
电 子 科 技 大 学
UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA

博士学位论文
DOCTORAL DISSERTATION

论文题目 云中多维资源与分布式流水线并行训

练的优化调度技术

学科专业 软件工程

学　　号 202011090909
作者姓名 周光耀

指导老师 田文洪 and Rajkumar Buyya　教授
学　　院 信息与软件工程学院

分类号 密级 公开

UDC注 1

学　位　论　文

云中多维资源与分布式流水线并行训练的优化调度技术

（题名和副题名）

周光耀

（作者姓名）

指导老师 田文洪　教授

电子科技大学　成都

指导老师 Rajkumar Buyya　教授
University of Melbourne　墨尔本

（姓名、职称、单位名称）

博士 学科专业 软件工程

提交论文日期 论文答辩日期

学位授予单位和日期 电子科技大学　年　月

答辩委员会主席 郑纬民

评阅人

注 1：注明《国际十进分类法 UDC》的类号。

Optimization Scheduling Technologies for
Multi-dimensional Resources and Distributed Pipeline

Parallel Training in Cloud Computing

A Doctoral Dissertation Submitted to
University of Electronic Science and Technology of China

Discipline: Software Engineering
Author: Guangyao Zhou

Student ID: 202011090909
Supervisor: Prof. Wenhong Tian and Rajkumar Buyya

School: School of Information and Software Engineering

ABSTRACT

ABSTRACT

In the era of rapid development of the Internet, Cloud computing, as a key field of the
digital economy, has received broad attention. Cloud computing is an important paradigm
in current distributed computing systems. Relying on various fundamental mathematical
branches such as discrete mathematics, operations research and stochastic processes, re-
source scheduling management of large-scale distributed systems have always been one of
the key and difficult points in the field of computer science, which is necessary to simul-
taneously consider multi-dimensional resources and multiple optimization objectives, and
the optimization modeling and solving theory still needs to be developed. In addition, the
scale of artificial intelligence models, mainly represented by deep learning, is becoming
increasingly large, and their parallel training relies on the development of Cloud system
architectures and resource scheduling technologies. Most resource scheduling problems
in distributed systems belong to NP-Hard problems, and the research of the algorithm
design and optimization theory lag behind industrial applications. Various existing algo-
rithms can be used to obtain feasible scheduling schemes for specific scenarios, but there
is significant room for improvement in their computational complexity and optimality. In
order to explore methods or strategies to enhance the resource management capabilities
of distributed computing systems such as Cloud computing, this dissertation selects five
sets of scheduling scenarios (whose problems all belong to NP hard problems) in Cloud
environments, and conducts discussions on the design of their new optimization algorithm
architecture and algorithm theory. Themain research work and conclusions are as follows:

(1) To address the scheduling problem of independent task sets in Cloud nodes con-
sidering single-dimensional resources, the dissertation proposes a multi-route local search
algorithm (MSRA) series using heuristic algorithms as search routes (HLSA). The disser-
tation models the problem of minimizing makespan, proposes several MSRA algorithms,
and proves the upper limitation approximation ratios of the proposed algorithms are 5

4 in
the classical problemminimizing the maximummakespan in parallel machines, which im-
proves 1

12 compared to
4
3 of longest processing time alogirthm. The experimental results

show that: For homogeneous systems, MSRA in large-scale scenarios reduces the average
makespan by≥ 8.56%; that in small-scale scenarios has the probability 73.56% of obtain-
ing the theoretical optimal solution, which is 1.49 times that of the best baseline algorithm.

III

ABSTRACT

For heterogeneous systems, MSRA reduces the average makespan by ≥ 9.47%.
(2) To solve the scheduling problem of independent virtual machine sets in Cloud

nodes considering multi-dimensional resources, the dissertation proposes a growable ge-
netic algorithms (GGA) series with additional growth route. The dissertation formulates
the problem of minimizing the maximum utilization of resources in each dimensions and
minimizing system’s energy consumption in heterogeneous nodes, and proposes instanti-
ation algorithms GHW-NSGA II and GHW-MOEA/D using HLSA as the growth route.
The GGA series reconstructs the genetic algorithm architecture, allowing various algo-
rithms to serve as its growth route, thus improving the convergence speed of the genetic
solution process and the optimality of convergence solutions. Simulation data sets and
public data sets drive experiments to validate the advantages of GGA: the convergence
speed of GGA can reach 10 times that of the baseline algorithms of evolutionary algo-
rithms (NSGA II and MOEA/D) in large-scale experimental scenarios.

(3) Aiming at the scheduling problem of parallel training workflow of deep model
using equalMicrobatch’s data partitioning-based pipeline parallelism inGPUCloud server
nodes, the dissertation derives the analytic formulas of theoretical cost model (not only
simultaneously considering the GPU computing time and network communication time,
but also taking into account the nonlinear relationship between them and the data amount),
proposes improved multi-dimensional dichotomy (IMD) and IMD-based cross-search al-
gorithm (CSIMD). This dissertation proves that the theoretical optimal error of the IMD
can approach 0, and proves IMD’s computational complexity is a linear growth function
much lower than the best baseline algorithms including dynamic programming and recur-
sive algorithm. Parallel training experiments in a realistic distributed environment show
that: the average training speeds obtained by CSIMD in CNN-related networks training
are respectively 2.0× and 2.5× of baseline strategies GPipe-R and GPipe-E; and that in
transformer-related networks training are respectively 1.5× and 1.6×.

(4) The dissertation designs a novel parallel training architecture for deep learning,
i.e., unequal Microbatches-based pipeline parallelism (UMPIPE). UMPIPE allows differ-
ent processes of the neural network to select different Microbatch sizes, introducing bet-
ter training schemes for feasible solutions. In order to solve the optimization scheme of
UMPIPE, the dissertation proposed a dual-chromosome genetic algorithm series (DGAP).
To tackle the difficulty of calculating the training time corresponding to UMPIPE training
scheme, the dissertation further proposes a matrix operation-based two-level accelerated

IV

ABSTRACT

improvement strategy to simultaneously calculate the end training time corresponding to
multiple individuals and multiple Microbatches of DGAP. Theoretical analysis proves the
optimality of UMPIPE architecture, and proves that the convergence of dual-chromosome
strategy is far superior to that of single-chromosome for solving UMPIPE. The exper-
iments of training GPT1 and VGG16 in realistic environment show that, the speeds of
UMPIPE’s training scheme are increase by 13.89% and 14.36% respectively compared
with the optimal training scheme under the baseline architecture GPipe.

(5) The dissertation formulates the system model of the hierarchical Cloud comput-
ing with multiple subsystems (HCCMS) for the diversity of task requests and diversity
optimization objectives. For the joint optimization problem with multiple subproblems,
the dissertation proposes a novel perspective of regarding the scheduling algorithms as the
schedulable resources, and designs the scheduling framework to select the scheduling al-
gorithms. In order to instantiate the algorithm selector series, the dissertation proposes the
deep learning-based algorithm selector (DLS) and the deep reinforcement learning-based
algorithm selector (DRLS). Compared with the best results among the baseline strategies,
DLS reduces the weighted cost of system by 18.8% in the scenarios with the stable pa-
rameter range, and DRLS reduces the weighted cost of system by 11.5% in the dynamic
scenarios with varying ranges of parameters.

This dissertation proposes multiple families of optimization scheduling algorithms
for scene element changes at different progressive levels, involving various types of algo-
rithms such as heuristic, local search, meta-heuristic, and machine learning. This disser-
tation expands the adaptability of Cloud systems and algorithm systems from application
breadth and theoretical depth: the research progression from single dimensional resources
to multi-dimensional resources has improved the adaptability to changes in resources’ di-
mensions; the research progression from independent task sets to associated workflow sets
has improved adaptability to changes in tasks’ correlations; the research progression from
single objective to multi-objective has improved the adaptability to changes in the number
of optimization objectives; the research progression from single-center with single-layer
to multi-centers with multi-layers and multi-subsystems has improved the joint utility in
system hierarchy and scheduling scenarios.

Keywords: Cloud Environment, Scheduling of Multi-Dimensional Resources, Pipeline
Parallelism, Growable Genetic Algorithm, Algorithm Selector

V

Contents

Contents

Chapter 1 Exordium ..1
1.1 Background and Motivation ..1
1.2 Research Trends and Development Status..4

1.2.1 Development of Cloud Computing ..4
1.2.2 Optimization Problems in Cloud Scheduling6
1.2.3 Optimization Algorithm in Cloud Scheduling....................................8

1.3 Scheduling and Algorithms in Cloud ...8
1.4 Research Content and Key Issues ... 16

1.4.1 Research Contents .. 17
1.4.2 Key Issues .. 18

1.5 Organization of this Dissertation .. 20
Chapter 2 Single-dimensional Resource Scheduling based on Multi-route

Search Algorithms .. 22
2.1 Introduction.. 22
2.2 Related work .. 26

2.2.1 Reviews of Scheduling Algorithms ... 26
2.2.2 Review of System Model... 29

2.3 Cloud Systems and Optimization Problems Formulations considering
Single-dimensional Resources ... 30
2.3.1 Models of Minimizing Makespan in Cloud Computing 31

2.4 Algorithm Design: Multi-Route Search Algorithm.................................... 34
2.4.1 General Local Search Algorithm... 34
2.4.2 Specified basic Local Search Route ... 35
2.4.3 Combination of Multi-routes and the Flowchart............................... 41

2.5 Theoretical Analysis and Proof .. 43
2.6 Experimental Results and Analysis... 48

2.6.1 Problems and Simulated Environment ... 48
2.6.2 Compared Baselines and Evaluation Indexes................................... 49
2.6.3 Result and Discussion ... 50
2.6.4 Summary .. 59

VI

Contents

2.7 Summary of this Chapter .. 60
2.8 Appendix: Numerical Table of Experimental Results................................. 61

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Ge-
netic Algorithms ... 69

3.1 Introduction.. 69
3.2 Related Work.. 72

3.2.1 Scheduling Algorithms in Cloud Computing 72
3.2.2 MDRSP in Cloud Computing ... 73
3.2.3 Existing Approaches to MOP ... 75
3.2.4 Analysis of Related Work .. 76

3.3 Cloud Systems and Optimization Problems Formulations considering
Multi-dimensional Resources .. 77
3.3.1 Cloud System Model with Multi-Dimensional Resources 78
3.3.2 Problem Formulations for Resources Utilization and Energy Con-

sumption... 81
3.4 Algorithm Design: Growable Genetic Algorithm...................................... 84

3.4.1 Random Multi-weights-based Dimensionality Reduction 86
3.4.2 Heuristic-based Local Search Algorithm .. 88
3.4.3 Growable Genetic Algorithm based on Growth Strategies 90
3.4.4 Instantiation of GHW: GHW-NSGA II and GHW-MOEA/D.............. 91

3.5 Theoretical Analysis and Proof .. 94
3.5.1 Analysis of Computational Complexity of GHW 94

3.6 Experimental Results and Analysis... 95
3.6.1 Experiments Setting.. 95
3.6.2 EX1: Comparison of the Growth Strategies for GGA 97
3.6.3 EX2: Comparison of Dimensionality Reduction Strategies for

GGA-HLSA .. 100
3.6.4 EX3: Evaluation of Practicability on Azure Trace........................... 103
3.6.5 EX4: Comparison with the State-of-the-art.................................... 105
3.6.6 Summary of Experiments ...112

3.7 Summary of this Chapter ...113
Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of

Deep Learning Models Based on Cross Search Algorithms115

VII

Contents

4.1 Introduction...115
4.2 Related Work...118
4.3 Cloud System and Optimization Problem Formulations Considering Par-

allel Training Workflow of Deep Leaning Model 120
4.3.1 Cost Model for GPipe considering Computing and Communication

Time .. 121
4.3.2 Theoretical Analysis of Cost Model... 123
4.3.3 Theoretical Analysis of Basic Function .. 126

4.4 Algorithm Design: Cross Search Algorithm... 127
4.4.1 Cross-Search for Joint Solution of ω1 and ω2 128
4.4.2 Improved Multiple Dichotomy Algorithm to Divide Network Layers 128
4.4.3 Method to Obtain Optimal Partition Number................................. 131

4.5 Theoretical Analysis and Proof .. 131
4.6 Experimental Results and Analysis... 135

4.6.1 Evaluation of Improved Multi-Dimensional Dichotomy.................. 136
4.6.2 Evaluation of CSIMD in the CV-related networks 139
4.6.3 Evaluation of CSIMD in the NLP-related networks 142

4.7 Summary of this Chapter .. 144
Chapter 5 Design of a novel architecture for parallel training of deep learning

based on Unequal Date Partitioning and Dual-chromosome Genetic
Algorithms... 147

5.1 Introduction.. 147
5.2 Related Work.. 150
5.3 Design and Formulations of a New Parallel Training Architecture

(UMPIPE) for Deep Learning Models... 152
5.3.1 Architecture of BABYPIPE ... 154
5.3.2 Formulas for BABYPIPE .. 158
5.3.3 Theoretical Analysis of Basic Functions....................................... 160
5.3.4 Analysis for Optimality of BABYPIPE .. 161

5.4 Algorithm Design: Double-chromosome Genetic Algorithms for UMPIPE . 163
5.4.1 DGAP: Dual Chromosomes-based Genetic Algorithm 164
5.4.2 Analysis of Convergence for Dual-Chromosomes Strategy 166
5.4.3 OiDGAP: One-level improved DGAP ... 167

VIII

Contents

5.4.4 TiDGAP: Two-level improved DGAP.. 168
5.5 Experimental Results and Analysis... 170

5.5.1 Experiment Settings.. 170
5.5.2 EX1: Evaluation of Dual-Chromosome Strategy of TiDGAP Com-

pared with TiGAP .. 173
5.5.3 EX2: Evaluation of Two-level improvement of TiDGAP Compared

with OiDGAP and DGAP .. 178
5.5.4 EX3: Evaluation of TiDGAP for UMPIPE Compared with Local

Greedy Algorithm and Dynamic Programming.............................. 180
5.5.5 EX4: Evaluation of UEDP Compared UMPIPE with State-of-the-

Art Parallelism... 184
5.5.6 Summary of Experiments .. 187

5.6 Summary of this Chapter .. 189
Chapter 6 Hierarchical Cloud System andMachine Learning basedAlgorithm

Selectors .. 191
6.1 Introduction.. 191
6.2 Related Work.. 195
6.3 Design of Hierarchical Cloud System with Multi-subsystem 197

6.3.1 System model of Multi-Level Cloud System 197
6.3.2 Subsystems and Subproblems of Resource Scheduling 202
6.3.3 Joint Scheduling Problem and Cost Model for Various Subproblems . 204

6.4 AlgorithmDesign: Algorithm Selectors based onMachine LearningMethods205
6.4.1 SFSSA: Scheduling Framework to Select the Scheduling Algorithms 205
6.4.2 Algorithms Pool... 207
6.4.3 DLS: DL-based Selector of Scheduling Algorithms........................ 209
6.4.4 DRLS: DRL-based Selector of Scheduling Algorithms 210

6.5 Experimental Results and Analysis... 214
6.5.1 Experiment Setting ... 214
6.5.2 Results and Discussion.. 216
6.5.3 Overall Summary ... 227

6.6 Summary of this Chapter .. 227
Chapter 7 Conclusion and Prospect ... 229

7.1 Conclusion ... 229

IX

Contents

7.2 Prospect... 231
Acknowledgements .. 234
References ... 236
Research Results Obtained During the Study for Doctoral Degree 256

X

List of Figures

List of Figures

Figure 1-1 A Diagram of Scheduling Algorithm to Generate the Scheme ⟨X, S⟩.9
Figure 1-2 A Diagram for Continuous Dynamic Scheduling Process over Time t. 10
Figure 1-3 A Diagram of Search-based Algorithms... 13

Figure 2-1 Cloud Architecture with Resources Scheduling Process.................... 24
Figure 2-2 Flowchart of Local Search Algorithms based on the Neighbors of

Dual Resources with Various Search Routes including LPT, BFD,
K-Step and their Combinations... 40

Figure 2-3 Iterative processes of makespan with 100 iterations for the problem
of minimizing makespan for homogeneous resources....................... 51

Figure 2-4 The average makespans (λ1) under each (M,N) with 100 instances
respectively for problem of minimizing makespan for homoge-
neous resources. ... 51

Figure 2-5 The box chart of ratio between average makespan and the least av-
erage makespan (AM/LAM, λ2) for our proposed algorithms cor-
responding to the experiments of Fig 2-4. 52

Figure 2-6 The probabilities achieving the least makespan (PALM, λ3) corre-
sponding to the experiments of Fig 2-4. .. 53

Figure 2-7 The probabilities achieving the theoretical optimal makespan
(PATO, λ4) under each (M,N) with 100 instances respectively for
problem of minimizing makespan for homogeneous resources........... 54

Figure 2-8 Maximum approximation ratios of makespan (λ5) corresponding to
the experiments of Fig 2-7... 54

Figure 2-9 Average Complexities of LPTO for P||Cmax. 55
Figure 2-10 The Relationship between ξ and M. .. 55
Figure 2-11 The average makespans (λ1) under each (M,N) with 100 instances

respectively for the problem of minimizingmakespan and total run-
ning time for heterogenous resources. .. 57

XI

List of Figures

Figure 2-12 The average of total running time (λ6) under each (M,N) with 100
instances respectively corresponding to the experiments of Fig 2-
11. ... 57

Figure 2-13 The ratio between average makespan and the least average
makespan (AM/LAM, λ2) corresponding to the experiments of Fig
2-11. .. 58

Figure 2-14 The ratio between average total running time and the least average
total running time (AT/LAT, λ7) corresponding to the experiments
of Fig 2-11. ... 58

Figure 2-15 The box chart of ratio between average makespan and the least av-
erage makespan (AM/LAM, λ2) corresponding to the experiments
of Fig 2-11. ... 59

Figure 2-16 The box chart of ratio between average total running time and the
least average total running time (AT/LAT, λ7) corresponding to the
experiments of Fig 2-11. .. 59

Figure 2-17 Pareto scatter ofmakespan and total running time for heterogeneous
resources. .. 60

Figure 3-1 Structure of cloud computing with various resources. 79
Figure 3-2 Allocation of a task or VM to heterogeneous nodes with multi-

dimensional resources. ... 80
Figure 3-3 Relationship of linearly superposition for multi-dimensional re-

sources allocating two tasks or VMs to one server node.................... 81
Figure 3-4 Basic steps of our proposed framework to solve MDRSPs. 84
Figure 3-5 The flowchart comparison between the classical GA and our pro-

posed GGA-HLSA-RW (GHW). .. 85
Figure 3-6 The visualized example of GHW-NSGA II with actual results in

each stage... 93
Figure 3-7 2D Pareto solution of minimizing the maximum utilization of

each dimensional resources under non-growth, random growth and
HLSA growth strategies of GGA with random crossover and re-
generation for 8 server nodes and 80 VMs. 98

Figure 3-8 Energy consumption under non-growth, random growth and HLSA
growth strategies of GGA with random crossover and regeneration. ... 99

XII

List of Figures

Figure 3-9 2D Pareto solution using different dimensionality reduction strate-
gies of GGA-HLSAwith random crossover and regeneration for 20
server nodes and 200 VMs. ... 101

Figure 3-10 Energy consumption using different dimensionality reduction
strategies of GGA-HLSA with random crossover and regeneration. . 101

Figure 3-11 Heat-map of the CPU utilization required by our selected 338 types
of VMs on 35 types of machines, where the gray represents the VM
of the specified type can not run on the corresponding machine. 102

Figure 3-12 Pipeline of Pareto solution sets within 60 Generations for minω(2)

of Azure Trace. ... 104
Figure 3-13 Pipeline of Energy Consumption within 10 Generations for

minω(4) of Azure Trace. ... 105
Figure 3-14 HVs-over-time of proposed GHW family, NSGA II and MOEA/D

for the problem minω(2) in simulation dataset. 107
Figure 3-15 Absolute HVs and ratio over number of VMs where (200, 40),

(500, 100), (1000, 200) and zero_to_one=False.110
Figure 3-16 Extended results of Fig. 3-14 with larger time range.110
Figure 3-17 HVs-over-time of proposed GHW family, NSGA II and MOEA/D

for the problem minω(2) with enumerative algorithm as reference
in small scale simulation dataset. ..111

Figure 3-18 APFTOPS of the proposed GHW family, NSGA II and MOEA/D
for the problem minω(2) with enumerative algorithm as reference
in small scale simulation dataset where each combination of (n,m)
has 100 instances. ..112

Figure 4-1 The structures of the GPipe parallelism. 121
Figure 4-2 The diagram of the whole calculation process and the correspond-

ing symbols for one micro-batch of DNN. 124
Figure 4-3 The diagram of network division (K layers to N stages) with the

forward propagations.. 125
Figure 4-4 The maximum approximations for different numbers of weight

groups when using improved multi-dimensional dichotomy algo-
rithm to solve multi-dimensional array segmentation where each
combination of (K,N) has 100 instances. 136

XIII

List of Figures

Figure 4-5 The probabilities achieving the theoretical optimization (PATO) for
different numbers of weight groups when using improved multi-
dimensional dichotomy algorithm to solve multi-dimensional array
segmentation where each combination of (K,N) has 100 instances
corresponding to Fig 4-4. ... 137

Figure 4-6 The average execution time (computational complexity) for differ-
ent sizes of weight groups when using improved multi-dimensional
dichotomy algorithm to solve multi-dimensional array segmenta-
tion where each combination of (K,N) has 20 instances. 138

Figure 4-7 The training time with respect of K (number of layers) for self-
designed CNN in Table 4-4 to train 6400 images ofMnist under dif-
ferent network division and batch partition strategies where mini-
batch size is 64, the resize of image is 100 × 100. 140

Figure 4-8 The boxchart of training time for self-designed CNN in Table 4-4
to train 6400 images of Mnist under different network division and
batch partition strategies where mini-batch size is 16. 140

Figure 4-9 The training time with respect of N (number of stages) for VGG11
to train 6400 images of ImageNet under different network division
and batch partition strategies where mini-batch size is 100, the re-
size of image is 224 × 224 and N ∈ [4, 10]). 141

Figure 4-10 The training time with respect of N (number of stages) for VGG16
to train 6400 images of ImageNet under different network division
and batch partition strategies where mini-batch size is 64, the resize
of image is 224 × 224 and N ∈ [4, 16]). 141

Figure 4-11 The training time with respect of K (number of layers) for self-
designed transformer-based NLP networks in Table 4-6 to train
320 × 100 seqs of of WikiText-2 under different network division
and batch partition strategies where the seq_length is 16, the mini-
batch size is 320 and the embedding size is 10. 143

XIV

List of Figures

Figure 4-12 The training time with respect of N (number of stages) for GPT-
1 to train 1024 × 100 seqs of WikiText-2 under different network
division and batch partition strategies where number of layers is 14
(12 transformer layers), embedding_dim is 768, number of heads
is 768/4, dim_feedforward is 768 × 4 and seq_length is 16. 145

Figure 5-1 Computation time to process 512 pieces data in realistic GPU de-
vices. .. 148

Figure 5-2 Forward propagation timeline for the GPipe and BABYPIPE in two
stages of GPUs where: FP

1 (2) = FP
1 (4) = 2t, FM

1 (2) = 2FM
1 (4) =

2t, FP
2 (2) = 2FP

2 (4) = 2t. ... 157
Figure 5-3 Timeline with forward propagation and backward propagation for

the GPipe and BABYPIPE in two stages of GPUs where: FP
1 (2) =

FP
1 (4) = 2t, FM

1 (2) = FM
1 (4) = 2t, FP

2 (2) = FP
2 (4) = 2t and

BP
1 (2) = 2BP

1 (4) = 2t, BM
1 (2) = 2BM

1 (4) = 2t, BP
2 (2) = 2BP

2 (4) =
2t. .. 158

Figure 5-4 The optimization results (corresponding to time for training one
minibatch) over generations in randomly generated basic time ar-
rays comparing TiDGAP with TiGAP, where: Np = 100, Ng =
100, F,B ∼ U = [1, 100], randomly initializing Np individuals. 174

Figure 5-5 The optimization results (corresponding to training time for one
minibatch) over generations in randomly generated basic time ar-
rays comparing TiDGAP with TiGAP, where: Np = 100, Ng =
100, F,B ∼ U = [1, 100], using the optimal GPipe solution as the
initial individuals. .. 176

Figure 5-6 The probabilities of achieving global optimization (PAGO) over
generations in randomly generated basic time arrays comparing
TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U =
[1, 100], randomly initializing Np individuals. 177

Figure 5-7 The execution time of TiDGAP, OiDGAP and DGAP for solving
UMPIPE in simulated scenarios launched on GeForce RTX 3060
Ti. .. 179

Figure 5-8 The execution time of TiDGAP for solving UMPIPE in simulated
scenarios where (N = 10,P = 512,Ng = 100). 180

XV

List of Figures

Figure 5-9 The optimization results (i.e., time for training one minibatch) over
times in realistic environments for GPT-1 and VGG16 comparing
TiDGAP with local greedy and global greedy algorithms with ran-
domly generated initial solutions, where: Np = 100, Ng = 100,
under distributed systems with Tesla V100 GPUs, randomly ini-
tializing Np individuals. ... 182

Figure 5-10 Waterfall charts of optimal partitions of TiDGAP in Fig. 5-9. 183
Figure 5-11 The results of self-designed CNN-based networks for 100 mini-

batches with different numbers of layers in realistic environments
comparing TiDGAPwith LG and GG algorithms, where Np = 100,
Ng = 100, randomly initializing Np individuals. R1 = ϵLGTiDGAP,
R2 = ϵGGTiDGAP. ... 183

Figure 5-12 The accuracy over epochs in self-designed CNN-based networks
in MNist and CIFAR10 dataset comparing UMPIPE with GPipe,
where the data partitioning schemes of UMPIPE are listed in Table
5-8, minibatch-size is 64. ... 188

Figure 6-1 The traditional process of Cloud resource management. 199
Figure 6-2 The hierarchical Cloud computing with multi subsystems (HCCMS).199
Figure 6-3 The Scheduling framework to select the scheduling algorithms (SF-

SSA). .. 207
Figure 6-4 The Train Process for DL-based Selectors of Table 6-4.211
Figure 6-5 A framework of DRL-based selector with various strategies. 212
Figure 6-6 The makespan and computational complexities of various system

organizations for 10000 tasks. ... 216
Figure 6-7 The performance comparison between baseline strategies and DL-

based selectors with 25 subsystems for nk(t) ∼ U(2, 20) and
mk(t) ∼ U(nk(t), 100). .. 218

Figure 6-8 The performance comparison between baseline strategies and DL-
based selectors with 25 subsystems with varying ranges of server
nodes and mk(t) ∼ U(nk(t), 100)... 220

XVI

List of Figures

Figure 6-9 The performance comparison between the DRLS (Model1 being
trained) and baseline strategies with 200 subsystems for 100 time
partitions in the scenarios of nk(t) ∼ U(2, 20) and mk(t) ∼
U(nk(t), 100). .. 221

Figure 6-10 The cost per time partition of Model1 being trained and baseline
strategies with 200 subsystems for 10 time partitions and various
distributions of numbers of server nodes and tasks. 223

Figure 6-11 The performance comparison in train process of the Model1 to
Model5 with 200 subsystems for 40 time partitions. 224

XVII

List of Tables

List of Tables

Table 2-1 Notations and Descriptions.. 31
Table 2-2 Problems Executed in Experiments. .. 33
Table 2-3 Summary of Proposed Algorithms and their corresponding Prob-

lems evaluated in Subsequent Experiments. 47
Table 2-4 Comparison Algorithms evaluated in Experiments. 47
Table 2-5 The parameter ξ and evaluation index R2 to fit the average compu-

tational complexities CcLO ≈ ξN of LPT-One for P||Cmax. 53
Table 2-6 The average makespans (λ1) under (M = 20,N ∈ [25, 100]) re-

spectively for problem of minimizing makespan for homogeneous
resources corresponding to Fig 2-4(a). ... 62

Table 2-7 The average makespans (λ1) under (M ∈ [5, 100],N = 100) re-
spectively for problem of minimizing makespan for homogeneous
resources corresponding to Fig 2-4(b). ... 63

Table 2-8 The probabilities achieving the least makespan (PALM, λ3) under
(M = 20,N ∈ [25, 100]) corresponding to Fig 2-6(a). 64

Table 2-9 The probabilities achieving the least makespan (PALM, λ3) under
(M ∈ [5, 100],N = 100) corresponding to Fig 2-6(b). 65

Table 2-10 The average makespans (λ1) under (M = 5,N ∈ [5, 100]) for the
problem of minimizing makespan and total running time for het-
erogenous resources corresponding to Fig 2-11(a). 66

Table 2-11 The average makespans (λ1) under (M = 10,N ∈ [10, 100]) for
the problem of minimizing makespan and total running time for
heterogenous resources corresponding to Fig 2-11(b). 67

Table 2-12 The average makespans (λ1) under (M = 10,N ∈ [10, 100]) for
the problem of minimizing makespan and total running time for
heterogenous resources corresponding to Fig 2-11(b). 68

Table 3-1 Summary of Scheduling Algorithms in Literature from Three Cat-
egories i.e., Heuristic, Machine Learning and Meta Heuristic. 74

XVIII

List of Tables

Table 3-2 Summary of Approaches to MOPs in Literature from Two Aspects
i.e., Indicator- and Simplification-based Approaches........................ 76

Table 3-3 Notations and Descriptions.. 78
Table 3-4 Different Strategies of GGA. ... 95
Table 3-5 Setup of Experiments. ... 97
Table 3-6 TheHVs and corresponding time compared the algorithms of GHW

family with state-of-the-art. ... 108

Table 4-1 Notations and Descriptions.. 120
Table 4-2 The networks and their corresponding dataset in experiment eval-

uations... 135
Table 4-3 The fitted slope (FS) and goodness-of-fit to linearly fit the execu-

tion time of IMD corresponding to Fig 4-6. 138
Table 4-4 Detail of Self-designed CNNs.. 139
Table 4-5 The (minimum, average, maximum) ratios of training time between

the comparison strategies and CSIMD under each CV-related network142
Table 4-6 Detail of Self transformers-based networks 143
Table 4-7 The average ratios of training time between the comparison strate-

gies and CSIMD under each NLP-related network 146

Table 5-1 Notations and Descriptions.. 152
Table 5-2 The Description and Time Complexity of Genetic Algorithm and

its Improved Algorithms for BABYPIPE. 172
Table 5-3 The quantitative optimization results of TiDGAP and TiGAP at the

100-th generation in the experiments of Fig. 5-4. 175
Table 5-4 The quantitative optimization results of TiDGAP, TiGAP at the

100-th generation and that of GPipe in the experiments of Fig. 5-5
for N = 10, setting equal partitions into initial states. 176

Table 5-5 Detail of Self-designed CNNs. ... 181
Table 5-6 The quantitative optimization results of TiDGAP, local greedy

(LG) and global greedy (GG) in the experiments of Fig. 5-9 with
randomly generated initial solutions. ... 182

Table 5-7 The comparison of various parallel architectures (GPipe, UMPIPE,
PipeDream, UMPipeDream (UPD)) in different scenarios. 184

XIX

List of Tables

Table 5-8 The configures of networks for MNist and CIFAR10 dataset with
their data partitioning schemes of parallelism. 187

Table 6-1 Notations and Descriptions.. 198
Table 6-2 Five Subproblems in This Chapter. ... 205
Table 6-3 Various Types of Algorithms in Algorithms Pool........................... 208
Table 6-4 DNN Structures of DLSs. ... 210
Table 6-5 DRL-based Models Combining Various Strategies Trained in This

Chapter. ... 214
Table 6-6 Compared Baseline Strategies. .. 215
Table 6-7 Parameter Setting in Experiments. .. 216
Table 6-8 The comparison of total cost for 100 time partitions with 25 sub-

systems between DN3 and baselines in the scenarios of nk(t) ∼
U(2, 20) and mk(t) ∼ U(nk(t), 100). .. 218

Table 6-9 The comparison of total cost for 100 time partitions with 200 sub-
systems between Model1 and baselines in the scenarios nk(t) ∼
U(2, 20) and mk(t) ∼ U(nk(t), 100). .. 221

XX

Chapter 1 Exordium

Chapter 1 Exordium

1.1 Background and Motivation

Thanks to the development of basic disciplines such as physics, mathematics and
computer science, mankind has entered the Internet era, followed by the era of big data
and artificial intelligence [1, 2]. Distributed computing system is a key system architecture
paradigm, which can support the requirements of big data and artificial intelligence for the
comprehensive performance of computing systems [3]. The emerging trends of Industry
4.0 and 5G have significantly increased the number of tasks that Internet based computing
systems need to process in real time, thus putting forward higher requirements for the
comprehensive performance (including flexibility, reliability, dynamics, etc.) of large-
scale distributed computing systems [4].

As a paradigm for providing high-performance computing services in a pay as you go
manner, cloud computing ¬ effectively supporting increasingly complex software systems
and computational programs. The current cloud computing systems have a stable struc-
tural paradigm, such as Software as a Service (SaaS), software-as-a-service）, Platform-
as-a-Service (PaaS) and Infrastructure as a Service (IaaS), infrastructure-as-a-service）,
and it can meet the diverse needs of a wide range of users [5]. Cloud computing has nu-
merous users worldwide, providing powerful support for the operation of society and has
become an indispensable component of today’s industrial big data era. Until now, cloud
computing is not only serving commercial systems, but also related to social layout.

Cloud computing, as an elastic, reliable, and dynamic service provider, provides
multi-dimensional resources on the basis of devices such as CPU (central processing
unit), RAM (random access memory), GPU (graphics processing unit), DS (disk stor-
age), and BW (band width) [4, 6, 7] . Time generally refers to the entire service lifespan

¬ Cloud computing refers to a distributed computing paradigm, typically also used to represent the entire cloud
computing system. A cloud system represents an organic whole constructed according to the cloud computing
paradigm, consisting of several interdependent components with specific functions, including hardware devices
(CPU, GPU, disk, motherboard, Ethernet cable, router, etc.), application software, operating system software, etc;
Cloud scheduling is the abbreviation for cloud computing resource scheduling

 In cloud computing, multidimensional resources represent the accumulated capabilities of different types of com-
ponent devices (such as CPU, RAM, DS, BW, etc.) that can support cloud computing services in time and space,
and time and space can also be considered as resources. Multi dimensional resource scheduling means that in the
process of cloud computing resource scheduling, it is necessary to consider the overall optimization scheduling
of each server node containing multiple different dimensions of resources (different types of devices) - the opti-
mization objective is related to the operation of resources in multiple dimensions. Single dimensional resource
representation only requires resources from one dimension during scheduling - the optimization objective is only

1

Doctoral Dissertation of University of Electronic Science and Technology of China

of a cloud computing platform, while space refers to the actual physical location where
cloud computing physical devices are placed. From the perspective of the composition
of the entire space-time element, ”time” and ”space” are also two key resources of cloud
computing. The various electrical components of cloud computing devices work in time
and space driven by electrical energy, forming the true resource collection of cloud com-
puting. Therefore, the essential resource provided by cloud computing is actually the
effective conversion of electrical energy (energy, time, and space) per unit time and unit
space. However, the deployment capability and resource scheduling capability of cloud
computing systems still lag behind the growth of Internet data volume. The increasing
task requests and data transmission make the scale of cloud computing systems gradually
expand on the basis of hardware device deployment. With the expansion of cloud comput-
ing user groups and facilities, a large number of user requests and reservation tasks pose
challenges to resource scheduling in cloud computing. Inappropriate resource scheduling
schemes can lead to excessive energy consumption, long task running times, and excessive
system burden, thereby reducing service quality, shortening the service life of equipment
and components, and increasing carbon dioxide emissions. The scale of cloud computing
systems is still expanding, and research on cloud computing resource management has
an impact on the development of cloud computing related industries in industry [3, 8]. At
present, multi-stage methods [9], virtual machine migration [10], queuing models [11], ser-
vice migration [12], workload migration [13], application migration [14], task migration [15],
and scheduling algorithm based schedulers are commonly used strategies for optimizing
cloud computing resource management. Among them, the scheduler based on resource
scheduling algorithm is one of the key solutions to cloud computing resource manage-
ment problems, and also the foundation of most other methods. However, factors such
as time cycle, resource status, and environment can affect the optimization objectives and
key parameters of resource scheduling, leading to a significant increase in the complexity
of the solving process. Therefore, the research on cloud computing resource scheduling
has always been a hot and difficult topic in the era of big data, which also affects the
positioning and development of cloud computing in society. Independent task requests,
virtual machine requests, and workflows are common processing objects in cloud com-
puting. In specific scenarios, it is necessary to develop corresponding resource scheduling
plans based on the characteristics of the processed object and optimization objectives. In

related to resources from one dimension

2

Chapter 1 Exordium

addition, with the application of AI (artificial intelligence) technology, mainly based on
deep learning, to solve increasingly complex practical problems including machine vision
and natural language processing, the scale of deep learning models is becoming larger and
larger, and the training cycle of deep learning models is also changing towards complexity
and length. There is no system, pattern or architecture that can significantly improve the
training cycle from basic components. Often, iteratively training a complex large-scale
deep learning model can take several hours, days, weeks, or months, which means ex-
tremely high time and resource costs for the rapidly developing information age. Even
though cloud computing systems can support distributed iterative training and improve
training speed to some extent, their training speed still cannot meet the requirements of
practical applications and needs to be greatly optimized.

Most resource scheduling problems in cloud computing environments belong to NP
(NonDeterministic Polynomial) polynomial complexity non deterministic problemsDiffi-
cult problem [1, 4], currently there is no polynomial time complexitymethod that can ensure
global optimization of resource scheduling. Some heuristic algorithms, meta-heuristic al-
gorithms, random algorithms, and machine learning algorithms are used to seek better
approximate solutions. Meta heuristic algorithms, deep reinforcement learning, and other
algorithms can to some extent solve the problem of variable optimization objectives and
scenarios. However, as the complexity of the problem increases, these algorithms require
a significant amount of computing resources and time. However, algorithms with lower
time complexity such as LPT (longest processing time), FCFS (first come first serve), RR
(round robin), greedy, and randomized algorithms have significantly lower optimization
performance than other algorithms with higher time complexity. Therefore, they can only
solve resource scheduling problems in scenarios where solution optimization requirements
are not high. At present, an important issue facing resource scheduling is how to balance
the optimization and complexity of algorithms, which also determines the upper limit of
the energy conversion rate of the entire cloud system. In addition, the increase in algo-
rithm complexity will reduce the practical value of algorithm deployment and application,
and cause resource bottlenecks and downtime risks to the operation process of cloud sys-
tems. In addition to cloud computing, other distributed computing systems, such as grid
computing [16], peer to peer computing [17], utility computing [18], edge computing [19],
fog computing [20], also face resource management problems. The algorithms that can be
used for resource scheduling problems in certain distributed systems often have the po-

3

Doctoral Dissertation of University of Electronic Science and Technology of China

tential to be applied to other distributed systems, and can even be applied to optimization
problems in other industries or fields, such as airport comprehensive scheduling [21], as-
sembly scheduling, public transportation scheduling [22], etc. Therefore, research on cloud
computing resource scheduling algorithms is not only beneficial for the development of
cloud computing and resource conservation, but also contributes to the development of
other fields or industries. The architecture design and theoretical exploration of optimiza-
tion scheduling algorithms are not only beneficial for exploring specific tools for practical
engineering applications, but also for exploring computer algorithms and their related fun-
damental theories.

1.2 Research Trends and Development Status

Considering that this dissertation aims to explore methods or strategies to enhance the
resource management capabilities of distributed computing systems such as cloud com-
puting in a wide range of scenarios, and to promote the expansion of scheduling related
optimization algorithms and their theories, the main research content of this dissertation
involves the design of optimization algorithm architectures in multiple scheduling sce-
narios of cloud computing, exploration of algorithm theories, workflow task architecture
design, and cloud system architecture construction. Therefore, this section will review the
research trends and development status of the following three aspects: cloud computing
development, optimization problems in cloud computing resource scheduling (referred to
as cloud scheduling), and optimization algorithms in cloud scheduling. Given that this
dissertation mainly focuses on the design and research of optimization algorithms, this
section focuses on reviewing optimization algorithms in cloud scheduling.

1.2.1 Development of Cloud Computing

With the advent ofWeb 2.0 [23] in the era of network information, the flow of network
information presents the characteristics of big data, high speed, and multifunctionality.
Amazon, Google, IBM, Microsoft, Yahoo, and others have made early attempts to build
cloud computing platforms. The literature [23] gives an overview of cloud computing:
”Now is the era of Web 2.0, the era of collaborative production of Internet data, and cloud
computing can become its platform.” In the literature [23], Fox and others believe that
cloud computing will be possible due to extensive broadband Internet access, provider
capabilities, appropriate billing models, and the development of efficient virtualization

4

Chapter 1 Exordium

technology. At the same time, experts began to discuss the relationship and differences
between cloud computing and grid computing. Foster et al. compared cloud computing
and grid computing from multiple aspects such as business models, architecture, resource
management, programming models, application models, and security models. Foster et al.
[16] added a definition to cloud computing: large-scale distributed computing paradigm
driven by economies of scale, in which abstract, virtualized, dynamically scalable, and
manageable computing power, storage, platforms, and service pools are delivered to cus-
tomers on demand through the Internet. In Foster’s definition of cloud computing, the
difference between cloud computing and traditional distributed computing paradigms is
that it has scalability, can be encapsulated as an abstract entity that provides different lev-
els of services to customers, is driven by economies of scale, and has dynamic services.
In the literature [24], Klems et al. believed that cloud computing is an emerging trend
of providing scalable and reliable services on the Internet as a computing tool. Armtrust
et al. [25] gave the definition of cloud computing: ”cloud computing refers to applica-
tions delivered through the Internet as services, as well as hardware and system software
in data centers that provide these services”, and demonstrated the advantages of public
cloud over private data centers. Armbruct et al. [25] believe that the characteristics of pub-
lic clouds include: cloud systems provide on-demand computing resources without time
and space limitations, cloud users do not need to make prior commitments, cloud users
can pay for the use of computing resources in the short term according to their needs,
large-scale data centers bring economies of scale, and resource virtualization technology
can simplify operational operations and improve system utilization. The above character-
istics are not possessed or generally not possessed by traditional data centers. Buyya et
al. [26] discussed cloud computing as a new information technology platform and men-
tioned that with significant advances in information and communication technology, one
day ”computing” will become the fifth ”utility”.

In cloud computing, various models or services such as virtual machines, cloud disks,
and big data cloud platforms have been introduced and developed [27, 28]. At present, in
addition to cloud computing, other new distributed computing system architectures or
models that are independent of, dependent on, or collaborative with cloud computing plat-
forms have been proposed, including Edge computing [19], fog computing [20], no service
computing [29], micro service [30]. In addition, with the development of deep learning
technology and the growth of model scale, GPU cluster cloud systems are also one of the

5

Doctoral Dissertation of University of Electronic Science and Technology of China

most common distributed systems currently available [31, 32].

1.2.2 Optimization Problems in Cloud Scheduling

In distributed systems, scheduling problems are usually NP-hard [1, 4, 33, 34]. Some
of the mainstreams in Cloud scheduling focus on objectives including minimizing en-
ergy consumption [35–37], minimizing makespan [38–40], minimizing delay time (or delayed
services) [41–43], reducing response time [12, 35, 44], maximizing the degree of load balanc-
ing [38, 45, 46], increasing reliability [12, 35, 41], increasing the utilization of resources [47–49],
maximizing the profit of providers [38, 39, 50], maximizing task completion ratio [12, 51, 52],
minimizing Service Level Agreement (SLA) Violation [12, 47, 53], maximizing throughput
[37, 54, 55], and multi-objectives [36, 37, 39].

There are multiple ways to classify optimization problems, among which the two
main classification methods are based on the characteristics of the optimization objective
function and the feasible solution space.

According to the characteristics of the optimization objective function, there are also
multiple classification methods. According to the number of optimization objectives, it
can be divided into single objective optimization and multi-objective optimization. The
corresponding algorithms can also be divided into single objective optimization algo-
rithms and multi-objective optimization algorithms. Some multi-objective optimization
algorithms include: non dominated sorting genetic algorithms (NSGA), multi-objective
evolutionary algorithms based on decomposition (MOEA/D), etc. According to the char-
acteristics of the optimization objective function, it can be divided into linear optimization
problems and nonlinear optimization problems. The linear optimization problem refers to
the optimization objective function being linearly related to all optimization independent
variables. Linear programming is often used to solve such problems. In the actual op-
timization process, the relationship between the optimization objective function and the
optimization independent variable also includes: the optimization objective is a nonlinear
function relationship about the optimization independent variable, the optimization objec-
tive is an implicit mapping relationship about the optimization independent variable, the
optimization objective is a time-varying non stable mapping relationship, and the opti-
mization objective is dynamically influenced by the parameters of other non optimization
independent variables, etc. These optimization problems belong to nonlinear optimiza-
tion problems in a broad sense. For nonlinear optimization problems, the optimization

6

Chapter 1 Exordium

objective value is difficult to show a significant monotonic increase or decrease trend in a
certain mapping dimension of the feasible solution space. The commonly used algorithms
for solving nonlinear optimization problems are metaheuristic algorithms, including ge-
netic algorithms, particle swarm optimization algorithms, simulated annealing algorithms,
etc.

The classification based on the characteristics of feasible solution space also includes
various classification methods. According to the discrete and continuous characteristics
of the feasible solution space, it can be divided into continuous solution space optimiza-
tion problems and discrete optimization problems. A special case of continuous solution
space optimization problem is convex optimization problem. Discrete optimization prob-
lems include integer programming (0-1 knapsack problem, traveling salesman problem).
According to the complexity (or measure) of the feasible solution space, it can be divided
into problems where the feasible solution space grows in polynomial form and problems
where the feasible solution space grows in exponential form. The problem where the
feasible solution space grows as a polynomial function can be expressed as having two
polynomial functions p1 and p2 such that the complexity c of the solution space satisfies
p1 lec lep2. The property of the problem where the feasible solution space grows exponen-
tially is that there is no polynomial function p such that c lep always holds. This problem
can be expressed as the existence of two exponential functions e1 and e2 such that the
complexity of the solution space always satisfies e1 lec lee2.

In existing distributed computing systems with cloud computing as one of the main
modes, several common optimization scenarios include scheduling scenarios that consider
single dimensional resources [56, 57], scheduling scenarios that consider multi-dimensional
resources [58], scheduling scenarios that consider task correlation in workflows [4, 34], and
joint scheduling scenarios that consider multiple optimization problems for multi region
subsystems [48]. With the development of machine learning related technologies and the
expansion of model scale, a common workflow scheduling scenario is the parallel training
workflow of machine learningmodels deployed on distributed machine learning platforms
(such as GPU server clusters). In cloud scheduling, it includes both single objective opti-
mization problems and multi-objective optimization problems; Most of them are discrete
optimization problems and nonlinear optimization problems (some of which can be ap-
proximated as 0-1 integer programming problems); Most of them are NP hard problems,
so they are also problems where the feasible solution space grows exponentially. Given

7

Doctoral Dissertation of University of Electronic Science and Technology of China

the difficulty of NP hard problems and the massive scale of cloud systems, small improve-
ments to the optimization solution of any cloud scheduling problem will bring significant
benefits to optimization algorithm theory, cloud systems, and related industry fields.

1.2.3 Optimization Algorithm in Cloud Scheduling

1.3 Scheduling and Algorithms in Cloud

Referring to existing studies of Cloud scheduling and for the sake of comprehensive
discussion, we can establish a universal formulation for scheduling problems. It can be
assumed that the number of indivisible tasks is M, the number of server nodes is N, and
each server node hasD dimensional resources (such as CPU load, GPU load, RAM, band-
width, disk storage, etc.). Then, the i-th task can be represented by a parameter matrix
Vi = {vijk}N×D where 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ D, and vijk indicates the ca-
pacity or space or time requirement for j-th dimensional resource when the i-th task is
allocated to the j-th service node. The set of parameters of tasks ⟨V1,V2, . . .VM⟩ is set
as V = {vijk}M×N×D. The parameters of server nodes can be set as L = {ljk}N×D, where
ljk means the load status of the k-th dimensional resource in the j-th server node. Using a
matrix X = {xij}M×N to represent the allocation solution of mapping “Tasks→Resources”
and a matrix S = {si}M to represent the start time of tasks, then a scheduling scheme can
be expressed by the combination of X and S, marked as ⟨X, S⟩. Wherein, xij ∈ {0, 1} and∑N

j=1 xij = 1, which means the indivisible task can be allocated to only one node. xij = 1
means the i-th task is allocated to the j-th node. Limiting S can generate the execution
order between tasks. For example, setting si1 ≥ ei2 (where ei is the end time of the i-th
task) equals that the i1-th task must begin after the finish of the i2-th task. Thus, the matrix
S is sufficient to include the execution order of the task.

A optimization result of scheduling is a mapping from the solution ⟨X, S⟩ and the
parameters of tasks V and server nodes L. Thus, the optimization objective can be set as

minω = ω (X, S,V,L) (1-1)

where ω is a function with respect of X, S, V and L. Multi-objectives can be represented

8

Chapter 1 Exordium

by multiple functions of ω as

minω =

ω1 (X, S,V,L)

ω2 (X, S,V,L)

. . .

(1-2)

Algorithm

Parameters of
Tasks: V

Parameters of
Nodes: L

Optimization
Objectives: ω

Allocation: X

Start Time: S

 Optimization Results:
 ω(X, S, V, L)

Figure 1-1 A Diagram of Scheduling Algorithm to Generate the Scheme ⟨X, S⟩.

With the formulation of the scheduling problem, a scheduling algorithm is an integra-
tion of mappers from (V,L,ω) to the scheduling scheme ⟨X, S⟩. It can be set an algorithm
as Al and its solution can be expressed by

Al (V,L,ω) = ⟨X, S⟩ (1-3)

Thus, a process of using an algorithm to solve the optimization solutions can be shown
as Fig. 1-1. From Fig. 1-1, two key factors for scheduling are production and evalua-
tion of schemes. In solving scheduling schemes, the evaluation for the performance of
an optimized solution, i.e. the process of obtaining ω (X, S,V,L) or its equivalent eval-
uation functions, is crucial. Some simple optimization objectives in ideal scenarios can
be directly calculated. However, for some complex optimization objectives, this function
ω (X, S,V,L) may not have explicit expressions. E.g., for minimizing energy consump-
tion cannot be represented by elementary functions generally so that the expression of
ω (X, S,V,L) is implicit. For some optimization objectives with explicit expressions in
ideal scenarios, it may be also difficult to directly calculate the optimization results when
in some highly stochastic system processes. The different mapping processes of Eq. 1-3
will correspond to different categories of algorithms.

When considering dynamic scheduling, a diagram of its process over time can be seen
in Fig. 1-2. The scheduling scheme at a time t is responsible for meeting the scheduling
requirements at the current time, but will also be related to the status of server nodes at sub-
sequent times. It indicates that when making scheduling decisions at time t, it is necessary

9

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm

Tasks at time t:
V

Status of Nodes
at time t: L

Optimization
Objectives: ω

Allocation: X

Start Time: S

 Optimization Results:
 ω(X, S, V, L)

Tasks and Nodes at
time t

Scheme for
time t

Considering Subsequent
Status of System

Next time t=t+Δt

Figure 1-2 A Diagram for Continuous Dynamic Scheduling Process over Time t.

to consider the subsequent changes in the system. This also puts forward requirements for
evaluating the quality of scheduling schemes, which shows the significance of a predictor.

Generally, algorithms for Cloud scheduling contain six categories: Dynamic Pro-
gramming(DP), Probability algorithm (Random), Heuristic method, Meta-Heuristic algo-
rithm, Hybrid algorithms and Machine Learning. From the properties of these algorithms,
except for ML, other algorithms do not have the ability to predict system states. In this
dissertation, we regard dynamic programming, randomization, heuristic method, meta-
heuristic algorithm, and hybrid algorithm as classic approaches. In order to analyze the
future direction of Cloud scheduling and discuss the potential application of DRL, we will
review the current scheduling algorithms of Cloud.

Heuristic is an algorithm to solve an optimization problem based on intuitionistic or
empirical construction. Due to their lower complexity, heuristic algorithms are prevalent
in some scenarios with a clear evaluation function requiring rapidity but not requiring
high optimization results. Additionally, the worst-case of heuristic algorithms is generally
predictable hence with a lower risk of improper allocation.

In existing research, [59] applied the Jacobi Best-response Algorithm (JBA) to min-
imize cost in Multi-Broker Mobile Cloud Computing Networks and proved theoretical
results demonstrating the existence of disagreement points and convergence of Jacobi
Best-response Algorithm of the brokers to disagreement points. [56] proposed an adapt-
ing Johnson’s model-based algorithm with 2-competitive to minimize the makespan of
multiple MapReduce jobs and proved its performance in theory. [60] proposed Peak Ef-
ficiency Aware Scheduling (PEAS) to optimize the energy consumption and QoS in the
on-line virtual machine allocation and reallocation of Cloud. Dynamic Bipartition-First-

10

Chapter 1 Exordium

Fit (BFF), a (1 + g−2
k − g−1

k2) competitive algorithm based on First-Fit algorithm, was
proposed and its performance was proved theoretically by [57]. The work [61] proposed
a QoS-Aware Distributed Algorithm based on first-come-first-improve (FCFI) and all-
come-then-improve (ACTI) algorithms to reduce computation time and energy consump-
tion of Industrial IoT-Edge-Cloud Computing Environments. ECOTS (energy consump-
tion optimization cloud task scheduling algorithm), with low time and space complexity,
took into account multiple key factors such as task resource requirements, server power
efficiency model and performance degradation in order to reduce energy consumption of
Cloud [62]. Longest Loaded Interval First algorithm (LLIF), a 2-approximation algorithm
with theoretical proof of its performance, was proposed by [15] to minimize the energy
consumption of VM reservations in the Cloud.

Other common heuristic methods are Johnson’s model, FF (first fit), BF (best fit), RR
(round-robin), FFD (first fit decreasing), BFD (best fit decreasing), Jacobi Best-response
Algorithm [59] and their variants.

From existing research, heuristic algorithms mainly focus on the single-objective
optimization including minimizing makespan, minimizing energy consumption and load
balancing. However, there are several defects of heuristics as follows.
(1) For the scenarios using heuristic, somemajor objects (such as the time, energy or load)

are often assumed to be given or easily calculated. For complex scenarios where the
optimization objective is implicit with respect to solutions, heuristic algorithms often
fail to generate a feasible solution.

(2) A heuristic algorithm is often designed for one or few specific scenarios. When only
one element in the scenario changes, the algorithm may need to be redesigned.

(3) Heuristics are usually only suitable for the single-objective problems.
(4) Moreover, the solution of heuristic algorithms can usually be further optimized.

In skeleton, meta-heuristic, the combination of heuristic and randomization [10], in-
cludes Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Artificial
Bee Colony (ABC), Genetic Algorithm (GA), Firefly Algorithm (FA), etc.

ACO imitates ant colony to search for food as a search route. [58] proposedOEMACS
combining OEM (order exchange and migration) local search techniques and ACO to re-
solve energy consumption of VMs deployment in Cloud computing, which significantly
reduced the energy consumption and improved the effectiveness of different resources
compared with conventional heuristic and other evolutionary-based approaches. [63] pro-

11

Doctoral Dissertation of University of Electronic Science and Technology of China

posed two ant colony-based optimization algorithms (TACO) to address VM scheduling
and routing in multi-tenant Cloud data centers aiming at improving the utilization of en-
ergy in Cloud computing. [64] proposed an alternative meta-heuristic technique based
on the Ant Lion Optimizer Algorithm (MALO) to resolve multi-objective optimization
of Cloud computing, which performed better in load balancing and makespan compared
with GA, MSDE, PSO, WOA, MSA and ALO.

GA imitates the process of natural evolution as a search route of the algorithm. Pro-
posed by [65], NSGA-II occupies better convergence and optimal solution and has become
one of the benchmarks using the fast non-dominated sorting algorithm, introducing elite
strategy and using congestion-congestion comparison operator. [66] improve the search
strategy based on NSGA-II to reduce the energy consumption, response time, load imbal-
ance and makespan in Cloud computing. NSGA-III utilizes reference points with prefer-
able distribution as a novel search route to maintain the diversity of the population to
improve the optimization results of GA [67, 68]. [69] applied NSGA-III to optimize the ex-
ecution time and energy consumption of IoT-enabled Cloud-edge computing. MOGA [70]

and MOEAs [9] improved the search route strategies based on NSGA-II and were utilized
to settle Cloud scheduling.

The studies of Firefly algorithm include FA [46] and FIMPSOA [55]. That of PSO in-
clude MOPSO [71], TSPSO [72] and HAPSO [73]. Other meta-heuristic algorithms include
Multi-objective Whale Optimization Algorithm (MWOA) [74], nature-inspired Chaotic
Squirrel Search Algorithm (CSSA) [75], etc.

From existing research, meta-heuristic algorithms with searchability for the solution
can address more complex optimization problems not only for single-objective problems
but also for multi-objective problems. They are applied to solve optimizing cost, en-
ergy consumption, makespan, running time and resource utilization. Meta-heuristic algo-
rithms are more applicable than heuristic algorithms but at the expense of computational
complexity and randomness. However, although these optimization objectives in meta-
heuristics include some complex objects (such as energy, Qos and cost), their calculations
have been simplified with some ideal assumptions far from reality [63, 69, 76].

Meta-heuristic and other search algorithms are based on the specific search route,
whose diagram can be seen in Fig. 1-3. They use the search route to adjust the current
solutions to generate new solutions, evaluate the performance (such as fitness) of newly
generated solutions according to the optimization objectives-based evaluation functions,

12

Chapter 1 Exordium

Search Routes
Inputs with Initial

Solutions
Single or Multi

Solutions
 Evaluating
Solutions

If continueyes Output Solution
as Schemeno

Figure 1-3 A Diagram of Search-based Algorithms.

and then determine whether to proceed to the next search based on the evaluation. The
two key factors in Fig. 1-3 are the search route and evaluation of solutions. The search
route needs to generate better solutions. However, there are several inevitable defects of
meta-heuristic as follows.
(1) For scenarios where the solution can be directly evaluated, the convergence of the

meta-heuristic cannot be guaranteed due to the presence of randomness. The random-
ness of the meta-heuristic increases redundant computations.

(2) As the search space increases, the required search iterations must also increase ac-
cordingly, subsequently producing more redundant solutions.

(3) When it is difficult to evaluate the quality of a solution, the search route will lose its
direction, and the search algorithm will degenerate into pure randomization. When
ω (X, S,V,L) is implicit, the meta-heuristic and other search algorithms themselves
do not provide a method for evaluating solutions.

(4) Meta-heuristic also does not provide a way to predict system status.
The first and second defects will limit the optimality of the meta-heuristic for its feasible
scenarios. The third and fourth defects, which also appear in heuristic, will cause the
algorithm unable to be used in some real-world complex scenarios.

The optimization algorithm based on machine learning mainly establishes a mapper
that can generate optimized solutions, driven by data or instances, so that the mapper can
learn the generation mapping of more optimized solutions. Machine learning based opti-
mization algorithms mainly include deep learning (DL) and reinforcement learning (RL).
In addition, other types of machine learning methods such as KNN (K-nearest neighbor,
K-nearest neighbor algorithm) [77], imitation learning [2], SVM (support vector machine)
[78], etc. have also been applied to cloud scheduling, but these algorithms usually perform
certain classification tasks (or system state recognition tasks) without directly participating

13

Doctoral Dissertation of University of Electronic Science and Technology of China

in the generation of optimization solutions. QEEC [49] is an efficient and energy-saving
cloud computing task scheduling framework based on Q-learning, which uses Q-table to
represent the probability of decision makers’ actions. PCRA [79] implements feedback
control through resource allocation prediction of Q-value prediction model in RL through
feedback control Operations under different system states. DeepRM uses a neural network
with six layers of Convolutional Neural Network (CNN) to describe successful decision
mappers based on Deep Neural Network (DNN) in image processing. The central cluster,
waiting queue, and backlog queue constitute the environment state represented by the im-
age. Other cloud scheduling algorithms based on Deep Reinforcement Learning (DRL)
include HCDRL [80], DT [81] using GPT, etc.

Machine learning based optimization algorithms (mainly reinforcement learning)
generally have good modeling ability, strong adaptability to optimization objectives, and
experience memory ability (through experience replay, optimization solutions can be gen-
erated directly without searching the solution space). However, as machine learning is a
training based optimization solution generator, its main problem is that it cannot ensure the
optimality and stability of the optimization results before making optimization decisions.
That is, when any factor in the optimization scenario is disturbed, the optimization effect
of machine learning may significantly decrease, and even unacceptable optimization de-
cision solutions may be generated in some scenarios. This makes it have the following
shortcomings.
(1) Low sample utilization and long training time: requiring an extremely large number of

training samples. And the training cost is high, and its applicable scenarios are limited
by sample data. For optimization problems with exponentially increasing complexity
of feasible solution space, the sample size for training reinforcement learning also
needs to be exponentially increased, and the exponential increase in sample size often
requires a higher demand than the exponential complexity of feasible solution space.
The unexplainability of the training process poses a challenge to theoretical deduction
based on mathematical techniques. The modeling and theoretical derivation of high-
dimensional continuous state spaces require the development of mathematics.

(2) Poor optimization: The final optimization performance is often not good enough. In
scenarios where it is easy to evaluate the quality of optimized solutions, the optimiza-
tion effect of reinforcement learning is far inferior to most metaheuristic algorithms
and some heuristic algorithms designed specifically for scenarios.

14

Chapter 1 Exordium

(3) Poor adaptability to changes in scenarios and environments: retraining is required to
meet new optimization objectives. For the same optimization objective with different
parameter inputs, it still lacks scalability. The same reinforcement learning may even
struggle to adapt to an increase in input formats.
Some other classic algorithms used in Cloud scheduling mainly contain DP, Random

algorithms, and hybrid algorithms (combining two or more algorithms). Among them,
hybrid algorithms are also widely used in solving complex scheduling problems in Cloud
computing. Hybrid algorithms can combine the advantages of multiple algorithms to pro-
duce better solutions. In terms of search algorithms, a single algorithm has an inherent
local convergence solution and the solution of the hybrid algorithm needs to satisfy the
convergence conditions of multiple algorithms simultaneously [82]. Therefore, the con-
vergence solution of the hybrid algorithm is usually better than the corresponding single
algorithm. PSO-ACS [83], mingled with PSO and ACO, applied PSO to find the optimal
solution of task scheduling and ACO to find the best migration path of VMs on PMs.
FACO [28], a hybrid fuzzy ant colony optimization algorithm, exploited a fuzzy module
dedicated to pheromone evaluation to improve the performance of ACO by optimizing
the search route of ACO. Hybrid Genetic-Gravitational Search Algorithm (HG-GSA) [84]

based on gravitational search algorithm for searching the best position of the particle con-
sequently optimizing the search route of GA. FMPSO (modified PSO + fuzzy theory) [85]

used crossover and mutation operators surmounting the local optimum of PSO and ap-
plied a fuzzy inference system for fitness calculations. SFLA-GA algorithm (shuffled frog
leaping algorithm + GA) [86] took advantage of the two algorithms to transmit information
among groups hence the optimal search route. GHW-NSGA II [87] leveraged heuristic-
based search algorithm as an extra search route of NSGA II to optimize the utilization of
multi-dimensional resources, which improved the convergence speed and optimality on
the basis of GA. SPSO-GA [88] combined Self-adaptive Particle SwarmOptimization algo-
rithm with Genetic Algorithm operators to reduce the energy consumption of the scenario
offloading DNN layers Cloud-Edge environment. On the basis of SPSO-GA, PSO-GA-G
[89] added a greedy algorithm to optimize computation offloading. The combination of
multiple meta-heuristics is beneficial for improving the overall convergence speed, hence
improving search efficiency. LPT-One and BFD-One [82] used heuristic algorithms to act
as the search routes and combined multiple heuristic-based search routes to improve the
approximation of minimizing makespan.

15

Doctoral Dissertation of University of Electronic Science and Technology of China

Other hybrid algorithms in Cloud scheduling, include ABC-SA integrating the func-
tionality of simulated annealing (SA) into artificial bee colony [90], SFGA (a hybrid Shuf-
fled Frog LeapingAlgorithm andGenetic Algorithm) [91], TSDQ-hybridmeta-heuristic al-
gorithms based on Dynamic dispatch Queues [92], etc. These algorithms demonstrated the
flexibility, superiority, adaptability and mobility of hybrid algorithms and simultaneously
manifested the unlimited possibilities and significance of research hybrid structurally.

Similar to metaheuristic algorithms, hybrid algorithms are also suitable for various
multi-objective problems, and due to the joint use of multiple algorithms, their local op-
tima are often better than those of a single algorithm. However, hybrid algorithms based
on multi restart or metaheuristic algorithms cannot exceed the scenarios where the basic
algorithm is applicable. In addition, due to the use of multiple algorithms, their compu-
tational complexity will be higher than that of a single algorithm at the same number of
iterations. At this time, it is necessary to ensure that the performance of a single search of
the hybrid algorithm is higher than that of a single algorithm under the same computational
consumption.

1.4 Research Content and Key Issues

From the review of existing research work, it can be seen that most resource schedul-
ing problems in distributed computing systems belong to NP hard problems, where opti-
mization algorithms are the key components for solving these problems. Currently, var-
ious optimization scheduling algorithms (heuristic algorithms, metaheuristic algorithms,
machine learning algorithms, and hybrid algorithms) are facing their own inherent defects
and challenges (due to the types and forms of algorithms themselves). At the theoretical
level of algorithms, the common core of these defects and challenges is how to obtain
more optimized feasible solutions with less computational resources (time, space, equip-
ment, etc.) consumption. At the application scenario level, there are various types of
resource scheduling problems in cloud environments. One of the common problems fac-
ing the industry is how to improve the adaptability of cloud computing systems to changes
in various elements of cloud resource scheduling scenarios, in order to enhance the over-
all resource management capabilities of distributed computing systems. Merely studying
a certain type of algorithm and a certain scenario is no longer sufficient to address the
issues and challenges mentioned above. This also presents a new challenge that must be
addressed (difficult but necessary): comprehensive research on multi class algorithms and

16

Chapter 1 Exordium

multi scheduling scenarios (including system environment and optimization problemmod-
eling, system architecture and algorithm design, theoretical analysis, experimental evalu-
ation) Given the above professional consensus, this dissertation takes ”exploring methods
or strategies that can enhance the resource management capabilities of distributed comput-
ing systems, including cloud computing, and other industries to a certain extent and within
a certain scope” as the starting point, and focuses on ”modeling and optimizing algorithm
architecture design and theoretical analysis of cloud computing resource scheduling prob-
lems”. It attempts to explore and discuss changes in resource dimensions, task correlation,
task granularity, and multi subsystem hierarchy.

1.4.1 Research Contents

Due to the difficulty in enumerating all possible scheduling scenarios in cloud envi-
ronments, this dissertation selects five sets of resource scheduling scenarios (considering
the starting point and focus of this dissertation), corresponding to the five research con-
tents:

(1) Optimization scheduling of independent task sets in cloud server nodes with sin-
gle dimensional resources: Research modeling of single dimensional resource scheduling
problems, study and design optimization algorithms suitable for homogeneous and hetero-
geneous single dimensional resource scheduling problems, and explore their theoretical
approximation ratios.

(2) Optimization scheduling of independent virtual machine sets in cloud server
nodes with multi-dimensional resources: Study modeling of multi-dimensional resource
scheduling problems, research and design optimization algorithms suitable for complex
single objective optimization and multi-objective optimization problems, improve algo-
rithm convergence speed and optimization of convergence solutions.

(3) Optimization scheduling of pipeline parallel deep learning model training work-
flow based on equal microbatch data partitioning in GPU cloud server nodes: Study the
joint optimization problem modeling of pipeline model partitioning and microbatch pro-
cessing data partitioning for deep learning model parallel training workflow in GPU cloud
distributed systems, research and design corresponding optimization algorithms, and ex-
plore the theoretical approximation ratio and computational complexity of the algorithms.

(4) Design and Optimization Scheduling of a New Parallel Training Architecture
for Deep Learning Models in GPU Cloud Server Nodes: Study a new parallel training

17

Doctoral Dissertation of University of Electronic Science and Technology of China

workflow architecture for deep learning models in distributed systems based on unequal
data partitioning, research and design optimization algorithms for training schemes under
the new architecture, and conduct theoretical analysis of the architecture and algorithm.

(5) Joint optimization scheduling of diverse task requests and diverse optimization
objectives in multi-level and multi subsystem cloud computing systems: Exploring and
researching a new system architecture pattern for high-performance cloud resource man-
agement, and studying scheduling algorithms and strategies for dealing with multiple sub-
systems, time-varying optimization objectives, and dynamic resources.

1.4.2 Key Issues

Corresponding to the above scenarios and research content, this dissertation attempts
to explore the following five key issues:

(1) How to construct a mathematical model for one-dimensional resource optimiza-
tion scheduling problems, analyze and improve the approximation ratio of optimization
scheduling algorithms (such as heuristic algorithms and local search algorithms): Cur-
rently, the approximation ratio of some commonly used algorithms still needs to be im-
proved. The approximation ratio of an algorithm is one of the important indicators for
measuring its deterministic performance. In large-scale cloud computing systems, the un-
certainty of algorithms can lead to unpredictable situations. Therefore, an algorithm with
good approximation ratio may improve the overall optimization and stability of cloud
computing systems. In addition, the exploration of algorithm approximation ratios has
also influenced the development of algorithm theory. At present, the mathematical the-
oretical modeling of resource scheduling problems has always been an urgent problem
to be solved in both academic and practical engineering fields. In addition, research on
optimizing and scheduling single dimensional resources is also the foundation of multidi-
mensional resource scheduling research (multidimensional resource scheduling problems
are often transformed into multiple single dimensional resource scheduling problems).

(2) How to model multidimensional resource scheduling problems and improve the
convergence performance of effective Pareto solutions: In practical cloud computing re-
source scheduling scenarios, it is necessary to consider the collaborative operation of mul-
tiple resources. For massive cloud computing task requests, the operational status between
different resources is interdependent. The bottleneck of single dimensional resources
will also affect the use of other dimensional resources. How to analyze the coupling

18

Chapter 1 Exordium

relationship between different resources and allocate multidimensional resources reason-
ably? How to establish a multi-objective optimization problem for multi-dimensional re-
source scheduling and find the Pareto boundary for multi-dimensional resource schedul-
ing? These are important issues that urgently need to be addressed.

(3) How to build a theoretical lossmodel for parallel trainingworkflow of deep learn-
ing models with equal data partitioning, analyze and improve the optimal performance of
optimization algorithm theory: In the existing theoretical research and engineering fields,
deep learning model training tasks are a type of task that occupies the main computing re-
sources. If this is used as a practical scenario, it is necessary to perform feature modeling
and quantitative analysis on deep training tasks, and construct the relationship between
the parameter elements of the training task and the required resources. The research on
accelerating parallel training workflow will be related to the efficient operation and main-
tenance of widely deployed GPU cloud servers.

(4) How to design a new architecture for parallel training of deep learning models
based on unequal data partitioning in distributed systems, and quickly solve optimiza-
tion training schemes within an effective time range: Existing distributed parallel training
architectures are limited to equal data partitioning, which means that in each device, all
processes including computation and communication in each layer of the network have
the same number of microbatches. In real-world scenarios, the time required for compu-
tation and communication is not necessarily proportional to the amount of data, and the
optimal number of partitions for each layer of the network may not be the same. Continu-
ing to maintain equal partitioning will result in resource waste. Therefore, it is necessary
to introduce unequal data partitioning. However, due to uneven data partitioning, it will
greatly increase the difficulty of modeling theoretical loss models, which will result in
the inability to solve the optimization training scheme for the new architecture within an
acceptable time. Therefore, it is necessary to establish and improve theoretical models
and optimization algorithms for new architectures while advancing the theory.

(5) How to build a new system architecture pattern for cloud computing and solve the
dynamic resource scheduling problem of multiple subsystems considering time-varying
optimization objectives: The existing flat deployment method limits the resource man-
agement capability of cloud computing platforms and affects the efficient use of all re-
sources. How to build a new architecture model for cloud computing systems is related to
the long-term development of cloud computing in the future. In addition, in actual engi-

19

Doctoral Dissertation of University of Electronic Science and Technology of China

neering application environments, the demand for cloud computing systems often dynam-
ically changes with time and space switching, which increases the difficulty of applying
resource scheduling algorithms in practical scenarios. It can be confirmed that currently
no algorithm can outperform other algorithms in all resource scheduling optimization sce-
narios. Is it to search for this algorithm (which can outperform other algorithms in all
scenarios) or to fully utilize existing algorithms? If we choose to make full use of exist-
ing algorithms, how should we utilize them? This is a question that scholars have been
exploring and discussing.

1.5 Organization of this Dissertation

Chapter 1 mainly introduces the research background, significance, existing research
trends, and development status of this dissertation, as well as the research content, key
issues, relevant plans or methods of this dissertation.

Chapter 2 models a distributed computing system considering single dimensional re-
sources and its minimum completion time optimization scheduling problem. It introduces
a series of multi-path search algorithms based on heuristic algorithms as search paths to
solve single objective optimization problems in homogeneous systems and dual objec-
tive optimization problems in heterogeneous systems. For the minimum completion time
problem in isomorphic systems, the approximation ratio and theoretical proof of multi-
ple sets of multi-path algorithms are introduced. Based on simulation experiments, the
optimization performance of the multi-path search algorithm series in homogeneous and
heterogeneous distributed systems considering single dimensional resources has been ver-
ified.

Chapter 3 models a distributed computing system considering multi-dimensional re-
sources and its resource utilization and energy consumption optimization scheduling prob-
lems. It introduces a series of growable genetic algorithms based on heuristic search paths
as growth paths to solve multi-objective optimization problems and single objective opti-
mization problems (with complex expressions) in heterogeneous systems. Based on simu-
lation experiments and real dataset driven experiments, the optimization and convergence
performance of the scalable genetic algorithm series in heterogeneous distributed systems
considering multi-dimensional resources were verified.

Chapter 4 models the optimization scheduling problem of minimizing total training
time for deep learning equal data partitioning pipeline parallel training workflow consid-

20

Chapter 1 Exordium

ering task correlation in GPU cloud systems. It introduces a cross search algorithm based
on multi-dimensional improved binary method to solve the joint optimization problem of
deep neural network layer partitioning and data partitioning under a single optimization
objective (with analytical expressions). Theoretical proofs have been provided for the ap-
proximation ratio and global optimality of the multidimensional improved binary method.
The parallel training experiment based on deep neural networks in a real GPU distributed
cluster environment verified the fast performance and optimization performance of the
cross search algorithm based on multi-dimensional improved binary method.

