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Abstract

The Internet of Things (IoT) paradigm is playing a principal role in the advance-

ment of many application scenarios such as healthcare, smart city, transportation, en-

tertainment, and agriculture, which significantly affect the daily life of humans. The

smooth execution of these applications requires sufficient computing and storing re-

sources to support the massive amount of data generated by IoT devices. However,

IoT devices are resource-limited intrinsically and are not capable of efficient process-

ing and storage of large volumes of data. Hence, IoT devices require surrogate avail-

able resources for the smooth execution of their heterogeneous applications, which can

be either computation-intensive or latency-sensitive. Cloud datacenters are among the

potential resource providers for IoT devices. However, as they reside at a multi-hop

distance from IoT devices, they cannot efficiently execute IoT applications, especially

latency-sensitive ones. Fog computing paradigm, which extends Cloud services to the

edge of the network within the proximity of IoT devices, offers low latency execution of

IoT applications. Hence, it can improve the response time of IoT applications, service

startup time, and network congestion. Also, it can reduce the energy consumption of

IoT devices by minimizing their active time. However, Fog servers are resource-limited

compared to Cloud servers, preventing them from the execution of all types of IoT appli-

cations, especially extremely computation-intensive applications. Hence, Cloud servers

are used to support Fog servers to create a robust computing environment with hetero-

geneous types of resources. Consequently, the Fog computing paradigm is highly dy-

namic, distributed, and heterogeneous. Thus, without efficient scheduling techniques

for the management of IoT applications, it is difficult to harness the full potential of this

computing paradigm for different IoT-driven application scenarios.

This thesis focuses on different scheduling techniques for the management of IoT
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applications in Fog computing environments while considering a. IoT devices’ char-

acteristics, b. the structure of IoT applications, c. the context of resource providers, d.

the networking characteristics of the Fog servers, e. the execution cost of running IoT

applications, and f. the dynamics of computing environment. This thesis advances the

state-of-the-art by making the following contributions:

1. A comprehensive taxonomy and literature review on the scheduling of IoT appli-

cations from different perspectives, namely application structure, environmental

architecture, optimization properties, decision engine characteristics, and perfor-

mance evaluation, in Fog computing environments.

2. A distributed Fog-driven scheduling technique for network resource allocation in

dense and ultra-dense Fog computing environments to optimize throughput and

satisfy users’ heterogeneous demands.

3. A distributed scheduling technique for the batch placement of concurrent IoT ap-

plications to optimize the execution time of IoT applications and energy consump-

tion of IoT devices.

4. A distributed application placement and migration management technique to op-

timize the execution time of IoT applications, the energy consumption of IoT de-

vices, and the migration downtime in hierarchical Fog computing environments.

5. A Distributed Deep Reinforcement Learning (DDRL) technique for scheduling IoT

applications in highly dynamic Fog computing environments to optimize the exe-

cution time of IoT applications and energy consumption of IoT devices.

6. A system software for scheduling IoT applications in multi-Cloud Fog computing

environments.

7. A detailed study outlining challenges and new research directions for the schedul-

ing of IoT applications in Fog computing environments.
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Chapter 1

Introduction

The Internet of Things (IoT) has become an integral basis of the digital world, thanks to

the continuous development of super-cheap and tiny-sized computer chips and ubiqui-

tous access to the Internet. In the context of IoT, the term “Things” refers to any entity

(e.g., smart devices, sensors, human beings) that are context-aware and able to commu-

nicate with other entities without any temporal and spatial constraints [2]. Small de-

vices and sensors act as distributed data aggregators with Internet access that forward

collected data to the larger computer platforms for processing and/or permanent stor-

age [3]. Thus, it has shaped a new interaction type among different real-world entities.

This distributed paradigm draws a promising future and provides a great opportunity

for developers and businesses to transform their work into a smarter version.

IoT applications span across almost all vital aspects of modern living, such as health-

care, security, entertainment, transportation, and industrial systems [2, 4], as depicted in

Fig. 1.1. According to the Cisco [5], Norton [6], and Business Insider [7], 15 billion IoT de-

vices will be connected to the Internet by 2023, 21 billion by 2025, and 41 billion by 2027.

Bain & Company [8] calculated the size of the IoT market in 2021 (including hardware,

software, systems integration, and data services) to be around 520 billion U.S dollars,

while Statista [9] and Business Insider [7] expect the size of IoT market will reach to 1

trillion U.S dollars by the end of 2022 and over 2 trillion U.S dollars by 2027, accordingly.

Considering the ever-increasing number of IoT devices and IoT applications, a tremen-

dous amount of data is being generated. IoT devices may produce data either constantly

or periodically. Statistics depict that 18.3 ZB of data was produced by IoT devices in

2019 while International Data Corporation (IDC) [10] predicts about a 400% increase in

upcoming years, which hits 73 ZB of data by 2025. The real power of IoT resides in col-

1



2 Introduction

8

Internet

Of Things

Smart Transportation

Smart Healthcare

Security and Surveillance
Smart Home

Smart Communication

Entertainment

Agriculture

Smart Industry

Figure 1.1: IoT applications

lecting and analyzing the data circulating in the environment [2]. However, the majority

of the IoT devices are equipped with a constrained battery, computing units, and storage

capacity, which prevent the efficient execution of IoT applications and data analysis in

a timely manner. Hence, data should be forwarded to surrogate servers for processing

and storage. The processing, storage, and transmission of this gigantic amount of IoT

data require special attention when considering different IoT applications.

1.1 Edge and Fog Computing Paradigms

The development in computing and networking technologies over the last many decades

is attributed to underlying technologies of Cloud computing and IoT. Cloud computing

is one of the main enablers of IoT that offers on-demand services to process, analyze,

and store the data generated from IoT devices in a simplified, scalable, and affordable

manner [2, 11]. Recent advances in Cloud computing services such as serverless plat-
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forms, FaaS, transactional databases, Machine Learning (ML), and autonomous data

warehouses open new horizons in the field of data acquisition and analysis of IoT data

[12]. Besides, IoT businesses and companies that deploy their applications and sys-

tems on the Cloud can reduce their expenses (e.g., infrastructural and operational costs),

which leads to more affordable services and products for the end-users.

Cloud datacenters are located at a multi-hop distance from IoT devices, as shown

in Fig. 1.2. Thus, IoT applications running on these datacenters face an extended delay,

which is required to transfer IoT data and instructions between IoT devices and Cloud

datacenters. It can negatively affect the quality of service delivery in several ways. First,

the service startup time may increase due to the expanded transmission time for sending

instructions to distant Cloud instances. Besides, the communication latency to distant

Cloud datacenters is high, which is an important barrier for the efficient service delivery

of real-time and latency-sensitive IoT applications. Furthermore, the extended period of

transmission time and higher latency lead to higher energy consumption for IoT devices.

Moreover, when a huge number of IoT devices initiate data-driven interactions with ap-

plications deployed on the remote datacenters, it incurs substantial loads on the network
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and may lead to severe congestion. Last but not the least, it increases the computational

overhead on Cloud datacenters and may reduce computing efficiency [13]. Therefore,

the Cloud-centric execution of IoT applications may fail to satisfy the diverse range of

IoT applications’ requirements, especially for real-time and latency-sensitive IoT appli-

cations. To address these limitations, Edge and Fog computing paradigms have been

introduced to bring Cloud-like services at the edge of the network and closer to IoT

devices.

1.1.1 Properties of Edge and Fog Computing

Fog servers are geographically distributed in an intermediate layer between Cloud servers

and IoT devices. The platform of Fog computing encompasses a large number of hetero-

geneous distributed Fog servers (e.g., Raspberry pi, Nvidia Jetson platform, small-cell

base stations, nano servers, femtocells, regional servers, core routers, or switches) which
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offers computational and storage resources for IoT devices running various applications,

as depicted in Fig. 1.3. Since Fog servers are located in the proximity of IoT devices com-

pared to Cloud datacenters, they can offer Cloud-like services with better latency, which

effectively address the requirements of real-time and latency-sensitive IoT applications

[14]. Moreover, these resources can be accessed with higher bandwidth (i.e., data rate)

which reduces the required transmission time. Furthermore, Fog computing can help

reduce the energy consumption of IoT devices, which is an important metric, especially

for battery-constrained IoT devices. Also, it conserves network bandwidth that reduces

the scope of network congestion [15]. Besides, Fog computing can help to better dis-

tribute the computational load, which reduces the massive load on Cloud datacenters.

Additionally, Fog computing supports robust location-awareness and connectivity fea-

tures to simplify the communication with mobile and energy-constrained IoT devices

[16].

Compared to Cloud computing, Fog servers usually have limited resources (e.g.,

CPU, RAM) while these resources can be accessed more efficiently. Hence, Edge/Fog

computing does not compete with Cloud computing, but they complement each other

to satisfy the diverse requirements of heterogeneous IoT applications and systems. In

our view, Edge computing harnesses only distributed Edge resources at the closest layer

to IoT devices, and Fog computing harnesses distributed resources located in different

computing layers while it also uses Cloud resources (although some works use these

terms interchangeably), as shown in Fig. 1.3.

1.1.2 Initiatives for Realizing Fog Computing

Taking the benefits of Fog computing into cognizance, technology giants such as Ama-

zon, Microsoft, Alphabet, and Oracle have already commenced integrating Fog services

with their Cloud infrastructure [17, 18]. Moreover, Industrial Internet Consortium has

been formed to standardize the theory of Fog computing [19]. Besides, several hardware

manufacturers such as Cisco, Intel, Dell, and Nvidia are building compatible machines

for Fog Computing [20–22]. There are several other software systems, frameworks,

and IoT applications developed by SONM, NEC Laboratories, FogHorn systems, and
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Drofika Labs. Considering these fast-paced advancements, Fog computing is expected

to add 5.7 billion U.S dollars to the global market of utility computing by 2025 [23].

1.1.3 Challenges of Fog Computing

There are several challenges for the scheduling of IoT applications in Edge and Fog

computing environments, which are discussed below.

