay in container initialization.

The CPU and network performance variation were modelled based on the findings by Leitner

and Cito [4]. The CPU performance was degraded by a maximum of 24% of its published capacity

based on a normal distribution with a 12% mean and a 10% standard deviation. Furthermore, the

bandwidth available for a data transfer was potentially degraded by at most 19% based on a normal

distribution with a 9.5% mean and a 5% standard deviation. In this experiment, as mentioned

earlier, each VM was modelled to maintain an LSvmt that stores the cached data produced during

the execution based on FIFO policy. The design for a more sophisticated strategy to retain or

terminate the lifetime of cached datasets within an LSvmt is left for future work.

To create a baseline for EBPSM, we extended the MSLBL [117] algorithm for multiple work-

flows scheduling (MSLBL_MW). MSLBL was designed for single workflow execution, so we

added a function to handle multiple workflows by creating a pool of arriving workflows where

the algorithm then dispatched the ready tasks from all workflows for scheduling. Furthermore,

MSLBL assumed that a set of computational resources are available in a fixed quantity all over the

scheduling time. Therefore, to cope with a dynamic environment in WaaS platforms, we added

a simple dynamic provisioner for MSLBL_MW that provisions a new VM whenever there is no

existing VMs available. This newly provisioned VM is selected based on the fastest VM type

that can be afforded by the sub-budget of a particular task. This dynamic provisioner also au-

tomatically terminates any idle VMs to ensure the optimal utilization of the system. Finally, for

4.5 Performance Evaluation 99

MSLBL_MW, we assumed that every VM can contain software configurations for every workflow

application type and can be shared between any users in WaaS platforms.

To demonstrate the benefits of our policy, we implemented three additional versions of EBPSM,

which are EBPSM_NS, EBPSM_WS, and EBPSM_NC. EBPSM_NS does not share the VMs be-

tween different users; it is a version of EBPSM that executes each workflow submitted into the

WaaS platform in dedicated service, as discussed in Chapter 1 shown in Fig. 1.3a. EBPSM_WS

tailors the software configuration of workflow applications in a VM image instead of containers.

Therefore, the algorithm allows only tasks from the same workflow application type (e.g., SIPHT

with 50 tasks and 100 tasks) that can share the provisioned VMs during the execution.

Meanwhile, EBPSM_NC ignores the use of containers to store the configuration template and

naively assumes that each VM can be shared between many users with different requirements. This

version was a direct comparable case for MSLBL_MW. Finally, the thresholdidle for EBPSM_WS,

EBPSM, and EBPSM_NC was set to 5 seconds. It means the vmidle is not immediately terminated

whenever it goes idle to accommodate the further utilization of the cached data within the VM.

4.5.1 To Share or Not To Share

The purpose of this experiment is to evaluate the effectiveness of our proposed resource-sharing

policy regarding its capability to minimize the workflows’ makespan while meeting the soft limit

budget. In this scenario, we evaluated EBPSM and its variants against MSBLBL_MW under four

workloads with a different arrival rate of 0.5, 1, 6, and 12 workflows per minute. Each workload

consists of 1000 workflows with approximately 170 thousand tasks of various sizes (e.g., small,

medium, large) and different workflow types generated randomly based on a uniform distribution.

The arrival rate for these four workloads represents the density of workflows’ arrival in the WaaS

platform. The arrival of 0.5 workflows per minute represents a less occupied platform, while the

arrival of 12 workflows per minute models a busier system in handling the workflows.

Fig. 4.1a, 4.1b, 4.1c, 4.1d, and 4.1e depict the makespan achieved for Cybershake, Epigenome,

LIGO, Montage, and SIPHT workflows respectively. EBPSM_NS that represents the traditional

non-shared cloud resources paradigm shows almost no difference in the algorithm’s performance

across different arrival rates. This version of the algorithm serves each of the workflows in dedi-

cated and isolated resources. Therefore, it can maintain a similar performance for all four work-

100 A Budget-constrained Scheduling Algorithm for Multiple Workflows

(a) Makespan of Cybershake (b) Makespan of Epigenome

(c) Makespan of LIGO (d) Makespan of Montage

(e) Makespan of SIPHT

Fig. 4.1: Makespan of workflows on various workloads with different arrival rate

loads. However, on the other hand, EBPSM_NS shows the lowest percentage of average VM

utilization due to this non-sharing policy, as seen in Fig. 4.2b.

In contrast to EBPSM_NS, the other three versions of EBPSM exhibit a performance improve-

ment along with the increasing density of the workloads. This further makespan minimization is

the result of (i) the elimination of data transfer overhead between tasks’ execution and (ii) the

utilization of inevitable scheduling gaps between tasks’ execution. In the case of data transfer

elimination, we can observe that the improvement is relatively not significant for Epigenome

4.5 Performance Evaluation 101

(a) Percentage of budget met (b) Avg. VM utilization (c) Number of VMs

Fig. 4.2: Percentage of budget met and VM usage on various workloads with different arrival rate

workflows, where the CPU processing takes the most significant portion of the execution time

instead of I/O and data movement. On the other hand, the most significant improvement can be

observed from the data-intensive workflows such as Montage and Cybershake applications.

Furthermore, the superiority of EBPSM and EBPSM_NC over EBPSM_WS both in makespan

and average VM utilization shows a valid argument for the schedule gaps utilization case. From the

result, we can conclude that the idle gaps utilization between users from different workflows can

further minimize the makespan. The naive assumption that every VM can be shared between any

users in the platform explains the lower makespan and the higher utilization of EBPSM_NC com-

pared to EBPSM. Container usage generates additional delays that affect EBPSM performance.

However, the difference between them is marginal, and EBPSM still exhibits a good result.

We observe that in four out of five cases, all versions of EBPSM overthrow MSLBL_MW

regarding the makespan achievement. This result comes from the different strategies of both al-

gorithms in distributing the budget and avoiding the constraint’s violation, which implies the type

of VMs they provisioned. EBPSM prioritizes the budget allocation to the earlier tasks and leases

the fastest VM type as much as possible. This approach is based on the idea that the following

children’s tasks can utilize already provisioned VMs while maintaining the capability of meeting

the budget by updating the allocation based on the actual tasks’ execution.

In Fig. 4.2a, we can see that all algorithms can achieve at least 95% of the budget meeting for

all cases. The margin between MSLBL_MW and the four versions of EBPSM was never wider

than 4%. Furthermore, MSLBL_MW is superior to EBPSM regarding the average VM utilization,

as seen in Fig. 4.2b. This result is caused by the difference in the VM deprovisioning policy.

MSLBL_MW eliminates any VMs as soon as they become idle. At the same time, EBPSM delays

102 A Budget-constrained Scheduling Algorithm for Multiple Workflows

Table. 4.3: Cost/budget ratio for EBPSM budget violated cases

Percentile 0.5 wf/m 1 wf/m 6 wf/m 12 wf/m
10th 1.005 1.004 1.017 1.005
30th 1.017 1.018 1.032 1.023
50th 1.026 1.030 1.051 1.052
70th 1.046 1.053 1.065 1.069
90th 1.072 1.083 1.121 1.107

the elimination in the hope of further utilization and cached data for the following tasks on that

particular idle VM. In this case, the configurable settings of thresholdidle value may affect the

VM utilization. However, from these two approaches, a significant margin of makespan between

MSLBL_MW and EBPSM can be observed in most cases.

On the other hand, MSLBL_MW allocates the budget based on the budget level factor, which

creates a safety net by provisioning the VM that costs somewhere between the minimum and

maximum execution cost of a particular task. In this way, MSLBL_MW reduces the possibility

of budget violations at the budget distribution phase. These two different approaches result in

the different number of VM types used during the execution, as can be seen from Fig. 4.2c.

MSLBL_MW leases a lower number of faster VM types compared to EBPSM for all cases. The

only case where the performance of MSLBL_MW is relatively equal to EBPSM is in the Montage

workflow, where the tasks are relatively short in CPU processing time. In contrast, the significant

portion of their execution time takes place in the data movement. In this Montage case, the decision

to lease which kind of VM type does not significantly affect the total makespan.

We captured the cases where EBPSM failed to meet the budget and presented the result in

Table 4.3 to understand the EBPSM performance. From the table, we can see that the cost/budget

ratio for 90% of the EBPSM budget violation cases is lower than 1.12. This ratio means that the

additional cost from these violations is never higher than 12%. This percentage is relatively small

and may be caused by an extreme case of CPU and network performance degradation. In addition,

to eliminate the negative impact of the uncertainties in such a dynamic environment is not possible.

4.5.2 Performance Degradation Sensitivity

Adapting to performance variability is an essential feature for schedulers in multi-tenant dynamic

environments. This ability ensures the platform can quickly recover from unexpected events that

may occur at any given time, hence preventing a snowball effect that negatively impacts subse-

4.5 Performance Evaluation 103

(a) Percentage of budget met (b) Makespan of Cybershake (c) Makespan of Epigenome

(d) Makespan of LIGO (e) Makespan of Montage (f) Makespan of SIPHT

Fig. 4.3: Percentage of budget met and makespan of workflows on various CPU performance
degradation

quent executions. In this experiment, we evaluate the sensitivity of EBPSM and MSLBL_MW–on

the default environment–to CPU performance degradation by analyzing the percentage of budgets

met, makespan, average VM utilization, and the number of VMs used on four different scenarios.

We model CPU performance degradation using a normal distribution with a 1% variance and dif-

ferent average and maximum values. The average value is defined as half of the maximum of the

CPU performance degradation, which ranges from 20% to 80%.

All algorithms are significantly affected by CPU performance degradation as their percent-

age of budget met decreases along with the increased maximum degradation value. However,

MSLBL_MW suffers the most as its performance margin with EBPSM is getting smaller, as seen

in Fig. 4.3a. This suffering also can be observed in Fig. 4.3b, 4.3c, 4.3d, 4.3e, 4.3f. The increasing

makespan as a response to the performance degradation for EBPSM was relatively lower than its

effect on MSLBL_MW. EBPSM can perform better than MSLBL_MW because of its capability

to adapt the changes by evaluating a particular task’s execution right after it was finished.

Meanwhile, MSLBL_MW only relies on the spare budget from its safety net of budget al-

location that limits the number of faster VM types at the budget distribution phase. When the

maximum degradation value increases, there is no extra budget left from this safety net. Hence,

104 A Budget-constrained Scheduling Algorithm for Multiple Workflows

(a) Avg. VM Utilization (b) Number of VMs

Fig. 4.4: VM usage on various CPU performance degradation

the ability of MSLBL_MW to meet the budget drops faster than EBPSM. This reason is also in

line with the average VM utilization results where MSLBL_MW cannot increase VMs utilization

as it reaches the top limit of its capabilities, as seen in Fig. 4.4a.

Another perspective can be observed from the number of VMs used by each algorithm, as

depicted in Fig. 4.4b. EBPSM recovers from the CPU performance degradation by continually

increasing the number of slower VM types while maintaining the faster VM types as much as

possible. This adaption is being made through the budget update process after a task finished

being executed. Therefore, the earlier tasks are still able to be scheduled onto faster VMs.

In contrast, the children’s tasks in the tail of the workflow are inevitably allocated to the slower

ones due to the budget left from the recovering process. Different behaviour is observed from

MSLBL_MW usage of VMs. We cannot see any significant effort to recover from the number of

VM type used. We argue that MSLBL_MW’s way of dealing with CPU performance degradation

is by highly relying on the safety net of budget allocation from the budget distribution phase.

4.5.3 VM Provisioning Delay Sensitivity

A large volume of workflows results in a vast number of tasks in the scheduling queue to be

processed at a given time. Regardless of the effort put into minimizing the number of VMs used by

sharing and reusing already provisioned VMs, provisioning a large number of VMs is inevitable in

the WaaS platform. This provisioning becomes a problem if the scheduler is not designed to handle

the uncertainties from delays in acquiring the VMs. In this experiment, we study the sensitivity

of EBPSM and MSLBL_MW algorithms–on the default environment–towards VM provisioning

delay by analyzing the budget met percentage, makespan, average VM utilization, and the number

4.5 Performance Evaluation 105

(a) Percentage of budget met (b) Makespan of Cybershake (c) Makespan of Epigenome

(d) Makespan of LIGO (e) Makespan of Montage (f) Makespan of SIPHT

Fig. 4.5: Percentage of budget met and makespan of workflows on various VM provisioning delay

of VMs used on four delay scenarios. The delays range from 45 to 180 seconds.

An interesting point can be observed in Fig. 4.5a that shows the budget meeting percentage in

the experiments. All of the algorithms perform well in facing VM provisioning delays. However,

this well-performed result comes with a trade-off of the workflows’ makespan, as seen in Fig.

4.5b, 4.5c, 4.5d 4.5e, and 4.5f, especially for the workflow applications that highly depend on

CPU processing. We can observe that the spectrum for Montage and Cybershake makespan in

EBPSM for 180 seconds delays is quite wide, although its overall performance is still superior

to MSLBL_MW. In contrast to this situation, the makespan spectrum for MSLBL_MW for those

two workflows is very narrow.

One of the reasons that may precipitate this broad spectrum of makespan for EBPSM is the

variation in the number of shared VMs and the types of VM used during the execution. Notably,

the disparity of the makespan is broader for the higher VM provisioning delay scenarios. On the

other hand, MSLBL_MW adopts a simple policy in sharing and reusing already provisioned VMs.

This algorithm did not take the possible data sharing into consideration, whether a particular VM

contains a cached data for a future scheduled task–it merely scheduled the task to any idle VM

available. In this way, the MSLBL_MW algorithm can reduce the variation of the type of VM

used during the workflows’ execution.

106 A Budget-constrained Scheduling Algorithm for Multiple Workflows

(a) Avg. VM Utilization (b) Number of VMs

Fig. 4.6: VM usage on various CPU provisioning delay

When EBPSM leases faster VMs for the earlier tasks, the VM provisioning delays increase the

actual cost for those VMs. Therefore, the algorithm cannot afford those already provisioned VMs

if the budget left for the following tasks is not enough to provision the same VM type. In this case,

EBPSM must provision a new VM with a slower type. Hence, a workflow with a tight budget will

suffer unexpected longer makespan. This condition happens as the algorithm tries to allocate a

faster VM type for the earlier tasks, but it turns out that the budget left is not sufficient. Therefore,

to avoid the budget violation, the algorithm automatically recovers during the budget redistribution

by provisioning a new slower VM type for that particular task. Fig. 4.6b confirms this situation

where EBPSM used a wider variety of VM types compared to MSLBL_MW. However, in general,

the delays do not directly affect the average VM utilization, since the VM initiating process is not

counted through the total utilization. However, still, these delays are being charged. Therefore,

that is why the delay profoundly affects the overall budget. Finally, this analysis does not hinder

the fact that EBPSM, in general, is still superior to MSLBL_MW in terms of makespan.

4.5.4 Container Initiating Delay Sensitivity

Various applications consist of a different number of tasks and software dependencies that may

impact the size of the container images. Therefore, in this experiment, we study the sensitivity of

the EBPSM algorithm–on the default environment–toward container initiating delay by analyzing

the percentage of budget met and makespan with five different container initiating delays. The

delays range from 10 to 50 seconds.

In this experiment, we find that the budget correction of EBPSM can maintain budget-met

compliance of 94-95% in all scenarios. Therefore, we do not plot the budget-met percentage

4.6 Summary 107

Fig. 4.7: EBPSM performance on various container initiating delay

and present the impact to the makespan instead. From Fig. 4.7, we can see that the container

initiating delay affects the workflows with a high number of tasks and I/O requirements. In this

case, Cybershake and Montage makespan increases along with the delays, while the results for the

other workflows are relatively indistinguishable.

From these two experiments, we can observe that the container initiating delays may have a

higher performance impact to the workflows with a high number of parallel tasks. This condition

may be caused by the necessity of deploying a high number of container images to cater to the

parallel execution. In this case, a decision to store particular container images of these workflows

must be carefully considered. Therefore, a more sophisticated strategy of maintaining container

image locality is a crucial aspect to be explored.

4.6 Summary

The growing popularity of scientific workflows deployment in clouds drives the research on multi-

tenant platforms that provides utility-like services for executing workflows. As well as any other

multi-tenant platforms, this WaaS platform faces several challenges that may impede the system’s

effectiveness and efficiency. These challenges include the handling of a continuously arriving

workload of workflows, the potential of system inefficiency from inevitable idle time slots from

workflows’ tasks dependency execution, and the uncertainties from computational resources per-

formances that may impose significant overhead delays.

WaaS platforms extend the capabilities of a traditional Workflow Management System (MWS)

to provide a more comprehensive service for more significant users. In a conventional WMS, a sin-

gle workflow job is processed in dedicated service to ensure its Quality of Service (QoS) require-

108 A Budget-constrained Scheduling Algorithm for Multiple Workflows

ments. However, this approach may not be able to cope with the WaaS platforms. A significant

deficiency may arise from its conventional way of tailoring workflows’ software configurations

into a VM image, inevitable intra-dependent workflows’ tasks schedule gaps, and possible over-

head delays from workflow pre-processing and data movement handling.

To achieve more efficient WaaS platforms, we propose a resource-sharing policy that utilizes

container technology to wrap software configurations required by particular workflows. This strat-

egy enables (i) the idle slots VMs sharing between users and (ii) gaining further makespan min-

imization by sharing the datasets and container images cached within VMs local storage. We

implement this policy on EBPSM, a dynamic heuristic scheduling algorithm designed for multi-

ple workflows scheduling in the WaaS platform. Our experiments show that the sharing scenarios

overthrow a traditional dedicated approach in handling workflows’ jobs. Furthermore, our pro-

posed algorithm can surpass a modified state-of-the-art budget-constrained dynamic scheduling

algorithm in terms of minimizing the makespan and meeting the budget.

There are several aspects of our experiments that need to be further investigated. The bud-

get distribution phase plays a vital role in budget-constrained scheduling. The decision to either

allocate more budget for the earlier tasks so they can lease faster computational resources or main-

tain a safety net allocation to ensure the budget compliance must be carefully taken into account.

A trade-off between having a faster execution time and meeting the allocated budget is always

inevitable. In this way, defining the nature of execution, including strictness of the budget con-

straints, can help to design an appropriate configuration between two approaches.

Furthermore, the resource provisioning strategy must consider the quid pro quo between hav-

ing a higher system utilization (i.e., lower idle VM times) and an optimal data sharing and move-

ment which utilizes the VM local storage. We observe that delaying a particular VM termination

may improve the performance when the cached data stored within the VM is intelligently con-

sidered. In this chapter, we do not consider task failure either caused by the software or the

infrastructure (i.e., container, VMs). Incorporating a fault-tolerant strategy into both EPSM and

EBPSM algorithms is necessary to address the task failure that is highly likely to create an impact

on the WaaS platforms’ performance.

Finally, an investigation on how multiple container instances can be run and scheduled on

top of a single VM is another to-do list. The delay in initiating a container image has reduced

4.6 Summary 109

our algorithm’s performance. There must be a way to counterbalance this issue by exploiting the

swarming nature of containers to gain benefits from this inevitable state to enhance the efficiency

further. Up to this chapter, we evaluate our proposal using a simulation approach, which assumed

that the estimation of tasks’ runtime is always available before the scheduling. In the next chapter,

we propose an online incremental machine learning approach to handle the task runtime prediction

in the WaaS platform.

This page intentionally left blank.

Chapter 5

An Online Incremental Learning
Approach for Task Runtime Estimation

In this chapter, we propose an online incremental learning approach to predict the tasks’ runtime

of scientific workflows in cloud computing environments. To improve the performance of the predic-

tions, we harness fine-grained resources monitoring data in the form of time-series records of CPU

utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task’s

execution. We compare our solution to a state-of-the-art approach that exploits the resources moni-

toring data based on the regression machine learning technique. From our experiments, the proposed

strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-

art solutions.

5.1 Introduction

Recent studies show a plethora of algorithms were designed to schedule scientific workflows in

cloud computing environments [122]. The majority of the solutions are based on heuristic and

metaheuristic approaches that attempt to find a near-optimal solution to this NP-hard problem.