In Chapter 5, the architecture design and system modeling of unequal data partition-
ing for deep learning parallel training tasks with task correlation in GPU cloud systems are
presented. The recursive formula for training time of unequal data partitioning workflow
is derived, and a second-order improved accelerationmulti chromosome genetic algorithm
based on matrix form recursive formula is introduced to solve single objective optimiza-
tion problems without analytical expressions (with complex recursive expressions). Theo-
retical analysis and proof were conducted on the optimization of the new parallel training
workflow architecture and the optimization convergence of the multi chromosome ge-
netic algorithm. Based on experiments in simulated datasets and real environments, the
fast performance of the new parallel training workflow architecture and the optimization
and fast performance of the two-level improvedmulti chromosome genetic algorithmwere
verified.

Chapter 6 models a distributed computing system with multiple layers and subsys-
tems and its multi subproblem joint optimization scheduling problem (variable multiple
optimization objectives). The resource scheduling algorithm is regarded as schedulable
resources, and the scheduling algorithm selector architecture is introduced. Correspond-
ingly, the deep learning based algorithm selector and the reinforcement learning based
algorithm selector are introduced. Based on dynamic simulation experiments, the opti-
mization performance of algorithm selectors in resourcemanagement of complex dynamic
systems has been verified.

Chapter 7 summarizes the work of the entire dissertation and provide prospects for
future work.

21

Doctoral Dissertation of University of Electronic Science and Technology of China

Chapter 2 Single-dimensional Resource Scheduling based on
Multi-route Search Algorithms

Cloud computing, as a large-scale distributed computing system dynamically pro-
viding elastic services, is designed to meet the requirement of delivering computing ser-
vices to users as subscription-oriented services. In general, the problems of resource
scheduling in Cloud computing like minimizing makespan are usually NP-Hard problems.
Various common algorithms including heuristic, meta-heuristic and machine learning are
applied in resource scheduling of Cloud computing to obtain the solutions, which how-
ever are still probable and imperative to be optimized. Through innovatively applying
heuristic algorithms namely LPT (Longest Processing Time) and BFD (Best Fit Decreas-
ing) as the basic search routes and integrating these with neighborhood search algorithm
namely OneStep, this chapter proposes multi-search-routes-based algorithms containing
LPT-OneStep, BFD-OneStep and their combinations for the sake of enhancing theoretical
performance and improving solutions of scheduling schemes especially for problems of
minimizingmakespan for homogeneous and heterogeneous resources. Theoretical deriva-
tions prove that the proposed algorithms possess better theoretical approximation ratios for
P||Cmax. Extensive experiments on simulation environment demonstrate the proposed al-
gorithms outperform than corresponding compared algorithms for minimizing makespan
problems in both homogenous resources and heterogeneous resources, which validates the
superiority of the proposed algorithms.

2.1 Introduction

The emerging trend of Industry 4.0 and 5G significantly enhances the number of tasks
that the Internet-based computing systems need to process in real-time. The increase in
data size proposes a demand for a large-scale distributed system such as Cloud computing
which can provide flexible, reliable and dynamic services to users [4]. Cloud computing,
also as a policy to provision high-performance computation services in a pay-as-you-go
manner, has supported increasingly complex software systems and computing programs
substantially, which has indicated the indispensability of Cloud computing. Currently,
many IT companies, such as Amazon, Microsoft, Google, Alibaba and IBM [93–96], have
established relatively mature Cloud computing systems. These systems usually have the

22

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

stable structures such as Software-as-a-Service (SaaS), Platform-as-a-Service(PaaS) and
Infrastructure-as-a-Service (IaaS), as well as can flexibly provide services to meet numer-
ous requests from users [5, 97].

Resource scheduling is defined by [5] as to find an “optimal” mapping “Tasks →
Resources” to meet one or several given objectives. With the enlargement of the Cloud’s
user groups and facilities, extensive requests and reservations of users are challenging the
resource scheduling of Cloud computing. Additionally, inappropriate resource schedul-
ing will cause the waste of users’ time, decrease QoS (quality of service), increase energy
consumption, and increase carbon dioxide emissions. As the Cloud computing system is
still expanding its scale and development of multitudinous industries depends on the rea-
sonable operation of Cloud computing, therefore the research on its resource management
is a prominent issue from the birth of Cloud computing to nowadays which will also affect
the orientation and prospect of Cloud computing in the society [3, 8].

One of the keys to address resource management of Cloud computing is the scheduler
lying on the platform layer based on the resource scheduling algorithm. Cloud architec-
ture and resource scheduling process are shown in Fig 2-1. The users operate the clients
in the application layer to submit task requests to the Cloud center through the high-speed
networks of the connection layer; The Cloud center on the platform layer collects tasks,
generates scheduling schemes leveraging scheduling algorithms, and allocates tasks to
server nodes including VMs and PMs on the resource layer and fabric layer; The server
nodes then provide corresponding services to users. In Cloud computing, the schedul-
ing algorithm is a crucial component affecting the quality of resource management. As
the resource scheduling problem of Cloud computing is commonly an NP-Hard prob-
lem without a feasible method in polynomial time to ensure the global optimization of
resource scheduling unless P = NP [1, 4, 33], hence it is usually settled by heuristic, meta-
heuristic, randomization and machine learning algorithms [98]. Some existing algorithms
like Ant colony algorithm [63], NSGA II algorithm [99] and deep reinforcement learning
algorithm [2, 100] have achieved excellent performance in the research results. However,
most of them with quite high computational complexity are unstable with randomness,
which makes the worst case of scheduling results unpredictable with inevitable risk. For
Cloud computing systems in the realistic scenario, some algorithms with determinacy and
rapidity such as LPT (Longest Processing Time), FCFS (First Come First Server), RR
(Round-Robin), BFD (Best Fit Decreasing), and SPT (Shortest Processing Time) are still

23

Doctoral Dissertation of University of Electronic Science and Technology of China

practical, whose results nevertheless require to be optimized yet [2, 101].

 !"#$%&'()'*&#+&

,#%-(+.&

/01#23!#2'45&.&

'67&'5$2'87&'

-"%1'9#&(3+0#&'

:;;!"05%"($'<5=#+

 (>>3$"05%"($'

<5=#+

8!5%)(+>'<5=#+

 (>>3$"05%"($'

<5=#+

9#&(3+0#&'<5=#+'

5$2'?5@+"0'<5=#+

,#%-(+.&

9#&(3+0#&'/01#23!"$A'5$2'45&.&':!!(05%"($'8+(0#&&'()'

 !(32' (>;3%"$A'/=&%#>

'B"&%+"@3%#2'

/=&%#>'<5=#+&

/01#23!#' #$%#+

 (!!#0%"($'()'45&.&

CD'*&#+&'

&3@>"%'

+#E3#&%&

FD' (!!#0%'

%5&.&'()'3&#+&

GD'H#$#+5%#'

&01#23!"$A'

&01#>#''

ID':!!(05%#''

%5&.&'%('67&'

(+'%('87&

JD'8+(K"2#'

&#+K"0#&''5$2'

3;25%#''&%5%3&

Figure 2-1 Cloud Architecture with Resources Scheduling Process.

Considering iterative optimization properties of the search algorithm as well as the
low complexity and analyzable approximation ratio of heuristic, we apply heuristic al-
gorithms as search routes in the general local search algorithm based on the neighbors
of dual resources and propose heuristic-based local search algorithms. For the heuristic-
based search algorithm, the selection of the heuristic will directly affect its convergence
and optimization performance. Hence, leveraging LPT and BFD as its search routes in
light of the better theoretical approximation ratios of LPT and BFD than other heuristic
algorithms such as RR, FCFS and SPT to the optimization problems studied in this chap-
ter. Based on the heuristic-based search algorithm, we propose multi-search-routes-based
local search algorithms combining the One-Step search route (or K-Step search route)
and heuristic-based search routes for the instances of minimizing makespan for homoge-
neous and heterogeneous resources. According to different combinations of search routes,
we obtain various multi-search-routes-based algorithms containing LPT-One, BFD-One,
LPT-BFD-One, etc, where the combination of multi-search routes is conducive to jump-
ing out of the local optimum of the single search route to improve the performance of
algorithms. As the proof of the theoretical approximation ratio of the search algorithm is
rare in the previous research, this chapter theoretically proves the approximation ratios of
several multi-routes local search algorithms for the problem of minimizing makespan in

24

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

homogenous resources (i.e. the scheduling problem of minimizing makespan on parallel
machines abbreviated as P||Cmax), which breaks the dilemma that the search algorithm
rarely has approximation ratio proof in previous research. And then, this chapter provides
experimental results for minimizing makespan of both homogenous and heterogeneous
resources to validate the performance of proposed algorithms.

For P||Cmax, the approximation ratios of existing algorithms are as that ArLPT ≤
4
3 − 1

3M , ArLPT−REV ≤ 4
3 − 1

3(M−1)
[102, 103], ArMultifit ≤ 72

61 + 2−k where k is the number
of attempts to find the smallest number of machines (by binary search) [33]. A princi-
ple as PTAS (Polynomial-Time Approximation Scheme) revealed that the guarantee of
Ar ≤ 1 + ε required complexity of O

(
(N/ε)1/ε2 /M

)
and no FPTAS (Fully Polynomial-

Time Approximation Scheme) exists for P||Cmax unless P = NP [33]. Additionally, few
existing studies proved the approximation ratio of local search algorithms. The approxi-
mation ratios of our proposed LPT-One and BFD-One are proved as 5

4 − 1
4M and that of

LPT-K and BFD-K are not greater than 1 + M−1
(3+K)M for P||Cmax where M is the number of

resources, which reveals the increasing K can ameliorate the upper limit of the approxi-
mation ratio even to 1.

The main contributions of this chapter are as follows:
(1) Proposing a new framework of local search algorithms based on the neighbors of dual

resources and heuristic-based search routes: this chapter proposes a framework of the
local search algorithm based on the neighbors of dual resources. With neighbors of
dual resources, this chapter defines various heuristic-based neighborhoods including
neighborhoods of LPT, MLPT, BFD and Best-BFD, which correspond to heuristic-
based search routes as LPTS, MLPTS, BFDS and BestBFDS respectively. Different
from existing algorithms, heuristic-based search routes endowing heuristic algorithms
with a novel role can significantly reduce the computational complexity of the local
search algorithm and is advantageous to the theoretical derivation of the approxima-
tion ratio.

(2) Proposing multi-routes-based search algorithms: to further improve the performance
of the scheduling algorithm, this chapter proposes the multi-routes-based local search
algorithms to resolve minimizing makspan of homogeneous and heterogeneous re-
sources in Cloud based on the combination of heuristic-based search routes and On-
eStep (K-Step) search route. Different combinations obtain various multi-routes al-
gorithms containing dual routes search algorithms such as LPT-OneStep search (LPT-

25

Doctoral Dissertation of University of Electronic Science and Technology of China

One, LPTO), BFD-OneStep search (BFD-One, BFDO) andMLPT-One search, as well
as triple routes search algorithm as LPT-BFD-One search, which outperform existing
algorithms.

(3) Providing theoretical proofs of approximation ratios for multi-routes-based search al-
gorithms: in theory, it’s not easy to prove the approximation ratio of search algorithms.
This chapter gives theoretical proofs of the approximation ratios for multi-routes-
based search algorithms as that ArLPTO,ArBFDO ≤ 5

4 − 1
4M and ArLPT−K,ArBFD−K ≤

1 + M−1
(3+K)M for P||Cmax, which are better than existing algorithms and have signifi-

cance for the theoretical exploration of search algorithms.
(4) Simulation experiments: this chapter executes experiments with abundant instances

to verify the performance of the proposed algorithms in both homogeneous and het-
erogeneous resources.
The remainder of this chapter is organized as follows. We review the related works

in Section 2.2. The problem formulation and general local search algorithm are presented
in Section 2.3. Based on various basic search routes, we propose the multi-search-routes-
based algorithms and provide theoretical proof of approximation ratios of several specific
algorithms in Section 2.4. The experiment results and discussion are given in Section 2.5.
Finally, we conclude this chapter in Section 2.6.

2.2 Related work

According to the focus of this chapter, we review related work from two aspects,
i.e. types of scheduling algorithms and the assumption of system model, to reflect the
relationship between this chapter and existing research.

2.2.1 Reviews of Scheduling Algorithms

To optimize the utilization of resources, energy consumption, response time,
makespan, etc, multi-phase method [6, 9], virtual machine migration [10, 63], queuing
model [1], joint optimization [95] and resource scheduling algorithm are frequent strategies
used in Cloud computing, where scheduling algorithm is a critical component attracting
scholars. Current scheduling algorithms in Cloud computing include local search algo-
rithm, heuristic algorithm, meta-heuristic algorithm, randomization, machine learning al-
gorithm and hybrid algorithm.

Machine Learning in scheduling algorithms mainly contains three types that deep

26

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

learning (DL) such as DREP [104] and DLSC [44], reinforcement leaning (RL) such as
QEEC [49], unified reinforcement learning (URL) [105], adaptive reinforcement learn-
ing (ARL) [106] and ADEC [53], as well as Deep reinforcement learning (DRL) such as
DRM_Plus [2], A3C RL [107], MDRL [108], DPM [109], DQTS [110] and DQN [100].

A local search algorithm is to select the neighbor solution according to a strategy by
comparing the current solution with the neighbor solution, where neighborhood structure
and neighborhood selection (search route) are the basic components. In Cloud comput-
ing, some local search algorithms, including Neighborhood Search (NS) [111], Correlation-
Aware Heuristic Search (CAHS) [112], IBGSS [113], Crow Search [114], Dynamic Grouping
Integrated Neighboring Search (DGINS) [115] and Tabu Search [116], are applied to solve
the problems of resource management.

The meta-heuristic algorithm is a combination of local search algorithm and random-
ization containing Ant Colony Optimization (ACO), Genetic Algorithm (GA), FireFly,
Particle Swarm Optimization (PSO), etc [98].

ACO imitates ant colony to search for food as a search route. Liu et al. [58] proposed
OEMACS combining OEM local search techniques and ACO to resolve VMs deployment
in Cloud computing, which reduced the energy consumption and improved the effective-
ness of different resources compared with conventional heuristic and other evolutionary-
based approaches. Chakravarthy et al. [63] proposed two ant colony-based algorithms
(TACO) to address VM scheduling and routing in multi-tenant Cloud data centers aim-
ing at improving the utilization of energy in Cloud computing.

GA imitates the process of natural evolution as the search route of the local search
algorithm. Reference [66, 99] improve the search strategy based on NSGA-II to reduce the
energy consumption, response time, load imbalance and makespan in Cloud computing.
Xu et al. [69] applied NSGA-III to optimize the execution time and energy consumption of
IoT-enabled Cloud-edge computing. MOGA proposed by H. Jiang et al. [70] and MOEAs
proposed by P. Cong et al. [9] improved the search route strategies based on NSGA-II and
were utilized to settle resource scheduling in Cloud.

FireFly including FA [46] and FIMPSOA [55], PSO including MOPSO [71],
APDPSO [117], and TSPSO [72], are other meta-heuristic algorithms applied in scheduling
of Cloud.

For each instance I of a scheduling problem, assuming the solution of an algorithm
Al as Al(I) and the theory optimal solution as OPT(I), if ∃τ (a function) for ∀I s.t. Al(I) ≤

27

Doctoral Dissertation of University of Electronic Science and Technology of China

τ(|I|) ·OPT(I) (or Al(I) ≥ τ(|I|) ·OPT(I)) and the running time of Al is bounded by a fixed
polynomial in |I|, then Al is defined as an approximation algorithm with approximation
ratio τ [118]. The approximation ratio is a momentous index to evaluate the performance
of an algorithm.

The heuristic algorithm is a type of algorithm to solve an optimization problem based
on intuitionistic or empirical construction. Currently, some heuristic algorithms in the
scheduling of Cloud computing have given approximation ratios and other types of algo-
rithms can rarely obtain the theoretical approximation ratio generally. For the justification
of the huge scale of tasks in Cloud computing, higher computational complexity and ran-
domness of meta-heuristic and machine learning, as well as timeliness requirements for
processing tasks, heuristic algorithms are still widely applied in practical Cloud.

Zhang et al. [119] adopted Lagrange Relaxation based Aggregated Cost (LARAC) to
reduce the energy consumption of Mobile Cloud computing. Dynamic Bipartition-First-
Fit (BFF), a (1 + g−2

k − g−1
k2) competitive algorithm based on First-Fit algorithm, was

proposed and its performance was proved theoretically by Tian et al. [57]. Hong et al. [61]

proposed QoS-Aware Distributed Algorithm based on first-come-first-improve (FCFI)
and all-come-then-improve (ACTI) algorithms to reduce computation time and energy
consumption of Industrial IoT-Edge-Cloud Computing. Tian et al. [15] proposed Longest
Loaded Interval First Algorithm (LLIF), a 2-approximation algorithm with theoretical
proof, to minimize the energy consumption of VMs reservations in the Cloud. Other al-
gorithms such as RR (Round-Robin) algorithm, greedy, BFD (Best Fit Decreasing), LPT
(Longest Processing Time), and Jacobi Best-response Algorithm are frequent algorithms
in realistic and have likewise become baselines in existing research [59].

The hybrid of two or more algorithms is also a strategy to improve the search route
of the local search algorithm. Kumar et al. [120] proposed a hybrid algorithm called HGA-
ACO combining GA and ACO to solve task allocation and ensure QoS parameters in the
Cloud environment. Compared with the single search route of GA and ACO, HGA-ACO
achieved better performance using the optimization solution of GA as the initial state of
ACO [120]. Yang et al. [121] proposed a hybrid meta-heuristic called DAAGA combining
GA and improved ACO by taking the solution of ACO as the seed of GA to address Cloud
service composition and the optimization problem. NN-DNSGA-II combining NSGA-II
with neural networks [122], PSO-ACS applying PSO to find the optimal solution of task
scheduling and applying ACO to find the best migration path of VMs on PMs [83], and

28

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

FACO exploiting fuzzy module dedicated to pheromone evaluation [28], are also used in
Cloud.

2.2.2 Review of System Model

In Cloud Computing, the scheduling scenarios can be divided into dynamic schedul-
ing and static scheduling [4, 10].

Dynamic scheduling, usually applied in online scheduling, is generally regarded as
more consistent with realistic Cloud computing where tasks usually vary with time and
are unknown at the initial scheduling time. In the dynamic scheduling, the tasks are usu-
ally predicted with the random process [2, 49] or machine learning [109] based on historical
data to support the subsequent scheduling using an optimization algorithm, which makes
dynamic scheduling rely on two aspects that the prediction models and optimization algo-
rithms. Yuanjun et al. [9] focused on the hybrid tasks in Cloud and proposed multi-phase
integrated scheduling with six representative multi-objective evolutionary algorithms. In
[9], the orders of tasks are independent without processing constraints among different
orders, each task whose processing process is non-preemptive is conducted continuously
without interruption, and the resource is free for another step immediately once a pro-
cessing step is finished. Ding et al. [49] focused on dynamic task scheduling on VMs for
energy-efficient cloud computing and proposed a framework QEEC based on Q-learning
and M/M/S queueing system. In [49], the energy is modeled as related to tasks’ running
times, each task is treated as integral which cannot be further split into smaller tasks, a
task is conducted by only one VM, and each VM can only execute one task at any time.

Due to the uncertainty of prediction, it’s difficult to obtain the theoretical perfor-
mance of the solution in dynamic scheduling, whose frequently used algorithms are meta-
heuristic algorithms [58, 98] and machine learning algorithms [2, 49, 109]. Additionally, after
getting the prediction of tasks or the real-time status of resources, dynamic scheduling can
be converted to static scheduling by using a static scheduling algorithm as the optimiza-
tion algorithm of dynamic scheduling. Therefore, there is still a lot of research focusing
on static scheduling to explore the theory of scheduling algorithms.

In static scheduling that is usually leveraged in reservation, tasks and resources as
known before scheduling and the algorithms aim at finding a scheme to allocate tasks to
resources. Tian et al. [123] focused on the load balance of VMs reservations in data centers
and proposed “Prepartition” to prepare migration in advance and set process time bound

29

Doctoral Dissertation of University of Electronic Science and Technology of China

for each VM on a PM. In [123], the system model was modeled as all data are deterministic
unless otherwise specified, time is formatted in slotted windows and there is no prior-
ity between VMs, which means the orders of VMs don’t change their processing times.
Zhang et al. [117] focused on the static load balancing in Cloud computing and proposed a
novel adaptive Pbest discrete PSO (APDPSO). In [117], only the computation and band-
width resources are considered, the network topology of hosts is deterministic, the unit
data transmitting cost between each host pair is fairly unchanged, the constraints of re-
sources and the required resources of tasks or VMs are known, and the amount of data to
be transferred between federates is unchanged. Ghalami et al. [33] focused on the schedul-
ing jobs on parallel identical machines to minimize makespan (P||Cmax) and developed
sequential approximation algorithms with various approximation guarantees. In model-
ing of [33], the processing times of jobs were available for processing at time zero, a job
cannot be preempted once assigned to a processor for execution, and each machine cannot
process more than one job at a time.

In this chapter, we continue some assumptions about Cloud computing system mod-
eling referring to reviewed literature to formulate the static scheduling of minimizing
makespan in homogeneous and heterogeneous resources, which makes the improvement
of the theoretical performance of our proposed algorithm in the minimizing makespan
problem to be useful for resource scheduling of Cloud computing. According to the re-
view of types of scheduling algorithms, it can be seen that our proposedmulti-routes search
algorithms using heuristic algorithms as search routes are distinct from the previous algo-
rithms. For multi-routes search algorithms with a similar principle to hybrid algorithms,
different search routes can jump out the inherent local optimum of a single search route
resulting in optimization of the solution. Application of heuristic algorithm as search route
enables the theoretical proof of approximate ratio of the search algorithm, which has not
been carried out for search algorithms in the previous studies.

2.3 Cloud Systems and Optimization Problems Formulations consider-
ing Single-dimensional Resources

In this section, we model the universal scheduling problem of Cloud computing and
present objectives for minimizing makespan both for homogeneous and heterogeneous
resources. And then, we establish the framework of a general local search algorithm based
on the adjustment of tasks between two resources. The notations used in this chapter are

30

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

presented in Table 2-1, where the given parameters are known without the influence of
scheme and scheme-related variables are the opposite.

Table 2-1 Notations and Descriptions
NotationDescription Nature
i Index of task

Object
j Index of resource
Ti The task with index i
Rj The resource with index j
card(S)The cardinal of set S
N Number of tasks

Given
M Number of resources
Eij General element of task Ti when exe-

cuted in Rj

ETij The processing time of Ti when executed
in Rj

MaxAj General Upper limit of resource Rj

TSj Set of tasks in resources Rj

Scheme-
related

Aj General aspect of resource Rj

ω General aspect of problem
RTj The total processing time of resource Rj

Pi The parameter set of task Ti
KS The set of TSj where KS =

{TS1, . . . , TSM}

2.3.1 Models of Minimizing Makespan in Cloud Computing

The resource in the problems of this chapter refers to a physical machine or virtual
machine that can process tasks with some specific component such as CPU, RAM, DS,
etc, where task refers to a request from the user. In this chapter, we mainly focus on the
static scheduling and leverage the processing time to express a task that Ti = {⟨ETij⟩} =
⟨ETi1,ETi2, . . . ,ETiM⟩. For minimizing makespan, the features of resources and tasks are
as follows referring to existing research.
(1) The set of tasks {T1,T2, . . . , TN} is deterministic [123];
(2) All tasks are independent and preemptive without precedence constraints for the order

of tasks [123];
(3) Each task is treated as an integral task and cannot be further split into smaller tasks [49];
(4) Each task can be fully fulfilled by one and only one resource (usually virtual ma-

chine) [49];

31

Doctoral Dissertation of University of Electronic Science and Technology of China

(5) When Aj ≤ MaxAj, the processing capacity of the resource remains unchanged, which
means the parameter Pi of each task is fixed and unaffected by the status of the re-
source.

(6) The total processing time of all resources starts from 0;
(7) Each resource (i.e. VM or PM) is either idle or processing only one task [33, 49];
(8) Once a task is finished, the occupied resource is free for another task immediately

ignoring switching time [9];
(9) The processing time ETij is fixed without affection of the resource’s status or the ex-

ecution order of tasks;
(10) And the number of available resources is invariant.

Assuming the mapping between general element of task and general aspect of re-
sources as function h : E → A, the mapping between general aspect of resources and
optimization objective as function f : A → ω, and taking Pi = ⟨Ei1,Ei2, . . . ,EiM⟩, the
universal resource scheduling problem of Cloud computing can be written as

minω = f (A1,A2,A3, . . . ,AM) (2-1)

where Aj = hj
(
Eij|Ti∈TSj

)
subject to Aj ≤ MaxAj. In Cloud computing, the general element

of task can be taken as processing time, volume, energy consumption, bandwidth, storage
request and other elements of tasks, in addition the general aspect of resource can be taken
as degree of load balance [9, 46], makespan [46, 110], energy consumption [63, 108], cost [59, 71],
delay ratio [9], utilization of resource [46, 49], throughput [44, 55], SLA Violation [53, 71], etc.

If ∀l ̸= k s.t. hl(x) = hk(x) , MaxAl = MaxAk and Eil = Eik, the resources are homo-
geneous, otherwise the resources are heterogeneous. In this chapter, we consider homo-
geneous resources when studying the theoretical approximation ratio of the algorithms,
while we also study the scheduling problems of heterogeneous resources to approach to
real Cloud scenarios.

Solution of minimizing makespan is a way to reduce the working time of resources,
where less working time may bring multifaceted benefits such as reduction of energy con-
sumption, increase of resource utilization, prolong of devices’ lifespan, improvement of
processing capacity, etc. For problem of minimizing makespan, the decisive factors are
time-related parameters including ETij and RTj assuming time is slotted in the unit of time.
Thus, we need to use ETij and RTj to replace Eij and Aj in problem then substitute the pa-
rameter set of tasks as Pi = ⟨ETi1,ETi2, . . . ,ETiM⟩ where ETij ∈ R+ means the processing

32

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

time of task Ti when it on the resource Rj.
According to the features of tasks and resources, the total processing time ofRj equals

to the sum of processing time of all tasks executed on Rj that

RTj =
∑

Ti∈TSj
ETij. (2-2)

Along with minimizing makespan, the sum of the running time of all resources is con-
siderable simultaneously. Therefore, two objectives that are minimizing the total running
time and minimizing the makespan require considerations shown as

minωtotal−time = min
(

M∑
j=1

N∑
i=1

xijETij
)

minωmakespan = min
(

max
j=1,2,...,M

(N∑
i=1

xijETij
)) . (2-3)

For heterogeneous resources, Eq.2-3 is a bi-objective problem, and for homogeneous
resources, total running time is a constant where Eq.2-3 can degenerate into a single ob-
jective optimization problem. The constraints of Eq.2-3 are subject to

M∑
j=1

xij = 1, ∀i ∈ {1, . . . ,N}, (2-4a)

xij ∈ {0, 1}, ∀i ∈ {1, . . . ,N}, ∀j ∈ {1, . . . ,M}, (2-4b)

Aj ≤ MaxAj, ∀j ∈ {1, . . . ,M}, (2-4c)

where Eq.2-4a and Eq.2-4b are the common constraints of zero-one integer programming,
as well as Eq.2-4c is corresponding to the fifth features of system to ensure the parameters
of tasks and resources unchanged.

Table 2-2 Problems Executed in Experiments.
Sign Description of Problem
P1 Minimizing makespan for homogenous re-

sources
P2 Minimizing makespan and total running time

for heterogenous resources

In Eq.2-3, the optimization solution of {xij} necessarily and sufficiently occupies a

33

Doctoral Dissertation of University of Electronic Science and Technology of China

unique set of KS, hence KS can express the solution corresponding to {xij}. When KS is
determined, other scheme-related parameters in Table 2-1 can be calculated according to
given parameters. Other scheduling problems can be formulated similar to these problems
based on the universal mode of Eq.2-1. Then, the formulated problems considered in this
chapter are in Table 2-2.

2.4 Algorithm Design: Multi-Route Search Algorithm

2.4.1 General Local Search Algorithm

Although the main problem studied in this chapter is minimizing makespan, our pro-
posed algorithms have generality for other optimization problems, such as load balancing,
minimizing energy consumption, etc. Therefore, we still use the general parameters Eij

and Aj to present subsequent methodologies and theoretical proofs. When solving the
makespan-related problems, they only need to be replaced by ETij and RTj.

For scheduling problems, the local search algorithm is a considerable method, whose
strategy is to search the optimal state by local neighborhoods [111, 112]. In this chapter,
neighbors of dual resources is described as only two resources have different sets of tasks
in two scheduling solutions, which can be defined by mathematical formulas as: assuming
two solutions KS1 = {TS1,TS2, . . . , TSM} and KS2 = {TS′

1,TS′
2, . . . , TS′

M}, if ∃j1 ̸= j2 ∈
{1, 2, . . . ,M} s.t. TSj1 ̸= TS′

j1 , TSj2 ̸= TS′
j2 and TSk = TS′

k for ∀k ∈ {1, 2, . . . ,M}−{j1, j2},
then KS1 and KS2 are neighbors of dual resources.

General Local Search Algorithm based on the neighbors of dual resources for the
universal scheduling problem, utilizes a specified route to search for a better state in the
neighbors of the current state until non-existent neighbors are better than the current state
as Algorithm 2-1. General Local Search Algorithm based on the Neighbors of Dual Re-
sources has four essential fundamentals as follows which vary with scenarios:
(1) The specified local search route which be substituted by various route strategies;
(2) The neighbor selection criteria consistent with f : A → ω;
(3) The initial state with initialization policy that determines which local optimal cluster

to search in;
(4) The specific order strategies.

In these four essential fundamentals, the specified local search route directly influ-
ences the performance of the solution and is also a widely studied topic. This chapter

34

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Algorithm 2-1General Local Search Algorithm based on the Neighbors of Dual
Resources
Input : {T1,T2, . . . , TN} and {R1,R2, . . . ,RM}
Output: solution KS = {TS1,TS2, . . . , TSM}

1 Initially Allocate tasks to resources with confirmed or random initialization
policy and gain the general aspect of resources by Aj = hj

(
Eij|Ti∈TSj

)
2 while Exist_adjustment do
3 Exist_adjustment = False
4 Sort resources by their value Aj
5 for j1 in resources of a specific order strategies do
6 or_j = j1, β = f (A1,A2, . . . ,AM)
7 for j2 in [0, j1) do
8 Use specified local search route (one or more of LPTS, BFDS,

K-Step etc.) to adjust tasks belonging to TSj1 and TSj2 then gain TS′
j1

and TS′
j2 subject to Aj ≤ MaxAj for ∀j ∈ {1, 2, . . . ,M}

9 if β > f
(
A1, . . . ,A′

j2 , . . . ,A′
j1 , . . . ,AM

)
then

10 pre_j = j2 and Exist_adjustment = True
11 β = f

(
A1, . . . ,A′

j2 , . . . ,A′
j1 , . . . ,AM

)
12 if Exist_adjustment then
13 Update resources of or_j and pre_j based on the specified local

search route as TSor_j = TS′
or_j, TSpre_j = TS′

pre_j
14 Break (for repeat of j1)

focuses on this to propose multi-search-routes-based algorithms.

2.4.2 Specified basic Local Search Route

It can be seen from the flow of Algorithm 2-1 that any algorithm able to readjust the
tasks of two resources can be applied as its specified local search route and the property of
its convergence solution is affected by this route. This property of Algorithm 2-1 not only
allows a heuristic algorithm to be a search route but also allowsmultiple search routes to be
used simultaneously to jump out of the convergence points of a single search route. Based
on the definition of different neighborhoods, we will present several specified local search
routes as basic routes including K-Step search, LPT search and BFD search. Substituting
these algorithms into Algorithm 2-1 as specified local search route, we can get various
local search algorithms.

35

Doctoral Dissertation of University of Electronic Science and Technology of China

2.4.2.1 K-Step Search Route

On the basis of neighborhood of dual resources, neighbors of K-Step can be defined
as: assuming KS and KS′ of two states of solutions satisfy the neighborhood of dual re-
sources, if card

(
TSj1 − TSj1 ∩ TS′

j1

)
≤ K and card

(
TSj2 − TSj2 ∩ TS′

j2

)
≤ K, then KS

and KS′ are mutually neighbors of K-Step. The K-Step search route based on neighbors
of K-Step is Algorithm 2-2.

Algorithm 2-2 K-step search route
Input : tasks set TSj1 and TSj2 of Rj1 and Rj2
Output: TS′

j1 and TS
′
j2

1 Find tasks set Bj1 ⊂ TSj1 and tasks set Bj2 ⊂ TSj2 s.t. f
(
A′
j1 ,A

′
j2

)
< f (Aj1 ,Aj2)

where A′
j = hj

(
Eij|Ti∈TS′

j

)
, 0 < max (card(Bj1), card(Bj2)) ≤ K,

TS′
j1 = TSj1 − Bj1 + Bj2 and TS′

j2 = TSj2 + Bj1 − Bj2

With the adaptability of objectives, K-Step search can improve the current state
of the solution. When K = 1, we can obtain One-Step search, which will be ap-
plied in our multi-route search subsequently as a special case of K-Step search. Gen-
erally, the computational complexity of finding the tasks sets Bj1 and Bj2 in One-
Step search is (card(TSj1) + card(TSj2) + card(TSj1)card(TSj2)). In our proposed One-
Step search, we use a sort-based algorithm to optimize the process of finding task
sets, which can reduce the computational complexity of finding the tasks sets to
((card(TSj1) + card(TSj2)) log (card(TSj1) + card(TSj2))). And then, we obtain the algo-
rithm of One-Step search route based on sort algorithm as Algorithm 2-3.

Substitution of K-Step search route to the specified local search route of Algorithm
2-1 (i.e. General Local Search Algorithm) can obtain K-Step Search Algorithm. This
chapter mainly applies One-Step to improve other search routes such as LPTS and BFDS
presented subsequently.

For the sake of subsequently demonstrating proofs of approximate ratio, we can
present the property of K-Step in the Property 1 according to the definition of K-Step
neighbors, which also applies to One-Step when K = 1.

Property 1 (K-Step) Assume KS = {TS1, . . . , TSM} is the convergence solu-
tion of K-Step Search Algorithm. For ∀j1 ̸= j2, ∀Bα ⊂ Tj1 , ∀Bβ ⊂ Tj2 , if 0 <

max (card(Bα), card(Bβ)) ≤ K, then: f
(
A′
j1 ,A

′
j2

)
≥ f (Aj1 ,Aj2) where A′

j = hj
(
Eij|Ti∈TS′

j

)
,

36

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Algorithm 2-3 One-step search route
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2 where it can be set as Aj1 ≥ Aj2
Output: TS′

j1 and TS
′
j2

1 Setγj1 =
∑

Ti∈TS Eij1
M , Cj1 = Aj1 − γj1

2 B1 = argmin
{Ti}

(
|Eij1 − Cj1|Ti∈TSj1 , |Eij2 + Cj1|Ti∈TSj2

)
3 vl1 = min

(
|Eij1 − Cj1|Ti∈TSj1 , |Eij2 + Cj1|Ti∈TSj2

)
4 Sort

{
Eij1|Ti∈TSj1 ,Eij2 + Cj1|Ti∈TSj2

}
→ {Gη1 ,Gη2 , . . . }

5 B2 = argmin
{Tηi ,Tηi+1}

∣∣∣Gηi − Gηi+1

∣∣∣, vl2 = min
∣∣∣Gηi − Gηi+1

∣∣∣ where {Tηi ,Tηi+1} ̸⊂ TSj1 and

{Tηi ,Tηi+1} ∩ TSj1 ̸= ∅
6 if B1 = ∅ and B2 = ∅ then
7 Return Exist_adjustment = False
8 else
9 if vl1 ≤ vl2 then
10 Update by TS′

j1 = TSj1 − B1, TS′
j2 = TSj2 − B1

11 else
12 Update by TS′

j1 = TSj1 ∪ B2 − TSj1 ∩ B2, TS′
j2 = TSj2 ∪ B2 − TSj2 ∩ B2

13 Return TS′
j1 , TS

′
j2 and Exist_adjustment = True

TS′
j1 = TSj1 − Bα + Bβ and TS′

j2 = TSj2 + Bα − Bβ.

2.4.2.2 LPT Search Route and Modified LPT Search Route

LPT (Longest Processing Time) algorithm is proposed to solveminimizingmakespan
of parallel machines (P||Cmax) [33]. Currently, LPT algorithm has approximation ratio
ArLPT ≤ 4

3− 1
3M whereM ≥ 2 and LPT-REV has approximate ratio ArLPT−REV ≤ 4

3− 1
3(M−1)

where M ≥ 3 in P||Cmax
[102, 103]. Considering the merit of LPT, this chapter applies LPT

as the search route shown as Algorithm 2-4 by adjusting the classic LPT algorithm so that
it can be applied to Algorithm 2-1 as the search route. Based on the characteristics of LPT
algorithm, neighborhoods of LPT-route can be defined as: assuming KS′ and KS are the
neighbors of dual resources and TS′

j1∪TS
′
j2 = TSj1∪TSj2 = {Tα1 ,Tα2 , . . . }whereEαi≥Eαi+1 ,

if Tαi ∈ argminTS′

(∑
Tαk∈TS′

1
Eαk ,

∑
Tαk∈TS′

2
Eαk

)
where k < i for ∀Tαi ∈ TS′

j1 ∪TS′
j2 then KS

′

is an LPT route-based neighbor of KS, while by contraries KS may not be that of KS′.

Substitution of LPT search route to the specified local search route of Algorithm
2-1 can obtain LPT Search Algorithm (LPTS) that can adapt to various objectives corre-

37

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 2-4 LPT search route (based on LPT)
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS′

j1 and TS
′
j2

1 Markj1 = 0, Markj2 = 0, TS′
j1 = ∅ and TS′

j2 = ∅
2 for Tα in TS from largest to smallest do
3 if Markj1 ≤ Markj2 then
4 Markj1+ = Eαj1 and TS′

j1+ = {Tα}
5 else
6 Markj2+ = Eαj2 and TS′

j2+ = {Tα}

sponding to balance. LPTS inherits the approximation ratio ArLPTS ≤ 4
3 − 1

3M for P||Cmax

of LPT algorithm, and has better solutions in statistics, which means the solution of LPTS
is not inferior to that of LPT algorithm.

Similarly for the demonstration of subsequent proofs, we present a property of LPTS
as Property 2 according to the definition of LPT route-based neighbor.

Property 2 (LPTS) KS = {TS1, . . . , TSM} is the convergence solution of LPTS. For
∀j1 ̸= j2, assuming TSj1 ∪ TSj2 = {Tα1 ,Tα2 , . . . } where Eαij1 ≥ Eαi+1j1 , if TS′

j1 ∪ TS′
j2 =

TSj1 ∪TSj2 and Tαi ∈ argmin
TS′

(∑
Tαk∈TS′

j1
Eαkj1 ,

∑
Tαk∈TS′

j2
Eαkj2

)
k<i

for ∀Tαi ∈ {Tα1 ,Tα2 , . . . },

then: f
(
A′
j1 ,A

′
j2

)
≥ f (Aj1 ,Aj2).

However, the LPT algorithm is originally intended to resolve the problems in ho-
mogenous resources. For heterogeneous resources, a Modified LPT search (MLPT) al-
gorithm seen in Algorithm 2-5 can be applied to address the problem of minimizing
makespan. The Modified LPT search route considers the difference in the processing time
or volume of a task between different resources and preferentially puts the task with the
largest difference into a specific resource. In this way with adaptability for heterogeneous
resources, the local search algorithm using MLPT route can obtain an optimized solution.

Algorithm 2-5 is a version convenient for comprehension. In realistic program of
algorithm, we can use array operations on GPU to accelerate Algorithm 2-5. For the
tasks set TS = TSj1 ∪ TSj2 of two resources Rj1 and Rj2 , we can assume the set sorted
in ascending order according to the value of Eij1 − Eij2 in TS as {Tα1 ,Tα2 , . . . , Tαn}.
Then, the operation of Algorithm 2-5 equals to finding an index ζ in {0, 1, 2, . . . , n}
s.t. ∑ζ

i=0 Eαij1 and
∑n+1

i=ζ+1 Eαij2 as close as possible assuming Eα0j = Eαn+1j = 0 where
j ∈ {j1, j2}. And ∑ζ

i=0 Eαij1 ≈ ∑n+1
i=ζ+1 Eαij2 is equivalent to

∑ζ
i=0 Eαij1 + ∑ζ

i=0 Eαij2 ≈

38

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Algorithm 2-5Modified LPT search route for heterogenous resources (Modifi-
cation of LPT route)
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS′

j1 and TS
′
j2

1 Markj1 = 0, Markj2 = 0, TS′
j1 = ∅ and TS′

j2 = ∅
2 while TS ̸= ∅ do
3 if Markj1 ≤ Markj2 then
4 c = j1, b = j2
5 else
6 c = j2, b = j1
7 Find Tαl ∈ TS s.t. Tαl = argminTi∈TS (Eic − Eib) to obtain a set of

{Tα1 ,Tα2 , . . . , Tαs}
8 if s ≥ 2 then
9 Choose Tα s.t. Tα = argmax1≤l≤s Eαlc

10 Markc+ = Eαc, TS′
c+ = {Tα} and TS− = {Tα}

∑n+1
i=ζ+1 Eαij2 + ∑ζ

i=0 Eαij2 → ∑ζ
i=0 (Eαij1 + Eαij2) ≈ ∑n+1

i=0 Eαij2 = Sumj2 . Setting Sj1 =
{Eα0j1 ,Eα1j1 , . . . ,Eαnj1} and Sj2 = {Eα0j2 ,Eα1j2 , . . . ,Eαnj2}, therefore, we can use the GPU-
based program to quickly calculate a new array as |cusum (Sj1 + Sj2) − Sumj2| where
cusum(S) means the cumulative sum of S, choose the index at its minimum as ζ , and
update TS′

j1 =
{
Tα1 ,Tα2 , . . . , Tαζ

}
and TS′

j2 = TS − TS′
j1 where if ζ = 0 then TS′

j1 = ∅.
Using this idea, we can quickly adjust the tasks of two resources with GPU operation-
based program, and even quickly adjust the tasks of multiple resources simultaneously.
Similarly, other search routes can also be accelerated by GPU operation. As this is not the
focus of this chapter, we do not expand the explanation.

2.4.2.3 BFD Search Route

BFD (Best Fit Decreasing) is usually used to solve the bin packing problem and
also applies to problems related to minimizing makespan. A search route based on BFD is
Algorithm 2-6 and the neighborhood using the BFD search route can be called BFD route-
based neighborhood similar to the definition of LPT route-based neighborhood. Using
BFD search route to replace the specified local search route in Algorithm 2-1 obtains
BFD search (BFDS) algorithm. Similar to the relationship between LPTS and LPT, BFDS,
with a better statistical performance, inherits the approximation ratio of BFD. A property
of BFDS is Property 3 according to its definition.

39

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 2-6 BFD search route (based on BFD)
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS′

j1 and TS
′
j2

1 set γj =
∑

Ti∈TS Eij

M where j ∈ {j1, j2}
2 Markj1 = 0, Markj2 = 0, TS′

j1 = ∅, TS′
j2 = ∅

3 for Tα in TS from largest to smallest do
4 if

∣∣∣Markj1 + Eij1 − γj1
∣∣∣ <

∣∣∣Markj2 + Eij2 − γj2
∣∣∣ then

5 TS′
j1+ = Tα, Markj1+ = Eij1

6 else
7 TS′

j2+ = Tα, Markj2+ = Eij2

Figure 2-2 Flowchart of Local Search Algorithms based on the Neighbors of Dual

Resources with Various Search Routes including LPT, BFD,K-Step and their Com-

binations.

Property 3 (BFDS) KS = {TS1, . . . , TSM} is the convergence solution of BFDS. For
∀j1 ̸= j2, assuming TSj1 ∪ TSj2 = {Tα1 ,Tα2 , . . . } where Eαij1 ≥ Eαi+1j1 , if TS′

j1 ∪ TS′
j2 =

TSj1 ∪ TSj2 and Tαi ∈ argminTS′

(∣∣∣Qij1 + Eαij1 − γj1
∣∣∣ , ∣∣∣Qij2 + Eαij2 − γj2

∣∣∣) for ∀Tαi ∈ TS′
j1 ∪

TS′
j2 where Qij1 = ∑

Tαk∈TS′
j1

,k<i Eαkj1 and Qij2 = ∑
Tαk∈TS′

j2
,k<i Eαkj2 , then: f

(
A′
j1 ,A

′
j2

)
≥

f (Aj1 ,Aj2).
An improved strategy of the BFD search route, which is called Best-BFD search route

in Algorithm 2-7, is to record schemes and select the best scheme as the final solution.

40

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Algorithm 2-7 Best BFD search route
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS′

j1 and TS
′
j2

1 set γj1 =
∑

Ti∈TS Eij1
M , k = 0, Markj1 = 0, TS(0)

j1 = ∅
2 for Tα in TS from largest to smallest do
3 if Markj1 + Eij1 ≤ γj1 then
4 TS(0)

j1 + = Tα andMarkj1+ = Eij1

5 else
6 k + +
7 Lk =

∣∣∣Markj1 + Eij1 − γj1
∣∣∣ and TS(k)

j1 = TS(0)
j1

8 L0 =
∣∣∣Markj1 − γj1

∣∣∣
9 TS′

j1 = argminTS(α)
j1

(L0,L1, . . . , Lk), TS′
j2 = TS − TS′

j1

2.4.3 Combination of Multi-routes and the Flowchart

As mentioned above, the specified local search route of Algorithm 2-1 can be re-
placed by multiple search routes simultaneously. Therefore, the proposed search routes
can be arbitrarily combined as the search routes of Algorithm 2-1. This chapter presents
three combinations of them including LPT-One, BFD-One and LPT-BFD-One regarding
LPT route, One-Step route and BFD route as the basic routes. These algorithms using
various search routes can be uniformly called multi-search-routes-based algorithms and
their operation processes corresponding to the specified search route in Algorithm 2-1 are
as follows:
(1) LPT-One : (TSj1 ,TSj2) →

(
TS′

j1 ,TS
′
j2

)
by LPTS and

(
TS′

j1 ,TS
′
j2

)
→

(
TS′′

j1 ,TS
′′
j2

)
by

OneS; use (TS′′
j1 ,TS

′′
j2) as the the neighbor of (TSj,TSk) in Algorithm 2-1.

(2) BFD-One: (TSj1 ,TSj2) →
(
TS′

j1 ,TS
′
j2

)
by BFDS and

(
TS′

j1 ,TS
′
j2

)
→

(
TS′′

j1 ,TS
′′
j2

)
by

OneS; use (TS′′
j1 ,TS

′′
j2) as the neighbor of (TSj1 ,TSj2) in Algorithm 2-1.

(3) LPT-BFD-One: Use LPTS, BFDS and OneS, then choose the best solution as the
neighbor of (TSj1 ,TSj2).
Based on the above description, we can draw the flow charts of our proposed al-

gorithms as Fig 2-2 to intuitively demonstrate how the LPT, BFD, One-Step and their
combinations act as search routes of Algorithm 2-1. From Fig 2-2, we can see again the
flexibility of Algorithm 2-1 that it allows various algorithms as its search routes. In the
framework, we only need to change the search routes to obtain specific search algorithms
with different convergence properties.

41

Doctoral Dissertation of University of Electronic Science and Technology of China

As LPT and BFD have increased performance and One-Step has a descending per-
formance with the increasing number of tasks, therefore LPT-OneStep search (LPT-One)
and BFD-OneStep search (BFD-One) occupy better approximation ratios respectively
than LPTS and BFDS. Multi-routes search has various combination patterns of search
routes where one is the combination with repeated iterations of search routes such as
LPT_route+OneStep_route, as well as the other is the combination with repeated iter-
ations of search algorithms such as LPT_algorithm+OneStep_algorithm. Theoretically,
the two patterns have the same theoretical approximation ratio. In this chapter, LPT-One
and BFD-One appertain to that of search routes.

2.4.3.1 Example Demonstration of Algorithms Flows

For the sake of the presentation of multi-search-routes-based algorithms, we provide
several examples to demonstrate the flows of algorithms.

Firstly for the problems of minimizing makespan for homogeneous resources, we
select an instance with eight tasks {T1,T2, . . . , T8} and three resources {R1,R2,R3} where
the processing time of tasks can be set as ET1 = 2,ET2 = 3,ET3 = 4,ET4 = 5,ET5 =
6,ET6 = 7,ET7 = 8,ET8 = 9. Using LPT algorithm can obtain the solution as TS1 =
{T8,T3,T2}, TS2 = {T7,T4,T1} and TS3 = {T6,T5} where the maximum makespan is
RT1 = 16. Using LPT search algorithm cannot improve the solution, however using
LPT-One can improve it. Taking the result of LPT algorithm as the initial state of LPT-
One, the solution of scheduling is TS1 = {T6,T3,T2}, TS2 = {T7,T4,T1} and TS3 =
{T8,T5} where the maximum makespan is RT2 = RT3 = 15. When assuming TS1 =
{T8,T7,T6,T5,T4,T3,T2,T1}, TS2 = TS3 = ∅ as the initial state, the algorithm flow of
LPT-One is as follows:
• 1-th iteration: Using LPT search route to adjust TS1 and TS2 can gain TS1 =

{T8,T5,T4,T1} and TS2 = {T7,T6,T3,T2}. Presently, OneStep search cannot adjust
TS1 and TS2.

• 2-th iteration: Using LPT search route to adjust TS1 and TS3 can gain TS1 = {T8,T1}
and TS3 = {T5,T4}. Presently, OneStep search cannot adjust TS1 and TS3.

• 3-th iteration: Using LPT search route to adjust TS1 and TS2 can gain TS1 =
{T8,T3,T2} → RT1 and TS2 = {T7,T6,T1}. Presently, OneStep search cannot adjust
TS1 and TS2.

• 4-th iteration: Using LPT search route to adjust TS2 and TS3 can gain TS2 = {T7,T4,T1}
and TS3 = {T6,T5}. Using OneStep to adjust present TS2 and TS3 can gain TS2 =

42

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

{T6,T4,T1} and TS3 = {T7,T5}.
• 5-th iteration: Using LPT search route to adjust TS1 and TS1 can gain TS1 = {T8,T3,T1}
and TS2 = {T6,T4,T2}.

• Currently, LPT-One achieves convergence, the scheme is TS1 = {T8,T3,T1}, TS2 =
{T6,T4,T2}, TS3 = {T7,T5} and the maximum makespan is R1 = R2 = 15.

Secondly for the problem ofminimizingmakespan andminimizing total running time
for heterogeneous resources, we demonstrate an instance with six tasks {T1,T2, . . . , T6}
and three resources {R1,R2,R3} where the processing time of tasks can be set as ET1 =
⟨3, 6, 7⟩, ET2 = ⟨8, 4, 6⟩, ET3 = ⟨9, 11, 28⟩, ET4 = ⟨7, 9, 7⟩, ET5 = ⟨8, 5, 9⟩ and ET6 =
⟨9, 4, 8⟩ where ET1 = ⟨3, 6, 7⟩ means the prossing time of task T1 is 3, 6 or 7 when
executed on R1, R2 or R3 correspondingly. Although LPT is not suitable for this scenario,
the strategy of it can be utilized to gain a solution as TS1 = {T3,T6}, TS2 = {T4,T1}
and TS3 = {T5,T2} where the maximum makespan is RT1 = 18 and the total running
time is TR = 48. A strategy of SPT (shortest processing time) can gain a solution as
TS1 = {T1,T5}, TS2 = {T2,T6} and TS3 = {T4,T3} where maximum makespan is RT3 =
35. Taking TS1 = {T6,T5,T4,T3,T2,T1}, TS2 = TS3 = ∅ as the initial state, we show
algorithm flow of MLPT-One as follows.
• 1-th iteration: Using MLPT search route to adjust TS1 and TS2 can gain TS1 =

{T1,T3,T4} and TS2 = {T6,T2,T5}. Presently, OneStep search cannot adjust TS1 and
TS2.

• 2-th iteration: Using MLPT search route to adjust TS1 and TS3 can gain TS1 = {T3}
and TS3 = {T4,T1}. Using OneStep search route to adjust present TS1 and TS3 can gain
TS1 = {T3,T1} and TS3 = {T4}.

• Currently, MLPT-One achieves convergence, the scheme is TS1 = {T3,T1}, TS2 =
{T6,T2,T5}, TS3 = {T4} and the maximum makespan is R2 = 13 and the total running
time is TR = 32.

2.5 Theoretical Analysis and Proof

In consideration of the complexity and difficulty to prove the approximate ratio of
heterogeneous resources, we only demonstrate the proofs of approximation ratio for ho-
mogeneous resources i.e. mainly focusing onP||Cmax. Since the given general upper limits
MaxAj of resources are the same in homogenous resources, which means the constraint is
only related to the maximum aspects max {A1,A2, . . . ,AM}, so we don’t need to consider

43

Doctoral Dissertation of University of Electronic Science and Technology of China

the constraint of Eq.2-3 in the proof.
As LPT-One and BFD-One are originated from the heuristic algorithms which have

theoretical approximation ratios, hence their approximation ratios can be proved by re-
ferring to their original heuristic algorithms. Considering Ei1 = Ei2 = · · · = EiM for
∀i in homogeneous resources, we donate Gi = Ei1 = Ei2 = · · · = EiM to represent the
general elements of task Ti for the sake of demonstration of proofs. Next, we present the
approximation ratios of several algorithms and their proofs.

Theorem 2.1 ArLPTO = ArLO ≤ 5
4 − 1

4M for P||Cmax.
Proof: According to the convergence condition, the convergence solution of LPT-

One simultaneously obeys Property 1 and Property 2. Suppose the set of instances that
do not satisfy Theorem 2.1 is H, the instance I = {T1,T2, . . . , Tn} ∈ H has minimum
numbers of tasks, and G1 ≥ G2 ≥ · · · ≥ Gn, which means ArLO (x|∀x ∈ H) > 5

4 − 1
4M and

card(I) = min card (x|∀x ∈ H).
Then, Tn ∈ argmaxTSj (Aj), otherwise ∃I′ = I − {Tn} s.t. ArLO(I′) > 5

4 − 1
4M hence

I′ ∈ H and card(I′) < card(I), which is contradicted to card(I) = min card (x|∀x ∈ H).
Assuming Tn ∈ TSk, when LPTS converges, Ak − Gn ≤ Aj for ∀j ̸= k from Property

2. Thus, Ak ≤ 1
M
∑n

i=1Gi + M−1
M Gn ≤ OPT(I) + M−1

M Gn where OPT(I) is the theoretical
optimization.

As ArLO(I) > 5
4 − 1

4M , so
5
4 − 1

4M < 1 + M−1
M

Gn
OPT(I) . ∴ OPT(I) < 4En. ∵ Gn ≤ Gi for

∀i = 1, 2, . . . , n, ∴ card(TS′
j) ≤ 3 for ∀j = 1, 2, . . . ,M where KS′ = {TS′

1,TS′
2, . . . , TS′

M}
is the theoretical optimization scheme corresponding to OPT(I).

It can be assumed that n = 3M.
Assuming card(TSj) = 3 for ∀j = 1, 2, . . . ,M of instance I, TSk ∪ TSj can be set as

{Tα1 ,Tα2 ,Tα3 ,Tα4 ,Tα5 ,Tn} where ∀j ̸= k and Gα1 ≥ Gα2 ≥ · · · ≥ Gα5 ≥ Gn. Then, there
are two situations for TSk and TSj considering Tn ∈ TSk that as:

 Tα1 ∈ TSk

Tα2 ,Tα3 ∈ TSj
or

 Tα1 ∈ TSj

Tα2 ,Tα3 ∈ TSk
(2-5)

If Tα1 ∈ TSk, there are two states that Tα4 ∈ TSk or Tα5 ∈ TSk. When Tα4 ∈ TSk, the
relationships of {Tα1 ,Tα2 ,Tα3 ,Tα4 ,Tα5 ,Tn} based on Property 2 are:

44

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Gα1 + Gα4 ≤ Gα2 + Gα3 + Gα5

Gα1 + Gα4 + Gn ≥ Gα2 + Gα3 + Gα5

Gα1 + Gn ≤ Gα2 + Gα3

(2-6)

∵ I ∈ H, ∴ ∃j ̸= k s.t.:
Gα1+Gα4+Gn
Gα1+Gα2

> 9
8

Gα1 + Gα2 ≥
∑5

i=1 Gαi+Gn

2 ≥ OPT(I)
(2-7)

derived from Property 1. Substitution Eq.2-7 into Eq.2-6 obtains:

53
24

Gα1 + 45
24

Gα2 <

∑5
i=1Gαi + Gn

2
≤ OPT(I) (2-8)

Eq.2-8 contradicts 53
24Gα1 + 45

24Gα2 > Gα1 + Gα2 ≥ OPT(I).
When Tα5 ∈ TSk, the relationships are as follows based on Property 1 and Property

2.
Gα1 + Gα5 ≥ Gα2 + Gα3 + Gα4

Gα5 + Gα6 > 1
8Gα1 + 9

8Gα2

Gα1 + Gα2 ≥
∑5

i=1 Gαi+Gn

2 ≥ OPT(I)

(2-9)

Simplification of Eq.2-9 can obtain 4OPT(I) > 35
8 Gα1 + 27

8 Gα2 . However, ∵ 1
8Gα1 +

9
8Gα2 < Gα5 + Gα6 ≤ 2Gα3 and Gα1 ≥ Gα2 + Gα3 , ∴ 3Gα1 > 5Gα2 . ∴ 35

8 Gα1 + 27
8 Gα2 >

4 (Gα1 + Gα2) ≥ 4OPT(I), which is constricted to 4OPT(I) > 35
8 Gα1 + 27

8 Gα2 .
If Tα1 ∈ TSj, {Tα1 ,Tα2 ,Tα3 ,Tα4 ,Tα5 ,Tn} satisfies that:

Gα1 + Gα4 ≤ Gα2 + Gα3

Gα1 + Gα4 + Gα5 ≥ Gα2 + Gα3
Gα2+Gα3+Gn
Gα1+Gα2

> 9
8

Gα1 + Gα2 ≥
∑5

i=1 Gαi+Gn

2 ≥ OPT(I)

(2-10)

Reduction of Eq.2-10 can also obtain Eq.2-8, which is constricted to 53
24Gα1 + 45

24Gα2 >

OPT(I).
Assuming ∃card(TSj) ̸= 3, then ∃card(TSj) = 2 and ∃card(TSl) ≥ 4. Thus, it can

be suppose card(TSl) = 4 and TSl ∩ TSj = {Tα1 ,Tα2 , . . . , Tα6} where Gα1 ≥ Gα2 ≥ · · · ≥
Gα6 . Four probable cases are TSj = {Tα1 ,Tα4}, TSj = {Tα1 ,Tα5}, TSj = {Tα1 ,Tα6} or

45

Doctoral Dissertation of University of Electronic Science and Technology of China

TSj = {Tα2 ,Tα3}, where One-Step search can reach the optimum in either case.
Using the same derivation method combining with mathematical induction, it can be

proved that ̸ ∃I s.t. ArLO(I) > 5
4 − 1

4M , which means H = ∅. Therefore, Theorem 2.1 is
true.

■
From proof of Theorem 2.1, it can be observed that One-Step search can improve

and optimize the solution when card(TS′
j) ≤ 3, ∀j = 1, 2, . . . ,M. If the processing time

of tasks are as Eq.2-11 with 3M tasks and M resources, then the allocation result of LPT
algorithm is as Eq.2-12 where ϵ ∈ [0, M

2) and the first row TS1 = {3M − 1,M,M − ϵ}
means the resource R1 has three tasks with processing time as 3M − 1, M andM − ϵ.

G1 = 3M − 1;

G2 = 2M − 1;

Gi = 2M −
⌈
i
2

⌉
, i = 2j + 1, 1 ≤ j ≤ M − 1;

G2M+1 = M;

Gi = 2M −
⌈
i
2

⌉
+ ϵ, i = 2j, 2 ≤ j ≤ M;

Gi = M − ϵ, 2M + 2 ≤ i ≤ 3M

(2-11)

TS1 = {3M − 1,M,M − ϵ} ;

TS2 = {2M − 1,M + 0 + ϵ,M − ϵ} ;

TS3 = {2M − 2,M + 1 + ϵ,M − ϵ} ;

TS4 = {2M − 3,M + 2 + ϵ,M − ϵ} ;
...

TSM = {2M − (M − 1),M + (M − 2) + ϵ,M}

(2-12)

If using the allocation result of LPT as initial allocation or coincidentally using Eq.2-
12 as the initial allocation, Eq.2-12 will be the local optimum of LPT-One, where the
approximate ratio is ArLO(I∗) = 5M−1−ϵ

4M and limϵ→0 ArLO (I∗) = 5M−1
4M . Thus, the instance

of Eq.2-11 with initial allocation as Eq.2-12 is a worst-case of LPT-One when the number
of resources is M.

Theorem 2.2 ArBFDO = ArBO ≤ 5
4 − 1

4M for P||Cmax.
Proof: For BFD-One, assuming ArBO (x|∀x ∈ H) > 5

4 − 1
4M , I ∈ H and card(I) =

min card (x|∀x ∈ H). Then, the same conclusion as that in LPT-One is OPT(I) < 4Gn for

46

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Table 2-3 Summary of Proposed Algorithms and their corresponding Problems

evaluated in Subsequent Experiments.
Ascription Algorithm Category Description Problems

Single route

LPTS Local Search LPT-Search algorithm P1 + P2
MLPTS Local Search LPT-Search algorithm P2
BFDS Local Search BFD-Search algorithm P1
OneS Local Search OneStep-Search algorithm P1
BestBFDS Local Search BestBFD-Search algorithm P1

Dual routes
LPT-One Local Search LPT-OneStep Search algorithm P1 + P2
MLPT-One Local Search MLPT-OneStep Search algorithm P2
BFD-One Local Search BFD-OneStep Search algorithm P1

Triple routes LPT-BFD-
One

Local Search Using the LPT, BFD and OneStep as
search routes

P1

Table 2-4 Comparison Algorithms evaluated in Experiments.
Algorithm Category Description Problems
Random Randomization Randomly allocating tasks to resources P1
Greedy Greedy Scheduling with greed priory P1
RR Heuristic Round Robin algorithm P1
LPT Heuristic Longest Processing Time algorithm P1
BFD Heuristic Best Fit Decreasing algorithm P1
GA-Random Meta-Heuristic Genetic algorithm using random initialized state P1
PSO Meta-Heuristic Particle Swarm Optimization algorithm P1 + P2
ACO Meta-Heuristic Ant Colony Optimization algorithm P2
GA-MinMin Hybrid Genetic algorithm using MinMin initialized

state
P1 + P2

PSO-GA Hybrid Using the output of PSO as the input of GA P1 + P2
ACO-GA Hybrid Using the output of ACO as the input of GA P2

BFDS based on Property 3. Analogous to LPT-One algorithm, it can be proved thatH = ∅
based on Property 1 and Property 3 beneficial from combination of OneStep and BFDS.

■
From the similarities in proofs of Theorem 2.1 and Theorem 2.2, a novel theorem to

improve the approximation ratio based on K-Step search can be gained as:
Theorem 2.3 ArLPTK,ArBFDK ≤ 1 + M−1

(3+K)M in P||Cmax.
Proof: For LPT-K, similar to the proof of Theorem 2.1, assuming

ArLPT−K (x|∀x ∈ H) > 1+ 1
3+K − 1

(3+K)M , I ∈ H and card(I) = min card (x|∀x ∈ H). Then,
a conclusion of I analogous to that in LPT-One search algorithm is OPT(I) < (3 + K)Gn

according to Property 2. Therefore, card(TS′
j) ≤ 2 + K, ∀j = 1, 2, . . . ,M where

47

Doctoral Dissertation of University of Electronic Science and Technology of China

KS′ = {TS′
1,TS′

2, . . . , TS′
M} is the theoretical optimization scheme corresponding to

OPT(I). Based on the same principle of Property 1, K-Step search can optimize the
solution when card(TS′

j) ≤ 2 + K. Therefore, H = ∅ from mathematical induction.
The proof process also works for BFD-K algorithm. ■
Theorem 2.3 reveals an avenue of to optimize the approximate ratio to infinitely

approach to 1 by increasing K of K-Step search. For K-Step Search algorithm, the limit of
the approximate ratio is 2 in theory which cannot be promoted with increasing K because
of the existence of a counterexample as Eq.2-13, where Mϵ = δ.

{ϵ, ϵ, . . . , ϵ}︸ ︷︷ ︸
M+K

, {ϵ, ϵ, . . . , ϵ}︸ ︷︷ ︸
M+K

, . . . , {ϵ, ϵ, . . . , ϵ}︸ ︷︷ ︸
M+K︸ ︷︷ ︸

M−1

, {δ, δ} (2-13)

For ∀K, ∃M ≫ K s.t. Eq.2-13 is a local optimum where K-Step search algorithm cannot
adjust tasks of each resource. Presently in Eq.2-13, ArK−Step ≤ 2Mδ

(M+1)δ+(M−1)Kϵ → 2.
However, combination of LPTS (or BFDS) and K-Step has a dominant performance to
surmount the limitation of counterexamples on each search route according to Theorem
2.3.

The computational complexity of LPT-One (CcLO) consists of two parts. One is the
number of iterations which can be deduced as O(M) and the other is the complexity of each
iteration which is about O (MN) for P||Cmax. Therefore, the computational complexity of
LPT-One is CcLO = O

(
M2N

)
. BFD-One also satisfies this property. We will also verify

CcLO through experiments in the next section. As the approximation ratios of existing
algorithms are as that ArLPT ≤ 4

3 − 1
3M , ArLPT−REV ≤ 4

3 − 1
3(M−1)

[102, 103] and ArMultifit ≤
72
61 + 2−k [33], the improvement and proof of approximate ratios of LPT-One and BFD-One
still occupy theoretical significance, as well as the LPT-K and BFD-K, which provides a
method to approach the upper bound 1.

2.6 Experimental Results and Analysis

2.6.1 Problems and Simulated Environment

Conduction of multi groups of experiments to the comprehensive evaluation of our
proposed algorithms is essential. Therefore, we carried out experiments of problems
shown in Table 2-2 for minimizing makespan under static scheduling for homogeneous
and heterogeneous resources respectively.

For the problem of minimizing makespan in experiments, we simulate the Cloud

48

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

environment as that each resource (especially VMs) can process only one task simulta-
neously, tasks are independent mutually and each task only has one working procedure,
where the total processing time of a resource equals to the sum of the processing time of
the tasks on this resource.

In consideration of that verification of algorithms’ performance especially statisti-
cal performance requires abundant instances, we establish the simulation environment
through randomly generating tasks, which is conducive to producing adequate instances
and observing the performance of different algorithms under the same instance. The pa-
rameters of tasks are generated by a given uniform distribution and their specified param-
eters of the generation will be described in each instance. As the variation in the number
of tasks or resources has an impact on the performance of the algorithm, we fix the number
of resources or tasks and observe the trend of algorithms’ performance with the number
of the other.

2.6.2 Compared Baselines and Evaluation Indexes

To assist the evaluation of the proposed algorithms for problems in Table 2-2, a va-
riety of commonly used algorithms are regarded as baselines, including some random,
greedy, heuristic, meta-heuristic and hybrid algorithms. The details of the proposed algo-
rithms and the comparison algorithms in the experiments are in Table 2-3 and Table 2-4
respectively.

Assuming the set of algorithms participating in evaluation is {X1,X2, . . . ,Xp}, we
conduct random experiments with 100 instances for each group of (M,N) donated as{
I(M,N)
1 , I(M,N)

2 , . . . , I(M,N)
100

}
. Then, we donate the makespan obtained by algorithm Xk under

the instance I(M,N)
l as Y

(
Xk, I(M,N)

l

)
, the total running time as Z

(
Xk, I(M,N)

l

)
, and the theo-

retical optimal makespan of I(M,N)
l as OPT

(
I(M,N)
l

)
. Then, we can obtain several statistical

indexes as Eq.2-14 where λ1 is the average makespan, λ2 is the ratio between the average
makespan and the least makespan (abbreviated as AM/LAM), λ3 is probabilities achiev-
ing the least makespan (PALM), λ4 is probabilities achieving the theoretical optimization
(PATO), λ5 is maximum approximate ratio, λ6 is average of total running time, λ7 is the
ratio between the average total running time and the least total running time (AT/LAT),
and λXk

1

∣∣∣(M,N) means the index λ1 of algorithm Xk in the scenario of (M,N).

49

Doctoral Dissertation of University of Electronic Science and Technology of China

λXk
1

∣∣∣(M,N) =
∑100

l=1 Y
(
Xk, I(M,N)

l

)
100

; λXk
2

∣∣∣(M,N) =
λXk
1

∣∣∣(M,N)
p

min
q=1

λXq
1

∣∣∣(M,N)

;

λXk
3

∣∣∣(M,N) =

100∑
l=1

(
Y
(
Xk, I(M,N)

l

)
==

p
min
q=1

Y
(
Xq, I(M,N)

l

))
100

;

λXk
4

∣∣∣(M,N) =

100∑
l=1

(
Y
(
Xk, I(M,N)

l

)
== OPT

(
I(M,N)
l

))
100

;

λXk
5

∣∣∣(M,N) = 100max
l=1

Y
(
Xk, I(M,N)

l

)
OPT

(
I(M,N)
l

)
 ;

λXk
6

∣∣∣(M,N) =
∑100

l=1 Z
(
Xk, I(M,N)

l

)
100

; λXk
7

∣∣∣(M,N) =
λXk
6

∣∣∣(M,N)
p

min
q=1

λXq
6

∣∣∣(M,N)

.

(2-14)

Except for the above indexes, wewill also apply the iterative process ofmakespan and
Pareto scatter to comprehensively evaluate the performance of our proposed algorithms.

Then, simulation experiments are launched in a desktop computer with configura-
tions as follows:

• CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.8GHZ;
• SSD: KINGSTON SA400S37 240GB;
• GPU: NVIDIA GeForce GTX 1060 6GB;
• Program version: Python 3.6;

2.6.3 Result and Discussion

2.6.3.1 Minimizing Makespan for Homogeneous Resources

Firstly for minimizing makespan of homogenous resources (P||Cmax), we carry out
extensive experiments to observe the iterative processes. Since a large number of ex-
periments can obtain similar conclusions, we only plot the iterative process of the two
instances (M,N) = (50, 200) and (M,N) = (100, 10000) in Fig 2-3 for each algorithm
with the property of searching solution in Table 2-4. In Fig 2-3, we choose the minimum
makespan of all iterations before the current iteration as the value of the current. As itera-
tions reaching convergence of the proposed algorithms are far less than 100, we replenish
them to 100 iterations by their convergence values. Fig 2-3 shows that the proposed al-
gorithms take about 25 iterations for instance of (M,N) = (50, 200) and 50 iterations

50

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

for instance of (M,N) = (100, 10000) to reach an optimized state and their maskespans
of converging are evidently smaller than compared algorithms, which points out that the
proposed algorithms, including OneS, LPTS, BFDS, BestBFDS, LPT-One and BFD-One,
can reach a better state close to convergence with iterations about the half number of re-
sources, and reach converges by less than 100 iterations. In Fig 2-3, LPT-One possesses
the fast convergence speed followed by LPTS and BFD-One.

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One

25 30 35 40 45
210

220

230

240

M
in

im
um

 m
ak

es
pa

n

Iterations

(a)M = 50, N = 200

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One

50 55 60 65

5,075

5,100

5,125

(b) M = 100, N = 10000

Figure 2-3 Iterative processes of makespan with 100 iterations for the problem of

minimizing makespan for homogeneous resources.

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 RR
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

Av
er

ag
e

of
 m

ak
es

pa
n

Number of tasks

74 76 78 80 82
185
190
195
200
205
210

(a)M = 20, N ∈ [25, 100]

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 RR
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

Number of resources

Av
er

ag
e

of
 m

ak
es

pa
n

58 60 62 64 66 68 70

100

110

120

130

140

(b) M ∈ [5, 100], N = 100

Figure 2-4 The average makespans (λ1) under each (M,N) with 100 instances re-

spectively for problem of minimizing makespan for homogeneous resources.

To further investigate the statistical performance of proposed algorithms for P||Cmax,
we fix the number of resources or tasks, and randomly generate 100 instances for each
combination (M,N) respectively where ETij ∈ [1, 100] (unit of time). Similarly, we plot
the average makespans (λ1) of the 100 instances under each (M,N) for homogeneous re-

51

Doctoral Dissertation of University of Electronic Science and Technology of China

sources as Fig 2-4. For the sake of quantitative observation, we provide the numerical
tables of Fig 2-4 in Table 2-6 and Table 2-7 of 2.8. As shown in Fig 2-4, our proposed
OneS, BFDS, BestBFDS, LPT-One, BFD-One and LPT-BFD-One achieve the lowest and
almost coincident makespans, followed by LPTS, LPT, BFD. The makespans of other al-
gorithms are significantly higher than those of our proposed algorithms. The results of
Fig 2-4 roughly shows that our proposed algorithms in Table 2-3 are better than the base-
lines in Table 2-4. Since the differences between our proposed OneS, BFDS, BestBFDS,
LPT-One, BFD-One and LPT-BFD-One are far smaller than the whole ordinate span, it is
difficult to distinguish which is better than others using Fig 2-4. Therefore, we calculate
the ratio between the average makespan and the least average makespan (AM/LAM, λ2)
and plot the box chart of OneS, BFDS, BestBFDS, LPT-One, BFD-One and LPT-BFD-
One in Fig 2-5. Its numerical tables are presented in Table 2-8 and Table 2-9 of 2.8. As
Fig 2-5, LPT-BFD-One has the lowest AM/LAM followed by LPT-One, BestBFDS and
BFD-One. This is because LPT-BFD-One uses three search routes and needs to meet the
convergence conditions of them simultaneously, which makes the performance of LPT-
BFD-One better than the dual routes algorithms and single routes algorithms. LPT-One
and BFD-One outperform LPTS, BFDS andOneS for similar reasons. Additionally, LPTS
is better than LPT and BFDS is better than BFD also demonstrate the search algorithmwith
heuristic algorithm as the search route is better than corresponding heuristic algorithm.

OneS BFDS
BESTBFDS

LPT-One
BFD-One

LPT-BFD-One1.000

1.001

1.002

1.003

Proposed Algorithms

AM
/L

AM
 (l

2)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(a)M = 20, N ∈ [25, 100]

OneS BFDS
BESTBFDS

LPT-One
BFD-One

LPT-BFD-One1.000

1.001

1.002

Proposed Algorithms

AM
/L

AM
 (l

2)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(b) M ∈ [5, 100], N = 100

Figure 2-5 The box chart of ratio between average makespan and the least average

makespan (AM/LAM, λ2) for our proposed algorithms corresponding to the exper-

iments of Fig 2-4.