• Scheduling of networking resources: According to the Ericsson Mobility Report [24]

by 2023, the number of 5G-only mobile devices will reach more than 1 billion active

devices, generating 20 percent of mobile data traffic. Such abundant data traffic will

cause congestion, leading to decreased total network throughput. Hence, the resources

such as radio resource blocks should be efficiently managed to support latency-sensitive

applications.

Alongside an abundant amount of data that decreases the throughput, interference

among Edge/Fog servers can further degrade the total throughput of the network. Al-

though the Fog computing paradigm brings the computation and storage capabilities

closer to the end-users, accessing those servers still requires the network resources that

should be managed carefully to reach the highest performance of Edge/Fog computing.

Besides, the number of interfered network resources should be minimized to guarantee

a high data rate.

• Distributed and heterogeneous Edge/Fog servers: There are different types of Edge and

Fog servers, ranging from on-premises servers (e.g., Raspberry Pi) to small-scale data-

centers. These servers are heterogeneous in terms of their architecture, communication

standards, supported operating systems, price-performance, etc. Moreover, compared

to Cloud servers, the majority of these servers have resource limitations in terms of

processing capability, networking characteristics, and storage. Hence, efficient schedul-

ing of IoT applications in these computing environments is an important challenge to

achieve the best-targeted performance.

• Heterogeneous IoT applications: IoT applications can be modeled as a set of tasks

(either dependent or independent) with heterogeneous resource requirements. Schedul-

ing these IoT applications on heterogeneous computing environments to optimize the
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targeted optimization problem is an important challenge.

Moreover, there are different optimization metrics/parameters for different IoT ap-

plications. Two of the most important optimization metrics for IoT applications are their

execution time and the energy consumption of IoT devices. Although several works

consider these parameters separately, jointly optimizing these metrics in highly hetero-

geneous Edge and Fog computing environments is still in its infancy.

• Batch scheduling: Due to the ever-increasing number of IoT devices, the number of

requests to obtain computational and storage resources has been significantly increased.

Hence, the scheduler (i.e., decision engine) can receive several concurrent requests in

its scheduling time slot with a higher probability. Although there are several policies to

prioritize concurrently received IoT requests, prioritization is not always the solution,

especially in scenarios where the number of concurrent IoT requests is large. So, the

batch scheduling/placement of concurrent IoT applications is an important problem

affecting the execution cost of all IoT applications.

• Uncertain failures: Although Fog computing reduces application service delivery

time, Fog nodes are highly prone to get affected by anomalies, power failures, and out-

of-capacity faults. It obstructs the proper execution of applications assigned to them.

Hence, providing failure recovery mechanisms and policies for resource scheduling is a

key factor for the smooth execution of different IoT applications

• Cooperative execution of IoT applications: Due to limited resources of Edge/Fog servers,

one IoT application may not be able to be completely and efficiently executed on one

server. Therefore, the resources of different Edge/Fog servers should be augmented

for the efficient execution of IoT applications. However, heterogeneity of servers’ ar-

chitectures and resources put some constraints on such collaborative execution of IoT

applications.

• Mobility and migration management of IoT applications: Mobile devices are an im-

portant part of IoT devices that run a wide range of IoT applications such as patient

monitoring, entertainment, and transportation, just to mention a few. Considering user

mobility, some modules of each IoT application may require migration to other servers

for execution, leading to service interruption and extra execution costs.

• Security: The outcomes of Fog-based applications can be used by different parties
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simultaneously. For example, the services of a Fog-based healthcare application are rele-

vant to hospitals, insurance companies, and employer organizations. In such cases, Fog

environments require to ensure on-demand and secure access to application outcomes

as a part of application management. However, due to the resource scarcity and dynam-

ics of Fog environments, it is hard to apply compute-intensive and complex security

measures on Fog nodes.

In this thesis, we address the challenges of executing applications through resource-

constrained, heterogeneous, and distributed Edge/Fog servers by identifying their suit-

able placement options in Edge/Fog computing environments. Here, we propose a

taxonomy on energy and time-aware scheduling of IoT applications in Edge and Fog

computing environments and review the existing scheduling strategies and their lim-

itations. Furthermore, we develop a resource allocation policy for efficient allocation

of networking resources in Edge and Fog computing environments. Afterward, a set

of scheduling policies for proper and efficient management of IoT applications in Edge

and Fog computing environments are proposed.

1.2 Methodologies

We follow the systematic research methodology as shown in Fig. 1.4 in our research

works.

• Qualitative Comparison: For each research problem, we identify the key parame-

ters of the problem, study current techniques in the literature, and compare them

with our proposed technique.

• Modeling: For each research problem: 1) We provide the system model to rep-

resent key architectural elements involved in our system, 2) We define the tar-

geted workflow and workloads, 3) We formulate the problem by focusing on spe-

cific optimization objectives of interests, including throughput, time, energy, and

weighted cost.

• Algorithms: We propose different scheduling algorithms for the management of

IoT applications in Edge and Fog computing environments. These algorithms are
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Figure 1.4: The research methodologies used in this research

designed based on heuristics, meta-heuristics, and machine learning-based ap-

proaches to solve optimization problems.

• Evaluation: The proposed techniques in this thesis have been evaluated using

three methodologies, namely analytical, discrete event-driven simulation, and prac-

tical implementation. Due to limited accessibility and management costs, simula-

tion is a common evaluation methodology to evaluate the proposed algorithms in

complex and large-scale systems. In this thesis, we used MATLAB as an analytical

tool, and OpenAI Gym [25] and iFogSim simulation toolkit [26, 27] for simulation.

Also, we extend the iFogSim simulation toolkit with several new features. Besides,

we build our prototype systems and evaluate respective metrics in real small-scale

Edge/Fog computing environments.
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Our research methodology has produced innovative algorithms, methods, open-sourced

datasets, and software systems.

1.3 Research Questions and Objectives

In smart systems, an ever-increasing number of IoT devices closely interact with Fog

and Cloud servers over the network for the smooth execution of IoT applications. The

two most important costs related to the execution of applications in IoT-enabled systems

are the execution time of IoT applications and the energy consumption of IoT devices.

Hence, to satisfy the resource requirements of different IoT applications and optimize

their execution cost in heterogeneous computing environments, scheduling policies play

a key role. This thesis investigates the scheduling of IoT applications from the perspec-

tives of different entities interacting with the IoT-enabled smart systems. The objective

of this thesis is to improve the users’ Quality of Experience (QoE) and the execution

cost of running IoT applications in Edge and Fog Computing environments. To achieve

these objectives, we solve important resource management problems by addressing the

following research questions:

• Q1. How to efficiently schedule network resources to satisfy different requirements of het-

erogeneous IoT applications in Fog computing environments? Rapid increase of data-

streaming IoT applications such as video streaming leads to a significant amount

of data to be transferred over cellular networks, as one of the main communication

mediums for IoT-enabled systems [2, 28, 29]. Besides, to address the requirements

of a large number of IoT devices, an increasing number of Edge devices with com-

puting and cellular communication modules are added to the network. Since the

number of cellular network resources is restricted, the requested Quality of Ser-

vice (QoS) of IoT applications can be satisfied for only a limited number of users.

Moreover, the network resources of these devices can interfere together, which

significantly reduces the throughput of the network. Thus, IoT devices cannot

efficiently communicate with Fog servers for the smooth execution of IoT applica-

tions. Hence, it is necessary to design network resource allocation techniques for

densely-deployed Fog computing environments to improve the throughput of the
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network and interference on the network resources of Edge servers.

• Q2. How to perform batch scheduling for concurrent IoT applications consisting of de-

pendent tasks? IoT applications, consisting of dependent tasks, can be modeled as

Directed Acyclic Graph (DAG). To schedule each DAG-based IoT application, the

constraints among dependent tasks should be satisfied before the execution of each

task. Thus, for the batch scheduling of several concurrent DAG-based IoT appli-

cations, such dependency constraints for all applications should be considered to-

gether, which makes the scheduling problem of concurrent IoT applications more

complex. Hence, it is necessary to design batch placement techniques for concur-

rent IoT applications to solve the dependency constraints of each application while

trying to optimize the execution cost of a batch of DAG-based IoT applications.

• Q3. How to perform placement and mobility management for real-time IoT applications?

The execution of real-time IoT applications exclusively on one Edge/Fog server

may not be always feasible because of the limited resources of these servers. Hence,

the resources of different servers should be aggregated together to satisfy the re-

quirements of each IoT application. To obtain this, different Edge/Fog servers

should be able to communicate and coordinate together for the execution of IoT

applications. Moreover, IoT applications for mobile users are among the most

popular type of IoT applications. As a result, as the user moves along the path, dif-

ferent modules/tasks of IoT the application currently placed on different servers

should be migrated to servers in the proximity of users. It usually leads to service

interruptions for a specific amount of time, which is a big problem, specifically for

real-time IoT applications. Hence, it is necessary to design resource and mobility

management policies to provide real-time service for IoT users while minimizing

the service interruption time in the migration process.

• Q4. How to automatically learn the scheduling policies in highly dynamic and stochas-

tic computing environments to optimize complex objectives? Numerous parameters

are affecting the execution of IoT applications in Edge and Fog computing envi-

ronments with non-linear relationships. These parameters include the Fog envi-

ronment and IoT application characteristics. The Fog environment characteristics
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include the number of servers, specification of each server, and networking speci-

fications. The IoT application characteristics include the dependency model of IoT

application, the requirement of each task, and data-flow among different tasks.

These contributing parameters can be further extended based on different IoT sce-

narios. The majority of existing scheduling algorithms in Edge and Fog computing

environments are based on static rules or manually fine-tuned heuristics that fail

to capture these intricacies in the environment. Therefore, it is essential to build

an adaptive scheduling algorithm based on Deep Reinforcement Learning (DRL)

to deal with such complexity and learn adaptive scheduling policies.

1.4 Thesis Contributions

This thesis makes the following contributions to address the research problems men-

tioned above:

1. Proposes different taxonomies on the scheduling of IoT applications in Edge and

Fog computing environments and reviews the existing scheduling approaches.