These optimization techniques in scheduling rely on the estimation of task runtime and resource

performance to make scheduling decisions. This estimate is vital, especially in a cost-centric, dy-

namic environment like clouds. An inaccurate estimate of a task’s runtime in scientific workflows

has a snowball effect that may eventually lead to all of the successors of the task taking a longer

time than expected to complete. In the end, this will have a negative impact on the total workflow

execution time (i.e., makespan) and inflict an additional cost for leasing the cloud resources.

This chapter is derived from: Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Task Run-
time Prediction in Scientific Workflows Using an Online Incremental Learning Approach.‘ In Proceedings of the 11th
ACM/IEEE International Conference on Utility and Cloud Computing (UCC), Pages 93-102, 2018.

111

112 An Online Incremental Learning Approach for Task Runtime Estimation

With the emergence of the WaaS platforms that deal with a significant amount of data, having a

module within the system that can predict the task’s runtime in an efficient and low-cost fashion is

an ultimate requirement. In this case, the workload of workflows must be handled as soon as they

arrive due to the quality of service (QoS) constraints defined by the users. Hence, these platforms

need to be capable of processing requests in a near real-time fashion. The runtime prediction of

tasks must be achieved in a fast and reliable way due to the nature of the environment. Moreover,

WaaS platforms make use of the distributed resources provided by the Infrastructure-as-a-Service

(IaaS) provider. Therefore, the prediction method should be able to adapt to a variety of IaaS cloud

infrastructures seamlessly.

Predicting task runtime in clouds is non-trivial, mainly due to the problem in which cloud re-

sources are subject to performance variability [37]. This variability occurs due to several factors–

including virtualization overhead, multi-tenancy, geographical distribution, and temporal aspects

[4]–that affect not only computational performance but also the communication network used to

transfer the input/output data [119]. In this area, most of the existing approaches are based on the

profiling of tasks using basic statistical description (e.g., mean, standard deviation) to summarize

the existing historical data of scientific workflow executions to characterize the tasks, which then

is exploited to build a performance model to predict the task runtime. Another approach uses a

profiling mechanism that executes a task in a particular type of resource and utilizes the measure-

ment as an estimate. These methods are impractical to adopt in cloud computing environments.

Relying only on profiling based on the statistical description does not capture sudden changes in

the cloud’s performance. For example, it is not uncommon for a task to have a longer execution

time during a specific time in cloud instances (i.e., peak hours). Hence, averaging the runtime

data without considering the temporal factors will only lead to inaccurate predictions. Meanwhile,

profiling tasks by executing them in the desired type of resources will lead to an increase in the

total execution cost because the profiler requires an extra budget to estimate the runtime.

On the other hand, machine learning approaches can be considered as a state-of-the-art so-

lution for prediction and classification problems. Machine learning approaches learn the relation

between a set of input and its related output through intensive observation from characteristics of

the data, usually referred to as features. To capture several aspects that affect the cloud’s perfor-

mance variation, machine learning may provide a better solution by considering temporal changes

5.1 Introduction 113

and other various factors in the task’s performance as features.

In the case of predictions, the conventional machine learning approaches are based on a re-

gression function that estimates the runtime of a task from a set of features. Evaluating these

techniques to predict the task runtime in WaaS platforms is out of our scope. We are interested in

exploring various ways of determining the features on which the regression functions depend on.

Typical variables that are being used as features to predict the task runtime are based on the work-

flow application attributes (e.g., input data, parameters) and the specific hardware details (e.g.,

CPU capacity, memory size) in which the workflows are deployed. This information is relatively

easy to extract, and their values are available before the runtime. However, with the rising trend

of cloud computing to deploy the scientific workflows, some of these variables that are related to

the specific hardware details may become inaccurate to represent the computational capacity due

to the performance variability of cloud instances.

Moreover, we found that, as a part of the anomaly detection in executing scientific workflows,

some WMS is equipped with the capability to monitor the runtime of tasks by collecting their

resource consumptions in a time-series manner. This approach is a more advanced approach than

a typical resource consumption monitoring method that stores only the single value of the total re-

source usage of a task’s execution. We argue that time-series data of a task’s resource consumption

may represent better information of a task’s execution to be used as features.

Based on these requirements, we propose an online incremental learning approach for task

runtime prediction of scientific workflows in cloud computing environments. The online approach

can learn as data becomes available through streaming and considered as fast as the model only

sees and processes a data point once when the task finishes. The incremental approach enables

the model to capture the changes such as peak hours in clouds and is capable of adapting to the

heterogeneity of different IaaS cloud providers. We also propose to utilize resource monitoring

data such as memory consumption and CPU utilization that is collected continuously based on a

configurable time interval of time-series records.

This chapter is organized as follows. Section 5.2 reviews works that are related to our study.

Section 5.3 describes the problem definition. Meanwhile, Section 5.4 explains online incremental

learning and Section 5.5 describes the proposed solution. Performance evaluation is presented in

Section 5.6 and Section 5.7 analyzes the results. Finally, Section 5.8 summarizes the findings.

114 An Online Incremental Learning Approach for Task Runtime Estimation

5.2 Related Work

The profiling of the task’s performance in scientific workflows has been extensively studied to

create a model that can be used to estimate runtime. The work is useful for improving the sche-

duling of workflows as the estimation accuracy affects the precision of scheduling algorithms’

performance. A study by Juve et al. [27] discussed the characterization and profiling of workflows

based on the system usage and requirements that can be used for generating a model for estimating

the task runtime based on a basic statistical description. Our work differs in that we use machine

learning to predict task runtime instead of the statistical description to summarize the data.

Another work used evolutionary programming in searching the workflow execution similari-

ties to create a template based on the workflow structure, application type, execution environment,

resource state, resource sharing policy, and network [123]. The template that refers to a set of

selected attributes of scientific workflow execution is later used to generate a prediction model for

task runtime in a grid computing environment. The use of evolutionary programming is known for

its compute-intensiveness as the search space increases. It differs from our work, which is based

on an online approach to achieve fast predictions.

A runtime estimation framework built for ALICE (A Large Ion Collider Experiment) profiled

a sample of tasks by executing them before the real workflow execution to predict their runtime

[124]. The framework captures the features of sample task execution records and uses them as

input for the model. This approach is suitable for massive established computational infrastruc-

tures, but may not be appropriate for cloud computing environments. Our work considered clouds;

therefore, we avoid additional costs as much as possible by doing extra execution.

The works that consider machine learning approaches are dominating the state-of-the-art task

runtime prediction. Regardless of the type of machine learning techniques that are being used, the

proposal by Da Silva et al. [35] exploited the workflow application attributes–such as input data,

parameters, and workflow structure–as features to build the prediction models. These attributes

uniquely adhere to the tasks and are available before the execution. However, in WaaS platforms

where the resources are leased from third-party IaaS providers, the hardware heterogeneity may

result in different performance even for the same task of the workflow.

In this case, the other works combine the workflow application attributes with specific hard-

ware details where the workflows are deployed, as features. Matsunaga and Fortes [125] used

5.3 Problem Definition 115

application attributes (e.g., input data, application parameters) in combination with the system at-

tributes (e.g., CPU microarchitecture, memory, storage) to build the prediction model for resource

consumption and task runtime. Another work by Monge et al. [126] exploited the task’s input data

and historical provenance data from several systems to predict task runtime in the gene-expression

analysis workflow. The combination of application and hardware attributes provides better profil-

ing of the task’s execution that arguably results in the improvement of task runtime prediction.

However, only using features for which the values are available before runtime–such as ap-

plication attributes and hardware details–may not be sufficient to profile the task’s execution time

in cloud environments. Therefore, further works in this area consider the specific execution en-

vironment (e.g., cloud sites, submission time) and the resource consumption status (e.g., CPU

utilization, memory, bandwidth) as features. Some of these may be available before runtime (e.g.,

execution environment), but most of them (e.g., resource consumption status) can only be accessed

after the task’s execution. Hence, the latest variables are mostly known as runtime features as their

collection occurs during the task’s execution. This runtime features plausibly provide better pro-

filing of the task’s execution in cloud environments. The works that exploit this approach, such

as Seneviratne and Levy [127], used linear regression to estimate this runtime features–such as

CPU and disk load–before using them to predict the task runtime. Meanwhile, Pham et al. [36]

proposed a similar approach, called two-stage prediction, to estimate the resources consumption

(e.g., CPU utilization, memory, storage, bandwidth, I/O) of a task’s execution in particular cloud

instances before exploiting them for task runtime prediction.

Nonetheless, these related works are based on batch offline machine learning approaches. The

batch offline approach poses an inevitable limitation in WaaS platforms. This limitation is related

to the streaming nature of workloads in WaaS platforms that need to be processed as soon as they

arrive in a near real-time fashion. Our work differs in that we use an online incremental approach

and exploit the time-series resource monitoring data to predict the task runtime.

5.3 Problem Definition

In this chapter, we focused on the task runtime estimator. We assumed running tasks are con-

tinuously monitored to measure their resource consumption in a specific computational resource.

Different metrics capture the usage of different resources, such as CPU, memory, and I/O. These

116 An Online Incremental Learning Approach for Task Runtime Estimation

Table. 5.1: Description of runtime resource consumption metrics

Resource Metric Description

CPU

procs Number of process
stime Time spent in user mode
threads Number of threads
utime Time spent in kernel mode

Memory vmRSS Resident set size
vmSize Virtual memory usage

I/O

iowait Time spent waiting on I/O
rchar Number of bytes read using any read-like syscall
read_bytes Number of bytes read from disk
syscr Number of read-like syscall invocations
syscw Number of write-like syscall invocations
wchar Number of bytes written using any write-like syscall
write_bytes Number of bytes written to disk

are described in Table 5.1. As a result, the data collected for each task and each metric corre-

spond to a series of tuples consisting of a timestamp t and a value v (< t, v >), where the value

corresponds to a specific resource consumption measurement. The measurement’s frequency is

configurable by a time interval τ . Smaller τ values translate into more frequent measurements,

while larger values reduce the frequency and result in less monitoring data. These time-series

records are stored in a monitoring database, which is later used by the task runtime estimator.

We also assumed some features describing a given task and its execution environment are

available. In particular, the task’s profile, virtual machine configuration used for the task’s execu-

tion, and the task’s submission time. These are shown in Table 5.2 and are referred to from now on

as pre-runtime features. The problem becomes then on efficiently utilizing these pre-runtime data

in conjunction with the resource monitoring time-series data to accurately estimate the runtime of

a task in an online incremental manner, that is, as it arrives for execution.

5.4 Online Incremental Machine Learning

In general, machine learning methods are employed to learn some insights from patterns in avail-

able data and to predict future events. Classical batch offline learning, which learns from an

already collected and accessible dataset, is not suitable for processing a rapid volume of data in a

short time. A reason for this is the fact that these methods usually require the entire dataset to be

5.4 Online Incremental Machine Learning 117

Table. 5.2: Description of pre-runtime configuration

Name Description

Task
name Name of the task
id ID for a particular type of task
input Input name for a task

VM Type
memory Memory capacity
storage Storage capacity
vcpu Number of virtual processor

Submission Time day submission day
hour submission hour

loaded into memory. Furthermore, batch offline methods do not continuously integrate additional

information as the model incrementally learns from new data, but instead reconstruct the entire

model from scratch. This approach is not only time consuming and compute-intensive, but also

may not be able to capture the temporal dynamic changes in the data statistics. As a result, batch

offline learning methods are not appropriate for dynamic environments involving a significant

amount of data in a streaming way, such as WaaS platforms.

Instead, online incremental learning has gained significant attention with the rise of big data

and the internet of things (IoT) as it deals with a vast amount of data that did not fit into memory

and may come in a streaming fashion. As a result, we propose the use of two algorithms imple-

mented using online incremental learning approaches to estimate the runtime of tasks in a near

real-time way, Recurrent Neural Network (RNN) and K-Nearest Neighbors (KNN). Online incre-

mental learning methods fit naturally into WaaS platforms since they incrementally incorporate

new insights from new data points into the model and traditionally aim to use minimal processing

resources as the algorithms read the new data once available. The other advantage worth not-

ing is that incremental learning enables the model to adapt to different underlying infrastructures.

Hence, it allows the creation of models that are agnostic to platforms.

5.4.1 Recurrent Neural Networks

A particular type of RNN called Long Short-Term Memory networks (LSTMs) is capable of re-

membering information for an extended time [128]. Instead of having a simple layer as in regular

RNNs, an LSTM network has four unique plus one hidden layers in repeating modules that enable

them to learn the context and decide whether the information has to be remembered or forgotten.

118 An Online Incremental Learning Approach for Task Runtime Estimation

These layers are a memory unit layer c, three types of gate layers- the input gate i, the forget gate

f , and the output gate o- plus a hidden state h.

For each time step t, LSTM receives a set of values xt corresponding to the different features of

the data, and the previously hidden state ht−1 that contains the context from previous information

as input. Then, LSTM computes the output of the gates based on the activation function which

includes the weights and biases of each gates. Finally, this process can be repeated and configured

for it to produce an output sequence {ot , ot+1, ot+2, ot+3, . . ., ot+n} as the prediction result.

Based on these capabilities, LSTM is suitable and shows promising results for time-series

analysis [129]. Moreover, it supports online learning since its implementation in Keras1 provides

batch size variable that limits the number of data to be trained. A batch size value of 1 is used for

an online learning approach. Keras also accommodates incremental learning as it incorporates the

ability to update the LSTM model whenever new information is obtained continuously.

5.4.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a machine learning algorithm that generates classification/prediction

by comparing new problem instances with instances seen in training. KNN computes distances

or similarities of new instances to the training instances when predicting a value/class for them.

Given a data point x, the algorithm computes the distance between that data and the others in the

training set. Then, it picks the nearest K training data and determines the prediction result by

averaging the output values of these K points.

KNN is widely used for prediction in many areas from signal processing [130] to time-series

analysis [131] that resembles sequential problems. One of the implementations of KNN is the

IBk algorithm [132] that is included in the WEKA data mining toolkit [133]. It incorporates the

capability to learn the data incrementally. While the lazy behaviour of KNN is compute-intensive

and may slow down the performance as the training set increases, IBk incorporates a window size

variable that enables the algorithm to maintain a number of records from the training set. This

capability achieves the trade-off between learning accuracy and speed that is determined by the

size of the window by dropping the older data as new data is added to the set. This essential

function becomes an advantage for the algorithm to handle the changes in the statistics of the data.

1https://keras.io/

5.5 Task Runtime Prediction Using Time-Series Monitoring Data 119

Algorithm 6 Task runtime prediction
Input: a task of the workflow ti
Input: a virtual machine type vi
Input: submission time si
Output: runtime prediction α for ti on vi at si

1: while incoming task t in WaaS do
Phase 1:

2: σi← extract pre-runtime features for ti on vi at si
Phase 2:

3: for selected runtime features R of task ti do
4: {r j1 ,r j2 , ..,r jn}← predict resource consumption r j of ti using σi
5: ς j← extract feature of time-series {r j1 ,r j2 , ..,r jn} using Eq. 5.1

Phase 3:
6: α ← predict runtime of ti using σi and a set of features {ς1,ς2, ..,ςn} from R

5.5 Task Runtime Prediction Using Time-Series Monitoring Data

In this chapter, we aim to predict the runtime of the task in a WaaS platform. Given a set of pre-

runtime features as listed in Table 5.2, we built a model using an online incremental approach that

can provide an estimate of the time needed to complete a task in a specific virtual machine. In par-

ticular, we implemented a task runtime estimator module that can be easily plugged in into a WaaS

platform and the only requirements being (i) access to the pre-runtime features of a task and (ii)

a resource consumption monitoring system that records data in a time-series database. We made

use of these data to build the model as a task finishes its execution incrementally. Specifically,

when a task is fed into the WaaS scheduler, the algorithm extracts its pre-runtime features and

predicts its resource consumption estimation for each metric using LSTM. Then, each resource

consumption of a task (i.e., first phase prediction result) is processed to get a representative and

distinctive value from the time-series. This process is called feature extraction. Afterward, this

value from the feature extraction, along with the pre-runtime features are fed to IBk to predict the

task’s runtime. This process is outlined in Algorithm 6. From now on, we refer to our proposed

approach as the time-series scenario.

We proposed a framework in which multiple prediction models, one for each task in the work-

flow, are maintained, rather than having a single prediction model for all tasks submitted into the

system. We argue that this approach has three main benefits (i) a single prediction model contains

information that may act as noise for different tasks, (ii) the size of a single model will grow as

the number of tasks increases; this may not be scalable to the size of memory, (iii) multiple mod-

120 An Online Incremental Learning Approach for Task Runtime Estimation

els can be maintained by temporarily saving unused models into disk and being loaded whenever

the corresponding task needs to be processed. Furthermore, multiple models allow the system to

optimize predictions as each model can be fine-tuned to a specific setting (e.g., feature selection).

To execute the workflows and collect the monitoring data, we used the Pegasus WMS [134]

that is equipped with a monitoring plugin as a part of the Panorama project [135]. The monitoring

is done at a task level. Therefore, the measurements correspond to the independent execution of a

task in a particular type of resource at a specified time.

The first phase of task runtime prediction extracts the pre-runtime configurations σi of a task

ti and the particular computational resource type vi where the task will run. These are listed in

Table 5.2. We decided to include the submission time (i.e., day and hour) to capture performance

variability in clouds. For instance, a study by Jackson et al. [37] shows that the CPU performance

of VMs in clouds was varied by 30% in compute time. Furthermore, Leitner and Cito [4] suggest

that different running times may affect the performance of the cloud’s resources.

Then, in the second phase, given the set of pre-runtime features σi of a task ti, we estimated the

time-series Ri for each metric defined in Table 5.1 using LSTM. The LSTM model is incrementally

updated using data obtained after task th finishes executing. These data consist of its pre-runtime

features σh and a set of resource consumption time-series Rh collected during the runtime. LSTM

learns the resource consumption sequence per time step t and predicts the value of time step t + 1

that are separated by time interval τ , and repeats the process until it reaches the desired time-series

length n of time step t +n. Since every task has a different length of resource consumption record,

we padded the end of the sequence with zeros until a specified length and removed the padded

values at the end of the prediction. It needs to be noted that not all collected metrics have to be

used in the prediction model as features. Feature selection can be made at this stage by calculating

Pearson’s correlation coefficient ρ of each metric to the actual task runtime [136].

The next step in the second phase is time-series feature extraction. The estimated time-series

resource consumption Ri for a particular task ti is pre-processed before being used as feature to

estimate the task runtime in the third phase. We used time-reversal asymmetry statistic [137] to

extract values ςi from the estimated resource consumption Ri as shown in Eq. 5.1,

ςi(l) =
〈(xt+l− xt)3〉
〈(xt+l− xt)2〉 3

2
(5.1)

5.6 Performance Evaluation 121

(a) 1000 Genome workflow (b) Autodock Vina workflow

Fig. 5.1: Sample of bioinformatics workflows

The feature that is extracted using this algorithm may represent the distinct time-series instance

characteristics by calculating a value of specified sub-sequence with a window size determined by

lag value l and performing surrogate data test 〈.〉 across the time-series. In a study by Fulcher and

Jones [137], this technique has been proven to classify the time-series dataset of four classes using

only one feature without error. Finally, in the third phase, the extracted relevant features ςi for a

task ti from the second phase are combined with its pre-runtime features σi to predict the runtime.

5.6 Performance Evaluation

We evaluated the proposed approach with two bioinformatics workflows. The first workflow is

based on the 1000 Genome Project2, an international effort to establish a human genetic variation

catalogue. Specifically, we used an existing 1000 Genome workflow3 developed by Pegasus group

to identify overlapping mutations. It provides a statistical evaluation of disease-related mutations.

Its structure is shown in Fig. 5.1a. For our experiments, we analyzed the data corresponding to

three chromosomes (chr20, chr21, chr22) of human genomes across five populations of African

(AFR), Mixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS).