Fig 2-4 and Fig 2-5 verify the performance of our proposed algorithms from the

52

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 RR
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

(a)M = 20, N ∈ [25, 100]

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 RR
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

(b) M ∈ [5, 100], N = 100

Figure 2-6 The probabilities achieving the least makespan (PALM, λ3) correspond-

ing to the experiments of Fig 2-4.

perspective of the average value of makespan. In addition to considering the average per-
formance in practical applications, we usually consider the probability of an algorithm
obtaining the best optimization solution. Therefore, we plot the probabilities achieving
the least makespan (PALM, λ3) under each (M,N) in Fig 2-6. Consistent with the conclu-
sion form Fig 2-4 and Fig 2-5, LPT-BFD-One has the highest probabilities to obtain the
least makespan in Fig 2-6 also followed by LPT-One and BestBFDS. On the whole, the
probability of LPT-BFD-One achieving the least makespan remains above 70%, that of
LPT-BFD-One remains above 65%, and BestBFDS above 60%.

This group of experiments not only demonstrate our proposed multi-search-routes-
based algorithms outperform than baseline, but also demonstrate increasing the types of
search routes can improve the optimization solution.

Table 2-5 The parameter ξ and evaluation index R2 to fit the average computational

complexities CcLO ≈ ξN of LPT-One for P||Cmax.
M 2 3 4 5 6 7 8 9 10 11 12
ξ 15.0 28.7 42.5 56.9 72.2 88.3 105.1 122.6 141.1 161.3 181.9
R2 0.996 0.997 0.997 0.997 0.995 0.998 0.998 0.997 0.997 0.997 0.997
M 13 14 15 16 17 18 19 20 30 40 50
ξ 203.7 226.2 248.6 274.9 300.9 327.4 353.9 381.5 730.4 1193 1760
R2 0.996 0.995 0.998 0.992 0.991 0.988 0.996 0.998 0.992 0.981 0.965

To further evaluate the performance of our proposed algorithms, we compare the
solution of the proposed algorithms with the theoretical optimal solution obtained by the

53

Doctoral Dissertation of University of Electronic Science and Technology of China

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 RR
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

(a)M = 3, N ∈ [5, 15]

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 RR
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

(b) M = 4, N ∈ [5, 12]

Figure 2-7 The probabilities achieving the theoretical optimal makespan (PATO,

λ4) under each (M,N) with 100 instances respectively for problem of minimizing

makespan for homogeneous resources.

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

13 14 15

1.02
1.03
1.04
1.05

(a)M = 3, N ∈ [5, 15]

 GA-MinMin
 GA-Random
 PSO
 PSO-GA
 LPT
 BFD
 Random
 Greedy
 OneS
 LPTS
 BFDS
 BESTBFDS
 LPT-One
 BFD-One
 LPT-BFD-One

11 12

1.05
1.06
1.07
1.08
1.09

(b) M = 4, N ∈ [5, 12]

Figure 2-8 Maximum approximation ratios of makespan (λ5) corresponding to the

experiments of Fig 2-7.

enumerative algorithm. Considering the computation complexities of the enumerative
algorithm are too large for instances with more resources, we only present the results of
3 resources and 4 resources. Then, we plot the probabilities achieving the theoretical
optimal makespan (PATO, λ4) in Fig 2-7, and plot the maximum approximation ratio of
makespan (λ5) in Fig 2-8.

From Fig 2-7, LPT-One, BFD-One and their combination LPT-BFD-One occupy
higher probabilities to achieve the theoretical optimal makespan than other algorithms
under all the combination of (M,N) in Fig 2-7. Concurrently, they keep the approxima-
tion ratio closest to 1 better than other algorithms from Fig 2-8. The results of Fig 2-7 and

54

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Fig 2-8 verifies our proofs to some extent. From Fig 2-7(a), when the number of tasks
is 4 times the number of resources, LPT-One, BFD-One and LPT-BFD-One obtain their
lowest PATO about 40%, however the PATO of other algorithms such as GA, LPTS, PSO-
GA etc are less than 10%, which shows that our proposed multi-routes algorithms have
made significant improvement in the probability to achieve the theoretical optimum for
NP-Hard problem. Fig 2-8 shows that the approximate ratios of our proposed LPT-One,
BFD-One and LPT-BFD-One have been lower than 1.1 in experiments, which verifies the
stability of these algorithms and can provides a reliable scheme for the task allocation or
resource scheduling in realistic.

 M=2
 M=3
 M=4
 M=5
 M=6
 M=7

Figure 2-9 Average Complexities of LPTO for P||Cmax.

 0.5303M2+8.6339M

R2=0.999969

Figure 2-10 The Relationship between ξ andM.

With above evaluation from several aspects, we continue to verify the calculational
complexity. As our proposed multi-route algorithms are based on the general local search
algorithm of Algorithm 2-1, which makes the complexity of these algorithms similar, so
we choose to analyze the calculation complexity of LPT-One, whose complexity has been
deduced as CcLO = O

(
M2N

)
. Similar to the indexes of λ1 to λ7, we record the calcu-

lational complexity of LPT-One in each I(M,N)
l and calculate its average complexities in

100 instances i.e.
{
I(M,N)
1 , I(M,N)

2 , . . . , I(M,N)
100

}
. Then, we plot the average complexities of

LPT-One in Fig 2-9 under the scenarios of (M ∈ {2, 3, . . . , 7},N ∈ [M, 1000]). From Fig
2-9, the complexity is approximately proportional to the number of tasks for each group
of experiment. Thus, we assume the complexity CcLO ≈ ξN and utilize linear regression
to fit the complexities of more groups of experiments. The parameter ξ and the evaluating
indexes R-Square are as Table 2-5. From Table 2-5, positive scale function CcLO = ξN

can fit the computational complexity of LPTO well, whose evaluating indexes of R2 are
almost about 0.99. Furthermore, as the coefficient ξ increases monotonically with re-
spect to the number of resources, we leverage quadratic polynomial regression to fit the

55

Doctoral Dissertation of University of Electronic Science and Technology of China

relation between ξ and M, and then gain the expression as ξ ≈ 0.5303M2 + 8.6339M
with evaluation index R2 = 0.999969 shown in Fig 2-10. Fig 2-10 means it is reli-
able to use 0.5303M2 + 8.6339M to fit ξ. Therefore, we can obtain the complexity
CcLO ≈ (0.5303M2 + 8.6339M)N which is identical to CcLO = O

(
M2N

)
+ φ(M,N).

Specifically, the coefficient 0.5303 ofM2 is consistent with the appearance in Fig 2-3 that
LPTO can achieve the convergence through iterations with about half number of resources.
Using similar experimental process can derive similar conclusion for other proposed al-
gorithms. This group of experiments shows that the average computational complexity of
our proposed LPT-One belongs to quadratic polynomial.

In summary, this section verifies our proposed algorithms perform well in homoge-
neous resources from several aspects: convergence, optimality and computational com-
plexity.

2.6.3.2 Minimizing Makespan and Total Running Time for Heterogeneous Re-
sources

The above experiments have demonstrated the advantages of the proposed multi-
search-routes-based algorithms for minimizing the makespan of homogenous resources.
Following, we execute experiments to observe that in heterogeneous resources. As LPT is
designed to resolveP||Cmax for homogeneous resources, the LPT search cannot adapt to the
problem of minimizing makespan for heterogeneous resources. However, LPT search can
be modified by policy seen in Algorithm 2-5. Combining with OneStep Search, MLPT-
One is also applied to solve problems of minimizing makespan and total running time for
heterogeneous resources. In addition, the algorithms of Greedy, RR and Random don’t
have advantages to solve the problem of minimizing makespan according to the results of
the above experiments. Thus, without losing representativeness, we only choose several
meta-heuristic algorithms, i.e. GA, ACO, PSO and their combinations, as the baselines of
the experiments for heterogeneous resources.

Similarly, extensive experiments can gain the same conclusion, so we only present
two groups of experiments that (M = 5,N ∈ [5, 100]) and (M = 10,N ∈ [10, 100]), where
each different combination of (M,N) also has 100 random instances generated by simu-
lation systems and the processing time of each task on any resource is a random integer
as ETij ∈ [75, 150] (unit of time). Then, we plot the average of makespan (λ1) in Fig 2-11
and the average of total running time (λ5) in Fig 2-12 respectively. Table 2-10 and Table
2-11 of 2.8 provide the numerical value of Fig 2-11. As shown in Fig 2-11 and Fig 2-12,

56

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

MLPT-One obtains the lower average makespan and lower total running time than other
algorithms followed by LPT-One and MLPTS.

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

95 100

1.7k

1.8k

(a)M = 5, N ∈ [5, 100]

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

95 100
800

820

840

860

(b) M = 10, N ∈ [10, 100]

Figure 2-11 The average makespans (λ1) under each (M,N) with 100 instances

respectively for the problem of minimizing makespan and total running time for

heterogenous resources.

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

90 95 100

8.4k

8.6k

8.8k

Av
er

ag
e

of
 to

ta
l r

un
ni

ng
 ti

m
e

Number of resources

(a)M = 5, N ∈ [5, 100]

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

95 100
7.8k

8.0k

8.2k

(b) M = 10, N ∈ [10, 100]

Figure 2-12 The average of total running time (λ6) under each (M,N) with 100

instances respectively corresponding to the experiments of Fig 2-11.

For the sake of more clear observation for the results, we plot the AM/LAM (λ2) and
AT/LAT (λ7) in Fig 2-13 and Fig 2-14 respectively. To clearly observe the performance of
MLPT-One, LPT-One and LPTS, we also plot their box charts in Fig 2-15 and Fig 2-16. It
can be clearly seen from Fig 2-13 and Fig 2-14 that MLPT-One, LPT-One, andMLPTS are
obviously superior to other algorithms. LPTS has the highest average makespan and aver-
age total running time, which illustrates again that LPTS is not suitable for heterogeneous
resources. However, combining LPTS with One-Step, LPT-One greatly improves the per-

57

Doctoral Dissertation of University of Electronic Science and Technology of China

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

AM
/L

AM
 (l

2)

Number of tasks

30 40 50 60
1.000
1.004
1.008

(a)M = 5, N ∈ [5, 100]

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

AM
/L

AM
 (l

2)

Number of tasks

40 50 60

1.000

1.004

(b) M = 10, N ∈ [10, 100]

Figure 2-13 The ratio between average makespan and the least average makespan

(AM/LAM, λ2) corresponding to the experiments of Fig 2-11.

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

AT
/L

AT
 (l

7)

Number of tasks

80 90
1.000

1.004

(a)M = 5, N ∈ [5, 100]

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

AT
/L

AT
 (l

7)

Number of tasks

40 50 60

1.000

1.004

(b) M = 10, N ∈ [10, 100]

Figure 2-14 The ratio between average total running time and the least average

total running time (AT/LAT, λ7) corresponding to the experiments of Fig 2-11.

formance, which is because One-Step adds a convergence condition to ensure optimiza-
tion. The comparison between LPTS and LPT-One also demonstrates that multi-routes can
make the algorithm adapt to its originally unsuited scene. From Fig 2-15 and Fig 2-16,
MLPT-One outperforms LPT-One and MLPTS, which is because MLPT-One improves
the LPT neighborhood compared to LPT-One and adds a search route One-Step compared
to MLPTS. Additionally, the observation, that LPT-One performs better than MLPTS in
scenarios of heterogeneous resources, confirms the combination of multi-search-routes
like LPT-One is more effective than modification of the single algorithm like MLPT.

Pareto Scatter is usually used to evaluate the solution of multi-objective prob-
lems [110]. Furthermore, we execute four instances to demonstrate the Pareto Scatter of
total running time and makespan as Fig 2-17. From Fig 2-17, the solution of MLPT-One

58

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

MLPTS LPT-One MLPT-One
1.000

1.005

1.010

1.015

1.020

1.025

Proposed Algorithms

AM
/L

AM
 (l

2)
 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(a)M = 5, N ∈ [5, 100]

MLPTS LPT-One MLPT-One
1.000

1.005

1.010

1.015

1.020

1.025

Proposed Algorithms

AM
/L

AM
 (l

2)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(b) M = 10, N ∈ [10, 100]

Figure 2-15 The box chart of ratio between average makespan and the least average

makespan (AM/LAM, λ2) corresponding to the experiments of Fig 2-11.

MLPTS LPT-One MLPT-One
1.000

1.005

1.010

1.015

1.020

1.025

Proposed Algorithms

AT
/L

AT
 (l

7)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(a)M = 5, N ∈ [5, 100]

MLPTS LPT-One MLPT-One
1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

Proposed Algorithms

AT
/L

AT
 (l

7)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(b) M = 10, N ∈ [10, 100]

Figure 2-16 The box chart of ratio between average total running time and the least

average total running time (AT/LAT, λ7) corresponding to the experiments of Fig

2-11.

satisfies Pareto Optimality better than compared algorithms, which gets benefits from the
assistance of One-Step and shows again the advantages of multi-search-routes.

Overall, these experimental results validate the feasibility and superiority of using
multi routes-based algorithms to address problems of heterogeneous resources.

2.6.4 Summary

In multi groups of experiments with abundant simulation instances, the proposed
algorithms based on multi-search routes outperform the compared baselines. LPT-One,

59

Doctoral Dissertation of University of Electronic Science and Technology of China

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

310 315 320

15.5k

15.6k

(a)M = 50, N = 200

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

620 630
30.6k

30.8k

(b) M = 50, N = 400

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

380 385 390 395
38.0k

38.1k

38.2k

38.3k

(c)M = 100, N = 500

 GA-MinMin
 ACO
 ACO-GA
 PSO
 PSO-GA
 LPTS
 MLPTS
 LPT-One
 MLPT-One

760 780 800 820 840
75.6k

76.0k

76.4k

(d) M = 100, N = 1000

Figure 2-17 Pareto scatter of makespan and total running time for heterogeneous

resources.

BFD-One and LPT-BFD-One achieve higher probabilities to obtain the best solutions and
with lower approximation ratios of the worst cases for minimizing the makespan of ho-
mogenous resources. LPT-One and its modified algorithm MLPT-One achieve better so-
lutions for minimizing makespan and total running time of heterogeneous resources than
compared baselines.

2.7 Summary of this Chapter

In this chapter, we propose local search algorithms, LPT-Search, BFD-Search, and
OneStep-Search, using heuristic algorithms LPT and BFD as basic search routes to solve
resource scheduling problems in Cloud computing. Based on the basic search routes,
we also propose multi-search-routes-based algorithms combining various search routes
including LPT-One, BFD-One and LPT-BFD-One.

By theoretical deductions, we prove the approximation ratios of LPT-One and BFD-

60

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

One as 5
4 − 1

4M as well as that of LPT-K- and BFD-K as 1 + M−1
(3+K)M , which are better than

approximation ratios of LPT, LPT-REV and other existing algorithms for P||Cmax. More-
over, in extensive simulation experiments for minimizing makespan for homogenous and
heterogeneous resources, the proposed algorithms based on multi-search-routes outper-
form the compared algorithms with observations of various indexes, which demonstrates
the fact that the proposed algorithms can achieve better solutions in fewer iterations also
with better optimization results.

In addition to improving the theoretical approximation ratio of the algorithm, the
dominant meaning of proposed algorithms is that they demonstrate the significant poten-
tial of applying heuristic algorithms as the search routes of search algorithms and com-
bining different search routes to increase the theoretical analyzability and comprehensive
performance of algorithms. Along this research direction as part of future work, we plan to
apply the search route to other algorithms such as meta-heuristic algorithms and machine
learning algorithms, to explore more search routes-based algorithms and combinations of
multi-routes to optimize the performance of scheduling algorithms for more objectives and
complex scenarios in Cloud computing. We will also explore whether LPT-K can improve
the existing PTAS. In theory, it is also a meaningful work to explore and prove the the-
oretical approximation ratio of MLPT-One and other search algorithms in heterogeneous
resources.

2.8 Appendix: Numerical Table of Experimental Results

The appendix provides numerical tables of several groups of experimental results for
the sake of quantitative observation. Among them, Table 2-6 corresponds to Fig 2-4(a),
Table 2-7 to Fig 2-4(b), Table 2-8 to Fig 2-6(a), Table 2-9 to Fig 2-6(b), Table 2-10 to Fig
2-11(a), and Table 2-10 to Fig 2-11(b).

61

Doctoral Dissertation of University of Electronic Science and Technology of China

Ta
bl
e2

-6
Th
ea
ve
ra
ge

m
ak
es
pa
ns
(λ

1)
un
de
r(
M

=
20

,N
∈

[2
5,
10
0]

)r
es
pe
ct
iv
el
y

fo
rp

ro
bl
em

of
m
in
im
iz
in
g
m
ak
es
pa
n
fo
rh

om
og
en
eo
us

re
so
ur
ce
s
co
rre
sp
on
di
ng

to
Fi
g
2-
4(
a)
.

A
lg
or
ith
m

(M
=
20

,N
=

?)
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

G
A
-M

in
M
in

11
2.
88

12
7.
14

13
7.
23

14
4.
08

16
5.
58

17
6.
17

18
9.
05

19
7.
35

21
3.
49

22
9.
1

23
9.
38

24
8.
63

26
1.
66

27
8.
75

28
7.
59

29
6.
06

G
A
-R
an
do
m

12
1.
8

14
1.
73

16
0.
45

17
4.
89

19
0.
9

20
2.
07

22
3.
18

23
6.
06

25
3.
94

27
1.
48

28
5.
63

30
0.
08

31
1.
43

33
2.
68

34
5.
53

35
5.
74

PS
O

13
3.
74

15
1.
49

17
3.
22

18
7.
89

20
6

21
9.
97

24
1.
13

25
4.
25

27
2.
91

29
1.
03

30
5.
69

32
2.
66

33
4.
42

35
4.
76

37
2.
12

37
9.
61

PS
O
-G
A

11
2.
27

12
7.
99

13
8.
52

14
3.
88

16
5.
77

17
6.
71

18
9.
38

19
7.
97

21
4.
15

22
9.
34

23
9.
55

24
8.
57

26
1.
78

27
9.
1

28
7.
88

29
6.
34

LP
T

96
.5
7

97
.7
4

10
3.
94

11
0.
09

12
2.
36

13
3.
35

14
9.
65

16
0.
41

17
2.
13

18
5.
84

19
6.
64

20
8.
98

21
7.
09

23
3.
51

24
4.
03

25
4.
17

BF
D

96
.5
7

97
.7
4

10
3.
9

10
9.
73

12
0.
92

13
0.
24

14
4.
14

15
4.
49

16
7.
86

18
2.
57

19
3.
6

20
6.
17

21
5.
27

23
1.
43

24
1.
41

25
0.
88

Ra
nd
om

11
6.
7

13
1.
12

14
1.
92

14
7.
03

16
6.
57

17
6.
45

18
9.
06

19
7.
55

21
3.
66

22
9.
38

23
9.
84

24
9.
2

26
1.
86

27
8.
86

28
7.
62

29
6.
06

RR
21
4

24
1.
35

27
0.
22

28
8.
8

30
8.
6

32
6.
64

34
7.
72

37
1.
4

39
3.
7

42
2.
43

43
4.
78

45
1.
16

46
7.
48

49
8.
04

51
4.
97

51
7.
94

G
re
ed
y

11
6.
7

13
1.
12

14
1.
92

14
7.
03

16
6.
57

17
6.
45

18
9.
06

19
7.
55

21
3.
66

22
9.
38

23
9.
84

24
9.
2

26
1.
86

27
8.
86

28
7.
62

29
6.
06

O
ne
S

96
.5
7

97
.7
4

10
3.
9

10
9.
77

12
0.
43

12
8.
93

14
1.
65

15
2.
46

16
5.
23

18
0.
28

19
1.
46

20
3.
96

21
3.
22

22
9.
26

23
9.
56

24
9.
21

LP
TS

96
.5
7

97
.7
4

10
3.
94

11
0.
09

12
2.
36

13
3.
35

14
9.
65

16
0.
41

17
2.
13

18
5.
84

19
6.
64

20
8.
98

21
7.
09

23
3.
51

24
4.
03

25
4.
17

BF
D
S

96
.5
7

97
.7
4

10
3.
9

10
9.
86

12
0.
59

12
9.
23

14
2.
02

15
2.
73

16
5.
45

18
0.
55

19
1.
67

20
4.
17

21
3.
11

22
9.
41

23
9.
73

24
9.
29

BE
ST

BF
D
S

96
.5
7

97
.7
4

10
3.
9

10
9.
76

12
0.
39

12
8.
83

14
1.
54

15
2.
33

16
5.
23

18
0.
16

19
1.
47

20
4.
09

21
3.
09

22
9.
31

23
9.
61

24
9.
3

LP
T-
O
ne

96
.5
7

97
.7
4

10
3.
9

10
9.
75

12
0.
44

12
8.
95

14
1.
6

15
2.
3

16
5.
17

18
0.
15

19
1.
39

20
3.
86

21
3.
15

22
9.
14

23
9.
55

24
9.
05

BF
D
-O
ne

96
.5
7

97
.7
4

10
3.
9

10
9.
77

12
0.
43

12
8.
93

14
1.
65

15
2.
46

16
5.
23

18
0.
28

19
1.
46

20
3.
96

21
3.
22

22
9.
26

23
9.
56

24
9.
21

LP
T-
BF

D
-O
ne

96
.5
7

97
.7
4

10
3.
9

10
9.
75

12
0.
43

12
8.
9

14
1.
56

15
2.
26

16
5.
07

18
0.
09

19
1.
3

20
3.
77

21
3.
08

22
9.
09

23
9.
45

24
8.
99

62

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Ta
bl
e2

-7
Th
ea
ve
ra
ge

m
ak
es
pa
ns
(λ

1)
un
de
r(
M

∈
[5

,1
00

],
N

=
10
0)
re
sp
ec
tiv
el
y

fo
rp

ro
bl
em

of
m
in
im
iz
in
g
m
ak
es
pa
n
fo
rh

om
og
en
eo
us

re
so
ur
ce
s
co
rre
sp
on
di
ng

to
Fi
g
2-
4(
b)
.

A
lg
or
ith
m

(M
=

?,
N

=
10
0)

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

G
A
-M

in
M
in

10
20
.5
1
51
7.
49

34
5.
3
26
6.
26

21
9.
58

19
0.
86

16
7.
83

15
4.
67

14
4.
39

13
5.
39

12
7.
6
12
1.
39

11
5
10
8.
65

10
4.
07

10
1.
4

99
.6

99
.4
4

99
.4

99
.3
4

G
A
-R
an
do
m

10
20
.9
1
51
8.
89

34
8.
38

27
0.
42

22
6.
49

19
7.
16

17
7.
36

16
4.
65

15
4.
37

14
5.
47

13
8.
81

13
2.
77

12
5.
67

12
0.
7
11
5.
83

11
1.
55

10
6.
23

10
4.
92

10
3.
46

10
1.
38

PS
O

11
03
.6
9
63
2.
81

46
5.
56

38
1.
12

33
3.
5
30
0.
31

27
7.
1
25
9.
12

24
7.
29

23
3.
53

22
5.
48

21
4.
75

20
8.
39

20
2.
43

19
7.
42

19
1.
35

18
5.
22

17
9.
5
18
0.
04

17
6.
26

PS
O
-G
A

10
20
.7
51
7.
51

34
5.
74

26
5.
61

22
0.
02

19
0.
86

16
7.
77

15
4.
26

14
3.
48

13
4.
14

12
8.
81

12
1.
16

11
5.
27

10
8.
18

10
4.
97

10
1.
29

99
.8
9

99
.4
4

99
.4

99
.3
4

LP
T

10
20
.0
3
51
4.
55

33
8.
65

25
5.
78

20
6.
45

17
4.
94

15
3.
57

13
4.
49

11
7.
58

10
6.
84

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

BF
D

10
19
.7
5
51
3.
36

33
7.
16

25
3.
2
20
3.
66

17
0.
57

14
6.
42

12
9.
39

11
6.
18

10
6.
41

10
1.
22

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

Ra
nd
om

10
58
.5
4
55
6.
29

38
2.
83

29
7.
61

24
7.
92

21
8.
16

19
2.
61

17
8.
43

16
3.
9
14
9.
41

14
4.
34

14
0.
05

13
4.
67

12
9.
94

12
5.
2
11
9.
93

11
4.
49

10
9.
74

10
5.
21

99
.3
4

RR
13
39
.1
2
81
4.
32

62
2.
35

52
2.
41

45
1.
99

41
6.
89

38
7.
49

36
2.
53

33
7.
23

32
4.
51

32
3.
08

30
4.
46

30
5.
03

29
1.
22

28
5.
05

28
9.
45

27
2.
86

26
6.
72

26
3.
18

25
7.
43

G
re
ed
y

10
58
.5
4
55
6.
29

38
2.
83

29
7.
61

24
7.
92

21
8.
16

19
2.
61

17
8.
43

16
3.
9
14
9.
41

14
4.
34

14
0.
05

13
4.
67

12
9.
94

12
5.
2
11
9.
93

11
4.
49

10
9.
74

10
5.
21

99
.3
4

O
ne
S

10
19
.1
2
51
2.
22

33
5.
51

25
1.
27

20
1.
96

16
8.
48

14
4.
28

12
7.
68

11
5.
99

10
6.
47

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

LP
TS

10
20
.0
3
51
4.
55

33
8.
65

25
5.
78

20
6.
45

17
4.
94

15
3.
57

13
4.
49

11
7.
58

10
6.
84

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

BF
D
S

10
19
.3
4
51
2.
45

33
5.
75

25
1.
44

20
1.
93

16
8.
54

14
4.
37

12
7.
68

11
6.
07

10
6.
47

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

BE
ST

BF
D
S

10
19
.3
3
51
2.
37

33
5.
69

25
1.
36

20
1.
8
16
8.
33

14
4.
15

12
7.
59

11
5.
94

10
6.
46

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

LP
T-
O
ne

10
19
.1
2
51
2.
19

33
5.
46

25
1.
14

20
1.
81

16
8.
38

14
4.
19

12
7.
75

11
5.
99

10
6.
47

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

BF
D
-O
ne

10
19
.1
2
51
2.
22

33
5.
51

25
1.
27

20
1.
96

16
8.
48

14
4.
28

12
7.
68

11
5.
99

10
6.
47

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

LP
T-
BF

D
-O
ne

10
19
.1
2
51
2.
17

33
5.
41

25
1.
06

20
1.
72

16
8.
32

14
4.
13

12
7.
61

11
5.
97

10
6.
47

10
1.
23

99
.7
5

99
.5
2

99
.5
3

99
.5

99
.2
1

99
.4
8

99
.4
2

99
.4

99
.3
4

63

Doctoral Dissertation of University of Electronic Science and Technology of China

Ta
bl
e
2-
8
Th
e
pr
ob
ab
ili
tie
sa
ch
ie
vi
ng

th
e
le
as
tm

ak
es
pa
n
(P
A
LM

,λ
3)
un
de
r(
M

=

20
,N

∈
[2
5,
10
0]

)c
or
re
sp
on
di
ng

to
Fi
g
2-
6(
a)
.

A
lg
or
ith
m

(M
=
20

,N
=

?)
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

G
A
-M

in
M
in

0.
06

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
G
A
-R
an
do
m

0.
06

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
PS
O

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

PS
O
-G
A

0.
08

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
LP

T
1

1
0.
97

0.
84

0.
43

0.
22

0.
01

0
0

0
0

0.
01

0
0

0
0

BF
D

1
1

1
0.
97

0.
69

0.
49

0.
03

0.
09

0.
01

0.
02

0.
04

0.
03

0.
05

0.
03

0.
09

0.
08

Ra
nd
om

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

RR
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
G
re
ed
y

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

O
ne
S

1
1

1
0.
93

0.
86

0.
72

0.
65

0.
58

0.
64

0.
59

0.
69

0.
72

0.
68

0.
75

0.
81

0.
7

LP
TS

1
1

0.
97

0.
84

0.
43

0.
22

0.
01

0
0

0
0

0.
01

0
0

0
0

BF
D
S

1
1

1
0.
9

0.
78

0.
58

0.
4

0.
47

0.
51

0.
52

0.
56

0.
55

0.
75

0.
65

0.
69

0.
65

BE
ST

BF
D
S

1
1

1
0.
93

0.
87

0.
81

0.
69

0.
7

0.
65

0.
71

0.
7

0.
62

0.
81

0.
69

0.
76

0.
75

LP
T-
O
ne

1
1

1
0.
94

0.
85

0.
72

0.
7

0.
72

0.
67

0.
7

0.
73

0.
82

0.
73

0.
86

0.
82

0.
81

BF
D
-O
ne

1
1

1
0.
93

0.
86

0.
72

0.
65

0.
58

0.
64

0.
59

0.
69

0.
72

0.
68

0.
75

0.
81

0.
7

LP
T-
BF

D
-O
ne

1
1

1
0.
94

0.
86

0.
74

0.
72

0.
76

0.
76

0.
76

0.
82

0.
9

0.
8

0.
91

0.
92

0.
89

64

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Ta
bl
e
2-
9
Th
e
pr
ob
ab
ili
tie
sa
ch
ie
vi
ng

th
e
le
as
tm

ak
es
pa
n
(P
A
LM

,λ
3)
un
de
r(
M

∈

[5
,1
00

],
N

=
10
0)

co
rre
sp
on
di
ng

to
Fi
g
2-
6(
b)
.

A
lg
or
ith
m

(M
=

?,
N

=
10
0)

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

G
A
-M

in
M
in

0.
19

0
0

0
0

0
0

0
0

0
0

0.
01

0.
02

0.
13

0.
37

0.
64

0.
96

0.
99

1
1

G
A
-R
an
do
m

0.
13

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0.
06

0.
09

0.
28

0.
47

0.
49

0.
67

PS
O

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

PS
O
-G
A

0.
19

0
0

0
0

0
0

0
0

0
0

0
0.
02

0.
09

0.
32

0.
66

0.
9

0.
98

1
1

LP
T

0.
4

0.
11

0.
02

0.
01

0.
01

0
0

0.
02

0.
44

0.
79

0.
99

1
1

1
1

1
1

1
1

1
BF

D
0.
49

0.
23

0.
11

0.
06

0.
01

0
0.
03

0.
16

0.
8

0.
97

1
1

1
1

1
1

1
1

1
1

Ra
nd
om

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

RR
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
G
re
ed
y

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

O
ne
S

1
0.
9

0.
85

0.
73

0.
53

0.
61

0.
66

0.
68

0.
85

0.
92

0.
99

1
1

1
1

1
1

1
1

1
LP

TS
0.
4

0.
11

0.
02

0.
01

0.
01

0
0

0.
02

0.
44

0.
79

0.
99

1
1

1
1

1
1

1
1

1
BF

D
S

0.
79

0.
68

0.
63

0.
58

0.
59

0.
64

0.
64

0.
61

0.
8

0.
91

0.
99

1
1

1
1

1
1

1
1

1
BE

ST
BF

D
S

0.
79

0.
76

0.
69

0.
68

0.
67

0.
77

0.
75

0.
71

0.
9

0.
92

0.
99

1
1

1
1

1
1

1
1

1
LP

T-
O
ne

1
0.
93

0.
9

0.
86

0.
66

0.
71

0.
73

0.
62

0.
85

0.
92

0.
99

1
1

1
1

1
1

1
1

1
BF

D
-O
ne

1
0.
9

0.
85

0.
73

0.
53

0.
61

0.
66

0.
68

0.
85

0.
92

0.
99

1
1

1
1

1
1

1
1

1
LP

T-
BF

D
-O
ne

1
0.
95

0.
95

0.
94

0.
75

0.
77

0.
79

0.
72

0.
87

0.
92

0.
99

1
1

1
1

1
1

1
1

1

65

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 2-10 The average makespans (λ1) under (M = 5,N ∈ [5, 100]) for the prob-

lem of minimizing makespan and total running time for heterogenous resources

corresponding to Fig 2-11(a).
AlgorithmGA-MinMin ACOACO-GA PSO PSO-GA LPTSMLPTS LPT-OneMLPT-One

(M
=
5,
N

=
?)

5 117.84 161.15 119.98 117.94 113.91 125.07 110.47 108.83 108.52
10 219.31 255.22 239.33 233.47 211.6 250.54 201.79 197.25 196.78
15 312.98 356.05 351.24 355.58 306.7 378.67 292.44 285.11 285.38
20 400.75 471.78 438.52 469.28 401.04 507.89 380.8 373.68 373.05
25 492.35 587.32 551.56 589.25 495.03 632.57 471.07 460.76 460.1
30 579.63 708.25 641 704.85 589.47 763.06 560.65 548.81 548.37
35 673.7 824.91 719.98 819.53 686.52 886.49 653.54 638.66 636.39
40 761.01 937.54 809.71 931.28 778.08 1012.89 733.4 721.7 719.75
45 849.18 1048.36 925.95 1043.32 879.73 1145.9 825.42 811.97 808.57
50 940.75 1170.94 1015.95 1164.48 968.62 1269.27 912.96 900.77 895.45
55 1025.15 1279.52 1100.66 1278.34 1067.58 1395.87 1000.95 987.18 983.58
60 1110.59 1396.08 1199.26 1388.09 1162.41 1514.34 1087.58 1073.44 1068.9
65 1200.43 1508.76 1286.25 1503.23 1254.79 1643.58 1177.65 1161.8 1156.36
70 1286.3 1635 1393.58 1623.01 1346.48 1776.3 1264.44 1248.65 1242.17
75 1373.36 1738.17 1478.67 1732.56 1443.56 1898.79 1348.22 1333.51 1327.12
80 1522.28 1843.21 1567.81 1845.77 1538.95 2025.61 1438.53 1423.11 1414.35
85 1630.2 1963.73 1671.91 1961.08 1632.92 2146.93 1523.81 1511.08 1502.4
90 1804.21 2079.12 1772.32 2084.7 1728.17 2262.41 1611.54 1599.37 1589.96
95 1946.1 2198.04 1857.29 2202.08 1822.28 2394.08 1700.25 1686.32 1675.46
100 1981.98 2239.36 1961.87 2254.51 1914.42 2522.67 1785.03 1771.97 1760.73

66

Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms

Table 2-11 The average makespans (λ1) under (M = 10,N ∈ [10, 100]) for the

problem of minimizing makespan and total running time for heterogenous re-

sources corresponding to Fig 2-11(b).
AlgorithmGA-MinMin ACOACO-GA PSO PSO-GA LPTSMLPTS LPT-OneMLPT-One

(M
=
10

,N
=

?)

10 128 157.49 145.75 151.54 139.26 117.37 104.46 103.1 103.07
15 180.91 230.22 189.55 227.48 179.35 201.09 171.35 167.23 167.49
20 215.24 291.32 242.09 291.66 238.4 243.97 190.19 185.77 185.69
25 265.84 357.9 283.12 358.61 279.05 323.92 250.33 246.21 245.83
30 299.84 418.38 335.25 421.97 329.04 371.35 272.11 265.83 266.39
35 349.35 483.68 365.69 484.02 381.41 446.87 332.33 325.56 325.09
40 386.74 545.67 430.93 551.18 423.88 502.63 356.09 349.92 349.12
45 432.62 605.84 460.54 606.26 478.56 572.29 413.74 406.67 405.51
50 465.11 668.23 515.39 673.83 520.06 628.53 437.01 431.03 431.03
55 514.53 726.04 548.94 733.02 576.15 703.49 494.72 485.49 485.02
60 551.09 785.96 604.27 796.62 620.45 757.35 523.62 513.19 515.03
65 594.86 844.83 648.52 854.66 669.23 828.22 575.76 564.84 563.86
70 630.84 906.64 686.45 922.34 714.86 886.76 608.05 597.84 597.56
75 679.4 965.35 737.21 981.89 762.94 957.87 657.65 644.9 644.27
80 800.08 1030.2 783.7 1037.46 808.76 1016.81 690.98 680.25 679.64
85 901.24 1084.82 821.48 1103.5 855.07 1081.83 737.29 723.19 723.21
90 1039.54 1142.18 865.15 1161.15 904.97 1140.58 772.6 762.14 762.19
95 1096.9 1203.78 914.17 1222.68 948.75 1206.22 818.46 803.87 803.08
100 1155.25 1221.15 959.23 1260.96 993.74 1268.47 855.65 845.3 841.31

67

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 2-12 The average makespans (λ1) under (M = 10,N ∈ [10, 100]) for the

problem of minimizing makespan and total running time for heterogenous re-

sources corresponding to Fig 2-11(b).

Algorithm (M=20,N=?)
30 40 50 60 70 80 90 100

GA-MinMin 127.14 144.08 176.17 197.35 229.1 248.63 278.75 296.06
GA-Random 141.73 174.89 202.07 236.06 271.48 300.08 332.68 355.74
PSO 151.49 187.89 219.97 254.25 291.03 322.66 354.76 379.61
PSO-GA 127.99 143.88 176.71 197.97 229.34 248.57 279.1 296.34
LPT 97.74 110.09 133.35 160.41 185.84 208.98 233.51 254.17
BFD 97.74 109.73 130.24 154.49 182.57 206.17 231.43 250.88
Random 131.12 147.03 176.45 197.55 229.38 249.2 278.86 296.06
RR 241.35 288.8 326.64 371.4 422.43 451.16 498.04 517.94
Greedy 131.12 147.03 176.45 197.55 229.38 249.2 278.86 296.06
OneS 97.74 109.77 128.93 152.46 180.28 203.96 229.26 249.21
LPTS 97.74 110.09 133.35 160.41 185.84 208.98 233.51 254.17
BFDS 97.74 109.86 129.23 152.73 180.55 204.17 229.41 249.29
BESTBFDS 97.74 109.76 128.83 152.33 180.16 204.09 229.31 249.3
LPT-One 97.74 109.75 128.95 152.3 180.15 203.86 229.14 249.05
BFD-One 97.74 109.77 128.93 152.46 180.28 203.96 229.26 249.21
LPT-BFD-One 97.74 109.75 128.9 152.26 180.09 203.77 229.09 248.99

68

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

Chapter 3 Multi-dimensional Resource Scheduling based on
Growable Genetic Algorithms

Multi-Dimensional Resources Scheduling Problem (MDRSP, usually a multi-
objective optimization problem) has attracted focus in the management of large-scale
cloud computing systems as the collaborative operation of various devices in the cloud
affects resource utilization and energy consumption. Effective management of the cloud
requires a higher performance method to solve MDRSP. Considering the complex cou-
pling between multi-dimensional resources and focusing on virtual machines allocation,
we propose GGA-HLSA-RW (GHW, a novel family of genetic algorithms) to optimize
the utilization and energy consumption of the cloud. In GGA-HLSA-RW, we add a growth
stage to the genetic algorithm and construct a Growable Genetic Algorithm (GGA) using
theHeuristic-based Local SearchAlgorithm (HLSA)with Randommulti-Weights (RW) as
the growth route. Based on the GHW, we propose GHW-NSGA II and GHW-MOEA/D
by applying the sorting strategies and population regeneration mechanism of NSGA II
and MOEA/D. To evaluate the performance of GHW, we carry out extensive experiments
on the simulation dataset and AzureTraceforPacking2020 for the problems of minimiz-
ing the maximum utilization rate of resources for each dimension and minimizing total
energy consumption. Experiment results demonstrate the advantages of growth strategy
and dimensionality reduction strategy of GHW, as well as validate the applicability and
optimality of GHW in realistic cloud computing. The experiments also demonstrate our
proposed GHW-NSGA II and GHW-MOEA/D have better convergence rates and opti-
mality than state-of-the-art NSGA II and MOEA/D.

3.1 Introduction

The emerging trend of IoT and mobile communication accelerates the growth of In-
ternet data urgently demanding large-scale software systems [25]. As a successful dis-
tributed computing paradigm, cloud computing is playing an important role in various
industries. Cloud computing interconnects extensive heterogeneous server nodes to flexi-
bly provide services for various requests from users including computing requests, storage
requests, cache requests and mixed requests [124]. With services almost covering all indus-
tries, cloud computing has blossomed into an indispensable impetus in the new network

69

Doctoral Dissertation of University of Electronic Science and Technology of China

era of IoT currently [2].
The main work units of cloud computing are the components integrated by var-

ious micro-circuits including CPU (Central Processing Unit), RAM (Random Access
Memory), DS (Disk Storage), GPU (Graphics Processing Unit), BW (BandWidth), etc
[4, 110, 125]. Constantly expanding requests from users extraordinarily enhance the diffi-
culty and burden to manage resources of the cloud. Some factors noteworthy in resource
management comprise heterogeneity of resources, timeliness of response, operation cost,
quality of service, etc. These factors are complex and eventually result in the inferior uti-
lization rate of resources and exceedingly massive energy consumption in realistic cloud
computing systems.

In practice, the resource bottleneck in any dimension will limit the operating status
of the cloud computing system, and then affects the quality of services. Additionally,
the inferior utilization rate of resources usually accompanied by low energy conversion
efficiency will also cause excessive CO2 emissions. Therefore, targeting the preservation
of social resources, the research on effective multi-dimensional resources scheduling in
heterogeneous nodes of the cloud has become a hotspot.

Resource scheduling in cloud computing is defined by [5] as to find an “optimal”map-
ping “Tasks → Resources” to meet one or several given objectives. Multi-Dimensional
Resource Scheduling Problem (MDRSP) in the heterogeneous nodes of cloud computing,
as a multi-objectives problem involving resources in different dimensions, is an NP-hard
problem and far more complex than single-objective resource scheduling. Some heuristic
algorithms, such as LPT (Longest Processing Time First), FCFS (First Come First Serve)
and BFD (Best Fit Decreasing) [33, 126], are inappropriate to solve MDRSP. Therefore,
meta-heuristic is a common type of algorithm in the existing research on MDRSP such as
themodified binary pigeon-inspired algorithm [127], IBSMA (ImprovedDeveloped-Slime-
Mould-Algorithm) [128], force-directed search [129], NSGA II (Non-dominated Sorting Ge-
netic Algorithm II) [99]. For large-scale cloud computing with ultra-high energy consump-
tion, small-scale improvements to these algorithms will bring considerable significance
[130]. Thus, better methods are still necessary especially to obtain the Pareto boundary,
where the Pareto boundary is frequently used to evaluate multi-objective optimization al-
gorithms [9, 50].

Focusing on the optimization of resource utilization and energy consumption in cloud
computing, this chapter considers the Virtual Machine (VM) allocation scenario in hetero-

70

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

geneous nodes withMulti-Dimensional Resources (MDRs). In this scenario, we formulate
two types of MDRSPs that are minimizing the maximum utilization rate of each dimen-
sion of resources andminimizing energy consumption of the total system. Aiming to solve
these problems, we apply the concept of stages to divide the classical genetic algorithm
into four stages namely initialization stage, infancy stage, mature stage and genetic stage.
Based on these four stages of GA (Genetic Algorithm), we add a growth stage for each
individual and propose the Growable Genetic Algorithm (GGA) leveraging the Heuristic-
based Local Search Algorithm (HLSA) as its growth route with Random multi-Weight-
based dimensionality reduction (RW), which can be called GGA-HLSA-RW (abbreviated
as GHW). In solving MDRSP, GHW selects the better part of the individual in each gen-
eration to generate the offspring, uses RW to reduce the dimensionality of MDRSP to
Multi Single–Objective Problems (MSOPs), utilizes HLSA to gain the solution of these
dimensionality-reduced MSOPs as the next individual and then updates the solution set of
MDRSP. GHW can be regarded as a family of algorithms that allows the combination of
various optimization strategies. To further improve the convergence rate and optimality
of GHW, we proposed GHW-NSGA II and GHW-MOEA/D applying the sorting strate-
gies and population regeneration mechanism of NSGA II and MOEA/D (Multi-Objective
Evolutionary Algorithm based on Decomposition). Extensive experiments on simulation
dataset and experiments driven by the AzureTraceforPacking2020 [131] demonstrate the
advantages of our proposed algorithms, where AzureTraceforPacking2020 is a popular
public VMs traces representing part of the workload on Microsoft’s Azure Compute and
is provided byMicrosoft Azure for VM allocation. In the scenarios studied in this chapter,
several multi-objective optimization quality indicators, including hypervolume-over-time
and the average probability of finding the theoretically optimal Pareto solutions, show that
our proposed GHW family of algorithms has a much better convergence rate and optimal-
ity than the algorithms compared, such as NSGA II and MOEA/D.

The main contributions of this chapter can be summarized as follows.
(1) GGA: Enlighten by the existing research and natural phenomenon, we use the concept

of stages to divide the classical genetic algorithm into four stages called initialization
stage, infancy stage, mature stage and genetic stage. Based on this, we add a growth
stage to GA and propose the Growable Genetic Algorithm (GGA) which allows the
individual in GA to grow through various growth routes.

(2) HLSA-RW: We propose the Heuristic-based Local Search Algorithm (HLSA) as the

71

Doctoral Dissertation of University of Electronic Science and Technology of China

growth route of GGA and apply Random multi-Weights (RW) to decompose MDRSP
to MSOPs. Using the heuristic algorithm as the search route of LSA (Local Search
Algorithm) and using LSA as the growth route of the individual in GA are both novel
perspectives. Combining GGA, HLSA and RW, we obtain a well-performed GGA-
HLSA-RW (GHW) family of algorithms to solve MDRSP. GHW also has a flexible
structure to adapt to the combination of various strategies.

(3) GHW-NSGA II and GHW-MOEA/D: We further apply the sorting strategy and pop-
ulation regeneration mechanism of NSGA II and MOEA/D to propose two instantia-
tions of the GHW family i.e., GHW-NSGA II and GHW-MOEA/D, which have better
convergence rate and optimality than NSGA II and MOEA/D.

(4) Extensive experiments on the simulation dataset and AzureTraceforPacking2020 [131]

with various comparison sights demonstrate the superiority of the GHW family in
solving MSRDPs.
The rest of this chapter is organized as follows. We review the related work in Sec-

tion 3.2. The system model and problem formulation of MDRSP in cloud computing are
presented in Section 3.3. The proposed methodology GHW is presented in Section 3.4.
The experiment design and evaluation results are presented in Section 3.5. Finally, we
conclude this chapter in Section 3.6.

3.2 Related Work

In this section, we briefly review the related work from three aspects: scheduling
algorithms in cloud computing, MDRSP and the existing approaches to Multi-objective
Optimization Problem (MOP).

3.2.1 Scheduling Algorithms in Cloud Computing

Approaches to optimize the resource utilization in cloud computing include VMs mi-
gration [63], queueing model [132], scheduling algorithm, etc. Among them, the scheduling
algorithm is the core. In cloud computing, the existing common categories of scheduling
algorithms include heuristic, machine learning and meta-heuristic algorithms.

Heuristic algorithms, generally of low computational complexity, are often used to
obtain solutions with acceptable performance. Some classical heuristic algorithms include
RR (Round-Robin), LPT, greedy, random, FCFS [33, 126] etc. In other search algorithms,
they can also be used to generate initial solutions to accelerate convergence, for example in

72

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

JBA (Jacobi Best-response Algorithm) [59], FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) [133], and LARAC (Lagrange Relaxation based Aggregated Cost) [119].

Machine learning algorithms used for resource scheduling mostly belong to Re-
inforcement Learning (RL) or Deep Reinforcement Learning (DRL) categories. Some
examples are QEEC (Q-learning based framework for Energy-Efficient Cloud) [49] and
ADEC (Autonomic Decentralized Elasticity Controller) [53] from the RL category, as
well as DQN (Deep QNetwork) [40], ADRL (hybrid Anomaly-aware Deep Reinforcement
Learning) [125], and DQTS (Deep Q-learning Task Scheduling) [110] from DRL. Combi-
nations of machine learning and other algorithms also adapt to resource scheduling, ex-
amples of which are RL+Belief-Learning-Based Algorithm [134], DeepRM-Plus [2] and
NN-DNSGA II (Neural Network with Dynamic NSGA II) [122].

The solution space of the NP-hard problem increases exponentially with the increase
in data volume. Meta-heuristic is a common method to solve complex optimization prob-
lems, especially in big data systems such as the cloud systems [130]. Meta-heuristic algo-
rithms (also evolutionary algorithms always inspired by natural phenomena) include ant
colony algorithm such as MALO (Multi-objective AntLion Optimizer) [64] and S-MOAL
(Spacing Multi-Objective AntLion algorithm) [42], genetic algorithms such as NSGA
II [99], NSGA III [68], MOGA (Multi-Objective Genetic Algorithm) [70] and MOEAs
(Multi-Objective Evolutionary Algorithms) [9], Particle Swarm Optimization (PSO) such
asMOPSO (Multi-Objective PSO) [71] and HAPSO (Hybrid Adaptive PSO) [73], Artificial
Bee Colony (ABC) [135], as well as Firefly Algorithm (FA) [46]. Searchability of solution
enables meta-heuristics to utilize local search algorithm or other meta-heuristics as its in-
put to accelerate the convergence, for example: OEMACS [58] leveraged OEM (Order
Exchange and Migration) local search techniques; ACO-GA [136], HGA-ACO [120] and
DAAGA (Dynamic Ant-colony Algorithm and Genetic Algorithm) [121] leveraged Ant
Colony Optimization (ACO) and GA to optimize the search process.

For intuitive observation, we summarize the scheduling algorithms in Table. 3-1.

3.2.2 MDRSP in Cloud Computing

For realistic cloud computing systems, many types of resources need to be arranged
simultaneously. The working status of each resource may affect that status of others on
the same physical machine, which increases the difficulty of research on MDRSP. Aiming
at optimizing resource utilization, energy consumption and cost, researchers have carried

73

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 3-1 Summary of Scheduling Algorithms in Literature from Three Categories

i.e., Heuristic, Machine Learning and Meta Heuristic.
Categories Family Algorithms Scenarios
Heuristic LPT [33], FCFS [126], et al. SOP
Machine
learning

RL QEEC [49], ADEC [53] et al. SOP, MOP
DRL DQN [40], ADRL [125] et al.

Meta
Heuristic

GA NSGA II [99], NSGA III [68] et al.
SOP, MOPACO MALO [64], S-MOAL [42] et al.

PSO MOPSO [71], HAPSO [73] et al.

out numerous studies on MDRSP in the cloud. In addition to the meta-heuristics reviewed
in Section 3.2.1, we continue to review some other research on MDRSP.

Goudarzi and Pedram [129] proposed a force-directed search to solve the multi-
dimensional SLA-based resource allocation problem in the cloud considering power,
memory and bandwidth. Xie et al [137] designed MPTMG (Multi-dimensional Pricing
mechanism based on Two-sided Market Game) for distributed MDR allocation in mo-
bile cloud computing considering storage, bandwidth and CPU in cloudset. Bao et al
[138] proposed MECC (Multi-dimensional resource allocation-Enabled Cloud Cache), a
SLA-aware cloud cache framework, to achieve both the SLA ensurance and cost opti-
mization for NVM-based cloud cache. Pan et al [139] proposed a MDR sharing framework
for heterogeneous nodes to reduce the total cost and task failure probability. Combining
Lyapunov optimization and Lagrange dual decomposition, Yu et al [140] proposed MER-
ITS (Multi-timescale multi-dimEnsion Resource allocatIon and Task Splitting algorithm)
to reduce energy consumption, queuing delay, queue backlog and increase connection
success ratio. Gopu and Venkataraman [141] applied MOEA/D to solve optimal VM
placement in the cloud considering wastage, power consumption and propagation delay
simultaneously.

In addition, research on MDRSP is also a hot topic in other scenarios. For multi-
dimensional knapsack problem, negative learning in ant colony optimization [142], sum-
of-ratios-based decomposition [143], Modified-BPIO (Modified Binary Pigeon-Inspired
Optimization) [127] and IBSMA [128] were proposed and achieved considerable perfor-
mances. For multi-dimensional transport problems, Aktar et al applied three ways, i.e.,
weighted sum technique, max-min Zimmermann technique and neutrosophic program-
ming technique, to reduce multi-objective to single-objective and then used generalized

74

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

reduced gradient method for solutions [144]. For diverse safety message transmissions in
vehicular networks, Chen et al [145] developed a MDR allocation scheme to jointly opti-
mize the sensing resource allocation.

3.2.3 Existing Approaches to MOP

MDRSP is actually one of the Multi-objective Optimization Problems (MOP, also
known as multicriteria optimization) [146, 147]. Solving a MOP generally requires two as-
pects: evaluation indicator of solutions and simplification of problems. These two aspects
also extended various optimization algorithms to MOP. In this subsection, we will review
them from these two aspects.

Evaluation indicator-based methods include two popular types: non-dominated
sorting-based method [147, 148] and hypervolume-based method [149, 150].

For the Non-dominated Sorting (NS) based method, Srinivas and Deb [151] proposed
Non-dominated Sorting Genetic Algorithms (NSGA). Based on the concept of Pareto op-
timization, NSGA stratifies the individuals according to their dominant and non-dominant
relationships, which improves the convergence rate to solve MOPs [151]. Using elite strat-
egy and congestion comparison operator, Deb et al [152] proposed NSGA II, which guaran-
tees the uniform distribution of the non-inferior optimal solution. Subsequently, NSGA III
[68] applied reference points to replace congestion sorting of NSGA II, which is more suit-
able to high dimensional MOP. Other variants of NSGA include B-NSGA III, U-NSGA
III [147], NSGA II-C [148], NN-DNSGA II algorithm [122], et al.

HyperVolume (HV), proposed by Zitzler et al, is an important indicator to evaluate
the optimality of the Pareto solution set [153, 154]. The indicator HV also extended a novel
type of approach (HV-based method) to solve MOP. Some examples are R2HCA-EMOA
(R2-based Hypervolume Contribution Approximation EvolutionaryMulti-objective Opti-
mization Algorithm)) [149] and UHV-GOMEA (Uncrowded HyperVolume and Gene-pool
Optimal Mixing Evolutionary Algorithm) [150].

Simplification of problems-based methods mainly includes some dimension
reduction-based methods.

Dimension reduction in MOP means using some methods to obtain problems with
fewer objectives by decomposing MOP into Multi Lower-Dimensional objective Prob-
lems (MLDPs) [155–157]. Brockhoff and Zitzler [157] proposed an exact algorithm and fast
heuristics to reduce the dimensions of objectives to assist evolutionary MOP with large

75

Doctoral Dissertation of University of Electronic Science and Technology of China

dimensions. Ruochen Liu et al [155] proposed a clustering and dimensionality reduction-
based evolutionary algorithm for large-scale MOP with dimensions up to 5000. Zheng
Tan [156] et al proposed multi-stage dimension reduction to make surrogate-assisted evo-
lutionary algorithms capable to handle sparse MOPs.

A specific case of dimension reduction is scalarization, which means decomposing
theMOPs intoMultiple Single-Objective Problems (MSOPs) [146]. Aggregating the objec-
tives into a weighted sum is a frequent approach to scalar theMOP [146]. Theweighted sum
approach enables computation of the properly Pareto optimal in convex cases, while may
work poorly in non-convex cases [146]. Other approaches including ε-constraint method,
Benson’s method, and compromise programming are applicable in non-convex solution
space to transform MOP to SOPs [146]. MOEA/D, proposed by Qingfu Zhang and Hui
Li [158], is a typical scalarization-based method, which combines genetic algorithms and
a weighted sum method [146]. On the basis of MOEA/D, Hang Xu et al [159] proposed
a novel MOEA based on Hierarchical Decomposition (MOEA/HD) which decomposed
the MOP into subproblems layered in different hierarchies. Jie Cao et al [160] proposed
MOEA/D-TS (a Two-Stage evolutionary strategy based MOEA/D) to improve MOEA/D.
In MOEA/D-TS [160], the first stage focused on pushing the solutions into the area of the
Pareto front to speed up its convergence ability, as well as the second stage conducted in
the operating solution’s diversity to make the solutions distributed uniformly.

For the sake of observation, we summarize these approaches in Table. 3-2.

Table 3-2 Summary of Approaches to MOPs in Literature from Two Aspects i.e.,

Indicator- and Simplification-based Approaches.
Aspect Approaches Family Algorithms

Indicator-based

NS-based NSGA NSGA II [152], NSGA III [68], B-
NSGA III [147] et al.

HV-based R2HCA-EMOA [149], UHVI [150] et
al.

Simplification-
based

Dimension
reduction-based

MOEA/D MOEA/D [158], MOEA/HD [159],
MOEA/D-TS [160] et al.

Others ε-constraint method, Benson’s
method [146] et al.

3.2.4 Analysis of Related Work

MDRSP, as a type of challenging MOPs, has complex problem features and dis-
continuous solution spaces. One common type of its method is the meta-heuristic algo-

76

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

rithm. Among them, NSGA family and MOEA/D family are the most popular to solve
MOPs. Some comparative studies between NSGA family and MOEA/D family [161, 162]

showed both these two families of algorithms have good convergence in continuous multi-
objective optimization space. When in large-scale discrete solution space, the searching
ability of these algorithms is insufficient. Therefore, they require abundant population size
and generations to obtain an acceptable solution, which will cost a lot of computing time.
Moreover, their local optimal solutions may be far from the theoretical optimal solutions
due to their essential characteristics.

Conventionally, a genetic algorithm contains several processes: initializing the in-
dividuals, selecting the excellent individuals to participate in the pairing, and executing
crossover andmutation to generate the children individuals, regenerate the populationwith
a specific mechanism to generate the next generation. From the above review, the existing
genetic algorithms mainly focus on the improvement of the population selection strategies
and population regeneration mechanisms, such as non-dominated sorting, elite strategy,
and competition mechanism [163–165], which have improved the searchability and local op-
timum of GA to some extent. However, as they don’t pay special attention to the growth
process of the individuals outside the crossover and mutation, the convergence rate and
optimality need to be further improved.

Referring to the previous research, this chapter reorganizes the process of genetic
algorithms by the concept of stages and adds a growth stage for each individual to obtain
a novel architecture of genetic algorithm called Growable Genetic Algorithm (GGA). The
GGA allows the combination of various algorithms and the individuals have more flexible
evolutionary routes. To solve the MDRSP in cloud computing, we propose the Heuristic-
based Local Search Algorithm (HLSA) to instantiate the growth route of GGA and use
Randommulti-Weights (RW) as the growth direction of individuals. Combining the above
components, we propose GGA-HLSA-RW (GHW), which can effectively solve MDRSP
in the cloud.

3.3 Cloud Systems and Optimization Problems Formulations consider-
ing Multi-dimensional Resources

To assist with the system model and problem formulations, Table. 3-3 lists the de-
scriptions of some notations in this chapter.

77

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 3-3 Notations and Descriptions.
Notation Description
n Number of tasks or VMs
m Number of nodes
d Number of dimensions of resources
i Index of task or VMs
j Index of nodes
k Index of dimensions of resources
Vi The task or VMs with index i
Pj The node with index j
Ci The property matrix of Vi

CCPU
ij The CPU capacity requested by Ti allocated on Pj in unit of MIPS

(Million Instructions Per Second)
CRAM
ij The RAM capacity requested by Ti allocated on Pj in unit of Giga-

bytes
CDS
ij TheDisk storage requested by Ti allocated onPj in unit of Gigabytes

CGPU
ij The GPU capacity requested by Ti allocated on Pj in unit of Giga-

bytes
CBW
ij The bandwidth of network requested by Ti allocated on Pj in unit

of Mbps (Million bits per second)
ψj Set of tasks and VMs in node Pj

κ The set of ψj where κ = ⟨ψ1,ψ2, . . . ,ψm⟩
xij If Vi ∈ Pj then xij = 1, otherwise xij = 0
Ljk The limited capacity of resource in the k-th dimension of the node

Pj

Sjk The load of resource in k-th dimension of the node Pj

Ujk The utilization rate in k-th dimension of the node Pj

uijk The resource occupancy rate of Vi for the k-th dimension in Pj

Gjk (Sjk) The function between the load of resource in k-th dimension of
server node Pj and energy consumption

Ej The total energy consumption the node Pj

E The total energy consumption of the cloud system
Np The number of individuals in each generation of genetic algorithm
Ng The number of generations in genetic algorithm
Gstep The number of search steps of each individual in each generation

through HLSA in GGA

3.3.1 Cloud System Model with Multi-Dimensional Resources

A cloud computing system usually consists of a large number of server nodes and
integrates the resource layers of these nodes through the high-speed network as Fig. 3-1.
We demonstrate cloud servers as heterogeneous nodes because of the default supporta-
bility of the cloud systems for heterogeneity. Then, we model it as a multi-dimensional

78

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

system model and model the problem of VMs allocation in it as a MDRSP.

Cloud Center
Base station of network

... Heterogeneous
Server Nodes

High Speed Internet

CPU
RAM
DS
GPU
...

CPU
RAM
DS
GPU
...

CPU
RAM
DS
GPU
...

CPU
RAM
DS
GPU
...

CPU
RAM
DS
GPU
...

... Resources
Pooling

Users

Services

...
Tasks or VMs Requests from Users

Figure 3-1 Structure of cloud computing with various resources.

We consider a cloud system with m heterogeneous nodes (denoted as P =
⟨P1,P2, . . . ,Pm⟩) and each node with d-dimensions of resources such as CPU, RAM, disk
storage, GPU, bandwidth etc. The set of tasks and VMs in a time slot [t, t+ δt) is denoted
as V = ⟨V1,V2, . . . ,Vn⟩. The executions of the same request are different in different
nodes and always need multi resources synergistically. Thus, we assume that a task or
VM request from users equals a request for resources in multiple dimensions. Based on
the above, we can set the property of a task or VM Vi as a matrix Ci = {Cijk}1≤j≤m,1≤k≤d.
The j-th row Cij =

〈
CCPU
ij ,CRAM

ij ,CDS
ij ,CGPU

ij ,CBW
ij , . . .

〉
denotes the capacity request for

resources in each dimension when Vi is allocated to the j-th node. Each node has limited
capacity in each dimension (i.e., the maximum load for healthy operation of components)
that can be set as L = {Ljk}1≤j≤m,1≤k≤d where Lj =

〈
LCPUj ,LRAMj ,LDSj ,LGPUj ,LBWj , . . .

〉
. For

example, LCPUj is the j-th node’s capacity of CPU and LDSj is its disk size. This model
corresponds to various requests (computing requests, storage requests, cache requests,
transmission requests, VMs requests, etc.) involved in cloud computing systems.

A diagram of the allocation of tasks or VMs to heterogeneous nodes with MDRs is
shown in Fig. 3-2. Although VMs migration and task segmentation can also be leveraged
to solve the resource scheduling in the cloud, they still can not avoid the allocation of tasks
or VMs. In view of this, we do not consider the VMs migration and task segmentation.
Then, we mainly focus on the direct allocation of tasks or VMs where any task or VM can

79

Doctoral Dissertation of University of Electronic Science and Technology of China

Load request for Node 1 Load request for Node 2

Server Node 1 Server Node 2Task or VM

Server Node 1 Server Node 2 Server Node 1 Server Node 2

CPU RAM DS GPU BW CPU RAM DS GPU BW CPU RAM DS GPU BW CPU RAM DS GPU BW

CPU RAM DS GPU BW CPU RAM DS GPU BW CPU RAM DS GPU BW CPU RAM DS GPU BW

If allocated to Server Node 1 If allocated to Server Node 2

Before Allocation

After Allocation

Figure 3-2 Allocation of a task or VM to heterogeneous nodes with multi-

dimensional resources.

not be further split into smaller ones. This also means any task or VM will be allocated to
only one server node supporting affinity while one server node can process multiple tasks
or VMs simultaneously. We denote the set of tasks and VMs in node Pj as ψj. If a task or
VM Vi is allocated to the node Pj, we use Vi ∈ ψj. The ψj of each node constitutes a vector
κ = ⟨ψ1,ψ2, . . . ,ψm⟩. Therefore, we can gain the relationships of ψj that

⋃m
j=1 ψj = V,

ψj ⊂ κ, and ψj
⋂
ψl = ∅ for ∀1 ≤ j ̸= l ≤ m. κ determines the unique allocation result

corresponding to the solution of MDRSP.
We use Sjk to denote the load of resource in the k-th dimension of the j-th node. Then,

the load vector of the j-th node is expressed as Sj = ⟨Sj1, Sj2, . . . , Sjd⟩. The occupancy of
most components approximately satisfies linear superposition. Thus, resource occupation
of each dimension on a node is equal to the sum of the requests of all VMs on it shown as
Eq. (3-1). A diagram of Eq. (3-1) is presented in Fig. 3-3.

Sjk =
∑
Vi∈ψj

Cijk (3-1)

80

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

1‐th Task or VM 2‐th Task or VM

Before AllocationLoad request for Node 1

CPU RAM DS GPU BW CPU RAM DS GPU BW CPU RAM DS GPU BW

After Allocation

CPU RAM DS GPU BW

Server Node 1

Figure 3-3 Relationship of linearly superposition for multi-dimensional resources

allocating two tasks or VMs to one server node.

3.3.2 Problem Formulations for Resources Utilization and Energy Con-
sumption

Cloud computing is based on the pay-as-you-go pattern [2] and regards the resources
as ubiquitous “cloud”. Generally, cloud has several targets: providing as many services as
possible, ensuring flexibility in providing services, reducing the overall energy consump-
tion, optimizing the resource utilization and prolonging the service life of components. In
this chapter, we transform its aims and focus on two problems:
(1) Minimizing the maximum utilization rate of resources for each dimension under all

nodes;
(2) Minimizing the energy consumption for the whole system.

3.3.2.1 Minimizing the Maximum Utilization Rate of Resources for Each Dimension
under All Nodes

There are various indicators to evaluate balancing degree in the cloud such as variance
or standard deviation of load [46, 110], average success rate [51], coefficient of variance [45],
degree of imbalance [122], etc. In this chapter, we leverage the objectives of minimizing
the maximum utilization of resources in each dimension. It is also a method to perform
load balancing, improve resource utilization and ensure that the cloud system can process
more VMs. The problem with multi-objectives can be formulated as Eq. (3-2), where we
denote minω(1)

k = minmax (S1k, S2k, . . . , Smk) and Sjk ≤ Ljk for ∀j ∈ {1, 2, . . . ,m} and

81

Doctoral Dissertation of University of Electronic Science and Technology of China

∀k ∈ {1, 2, . . . , d}.

minω(1) =
(
min max

j=1,2,...,m
Sjk
)∣∣∣∣

k=1,2,...,d
= min

max (S11, . . . , Sm1)

max (S12, . . . , Sm2)

. . .

max (S1d, . . . , Smd)

(3-2)

Converting Eq. (3-2) to zero-one integer programming problem can obtain Eq. (3-3).

minω(1)
k = min

(
max

j=1,2,...,m

(n∑
i=1

xijCijk

))
(3-3)

We assume the resource utilization rate of each dimension as the ratio of the occupied
load to the limited capacity that is:

Ujk = Sjk
Ljk

=
∑n

i=1 xijCijk

Ljk
(3-4)

In the system model of this chapter, Ljk and Cijk are given and invariant. Thus, we can
denote a parameter uijk = Cijk/Ljk to express the occupancy rate of a single VMs Vi for
the k-th dimension of node Pj. The utilization rate uijk also satisfies the superposition
relationship:

Ujk =
∑
Vi∈ψj

uijk =
n∑

i=1
xijuijk. (3-5)

Thus, if an algorithm can adapt to Cijk, it can also apply to uijk, and vice versa. Then, a
problem to reduce the utilization rate of resources for each dimension is as Eq. (3-6).

minω(2)
k = min

(
max

j=1,2,...,m

(n∑
i=1

xijuijk
))

(3-6)

where the constraints are:

s.t.

m∑
j=1

xij = 1,

n∑
i=1

xijCijk ≤ Ljk ⇔
n∑

i=1
xijuijk ≤ 1,

0 ≤ Cijk ≤ Ljk ⇔ 0 ≤ uijk ≤ 1,

xij ∈ {0, 1}, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , d}

(3-7)

82

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

3.3.2.2 Minimizing the Total Energy Consumption for System

Minimizing the number of working nodes is a frequent way to optimize the energy
consumption of the cloud, whose optimization objective can be written as:

minω(3) = min
m∑
j=1

max
i=1,2,...,n

xij (3-8)

The use of Eq. (3-8) requires the assumption that the operating energy consumptions
of all nodes are similar. However, the ratio between load and energy consumption may
be varying with the different nodes. Therefore, we consider the relationship between the
energy consumption and load to lean closer to the actual scene. We assumeGjk (Sjk) as the
function between the load of resource in k-th dimension of server node Pj and its required
energy consumption where we denote Ej as the total energy consumption the node Pj. In
reality, Gjk (Sjk) is often non-linear related to the status of sever nodes such as tempera-
ture. In this chapter, we do not address the issue of the relationship between load, energy
consumption and status. Thus, we assume each Gjk (Sjk) is a given function. Without los-
ing generality, we also assume the energy consumption of all dimensions of resources is
subject to superposition. Then, formulas for energy consumption can be obtained as:

E =
m∑
j=1

Ej =
m∑
j=1

d∑
k=1

Gjk (Sjk) (3-9)

The components in the computer mainly process the task by switching high-low volt-
age signals. According to Ohm’s law, the electrical power is equal to the square of the
voltage divided by the resistance. Thus, we set up the function Gjk (Sjk) as a quadratic
polynomial function in this chapter:

Gjk

(q∑
k=1

Sjk
)

= ajkS2jk + bjkSjk + cjk + sgn (Sjk) djk (3-10)

where sgn() is the signum function. When ∑q
k=1 Sjk = 0, cjk = Eidle

jk corresponds to the
energy consumption of k-th dimensional resource when node Pj is idle. When∑q

k=1 Sjk >

0, cjk + djk = Eon
jk corresponds to the energy consumption of k-th dimensional resource

when node Pj is on working. Then, the total energy consumption of the system can be

83

Doctoral Dissertation of University of Electronic Science and Technology of China

rewritten as follows by substituting xij and Eq. (3-10) into Eq. (3-9).

E =
m∑
j=1

d∑
k=1

ajk
(n∑

i=1
xijCijk

)2

+ bjk
(n∑

i=1
xijCijk

)
+

m∑
j=1

d∑
k=1

(cjk) +
m∑
j=1

(
nmax

i=1
(xij)

d∑
k=1

djk
) (3-11)

Obviously, the objective of minimizing the total energy consumption is as:

minω(4) = minE (3-12)

where the constraints are also as Eq. (3-7).

3.4 Algorithm Design: Growable Genetic Algorithm

For MDRSP, the commonly used three basic steps to obtain a solution set are as:
(1) Reducing dimensionality of the MDRSP to Multi Single-Objective Problems

(MSOPs) or Multi Lower-Dimensional objective Problems (MLDPs);
(2) Solving the solutions of MSOPs or MLDPs;
(3) Integrating the solutions of MSOPs or MLDPs to obtain the solution set of the original

MDRSP.

CPU

RAM

DS

…

BW

1ijC

2ijC

3ijC

…
w5

w4

w3

w2

w1

1

d

k ijk
k

w C

 Pareto Solution Set

Step 2 Step 3

Tasks for MDR Reduce Dimensionality Solve MSOP or MLDP Integrate Solutions
for MDR

Input MDRSP

B
as
ic
 S
te
p
s

P
ro
p
o
se
d
 F
ra
m
e
w
o
rk

Random Weights Grown Individuals

MSOPs or MLDPs

Individuals of GGA

Step 1

Solutions of MSOPs or
MLDPs

HLSA growth route

ijdC

Figure 3-4 Basic steps of our proposed framework to solve MDRSPs.

Therefore, we need to achieve these three steps by building corresponding meth-
ods to solve MDRSP. We map them into a growable genetic algorithm framework as
shown in Fig. 3-4. In this framework, we leverage the Random multi-Weights method
(RW) to achieve dimensionality reduction and use the individuals of GGA to represent
the dimensionality-reduced MSOPs; propose the HLSA-based growth route to represent
the solving process of each MSOP and obtain the mature individuals after HLSA-based
growth as the solution of MSOP; finally, update the Pareto solution set of MDRSP by

84

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

integrating the grown mature individuals.

Infancy Stage Mature Stage

Regeneration
Mechanism

Initialization Growth Stage Genetic Stage

…

Initialized Individuals
…

Infancy Individuals
…

Selected Individuals Crossover & Mutation
……

New Generation

…

Initialized Individuals
…

Infancy Individuals

…

Selected Individuals Crossover & Mutation
……

…w ww w(2) (3) (4)(1)

Entrust weights of Growth

HLSA growth route
Grown Mature Individuals

Individuals Selector

Individuals Selector

Cl
as
si
ca
l G

A
G
G
A‐
H
LS
A‐
RW

…

…

Children Individuals

Regeneration
Mechanism

…

Children Individuals
New Generation

Figure 3-5 The flowchart comparison between the classical GA and our proposed

GGA-HLSA-RW (GHW).

The key to our proposed framework is the Growable Genetic Algorithm (GGA) using
HLSA as the growth route. To illustrate its structure and highlight the difference between
it and the classical GA, we present their flowchart in Fig. 3-5, where the flowchart of the
classical GA is obtained by integrating the genetic-related literature [68, 70, 99, 151, 152].

As shown in Fig. 3-5, we apply a concept of stages to divide the classical GA into
four stages namely initialization stage, infancy stage, mature stage and genetic stage. The
classical GA firstly takes the initialized individuals as the early individuals of the infancy
stage; secondly selects some excellent individuals in the mature stage according to some
strategies such as fast non-dominated sorting algorithm [68, 152]; then pairs the selected
individuals; executes crossover and mutation to generate the children individuals; finally,
choose a part of individuals as the individuals of the next infancy stage.

On the basis of the four stages of the classical GA, we add a growth stage in GGA
shown as the part in the red box of Fig. 3-5. In the growth stage, we randomly entrust
weights to the individuals as their directions of ability cultivations, use the Heuristic-based
Local Search Algorithm (HLSA) to cultivate the individuals of the infancy stage, and
then select the grown individuals for the subsequent genetic process. The application of
a novel growth stage is conducive to quickly obtaining better optimization solutions for
MDRSP. Finally, we obtain our proposed Growable Genetic Algorithm (GGA) using the
HLSA-based growth route with Random multi-Weights (RW) named GGA-HLSA-RW

85

Doctoral Dissertation of University of Electronic Science and Technology of China

(abbreviated as GHW).
Next, we will present the components of GGA-HLSA-RW (GHW) respectively in-

cluding RW, HLSA, and GGA based on various growth strategies.

3.4.1 Random Multi-weights-based Dimensionality Reduction

In this chapter, we mainly consider transforming MDRSP into MSOPs. However,
for strict consideration, the framework of this chapter is also suitable for transforming
MDRSP intoMLDPs. Therefore, we still use dimensionality reduction (or decomposition)
instead of scalarization in this chapter.

Before discussing the method of dimensionality reduction, we first presuppose we
have a valid and efficacious algorithm (marked as Ah) to solve the single-dimensional
resource scheduling problem. Taking ω(2)

k in Eq. (3-6) as an example, it can be regarded
as a single-dimensional resource scheduling problem (also a single-objective optimization
problem) regardless of other dimensions. Ah can gain a sufficiently optimized solution
of Eq. (3-6) for the k-th dimension based on our presuppose. Assuming minimizing the
weighted sum of utilization in each dimension marked as ω̄(2)

(w), modification of Eq. (3-6)
can gain a problem as:

min ω̄(2)
(w) = min

(
max

j=1,2,...,m

(n∑
i=1

xij
d∑

k=1
(wk · uijk)

))
(3-13)

where w = ⟨w1,w2, . . . ,wd⟩ is a vector of weights. It can be set Wij = ∑d
k=1 wk · uijk.