2. Investigates efficient scheduling policy for network resources to optimize the total

throughput of the network while mitigating the interference in dense and ultra-

dense Edge and Fog computing environments (addresses the Q1).

• A mathematical model to optimize total throughput of the network in hierar-

chical Edge and Fog computing environments.

• A distributed dynamic clustering algorithm to solve intra-cluster interfer-

ence, by which Cluster Heads (CHs) adaptively control their cluster size based

on the requested demands of their end-users.

• A Fog-driven graph formation strategy to model the inter-cluster interfer-

ence.

• A Fog-driven graph coloring technique to define and assign a set of network

resources to each specific cluster based on the average resource demands of

each cluster.
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• A Fog-driven graph relaxation technique to reduce the constraints of graph

coloring problem.

• A policy-aware scheduling technique to distribute network resources for Edge

servers.

3. Puts forward a distributed batch scheduling technique for concurrent DAG-based

IoT applications to optimize the execution cost of IoT applications (addresses the

Q2).

• A mathematical model to minimize the weighted cost of running concurrent

IoT applications in terms of the execution time of IoT applications and the

energy consumption of IoT devices.

• An innovative approach to combine tasks of different concurrent IoT applica-

tions for batch placement.

• An optimized meta-heuristic technique for batch placement of concurrent IoT

applications.

• A fast failure recovery technique to assign failed tasks to appropriate servers

in a timely manner.

4. Proposes distributed scheduling and migration management techniques for real-

time IoT applications in hierarchical Fog computing environments (addresses the

Q3).

• A mathematical model to minimize the weighted cost of running real-time

applications in terms of the execution time of IoT applications and the energy

consumption of IoT devices in hierarchical Fog computing environments.

• A mathematical model to minimize the weighted cost of the migration pro-

cess in terms of the execution time of IoT applications and the energy con-

sumption of IoT devices in hierarchical Fog computing environments.

• A ranking-based distributed scheduling policy for real-time IoT applications.

• A distributed migration management technique to minimize the downtime

and service interruption in the pre-copy migration model.
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• Failure recovery techniques for clustering of resources, scheduling, and mi-

gration of IoT applications.

5. Proposes distributed DRL-based scheduling framework to learn and optimize com-

plex scheduling of DAG-based IoT applications in Edge and Fog computing envi-

ronments (addresses the Q4).

• A mathematical model to minimize the weighted cost of running IoT appli-

cations in terms of the execution time of IoT applications and the energy con-

sumption of IoT devices.

• A DRL model for the scheduling of DAG-based IoT applications.

• An action, reward, and state management methods for DRL framework.

• A distributed actor-critic DRL-based model for off-policy learning of optimal

policy for Edge and Fog computing environment.

• Evaluation and validation using simulation and testbed experiments, consist-

ing of heterogeneous Fog and Cloud servers.

6. Develops a software system for scheduling IoT applications in Edge and Fog com-

puting environments.

• A system configuration consisting of multiple Cloud datacenters, multiple

Edge/Fog servers, and different IoT applications.

• Software system’s modules for the scheduling of IoT applications.

• Several containerized IoT applications implemented and integrated with the

software system.

• Implementation and integration of scheduling algorithm with software sys-

tem using practical implementation.

• Evaluation and validation of scheduling algorithm’s performance in real Fog

computing environments.
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1.5 Thesis Organization

The structure of this thesis is shown in Fig. 1.5. The remaining part of this thesis is

organized as follows:

• Chapter 2 presents a taxonomy and literature review on scheduling IoT applica-

tions in Edge and Fog computing environments. This chapter is derived from:

- Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”Schedul-

ing IoT Applications in Edge and Fog Computing Environments: A Taxonomy and

Future Directions”, ACM Computing Surveys (CSUR), USA, 2022 (revision).

• Chapter 3 presents efficient Fog-driven scheduling policies for network resources

to optimize the total throughput of the network while mitigating the interference

in dense and ultra-dense Edge and Fog computing environments. This chapter is

derived from:

- Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”A Fog-

driven Dynamic Resource Allocation Technique in Ultra-Dense Femtocell Net-

works”, Journal of Network and Computer Applications (JNCA), Volume 145, ISSN:

1084-8045, Elsevier Press, Amsterdam, Netherlands, November 2019.

• Chapter 4 presents a batch placement scheduling technique for concurrent IoT ap-

plications to optimize the execution cost of IoT applications. This chapter is de-

rived from:

- Mohammad Goudarzi, Huaming Wu, Marimuthu Palaniswami, and Rajkumar

Buyya, ”An Application Placement Technique for Concurrent IoT Applications in

Edge and Fog Computing Environments”, IEEE Transactions on Mobile Computing

(TMC), Volume 20, Number 4, Pages: 1298-1311, ISSN: 1536-1233, IEEE Press, New

York, USA, January 2020.

• Chapter 5 presents techniques for scheduling and migration management of real-

time IoT applications in hierarchical Edge and Fog computing environments. This

chapter is derived from:
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- Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”A Dis-

tributed Application Placement and Migration Management Techniques for Edge

and Fog Computing Environments”, Proceedings of the 16th Conference on Computer

Science and Intelligent Systems (FedCSIS), IEEE Press, Pages: 37-56, Online, Poland,

September 2-5, 2021.

• Chapter 6 proposes distributed DRL-based scheduling framework to learn and op-

timize complex scheduling of DAG-based IoT applications in Edge and Fog com-

puting environments. This chapter is derived from:

- Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”A Dis-

tributed Deep Reinforcement Learning Technique for Application Placement in

Edge and Fog Computing Environments”, IEEE Transactions on Mobile Computing

(TMC), (in press, DOI: 10.1109/TMC.2021.3123165, accepted on 23 October, 2021).

• Chapter 7 proposes a software system for scheduling IoT applications in Edge and

Fog computing environments. This chapter is derived from:

- Mohammad Goudarzi, Qifan Deng, and Rajkumar Buyya, ”Resource Manage-

ment in Edge and Fog Computing using FogBus2 Framework”, Managing Internet

of Things Applications across Edge and Cloud Data Centres, Rajiv Ranjan, Karan Mi-

tra, Prem Prakash Jayaraman, Albert Y. Zomaya (eds), ISBN: 978-1785617799, IET

Press, Hertfordshire, UK, June 2022 (in press).

• Chapter 8 concludes the thesis by summarizing the findings and offers new direc-

tions for future research.





Chapter 2

A Taxonomy and Review on
Scheduling IoT Applications

This chapter investigates the existing scheduling techniques in Fog computing and reviews them

in terms of different perspectives, namely, application structure, environmental architecture, op-

timization characteristics, decision engine properties, and performance evaluation. Based on an

in-depth analysis of the literature, separate taxonomies for each perspective on scheduling IoT ap-

plications in Fog computing environments are proposed. A detailed survey of existing approaches is

conducted according to the taxonomy. Finally, the research gaps for further improvement of the Fog

computing paradigm are identified and discussed.

2.1 Introduction

Fog computing paradigm provides a scalable solution for integrating a diverse range

of hardware and software technologies to offer a wide variety of services for end-users.

The Fog computing environment is highly heterogeneous in terms of end-users’ devices,

IoT applications, infrastructures, communication protocols, and deployed frameworks.

Hence, the smooth execution of IoT applications in this highly heterogeneous comput-

ing environment depends on a large number of contributing parameters, making the

efficient scheduling of IoT applications an important and yet a challenging problem in

Fog computing environments.

This chapter is derived from:

• Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”Scheduling IoT Applica-
tions in Edge and Fog Computing Environments: A Taxonomy and Future Directions”, ACM Com-
puting Surveys (CSUR), USA, 2022 (revision).

19
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Figure 2.1: Different perspectives of scheduling IoT applications in Fog computing

Several techniques for scheduling IoT applications in Fog computing environments

have been proposed. Several works focused on the structure of IoT applications and

how these parameters affect the scheduling [30–32] while some other techniques mainly

focus on environmental parameters of Fog computing, such as the effect of hierarchical

Fog layers on the scheduling of IoT applications [33, 34]. Besides, several techniques

focus on defining specific optimization models to formulate the effect of different pa-

rameters such as FSs’ computing resources, networking protocols, and IoT devices char-

acteristics, just to mention a few [35]. Moreover, several works have proposed different

placement techniques to find an acceptable solution for the optimization problem [36–

38] while some other techniques consider mobility management [34, 39, 40] and failure

recovery [3, 41]. All these perspectives directly affect the scheduling problem, espe-

cially when designing decision engines. These perspectives should be simultaneously

considered when studying and evaluating each proposal. However, very few initia-

tives have been found that simultaneously categorize scheduling techniques used for

IoT applications in Fog computing environments from different perspectives. Hence,

in this chapter, We identify five important perspectives regarding scheduling IoT appli-

cations in Fog computing environments, namely application structure, environmental

architecture, optimization models, decision engines’ characteristics, and performance
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Figure 2.2: The relation among different identified perspectives

evaluation, as shown in Fig. 2.1. Considering each perspective, we present a taxonomy

and review the existing proposals. Next, based on the studied works, we identify the

research gaps in each perspective.

Fig. 2.2 depicts the relationships among identified perspectives. The features of ap-

plication structure and environmental architecture help define the optimization char-

acteristic and formulate the problem. Then, an efficient decision engine is required to

effectively solve the optimization problem. Besides, the performance of the decision en-

gine should be monitored and evaluated based on the main goal of optimization for the

target applications and environment. Considering each perspective, we present a taxon-

omy and review the existing proposals. Finally, based on the studied works, we identify

the research gaps in each perspective and discuss possible solutions.

The rest of this chapter is organized as follows. The existing related surveys and

taxonomies on scheduling IoT applications in Fog computing environments are studied

and compared with ours in Section 2.2. Section 2.3 presents a taxonomy and overview

of the IoT applications’ structure. Section 2.4 introduces a taxonomy on environmental

properties of resources in Fog computing environments and studies the existing works

accordingly. In Section 2.5, a taxonomy of optimization characteristics of problems in

Fog computing environments is introduced. Section 2.6 identifies the important as-
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pects of decision engines and presents a taxonomy of decision engines for scheduling

IoT applications. Section 2.7 demonstrates the approaches and metrics used to evaluate

scheduling strategies in Fog computing. Finally, Section 2.8 describes important design

options for scheduling IoT applications, and Section 2.9 concludes this chapter.