The second workflow uses AutoDock Vina [138]–a molecular docking application–to screen a

number of ligand libraries for plausible drug candidates (i.e., virtual screening). In particular, we

used a virtual screening case of one receptor and forty ligands with various sizes and search spaces

of the docking box taken from the Pegasus project4. The molecular docking tasks (i.e., AutoDock

Vina) in this workflow can be considered as a bag of tasks where every task of receptor-ligand

2http://www.internationalgenome.org/about
3https://github.com/pegasus-isi/1000genome-workflow
4https://github.com/pegasus-isi/AutoDock-Vina-Workflow

122 An Online Incremental Learning Approach for Task Runtime Estimation

Table. 5.3: NeCTAR virtual machines configuration

VM Type vCPU Memory Storage Operating System
m2.small 1 4GB 100GB CentOS 7 (64-bit)
m2.medium 2 6GB 100GB CentOS 7 (64-bit)
m2.large 4 12GB 100GB CentOS 7 (64-bit)

docking can be executed in parallel before the compound selection task takes place to select the

drug candidates. The structure of the virtual screening workflows is depicted in Fig. 5.1b.

To the best of our knowledge, this is the first work that predicts the runtime of workflow tasks

using an online incremental learning approach. Hence, to compare our work with existing state-

of-the-art solutions of task runtime prediction, we reproduced the batch offline learning work by

da Silva et al. [35] that uses a task’s input data as a feature to predict the task runtime. We refer

to this approach as the baseline scenario. We also replicated the two-stage task runtime prediction

in a batch offline learning methods by Pham et al. [36], which combined the input data, system

configuration, and resource consumption to predict task runtime. We refer to this solution as the

two-stage scenario. The latest solution is similar to our work except that we used the fine-grained

resource consumption time-series data instead of an aggregated value of the consumed resources.

We also implemented an online incremental version of both solutions to be compared with our

proposed approach. To ensure the fairness of each evaluation, we used the IBk algorithm with

default configuration for both batch offline and online incremental learning scenarios.

5.6.1 Experimental Setup

We set up the system on NeCTAR5 cloud resources to evaluate the approaches. We used three

different virtual machine types from NeCTAR, which are small, medium, and large flavours with

eight, four, and two nodes configuration, respectively. They are configured to have the same

storage capacity and operating system, as depicted in Table 5.3.

For the experiment, we generated between 900 and 12,000 executions for every task. The

details of these tasks are depicted in Table 5.4. The resource consumption metrics for each running

task are collected every time interval τ seconds, where 1 ≤ τ ≤ 30. Specifically, we used τ

values of 1, 5, 10, 15, and 30 to analyze the trade-off between time-series granularity and learning

5https://nectar.org.au/

5.6 Performance Evaluation 123

Table. 5.4: Summary of datasets

Workflow Task Name Tasks per Total Tasks
Workflow Generated

1000 Genome

individuals 10 9000
individuals merge 1 900
sifting 1 900
mutation overlap 7 6300
frequency 7 6300

Virtual Screening autodock vina 40 12000
compound selection 1 3000

performance. Furthermore, we defined the lag values l as l = 2 and l = 3 to see the effect of time-

series data length on the feature extraction algorithm. The average runtime for task individuals

is 158 seconds while individuals merge is 37 seconds. The shortest average runtime that can

be monitored is 10 seconds for task mutation overlap, while frequency records 178 seconds on

average and the autodock vina task shows the average runtime of 353 seconds. In this work, we

did not consider the sifting task from the 1000 genome workflow and the compound selection task

from the virtual screening workflow in our experiments since it has a very short runtime.

Regarding the learning algorithms, there are several configurable parameters for each of them.

In general, we used the default configurations from their original implementation. It needs to be

noted that we did not fine-tune the algorithms to get the optimal settings for this problem. Hence,

further study to analyze the optimal configurations should be done as future work.

For the LSTM in resource consumption estimation, we used batch size = 1 since the system

requires the data to be only seen once. Our LSTM implementation uses sigmoid as gates activation

function, ten hidden layers, and one hundred epochs to train the model. Meanwhile, for IBk, we

used the default parameter used by version 3.8 of the WEKA library where k = 1, no distance

weighting, and linear function for the nearest neighbours search algorithm. For our batch offline

learning experiments, we used various sizes of training data d to see the performance of classical

batch offline learning related to the amount of data collection needed for building a good model

for prediction. Specifically, we used the d values of 20%, 40%, 60%, and 80% in the experiments.

To validate the performance of our approach, we used relative absolute error (RAE) as a met-

ric for evaluation as recomended in an empirical study by Armstrong et al. [139] over several

124 An Online Incremental Learning Approach for Task Runtime Estimation

alternative metrics as shown in Eq. 5.2,

RAE =
∑

n
i=1 | ri j− ei j |

∑
n
i=1 | ri j− 1

n ∑
n
i=1 ri j |

(5.2)

where n is the number of predictions. The smaller the RAE value, the smaller the difference

between the predicted value and the actual observed value.

5.7 Results and Analysis

In this section, we presented and analyzed the results of the experiments. We evaluated our pro-

posed approach against the modified online incremental version of the baseline and two-stage

scenarios. To ensure the fair comparison, we also presented the results of their original batch

offline version approaches. Furthermore, we discussed the feature selection evaluation for our

proposed method that can improve the model’s accuracy.

5.7.1 Proposed Approach Evaluation

We evaluated our proposed approach with various time intervals τ , and time-series lags l. The

value of time interval τ affects how often the system records the resource consumption of a par-

ticular task and impacts the length of the time-series data. Meanwhile, the value of the lag l that

defines the time-reversal asymmetry statistics in feature extraction relies on the length of the time-

series. Larger lag values may not be able to capture the distinctive profile of a short resource

consumption time-series. Hence, we fine-tune these parameters for each task differently. The re-

sults of these experiments are depicted in Table 5.5; It is important to note that these do not include

the feature selection mechanism in learning as we separate its evaluation in a different section.

In general, our proposed approach produced lower RAE compared to the baseline scenario

and the two-stage scenario. From Fig. 5.2 we can see that exploiting fine-grained resource con-

sumption significantly reduces the RAE of task runtime prediction for individuals, individuals

merge, and frequency. Our proposed strategy showed a better result than baseline and two-stage

for mutation overlap and autodock vina, although the difference is marginal. In this case, the fine-

grained resource consumption features extracted using time-reversal asymmetry statistics may

have a higher distinctive property that can characterize each instance uniquely compared to the

aggregated value of resource consumption that is being used in the two-stage scenario.

5.7 Results and Analysis 125

Table. 5.5: Results of task estimation errors (RAE) using online incremental learning approach

Task Baseline Two-Stages Time-Series (l = 2) Time-Series (l = 3)
τ = 1s τ = 5s τ = 10s τ = 15s τ = 1s τ = 5s τ = 10s τ = 15s

individuals 64.200 57.571 41.748 41.675 41.722 41.175 39.180 40.680 46.601 41.710

individuals
42.162 36.144 34.706 31.474 36.417 42.162 33.300 29.553 42.162 42.162

merge
mutation

5.778 3.615 3.413 3.682 5.729 5.778 3.861 3.949 5.778 5.778
overlap

frequency 48.971 37.327 35.523 31.039 30.812 32.251 35.386 30.499 35.108 32.368

autodock
5.380 5.153 4.170 4.062 4.023 4.081 4.140 4.045 4.049 4.090

vina

Further analysis from Fig. 5.2 can explain the impact of lag values l on the performance. This

graph shows the result from the baseline scenario, two-stage scenario, the best result from time-

series (l = 2), and (l = 3) scenarios. As we can see the lag value l = 3 produces better results

than l = 2 for all cases except mutation overlap and autodock vina with a marginal difference. In

general, a higher lag value means a wider window size of the time-series to be inspected during

the time-series feature extraction. However, if the length of the time-series is not long enough, the

time-reversal asymmetry statistics cannot fully capture the distinctive characteristics of time-series

instance. In mutation overlap case, many of the resource consumption time-series length is too

short to be evaluated using the value of l = 3. Hence, the performance of the algorithm with a

lag value of l = 2 achieves the lowest RAE. Meanwhile, for autodock vina, the trade-off between

frequency measurement τ and lag l cannot be determined as the difference in error results in these

various scenarios is insignificant.

Comprehensive results of the online incremental learning methods can be seen in Table 5.5.

From the table, we can analyze the impact of configurable parameters to the algorithm’s perfor-

mance. Individuals achieves the lowest RAE for l = 3 and τ = 1s. Moreover, individuals merge

presents the best result for l = 3 and τ = 5s and mutation overlap shows the best result for l = 2

and τ = 1s. Meanwhile, frequency gets the lowest RAE for l = 3 and τ = 5s. Lastly, autodock

vina achieves the lowest RAE for l = 2 and τ = 10s. These results confirm our analysis from the

previous discussion related to the length of the time-series record and the configurable parameters.

Furthermore, we can see that in several cases, the performance deteriorates to the value of

baseline performance. This deterioration happens when the time-reversal asymmetry statistics

cannot capture the time-series property because of the length limitation. Then the feature extrac-

126 An Online Incremental Learning Approach for Task Runtime Estimation

Fig. 5.2: Summary of task estimation errors (RAE) using online incremental learning approach

tion algorithm gives zero values. Hence, it produces the same result as the baseline scenario.

Therefore, the value of two configurable parameters in time-series feature extraction is an

essential aspect in fine-tuning the prediction model. While in general, we can see that a higher lag

l value produces a lower RAE, assigning an appropriate measurement interval τ must be further

analyzed. There is no exact method to determine this frequency measurement value that is related

to the prediction performance. The only known fact is that this value inflicts the size of time-series

records to be stored in the monitoring database. We leave this problem as future work to improve

the task runtime prediction method.

5.7.2 Batch Offline Evaluation

Since the original version of the baseline and two-stage scenarios are implemented in batch offline

methods, we also evaluate these approaches to compare with their online incremental version. We

use various sizes of training data d and test it using the rest of the data (i.e., 100% − d) for the

baseline and two-stage scenarios. The result of these experiments is depicted in Table 5.6. In

general, the performance of the prediction model improves as the size of data training increases.

The results show the same trend for both baseline and two-stage scenarios, but it clearly shows

that the two-stage outperform the baseline scenario for all cases. However, the performance of

algorithms on more considerable data training becomes a trade-off to the temporal aspect that is

5.7 Results and Analysis 127

Table. 5.6: Results of task estimation errors (RAE) using batch offline learning approach

Task Baseline Two-Stages
d = 20% d = 40% d = 60% d = 80% d = 20% d = 40% d = 60% d = 80%

individuals 65.543 62.587 64.523 66.049 59.117 57.625 57.113 55.080

individuals merge 42.522 42.256 37.936 37.424 37.177 35.227 34.312 31.129

mutation overlap 4.952 4.192 4.138 3.967 4.037 3.598 3.188 2.936

frequency 51.919 50.257 49.101 45.740 44.048 39.675 38.493 36.622

autodock vina 5.036 4.820 4.654 4.597 4.847 4.651 4.529 4.627

critical in WaaS platforms. This criticality is related to the juncture for collecting the data needed

to build the model and the speed to compute the data training. Hence, more extensive data training

may result in better algorithm performance but becomes a trade-off in terms of the processing

speed. The results show the dependency of batch offline learning methods on the size of data

collection for building a prediction model.

Furthermore, we also evaluated our online incremental learning version of the baseline and

two-stage scenarios. The results of the online incremental learning approaches are inclusive in

Table 5.5. For the baseline and two-stage scenario, the difference in a batch offline and online

incremental learning is similar in all cases. We notice that the batch offline approaches outperform

online incremental methods in most cases. However, it needs to be noted that such a result is

gained after collecting–at least–40% data.

In the end, the improvement of task runtime prediction by using online incremental learning

with time-series monitoring data is significant compared to the conventional batch offline learning

methods that rely on the collection of data training beforehand to produce a good prediction model.

This criticality limits the batch offline approach to be used in task runtime prediction for WaaS

platforms. We argue that both practicality and performance results, the online incremental learning

approach, may better suit the platform for task runtime prediction.

5.7.3 Feature Selection Evaluation

Further evaluation was done for the feature selection mechanism. We separate the evaluation to

see the real impact of each feature on the learning performance. Hence, we consider the best

scenarios from the previous experiment for this evaluation which are time-series scenario with

128 An Online Incremental Learning Approach for Task Runtime Estimation

Table. 5.7: Results of Pearson’s correlation based feature selection

Features individuals individuals merge mutation overlap frequency autodock vina
stime 0.074 0.924 0.435 0.195 0.570
utime 0.003 0.060 0.995 0.935 0.974
iowait 0.216 0.053 0.006 0.121 -0.008
vmSize 0.027 -0.193 0.518 -0.112 -0.108
vmRSS 0.533 -0.255 0.946 -0.189 -0.129
read_bytes 0.004 0.322 0 -0.085 -0.278
write_bytes 0.187 -0.463 0.029 -0.237 -0.210
syscr 0.977 -0.608 -0.232 0.130 0.103
syscw -0.810 -0.470 -0.153 -0.097 -0.582
rchar 0.981 -0.490 0.080 0.279 0.071
wchar -0.032 -0.454 0.127 -0.212 -0.184
threads -0.087 -0.103 -0.408 -0.052 0.019
procs -0.087 -0.100 -0.412 -0.052 0.019

l = 3 and τ = 1s for individuals; l = 3 and τ = 5s for individuals merge; l = 2 and τ = 2 for

mutation overlap; and l = 3 and τ = 5s for frequency. In Table 5.7 we can see various correlation

coefficient values for each feature for each task. A coefficient of zero means the feature is not

correlated at all to the task runtime.

Meanwhile, a positive correlation value means there is a positive relationship between the

feature and the runtime; as the feature value increases or decreases, the runtime follows the same

trend. In this case, we select the features with |ρ| values larger than a threshold and evaluate

the performance of our approach. There is no exact rule on how to choose the limit. We choose

the value based on small-scale experiments done beforehand, although it needs to be noticed that

this value can easily be updated during runtime. Moreover, despite various features impacting

differently for each task, CPU time (utime and stime), I/O system call (syscr and syscw), and I/O

read (rchar) are the most common features that exceed the threshold.

From Fig. 5.3 we can see that feature selection impacts the task runtime prediction perfor-

mance. Significant improvement can be observed for individuals and frequency with 6.49% and

3.49% error reductions respectively. Individuals merge show a slightly observed improvement

of 0.59% while the improvement for mutation overlap is marginal with 0.04% error reduction.

Frequency experiment uses |ρ| = 0.5 (two features). It only uses a small number of features

to outperform the without feature selection scenario. Furthermore, individuals experiment uses

|ρ| = 0.4 (six features), mutation overlap uses |ρ| = 0.09 (nine features), and the threshold for

5.8 Summary 129

Fig. 5.3: Results of task estimation errors (RAE) with feature selection

individuals merge is |ρ| = 0.08 (nine features). The number of selected features are different for

each task due to the difference in computational characteristics. The most distinctive features that

represent the I/O intensive tasks are syscr and syscw. These features are observed in relatively

high correlation value for task individuals and individuals merge. Meanwhile, the CPU intensive

characteristics can be distinguished from high stime and utime feature correlation values as seen

in task mutation overlap, frequency, and autodock vina.

5.8 Summary

In this chapter, we presented an online incremental approach for task runtime prediction of scien-

tific workflows in cloud computing environments using time-series monitoring data. The problem

of task runtime prediction is modelled based on the requirements for WaaS platforms, which offer

the service to execute scientific workflows in cloud computing environments. Hence, approaches

to task runtime prediction which use batch offline machine learning may not be suitable in this

dynamic environment.

The strategy of using an online incremental learning approach is combined with the use of

fine-grained resource consumption data in the form of time-series records such as CPU utilization

and memory usage. We use a highly distinctive feature extraction technique called time-reversal

asymmetry statistics that is capable of capturing the characteristics of a time-series record. Our

proposal also considers the selection of features based on Pearson correlation to improve the task

130 An Online Incremental Learning Approach for Task Runtime Estimation

runtime prediction and to reduce the computational resources as the system only records the se-

lected relevant features for all tasks.

From our experiments, the proposed approach outperforms baseline scenario and state-of-

the-art methods in task runtime prediction. Although the variation of configurable parameters

shows different results, in general, our proposal is better than previous solutions for task runtime

prediction. Further result shows that our proposal achieves best-case and worst-case estimation

errors of 3.38% and 32.69%, respectively. These results improve the performance, in terms of

error, up to 29.89% compared to the state-of-the-art strategies.

As a part of future work, we plan to evaluate different machine learning algorithms, config-

urable parameters, and feature selection techniques that best suit specific task runtime prediction,

since different settings of algorithms can result in different performance. Also, the variation of

workflow tasks based on their sizes and computational characteristics such as data-intensive and

compute-intensive tasks need to be explored to generate an effective strategy for enhancing the

performance of the prediction model. Furthermore, the impact of cloud instances variability in

the scheduling accuracy–which can affect the overall makespan–and the overhead performance

impacting on the cost efficiency need to be analyzed more in-depth. This evaluation will help in

demonstrating the eminence of the online incremental learning approach over the classical batch

offline one.

This chapter presents the last works on theoretical strategies for scheduling multiple workflows

in the WaaS platform in the thesis. Next, we extend the existing cloud workflow management

system to handle multiple workflows deployment in cloud environments. This extension is an

early step to build the WaaS platform that can serve the execution of scientific workflows in the

clouds. We also implement the limited version of EBPSM algorithms in this system. This version

of the algorithm is also equipped with one of the online incremental learning approaches that are

presented in this chapter to predict the tasks’ runtime that is integral to the scheduling processes.

Chapter 6

A System Prototype of the WaaS Platform

In this chapter, we extend the CloudBus WMS functionality to handle the workload of multiple

workflows and develop a WaaS platform prototype. We implemented the Elastic Budget-constrained

resource Provisioning and Scheduling algorithm for Multiple workflows (EBPSM) for the platform

and evaluated it using two bioinformatics workflows. Our experimental results show that the platform

is capable of executing multiple workflows and minimizing their makespan while meeting the budget.

6.1 Introduction

A conventional WMS is designed to manage the execution of a single workflow application. In

this case, a WMS is tailored to a particular workflow application to ensure the efficient execution

of the workflow. It is not uncommon for a WMS to be built by a group of researchers to deploy

a specific application of their research projects. Developing the WaaS platform means scaling

up the WMS functionality and minimizing any specific application-tailored in the component of

the system. This challenge arises with several issues related to the resource provisioning and

scheduling aspect of the WMS.

In this chapter, we focus on designing resource provisioning and scheduling module within

the existing CloudBus WMS [9] for WaaS platform development. We modify the scheduling

modules to fit the requirements by building the capability for scheduling multiple workflows. We

develop the WaaS platform by extending CloudBus WMS functionality. We modify several com-

ponents of the CloudBus WMS and implement the EBPSM algorithm that is designed to schedule

budget-constrained multiple workflows to minimize the makespan while meeting the budget. The

This chapter is derived from: Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. ‘Workflow-
as-a-Service Cloud Platform and Deployment of Bioinformatics Workflow Applications.‘ Knowledge Management in
Development of Data-Intensive Software Systems (KMDDIS), 2020 (under review).

131

132 A System Prototype of the WaaS Platform

Table. 6.1: Summary of various WMS features

Main features ASKALON Galaxy HyperFlow Kepler Pegasus Taverna CloudBus

Workflow
Service-oriented X X - X X X X

Engine
GUI-supported X X - X X X X
Provenance-empowered X X X X X - X

Grid-enabled X X X X X X X
Distributed Cloud-enabled X X X X X X X

Environments Container-enabled - X X - X - -
Serverless-enabled - - X - - - -

prototype is then evaluated using two bioinformatics workflows applications on various scenarios

to demonstrate the system’s capability to meet the WaaS platform requirements.

The rest of this chapter is organized as follows. Section 6.2 reviews works of that is related

to our discussion. Section 6.3 describes the development of WaaS platform and its requirements.

Furthermore, Section 6.4 explains the case studies of executing multiple workflows in WaaS plat-

form. Finally, the Section 6.5 summarizes the findings.

6.2 Related Work

WMS technology has evolved since the era of cluster, grid, and current cloud computing envi-

ronments. A number of widely used WMS were initially built by groups of multi-disciplinary

researchers to deploy the life-science applications of their research projects developed based on

the computational workflow model. Therefore, each of them has a characteristic tailored to their

requirements. The case study of several prominent WMS is plentiful and worth to be explored

further. The summary of these characteristics is depicted in table 6.1.