Because w and uijk are given and invariant, Wij is a constant, which means Eq. (3-13) is
a single-dimensional problem and has the same form as Eq. (3-6). More crucially, the
algorithm Ah can apply to solve it and obtain a sufficiently optimized solution. Other
problems are analogous to this property. For sake of the following discussion, we set the
solution in each dimension of Eq. (3-13) obtained by Ah as Ah

(
ω̄(2)

(w)

)
where:

Ah

(
ω̄(2)

(w)

)
=
〈
ω(2)
1 ,ω(2)

2 , . . . ,ω(2)
d

〉
(3-14)

Therefore, ω(2)
k = max

j=1,2,...,m

(∑n
i=1 xij

∑d
k=1 (wk · uijk)

)
where {xij} is the obtained optimiza-

tion solution of Eq.(3-13) solved by Ah.
The weight vector w is actually an angle to slice the multi-dimensions of resources

and Wij is the projection of this slice. This enlightens us to analyze whether the optimal
solutions for the weights of all angles can cover all Pareto solutions. A general MDRSP

86

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

can be assumed as:

minω = min

ω1

ω2

. . .

ωL

(3-15)

where:

ωk = f
(
{xijYijk}1≤i≤n,1≤j≤m

)
(3-16)

which expresses a function related to all the elements of the n × m matrix
{xijYijk}1≤i≤n,1≤j≤m where Yijk is given parameter, and the constraints are as Eq. (3-7). As-
suming Tw as a weight set traversing all angles in Euclidean space RL, then we can denote
the optimization solution set under each weight of Tw as B where:

B =
{
Ah(ω(w))|∀w ∈ Tw

}
, (3-17)

theoretical Pareto solution set of Eq. (3-15) asD, and the set of solutions included in B asG
subject to properties that: for ∀g ∈ G and ∀b ∈ B, b does not dominate g; for ∀b ∈ B−G,
∃g ∈ G s.t. g dominates b. Therefore, the key is to find a Tw s.t. card(D − G) as small as
possible, where card(D − G) means the cardinality of set D − G.

This reveals a method to obtain the Pareto solutions of MDRSP which is to traverse
weights of all angles. The way to approximately perform traversing weights is enumerated
by cyclic isometrics based on a definite interval. However, the weight set Tw is continuous
containing infinite elements, and the solutions Ah(ω(w1)) and Ah(ω(w2)) of two weights w1

andw2 expressing different angles may be the same. Therefore, differentiating from cyclic
isometric, a random multi-weights is applied to obtain the slices of reduced dimension.
It means to select multi-weights randomly to generate corresponding single-dimensional
problems and respectively obtain the solutions of these problems, as Algorithm 3-1.

As the growth stage of GGA allows the combination of various algorithms, a multi-
objective optimization algorithm (includingGHW itself) can be nested in the growth stage.
However, considering this chapter focuses on the proposal of the GHW framework (a
novel genetic-based framework) and the validation of its applicability in MDRSP, this
chapter mainly uses a group of random weights to transform a MOP into MSOPs at the

87

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 3-1 Random multi-weights-based dimensionality reduction
Input :MDRSP with form as Eq. (3-15), constraints as Eq. (3-7) and the

parameters of tasks as Yij where Yij = ⟨Yij1,Yij2, . . . , Yijd⟩
Output: Solution set B of decomposed problems

1 Generate random weight set Tw =
〈
w(1),w(2), . . .

〉
with multiple weights where

w(l) is vector with length d
2 Obtain dot product w(l) · Yij as new parameters
3 Obtain the problem after dimensionality reduction as:

minω(wl) = min f
({

xij
(
w(l) · Yij

)}
1≤i≤n,1≤j≤m

)
(3-18)

where Eq. (3-18) is single-dimensional problem in w(l)
4 Solve the problem Eq. (3-18) by the given algorithm Ah
5 Obtain the solution set B as Eq. (3-17)

growth stage of each generation, which also means the weights is variable after a genera-
tion.

3.4.2 Heuristic-based Local Search Algorithm

The next key is an effective algorithm Ah to gain the optimal solution for
dimensionality-reduced problems, which directly determines the optimality of the solu-
tion for MDRSP. To improve the solution of Ah, we proposed the Heuristic-based Local
Search Algorithm (HLSA) combining the superiorities of heuristic and local search.

Entrusting the heuristic algorithm the role of search route, we define a neighborhood
in the heuristic-based local search algorithm as: It can be assumed that two solutions
κ = ⟨ψ1,ψ2, . . . ,ψm⟩ and κ′ = ⟨ψ′

1,ψ′
2, . . . ,ψ′

m⟩. If ∃j1 ̸= j2 ∈ {1, 2, . . . ,m} subject to
that ψl = ψ′

l for ∀l ∈ {1, 2, . . . ,m} − {j1, j2}. And if the result after reallocating the VMs
set ψj1 ∪ ψj2 on two server nodes Pj1 and Pj2 through the specific heuristic algorithm is κ′.
Then κ′ is defined as the corresponding heuristic-based neighbor of κ and all heuristic-
based neighbors of κ consist of a solution set as Ner(κ).

A HLSA-based neighbor solution of a given solution can be also described as the
solution obtained by the given solution by calling the HLSA algorithm once. If ∀κ′ ∈
Ner(κ), the solution of κ′ is not optimal than that of κ, stop the local search and regard
κ as a local optimum. In the proposed GHW, we set additional criteria to stop the HLSA
search of one individual in one generation, which can be called the number of growth steps
(denoted as Gstep). Then, the heuristic-based local search algorithm with Gstep criteria can
be seen in Algorithm 3-2.

88

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

Algorithm 3-2 Heuristic-based local search algorithm
Input : Dimensionality reduced problem ω(wl) as Eq. (3-18) and the number of

growth step (Gstep)
Output: Solution Ah

(
ω(wl)

)
of the problem

1 Initially Allocate tasks to resources with confirmed or random initialization
policy and gain the general initial status of κ

2 Set i = 0, Exists_Ner = True
3 while Exists_Ner and i < Gstep do
4 Exists_Ner = False, i + +
5 Search neighborhood Ner(κ) of κ in the specific heuristic-based local search

algorithm such as Algorithm 3-3 (modified LSPT-based local search
algorithm)

6 if κ′ ∈ Ner(κ) s.t. the solution of κ′ is optimal than κ then
7 Exists_Ner = True
8 Choose the optimal neighbor to update κ = κ′

9 Set κ as the solution Ah

(
ω(wl)

)
of the problem

Then, an appropriate heuristic algorithm as the search route is the critical factor. Be-
cause this framework has great adaptability to various algorithms, almost any algorithm
that can solve the resource scheduling of two nodes can be applied as its search route.
Without losing generality, we propose the modified LSPT (modified Longest-Shortest
Process Time) to search the heuristic-based neighbor considering the performance to ad-
dress the single-dimensional resource scheduling of heterogeneous nodes. A modified
LSPT-based neighborhoods can be defined as: It can be assume κ′ is a HLSA-based neigh-
bor of κ, ψ′

j1∪ψ
′
j2 = ψj1∪ψj2 = {Vτ1 ,Vτ2 , . . . } and ξτi ≥ ξτi+1 where ξτi = w(l)·(Yτj1 − Yτj2).

If Vτi ∈ argminψ′

(∑
Vτk∈ψ′

1
w(l) · Yτj1 ,

∑
Vτk∈ψ′

2
w(l) · Yτj1

)
where k < i for ∀Vτi ∈ ψ′

j1 ∪ ψ′
j2 ,

then κ′ can be called the modified LSPT-based neighbor of κ. While by contraries κ may
not be that of κ′. Then, the modified LSPT-based local search algorithm is presented in
Algorithm 3-3. In order to minimize the maximum utilization of all heterogeneous nodes,
modified LSPT requires sorting the VMs in two nodes according to ξτi (i.e., the difference
of the weighted utilization of a VM in two nodes) and ψ = {Vτ1 ,Vτ2 , . . . } is an ascending
set. In the process of putting VMs into nodes one by one: if the sum of weighted utilization
of Pj1 is smaller than that of Pj2 , put the leftmost of the remaining ψ into ψ′

j1; otherwise,
put the rightmost of the remaining ψ into ψ′

j2 . Then, update ψ by removing the currently
selected VM from ψ. The process of modified LSPT combines the characteristics of LPT
and SPT so as to well solve the VMs allocation in two heterogeneous nodes.

89

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 3-3 Modified LSPT-based local search algorithm for heterogeneous
nodes
Input : Tasks in ψ = ψj1 ∪ ψj2 of two server nodes Pj1 and Pj2
Output : ψ′

j1 and ψ
′
j2

1 InitializeMarkj1 = 0, Markj2 = 0, ψ′
j1 = ∅ = ψ′

j2
2 while ψ ̸= ∅ do
3 if Markj1 ≤ Markj2 then
4 α = j1, β = j2
5 else
6 α = j2, β = j1
7 Collect tasks Vτ ∈ ψ s.t. w(l) · (Yτα − Yτβ) = min

Vi∈ψ
w(l) · (Yiα − Yiβ) to obtain a

set of ⟨Vτ1 ,Vτ2 , . . . ,Vτs⟩
8 if s ≥ 2 then
9 Choose Vτ s.t. w(l) · Yτα = max

1≤p≤s
w(l) · Yτpα

10 Markα+ = w(l) · Yτα, ψ′
α+ = {Vτ} and ψ− ={Vτ}

3.4.3 Growable Genetic Algorithm based on Growth Strategies

As is known, the local search algorithm may converge to a non-global optimal so-
lution. Thus, we consider using a genetic algorithm to increase the search scope and to
improve the probability of jumping out of the local optimum. A feasible combination of
local search and genetic algorithm is to use the local search algorithm as the growth route
of the individuals of the genetic algorithm (i.e., GGA-HLSA).

Inspired by the existing research, we consider different individuals in the genetic
algorithm to grow according to various growth strategies so as to increase the diversity of
the population. This strategy can improve the global searchability of the genetic algorithm.
The different growth processes of individuals can be regarded as the optimization process
of individuals’ ability to different weights. Additionally, if the individuals always inherit
the ability weights of their parents, they may also fall into the local optimum. Therefore,
we apply random multi-weights as the difference in the growth process of individuals.
Due to the flexibility of the GGA framework, the solutions of HLSA can be used as mature
individuals to participate in subsequent mature stage and genetic stage. Finally, we obtain
our proposed GGA-HLSA-RW (GHW). The process of GHW has been shown in Fig. 3-5
and its algorithm is presented in Algorithm 3-4. The loops in Algorithm 3-3 andAlgorithm
3-4 can be manipulated with matrices operations so as to utilize GPU for acceleration.

90

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

Algorithm 3-4 GGA-HLSA-RW (GHW)
Input : Tasks and VMs Vi and their parameters Cijk, server nodes Pj, the limited

capacities Ljk and the optimization problems ω
Output: Pareto solution set K

1 Set number of individuals in each generation as Np, the number of generations as
Ng

2 Generate initial individuals
〈
κ(0)
1 , κ(0)

2 , . . . , κ(0)
Np

〉
with random genes and obtain

initial Pareto solution set K
3 for l in range(Ng) do
4 Generate a random weight vector w(l)

q for each individual in the l-th
generation

5 Obtain the problem after dimensionality reduction of each individual in the
l-th generation as Algorithm 3-1

6 Using HLSA as Algorithm 3-2 (instantiated by Algorithm 3-3 in chapter) to
solve the problem after dimensionality reduction, obtain mature individuals
as
〈
κ̄(l)
1 , κ̄(l)

2 , . . . , κ̄(l)
Np

〉
, and update the solution set K

7 Select and Pair the better mature individuals with specific sort strategies such
as non-dominated sorting [151, 152], congestion degree sorting [152] and
ordering of subproblems corresponding to reference vectors [158]

8 Generate the l + 1-th infancy individuals
〈
κ(l+1)
1 , κ(l+1)

2 , . . . , κ(l+1)
Np

〉
with

specific strategies such as elitist strategy
9 Update the Pareto solution set K

3.4.4 Instantiation of GHW: GHW-NSGA II and GHW-MOEA/D

GGA-HLSA-RW (GHW) can be considered as a family of algorithms, which can
incorporate various existing genetic optimization strategies to produce specific algorithm
variants. This means that the strategies such as NSGA [151], NSGA II [99, 152], NSGA III
[68], MOEA/D [158], et al. can be applied in GHW to obtain new, well-performing al-
gorithms. Specifically, this chapter applies the NSGA II strategy [99] in GHW to obtain
the GGA-HLSA-RW-NSGA II (GHW-NSGA II) algorithm and also applies the MOEA/D
strategy [158] to obtain GGA-HLSA-RW-MOEA/D (GHW-MOEA/D) algorithm . Refer-
ring to the existing terms of genetic algorithms [152, 166], the base components of GHW are
defined as:
(1) Gene and Individual (Chromosome): we regard the allocated node index of each

VM (or task) as a gene, where the i-th gene can be written as a vector λi =
⟨xi1, xi2, . . . , xim⟩ where 1 ≤ i ≤ n and xij ∈ {0, 1}. If Vi ∈ ψj, then xij = 1, oth-
erwise xij = 0. A vector I = ⟨λ1, λ2, . . . , λn⟩ with n genes constructs an individual
(also chromosome) corresponding to a solution of the optimization problem. Obvi-

91

Doctoral Dissertation of University of Electronic Science and Technology of China

ously, the vector I and the set of κ are interchangeable.
(2) Individual selector: GHW-NSGA II sorts the individuals in the mature stage by non-

dominated ordering and congestion ordering, then selects better part of individuals
to participate in pairing and crossover. GHW-MOEA/D initialize a group of vec-
tors as reference vectors, selects part of individuals with the best solution under each
reference vector and randomly selects two individuals of each reference vector to par-
ticipate in pairing and crossover.

(3) Crossover: It can be assumed two individuals as Iα = ⟨λα1, λα2, . . . , λαn⟩ and
Iβ = ⟨λβ1, λβ2, . . . , λβn⟩. Their crossover is defined as separately extracting a
part of genes from them to gain a new vector as the children individual, such as
⟨λα1, λβ2, λβ3, . . . , λαn⟩ . In this chapter, we randomly select the number of genes of
Iβ participating in crossover according to the uniform distribution, and then randomly
select the corresponding number of genes from Iβ with the same probability to replace
the genes at the corresponding position of Iα.

(4) Mutation: Mutation is defined as that replacing some elements of an individual Iα =
⟨λα1, λα2, . . . , λαn⟩ by randomly generated genes.

(5) Population regeneration mechanism: Both GHW-NSGA II and GHW-MOEA/D
apply elitist strategy [152] to combine the parent individuals with their children indi-
viduals to jointly compete to produce the next generation.
Unlike MOEA/D whose individual respectively corresponds to a fixed reference line

(or a vector), GHW-MOEA/D is only to select the optimal part of mature individuals
corresponding to each preset reference line in the individual selector, and randomly select
two of them for crossover to generate a new child. This means the individuals in GHW-
MOEA/D will no longer be constrained by given fixed reference lines.

In order to intuitively demonstrate the process of GHW family, we take a visualized
example of GHW-NSGA II for problem minω(2) with two-dimensional resources (CPU
and RAM for the sake of observation). Then, we draw its solution process in Fig. 3-6. In
the example of Fig. 3-6, n = 10, m = 4, Np = 10, Gstep = 10 and the parameters uijk of
VMs and the genes of individuals are randomly initialized.

As shown in Fig. 3-6 which is corresponding to each stage in Fig. 3-5:
(1) Infancy Stage: At the 1st generation, the initialized individuals are input as the in-

fancy individuals whose solutions are as Fig. 3-6(a);
(2) Growth Stage: The infancy individuals are input in the growth stage and are improved

92

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

New
Generation

Infancy Stage

New
Generation

Pareto Solution

0.2 0.3 0.4

0.2

0.3

0.4

CPU

 HLSA Growth

R
A

M

 Random Weight

 Infancy
 Mature0.2 0.3 0.4

0.2

0.3

0.4
 Children Solution
 Mature Solution

R
A

M

CPU

0.2 0.3 0.4

0.2

0.3

0.4
 Infancy Solution - 1st

R
A

M

CPU

0.15 0.20 0.25
0.15

0.20

0.25 Pareto Solution

R
A

M

CPU

0.2 0.3 0.4

0.2

0.3

0.4
 Infancy Solution - 2nd

R
A

M

CPU

1st Generation

2nd Generation

…
…

Mature Stage

…
…

……

…
…

(a)

(f)

(b)

(c)

(d)

(e)

0.2 0.3 0.4

0.2

0.3

0.4
 Mature Solution
 Selected Solution

R
A

M

CPU

Figure 3-6 The visualized example of GHW-NSGA II with actual results in each

stage.

by HLSA growth to generate mature individuals as Fig. 3-6(b). The vectors directed
from circles to diamonds represent the growth process with HLSA;

(3) Mature Stage: After growth stage, mature individuals are screened by non-dominated
sorting and congestion degree sorting to obtain some selected individuals as Fig. 3-
6(c) for the subsequent crossover and mutation;

(4) Genetic Stage: The selected individuals participate in the crossover and mutation to
generate children individuals as Fig. 3-6(d). Then, children individuals and mature
individuals participate in screening together to generate the next infancy individuals
as 3-6(f). At the same time, the Pareto solutions set is updated as Fig. 3-6(e);

(5) Repeat Infancy Stage → Genetic Stage.

93

Doctoral Dissertation of University of Electronic Science and Technology of China

3.5 Theoretical Analysis and Proof

3.5.1 Analysis of Computational Complexity of GHW

The computational complexity (denoted as ζ) of GHW mainly consists of two parts:
the computational complexity of HLSA (ζ (H)) and that of genetic algorithm (ζ (G)).

The computational complexity of HLSA for one step search of one individual in one
generation can be deduced as ζ (h) = O (mn log n). Thus, for Np individuals and Ng gen-
erations, the computational complexity of HLSA is ζ (H) = O (Gstep · Np · Ng · mn log n)
where Gstep is the max number of steps for HLSA search of each individual in each gen-
eration. Following, we demonstrate the proof of ζ (H).

Proof: The computational complexity ζ (h) corresponds to finding two nodes
to execute Algorithm 3-3. The computational complexity of Algorithm 3-3 is
card

(
ψj1 ∪ ψj2

)
log card

(
ψj1 ∪ ψj2

)
which mainly derives from the complexity of sort-

ing. Thus the total computational complexity of enumerating the combinations of any two
nodes is∑m

j=1
∑m

l=j+1 card
(
ψj ∪ ψl

)
log card

(
ψj ∪ ψl

)
. The second derivative of xlogx is

(xlogx)′′ = 1
x > 0 and ∑m

j=1 card
(
ψj

)
= n, thus substitution into Jensen inequality can

obtain:

ζ (h) ≥ O
(
m (m − 1)

2

(n
m
log

n
m

))
= O (nm log n) (3-19)

In addition, x1 log x1 +x2 log x2 < (x1 + x2) log (x1 + x2) assuming x1, x2 > 0. Therefore:

ζ (h) ≤ O ((n(m − 1) log n(m − 1))) = O (nm log n) (3-20)

Combining the above equations, ζ (h) = O (nm log n). Thus, ζ (H) =
O (Gstep · Np · Ng · mn log n). ■

For the computational complexity of the genetic algorithm, if using NSGA II strate-
gies to select mature individuals and to generate the new generations, the computational
complexity is ζ (G) = O

(
N3
p · Ng · d

)
[152]. Then, the computational complexity of GHW-

NSGA II can be obtained as:

ζ = ζ (H) + ζ (G) = O
(
Np · Ng ·

(
Gstep · mn log n + N2

p · d
))

. (3-21)

GGA-HLSA is essentially a multi-route search algorithm by adding a search route
(HLSA) to the genetic algorithm. The local convergence points of various routes are
usually different, so multiple routes can help each other to jump out of the local conver-

94

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

gence points of other routes so as to improve the optimality of solutions. Generally, the
relationship between multiple performances (such as optimality and computational com-
plexity) of the algorithms are varying with the change of parameters, which may not have
an explicit expression. However, from the perspective of qualitative analysis based on
information theory, GHW receives more effective information from GA-based route and
HLSA-based route. This helps GHW spend less time finding better solutions than the
existing algorithms such as NSGA II and MOEA/D. Thus, the algorithms of the GHW
family theoretically have certain advantages in terms of convergence performance.

Table 3-4 Different Strategies of GGA.
Category Strategy Description

Growth
Strategies

HLSA growth Using HLSA as growth route of individuals in
GGA

Random
growth

Using randomization as growth route of indi-
viduals

Non growth Direct genetic without growth

Dimension
Reduction

RW Random multi-weights for each individual
EW Enumeration weights for each individual
RD Random dimensions for each individual
RRD Round-robin dimensions for each individual
TRD Taboo round-robin dimensions for each indi-

vidual
RWS Random dimensionality reduction strategies

for each individual

3.6 Experimental Results and Analysis

3.6.1 Experiments Setting

For the sake of the comprehensive evaluations to the proposed algorithms, this section
carries out four groups of experiments from various aspects including:
(1) EX1: comparison of growth strategies for GGA;
(2) EX2: comparison of dimensionality reduction strategies for GGA-HLSA;
(3) EX3: evaluation of practicability on a real public trace-driven dataset (AzureTracefor-

Packing2020 [131]);
(4) EX4: verification on the advantages of proposed algorithms in convergence and opti-

mality by comparing with state-of-the-art.
All these experiments are based on the control variable method. Because this chapter

mainly focuses on discussing the influence of adding a directed growth in the GGA in-

95

Doctoral Dissertation of University of Electronic Science and Technology of China

stead of that of the type of algorithms for the growth stage, we select modified LSPT-based
HLSA as the growth route of GGA. Fixing the algorithm process as GGA and regarding
the growth strategy as the variable, EX1 presents the performance of adding HLSA growth,
random growth (non-directed growth) and no growth respectively as shown in Table.
3-4. Except for random multi-weights, other strategies for dimensionality reduction in-
clude Enumeration Weights (EW), Random Dimensions (RD), Round-Robin Dimensions
(RRD), Taboo Round-robin Dimensions (TRD) and Random dimensionality and Weights
Strategies (RWS) as shown in Table. 3-4. For example, Random Dimensions (RD) means
randomly choosing one dimension to generate the single-dimensional optimization prob-
lem of each individual in each generation and using HLSA to solve the problem of the
chosen dimension. Other compared strategies for dimensionality reduction are similar
to RD and RW. EX2 fixes the algorithm process as GGA-HLSA and regards the dimen-
sionality reduction strategy as the variable. To validate the applicability of our proposed
algorithms in realistic, EX3 is a group of trace-driven experiments based on AzureTrace-
forPacking2020 [131]. EX4 presents some indicators over time to validate the superiority
of our proposed algorithms of GHW family compared with the state-of-the-art.

With the exception of EX3, which is performed on the trace-based dataset, other
groups of experiments are executed on the random simulation dataset, which is conducive
to generating adequate data for comprehensive verification. The descriptions and opera-
tions of the datasets used in experiments are as follows.
(1) Random Simulation Dataset: is generated randomly by a Python-based simulation

environment. In the simulation environment, we set up the server nodes to be hetero-
geneous and the parameters of VMs obey a uniform distribution.

(2) AzureTraceforPacking2020 [131]: represents part of the workload on Microsoft’s
Azure Compute. AzureTraceforPacking2020 provides the required CUP, RAM, SSD
(Solid-State Drive) and NIC (Network Bandwidth) allocation for 487 types of VMs
on 35 types of machines. Since AzureTraceforPacking2020 provides the utilization
of MDRs by VMs on heterogeneous machines, it is very suitable to verify the perfor-
mance of the proposed methods. If a certain dimension of a VM occupies too much
utilization on all types of machines, it will directly cause this VM to occupy one ma-
chine alone, which has no impact on the optimization of other VMs and machines.
Thus we choose to ignore some types of VMs with large utilization. In the experi-
ments of this chapter, we screen out some types of VMs with a minimum resource

96

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

utilization of CPU, RAM and SSD greater than 0.3 on all types of machines, and fi-
nally retain 338 types of VMs, which means minmj=1 uijk ≤ 30% for ∀i, k. Then, we
randomly select the given numbers of VMs and machines from the 338 types of VMs
and 35 types of machines.

Table 3-5 Setup of Experiments.
Groups Comparison Dataset Objectives Scenarios (servers, VMs)

EX1
Growth
Strategies

Simulation
Dataset

minω(2) (8, 80)
minω(4) (16, 20-200), (20, 20-200)

EX2
Dimensionality
Reduction

Simulation
Dataset

minω(2) (20, 200)
minω(4) (16, 20-200), (20, 20-200)

EX3 Generations AzureTracefor
Packing2020

minω(2) (400, 1000), (700, 2000)
minω(4) (400, 1000), (700, 2000)

EX4
SOTA: NSGA II

MOEA/D
Simulation
Dataset minω(2) Large Scale

Small Scale

EX1 to EX3 are executed for two problems, i.e. minω(2) (minimizing the maximum
utilization rate of resources for each dimension under all nodes) and minω(4) (minimizing
energy consumption for total cloud system), while EX4 is performed only for the minω(2)

problem. For the sake of presenting the Pareto solution in the same figure simultaneously,
we choose three dimensions of resources, that is CPU, RAM and DS, to execute the ex-
periments. Since the results from various setups of clouds allowed us to draw the same
conclusions, we only present results for parts of them corresponding to specific scenarios.
The experimental setup is shown in Table. 3-5.

We use the Mxnet framework to enable the program to run in GPU. Then, the exper-
iments are launched on a GPU desktop computer with configurations as:

• CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.8GHZ;
• SSD: KINGSTON SA400S37 240GB;
• GPU: NVIDIA GeForce GTX 1060 6GB;
• Program version: Python 3.6 + mxnet-cu90 1.5.0.

3.6.2 EX1: Comparison of the Growth Strategies for GGA

EX1 is carried out to evaluate the performance of different growth strategies in the
genetic algorithm including non-growth, random growth and HLSA growth shown as Ta-
ble. 3-4. In EX1, we set Ng = 100, Np = 50, mutation rate is 0.2, Gstep = 10 as well as the
individual selector and regeneration mechanism of Fig. 3-5 are conducted with random

97

Doctoral Dissertation of University of Electronic Science and Technology of China

screening with equal probability rather than using survival of the fittest.

3.6.2.1 Minimizing the Maximum Utilization of Resources

For the problem of minω(2) (i.e., minimizing the maximum utilization rate of re-
sources for each dimension under all nodes), we present the experiment results under the
scenarios with 8 nodes and 80 VMs. And the utilization of VMs obeys the uniform distri-
bution:

uijk ∼ U (0, 12) % (3-22)

where U (0, 12)means the uniform distribution in [0, 12] generated by calling the function
of mxnet as mxnet.nd.random.randint(low=0, high=121, shape=(n, d,m))/1000.

For sake of observation, Fig. 3-7 plots the Pareto solutions of two-dimensional re-
sources (the boundary of projection on each coordinate plane of 3D Pareto solution) for 8
server nodes with 80 VMs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 HLSA-Gr Random-Gr Non-Gr

R
A
M

CPU

(a) CPU and RAM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 HLSA-Gr Random-Gr Non-Gr

D
S

CPU

(b) CPU and DS

0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6
 HLSA-Gr Random-Gr Non-Gr

D
S

RAM

(c) RAM and DS

Figure 3-7 2D Pareto solution of minimizing the maximum utilization of each di-

mensional resources under non-growth, random growth and HLSA growth strate-

gies of GGA with random crossover and regeneration for 8 server nodes and 80

VMs.

In Fig. 3-7, the Pareto set of HLSA growth strategy outperforms random growth and
non-growth. That means for each solution of non-growth and random growth strategies,
there is still at least one solution of HLSA growth strategy dominating it. The comparison
between random-growth and non-growth illustrates that the GGA can optimize the result
of the non-growth genetic algorithm although only using randomization as the growth
route. The comparison between HLSA-growth and random growth illustrates that direc-
tional growth (i.e., using the HLSA as the growth route of the GA) can obtain better Pareto
solutions than that of the random-growth route. Further, the HLSA-growth can eliminate

98

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

the instability of the random growth strategy.

3.6.2.2 Minimizing Energy Consumption

Next, we carry out the experiments in the scenarios of minω(4) (i.e., minimizing
energy consumption for the total cloud system) with 16 and 20 server nodes respectively
and set the numbers of VMs from 20 to 200where the capacities requested of eachVMs are
Cijk ∼ U(75, 150). In the simulated experiments, we randomly generate the coefficients
of Eq. (3-11) as integers according to uniform distribution that:

ajk ∼ U(1, 10), bjk ∼ U(0, 100),

cjk ∼ U(100, 200), djk ∼ U(500, 1000).
(3-23)

Then, we plot the results of each growth strategy in Fig. 3-8.
Fig. 3-8(a) plots the minimum energy consumption from three strategies for 16 server

nodes and Fig. 3-8(b) plots that for 20 server nodes of the 100-th generations. From Fig.

3-8, the HLSA-Growth strategy achieves the lowest energy consumptions compared with
random-growth and non-growth for all the sets of (n,m). In addition, random-growth
achieves lower energy consumption than non-growth. The sorting of the performance of
these three strategies in Fig. 3-8(b) demonstrates GGA outperforms non-growable one
and the directional growth outperforms the random growth. For all experimental com-
binations, HLSA reduces energy consumption on average by 95.21% and 333.7% than
random-growth and non-growth respectively.

20 40 60 80 100 120 140 160 180 200

0

10M

20M

30M

40M

50M

60M

70M

80M
 HLSA-Gr Random-Gr Non-Gr

En
er

gy
 C

on
su

m
pt

io
n

Number of VMs

(a) 16 server nodes

20 40 60 80 100 120 140 160 180 200
0

10M

20M

30M

40M

50M

60M

70M

80M HLSA-Gr Random-Gr Non-Gr

En
er

gy
 C

on
su

m
pt

io
n

Number of VMs

(b) 20 server nodes

Figure 3-8 Energy consumption under non-growth, random growth and HLSA

growth strategies of GGA with random crossover and regeneration.

Overall, EX1 verifies that adding a growth stage in the process of the genetic algo-

99

Doctoral Dissertation of University of Electronic Science and Technology of China

rithm solving MDRSPs can significantly improve solutions. This may be because GGA
actually applies a multi-route, which usually has better local optimal solutions than the
single-route search.

3.6.3 EX2: Comparison of Dimensionality Reduction Strategies for
GGA-HLSA

To evaluate the performance of different dimensionality reduction strategies, we carry
out experiments respectively using: RW, EW, RD, RRD, TRD and RWS as shown in
Table3-4. Same as EX1, we set Ng = 100, Np = 50, mutation rate is 0.2, Gstep = 10,
as well as the individual selector and regeneration mechanism, are also conducted with
random screening with equal probability.

3.6.3.1 Minimizing the Maximum Utilization of Resources

For the problem of minω(2), we only plot the experiment results under the scenarios
with 20 server nodes and 200 VMs, as similar conclusions can also be obtained under
other combinations of (n,m). The parameters of VMs also obey Eq. (3-22). After 100
generations, the Pareto solution sets of each dimensionality reduction strategy are plotted
in Fig. 3-9. In each subfigure of Fig. 3-9, the Pareto solutions of RWS, EW and RW are
obviously better than that of RD, RRD and TRD, which shows that the strategy only by
switching a single-dimension is far from finding a better solution hence weighted solutions
are necessary. For RWS, EW and RW with relatively close Pareto solutions, the solutions
of EWandRWare better than that of RWS,which demonstrates RWShasmore uncertainty
resulting worse solution set. The Pareto boundaries of EW andRWalmost coincide, which
demonstrates that RW is sufficient to search the Pareto solutions set. The computational
complexities of EW are too large because each generation in the genetic algorithm needs
to enumerate as many weights as possible. However, the Pareto solutions corresponding
to different weights may be the same, so EW costs extra computation, but may miss some
solutions as it can’t really enumerate all weights.

To more quantitatively evaluate the performance of EW and RW, we combine the
three-dimensional Pareto solution sets of EW and RW for 20 server nodes and 200 VMs
into a new Pareto solution set to calculate the proportion of EWandRW in the new solution
set. The new Pareto solutions set has 621 solutions in total where 474 solutions originate
from RW and 149 solutions from EW. That means RW solutions account for 76.08% and
EW for 23.92% in the combined Pareto solutions set. These results illustrate that the RW

100

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

0.1 0.2 0.3 0.4 0.5 0.6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 RWS EW RW

 RD RRD TRD
R
A
M

CPU

(a) CPU and RAM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 RWS EW RW

 RD RRD TRD

D
S

CPU

(b) CPU and DS

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 RWS EW RW

 RD RRD TRD

D
S

RAM

(c) RAM and DS

Figure 3-9 2D Pareto solution using different dimensionality reduction strategies

of GGA-HLSA with random crossover and regeneration for 20 server nodes and

200 VMs.

strategy has a higher probability of obtaining a better Pareto solution set than EW. It means
the usage of RW can not only reduce the computational complexity but also improve the
Pareto solution set.

3.6.3.2 Minimizing Energy Consumption

To further verify the performance of different dimensionality reduction strategies, we
carry out the experiments in the scenarios of minimizing energy consumption (minω(4))
with 16 and 20 server nodes respectively. We set the numbers of VMs from 20 to 200
where the capacities requested of each VMs are Cijk ∼ U(75, 150). Then, the minimum
energy consumptions of each dimensionality reduction strategy are plotted in Fig. 3-10.

 RWS EW RW
 RD RRD TRD

En
er

gy
 C

on
su

m
pt

io
n

Number of VMs

50 60 70

2M
3M
4M
5M

(a) 16 server nodes

 RWS EW RW
 RD RRD TRD

En
er

gy
 C

on
su

m
pt

io
n

Number of VMs

40 50 60

1M

2M

(b) 20 server nodes

Figure 3-10 Energy consumption using different dimensionality reduction strate-

gies of GGA-HLSA with random crossover and regeneration.

In Fig. 3-10, EW, RW and RWS obtain far lower energy consumptions than RD,

101

Doctoral Dissertation of University of Electronic Science and Technology of China

RRD and TRD, which shows the strategies on weights are still better than that on a single
resource dimension in the MDRSP of minimizing energy consumption. RW achieves
the best performance among all the strategies, followed by RWS and EW. Although EW
has better Pareto solutions than RWS in minω(2), EW has larger energy consumption
than RWS in minω(4). This is because the objective of minω(4) has nonlinear terms as
Eq. (3-11), which makes balancing the utilization of dimensional resources not equal to
the minimum energy consumption. This phenomenon shows again EW can not really
enumerate all weight combinations. Overall, RW reduces the energy consumption on
average by 29.63%, 35.30%, 122.8%, 129.3%, and 129.2% respectively than RWS, EW,
RD, RRD and TRD.

13 26 39 52 65 78 91 104

4

8

12

16

20

24

28

32

M
ac

hi
ne

s
Ty

pe
ID

0

0.2

0.4

0.6

0.8

1

117 130 143 156 169 182 195 208 221

4

8

12

16

20

24

28

32

M
ac

hi
ne

s
Ty

pe
ID

234 247 260 273 286 299 312 325 338

4

8

12

16

20

24

28

32

M
ac

hi
ne

s
Ty

pe
ID

(c) VMs TypeID: 227-338

(b) VMs TypeID: 114-226

(a) VMs TypeID: 1-113

Figure 3-11 Heat-map of the CPU utilization required by our selected 338 types of

VMs on 35 types of machines, where the gray represents the VM of the specified

type can not run on the corresponding machine.

The results of EX2 can conclude that using random weight in GGA-HLSA can gain
better solutions than other dimensionality reduction strategies through the same genera-
tions for MDRSPs.

Firstly, when using dimension reduction strategies based on resource dimensions, in-
cluding random dimensions, round-robin dimensions, and taboo round-robin dimensions,
GGA-HLSA evolves each individual in only one dimension at a time. In fact, RD, RRD

102

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

and TRD are unable to balance the utilization rates of resources in multiple dimensions.
Thus, they can not obtain good solutions with the same optimization level as RW when
multiple dimensions all have a certain weight proportion. Consequently, in Fig. 3-9, the
Pareto solutions of RD, RRD, and TRD in the middle are far worse than that of RW. The
same reason works in the experiments of Fig. 3-10. That is, the optimization of resources
in a single-dimension often cannot reduce the total energy consumption of the cloud sys-
tem.

Then, RW, EW and RWS in GGA-HLSA can obtain a close solution set, but that of
EW and RWS are worse than RW. This may be because: in RWS, poor strategies have
shared the running time; and in EW, some close weights actually get repeated solutions.
Both RWS and EWmake GGA-HLSA not fully utilized to obtain more information in the
process of searching for solution space. Similarly, they failed to obtain the solution with
lower energy consumption than RW.

3.6.4 EX3: Evaluation of Practicability on Azure Trace

To further evaluate the practicality and the convergence of our proposed GHW in
solving MDRSP, we carry out a group of trace-driven experiments EX3 based on Azure-
TraceforPacking2020 [131]. As mentioned above, we select 338 types of VMs with
minmj=1 uijk ≤ 30% for ∀i, k, and renumber these types of VMs. Then we can draw a
heat-map of the CPU utilization required by our selected 338 types of VMs on 35 types
of machines as shown in Fig. 3-11. The heat maps of their RAM and SSD are similar to
that of the CPU.

InEX3, we set each generation to have 20 individuals to observe the pipeline of Pareto
solutions in minω(2) and that of energy consumptions in minω(4) within 60 generations.
We also set the mutation rate is 0.2,Gstep = 10, as well as the individual selector strategies
and regeneration mechanism of Fig. 3-5 are based on NSGA II. We conducted extensive
experiments under different numbers of VMs and machines. Since each experiment can
lead to the same qualitative conclusion, we only present the results under two sets of
parameters (400 machines, 1000 VMs) and (700 machines, 2000 VMs).

Using GGA-HLSA-RD-NSGA II (GHD-NSGA II), GGA-HLSA-RWS-NSGA II
(GHWS-NSGA II) and NSGA II as baselines, the pipelines of Pareto solution sets of
minω(2) on the plane of (CPU, RAM) are plotted in Fig. 3-12. Fig. 3-12(a) is for 1000
VMs and 400 machines, as well as Fig. 3-12(b) for 2000 VMs and 700 machines. Because

103

Doctoral Dissertation of University of Electronic Science and Technology of China

most types of VMs in AzureTraceforPacking2020 [131] cannot be allocated on many types
of machines, the Pareto solution sets of the trace-driven experiments are not as regular as
that on the simulation dataset (EX1 and EX2) which approximately form the continuous
curves. However, both in Fig. 3-12(a) and Fig. 3-12(b), GHW-NSGA II not only still
obtains better Pareto solution set at the 60-th generation, but also achieves convergence
faster in minω(2) than baselines.

10 20 30 40 50 60

0.5 1.0 1.5
0.5

1.0

1.5

2.0

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

Generation

 GGA-HLSA-RW GGA-HLSA-RD GGA-HLSA-RWS GA_Non-Growth

R
AM

CPU CPU CPU CPU CPU CPU

(a) 1000 VMs and 400 machines

10 20 30 40 50 60

0.5 1.0 1.5

1.0

1.5

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

Generation

 GGA-HLSA-RW GGA_HLSA-RD GGA_HLSA-RWS GA_Non-Growth

R
AM

CPU CPU CPU CPU CPU CPU

(b) 2000 VMs and 700 machines

Figure 3-12 Pipeline of Pareto solution sets within 60 Generations for minω(2) of

Azure Trace.

To continually evaluate the performance of GHW-NSGA II in other objectives, we
plot the pipeline of energy consumption within 60 generations of the problem minω(4)

in Fig. 3-13. For this problem, we also assume energy consumption satisfies Eq. (3-24)
by replacing C (capacity) with u (utilization) and the coefficients also satisfy Eq. (3-23)
considering AzureTraceforPacking2020 [131] didn’t provide energy consumption data of
resources.

E =
m∑
j=1

d∑
k=1

ajk
(n∑

i=1
xijuijk

)2

+ bjk
(n∑

i=1
xijuijk

)
+

m∑
j=1

d∑
k=1

(cjk) +
m∑
j=1

(
nmax

i=1
(xij)

d∑
k=1

djk
) (3-24)

As shown in Fig. 3-13, GHW-NSGA II obtains lower solutions of energy consump-
tion than the baselines since the first generation. In the iteration of 60 generations, the
curve of GHW-NSGA II is still the lowest compared with the baselines. At the end of the

104

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

10 20 30 40 50 60

850k

860k

870k

880k GGA-HLSA-RW
 GGA-HLSA-RD
 GGA_HLSA-RWS
 GA_Non-Growth

En
er

gy
 C

on
su

m
pt

io
n

Generations

(a) 1000 VMs and 400 Machines

10 20 30 40 50 60

1.56M

1.58M

1.60M

 GGA-HLSA-RW
 GGA-HLSA-RD
 GGA_HLSA-RWS
 GA_Non-Growth

En
er

gy
 C

on
su

m
pt

io
n

Generations

(b) 2000 VMs and 700 Machines

Figure 3-13 Pipeline of Energy Consumption within 10 Generations for minω(4)

of Azure Trace.

60-th generation for the two scenarios, the energy consumptions of GHW-NSGA II are
(844633, 1545821), which are respectively reduced by (1.14, 1.68)%, (1.03, 1.11)% and
(1.71, 2.43)% respectively compared with the baselines GHD-NSGA II, GHWS-NSGA
II and NSGA II.

EX3 on AzureTraceforPacking2020 verifies our proposed GGA-HLSA-RW not only
has fast convergence but also applies to the MDRSP in realistic cloud computing.

3.6.5 EX4: Comparison with the State-of-the-art

To further evaluate the advantages of our proposed algorithms, we execute a group
of experiments EX4 to compare the proposed GHW family with the state-of-the-art in the
terms of convergence and optimality. The state-of-the-art participating in comparison are
NSGA II and MOEA/D which are two well-performed and frequent baselines in MOPs.
For the algorithms of the GHW family, we verify three algorithms including GHW-RCE
(GGA-HLSA-RW with Random Crossover and rEgeneration mechanism), GHW-NSGA
II and GHW-MOEA/D.

The previous subsections have fully verified the practicability of our proposed algo-
rithms in both the simulation dataset and public trace-driven dataset for both the problems
of minω(2) and minω(4). Therefore, we only evaluate their performance in the simulation
dataset for the problem of minω(2) (minimizing the maximum utilization rate of resources
for each dimension under all nodes) in EX4, which does not lose generality.

In addition, we select different parameters from those in the EX1, EX2 and EX3 to

105

Doctoral Dissertation of University of Electronic Science and Technology of China

increase the diversity of experimental results. The distribution of the utilization is:

uijk ∼ U (5, 12) %, (3-25)

generated by mxnet.nd.random.randint(low=50, high=121, shape=(n, d,m))/1000.
For the sake of quantitative analysis of convergence, we apply HVs-over-

time [153, 154] as the evaluation indicator. Considering to observe the HyperVolume
(HV) of each algorithm into the range [0, 1], the experiments call the function py-
moo.indicators.hv.Hypervolume [167] with the following settings:
(1) ref_points = (1, 1, 1),
(2) norm_ref_point = False,
(3) zero_to_one = True,
(4) ideal =

(
min

j
Uj1,minj Uj2,minj Uj3

)
,

(5) nadir =
(
max

j
Uj1,maxj Uj2,maxj Uj3

)
.

According to the calculation time of each algorithm, we convert the generation number
into the corresponding running time to obtain the HVs-over-time of each algorithm.

We present four groups of experiments respectively as (n = 100,m = 40), (n =
200,m = 40), (n = 500,m = 100) and (n = 1000,m = 100), which are sufficient
to illustrate the convergence of the algorithms. Since GHW adds a growth stage in each
generation, the time consumption of each generation will be longer than that of NSGA
II and MOEA/D. In order to balance the running time of algorithms so as to facilitate
comparison at the approximate time point, we set theNg = 20,Np = 100 for the algorithms
of GHW family, as well as Ng = 400, Np = 500 for NSGA II andMOEA/D. The mutation
rate is set as 0.2 and Gstep = 10. Then, we plot the HVs-over-time of each algorithm in
Fig. 3-14.

Comparing GHW-RCEwith NSGA II andMOEA/D in Fig. 3-14(a) and Fig. 3-14(b),
GHW-RCE reaches higher HVs than NSGA II and MOEA/D in each same time point.
Concretely in Fig. 3-14(a), the HV of GHW-RCE at the 20-th generation (corresponding
to 311.41s) is 0.079. Correspondingly, NSGA II and MOEA/D at the 90-th generation
obtain lower HVs both as 0.056. In Fig. 3-14(c) and Fig. 3-14(d) with larger scale of VMs
and server nodes, NSGA II andMOEA/D obtain higher HVs than GHW-RCE. Changes in
comparison results from Fig. 3-14(a) to Fig. 3-14(d) show that the performance of GHW-
RCE degrades faster than that of NSGA II and MOEA/D with the increasing number of
VMs and nodes. This is because random crossover and population regeneration counter-

106

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

0 100 200 300
0.0

0.2

0.4

0.6

0.8
Hy

pe
rv
ol
um

e

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE

 NSGA II
 MOEA/D

(a) 100 VMs and 40 Machines.

0 100 200 300
0.0

0.2

0.4

0.6

0.8

Hy
pe
rv
ol
um

e

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE

 NSGA II
 MOEA/D

(b) 200 VMs and 40 Machines.

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Hy
pe
rv
ol
um

e

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE

 NSGA II
 MOEA/D

(c) 500 VMs and 100 Machines.

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Hy
pe
rv
ol
um

e

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE

 NSGA II
 MOEA/D

(d) 1000 VMs and 200 Machines.

Figure 3-14 HVs-over-time of proposed GHW family, NSGA II and MOEA/D for

the problem minω(2) in simulation dataset.

productively make GHW-RCE fail to inherit the excellent solutions found before. In fact,
GHW plays the role of optimizing solutions, as well as random crossover and regeneration
play the role of degrading solutions. Even so, GHW-RCE still maintains advantages to a
certain extent in Fig. 3-14(a) and Fig. 3-14(b), which reversely demonstrates the powerful
advantages of GHW.

Comparing GHW-NSGA II and GHW-MOEA/D with NSGA II and MOEA/D in
Fig. 3-14, the results obviously and solidly demonstrate the superiorities of GHW family.
In Fig. 3-14, the HVs of GHW-NSGA II and GHW-MOEA/D are far higher than that of
compared algorithms. Concretely in Fig. 3-14(a), GHW-NSGA II and GHW-MOEA/D
only take 48.20s and 67.16s to obtain the HVs as 0.070 and 0.099 respectively, which are
higher than that of NSGA II andMOEA/D got in 320s. This illustrates GHW-NSGA II and
GHW-MOEA/D havemuch faster convergence rates. At 11-th generation, GHW-NSGA II

107

Doctoral Dissertation of University of Electronic Science and Technology of China

(at 176.73s) and GHW-MOEA/D (at 184.67s) achieve 0.516 and 0.532 HV respectively
more than 0.5. And at 20-th generation, the HVs of GHW-NSGA II (at 321.33s) and
GHW-MOEA/D (at 335.78s) achieve 0.796 and 0.837 respectively, which are both ten
times more than that of NSGA II and MOEA/D. The other figures in Fig. 3-14 also have
similar phenomena. With the increase in the number of VMs and nodes, GHW-NSGA II
and GHW-MOEA/D still maintain obvious advantages steadily.

Table 3-6 The HVs and corresponding time compared the algorithms of GHW

family with state-of-the-art.

Algorithms Final HV When one achieves HV ≥ 0.5
Gen. Time HV ε1 ε2 Gen. Time HV

Fig. 3-14(a): (n,m) = (100, 40)
NSGA II 90 335.3 0.056 48.2 67.1 50 186.3 0.000
MOEA/D 90 349.4 0.056 48.2 67.1 45 174.7 0.021
GHW-RCE 20 311.4 0.079 64.2 67.1 11 171.2 0.033

GHW-NSGA II 20 321.3 0.796 - - 11 176.7 0.516
GHW-MOEA/D 20 335.7 0.837 - - 11 184.6 0.532

Fig. 3-14(b): (n,m) = (200, 40)
NSGA II 80 331.2 0.043 64.7 66.7 43 178.0 0.002
MOEA/D 80 308.6 0.041 64.7 66.7 45 173.5 0.022
GHW-RCE 20 315.2 0.086 80.8 83.4 11 173.3 0.025

GHW-NSGA II 20 323.5 0.802 - - 11 177.9 0.463
GHW-MOEA/D 20 333.8 0.853 - - 11 183.6 0.514

Fig. 3-14(c): (n,m) = (500, 100)
NSGA II 120 403.8 0.169 143.0 122.2 66 222.1 0.017
MOEA/D 120 349.4 0.119 122.5 101.8 60 226.8 0.089
GHW-RCE 20 395.0 0.068 102.1 81.4 11 217.2 0.027

GHW-NSGA II 20 408.6 0.945 - - 11 224.7 0.475
GHW-MOEA/D 20 407.3 0.970 - - 11 224.0 0.506

Fig. 3-14(d): (n,m) = (1000, 200)
NSGA II 200 674.3 0.357 363.6 303.4 120 404.6 0.296
MOEA/D 200 727.9 0.151 231.4 202.2 110 400.3 0.114
GHW-RCE 20 648.6 0.077 165.3 134.8 12 389.2 0.034

GHW-NSGA II 20 661.2 0.871 - - 12 396.7 0.437
GHW-MOEA/D 20 674.2 0.959 - - 12 404.5 0.581
Note: ε1 (s) and ε2 (s) respectively express the time when GHW-NSGA II and
GHW-MOEA/D achieve corresponding HV.

For quantitative description, we list the values of HVs and the corresponding time
of each group of experiments in Table. 3-6. The quantitative comparison of Table. 3-6
shows that the HVs of our proposed algorithms keep higher than compared algorithms.

108

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

Moreover, our proposed GHW-NSGA II and GHW-MOEA/D reduce more than 200 sec-
onds to achieve the approximate HV that the comparison algorithms achieve at the end of
each figure in Fig. 3-14. And, our proposed algorithms only spend about 11 generations
to achieve the HVs close to 0.5 in each scenario of Fig. 3-14. With the expansion of the
scale, the HVs of all algorithms show an increasing trend continuously. This is because
we normalize the solutions to [0, 1] by setting zero_to_one = True when calculating the
HV, thus raising the value of the comparison algorithm. This also leads to the narrow-
ing of the gap between our algorithm and the comparison algorithm. Different settings
when computing HV will cause different numerical trends, but their qualitative results
will not change. Thus, the results of Table. 3-6 can at least intuitively prove our proposed
algorithms are significantly better than compared algorithms.

In fact, the advantages of our algorithm are expanding with the increase of the scale
of (n,m). To verify it, we compute the absolute HV of the three scales of VMs and nodes
(200, 40), (500, 100), (1000, 200) by setting zero_to_one=False. Then, we plot the ab-
solute HVs in Fig. 3-15(a) and the ratio of absolute HV between compared algorithms
and GHW-NSGA II in Fig. 3-15(b). In Fig. 3-15, the numbers of VMs are all 5 times of
nodes.Under the same proportion between VMs and nodes, large scale has more feasible
solutions and smaller scheduling granularity. Thus, the theoretical optimal absolute HVs
will increase with scale. However, in Fig. 3-15(a), the absolute HVs of all algorithms de-
crease with the increase of scale. This is because the search space of the solution set of the
NP-hard problem increases exponentially with the increase of scale, so that the optimality
of the algorithms’ solution set will decline in the exponential increase of search time. To
measure the decline amplitude of different algorithms, Fig. 3-15(b) computes the ratio of
absolute HVs between compared algorithms and GHW-NSGA II under each combination
of (n,m). In Fig. 3-15(b), the ratios are decreasing with the increase of VMs, which means
the optimality of compared algorithms decreases more than that of GHW-NSGA II. This
may be because the searchability of NSGA II and MOEA/D can not keep up with the
exponential increase of solution space with the increase of VMs and nodes.

Additionally Fig. 3-16 plots the results with a larger time range of Fig. 3-14(c) and
Fig. 3-14(d). From Fig. 3-16, increasing the time range cannot make the HVs of NSGA
II and MOEA/D reach the level of GHW-NSGA II and GHW-MOEA/D. This demon-
strates our proposed GHW-NSGA II and GHW-MOEA/D have advantages not only in
convergence rate but also in optimality.

109

Doctoral Dissertation of University of Electronic Science and Technology of China

200 400 600 800 1000
0.0

0.1

0.2

Ab
so

lu
te

 H
V

Number of VMs

 GHW-NSGA II
 GHW-MOEA/D
 NSGA II
 MOEA/D

(a) Absolute HVs.

200 400 600 800 1000
0.1

0.2

0.3

0.4

Ra
tio

 o
f A

bs
ol

ut
e

HV

Number of VMs

 (NSGA II) / (GHW-NSGA II)
 (MOEA/D) / (GHW-NSGA II)

(b) Ratio of absolute HVs between compared
algorithms and GHW-NSGA II.

Figure 3-15 Absolute HVs and ratio over number of VMs where (200, 40),

(500, 100), (1000, 200) and zero_to_one=False.

0 400 800 1200
0.0

0.2

0.4

0.6

0.8

1.0

Hy
pe
rv
ol
um

e

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE
 NSGA II
 MOEA/D

(a) 500 VMs and 100 Machines.

0 400 800 1200
0.0

0.2

0.4

0.6

0.8

1.0

Hy
pe
rv
ol
um

e

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE
 NSGA II
 MOEA/D

(b) 1000 VMs and 200 Machines.

Figure 3-16 Extended results of Fig. 3-14 with larger time range.

In order to further illustrate the performance of our proposed algorithms in the theo-
retical optimal solution, we carry out several groups of experiments in small scales. We
use an enumerative algorithm (marked as EnA) to obtain the theoretical optimal Pareto so-
lutions further to obtain theoretical optimal HVs as reference. Considering multi groups of
experiments have similar conclusion, we only present two groups of experiments respec-
tively under (n,m) = (10, 3) and (n,m) = (10, 4). Then, the HVs-over-time are shown in
Fig. 3-17. In the experiments of Fig. 3-17, we set Np = 100 for GHW-RCE, GHW-NSGA
II and GHW-MOEA/D, as well as set Np = 500 for NSGA II and MOEA/D. The Ng of all
the algorithms is 20 and the mutation rate is 0.2. In Fig. 3-17, GHW-NSGA II and GHW-
MOEA/D are the two fastest algorithms to approach or even reach the theoretical optimal

110

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

HV followed by GHW-RCE, while the state-of-the-art NSGA II andMOEA/D don’t reach
the theoretical optimum in Fig. 3-17. This shows that our proposed GHW family of al-
gorithms is more likely to find the theoretical optimal solution in the small-scale dataset
than compared algorithms.

0 20 40 60 80

0.84

0.88

0.92

0.96 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE EnA
 NSGA II MOEA/D

Hy
pe
rV
ol
um

e

Run Time (s)

10 20 30 40 50

0.982

0.984

(a) 10 VMs and 3 Machines.

0 20 40 60 80 100

0.84

0.88

0.92

0.96
 GHW-NSGA II NSGA II
 GHW-MOEA/D MOEA/D
 GHW-RCE EnA

Hy
pe
rV
ol
um

e

Run Time (s)

20 40 60 80 100

0.986

0.987

(b) 10 VMs and 4 Machines.

Figure 3-17 HVs-over-time of proposed GHW family, NSGA II and MOEA/D

for the problem minω(2) with enumerative algorithm as reference in small scale

simulation dataset.

To further comprehensively validate this conclusion, we conduct 100 instances un-
der each combination of parameters (n,m) = (10, 3) and (n,m) = (10, 4) respectively,
record the proportion of each algorithm finding the theoretical optimal solution at the cor-
responding time, and compute the average proportion corresponding to each time as the
Average Probability-over-time of each algorithm Finding the Theoretical Optimal Pareto
Solutions (denoted as APFTOPS). Then, we plot the results in Fig. 3-18.

In Fig. 3-18, the curves of GHW-NSGA II and GHW-MOEA/D are higher than that
of the compared algorithms. Concretely, in the Fig. 3-18(a), the APFTOPSs of GHW-
RCE (0.754), GHW-NSGA II (0.866) and GHW-MOEA/D (0.802) reach more than 0.75
at about 80s (20-th generation), while that of NSGA II (0.711) and MOEA/D (0.623) are
less than 0.72; in the Fig. 3-18(b), that of GHW-RCE (0.701), GHW-NSGA II (0.765) and
GHW-MOEA/D (0.671) reach more than 0.65 at about 100s (20-th generation), while that
of NSGA II (0.446) and MOEA/D (0.310) are less than 0.45. The statistical significance
of Fig. 3-18 shows that our proposed algorithms have higher probabilities to find the theo-
retical Pareto solutions, which means our proposed algorithms have better optimality than
compared algorithms in solving the problem minω(2).

111

Doctoral Dissertation of University of Electronic Science and Technology of China

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8
AP
FT
O
PS

Run Time (s)

 GHW-NSGA II
 GHW-MOEA/D
 GHW-RCE
 NSGA II
 MOEA/D

(a) 10 VMs and 3 Machines.

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

AP
FT
O
PS

Run Time (s)

 GHW-NSGA II
 GHW-MOEAD
 GHW-RCE
 NSGA II
 MOEAD

(b) 10 VMs and 4 Machines.

Figure 3-18 APFTOPS of the proposed GHW family, NSGA II and MOEA/D for

the problem minω(2) with enumerative algorithm as reference in small scale sim-

ulation dataset where each combination of (n,m) has 100 instances.

These results in EX4 prove that the advantages of GHW are comprehensive in the
aspects of faster convergence rate and better optimality. This is consistent with the analysis
in Section 3.5.1 that the combination of two search routes (i.e., HLSA route and genetic
route) has more diverse information and can make full use of effective information to find
better optimization solutions.

3.6.6 Summary of Experiments

Through the multiple groups of experiments from various sights in this section, we
can observe that GHW, as a novel family of genetic algorithms, has significant advantages
in addressing the MDRSP that is usually NP-hard problem. Among these experiments:
• EX1 evaluates the effect of different growth routes on GGA. It demonstrates adding
a growth stage can significantly improve the performance of the genetic algorithm in
solving MDRSPs. It also demonstrates a directional growth route using HLSA has bet-
ter solutions than compared random growth and non-growth. The order of algorithms
by performance is: GGA-HLSA > GGA-RandomGrowth > GA (GGA-Non Growth),
where GGA-HLSA > GGA-RandomGrowth means GGA-HLSA outperforms GGA-
RandomGrowth;

• EX2 evaluates the effect of different dimensionality reduction strategies on GGA-
HLSA. It demonstrates using RW (Random Weight) in GGA-HLSA can obtain more
comprehensively better solutions than compared dimensionality reduction strategies

112

Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms

including EW (Enumeration Weights), RD (Random Dimensions), RRD (Round-
Robin Dimensions), TRD (Taboo Round-robin Dimensions) and RWS (Random di-
mensionality and Weights Strategies). The order by performance is: GGA-HLSA-
RW> (GGA-HLSA-EW,GGA-HLSA-RWS)> (GGA-HLSA-RD, GGA-HLSA-RRD,
GGA-HLSA-TRD). (GGA-HLSA-EW, GGA-HLSA-RWS) means GGA-HLSA-EW
and GGA-HLSA-RWS have performance with approximate level, or GGA-HLSA-EW
is not obviously superior to GGA-HLSA-RWS;

• Based on the previous experimental conclusions, EX3 validates the feasibility of the
algorithm we proposed to solve the MDRSP in realistic cloud computing. In addition,
it demonstrates that combining the strategies of NSGA II with GHW can obtain better
solutions than compared algorithms. The order by performance is: GHW-NSGA II >

(GHD-NSGA II, GHWS-NSGA II) > NSGA II;
• Finally, EX4 compares the GHW family (GHW-NSGA II and GHW-MOEA/D) with the
state-of-the-art NSGA II and MOEA/D by observing the HVs-over-time in some large-
scale dataset and observing the average probability to find theoretical optimal Pareto
solutions over time in some small scale dataset. EX4 demonstrates that the GHW family
algorithms we propose have a faster convergence rate and better optimality than NSGA
II and MOEA/D, that is (GHW-NSGA II, GHW-MOEA/D) > (NSGA II, MOEA/D).
The results of EX4 show that the algorithms we propose provide a comprehensive and
significant improvement compared to the reference algorithms.

3.7 Summary of this Chapter

The Multi-Dimensional Resources Scheduling Problem (MDRSP) in cloud comput-
ing, a multi-objective optimization problem, is challenging because the resources of each
dimension are usually heterogeneous and coupled. The solution of MDRSP requires si-
multaneous consideration of multi types of resources, which makes MDRSP far more
complex than the single-dimensional resource scheduling problem.

In this chapter, we focus on the allocation of VMs in heterogeneous multi-
dimensional resources of cloud computing and formulate several MDRSPs including min-
imizing the maximum utilization rate of each dimension of resources and minimizing the
energy consumption of the total system. To solve these MDRSPs, we firstly use the con-
cept of stages in genetic algorithm to divide its processes into four stages namely ini-
tialization stage, infancy stage, mature stage and genetic stage; secondly add a growth

113

Doctoral Dissertation of University of Electronic Science and Technology of China

stage to the genetic algorithm and propose GGA-HLSA-RW (GHW, i.e., Growable ge-
netic algorithm using the Heuristic-based local search algorithm with random Weights as
growth route). To concretize HLSA, we proposed a modified LSPT algorithm, which can
improve the solutions of MSOPs in heterogeneous nodes. GHW, a hybrid algorithm com-
bining meta-heuristic, heuristic and local search, has strong adaptability and optimality
for various MDRSPs. The proposal of the GHW family allows the flexible combinations
of various algorithms. To further improve the performance of GHW family of algorithms,
we finally propose GHW-NSGA II and GHW-MOEA/D applying the sorting strategies
and regeneration mechanism of NSGA II and MOEA/D into GHW.

To validate the performance of the GHW family, we carried out extensive experi-
ments on the simulation dataset and AzureTraceforPacking2020-driven dataset. The ex-
periments not only validate the growth strategy and dimensionality reduction strategy of
GHW outperforming baselines, but also validate the feasibility and superiority of GHW
in realistic cloud computing. Compared with state-of-the-art NSGA II and MOEA/D in
experiments, GHW-NSGA II and GHW-MOEA/D have better convergence rate and opti-
mality, which shows the comprehensive advantages of the GHW family of algorithms.

The other significance of theGHW family is that it shows the great potential of adding
a growth stage to GA and demonstrates that combining with multi-search routes may be
able to improve convergence and optimality.

On this basis, it is a worthwhile direction to explore the architecture and theory of
more stable genetic algorithms or other multi-search route algorithms. The processing
speed and energy consumption of electronic components are always affected by many
factors, such as network congestion, temperature, continuous working time et al. We in
the future plan to explore the variants of GHW and apply them to address MDRSPs in
more complex scenarios considering the capacities of resources and conversion formula
of energy consumption are time-varying in dynamic systems. In addition, accelerating
GHW through distributed computing is also an important topic affecting the development
of GHW family in the big data era.

114

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

Chapter 4 Joint Optimization of Multi-subproblems in Parallel
Training of Deep Learning Models Based on Cross Search

Algorithms

Parallel training of large-scale networks has attracted the attention of both artificial
intelligence and high-performance distributed systems. One of efficiency parallelism is
the micro-batch-based pipeline, e.g., GPipe. Based on the GPpie, we establish a time-cost
model with the basic time function of layers, which considers computing time and com-
munication time simultaneously as well as regards them as nonlinear to batch size. Focus-
ing on the optimal solutions of network division and data partition, we propose a Cross-
Search algorithm with Improved Multi-dimensional Dichotomy (CSIMD). Through theo-
retical derivation, we prove IMD has appreciable theoretical optimality and computational
complexity. Extensive experiments on both CNN-based networks and transformer-based
networks demonstrate our proposed CSIMD can obtain optimal network division and data
partition schemes under GPipe parallelism. On average, CSIMD achieves (2.0, 2.5)× and
(1.5, 1.6)× speedup respectively in CNN- and transformer-related networks over GPipe-R
and GPipe-E.

4.1 Introduction

As one of the representative technologies of artificial intelligence (AI), deep learn-
ing (DL) has a significant trend that the scale of model parameters continues to increase
[168, 169]. The recent large deep neural networks (DNN) have hundreds of billions parame-
ters such as FLAN with 137B parameters [170], GPT-3 [171] with more than 175B parame-
ters, Gopher with 280B parameters [172] and ERNIE 3.0 Titan [173] with 260B parameters.
From the existing research, large DNNs can generally maintain higher accuracy for some
complex scenarios, especially for natural language processing (NLP) and computer vision
(CV).

In realistic, training these extremely large DNNs in realistic requires cooperative and
parallel work of a large number of distributed AI processor devices (e.g., GPU cluster),
which usually consume too much time [174, 175]. How to improve the efficiency of GPU
cluster become a key and hotspot in large-scale DNN research [168, 174, 176]. However, the
structure optimization of distributed parallel training is a complexNP-Hard problemwhere

115

Doctoral Dissertation of University of Electronic Science and Technology of China

the solution space (scheme space) is often an uncountable set [174, 177]. To obtain some
approximate schemes, existing research regards data parallelism, model parallelism and
pipeline parallelism as three foundational policies [178–180], which directs current parallel
training research to make gradual improvements.

Although the tensor model parallelism (such as Megatron-LM [181]) can reduce the
computing times, it requires additional communication times and costs, which may greatly
increase the total training time and training cost [180]. To reduce the communication
cost and time, the pipeline parallel structure only has communication between two ad-
jacent model nodes. Currently, pipeline-related parallel structures are the most frequent
in the parallel training of large DNNs. Some existing well-performed pipeline parallelism-
related architectures are Gpipe [182], PipeDream [183], Dapple [184] and Hpipe [185] et al.

Data partition (data sharding) is one of the most critical factors of parallel training
especially for micro-batch-based pipeline parallelism [186, 187], which directly affects the
schedulable granularity of computing time and communication time in distributed paral-
lelism [180]. Improving schedulable granularity allows more overlap between the time of
various processes and can increase feasible solution space with better theoretical global
optimization solutions [184, 188, 189]. In realistic, when using the devices (including GPU and
network) to participate in training, the computing time or communication time is probably
not proportional to their data volume [177, 190], although some studies [191–194] regard it as a
proportional relationship in order to simplify the problem. This indicates that continuously
improving the granularity of the data partition may introduce extra time consumption. To
find the optimal partition of data parallelism or model parallelism, some recent research
mainly utilized dynamic programming [169, 184]. Due to the large numbers of model param-
eters and devices, the existing partition methods have massive computational complexity
as the solution space generally increases exponentially [191, 195, 196]. In addition, the lack of
accurate analysis models and formulas makes it quite difficult to pre-estimate the corre-
sponding training performance of each partition scheme.

In this chapter, we choose total training time as the indicator of performance and
mainly focus on the optimization of Micro-Batch-based Pipeline Parallelism (MBPP). We
not only consider computing time and communication time simultaneously but also con-
sider them probably nonlinear with data size. Then, we construct a time-cost model with
respect of network divisions and mini-batch partitions. If the functional expressions of
computing time and communication time for eachmicro-batch corresponding to each node

116

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

under different partitions are known, the global optimal partition number can be obtained
by direct derivation or difference of theoretical equations and inequalities. If unknown
which is the common case in realistic, the performance data or curve can still be obtained
through the performance test program as the reference [191], and the extreme point can still
be obtained by substituting the performance data into the theoretical formula.

With the theoretical model, the joint problem can be formulated as a multi-
dimensional array segmentation which is usually an NP-Hard problem. Then, we propose
a cross-search algorithm with improved multi-dimensional dichotomy (CSIMD) to jointly
solve the network division and mini-batch partition. Through theoretical derivation, we
prove IMD has an appreciable approximation to solve multi-dimensional array segmenta-
tion. To validate the comprehensive performances of our proposed algorithm, we conduct
multiple sets of experiments from various aspects in the homogeneous GPU Cluster. The
experiments demonstrate our proposed CSIMD can further reduce the training time of
MBPP.

The main contributions of this chapter can be summarized as follows.
(1) In theory, we derive a formula of the total training time with respect of partition num-

ber and network division of MBPP considering computing time and communication
time simultaneously as well as considering the relationship between data size and
time may be nonlinear, which is more realistic. And then, we formulate the problem
of parallel training under MBPP to multi-dimensional array segmentation.

(2) Based on the time-cost model, we propose a cross-search algorithm with improved
multi-dimensional dichotomy (CSIMD) to obtain the optimal network division and
mini-batch partitions.

(3) We theoretically prove the relationship between the approximation ratio and compu-
tational complexity of the IMD algorithm to solve multi-dimensional array segmenta-
tion. We also present the theoretical basis formula for parameter selection of the IMD
algorithm.

(4) Extensive experiments from various sights not only demonstrate the optimality and
fastness of our proposed IMD but also demonstrate that our proposed CSIMD can
obtain an optimal scheme of MBPP.
The rest of this chapter is organized as follows. We review the related work in Sec-

tion 4.2; The formulation of distributed parallel training under MBPP and the relevant
theoretical formulas are derived in Section 4.3. We propose the methodology and present

117

Doctoral Dissertation of University of Electronic Science and Technology of China

its theoretical analysis in Section 4.4. The experiment design and evaluation results are
presented in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 Related Work

In this section, we mainly review three aspects that are related to our research in this
chapter: parallelism, mathematical cost model, and partition algorithms.

Data parallelism and model parallelism are two basic modes of parallel training,
which derive various new parallel parallelism [169, 185]. Data parallelism partitions training
data into multiple pieces [197, 198] and model parallelism divides the AI model into mul-
tiple parts [178, 191, 199]. Combining data parallelism and model parallelism, one important
series is pipeline parallelism. Gpipe [182] dividedmini-batch data intomulti micro-batches,
which allowed the computation and communication of different stages corresponding to
different model nodes (on different devices) can overlap. The more overlapping parts of
various processes on different devices correspond to the less idle time (bubbles) of devices
in the whole system [169]. On the premise that the pipeline does not introduce redundant
computing and communication costs, the total training time of GPipe is smaller than the
original pipeline. Based on the micro-batch data parallelism, PipeDream [183] added a
strategy that is shifting the gradient backward-propagation (BP) earlier to the moment im-
mediately after its last part of forward-propagation (FP). Other well-performed methods
or parallelism including Dapple [184], Hpipe [185], TeraPipe [180], NasPipe [200], et al are
all the variants of Gpipe or PipeDream based on micro-batch data parallelism. Terapipe
[180] followed the pipeline of GPipe and improved the pipelining granularity to reduce the
pipeline bubbles of the transformer-based NLP model by proposing a new dimension, i.e.
token dimension. Dapple [184] followed the method of PipeDream and shift the BP of other
sub-model nodes to earlier besides that of the last sub-model node for the same mini-batch
[184].

The mathematical cost model is also an important factor of parallel training, which
is the basis for the optimization solution of the subsequent parallel training scheme. Next,
we mainly review the time-cost model of parallel training in existing research. The com-
plexity of parallel training, makes it difficult to obtain an accurate expression of the cost
model. Gpipe did not consider the corresponding time-cost model in [182]. In the subse-
quent studies [180, 186,191], the time-cost model was considered as:

TPP = (m − 1) · (max (Fi) + max (Bi)) +
∑

(Fi + Bi) (4-1)

118

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

where TPP means the total training time for one iteration when using pipeline parallelism,
Fi and Bi are the time respectively for forward propagation and backward propagation of
the i-th stage, and m is the number of micro-batches.

The cost model of PipeDream was considered as a recursive formula [183]. Deepak
Narayanan et al [201] proposed PipeDream-2BW and considered a time-cost model for
pipelining as

TPP = max
i
max

Tcpi +
∑
j
Tcmj→i,

1
m

· Tcmi

where Tcpi means the computing time of the i-th stage, Tcmj→i means the communication time
between stages i and j, and Tcmi means the communication time of exchanging gradients.
PipePar [202] considered a cost model as

TPP = Tcm + Tcp,

which directly adds communication and computing time. Deepak Narayanan et al [181]

proposed Megatron-LM and considered a cost model as

TPP = C · (F + B))

whereC is a coefficient related tomicro-batch size and data parallel size. Venmugil Elango
[194] proposed PaSE and considered the FLOP-to-bytes ratio in the cost model.

Because the cost model was generally non-analytical or recursive, dynamic program-
ming is a suitable and widely used method to obtain the optimal partition of data paral-
lelism or model parallelism [169]. Some examples include PipeDream [184], Dapple [184],
Terapipe [180], EffTra [186], Alpa [191], PaSE [194], PipePar [202] et al. Linear programming
is also a frequent method in parallel training [176, 198, 203]. Some examples include NetPlacer
[203], HGP4CNN [176], DPDA [198]. Other partition methods include off-the-shelf graph
partitioning algorithms [204], recurrence [196], grouping genetic algorithm [205], minimum
vertex-cut graph partitioning algorithm [206], near-optimal layer partition of local search
method [195].

From the literature review, the formulation of the cost model affected the choice
of partition algorithm. Some of the cost models only considered one of computation and
communication; some only provided recursive formulas; and somewith direct expressions
relied on a lot of ideal assumptions which was far away from the real scenario. Referring
to but distinguished from the existing research, this chapter derives a time-cost model of

119

Doctoral Dissertation of University of Electronic Science and Technology of China

MBPP considering computation and communication simultaneously. The model doesn’t
limit the features of devices, so it adapts to both homogenous and heterogeneous systems.
The cost model also considers the nonlinear relationship between cost and data size, which
is closer to reality. The optimal algorithm in this chapter is cross-search with improved
multi-dimensional dichotomy which has far less complexity.

4.3 Cloud System andOptimization Problem Formulations Considering
Parallel Training Workflow of Deep Leaning Model

Before the derivation of the cost model, we list some notations and their descriptions
in Table 4-1.

Table 4-1 Notations and Descriptions
Notation Description
N Number of stages
p Number of partitions
K Number of layers of DNN
FP
i (p) The forward computing time of one micro-batch in the i-th stage when partitioning

the mini-batch into p micro-batches
FM
i (p) The forward communication time of one micro-batch

BP
i (p) The backward computing time of one micro-batch

BM
i (p) The backward communication time of one micro-batch

SPij(p) The start computing time of the j-th partition in the i-th stage of forward
SMij (p) The start communication time of the j-th partition in forward
RM
ij (p) The start computing time of the j-th partition in backward

RM
ij (p) The start communication time of the j-th partition in backward

TGP The time-cost for one iteration of one mini-batch under Gpipe parallelism
Hi(p) The computing time of the i-th layer when partitioning the mini-batch into p micro-

batches
Ji(p) Time required to communicate the output data of the i-th layer to other device
Li The i-th layer
Ci The collection of layer on the i-th device
αi The maximum number of layers in Ci

λ The collection of αi as λ = ⟨α1, . . . , αN⟩
Dzi The data size of the output for the i-th layer

In this chapter, we mainly focus on one structure of MBPP (i.e., GPipe) shown in Fig
4-1. The characteristic of GPipe is that the BPs of micro-batches in each mini-batch need
to start after the FP of the last micro-batch in the last layer ends. To simplify the structure
of MBPP so that the analytical formulas of time-cost are obtainable, we consider that the

120

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

receiving data and sending data of the same device do not affect each other, otherwise, the
recursive formula will be more complex. This is consistent with the full-duplex communi-
cation mode which is widely used in current distributed computing systems [188]. Thus in
Fig 4-1, the occupation of data received by each device for the communication component
of this device is omitted.