2.2 Related Surveys

In the context of Fog computing, surveys targeted different aspects of Fog computing,

such as security [42–45], smart cities [46], live migration techniques [47], existing soft-

ware and hardware [16], deep learning applications [48], healthcare [49], and general

surveys studied the Fog computing paradigm, its scope, architectures, and recent trends

[50–57]. Also, some surveys mainly discussed resource management, application man-

agement, and scheduling in the context of Fog computing, such as [30, 35, 58–64], that

we discuss and compare them with ours.

Aazam et al. [58] reviewed enabling technologies and research opportunities in Fog

computing environments alongside studying computation offloading techniques in dif-

ferent domains such as Fog, Cloud, and IoT. Hong et al. [65] and Ghobaei-Arani [63]

studied resource management approaches in Fog computing environments and dis-

cussed the main challenges for resource management. Yousefpour et al. [59] discussed

the main features of the Fog computing paradigm and compared it with other related

computing paradigms such as Edge and Cloud computing. Besides, it studied the foun-

dations, frameworks, resource management, software, and tools proposed in Fog com-

puting. Mahmud et al.[30] mainly discussed the application management and mainte-

nance in Fog computing and proposed a taxonomy accordingly. Salaht et al. [60] pre-

sented a survey of current research conducted on service placement problems in Fog

Computing and categorized these techniques. Shakarami et al. [62] studied machine

learning-based computation offloading approaches while Adhikari et al. presented the

type and applications of nature-inspired algorithms in the Edge computing paradigm.

Martinez et al. [61] mainly focused on designing and evaluating Fog computing systems

and frameworks. Lin et al. [35] and Sonkoly et al. [66] mainly studied and categorized

different approaches for modeling the resources and communication types for compu-
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Table 2.1: Summary of literature surveys on scheduling in Edge and Fog computing

Survey
Application Structure Environmental Architecture Optimization Characteristics Decision Engine Performance Evaluation Conceptualize

Scheduling
Framework

Research
Gap

(in Years)Taxonomy
Research

Gaps
Taxonomy

Research
Gaps

Taxonomy
Research

Gaps
Taxonomy

Research
Gaps

Taxonomy
Research

Gaps

[58] # G# # # # # # # # #  4
[65] # # G# G# G# # G# # # # # 3.5
[59] # # G# G# # # # G# # # # 3
[63] # # # # # # G# G# # # # 2.5
[60] # # # # G#  G# G#  G# # 2
[30]   # G# # # G# G# # #  1.5
[62] # # # # # # G# G# # # # 1.5
[61] # # # # # # # G# G# G# # 1.5
[35] # # G# #  G# # G# # # # 1.5
[64] # G# G# # # # # G# # # # 1
[66] G# # # # G# G# # # # # # 0.5
[67] # # # # # G# # G# # # # 0.5

This Survey            Current
 : Full Cover,G#: Partial Cover,# : Does Not Cover

tation offloading in Edge computing. Finally, Islam et al. [64] proposed a taxonomy

for context-aware scheduling in Fog computing and surveyed the related techniques in

terms of contextual information such as user and networking characteristics.

Table 2.1 summarizes the characteristics of related surveys and provides a qualitative

comparison with our work. The proper scheduling of IoT applications in Fog computing

environments can be viewed from different perspectives, such as application structure,

environmental architecture, optimization models, and the features of decision engines.

Besides, the performance of scheduling techniques should be continuously evaluated to

offer the best performance. As depicted in Table 2.1, the existing surveys barely study

and provide comprehensive taxonomy for the above-mentioned perspectives. In this

work, we identify the main parameters of each perspective and present a taxonomy

accordingly. Moreover, we identify related research gaps and provide future directions

to improve the Fog computing paradigm.

2.3 Application Structure

The primary goal of Fog computing is to offer efficient and high-quality service to users

with heterogeneous applications and requirements. Hence, service providers require a

comprehensive understanding of each IoT application structure (e.g., workload model

and latency requirements) to better capture its complexities, perform efficient schedul-

ing and resource management, and offer high-quality service to the users. Also, when

designing the architecture of each IoT application, dynamics, constraints, and complex-
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Figure 2.3: Application structure taxonomy

ities of resources in Fog computing should be carefully considered to exploit the poten-

tial of this paradigm. Fig. 2.3 presents a taxonomy and main elements of IoT application

structure, described below.

2.3.1 Architectural Design

The logic of IoT applications can be implemented in different ways. To illustrate, oper-

ations of a Video Optical Character Recognition (VideoOCR) such as capturing frames,

similarity check, and text extraction can be implemented as a single encapsulated pro-

gram or as a set of interdependent components [1]. Hence, according to the granularity

level of applications, their distribution, and coupling intensity, the architectural design

of applications can be classified into four types:
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Monolithic

It encapsulates the complete logic of an application as a single component or program.

The parallel execution of these applications can be obtained using multi processing ap-

proaches [30]. In the context of Fog computing, several works such as [68–71] have

considered monolithic applications.

Independent

These applications require the execution of a set of independent tasks or components

for the complete execution of the application. The constituent parts of these applications

can be simultaneously executed on different FSs or CSs. Several works such as [72–75]

discuss applications with independent components or tasks in the Fog literature.

Modular

Each modular application is composed of a set of dependent tasks or components. While

constituent parts of each application can be distributed over several FSs or CSs for par-

allel execution, there are some constraints for the execution of tasks based on their data-

flow dependency model. Several works in the literature such as [76–79] discuss modular

applications.

Loosely-coupled

Components of loosely-coupled applications (i.e., microservices) can be distributed over

several CSs or FSs. Besides, due to service-level isolation, components of applications

can be shared among different applications, providing high application extendability.

Several works such as [1, 34, 80, 81] have considered loosely-coupled applications.

2.3.2 Granularity-based Heterogeneity

Tasks within an IoT application have different properties such as computation size, input

size, output size, and deadline. These features affect the scheduling complexity, where
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identifying the dynamics of applications with heterogeneous task properties requires

further effort. Accordingly, we categorize IoT applications based on their granularity-

level specifications to 1) Heterogeneous such as [77, 82] or 2) Homogeneous such as

[73, 83].

2.3.3 Workload Model

The workload model specifies the data architecture of an application, which can be

broadly divided into two categories for IoT applications:

Stream/Real-time

In this category, the data should be processed by the servers as soon as it was generated

(i.e., real-time), and hence, the data usually require relatively simple transformation or

computation. Several works such as [84–86] discuss stream workload for IoT applica-

tions.

Batch

In batch processing, the input data of an application is usually bundled for processing.

However, contrary to heavy batch processing models, IoT applications often use micro-

batches to provide a near-realtime experience. In the literature, several works such as

[87–89] consider batch workload for the applications.

2.3.4 Communication-Computation Ratio (CCR)

Each IoT application, regardless of its architecture, contains some amount of input data

for transmission and computational load for processing. These properties can signifi-

cantly affect the scheduling decision to find proper FSs or CSs for an application. The

CCR defines whether an application on average is more 1) Computation-intensive [32,

90, 91] or 2) Communication-intensive [68, 92, 93]. Besides, some works consider a
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range of applications to cover both computation-intensive and communication-intensive

applications, to which we refer as 3) Hybrid [3, 94].

2.3.5 Discussion

In this section, we discuss the effects of identified application structure’s elements on

the decision engine and describe the lessons that we have learned. Besides, we identify

several research gaps accordingly. Table 2.2 summarizes the characteristics related to

IoT application structure in Fog computing.

Effects on the decision engine

The application structure properties affect the decision engine in various aspects, as

briefly described below.

1. Architectural design: It defines the number of tasks/modules and their respective

dependency within a single application. Hence, as the number of tasks/modules per

application increases, the problem space significantly increases. Considering an appli-

cation with n number of tasks and m possible candidate configuration per task, the Time

Complexity (TC) of finding the optimal solution is O(mn). Besides, the dependency of

tasks within an application imposes hard constraints on the problem, which further in-

creases the complexity. Thus, finding the optimal solution for the scheduling of applica-

tions becomes very time-consuming, and the design of an efficient placement technique

to serve applications in a timely manner remain an important yet challenging problem.

2. Granularity-based heterogeneity: It shows the corresponding properties of each

task/module within an application and plays a principal role in identifying the dynam-

ics of applications. One of the most important features of decision engines is their adapt-

ability and their capability to extract the complex dynamics of applications so that the

decision engine can receive diverse types of applications’ requests. Since applications

with heterogeneous granularity-based properties have higher dynamics’ complexity, the
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decision engines designed for this application category should support high adaptabil-

ity.

3. Workload model and CCR: These elements provide insightful information regarding

the input data architecture of the application and its behavior in the runtime. Accord-

ingly, the decision engine may define different priority queues for incoming requests

based on their workload model and CCR to provide higher QoS for the users. For ex-

ample, applications with real-time workload types and communication-intensive CCR

may have higher priority for the placement on servers closer to the IoT devices than

computation-intensive applications that are not real-time.

Lessons learned

Our findings regarding the IoT application structure in the surveyed works are briefly

described in what follows:

1. Almost 70% of the surveyed works have overlooked studying the dependency model

of tasks within an application and selected either the independent or monolithic design.

The rest of the works consider dependency among tasks of an application in different

models (i.e., sequential, parallel, or hybrid dependency). Moreover, only about 10% of

the studied works consider microservices in their application design.

2. The most realistic assumption for the granular properties of each task/module is

heterogeneous (i.e., heterogeneous input size, output size, and computation size). Al-

most 85% of the studied works consider heterogeneous properties for each task/module,

while around 15% of the works consider the homogeneous properties for the tasks/-

modules.

3. The workload model and CCR in each proposal depend on the targeted application

scenarios. Almost 55% of the works did not study the CCR, or the required information

to obtain the CCR (i.e., computation size of tasks, average data size) was not mentioned.
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Among the rest of the works, computation-intensive, communication-intensive, and hy-

brid CCR form roughly 25%, 15%, and 5% of proposals respectively.