ASKALON [140] is a framework for development and runtime environments for scientific

workflows built by a group from The University of Innsbruck, Austria. Along with ASKALON,

the group released a novel workflow language standard developed based on the XML called Ab-

stract Workflow Description Language (AWDL) [8]. ASKALON has a tailored implementation

of wien2k workflow [141], a material science workflow for performing electronic structure cal-

culations using density functional theory based-on the full-potential augmented plane-wave to be

deployed within the Austrian Grid Computing network. Meanwhile, another project is Galaxy

[142], a web-based platform that enables users to share workflow projects and provenance. It

connects to myExperiments [143], a social network for sharing the workflow configuration and

6.3 Prototype of WaaS Platform 133

provenance among the scientific community. It is a prominent WMS and widely used for in silico

experiments [144] [145] [146].

A lightweight WMS, HyperFlow [10] is a computational model, programming approach, and

also a workflow engine for scientific workflows from AGH University of Science and Technology,

Poland. It provides a simple declarative description based on JavaScript. HyperFlow supports the

workflow deployment in container-based infrastructures such as docker and Kubernetes clusters.

HyperFlow is also able to utilize the serverless architecture for deploying Montage workflow in

AWS Lambda and Google Function, as reported by Malawski et al. [147]. Meanwhile, Kepler

[148] is a WMS developed by a collaboration of universities, including UC Davis, UC Santa

Barbara, and UC San Diego, United States. It is a WMS that is built on top of the data flow-

oriented Ptolemy II system [149] from UC Berkeley. Kepler has been adopted in various scientific

projects including the fluid dynamics [150] and computational biology [151]. This WMS provides

compatibility to run on different platforms, including Windows, OSX, and Unix systems.

Another project is Pegasus [12], one of the prominent WMS that is widely adopted for projects

that make an essential breakthrough to scientific discovery from The University of Southern Cal-

ifornia, United States. Pegasus runs the workflows on top of HTCondor [152] and supports the

deployment across several distributed systems, including grid, cloud, and container-based envi-

ronments. The Pegasus WMS has a contribution to the LIGO projects involved in the gravitational

wave detection [153]. There is also Taverna [13], a WMS from The University of Manchester that

as recently accepted under the Apache Incubator project. Taverna is designed to enable various

deployment models from the standalone, server-based, portal, clusters, grids, to the cloud environ-

ments. Taverna has been used in various in silico bioinformatics projects, including several novel

Metabolomics research [154] [155]. Finally, the CloudBus WMS [9], a cloud-enabled WMS from

The University of Melbourne, is the center of discussion in this chapter. Its functionality evolves

to support the development of the WaaS platform.

6.3 Prototype of WaaS Platform

In this section, we discuss a brief development of the CloudBus WMS and the WaaS platform

development. The evolving functionality of CloudBus WMS in its first release to handle the

deployment in the grid computing environment up to the latest version that provides the cloud-

134 A System Prototype of the WaaS Platform

enabled functionality is described to give an overview of how the distributed systems change how

the WMS works. Furthermore, we present the extension related to the scheduler component of

this existing WMS to support the development of the WaaS platform.

6.3.1 CloudBus Workflow Management System

The earliest version of the WMS from the CLOUDS lab was designed for grid computing envi-

ronments under the name of GridBus Workflow Enactment Engine in 2008. The core engine in

this WMS was called a workflow enactment engine that orchestrated the whole workflow execu-

tion. The engine interacts with users through the portal that manages workflow composition and

execution planning. This engine also equipped with the ability to interact with grid computing

environments through the grid resource discovery to find the possible grid computational infras-

tructure, the dispatcher that sends the tasks to the grids for the execution, and the data movement

to manage data transfer in and out through HTTP and GridFTP protocols. The Gridbus Workflow

Enactment Engine was tested and evaluated using a case study of fMRI data analysis in the med-

ical area. The architectural reference to this Gridbus Workflow Engine and its case study can be

referred to the paper by Yu and Buyya [156].

The second version of the GridBus Workflow Enactment Engine was released in 2011, built

with plugin support for deployment in cloud computing environments. In this version, the engine

is equipped with the components that enable it to utilize several types of external computational

resources, including grid and cloud environments. Therefore, it was renamed to CloudBus Work-

flow Engine. In addition to this functionality, the CloudBus Workflow Engine was tested and

evaluated for scientific workflow execution on top of the Aneka Cloud Enterprise platform [157]

and Amazon Elastic Compute Cloud (EC2) using a case study of evolutionary multiobjective opti-

mization technique based on a genetic algorithm. We suggest that readers refer to the architectural

design and case study implementation published by Pandey et al. [158].

The latest release of the CloudBus Workflow Engine in 2016 was the implementation of a com-

prehensive cloud-enabled functionality that allows the engine to lease the computational resources

dynamically from the IaaS cloud providers. This version introduces a Cloud Resource Manager

module that enables the platform to manage the resources (i.e., Virtual Machines) from several

IaaS cloud providers related to its automated provisioning, integrating to the resource pool, and

terminating the VMs based on the periodic scanning of the implemented algorithm. Along with

6.3 Prototype of WaaS Platform 135

Fig. 6.1: Architectural reference on the WaaS platform

the dynamic functionality of cloud resources management, the WMS is also equipped with a dy-

namic algorithm to schedule workflows which is able to estimate the tasks’ runtime based on the

historical data from the previous workflows’ execution. This version is known as the CloudBus

Workflow Management System (CloudBus WMS). The architectural reference and its case study

on Astronomical application Montage can be referred to the paper by Rodriguez and Buyya [9].

6.3.2 WaaS Platform Development

The CloudBus WMS is continuously adapting to the trends of the distributed systems infrastruc-

tures from cluster, grid, to the cloud environments. With the increasing popularity of the com-

putational workflow model across scientific fields, we extend the CloudBus WMS to serve as a

136 A System Prototype of the WaaS Platform

platform that provides the execution of workflow as a service. Therefore, we design the reference

to the WaaS platform based on the structure of CloudBus WMS. Five entities compose the WaaS

platform, they are portal, engine, monitoring service, historical database, and plugins to connect

to distributed computing environments. This structure is similar to the previous CloudBus WMS

architecture. The architectural reference is depicted in Fig. 6.1.

Portal: an entity that is responsible for bridging the WaaS platform to the users. The portal

serves as the user interface in which users can submit the job, including composing, editing, and

defining the workflow QoS requirements. It interacts with the engine to pass on the submitted

workflows for scheduling. It also interacts with the monitoring service so that the users can mon-

itor the progress of the workflows’ deployment. Finally, the engine sends back the output data

after it finished the execution through this entity. The change from the previous CloudBus WMS

functionality is the capability of the portal to handle the workload of multiple workflows.

Monitoring Service: an entity that is responsible for monitoring the workflow execution and

computational resources running within the WaaS platform that is provisioned from the cloud en-

vironments. Five components in this entity are the Workflow Monitor that tracks the execution of

the jobs, the Resource Monitor which tracks the VMs running in the platform, the Cloud Infor-

mation Services that discover the available VM types and images of the IaaS clouds profile, the

Cloud Resource Manager that manages the provisioning of cloud resources, and the VM Lifecycle

Manager which keeps tracking the VMs before deciding to terminate them.

This entity interacts with the portal to provide the monitoring information of workflows’ exe-

cution. On the other hand, it also interacts with the engine to deliver the status of job execution for

scheduling purposes and the computational resource availability status. We changed the provision-

ing algorithm, which is managed by the cloud resource manager and the VM lifecycle manager,

based on the EBPSM algorithm. Both the cloud resource manager and the VM lifecycle man-

ager control the VMs provisioning by keeping track of the idle status of each VM. They will be

terminated if the idle time exceeded the thresholdidle. This provisioning algorithm is depicted in

Chapter 4 in Algorithm 5. Finally, this entity saves the historical data of tasks’ execution into the

historical database where the information is used to estimate the task’s runtime.

6.3 Prototype of WaaS Platform 137

Fig. 6.2: Class diagram reference on Cloudbus Workflow Engine extension

Engine: an entity that is responsible for the orchestration of the whole execution of work-

flows. This entity interacts with the other objects of the WaaS platform, including the third party

computational service outside the platform. Moreover, it takes the workflows’ job from the portal

and manages the execution of tasks. The scheduler that is part of this entity schedules each task

from different workflows and allocates them to the available resources maintained by the monitor-

ing service. It also sends the request to the plugins, JClouds API, for provisioning new resources

if there is no available idle VMs to reuse.

Task scheduler, the core of the engine, is modified to adapt to the EBPSM algorithm that

manages the scheduling of multiple workflows. Within the task scheduler, there is a component

called the WorkflowCoordinator that creates the Task Manager(s) responsible for scheduling each

task from the pool of tasks. To manage the arriving tasks from the portal, we create a new class

WorkflowPoolManager responsible for periodically releasing the ready tasks for scheduling and

keeping track of the ownership of each task.

Prediction component within the task scheduler is responsible for estimating the runtime of the

task, which becomes a pre-requisite of the scheduling. We modify the PredictRuntime component

to be capable of building an online incremental learning model. This learning model is a new

approach for estimating the runtime for scientific workflows implemented in the WaaS platform.

In the previous version, it utilizes statistical analysis to predict the tasks’ runtime.

Historical database: an HSQL database used to store the historical data of tasks’ execution.

The information, then, is used to estimate the tasks’ runtime. In this platform, we add the submis-

sion time variables to the database, since this information is used to build the prediction model to

estimate the runtime.

138 A System Prototype of the WaaS Platform

Plugins: a JClouds API responsible for connecting the WaaS platform to third party com-

putational resources. Currently, the platform can connect to several cloud providers, including

Amazon Elastic Compute Cloud (EC2), Google Cloud Engine, Windows Azure, and OpenStack-

based NeCTAR clouds. It sends the request to provision and terminates resources from the clouds.

Finally, the modified components within the WaaS platform from the previous version of the

CloudBus WMS are marked with the red-filled diagram in Fig. 6.1 and the class diagram reference

to the WaaS platform scheduler extension are depicted in Fig. 6.2.

6.3.3 Implementation of Multiple Workflows Scheduling Algorithm

Elastic Budget-constrained resource Provisioning and Scheduling algorithm for Multiple work-

flows, introduced in Chapter 4, is a dynamic heuristic algorithm designed for WaaS platform. The

algorithm is designed to schedule tasks from multiple workflows driven by the budget to minimize

the makespan. EBPSM distributes the workflow’s budget to each of its tasks in the first step, and

then, it manages the tasks from different workflows to schedule based on its readiness to run (i.e.,

parents’ tasks finished the execution).

Furthermore, the algorithm looks for idle resources that can finish the task’s execution as fast as

possible without violating its assigned budget. This algorithm enforces the reuse of already provi-

sioned resources (i.e., virtual machines) and sharing them between tasks from different workflows.

This policy was endorsed to handle the uncertainties in the clouds, including VM performance

variability, VM provisioning, and deprovisioning delays, and the network-related overhead that

incurs within the environments. Whenever a task finishes, the algorithm redistributes the budget

for the task’s children based on the actual cost. In this way, the uncertainties, as mentioned earlier

from cloud computing environments, can be further mitigated before creating a snowball effect for

the following tasks.

The scheduling phase of the EBPSM algorithm was mainly implemented in the task scheduler,

a part of the engine. The WorkflowPoolManager class receives the workflows’ jobs and distributes

the budget to the tasks as described in Chapter 3 in Algorithm 1. It keeps track of the workflows’

tasks before placing the ready tasks on the priority queue based on the ascending Earliest Finish

Time (EFT). Then, the WorkflowCoordinator creates a task manager for each task that is pooled

from the queue. In the resource provisioning phase, the task scheduler interacts with the cloud

resource manager in the monitoring resource to get the information of the available VMs. The task

6.4 Case Studies and Performance Evaluation 139

Algorithm 7 Scheduling
1: procedure SCHEDULEQUEUEDTASKS(q)
2: sort q by ascending Earliest Finish Time
3: while q is not empty do
4: t = q.poll
5: vm = null
6: if there are idle VMs then
7: VMidle = set of all idle VMs
8: vm = vm ∈ VMidle that can finish t within

t.budget with the fastest execution time
9: else

10: vmt = fastest VM type within t.budget
11: vm = provisionVM(vmt)
12: scheduleTask(t, vm)

scheduler sends the request to provision a new VM if there are no VMs available to reuse. The

implementation of this phase involves modules from different components of the WaaS platform.

The scheduling algorithm is a simplified version of the original version introduced in Chapter 4.

The detail of this implementation is depicted in Algorithm 7.

The post-scheduling of a task ensures budget preservation by calculating the actual cost and re-

distributing the workflows’ budget. This functionality was implemented in the task scheduler with

additional information related to the clouds from the cloud information service, which maintains

the cloud profile such as the VM types, and the cost of the billing period. The detail of the budget

re-distribution procedure is described in Chapter 3 in Algorithm 3. In this work, we implemented

a version of the EBPSM algorithm without the container. We did not need the container-enabled

version as we only used bioinformatics workflow applications that did not have conflicting soft-

ware dependencies and libraries. The enablement for microservices-supported WaaS platform is

left for further development.

6.4 Case Studies and Performance Evaluation

In this section, we present the case study of multiple workflows execution within a WaaS platform

prototype. We address the workload of bioinformatics workflows and its preparation for the exe-

cution. Furthermore, we also describe the technical infrastructure and its experimental design to

deploy the platform and present the results from the experiment.

140 A System Prototype of the WaaS Platform

6.4.1 Bioinformatics Applications Workload

Many bioinformatics cases have adopted the workflow model for managing its scientific applica-

tions. An example is myExperiments [143] that has a broader scope to connect various bioinfor-

matics workflows users. This social network for scientists who utilize the workflows for managing

their experiments, stores almost four thousand workflows software, configurations, and datasets

with more than ten thousand members. In this section, we explored two prominent bioinformatics

workflows in the area of genomics analysis [159] and drug discovery [160] that had been exten-

sively researched, as a case study for deploying multiple workflows in the clouds using the WaaS

platform.

Identifying Mutational Overlapping Genes

The first bioinformatics case was based on the 1000 Genomes Project1, an international collab-

oration project to build a human genetic variation catalogue. Specifically, we used an existing

1000 Genome workflow2 to identify overlapping mutations in humans genes. The overlapping

mutations were statistically calculated in a rigorous way to provide an analysis of possible disease-

related mutations across human populations based on their genomics properties. This project has

an impact on evolutionary biology. Examples include a project related to the discovery of full

genealogical histories of DNA sequences [161].

1000 Genome workflow consists of five tasks that have different computational requirements

[162]. They are individuals, individuals_merge, sifting, mutations_overlap, and frequency. Indi-

viduals performs data fetching and parsing of the 1000 genome project data that listed all Single

Nucleotide Polymorphism (SNPs) variation in the chromosome. This activity involves a lot of

I/O reading and writing system call. Individuals_merge showed similar properties, as it was a

merging of individuals outputs that calculate different parts of chromosomes data. Furthermore,

sifting calculates the SIFT scores of all SNPs variants. This task has a very short runtime. Finally,

mutations_overlap calculates the overlapping mutations genes between a pair of individuals while

frequency calculates the total frequency of overlapping mutations genes between several individ-

uals. These two tasks are python-based application which requires intensive CPU and memory.

1http://www.internationalgenome.org/about
2https://github.com/pegasus-isi/1000genome-workflow

6.4 Case Studies and Performance Evaluation 141

The 1000 Genome workflow takes two input, the chromosome data and its haplotype estima-

tion (i.e., phasing) using shapeit method. The entry tasks were individuals, which extract each in-

dividuals from chromosome data, and sifting that calculates the SIFT scores from the phasing data.

Furthermore, in the next level, individuals_merge merged all output from individuals and then, its

output along with the sifting output becomes the input for the exit tasks of mutation_overlap and

frequency. For our study, we analyzed the data corresponding to two chromosomes of chr21 and

chr22 across five populations: African (AFR), Mixed American (AMR), East Asian (EAS), Eu-

ropean (EUR), and South Asian (SAS). Furthermore, the structure of the 1000 Genome workflow

was shown previously in Chapter 5 in Fig. 5.1a.

Virtual Screening for Drug Discovery

The second bioinformatics case used in this study was the virtual screening workflow. Virtual

screening is a novel methodology that utilized several computational tools to screen a large num-

ber of molecules’ libraries for possible drug candidates [163]. In simple terms, this (part of) drug

discovery process involves two types of molecules, target receptors, and ligands that would be-

come the candidates of drugs based on its binding affinity to the target receptor. This technique

rises in popularity as the in-silico infrastructure and information technology are getting better. The

virtual screening saves resources for in-vitro and in-vivo that require wet-lab experiments.

There are two main approaches in carrying out the virtual screening, ligand-based, and receptor-

based virtual screening [164]. The ligand-based virtual screening relies on the similarity matching

of ligands’ libraries to the already known active ligand(s) properties. This activity is computa-

tionally cheaper than the other approach, as it depends only on the computation of the features of

the molecules. On the other hand, the receptor-based virtual screening requires the calculation for

both of the target receptors and the ligands to evaluate the possible interaction between them in

a very intensive simulation and modelling. However, since the error rate of ligand-based virtual

screening is relatively higher than the structure-based, this approach is applied as a filter step when

the number of ligands involved in the experiments is quite high.

In this study, we used a virtual screening workflow using AutoDock Vina [138], a molecular

docking application for structure-based virtual screening. In particular, we took a virtual screening

case of one receptor and ligands with various sizes and search spaces of the docking box taken from

142 A System Prototype of the WaaS Platform

Table. 6.2: Various budgets used in evaluation

Name B1 B2 B3 B4

1000 Genome Workflow

chr21 US$ 0.1 US$ 0.25 US$ 0.45 US$ 0.65
chr22 US$ 0.1 US$ 0.25 US$ 0.45 US$ 0.65

Virtual Screening Workflow

vina01 US$ 0.05 US$ 0.15 US$ 0.25 US$ 0.35
vina02 US$ 0.01 US$ 0.04 US$ 0.06 US$ 0.08

the Open Science Grid Project developed by the Pegasus group3. The receptor-ligand docking

tasks in this workflow can be executed in parallel as in the bag of the tasks application model.

Moreover, AutoDock Vina is a CPU-intensive application that can utilize the multi-CPU available

in a machine to speed up the molecular docking execution. Therefore, two-level parallelism can be

achieved to speed up the workflows, the parallel execution of several receptor-ligand docking tasks

on different machines, and the multi-CPU parallel execution of a docking task within a machine.

The structure of the virtual screening workflows was depicted previously in Chapter 5 in Fig. 5.1b.

Workload Preparation

The Pegasus group has developed the tools to generate both the 1000 Genome and Virtual Screen-

ing workflow based on the XML format. We converted the DAG generated from the tools into

the xWFL, the format used by the WaaS platform. Based on this converted-DAG, we prepared

two versions of the 1000 Genome workflows, which take two different chromosomes of chr21 and

chr22 as input. Furthermore, we created two types of workflows that take as input two different

sets of 7 ligands molecules for Virtual Screening.

We installed five applications for the 1000 Genome workflow in a custom VM image for the

worker nodes. These applications are based on the Mutation_Sets project4 and are available in the

1000 Genome workflow project5. It needs to be noted that the mutation_overlap and frequency

tasks were python-based applications and have a dependency to the python-numpy and python-

matplotlib modules. On the other hand, the only application that needs to be installed for the

Virtual Screening workflow was AutoDock Vina6, which can be installed without any conflict-

3https://github.com/pegasus-isi/AutoDock-Vina-Workflow
4https://github.com/rosafilgueira/Mutation_Sets
5https://github.com/pegasus-isi/1000genome-workflow
6http://vina.scripps.edu/

6.4 Case Studies and Performance Evaluation 143

Fig. 6.3: Architectural reference on the WaaS platform nodes deployment

ing dependencies with the other workflow applications. Therefore, in this scenario, we did not

encounter the conflicting dependencies problem.

We composed a workload that consists of 20 workflows with the types as mentioned earlier

of applications that were randomly selected based on a uniform distribution. We also modelled

four different arrival rates of those workflows based on a Poisson distribution from 0.5 workflows

per minute (wf/m), which represents the infrequent requests, up to 12 wf/m that reflect the busiest

hours. Each workflow was assigned a sufficient budget based on our initial deployment obser-

vation. We defined four different budgets for each workflow from B1 to B4, which represents

the minimum to the maximum willingness of users to spend for particular workflows’ execution.