GPU
0

CAL.

COM.

1 …

1 …

p1

GPU
i

CAL.

COM.

1 …

……

GPU
N

CAL.

COM.

1 p… 1

1 …

p

……

…

p

p

1 … p

… p

1 … p

p

1 … p

P
ijS P

iF P
ijR P

iB

M
ijS (1)

M
i jR 1

M
iB

M
iF

Figure 4-1 The structures of the GPipe parallelism.

4.3.1 Cost Model for GPipe considering Computing and Communica-
tion Time

For GPipe, the expression of time is as Eq 4-1 without consideration of communica-
tion.

To construct an expression related to partitions, we set that the computing time and
communication time of one micro-batch are the functions in terms of partitions: FP

i (p) and
FM
i (p) are respectively the computing time and communication for FP of one micro-batch

in the i-th stage, where p is the number of data partitions; BP
i (p) and BM

i (p) are that for BP.
The process time consumption of different micro-batches in the same stage is relatively
stable. It can be set that the SPij(p) is the start computing time of the j-th partition in the
i-th stage of FP and SMij (p) is the start communication time; RP

ij(p) and RM
ij (p) are for BP.

When the functionsFP
i (p), FM

i (p), BP
i (p) andBM

i (p) are fixed, SPij(p), SMij (p), RP
ij(p) and

RM
ij (p) can completely represent the whole process of parallel training of a model. Since

these variables are functions of partition number p, we omit the (p) in the subsequent
expression. Different from PipeDream, the characteristic of the Gpipe structure is that the

121

Doctoral Dissertation of University of Electronic Science and Technology of China

backward propagation in the samemini-batch needs to wait for all the forward propagation
to complete before starting. Then, the recursive formula can be written as Eq 4-2 and Eq
4-3 according to its characteristic when considering computing and communication time
simultaneously.

SPij = max
(
SM(i−1)j + FM

i−1, SPi(j−1) + FP
i

)
SMij = max

(
SPij + FP

i , SMi(j−1) + FM
i

) (4-2)

RP
ij = max

(
RM
ij + BM

i ,RP
i(j−1) + BP

i

)
RM
ij = max

(
RP

(i+1)j + BP
i+1,RM

i(j−1) + BM
i

) (4-3)

where 1 ≤ i ≤ N is the index of stage, N is the number of stages,1 ≤ j ≤ p is the index
of partition. If i /∈ [1,N] or j /∈ [1, p], then SPij(p) = RP

ij = −∞. And if i /∈ [1,N − 1] or
j /∈ [1, p], then SMij = RM

ij = −∞. The initial conditions of Eq 4-2 and Eq 4-3 are:
SP11 = 0

RP
N1 = SPNp + FP

N

(4-4)

Substitution of Eq 4-4 into Eq 4-2 can obtain the expression of FP:
SPij =

i−1∑
k=1

(
FP
k + FM

k

)
+ (j − 1)max

(
max

1≤k≤i−1

(
FP
k ,FM

k

)
,FP

i

)

SMij =
i∑

k=1

(
FP
k + FM

k

)
− FM

k + (j − 1) max
1≤k≤i

(
FP
k ,FM

k

) (4-5)

where 1 ≤ i ≤ N and 1 ≤ j ≤ p.
Substitution of Eq 4-4 into Eq 4-3 can obtain the expression of BP:

RP
(N−i)j = SPNp + FP

N +
i−1∑
k=1

(
BP
N−k + BM

N−k

)
+ BP

N

+ (j − 1)max
(

max
1≤k≤i−1

(
BP
N−k,BM

N−k

)
,BP

N

)

RM
(N−i)j = SPNp + FP

N +
i∑

k=1

(
BP
N−k+1 + BM

N−k

)
+ (j − 1) max

1≤k≤i

(
BP
N−k+1,BM

N−k

)
(4-6)

Then, the time-cost for one iteration of one mini-batch under GPipe parallelism can

122

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

be derived as:

TGP = RP
1p + BP

1 =
N∑

k=1

(
FP
k + FM

k + BP
k + BM

k

)
+ (p − 1)max

(
max

1≤k≤N−1

(
BP
k ,BM

k

)
,BP

N

)
+ (p − 1)max

(
max

1≤k≤N−1

(
FP
k ,FM

k

)
,FP

N

) (4-7)

where we set FM
N = BM

N = 0. Compared to Eq 4-1, Eq 4-7 puts the communication time
in consideration.

4.3.2 Theoretical Analysis of Cost Model

In parallel training of MBPP, two aspects need to be optimized: dividing DNN into
N stages (denoted as network division) and finding the optimal number of data partitions
(denoted as data partition).

If the functions FP
i (p), FM

i (p), BP
i (p) and BM

i (p) are given, the optimal partition num-
ber can be obtained by the extreme values of Eq 4-7. Thus, we first discuss the division
of network layers which needs to be determined before solving the optimal data partition.

It can be set that the DNN has K layers denoted as L = ⟨L1,L2, . . . , LK⟩ where Li
corresponds to the i-th layer and K ≥ N. For the sake of analysis, we also set that the
computing time and communication time (time required to communicate its output data
to the next layer) for the FP of the i-th layer are respectively HP

i (p) and HM
i (p) where

1 ≤ i ≤ K. That for BP are JPi (p) and JMi (p). Thus, we can plot a diagram of the whole
calculation process and the corresponding symbols for one micro-batch of DNN as Fig
4-2.

The division of the network layer is actually to determine on which device each layer
executes. It can be set that the collection of layer on the i-th device isCi, i.e., Li ∈ Cjmeans
the i-th layer is executed on the j-th device. The MBPP structure divides the network
layer in order, thus: if Li1 ∈ Cj and Li2 ∈ Cj where i1 ≤ i2, then Li ∈ Cj for i1 ≤
∀i ≤ i2. Therefore, we can set the maximum number of layers in Ci as αi where αi−1 <

αi. This means if αi−1 < j ≤ αi then Lj ∈ Ci, else Lj /∈ Ci, which also means Cj =〈
Lαi−1+1,Lαi−1+2, . . . , Lαi

〉
. Then, we can use HP, HM, JP and JM to express the FP, FM, BP

123

Doctoral Dissertation of University of Electronic Science and Technology of China

Input data

Layer 1

……

Compute of Forward

Output of Layer K

Layer K

Compute of Backward

Grad of Layer K-1

Compute of Forward

Output of Layer i Compute of Backward

Grad of Layer i-1

Compute of Forward

Output of Layer 1 Compute of Backward

1 ()PH p

1()Dz p

()P
iH p

()iDz p

()P
KH p

1 ()MJ p

1()iDz p

()M
iJ p

1()KDz p

()M
KJ p()KDz p

Figure 4-2 The diagram of the whole calculation process and the corresponding

symbols for one micro-batch of DNN.

and BM as Eq 4-8.

FP
i =

αi∑
k=αi−1+1

HP
k

FM
i = HM

αi

BP
i =

αi∑
k=αi−1+1

JPk

BM
i = JMαi+1

(4-8)

For the sake of presentation of the relationship between stages and layers of DNN,
we plot the diagram of network division with the FP in Fig 4-3 on the basis of the process
of Fig 4-2. The process of BP is analogous to that of FP.

Substituting Eq 4-8 into Eq 4-7 can obtain the expression of training time with respect
of αi and p as Eq 4-9.

TGP =
K∑
i=1

(
HP

i + JPi
)

+
N−1∑
i=1

(
HM

αi + JMαi+1

)

+ (p − 1)max

 Nmax
i=1

 αi∑
k=αi−1+1

(
JPk
) ,

N−1max
i=1

(
JMαi+1

)
+ (p − 1)max

 Nmax
i=1

 αi∑
k=αi−1+1

(
HP

k

) ,
N−1max
i=1

(
HM

αi

)
(4-9)

Therefore, the key to solving the problem of minimizing total training time is to find

124

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

……

Input data

Stage 1 on
GPU 1

1 ()PF p

Layer 11 ()PH p

………

Output of Layer α1

Layer α1
1
()PH p

Send the output of Layer
α1 from GPU 1 to GPU 2 1

()MH p

1
()Dz p

Stage i on
GPU i

Layer αi-1+1
1 1()

i

PH p

………

Output of Layer αi

Layer αi()
i

PH p

Send the output of Layer
αi from GPU i to GPU i+1 ()

i

MH p

()
i

Dz p

Stage N
on GPU N

Layer αN-1+1
1 1()

N

PH p

………

Output of Layer αN

Layer αN()
N

PH p

()
N

Dz p

………

…

()P
iF p

()P
NF p

1 ()MF p

()M
iF p

Figure 4-3 The diagram of network division (K layers toN stages) with the forward

propagations.

the suitable collection of λ = ⟨α1, α2, . . . , αN⟩ and p. In the scenario of this chapter, λ and
the number of data partitions p necessarily and sufficiently correspond to a unique parallel
training scheme under MBPP. Thus, we can use the vector ⟨λ, p⟩ to represent the solution
of the optimal solution of a parallel training problem and use TGP(λ, p) to represent its
corresponding training time under parallel training structure for one mini-batch.

When p is given, ∑K
i=1 (HP

i + JPi) is a constant. Thus, the problem can be
transformed into the balancing division of layers (a multi-dimensional array seg-

125

Doctoral Dissertation of University of Electronic Science and Technology of China

mentation problem). If ignoring communication cost, the problem is converted to
min

(
maxNi=1

(∑αi
k=αi−1+1 (HP

k)
)

+ maxNi=1

(∑αi
k=αi−1+1 (JPk)

))
, which is segmenting K num-

bers to N groups without changing orders to minimizing the maximum sum of these
groups. However, considering communication and computing simultaneously increases
the complexity of the problem significantly, because different network division schemes
will change the layers of DNN involved in communication.

4.3.3 Theoretical Analysis of Basic Function

When λ = ⟨α1, α2, . . . , αN⟩ is given, the key to solving the problem of minimizing
the total training time under MBPP is to find the optimal partition number p of mini-batch.
In this case, it only requires to calculate the extreme value of TGP. Thus, the functions of
HP

i (p), HM
i (p), JPi (p) and JMi (p) are crucially required. In realistic, these functions HP

i (p),
HM

i (p), JPi (p) and JMi (p) are nonlinear to the micro-batch size. This means they aren’t
inversely proportional to partition number p.

In the realistic network, the communication time is approximately proportional to
data size only when the data size is far larger than bandwidth Bw. However, when the
data size is less than a specific value (specific bytes), the communication cost is approx-
imately constant. This is because each communication requires the least cost. Thus, a
piecewise function as Eq 4-10 can be used to fit the relationship between data size Dz and
communication costMc.

Mc =

C2 · Dz, Dz ≥ C3

C1, Dz < C3

(4-10)

where C1, C2 and C3 are bandwidth Bw-related constants.
For the i-th layer of DNN, assuming the output data size of one mini-batch as Dzi,

the function HM
i of one micro-batch for FP can be written as Eq 4-11.

HM
i (p) =

C2 · Dzi

p
, p ≤ Dzi

C3

C1, p >
Dzi
C3

(4-11)

With the same constants C1, C2 and C3, the function of JMi (p) is similar to HM
i (p).

For computing time, there is a similar phenomenon to communication time, i.e., when
data is less than a specific size, the computing time will be relatively unchanged with the
data size. However, since the operation of the model is tensor calculation (matrix calcu-

126

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

lation) involving multiple dimensions, it is not proportional to the size of one dimension.
For data parallelism with micro-batch, the inflection point is related to its corresponding
layer and the performance of devices. It can set the inflection point of the i-th layer as γFi
for forward computing and γBi for backward computing. When devices are given, the least
time required for computation of a small amount is also given, which can be set as P1.
The functions of computing time can be represented as Eq 4-12 with respect of partition
number p.

HP
i (p) =

βFi
p

, p ≤ γFi

P1, p > γFi

JPi (p) =

βBi
p

, p ≤ γBi

P1, p > γBi

(4-12)

where βFi and βBi are the time-cost for FP and BP respectively when p = 1.
For a homogeneous GPU cluster configured for a given hardware environment, the

constants C1, C2, C3 and P1 are fixed which can be obtained by statistics of multiple
communication experiments. The data sizes of output data are relatively explicit and can
be obtained by bytes of data. However, the βFi , β

B
i γFi and γBi are implicitly related to the

intrinsic matrix operation of the layers. However, these inflection points are relatively
stable and can still be obtained through certain statistical methods.

4.4 Algorithm Design: Cross Search Algorithm

Based on the above analysis, the problem can be transformed into three aspects:
(1) ω1: solving optimal network division λ = ⟨α1, α2, . . . , αN⟩ with given partition num-

ber p of mini-batch;
(2) ω2: solving optimal partition number p with given network division λ =

⟨α1, α2, . . . , αN⟩;
(3) Jointly solving problem ω1 and problem ω2 to obtain the optimal parallel training

scheme ⟨λ, p⟩.
In this section, we will propose the corresponding method to solve these three aspects.

127

Doctoral Dissertation of University of Electronic Science and Technology of China

4.4.1 Cross-Search for Joint Solution of ω1 and ω2

Firstly, we discuss the systematic method, i.e., cross-search for a joint solution of
ω1 and ω2. Supposing two algorithms, denoted as A1 and A2, can respectively obtain the
theoretical optimal solution of problems ω1 and ω2. Two avenues to get the joint solution
of ω1 and ω2 are:
(1) Traverse all mini-batch partitions p to find the optimal network division corresponding

to each partition, and then compare their solutions to obtain the optimal scheme;
(2) Traverse all network divisions to find their corresponding optimal mini-batch parti-

tions and then compare to obtain the scheme.
However, these two traversal avenues both need to consume a lot of computational

complexity. To improve the calculation speed for jointly solving ω1 and ω2 with main-
taining the optimization, we propose a cross-search algorithm whose steps are as follows.
(1) Firstly, divide the network layer under the original structure;
(2) Find the optimal partition number of mini-batch under this layer division;
(3) Re-adjust network layer division under the optimal partition number;
(4) Solving the optimal partition number again;
(5) Repeat step (3) to step (4) until there is no better network layer partition and partition

number.
The pseudo-code of cross-search can be seen in Algorithm 4-1. Through the way

of cross-switching optimization, Algorithm 4-1 achieves the search for optimal network
division and optimal partition number.

With the framework of the systematic method (cross-search), two algorithms A1 and
A2 which can respectively solve problems ω1 and ω2 are significantly required. Next, we
will discuss them successively.

4.4.2 Improved Multiple Dichotomy Algorithm to Divide Network Lay-
ers

4.4.2.1 Algorithm and Framework

The problem ω1, that solving the optimal network division with a given partition
number, is a variant of the array balanced segmentation problem, i.e. multi-dimensional
array segmentation problem. The typical array balanced segmentation problem only con-
siders a one-dimensional array. For example, when only considering computing of BP, the

128

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

Algorithm 4-1 Cross-Search Algorithm for Joint Solution of ω1 and ω2

Input : K, N, The functions of HP
i , HM

i , JPi , and JMi for ∀1 ≤ i ≤ K
Output: Solution ⟨λ, p⟩ of parallel training and its corresponding training time

T(λ, p)
1 Set p = 1
2 Use algorithm A1 to obtain the optimal network division λ = ⟨α1, α2, . . . , αN⟩

under p and record its corresponding training time TGP(λ, p) (denoted as T(λ, p)
uniformly)

3 while True do
4 Use algorithm A2 to obtain the optimal data partition number p′ under λ and

obtain its corresponding training time as T(λ, p′)
5 if T(λ, p′) = T(λ, p) then
6 Break
7 Use algorithm A1 to obtain the optimal network division λ′ under p′ and

obtain T(λ′, p′)
8 if T(λ′, p′) = T(λ, p′) then
9 Break
10 Update p = p′ and λ = λ′

objective of problem ω1 can be simplified to min
Nmax
i=1

(∑αi
k=αi−1+1 JPk

)
setting p is given.

To solve the problem ω1 considering JP, JM, HP, and HM simultaneously, we improve the
dichotomy and propose multiple dichotomy method.

Following the strategy of typical dichotomy, the improved multi-dimensional di-
chotomy method regards the problem ω1 to the bin-packing problem and transforms
the solution target to find the minimum volume of bins. The dichotomy method
introduces preset volume and mainly updates the preset volume by taking the me-
dian of the preset volume and the maximum or minimum volume currently ob-
tained. The volume is measured by max

(
maxNi=1

(∑αi
k=αi−1+1 (JPk)

)
,maxN−1

i=1

(
JMαi+1

))
+

max
(
maxNi=1

(∑αi
k=αi−1+1 (HP

k)
)

,maxN−1
i=1

(
HM

αi

))
. If the minimum number of bins is larger

than N, it implies that the preset volume is small and requires to be enlarged, otherwise,
the preset volume is large and can be decreased. Then, we can use the dichotomy method
to update the preset volume.

Improved multiple dichotomy algorithm (IMD) can be seen in Algorithm 4-2. As
the IMD transforms the problem ω1 to an array segmentation packing problem, it needs
to call an improved two-dimensional array segmentation packing algorithm as Algorithm
4-3.

129

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 4-2 Improved dichotomy to solve multi-dimensional array segmen-
tation (IMD)
Input : K, N, p, The functions of HP

i , HM
i , JPi , and JMi for ∀1 ≤ i ≤ K

Output: Solution λ = ⟨α1, α2, . . . , αN⟩ and T(λ, p)
1 Set the small values ε

2 Set D1 = max
(K∑
i=1

(HP
i), N−1max

i=1

(
HM

αi+1

))
, D2 = max

(K∑
i=1

(JPi), N−1max
i=1

(
JMαi+1

))
,

Dmax = D1 + D2 and Dmin = max (max (HP, JP) ,min (HM, JM))
3 Set the weight groups with η + 1 (or other given number) groups

W = ⟨w0,w1,w2, . . . ,wη⟩ where wi = ⟨wi(1),wi(2)⟩ =
〈

i
η , 1 − i

η

〉
4 while Dmax − Dmin ≥ ε do
5 Set Dmean = Dmax+Dmin

2 , check = False
6 for w in W do
7 Set η1 = w(1) · Dmean, η2 = w(2) · Dmean

8 Substitute η1 and η2 into Algorithm 4-3 to obtain τ and λmean
9 if τ ≤ N then
10 check = True, λ = λmean
11 Break the “for” loop

12 if check then
13 Dmax = Dmean

14 else
15 Dmin = Dmean

16 Calculate the training time T(λ, p)

Algorithm 4-3 Two-dimensional array segment packing algorithm
Input : K, N, p, upper limit η1 and η2, the functions of HP

i , HM
i , JPi , and JMi for

∀1 ≤ i ≤ K
Output: The number of bins τ, the solution of array segmentation

λ = ⟨α1, α2, . . . , ατ⟩ and its corresponding training time T(λ, p)
1 Set ψ1 = ψ2 = 0, λ = ∅, τ = 0, i = 0
2 while i ≤ K do
3 i + +
4 ψ1+ = HP

i , ψ2+ = JPi
5 if max (ψ1,HM

i) ≤ η1 and max (ψ2, JMi) ≤ η2 then
6 α = i
7 if max (ψ1,HM

i) > η1 and max (ψ2, JMi) > η2 then
8 τ + +, λ+ = {α}, i = α, ψ1 = ψ2 = 0

9 τ + +, λ+ = {K}

130

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

4.4.3 Method to Obtain Optimal Partition Number

To obtain the optimal solution of parallel training, we also need to find the optimal
partition number p of data parallelism under a given network division scheme λ, i.e., solv-
ing the problem ω2.

When, HP, HM, JP and JM are known, it is easy to calculate the running time T (λ, p)
for ∀p. Then, it only needs to choose the partition number corresponding to the minimum
running time. As the network division scheme λ is given, matrix operation can be used to
accelerate the calculation of running time for all possible partition numbers. The algorithm
to obtain the number of the optimal partitions under given λ is as Algorithm 4-4.

4.5 Theoretical Analysis and Proof

4.5.0.1 Properties and Analysis to the Converge Solution of IMD

The improved dichotomy to solve multi-dimensional array segmentation (IMD, Al-
gorithm 4-2) aims at solving the problem that

minω(1)(λ) (4-13)

where ω(1)(λ) = max
(
maxNi=1

(∑αi
k=αi−1+1 (JPk)

)
,maxN−1

i=1

(
JMαi+1

))
+

max
(
maxNi=1

(∑αi
k=αi−1+1 (HP

k)
)

,maxN−1
i=1

(
HM

αi

))
. Denoting the solution of Algo-

rithm 4-2 as λID, the feasible solution set as Λ, and the theoretical optimal solution is λO,
then the solution has the following property according to the process of Algorithm 4-2.

Property 4 If ε → 0 and the weight groups W has ad-
equate weights η → +∞ which can ergodic all possible pro-
portions between max

(
maxNi=1

(∑αi
k=αi−1+1 (JPk)

)
,maxN−1

i=1

(
JMαi+1

))
and

max
(
maxNi=1

(
αi∑

k=αi−1+1
(HP

k)
)

,maxN−1
i=1

(
HM

αi

))
, then for ∀ω(1) > 0 the following

formula must be true.
τ(ω) ≤ N, if ω ≥ ω(1)

(
λ(ID)

)
τ(ω) > N, if ω < ω(1)

(
λ(ID)

) (4-14)

where τ (ω) is the minimum number of bins when setting the volume of bins as ω.
The proof of Property 4 can be seen as follows considering τ(ω) is a non-increasing

function.

131

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 4-4 Optimal Data Partition Algorithm via Basic Time Function
Input : K, N, λ, the functions of HP

i , HM
i , JPi , and JMi for ∀1 ≤ i ≤ K

Output: The optimal partition number p of data parallelism
1 Get four matrices Q(1), Q(2), Q(3) and Q(4) to respectively represent the basic time

functions of HP
i , HM

i , JPi , and JMi . For example, the element Q
(1)
ji of the j-th row

and the i-th column in Q(1) equals to HP
i (j)

2 Get two K × N matrices (P(1) and P(2)) and a one-dimensional matrix P(3) where

P(1)
ij =

{
1, if αi−1 + 1 ≤ j ≤ αi
0, others

P(2)
ij =

{
1, if j = αi
0, others

P(3)
i = i − 1

3 Calculate the matrices multiplication and obtain the maximum value of each row

ρ1 (λ) = max

max
(
Q(1) × P(1), dim = 1

)
max

(
Q(2) × P(2), dim = 1

)
 · P(3)

ρ2 (λ) = max

max
(
Q(3) × P(1), dim = 1

)
max

(
Q(4) × P(2), dim = 1

)
 · P(3)

where X × Y means matrix multiplication, max(X, dim = 1) means maximizing
each row of the matrix X, max(X,Y) means taking the maximum value of the
homologous elements of the two matrices, X · Y means multiplying the
homologous elements of two matrices

4 Calculate the matrix of running time as

Z = sum
(
Q(1) + Q(2) + Q(3) + Q(4), dim = 1

)
+ ρ1(λ) + ρ2(λ)

where X + Y means taking the sum of the homologous elements of the two
matrices

5 Obtain the index corresponding to the minimum value of matrix Z as the optimal
partition number that

p = argmin (Z)

Proof: Because τ
(
ω(1)

(
λ(ID)

))
= N, therefore τ(ω) ≤ N when ω ≥ ω(1)

(
λ(ID)

)
.

If ∃ω < ω(1)
(
λ(ID)

)
s.t. τ(ω) ≤ N, then the value Dmin < Dmean. Then, the Algorithm

4-2 needs to be continued, which is in contradiction with λ(ID) is a convergence solution.
Therefore, for ∀ω < ω(1)

(
λ(ID)

)
, τ(ω) > N. Thus, Property 4 is proved. ■

On the basis of Property 4, we can obtain a property as Property 5.

132

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

Property 5 For ∀λ ∈ Λ, ω(1) (λ) ≥ ω(1)
(
λ(ID)

)
= ω(1)

(
λ(O)

)
under the conditions

of Property 4, i.e., λ(ID) is one theoretical optimal solution of problem minω(1).
The proof of Property 5 is as follows using reduction to absurdity.
Proof: If ∃λ ∈ Λ s.t. ω(1) (λ) < ω(1)

(
λ(ID)

)
, then τ

(
ω(1) (λ)

)
> N according to the

second formula of Eq 4-14. Because λ ∈ Λ is a feasible solution of problem minω(1),
therefore τ

(
ω(1) (λ)

)
≤ N. These two inequalities are contradictory. Thus, for ∀λ ∈ Λ,

ω(1) (λ) ≥ ω(1)
(
λ(ID)

)
, i.e., λ(ID) is a theoretical optimal solution. ■

In fact, Property 4 and Property 5 are equivalent to reveal that the convergent solution
of Algorithm 4-2 is the theoretically optimal solution. However, there are two indispens-
able conditions as follows for Property 4 and Property 5 to be tenable.

1. ε → 0,
2. W has adequate weights, i.e., η → +∞.
In real computer programs, these two conditions are generally unable to be achieved,

since the computer cannot generate infinitely small numbers. In realistic application of
Algorithm 4-2 to solve the problemminω(1), the error betweenω(1)

(
λ(ID)

)
andω(1)

(
λ(O)

)
is related to both ε and η, which is revealed by Property 6 through deduction.

Property 6When ε > 0 and η < +∞, the error ξ between ω(1)
(
λ(ID)

)
and

ω(1)
(
λ(O)

)
is

0 ≤ ξ = ω(1)
(
λ(ID)

)
− ω(1)

(
λ(O)

)
≤ ε + 1

η − 1
ω(1)

(
λ(O)

)
(4-15)

According to the process of Algorithm 4-2, we can present the proof of Property 6 as
follows.

Proof: It can be set that the value max
(
maxNi=1

(∑αi
k=αi−1+1 (JPk)

)
,maxN−1

i=1

(
JMαi+1

))
andmax

(
maxNi=1

(∑αi
k=αi−1+1 (HP

k)
)

,maxN−1
i=1

(
HM

αi

))
corresponding to the optimal solution

λ are respectively ϱ1 (λ) and ϱ2 (λ). When the Algorithm 4-2 reaches converge, the fol-
lowing relationships are tenable:
(1) 0 < ∃i ≤ η s.t. Dmax i

η ≥ ϱ1
(
λO
)
and Dmax η−i

η ≥ ϱ2
(
λO
)
;

(2) for 0 ≤ ∀i ≤ η, Dmin i
η ≤ ϱ1

(
λO
)
or Dmin η−i

η ≤ ϱ2
(
λO
)
;

(3) 0 ≤ Dmax − Dmin ≤ ε.
If 0 ≤ ∃i ≤ η s.t. Dmin i

η ≤ ϱ1
(
λO
)
and Dmin η−i

η ≤ ϱ2
(
λO
)
, then Dmin ≤ ϱ1

(
λO
)

+
ϱ2
(
λO
)

= ω(1)
(
λ(O)

)
. Because, ω(1)

(
λ(ID)

)
≤ Dmax ≤ Dmin + ε, thus ω(1)

(
λ(ID)

)
≤

ω(1)
(
λ(O)

)
+ ε.

If for 0 ≤ ∀i ≤ η, Dmin i
η ≤ ϱ1

(
λO
)

∧ Dmin η−i
η ≤ ϱ2

(
λO
)

= False, then there

133

Doctoral Dissertation of University of Electronic Science and Technology of China

must 0 ≤ ∃i < η s.t. Dmin i
η ≤ ϱ1

(
λO
)
, Dmin η−i

η ≥ ϱ2
(
λO
)
, Dmin i+1

η ≥ ϱ1
(
λO
)
and

Dmin η−i−1
η ≤ ϱ2

(
λO
)
. Therefore, Dmin η−1

η ≤ ϱ1
(
λO
)

+ ϱ2
(
λO
)
. Thus, ω(1)

(
λ(ID)

)
≤

η
η−1ω

(1)
(
λ(O)

)
+ ε.

Thus, Property 6 is proved. ■
Property 6 demonstrates the optimality of IMD. From Eq 4-15 of Property 6, we can

derive that

lim
ε→0,η→+∞

(
ω(1)

(
λ(ID)

)
− ω(1)

(
λ(O)

))
= 0 (4-16)

which is consistent with the Property 5.

4.5.0.2 Analysis of Computational Complexity and Selection of Parameters ε and η

To further discuss the performance of Algorithm 4-2, we analyze its computational
complexity Cc(2).

Since the dichotomy will reduce the search space by half each time, it needs log2
(
D
ε

)
times to reach convergence whereD = D1+D2−max (max (HP, JP) ,min (HM, JM)). The
complexity of each time is determined by η and Algorithm 4-3, which can be obtained as
O (η (2K)), where the complexity of Algorithm 4-3 is O (2K). Thus, the complexity of
Algorithm 4-2 can be derived as

Cc(2) = O
(
2Kη log2

(D
ε

))
(4-17)

If the maximum allowable error is given as ξ where ξ = ε+ 1
η−1ω

(1)
(
λ(O)

)
according

to Eq 4-15 of Property 6, we can obtain the complexity of Algorithm 4-2 with respect of
ε as

Cc(2) = O

2K
ω(1)

(
λ(O)

)
ξ − ε

+ 1

 log2
(D
ε

)
≈ O

2Kω(1)
(
λ(O)

)
ξ − ε

log2
(D
ε

)
(4-18)

Minimizing Cc(2) is approximately equivalent to minimizing 1
ξ−ε ln

(
D
ε

)
where ξ and D

are given. It can be derived that when

ε (lnD − ln ε + 1) = ξ, (4-19)

Cc(2) achieves minimum. Eq 4-19 presents a way to select the appropriate parameters
ε and η to reduce the computational complexity under the given maximum error. Eq 4-

134

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

19 can be solved through various numeric methods such as Newton iteration method and
secant method.

4.6 Experimental Results and Analysis

For the sake of the comprehensive evaluations of our proposed cross-search algo-
rithm with improved multi-dimensional dichotomy (CSIMD), we carry out three groups
of experiments from various aspects including:
(1) EX1: evaluation of IMD to solve two-dimensional array segmentation problem;
(2) EX2: evaluation of CSIMD in the CV-related networks to obtain optimal network

division and data partition;
(3) EX3: evaluation of CSIMD in the NLP-related networks to obtain optimal network

division and data partition.
The networks and their corresponding dataset in experiment evaluations are listed in

Table 4-2.

Table 4-2 The networks and their corresponding dataset in experiment evaluations
Category DataSet Networks

CV
Mnist Self-designed CNNs

ImageNet VGG11
VGG16

NLP WikiText2 Self-designed Transformers
GPT-1 with 12 transformer layers

Then, the experiments are launched on a cluster environment with multi servers. The
center server acts as themanagement center. The configurations of the cluster environment
are as follows.

• Communication Network: 1 Gigabit or 10 Gigabit, full duplex;
• Program version: Python 3.7 + Pytorch 1.13.1;
• Servers × x:

– CPU: Intel i9 10850K @ 3.6GHz, 10 cores;
– SSD: Samsung 980 NVMe M.2 @ 1TB;
– RAM: LPX 64GB DDR4 3200;
– GPU: NVIDIA TESLA V100 @ 32GB × 2;

In order to observe the algorithm performance in the scenarios with more GPUs, we
use process concatenation to simulate the parallel operation of neural networks, which can

135

Doctoral Dissertation of University of Electronic Science and Technology of China

reflect the qualitative comparison of various strategies in more GPUs by the results of that
in a small number of GPUs.

4.6.1 Evaluation of Improved Multi-Dimensional Dichotomy

To evaluate the optimality of the improved dichotomy algorithm (IMD) in solving
multi-dimensional array segmentation, we carry out experiments in two groups of scenar-
ios with the small scale that (K ∈ [5, 100],N = 4) and (K ∈ [5, 100],N = 5) to observe the
approximation and probabilities to achieve the theoretical optimization (PATO). In each
combination of (K,N), we execute 100 instances by randomly generating the values of
the array in a uniform distribution, i.e., HP

i ,HM
i , JPi , JMi ∼ U [50, 100]; use an enumerative

algorithm to obtain theoretical optimization solution; and then record the maximum ap-
proximation and PATO of each combination of (K,N) using IMD respectively with the
number of weight group as 11, 101, and 1001. Then, we plot the approximation in Fig 4-4
and the corresponding PATO in Fig 4-5.

20 40 60 80 100
1.00

1.02

1.04

1.06

1.08

1.10 h=10
 h=100
 h=1000

M
ax

 A
pp

ro
xi

m
at

io
n

K

20 40 60 80

1.0000

1.0004

1.0008

(a) (K ∈ [5, 100],N = 4)

20 40 60 80 100
1.00

1.02

1.04

1.06

1.08

1.10 h=10
 h=100
 h=1000

M
ax

 A
pp

ro
xi

m
at

io
n

K

20 40 60 80

1.0000

1.0004

1.0008

(b) (K ∈ [5, 100],N = 5)

Figure 4-4 The maximum approximations for different numbers of weight groups

when using improved multi-dimensional dichotomy algorithm to solve multi-

dimensional array segmentation where each combination of (K,N) has 100 in-

stances.

From the results of Fig 4-4, the maximum approximations of η = 1000 (within the
range of [1, 1.001]) are lowest, followed by that of η = 100 (within [1, 1.01]) and η = 10
(within [1, 1.1]). As η increases, the maximum approximation decreases, indicating that
the solution of the algorithm is closer to the theoretically optimal solution. The fluctua-
tion range of the maximum approximations is approximately inversely proportional to η.
Additionally, as K increases, the maximum approximation ratio does not show a signif-

136

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 h=10
 h=100
 h=1000

PA
TO

K

20 40 60 80 100

0.96
0.98
1.00

(a) (K ∈ [5, 100],N = 4) corresponding to
Fig 4-4(a)

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 h=10
 h=100
 h=1000

PA
TO

K

20 40 60 80 100

0.96
0.98
1.00

(b) (K ∈ [5, 100],N = 5) corresponding to
Fig 4-4(b)

Figure 4-5 The probabilities achieving the theoretical optimization (PATO) for

different numbers of weight groups when using improved multi-dimensional di-

chotomy algorithm to solve multi-dimensional array segmentation where each

combination of (K,N) has 100 instances corresponding to Fig 4-4.

icant upward trend, which indicates that the approximation (or relative error) is mainly
influenced by η and has no explicit positive or negative correlation with (K,N). These
observations are consistent with the theoretical conclusion of Property 6, which can serve
as supplementary proof of theory verifying the theoretical error of the IMD algorithm
proposed in this chapter.

From Fig 4-5, the probability of the algorithm reaching the theoretical optimal solu-
tion increases with the η. When η = 10, the PATO is within the range of (0.45, 1]; that of
η = 100 is (0.70, 1]; and η = 1000 is (0.95, 1]. This is also consistent with the conclusion
of Property 6.

As concluded by Property 6, Fig 4-4 and Fig 4-5, when η approaches infinity, the
approximation and PATO will both tend to 1. However, the actual selection of η needs
to be based on the requirements of computational complexity and optimality. To further
observe the complexity of IMD, we execute experiments in two groups of scenarios with
the huge scale that (K ∈ [100, 10000],N = 50) and (K ∈ [2000, 50000],N = 1000). Each
combination of (K,N) has 20 instances. Then, we plot the average execution time of IMD
in Fig 4-6.

As shown in Fig 4-6, the average execution time of each η increases approximately
linearly withK. As η increases, the gradient of the curve significantly increases. To further
observe the relationship between slope and η, we linearly fit the curves in Fig 4-6, and then

137

Doctoral Dissertation of University of Electronic Science and Technology of China

2k 4k 6k 8k 10k
0

20

40

60

80

100

120

 h=10
 h=100
 h=1000

Ex
ec

ut
io

n
Ti

m
e

(s
)

K

2k 4k 6k 8k
0
1
2

(a) (K ∈ [100, 10000],N = 50)

10k 20k 30k 40k 50k
0

200

400

600

 h=10
 h=100
 h=1000

Ex
ec

ut
io

n
Ti

m
e

(s
)

K

10k 20k 30k 40k 50k
0

20
40
60

(b) (K ∈ [2000, 50000],N = 1000)

Figure 4-6 The average execution time (computational complexity) for different

sizes of weight groups when using improved multi-dimensional dichotomy algo-

rithm to solve multi-dimensional array segmentation where each combination of

(K,N) has 20 instances.

obtained their fitted slope and goodness-of-fit (R-square) as shown in Table 4-3.

Table 4-3 The fitted slope (FS) and goodness-of-fit to linearly fit the execution

time of IMD corresponding to Fig 4-6.
Scenario η FS R2

(K ∈ [102, 104],N = 50)
10 0.00015 0.9977
102 0.00112 0.9857
103 0.01116 0.9887

(K ∈ [2 × 103, 5 × 104],N = 103)
10 0.00009 0.9459
102 0.00112 0.9951
103 0.01285 0.9938

TheR-squares of all rows in Table 4-3 are larger than 0.9, indicating that the execution
time can be statistically acceptable as proportional to K. The fitted slope in Table 4-3 is
approximately proportional to η, which equals to that the execution time is proportional to
η. These conclusions on computational complexity are consistent with Eq 4-18 in Section
4.5.0.2, which means that in the statistical sense, IMD is a linear time algorithm with
controllable errors in solving the multi-dimensional array segmentation.

The experiments on approximation, PATO, and computational complexity in this sub-
section not only verify the theoretical derivation of IMD algorithm performance in Section
4.4.2, but also again demonstrate its optimality and rapidity. We set η = 1000 considering

138

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

the number of DNN’s layers in the subsequent experiment is much smaller than the order
of magnitude of K in the computational complexity experiment of this subsection.

4.6.2 Evaluation of CSIMD in the CV-related networks

To evaluate the CSIMD in obtaining the optimal network division and mini-batch
partition, we first carry out the experiments in CV-related networks which mainly consist
of convolutional layers and fully connected layers. The compared strategies are selected
as:
(1) GPipe-R: GPipe with random divisions and partitions;
(2) GPipe-E: GPipe with equal divisions and fixed partitions.

Table 4-4 Detail of Self-designed CNNs
Layer Types Input Channel Output Channel Kernel
L1 CNN In1 = 1 Ou1 = U(20, 50)

3 × 3Lx CNN Inx = Oux−1 Oux = U(20, 50)
LK FC InK = OuK−1 OuK = 10

In self-designed CNNs, as shown in Table 4-4, we continuously increase the number
of CNN layers, where the number of output channels of each CNN layer is a random value
generated by uniform distribution U(20, 50). Three fixed partitions of GPipe-E are set as
1, 4 and mini-batch size (BS). The mini-batch size is set as 64, the input figures are resized
to 100 × 100. Then, we record the time for training 6400 images in two scenarios that
(K ∈ [8, 19],N = 4) and (K ∈ [8, 19],N = 8) and plot results in Fig 4-7.

As shown in Fig 4-7, the curve of CSIMD remains the lowest, followed by GPipe-
E-4. The results of Fig 4-7 demonstrate using CSIMD to search the network division and
mini-batch partitions can further improve the performance of micro-batch-based pipeline
parallelism. This also indicates that setting fixed network division and mini-batch parti-
tions cannot adapt to all scenarios. The observation that GPipe-E-4 is better than GPipe-E-
1 indicates performing certain mini-batch partitioning can improve training speed, which
is consistent with the goal proposed by GPipe. However, as the number of partitions
increases to 64, the training time actually becomes larger on the contrary. This indicates
that the existence of one or more network layers has a nonlinear relationship between time
(computing time or communication) and data volume (batch size), i.e. HP

i ,HM
i , JPi , JMi may

not be inversely proportional to p.

139

Doctoral Dissertation of University of Electronic Science and Technology of China

8 10 12 14 16 18
0

1k

2k

3k
 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-64

Tr
ai

ni
ng

 T
im

e

K (number of laryers)

8 9 10

200

300

400

(a) (K ∈ [8, 19],N = 4)

8 10 12 14 16 18
0

1k

2k

3k

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-64

Tr
ai

ni
ng

 T
im

e

K (number of laryers)

8 9 10 11 12

120
160
200
240

(b) (K ∈ [8, 19],N = 8)

Figure 4-7 The training time with respect of K (number of layers) for self-designed

CNN in Table 4-4 to train 6400 images of Mnist under different network division

and batch partition strategies where mini-batch size is 64, the resize of image is

100 × 100.

To further observe the statistical performance of CSIMD, we carry out experiments
for self-designed CNNs in two scenarios that (K = 20,N = 4) and (K = 20,N = 8)where
the mini-batch is set as 16 and each scenario has 20 instances. Then, we plot the boxchart
of time to train 6400 images of Mnist in Fig 4-8. From Fig 4-8, CSIMD consistently
outperforms comparison strategies, which shows CSIMD can stably obtain better network
division and mini-batch partition schemes.

CSIMD
GPipe-R1

GPipe-R2
GPipe-R3

GPipe-E-1
GPipe-E-4

GPipe-E-16

1k

2k

3k

4k

5k

6k

7k

8k

Tr
ai

ni
ng

 T
im

e

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(a) (K = 20,N = 4)

CSIMD
GPipe-R1

GPipe-R2
GPipe-R3

GPipe-E-1
GPipe-E-4

GPipe-E-16

1k

2k

3k

4k

5k

6k

Tr
ai

ni
ng

 T
im

e

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

(b) (K = 20,N = 8)

Figure 4-8 The boxchart of training time for self-designed CNN in Table 4-4 to

train 6400 images of Mnist under different network division and batch partition

strategies where mini-batch size is 16.

Additionally, to verify the performance of CSIMD in parallel training of existing

140

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

common CV-related neural networks, we execute experiments in VGG11 and VGG16 on
the ImageNet dataset. We collect training performance data in two network bandwidth
environments that are Gigabit bandwidth and 10 Gigabit bandwidth. As the layers of
VGG are given, we select the number of stages (N, also the number of GPUs) as abscissa.
Then, we plot their training time for training 6400 images in Fig 4-9 and Fig 4-10.

4 6 8 10

500

1000

1500

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-100

(a) Gigabit bandwidth

4 6 8 10

400

800

1200

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-100

(b) 10 Gigabit bandwidth

Figure 4-9 The training time with respect of N (number of stages) for VGG11 to

train 6400 images of ImageNet under different network division and batch partition

strategies where mini-batch size is 100, the resize of image is 224 × 224 and N ∈

[4, 10]).

4 6 8 10 12 14 16

500

1000

1500

2000

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-64

(a) Gigabit bandwidth

4 6 8 10 12 14 16

500

1000

1500

2000

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-64

(b) 10 Gigabit bandwidth

Figure 4-10 The training time with respect of N (number of stages) for VGG16 to

train 6400 images of ImageNet under different network division and batch partition

strategies where mini-batch size is 64, the resize of image is 224 × 224 and N ∈

[4, 16]).

In Fig 4-9 and Fig 4-10, the curve of CSIMD also remains the lowest showing a

141

Doctoral Dissertation of University of Electronic Science and Technology of China

decreasing trend with the increase of N. While the curve of GPipe-E-1 increase with
N, which is because adding the stages actually increases additional communication time.
Comparing Fig 4-9(a) to Fig 4-9(b) and Fig 4-10(a) to Fig 4-10(b), as bandwidth increases,
the training time of CSIMD and GPipe-E decreases, which indicates that improving com-
munication speed can accelerate parallel training. However, the acceleration effect by
improving communication for GPipe-E-1 with the longest training time is the most signif-
icant, and that for CSIMD is the smallest. This is because CSIMD minimizes the impact
of communication time on the overall training speed by optimizing network division and
mini-batch partition, which once again validates the advantage of cross-search when con-
sidering both nonlinear computation time and communication time. To our knowledge,
there is currently no algorithm that can achieve this.

To quantitatively evaluate the improvement effect of CSIMD, we compile various
experimental results on CV-related networks in this subsection and record the (minimum,
average, maximum) ratios of training time between the comparison strategies and CSIMD
under each network. Then, we list the ratios in Table 4-5.

Table 4-5 The (minimum, average, maximum) ratios of training time between the

comparison strategies and CSIMD under each CV-related network
Strategies Self CNNs VGG11 VGG16 Average
GPipe-R1 (1.04, 2.29, 6.60) (1.38, 1.81, 2.78) (1.51, 2.01, 3.71) 2.037
GPipe-R2 (1.16, 2.24, 6.18) (1.14, 2.02, 2.98) (1.25, 2.12, 3.19) 2.128
GPipe-R3 (1.14, 1.76, 3.53) (1.43, 2.04, 3.91) (1.21, 2.10, 4.20) 1.967
GPipe-E-1 (1.66, 2.40, 3.69) (2.64, 3.35, 3.90) (2.78, 4.68, 6.55) 3.479
GPipe-E-4 (1.07, 1.24, 1.48) (1.28, 1.53, 1.68) (1.43, 1.80, 2.18) 1.522
GPipe-E-BS (2.16, 2.93, 3.97) (1.51, 2.11, 2.77) (1.11, 1.40, 1.78) 2.146

As shown in Table 4-5, CSIMD can achieve 2.0×, 3.5×, 1.5× and 2.1× speedup on
average respectively over GPipe-R, GPipe-E-1, GPipe-E-4 and GPipe-E-BS in the CV-
related networks of the experiments in this chapter.

4.6.3 Evaluation of CSIMD in the NLP-related networks

Different from CNNs, transformer-based NLP models can not only be partitioned in
batch size but also in tokens, i.e., Terapipe [180]. Since these two aspects are actually both
data parallelism obeying the same cost model of Eq 4-7, we only present the verification
for the partition of batch size.

We first use self-designed transformers as shown in Table 4-6 to execute incremental

142

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

Table 4-6 Detail of Self transformers-based networks
Layer Types
L1 Embedding+Positional Encoding
Lx Transformer Encoder Layer
LK FC

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

10k

20k

30k

40k

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-320

Tr
ai

ni
ng

 T
im

e

K (number of laryers)

8 12 16 20 24 28 32 36
0

200

400

600

800

(a) (K ∈ [8, 36],N = 8), 1GB

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

10k

20k

30k

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-320

Tr
ai

ni
ng

 T
im

e

K (number of laryers)

8 12 16 20 24 28 32 36
0

200

400

600

800

(b) (K ∈ [8, 36],N = 8), 10GB

16 18 20 22 24 26 28 30 32 34 36
0

10k

20k

30k

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-320

Tr
ai

ni
ng

 T
im

e

K (number of laryers)

16 20 24 28 32 36
200
400
600
800

1000
1200

(c) (K ∈ [16, 36],N = 16), 1GB

16 18 20 22 24 26 28 30 32 34 36
0

10k

20k

30k

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-320

Tr
ai

ni
ng

 T
im

e

K (number of laryers)

16 20 24 28 32 36
200

400

600

800

1000

1200

(d) (K ∈ [16, 36],N = 16), 10GB

Figure 4-11 The training time with respect of K (number of layers) for self-

designed transformer-based NLP networks in Table 4-6 to train 320 × 100 seqs

of of WikiText-2 under different network division and batch partition strategies

where the seq_length is 16, the mini-batch size is 320 and the embedding size is

10.

experiments. Similar to self-designed CNNs, we set (K ∈ [8, 36],N = 8) and (K ∈
[16, 36],N = 16). In self-designed transformers, the dataset is WikiText2, the seq_length
is set as 16, the mini-batch size is 320 and the embedding size is 10. We use the random
generation to randomly select the factor of embedding size (i.e., 10) as the number of heads

143

Doctoral Dissertation of University of Electronic Science and Technology of China

in each transformer layer and randomly generate dim_feedforward by U[1, 5]. Then, we
plot the training time of each strategy for training 100 mini-batches in Fig 4-11.

In Fig 4-11, the curves of CSIMDare also lower than compared strategies, which veri-
fies the feasibility and superiority of CSIMD in optimizing parallel training of transformer-
based NLP DNN. GPipe-E-4 is better than GPipe-E-1 and GPipe-E-320, which indicates
there are layers with nonlinear time (computing time or communication time) with re-
spect of data volume in transformer-based NLP networks, otherwise, GPipe-E-320 should
be better than GPipe-E-4. Because if following the linear assumptions of time functions,
more partitions of mini-batch will cause a smaller training time. In addition, as the number
of layers continues to increase, the advantages of CSIMD become increasingly apparent,
which is because an increase in the number of network layers will bring more possibilities
for network division, and CSIMD can find optimization solutions among these possibili-
ties due to the optimality of IMD, which has been verified in the above.

To further test the performance of CSIMD in frequently-used networks, we carry out
experiments for GPT-1 in WikiText2, where the number of layers is 14 (12 transformer
layers), embedding_dim is 768, number of heads is 768/4, dim_feedforward is 768 × 4
and seq_length is 16. Similar to VGG, we use the number of stages as abscissa and plot the
time to train 102400 sequences in Fig 4-12. Overall, CSIMD remains lowest in Fig 4-12,
which demonstrates the superiority of CSIMD in frequently-used NLP networks. Unlike
the results of VGG, after N is greater than 5, the training time of CSIMD remains almost
unchanged and does not decrease as N increases. This is because using 5 GPUs in CSIMD
search results is optimal, while more GPUs actually introduce additional communication
time.

Similarly, in order to quantitatively evaluate the improvement effect of CSIMD in
NLP networks, we compile results in this subsection and list the average ratios of training
time between the comparison strategies and CSIMD under each network in Table 4-7.

As shown in Table 4-7, CSIMD can achieve 2.6×, 3.0×, 1.6× and 23.81× speedup
on average respectively over GPipe-R, GPipe-E-1, GPipe-E-4 and GPipe-E-BS in GPT-1
of the experiments in this chapter.

4.7 Summary of this Chapter

Parallel training is now a hotspot in the development of artificial intelligence mod-
els. micro-batch-based pipeline parallelism, i.e., GPipe parallelism, is one of the popular

144

Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models
Based on Cross Search Algorithms

4 6 8 10
20k
40k
60k
80k

100k
120k
140k
160k

400k
500k
600k

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-512

(a) 512 mini-batch size, GB

4 6 8 10

20k

40k

60k

300k
400k
500k
600k

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-512

(b) 512 mini-batch size, 10GB

4 6 8 10
20k

40k

60k

80k

100k

120k

140k

160k
400k

600k

800k

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-512

(c) 1024 mini-batch size, GB

4 6 8 10

20k

40k

60k

80k
400k

600k

Tr
ai

ni
ng

 T
im

e

N (number of stages)

 CSIMD
 GPipe-R1
 GPipe-R2
 GPipe-R3
 GPipe-E-1
 GPipe-E-4
 GPipe-E-512

(d) 1024 mini-batch size, 10GB

Figure 4-12 The training time with respect of N (number of stages) for GPT-1 to

train 1024 × 100 seqs of WikiText-2 under different network division and batch

partition strategies where number of layers is 14 (12 transformer layers), embed-

ding_dim is 768, number of heads is 768/4, dim_feedforward is 768 × 4 and

seq_length is 16.

strategies to improve the performance of parallel training. In GPipe, two key factors are
the division of the network layers and the partition of mini-batches. Additionally, due to
the complexity of the parallel training process, some cost models make a lot of assump-
tions, which makes them deviate from the real scenario.

Considering these, we consider computing time and communication time simultane-
ously and consider them nonlinear to batch size. Then focusing on the scenario where
the number of network layers is greater than the number of devices, we derive a time-
cost model with respect of network division and data partitions, which can be regarded
as the joint of multiple high-dimensional array segmentation problems. To obtain the
joint solutions of network division and data partitions, we propose a cross-search algo-

145

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 4-7 The average ratios of training time between the comparison strategies

and CSIMD under each NLP-related network
Strategies Self Transformers GPT-1
GPipe-R1 11.32 2.60
GPipe-R1 8.74 2.58
GPipe-R1 9.96 2.47
GPipe-E-1 1.39 2.99
GPipe-E-4 1.54 1.60
GPipe-E-BS 53.87 23.81

rithm, in which we propose an improved multi-dimensional dichotomy to solve multi-
dimensional array segmentation (CSIMD). Through theoretical derivation, we present
and prove the theoretical performance of IMD. Finally, we carry out extensive experi-
ments in CNN-based networks and transformer-based networks. Extensive experiments
demonstrate our proposed CSIMD can obtain optimal network division and data partition
schemes under GPipe parallelism. On average, our proposed CSIMD achieves (2.0, 2.5)×
and (1.5, 1.6)× speedup respectively in CV- and NLP-related networks over GPipe-R and
GPipe-E.

This chapter not only provides an algorithm to obtain optimal parallel schemes but
also provides a complete idea that solving high-performance parallel training schemes
from the perspective of solving optimization problems. By making certain improvements
to the algorithm, it can also be applied to scenarios where the number of network layers
is smaller than the number of devices. In the future, We consider continuing to explore
more realistic time-cost models; as well as consider combining network layer division and
mini-batch partition (also including token partition) to explore optimization algorithms for
parallelism that adapt to more complex scenarios.

146

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Chapter 5 Design of a novel architecture for parallel training of
deep learning based on Unequal Date Partitioning and

Dual-chromosome Genetic Algorithms

The increasing need for large-scale deep neural networks (DNN) has made paral-
lel training an area of intensive focus. One effective method, microbatch-based pipeline
parallelism (notably GPipe), accelerates parallel training in various architectures. How-
ever, existing parallel training architectures normally use equal data partitioning (EDP),
where each layer’s process maintains identical microbatch-sizes. EDP may hinder train-
ing speed because different processes often require varying optimal microbatch-sizes. To
address this, we introduce UMPIPE, a novel framework for unequal microbatches-based
pipeline parallelism. UMPIPE enables unequal data partitions (UEDP) across processes
to optimize resource utilization. We develop a recurrence formula to calculate the time
cost in UMPIPE by considering both computation and communication processes. To fur-
ther enhance UMPIPE’s efficiency, we propose the Dual-Chromosome Genetic Algorithm
for UMPIPE (DGAP) that accounts for the independent time costs of forward and back-
ward propagation. Furthermore, we present TiDGAP, a two-level improvement on DGAP.
TiDGAP accelerates the process by simultaneously calculating the end time for multiple
individuals and microbatches using matrix operations. Our extensive experiments val-
idate the dual-chromosome strategy’s optimization benefits and TiDGAP’s acceleration
capabilities. TiDGAP can achieve better training schemes than baselines, such as the lo-
cal greedy algorithm and the global greedy-based dynamic programming. Compared to
(GPipe, PipeDream), UMPIPE achieves increases in training speed: (13.89, 11.09)% for
GPT1-14, (17.11, 7.96)% for VGG16 and ≥ (170, 100)% for simulation networks.

5.1 Introduction

With the development of intelligent technology, the deep neural network (DNN) has
been widely used in image processing [207, 208], natural language processing (NLP) [209]

and other fields. The existing DNNs include various structures such as convolutional
neural network (CNN) [176], transformer layer-based network [180, 181], graph neural net-
work [210, 211] et al. The emerging application trend of increasingly complex scenarios re-
quires an increasing scale of parameters especially for NLP. T5 with 11B parameters [212],

147

Doctoral Dissertation of University of Electronic Science and Technology of China

FLAN with 137B parameters [170], and GPT-3 [171] with more than 175B parametersare
some existing large-scale DNN model. For DNN which is generally trained on the Graph
Processing Unit (GPU), the increasing parameters pose two significant bottlenecks, i.e., 1)
Training large-scale DNN consumes too much time [174, 175]; 2) The amount of data in the
training process makes a single GPU or a few GPUs out of memory [195, 213]. Therefore,
parallel training on the distributed system (i.e., GPU cluster) becomes a key paradigm and
a research hotspot to address the bottlenecks of large-scale DNN [168, 174,176].

Data Parallelism (DP), Tensor Model Parallelism (TMP), and Pipeline Model Par-
allelism (PMP) are three foundational parallel modes for training DNNs on distributed
systems [178, 180,214, 215]. PMP and TMP, in particular, often leverage a combination with
DP to enhance their architectures. Renowned PMP architectures include GPipe [182],
PipeDream [183], Dapple [184], and Hpipe [178], while TMP is represented by Megatron-
LM [181] and Tofu [216]. Further, hybrid 3D parallelism models integrating DP, TMP, and
PMP, like FOLD3D [217] and Merak [215], have significantly boosted parallel training per-
formance. These existing architectures all rely on microbatch-based data parallelism. In
the parallel training, forward propagation (FP) and backward propagation (BP) comprise
computation and communication processes. A notable challenge is the “bubbles” or idle
times each device experiences while waiting for preceding processes on other devices to
complete [184, 185]. Reducing bubbles and increasing the overlap between computation and
communication is a key focus in optimizing parallel training [217]. Techniques such as
dynamic programming [169], linear programming [203], and recurrence methods [196] are
developed to mitigate bubbles.

0 100 200 300 400 500
0
2
4
6
8

Ti
m

e
(s

)

Microbatch Szie

0 10 20 30 40 50
0
2
4
6
8

(a) 1-st layer of GPT-1

0 100 200 300 400 500
0
2
4
6
8
10

Ti
m

e
(s

)

Microbatch Szie

0 10 20 30 40 50
0
2
4
6
8
10

(b) 2-nd layer of GPT-1

0 10 20 30 40 50 60
4

6

8

Ti
m

e
(s

)

Microbatch Szie
(c) 1-st layer of VGG16

0 10 20 30 40 50 60

3.5

4.0

4.5

Ti
m

e
(s

)

Microbatch Szie
(d) 2-nd layer of VGG16

Figure 5-1 Computation time to process 512 pieces data in realistic GPU devices.

Despite the above progress, Equal Data Partitioning (EDP) remains a significant lim-

148

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

itation across most parallelism. EDP means that all processes of computations and com-
munications, must handle the same number of microbatches within a minibatch [218]. The
limitation caused by EDP is prevalent in almost all existing parallel architectures that rely
on microbatch-based data parallelism (e.g., GPipe [182], PipeDream [183], Dapple [184].
In the dynamic landscape of DNNs, layer heterogeneity significantly impacts computa-
tion and communication times, which are not necessarily proportional to the microbatch-
size [177, 190]. For example in Fig. 5-1, the layers of GPT-1 with transformer and VGG16
with CNN have variations in processing the same 512 pieces of data under different
microbatch-sizes, especially when the microbatch-size is small (if computation time is
proportional to data size, the curves should be straight lines parallel to X-axis). Addition-
ally, different layers have not only different time consumption but also different inflection
points, which reflects heterogeneity between layers. The heterogeneity and nonlinearity
suggests that optimal partition numbers for different processes might vary. Hence, EDP
may result in inefficiencies.

Motivated by this observation, we propose UMPIPE, a novel pipeline parallel struc-
ture utilizing unequal microbatches. This approach allows for unequal data partitioning
(UEDP) across both computation and communication processes in DNNs. UMPIPE repre-
sents the first exploration into unequal partitioning within parallel training and effectively
harnesses the heterogeneous time consumption characteristics of DNN layers. We develop
a general recurrence formula and conduct an in-depth analysis of UMPIPE’s optimality.
Our findings indicate that UMPIPE’s optimal scheme is at least as efficient, if not more
so, than existing methods like GPipe.

To obtain the optimization scheme of UMPIPE, we propose a dual-chromosome ge-
netic algorithm (DGAP), leveraging the independence of data partitions of FP and BP.
Since the microbatch-sizes for processes in UMPIPE can be different, the formula of es-
timating training time in GPipe [191, 192] does not apply to UMPIPE. To obtain explicit
expressions of training time in UMPIPE is a challenge. It significantly complicates the
computational process in determining UMPIPE’s optimal scheme using recurrence for-
mulas. To address this challenge, we propose a two-level improvement method based on
matrix operations, which expedites calculations by simultaneously processing multiple
individuals and microbatches. We integrate this method with DGAP to form Two-level
Improved Dual-Chromosome Genetic Algorithm (TiDGAP).

Our contributions are summarized as follows:

149

Doctoral Dissertation of University of Electronic Science and Technology of China

(1) UMPIPE: Our approach considers not just the computation and communication si-
multaneously but also their nonlinear time consumption relative to microbatch-size.
We propose UMPIPE, a UEDP-based pipeline parallelism framework. This innova-
tion allows different microbatch-sizes for processes within DNNs, thereby accelerat-
ing parallel training. We derive a recurrence formula and conduct a comprehensive
theoretical analysis for UMPIPE.

(2) DGAP: Recognizing that time costs for FP and BP are independent in UMPIPE,
we develop Dual-Chromosome Genetic Algorithm (DGAP) to identify the optimal
scheme. Our theoretical analysis of the dual-chromosome strategy highlights its sta-
tistical advantages in efficiently resolving UMPIPE’s unique scheme requirements.

(3) TiDGAP: Addressing the challenges in calculating UMPIPE’s training time due to
UEDP, we conduct theoretical derivation and propose TiDGAP, a matrix operation-
based two-level improved method to accelerate DGAP. TiDGAP can simultaneously
calculate the end time corresponding to multiple individuals and multiple micro-
batches, substantially boosting DGAP’s search capability.

(4) Extensive experiments demonstrate the fast speed and optimality of TiDGAP com-
pared to baseline methods. Additionally, results confirm that UMPIPE achieves
a faster training speed than baseline parallelism without compromising the train-
ing convergence of DNNs. Compared to (GPipe, PipeDream), UMPIPE achieves
(13.89, 11.09)% improvement in GPT1-14, (17.11, 7.96)% in VGG16, and ≥
(170, 100)% in simulation networks.
The rest of this chapter is organized as follows. We review the related work in Section

5.2. TheBABYPIPE parallelism is presented in Section 5.3. Themethodology is proposed
in Section 5.4. The experiment evaluations are presented in Section 5.5. Finally, we
conclude this chapter in Section 5.6.

5.2 Related Work

Data parallelism (DP), tensor model parallelism (TMP) and pipeline model paral-
lelism (PMP) are three basic architectures to train large-scale DNNs [215, 217].

Data level parallelism generally divides the data into multiple parts for time-sharing
or equipment-sharing training [197, 198]. Joshua Romero et al. [214] implemented a
lightweight decentralized coordination strategy by utilizing a response cache to accelerate
collective communication in data parallel training. Lei Guan et al. [219] proposed pd-

150

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

lADMM splitting the optimization problem into sub-problems to train the fully connected
DNN in a data-parallel manner.

Tensor model parallelism divides layers of DNN into multiple parts from the dimen-
sion of tensor operations [178, 191, 199]. Based onmodel parallelism, Deepak Narayanan et al.
[181] proposedMegatron-LM to divide the self-attention layer into a multi-tensor operation
model which allowed the self-attention layer to be put on different devices.

Pipeline-related parallelism is an important method in parallel training, which is usu-
ally combined with DP and TMP. Gpipe [182] split the training minibatch into multiple
microbatches and utilized the pipeline to train each part of the model on its corresponding
distributed node. Terapipe [180] followed the pipeline of Gpipe and improved the pipelin-
ing granularity to reduce the pipeline bubbles of the transformer-based NLP model by
proposing a new dimension, i.e. token dimension. Based on Gpipe, PipeDream [183]

shifted the gradient backward-propagation (BP) of each microbatch earlier to the moment
immediately after its last part of forward. Dapple [184] followed PipeDream and shifted
the BP of other sub-model nodes to earlier besides that of the last sub-model node for the
same minibatch [184].

Hybrid 3D parallelism, which integrates DP, PMP, and TMP, is currently an effective
framework to achieve high training efficiency [215, 217]. Fanxin Li et al. [217] proposed
FOLD3D to slice a DNN into multiple segments, which allowed the computations in the
same segment to be scheduled together. Zhiquan Lai et al. [215] proposed Merak that
can automatically deploy 3D parallelism with an automatic model partitioner. Some other
hybrid parallellism includes EffTra [192], ParaDL [220] and PipePar [221].

Other strategies to improve the performance of parallel training include momentum-
driven adaptive synchronization model [222], NeoFlow (flexible framework for enabling
efficient compilation) [223], pase parallelization [196], etc.

The given parallelism (i.e., parallel architecture) needs optimization methods to solve
for the optimal parallel training schemes. Because the cost model was generally non-
analytical or recursive, dynamic programming is a suitable and widely used method to
obtain the optimal partition of data parallelism or model parallelism [169]. Some examples
using dynamic programming include PipeDream [184], Dapple [184], Terapipe [180], EffTra
[192], PaSE [196], PipePar [221] et al. Linear programming is also a frequent method in
parallel training [176, 198,203]. Some examples include NetPlacer [203], HGP4CNN [176],
DPDA [198]. Other partition methods include off-the-shelf graph partitioning algorithms

151

Doctoral Dissertation of University of Electronic Science and Technology of China

[210], recurrence [196], grouping genetic algorithm [205], and near-optimal layer partition of
local search method [195].

From the reviewed literature, how to construct a well-performed parallel training ar-
chitecture to accelerate training speed by reducing pipeline bubbles and redundant commu-
nication is an urgent topic. The existing DP and TMP rely on equal partitioning. However,
the optimal partitioning numbers of layers in DNNmay be different, and equal partitioning
will restrict the optimization boundary of parallelism. Referring to but different from the
existing research, the notable feature of our proposed BABYPIPE is the unequal data parti-
tioning (UEDP). In BABYPIPE, communication and computation time are non-negligible
and are not necessarily proportional to the microbatch-size. These properties indicate that
the targeted scenarios of our proposed BABYPIPE are far more complex and realistic.
TiDGAP is also significantly different from existing algorithms due to the novelty and
complexity of BABYPIPE. Although TiDGAP still relies on recurrence formulas, its cal-
culation process has been resolved and improved through theoretical derivation based on
matrix operations. GPU-based matrix operations enable TiDGAP to obtain schemes of
BABYPIPE in the order of seconds.

5.3 Design and Formulations of a New Parallel Training Architecture
(UMPIPE) for Deep Learning Models

Table 5-1 Notations and Descriptions.
Notation Description
N Number of stages
pk Number of microbatch in the k-th forward process
qk Number of microbatch in the k-th backward process
P Minibatch-size
FP
i (p) The forward compute time of one microbatch in the i-th stage when

partitioning the minibatch into p microbatches
FM
i (p) The forward communication time of one microbatch

BP
i (p) The backward compute time of one microbatch

BM
i (p) The backward communication time of one microbatch

Fk(pk) The time cost of one microbatch in the k-th forward process
Ekj The end time of the j-th data of the k-th forward process
Tik The begin time of the i-th microbatch in the k-th process
Bk(qk) The time cost of one microbatch in the k-th backward process
Rkj The end time of the j-th data of the k-th backward process

152

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

For the sake of the presentation of BABYPIPE’s architecture and cost model, we list
the notations in Table 5-1.

In one epoch of training DNNs, a dataset is divided into multiple minibatches and
each minibatch needs to start after the previous minibatch ends. Due to the same calcula-
tion process for eachminibatch, the time consumption for eachminibatch is approximately
equal. Therefore, we can focus on the training time for one iteration of one minibatch. It
can be set that the minibatch-size of training DNN is P, which means training P pieces
of data simultaneously in one minibatch. These P data can be set as {d1, d2, . . . , dP}.
To reduce parallel training time, the existing microbatch-based pipeline parallelism (e.g.,
GPipe) partitions a minibatch into multiple microbatches. A main characteristic is that it
partitions the input data of all layers into the same number of microbatches. In parallel
training, a DNN is usually divided into multiple stages corresponding to the number of
devices. In reality, each stage may contain one or more layers of DNN. Since this chapter
mainly focuses on the improvement of parallel architecture in data partitioning and the
algorithm for the optimization schemes, we set that each stage has only one layer of DNN,
which does not affect the promotion of our proposals in this chapter. Our proposal is also
applicable to scenarios where a stage contains multiple layers. Assuming a parallel DNN
has 4 stages and the minibatch-size is P = 6, the data partitioning of a GPipe with 3 mi-
crobatches is shown in Eq 5-1 and that with 2 microbatches is shown in Eq 5-2. In Eq 5-1,
the form

[
d1 d2

]
means calculating data d1 and d2 in one microbatch.

[
d1 d2

] [
d3 d4

] [
d5 d6

]
[
d1 d2

] [
d3 d4

] [
d5 d6

]
[
d1 d2

] [
d3 d4

] [
d5 d6

]
[
d1 d2

] [
d3 d4

] [
d5 d6

]

(5-1)

[
d1 d2 d3

] [
d4 d5 d6

]
[
d1 d2 d3

] [
d4 d5 d6

]
[
d1 d2 d3

] [
d4 d5 d6

]
[
d1 d2 d3

] [
d4 d5 d6

]

(5-2)

153

Doctoral Dissertation of University of Electronic Science and Technology of China

TGP =
N∑

k=1

(
FP
k + FM

k + BP
k + BM

k

)
+ (p − 1)max

(
max

1≤k≤N−1

(
BP
k ,BM

k

)
,BP

N

)
+ (p − 1)max

(
max

1≤k≤N−1

(
FP
k ,FM

k

)
,FP

N

) (5-3)

It can be set that the number of stages of DNN is N, the forward computation time of
one microbatch in the i-th stage is FP

i (p) (abbreviated as FP
i) when partitioning the mini-

batch into p microbatches, the forward communication time of that is FM
i , the backward

computation time of that is BP
i , and the backward communication time of that is BM

i . Then,
the total training time of DNN under GPipe parallelism for one iteration of one minibatch
can be derived as Eq 5-3 considering computation and communication simultaneously.

5.3.1 Architecture of BABYPIPE

As GPipe makes a constraint that each layer has the same number of microbatches,
some time-consuming processes (computation or communication) may limit the optimiza-
tion of the total training time. To reduce the training time, BABYPIPE introduces unequal
data partitioning (UEDP) into microbatch-based pipeline parallelism. In BABYPIPE, dif-
ferent processes in DNN can have different microbatch-sizes. UEDP is beneficial for
layers flexibly selecting appropriate numbers of data partitions. Also, for the DNN with 4
stages and P = 6 minibatch-size, two examples of BABYPIPE can be seen in Eq 5-4 and
Eq 5-5.

[
d1 d2 d3

] [
d4 d5 d6

]
[
d1 d2

] [
d3 d4

] [
d5 d6

]
[
d1 d2 d3

] [
d4 d5 d6

]
[
d1 d2

] [
d3 d4

] [
d5 d6

]

(5-4)

154

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

[
d1 d2 d3

] [
d4 d5 d6

]
[
d1 d2 d3 d4 d5 d6

]
[d1] [d2] [d3] [d4] [d5] [d6][
d1 d2

] [
d3 d4

] [
d5 d6

]

(5-5)

In Eq 5-4, the number of microbatches of each stage is respectively (2, 3, 2, 3). That
in Eq 5-5 is (2, 1, 6, 3). In addition to varying the number of partitions between different
stages, the partitions for computation and communicationwithin the same stage can also be
unequal. The partitions for forward and backward propagations in the same layer can also
be unequal. For the convenience of discussion, we regard all computations and commu-
nications in training DNN to belong to a set of processes. Based on the characteristics of
training DNN, there are 4N− 2 processes for N stages, marked as κ = ⟨κ1, κ2, . . . , κ4N−2⟩
according to the order of execution. Therefore, we can obtain that for k ≤ 2N−1, κk corre-
sponds to the forward computation of the (k+1)/2-th stage if k is an odd number, else it is
the forward communication between the k/2-th and the

(
k
2 + 1

)
-th stages. For k > 2N−1,

κk is the backward computation of the (k − 2N + 2)/2-th stage when k − 2N + 1 is an
odd number, otherwise it is the backward communication between the (k − 2N + 1)/2-th
and the (k− 2N − 1)/2-th stages. It can be set that the time cost of one microbatch in the
k-th forward process is Fk(pk) and that in the k-th backward process is Bk(pk). Assuming
the number of microbatches in the k-th forward process is pk and that in the k-th backward
process is qk, the relationships can be obtained as Eq 5-6.

Fk(pk) =

FP

k+1
2

(pk), k mod 2 = 1

FM
k
2
(pk), otherwise

Bk(qk) =

BP
N− k−1

2
(qk), k mod 2 = 0

BM
N− k

2
(qk), otherwise

(5-6)

With pk and qk, we can give the mathematical definitions of GPipe and BABYPIPE
to highlight their differences.

• In GPipe, pk and qk must satisfy that for 0 ≤ ∀i ≤ ∀j ≤ 2N − 1, pi = pj = qi =
qj = p.

155

Doctoral Dissertation of University of Electronic Science and Technology of China

• In BABYPIPE, it is allowed that ∃i, j s.t. pi ̸= pj, or qi ̸= qj, or pi ̸= qj. It is also
allowed that for 0 ≤ ∀i ≤ ∀j ≤ 2N − 1, pi = pj = qi = qj.

This indicates that GPipe is a set of BABYPIPE’s special cases when pi = pj = qi = qj
for 0 ≤ ∀i ≤ ∀j ≤ 2N − 1.

As mentioned above, some time-consuming processes in GPipe slow down the entire
training. It is mainly because Fk (or Bk) and pk (or qk) are not necessarily inversely propor-
tional in actual training. In some cases, there may exist a number p s.t. that Fk(x) = Fk(y)
for ∀x > y ≥ p. A similar phenomenon appears in Bk. If different processes choose
different partitions in this case (i.e., applying BABYPIPE), it may further reduce the total
training time, which will be better than all partition schemes of GPipe. For a more con-
crete explanation, we will list two sets of examples with two stages, shown as Fig 5-2 and
Fig 5-3.

The first example is for the forward propagation of a network whose minibatch-size
is P = 8 and time functions satisfy that FP

1 (2) = FP
1 (4) = 2t, FM

1 (2) = 2FM
1 (4) = 2t,

FP
2 (2) = 2FP

2 (4) = 2t. We draw the timelines of two schemes for GPipe and one for
BABYPIPE in Fig 5-2. Fig 5-2(a) is for the GPipe with 2 microbatches in one minibatch
where p1 = p2 = p3 = 2 and Fig 5-2(b) is for that with 4 microbatches where p1 =
p2 = p3 = 4. The best scheme of GPipe is Fig 5-2(a) with 8t training time for one
minibatch. Based on Fig 5-2(a), the communication in the first stage and computation
in the second stage can be further improved. If further dividing the microbatches in the
communication of the first stage, the computation process in the second stage can start
earlier. The scheme of BABYPIPE in Fig 5-2(c) combines the schemes of Fig 5-2(a) and
Fig 5-2(b) and takes the scheme as p1 = 2 and p2 = p3 = 4. Then, the training time
under BABYPIPE parallelism in Fig 5-2(c) is 7t better than the best scheme of GPipe,
accelerating the training speed by 14.29%.