Research Gaps

We have identified several open issues for further investigation, that are discussed be-

low:

1. According to Alibaba’s data of 4 million applications, more than 75% of the ap-

plications consist of dependent tasks [95]. However, only around 30% of the recent

works surveyed in this study consider applications with dependent tasks (i.e., modular

or loosely-coupled), showing further investigation is required to identify the dynamics

of these types of complex applications.

2. Although the microservice-based applications can significantly benefit the IoT sce-

narios, only a few works such as [34, 81] have studied the scheduling and migration

of microservices in Edge/Fog computing environments. So, further investigation is re-

quired to study the behavior of microservice-based applications with different resource

management techniques.

3. Modular or loosely-coupled IoT applications can be distributed over different FSs

or CSs for parallel execution. However, several works such as [36] statically assign com-

ponents of an application on pre-defined FSs or CSs and only schedule one or two re-

maining components. Hence, the best placement configuration of applications based

on the current dynamics of the system cannot be investigated, leading to diminished

performance gain.

4. When the number of IoT applications increases, there is a high probability that appli-

cation requests with different workload models are submitted to the system. However,

none of the studied works in the literature consider applications with different workload

models and how they may mutually affect each other in terms of performance.
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5. Due to the high heterogeneity of IoT applications in Fog, applications with diverse

CCR may be submitted for processing, requiring special consideration such as network-

ing and prioritization. Although there are only a few recent works such as [76, 84] that

consider hybrid CCR, most of the recent works target one of the computation-intensive

or communication-intensive applications.

Table 2.2: Summary of existing works considering application structure taxonomy

Ref
Application Structure

Design
Granularity

Heterogeneity

Workload

Model

CCR

[72] Independent Heterogeneous Batch Computation Intensive

[68] Monolithic Heterogeneous Batch Communication Intensive

[96] Independent Heterogeneous Batch Communication Intensive

[80] Loosely-coupled Heterogeneous Batch Not Defined

[76] Modular Heterogeneous Batch Hybrid

[3] Modular Heterogeneous Batch Hybrid

[70] Monolithic Homogeneous Batch Not Defined

[77] Modular Heterogeneous Batch Computation Intensive

[97] Independent Heterogeneous Stream Computation Intensive

[98] Independent Heterogeneous Stream Not Defined

[82] Monolithic Heterogeneous Batch Communication Intensive

[99] Monolithic Not Defined Not Defined Not Defined

[100] Monolithic Homogeneous Batch Computation Intensive

[81] Loosely-coupled Heterogeneous Stream Communication Intensive

[101] Independent Heterogeneous Stream Communication Intensive

[102] Modular Heterogeneous Batch Computation Intensive
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[103] Independent Heterogeneous Stream Communication Intensive

[104] Not Defined Not Defined Batch Not Defined

[105] Independent Heterogeneous Stream Not Defined

[106] Independent Heterogeneous Not Defined Computation Intensive

[107] Monolithic Homogeneous Not Defined Computation Intensive

[108] Modular Heterogeneous Batch Not Defined

[90] Loosely-coupled Heterogeneous Stream Computation Intensive

[87] Independent Heterogeneous Batch Not Defined

[91] Independent Heterogeneous Batch Computation Intensive

[88] Independent Heterogeneous Batch Not Defined

[109] Loosely-coupled Heterogeneous Stream Computation Intensive

[110] Independent Heterogeneous Stream Computation Intensive

[111] Loosely-coupled Heterogeneous Batch Computation Intensive

[112] Monolithic Heterogeneous Stream Computation Intensive

[113] Independent Heterogeneous Batch Computation Intensive

[89] Independent Heterogeneous Batch Not Defined

[114] Monolithic Homogeneous Batch Not Defined

[115] Independent Heterogeneous Not Defined Not Defined

[116] Monolithic Homogeneous Batch Not Defined

[117] Monolithic Homogeneous Batch Computation Intensive

[118] Loosely-coupled Heterogeneous Not Defined Communication Intensive

[95] Modular Heterogeneous Batch Communication Intensive

[119] Modular Heterogeneous Batch Computation Intensive

[120] Independent Heterogeneous Stream Not Defined
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[121] Independent Heterogeneous Stream Not Defined

[122] Modular Heterogeneous Batch Communication Intensive

[1] Loosely-coupled Heterogeneous Stream Not Defined

[92] Monolithic Homogeneous Batch Communication Intensive

[123] Modular Homogeneous Batch Not Defined

[124] Independent Heterogeneous Not Defined Computation Intensive

[125] Independent Heterogeneous Stream Not Defined

[126] Independent Heterogeneous Batch Not Defined

[127] Modular Heterogeneous Batch Hybrid

[36] Modular Heterogeneous Not Defined Not Defined

[128] Modular Heterogeneous Stream Not Defined

[129] Monolithic Heterogeneous Batch Computation Intensive

[73] Independent Homogeneous Batch Not Defined

[69] Monolithic Homogeneous Not Defined Not Defined

[71] Independent Heterogeneous Batch Communication Intensive

[130] Independent Heterogeneous Batch Not Defined

[131] Independent Heterogeneous Batch Communication Intensive

[132] Independent Heterogeneous Not Defined Not Defined

[133] Independent Heterogeneous Batch Not Defined

[78] modular Heterogeneous Stream Not Defined

[34] Loosely-coupled Heterogeneous Stream Computation Intensive

[134] Independent Heterogeneous Batch Computation Intensive

[135] Monolithic Heterogeneous Not Defined Not Defined

[136] Loosely-coupled Heterogeneous Stream Not Defined
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[137] Monolithic Homogeneous Batch Not Defined

[138] Monolithic Homogeneous Batch Computation Intensive

[139] Independent Heterogeneous Batch Not Defined

[140] Modular Heterogeneous Batch Not Defined

[141] Independent Heterogeneous Batch Not Defined

[83] Monolithic Homogeneous Not Defined Not Defined

[142] Independent Heterogeneous Batch Not Defined

[143] Monolithic Heterogeneous Batch Computation Intensive

[144] Independent Heterogeneous Batch Not Defined

[145] Independent Heterogeneous Not Defined Not Defined

[146] Loosely-coupled Heterogeneous Not Defined Not Defined

[147] Modular Heterogeneous Batch Not Defined

[148] Independent Not Defined Stream Not Defined

[149] Independent Heterogeneous Stream Not Defined

[150] Loosely-coupled Heterogeneous Batch Not Defined

[151] Independent Heterogeneous Batch Not Defined

[94] Modular Heterogeneous Batch Hybrid

[84] Independent Heterogeneous Stream Hybrid

[152] Independent Heterogeneous Batch Computation Intensive

[153] Independent Heterogeneous Batch Not Defined

[154] Modular Heterogeneous Batch Not Defined

[155] Independent Heterogeneous Batch Not Defined

[85] Independent Heterogeneous Stream Not Defined

[156] Modular Heterogeneous Batch Not Defined
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[86] Independent Heterogeneous Stream Not Defined

[157] Independent Heterogeneous Stream Not Defined

[32] Independent Heterogeneous Stream Computation Intensive

[158] Independent Heterogeneous Stream Not Defined

[79] Modular Heterogeneous Stream Not Defined

[75] Independent Heterogeneous Batch Not Defined

[159] Loosely-coupled Heterogeneous Stream Not Defined

[160] Independent Heterogeneous Batch Not Defined

[93] Independent Heterogeneous Batch Communication Intensive

[161] Modular Heterogeneous Batch Computation Intensive

[74] Independent Heterogeneous Batch Not Defined

[162] Modular Heterogeneous Batch Computation Intensive

2.4 Environmental Architecture

The configuration and properties of IoT devices and resource providers directly affect

the complexity and dynamics of scheduling IoT applications. To illustrate, as the num-

ber of resource providers increases, heterogeneity in the system also grows as a positive

factor, while the complexity of making a decision also increases that may negatively

affect the process of making decisions. In this section, we classify the environmental

architecture properties, as depicted in Fig. 2.4, into the following categories:

2.4.1 Tiering Model

IoT devices and resource providers can be conceptually organized in different tiers based

on their proximity to users and resources, described below:
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Figure 2.4: Environmental architecture taxonomy

Two-Tier

In this resource organization, IoT devices are situated at the bottom-most layer and

resource providers are placed at the edge of the network in the proximity of IoT de-

vices (i.e., Edge computing). Several works use two-tier resource organization such as

[70, 73, 103, 156].

Three-Tier

Compared to two-tier model, this model also uses CSs at the highest-most layer to sup-

port edge resources (i.e., Fog computing). Several works considered three-tier model in

the literature such as [85, 93, 154, 159].

Many-Tier

In many-tier resource organizations, IoT devices and CSs are situated at the bottom-

most and highest-most tiers, while FSs are placed in between through several tiers (i.e.,
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hierarchical Fog computing). In the literature, several works have considered many-tier

model such as [34, 133, 142, 145].

2.4.2 IoT Devices

IoT devices can play two roles; as service requester and/or resource provider. When

they act as service requesters, still they can execute a portion of their tasks or compo-

nents based on their available resources. Moreover, IoT devices can simultaneously play

these different roles. We study the properties of IoT devices from the following perspec-

tives:

Number

The higher number of IoT devices (either as service requester or service provider), the

higher complexity of the scheduling problem. Some works only consider single IoT

device in the environment such as [77, 87, 102] while other works consider multiple IoT

devices simultaneously such as [135, 137, 153].

Type

The type of IoT devices helps us understand the amount of resources, capabilities, and

constraints of these devices. The IoT devices used in the current literature can be broadly

classified into three categories, namely 1) Mobile Devices (MD) which are mostly con-

sidered as smartphones or tablets [80, 136, 162], 2) Vehicles [81, 101, 139], and 3) General

devices containing a set of IoT devices, ranging from small sensors to drones [70, 76, 143].