These budgets can be seen in Table 6.2.

6.4.2 Experimental Infrastructure Setup

Three components need to be deployed to ensure the running of the WaaS platform. The first is

the master node containing the core of the workflow engine. This master node is the component

that manages the lifecycle of workflows execution and responsible for the automated orchestration

between every element within the platform. The second component is a storage node which stores

all the data involved in the execution of the workflows. This storage manages the intermediate

data produced between parents and children tasks’ execution and acts as a central repository for

the WaaS platform. Finally, the worker node(s) is the front runner(s) to execute the workflows’

144 A System Prototype of the WaaS Platform

Table. 6.3: Configuration of virtual machines used in evaluation

Name vCPU Memory Price per second
CLOUDS Lab Local Desktop

Master Node 4 8192 MB N/A

Melbourne Research Cloud
Storage Node 1 4096 MB N/A

Amazon EC2
Worker Node

t2.micro 1 1024 MB US$ 0.0000041
t2.small 1 2048 MB US$ 0.0000082

t2.medium 2 4096 MB US$ 0.0000164
t2.large 2 8192 MB US$ 0.0000382

tasks submitted into the platform. The worker node(s) provisioning and lifespans are controlled

based on the scheduling algorithms implemented in the core of the workflow engine.

For this experiment, we arranged these components on virtual machines with different con-

figurations and setup. The master node was installed on Ubuntu 14.04.6 LTS virtual machine

running in a local HP Laptop with Intel(R) Core(TM) i7-56000 CPU @ 2.60 GHz processor and

16.0 GB RAM. This virtual machine was launched using VMWare Workstation 15 player with 8.0

GB RAM and 60.0 GB hard disk storage. Moreover, we deployed the storage node on a cloud

instance provided by The Melbourne Research Cloud7 located in the melbourne-qh2-uom avail-

ability zone. This virtual machine was installed Ubuntu 14.04.6 LTS operating systems based on

the uom. general.1c4g flavour with 1 vCPU, 4 GB RAM, and an additional 500 GB storage.

Furthermore, the worker node(s) were dynamically provisioned on Amazon Elastic Compute

Cloud (EC2) Asia Pacific Sydney region using a custom prepared VM image equipped with the

necessary software, dependencies, and libraries for executing 1000 Genome and Virtual Screening

workflows. We used four different types and configurations for the worker nodes based on the

family of T2 instances. The T2 instances family equipped with the high-frequency processors and

have a balance of compute, memory, and network resources. Finally, the architectural reference for

the nodes’ deployment and its configuration are depicted in Fig. 6.3 and Table. 6.3 respectively.

7https://research.unimelb.edu.au/infrastructure/research-computing-services/services/research-cloud

6.4 Case Studies and Performance Evaluation 145

6.4.3 Results and Analysis

In this section, we present the comparison of EBPSM and First Come First Serve (FCFS) algorithm

in a single workflow and homogeneous settings to ensure the fair evaluation. Then, it was followed

by a thorough analysis of the EBPSM performance on a workload of multiple workflows in a

heterogeneous environment represented by the different arrival rates of multiple workflows.

More Cost to Gain Faster Execution

The purpose of this experiment is to evaluate our proposed EBPSM algorithm for the WaaS plat-

form compared to the default scheduler of the CloudBus WMS. This default scheduler algorithm

did not rely on an estimate of tasks’ runtime. It scheduled each task based on the first-come, first-

served policy into a dedicated resource (i.e., VM) and terminated the resource when the particular

task has finished the execution. Furthermore, this default scheduler was not equipped with the

capability to select the resources in heterogeneous environments. Therefore, it only works for ho-

mogeneous cluster settings (i.e., clusters of one VM type only). Then, to have a fair comparison

to the default scheduler, we modified the EBPSM algorithm to work for a single workflow in a

homogeneous environment. We removed the module that enables EBPSM to select the fastest

resources based on the task’s sub-budget and let the algorithm provision a new VM if there are no

idle VMs available to reuse, which means hiding the budget-driven ability of the algorithm.

In Fig. 6.4a, we can see that the homogeneous version of EBPSM was superior to the default

scheduler on all scenarios. In this experiment, the default scheduler provisioned 26 VMs for each

situation, while EBPSM only leased 14 VMs. In this case, we argue that the delays in initiating

the VMs, which include the provisioning delay and delays in configuring the VM into the WaaS

platform, have a significant impact on the total makespan. Therefore, the EBPSM can gain an

average speedup of 1.3x faster compared to the default scheduler. However, this enhancement

comes with a consequence of additional monetary cost.

Fig. 6.4b showed that there is an increase in monetary cost for executing the workflows. The

EBPSM lets the idle VM to become active for a certain period before being terminated, hoping

that the next ready tasks would reuse it. This approach produced a higher cost compared to the

immediate VM termination of the default scheduler approach. The average increase was 40%

higher than the default scheduler. Is it worth to spend 40% more cost to gain 1.3x faster makespan?

Further evaluation, such as Pareto analysis, needs to be done. However, more rapid responses

146 A System Prototype of the WaaS Platform

(a) Makespan (b) Cost

Fig. 6.4: Makespan and cost of 1000 Genome (chr22) workflow on homogeneous environments

(a) Percentage of budget met (b) Cost/budget ratio on budget violation cases

Fig. 6.5: Cost and budget analysis on workload with different arrival rate

to events such as modelling the storm, tsunami, and bush fires in the emergency situation, or

predicting the cell location for critical surgery are undoubtedly worth more resources to be spent.

Budget Met Analysis

To evaluate the budget-constrained scheduling, we analyzed the performance of the EBPSM against

its primary objective, meeting the budget. Two metrics were used in this analysis, the number of

successful cases in meeting the budget, and the cost per budget ratio for any failed ones.

In this experiment, we observed the EBPSM performance in various arrival rate scenarios to

see if this algorithm can handle the workload both in peak and non-peak hours. Fig. 6.5a showed

that in the non-peak hours, the EBPSM could achieve 85% of the budget met while in the busier

6.4 Case Studies and Performance Evaluation 147

Table. 6.4: Comparison of 1000 Genome (chr22) workflow in two environments

Name Makespan (s) Cost (US$)
Minimum Maximum Minimum Maximum

Single - Homogeneous 2187 1125 0.084 0.499
Multiple - Heterogeneous 1819 1013 0.062 0.471

environment, this percentage increases up to 95%. In the peak-hours, there are more VMs to reuse

and less idle time that makes the platform more efficient. However, it needs to be noted that there

might exist some variability in the Amazon Elastic Compute Cloud (EC2) performance that might

impact the results. Thus, the graphs did not show a linear convergence. Nevertheless, 85% of the

budget-met percentage showed satisfactory performance for the algorithm.

The result of failed cases is depicted in Fig. 6.5b. From this figure, we can confirm the

superiority of EBPSM for the peak-hours scenarios. The violation of the user-defined budget was

not more than 15% in the peak-hours while the number increases up to 40% can be observed in

the non-peak hours’ settings. On average, the budget violation was never higher than 14% for all

arrival rate schemes. Still and all, this violation was inevitable due to the performance variation of

the Amazon Elastic Compute Cloud (EC2) resources.

Makespan Evaluation

It is essential to analyze the impact of scheduling multiple workflows on each of the workflows’

makespan. We need to know whether sharing the resources between various users with different

workflows is worth it and more efficient compared to a dedicated resource scenario in deploying

the workflows. Before we discuss further, let us revisit the Fig. 6.4a, which showed the result

of a single 1000 Genome (chr22) workflow execution in a homogeneous environment. Then, we

compare it to the Fig 6.6b that presented the result for the same 1000 Genome (chr22) workflow

in multiple workflows scenario and heterogeneous environment. If we zoom-in to the two figures,

we could observe that EBPSM can further reduce both the makespan and the cost for the workflow

in the latter scenario. We extracted these details of both scenarios into Table 6.4.

Let us continue the discussion for the makespan analysis. Fig. 6.6a, 6.6b, 6.6c, and 6.6d

depicted the makespan results for 1000 Genome (chr21, chr22) and Virtual Screening (vina01,

vina02) respectively. If we glance, there is no linear pattern showing the improvement of EBPSM

148 A System Prototype of the WaaS Platform

(a) 1000 Genome (chr21) workflow (b) 1000 Genome (chr22) workflow

(c) Virtual Screening (vina01) workflow (d) Virtual Screening (vina02) workflow

Fig. 6.6: Makespan of workflows on workload with different arrival rate

performance over the different arrival rates of workflows. Nevertheless, if we observe further and

split the view into two (i.e., peak hours and non-peak hours), we can see that the EBPSM, in

general, produced better results for the peak-hour scenarios except for some outlier from 1000

Genome (chr22) and Virtual Screening (vina01) workflows. We thought that this might be caused

by the number of experiments and the size of the workload. This is an important note to be taken

as, due to the limited resources, we could not deploy workload with the scale of hundreds, even

thousands of workflows.

VM Utilization Analysis

Finally, the last aspect to be evaluated regarding the EBPSM performance was VM utilization. It

is the most important thing to be pointed out when discussing the policy of sharing and reusing

6.4 Case Studies and Performance Evaluation 149

(a) Average VM utilization (b) VM usage

Fig. 6.7: Average VM utilization and VM usage on workload with different arrival rate

computational resources. In Fig. 6.7a, we can see the increasing trend in VM utilization percentage

along with the arrival rate of workflows on the platform. The average utilization upsurge for each

scenario was 4%. The minimum utilization rate was 20% produced by the 0.5 wf/m scenario and

the maximum of 36% for the 12 wf/m scenario.

We argue that the VM utilization rate had a connection to the number of VMs used during the

execution. Fig. 6.7b depicted the number of VMs used in this experiment. We can observe that

the overall number of VMs was declining along with the arrival rate of workflows. The average

number of decrease was 20% for all VM types. The lowest drop was for the t2.large by 15%, and

the highest drop was for the t2.medium by 25%. Meanwhile, the t2.small decreased by 22% and

t2.micro by 16% respectively. The EBPSM algorithm always preferred to the fastest VM type and

re-calculate and redistribute the budget after each task finished execution. Hence, in this case, the

exit tasks might use more VMs of the cheapest type if the budget has been used up by the earlier

tasks. Therefore, t2.large as the fastest VM type along with t2.micro as the cheapest would always

be preferred compared to the other VM type.

From this experiment, we concluded that in the WaaS platform where the number of workflows

involved is high, the scheduling algorithm must be able to maintain the low number of VMs

being provisioned. Any additional VM leased means the higher possibility of incurring more

delays related to the provisioning, initiating, and configuring the VMs before being allocated for

executing the abundance of tasks.

150 A System Prototype of the WaaS Platform

6.5 Summary

The WMS have a crucial responsibility in executing scientific workflows. It manages the com-

plicated orchestration process in scheduling the workflows and provisioning the required com-

putational resources during the execution of scientific workflows. With the increasing trends of

outsourcing computational power to third party cloud providers, there is a consideration to esca-

late the standalone execution of scientific workflows to the platform that provides the particular

service. In this case, there is an emerging concept of a WaaS, extending the conventional WMS

functionality to ensure the execution of scientific workflows as a utility service.

In this chapter, we extended the CloudBus WMS by modifying several components for it to

be capable of scheduling multiple workflows to develop the WaaS platform. We implemented

the EBPSM algorithm, budget-constrained scheduling algorithm designed for the WaaS platform

that is capable of minimizing the makespan while meeting the budget. Furthermore, we evaluated

the system prototype using two bioinformatics workflows applications with various scenarios.

The experiment results demonstrate that the WaaS platform, along with the EBPSM algorithm, is

capable of executing a workload of multiple bioinformatics workflows.

As this work primarily focused on designing the WaaS scheduler functionality, further devel-

opment of the WaaS platform would be focused on developing the WaaS portal. It is the interface

that connects the platform with the users. In this case, the users are expected to be able to com-

pose and define their workflow’s job, submit the job and the data needed, monitor the execution,

retrieving the output from the workflow’s execution. Finalizing the server-based functionality is

another to-do list so that the WaaS platform can act as a fully functional service platform.

Finally, we plan to enable the WaaS platform for deploying workflows on microservices tech-

nology such as container technology, serverless computing, and unikernels system to accommo-

date the rising demand of the Internet of Things (IoT) workflows. This IoT demand is increasing

along with the shifting from centralized infrastructure to distributed clouds. The shifting is mani-

fested through the rising trends of edge and fog computing environments.

Chapter 7

Conclusions and Future Directions

7.1 Summary

Workflow is a computational model that represents a structured flow design process to manage the

execution of large-scale applications. Therefore, these workflows require massive computational

infrastructure and are deployed in distributed systems. Additionally, the rising trends in adopting

the workflow in the scientific community and the increasing popularity of cloud computing create a

demand to provide the execution of scientific workflows as a third party utility service. In this case,

there emerges a new term for this platform called the Workflow-as-a-Service (WaaS) that provides

the execution of workflow applications in cloud computing environments. This thesis addresses

the problems of scheduling budget-constrained multiple workflows in the WaaS platform. The

algorithms presented aim to overcome several challenges that inherently are characteristics of

cloud computing environments where the WaaS platform is deployed.

Chapter 1 described the scope of this thesis by defining the problems and addressing the chal-

lenges in multiple workflows scheduling. It explained the backgrounds and the motivation that

drives the research and summarizes the key contributions to address the issues. To understand

the relevance of this research to the body of knowledge development in this field, Chapter 2 pre-

sented a taxonomy related to multiple workflows scheduling in multi-tenant distributed systems.

It constructed the knowledge based on a thorough survey that compared and reviewed more than

31 algorithms published in peer-reviewed publications between 2008 to 2019.

Chapter 3 presented a task-based budget distribution strategy to assign the workflow’s bud-

get to individual tasks while considering the granularity of the cloud instances billing periods.

This sub-budget then drives the resource provisioning and scheduling of the tasks, which aims to

minimize the workflow’s makespan while meeting the user-defined budgets. The algorithm incor-

151

152 Conclusions and Future Directions

porates the ability to handle several uncertainties, including performance variation and overhead

delays in the cloud computing environments, by re-calculating the cost for executing a task and,

whenever possible, re-distributing the remaining budget to the following tasks. The algorithm was

evaluated using a simulation approach against a state-of-the-art level-based scheduling algorithm

for scientific workflows called Budget Distribution with Trickling (BDT). The results show that

our proposed algorithm has overall better performance than the BDT algorithm on various budget

allocation scenarios.

Chapter 4 presented the Elastic Budget-constrained resource Provisioning and Scheduling

algorithm for Multiple workflows (EBPSM) algorithm that is capable of minimizing makespan

while meeting the budget. This algorithm incorporates the resource-sharing policy to reduce the

overheads from acquiring, releasing the cloud resources, data transfer, and network-related activi-

ties. EBPSM optimizes the scheduling by reusing and sharing already provisioned VMs between

tasks from different workflows, and only leased a new VM whenever there was no available idle

VMs within the systems. The discussion in this chapter also described several versions of the

EBPSM algorithm, which explore the different levels of sharing policy against various environ-

ment scenarios. The simulation experiment results show that the algorithm is capable of improving

the performance along with the increasing frequency of arrival workflows into the WaaS platform.

To the best of our knowledge, there are no other budget-constrained multiple workflows scheduling

algorithms that aim to minimize the makespan while meeting the budget developed for the WaaS

platform so far. In this case, the EBPSM was compared to a version of the budget-constrained

algorithm called Minimizing the Schedule Length using the Budget Level (MSLBL) modified for

scheduling multiple workflows. The results show that the EBPSM is capable of gaining further

minimization of makespan while meeting the budgets in various scenarios.

Chapter 5 presented a novel approach in estimating the tasks’ runtime based on the online

incremental machine learning method. This estimation considers the uncertainties of cloud envi-

ronments by comprehending the temporal aspects in the submission of the tasks into the learning

model. This algorithm utilizes the time-series of resource consumption monitoring data as one

of the essential features to predict the runtime. The evaluation is performed in a small-scale

real-system experiment using a prominent workflow management system that is capable of re-

trieving the fine-grain monitoring data of the computational resources. The proposed algorithm

7.2 Future Directions 153

was compared with the state-of-the-art batch offline learning approach to predict tasks’ runtime

for scientific workflows. To make a fair comparison, the batch offline learning method was modi-

fied to an online incremental learning version without the use of time-series resource consumption

data. The results show that the proposed approach gains an overall better performance in various

heterogeneous resources of cloud computing environments.

Chapter 6 presented the extension to the CloudBus WMS, a workflow management system

designed for deploying scientific workflows in cloud computing environments. This extension

supported the crucial functionality for the development of the WaaS platform, specifically related

to the scheduling of multiple workflows, including the key features and its capability. The system

prototype was demonstrated along with a case study using several bioinformatics workflows for

genomic analysis and drug discovery and the implementation of the EBPSM algorithm.

7.2 Future Directions

Many challenges and problems in the current solutions should be considered for the future of

scientific workflows, as nicely discussed in a study by Deelman et al. [165]. However, this thesis

limited the discussion to the particular scheduling aspect in multi-tenant distributed computing

systems. We captured the future direction of multi-tenancy from existing solutions and rising

trend technologies that have a high potential to support the enhancement of multiple workflows

scheduling. The range is broad from the pre-processing phase, which involves the strategy to

accurately estimate task execution time that is a prerequisite for scheduling process–the scheduling

techniques, that are aware of constraints such as failure, deadline, budget, energy usage, privacy,

and security–to the use of heterogeneous distributed systems that differ not only in capacity but

also pricing scheme and provisional procedures. Moreover, we observed a potential use of several

technologies to enhance the multi-tenancy quality that comes from the rising trend technologies

such as containers, serverless computing, Unikernels, and the broad adoption of the Internet of

Things (IoT) workflows.

7.2.1 Advanced Multi-tenancy Using Microservices

Microservice is a variant of service-oriented architecture (SOA) that has a unique lightweight or

even simple protocol and treated the application as a collection of loosely coupled service [166]. In

154 Conclusions and Future Directions

this sense, we can consider container technology, serverless computing (i.e., function as a service),

and Unikernels to fall into the category.

Kozhirbayev and Sinnott [118] reported that the performance of a container on a bare-metal

machine is comparable to a native environment since no significant overhead is produced during

the runtime. It is a promising technology to enhance multi-tenancy features for multiple workflows

scheduling as it can be used as an isolated environment for workflow application before deploying

it into virtual machines in clouds. We argue that, in the future, this technology will be widely

used for solving multi-tenancy problem as it has been explored for executing a single scientific

workflow as reported in several studies [111] [112] [113] [167].

However, the main trade-off of general-purpose container’s performance (i.e., Docker) for sci-

entific applications is the security [168]. The multi-tenancy requirements inevitably invite multiple

users to share the same computational infrastructure at a time. In the case of Docker, every con-

tainer process has access to Docker daemon, which is spawned as a child of the root. At any rate,

this activity compromised the whole IT infrastructure. To tackle this security problem, Singularity

Container that targets explicitly the scientific applications have been developed [169]. It has been

tested in the Comet Supercomputer at the San Diego Supercomputer Center [170] and shown a

promising result for handling multi-tenancy in the future WaaS platform. A study by Suhartanto

et al. [171] showed that container could exploit multiple molecular docking processes within a

host without significant performance degradation. In this way, the algorithms should be able to

enhance the multi-tenancy of a host VM by deploying multiple jobs within acceptable deteriora-

tion. However, the algorithms must consider the additional container initiating delay [121] as a

part of their design.

Another promising technology is serverless computing/Function-as-a-Service (FaaS). FaaS

is a new terminology that stands on the top of cloud computing as a simplified version of the

virtualization service. In this way, cloud providers directly manage resource allocation, and the

users only needed to pay for the resource usage based on the application codes. This technology

facilitates the users who need to run specific tasks from a piece of code without having a headache

in managing the resources in cloud computing environments. We consider to include this into the

future directions since the high potential of its multi-tenancy service to accommodate the multiple

workflows scheduling.