The example of Fig 5-2 discusses the advantages of unequal data partitioning between
different processes in forward propagation. The next example discusses UEDP between
forward propagation and backward propagation. It can be set the minibatch-size is P = 8
and time functions satisfy that FP

1 (2) = FP
1 (4) = 2t, FM

1 (2) = FM
1 (4) = 2t, FP

2 (2) =
FP
2 (4) = 2t and BP

1 (2) = 2BP
1 (4) = 2t, BM

1 (2) = 2BM
1 (4) = 2t, BP

2 (2) = 2BP
2 (4) = 2t.

Then, we can draw the timelines for two schemes of GPipe and one for BABYPIPE in Fig
5-3. The scheme in Fig 5-3(a) takes 2 microbatches in one minibatch with 16t training
time, and Fig 5-3(b) takes 4 microbatches with 18t training time. It can be noted that the

156

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

GPU
0

CAL.

COM.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

GPU
1 CAL.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

Total Time = 8t

(a) GPipe (2 microbatches): 8t

GPU
0

CAL.

COM.

GPU
1 CAL.

Total Time = 10t

1st microbatch: 2t

d1 d2

2nd microbatch: 2t

d3 d4

3rd microbatch: 2t

d5 d6

4th microbatch: 2t

d7 d8

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

(b) GPipe (4 microbatches): 10t

GPU
0

CAL.

COM.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

GPU
1 CAL.

Total Time = 7t

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d3 d4

4th mbh: t

d3 d4

1st mbh: t

d1 d2

1st mbh: t

d1 d2

1st mbh: t

d1 d2

1st mbh: t

d1 d2

(c) BABYPIPE (2-4-4 microbatches): 7t

Figure 5-2 Forward propagation timeline for the GPipe and BABYPIPE in two

stages of GPUs where: FP
1 (2) = FP

1 (4) = 2t, FM
1 (2) = 2FM

1 (4) = 2t, FP
2 (2) =

2FP
2 (4) = 2t.

training time for the backward propagation in Fig 5-3(b) is 6t less than that in Fig 5-3(a).
Thus, if combining the scheme of forward propagation in Fig 5-3(a) and the scheme of
backward propagation in Fig 5-3(b), a better scheme of BABYPIPE can be obtained as
Fig 5-3(c). According to Fig 5-3(c), the training time under BABYPIPE parallelism is 14t
better than the best scheme of GPipe.

These two examples demonstrate that unequal data partitioning of BABYPIPE can

157

Doctoral Dissertation of University of Electronic Science and Technology of China

GPU
0

CAL.

COM.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

GPU
1 CAL.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

Total Time = 8t + 8t = 16t

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

1st microbatch: 2t

d1 d2 d3 d4

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

Forward Propagation Backward Propagation

2nd microbatch: 2t

d5 d6 d7 d8

(a) GPipe (2 microbatches): 8t + 8t = 16t

GPU
0

CAL.

COM.

GPU
1 CAL.

Total Time = 12t + 6t = 18t

1st microbatch: 2t

d1 d2

2nd microbatch: 2t

d3 d4

3rd microbatch: 2t

d5 d6

4th microbatch: 2t

d7 d8

d1 d2

1st mbh: 2t

d3 d4

2nd mbh: 2t

d5 d6

3rd mbh: 2t

d7 d8

4th mbh: 2t

d1 d2 d3 d4 d5 d6

1st mbh: 2t 2nd mbh: 2t 3rd mbh: 2t

d7 d8

4th mbh: 2t 1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

Forward
Propagation

Backward
Propagation

(b) GPipe (4 microbatches): 12t + 6t = 18t

GPU
0

CAL.

COM.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

GPU
1 CAL.

1st microbatch: 2t

d1 d2 d3 d4

2nd microbatch: 2t

d5 d6 d7 d8

Total Time = 8t + 6t = 14t

Forward
Propagation

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

1st mbh: t

d1 d2

2nd mbh: t

d3 d4

3rd mbh: t

d5 d6

4th mbh: t

d7 d8

Backward
Propagation

(c) BABYPIPE (2 microbatches for forward
propagation and 4 partitions for backward
propagation): 8t + 6t = 14t

Figure 5-3 Timeline with forward propagation and backward propagation for the

GPipe and BABYPIPE in two stages of GPUs where: FP
1 (2) = FP

1 (4) = 2t,

FM
1 (2) = FM

1 (4) = 2t, FP
2 (2) = FP

2 (4) = 2t and BP
1 (2) = 2BP

1 (4) = 2t,

BM
1 (2) = 2BM

1 (4) = 2t, BP
2 (2) = 2BP

2 (4) = 2t.

introduce better solutions than EDP, which can further improve the speed of parallel train-
ing. Data parallelism is one of the foundations of most existing parallel architectures.
Therefore, UEDP, which improves data parallelism, is significant for parallel training.

5.3.2 Formulas for BABYPIPE

Due to the introduction of UEDP, the training time of DNN using BABYPIPE is
not as easy to derive as using GPipe. However, solving optimization solutions requires
evaluation of the optimized solutions inevitably. Therefore, in this section, we present a
recurrence formula and provide a time-consuming recurrence calculation algorithm.

158

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Setting the begin time of the i-th microbatch in the k-th process is Tik, a recurrence
formula for BABYPIPE is

Tijk = max
(
Txij(k−1) + Fk−1,T(i−1)jk + Fk

)
(5-7)

where xi satisfies

xi − 1
pk−1

<
i
pk

≤ xi
pk−1

(5-8)

i.e., xi = ⌈(ipk−1)/pk⌉ where ⌈⌉ is upward rounding function.
It is complex to derive its analytical expression of the training time. In practice, we

can calculate the end time of each data based on the dependencies between each data in
each layer of DNN.We can set the end time of the j-th data in the k-th process as Ekj. Then,
the dependencies of Ekj can be derived as:

Ekj = max
(
E(k−1)zkj ,Ekykj

)
+ Fk (5-9)

where

zkj = min

(
pk ·

⌈
j
pk

⌉
,P
)

ykj = pk ·
(⌈

j
pk

⌉
− 1

) (5-10)

According to the Eq 5-9, Ekj is only determined by E(k−1)j and Ekykj . Thus, we can
use the recurrence formula with two layers of loops to calculate the training time under
BABYPIPE parallelism as Algorithm 5-1 assuming Fk is known.

Algorithm 5-1 Recurrence algorithm for the forward training time of one mini-
batch under BABYPIPE
Input : Fk(pk) and pk for ∀k, minibatch-size P
Output: Ekj for 1 ≤ k ≤ 2N − 1 and 1 ≤ j ≤ P

1 Initial Ekj = 0 for 0 ≤ k ≤ 2N − 1 and 0 ≤ j ≤ P
2 for k ∈ [1, 2N − 1] do
3 for j ∈ [1,P] do
4 Calculate zkj and ykj according to Eq 5-10
5 Calculate Ekj according to Eq 5-9

159

Doctoral Dissertation of University of Electronic Science and Technology of China

As the backward propagation under BABYPIPE parallelism has a similar process
with forward propagation, Algorithm 5-1 also applies to backward propagation, which
only needs to replace Ekj by Rkj, Fk by Bk and pk by qk. Although Algorithm 5-1 can
be utilized to obtain the training time under BABYPIPE parallelism, it will consume a
plethora of computational time due to its two layers of loops, especially in the genetic
algorithm. In the next section, when introducing the optimization algorithm for solving
BABYPIPE’s scheme, we will detail the improvement methods for Algorithm 5-1 to ac-
celerate the calculation of training time.

When Fk and Bk are given for ∀k and ∀pk, ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩
will determine the final training time under BABYPIPE parallelism. Therefore,
⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ can be regarded as the solution of BABYPIPE’s
scheme. Then, we can obtain the optimization problem of BABYPIPE as

minω = E(2N−1)P + R(2N−1)P (5-11)

where E(2N−1)P is determined by ⟨p1, p2, . . . , p2N−1⟩ and R(2N−1)P by ⟨q1, q2, . . . , q2N−1⟩.

5.3.3 Theoretical Analysis of Basic Functions

The key to solving the problem ofminimizing the total training time is to find the opti-
mal partition numbers ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩. Thus, the functions of FP

i (p),
FM
i (p), BP

i (p) and BM
i (p) are crucial. In realistic, these functions FP

i (p), FM
i (p), BP

i (p) and
BM
i (p) are nonlinear to the microbatch-size. It means they aren’t inversely proportional to

partition number p.
In realistic DNNs, the communication time is approximately proportional to data size

only when the data size is far more than bandwidth Bw. However, the communication cost
is approximately constant when the data size is less than a specific value (specific bytes).
This is because each communication requires a fixed minimum cost. Thus, a piecewise
function is feasible to fit the relationship between data size Dz and communication cost
Mc, shown as Eq 5-12.

Mc =

C2 · Dz, Dz ≥ C3

C1, Dz < C3

(5-12)

where C1, C2 and C3 are bandwidth Bw-related constants.
For the i-th layer of DNN, assuming the output data size of one minibatch as Dzi, the

160

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

function FM
i of one microbatch for FP can be written as Eq 5-13.

FM
i (p) =

C2 · Dzi

p
, p ≤ Dzi

C3

C1, p >
Dzi
C3

(5-13)

With the same constants C1, C2 and C3, the function of BM
i (p) is similar to FM

i (p).
For computation time, there is a similar phenomenon to communication time, i.e.,

when data is less than a specific size, the computation time will be relatively unchanged
with the data size. However, since the operation of the model is tensor calculation (ma-
trix calculation) involving multiple dimensions, it is not proportional to the size of one
dimension. For data parallelism based on microbatch, the inflection point is related to its
corresponding layer and the performance of devices. It can set the inflection point of the
i-th layer as γFi for forward computation and γBi for backward computation. When devices
are given, the least time required for computation of a small amount is also given, which
can be set as P1. The functions of computation time with respect to partition number p
can be represented as Eq 5-14.

FP
i (p) =

βFi
p

, p ≤ γFi

P1, p > γFi

BP
i (p) =

βBi
p

, p ≤ γBi

P1, p > γBi

(5-14)

where βFi and βBi are the time-cost for FP and BP when p = 1.
For a homogeneous GPU cluster configured for a given hardware environment, the

constants C1, C2, C3 and P1 are stationary and can be obtained by statistics of multiple
communication experiments. The output data sizes are relatively explicit and can be ob-
tained by bytes of data. The βFi , β

B
i γFi and γBi are implicitly related to the intrinsic matrix

operation of the layers. However, these inflection points are relatively stable and available
based on statistical methods.

5.3.4 Analysis for Optimality of BABYPIPE

According to properties of basic functions and GPipe, we can obtain a theorem about
the optimal partition number.

161

Doctoral Dissertation of University of Electronic Science and Technology of China

Theorem 5.1 Assuming the set of optional partitions is
〈
β1, β2, . . . , βη

〉
where β1 =

1 < β2 < · · · < βη = P and the optimal partition number of GPipe is βα where α < η,
that means pk = βα for ∀k, there must exist γ s.t. Fγ(βα) = Fγ(βα+1).

Theorem 5.1 can be proved by reduction to absurdity.
Proof: According to the property of basic function, the following relationship is ten-

able for ∀γ.

Fγ(βα) ≥ Fγ(βα+1)

If Fγ(βα) > Fγ(βα+1), it can be derived that the partition βα+1 is better than βα. It contra-
dicts with that βα is the optimal partition number. Thus, Theorem 5.1 is proved.

■
With Theorem 5.1, we can obtain a relationship between the optimal solutions of

GPipe and BABYPIPE.
Theorem 5.2 (1) If Fγ(βα−1) > Fγ(βα) = Fγ(βα+1) for ∀γ, then pk = βα is also the

optimal solution of BABYPIPE, and the best scheme of GPipe equals to that of BABYP-
IPE. (2) If pk is the optimal solution of BABYPIPE and better than GPipe, then there must
exist i ̸= j s.t. pi ̸= pj.

Theorem 5.2 reveals that the theoretical optimal training scheme of BABYPIPEmust
be no worse than that of GPipe.

Proof: For the first property of Theorem 5.2, we use the inductive method to prove
it. Assuming the number of processes in DNN is M, for M = 1, the first property of
Theorem 5.2 is obviously tenable. ForM = 2, it can be assumed that the optimal solution
of BABYPIPE is ⟨p1 = a1, p2 = a2⟩. As the GPipe belongs to BABYPIPE, the solution
of BABYPIPE must be no worse than GPipe. When a1 = a2, the optimal solution of
BABYPIPE is also that of GPipe. In this case, Theorem 5.2 is tenable. For a1 ̸= a2,
when only one of a1, a2 equals to βα, it can be set a1 = βα and a2 ̸= βα. As Fγ(βα−1) >

Fγ(βα) = Fγ(βα+1), thus it can be derived that ⟨p1 = a1, p2 = a2⟩ is worse than p1 =
βα = p2. When a1 ̸= βα and a2 ̸= βα, it can be proved that p1 = a1, p2 = a2 must
be worse than (p1 = βα, p2 = a2) or (p1 = a1, p2 = βα). (p1 = βα, p2 = a2) or
(p1 = a1, p2 = βα) are both worse than (p1 = βα, p2 = βα). Thus, (p1 = a1, p2 = a2) is
worse than (p1 = βα, p2 = βα). Therefore, the first property is tenable forM = 2.

Assuming the first property of Theorem 5.2 is tenable for ∀M ≤ K − 1. ForM = K,
we can assume there exists a solution of BABYPIPE better than pk = βα. Thus, there

162

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

must exist one piece of data at one layer with an earlier ending time in the scheme of
BABYPIPE than that of GPipe and its previous microbatches all have the same ending
time in BABYPIPE as that of GPipe. It can be set that the index of this layer is l ≤ K.
Thus, for ∀k ≤ l − 1, pk = βα and pl ̸= βα according to the assumption that Theorem 5.2
is tenable for ∀M ≤ K − 1. As Fγ(βα−1) > Fγ(βα) = Fγ(βα+1), thus ∀pl ̸= βα the ending
time of any piece data in the l-th layer must be not earlier than that of pl = βα. Thus,
Theorem 5.2 is tenable for M = K. Thus, the first property is proved.

As the first property is tenable, the second property clearly holds, otherwise, it con-
tradicts the condition that the solution of BABYPIE is better than that of GPipe.

■
In fact, all the training schemes of GPipe are special cases of BABYPIPE, which

means the schemes of BABYPIPE include that of GPipe. Therefore, our subsequent al-
gorithm considers using the optimal solution of GPipe as the initial solution. This setting
ensures that the obtained scheme of BABYPIPE must be not inferior to GPipe.

5.4 Algorithm Design: Double-chromosome Genetic Algorithms for
UMPIPE

It can be assumed that the minibatch-size P has Q possible cases for partitioning.
Therefore, GPipe also has Q feasible solutions as it requires EDP. As BABYPIPE allows
UEDP for different processes, it hasQ4N−2 feasible solutions, which are far more than that
of GPipe and increase exponentially with the number of stages. In the previous section, we
analyze that as the solution set expands, BABYPIPE has a better theoretical optimal so-
lution. Leveraging dynamic programming, recurrence algorithm or enumerate algorithm
requires large computational complexity. Thus, one of the keys is to find an algorithmwith
acceptable complexity that can find a better solution than the GPipe optimal solution.

As ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ can be regarded as the solution of BABYP-
IPE, we consider using the genetic algorithm to search the optimal solution of Eq 5-11. In
genetic algorithms, the fitness of each individual is related to the training time correspond-
ing to its solution. According to Algorithm 5-1, calculating the fitness of all individuals
in each generation will require three layers of loops, which consume a large amount of
time. Therefore, we also propose a method to eliminate loops through GPU-based matrix
operations, significantly improving the search speed of genetic algorithms.

163

Doctoral Dissertation of University of Electronic Science and Technology of China

5.4.1 DGAP: Dual Chromosomes-based Genetic Algorithm

Referring to the existing terms of genetic algorithms [152, 166], the base components
of DGAP are set as:
(1) Gene, Chromosome and Individual: we regard the partition number pk or qk of each

process as a gene. Generally, an individual corresponds to a chromosome, where C
and D can merge into one chromosome. However, in BABYPIPE, the data parti-
tions for forward and backward propagation are mutually independent, and their cor-
responding training time is a linear sum of forward and backward as Eq 5-11. Thus, we
set each individual has two chromosomes: first is a vectorC = ⟨p1, p2, . . . , p2N−1⟩ and
the second is a vector D = ⟨q1, q2, . . . , q2N−1⟩ both with 2N − 1 genes corresponding
to an optimal data partition scheme of the BABYPIPE.

(2) Fitness and Chromosomes selector: An individual’s fitness equals the training
time of DNN corresponding to individual’s genes-determined partition scheme un-
der BABYPIPE parallelism (called time corresponding to the individual). The fitness
of the chromosome C is equal to its corresponding forward propagation time E(2N−1)P

and that of D is to backward time R(2N−1)P.DGAP sorts the two sets of chromosomes
of all individuals separately and then selects better parts of each set of chromosomes
in pairing and crossover respectively.

(3) Crossover: In this chapter, we set the crossover to occur between four chromosomes
Cα = ⟨pα1 , pα2 , . . . , pα2N−1⟩, Cβ = ⟨pβ1 , pβ2 , . . . , pβ2N−1⟩, Dγ = ⟨qγ1 , qγ2 , . . . , qγ2N−1⟩,
Dη = ⟨qη1 , qη2 , . . . , qη2N−1⟩. Their crossover is defined as separately extracting a
part of genes from them to gain two new chromosomes C(new) and D(new) to con-
struct the children individual, such as C(new) = ⟨pα1 , pβ2 , pβ3 , . . . , pα2N−1⟩ and D(new) =
⟨pη1 , pγ2 , pη3 , . . . , pη2N−1⟩.

(4) Mutation: Mutation is replacing some elements of a chromosome by randomly gen-
erated genes.

(5) Population regenerationmechanism: The genetic algorithm for BABYPIPE applies
elitist strategy [152] to combine the parent individuals with their children individuals
to jointly compete to produce the next generation.
Then, we can present the dual-chromosome genetic algorithm for BABYPIPE in Al-

gorithm 5-2, which uses Algorithm 5-1 to calculate the fitness.

Algorithm 5-2 is a conventional version. As Algorithm 5-2 calls Algorithm 5-1

164

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Algorithm 5-2 Dual-chromosome genetic algorithm for BABYPIPE (DGAP):
using the conventional calculation procedure
Input : Fk(p) and Bk(q) for ∀k, p, q. P, Np, Ng and Nc. W = [w0,w1, . . . ,wQ−1]

of optional partitions, i.e., p ∈ W and q ∈ W.
Output: ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

1 Set Q individuals both with equal partitions per layer, where the chromosomes of
the i-th individuals are as Ci = Di = ⟨wi−1,wi−1, . . . ,wi−1⟩

2 Randomly initial the rest Np − Q individuals
3 for generation ∈ [1,Ng] do
4 for i ∈ [1,Np] do
5 Initial two arrays Ekj = 0 and Rkj = 0 for 0 ≤ k ≤ 2N − 1 and 0 ≤ j ≤ P
6 for k ∈ [1, 2N − 1] do
7 for j ∈ [1,P] do
8 Calculate Ekj and Rkj based on Eq 5-9

9 Obtain the fitness of h(Ci) = E(2N−1)P and h(Di) = R(2N−1)P

10 for i ∈ [1,Nc] do
11 Select and Pair the chromosomes Cα, Cβ, Dγ and Dη with better fitness
12 Execute crossover and mutation to generate children chromosomes C(new)

and D(new)

13 Initial two arrays Ekj = 0 and Rkj = 0 for 0 ≤ k ≤ 2N − 1 and 0 ≤ j ≤ P
14 for k ∈ [1, 2N − 1] do
15 for j ∈ [1,P] do
16 Calculate Ekj and Rkj based on Eq 5-9

17 Obtain the fitness of children individuals
18 Sort the children and parents according to the fitness of individuals, and

retain the best Np individuals as the next generation
19 Set the genes of the individuals with the best fitness as solution

⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

to calculate the fitness (i.e., training time) of each individual, it requires four layers
of loops, including loop in generation index, loop in individual index i, loop in net-
work layer index k and loop in input data index j. Due to too many loop layers, Al-
gorithm 5-2 will take a long time to search for an optimal solution with time com-
plexity O (Ng · P · (Np + Nc) · (4N − 2)), which is mainly consumed in the calculation
of fitness. To enable genetic algorithms feasible to solve the optimal data partitioning
⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ in practical applications, it is necessary to reduce the
time spent on each iteration of the genetic algorithm. We will introduce the improvement
way to accelerate DGAP subsequently. Before that, we analyze the convergence of the
dual chromosome strategy theoretically.

165

Doctoral Dissertation of University of Electronic Science and Technology of China

5.4.2 Analysis of Convergence for Dual-Chromosomes Strategy

In one minibatch, all the backward propagations need to start after the ending of all
forward propagation, so the optimization of ω in Eq 5-11 can be divided into two inde-
pendent objectives minE(2n−1)P and minR(2n−1)P. Correspondingly, we set one individual
to have two chromosomes C and D in DGAP.

Next, we can analyze the convergence probability in each generation to demonstrate
the superiority of two chromosomes compared to using one chromosome.

It can be obtained that the number of feasible solutions for BABYPIPE is Q4N−2. We
can set all genes of individuals in each generation to be randomly generated again without
considering the evolutionary ability of the crossover and mutation in genetic algorithms.
Then, the probability of obtaining the theoretically optimal individual in one generation
is φ1 = Np

Q4N−2 . Thus, for one chromosome, the probability of obtaining the global optimal
solution at the g-th generation is (1 − φ1)

g−1 ·φ1. Therefore, the expectation of generations
required to achieve theoretically optimal individuals is

+∞∑
g=1

g · (1 − φ1)
g−1 · φ1 = 1

φ1
= Q4N−2

Np
(5-15)

For two chromosomes, the probabilities of obtaining the theoretically optimal C and
D in one generation are both φ2 = Np

Q2N−1 . The probability of obtaining the global optimalC
at the g-th generation is (1 − φ2)

g−1 ·φ2, which is same toD. Therefore, the expectation of
generations required to achieve theoretical optimal C chromosome is 1

φ2
. As C and D are

independent, the expectation of generations required to both achieve theoretical optimal
individual for dual-chromosomes-based genetic algorithm (DGAP) is 2 1

φ2
= 2Q2N−1

Np
which

is far less than that of one-chromosome-based genetic algorithm.
This huge difference between a dual-chromosomes-based genetic algorithm and a

one-chromosome-based genetic algorithm comes from that:
(1) For one chromosome with 4N − 2 genes, even if the first 2N − 1 genes reach the

theoretical optimal, they still need to be replaced when the last 2N − 1 genes don’t
achieve optimal.

(2) For dual chromosomes respectively with 2N − 1 genes, when the 2N − 1 genes of C
chromosome reach theoretical optimal, the evolution ofC chromosome can be stopped
regardless of the evolutionary state of the D chromosome. The same goes for the D
chromosome.

166

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

This conclusion is also valid when considering the evolutionary ability of crossover
and mutation in genetic algorithms. For the general situation considering crossover and
mutation, it can be proved that the dual-chromosome-based genetic algorithm has a higher
probability of reaching the optimal solution for each generation than the one-chromosome-
based genetic algorithm. Therefore, the solution of DGAP in each generation will be
statistically superior to GAP.

In subsequent experiments, we will compare the convergence performance of GAP
and DGAP in solving the optimal solution of BABYPIPE.

5.4.3 OiDGAP: One-level improved DGAP

To accelerate DGA for BABYPIPE, we improve Algorithm 5-2 from two aspects,
including eliminating the loop in the individuals’ index (the “for loop” of line 4 and line
10 in Algorithm 5-2) and eliminating the loop in input data’s index (the “for loop” of line
7 and line 15 in Algorithm 5-2).

Eliminating the loop in the individual index indicates simultaneously calculating the
training time corresponding tomultiple individuals. It can be set that the available partition
numbers construct a one-dimensional array W = [w0,w1, . . . ,wQ−1], the corresponding
time functions of each layer construct two two-dimensional arrays F = {fkj}(2N−1)×Q and
B = {bkj}(2N−1)×Q where fkj = Fk+1 (wj) and bkj = Bk+1 (wj) for 0 ≤ k < 2N − 1 and 0 ≤
j < Q, the indexes for all individuals’ genes in arrayW construct a two-dimensional array
G = {gik}Np×(4N−2) which means the partition number of the (k + 1)-th layer determined
by the (i + 1)-th individual is

W [gik] = wgik =

p(i+1)(k+1), if k < 2N − 1

q(i+1)(k+2−2N), others
(5-16)

Therefore, when W is given, the array G is equivalent to genes in the genetic algo-
rithm. As the calculations of training time for forward propagation and backward propa-
gation have similarities, we only discuss the calculation for the training time of forward
propagation. The array, composed of the k-th gene of all individuals, can be obtained
as G[:, k] where 0 ≤ k < 2N − 1, thus the array of its corresponding time functions
of all individuals are F [k,G[:, k]] and that of the partition numbers are W [G[:, k]]. The
microbatch-sizes of the k-th process for all individuals are

⌈
P

W[G[:,k]]

⌉
. It can be assumed

that the end time of the j-th data in the k-th forward process for the (i+ 1)-th individual is
eijk which can construct a three-dimensional array E = {eijk}Np×(P+1)×2N. Thus, the recur-

167

Doctoral Dissertation of University of Electronic Science and Technology of China

rence relationship for calculating the fitness of multiple individuals simultaneously can be
derived as y

Z(e) = min
(
Z(b) +

⌈
P

W [G[:, k]]

⌉
,P + 1

)

E
[
:,Z(b)[:] : Z(e)[:], k

]
= F [k,G[:, k]]

+ max
(
E
[
:,Z(e)[:] − 1, k − 1

]
,E
[
:,Z(b)[:] − 1, k

])
Z(b) = Z(e)

⟲ (5-17)

where the array Z(b) indicates the starting index of data whose initial value is [1, 1, . . . , 1]Np

and Z(e) is end index. Due to the possible differences in the number of partitions corre-
sponding to the same layer for multiple individuals, the number of columns required to be
broadcast in each row of the second formula of Eq 5-17 will be different. Generally, the
programming with array operation does not support imbalanced broadcasting, hence using
matrix multiplication to achieve this function to achieve it. Then, the genetic algorithm
for BABYPIPE after one level of improvement can be shown in Algorithm 5-3.

Assuming executed on one or multiple GPUs with sufficient parallel capability, Al-
gorithm 5-3 has the time complexity as O (Ng · P · (4N − 2)).

5.4.4 TiDGAP: Two-level improved DGAP

Eliminating the loop in input data indicates simultaneously calculating the end time
of multiple microbatches, i.e., obtaining E[i, :, k] after one operation.

As shown in Eq 5-9, the start time of the j-th data in the k-th process mainly de-
pends on the maximum end time between the zkj-th data in the (k − 1)-th process (called
preprocess baseline) and the ykj-th data in the k-th process (called preorder baseline).
Therefore, we can divide the start time of data in the k-th process into pk parts (i.e., pk
microbatches), where all data in the same part has the same start time. Thus, we only
need to quickly calculate the start time of one data in each part to know the start time
of other data in the same part. Assuming the end time of each data in the (k − 1)-th
process is known, we can obtain the preprocess baseline for each microbatch in the k-th
process is

[
E
[
i,
⌈
P
pk

⌉
, k − 1

]
,E
[
i, 2

⌈
P
pk

⌉
, k − 1

]
, . . . ,E [i,P, k − 1]

]
which can be set as[

η1, η2, . . . , ηpk
]
for the sake of presentation. Therefore, the start time of the 1st micro-

batch in the k-th process is η1, and that of the 2nd microbatch is max (η1 + f, η2) where f
means the time function. By mathematical induction, we derive a provable property that

168

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Algorithm 5-3 One-level improved DGA for BABYPIPE (OiDGAP): simulta-
neously calculating the training time corresponding to multiple individuals
Input : F = {fkj}(2N−1)×Q, B = {bkj}(2N−1)×Q, P, W = [w0,w1, . . . ,wQ−1]. Np,

Ng and Nc.
Output: G

[
argmin

(
H(C) + H(D)

)]
1 Set Q individuals both with equal partitions per layer as

G[i, :] = [W[i],W[i], . . . ,W[i]]
2 Randomly initial the rest Np − Q individuals
3 Set T = {tij = j}Np×(P+1), E = {eijk = 0}Np×(P+1)×2N and

R = {rijk = 0}Np×(P+1)×2N
4 for k ∈ [0, 2N − 2] do
5 Initial Z(b) = [1, 1, . . . , 1]Np

6 while min
(
Z(b)

)
< P + 1 do

7 Z(e) = min
(
Z(b) +

⌈
P

W[G[:,k]]

⌉
,P + 1

)
8 Z = where

(
Z(b) < P + 1

)
9 M =

(
T [Z] ≥ Z(b) [Z]

)
∗
(
T [Z] < Z(e) [Z]

)
10 A1 = E [k + 1]

[
Z,Z(b) [Z] − 1

]
and A2 = E [k]

[
Z,Z(e) [Z] − 1

]
11 E [k + 1,Z] + = F [k,G[Z, k]] + M ∗ max (A1,A2)
12 Z(b) = Z(e)

13 Use the similar way as line 4-12 to calculate R
14 Obtain the arrays of fitness of H(C) = E [:,P + 1, 2N] and H(D) = R [:,P + 1, 2N]
15 for generation ∈ [1,Ng] do
16 for i ∈ [1,Nc] do
17 Execute crossover and mutation to generate children Ḡ
18 Obtain H̄(C) and H̄(D) of children with similar way as line 4-14 ;

// Two-layer loops
19 Concatenate children and parent individuals as G = concat

(
G, Ḡ

)
,

H(C) = concat
(
H(C), H̄(C)

)
, H(D) = concat

(
H(D), H̄(D)

)
20 Update individuals as: U = argsort

(
H(C) + H(D)

)
, G = G [Sort [: Np]] with

its fitness H(C) = H(C) [U [: Np]] and H(D) = H(D) [U [: Np]]

the start time of the j-th microbatch in the k-th process is

j
max
l=1

(ηl + (j − l)f) =
j

max
l=1

(ηl − lf) + jf (5-18)

Thus, we only need to calculate maxjl=1 (ηl − lf) for each j. We can construct a array
as PB =

[
η1 − f, η2 − 2f, . . . , ηj − jf, . . . , ηpk − pkf

]
. Significantly, maxjl=1 (ηl − lf) is ex-

actly themaximumvalue of the first j items for the arrayPB, which can be quickly obtained
by calling the ‘cummax’ function of array operation or using upper triangular matrix (if

169

Doctoral Dissertation of University of Electronic Science and Technology of China

without ‘cummax’ function). Then, cummax(PB) + [1, 2, . . . , pk] f is the array composed
of the start time of each data in the k-th process.

This approach still applies to calculating the starting time of multiple data of multiple
individuals simultaneously by combining with Algorithm 5-3, which can simultaneously
eliminate two layers of loops in Algorithm 5-2 including the loop in the individuals’ index
(the “for loop” of line 4 and line 10 in Algorithm 5-2) and the loop in input data’s index
(the “for loop” of line 7 and line 15 in Algorithm 5-2). Then, the two-level improved DGA
for BABYPIPE simultaneously calculating the starting time of multiple data and multiple
individuals can be seen in Algorithm 5-4.

On one or multiple GPUs with sufficient parallel capability, the time complexity of
Algorithm 5-4 is O (Ng · (4N − 2)) which is approximately 1

P of Algorithm 3.
Then, we can list the time complexity of DGAP (Algorithm 5-2), OiDGAP (Algo-

rithm 5-3) and TiDGAP (Algorithm 5-4) in Table 5-2. From the comparison of Table
5-2, our proposed TiDGAP has a much lower time complexity that provides a method to
quickly calculate the training time corresponding to different data partitioning schemes
and allows BABYPIPE (unequal data partitions for microbatch-based pipeline paral-
lelism) to apply in the practical optimization and acceleration of parallel training. With the
increase ofNp and P, the execution time of TiDGAP in real GPU devices will also increase
slowly, while it is still much less than DGAP and OiDGAP, suitable for optimization of
parallel training for large-scale DNN. In subsequent experiments, we will also evaluate
the execution time of TiDGAP compared to DGAP and OiDGAP.

5.5 Experimental Results and Analysis

5.5.1 Experiment Settings

For the sake of the comprehensive evaluations of the unequal data partitions-based
parallelism (i.e., UMPIPE) and two-level improved dual-chromosome genetic algorithm
(TiDGAP), we carry out four groups of experiments from various aspects including:
(1) EX1: Comparing TiDGAP with TiGAP to demonstrate the optimization effect of dual-

chromosome strategy;
(2) EX2: Comparing TiDGAP with OiDGAP and DGAP to demonstrate the acceleration effect on the

evolution of two-level improvement with array operation;
(3) EX3: Comparing TiDGAPwith baselines local greedy algorithm and global greedy-based dynamic

programming to demonstrate the optimality of DGAP for UMPIPE.

170

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Algorithm 5-4 Two-level improved DGA for BABYPIPE (TiDGAP): simulta-
neously calculating the starting time of multiple data and multiple individuals
Input : F = {fkj}(2N−1)×Q, B = {bkj}(2N−1)×Q, P, W = [w0,w1, . . . ,wQ−1]. Np,

Ng and Nc.
Output: G

[
argmin

(
H(C) + H(D)

)]
1 Set Q individuals both with equal partitions per layer as

G[i, :] = [W[i],W[i], . . . ,W[i]]
2 Randomly initialize the rest Np − Q individuals
3 Set T = {tij = j}Np×(P+1), E = {eijk = 0}Np×(P+1)×2N and

R = {rijk = 0}Np×(P+1)×2N, Z
r = {tij = i}Np×(P+1) .reshape(shape = (−1,))

4 for k ∈ [0, 2N − 2] do
5 Set A = {0}Np×(P+1) andM =

⌈
T

W[G[:,k]]

⌉
6 Obtain the index of the reference end time in the previous process as

Z = M ∗ (W [G[:, k]])
7 Calculate the basic time for each individual of current pk as

M1 = M ∗ (F[k,G[:, k]])
8 Obtain the array of PB as

PB = E[k][Zr,Z].reshape(shape = (Np,P + 1)) − M1
9 A[:, 1 :] = cummax (PB[:, 1 :], dim = 1)
10 E [k + 1] + = A + (M + 1) ∗ F[k,G[:, k]]
11 Use the similar way as line 4-10 to calculate R
12 Obtain the arrays of fitness of H(C) = E [:,P + 1, 2N] and H(D) = R [:,P + 1, 2N]
13 for generation ∈ [1,Ng] do
14 Use array operation to execute the crossover and mutation to generate

children Ḡ
15 Obtain fitness H̄(C) and H̄(D) of children with similar way as line 4-10 ;

// One loop
16 Concatenate the children and parent individuals as G = concat

(
G, Ḡ

)
,

H(C) = concat
(
H(C), H̄(C)

)
, H(D) = concat

(
H(D), H̄(D)

)
17 Update individuals as: U = argsort

(
H(C) + H(D)

)
, G = G [Sort [: Np]] with

its fitness H(C) = H(C) [U [: Np]] and H(D) = H(D) [U [: Np]]

(4) EX4: Comparing UMPIPE with GPipe, UMPipeDream and PipeDream to demonstrate the supe-

riority of UEDP.

EX1 and EX2 are conducted on a randomly generated simulation dataset, which is
beneficial for executing sufficient experiments. EX3 and EX4 are conducted on real par-
allel training in multiple GPUs, which is conducive to demonstrating the advantages and
feasibility simultaneously of our proposed UMPIPE architecture and TiDGAP algorithm.
The baseline algorithms in EX3 represent that:
(1) Local Greedy Algorithm for UMPIPE (LG): For each process, select the number of

171

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 5-2 The Description and Time Complexity of Genetic Algorithm and its Im-

proved Algorithms for BABYPIPE.
Algorithm Description Time Complexity Ratio
DGAP Using recurrence algorithm with

three layers of loops to calculate the
training time corresponding to indi-
viduals

O (Ng · P · (Np + Nc) · (4N − 2)) 1

OiDGAP Simultaneously calculating the
training time corresponding to
multiple individuals

O (Ng · P · (4N − 2)) 1
Nc+Np

TiDGAP Simultaneously calculating the
starting time of multiple data corre-
sponding to multiple individuals

O (Ng · (4N − 2)) 1
(Nc+Np)·P

partitions that make the current process have the earliest end time. The algorithm can
be seen in Algorithm 5-5.

(2) Global Greedy-based Dynamic Programming for UMPIPE (GG): For each process,
selecting the number of partitions that make the last process have the earliest end
time, whose algorithm can be seen in Algorithm 5-6. In Algorithm 5-6, the parameter
‘rounds’ can be flexibly set and can also be replaced by that ∄C′ better than C which
is a convergence condition of Algorithm 5-6.

Algorithm 5-5 Local greedy for UMPIPE (LG)
Input : Fk(p), Bk(q); P;W = [w0,w1, . . . ,wQ−1]
Output: ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

1 for k ∈ [0, 4N − 3] do
2 if k < 2N − 1 then
3 Choose the pk inW which makes EkP to take the minimum value
4 else
5 Choose the qk inW which makes RkP to take the minimum value

Each group of experiments adopts the control variables to ensure the reliability of
comparisons. In EX1, the indicators are the optimization results over generations and the
probability of finding the global optimal solution over generations to demonstrate the con-
vergence of dual-chromosome strategy, where the optimization results present the parallel
training time corresponding to the optimization solutions. EX2 is mainly used to observe
the execution time of different algorithms controlling the number of individuals (Np) and

172

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Algorithm 5-6 Global greedy-based dynamic programming for UMPIPE (GG)
Input : Fk(p), Bk(q); P;W = [w0,w1, . . . ,wQ−1]
Output: ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

1 (Randomly or specifically) initial a partition scheme as C = ⟨p1, . . . , p2N−1⟩ and
D = ⟨q1, . . . , q2N−1⟩

2 for i < rounds do
3 for k ∈ [0, 4N − 3] do
4 if k < 2N − 1 then

5 Choose the p′
k inW s.t. E(2N−1)P (C′) =

Q−1
min
l=0

(
E(2N−1)P (C|pk=wl)

)
where C|pk=wl means only changing the partition number of the k-th
process to wl

6 Update pk = p′
k, C = C′

7 else
8 Choose the q′

k inW to make R(2N−1)P (D′) take the minimum value
9 Update qk = q′

k, D = D′

generations (Ng) in different scales. EX3 is to observe the stable optimization results of
the different algorithms. EX4 is to observe the optimal training time and convergence
under UMPIPE parallelism, compared with other parallelism. We test a large number of
instances in each group of experiments, and instances from the same group of experiments
point to similar conclusions. Therefore, we only provide a subset of them in this chap-
ter. Then, the optimization algorithm is launched on a desktop and the realistic parallel
training is launched on the servers. The configurations of them are as follows.

• Program version: Python 3.7 + Pytorch 1.13.1;
• Desktop: NVIDIA GeForce RTX 3060 Ti @ 8GB;
• Servers: NVIDIA TESLA V100 @ 32GB × 2.

5.5.2 EX1: Evaluation of Dual-Chromosome Strategy of TiDGAP Com-
pared with TiGAP

To observe the optimization effect of the dual-chromosome strategy, we compare
TiDGAP with TiGAP in the simulation scenarios. In the simulation scenarios, we ran-
domly generate F = {fkj}(2N−1)×Q and B = {bkj}(2N−1)×Q. As the outcomes from different
random distributions echo the consistent trends and results, we only present the results
obtained from the uniform distribution U = [1, 100] ∩ N∗.

Firstly, we observe the trends of optimization results over generations in several sce-
narios, including (N = 10,P = 64), (N = 10,P = 512), (N = 20,P = 512) and

173

Doctoral Dissertation of University of Electronic Science and Technology of China

(N = 100,P = 1024). In experiments, we set the number of individuals as Np = 100, and
the number of generations as Ng = 100, and the algorithms don’t set equal partitions into
initial states (i.e., random initialization). Then, we plot the results in Fig. 5-4.

 TiGAP
 TiDGAP

(a) (N = 10,P = 64)

 TiGAP
 TiDGAP

(b) (N = 10,P = 512)

 TiGAP
 TiDGAP

(c) (N = 20,P = 512)

 TiGAP
 TiDGAP

(d) (N = 100,P = 1024)

Figure 5-4 The optimization results (corresponding to time for training one

minibatch) over generations in randomly generated basic time arrays comparing

TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100], ran-

domly initializing Np individuals.

From Fig. 5-4, the curves of TiDGAP with dual-chromosome strategy remain lower
than that of TiGAP. The unique difference between TiDGAP and TiGAP is the number of
chromosomes per individual in genetic algorithms. TiDGAP and TiGAP both have 4N−2
genes in one individual. The two chromosomes of the individual in TiDGAP are composed
of 2N − 1 genes respectively, while the individual in TiGAP only has one chromosome.
The comparative results in Fig. 5-4 show that the usage of the dual-chromosome strategy
is beneficial for improving convergence of GAP, which is consistent with the analysis
in Section 5.4.2. The time costs of forward and backward propagation in UMPIPE are

174

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

independent mutually. Therefore, setting two chromosomes to represent forward prop-
agation and backward propagation respectively has lower expected generations than the
single-chromosome to achieve the optimal solution of UMPIPE. The statistical indicator
(lower expected generations) points to better optimization results (corresponding to lower
training time under UMPIPE parallelism) over the generation as Fig. 5-4. For the sake
of observation of the quantitative comparison between TiDGAP and TiGAP in Fig. 5-4,
we have listed the optimization results of TiDGAP and TiGAP at the 100-th generation
in Table 5-3 where ϵTiGAPTiDGAP = TiGAP−TiDGAP

TiGAP means the reduction magnitude of TiDGAP
in training time compared to TiGAP. From Table 5-3, TiDGAP within 100 generations
reduces the training time under UMPIPE by 18.33%, 64.02%, 47.88% and 20.60% com-
pared to TiGAP.

Table 5-3 The quantitative optimization results of TiDGAP and TiGAP at the 100-

th generation in the experiments of Fig. 5-4.
Scenarios TiDGAP TiGAP ϵTiGAPTiDGAP

(N = 10,P = 64) 833 1020 18.33%
(N = 10,P = 512) 671 1865 64.02%
(N = 20,P = 512) 3601 6909 47.88%

(N = 100,P = 1024) 75765 95419 20.60%

The experiments in Fig. 5-4 do not set the solution of GPipe as one of the initial
individuals. To verify the advantages of dual-chromosome strategy for UMPIPE over
single chromosome have universality, we carry out experiments in two combinations of
(N = 10,P = 64) and (N = 10,P = 512) by setting equal partitions into initial states
as the line 1 in Algorithm 5-4. Then, we plot the optimization results over generations of
TiDGAP and TiGAP in Fig. 5-5. In Fig. 5-5, we also draw a straight line paralleling to the
horizontal axis to represent the optimal training time of DNN under GPipe parallelism.
From Fig. 5-5, the convergence of TiDGAP to solve the scheme of UMPIPE is still better
than that of TiGAP. This also confirms once again that the dual-chromosome strategy
is more suitable for UMPIPE than the single-chromosome. Moreover, the solutions of
TiDGAP and TiGAP are both better than those of GPipe, which proves that the UMPIPE
architecture is superior to GPipe in the randomly generated basic time functions. This
phenomenon can reflect the significance of UMPIPE. In order to evaluate the performance
of TiDGAP and UMPIPE in this scenario, we list the optimization results at the 100-th

175

Doctoral Dissertation of University of Electronic Science and Technology of China

generation in Table 5-4 where εGPipeTiDGAP = GPipe−TiDGAP
TiDGAP means the improvement ratio of

TiDGAP (also representing UMPIPE) in training speed compared to GPipe.

 TiGAP
 TiDGAP
 GPipe

(a) (N = 10,P = 64)

 TiGAP
 TiDGAP
 GPipe

(b) (N = 10,P = 512)

Figure 5-5 The optimization results (corresponding to training time for one

minibatch) over generations in randomly generated basic time arrays comparing

TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100], using

the optimal GPipe solution as the initial individuals.

Table 5-4 The quantitative optimization results of TiDGAP, TiGAP at the 100-th

generation and that of GPipe in the experiments of Fig. 5-5 for N = 10, setting

equal partitions into initial states.
Scenarios GPipe TiDGAP TiGAP ϵTiGAPTiDGAP εGPipeTiDGAP
P = 64 2158 926 1129 17.98% 1.33×
P = 512 1863 498 1142 56.39% 2.74×

From Table 5-4, the parallel training scheme of UMPIPE solved by the TiDGAP
algorithm has a speed increase of 1.33× and 2.74× respectively in (N = 10,P = 64) and
(N = 10,P = 512) compared to GPipe, which is consistent with the analysis of UMPIPE’s
optimality in Section 5.3.4.

To further evaluate the convergence of TiDGAP, we carry out experiments in small-
scale scenarios including (N = 2,P = 512), (N = 3,P = 64), (N = 5,P = 8),
(N = 12,P = 2). We use an enumerated algorithm to obtain the theoretical optimal solu-
tion of UMPIPE. In each scenario, we execute 100 instances, record the generations when
the algorithm reaches the theoretical optimal for each instance, and calculate the proba-
bility of achieving global optimization over generations. The genetic algorithm in GAP

176

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

 TiGAP
 TiDGAP

(a) (N = 2,P = 512)

 TiGAP
 TiDGAP

(b) (N = 3,P = 64)

 TiGAP
 TiDGAP

(c) (N = 5,P = 8)

 TiGAP
 TiDGAP

(d) (N = 12,P = 2)

Figure 5-6 The probabilities of achieving global optimization (PAGO) over gener-

ations in randomly generated basic time arrays comparing TiDGAP with TiGAP,

where: Np = 100, Ng = 100, F,B ∼ U = [1, 100], randomly initializing Np indi-

viduals.

preserves the current best individual to the next generation, so if the algorithm reaches
theoretical optimal in a certain generation, it will remain theoretically optimal in all sub-
sequent generations, and hence the count of achieving theoretical optimal in subsequent
generations will be increased by 1. Then, we plot the results in Fig. 5-6. Obviously,
TiDGAP has higher probabilities than TiGAP to obtain the theoretical optimal solution
within the same generations in Fig. 5-6, which also proves the superiority of the dual-
chromosome strategy.

177

Doctoral Dissertation of University of Electronic Science and Technology of China

5.5.3 EX2: Evaluation of Two-level improvement of TiDGAP Compared
with OiDGAP and DGAP

To observe the acceleration effect of the two-level improvement, we compare
TiDGAP with OiDGAP and DGAP in the simulation scenarios with random basic time
functions. As the two-level improvement of TiDGAP mainly eliminates two layers of
loops, including the loop in the individuals’ index and the loop in the input data’s index,
we execute experiments in four configurations with varying minibatch-size or number of
individuals as follows:

• (N = 10,P ∈ [1, 32] × 16), (Np = 100,Ng = 100);
• (N = 20,P ∈ [1, 32] × 16), (Np = 100,Ng = 100);
• (N = 10,P = 512, (Np ∈ [1, 10] × 10,Ng = 100);

• (N = 20,P = 512, (Np ∈ [1, 10] × 10,Ng = 100).

These algorithms are executed on the Desktop.
Using the changed parameters as the abscissa and the algorithm execution time as the

ordinate, we plot the execution time of TiDGAP, OiDGAP and DGAP in Fig. 5-7.
Firstly, the execution time of TiDGAP in Fig. 5-7 is significantly smaller in mag-

nitude than OiDGAP and DGAP. Concretely, for N = 10 and Ng = 100 of Fig. 5-7(a)
and 5-7(c), The execution time of TiDGAP is about [0.8s, 0.9s] less than 1s; and that
of OiDGAP and DGAP are respectively [1s, 150s] and [100s, 1800s]. For N = 20 and
Ng = 100 of Fig. 5-7(b) and 5-7(d), that of TiDGAP is about [1.5s, 1.8s] less than 2s; and
that of OiDGAP and DGAP are respectively [2s, 400s] and [300s, 4000s]. Secondly, com-
paring OiDGAP to DGAP can demonstrate the effectiveness of improvement to simulta-
neously calculate the end time corresponding to multiple individuals, as well as comparing
TiDGAP toOiDGAP can demonstrate the effectiveness of improvement to simultaneously
calculate the end time of multiple microbatches. Lastly, the execution time of OiDGAP
is approximately proportional to both minibatch-size P and the number of individuals Np,
i.e., linearly increasing with the increase of P and Np. DGAP also has the same phe-
nomenon. Unlike OiDGAP and DGAP, in the scenarios of Fig. 5-7, the execution time of
TiDGAP remains relatively stable without increasing with P and Np. These are generally
consistent with the theoretical time complexities. This indicates that within a certain range
of parameters, the computing speed of TiDGAP can be maintained unaffected by P and Np

beneficial from the parallel computing ability of GPU. In detail, according to the results
of Fig. 5-7(c) and 5-7(d)„ the execution speeds of TiDGAP are (162.86×, 226.36×) of

178

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

 DGAP
 OiDGAP
 TiDGAP

(a) (N = 10,P ∈ [1, 32] × 16), (Np =
100,Ng = 100)

 DGAP
 OiDGAP
 TiDGAP

(b) (N = 20,P ∈ [1, 32] × 16), (Np =
100,Ng = 100)

 DGAP
 OiDGAP
 TiDGAP

(c) (N = 10,P = 512, (Np ∈ [1, 10] ×
10,Ng = 100)

 DGAP
 OiDGAP
 TiDGAP

(d) (N = 20,P = 512, (Np ∈ [1, 10] ×
10,Ng = 100)

Figure 5-7 The execution time of TiDGAP, OiDGAP and DGAP for solving

UMPIPE in simulated scenarios launched on GeForce RTX 3060 Ti.

OiDGAP, and (1590.23×, 2473.02×) of DGAP in (N = 10,N = 20) for P = 512 and
Np = 100.

However, the execution time of OiDGAP in Fig. 5-7(c) and 5-7(d) is directly pro-
portional to the number of individuals Np which seems to contradict the theoretical com-
plexity of OiDGAP but actually not. Theoretical complexity assumes that the ideal GPU
has sufficient parallel capability, while the parallel capability of GPUs is not infinite in
reality. When the computational complexity reaches a certain level that exceeds the max-
imum value that the GPU’s parallel cores can carry, its computational complexity will
also increase with the Np. This property will also apply to TiDGAP. To further evaluate
the execution time of TiDGAP with respect to the number of individuals, we conduct ex-
periments in simulated scenarios of Np ∈ [10, 1000] and Np ∈ [1000, 20000] both with
(N = 10,P = 512,Ng = 100). Then, we plot the execution time of TiDGAP in Fig. 5-8.

179

Doctoral Dissertation of University of Electronic Science and Technology of China

 TiDGAP

(a) Np ∈ [10, 1000]

 TiDGAP

(b) Np ∈ [1000, 20000]

Figure 5-8 The execution time of TiDGAP for solving UMPIPE in simulated sce-

narios where (N = 10,P = 512,Ng = 100).

In Fig. 5-8, we can observe that when the number of individuals is large enough, the
execution time of TiDGAP will also linearly increase with the number of individuals Np.
However, the slope of TiDGAP is still much smaller than that of OiDGAP and DGAP. It is
worth emphasizing that, the execution time of TiDGAP inNp = 1000 is only 1.68s forN =
10 and that in Np = 20000 is only 19.24s. In the experiments of Fig. 5-4 and Fig. 5-5, 100
individuals are enough to obtain competitive optimal solutions. This strongly validates
the rapidity of TiDGAP with the two-level improvement based on matrix operations on
GPU. Similarly, when minibatch-size P is large enough, the execution time of TiDGAP
will also linearly increase with P, while with a far smaller slope than that of OiDGAP and
DGAP. The speed of TiDGAP is adequate to meet the requirements of current realistic
large-scale DNNs.

5.5.4 EX3: Evaluation of TiDGAP for UMPIPE Compared with Local
Greedy Algorithm and Dynamic Programming

To additionally demonstrate the superiority and feasibility of our proposed TiDGAP
for UMPIPE, we choose two typical neural networks (VGG16 and GPT-1) and some self-
designed networks, and then execute the experiments in realistic environments. VGG16
(trained in MNist dataset) and GPT-1 (in WikiText-2 dataset) are respectively typical
CNN-based DNN in CV and transformer-based DNN in NLP. Then self-designed DNNs
are based on CNN, whose configuration can be seen in Table 5-5. In order to compare
algorithms at the same computational speed level, we apply our proposed two-level im-
provements to the baseline algorithms to greatly improve their computational speed. As

180

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

the local greedy algorithm does not have continuous search capability, we use its conver-
gence solution to supplement the curve of subsequent time.

Table 5-5 Detail of Self-designed CNNs.
Layer Types Input Channel Output Channel Kernel
L1 CNN In1 = 1 Ou1 = U(20, 50)

3 × 3Lx CNN Inx = Oux−1 Oux = U(20, 50)
LK FC InK = OuK−1 OuK = 10

For VGG16 and GPT-1, we carry out the training on the servers with multiple Tesla
V100 GPUs and obtain the basic time functions. We do not use the solution of GPipe
as the initial solution of these algorithms, i.e., the initial states of the algorithms partici-
pating in the comparison are all randomly generated. Then, the optimal results over the
execution time of TiDGAP and baselines (local greedy and global greedy) are plotted in
Fig. 5-9. From the overall trends in Fig. 5-9, it can be seen that solutions of TiDGAP are
better than baselines over time. When the time is long enough, TiDGAP achieves the best
convergence solutions in both VGG16 and GPT-1 followed by global greedy and local
greedy. Although the global greedy algorithm also has search-ability, each search step in
it requires calculating the overall training time corresponding to the current optimization
solution, which consequently consumes redundant computational complexities. More-
over, the global greedy algorithm can only search for one solution at a time. TiDGAP,
based on the individual evolution strategy of the genetic algorithm, can solve multiple
solutions simultaneously, which makes it less likely to fall into local optima. The opti-
mal solutions of TiDGAP at the 100-th generation and the solutions of baselines at the
corresponding time point are listed in Table 5-6. Concretely, the optimization results of
TiDGAP are 171.71s and 7.06s respectively for GPT-1 and VGG16, reducing the training
time by (3.25, 17.78)% compared to global greedy and by (21.44, 24.68)% compared to
local greedy algorithm.

To show the role of UEDP in the solution process of UMPIPE’s training scheme,
Fig. 5-10 provides waterfall charts of the current generation’s optimal partition number
for TiDGAP in solving the optimization scheme. It can be seen that the optimal number of
partitions for each process of DNN throughout the entire solving process has always been
unequal, revealing the advantage of UEDP. In fact, GG and TiDGAP can be combined to
establish a growable genetic algorithm using GG as the growth route of TiDGAP, which

181

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 5-6 The quantitative optimization results of TiDGAP, local greedy (LG) and

global greedy (GG) in the experiments of Fig. 5-9 with randomly generated initial

solutions.
Scenarios TiDGAP LG GG ϵLGTiDGAP ϵGGTiDGAP
GPT-1 171.71 218.56 177.47 21.44% 3.25%
VGG-16 7.06 9.37 8.80 24.68% 17.78%

 TiDGAP
 Local Greedy
 Global Greedy

(a) GPT-1, minibatch-size is 512

 TiDGAP
 Local Greedy
 Global Greedy

(b) VGG16, minibatch-size is 64

Figure 5-9 The optimization results (i.e., time for training one minibatch) over

times in realistic environments for GPT-1 and VGG16 comparing TiDGAP with

local greedy and global greedy algorithms with randomly generated initial solu-

tions, where: Np = 100, Ng = 100, under distributed systems with Tesla V100

GPUs, randomly initializing Np individuals.

will have improved performances in terms of convergence and optimality. The growable
genetic algorithm is an innovative framework, allowing different algorithms to serve as
growth routes to solve optimization problems [87]. As this chapter focuses on proposing
the novel UMPIPE parallel architecture and its corresponding optimization algorithmwith
two-level improvement to accelerate DGAP, we do not delve into the discussion of the
growable genetic algorithm for UMPIPE.

In order to increase the comprehensiveness of the validation scenario, we perform
training of self-designed DNNs on RTX 3060Ti GPUs to obtain the basic time functions.
In self-designed DNNs, we change the number of layers to observe the trend of algorithms.
We use the stable convergence solution as the ordinate. Then, the optimal results and
relative reduction with different numbers of layers are plotted in Fig. 5-11.

182

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

20 40 60 80 10
0

20

40

Generation

In
de

x
of

 P
ro

ce
ss

0.000

102.4

204.8

307.2

409.6

512.0

 Partitions

(a) GPT-1, minibatch-size is 512

20 40 60 80 10
0

20

40

60

Generation

In
de

x
of

 P
ro

ce
ss

0.000

20.00

40.00

60.00

80.00

100.0

Partitions

(b) VGG16, minibatch-size is 64

Figure 5-10 Waterfall charts of optimal partitions of TiDGAP in Fig. 5-9.

 TiDGAP
 Local Greedy
 Global Greedy

(a) Optimization training time

 R1

 R2

(b) Relative reduction in training time

Figure 5-11 The results of self-designed CNN-based networks for 100 minibatches

with different numbers of layers in realistic environments comparing TiDGAPwith

LG and GG algorithms, where Np = 100, Ng = 100, randomly initializing Np

individuals. R1 = ϵLGTiDGAP, R2 = ϵGGTiDGAP.

183

Doctoral Dissertation of University of Electronic Science and Technology of China

In Fig. 5-11(a), the curves of TiDGAP remain the lowest followed by global greedy
and local greedy. The performance ranking is consistent with that of Fig. 5-9. Combined
with Fig. 5-11(a), the results validate the advantages of our proposed TiDGAP are univer-
sal. From Fig. 5-11(a), it can be seen that as the number of layers increases, the absolute
differences between our proposed TiDGAP and the comparison baselines become increas-
ingly larger. In Fig. 5-11(b), ϵLGTiDGAP shows an increasing trend from 0.1 to 0.5 with the
number of layers. This is because the feasible solution space of UMPIPE increases expo-
nentially with the number of layers increases, which leads to a decrease in the algorithm’s
solving ability. LG does not have search capability and decreases faster than TiDGAP.
Additionally, ϵGGTiDGAP fluctuates between 0 and 0.2. TiDGAP can maintain its advantage
of around 10%.

5.5.5 EX4: Evaluation of UEDP Compared UMPIPE with State-of-the-
Art Parallelism

Table 5-7 The comparison of various parallel architectures (GPipe, UMPIPE,

PipeDream, UMPipeDream (UPD)) in different scenarios.

Scenarios Networks Training Time (s) for One Minibatch
εGPipeUMPIPE εPipeDreamUMPIPE εPipeDreamUPDUMPIPE GPipe PipeDream UPD

Typical Nets GPT-1 167.939 191.264 186.568 164.389 13.89% 11.09% 13.49%
VGG16 7.060 8.268 7.622 6.462 17.11% 7.96% 17.95%

Sim. Nets

(N = 2,P = 512) 97 271 203 67 178.38% 109.28% 202.98%
(N = 2,P = 1024) 103 595 456 81 477.67% 342.72% 462.96%
(N = 5,P = 512) 207 1141 957 170 451.21% 362.32% 462.94%
(N = 5,P = 1024) 254 1058 894 211 316.54% 251.97% 323.70%
(N = 8,P = 512) 353 1694 1610 303 379.89% 356.09% 431.35%
(N = 8,P = 1024) 409 1735 1647 394 324.21% 302.69% 318.02%
(N = 10,P = 512) 616 2007 1911 482 225.81% 210.22% 296.47%
(N = 10,P = 1024) 478 2220 2024 398 364.44% 323.43% 408.54%
(N = 20,P = 512) 786 3855 3759 722 390.46% 378.24% 420.64%
(N = 20,P = 1024) 1000 4055 3961 895 305.50% 296.10% 342.57%
(N = 50,P = 512) 2297 9963 9865 2150 333.74% 329.47% 358.84%
(N = 50,P = 1024) 2102 9853 9645 1987 368.74% 358.85% 385.41%

Note: εGPipeUMPIPE = GPipetraining time−UMPIPEtraining time
UMPIPEtraining time

means the ratio of improvement in training speed of
UMPIPE compared to GPipe. Using recursive algorithms to obtain optimized 1F1B schemes for
PipeDream and UMPipeDream; using the enumeration to obtain optimized EDP schemes for GPipe
and PipeDream; using genetic algorithm (through 4000 generations for the sake of sufficient optimiza-
tion) to obtain the optimized UEDP schemes for UMPIPE and UMPipeDream; using the training time
of optimized scheme solved as the representative of the corresponding architecture’s performance.

184

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

To demonstrate the superiority of our proposed parallelism UMPIPE and UEDP, we
compare it to GPipe and PipeDream in this group of experiments.

To further verify the potential of UEDP for various parallel architectures based on
the control variable method, we also include the architecture that combines UEDP with
pipedream (called UMPipeDream referring to the naming convention of UMPIPE where
UMPipeDream = UMPIPE + 1F1B = PipeDream + UEDP) in the comparison. Due to
the lack of fast calculation formulas for PipeDream and UMPipeDream, our experiments
use recursive algorithms to calculate the training time corresponding to the data partition-
ing scheme of PipeDream or UMPipeDream to support the optimization. In experiments,
the optimal data partitioning schemes of GPipe and PipeDream are obtained through the
enumeration method, as EDP allows enumeration; that of UMPIPE and UMPipeDream
are solved by the genetic algorithm with 4000 generations (for the sake of obtaining suffi-
ciently optimized results to reflect the inherent performance of the architectures them-
selves). Experiments include two representative networks VGG16 (with CNN layers,
minibatch-size is 64) and GPT-14 (with transformer layers, minibatch-size is 512) in re-
alistic environments executed with multiple Tesla V100 GPUs, as well as multiple sim-
ulation networks generated by realistic devices-based random simulation environments.
The optimization results (corresponding to training time) for each architecture in different
scenarios are shown in Table 5-7.

From Table 5-7, UMPIPE is generally superior to GPipe and PipeDream, indicating
UMPIPE has certain advantages as a new parallel architecture. The comparison between
UMPIPE and GPipe demonstrates that UEDP can improve the speed of AFAB (all for-
ward all backward) architectures. Compared with PipeDream, UMPipeDream achieves
faster training speed, indicating that UEDP also has a positive effect on accelerating 1F1B
(one forward one backward) architectures such as PipeDream. Moreover, UMPipeDream
overall achieved the best results, indicating the potential of extending UEDP to other
parallel architectures. In GPT-1 and VGG16, UMPIPE accelerates the training speed
by (13.89, 11.09)% and (17.11, 7.96)% respectively compared with (GPipe, PipeDrea);
UMPipeDream accelerates the training speed by 13.49% and 17.95% respectively com-
pared with PipeDream. In the simulation scenarios, the heterogeneity of the network layer
ismore apparent. Thus, UEDP-based parallel architectures (UMPIPE andUMPipeDream)
have a greater improvement on the basis of EDP-based parallel architectures (GPipe,
PipeDream), with an improvement ≥ (170%, 100%) in terms of training speed.

185

Doctoral Dissertation of University of Electronic Science and Technology of China

When evaluating the optimization scheme under the 1F1B architecture in experi-
ments, we calculated the optimal 1F1B scheme under the given data partition as its evalu-
ation value. Therefore, the optimization results of PipeDream in the experiment represent
the performance of architectures such as PipeDream and Dapple [183, 184]. Therefore,
the above results can not only demonstrate the significance of UMPIPE in reducing the
training time undermicrobatch-based pipeline parallelism inAFAB, but also reveal the po-
tential of UEDP in improving various architectures in 1F1B such as PipeDream and Dap-
ple. It is notable that the UMPIPE architecture can be further improved, because adding
1F1B strategy on the basis of UMPIPE (i.e., UMPipeDream) can enhance the training
speed on the basis of UMPIPE according to the experimental results in Table 5-7. This
chapter addresses a challenge: for UMPIPE with the addition of UEDP on the basis of
GPipe, we propose the matrix operations-based fast calculation formulas (i.e., Eq. 5-17
and Eq. 5-18) to simultaneously evaluate multiple training schemes of UMPIPE, which
allows optimization algorithms to complete the search for optimization solutions of data
partitioning in a short period of time. However, for UMPipeDream (UMPipeDream =
UMPIPE + 1F1B = PipeDream + UEDP = GPipe + UEDP + 1F1B), the combination
of UEDP and 1F1B strategies cause a more complex calculation process for the training
time corresponding to the scheme. The recursive algorithm chosen in experiments for
UMPipeDream consumes a significant amount of computation time, which also inspires
future work to focus on deriving fast calculation formulas for UMPipeDream (i.e., the fur-
ther extension of UMPIPE). In addition, UEDP will bring additional programming work
and data-switching processes in parallel architecture, which require further research on
generalization.

In order to supplement the practical application significance of UMPIPE, we need
to verify that the UEDP of UMPIPE does not worsen the DNNs’ accuracy over epochs
during the training process. We choose two self-designed CNN-based networks with 5
layers and carry out the training respectively in MNist dataset and CIFAR10 dataset. The
configures of networks and data partitioning schemes of UMPIPE are listed in Table 5-8,
where “U_1” means UMPIPE_1 (the scheme of UMPIPE with index of 1), the column
“Or”. means the original structure without data partitions, GPipe-2 means dividing the
minibatch into two microbatches for all layers in GPipe, and type of layer C(1, 20) means
CNN layer with the input channel as 1 and output channels as 20, and FC(160, 10) means
full connection layer with input neurons as 160 and output neurons as 10. The minibatch-

186

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

Table 5-8 The configures of networks for MNist and CIFAR10 dataset with their

data partitioning schemes of parallelism.

Dataset Layers Type Data Partitions Schemes
Or. GPipe-2 U_1 U_2 U_3 U_4 U_5

MNist

1 C(1, 20) 1 2 2 2 2 2 4
2 C(20, 40) 1 2 2 2 2 8 2
3 C(40, 80) 1 2 2 1 2 4 4
4 C(80, 160) 1 2 1 2 2 1 8
5 FC(160, 10) 1 2 2 1 4 1 1

CIFAR10

1 C(3, 16) 1 2 2 2 2 8 2
2 C(16, 32) 1 2 2 2 1 2 2
3 C(32, 64) 1 2 1 1 2 1 4
4 C(64, 128) 1 2 2 1 2 1 2
5 FC(128, 10) 1 2 2 2 1 1 2

sizes of Table 5-8 are both 64, and the convolution kernels are all 3 × 3. For the sake
of presentation, we use the power of 2 as the number of microbatches for each layer.
UMPIPEs with different subscripts correspond to different UEDP schemes. As commu-
nication doesn’t affect the accuracy of over epochs, we don’t consider the data partitions
of communication processes. In this set of experiments, forward propagation and back-
ward propagation in the same layer have the same number of data partitions, which does
not affect the experimental conclusion, because the main process that determines the con-
vergence of network training is the gradient descent in backward propagation. Then, we
plot the training accuracy and testing accuracy within 20 training epochs in Fig. 5-12. The
results of Fig. 5-12 show that the accuracy trends of UMPIPE with UEDP do not lag be-
hind the original or GPipe-2. This demonstrates that UMPIPE will not worsen the DNNs’
accuracy over epochs. With less time per epoch, UMPIPE will have better convergence
over time than GPipe.

5.5.6 Summary of Experiments

Through the multiple groups of experiments from various perspectives in this sec-
tion, we can observe that BABYPIPE with TiDGAP, as a novel architecture for parallel
training, has significant advantages in improving the training speed of DNN. Among these
experiments:
(1) EX1 not only demonstrates that the convergence of dual-chromosome is better than

187

Doctoral Dissertation of University of Electronic Science and Technology of China

 Original
 GPipe-2
 BABYPIPE_1
 BABYPIPE_2
 BABYPIPE_3
 BABYPIPE_4
 BABYPIPE_5

(a) Training Accuracy in MNist

 Original
 GPipe-2
 BABYPIPE_1
 BABYPIPE_2
 BABYPIPE_3
 BABYPIPE_4
 BABYPIPE_5

(b) Testing Accuracy in MNist

 Original
 GPipe-2
 BABYPIPE_1
 BABYPIPE_2
 BABYPIPE_3
 BABYPIPE_4
 BABYPIPE_5

(c) Training Accuracy in CIFAR10

 Original
 GPipe-2
 BABYPIPE_1
 BABYPIPE_2
 BABYPIPE_3
 BABYPIPE_4
 BABYPIPE_5

(d) Testing Accuracy in CIFAR10

Figure 5-12 The accuracy over epochs in self-designed CNN-based networks in

MNist and CIFAR10 dataset comparing UMPIPE with GPipe, where the data par-

titioning schemes of UMPIPE are listed in Table 5-8, minibatch-size is 64.

that of single-chromosome, but also demonstrates the advantages of BABYPIPE over
GPipe through the scenarios with the randomly generated basic time functions of
DNN.

(2) EX2 demonstrates the acceleration effectiveness of two-level improvement to simul-
taneously calculate the end time corresponding to multiple individuals and multiple
microbatches. TiDGAP only consumes seconds of execution time to obtain competi-
tive optimization solutions.

(3) EX3 demonstrates the optimality of our proposed TiDGAP for BABYPIPE in realistic
environments compared with baselines local greedy and global greedy. Through the
experiments in GPT-1, VGG16 and self-designed CNNs, TiDGAP achieves the best
optimization solution.

(4) EX4 demonstrates the superiority of BABYPIPE in realistic environments and simu-

188

Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date
Partitioning and Dual-chromosome Genetic Algorithms

lation datasets compared to GPipe and PipeDream related parallelism. In EX4, we not
only verify the parallel scheme of BABYPIPE has less training time, but also verify
unequal microbatch-sizes of BABYPIPE do not worsen the training convergence of
accuracy over epochs.

5.6 Summary of this Chapter

Based on the microbatch-based pipeline parallelism, this chapter proposes unequal
microbatches-based (i.e., unequal data partitions-based) pipeline parallelism (UMPIPE),
not only considering computation time and communication time simultaneously, but also
considering them probably nonlinear with data size. This chapter derives the recurrence
formula for the training time of DNNunder UMPIPE parallelism and proves the optimality
of UMPIPE in theory.

To obtain the optimization scheme of UMPIPE, this chapter proposes the dual-
chromosome genetic algorithm (DGAP). Dual-chromosome is proved with better conver-
gence than the single chromosome for solving training scheme of UMPIPE. Aiming at ac-
celerating DGAP algorithm, we further delve into theoretical derivations of the recurrence
formula for UMPIPE and propose the two-level improved DGAP (TiDGAP). TiDGAP
can simultaneously calculate the end time of multi-schemes and multi-microbatches for
UMPIPE.

The experimental results comprehensively get corroboration to our theoretical anal-
ysis, demonstrating the advantages of dual-chromosome strategy and matrix operation-
based two-level improvement method of TiDGAP. Compared with baseline optimization
methods (local greedy and global greedy), TiDGAP has better convergence and optimal-
ity. Compared with baseline parallelism (GPipe and PipeDream), UMPIPE achieves less
training time. Compared to (GPipe, PipeDream), UMPIPE improves training speed by
(13.89, 11.09)% in GPT1-14, (17.11, 7.96)% in VGG16, and ≥ (170%, 100%) in other
simulation networks.

The significance of our proposed BABYPIPE with TiDGAP is that it not only pro-
vides a novel architecture for parallel training, but also provides a new solution approach.
The introduction of unequal data partitioning brings more optional schemes for paral-
lel training, which actually further optimizes the granularity of distributed parallelism.
BABYPIPE with TiDGAP will still have superiority in the hybrid parallel architecture
(e.g., 3D parallelism), which we plan to focus on studying. Moreover, the growable ge-

189

Doctoral Dissertation of University of Electronic Science and Technology of China

netic algorithm combining TiDGAP with global greedy or other search algorithms to find
the optimal training schemes is also a potential direction.

190

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

Chapter 6 Hierarchical Cloud System and Machine Learning
based Algorithm Selectors

Cloud computing environment is becoming increasingly complex due to its large-
scale information growth and increasing heterogeneity of computing resources. Hierar-
chical Cloud computing dividing the system into multi-levels with multiple subsystems
to support the adaptability to abundant requests from users has been widely applied and
brings great challenges to resource scheduling. It is critical to find an effective way to ad-
dress the complex scheduling problems in hierarchical Cloud computing, whose scenarios
and optimization objectives often change with the types of subsystems. In this chapter,
we propose a scheduling framework to select the scheduling algorithms (SFSSA) for dif-
ferent scheduling scenarios considering no algorithm well suitable to all scenarios. To
concretize SFSSA, we propose deep learning-based algorithms selectors (DLS) trained by
labeled data and deep reinforcement learning-based algorithms selectors (DRLS) trained
by feedback from dynamic scenarios to complete the algorithms selection regarding the
scheduling algorithms as selectable tools. Then, we apply strategies including pre-trained
model, long experience reply and joint training to improve the performance of DRLS. To
enable the quantitative comparison of selectors, we introduce a weighted cost model for
the trade-off between solution and complexity. Through multiple sets of experiments in
hierarchical Cloud computing with multi subsystems for five types of scheduling prob-
lems and varying weights of cost, we demonstrate DLS and DRLS outperform baseline
strategies. Compared with random selector, greedy selector, round-robin selector, sin-
gle best selector, virtual best selector and single fast selector, DLS reduces the cost by
47.4%, 46.1%, 33.9%, 47.9%, 19.3%, 18.8% under stable parameter ranges, and DRLS
reduces the cost by 41.1%, 40.6%, 11.7%, 42.3%, 11.5%, 12.5% in dynamic scenarios
respectively. In experiments, we also validate DRLS has stronger adaptability than DLS
in dynamic scheduling scenarios and DRLS using all of strategies achieves the best per-
formance.

6.1 Introduction

The advent of Industry 4.0 and 5G Era is producing an increasing volume of data to
Internet putting forward requirements for mighty software systems of network [25]. Cloud

191

Doctoral Dissertation of University of Electronic Science and Technology of China

computing, as a large-scale distributed system that provides flexible, reliable, dynamic
and high coverage services, has shown significant advantages in meeting the demand of
Internet and is playing an indispensable role in various professions including scientific
research and engineering production [4]. With its heterogeneous resources and policy of
pay-as-you-use, Cloud computing can respond to different types of users’ requests such as
transmission requests, storage requests, computing requests, etc [10, 124]. Currently, Cloud
computing has become the foundation for many business applications [2].

The increasing task requests and data transmission make the scale of Cloud comput-
ing system gradually expand based on deployment of hardware devices. However, the
deployment capability lags behind the increase of Internet data, which presses exactly the
management of resources in Cloud. In addition, inappropriate utilization ratio of resources
will cause excessive energy consumption, high running time of tasks, and significant bur-
den to systems so as to reduce the quality of service, reduce service life of components and
increase CO2 emission, which presents the necessity of requirement for efficient schedul-
ing [10, 124, 224]. Various factors containing time, resource state and environment, will af-
fect the optimization objective and scenario, resulting in greatly high complexity of the
solution process. Therefore, the research of resource scheduling in Cloud computing has
always been a hotspot and nodus in the era of big data, which also influences the position
and development of Cloud computing in society.