Heterogeneity

We also study the resources of IoT devices and their request types, and classify proposals

into 1) Heterogeneous where IoT devices have various resources and different request

types and sizes such as [78, 123, 133] or 2) Homogeneous where the resources of IoT

devices are the same or they have the same request type and size such as [77, 87, 109].
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2.4.3 Fog Servers (FSs)

FSs usually act as resource providers for IoT devices. The environmental properties of

FSs can be classified based on the following criteria:

Number

Similar to IoT devices, we classify the number of FSs in the environment into 1) Single

and 2) Multiple. The complexity and dynamics of systems in works that have consid-

ered only single FS such as [99, 110, 120] is simpler than the works that have considered

multiple FSs such as [104, 106, 108].

Type

The type of FSs acting as service provider in the Fog computing environment ranges

from IoT devices with additional resources to resource-rich data centers. Several works

have considered a specific type of FS and discussed their properties in their works such

as 1) Base Station (BS) and Macro-cell Station (MS) [87, 96, 104], 2) Femtocells [89, 105,

163], 3) Rpi [118] and 4) Access Points (AP) [121, 129]. Moreover, several works consider

5) General FSs containing a set of FSs with different types such as [126, 133].

Heterogeneity

We study the FSs’ resources and classified works based on their heterogeneity into 1)

Heterogeneous and 2) Homogeneous accordingly. The majority of works have con-

sidered heterogeneous resources for FSs [72, 74, 76, 162] while some works consider

homogeneous resources for FSs [99, 131, 161].

Cooperation

Compared to CSs, each FS has fewer resources and it may not be able to satisfy the

requirements of IoT applications. Cooperation among FSs helps augmenting their re-

sources and providing service for demanding IoT applications. We classify proposals
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based on their cooperation among FSs into 1) Intra-tier where FSs of same tier collab-

orate to satisfy users’ requests [1, 80, 80, 140] and 2) Inter-tier where FSs of different

layers also collaborate for the execution of IoT one application [34, 76].

2.4.4 Cloud Servers (CSs)

The environmental properties of CSs can be classified based on the following criteria:

Number

The current literature based on the CSs’ number can be divided into 1) Single and 2)

Multiple categories. The majority of works only consider one CDC as resource provider

(either as a central entity with aggregated resources or different number of VMs) to

support FSs such as [85, 148, 153, 154]. In real-world environment, different CDCs are

available which can provide services with different QoS for multiple applications. Some

works such as [3, 76, 90, 164] have considered multiple CDCs with heterogeneous CSs

in the literature.

Cooperation

Among the works considered multi CDCs, we study whether CSs from different CDCs

are configured to collaboratively execute an IoT application or not. In the literature,

some works such as [3, 75, 164] have considered collaborative multi CDCs scenarios.

2.4.5 Discussion

In this section, we discuss the effects of identified environmental architecture’s elements

on the decision engine and describe the lessons that we have learned. Besides, we iden-

tify several research gaps accordingly. Table 2.3 provides a summary of properties re-

lated to environmental architecture in Fog computing.
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Effects on the decision engine

The elements of environmental architecture affect the decision engine in various aspects,

as briefly described below.

1. Tiering: It represents the organization of end-users’ devices and resources in the

computing environment. Considering the properties of resources in different tiers, it

helps find the most suitable deployment layer for the decision engine to efficiently serve

IoT applications’ requests with a wide variety of requirements. For example, to serve

real-time IoT applications with low startup time requirements, the most suitable de-

ployment layer in the three-tier model is the lowest-level Fog layer.

2. IoT devices: The number of IoT devices directly relates to the number of incoming

requests to decision engines. It affects the admission control of decision engines. The

type of IoT devices provides contextual information about the number of resources and

intrinsic properties of the IoT devices that are important for the decision engine. For

example, the MD type not only states that the IoT device does not have significant com-

puting resources, but also presents that the device has mobility features. Thus, the IoT

device type affects the advanced features of the decision engine, such as mobility, and

also specifies whether the IoT devices can serve one or several tasks/modules of IoT

applications or not.

3. Fog and Cloud servers: The number of available servers directly affects the TC of

the scheduling problem. Considering an application with n number of tasks and m pos-

sible candidate configuration per task, the TC of finding the optimal solution is O(mn).

Hence, it directly affects the choice of placement technique and scalability feature of

the decision engine. As the problem space increases, a suitable decision engine should

be selected to solve the scheduling problem. Moreover, the type and heterogeneity of

resources provide further contextual information for the decision-making, such as the

number of resources, networking characteristics, and resource constraints, just to men-

tion a few.
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Lessons learned

Our findings regarding the environmental architecture in the surveyed works are briefly

described in what follows:

1. Almost 60% of works consider the three-tier model and many-tier models for the

organization of end-users and resources. Not only do these works consider real-time

applications, but also some of them assume both real-time and computation-intensive

applications, such as [76, 94, 127]. This is mainly because these works use CSs as a

backup plan for more computation-intensive applications or when the number of in-

coming IoT requests increases and the FSs cannot solely manage the incoming requests.

Moreover, nearly 40% of surveyed works assume a two-tier model for the organiza-

tion of end-users and resources. These works mostly assume real-time workload type

and communication-intensive applications for the deployment on Edge servers, such as

[68, 84, 110, 120].

2. In the surveyed works, almost 90% of the works considered an environment with

multiple IoT devices, while 10% of works only focused on a single IoT device. When the

number of IoT devices increases, the diversity of IoT applications and heterogeneity of

their tasks also increase accordingly. Moreover, the greater number of works assume IoT

devices as general devices with sensors, actuators, and diverse application requests. In

contrast, some works targeted a specific IoT devices such as mobile devices and vehicles

with almost 30% and 10% of proposals, respectively. These proposals studied other

contextual information of targeted IoT devices in detail such as mobility [87], energy

consumption [101], and networking characteristics [81, 140]. Finally, about 90% of works

have studied IoT devices with heterogeneous properties and diverse application request

types, which are the closest scenario to real-world computing environments.

3. Regarding Fog resources, almost 90% of the proposals consider multiple FSs in the

environment. However, only 40% of the current literature has considered any coopera-

tion model among FSs. There is a high probability that a single FS cannot solely manage

the execution of several incoming resources due to its limited resources. Also, sending
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partial/complete applications’ tasks to the Cloud may negatively affect IoT devices’ re-

sponse time and energy consumption, especially for real-time IoT applications. Thus,

cooperation among FSs is of paramount importance that can lead to the execution of IoT

applications with better performance and QoS. Considering the type of the FSs, about

60% of the studied literature considered general FSs. The rest of the works studied a

specific type of FSs and tried to involve their contextual information in the scheduling

process of IoT applications, such as networking characteristics [72]. Moreover, some

works considered IoT devices can simultaneously play different roles in the computing

environments (i.e., service requester and service provider) such as [90, 101, 141].

4. In the current literature, around 60% of the works consider CSs as computing re-

sources in the environment. However, only in 8% of these works multiple Cloud service

providers (i.e., multi-Cloud), their communication, and interactions are studied, such as

[3, 75, 76, 90].

Research Gaps

We have identified several open issues for further investigation, as discussed below:

1. Hierarchical Fog computing (i.e., multi-tier) has not been thoroughly considered by

researchers. Only a few works (almost 5%) consider the organization of resources in

the multi-tier environment, and most have focused on the heterogeneity of resources

among different tiers. However, these works have not considered the heterogeneity of

communication protocols and latency in multi-tier environments.

2. In the literature, several works have considered abstract CDC as a central unit with

huge computing capacity [125], while in reality, CDCs contain several CSs hosting com-

puting instances. Such assumptions affect the computing and communication time in

simulation studies.

3. One of the main advantages of Fog computing is providing heterogeneous FSs in

IoT devices’ vicinity to collaboratively serve applications. However, many works have
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not considered cooperation among FSs. In this case, due to the limited computing and

communication resources of each FS and a large number of IoT requests, the serving FS

may become a bottleneck which negatively affects the response time and QoS [163]. Be-

sides, in uncooperative scenarios, the overloaded FS forwards requests to CSs, incurring

higher latency. Hence, cooperative Fog computing, associated protocols, and constraints

require further investigation for different IoT application scenarios.
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Table 2.3: Summary of existing works considering environmental architecture taxonomy

Ref

Environmental Architecture

Tiering
IoT Device Fog Servers Cloud Servers

Number Type Hetero Number Type Hetero Coop Number Coop

[72] Two-Tier Multiple MD Hetero Multiple BS, MS Hetero # # #

[68] Two-Tier Multiple Vehicle Hetero Multiple RSU ND # # #

[96] Three-Tier Multiple MD ND Multiple BS Hetero Intra Single #

[80] Three-Tier Multiple MD Hetero Multiple BS Hetero Intra Single #

[76] Many-Tier Multiple General Hetero Multiple General Hetero Intra, Inter Multiple  

[3] Three-Tier Multiple General Hetero Multiple General Hetero Intra Multiple  

[70] Two-Tier Multiple General Hetero Multiple Cloudet Hetero # # #

[77] Three-Tier Single General Homo Multiple General Hetero Intra Single #

[97] Three-Tier Multiple General Homo Multiple General Hetero ND Single #

[98] Two-Tier Multiple General ND Multiple BS, MS Hetero # # #

[82] Three-Tier Multiple MD Hetero Multiple BS Hetero Intra Single #

[99] Two-Tier Multiple MD Hetero Single BS Homo # # #

[100] Two-Tier Multiple MD Hetero Multiple BS Hetero Intra # #

[81] Three-Tier Multiple Vehicle Hetero Multiple Hybrid Hetero Intra Single #

[101] Three-Tier Multiple Vehicle Hetero Multiple BS, Vehicle Homo # Single #
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[102] Three-Tier Single MD Hetero Single General Homo # Single #