7.2 Future Directions 155

Furthermore, this technology has been tested for single scientific workflow execution, as re-

ported by Malawski [172], Jiang et al. [173], and Malawski et al. [147]. Notably, this FaaS

can serve the workloads that consist of platform-independent workflows, which can be efficiently

executed on top of this facility without having to provision a new virtual machine. Nevertheless,

deploying scientific workflows in the serverless infrastructure is limited by the size of applications’

requirements in terms of CPU, memory, and network, as reported by Spillner et al. [174].

Finally, Unikernels is another virtualization technology that is designed to maintain perfect

isolation of virtual machines and maintain the lightweight of the container [175]. Unikernels en-

hance the virtualization in terms of weight by removing a general-purpose OS from the VM. In this

way, Unikernels directly run the application on the virtual hardware. Even more impressive, recent

finding shows that Unikernels do not require a virtual hardware abstraction. It can directly run as

a process by using an existing kernel system that is called whitelisting mechanism [176]. Look-

ing into the combination features of virtual machines and containers in one single virtualization

technology, we can hope for a better multi-tenancy service for the WaaS platform.

7.2.2 Reserved vs On-demand vs Spot Instances

The further reduction of operational cost has been a long-existing issue in utility-based multi-

tenant distributed computing systems. Notably, in cloud computing environments where the re-

sources are leased from third-party providers based on various pricing schemes, cost-aware sche-

duling strategy is highly considered. Most of the algorithms for clouds use on-demand instances

which ensure the reliability in a pay-as-you-go pricing model. Meanwhile, a work by Zhou et

al. [44] explored the use of spot instances that is cheaper, but less reliable as they were limited

time available and could be terminated at an unpredictable time. This type of resource raises a

fault-tolerant issue to be considered.

On the other hand, the use of reserved instances in clouds should be explored to minimize

further the total operational cost as the pricing of this bulk reservation is lower than on-demand

even spot instances. The issue of using reserved instances is related to how accurate the algorithms

can predict the workload of workflows to lease a number of reserved instances. The combination

of reserved, on-demand, and spot instances must be explored to create an efficient resource provi-

sioning strategy. The workload pattern forecasting model also should accompany the algorithms

to better provision the resources.

156 Conclusions and Future Directions

7.2.3 Multi-clouds vs Hybrid Clouds vs Bare-metal Clouds

The use of multi-cloud computing providers for scientific workflow was explored by Jrad et al.

[177] and Montes et al. [178] by introducing algorithms that were aware of different services

available. However, the only relevant works found in our study are the use of hybrid clouds for

separating tasks execution. In our survey, a work used hybrid clouds to treat tasks with different

privacy levels in healthcare services, while another research utilized public clouds to cover the

computational need that could not be fulfilled using private clouds and on-premises infrastructure.

In our opinion, further utilization of multi-clouds can be beneficial as a single cloud provider

may not be able to serve the high requirements of resources in WaaS platforms on particular peak

hours. The other advantage of multi-clouds is the possible reduction of operational cost. In this

way, discovering relevant services can be further explored by choosing a particular data center

location to minimize data movements. This approach also may consider comparing the ratio of

price and performance from various cloud instances from multiple cloud providers, as various

cloud providers charge different prices for the datacenter in different geographical locations.

In this resource heterogeneity discussion, we have to mention a valuable service that provides a

more heterogeneous infrastructure that is called bare-metal clouds. Bare-metal cloud is an emerg-

ing service in the IaaS business model that leases a physical machine instead of a virtual machine

to the users. This service targets user that need specific hardware requirements in an intensive

computation (i.e., GPU, FPGA). While one may ask the elasticity of this service against any stan-

dard cloud services, recent work has shown that such agility in provisioning bare-metal clouds

can be compared to general VM virtualization [179]. On the other hand, the challenge of man-

aging such an environment must be considered when designing the algorithms. In this way, the

scheduling policy should calculate the several possible overhead factors (i.e., network bandwidth,

end-to-end latency) in comparison to the monetary cost of the infrastructure.

7.2.4 Fast and Reliable Task Runtime Estimation

Predicting task runtime in clouds is non-trivial, mainly due to the problem in which cloud resources

are subject to performance variability [37]. This variability occurs due to several factors–including

virtualization overhead, multi-tenancy, geographical distribution, and temporal aspects [4]–that

affect not only computational performance, but also the communication network used to transfer

input/output data [119]. The majority of algorithms rely on the estimation of task execution time to

7.2 Future Directions 157

produce an accurate schedule plan. Meanwhile, the works on task runtime estimation in scientific

workflows are limited, including the latest works by Pham et al. [36] and Nadeem et al. [180]

that used machine learning techniques. Previously, work on scientific workflow profiling and

characterization by Juve et al. [27] that produced a synthetic workflow generator was being used

by the majority of works on workflow scheduling.

The future techniques must be able to address dynamic workloads that are continuously arriv-

ing in resemblance to stream data processing. The adoption of an online and incremental machine

learning approach may become another solution. In this approach, the algorithm does not need

to learn from a model constructed from a large number of collected datasets, which is generally

time-consuming and compute-intensive. The algorithm only sees the data once and then integrates

additional information as the model incrementally built from new data. The latest work by Sahoo

et al. [181] develops OMKR, an online and incremental machine learning approach, to handle

large time-series datasets in a near real-time process. While this approach is still intensively being

studied for scientific workflow area, the preliminary work has been discussed in Chapter 5 for

future WaaS platform. These methods should mainly consider the concept drift that impacted the

performance variability of the clouds as reported for other continuous data streams problem [182].

7.2.5 Integrated Anomaly Detection and Fault-tolerant Aware Platforms

Detecting anomaly in scientific workflows is one of the challenges to maintain the fault-tolerance

of scheduling in cloud computing environments. Several notable examples include a work by

Samak et al. [183] that detailed integrated workflows and resource monitoring for the STAMPEDE

project. Furthermore, Gaikwad et al. [184] used Autoregression techniques to detect the anomalies

by monitoring the systems and a similar work by Rodriguez et al. [185] adopted Neural Network

methods. On the other hand, the fault-tolerant algorithms found in our survey used replication

technique [76] and checkpointing [44] to handle failure in workflows execution.

Future works on this area include the integration of detecting anomalies and failure-aware

scheduling in multi-tenant computing platforms and the use of various fault-tolerant methods in

failure-aware algorithms, such as resubmission and live migration. Furthermore, to investigate

how the anomalies detection model can be combined with the task runtime prediction model to

better schedule multiple tasks in heterogeneous environments also require attention. In this case,

the algorithms should incorporate the ability to be fully aware of the underlying hardware per-

158 Conclusions and Future Directions

formance and their monitoring features. The algorithms then can decide to either resubmit the

anomalous jobs or duplicated the jobs in the first place to ensure the completion of the workflows.

7.2.6 Multi-objective Constraints Scheduling

The flexibility and ability to easily scale the number of resources (i.e., VMs) in the cloud comput-

ing environments leads to a trade-off between two conflicting QoS requirements: time and cost.

In this case, the more powerful VMs capable of processing a task faster will be more expensive

than the slower, less powerful ones. There has been an extensive research [26] on this schedul-

ing topic that specifically designed for cloud computing environments, with most works proposed

algorithms that were aimed to minimize the total execution cost while finishing the workflow exe-

cution before a user-defined deadline. Meanwhile, the works that aimed to minimize the makespan

by fully utilizing the available budget to lease faster resources, as much as possible, are limited.

We identified algorithms that considered budget in their scheduling such as [56], [94], [186], and

[187] that exploited the budget as a complementary constraint to the deadline. Nevertheless, none

of them aims to fully utilize the available budget to get a faster execution time.

Furthermore, studies on multiple workflows scheduling that aims explicitly to achieve multi-

objective optimization (i.e., time and cost minimization) are also minimal. While the metaheuris-

tics and evolutionary programming have been used, such as the work by Fard et al. [188], its

implementation for multiple workflows scheduling is limited by its pre-processing requirement.

However, a more lightweight list-based heuristic approach such as MOHEFT [84] and DPDS

[189] can be considered for multiple workflows scheduling. In this case, the algorithms should

carefully handle the trade-off between achieving two or more objective constraints and maintain

the lightweight low-complexity scheduling process. The lightweight scheduling can be achieved

by exploiting heuristics approaches to gain a relatively good optimization instead of aiming for

the optimal schedule through sophisticated methods with the expensive computational cost such

as evolutionary and bio-inspired computing algorithms.

7.2.7 Energy-efficient Computing

Beloglazov et al. [190] have extensively explored the issue of green computing in cloud datacen-

ters. Interestingly, there are several works in our study that addressed this energy-efficient and

carbon footprint issue. While a work discussed energy-efficient strategy at the infrastructure level

7.2 Future Directions 159

by implementing a live migration technique [81], another work tackled it at workload level by

allocating the load to specific physical machines [73].

For the WaaS platform providers that rely on IaaS clouds to lease the computational resources,

adopting workload level strategies for energy-aware scheduling is one of the possible further ex-

plorations. In this case, they do not have direct control over raw computational infrastructures

as IaaS cloud providers do. Therefore, the algorithms should consider the energy-aware strategy

of choosing the green computational resources, as discussed by Toosi et al. [191] in a work that

explored a renewable-aware geographical load balancing.

7.2.8 Privacy-aware Scheduling

The users’ privacy is an essential aspect that has been tackled by separating the execution in a

private and public cloud-based on their data privacy level [63]. However, it is crucial to consider

the security aspect of managing privacy since both issues are highly inter-related. One of the

works that considers security is the SABA algorithm [192]. However, it is designed for a single

workflow scheduling and intended to explore the relationship between cost and security aspects in

the scheduling, instead of focusing on privacy.

Further exploration of privacy and security in the multiple workflows scheduling has to be

elaborated as it resembles the real world workflow application problems. Another way to deal with

confidentiality is by adopting a reliable security protocol for data processing in cloud computing

environments, such as homomorphic encryption [193]. However, one inevitable trade-off from the

attempt to increase the security aspect is an additional delay to the total makespan. The multiple

workflows scheduling algorithms should consider this trade-off and include it as a part of the

scheduling strategy design.

7.2.9 Internet of Things (IoT) Workflows

A visionary paper by Gubbi et al. [194] mentions a future use of the Internet of Things (IoT) in a

workflow form. The idea has been implemented in several works, including a smart city system

[195] and a big data framework [196]. This type of workflow increases in numbers, and its broad

adoption is predicted to be widely seen shortly. Therefore, the need for a multi-tenant computing

platform that can handle such workflows may arise.

160 Conclusions and Future Directions

IoT applications are highly demanding network resources to handle end-to-end services from

sensors to users. Therefore, network-intensive strategies such as bandwidth-aware and latency-

aware must be considered in the scheduling. A recent study by Stavrinides and Karatza [197]

presents a work that is aware of edge and cloud resources available to differentiate the task alloca-

tion based on their computational requirements.

Bibliography

[1] R. Barga and D. Gannon, Scientific versus Business Workflows - Workflows for e-Science:

Scientific Workflows for Grids. London: Springer London, 2007, pp. 9–16.

[2] D. Gannon, E. Deelman, M. Shields, and I. Taylor, Introduction - Workflows for e-Science:

Scientific Workflows for Grids. London: Springer London, 2007, pp. 1–8.

[3] C. Goncalves, L. Assuncao, and J. C. Cunha, “Data Analytics in The Cloud with Flexi-

ble MapReduce Workflows,” in Proceedings of The 4th IEEE International Conference on

Cloud Computing Technology and Science, Dec. 2012, pp. 427–434.

[4] P. Leitner and J. Cito, “Patterns in the Chaos: A Study of Performance Variation and Pre-

dictability in Public IaaS Clouds,” ACM Transactions on Internet Technology, vol. 16, no. 3,

Apr. 2016.

[5] Y. Xing and Y. Zhan, “Virtualization and Cloud Computing,” in Future Wireless Networks

and Information Systems, Y. Zhang, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 305–312.

[6] C. Wu, R. Buyya, and K. Ramamohanarao, “Cloud Pricing Models: Taxonomy, Survey,

and Interdisciplinary Challenges,” ACM Computing Surveys, vol. 52, no. 6, Oct. 2019.

[7] K. Svitil, “Gravitational Waves Detected 100 Years After Ein-

stein’s Prediction,” 2016. [Online]. Available: http://www.caltech.edu/news/

gravitational-waves-detected-100-years-after-einstein-s-prediction-49777

[8] J. Qin and T. Fahringer, Scientific Workflows: Programming, Optimization, and Synthesis

with ASKALON and AWDL. Springer Publishing Company, Incorporated, 2014.

161

162 BIBLIOGRAPHY

[9] M. A. Rodriguez and R. Buyya, “Scientific Workflow Management System for Clouds,” in

Software Architecture for Big Data and the Cloud, I. Mistrik, R. Bahsoon, N. Ali, M. Heisel,

and B. Maxim, Eds. Boston: Morgan Kaufmann, 2017, pp. 367–387.

[10] B. Balis, “HyperFlow: A Model of Computation, Programming Approach and Enact-

ment Engine for Complex Distributed Workflows,” Future Generation Computer Systems,

vol. 55, pp. 147–162, 2016.

[11] P. Korambath, J. Wang, A. Kumar, L. Hochstein, B. Schott, R. Graybill, M. Baldea, and

J. Davis, “Deploying Kepler Workflows as Services on a Cloud Infrastructure for Smart

Manufacturing,” Procedia Computer Science, vol. 29, pp. 2254–2259, 2014, 2014 Interna-

tional Conference on Computational Science.

[12] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F. da Silva, G. Papadimitriou, and M. Livny,

“The Evolution of the Pegasus Workflow Management Software,” Computing in Science

Engineering, vol. 21, no. 4, pp. 22–36, July 2019.

[13] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-

Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty,

A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna Work-

flow Suite: Designing and Executing Workflows of Web Services on the Desktop, Web or

in the Cloud,” Nucleic Acids Research, vol. 41, no. 1, pp. 557–561, 05 2013.

[14] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key, N. Khoussainova, and L. Battle,

“Database-as-a-Service for Long-Tail Science,” in Scientific and Statistical Database Man-

agement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 480–489.

[15] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl, “Workflow as a Service in The

Cloud: Architecture and Scheduling Algorithms,” Procedia Computer Science, vol. 29, pp.

546–556, 2014, 2014 International Conference on Computational Science.

[16] S. Esteves and L. Veiga, “WaaS: Workflow-as-a-Service for The Cloud with Scheduling

of Continuous and Data-intensive Workflows,” The Computer Journal, vol. 59, no. 3, pp.

371–383, March 2016.

BIBLIOGRAPHY 163

[17] B. P. Rimal and M. Maier, “Workflow Scheduling in Multi-tenant Cloud Computing En-

vironments,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp.

290–304, Jan. 2017.

[18] “Gartner Forecasts Worldwide Public Cloud Revenue to Grow 172020,”

Nov 2019. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/

2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020

[19] S. G. Ahmad, C. S. Liew, M. M. Rafique, E. U. Munir, and S. U. Khan, “Data-Intensive

Workflow Optimization Based on Application Task Graph Partitioning in Heterogeneous

Computing Systems,” in Proceedings of The 4th IEEE International Conference on Big

Data and Cloud Computing, Dec. 2014, pp. 129–136.

[20] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing,”

Journal of Grid Computing, vol. 3, no. 3, pp. 171–200, Sep. 2005.

[21] M. Wieczorek, A. Hoheisel, and R. Prodan, Taxonomies of the Multi-Criteria Grid Work-

flow Scheduling Problem. Boston, MA: Springer US, 2008, pp. 237–264.

[22] F. Wu, Q. Wu, and Y. Tan, “Workflow Scheduling in Cloud: A Survey,” The Journal of

Supercomputing, vol. 71, no. 9, pp. 3373–3418, Sep. 2015.

[23] S. Singh and I. Chana, “A Survey on Resource Scheduling in Cloud Computing: Issues and

Challenges,” Journal of Grid Computing, vol. 14, no. 2, pp. 217–264, Jun. 2016.

[24] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware Challenges for Workflow Sche-

duling Approaches in Cloud Computing Environments: Taxonomy and Opportunities,” Fu-

ture Generation Computer Systems, vol. 50, pp. 3–21, 2015, Quality of Service in Grid and

Cloud 2015.

[25] S. Smanchat and K. Viriyapant, “Taxonomies of Workflow Scheduling Problem and Tech-

niques in The Cloud,” Future Generation Computer Systems, vol. 52, pp. 1–12, 2015, Spe-

cial Section: Cloud Computing: Security, Privacy and Practice.

164 BIBLIOGRAPHY

[26] M. A. Rodriguez and R. Buyya, “A Taxonomy and Survey on Scheduling Algorithms for

Scientific Workflows in IaaS Cloud Computing Environments,” Concurrency and Compu-

tation: Practice and Experience, vol. 29, no. 8, p. e4041, 2017, e4041 cpe.4041.

[27] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, “Characterizing

and Profiling Scientific Workflows,” Future Generation Computer Systems, vol. 29, no. 3,

pp. 682–692, 2013, Special Section: Recent Developments in High Performance Comput-

ing and Security.

[28] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The Cost of Doing Science

on The Cloud: The Montage Example,” in Proceedings of The ACM/IEEE Conference on

Supercomputing, Nov. 2008, pp. 1–12.

[29] P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta, J. Mehringer,

C. Kesselman, S. Callaghan, D. Okaya, H. Francoeur, V. Gupta, Y. Cui, K. Vahi, T. Jor-

dan, and E. Field, SCEC CyberShake Workflows–Automating Probabilistic Seismic Hazard

Analysis Calculations. London: Springer London, 2007, pp. 143–163.

[30] P. Nguyen and K. Nahrstedt, “MONAD: Self-adaptive Micro-service Infrastructure for Het-

erogeneous Scientific Workflows,” in Proceedings of The 2017 IEEE International Confer-

ence on Autonomic Computing, July 2017, pp. 187–196.

[31] L. Bryant, J. Van, B. Riedel, R. W. Gardner, J. C. Bejar, J. Hover, B. Tovar, K. Hurtado, and

D. Thain, “VC3: A Virtual Cluster Service for Community Computation,” in Proceedings

of the Practice and Experience on Advanced Research Computing, ser. PEARC ’18. New

York, NY, USA: Association for Computing Machinery, 2018.

[32] M. Belkin, R. Haas, G. W. Arnold, H. W. Leong, E. A. Huerta, D. Lesny, and M. Neubauer,

“Container Solutions for HPC Systems: A Case Study of Using Shifter on Blue Waters,”

New York, NY, USA, 2018.

[33] C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive Performance Modeling for Dis-

tributed Batch Processing Using Black Box Monitoring and Machine Learning,” Informa-

tion Systems, vol. 82, pp. 33–52, 2019.

BIBLIOGRAPHY 165

[34] F. Nadeem and T. Fahringer, “Using Templates to Predict Execution Time of Scientific

Workflow Applications in The Grid,” in Proceedings of The 9th IEEE/ACM International

Symposium on Cluster Computing and The Grid, May 2009, pp. 316–323.

[35] R. F. da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, “Online Task Resource

Consumption Prediction for Scientific Workflows,” Parallel Processing Letters, vol. 25,

no. 03, p. 1541003, 2015.

[36] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting Workflow Task Execution Time in

The Cloud Using A Two-Stage Machine Learning Approach,” IEEE Transactions on Cloud

Computing, pp. 1–1, 2017.

[37] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J. Wasserman,

and N. J. Wright, “Performance Analysis of High Performance Computing Applications on

The Amazon Web Services Cloud,” in Proceedings of The 2nd IEEE International Confer-

ence on Cloud Computing Technology and Science, Nov. 2010, pp. 159–168.

[38] M. Mao and M. Humphrey, “A Performance Study on The VM Startup Time in The Cloud,”

in Proceedings of The 5th IEEE International Conference on Cloud Computing, June 2012,

pp. 423–430.

[39] M. Jones, B. Arcand, B. Bergeron, D. Bestor, C. Byun, L. Milechin, V. Gadepally,

M. Hubbell, J. Kepner, P. Michaleas, J. Mullen, A. Prout, T. Rosa, S. Samsi, C. Yee, and

A. Reuther, “Scalability of VM Provisioning Systems,” in Proceedings of The IEEE High

Performance Extreme Computing Conference, Sep. 2016, pp. 1–5.

[40] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen, “Dynamic Provisioning of Virtual

Organization Clusters,” in Proceedings of The 9th IEEE/ACM International Symposium on

Cluster Computing and The Grid, May 2009, pp. 364–371.