One novel structure of hierarchical Cloud computing (includingmobile edge comput-
ing) is to divide the Cloud system into multiple subsystems (Multi-Level Cloud System)
to provide specific types of services for corresponding users, which reduces the computa-
tional complexity of resource management and achieve considerable performance [48, 100].
Thus, research on multi Cloud environments is one of the tendencies to improve the ap-
plication performance of Cloud [225]. The potential user types are the basis of subsystem
division and the types of services, which also cause the difference of equipment compo-
sition between different subsystems. This difference determines the various objectives of
each subsystem and increases the difficulty of resource management. Resource manage-
ment has been broadly studied and there are various scheduling algorithms such as heuris-
tic, meta-heuristics and machine learning. Some algorithms, such as Ant colony algorithm
[63], NSGA-II algorithm [99] and deep reinforcement learning [2, 100], have shown excellent
performance in the existing research, whereas the scheduler based on single scheduling
algorithm is far from meeting the demand of the actual operation environment, especially

192

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

with multi subsystems as no algorithm can fit all scenarios of Cloud computing and per-
form better than other algorithms currently. Meta-heuristic, deep reinforcement learning
and other algorithms, that can resolve the problem of variable optimization objectives and
scenarios to a certain extent, require and consume extensive computing resources and time
with the increasing complexity of the problem. And some algorithms with certain rapid-
ity such as LPT, FCFS, RR, BFD and Greedy can only address the resource scheduling in
simple scenarios with the low requirement as their solution is obviously worse than other
complex algorithms [2, 101].

The existing contradiction, that determines the upper limit of the profit, is the bal-
ance between optimization and complexity of the algorithm. Moreover, the increasing
complexity of the algorithm will abate the realistic value to deploy and apply the algo-
rithm as well as cause resource bottleneck and risk in the operation process of Cloud sys-
tems. Therefore, the improvement of one algorithm is inadequate to solve this contradic-
tion. Some existing research on the resource scheduling in hierarchical Cloud computing
applied DQN [48, 100], Joint DC (JCORA) algorithm [226], a penalized successive convex
approximation (P-SCA)-based algorithm [20], and VCEPSO based on particle swarm opti-
mization [227] and achieved good performance in their researched problem. However, they
mainly focused on the improvement of a single scheduling algorithm without considering
the differences between subsystems and between their objectives. In reality, different
subsystems in hierarchical Cloud computing may have different equipment compositions
to provide different services for various users, which causes the change of optimization
objectives concerned by resource scheduling of different subsystems. Therefore, it is con-
siderable to dynamically select algorithms for variable scenarios. This prompts us to con-
sider making full use of the existing algorithm to meet more complex scenes with various
objectives in hierarchical Cloud computing with multi subsystems (HCCMS).

In the existing resource scheduling algorithms of Cloud computing and other dis-
tributed systems, a phenomenon from observation is that each optimization algorithm has
its targeted factors and scenarios since its proposition. Considering another point of view
that all the scheduling algorithms belong to human’s wisdom and referring to research on
algorithm selectors in other fields [228, 229], this chapter proposes a scheduling framework to
select the scheduling algorithms (SFSSA) by combining advantages of various scheduling
algorithms. To concretize SFSSA, this chapter also proposes deep learning-based algo-
rithm selectors (DLS) and deep reinforcement learning-based algorithm selectors (DRLS)

193

Doctoral Dissertation of University of Electronic Science and Technology of China

to deal with the resource scheduling problems of HCCMS with different optimization
objectives and varying weights of cost. Although training DRL or DL to schedule re-
sources directly will consume abundant computing capacities and time because the input
and output spaces of resource scheduling are too large, DLS and DRLS only consume
tiny complexities to select the scheduling algorithms. Finally, according to the types of
scheduling problems, the weight of solution and complexity, as well as the number of
tasks and resources, DLS or DRLS can select an algorithm with good performance from
the algorithm pool to minimize the cost of HCCMS.

The main contributions of this chapter can be summarized as:
(1) Scheduling framework to select the scheduling algorithms (SFSSA): this chapter pro-

poses a framework to select scheduling algorithm according to optimization objective
and scenarios regarding the scheduling algorithms also as selectable resources, which
can integrate the advantages of various scheduling algorithm, decompose the opti-
mization objective and also effectively decompose the computational complexity of
the optimization algorithm in complex resource management scenarios of HCCMS.

(2) DLS andDRLS: this chapter utilizes deep learning (DL) and deep reinforcement learn-
ing (DRL) respectively to represent the decision-making process of selecting schedul-
ing algorithm to construct DLS and DRLS. Using DL and DRL, the DLS and DRLS
can effectively model multiple optimization scenarios and effectively train the strat-
egy of scheduling algorithm selection, which adapts various scenarios of variable op-
timization objectives. Our proposed DLS and DRLS also explore a novel role for DL
and DRL as scheduling algorithm selector of Cloud computing.

(3) Combination of various strategies of DRLS: to further improve the performance of
DRLS, this chapter applied three strategies in DRLS including pre-trained model,
long experience replay and joint training, where each strategy optimizes the selection
results of DRLs to a certain extent. The DRLS using all these three strategies performs
best among all the DRL-based selectors.

(4) Multiple sets of experiments: this chapter constructs scheduling algorithms pool and
carries on multiple sets of experiments in complex scenarios of HCCMS to verify the
superiority of proposed algorithm selector from various sights. In experiments, DLS
and DRLS achieve better results in their own corresponding scenarios compared with
baseline strategies including random selector (RS), greedy selector (GS), round-robin
selector (RRS), single best selector (SBS), virtual best selector (VBS) and single fast

194

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

selector (SFS).
The remainder of this chapter is organized as follows. We review the related works in

Section 6.2. System model and formulation of scheduling problems in complex scenarios
of HCCMS are presented in Section 6.3. The scheduling framework to select the schedul-
ing algorithms (SFSSA) as well as the DL-based and DRL-based algorithms selectors with
multiple strategies are proposed in Section 6.4. The design and results of multiple sets of
experiments from various sights are presented in Section 6.5. Finally, we conclude this
chapter in Section 6.6.

6.2 Related Work

Frequently used approaches for resource scheduling of Cloud computing contain mi-
gration such as VMs migration [63], application migration [230], task migration [19], and
workload migration [13]; Queuing model such as M/M/S [49] and M/G/1 [231]; multi-phase
approach [9]; as well as scheduling algorithm. The core of these approaches is still the
scheduling algorithm including several categories according to the solution way: direct
allocation algorithms, search algorithms, and machine learning algorithms.

Direct allocation algorithm, mostly heuristic algorithm, is one type of the commonly
applied algorithms in realistic Cloud systems that benefit from its low computing complex-
ity, light-weight, analyzability, ease of implementation and deployment. In the direct allo-
cation algorithm, LPT [103], greedy [101], random, RR (Round-Robin) [232], FFD [15], FCFS
(First Come First Serve) [233] are frequently utilized algorithms to gain an approximate so-
lution of scheduling problems and have also been applied as baselines of comparison in
recent literature. Z. Guan et al. applied Jacobi Best-response Algorithm and proposed a
novel globally optimization algorithm based on a combination of the branch and bound
framework to solve the resulting non-convex cooperative problem and minimize the costs
of Mobile Cloud Computing [59]. Wenhong Tian et al. proposed a 2-approximation algo-
rithm, LLIF, with theoretical analysis and proof to minimize the energy consumption of
VMs scheduling [15]. Z. Hong proposed FCFI+ACTI, a QoS-AwareDistributedAlgorithm
to address multi-hop computation-offloading problem in IoT-Edge-Cloud Computing [61].

Search algorithm, mainly meta-heuristic algorithm, is a local search or global search
to get final scheme based on an initial allocation state, which can generally achieve bet-
ter solution than direct allocation algorithm but will consume more complexity of time
and space. This type of algorithm has adaptability to the varied objectives hence applies

195

Doctoral Dissertation of University of Electronic Science and Technology of China

to multi-objective optimization problems. Xiao-Fang Liu et al. develop an ant colony
system-based approach named OEMACS allocating VMs to reduce energy consumption
of Cloud computing [58]. M. Mahil et al. proposed PSO-ACS algorithm incorporating
particle swarm optimization and Ant Colony System to optimize energy efficiency and
SLA Violation of cloud data centers [83]. MOEAs [9] have performed superiority in multi-
objective scheduling problems in Cloud computing. Ali Abdullah Hamed Al-Mahruqi et
al. proposed HH-ECO, a Hybrid Heuristic Algorithm using chaotic based particle swarm
optimization (C-PSO), to improve optimal makespan and energy conservation [234]. Amir
Iranmanesh et al. proposed DCHG-TS, a hybrid genetic algorithm based on load balanc-
ing routing, to optimize both cost and makespan for scientific workflow scheduling in
Cloud computing [235].

Machine learning, mainly reinforcement learning and deep reinforcement learning
usually occupying better optimization solutions in dynamic scheduling problems than
search algorithms, adapts various scenarios apt to lifelong learning, but requires abundant
data-based training with extensive computing complexity and possesses unpredictable ex-
ecution results without analyzability, which may cause risk to large-scale Cloud systems
in realistic. Combining neural network and NSGA-II algorithm, Goshgar Ismayilov et
al. proposed the NN-DNSGA-II algorithm, a multi-objective evolutionary algorithm for
dynamic workflow scheduling in Cloud computing [122]. Based on M/M/S queuing model
and Q-learning, Ding Ding et al. proposed QEEC, a two phases framework, to enhance the
energy efficiency of Cloud computing [49]. However, the state space is high dimensional
and continuous resulting in massive computing complexity to train Q-table in scheduling
problems. K. Lolos et al. proposed MDP_DT, an adaptive Reinforce Learning with three
strategies that Chain Split, Reset Split and Two-phase Split to reduce the size of state space
[106]. One other strategy to express the continuous state space in reinforcement learning is
the deep neural network. DRL, integrating reinforcement learning and deep learning, such
as modified DRL algorithm [108], DQTS [110], Deep Q Network (DQN) [40], ADRL [125]

and DeepRM-Plus [2], has been applied to solve scheduling problems in Cloud computing
and performed the superiorities of DRL verified by experiments in their chapters.

Additionally, for hierarchical or multi Cloud computing: Haifeng Lu et al. proposed
IDRQN to improve the energy consumption, load balancing, latency and average execu-
tion time for MEC with multi-area subsystems [48]; Meng Li et al. applied DDQN to im-
prove the system performance for blockchain-enabled M2M communications in EC with

196

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

multi groups of M2M network [100]; Hu et al. proposed a MOS (multi-objective schedul-
ing) algorithm based on the particle swarm optimization (PSO) to minimize workflow
makespan and cost simultaneously of multi-cloud environment [225]; other algorithms in-
cluding Joint DC (JCORA) algorithm [226], P-SCA-based algorithm [20], and PSO-based
VCEPSO [227] have been proposed to address the resource scheduling problems of hierar-
chical Cloud computing.

Overall, the existing research mainly targets improving the performance of the
scheduling algorithm itself. Differentiating from previous research, this chapter focuses
on the algorithms selection of HCCMS, regards scheduling algorithms as selectable re-
sources and proposes a scheduling framework to select the scheduling algorithms (SF-
SSA). Additionally, this chapter accords a novel role, i.e. algorithms selectors, to DL and
DRL by proposing DL-based selector (DLS) and DRL-based selector (DRLS) for various
scenarios.

6.3 Design of Hierarchical Cloud System with Multi-subsystem

To assist the description of the system model and problem formulations, Table 6-1
gives some notations used in this chapter.

6.3.1 System model of Multi-Level Cloud System

Cloud computing integrates the physical or virtual machines of various servers
through high-speed Internet to form a resources pool. When a user submits a task re-
quest, the Cloud computing management center allocates the resources in the resource
pool to the user according to the current operation status of the Cloud computing system
and the attributes of the user’s request. After allocation, Cloud computing management
updates the status of the Cloud system and monitors the operation of the whole system in
real-time. The traditional process of Cloud management without subsystem can be seen
in Fig 6-1.

Currently, a single Cloud computing resource management center can no longer meet
the rapidly growing number of task requests from all over the world. Moreover, a single
resource management center is not robust with a low ability to anti risk. During actual op-
eration, multi-point control is usually adopted to manage the Cloud system i.e. according
to the attributes of Cloud computing server nodes and the classification of target users,
the large-scale Cloud computing system is divided into multiple subsystems to form a

197

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 6-1 Notations and Descriptions.
Notation Description
q Number of subsystems
k Index of subsystem
Sk The subsystem with index k
nk The number of server nodes in Sk
Nk The set of server nodes in Sk
i Index of server node
Rki The i-th server node of Sk
Tk The set of tasks allocated to subsystem Sk
mk The number of tasks in subsystem Sk
j Index of tasks
Tkj The j-th task in subsystem Sk
TSki Set of tasks in server node Rki

KSk The set of TSki where KS =
⟨TSk1,TSk2, . . . , TSknk⟩

CCPU
ki The maximum capacity of CPU for node Rki

CDS
ki The maximum capacity of DS for node Rki

vCPUkji The CPU capacity request of Tkj for Rki, sim-
ilarly vDSkji

LCPUki The occupied CPU capacity of Rki, similarly
LDSki

ETkji The processing time of task Tkj when exe-
cuted in Rki

RTki The running time of server node Rki

MTk The makespan of the k-th subsystem Sk
Uk(t) The cost of the k-th subsystem Sk at time slot

[t, t + δt)
Ω(t) The cost of the whole system at time slot

[t, t + δt)

multi-level Cloud computing system (hierarchical Cloud computing with multi subsys-
tems (HCCMS)). Similar to but different from the references [48, 100], Fig 6-2 presents one
architecture of HCCMS.

In Fig 6-2, a user or a group of users submits diverse requests to Cloud system, the
classifier in Cloud center will classify these requests and send the classified requests to
the corresponding subsystems for processing. Then the management center (scheduler)
of the subsystem allocates these requests to specific physical or virtual machines. This
HCCMS structure in Fig 6-2 reduces the overall failure probability of system and simul-
taneously increases the security between subsystems. In case of local subsystem failure,
the management center of other subsystems or Cloud center can temporarily take over the

198

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

... Users

tasks tasks tasks tasks ... tasks
Requests
from Users

Cloud
Center

... Server
Nodes

tasks tasks tasks ...tasks tasks Scheduler

Figure 6-1 The traditional process of Cloud resource management.

... User
Groups

... Diverse
Requests

Cloud System
Center ...

Homo‐Subsystem

Classified Requests

Homo‐Subsystem

Heter‐Subsystem Heter‐Subsystem

Heter‐Subsystem

... ...

Subsystem centers
with schedulers

Server Nodes of Various Subsystems

Figure 6-2 The hierarchical Cloud computing with multi subsystems (HCCMS).

resource scheduling of the failed subsystem under the authorization of the Cloud system
management center. In order to meet more complex scenarios during operation of Cloud
computing, the nodes in all subsystems can be re-divided and combined into new sub-

199

Doctoral Dissertation of University of Electronic Science and Technology of China

systems dynamically. HCCMS also indicates that the resource scheduling strategies of
different subsystems may be different, which poses a great challenge to Cloud.

Focusing on resource scheduling problems in HCCMS, we consider a HCCMS with
q subsystems donated as S = ⟨S1, S2, . . . , Sq⟩ and the k-th subsystem with nk server nodes
donated as Nk = ⟨Nk1,Nk2, . . . ,Nknk⟩. As each server node has a limited capacity of CPU
and disk storage (DS), we use CCPU

ki and CDS
ki to denote them. It can be assumed that the set

of tasks allocated to the subsystem Sk at a time slot [t, t + Δt) as Tk = ⟨Tk1,Tk2, . . . , Tkmk⟩
with mk tasks. Then, we use vCPUkji , and vDSkji as the capacity request of task Tkj, ETkji as the
processing time of Tkj, as well as LCPUki and LDSki as the load of Rki.

In order to illustrate the advantages of HCCMS, we theoretically analyze the com-
putational complexity of the resource scheduling algorithm in HCCMS. Supposing the
computational complexity of an algorithm to allocate m tasks to n resources is O(f(m, n)).
For the existing resource scheduling algorithms, except that algorithms with linear com-
plexity such as random algorithm, other algorithms have polynomial or exponential com-
putational complexities and meet the f′′m (m, n) ≥ 0 and f′n (m, n) ≥ 0. Therefore, Eq (6-1)
can be obtained based on Jensen Inequality.

f(m, n) = f(m, n) + f(0, n) ≥
q∑

k=1
f(mk, n) ≥

q∑
k=1

f(mk, nk) (6-1)

Especially, when an algorithm has polynomial complexity above quadratic or exponential
complexity, the computational complexity satisfies ∃α ≥ 2 s.t. O(f(m, n)) ≥ O(mα).
Then, Eq (6-2) can be obtained based on Power-Mean Inequality.

f(m, n) ≥ q(α−1)
q∑

k=1
f
(
m
q

, n
)

≥ q(α−1)
q∑

k=1
f
(
m
q

, nk
)

(6-2)

According to Eq (6-2), evenly allocating the tasks to subsystems can reduce the computa-
tional complexity of resource scheduling to q1−α times. Eq (6-1) and Eq (6-2) demonstrate
the significance of HCCMS in improving resource management capability.

With the theoretical analysis of dividing Cloud system into multi subsystems, we can
continue to construct its systemmodel. Assuming a server node (PM or VM) is only in one
subsystem, we consider a subsystem has two basic classifications i.e. homogeneous and
heterogeneous. The homogeneous subsystem means the execution of user’s task requests
on each node is the same as well as the upper load limit of each node is the same, whose

200

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

relationship can be shown as Eq (6-3). Otherwise, the subsystem is heterogeneous.

〈
vCPUkji1 , vDSkji1

〉
=
〈
vCPUkji2 , vDSkji2

〉
,

ETkji1 = ETkji2 ,〈
CCPU
ki1 ,CDS

ki1

〉
=
〈
CCPU
ki2 ,CDS

ki2

〉
,

1 ≤ i1 < i2 ≤ nk, 1 ≤ ∀j ≤ mk.

(6-3)

In Cloud computing, the server nodes, commonly used to process the same type of
tasks, may approximately be homogeneous. For example, the disks dedicated to the ser-
vice nodes that processes storage requests may be the same batch of production with the
same model and for storage requests, if disks are identical then the server nodes can be
regarded as homogeneous. Additionally, the server nodes, which are frequently applied to
process some computing requests or comprehensive requests, may be heterogeneous be-
cause computing requests and comprehensive requests from different users vary greatly.

In this chapter, we consider the task requests are integral and can not be split into
smaller ones, which means any task will be fully allocated to only one server node, how-
ever one server node may process more than one task simultaneously. We denote the set
of tasks in node Rki as TSki where if a task Tkj is allocated to Rki, then Tkj ∈ TSki. All the
TSki in subsystem Sk constitute a vector KSk = ⟨TSk1,TSk2, . . . , TSknk⟩. As KSk determines
the unique allocation result of tasks in subsystem Sk, it can be leveraged to represent the
solution of tasks allocation of subsystem Sk. According to the occupation status of the
task or VMs on the server nodes, it can be divided into two categories: a task occupies
the server node completely within a certain time (full-occupancy), and the task occupies
part of the server node (partial-occupancy). If a task occupies the server node completely,
the server node can only process one task simultaneously [33, 49], which implies other tasks
need to enter the queue and wait for the server node to be idle before being processed. For
this situation, running time of a server node RTki is the main parameter to be considered,
and the total running time of the server node is equal to the sum of the processing time of
all tasks assigned to this node as Eq (6-4).

RTki =
∑

Tkj∈TSki
ETkji (6-4)

where we consider the processing time of tasks is fixed without affection from the re-
sources’ status or the order of tasks. For partial-occupancy of server node, running time is
no longer the superposition of tasks’ processing time. However, the occupation of various

201

Doctoral Dissertation of University of Electronic Science and Technology of China

components in the server node is a more noteworthy parameter. Then, we consider the
tasks currently allocated to the server node will occupy the resources of the node simul-
taneously in a minimum time slot. As the occupancy of components in the server node
generally satisfies the relationship of linearly superposition, Eq (6-5) can be given

LCPUki =
∑

Tkj∈TSkj
vCPUkji (6-5)

where the similar relationship applies to DS.
In this chapter, we do not address the issue of multi-dimensional resource schedul-

ing, so assume each scheduler only needs to consider the one-dimensional resource. Fi-
nally, multiple factors, that are the homogeneity and heterogeneity of server nodes, full-
occupancy and partial-occupancy will construct different types of subsystems in Cloud
computing, hence increasing the abilities of Cloud systems to provide flexible services.

6.3.2 Subsystems and Subproblems of Resource Scheduling

Based on the types of tasks requests and services, several types of the subsystem in
HCCMS can be presented as:
(1) Homogeneous full-occupied subsystem, which is usually utilized to provide specific

services for user groups with exclusive needs considering that these users require in-
dependence and stability during the service period and the type of their tasks are sta-
tionary;

(2) Homogeneous partial-occupied subsystem, which is usually utilized to provide ser-
vices for the broader user groups with a small capacity of the single task but the huge
number of all task requests, such as dedicated subsystem for file storage supporting
Cloud disk;

(3) Heterogeneous full-occupied subsystem, which is usually utilized to provide com-
prehensive or customized services for specific user groups that these users require to
independently occupy the allocated server nodes and the types of their tasks are more
complex, such as some server nodes for commercial or scientific research activities;

(4) Heterogeneous partial-occupied subsystem, which is constructed with various physi-
cal machines and usually utilized to provide comprehensive services for broader users.
For the full-occupied subsystem, the running time applied by users is the main pa-

rameter affecting the service capability of server nodes. Thus, optimizing the total running
time of the server node is one of the keys to manage the full-occupied subsystem.

202

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

For the homogeneous full-occupied subsystem, the processing time of a task is the
same for different server nodes, so the total running time of all the server nodes in the ho-
mogeneous full-occupied subsystem is invariant when tasks are given. Then, an optimiza-
tion problem to minimizing the makespan of the homogeneous full-occupied subsystem
can be given as Eq (6-6), where the makespan means the maximum running time of all
server nodes in subsystem Sk, and the constraints are shown as Eq (6-7).

minω(1)
k = min

 max
i=1,2,...,nk

 mk∑
j=1

xjiETkji

 (6-6)

s.t.

m∑
i=1

xji = 1,
n∑

j=1
xjivkji ≤ Cki,

xji ∈ {0, 1}, j ∈ {1, 2, . . . ,mk}, i ∈ {1, 2, . . . , nk}
(6-7)

For heterogeneous full-occupied subsystem, the processing time of the same task
may vary on heterogeneous server nodes, which indicates different schemes KSk of tasks
allocation will lead different total running time of subsystem. Therefore in this case, the
total running time and makespan are both critical optimization objectives shown as Eq
(6-8) also subject to Eq (6-7).

minω(2)
k =

min

(
max

i=1,2,...,nk

(
mk∑
j=1

xjiETkji
))

min
(

nk∑
i=1

mk∑
j=1

xjiETkji
) (6-8)

For homogeneous partial-occupied subsystem, we consider two types of subsystems
classified by their services: one is the subsystem applied to storage requests and the other
is that applied to computing requests.

The main component for Cloud storage requests is hard disk which mainly requires
load balancing to reduce network congestion. In this chapter, we use variance of server
nodes’ load of disk storage to measure the degree of balancing. Next, the objective of load
balancing can be given as

minω(3)
k = min

1
nk

nk∑
i=1

 mk∑
j=1

xjivDSkji

2

− 1
n2k

 nk∑
i=1

 mk∑
j=1

xjivDSkji

2 (6-9)

203

Doctoral Dissertation of University of Electronic Science and Technology of China

where the constraints are as Eq (6-7) and∑mk
j=1 xjivDSkji ≤ CDS

ki .
The computing requests mainly rely on CPU or GPU which usually consume more

electrical energy than disk, hence one of the objectives is to reduce the number of working
nodes of subsystem (bin packing problem). In this chapter taking the utilization of the CPU
as an instance, the single-dimensional bin packing problem can be given as

minω(4)
k = min

nk∑
i=1

max
j=1,2,...,mk

xji (6-10)

where the constraints are as Eq (6-7) and∑mk
j=1 xjivCPUkji ≤ CCPU

ki .
For the heterogeneous partial-occupied subsystem providing comprehensive services

for broader user groups, the number of instructions accounts for a high proportion of its
tasks to support various tasks. Thus, the CPU is one of the most frequently used compo-
nents. In this case, balancing the utilization of the CPU and minimizing the total occupied
capacity of the CPU are two considerable objectives, hence a bi-objective optimization
problem can be given as

minω(5)
k =

min
1
nk

nk∑
i=1

 mk∑
j=1

xjivCPUkji

2

− 1
n2k

 nk∑
i=1

 mk∑
j=1

xjivCPUkji

2

min
nk∑
i=1

mk∑
j=1

xjivCPUkji

(6-11)

According to the properties of different subsystems, we have given five subproblems
of HCCMS summarized in Table 6-2. Although there are still more optimization problems
for Cloud computing not listed in Table 6-2, the core target of this chapter is to address the
joint scheduling problems of HCCMS with various subproblems. Thus, using these five
optimization problems as examples has representativeness actually. For the joint schedul-
ing of more types of scheduling problems, the proposed method in this chapter will still
be applicable.

6.3.3 Joint Scheduling Problem and Cost Model for Various Subprob-
lems

In this chapter, we define the joint scheduling problem for various subproblems as
optimization problems with variable optimization objectives where the optimization ob-
jectives are known before the scheduling of resources. Similar to [236], we also construct

204

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

Table 6-2 Five Subproblems in This Chapter.
Sign Description of Problem
ω(1) Minimizing makespan for homogeneous re-

sources
ω(2) Minimizing makespan for heterogeneous re-

sources
ω(3) Load balancing of DS for homogeneous re-

sources
ω(4) Bin packing for homogeneous resources
ω(5) Minimizing standard deviation and total load

of CPU for heterogeneous resources

cost modelUk(t) for the trade-off the solution quality ωk(t) and computational complexity
τk(t) of scheduling algorithm at the time slot [t, t + Δt) to uniformly measure the solu-
tions of various subproblems. Without losing generality, we assume the cost equals the
weighted sum of optimization results and computational complexity using two weights
w(k)
ω (t) and w(k)

τ (t) as

Uk(t) = w(k)
ω (t) · ωk + w(k)

τ (t) · τk (6-12)

where w(k)
ω (t),w(k)

τ (t) ∈ R. Considering the complexity of realistic scenarios, we regard
the weights w(k)

ω (t) and w(k)
τ (t) as time-varying for each subsystems. Generally, the ob-

jective of minimizing the cost Ω(t) of the whole system at the time slot [t, t + Δt) can be
given as

minΩ(t) = min
q∑

k=1
Uk(t) (6-13)

6.4 Algorithm Design: Algorithm Selectors based onMachine Learning
Methods

6.4.1 SFSSA: Scheduling Framework to Select the Scheduling Algo-
rithms

For the joint scheduling problem for various subproblems as Eq (6-13), a single algo-
rithm is not enough to deal with varying and complex scenarios, which proposes a demand
for flexible utilization of various algorithms regarding scheduling algorithms as selectable
tools. Naturally, the joint scheduling problem for various subproblems can be converted
to: how to select an appropriate algorithm to schedule resources of a subsystem aiming

205

Doctoral Dissertation of University of Electronic Science and Technology of China

to minimize total cost of HCCMS.
Obviously, the most appropriate algorithm corresponding to different weights may

be non-fixed. For example, when w(k)
ω (t) > 0 ∧ w(k)

τ (t) = 0 or w(k)
ω (t) ≫ w(k)

τ (t) ≥ 0, an
algorithm with high complexity but can get the optimal solution is the most appropriate;
contrarily, when w(k)

ω (t) = 0 ∧ w(k)
τ (t) > 0 or w(k)

τ (t) ≫ w(k)
ω (t) ≥ 0, a fast algorithm such

as greedy algorithm or random algorithm may be the most appropriate. It can be assumed
an algorithm pool A = ⟨A1,A2, . . . ,Ad⟩ has d algorithms and the optimization result and
computational complexity of l-th algorithm for the subproblem at the time slot [t, t + Δt)
of the subsystem Sk are respectively ωkl(t) and τkl(t). If an algorithm Al can not solve the
subproblem of the subsystem Sk, we set ωkl(t) = +∞ and τkl(t) = +∞. Then, Eq (6-13)
can be transformed into Eq (6-14) based on: selecting an appropriate algorithm, where
the constraints are as Eq (6-15).

minΩ(t) = min
q∑

k=1

d∑
l=1

ykl(t)
(
w(k)
ω (t)ωkl(t) + w(k)

τ (t)τkl(t)
)

(6-14)

s.t.

d∑

l=1
ykl(t) = 1, ykl(t) ∈ {0, 1},

k ∈ {1, 2, . . . , q} , l ∈ {1, 2, . . . , d}
(6-15)

On the premise of given weights and tasks of all subsystems, the center of HCCMS
needs to select a suitable algorithm for each subsystem to minimize the total cost of the
system. As the scheduling algorithms can be deployed by multiple subsystems simultane-
ously, we only need to construct one public algorithms pool. Then, the scheduling frame-
work to select the scheduling algorithms (SFSSA) from the algorithms pool to schedule
the resources of the subsystem is as Fig 6-3, and its algorithm is as Algorithm 6-1.

Algorithm 6-1 Scheduling framework to select the scheduling algorithms (SF-
SSA)
Input : Tasks set Tk(t) and their parameters, objective of scheduling problems

ω(k)(t), weights of cost w(k)
ω and w(k)

τ , and algorithms pool A
Output: Selected algorithm Ay also the solution ⟨yk1(t), yk2(t), . . . , ykq(t)⟩ of

problem Eq (6-14)
1 Use algorithm selector to select an algorithm from algorithms pool
2 Execute the selected algorithm to generate the solution of scheduling problem
3 Schedule the resources based on the solution
4 Calculate the cost and update the strategies of selector

206

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

Parameters

() ()kw t

Selector of Scheduling
algorithms

() ()kw t

......
Algorithms
Pooling

()kT t

Selected
Algorithm

Subsystem center with selector and scheduling algorithms Pooling

Solution

... ... kN

kS
……1kS

……1kS

Server Nodes

() ()k t

Figure 6-3 The Scheduling framework to select the scheduling algorithms (SF-

SSA).

In Eq (6-14), if solution ωkl(t) and complexity τkl(t) are given before scheduling,
it only needs to select the algorithm with the minimum cost w(k)

ω (t)ωkl(t) + w(k)
τ (t)τkl(t).

However, before executing a scheduling algorithm, ωkl(t) and τkl(t) are usually unknown.
Thus, the directly required function of algorithm selector is to predict ωkl(t) and τkl(t),
which nevertheless is difficult. Considering this issue, we convert the prediction of ωkl(t)
and τkl(t) to the classification according to the input of Algorithm 6-1 and utilize a classifier
to act as the algorithm selector of SFSSA. Now, we can see that two main elements of
SFSSA are actually classifier (i.e. algorithm selector) and algorithms pool.

6.4.2 Algorithms Pool

Focusing on the five subproblems presented in Table 6-2, we construct an algorithms
pool with various algorithms including heuristic algorithms, meta-heuristic algorithms,
local search algorithms, hybrid algorithms and deep reinforcement learning. The spe-
cific algorithm and its corresponding subproblems are shown in Table 6-3. In Table 6-3,
LPTS, MLPTS, BFDS, BestBFDS, LPT-NS, MLPT-NS, BFD-NS and LPT-BFD-NS are
all heuristic-based local search algorithms utilizing heuristic algorithms as search routes.

207

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 6-3 Various Types of Algorithms in Algorithms Pool.

Category Algorithm Description Subproblems
ω(1) ω(2) ω(3) ω(4) ω(5)

Randomization Random Randomly allocating tasks to re-
sources

! ! ! ! !

Heuristic

Greedy Scheduling with greed priory ! ! ! ! !

RR Round Robin algorithm ! ! ! # !

LPT Longest Processing Time algorithm ! # ! # #

SPT Shortest Processing Time algorithm ! ! ! # !

BFD Best Fit Decreasing algorithm ! # ! ! #

FFD First Fit Decreasing algorithm # # # ! #

FF First Fit algorithm # # # ! #

Meta-Heuristic
ACO Ant Colony Optimization algorithm ! ! ! ! !

PSO Particle Swarm Optimization algo-
rithm

! ! ! ! !

GA-Random Genetic algorithm with random initial
state

! ! ! ! !

Single Route
Local Search

LPTS LPT-Search algorithm using LPT as
search route

! ! ! # !

MLPTS MLPT-Search algorithm using MLPT
as search route

! ! ! # !

BFDS BFD-Search algorithm using BFD as
search route

! # ! ! #

NS Neighborhood-Search algorithm ! # ! ! #

BestBFDS BestBFD-Search using BestBFD as
search route

! ! ! ! !

Multi Routes
Local Search

LPT-NS Using LPT and NS as search routes ! ! ! # !

MLPT-NS Using modified LPT and NS as search
routes

! ! ! # !

BFD-NS Using BFD and NS as search routes ! # ! ! #

LPT-BFD-NS Using the LPT, BFD and NS as search
routes

! # ! # #

Hybrid

GA-MinMin Genetic algorithm using MinMin ini-
tialized state

! ! ! ! !

ACO-GA Using the output of ACO as the input
of GA

! ! ! ! !

PSO-GA Using the output of PSO as the input
of GA

! ! ! ! !

MLPT-GA Using GA and MLPT as search routes ! ! ! ! !

Machine Learning DRL Deep reinforcement learning ! ! ! ! !

The algorithm of the heuristic-based local search algorithm is shown as Algorithm 6-2,
which can significantly reduce the computational complexity and enhance the optimality
of algorithms. Among Table 6-3, MLPTS and BestBFDS are modified algorithms origi-

208

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

nating from LPT and BFD respectively to solve subproblems, as well as their search routes
are shown as Algorithm 6-3 and Algorithm 6-4.

Algorithm 6-2 Heuristic-based local search algorithm
Input : Subproblem ωk and the set of tasks Tk
Output: Solution KSk of the subproblem

1 Initially Allocate tasks to resources with confirmed or random initialization
policy and gain the general initial status of KSk

2 while Exists_Ner do
3 NoExists_Ner
4 Search neighborhood Ner(KSk) of KSk in the heuristic-based local search

algorithm
5 if KS′

k ∈ Ner(KSk) s.t. the solution of KS′
k is optimal than KSk then

6 Exists_Ner
7 Choose the optimal neighbor to update KS′

k → KSk

8 Set KSk as the solution of ωk

Algorithm 6-3Modified LPT search route for heterogeneous resources
Input : Tasks TS = TSki ∪ TSkl of Rki and Rkl
Output: TSki and TSkl

1 Marki = 0, Markl = 0, TSki = ∅ and TSkl = ∅
2 while TS ̸= ∅ do
3 if Marki ≤ Markl then
4 c = i, b = l
5 else
6 c = l, b = i
7 Find tasks Tkαo ∈ TS s.t. Ekαo = min

Tkj∈TS
(ETkjc − ETkjb) to obtain a set of

{Tkα1 ,Tkα2 , . . . , Tkαs}
8 if s ≥ 2 then
9 Choose Tkα s.t. ETkα = max

1≤o≤s
ETkαoc

10 Markc+ = Ekαc, TSkc+ = {Tkα} and TS− ={Tkα}

6.4.3 DLS: DL-based Selector of Scheduling Algorithms

After giving algorithms pool, one of method to select appropriate algorithms is Deep
Learning-based selector (DLS). As deep learning belongs to supervised learning, a labeled
dataset is required to train the DLS. To build a labeled dataset, we randomly generate these

209

Doctoral Dissertation of University of Electronic Science and Technology of China

Algorithm 6-4 BestBFD search route
Input : Tasks TS = TSki ∪ TSkl of Rki and Rkl
Output: TSki and TSkl

1 Set γ =
∑

Tkj∈TSki∪TSkl
ETkji

2 , s = 0 and Marki = 0
2 for j in tasks from largest to smallest do
3 if Marki + ETkji ≤ γ then
4 Put task in Rki and updateMarki+ = ETkji
5 else
6 s + +
7 Mark |Marki + Ekji − γ| = Ls
8 Mark the scheme as KSs

9 Mark the scheme as KS0 and Choose argmin
KS

(|Marki − γ| ,L1, . . . , Ls) as solution

five categories of problems through the simulation system; execute all algorithms in the
algorithms pool suitable for the problem; then record the solutions and complexities of
these scheduling algorithms; lastly sort the cost of each algorithm from small to large, and
set the label value according to the sorting ranking.

Table 6-4 DNN Structures of DLSs.
Sign Number of layers Structure (with full connections)
DN1 3 64 → 128 → 25
DN2 4 64 → 128 → 256 → 25
DN3 5 64 → 128 → 256 → 512 → 25

For DLS, we establish several deep models with full connections as Table 6-4. Task-
ing 100000 training data and 10000 testing data, the accuracy and loss in training progress
of these DLSs are plotted in Fig 6-4. From Fig 6-4, the test accuracies of these three DLSs
are about 95% after training. Without losing generality, we choose the structure of DN3 as
the network structure of subsequent DRLSs and use well-trained DN3 as their pre-trained
model.

6.4.4 DRLS: DRL-based Selector of Scheduling Algorithms

DLS depends on the establishment of the labeled dataset marking the current best
algorithm. During the operation of the actual Cloud computing system, it is unknown in
advance which resource scheduling algorithm is most suitable for the dynamic scenarios.
Therefore, the other one method able to act as algorithms selector is Deep Reinforcement

210

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

 DN1-Train
 DN1-Test
 DN2-Train
 DN2-Test
 DN3-Train
 DN3-Test

(a) Accuracy.

 DN1-Train
 DN1-Test
 DN2-Train
 DN2-Test
 DN3-Train
 DN3-Test

(b) Loss.

Figure 6-4 The Train Process for DL-based Selectors of Table 6-4.

Learning-based selector (DRLS). Based on the decision between exploitation and explo-
ration, the advantages of reinforcement learning are to support non-supervised learning or
semi-supervised learning, as well as to support lifelong learning. The utilization of DNN
in RL is conducive to adapting to the continuous input space of SFSSA. In this chapter,
the base components of DRLS are defined as:
(1) Environment: The environment consisting of a simulated system receives the actions

from a agent (or agents) of DRLS, executes the selected scheduling algorithms, then
calculates the cost according to the performance of selected algorithms and feedback
the reward of selected algorithms.

(2) State space: The state space refers to the current status of each subsystem including
the objective of subproblems, weights of cost and tasks set, which are the input of
DRLS.

(3) Action space: The action space corresponding to the algorithms pool means selecting
a specific algorithm to address the corresponding subproblem.

(4) Policy: The policy is a decision maker and also the selection policy for resource
scheduling algorithms in this chapter.

(5) Reward and Loss Function: Training DRLS requires some feedback from the envi-
ronment. In this chapter, we use two types of feedback to train DRLS with random
alternation to accelerate the training process: one is the reward function equal to the
reciprocal of the cost i.e. 1/Uk(t) and train DRLS with policy gradient shown in Al-
gorithm 6-5; the other is using the best selection among some given strategies and a
target net as the label to get the cross-entropy loss and train DRLS by gradient descent.
The principle of the combination of two types of feedback is two different gradient

211

Doctoral Dissertation of University of Electronic Science and Technology of China

routes can jump out of the local convergence of a single route.

Algorithm 6-5 Update parameters by policy gradient
1 Initialize parameters of networks θ arbitrary or inherit them from DL-based

selector
2 for the experience of each episode ⟨s(1), a(1), r(1)⟩, . . . , ⟨s(t), a(t), r(t)⟩ πθ do
3 for i = 1 → t do
4 θ → θ + α∇θ log πθ (si, ai) vi

5 return θ

For HCCMS, the policy gradient is as:

g =
q∑

k=1

{
qπ (stk, atk) ∇θ

t∑
i=0

log π (aik|sik; θ)
}

(6-16)

and the updated parameters are as:

θ = θ + αg (6-17)

where qπ (stk, atk) is the score for subsystem Sk based on policy πθ, π (aik|sik; θ) is the
conditional probability of action aik under status of sik of subsystem Sk based on current
policy πθ, and

∑q
k=1

∑t
i=0 means using accumulate feedback of all subsystems to update

parameters of DRLS.
Input

Parameters
of Tasks

Real‐time
Experience

Parameters
of Problems

Long‐term
Experience

State of
Subsystems

If using Pre‐
Trained Model

State

Cost

Feedback with
Gradient

If Period
Update

Train Networks

Update State

DRL‐based Models

Execute
Selected
Algorithm

Environment
……

Strategies
of Decision
Maker

...

DL‐based Pre‐trained
Model

Selected
Algorithm

Action

If Long
Experience
Replay

...

...

Experience
Storage

Reward Loss

Random

Figure 6-5 A framework of DRL-based selector with various strategies.

212

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

Algorithm 6-6 Training of DRLS with multi strategies
1 Initialize parameters of DRL-based networks (randomly initialize or inherit

parameters from DL-based selector)
2 for time = 0 → t do
3 Generate the objective of subproblem and the weights w(k)

ω (time) and
w(k)
τ (time)

4 Generate parameters of tasks
5 Input and obtain selection results of DL-based selector, delayed network of

trained selector, random selector, fixed selector and DRL-based selector at
time respectively

6 Execute selected algorithms of above selectors and calculate costs based on
w(k)
ω (time) and w(k)

τ (time)
7 Get the best selection result or ranking according to costs
8 Get the reward of the selection result according to the ranking or get the label

according to the best selection result
9 Store reward or label into experience pool
10 if replay long-term experience then
11 Randomly selected long-term experience from experience pool
12 if period update then
13 Train the networks of DRL-based selector according to real-time

experience and long-term experience
14 if use delayed network and reach the periodic save point then
15 Save current network as delayed network

The other method to get the gradient of training DRLS is target labels of action. Com-
bining the preponderance of DDQN and DL, we choose the best action of the following
strategies as the target action.
(1) DLS: a well-trained DLS based on the labeled dataset;
(2) Delayed network of DRLS: the DRLS saved regularly during the training process;
(3) Random selector: randomly selecting one algorithm;
(4) Fixed selector: fixedly selecting one or several algorithms;
(5) DRLS itself: One or several DRLS with their own results.

In order to verify and select the appropriate DRLS model, we train multiple selectors
based on different strategies. The strategies of DRLS considered in this chapter contain:
(1) Pre-trained model: using the model trained by DLS with labeled dataset as the initial

network of DRLS;
(2) Long term experience replay & periodical update (LTPU): the environment stores the

experience e(t) = ⟨s(t), a(t), r(t)⟩ into replay memory D(t) = ⟨e(1), e(2), . . . , e(t)⟩,

213

Doctoral Dissertation of University of Electronic Science and Technology of China

then randomly selects the experiences in the experience memory at a specific time to
participate in the training of DRLS;

(3) Joint training: multi-agents of DRL participate in training and generation of target
value simultaneously.

Table 6-5 DRL-basedModels Combining Various Strategies Trained in This Chap-

ter.
Models Pre-trained LTPU Joint Training
Model1 # # #

Model2 # ! #

Model3 ! # #

Model4 # ! !

Model5 ! ! !

With these components, a framework of DRL-based selector can be shown as Fig 6-5.
The framework of Fig 6-5 contains multiple components of strategies and the algorithm
of training DRLS is shown in Algorithm 6-6. However, a DRL-based model may only
utilize some of them and different combinations of them have distinctness in performance.
Leveraging various training strategies and their combinations, we train and obtain five
DRL-based models as Table 6-5.

6.5 Experimental Results and Analysis

6.5.1 Experiment Setting

Currently, there is limited literature exploring the selector of the resource scheduling
algorithm in Cloud computing and some algorithm selection strategies in other research
directions contain Random Selector (RS) [236], Greedy Selector (GS) [236], Single Best
Solver (SBS) [237, 238], Virtual Best Solver (VBS) [226, 237], Optimal Decision Tree [239] and
Machine Learning [240]. Among these, RS, GS, VBS and SBS are most commonly used as
baselines of algorithms selection. Adding two more selection strategies including Round-
Robin Selector and SFS (select the fastest single algorithm), we construct the compared
baselines of this chapter as Table 6-6.

With baselines in Table 6-6, DLSs in 6-4 and DRLSs in 6-5 to evaluate the perfor-
mances of DLS and DRLS, we carry out four sets of comparative experiments respectively
between:

214

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

(1) EX0: Cloud system without subsystem and HCCMS;
(2) EX1: Well-trained DLSs in Table 6-4 and baseline strategies in Table 6-6;
(3) EX2: Dynamically trained DRLS (Model1) and baseline strategies;
(4) EX3: Dynamically trained Model1 to Model5 in Table 6-5 (various strategies of

DRLSs).
These sets of experiments are all based on the variable-controlling approach. Among

them, EX0 fixes specific scheduling problems and changes the number of subsystems to
observe the influence of the number of subsystems on the computational complexity and
optimization results of several scheduling algorithms. Fixing HCCMS structure, param-
eters of tasks and server nodes, and parameters of cost model, EX1, EX2 and EX3 are to
change algorithm selection strategies so as to observe the impact of different algorithm
selection strategies in various scenarios. EX1 is to evaluate the performance of DLSs
compared to baselines in the scenarios with relative static ranges of parameters and simul-
taneously to test the adaptability of DLSs for the scenarios outside the training dataset. EX2

is to evaluate the performance of DRLS compared to baselines in the relative dynamic sce-
narios. And then, EX3 is to evaluate the performance of different strategy combinations
in DRLS. The combination of these four sets of experiments illustrates the advantages of
HCCMS structure in resource scheduling, illustrates the advantages of DLS and DRLs in
specific scenarios, and finally provides a reference for the choice of algorithm selectors.

Subsystem type often determines its user type, optimization objective and character-
istic parameter. Additionally, different characteristic parameters have different degrees of
effects on the cost model. Therefore, we set different parameter ranges according to the
characteristic parameters of subsystems for various objectives, which can be seen in Table
6-7.

Table 6-6 Compared Baseline Strategies.
Strategies Description
RS [236] Random selector: randomly select an algorithm
GS [236] Greedy selector: greedily select the algorithm with solution quality or

complexity
RRS Round-robin selector: select each algorithm in turn
SBS [237, 238] Single best selector: select the single algorithm with best average per-

formance
VBS [237, 238] Virtual Best Selector: perfectly select the algorithm with the best previ-

ous statistical cost
SFS Single fast selector: select the fastest algorithm

215

Doctoral Dissertation of University of Electronic Science and Technology of China

Table 6-7 Parameter Setting in Experiments.
Objective Subsystem Type User Type Parameter Parameter Value Constraint
minω(1)

k Homo. full Specific users Processing time ETkji U(30, 120)min RTki ≤ 1day
minω(2)

k Heter. full Specific users Processing time ETkji U(30, 120)min RTki ≤ 1day
minω(3)

k Homo. partial DS Users Disk storage vDSkji U(103, 50K)MB LDSki ≤ 105MB
minω(4)

k Homo. partial CPU Users CPU capacity vCPUkji U(10, 100)MIPS LCPUki ≤ 103MIPS
minω(5)

k Heter. partial CPU Users CPU capacity vCPUkji U(10, 100)MIPS LCPUki ≤ 103MIPS

1 5 10 25 50
0

5k

10k

15k

M
ak
es
pa

n

Number of Subsystem

 GA
 MLPTS
 Random

0

1G

2G

C
om

pl
ex

iti
es

 GA
 MLPTS
 Random

(a) 100 server nodes.

1 5 10 25 50
0

4k

8k
M
ak

es
pa

n

Number of Subsystem

 GA
 MLPTS
 Random

0

1G

2G

C
om

pl
ex

iti
es

 GA
 MLPTS
 Random

(b) 200 server nodes.

Figure 6-6 The makespan and computational complexities of various system orga-

nizations for 10000 tasks.

Then, we simulate the HCCMS through a Python-based simulation environment and
launch the experiments on a desktop computer with configurations as follows:

• CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.8GHZ.
• SSD: KINGSTON SA400S37 240GB.
• GPU: NVIDIA GeForce GTX 1060 6GB.
• Program version: Python 3.6, Tensorflow.

6.5.2 Results and Discussion

6.5.2.1 EX0: Single-layer System vs. Multi-layer System

Before experiments of verifying algorithms selectors, we carry out a set of experi-
ments to compare the traditional single-layer system and multi-layer system (HCCMS).
To facilitate comparison in this set of experiments, we set the scheduling problem as min-
imizing makespan for heterogeneous resources (i.e. minω(2)). We use three algorithms
that Random algorithm,MLPTS andGA (with fixed 600 generations and 100 populations)

216

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

for verification of complexities and optimization results. We experiment in five types of
system organizations for the same tasks set with 104 tasks waiting to be allocated. The
parameters of tasks are consistent with those of minω(2) in Table 6-7 and not subject to
the constraints, which means each task is randomly generated by the uniform distribu-
tion ETkji ∼ U(30, 120)min. Using the number of subsystems as the main variable, these
five types of system organizations are respectively no subsystem (corresponding to ab-
scissa 1), 5 subsystems, 10 subsystems, 25 subsystems and 50 subsystems. In the system
organizations with subsystems, we divide the tasks into the number of subsystems and
each subsystem processes the same number of tasks. Then, the results of two experiments
respectively with 100 server nodes and 200 server nodes are plotted in Fig 6-6.

Fig 6-6(a) plots the complexities and makespan for the system with 100 server nodes
and Fig 6-6(b) for that with 200 server nodes. From Fig 6-6, the complexities of MLPTS
and GA both decrease with the increase of the number of subsystems. This validates the
relationship of Eq (6-2) that dividing the Cloud system into multi-layer systems with mul-
tiple subsystems can significantly reduce the complexities of resource scheduling. The
computational complexity of the random algorithm does not vary with the change of sys-
tem organizations, which is because the random algorithm does not consider the charac-
teristics of the task itself, and its computational complexity is equal to the total number of
tasks. The makespan of MLPTS increases with the increase of the number of subsystems,
while that of GA decreases slightly and that of random algorithm overall increases but
with instability. The increase of makespan using MLPTS algorithm is caused by HCCMS
structure where the solution of MLPTS algorithm is close to the global optimal solution
but the uneven assignment of tasks to each subsystem leads to the increase of global opti-
mal makespan. This reason can also explain the overall increasing trend of the makespan
of random algorithm. Additionally about the decreasing trend of GA, the solution of GA
is not close to the global optimal solution and the solution search space of multiple sub-
systems is far smaller than that of no subsystem, so GA with fixed generations and pop-
ulations can find a relatively better solution in the scenario of multiple subsystems than
that of no subsystem. Specifically discussing 100 server nodes in Fig 6-6(a), the com-
plexity of MLPTS in no subsystem is 575M and that in 5 subsystems is 35.9M, as well
as the makespan of MLPTS in no subsystem is 3076 and that in 5 subsystems is 3212,
which indicates increasing subsystems from 0 to 5 can reduce the complexity of MLPTS
by 93.8% with increase of makespan by 4.4%. This demonstrates that HCCMS provides

217

Doctoral Dissertation of University of Electronic Science and Technology of China

a way to significantly reduce the computational complexity in exchange for a small loss
of optimization.

On the whole, this set of experiments demonstrates the obvious benefits of multiple
subsystems to the resource management of the Cloud computing system. The experiments
in the following subsections will also be carried out in the HCCMS structure.

 DN1 DN2 DN3
 RS GS RRS
 SBS VBS SFS

(a) The cost per time partition for 5 time par-
titions.

DN1 DN2 DN3 RS RRS GS SBS VBS SFS
0

5k

10k

15k

20k

To
ta

l l
og

ar
ith

m
ic

 c
os

t

Seletor

(b) The total cost for 100 time partitions.

Figure 6-7 The performance comparison between baseline strategies and DL-based

selectors with 25 subsystems for nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

Table 6-8 The comparison of total cost for 100 time partitions with 25 subsystems

between DN3 and baselines in the scenarios of nk(t) ∼ U(2, 20) and mk(t) ∼

U(nk(t), 100).
Items DN3 RS RRS GS SBS VBS SFS

Total Cost 15001 22114 21924 20084 22188 17902 17823
Improvement (Ibaseline−DN3) – 7112 6923 5083 7187 2901 2822

Ibaseline−DN3/DN3 (%) – 47.4 46.1 33.9 47.9 19.3 18.8

6.5.2.2 EX1: Baseline Strategies vs. DL-based Selectors

In this set of experiments, we compare baseline strategies corresponding to Table 6-6
with DLSs corresponding to Table 6-4 to evaluate the optimality and adaptability of DLS
in various scenarios.

We experiment in the simulated HCCMS with q = 25 subsystems, where numbers
of each type of problems are all 5. The cost weights of subsystems are also in uniform
distributionwherew(k)

ω (t) ∼ U(0, 100)/100 andw(k)
τ (t) ∼ U(0, 100)/100whereU(0, 100)

218

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

means randomly generating an integer between [0, 100] subject to uniform distribution. As
themanagement of HCCMS in this chapter mainly concerns the cost of the system, thus we
only use logUk(t) (logarithmic cost) calculated by solution quality and complexity as Eq
(6-12) to evaluate the performance of selectors instead of additionally present optimization
results in detail such as makespan and standard deviation for each subproblem. Dividing
time into multi partitions, the number of the arriving tasks and the available resources in
each time partition are generated by the uniform distribution. Additionally, the threeDLSs,
i.e. DN1, DN2 and DN3 with different structures of networks, have been well trained in
dataset for the distributions of nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

We carry out experiments in the scenarios of nk(t) ∼ U(2, 20) and mk(t) ∼
U(nk(t), 100): we randomly generate a set of tasks through these probability distributions,
execute the selected algorithms using different algorithm selection strategies to sched-
ule of generated tasks to meet the specified optimization objectives, record the execution
time and optimization results of their selected scheduling algorithms, and then calculate
the logarithmic cost according to the cost model as the index of the performance evalua-
tion. Then, we plot the experiment results of logarithmic cost per time partition and total
logarithmic cost in Fig 6-7.

Fig 6-7(a) plots the cost of the system at each time partition resulted from DLSs and
the baseline strategies including random selector (denoted as RS in figures), greedy selec-
tor (GS), RR selector (RRS), single best selector (SBS), virtual best selector (VBS) and
single fast selector (SFS). Each selector processes the same task under the same config-
uration of subsystems. In Fig 6-7(a), the three DLSs that DN1, DN2 and DN3 obtain less
cost than baselines, where DN3 performs best among all the DLSs. The results in Fig 6-
7(a) show that DLS can be used to reduce the cost of resource scheduling and increasing
the number of neural network layers can improve the performance of algorithm selection.
Fig 6-7(b) plots the total cost for 100 time partitions where the tasks and subsystems for
each selector are also the same. In terms of the total cost over a long time span, DLSs still
outperform compared baseline strategies.

First of all, Fig 6-7 shows that it is difficult to adapt to all scenarios with only one
algorithm or some fixed algorithms, which proves once again the significance of selecting
appropriate scheduling algorithms for different scenarios. Moreover, the performance of
randomly or greedily selecting an algorithm to solve the resource scheduling problem is
unstable. Then, Table 6-8 lists the total costs of Fig 6-7(b) to observe the relative improve-

219

Doctoral Dissertation of University of Electronic Science and Technology of China

ment of DN3 compared with the baseline algorithm. Overall from Table 6-8, the total cost
of DN3 is improved by 47.4%, 46.1%, 33.9%, 47.9%, 19.3% and 18.8% respectively com-
pared to RS, GS, RRS, SBS, VBS and SFS for 100 time partitions with 25 subsystems in
the scenarios of nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

 DN1 DN2 DN3
 RS GS RRS
 SBS VBS SFS

(a) The cost per time partition for 5 time par-
titions with nk(t) ∼ U(10, 30).

 DN1 DN2 DN3
 RS GS RRS
 SBS VBS SFS

(b) The cost per time partition for 5 time par-
titions with nk(t) ∼ U(30, 50).

 DN1 DN2 DN3
 RS GS RRS
 SBS VBS SFS

(c) The cost per time partition for 5 time par-
titions with nk(t) ∼ U(50, 70).

 DN1 DN2 DN3
 RS GS RRS
 SBS VBS SFS

(d) The total cost for 100 time partitions with
varying ranges of server nodes.

Figure 6-8 The performance comparison between baseline strategies and DL-based

selectors with 25 subsystems with varying ranges of server nodes and mk(t) ∼

U(nk(t), 100).

In the experiments of Fig 6-7 where DN1, DN2 and DN3 significantly outperform
baselines, the ranges of server nodes and tasks are that corresponding to the training
dataset, i.e. nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100). This implies DLS can perform
well in the parameters they are repeatedly trained. However, models based on deep learn-
ingmay not be adaptable to scenarios other than their training dataset. Considering this, we
continue to evaluate the performance and validity of DLS for untrained parameter ranges.

220

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

We changed the ranges of server nodes, retain the ranges of tasks asmk(t) ∼ U(nk(t), 100)
and carried out several groups of experiments to observe the logarithmic cost of the DN1,
DN2 and DN3 which are trained in nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

 Model1 RS GS RRS
 SBS VBS SFS

(a) The cost per time partition.

Model1 RS RRS GS SBS VBS SFS
0

50k

100k

150k

To
ta

l l
og

ar
ith

m
ic

 c
os

t
Seletor

(b) The total cost.

Figure 6-9 The performance comparison between theDRLS (Model1 being trained)

and baseline strategies with 200 subsystems for 100 time partitions in the scenarios

of nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

Table 6-9 The comparison of total cost for 100 time partitions with 200 subsystems

between Model1 and baselines in the scenarios nk(t) ∼ U(2, 20) and mk(t) ∼

U(nk(t), 100).
Items Model1 RS RRS GS SBS VBS SFS

Total Cost 124426 175572 174959 138977 177077 138744 140024
Improvement (Ibaseline−Model1) – 51146 50533 14551 52651 14318 15598
Ibaseline−Model1/Model1 (%) – 41.1 40.6 11.7 42.3 11.5 12.5

The results are plotted in Fig 6-8, where Fig 6-8(a), Fig 6-8(b) and Fig 6-8(c) plot
the logarithmic cost per time partition for 5 time partitions respectively for the ranges
nk(t) ∼ U(10, 30), nk(t) ∼ U(30, 50) and nk(t) ∼ U(50, 70). Then, Fig 6-8(d) plots
the total cost for 100 time partitions for the ranges from nk(t) ∼ U(10, 30) to nk(t) ∼
U(50, 70). In Fig 6-8(a) where nk(t) ∼ U(10, 30) slightly deviates from the range of
training nk(t) ∼ U(2, 20), DN1, DN2 and DN3 still outperform baselines. However, DN1,
DN2 and DN3 differ greater in performance than that of Fig 6-7. DN3 has significantly
lower cost than DN2 and DN1, as well as DN1 has close cost with VBS. In Fig 6-8(b) where
nk(t) ∼ U(30, 50), the differences of cost between DN1, DN2 and DN3 further increase,
where DN3 still outperform baselines but DN1 and DN2 achieve worse cost than other

221

Doctoral Dissertation of University of Electronic Science and Technology of China

baselines except SBS. When in Fig 6-8(c), performances of the three DLSs continue to
decline so that VBS exceeds DN3 although DN3 still performs better than other baselines.
Fig 6-8(d) provides an overall trend of performance changing with the ranges of server
nodes. In Fig 6-8(d), the performance degradation speeds of DN2 and DN1 are faster than
that of DN3. When the range of server nodes reaches U(20, 40), the costs of DN1 and DN2

become larger than that of VBS and SFS in baselines, as well as until that range reaches
or exceeds U(40, 60), the costs of DN3 become greater than that of VBS and still less than
SFS.

Analyzing the overall results of experiments in Fig 6-8 can gain that the performance
of DLS, although with certain adaptability, will decline with the ranges of server nodes
far away from that trained by DLS. This also means that DLS can maintain performance
in static scenes, but cannot guarantee adaptability in dynamic scenes. Comparing DN1,
DN2 and DN3 in Fig 6-8 and Fig 6-7, we can see DN3 is least affected by the range of
server nodes in terms of performance followed by DN2. In addition to the differences in
network structure, these three DLSs have the same training strategy and dataset, as well
as have approximate accuracies when achieving convergence. Therefore, this reveals a
possible reason that a neural network-based DLS with more neurons or connection layers
may have stronger adaptability in algorithm selection for varying ranges of parameters,
consistent with that the better performing DN3 has more layers and neurons than DN2 and
DN1.

6.5.2.3 EX2: Baseline Strategies vs. Model1

The premise of using DLS is enough historical data in advance to support training.
From the above results of Fig 6-7 and Fig 6-8, after repeatedly training within the specified
parameter range, DLS did learn the optimal selection within this parameter range, but
its performance is still limited for the parameter range outside the training. Therefore,
although DLS has better performance than the comparison strategies in static selection,
we still need to explore additional selectors to tackle the dynamic selection of scheduling
algorithms, which indicates the necessity of DRLS.

In this set of experiments, we compare baseline strategies corresponding to Table 6-6
with a DRLS (Model1) to evaluate the optimality and adaptability of DRLS. We exper-
iment in a simulated HCCMS with q = 200 subsystems, where numbers of each type
of problems are all 40. The numbers of the arriving tasks and the available resources in
each time partition are generated by uniform distribution or other distribution (in some

222

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

 Model1 RS GS RRS
 SBS VBS SFS

(a) nk(t) ∼ U(2, 40) and mk(t) ∼
U(nk(t), 100).

 Model1 RS GS RRS
 SBS VBS SFS

(b) nk(t) ∼ U(2, 20) and mk(t) ∼
U(nk(t), 200).

 Model1 RS GS RRS
 SBS VBS SFS

(c) Randomly selecting nk(t) ∼ U(2, 20),
nk(t) ∼ U(20, 40), nk(t) ∼ U(30, 70),
nk(t) ∼ U(50, 90) with equal probabil-
ity in each time partition and mk(t) ∼
U(nk(t), 100).

 Model1 RS GS RRS
 SBS VBS SFS

(d) nk(t) ∼ Tr(2, 20) and mk(t) ∼
Tr(nk(t), 100).

Figure 6-10 The cost per time partition ofModel1 being trained and baseline strate-

gies with 200 subsystems for 10 time partitions and various distributions of num-

bers of server nodes and tasks.

experiments). The cost weights of subsystems are also in uniform distribution where
w(k)
ω (t) ∼ U(0, 100)/100 and w(k)

τ (t) ∼ U(0, 100)/100. The above parameter settings
are the same as those of the comparative experiments EX1. The difference is that in the
process of training DRLS, it is unknown which scheduling algorithm is the best in ad-
vance. DRLS finds a better selection through exploration and exploitation. Additionally,
we choose Model1 (without additional training strategies) as the instance of DRLS to ob-
serve the inherent advantages of DRL-based algorithm selector.

Since DRLS does not have the ability to optimize decision-making at the beginning

223

Doctoral Dissertation of University of Electronic Science and Technology of China

before training which needs enough training to participate in decision-making, we set a
long time period with 100 time partitions to observe the logarithmic cost and carry out
experiments in the scenarios of nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100). Then, the
results of the logarithmic costs corresponding to the comparison baseline strategies and
DRLS (Model1) are plotted in Figure 6-9.

 Model1
 Model2
 Model3
 Model4
 Model5
 DN3

Lo
ga

rit
hm

ic
 c

os
t

Time partition

4 8 12 16
1,440

1,480

1,520

1,560

(a) nk(t) ∼ U(2, 50), mk(t) ∼ U(nk(t), 200).

 Model1
 Model2
 Model3
 Model4
 Model5
 DN3

Lo
ga

rit
hm

ic
 c

os
t

Time partition

4 8 12 16

1,200

1,240

1,280

(b) nk(t) ∼ U(2, 20), mk(t) ∼ U(nk(t), 100).

Figure 6-11 The performance comparison in train process of theModel1 toModel5

with 200 subsystems for 40 time partitions.

Fig 6-9(a) plots the cost of the system at each time partition. As shown in Figure
6-9(a), before the 10-th time partition, the costs ofModel1 are not obviously smaller than
the best baseline, which is because Model1 selector has not been well trained. After the
10-th time partition,Model1 can maintain better than comparison strategies with adequate
training. This is because DRLS can learn the best selection strategy in the current scenario
after enough time partitions. When time goes on, DRLs with lifelong learning will con-
tinue to evolve itself. Fig 6-9(b) plots the total cost for 100 time partitions of the training
process. In Fig 6-9(b),Model1 achieves the minimum total cost much less than baselines,
although the cost ofModel1 is large in the initial few time partitions.

This set of experiments has validated the feasibility of DRLS for the scenarios without
labeled data. Additionally, usingDRLS can reduce the cost evidently for dynamic resource
scheduling. Table 6-9 lists the total costs of Fig 6-9(b) to observe the relative improvement
of Model1 compared with the baseline algorithm. Overall from Table 6-9, the total cost
of Model1 is improved by 41.1%, 40.6%, 11.7%, 42.3%, 11.5% and 12.5% respectively
compared to RS, GS, RRS, SBS, VBS and SFS for 100 time partitionswith 200 subsystems
in the scenarios of nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

Similar to the experiments of DLS in Section 6.5.2.2, we carry out multi experiments

224

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

to test the validity of DRLS in various ranges of parameters. We respectively change the
distributions of server nodes and tasks, then plot the cost per time partition of Model1
and baselines in the scenarios with 200 subsystems for 10 time partitions in Fig 6-10.
Comparing to Fig 6-9, experiments in Fig 6-10(a) change the range of server nodes to
nk(t) ∼ U(2, 40); that in Fig 6-10(b) change the range of tasks to mk(t) ∼ U(nk(t), 200);
that in Fig 6-10(c) select nk(t) ∼ U(2, 20), nk(t) ∼ U(20, 40), nk(t) ∼ U(30, 70), nk(t) ∼
U(50, 90) with equal probability; as well as that in Fig 6-10(d) change the distribution
of server nodes and tasks to triangular distributions i.e. nk(t) ∼ Tr(2, 20) and mk(t) ∼
Tr(nk(t), 100) where the probability of Tr(a, b) is

PTr(a,b)(x) = 4min (|x − a| , |x − b|)
(b − a)2 − ((b − a) mod 2)

(6-18)

where a ≤ x ≤ b ∈ N+.
As shown in Fig 6-10, DRLS can reach better performance than the baseline within 5

time partitions in various distributions of server nodes and tasks. Compared to that in Fig
6-10(a) and Fig 6-10(b), DRLS (i.e. Model1) in Fig 6-10(c) and Fig 6-10(d) has greater
advantages than baselines, which indicates that DRLS has stronger adaptability to more
complex dynamic scenes than baselines. Differentiating from DLS, DRLS retains better
performance than baselines with the change of parameters. This is because DRLS is con-
tinuously trained by the experience in each time partition, which makes DRLS adaptable
to the dynamic varying scenarios. In addition, DRLS based on deep reinforcement learn-
ing not only learns the decision of algorithm selection, but also learns the properties of
parameter distribution of tasks and server nodes to a certain extent, which is also helpful
to improve the performance of DRLS in dynamic scenes.

6.5.2.4 EX3: Comparison between Model1 to Model5

Previous experiments have verified the availability and superiority of DRLS. In this
set of experiments, we further consider the strategies of DRLS including pre-trainedmodel
of DLS, LTPU and joint training corresponding to Table 6-5.

We carry out experiments in the simulated HCCMS with q = 200 subsystems. The
cost weights of subsystems are also in uniform distributionwherew(k)

ω (t) ∼ U(0, 100)/100
and w(k)

τ (t) ∼ U(0, 100)/100. The numbers of the arriving tasks and the available re-
sources in each time partition are generated by the uniform distribution. In order to test the
adaptability of DRLS for dynamic algorithms selection, we experiment with two groups

225

Doctoral Dissertation of University of Electronic Science and Technology of China

of parameters generation:
• nk(t) ∼ U(2, 50) and mk(t) ∼ U(nk(t), 200).
• nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).
The parameters generation of the first group is the same as the training dataset of DLS
such as DN3. Therefore, we also add the cost of DN3 to participate in the comparison.

The pre-trained model being used in this set of experiments is the DN3 in Subsection
6.5.2.2 which is trained under the parameters nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).
We observe the training process of Model1 to Model5 in 40 time partitions, and plot the
results of the costs for each time partition in Fig 6-11. Fig 6-11(a) plots the results for the
parameters generation of nk(t) ∼ U(2, 50) and mk(t) ∼ U(nk(t), 200), and Fig 6-11(b) for
that of nk(t) ∼ U(2, 20) and mk(t) ∼ U(nk(t), 100).

From Fig 6-11(a), Model5, simultaneously leveraging pre-trained model, LTPU and
joint training, has the fastest convergence speed and the lowest cost. Ranking from lowest
to highest logarithmic cost gains Model5 < (Model3,Model2) < Model4 < Model1 <

DN3. Model2 < Model4 < Model1 illustrates joint training can improve the optimization
of decision-making with a small range, but not better than strategy of LTPU.Model3, com-
bining LTPU and pre-trained model, is better than Model2 in the first 15 time partitions,
but their results are very close after 15 partitions. This demonstrates usage of pre-trained
model can improve convergence speed however cannot evidently improve optimization
of decision-making for the model after sufficient training. Additionally, the DN3 without
re-training has the higher costs than all of DRLS. This demonstrates DLS can not adapt to
dynamic selection of algorithms once the scenario is different from the trained dataset.

However in Fig 6-11(b), DN3 is close to Model5 and outperforms than all of DRLS.
The reason is that: during training DN3 under the parameters of nk(t) ∼ U(2, 20) and
mk(t) ∼ U(nk(t), 100), the trained labels of dataset correspond to the best algorithms, i.e.,
DN3 has learned the best selection; however in training of DRLS, the best algorithms are
unknown and DRLS only learned a relatively high score selection through the exploration
for better selections. Thus, the choose of the algorithms selectors depends on the scenarios.

In general, each strategy of pre-trained model, LTPU and joint training can improve
the training or decision-making performance of the DRLS. And DRLS is more appropriate
to resolve the dynamic selection in the real-time scheduling process when the parameters
are unknown in advance. The Model5 using all strategies simultaneously can achieve the
best performance in the process of algorithm selection.

226

Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors

6.5.3 Overall Summary

Through the multiple sets of experiments from different sights in this section, we
can observe both DLS and DRLS outperform than baseline strategies in various resource
scheduling scenarios of HCCMS. Among these experiments:
• EX0 demonstrates the multi-layer system structure of HCCMS can greatly reduce the
computational complexity of resource scheduling with little loss of optimization.

• EX1 demonstrates DLS can reduce the whole cost significantly compared with baselines
in the scenarios with stable parameter ranges where DN3 reduces the cost by 47.4%,
46.1%, 33.9%, 47.9%, 19.3% and 18.8%, respectively compared to RS, GS, RRS, SBS,
VBS and SFS. Additionally, EX1 also demonstrates the performance of DLSwill decline
with the ranges of server nodes far away from that trained by DLS, as well as DLS with
more layers or neurons may have stronger adaptability in algorithm selection for varying
ranges of parameters.

• EX2 demonstrates DRLS can obtain far better cost than baselines in the dynamic schedul-
ing scenarios without labeled data where Model1 reduces the cost by 41.1%, 40.6%,
11.7%, 42.3%, 11.5% and 12.5% respectively compared to RS, GS, RRS, SBS, VBS
and SFS. Additionally, EX2 also demonstrates DRLS retains better performance than
baselines with the change of parameters.

• Finally, EX3 demonstrates the effect of different strategies of DRLS where the simulta-
neous usage of DL-based pre-trained model, LTPU and joint training performs the best
among all the DRLSs, as well as validates DRLS have stronger adaptability to dynamic
scenes than DLS.

6.6 Summary of this Chapter

In this chapter, we formulate the joint scheduling problem of HCCMS combining five
types of subproblems in four types of subsystems, which always cannot be addressed by
a single scheduling algorithm. Focusing on this issue, we propose the scheduling frame-
work to select the scheduling algorithms (SFSSA) to meet the resource management of
complex HCCMS. To concretize SFSSA, we proposed DLS and DRLS, which can learn
algorithm selection decisions in various scenarios to tackle the challenging joint schedul-
ing problem of HCCMS. To improve the optimality and convergence of DRLS, we further
apply various strategies including pre-trained model, long experience reply and joint train-
ing. Then, we carry out four sets of experiments to evaluate the performance of DLS and

227

Doctoral Dissertation of University of Electronic Science and Technology of China

DRLS in the joint scheduling problem of reducing the cost of HCCMS.
From extensive experiments in multiple sights, we can conclude not only HCCMS

structure can significantly improve the speed of resource management, but also our pro-
posed SFSSA, with DLS and DRLS as instances both outperforming baselines, can ad-
dress the joint scheduling problem in HCCMS. Concretely, DLS reduced the cost by
47.4%, 46.1%, 33.9%, 47.9%, 19.3% and 18.8% in the scenarios with stable parameter
ranges; DRLS reduced the cost by 41.1%, 40.6%, 11.7%, 42.3%, 11.5% and 12.5% in the
dynamic scenarios compared to RS, GS, RRS, SBS, VBS and SFS respectively. We can
also conclude that DRLS has stronger adaptability to dynamic resource scheduling scenar-
ios than DLS. Additionally, the strategies, i.e. pre-trained model, long-term experience
replay & period update and joint training, are all conducive to improving the performance
of DRLS.

The obvious significance of DLS and DRLS is that they not only demonstrate the
great potential of DL and DRL as algorithms selectors, but also prove that resource
scheduling algorithms can also be regarded as the resources to be scheduled. Compared
with directly using DL and DRL as scheduling algorithms, DLS and DRLS (using DL
and DRL as algorithm selectors) have much lower computational complexity, which also
provides more possibilities for their application in realistic complex systems. It also puts
forward a novel considerable solution to the challenge that no scheduling algorithm is

suitable for all scenarios, where SFSSA with DLS and DRLS implies that since there is
no such algorithm suitable for all scenarios, we will choose the most appropriate algo-

rithm for different scenarios. In SFSSA, all scheduling algorithms are regarded as useful
“treasures”, because we could always find a certain scenario for each algorithm, making
this algorithm superior to all other algorithms in some aspects. On other counts, this chap-
ter also illustrates the potential of hierarchical management of Cloud computing systems
using multiple subsystems.

In the future work, we plan to explore more structures and strategies of DLS and
DRLS to adapt to more complex resource scheduling scenarios, as well as we plan to
continue to explore the dynamic configuration and access control policy of resources and
server nodes of HCCMS where we consider that the same server node can actually belong
to different subsystems at different time.