[103] Two-Tier Multiple MD Hetero Multiple General Hetero # # #

[104] Three-Tier Multiple MD Hetero Multiple BS Hetero Intra Single #

[105] Three-Tier Multiple MD Hetero Multiple Femto Hetero Intra Single #

[106] Three-Tier Multiple MD Hetero Multiple BS Hetero Intra Single #

[107] Two-Tier Multiple MD Hetero Multiple BS, MD Hetero Intra # #

[108] Three-Tier Multiple ND ND Multiple General Hetero Intra Single #

[90] Three-Tier Multiple MD Hetero Multiple General, MD Hetero Intra Multiple  

[87] Two-Tier Single MD Homo Single BS Homo # # #

[91] Two-Tier Multiple MD Hetero Multiple BS, MS Hetero # # #

[88] Two-Tier Multiple MD Hetero Multiple General Hetero # # #

[109] Two-Tier Multiple MD Homo Single General Homo # # #

[110] Two-Tier Multiple General Hetero Single General Homo # # #

[111] Three-Tier Multiple General Hetero Multiple General Hetero Intra Single #

[112] Three-Tier Multiple General Hetero Multiple General Hetero Intra Single #

[113] Three-Tier Multiple General Hetero Multiple General Homo Intra Single #

[89] Two-Tier Multiple MD Hetero Multiple BS, Femto Hetero # # #

[114] Two-Tier Multiple MD Hetero Multiple BS Hetero # # #

[115] Three-Tier Multiple General ND Multiple General Hetero # Single #

[116] Two-Tier Multiple General Hetero Multiple General Hetero # # #
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[117] Two-Tier Multiple General Hetero Multiple BS Hetero # # #

[118] Three-Tier Single General Hetero Single Rpi Homo Intra Single #

[95] Two-Tier Multiple General Hetero Multiple Hybrid Homo ND # #

[119] Two-Tier Multiple General Hetero Single General Homo # # #

[120] Two-Tier Multiple General Hetero Single General Homo # # #

[121] Two-Tier Multiple General Hetero Multiple AP Hetero # Single #

[122] Three-Tier Single ND ND Single General Homo # Single #

[1] Three-Tier Multiple General Hetero Multiple General Hetero Intra Single #

[92] Three-Tier Multiple General Hetero Multiple BS Hetero Intra Single #

[123] Three-Tier Multiple General Hetero Single Cloudlet Homo # Single #

[124] Three-Tier Multiple MD Hetero Multiple General Homo # Single #

[125] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[126] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[127] Three-Tier Single General Hetero Multiple General Hetero Intra Single #

[36] Three-Tier Multiple General Hetero Multiple General Hetero Intra Single #

[128] Three-Tier Multiple General Hetero Multiple General Hetero # # #

[129] Three-Tier Multiple MD Hetero Multiple AP Hetero # Single #

[73] Two-Tier Multiple MD Homo Single AP Homo # # #

[69] Two-Tier Single General Homo Multiple General Hetero # # #

[71] Two-Tier Single MD Hetero Multiple BS Homo # # #
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[130] Two-Tier Multiple MD Hetero Single General Homo # # #

[131] Two-Tier Multiple MD Hetero Single General Homo # # #

[132] Three-Tier Multiple MD Hetero Multiple General Hetero # Single #

[133] Many-Tier Multiple General Hetero Multiple General Hetero # Single #

[78] Three-Tier Multiple General Hetero Multiple General Hetero Intra Single #

[34] Many-Tier Multiple General Hetero Multiple General Hetero Intra, Inter Single #

[134] Two-Tier Multiple MD Hetero Multiple BS Hetero # # #

[135] Two-Tier Multiple MD Hetero Multiple BS Hetero Intra # #

[136] Three-Tier Single MD Homo Multiple Hybrid Hetero # Single #

[137] Three-Tier Multiple MD Hetero Multiple AP Hetero # Single #

[138] Two-Tier Multiple MD Hetero Multiple BS Hetero Intra # #

[139] Two-Tier Multiple Vehicle ND Multiple AP Hetero Intra # #

[140] Two-Tier Multiple Vehicle Hetero Multiple BS Hetero Intra # #

[141] Two-Tier Multiple Vehicle Hetero Multiple BS, Vehicle Hetero Intra # #

[83] Two-Tier Single MD Homo Multiple General Hetero ND # #

[142] Many-Tier Multiple MD Hetero Multiple General Hetero ND Single #

[143] Two-Tier Multiple General Hetero Multiple General Hetero # # #

[144] Two-Tier Single Vehicle Hetero Multiple AP, Vehicle Hetero Intra # #

[145] Many-Tier Multiple General Hetero Multiple General Hetero ND Single #
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[146] Two-Tier Multiple General Hetero Multiple General Hetero ND ND #

[147] Three-Tier Multiple General Hetero Multiple General Hetero ND Multiple #

[148] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[149] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[150] Two-Tier Multiple Vehicle Hetero Multiple General, Vehicle Hetero Intra # #

[151] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[94] Three-Tier Multiple General ND Multiple General Hetero Intra Single #

[84] Two-Tier Multiple General Homo Multiple General Hetero Intra # #

[152] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[153] Three-Tier Multiple General ND Multiple General Hetero # Single #

[154] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[155] Two-Tier Multiple General ND Multiple General Hetero Intra # #

[85] Three-Tier Multiple General Hetero Multiple General Hetero # Single #

[156] Two-Tier Multiple General Hetero Multiple General Hetero Intra # #

[86] Three-Tier Multiple General Hetero Multiple BS Hetero # Single #

[157] Three-Tier Multiple General Hetero Multipe General Hetero # Single #

[32] Many-Tier Multiple General Hetero Multipe General Hetero Intra Single #

[158] Three-Tier Multiple General ND Multipe General Hetero # Single #

[79] Many-Tier Multiple General Hetero Multipe General Hetero Intra Single #



48
A

Taxonom
y

and
R

eview
on

Scheduling
IoT

A
pplications

[75] Three-Tier Multiple General Hetero Multipe General Hetero Intra Multiple  

[159] Three-Tier Multiple General ND Multipe General Hetero Intra single #

[160] Three-Tier Multiple ND ND Multipe General Hetero ND single #

[93] Three-Tier Multiple General Hetero Multipe General Hetero ND single #

[161] Three-Tier Multiple MD Hetero Single General Homo # Single #

[74] Three-Tier Multiple General Hetero Multiple General Hetero Intra Single #

[162] Three-Tier Single MD Homo Multiple General Hetero Intra Single #

Hetero: Heterogeneity/Heterogeneous, Homo: Homogeneous, Coop: Cooperation, MD: Mobile Device, BS: Base Station,

MS: Macrocell Station, AP: Access Point, RSU: Roadside Units, Femto: Femtocell, : Yes,# : No
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Figure 2.5: Optimization characteristics taxonomy

2.5 Optimization Characteristics

Considering the application structure, environmental parameters, and the target objec-

tives, each proposal formulates the problem of scheduling IoT applications in Fog com-

puting. Optimization parameters directly affect the selection process and properties of

suitable decision engines. Fig. 2.5 presents the principal elements in optimization char-

acteristics, as described in what follows:

2.5.1 Main Perspective

The proposals in the literature can be divided into three categories based on their main

optimization goal, namely IoT devices/users, system, and hybrid, which are described

in the following:
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IoT devices/users

Main perspective of several proposals is to satisfy the requirements of IoT applications

such as minimizing their execution time and energy consumption of IoT devices, or

improving user experience in terms of QoS and Quality of Experience (QoE). Several

works have considered IoT perspective for optimization such as [68, 127, 131, 150, 150,

161].

System

The main perspective of this category is to improve the efficiency of resource providers

such as minimizing their energy consumption, improving resource utilization, and max-

imizing the monetary profit [89, 108, 115, 153]. Hence, these works often assume IoT

devices with very limited limited computational resources that transfer sensed data to

the surrogate servers for processing and storage.

Hybrid

Some proposals targeted optimizing the parameters of both IoT devices/users and re-

source providers, referred to as hybrid optimization [73, 86, 132, 158]. In these works,

IoT devices have some computational resources to serve their partial/complete tasks.

However, they may send their requests to other surrogate servers if overall global pa-

rameters of IoT devices and systems can be optimized.

2.5.2 Objective Number

According to the number of main optimization objectives of each proposal, we classify

the current literature into 1) Single objective and 2) Multi objective proposals. Multi

objective proposals consider several parameters to simultaneously optimize them, in-

curring higher complexity. In the literature, several proposals targeted single objective

optimization such as [130, 141, 150, 156], while other proposals try to optimize several

parameters such as [34, 74, 123, 157].
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2.5.3 Parameters

According to the main objectives and the nature of optimization parameters in the liter-

ature, we categorize these parameters into the following categories:

Time

One of the most important optimization parameters is the execution time of IoT appli-

cations. Minimizing the execution time of IoT applications provides users with a better

QoS and QoE. This category contains any metrics related to time such as response time,

execution time, and makespan used in the literature such as [1, 79, 88, 119].

Energy

IoT devices are usually considered as battery-limited devices. Hence, minimizing their

energy consumption is one of the most important optimization parameters. Besides,

energy consumption from FSs’ perspective is two-fold. First, some FSs, similar to IoT

devices, are battery-constrained, making optimizing the energy consumption of FSs an

important challenge. Second, from the system perspective, the energy consumption of

FSs should be minimized to reduce carbon emissions. This category contains any pro-

posals considered energy consumption as an optimization parameter either from IoT

devices or system perspectives such as [68, 99, 120, 154].

Monetary Cost

This category studies the proposals that have considered the monetary aspects either

from IoT users (i.e., minimizing monetary cost) or system perspectives (i.e., increasing

monetary profit) [115, 117, 126, 126, 159].

Other

Some works have considered other optimization parameters such as the number of

served requests, system utility, and resource utilization, just to mention a few, such as
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[89, 108, 160, 163].

Hybrid

Several works also have considered a set of optimization parameters, referred as hybrid.

These works use any combination of above-mentioned parameters simultaneously [3,

74, 76, 161].

2.5.4 Problem Modeling

Considering the main goal and optimization parameters, the optimization problem can

be modeled/formulated. Considering surveyed literature in terms of the problem mod-

eling approach, we classify the works into the following categories:

Integer Linear Programming (ILP)

It is a problem type where the variables and constraints are all integer values, and the

objective function and equations are linear. Several works have used ILP for problem

modeling such as [102, 107, 117, 147].