[41] W. Chen, Y. C. Lee, A. Fekete, and A. Y. Zomaya, “Adaptive Multiple-workflow Scheduling

with Task Rearrangement,” The Journal of Supercomputing, vol. 71, no. 4, pp. 1297–1317,

Apr. 2015.

166 BIBLIOGRAPHY

[42] Y. R. Wang, K. C. Huang, and F. J. Wang, “Scheduling Online Mixed-parallel Workflows of

Rigid Tasks in Heterogeneous Multi-cluster Environments,” Future Generation Computer

Systems, vol. 60, pp. 35–47, 2016.

[43] A. Hamid, G. B. Jorge, and S. Frédéric, “Fair Resource Sharing for Dynamic Scheduling

of Workflows on Heterogeneous Systems,” in High-Performance Computing on Complex

Environments. John Wiley & Sons, Ltd, 2014, ch. 9, pp. 145–167.

[44] A. C. Zhou, B. He, and C. Liu, “Monetary Cost Optimizations for Hosting Workflow-as-a-

Service in IaaS Clouds,” IEEE Transactions on Cloud Computing, vol. 4, no. 1, pp. 34–48,

Jan 2016.

[45] Z. Yu and W. Shi, “A Planner-Guided Scheduling Strategy for Multiple Workflow Applica-

tions,” in Proceedings of The International Conference on Parallel Processing, Sep. 2008,

pp. 1–8.

[46] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and Low-complexity Task

Scheduling for Heterogeneous Computing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 13, no. 3, pp. 260–274, March 2002.

[47] U. Hönig and W. Schiffmann, “A Comprehensive Test Bench for The Evaluation of Sche-

duling Heuristics,” in Proceedings of The 16th IASTED International Conference on Paral-

lel and Distributed Computing and Systems, 2004, pp. 437–442.

[48] M. Xu, L. Cui, H. Wang, and Y. Bi, “A Multiple QoS Constrained Scheduling Strategy

of Multiple Workflows for Cloud Computing,” in Proceedings of The IEEE International

Symposium on Parallel and Distributed Processing with Applications, Aug 2009, pp. 629–

634.

[49] C. Lizhen, X. Meng, and Y. Bi, “A Scheduling Strategy for Multiple QoS Constrained Grid

Workflows,” in Proceedings of The Joint Conferences on Pervasive Computing, Dec 2009,

pp. 561–566.

BIBLIOGRAPHY 167

[50] J. G. Barbosa and B. Moreira, “Dynamic Scheduling of A Batch of Parallel Task Jobs on

Heterogeneous Clusters,” Parallel Computing, vol. 37, no. 8, pp. 428–438, 2011, follow-on

of ISPDC’2009 and HeteroPar’2009.

[51] J. G. Barbosa, C. Morais, R. Nobrega, and A. Monteiro, “Static Scheduling of Dependent

Parallel Tasks on Heterogeneous Clusters,” in Proceedings of The IEEE International Con-

ference on Cluster Computing, Sep. 2005, pp. 1–8.

[52] C. C. Hsu, K. C. Huang, and F. J. Wang, “Online Scheduling of Workflow Applications

in Grid Environments,” Future Generation Computer Systems, vol. 27, no. 6, pp. 860–870,

2011.

[53] M. Quinson, “SimGrid: A Generic Framework for Large-scale Distributed Experiments,”

in Proceedings of The 9th IEEE International Conference on Peer-to-Peer Computing, Sep.

2009, pp. 95–96.

[54] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jégou, S. Lanteri, N. Melab, R. Namyst,

P. Primet, O. Richard, E. Caron, J. Leduc, and G. Mornet, “Grid’5000: A Large-scale,

Reconfigurable, Controlable and Monitorable Grid Platform,” in Proceedings of The 6th

IEEE/ACM International Workshop on Grid Computing, Seattle, USA, United States, Nov.

2005, grid 2005 held in conjunction with SC’05, the International Conference for High

Performance Computing, Networking and Storage.

[55] H. Arabnejad and J. G. Barbosa, “Maximizing The Completion Rate of Concurrent Scien-

tific Applications Under Time and Budget Constraints,” Journal of Computational Science,

vol. 23, pp. 120–129, 2017.

[56] ——, “Multi-QoS Constrained and Profit-aware Scheduling Approach for Concurrent

Workflows on Heterogeneous Systems,” Future Generation Computer Systems, vol. 68,

pp. 211–221, 2017.

[57] G. L. Stavrinides and H. D. Karatza, “Scheduling Multiple Task Graphs in Heteroge-

neous Distributed Real-time Systems by Exploiting Schedule Holes with Bin Packing Tech-

niques,” Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 540–552, 2011,

Modeling and Performance Analysis of Networking and Collaborative Systems.

168 BIBLIOGRAPHY

[58] ——, “Scheduling Multiple Task Graphs with End-to-end Deadlines in Distributed Real-

time Systems Utilizing Imprecise Computations,” Journal of Systems and Software, vol. 83,

no. 6, pp. 1004–1014, 2010, Software Architecture and Mobility.

[59] ——, “A Cost-effective and QoS-aware Approach to Scheduling Real-time Workflow Ap-

plications in PaaS and SaaS Clouds,” in Proceedings of The 3rd International Conference

on Future Internet of Things and Cloud, Aug 2015, pp. 231–239.

[60] ——, “The Impact of Resource Heterogeneity on The Timeliness of Hard Real-time Com-

plex Jobs,” in Proceedings of the 7th International Conference on PErvasive Technologies

Related to Assistive Environments, ser. PETRA ’14. New York, NY, USA: Association for

Computing Machinery, 2014.

[61] G. L. Stavrinides, F. R. Duro, H. D. Karatza, J. G. Blas, and J. Carretero, “Different As-

pects of Workflow Scheduling in Large-scale Distributed Systems,” Simulation Modelling

Practice and Theory, vol. 70, pp. 120–134, 2017.

[62] F. R. Duro, J. G. Blas, and J. Carretero, “A Hierarchical Parallel Storage System Based

on Distributed Memory for Large Scale Systems,” in Proceedings of The 20th European

MPI Users’ Group Meeting, ser. EuroMPI ’13. New York, NY, USA: Association for

Computing Machinery, 2013, pp. 139––140.

[63] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “Online Multiple Workflow Scheduling

under Privacy and Deadline in Hybrid Cloud Environment,” in Proceedings of The 6th

IEEE International Conference on Cloud Computing Technology and Science, Dec 2014,

pp. 455–462.

[64] P. Watson, “A Multi-level Security Model for Partitioning Workflows Over Federated

Clouds,” Journal of Cloud Computing: Advances, Systems and Applications, vol. 1, no. 1,

p. 15, Jul 2012.

[65] Y. Tsai, H. Liu, and K. Huang, “Adaptive Dual-criteria Task Group Allocation for

Clustering-based Multi-workflow Scheduling on Parallel Computing Platform,” The Jour-

nal of Supercomputing, vol. 71, no. 10, pp. 3811–3831, Oct. 2015.

BIBLIOGRAPHY 169

[66] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H. Su, and K. Vahi, “Characterization

of Scientific Workflows,” in Proceedings of The 3rd Workshop on Workflows in Support of

Large-Scale Science, Nov. 2008, pp. 1–10.

[67] B. Lin, W. Guo, and X. Lin, “Online Optimization Scheduling for Scientific Workflows

with Deadline Constraint on Hybrid Clouds,” Concurrency and Computation: Practice and

Experience, vol. 28, no. 11, pp. 3079–3095, 2016.

[68] H. Chen, X. Zhu, D. Qiu, and L. Liu, “Uncertainty-aware Real-time Workflow Schedul-

ing in The Cloud,” in Proceedings of The 9th IEEE International Conference on Cloud

Computing, June 2016, pp. 577–584.

[69] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu, “A Stochastic Scheduling Algorithm for

Precedence Constrained Tasks on Grid,” Future Generation Computer Systems, vol. 27,

no. 8, pp. 1083–1091, 2011.

[70] D. Poola, S. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao, “Robust Scheduling of

Scientific Workflows with Deadline and Budget Constraints in Clouds,” in Proceedings of

The 28th IEEE International Conference on Advanced Information Networking and Appli-

cations, May 2014, pp. 858–865.

[71] H. Chen, J. Zhu, Z. Zhang, M. Ma, and X. Shen, “Real-time Workflows Oriented Online

Scheduling in Uncertain Cloud Environment,” The Journal of Supercomputing, vol. 73,

no. 11, pp. 4906–4922, Nov. 2017.

[72] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim: A

Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of

Resource Provisioning Algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.

23–50, 2011.

[73] H. Chen, X. Zhu, D. Qiu, H. Guo, L. T. Yang, and P. Lu, “EONS: Minimizing Energy

Consumption for Executing Real-Time Workflows in Virtualized Cloud Data Centers,” in

Proceedings of The 45th International Conference on Parallel Processing Workshops, Aug

2016, pp. 385–392.

170 BIBLIOGRAPHY

[74] V. Ebrahimirad, M. Goudarzi, and A. Rajabi, “Energy-Aware Scheduling for Precedence-

Constrained Parallel Virtual Machines in Virtualized Data Centers,” Journal of Grid Com-

puting, vol. 13, no. 2, pp. 233–253, Jun 2015.

[75] I. Pietri and R. Sakellariou, “Energy-Aware Workflow Scheduling Using Frequency Scal-

ing,” in Proceedings of The 43rd International Conference on Parallel Processing Work-

shops, Sep. 2014, pp. 104–113.

[76] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, “Fault-Tolerant Scheduling for

Real-Time Scientific Workflows with Elastic Resource Provisioning in Virtualized Clouds,”

IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 12, pp. 3501–3517,

Dec 2016.

[77] X. Qin and H. Jiang, “A Novel Fault-tolerant Scheduling Algorithm for Precedence Con-

strained Tasks in Real-time Heterogeneous Systems,” Parallel Computing, vol. 32, no. 5,

pp. 331–356, 2006.

[78] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-Aware Online Scheduling for Real-

Time Workflows in Cloud Service Environment,” IEEE Transactions on Services Comput-

ing, pp. 1–1, 2018.

[79] H. Chen, J. Zhu, G. Wu, and L. Huo, “Cost-efficient Reactive Scheduling for Real-time

Workflows in Clouds,” The Journal of Supercomputing, vol. 74, no. 11, pp. 6291–6309,

Nov 2018.

[80] M. A. Rodriguez and R. Buyya, “Scheduling Dynamic Workloads in Multi-tenant Scientific

Workflow as a Service Platforms,” Future Generation Computer Systems, vol. 79, pp. 739–

750, 2018.

[81] X. Xu, W. Dou, X. Zhang, and J. Chen, “EnReal: An Energy-aware Resource Allocation

Method for Scientific Workflow Executions in Cloud Environment,” IEEE Transactions on

Cloud Computing, vol. 4, no. 2, pp. 166–179, April 2016.

BIBLIOGRAPHY 171

[82] X. Liu, Y. Yang, Y. Jiang, and J. Chen, “Preventing Temporal Violations in Scientific Work-

flows: Where and How,” IEEE Transactions on Software Engineering, vol. 37, no. 6, pp.

805–825, Nov 2011.

[83] S. Zhang, B. Wang, B. Zhao, and J. Tao, “An Energy-Aware Task Scheduling Algorithm for

a Heterogeneous Data Center,” in Proceedings of The 12th IEEE International Conference

on Trust, Security and Privacy in Computing and Communications, July 2013, pp. 1471–

1477.

[84] J. J. Durillo, H. M. Fard, and R. Prodan, “MOHEFT: A Multi-objective List-based Method

for Workflow Scheduling,” in Proceedings of The 4th IEEE International Conference on

Cloud Computing Technology and Science Proceedings, Dec 2012, pp. 185–192.

[85] Y. Wang, S. Cao, G. Wang, Z. Feng, C. Zhang, and H. Guo, “Fairness Scheduling with

Dynamic Priority for Multi Workflow on Heterogeneous Systems,” in Proceedings of The

2nd IEEE International Conference on Cloud Computing and Big Data Analysis, April

2017, pp. 404–409.

[86] G. Z. Tian, C. B. Xiao, Z. S. Xu, and X. Xiao, “Hybrid Scheduling Strategy for Multiple

DAGs Workflow in Heterogeneous System,” Ruanjian Xuebao/Journal of Software, vol. 23,

no. 10, pp. 2720–2734, 2012.

[87] G. Wang, Y. Wang, H. Liu, and H. Guo, “HSIP: A Novel Task Scheduling Algorithm for

Heterogeneous Computing,” Sci. Program., vol. 2016, p. 19, Mar. 2016.

[88] G. Xie, L. Liu, L. Yang, and R. Li, “Scheduling Trade-off of Dynamic Multiple Parallel

Workflows on Heterogeneous Distributed Computing Systems,” Concurrency and Compu-

tation: Practice and Experience, vol. 29, no. 2, p. e3782, 2017, e3782 cpe.3782.

[89] G. Xie, R. Li, X. Xiao, and Y. Chen, “A High-Performance DAG Task Scheduling Al-

gorithm for Heterogeneous Networked Embedded Systems,” in Proceedings of The 28th

IEEE International Conference on Advanced Information Networking and Applications,

May 2014, pp. 1011–1016.

172 BIBLIOGRAPHY

[90] G. Xie, G. Zeng, J. Jiang, C. Fan, R. Li, and K. Li, “Energy Management for Multiple Real-

time Workflows on Cyber–physical Cloud Systems,” Future Generation Computer Systems,

vol. 105, pp. 916–931, 2020.

[91] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An Energy-Efficient Task Schedul-

ing Algorithm in DVFS-enabled Cloud Environment,” Journal of Grid Computing, vol. 14,

no. 1, pp. 55–74, Mar 2016.

[92] K. Li, “Scheduling Precedence Constrained Tasks with Reduced Processor Energy on Mul-

tiprocessor Computers,” IEEE Transactions on Computers, vol. 61, no. 12, pp. 1668–1681,

Dec 2012.

[93] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor, “High-Throughput, Kingdom-wide

Prediction and Annotation of Bacterial Non-coding RNAs,” PLOS ONE, vol. 3, no. 9, pp.

1–12, 09 2008.

[94] N. Zhou, F. Li, K. Xu, and D. Qi, “Concurrent Workflow Budget- and Deadline-constrained

Scheduling in Heterogeneous Distributed Environments,” Soft Computing, vol. 22, no. 23,

pp. 7705–7718, Dec 2018.

[95] J. Liu, J. Ren, W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min, and N. Najjari, “Online

Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds,” IEEE

Transactions on Cloud Computing, pp. 1–1, 2019.

[96] M. Mao and M. Humphrey, “Auto-scaling to Minimize Cost and Meet Application Dead-

lines in Cloud Workflows,” in Proceedings of The IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, Nov 2011, pp. 1–12.

[97] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained Workflow Sche-

duling Algorithms for Infrastructure as a Service Clouds,” Future Generation Computer

Systems, vol. 29, no. 1, pp. 158–169, 2013, including Special section: AIRCC-NetCoM

2009 and Special section: Clouds and Service-Oriented Architectures.

BIBLIOGRAPHY 173

[98] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski, “Scheduling Multi-

level Deadline-constrained Scientific Workflows on Clouds based on Cost Optimization,”

Scientific Programming, vol. 2015, Jan. 2015.

[99] V. Arabnejad, K. Bubendorfer, and B. Ng, “Deadline Distribution Strategies for Scientific

Workflow Scheduling in Commercial Clouds,” in Proceedings of The ACM/IEEE Interna-

tional Conference on Utility and Cloud Computing, ser. UCC ’16. New York, NY, USA:

Association for Computing Machinery, 2016, pp. 70–78.

[100] Z. Cai, X. Li, and R. Ruiz, “Resource Provisioning for Task-batch based Workflows with

Deadlines in Public Clouds,” IEEE Transactions on Cloud Computing, vol. 7, no. 3, pp.

814–826, July 2019.

[101] F. Wu, Q. Wu, Y. Tan, R. Li, and W. Wang, “PCP-B2: Partial Critical Path Budget Bal-

anced Scheduling Algorithms for Scientific Workflow Applications,” Future Generation

Computer Systems, vol. 60, pp. 22–34, 2016.

[102] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-end Delay Minimization for Scientific

Workflows in Clouds under Budget Constraint,” IEEE Transactions on Cloud Computing,

vol. 3, no. 2, pp. 169–181, April 2015.

[103] X. Wang, B. Cao, C. Hou, L. Xiong, and J. Fan, “Scheduling Budget Constrained Cloud

Workflows with Particle Swarm Optimization,” in Proceedings of The IEEE Conference on

Collaboration and Internet Computing, Oct 2015, pp. 219–226.

[104] A. Verma and S. Kaushal, “Budget Constrained Priority based Genetic Algorithm for Work-

flow Scheduling in Cloud,” in Proceedings of The International Conference on Advances

in Recent Technologies in Communication and Computing. Institution of Engineering and

Technology, January 2013, pp. 216–222.

[105] ——, “Deadline and Budget Distribution based Cost-Time Optimization Workflow Sche-

duling Algorithm for Cloud,” in Proceedings of The International Conference on Recent

Advances and Future Trends in Information Technology. IJCA, 2012.

174 BIBLIOGRAPHY

[106] M. A. Rodriguez and R. Buyya, “Budget-Driven Resource Provisioning and Scheduling of

Scientific Workflow in IaaS Clouds with Fine-grained Billing Periods,” ACM Transactions

on Autonomous and Adaptive Systems, vol. 12, no. 2, May 2017.

[107] V. Arabnejad, K. Bubendorfer, and B. Ng, “Budget Distribution Strategies for Scientific

Workflow Scheduling in Commercial Clouds,” in Proceedings of The IEEE International

Conference on e-Science, Oct 2016, pp. 137–146.

[108] J. Yu, R. Buyya, and C. K. Tham, “Cost-based Scheduling of Scientific Workflow Applica-

tions on Utility Grids,” in Proceedings of The IEEE International Conference on e-Science

and Grid Computing, July 2005.

[109] Y. Yuan, X. Li, Q. Wang, and Y. Zhang, “Bottom Level based Heuristic for Workflow

Scheduling in Grids,” Chinese Journal of Computers, vol. 31, no. 2, p. 282, 2008.

[110] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost Optimization Approaches for

Scientific Workflow Scheduling in Cloud and Grid Computing: A Review, Classifications,

and Open Issues,” Journal of Systems and Software, vol. 113, pp. 1–26, 2016.

[111] R. Qasha, J. Cala, and P. Watson, “Dynamic Deployment of Scientific Workflows in The

Cloud Using Container Virtualization,” in Proceedings of The IEEE International Confer-

ence on Cloud Computing Technology and Science, Dec 2016, pp. 269–276.

[112] K. Liu, K. Aida, S. Yokoyama, and Y. Masatani, “Flexible Container-based Computing Plat-

form on Cloud for Scientific Workflows,” in Proceedings of The International Conference

on Cloud Computing Research and Innovations, May 2016, pp. 56–63.

[113] E. J. Alzahrani, Z. Tari, Y. C. Lee, D. Alsadie, and A. Y. Zomaya, “adCFS: Adaptive Com-

pletely Fair Scheduling Policy for Containerised Workflows Systems,” in Proceedings of

The 16th IEEE International Symposium on Network Computing and Applications, Oct

2017, pp. 1–8.

[114] H. Cao and C. Q. Wu, “Performance Optimization of Budget-constrained MapReduce

Workflows in Multi-clouds,” in Proceedings of The 18th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing, May 2018, pp. 243–252.

BIBLIOGRAPHY 175

[115] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert, “Budget-Aware Scheduling Algo-

rithms for Scientific Workflows with Stochastic Task Weights on Heterogeneous IaaS Cloud

Platforms,” in Proceedings of The IEEE International Parallel and Distributed Processing

Symposium Workshops, May 2018, pp. 15–26.

[116] V. Arabnejad, K. Bubendorfer, and B. Ng, “A Budget-Aware Algorithm for Scheduling

Scientific Workflows in Cloud,” in Proceedings of The 18th IEEE International Conference

on High Performance Computing and Communications; 14th IEEE International Confer-

ence on Smart City; 2nd IEEE International Conference on Data Science and Systems, Dec

2016, pp. 1188–1195.