228

Chapter 7 Conclusion and Prospect

Chapter 7 Conclusion and Prospect

7.1 Conclusion

In order to explore methods or strategies that can enhance the resource management
capabilities of distributed computing systems such as cloud computing, this dissertation
selected five scheduling scenarios in cloud environments for exploration and research,
and multiple optimization algorithm architectures (multiple optimization algorithm series)
were proposed:

(1) For the scenario of single dimensional cloud computing resource scheduling, this
dissertation proposes a series of multi-path local search algorithms using heuristic algo-
rithms as search paths. Through theoretical deduction, it has been proven that the theoret-
ical approximation ratio of the proposed search algorithm in the classic NP hard problem
P||Cmax is 5/4 (currently, there are few other public reports on the theoretical proof of the
approximation ratio of search algorithms), which is superior to the existing baseline algo-
rithm LPT’s approximation ratio of 4/3. The experiment verified its superiority in both
homogeneous and heterogeneous scenarios.

(2) For the problem of heterogeneous multi-dimensional cloud computing resource
scheduling, this dissertation introduces the concept of stages to reconstruct the traditional
genetic algorithm architecture, and proposes a series of scalable genetic algorithms (a new
genetic algorithm architecture, first seen in public materials) to improve the optimization
performance and convergence speed of optimization algorithms in solving NP hard prob-
lems considering multi-dimensional resource scheduling. Experiments have shown that
the performance of the growth genetic algorithm is superior to that of the baseline evolu-
tionary algorithm.

(3) For the parallel training workflow of deep learning models in cloud distributed
systems, this dissertation derives the analytical expression of a theoretical loss model that
considers both computation and communication time, and takes into account the non-
linear relationship between these times and data volume, with pipeline model partitioning
and micro batch data partitioning schemes as independent variables (filling the gap in the
theoretical loss model under this scenario). The joint optimization problem is theoretically
modeled, and a multidimensional improved binary method and a cross search algorithm
based on the improved binary method are proposed. Through theoretical deduction, it has

229

Doctoral Dissertation of University of Electronic Science and Technology of China

been proven that the theoretical approximation ratio of the proposed multidimensional im-
proved binary method can approach 1 and the computational complexity only increases
linearly (there are currently no other public reports on the theoretical proof of the approx-
imation ratio of the multidimensional improved binary method). The experiment verified
the optimization of the parallel training scheme using the cross search algorithm based on
the improved binary method.

(4) For parallel training of deep learning models in cloud distributed systems, this
dissertation further proposes a novel architecture: UMPIPE, a pipeline parallel mode
based on non-uniform data partitioning, which considers unequal data partitioning in par-
allel training of deep learning models. The general recursive expression of its theoretical
loss model and the matrix based recursive expression are derived. Theoretical evidence
has demonstrated the optimization capability of this architecture. Propose a two-level
improved dual chromosome genetic algorithm based on matrix form recursion to quickly
solve the optimization training scheme of UMPIPE. The experiment verified the optimiza-
tion of the new parallel architecture and the optimization algorithm for solving the training
scheme.

(5) Based on the practical application scenarios of cloud systems, this dissertation
introduces a multi-level and multi subsystem cloud architecture, and models the dynamic
management problem of complex cloud resources as a joint optimization problem of mul-
tiple sub problems. Combining algorithm pools containing multiple algorithms (first seen
in publicly available materials), a cloud resource scheduling algorithm selection architec-
ture and a reinforcement learning based algorithm selector were proposed to dynamically
optimize cloud system resource management. The experiment shows that the proposed
algorithm selector can improve the optimization of multi-level and multi subsystem cloud
scheduling.

This dissertation explores the adaptability of cloud systems and algorithm systems
by expanding their application breadth and theoretical depth. Among them:

(1) Existence of Changes in Dimensions：The research progress from single di-
mension (Chapter 2) to multiple dimensions (Chapters 3, 4, 5, and 6) has improved the
adaptability of cloud systems and algorithm systems to changes in resource dimensions;

(2) Existence of Changes in Relevance：The research progress from independent
task sets (Chapters 2 and 3) to associated workflow task sets (Chapters 4 and 5) has im-
proved the adaptability of cloud systems and algorithm systems to changes in task corre-

230

Chapter 7 Conclusion and Prospect

lation;
(3) Existence of Changes in Granularity：The research progress from the equal

data partitioning workflow (Chapter 4) to the unequal data partitioning workflow (Chapter
5) has improved the adaptability of cloud systems and algorithm systems to scheduling
granularity changes;

(4) Existence of Changes in the numbers of Optimization Objectives and Prob-
lems：The research progress from the equal data partitioning workflow (Chapter 4) to the
unequal data partitioning workflow (Chapter 5) has improved the adaptability of cloud
systems and algorithm systems to scheduling granularity changes;

(5) Existence of Changes in the Dynamism of Scheduling：The research progress
from static allocation (Chapter 2) to dynamic scheduling (Chapters 3, 4, 5, and 6) has
improved the adaptability of cloud systems and algorithm systems to dynamic scheduling
changes;

(6) Existence of Changes in System Hierarchy and Architecture：The research
progress from single center and single level (Chapters 2, 3, 4, and 5) to multi center, multi
level, and multi subsystem (Chapter 6) has improved the joint utility of cloud architecture
and algorithm system for system hierarchy and scheduling scenarios;

(7) Existence of Changes in Scheduling Scenarios and Types of Algorithm Se-
ries：The research involves multiple resource scheduling scenarios with different con-
figuration forms. The proposed optimization algorithm series involves multiple types of
algorithms, including heuristic, local search (multi-path local search series), metaheuristic
global search (expandable genetic algorithm series, multi chromosome genetic algorithm
series), multi algorithm hybrid cross search, machine learning (deep learning selector and
deep reinforcement learning selector), etc.

This dissertation focuses on solving optimization problems in various resource
scheduling scenarios in cloud environments. Its research results include architecture de-
sign and theoretical exploration of multiple optimization algorithm series, which have
theoretical and practical significance.

7.2 Prospect

Regarding the five algorithm series proposed in the five scheduling scenarios studied
in this dissertation, from the perspectives of theoretical depth and application exploration,
future work includes the following possibilities:

231

Doctoral Dissertation of University of Electronic Science and Technology of China

(1) This dissertation proves the theoretical approximation ratio of the search algo-
rithm, and the approximation ratio of the multi-path search algorithm proposed in this
dissertation is less than 5/4, which is better than the existing 4/3 baseline under the min-
imum completion time (P||Cmax) problem of isomorphic parallel machines. Future work
considers decomposing it into the form of control variables and attempting to derive ap-
proximate theoretical expressions or intervals for heterogeneous node univariate systems.
In addition, other algorithms can also serve as the basis for multi-path search algorithms
to adapt to different optimization scheduling problems and derive their corresponding the-
oretical approximations.

(2) The infrastructure of the growable genetic algorithm proposed in this dissertation
is also applicable to other evolutionary algorithms and swarm algorithms. The future
work plan combines other algorithms such as particle swarm optimization, ant colony
optimization, etc. to explore high-performance algorithms suitable for many objective
problems. The theoretical derivation of convergence speed or optimization performance
based on the combination of growth path and genetic algorithm is also worth exploring. In
addition, various population strategies and partial growth strategies can be used to further
improve the convergence speed of growable genetic algorithms, and future work will also
conduct in-depth research on them

(3) For the joint optimization problem of parallel training workflow for deep learn-
ing models, future work plans to further introduce tensor model parallel mode to derive
theoretical loss models and joint optimization problems under the combination of three
parallel modes (pipeline model parallel, data parallel, tensor model parallel), and consider
further attempts to improve the cross search algorithm architecture.

(4) For the training architecture of non-uniform partitioning in the parallel training
workflow problem of deep learning models in cloud systems, future work considers in-
troducing three types of non-uniform partitioning simultaneously (inter layer inequality,
intra layer inequality, and inter Minibatch inequality), and theoretically deriving and ex-
perimentally testing their loss models. In addition, the dual chromosome genetic algo-
rithm proposed in this dissertation can be combined with local search algorithms to form
a scalable dual chromosome genetic algorithm for this new training architecture, which
can attempt to further improve the optimization of convergence solutions.

(5) This dissertation considers the dynamic joint scheduling problem of algorithm
selectors in cloud systems containing multiple layers and subsystems. Future work con-

232

Chapter 7 Conclusion and Prospect

siders introducing micro partitioning of tasks and dynamic attribution of service nodes to
improve the granularity of resource scheduling and further explore new architectures for
cloud distributed systems and other distributed systems. In addition, there may be multi-
level subsystems in a multi-level and multi subsystem architecture, and their optimization
scheduling and permission management issues also need to be further studied.

On the basis of the research in this dissertation, the basic strategies or algorithms in
the algorithm series architecture can also be adjusted to adapt to other application scenar-
ios or research fields. The algorithm series or architectures proposed in this dissertation
can also be applied to improve other algorithms. The scheduling of cloud computing
resources is related to bandwidth, task delay ratio, the ratio of computing and communi-
cation, and the hardware and software used to run programs. How to apply, deploy or
build the research content of this dissertation in real large-scale distributed systems, such
as comprehensively considering software program behavior and characteristics, and how
to balance and optimize the computational, communication and latency of resources in
cloud platforms, is also an important future work.

233

Doctoral Dissertation of University of Electronic Science and Technology of China

Acknowledgements

At this point, in addition to bidding farewell to my graduate studies, I would like to
take this opportunity to express my gratitude. The last time I wrote my graduation thesis
was in 2016 when I wrote my master’s thesis. In the past eight years, I have walked
from the crabapple flowers in Beiyang Garden to the ginkgo path of Chengdian, from the
magnificent ships and oceans to the high-performance computing that casts light from the
clouds. Along the way, tossing and turning, looking around, asking questions, feeling lost,
and stumbling. I dare not falsely claim to have experienced great storms, but I have come
to realize even more today that good intentions are worth remembering seriously.

Sincerely thank my supervisor, Teacher Tian Wenhong. Thank you for accepting me
as a doctoral student in your research team, allowing me to learn and grow in a united
and supportive atmosphere; Thank you for providing me with academic guidance and
cultivation, carefully guiding my research and paper writing work; Thank you for trusting
me and giving me the opportunity to participate in scientific research projects; Thank you
for helping me overcome the setbacks and failures during the research process; Thank you
for creating the opportunity for me to seek advice and learn from other teachers. Teacher
Tian not only teaches students professional knowledge and research methods, but also
pays attention to our physical and mental health, tolerates our shortcomings, and carefully
teaches us the principles of establishing a world.

Sincerely thank my co-supervisor, Professor Rajkumar Buyya; Thank you for your
guidance on my research methods and paper writing; Thank you for pointing out and en-
couraging my research direction and ideas. Thank you to Professor Wu Kui for providing
me with a lot of guidance and help. Thank you for patiently and meticulously guiding my
research and paper. Thank you to Teacher Liu Yongguo for preparing my recommenda-
tion letter for pursuing a PhD. Thank you for your continuous care and assistance. Thank
you, Senior Brother Xu Minxian, for your patient guidance and guidance. Thank you for
your careful planning and assistance. Thank you to Teacher Liu Qiao for giving me the
opportunity to participate in the teaching assistant work of the course ”Statistical Machine
Learning”. Thank you to the teachers Yao Yuanzhe, Rao Yunbo, Guo Jiandong and others
in the team for their guidance. Thank you to teachers such as Chen Anlong, Chen Dajiang,
Li Xiaoyu, Liu Qihe, Lei Hang, She Kun, Zhang Fengli for their guidance Thank you to

234

Acknowledgements

the teachers in the college, including Professor Zhong, Professor Zhou, Professor Zhang,
and Professor Chen, for their help. Thank you for the companionship and assistance of
fellow disciples such as Ma Tingsong, Xie Yuanlun, Wang Ji’an, Lan Haocheng, Ou Jie,
and Wang Zhaokun. Thank you to friends such as Zhang Yun, Fu Yiqin, Qu Xiaoqi, Deng
Rui, Zhu Lei, and Luo Hao for their help and support. Thank you to my master’s supervi-
sor, Mr. Tang Yougang, for your concern and concern. Thank you to professors such as
Yu Jianxing, Guo Zhenbang, and Lin Weixue.

Thank you to the experts who reviewed this article, thank you for ensuring the end
of my academic career, and thank you for planning and guiding my future work. Thank
you to the predecessors in the relevant disciplines; It is through your exploration in the
long river of time that I can find my way forward today. Thank you for the cultivation
of our country, thank you for the training of the University of Electronic Science and
Technology of China, and thank you for the training of the School of Information and
Software Engineering. Thank you to every mountain that has come, and to the fallen
moon and withered snow below; Thank you for the sea when you were young, and the
white leaf flying butterflies by the seaside; Thanks to the later cities and the small alleys
and green steps in the city.

235

Doctoral Dissertation of University of Electronic Science and Technology of China

References

[1] Mei J, Li K, Tong Z, et al. Profit maximization for cloud brokers in cloud computing[J]. IEEE

Trans. Parallel Distributed Syst., 2019, 30(1): 190-203.

[2] Guo W, Tian W, Ye Y, et al. Cloud resource scheduling with deep reinforcement learning and

imitation learning[J]. IEEE Internet Things J., 2021, 8(5): 3576-3586.

[3] Cong P, Xu G, Wei T, et al. A survey of profit optimization techniques for cloud providers[J].

ACM Comput. Surv., 2020, 53(2): 26:1-26:35.

[4] Adhikari M, Amgoth T, Srirama S. N. A survey on scheduling strategies for workflows in cloud

environment and emerging trends[J]. ACM Comput. Surv., 2019, 52(4): 68:1-68:36.

[5] Zhan Z, Liu X. F, Gong Y, et al. Cloud computing resource scheduling and a survey of its evolu-

tionary approaches[J]. ACM Comput. Surv., 2015, 47(4): 63:1-63:33.

[6] Guo S, Liu J, Yang Y, et al. Energy-efficient dynamic computation offloading and cooperative

task scheduling in mobile cloud computing[J]. IEEE Trans.Mob. Comput., 2019, 18(2): 319-333.

[7] Rjoub G, Bentahar J, Wahab O. A. Bigtrustscheduling: Trust-aware big data task scheduling

approach in cloud computing environments[J]. Future Gener. Comput. Syst., 2020, 110: 1079-

1097.

[8] Arunarani A. R, Manjula D, Sugumaran V. Task scheduling techniques in cloud computing: A

literature survey[J]. Future Gener. Comput. Syst., 2019, 91: 407-415.

[9] Laili Y, Lin S, Tang D. Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing

environment[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101850.

[10] Kumar M, Sharma S. C, Goel A, et al. A comprehensive survey for scheduling techniques in

cloud computing[J]. J. Netw. Comput. Appl., 2019, 143: 1-33.

[11] Caron E, Desprez F, Loureiro D, et al. Cloud computing resource management through a grid

middleware: A case studywithDIET and eucalyptus[C]. IEEE International Conference onCloud

Computing, CLOUD 2009, 21-25 September, 2009, Bangalore, India, 151-154.

[12] Tuli S, Ilager S, Ramamohanarao K, et al. Dynamic scheduling for stochastic edge-cloud comput-

ing environments using a3c learning and residual recurrent neural networks[J]. IEEETransactions

on Mobile Computing, 2020, PP(99): 1-1.

236

References

[13] Fiandrino C, Kliazovich D, Bouvry P, et al. Performance and energy efficiency metrics for com-

munication systems of cloud computing data centers[J]. IEEE Trans. Cloud Comput., 2017, 5(4):

738-750.

[14] Zhan Z, Liu X. F, Gong Y, et al. Cloud computing resource scheduling and a survey of its evo-

lutionary approaches[J]. ACM Comput. Surv., 2015, 47(4): 63:1-63:33.

[15] TianW, HeM, GuoW, et al. On minimizing total energy consumption in the scheduling of virtual

machine reservations[J]. J. Netw. Comput. Appl., 2018, 113: 64-74.

[16] Foster I, Zhao Y, Raicu I, et al. Cloud computing and grid computing 360-degree compared[C].

2008 grid computing environments workshop, 1-10.

[17] Merwe Jvan der , Dawoud D. S, McDonald S. A survey on peer-to-peer key management for

mobile ad hoc networks[J]. ACM Comput. Surv., 2007, 39(1): 1.

[18] Fu Y, Chase J. S, Chun B. N, et al. SHARP: an architecture for secure resource peering[C].

Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003,

Bolton Landing, NY, USA, October 19-22, 2003, 133-148.

[19] Miao Y, Wu G, Li M, et al. Intelligent task prediction and computation offloading based on

mobile-edge cloud computing[J]. Future Gener. Comput. Syst., 2020, 102: 925-931.

[20] Liu J, Xiong K, Ng D. W. K, et al. Max-min energy balance in wireless-powered hierarchical

fog-cloud computing networks[J]. IEEE Trans. Wirel. Commun., 2020, 19(11): 7064-7080.

[21] Cappanera P, Gangi L. D, Lapucci M, et al. Integrated task scheduling and personnel rostering of

airports ground staff: A case study[J]. Expert Syst. Appl., 2024, 238(Part C): 121953.

[22] Valencia A, Malikopoulos A. A. On safety of passengers entering a bus rapid transit system from

scheduled stops[C]. IEEE Conference on Control Technology and Applications, CCTA 2023,

Bridgetown, Barbados, August 16-18, 2023, 620-625.

[23] Fox A, Griffith R, Joseph A, et al. Above the clouds: A berkeley view of cloud comput-

ing[J]. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep.

UCB/EECS, 2009, 28(13): 2009.

[24] Klems M, Nimis J, Tai S. Do clouds compute? A framework for estimating the value of cloud

computing[C]. Designing E-Business Systems. Markets, Services, and Networks - 7th Workshop

on E-Business, WEB 2008, Paris, France, December 13, 2008, Revised Selected Papers, 110-123.

[25] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Commun. ACM, 2010,

53(4): 50-58.

237

Doctoral Dissertation of University of Electronic Science and Technology of China

[26] Buyya R, Yeo C. S, Venugopal S, et al. Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th utility[J]. Future Gener. Comput. Syst.,

2009, 25(6): 599-616.

[27] Monge D. A, Pacini E, Mateos C, et al. CMI: an online multi-objective genetic autoscaler for

scientific and engineering workflows in cloud infrastructures with unreliable virtual machines[J].

J. Netw. Comput. Appl., 2020, 149.

[28] Ragmani A, Elomri A, Abghour N, et al. FACO: a hybrid fuzzy ant colony optimization algo-

rithm for virtual machine scheduling in high-performance cloud computing[J]. J. Ambient Intell.

Humaniz. Comput., 2020, 11(10): 3975-3987.

[29] Sakila V. S, Manohar S. Real-time air quality monitoring in bull trench kiln-based brick industry

by calibrating sensor readings and utilizing the serverless computing[J]. Expert Syst. Appl., 2024,

237(Part B): 121397.

[30] Soldani J, Brogi A. Anomaly detection and failure root cause analysis in (micro) service-based

cloud applications: A survey[J]. ACM Comput. Surv., 2023, 55(3): 59:1-59:39.

[31] Cui L, Qu Z, Zhang G, et al. A bidirectional DNN partition mechanism for efficient pipeline

parallel training in cloud[J]. J. Cloud Comput., 2023, 12(1): 22.

[32] Kennedy J, Sharma V, Varghese B, et al. Multi-tier GPU virtualization for deep learning in cloud-

edge systems[J]. IEEE Trans. Parallel Distributed Syst., 2023, 34(7): 2107-2123.

[33] Ghalami L, Grosu D. Scheduling parallel identical machines to minimize makespan: A parallel

approximation algorithm[J]. J. Parallel Distributed Comput., 2019, 133: 221-231.

[34] XuM, Cui L,WangH, et al. Amultiple qos constrained scheduling strategy ofmultiple workflows

for cloud computing[C]. IEEE International Symposium on Parallel and Distributed Processing

with Applications, ISPA 2009, 10-12 August 2009, Chengdu, Sichuan, China, 629-634.

[35] Praveenchandar J, Tamilarasi A. Dynamic resource allocation with optimized task scheduling

and improved power management in cloud computing[J]. Journal of Ambient Intelligence and

Humanized Computing, 2020, 1-13.

[36] Gokuldhev M, Singaravel G, Mohan N. R. R. Multi-objective local pollination-based gray wolf

optimizer for task scheduling heterogeneous cloud environment[J]. J. Circuits Syst. Comput.,

2020, 29(7): 2050100:1-2050100:24.

[37] Mishra S. K,Manjula R. Ameta-heuristic based multi objective optimization for load distribution

in cloud data center under varying workloads[J]. Clust. Comput., 2020, 23(4): 3079-3093.

238

References

[38] Sardaraz M, Tahir M. A parallel multi-objective genetic algorithm for scheduling scientific work-

flows in cloud computing[J]. International Journal of Distributed Sensor Networks, 2020, 16(8):

1550147720949142.

[39] Natesan G, Chokkalingam A. Multi-objective task scheduling using hybrid whale genetic opti-

mization algorithm in heterogeneous computing environment[J]. Wirel. Pers. Commun., 2020,

110(4): 1887-1913.

[40] Dong T, Xue F, Xiao C, et al. Task scheduling based on deep reinforcement learning in a cloud

manufacturing environment[J]. Concurr. Comput. Pract. Exp., 2020, 32(11).

[41] Pandiyan S, Lawrence T. S, Sathiyamoorthi V, et al. A performance-aware dynamic scheduling

algorithm for cloud-based iot applications[J]. Comput. Commun., 2020, 160: 512-520.

[42] Belgacem A, Bey K. B, Nacer H, et al. Efficient dynamic resource allocation method for cloud

computing environment[J]. Clust. Comput., 2020, 23(4): 2871-2889.

[43] Zhang L, Zhou L, Salah A. Efficient scientific workflow scheduling for deadline-constrained

parallel tasks in cloud computing environments[J]. Inf. Sci., 2020, 531: 31-46.

[44] Haytamy S. S, Omara F. A. A deep learning based framework for optimizing cloud consumer

qos-based service composition[J]. Computing, 2020, 102(5): 1117-1137.

[45] Ghasemi A, Haghighat A. T. A multi-objective load balancing algorithm for virtual machine

placement in cloud data centers based on machine learning[J]. Computing, 2020, 102(9): 2049-

2072.

[46] Adhikari M, Amgoth T, Srirama S. N. Multi-objective scheduling strategy for scientific work-

flows in cloud environment: A firefly-based approach[J]. Appl. Soft Comput., 2020, 93: 106411.

[47] Li C, Bai J, Chen Y, et al. Resource and replica management strategy for optimizing financial

cost and user experience in edge cloud computing system[J]. Inf. Sci., 2020, 516: 33-55.

[48] Lu H, Gu C, Luo F, et al. Optimization of lightweight task offloading strategy for mobile edge

computing based on deep reinforcement learning[J]. Future Gener. Comput. Syst., 2020, 102:

847-861.

[49] Ding D, Fan X, Zhao Y, et al. Q-learning based dynamic task scheduling for energy-efficient

cloud computing[J]. Future Gener. Comput. Syst., 2020, 108: 361-371.

[50] Gabi D, Ismail A. S, Zainal A, et al. Cloud customers service selection scheme based on improved

conventional cat swarm optimization[J]. Neural Comput. Appl., 2020, 32(18): 14817-14838.

[51] Priya V, Kumar C. S, Kannan R. Resource scheduling algorithm with load balancing for cloud

service provisioning[J]. Appl. Soft Comput., 2019, 76: 416-424.

239

Doctoral Dissertation of University of Electronic Science and Technology of China

[52] Wang W, Liang B, Li B. Multi-resource fair allocation in heterogeneous cloud computing sys-

tems[J]. IEEE Trans. Parallel Distributed Syst., 2015, 26(10): 2822-2835.

[53] Nouri S. M. R, Li H, Venugopal S, et al. Autonomic decentralized elasticity based on a rein-

forcement learning controller for cloud applications[J]. Future Gener. Comput. Syst., 2019, 94:

765-780.

[54] Zhang X, Jia M, Gu X, et al. An energy efficient resource allocation scheme based on cloud-

computing in H-CRAN[J]. IEEE Internet Things J., 2019, 6(3): 4968-4976.

[55] Devaraj A. F. S, Elhoseny M, Dhanasekaran S, et al. Hybridization of firefly and improved multi-

objective particle swarm optimization algorithm for energy efficient load balancing in cloud com-

puting environments[J]. J. Parallel Distributed Comput., 2020, 142: 36-45.

[56] Tian W, Li G, Yang W, et al. Hscheduler: an optimal approach to minimize the makespan of

multiple mapreduce jobs[J]. J. Supercomput., 2016, 72(6): 2376-2393.

[57] Tian W, Xiong Q, Cao J. An online parallel scheduling method with application to energy-

efficiency in cloud computing[J]. J. Supercomput., 2013, 66(3): 1773-1790.

[58] Liu X. F, Zhan Z, Deng J. D, et al. An energy efficient ant colony system for virtual machine

placement in cloud computing[J]. IEEE Trans. Evol. Comput., 2018, 22(1): 113-128.

[59] Guan Z, Melodia T. The value of cooperation: Minimizing user costs in multi-broker mobile

cloud computing networks[J]. IEEE Trans. Cloud Comput., 2017, 5(4): 780-791.

[60] Lin W, Wu W, He L. An on-line virtual machine consolidation strategy for dual improvement

in performance and energy conservation of server clusters in cloud data centers[J]. IEEE Trans.

Serv. Comput., 2022, 15(2): 766-777.

[61] Hong Z, Chen W, Huang H, et al. Multi-hop cooperative computation offloading for industrial

iot-edge-cloud computing environments[J]. IEEE Trans. Parallel Distributed Syst., 2019, 30(12):

2759-2774.

[62] Lin W, Wang W, Wu W, et al. A heuristic task scheduling algorithm based on server power

efficiency model in cloud environments[J]. Sustain. Comput. Informatics Syst., 2018, 20: 56-65.

[63] A S. C, Sudhakar C, Ramesh T. Energy efficient VM scheduling and routing in multi-tenant cloud

data center[J]. Sustain. Comput. Informatics Syst., 2019, 22: 139-151.

[64] Abualigah L, Diabat A. A novel hybrid antlion optimization algorithm for multi-objective task

scheduling problems in cloud computing environments[J]. Cluster Computing, 2020, 1-19.

[65] Deb K, Agrawal S, Pratap A, et al. A fast and elitist multiobjective genetic algorithm: NSGA-

II[J]. IEEE Trans. Evol. Comput., 2002, 6(2): 182-197.

240

References

[66] Liu Q, Cai W, Shen J, et al. A speculative approach to spatial-temporal efficiency with multi-

objective optimization in a heterogeneous cloud environment[J]. Secur. Commun. Networks,

2016, 9(17): 4002-4012.

[67] Seada H, Deb K. U-NSGA-III: A unified evolutionary optimization procedure for single, multi-

ple, and many objectives: Proof-of-principle results[C]. Evolutionary Multi-Criterion Optimiza-

tion - 8th International Conference, EMO 2015, Guimarães, Portugal, March 29 -April 1, 2015.

Proceedings, Part II, 34-49.

[68] Miriam A. J, Saminathan R, Chakaravarthi S. Non-dominated sorting genetic algorithm (NSGA-

III) for effective resource allocation in cloud[J]. Evol. Intell., 2021, 14(2): 759-765.

[69] Xu X, Liu Q, Luo Y, et al. A computation offloading method over big data for iot-enabled cloud-

edge computing[J]. Future Gener. Comput. Syst., 2019, 95: 522-533.

[70] Jiang H, Yi J, Chen S, et al. A multi-objective algorithm for task scheduling and resource alloca-

tion in cloud-based disassembly[J]. Journal of Manufacturing Systems, 2016, 41: 239-255.

[71] Li H, Zhu G, Zhao Y, et al. Energy-efficient and qos-aware model based resource consolidation

in cloud data centers[J]. Clust. Comput., 2017, 20(3): 2793-2803.

[72] Jena R. Multi objective task scheduling in cloud environment using nested pso framework[J].

Procedia Computer Science, 2015, 57: 1219-1227.

[73] Midya S, Roy A, Majumder K, et al. Multi-objective optimization technique for resource allo-

cation and task scheduling in vehicular cloud architecture: A hybrid adaptive nature inspired

approach[J]. J. Netw. Comput. Appl., 2018, 103: 58-84.

[74] Reddy G. N, Kumar S. P. Multi objective task scheduling algorithm for cloud computing us-

ing whale optimization technique[C]. International Conference on Next Generation Computing

Technologies, 286-297.

[75] Sanaj M, Prathap P. J. Nature inspired chaotic squirrel search algorithm (cssa) for multi objective

task scheduling in an iaas cloud computing atmosphere[J]. Engineering Science and Technology,

an International Journal, 2020, 23(4): 891-902.

[76] Ramezani F, Lu J, Taheri J, et al. Evolutionary algorithm-based multi-objective task scheduling

optimization model in cloud environments[J]. World Wide Web, 2015, 18(6): 1737-1757.

[77] Khan T, Tian W, Zhou G, et al. Machine learning (ml)-centric resource management in cloud

computing: A review and future directions[J]. J. Netw. Comput. Appl., 2022, 204: 103405.

241

Doctoral Dissertation of University of Electronic Science and Technology of China

[78] Rodrigues T. K, Suto K, Nishiyama H, et al. Machine learning meets computation and communi-

cation control in evolving edge and cloud: Challenges and future perspective[J]. IEEE Commun.

Surv. Tutorials, 2020, 22(1): 38-67.

[79] Chen X, Zhu F, Chen Z, et al. Resource allocation for cloud-based software services using

prediction-enabled feedback control with reinforcement learning[J]. IEEE Trans. Cloud Com-

put., 2022, 10(2): 1117-1129.

[80] Chen G, Qi J, Sun Y, et al. A collaborative scheduling method for cloud computing heterogeneous

workflows based on deep reinforcement learning[J]. Future Gener. Comput. Syst., 2023, 141:

284-297.

[81] Wang X, Zhang L, Liu Y, et al. Logistics-involved task scheduling in cloud manufacturing with

offline deep reinforcement learning[J]. J. Ind. Inf. Integr., 2023, 34: 100471.

[82] Zhou G, Tian W, Buyya R. Multi-search-routes-based methods for minimizing makespan of ho-

mogeneous and heterogeneous resources in cloud computing[J]. Future Gener. Comput. Syst.,

2023, 141: 414-432.

[83] M M, T J. Combined particle swarm optimization and ant colony system for energy efficient

cloud data centers[J]. Concurr. Comput. Pract. Exp., 2021, 33(10).

[84] Chaudhary D, Kumar B. Cost optimized hybrid genetic-gravitational search algorithm for load

scheduling in cloud computing[J]. Appl. Soft Comput., 2019, 83.

[85] Mansouri N, Zade B. M. H, Javidi M. M. Hybrid task scheduling strategy for cloud computing

by modified particle swarm optimization and fuzzy theory[J]. Comput. Ind. Eng., 2019, 130:

597-633.

[86] Kayalvili S, Selvam M. Hybrid SFLA-GA algorithm for an optimal resource allocation in

cloud[J]. Clust. Comput., 2019, 22(Supplement): 3165-3173.

[87] Zhou G, TianW, Buyya R, et al. Growable genetic algorithm with heuristic-based local search for

multi-dimensional resources scheduling of cloud computing[J]. Appl. Soft Comput., 2023, 136:

110027.

[88] Chen X, Zhang J, Lin B, et al. Energy-efficient offloading for dnn-based smart iot systems in

cloud-edge environments[J]. IEEE Trans. Parallel Distributed Syst., 2022, 33(3): 683-697.

[89] Chen Z, Zheng H, Zhang J, et al. Joint computation offloading and deployment optimization in

multi-uav-enabled MEC systems[J]. Peer-to-Peer Netw. Appl., 2022, 15(1): 194-205.

[90] Muthulakshmi B, SomasundaramK. A hybrid ABC-SA based optimized scheduling and resource

allocation for cloud environment[J]. Clust. Comput., 2019, 22(5): 10769-10777.

242

References

[91] Ibrahim G. J, Rashid T. A, Akinsolu M. O. An energy efficient service composition mechanism

using a hybrid meta-heuristic algorithm in a mobile cloud environment[J]. J. Parallel Distributed

Comput., 2020, 143: 77-87.

[92] Alla H. B, Alla S. B, Touhafi A, et al. A novel task scheduling approach based on dynamic queues

and hybrid meta-heuristic algorithms for cloud computing environment[J]. Clust. Comput., 2018,

21(4): 1797-1820.

[93] Helft M. Google confirms problems with reaching its services[J]. The New York Times, 2009.

[94] Markoff J. Software via the internet: Microsoft in cloud computing[J]. New York Times, 2007,

3.

[95] Chase J, Niyato D. Joint optimization of resource provisioning in cloud computing[J]. IEEE

Trans. Serv. Comput., 2017, 10(3): 396-409.

[96] YangR, ZhangY,Garraghan P, et al. Reliable computing service inmassive-scale systems through

rapid low-cost failover[J]. IEEE Trans. Serv. Comput., 2017, 10(6): 969-983.

[97] Welsh T, Benkhelifa E. On resilience in cloud computing: A survey of techniques across the

cloud domain[J]. ACM Comput. Surv., 2020, 53(3): 59:1-59:36.

[98] Laili Y, Tao F, Wang F, et al. An iterative budget algorithm for dynamic virtual machine consol-

idation under cloud computing environment[J]. IEEE Trans. Serv. Comput., 2021, 14(1): 30-43.

[99] Sofia A. S, Ganeshkumar P.Multi-objective task scheduling to minimize energy consumption and

makespan of cloud computing using NSGA-II[J]. J. Netw. Syst. Manag., 2018, 26(2): 463-485.

[100] Li M, Yu F. R, Si P, et al. Resource optimization for delay-tolerant data in blockchain-enabled

iot with edge computing: A deep reinforcement learning approach[J]. IEEE Internet Things J.,

2020, 7(10): 9399-9412.

[101] Mao J, Pan Q, Miao Z, et al. An effective multi-start iterated greedy algorithm to minimize

makespan for the distributed permutation flowshop scheduling problem with preventive mainte-

nance[J]. Expert Syst. Appl., 2021, 169: 114495.

[102] Kim Y. J, Jang J. W, Kim D. S, et al. Batch loading and scheduling problem with processing

time deterioration and rate-modifying activities[J]. International Journal of Production Research,

2021, 1-21.

[103] Croce F. D, Scatamacchia R. The longest processing time rule for identical parallel machines

revisited[J]. J. Sched., 2020, 23(2): 163-176.

243

Doctoral Dissertation of University of Electronic Science and Technology of China

[104] Bitsakos C, Konstantinou I, Koziris N. DERP: A deep reinforcement learning cloud system

for elastic resource provisioning[C]. 2018 IEEE International Conference on Cloud Computing

Technology and Science, CloudCom 2018, December 10-13, 2018, Nicosia, Cyprus, 21-29.

[105] Xu C, Rao J, Bu X. URL: A unified reinforcement learning approach for autonomic cloud man-

agement[J]. J. Parallel Distributed Comput., 2012, 72(2): 95-105.

[106] Lolos K, Konstantinou I, Kantere V, et al. Elastic management of cloud applications using adap-

tive reinforcement learning[C]. 2017 IEEE International Conference on Big Data, BigData 2017,

December 11-14, 2017, Boston, MA, USA, 203-212.

[107] Feng J, Yu F. R, Pei Q, et al. Cooperative computation offloading and resource allocation for

blockchain-enabled mobile-edge computing: A deep reinforcement learning approach[J]. IEEE

Internet Things J., 2020, 7(7): 6214-6228.

[108] Karthiban K, Raj J. S. An efficient green computing fair resource allocation in cloud computing

using modified deep reinforcement learning algorithm[J]. Soft Comput., 2020, 24(19): 14933-

14942.

[109] Liu N, Li Z, Xu J, et al. A hierarchical framework of cloud resource allocation and power

management using deep reinforcement learning[C]. 37th IEEE International Conference on Dis-

tributed Computing Systems, ICDCS 2017, June 5-8, 2017, Atlanta, GA, USA, 372-382.

[110] Tong Z, Chen H, Deng X, et al. A scheduling scheme in the cloud computing environment using

deep Q-learning[J]. Inf. Sci., 2020, 512: 1170-1191.

[111] Li C, Zhang Y, Luo Y. Neighborhood search-based job scheduling for iot big data real-time

processing in distributed edge-cloud computing environment[J]. J. Supercomput., 2021, 77(2):

1853-1878.

[112] Luo C, Qiao B, Xing W, et al. Correlation-aware heuristic search for intelligent virtual ma-

chine provisioning in cloud systems[C]. Thirty-Fifth AAAI Conference on Artificial Intelligence,

AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI

2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,

Virtual Event, February 2-9, 2021, 12363-12372.

[113] Somu N, Raman M. R. G, Kaveri A, et al. IBGSS: an improved binary gravitational search

algorithm based search strategy for qos and ranking prediction in cloud environments[J]. Appl.

Soft Comput., 2020, 88: 105945.

[114] Kumar K. R. P, Kousalya K. Amelioration of task scheduling in cloud computing using crow

search algorithm[J]. Neural Comput. Appl., 2020, 32(10): 5901-5907.

244

References

[115] Chen C, Hung L, Hsieh S, et al. Heterogeneous job allocation scheduler for hadoop mapreduce

using dynamic grouping integrated neighboring search[J]. IEEE Trans. Cloud Comput., 2020,

8(1): 193-206.

[116] Diallo M, Quintero A, Pierre S. A tabu search approach for a virtual networks splitting strategy

across multiple cloud providers[J]. Int. J. Metaheuristics, 2020, 7(3): 197-238.

[117] Zhang M, Peng Y, Yang M, et al. A discrete pso-based static load balancing algorithm for dis-

tributed simulations in a cloud environment[J]. Future Gener. Comput. Syst., 2021, 115: 497-516.

[118] Vazirani V. V. Approximation algorithms[M]. Springer, 2001.

[119] ZhangW,Wen Y. Energy-efficient task execution for application as a general topology in mobile

cloud computing[J]. IEEE Trans. Cloud Comput., 2018, 6(3): 708-719.

[120] Kumar A. M. S, VenkatesanM.Multi-objective task scheduling using hybrid genetic-ant colony

optimization algorithm in cloud environment[J]. Wirel. Pers. Commun., 2019, 107(4): 1835-

1848.

[121] Yang Y, Yang B, Wang S, et al. A dynamic ant-colony genetic algorithm for cloud service

composition optimization[J]. The International Journal of Advanced Manufacturing Technology,

2019, 102(1-4): 355-368.

[122] Ismayilov G, Topcuoglu H. R. Neural network based multi-objective evolutionary algorithm for

dynamic workflow scheduling in cloud computing[J]. Future Gener. Comput. Syst., 2020, 102:

307-322.

[123] Tian W, Xu M, Chen Y, et al. Prepartition: A new paradigm for the load balance of virtual

machine reservations in data centers[C]. IEEE International Conference onCommunications, ICC

2014, Sydney, Australia, June 10-14, 2014, 4017-4022.

[124] Zhou X, Zhang G, Sun J, et al. Minimizing cost and makespan for workflow scheduling in cloud

using fuzzy dominance sort based HEFT[J]. Future Gener. Comput. Syst., 2019, 93: 278-289.

[125] Kardani-Moghaddam S, Buyya R, Ramamohanarao K. ADRL: A hybrid anomaly-aware deep

reinforcement learning-based resource scaling in clouds[J]. IEEE Trans. Parallel Distributed

Syst., 2021, 32(3): 514-526.

[126] Domanal S. G, Guddeti R. M. R, Buyya R. A hybrid bio-inspired algorithm for scheduling and

resource management in cloud environment[J]. IEEE Trans. Serv. Comput., 2020, 13(1): 3-15.

[127] Bolaji A. L, Okwonu F. Z, Shola P. B, et al. A modified binary pigeon-inspired algorithm for

solving the multi-dimensional knapsack problem[J]. J. Intell. Syst., 2021, 30(1): 90-103.

245

Doctoral Dissertation of University of Electronic Science and Technology of China

[128] Abdel-Basset M, Mohamed R, Sallam K. M, et al. BSMA: A novel metaheuristic algorithm

for multi-dimensional knapsack problems: Method and comprehensive analysis[J]. Comput. Ind.

Eng., 2021, 159: 107469.

[129] Goudarzi H, Pedram M. Multi-dimensional sla-based resource allocation for multi-tier cloud

computing systems[C]. IEEE International Conference on Cloud Computing, CLOUD 2011,

Washington, DC, USA, 4-9 July, 2011, 324-331.

[130] Dhaenens C, Jourdan L. Metaheuristics for big data[M]. , 2016, .

[131] Hadary O, Marshall L, Menache I, et al. Protean: VM allocation service at scale[C]. 14th

USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual

Event, November 4-6, 2020, 845-861.

[132] Roy A, Midya S, Majumder K, et al. Distributed resource management in dew based edge

to cloud computing ecosystem: A hybrid adaptive evolutionary approach[J]. Trans. Emerg.

Telecommun. Technol., 2020, 31(8).

[133] Chen T, Marqués A. G, Giannakis G. B. DGLB: distributed stochastic geographical load bal-

ancing over cloud networks[J]. IEEE Trans. Parallel Distributed Syst., 2017, 28(7): 1866-1880.

[134] Li Q, Yao H, Mai T, et al. Reinforcement-learning- and belief-learning-based double auction

mechanism for edge computing resource allocation[J]. IEEE Internet Things J., 2020, 7(7): 5976-

5985.

[135] Li J, Han Y. A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling

problems in cloud computing system[J]. Clust. Comput., 2020, 23(4): 2483-2499.

[136] Xia W, Shen L. Joint resource allocation at edge cloud based on ant colony optimization and

genetic algorithm[J]. Wirel. Pers. Commun., 2021, 117(2): 355-386.

[137] Xie K, Wang X, Xie G, et al. Distributed multi-dimensional pricing for efficient application

offloading in mobile cloud computing[J]. IEEE Trans. Serv. Comput., 2019, 12(6): 925-940.

[138] Bao N, Chai Y, Zhang Y, et al. More space may be cheaper: Multi-dimensional resource allo-

cation for nvm-based cloud cache[C]. 38th IEEE International Conference on Computer Design,

ICCD 2020, Hartford, CT, USA, October 18-21, 2020, 565-572.

[139] Pan Y, Gao L, Luo J, et al. A multi-dimensional resource crowdsourcing framework for mobile

edge computing[C]. 2020 IEEE International Conference on Communications, ICC 2020, Dublin,

Ireland, June 7-11, 2020, 1-7.

246

References

[140] Yu H, Zhou Z, Jia Z, et al. Multi-timescale multi-dimension resource allocation for noma-edge

computing-based power iot with massive connectivity[J]. IEEE Trans. Green Commun. Netw.,

2021, 5(3): 1101-1113.

[141] Gopu A, Venkataraman N. Optimal VM placement in distributed cloud environment using

MOEA/D[J]. Soft Comput., 2019, 23(21): 11277-11296.

[142] Nurcahyadi T, Blum C. Negative learning in ant colony optimization: Application to the multi

dimensional knapsack problem[C]. ISMSI 2021: 2021 5th International Conference on Intelligent

Systems, Metaheuristics & Swarm Intelligence, Victoria, Seychelles, April 10-11, 2021, 22-27.

[143] Yu M, Wu C, Ji B, et al. A sum-of-ratios multi-dimensional-knapsack decomposition for DNN

resource scheduling[C]. 40th IEEEConference on Computer Communications, INFOCOM2021,

Vancouver, BC, Canada, May 10-13, 2021, 1-10.

[144] Aktar M. S, De M, Mazumder S. K, et al. Multi-objective green 4-dimensional transportation

problems for breakable incompatible items with different fixed charge payment policies[J]. Com-

put. Ind. Eng., 2021, 156: 107184.

[145] Chen J, Wu H, Lyu F, et al. Multi-dimensional resource allocation for diverse safety message

transmissions in vehicular networks[C]. ICC 2021 - IEEE International Conference on Commu-

nications, Montreal, QC, Canada, June 14-23, 2021, 1-6.

[146] Ehrgott M. Multicriteria optimization (2. ed.)[M]. Springer, 2005.

[147] . Multi-objective optimization - evolutionary to hybrid framework[M]. Springer, 2018.

[148] Yang J, Zhu H, Liu T. Secure and economical multi-cloud storage policy with NSGA-II-C[J].

Appl. Soft Comput., 2019, 83.

[149] Shang K, Ishibuchi H. A new hypervolume-based evolutionary algorithm for many-objective

optimization[J]. IEEE Trans. Evol. Comput., 2020, 24(5): 839-852.

[150] Maree S. C, Alderliesten T, Bosman P. A. N. Uncrowded hypervolume-based multiobjective

optimization with gene-pool optimal mixing[J]. Evol. Comput., 2022, 30(3): 329-353.

[151] Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algo-

rithms[J]. Evol. Comput., 1994, 2(3): 221-248.

[152] Deb K, Agrawal S, Pratap A, et al. A fast and elitist multiobjective genetic algorithm: NSGA-

II[J]. IEEE Trans. Evol. Comput., 2002, 6(2): 182-197.

247

Doctoral Dissertation of University of Electronic Science and Technology of China

[153] Zitzler E, Brockhoff D, Thiele L. The hypervolume indicator revisited: On the design of pareto-

compliant indicators via weighted integration[C]. EvolutionaryMulti-Criterion Optimization, 4th

International Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007, Proceedings, 862-

876.

[154] Shang K, Ishibuchi H, He L, et al. A survey on the hypervolume indicator in evolutionary mul-

tiobjective optimization[J]. IEEE Trans. Evol. Comput., 2021, 25(1): 1-20.

[155] Liu R, Ren R, Liu J, et al. A clustering and dimensionality reduction based evolutionary algo-

rithm for large-scale multi-objective problems[J]. Appl. Soft Comput., 2020, 89: 106120.

[156] Tan Z, Wang H, Liu S. Multi-stage dimension reduction for expensive sparse multi-objective

optimization problems[J]. Neurocomputing, 2021, 440: 159-174.

[157] Brockhoff D, Zitzler E. Dimensionality reduction in multiobjective optimization: The mini-

mum objective subset problem[C]. Operations Research, Proceedings 2006, Selected Papers of

the Annual International Conference of the German Operations ResearchSociety (GOR), Jointly

Organized with the Austrian Society of Operations Research (ÖGOR) and the Swiss Society of

Operations Research (SVOR), Karlsruhe, Germany, September 6-8, 2006, 423-429.

[158] Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J].

IEEE Trans. Evol. Comput., 2007, 11(6): 712-731.

[159] Xu H, Zeng W, Zhang D, et al. MOEA/HD: A multiobjective evolutionary algorithm based on

hierarchical decomposition[J]. IEEE Trans. Cybern., 2019, 49(2): 517-526.

[160] Cao J, Zhang J, Zhao F, et al. A two-stage evolutionary strategy based MOEA/D to multi-

objective problems[J]. Expert Syst. Appl., 2021, 185: 115654.

[161] Li H, Deb K, Zhang Q, et al. Comparison between MOEA/D and NSGA-III on a set of novel

many and multi-objective benchmark problems with challenging difficulties[J]. Swarm Evol.

Comput., 2019, 46: 104-117.

[162] Li H, Zhang Q. Multiobjective optimization problems with complicated pareto sets, MOEA/D

and NSGA-II[J]. IEEE Trans. Evol. Comput., 2009, 13(2): 284-302.

[163] Shao L, Ehrgott M. Discrete representation of non-dominated sets in multi-objective linear pro-

gramming[J]. Eur. J. Oper. Res., 2016, 255(3): 687-698.

[164] Liu L, Wang T. An evolvable hardware method based on elite partheno-genetic algorithm[J].

Appl. Soft Comput., 2021, 113(Part): 107904.

248

References

[165] Yang J, Hu Y, Zhang K, et al. An improved evolution algorithm using population competi-

tion genetic algorithm and self-correction BP neural network based on fitness landscape[J]. Soft

Comput., 2021, 25(3): 1751-1776.

[166] Pal K. S, Wang P. P. Genetic algorithms for pattern recognition[J]. CRC Press, Inc., 1996.

[167] Blank J, Deb K. Pymoo: Multi-objective optimization in python[J]. IEEE Access, 2020, 8:

89497-89509.

[168] WangH, Qu Z, ZhouQ, et al. A comprehensive survey on training acceleration for largemachine

learning models in iot[J]. IEEE Internet Things J., 2022, 9(2): 939-963.

[169] Ouyang S, Dong D, Xu Y, et al. Communication optimization strategies for distributed deep

neural network training: A survey[J]. J. Parallel Distributed Comput., 2021, 149: 52-65.

[170] Wei J, Bosma M, Zhao V. Y, et al. Finetuned language models are zero-shot learners[C]. The

Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April

25-29, 2022, .

[171] Brown T. B, Mann B, Ryder N, et al. Language models are few-shot learners[C]. Advances in

Neural Information Processing Systems 33: Annual Conference on Neural Information Process-

ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, .

[172] Rae J. W, Borgeaud S, Cai T, et al. Scaling language models: Methods, analysis & insights from

training gopher[J]. CoRR, 2021, abs/2112.11446.

[173] Wang S, Sun Y, Xiang Y, et al. ERNIE 3.0 titan: Exploring larger-scale knowledge enhanced

pre-training for language understanding and generation[J]. CoRR, 2021, abs/2112.12731.

[174] Li Z, Chang V, Hu H, et al. Optimizing makespan and resource utilization for multi-dnn training

in GPU cluster[J]. Future Gener. Comput. Syst., 2021, 125: 206-220.

[175] Sun P, Wen Y, Han R, et al. Gradientflow: Optimizing network performance for large-scale

distributed DNN training[J]. IEEE Trans. Big Data, 2022, 8(2): 495-507.

[176] Fu H, Tang S, He B, et al. HGP4CNN: an efficient parallelization framework for training con-

volutional neural networks on modern gpus[J]. J. Supercomput., 2021, 77(11): 12741-12770.

[177] Xu J, Wang J, Qi Q, et al. Effective scheduler for distributed DNN training based on mapreduce

and GPU cluster[J]. J. Grid Comput., 2021, 19(1): 8.

[178] Ye X, Lai Z, Li S, et al. Hippie: A data-paralleled pipeline approach to improve memory-

efficiency and scalability for large DNN training[C]. ICPP 2021: 50th International Conference

on Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, 71:1-71:10.

249

Doctoral Dissertation of University of Electronic Science and Technology of China

[179] Romero J, Yin J, Laanait N, et al. Accelerating collective communication in data parallel training

across deep learning frameworks[C]. 19th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022, 1027-1040.

[180] Li Z, Zhuang S, Guo S, et al. Terapipe: Token-level pipeline parallelism for training large-scale

language models[C]. Proceedings of the 38th International Conference on Machine Learning,

ICML 2021, 18-24 July 2021, Virtual Event, 6543-6552.

[181] Narayanan D, Shoeybi M, Casper J, et al. Efficient large-scale language model training on GPU

clusters using megatron-lm[C]. SC ’21: The International Conference for High Performance

Computing, Networking, Storage and Analysis, St. Louis, Missouri, USA, November 14 - 19,

2021, 58:1-58:15.

[182] Huang Y, Cheng Y, Bapna A, et al. Gpipe: Efficient training of giant neural networks using

pipeline parallelism[C]. Advances in Neural Information Processing Systems 32: Annual Con-

ference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, 103-112.

[183] Narayanan D, Harlap A, Phanishayee A, et al. Pipedream: generalized pipeline parallelism for

DNN training[C]. Proceedings of the 27th ACM Symposium on Operating Systems Principles,

SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, 1-15.

[184] Fan S, Rong Y, Meng C, et al. DAPPLE: a pipelined data parallel approach for training large

models[C]. PPoPP ’21: 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Virtual Event, Republic of Korea, February 27- March 3, 2021, 431-445.

[185] Ye X, Lai Z, Li S, et al. Hippie: A data-paralleled pipeline approach to improve memory-

efficiency and scalability for large DNN training[C]. ICPP 2021: 50th International Conference

on Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, 71:1-71:10.

[186] Zeng Z, Liu C, Tang Z, et al. Training acceleration for deep neural networks: A hybrid paral-

lelization strategy[C]. 58th ACM/IEEE Design Automation Conference, DAC 2021, San Fran-

cisco, CA, USA, December 5-9, 2021, 1165-1170.

[187] Dryden N, Maruyama N, Moon T, et al. Channel and filter parallelism for large-scale CNN

training[C]. Proceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis, SC 2019, Denver, Colorado, USA, November 17-19, 2019, 10:1-

10:20.

250

References

[188] He J, Zhai J, Antunes T, et al. Fastermoe: modeling and optimizing training of large-scale dy-

namic pre-trained models[C]. PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, 120-134.

[189] Jain A, Awan A. A, Aljuhani A.M, et al. GEMS: gpu-enabled memory-aware model-parallelism

system for distributed DNN training[C]. Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta,

Georgia, USA, November 9-19, 2020, 45.

[190] Dong J, Cao Z, Zhang T, et al. EFLOPS: algorithm and system co-design for a high performance

distributed training platform[C]. IEEE International Symposium on High Performance Computer

Architecture, HPCA 2020, San Diego, CA, USA, February 22-26, 2020, 610-622.

[191] Zheng L, Li Z, Zhang H, et al. Alpa: Automating inter- and intra-operator parallelism for dis-

tributed deep learning[C]. 16th USENIX Symposium on Operating Systems Design and Imple-

mentation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, 559-578.

[192] Zeng Z, Liu C, Tang Z, et al. Training acceleration for deep neural networks: A hybrid paral-

lelization strategy[C]. 58th ACM/IEEE Design Automation Conference, DAC 2021, San Fran-

cisco, CA, USA, December 5-9, 2021, 1165-1170.

[193] Bai Y, Li C, Zhou Q, et al. Gradient compression supercharged high-performance data parallel

DNN training[C]. SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles,

Virtual Event / Koblenz, Germany, October 26-29, 2021, 359-375.

[194] Elango V. Pase: Parallelization strategies for efficient DNN training[C]. 35th IEEE International

Parallel and Distributed Processing Symposium, IPDPS 2021, Portland, OR, USA, May 17-21,

2021, 1025-1034.

[195] Zhao S, Li F, Chen X, et al. vpipe: A virtualized acceleration system for achieving efficient and

scalable pipeline parallel DNN training[J]. IEEE Trans. Parallel Distributed Syst., 2022, 33(3):

489-506.

[196] Elango V. Pase: Parallelization strategies for efficient DNN training[C]. 35th IEEE International

Parallel and Distributed Processing Symposium, IPDPS 2021, Portland, OR, USA, May 17-21,

2021, 1025-1034.

[197] Han Z, Qu G, Liu B, et al. Exploit the data level parallelism and schedule dependent tasks on

the multi-core processors[J]. Inf. Sci., 2022, 585: 382-394.

[198] Li Y, Zeng Z, Li J, et al. Distributed model training based on data parallelism in edge computing-

enabled elastic optical networks[J]. IEEE Commun. Lett., 2021, 25(4): 1241-1244.

251

Doctoral Dissertation of University of Electronic Science and Technology of China

[199] Beaumont O, Eyraud-Dubois L, Shilova A. Madpipe: Memory aware dynamic programming

algorithm for pipelined model parallelism[C]. IEEE International Parallel and Distributed Pro-

cessing Symposium, IPDPS Workshops 2022, Lyon, France, May 30 - June 3, 2022, 1063-1073.

[200] Zhao S, Li F, Chen X, et al. Naspipe: high performance and reproducible pipeline parallel su-

pernet training via causal synchronous parallelism[C]. ASPLOS ’22: 27th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems, Lau-

sanne, Switzerland, 28 February 2022 - 4 March 2022, 374-387.

[201] Narayanan D, Phanishayee A, Shi K, et al. Memory-efficient pipeline-parallel DNN training[C].

Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July

2021, Virtual Event, 7937-7947.

[202] Li J, Wang Y, Zhang J, et al. Pipepar: A pipelined hybrid parallel approach for accelerating

distributed DNN training[C]. 24th IEEE International Conference on Computer Supported Co-

operative Work in Design, CSCWD 2021, Dalian, China, May 5-7, 2021, 470-475.

[203] Zhang Z, Chen J, Hu B. The optimization of model parallelization strategies for multi-gpu train-

ing[C]. IEEE Global Communications Conference, GLOBECOM 2021, Madrid, Spain, Decem-

ber 7-11, 2021, 1-6.

[204] Lee Y, Chung J, Rhu M. Smartsage: training large-scale graph neural networks using in-storage

processing architectures[C]. ISCA ’22: The 49th Annual International Symposium on Computer

Architecture, New York, New York, USA, June 18 - 22, 2022, 932-945.

[205] Gu R, Chen Y, Liu S, et al. Liquid: Intelligent resource estimation and network-efficient

scheduling for deep learning jobs on distributed GPU clusters[J]. IEEE Trans. Parallel Distributed

Syst., 2022, 33(11): 2808-2820.

[206] Md V, Misra S, Ma G, et al. Distgnn: scalable distributed training for large-scale graph neural

networks[C]. SC ’21: The International Conference for High Performance Computing, Network-

ing, Storage and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021, 76:1-76:14.

[207] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recogni-

tion[C]. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, .

[208] Xue F,WangQ,GuoG. Transfer: Learning relation-aware facial expression representations with

transformers[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision,

3601-3610.

252

References

[209] Zini J. E, Awad M. On the explainability of natural language processing deep models[J]. ACM

Comput. Surv., 2023, 55(5): 103:1-103:31.

[210] Lee Y, Chung J, Rhu M. Smartsage: training large-scale graph neural networks using in-storage

processing architectures[C]. ISCA ’22: The 49th Annual International Symposium on Computer

Architecture, New York, New York, USA, June 18 - 22, 2022, 932-945.

[211] Rao T, Li J, Wang X, et al. Facial expression recognition with multiscale graph convolutional

networks[J]. IEEE Multim., 2021, 28(2): 11-19.

[212] Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified

text-to-text transformer[J]. J. Mach. Learn. Res., 2020, 21: 140:1-140:67.

[213] Fang J, Zhu Z, Li S, et al. Parallel training of pre-trained models via chunk-based dynamic

memory management[J]. IEEE Trans. Parallel Distributed Syst., 2023, 34(1): 304-315.

[214] Romero J, Yin J, Laanait N, et al. Accelerating collective communication in data parallel training

across deep learning frameworks[C]. 19th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022, 1027-1040.

[215] Lai Z, Li S, Tang X, et al. Merak: An efficient distributed DNN training framework with au-

tomated 3d parallelism for giant foundation models[J]. IEEE Trans. Parallel Distributed Syst.,

2023, 34(5): 1466-1478.

[216] Wang M, Huang C, Li J. Supporting very large models using automatic dataflow graph parti-

tioning[C]. Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March

25-28, 2019, 26:1-26:17.

[217] Li F, Zhao S, Qing Y, et al. Fold3d: Rethinking and parallelizing computational and commu-

nicational tasks in the training of large DNN models[J]. IEEE Trans. Parallel Distributed Syst.,

2023, 34(5): 1432-1449.

[218] Cui L, Qu Z, Zhang G, et al. A bidirectional DNN partition mechanism for efficient pipeline

parallel training in cloud[J]. J. Cloud Comput., 2023, 12(1): 22.

[219] Guan L, Yang Z, Li D, et al. pdladmm: An admm-based framework for parallel deep learning

training with efficiency[J]. Neurocomputing, 2021, 435: 264-272.

[220] Kahira A. N, Nguyen T. T, Bautista-Gomez L, et al. An oracle for guiding large-scale

model/hybrid parallel training of convolutional neural networks[C]. HPDC ’21: The 30th Inter-

national Symposium on High-Performance Parallel and Distributed Computing, Virtual Event,

Sweden, June 21-25, 2021, 161-173.

253

Doctoral Dissertation of University of Electronic Science and Technology of China

[221] Zhang J, Niu G, Dai Q, et al. Pipepar: Enabling fast DNN pipeline parallel training in hetero-

geneous GPU clusters[J]. Neurocomputing, 2023, 555: 126661.

[222] Zhang Z, Ji Z,Wang C.Momentum-driven adaptive synchronization model for distributed DNN

training on HPC clusters[J]. J. Parallel Distributed Comput., 2022, 159: 65-84.

[223] Zheng S, Chen R, Jin Y, et al. Neoflow: A flexible framework for enabling efficient compila-

tion for high performance DNN training[J]. IEEE Trans. Parallel Distributed Syst., 2022, 33(11):

3220-3232.

[224] Wan B, Dang J, Li Z, et al. Modeling analysis and cost-performance ratio optimization of virtual

machine scheduling in cloud computing[J]. IEEE Trans. Parallel Distributed Syst., 2020, 31(7):

1518-1532.

[225] Hu H, Li Z, Hu H, et al. Multi-objective scheduling for scientific workflow in multicloud envi-

ronment[J]. J. Netw. Comput. Appl., 2018, 114: 108-122.

[226] Nguyen T. T, Ha V. N, Le L. B, et al. Joint data compression and computation offloading in

hierarchical fog-cloud systems[J]. IEEE Trans. Wirel. Commun., 2020, 19(1): 293-309.

[227] Li J. Resource optimization scheduling and allocation for hierarchical distributed cloud service

system in smart city[J]. Future Gener. Comput. Syst., 2020, 107: 247-256.

[228] Czako Z, Sebestyen G, Hangan A. Automaticai - A hybrid approach for automatic artificial

intelligence algorithm selection and hyperparameter tuning[J]. Expert Syst. Appl., 2021, 182:

115225.

[229] Huerta I. I, Neira D. A, OrtegaD.A, et al. Improving the state-of-the-art in the traveling salesman

problem: An anytime automatic algorithm selection[J]. Expert Syst. Appl., 2022, 187: 115948.

[230] Duc T. L, Leiva R. A. G, Casari P, et al. Machine learning methods for reliable resource provi-

sioning in edge-cloud computing: A survey[J]. ACM Comput. Surv., 2019, 52(5): 94:1-94:39.

[231] Li L. An optimistic differentiated service job scheduling system for cloud computing service

users and providers[C]. 2009 Third International Conference on Multimedia and Ubiquitous En-

gineering, MUE 2009, June 4-6, 2009, Qingdao, China, 295-299.

[232] Pradhan P, Behera P. K, Ray B. Modified round robin algorithm for resource allocation in cloud

computing[J]. Procedia Computer Science, 2016, 85: 878-890.

[233] Narwal A, Dhingra S. Enhanced task scheduling algorithm using multi-objective function for

cloud computing framework[C]. International Conference on Next Generation Computing Tech-

nologies, 110-121.

254

References

[234] Al-Mahruqi A. A. H,Morison G, Stewart B. G, et al. Hybrid heuristic algorithm for better energy

optimization and resource utilization in cloud computing[J].Wirel. Pers. Commun., 2021, 118(1):

43-73.

[235] Iranmanesh A, Naji H. R. DCHG-TS: a deadline-constrained and cost-effective hybrid genetic

algorithm for scientific workflow scheduling in cloud computing[J]. Clust. Comput., 2021, 24(2):

667-681.

[236] Gudu D, Hardt M, Streit A. Combinatorial auction algorithm selection for cloud resource allo-

cation using machine learning[C]. Euro-Par 2018: Parallel Processing - 24th International Con-

ference on Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings,

378-391.

[237] Seiler M, Pohl J, Bossek J, et al. Deep learning as a competitive feature-free approach for au-

tomated algorithm selection on the traveling salesperson problem[C]. Parallel Problem Solving

from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands,

September 5-9, 2020, Proceedings, Part I, 48-64.

[238] Deshpande N, Sharma N, Yu Q, et al. R-CASS: using algorithm selection for self-adaptive ser-

vice oriented systems[C]. 2021 IEEE International Conference on Web Services, ICWS 2021,

Chicago, IL, USA, September 5-10, 2021, 61-72.

[239] Boas M. G. V, Santos H. G, Campos Merschmann L. Hde , et al. Optimal decision trees for the

algorithm selection problem: integer programming based approaches[J]. Int. Trans. Oper. Res.,

2021, 28(5): 2759-2781.

[240] Muñoz M. A, Kirley M. Sampling effects on algorithm selection for continuous black-box op-

timization[J]. Algorithms, 2021, 14(1): 19.

255

Doctoral Dissertation of University of Electronic Science and Technology of China

Research Results Obtained During the Study for Doctoral Degree

[1] Zhou G, Wen R, Tian W, et al. Deep Reinforcement Learning-based Algorithms Selectors for

the Resource Scheduling in Hierarchical Cloud Computing[J]. Journal of Network and Computer

Applications, 2022, 208: 103520.

[2] ZhouG, TianW, Buyya R, et al. Growable Genetic Algorithmwith Heuristic-based Local Search

for Multi-dimensional Resources Scheduling of Cloud Computing[J]. Applied Soft Computing,

2023, 136: 110027.

[3] ZhouG, TianW, Buyya R.Multi-search-routes-basedMethods for MinimizingMakespan of Ho-

mogeneous and Heterogeneous Resources in Cloud Computing[J]. Future Generation Computer

Systems, 2023, 141: 414-432.

[4] Zhou G, Tian W, Buyya R, et al. Deep Reinforcement Learning-based Methods for Resource

Scheduling in Cloud Computing: A Review and Future Directions[J]. Artificial Intelligence Re-

view, 2024, 57(5): 124.

[5] Zhou G, Xie Y, Lan H, et al. Information Interaction and Partial Growth-based Multi-Population

Growable Genetic Algorithm for Multi-Dimensional Resources Utilization Optimization of

Cloud Computing[J]. Swarm and Evolutionary Computation, 2024, 87: 101575.

[6] ZhouG, Lan H, Xie Y, et al. CSIMD: Cross-Search Algorithmwith ImprovedMulti-Dimensional

Dichotomy for Micro-batch-based Pipeline Parallel Training in DNN[C]. 30th International Eu-

ropean Conference on Parallel and Distributed Computing, Euro-Par 2024.（Accepted）

[7] Zhou G, Tian W, Buyya R. LPT-One and BFD-One Search Algorithms for Load Balance and

Bin-Packing of Cloud Computing[C]. 9th IEEE International Conference on Cloud Computing

and Intelligent Systems, CCIS 2023, Dali, China, August 12-13, 2023, 521-525.

[8] Zhou G, TianW, Buyya R, et al. UMPIPE: Unequal Microbatches-based Pipeline Parallelism for

DNN Training[J]. IEEE Transactions on Parallel and Distributed Systems.（Under Review）

[9] Kadhim M. R, Zhou G, Tian W. A Novel Self-directed Learning Framework for Cluster Ensem-

ble[J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(10 Part

A): 7841-7855.

[10] Khan T, Tian W, Zhou G, et al. Machine Learning (ML)-centric Resource Management in Cloud

Computing: A Review and Future Directions[J]. Journal of Network and Computer Applications,

2022, 204: 103405.

256

Research Results Obtained During the Study for Doctoral Degree

[11] TianW, XuM,ZhouG, et al. Prepartition: Load Balancing Approach for Virtual Machine Reser-

vations in a Cloud Data Center[J]. Journal of Computer Science and Technology, 2023, 38(4):

773-792.

[12] Kadhim M. R, Tian W, Zhou G, et al. A Novel Side-Information for Unsupervised Cluster En-

semble[C]. 18th International Computer Conference on Wavelet Active Media Technology and

Information Processing, ICCWAMTIP 2021, 2021, 200-207.

257

	Cover
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Exordium
	1.1 Background and Motivation
	1.2 Research Trends and Development Status
	1.2.1 Development of Cloud Computing
	1.2.2 Optimization Problems in Cloud Scheduling
	1.2.3 Optimization Algorithm in Cloud Scheduling

	1.3 Scheduling and Algorithms in Cloud
	1.4 Research Content and Key Issues
	1.4.1 Research Contents
	1.4.2 Key Issues

	1.5 Organization of this Dissertation

	Chapter 2 Single-dimensional Resource Scheduling based on Multi-route Search Algorithms
	2.1 Introduction
	2.2 Related work
	2.2.1 Reviews of Scheduling Algorithms
	2.2.2 Review of System Model

	2.3 Cloud Systems and Optimization Problems Formulations considering Single-dimensional Resources
	2.3.1 Models of Minimizing Makespan in Cloud Computing

	2.4 Algorithm Design: Multi-Route Search Algorithm
	2.4.1 General Local Search Algorithm
	2.4.2 Specified basic Local Search Route
	2.4.2.1 K-Step Search Route
	2.4.2.2 LPT Search Route and Modified LPT Search Route
	2.4.2.3 BFD Search Route

	2.4.3 Combination of Multi-routes and the Flowchart
	2.4.3.1 Example Demonstration of Algorithms Flows

	2.5 Theoretical Analysis and Proof
	2.6 Experimental Results and Analysis
	2.6.1 Problems and Simulated Environment
	2.6.2 Compared Baselines and Evaluation Indexes
	2.6.3 Result and Discussion
	2.6.3.1 Minimizing Makespan for Homogeneous Resources
	2.6.3.2 Minimizing Makespan and Total Running Time for Heterogeneous Resources

	2.6.4 Summary

	2.7 Summary of this Chapter
	2.8 Appendix: Numerical Table of Experimental Results

	Chapter 3 Multi-dimensional Resource Scheduling based on Growable Genetic Algorithms
	3.1 Introduction
	3.2 Related Work
	3.2.1 Scheduling Algorithms in Cloud Computing
	3.2.2 MDRSP in Cloud Computing
	3.2.3 Existing Approaches to MOP
	3.2.4 Analysis of Related Work

	3.3 Cloud Systems and Optimization Problems Formulations considering Multi-dimensional Resources
	3.3.1 Cloud System Model with Multi-Dimensional Resources
	3.3.2 Problem Formulations for Resources Utilization and Energy Consumption
	3.3.2.1 Minimizing the Maximum Utilization Rate of Resources for Each Dimension under All Nodes
	3.3.2.2 Minimizing the Total Energy Consumption for System

	3.4 Algorithm Design: Growable Genetic Algorithm
	3.4.1 Random Multi-weights-based Dimensionality Reduction
	3.4.2 Heuristic-based Local Search Algorithm
	3.4.3 Growable Genetic Algorithm based on Growth Strategies
	3.4.4 Instantiation of GHW: GHW-NSGA II and GHW-MOEA/D

	3.5 Theoretical Analysis and Proof
	3.5.1 Analysis of Computational Complexity of GHW

	3.6 Experimental Results and Analysis
	3.6.1 Experiments Setting
	3.6.2 EX1: Comparison of the Growth Strategies for GGA
	3.6.2.1 Minimizing the Maximum Utilization of Resources
	3.6.2.2 Minimizing Energy Consumption

	3.6.3 EX2: Comparison of Dimensionality Reduction Strategies for GGA-HLSA
	3.6.3.1 Minimizing the Maximum Utilization of Resources
	3.6.3.2 Minimizing Energy Consumption

	3.6.4 EX3: Evaluation of Practicability on Azure Trace
	3.6.5 EX4: Comparison with the State-of-the-art
	3.6.6 Summary of Experiments

	3.7 Summary of this Chapter

	Chapter 4 Joint Optimization of Multi-subproblems in Parallel Training of Deep Learning Models Based on Cross Search Algorithms
	4.1 Introduction
	4.2 Related Work
	4.3 Cloud System and Optimization Problem Formulations Considering Parallel Training Workflow of Deep Leaning Model
	4.3.1 Cost Model for GPipe considering Computing and Communication Time
	4.3.2 Theoretical Analysis of Cost Model
	4.3.3 Theoretical Analysis of Basic Function

	4.4 Algorithm Design: Cross Search Algorithm
	4.4.1 Cross-Search for Joint Solution of "ω1 and "ω2
	4.4.2 Improved Multiple Dichotomy Algorithm to Divide Network Layers
	4.4.2.1 Algorithm and Framework

	4.4.3 Method to Obtain Optimal Partition Number

	4.5 Theoretical Analysis and Proof
	4.5.0.1 Properties and Analysis to the Converge Solution of IMD
	4.5.0.2 Analysis of Computational Complexity and Selection of Parameters "ε and "η

	4.6 Experimental Results and Analysis
	4.6.1 Evaluation of Improved Multi-Dimensional Dichotomy
	4.6.2 Evaluation of CSIMD in the CV-related networks
	4.6.3 Evaluation of CSIMD in the NLP-related networks

	4.7 Summary of this Chapter

	Chapter 5 Design of a novel architecture for parallel training of deep learning based on Unequal Date Partitioning and Dual-chromosome Genetic Algorithms
	5.1 Introduction
	5.2 Related Work
	5.3 Design and Formulations of a New Parallel Training Architecture (UMPIPE) for Deep Learning Models
	5.3.1 Architecture of BABYPIPE
	5.3.2 Formulas for BABYPIPE
	5.3.3 Theoretical Analysis of Basic Functions
	5.3.4 Analysis for Optimality of BABYPIPE

	5.4 Algorithm Design: Double-chromosome Genetic Algorithms for UMPIPE
	5.4.1 DGAP: Dual Chromosomes-based Genetic Algorithm
	5.4.2 Analysis of Convergence for Dual-Chromosomes Strategy
	5.4.3 OiDGAP: One-level improved DGAP
	5.4.4 TiDGAP: Two-level improved DGAP

	5.5 Experimental Results and Analysis
	5.5.1 Experiment Settings
	5.5.2 EX1: Evaluation of Dual-Chromosome Strategy of TiDGAP Compared with TiGAP
	5.5.3 EX2: Evaluation of Two-level improvement of TiDGAP Compared with OiDGAP and DGAP
	5.5.4 EX3: Evaluation of TiDGAP for UMPIPE Compared with Local Greedy Algorithm and Dynamic Programming
	5.5.5 EX4: Evaluation of UEDP Compared UMPIPE with State-of-the-Art Parallelism
	5.5.6 Summary of Experiments

	5.6 Summary of this Chapter

	Chapter 6 Hierarchical Cloud System and Machine Learning based Algorithm Selectors
	6.1 Introduction
	6.2 Related Work
	6.3 Design of Hierarchical Cloud System with Multi-subsystem
	6.3.1 System model of Multi-Level Cloud System
	6.3.2 Subsystems and Subproblems of Resource Scheduling
	6.3.3 Joint Scheduling Problem and Cost Model for Various Subproblems

	6.4 Algorithm Design: Algorithm Selectors based on Machine Learning Methods
	6.4.1 SFSSA: Scheduling Framework to Select the Scheduling Algorithms
	6.4.2 Algorithms Pool
	6.4.3 DLS: DL-based Selector of Scheduling Algorithms
	6.4.4 DRLS: DRL-based Selector of Scheduling Algorithms

	6.5 Experimental Results and Analysis
	6.5.1 Experiment Setting
	6.5.2 Results and Discussion
	6.5.2.1 EX0: Single-layer System vs. Multi-layer System
	6.5.2.2 EX1: Baseline Strategies vs. DL-based Selectors
	6.5.2.3 EX2: Baseline Strategies vs. Model1
	6.5.2.4 EX3: Comparison between Model1 to Model5

	6.5.3 Overall Summary

	6.6 Summary of this Chapter

	Chapter 7 Conclusion and Prospect
	7.1 Conclusion
	7.2 Prospect

	Acknowledgements
	References
	Research Results Obtained During the Study for Doctoral Degree