[117] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, and K. Li, “Efficient Task Scheduling for Budget

Constrained Parallel Applications on Heterogeneous Cloud Computing Systems,” Future

Generation Computer Systems, vol. 74, pp. 1–11, 2017.

[118] Z. Kozhirbayev and R. O. Sinnott, “A Performance Comparison of Container-based Tech-

nologies for The Cloud,” Future Generation Computer Systems, vol. 68, pp. 175–182, 2017.

[119] R. Shea, F. Wang, H. Wang, and J. Liu, “A Deep Investigation Into Network Performance

in Virtual Machine Based Cloud Environments,” in Proceeding of The IEEE Conference on

Computer Communications, April 2014, pp. 1285–1293.

[120] M. Ullrich, J. Lässig, J. Sun, M. Gaedke, and K. Aida, “A Benchmark Model for The Cre-

ation of Compute Instance Performance Footprints,” in Internet and Distributed Computing

Systems. Cham: Springer International Publishing, 2018, pp. 221–234.

[121] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “ContainerCloudsim: An

Environment for Modeling and Simulation of Containers in Cloud Data Centers,” Software:

Practice and Experience, vol. 47, no. 4, pp. 505–521, 2017.

[122] G. Kousalya, P. Balakrishnan, and C. Pethuru Raj, Workflow Scheduling Algorithms and

Approaches. Cham: Springer International Publishing, 2017, pp. 65–83.

[123] F. Nadeem and T. Fahringer, “Optimizing Execution Time Predictions of Scientific Work-

flow Applications in the Grid Through Evolutionary Programming,” Future Generation

176 BIBLIOGRAPHY

Computer Systems, vol. 29, no. 4, pp. 926–935, 2013, Special Section: Utility and Cloud

Computing.

[124] S. Pumma, W. chun Feng, P. Phunchongharn, S. Chapeland, and T. Achalakul, “A Runtime

Estimation Framework for ALICE,” Future Generation Computer Systems, vol. 72, pp. 65–

77, 2017.

[125] A. Matsunaga and J. A. B. Fortes, “On the Use of Machine Learning to Predict the Time

and Resources Consumed by Applications,” in Proceedings of The 10th IEEE/ACM Inter-

national Conference on Cluster, Cloud and Grid Computing, May 2010, pp. 495–504.

[126] D. A. Monge, M. Holec, F. Železný, and C. Garino, “Ensemble Learning of Runtime Predic-

tion Models for Gene-expression Analysis Workflows,” Cluster Computing, vol. 18, no. 4,

pp. 1317–1329, Dec 2015.

[127] S. Seneviratne and D. C. Levy, “Task Profiling Model for Load Profile Prediction,” Future

Generation Computer Systems, vol. 27, no. 3, pp. 245–255, 2011.

[128] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget: Continual Prediction

with LSTM,” IET Conference Proceedings, pp. 850–855, January 1999.

[129] W. Groß, S. Lange, J. Boedecker, and M. Blum, “Predicting Time Series with Space-Time

Convolutional and Recurrent Neural Networks,” in Proceeding of European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning, 2017, pp.

71–76.

[130] T. A. Babu and P. R. Kumar, “Characterization and Classification of Uterine Magneto-

myography Signals Using KNN Classifier,” in Proceeding of The Conference on Signal

Processing And Communication Engineering Systems, Jan 2018, pp. 163–166.

[131] B. Li, Y. Zhang, M. Jin, T. Huang, and Y. Cai, “Prediction of Protein-Peptide Interactions

with a Nearest Neighbor Algorithm,” Current Bioinformatics, vol. 13, no. 1, pp. 14–24,

2018.

[132] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based Learning Algorithms,” Machine

Learning, vol. 6, no. 1, pp. 37–66, Jan 1991.

BIBLIOGRAPHY 177

[133] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten, and L. Trigg,

Weka-A Machine Learning Workbench for Data Mining. Boston, MA: Springer US, 2010,

pp. 1269–1277.

[134] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,

W. Chen, R. F. da Silva, M. Livny, and K. Wenger, “Pegasus, A Workflow Management

System for Science Automation,” Future Generation Computer Systems, vol. 46, pp. 17–

35, 2015.

[135] E. Deelman, C. Carothers, A. Mandal, B. Tierney, J. S. Vetter, I. Baldin, C. Castillo,

G. Juve, D. Król, V. Lynch, B. Mayer, J. Meredith, T. Proffen, P. Ruth, and R. F. da Silva,

“PANORAMA: An Approach to Performance Modeling and Diagnosis of Extreme-scale

Workflows,” The International Journal of High Performance Computing Applications,

vol. 31, no. 1, pp. 4–18, 2017.

[136] M. A. Hall, “Correlation-based Feature Selection for Machine Learning,” Ph.D. disserta-

tion, University of Waikato, Hamilton, 1999.

[137] B. D. Fulcher and N. S. Jones, “Highly Comparative Feature-Based Time-Series Classi-

fication,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 12, pp.

3026–3037, Dec 2014.

[138] O. Trott and A. J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Dock-

ing with A New Scoring Function, Efficient Optimization, and Multithreading,” Journal of

Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010.

[139] J. Armstrong and F. Collopy, “Error Measures for Generalizing About Forecasting Methods:

Empirical Comparisons,” International Journal of Forecasting, vol. 8, no. 1, pp. 69–80,

1992.

[140] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin,

M. Siddiqui, H. L. Truong, A. Villazon, and M. Wieczorek, ASKALON: A Development

and Grid Computing Environment for Scientific Workflows. London: Springer London,

2007, pp. 450–471.

178 BIBLIOGRAPHY

[141] P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, “WIEN2K, An Aug-

mented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties, edited by

K,” Schwarz, Vienna University of Technology, Austria, 2001.

[142] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: A Comprehensive Approach

for Supporting Accessible, Reproducible, and Transparent Computational Research in The

Life Sciences,” Genome Biology, vol. 11, no. 8, p. R86, 2010.

[143] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman,

M. Borkum, S. Bechhofer, M. Roos, P. Li, and D. De Roure, “myExperiment: A Repos-

itory and Social Network for The Sharing of Bioinformatics Workflows,” Nucleic Acids

Research, vol. 38, no. suppl_2, pp. 677–682, 05 2010.

[144] D. R. Bharti, A. J. Hemrom, and A. M. Lynn, “GCAC: Galaxy Workflow System for Pre-

dictive Model Building for Virtual Screening,” BMC Bioinformatics, vol. 19, no. 13, p. 550,

2019.

[145] M. W. C. Thang, X. Y. Chua, G. Price, D. Gorse, and M. A. Field, “MetaDEGalaxy: Galaxy

Workflow for Differential Abundance Analysis of 16s Metagenomic Data,” F1000Research,

vol. 8, pp. 726–726, May 2019, 31737256[pmid].

[146] D. Eisler, D. Fornika, L. C. Tindale, T. Chan, S. Sabaiduc, R. Hickman, C. Chambers,

M. Krajden, D. M. Skowronski, A. Jassem, and W. Hsiao, “Influenza Classification Suite:

An Automated Galaxy Workflow for Rapid Influenza Sequence Analysis,” Influenza and

Other Respiratory Viruses, vol. n/a, no. n/a.

[147] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless Execution of Sci-

entific Workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Func-

tions,” Future Generation Computer Systems, 2017.

[148] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Kepler: An Ex-

tensible System for Design and Execution of Scientific Workflows,” in Proceedings of The

16th International Conference on Scientific and Statistical Database Management, June

2004, pp. 423–424.

BIBLIOGRAPHY 179

[149] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Muliadi,

S. Neuendorffer, J. Reekie et al., “Overview of the Ptolemy Project,” ERL Technical Report

UCB/ERL, Tech. Rep., 1999.

[150] P. Korambath, J. Wang, A. Kumar, J. Davis, R. Graybill, B. Schott, and M. Baldea, “A Smart

Manufacturing Use Case: Furnace Temperature Balancing in Steam Methane Reforming

Process via Kepler Workflows,” Procedia Computer Science, vol. 80, pp. 680–689, 2016,

international Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San

Diego, California, USA.

[151] P. C. Yang, S. Purawat, P. U. Ieong, M. T. Jeng, K. R. DeMarco, I. Vorobyov, A. D. McCul-

loch, I. Altintas, R. E. Amaro, and C. E. Clancy, “A Demonstration of Modularity, Reuse,

Reproducibility, Portability and Scalability for Modeling and Simulation of Cardiac Elec-

trophysiology Using Kepler Workflows,” PLOS Computational Biology, vol. 15, no. 3, pp.

1–19, 03 2019.

[152] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice: The Condor

Experience,” Concurrency - Practice and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[153] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn, P. Ehrens,

A. Lazzarini, R. Williams, and S. Koranda, “GriPhyN and LIGO, Building a Virtual Data

Grid for Gravitational Wave Scientists,” in High Performance Distributed Computing,

2002.

[154] B. B. Misra, Open-Source Software Tools, Databases, and Resources for Single-Cell and

Single-Cell-Type Metabolomics. New York, NY: Springer New York, 2020, pp. 191–217.

[155] R. Tsonaka, M. Signorelli, E. Sabir, A. Seyer, K. Hettne, A. Aartsma-Rus, and P. Spi-

tali, “Longitudinal Metabolomic Analysis of Plasma Enables Modeling Disease Progres-

sion in Duchenne Muscular Dystrophy Mouse Models,” Human Molecular Genetics, 01

2020, ddz309.

[156] J. Yu and R. Buyya, “Gridbus Workflow Enactment Engine,” Grid Computing: Infrastruc-

ture, Service, and Applications, p. 119, 2018.

180 BIBLIOGRAPHY

[157] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: A Software Platform for .NET-based Cloud

Computing,” High Speed and Large Scale Scientific Computing, vol. 18, pp. 267–295, 2009.

[158] S. Pandey, D. Karunamoorthy, and R. Buyya, Workflow Engine for Clouds. John Wiley &

Sons, Ltd, 2011, ch. 12, pp. 321–344.

[159] M. P. Mackley, B. Fletcher, M. Parker, H. Watkins, and E. Ormondroyd, “Stakeholder Views

on Secondary Findings in Whole-genome and Whole-exome Sequencing: A Systematic

Review of Quantitative and Qualitative Studies,” Genetics in Medicine, vol. 19, no. 3, pp.

283–293, 2017.

[160] D. Dong, Z. Xu, W. Zhong, and S. Peng, “Parallelization of Molecular Docking: A Review,”

Current Topics in Medicinal Chemistry, vol. 18, no. 12, pp. 1015–1028, 2018.

[161] J. Kelleher, Y. Wong, A. W. Wohns, C. Fadil, P. K. Albers, and G. McVean, “Inferring

Whole-genome Histories in Large Population Datasets,” Nature Genetics, vol. 51, no. 9,

pp. 1330–1338, 2019.

[162] M. H. Hilman, M. A. Rodríguez, and R. Buyya, “Task Runtime Prediction in Scientific

Workflows Using an Online Incremental Learning Approach,” in Proceedings of The 11th

IEEE/ACM International Conference on Utility and Cloud Computing, Dec 2018, pp. 93–

102.

[163] A. Gimeno, M. J. Ojeda-Montes, S. Tomás-Hernández, A. Cereto-Massagué, R. Beltrán-

Debón, M. Mulero, G. Pujadas, and S. Garcia-Vallvé, “The Light and Dark Sides of Virtual

Screening: What Is There to Know?” International Journal of Molecular Sciences, vol. 20,

no. 6, 2019.

[164] C. Grebner, E. Malmerberg, A. Shewmaker, J. Batista, A. Nicholls, and J. Sadowski, “Vir-

tual Screening in the Cloud: How Big Is Big Enough?” Journal of Chemical Information

and Modeling, Nov 2019.

[165] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland,

M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter, “The Future of Scientific Work-

BIBLIOGRAPHY 181

flows,” The International Journal of High Performance Computing Applications, vol. 32,

no. 1, pp. 159–175, 2018.

[166] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open Issues in Scheduling

Microservices in The Cloud,” IEEE Cloud Computing, vol. 3, no. 5, pp. 81–88, Sep. 2016.

[167] W. Gerlach, W. Tang, A. Wilke, D. Olson, and F. Meyer, “Container Orchestration for

Scientific Workflows,” in Proceedings of The IEEE International Conference on Cloud En-

gineering, March 2015, pp. 377–378.

[168] T. Combe, A. Martin, and R. D. Pietro, “To Docker or Not to Docker: A Security Perspec-

tive,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, Sep. 2016.

[169] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific Containers for Mobility

of Compute,” PLOS ONE, vol. 12, no. 5, pp. 1–20, 05 2017.

[170] E. Le and D. Paz, “Performance Analysis of Applications Using Singularity Container on

SDSC Comet,” in Proceedings of The Practice and Experience in Advanced Research Com-

puting 2017 on Sustainability, Success and Impact, ser. PEARC17. New York, NY, USA:

Association for Computing Machinery, 2017.

[171] H. Suhartanto, A. P. Pasaribu, M. F. Siddiq, M. I. Fadhila, M. H. Hilman, and A. Yanuar, “A

Preliminary Study on Shifting from Virtual Machine to Docker Container for Insilico Drug

Discovery in the Cloud,” International Journal of Technology, vol. 8, no. 4, 2017.

[172] M. Malawski, “Towards Serverless Execution of Scientific Workflows-HyperFlow Case

Study,” in Proceedings of The Workshop of Workflows in Support of Large-Scale Sciences,

2016, pp. 25–33.

[173] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless Execution of Scientific Workflows,” in

Proceedings of The 15th International Conference Service-Oriented Computing. Cham:

Springer International Publishing, 2017, pp. 706–721.

[174] J. Spillner, C. Mateos, and D. A. Monge, “FaaSter, Better, Cheaper: The Prospect of Server-

less Scientific Computing and HPC,” in High Performance Computing, E. Mocskos and

S. Nesmachnow, Eds. Cham: Springer International Publishing, 2018, pp. 154–168.

182 BIBLIOGRAPHY

[175] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,

S. Hand, and J. Crowcroft, “Unikernels: Library Operating Systems for the Cloud,” in Pro-

ceedings of The 18th International Conference on Architectural Support for Programming

Languages and Operating Systems, vol. 41, no. 1. New York, NY, USA: Association for

Computing Machinery, Mar. 2013, p. 461–472.

[176] D. Williams, R. Koller, M. Lucina, and N. Prakash, “Unikernels As Processes,” in Proceed-

ings of The ACM Symposium on Cloud Computing, ser. SoCC ’18. New York, NY, USA:

Association for Computing Machinery, 2018, p. 199–211.

[177] F. Jrad, J. Tao, and A. Streit, “A Broker-based Framework for Multi-cloud Workflows,”

in Proceedings of The International Workshop on Multi-cloud Applications and Federated

Clouds, ser. MultiCloud ’13. New York, NY, USA: Association for Computing Machinery,

2013, p. 61–68.

[178] J. D. Montes, M. Zou, R. Singh, S. Tao, and M. Parashar, “Data-Driven Workflows in Multi-

cloud Marketplaces,” in Proceedings of The 7th IEEE International Conference on Cloud

Computing, June 2014, pp. 168–175.

[179] Y. Omote, T. Shinagawa, and K. Kato, “Improving Agility and Elasticity in Bare-metal

Clouds,” in Proceedings of The 20th International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’15. New York, NY, USA:

Association for Computing Machinery, 2015, pp. 145–159.

[180] F. Nadeem, D. Alghazzawi, A. Mashat, K. Fakeeh, A. Almalaise, and H. Hagras, “Modeling

and Predicting Execution Time of Scientific Workflows in the Grid Using Radial Basis

Function Neural Network,” Cluster Computing, vol. 20, no. 3, pp. 2805–2819, Sep 2017.

[181] D. Sahoo, S. C. H. Hoi, and B. Li, “Large Scale Online Multiple Kernel Regression with

Application to Time-Series Prediction,” ACM Transactions on Knowledge Discovery from

Data, vol. 13, no. 1, Jan. 2019.

[182] J. Zenisek, F. Holzinger, and M. Affenzeller, “Machine Learning based Concept Drift De-

tection for Predictive Maintenance,” Computers & Industrial Engineering, vol. 137, p.

106031, 2019.

BIBLIOGRAPHY 183

[183] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, G. Mehta, F. Silva, and K. Vahi, “On-

line Fault and Anomaly Detection for Large-Scale Scientific Workflows,” in Proceedings

of The IEEE International Conference on High Performance Computing and Communica-

tions, Sep. 2011, pp. 373–381.

[184] P. Gaikwad, A. Mandal, P. Ruth, G. Juve, D. Król, and E. Deelman, “Anomaly Detection

for Scientific Workflow Applications on Networked Clouds,” in Proceedings of The Inter-

national Conference on High Performance Computing Simulation, July 2016, pp. 645–652.

[185] M. A. Rodriguez, R. Kotagiri, and R. Buyya, “Detecting Performance Anomalies in Sci-

entific Workflows Using Hierarchical Temporal Memory,” Future Generation Computer

Systems, vol. 88, pp. 624–635, 2018.

[186] H. Arabnejad and J. G. Barbosa, “Multi-workflow QoS-constrained Scheduling for Utility

Computing,” in Proceedings of The 18th IEEE International Conference on Computational

Science and Engineering, Oct 2015, pp. 137–144.

[187] M. Ghasemzadeh, H. Arabnejad, and J. G. Barbosa, “Deadline-Budget constrained Sche-

duling Algorithm for Scientific Workflows in a Cloud Environment,” in Proceedings of The

20th International Conference on Principles of Distributed Systems, ser. Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), P. Fatourou, E. Jiménez, and F. Pedone, Eds.,

vol. 70. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017,

pp. 19:1–19:16.

[188] H. M. Fard, R. Prodan, J. J. Durillo, and T. Fahringer, “A Multi-objective Approach

for Workflow Scheduling in Heterogeneous Environments,” in Proceedings of The 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2012,

pp. 300–309.

[189] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for Cost- and Deadline-

constrained Provisioning for Scientific Workflow Ensembles in IaaS Clouds,” Future Gen-

eration Computer Systems, vol. 48, pp. 1–18, 2015, Special Section: Business and Industry

Specific Cloud.

184 BIBLIOGRAPHY

[190] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A Taxonomy and Survey of Energy-

Efficient Data Centers and Cloud Computing Systems,” ser. Advances in Computers, M. V.

Zelkowitz, Ed. Elsevier, 2011, vol. 82, pp. 47–111.

[191] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, “Renewable-aware Geographical

Load Balancing of Web Applications for Sustainable Data Centers,” Journal of Network

and Computer Applications, vol. 83, pp. 155–168, 2017.

[192] L. Zeng, B. Veeravalli, and X. Li, “SABA: A Security-aware and Budget-aware Workflow

Scheduling Strategy in Clouds,” Journal of Parallel and Distributed Computing, vol. 75,

pp. 141–151, 2015.

[193] F. Zhao, C. Li, and C. Liu, “A Cloud Computing Security Solution based on Fully Homo-

morphic Encryption,” in Proceedings of The 16th International Conference on Advanced

Communication Technology, Feb 2014, pp. 485–488.

[194] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A Vi-

sion, Architectural Elements, and Future Directions,” Future Generation Computer Sys-

tems, vol. 29, no. 7, pp. 1645–1660, 2013, Including Special Sections: Cyber-enabled Dis-

tributed Computing for Ubiquitous Cloud and Network Services & Cloud Computing and

Scientific Applications — Big Data, Scalable Analytics, and Beyond.

[195] C. Doukas and F. Antonelli, “A Full End-to-end Platform as a Service for Smart City Ap-

plications,” in Proceedings of The 10th IEEE International Conference on Wireless and

Mobile Computing, Networking and Communications, Oct 2014, pp. 181–186.

[196] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan, “Osmotic Flow: Osmotic

Computing + IoT Workflow,” IEEE Cloud Computing, vol. 4, no. 2, pp. 68–75, March

2017.

[197] G. L. Stavrinides and H. D. Karatza, “A Hybrid Approach to Scheduling Real-time IoT

Workflows in Fog and Cloud Environments,” Multimedia Tools and Applications, vol. 78,

no. 17, pp. 24 639–24 655, Sep 2019.