Mixed Integer Linear Programming (MILP)

In these problems, only some of the variables are constrained to be integers, while other

variables are allowed to be non-integers. Also, the objective function and equations are

linear. Several works have modelled their problem as a MILP such as [73, 75, 77, 123].

Mixed Integer Non-Linear Programming (MINLP)

It refers to problems with integer and non-integer variables and non-linear functions in

the objective function and/or the constraints. Several works such as [70, 84, 98, 100]

have used MINLP to present their optimization problems.
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Markov Decision Process (MDP)

It provides a mathematical framework to model and analyzes problems with stochastic

and dynamic systems. Several works have used MDP to model scheduling problem in

Fog computing such as [72, 76, 160, 161].

Other

There are also some other optimization modeling approaches in the literature of schedul-

ing applications in Fog computing such as game theory [92], lyapunov [89, 135], and

mixed integer programming [93, 151].

2.5.5 QoS Constraints

The formulated optimization problem usually contains several constraints, incurring

higher complexity compared to unconstrained problems. In this work, we classify tech-

niques based on the QoS-related constraints applied to the main formulated problem

into 1) Deadline such as [101, 105, 112], 2) Energy such as [106, 114], and 3) Hybrid (i.e.,

any combination of deadline, energy, and cost) such as [74, 84, 135].

2.5.6 Discussion

In this section, we discuss the effects of identified optimization characteristics’ elements

on the decision engine and describe the lessons that we have learned. Besides, we iden-

tify several research gaps accordingly. Table 2.4 provides a summary of characteristics

related to optimization problems in Fog computing.

Effects on the decision engine

The optimization characteristics affect the decision engine in various aspects, as briefly

described below.
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1. Objective number and parameters: Simultaneous optimization of multi-objective

problems usually incur higher complexity for the decision engine. Also, when the num-

ber of key parameters in a multi-objective scheduling problem increases, finding the best

parameters’ coefficients becomes a critical yet challenging step.

2. Problem modeling: It can affect the choice of placement technique as some specific

algorithms and techniques can be used to solve the scheduling problem. For example,

several traditional LP and ILP tools and libraries exist to solve LP and ILP scheduling

problems.

3. QoS constraints: They incur hard or soft constraints and limitations on the main

objective/objectives of the scheduling problem, which intensify the complexity of the

scheduling problem. The decision engine should satisfy these constraints either us-

ing classic Constraint Satisfaction Problem (CSP) techniques or using customized ap-

proaches.

Lessons learned

Our findings regarding the optimization characteristics in the surveyed works are briefly

described in what follows:

1. The main perspective of optimization for almost 75% of works is IoT, while for the

rest of the works is hybrid and system by 15% and 10%, respectively. The main perspec-

tive element affects how some metrics are evaluated. For example, when evaluating

the energy consumption in the IoT perspective, the energy consumed by the surrogate

servers for the execution of tasks is overlooked. However, in the system and hybrid

perspectives, the energy consumption of all resource providers and all entities in the

systems are evaluated, respectively.

2. Considering objective numbers in the optimization problem, the works are almost

equally divided into single and multiple objective numbers. Overall, the majority of

works studied time and/or energy as their main optimization metrics. While the works
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with an IoT perspective follow the same trend for the optimization metrics, the pro-

posals with a system perspective almost consider the cost as their main optimization

parameter. Also, the hybrid perspective proposals often consider a combination of time,

energy, and/or cost as their main optimization metrics.

3. In problem modeling, the greater number of works have used either MDP or MINLP

(each with roughly 25% of proposals) to formulate their problem. Also, some works

initially had modeled their work as MINLP and then defined the MDP accordingly, such

as [84, 130]. The rest of the works have used MILP (almost 15%), ILP (almost 15 %), and

other optimization modeling approaches.

4. Almost 25% of works defined single or multiple QoS constraints for their problem,

among which 90% have considered a single constraint, and the rest went for two QoS

constraints. Among the QoS constraints, the deadline by 90% is the most used constraint

in all works.

Research Gaps

We have identified several open issues for further investigation that are discussed below:

1. The main part of works in the literature either consider optimization problems from

IoT devices/users. However, only a few works have considered IoT and system per-

spectives simultaneously (i.e., hybrid). Optimizing either of these perspectives can neg-

atively affect other perspectives. To illustrate, when the principal target is minimizing

the energy consumption of IoT devices, the majority of components or tasks are placed

at FSs or CSs. However, it may negatively affect the energy consumption of resource

providers and even increase the aggregated energy consumption in the environment.

Hence, further investigation on hybrid optimization perspectives and mutual effects of

different perspectives is required.

2. The cooperation among the resource providers (i.e., FSs, CSs) is an essential factor

in offering higher-quality services. Proposals in the system and hybrid perspectives can
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also consider other metrics such as trust and privacy index for resource providers and

study how they affect the overall performance.

3. QoS constraints are set to guarantee a minimum service level for end-users. In cur-

rent literature, most of proposals have focused on the deadline as the constraint. How-

ever, several other parameters such as privacy, security, and monetary cost and their

combination as hybrid QoS constraints are not studied.

Table 2.4: Summary of existing works considering optimization characteristics taxon-
omy

Ref
Optimization Characteristics

Main

Perspective

Objective

Number
Metrics Problem Model QoS Constraints

[72] System Single Cost MDP #

[68] IoT Single Energy MINLP #

[96] IoT Multiple Time, Energy, Cost IP #

[80] IoT Single Cost MINLP Deadline

[76] IoT Multiple
Time, Energy,

Weighted Cost
MDP #

[3] IoT Multiple
Time, Energy,

Weighted Cost
MIP #

[70] IoT Single Time MINLP #

[77] IoT Single Time MILP #

[97] Hybrid Multiple Time, Energy, Cost MDP #

[98] IoT Single Time MINLP #

[82] IoT Single Time MDP #

[99] IoT Multiple Time, Computation Ratio MDP #

[100] IoT Multiple
Time, Energy,

Weighted Cost
MINLP Deadline
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[81] IoT Single Time MDP #

[101] Hybrid Single Energy MINLP Deadline

[102] IoT Single Energy ILP #

[103] IoT Single Time MDP #

[104] IoT Multiple Time, Cost Not Defined #

[105] Hybrid Single Time/Enegy MILP Deadline

[106] IoT Multiple Time, Energy MINLP Energy

[107] IoT Multiple Cost, Time ILP #

[108] System Single
Maximize Served

Requests
MILP #

[90] IoT Single Time MINLP #

[87] IoT Single Time MDP #

[91] IoT Single Energy MINLP Time

[88] IoT Single Time LP #

[109] IoT Single Time MINLP #

[110] IoT Multiple Time, Energy MINLP, MDP #

[111] Hybrid Multiple
Time, Enery,

Cost
Not Defined #

[112] IoT Single Maximize Offloaded Task MILP Deadline

[113] Hybrid Multiple Time, Energy MILP #

[89] System Single Stystem Utility Lyaponuv #

[114] Hybrid Single QoS, eg. Delay IP Energy

[115] System Single Cost MILP #

[116] IoT Single Cost MILP Deadline

[117] System Single Cost ILP #

[118] IoT Single Time Not Defined #

[95] IoT Single Time Not Defined #

[119] IoT Single Time MDP #
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[120] IoT Single Energy MDP Deadline

[121] IoT Single Time Not Defined Deadline

[122] IoT Multiple Time, Energy ILP #

[1] IoT Single Time Not Defined #

[92] IoT Multiple Time, Energy Game Theory #

[123] IoT Multiple
Time, Energy,

Weighted Cost
MILP #

[124] IoT Multiple Time,Energy MINLP #

[125] IoT Single QoS ILP Cost, Deadline

[126] IoT Single Cost Lyaponuv Deadline

[127] IoT Single Deadline Satisfaction Not Defined #

[36] System Multiple Time, Resource ILP #

[128] IoT Single Time ILP Deadline

[129] IoT Multiple Time, Cost MINLP Deadline

[73] Hybrid Multiple Energy, Time MILP #

[69] IoT Multiple Enery, Time MDP #

[71] IoT Multiple Energy, Time MDP #

[130] IoT Single Energy MINLP, MDP #

[131] IoT Multiple Energy, Time MDP #

[132] Hybrid Multiple
Time, Resource

Utilization
MDP #

[133] Hybrid Multiple Time, Cost MDP Deadline

[78] Hybrid Multiple Energy, Cost MDP #

[34] IoT Multiple Time, Eneegy ILP #

[134] IoT Single Time Not Defined #

[135] Hybrid Single Time Lyapunov Cost, Deadline

[136] IoT Single Time Not Defined #

[137] Hybrid Multiple Time, Energy MINLP Deadline
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[138] IoT Multiple Time, Energy MINLP Deadline

[139] IoT Single Time MINLP Deadline

[140] IoT Single Time MDP #

[141] IoT Single Time MILP Quality Loss

[83] IoT Single QoS Not Defined #

[142] IoT Multiple Not Defined Not Defined #

[143] IoT Multiple Time, Energy Not Defined #

[144] IoT Single Time MDP #

[145] IoT Single Time Not Defined #

[146] IoT Single Bandwidth Not Defined #

[147] IoT Multiple
Time, Cost,

Weighted Cost
ILP #

[148] IoT Not Defined Time Not Defined #

[149] IoT Single Time Not Defined #

[150] IoT Single Time Not Defined #

[151] IoT Single Time MIP #

[94] IoT Single Time Not Defined #

[84] IoT Multiple Time, Energy MINLP, MDP Deadline,Max Energy

[152] IoT Single Time Not Defined #

[153] System Multiple Time, Energy ILP #

[154] System Single Energy Not Defined Deadline

[155] IoT Single Time Not Defined #

[85] IoT Single Time Not Defined #

[156] IoT Single Time MINLP #

[86] Hybrid Multiple Time, Cost MINLP #

[157] Hybrid Multiple
Time, Energy,

Cost
Not Defined Deadline

[32] IoT Single Time Not Defined #
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[158] hybrid Multiple Time, Energy, Cost Not Defined Deadline

[79] IoT Single Time Not Defined #

[75] IoT Multiple Time, Energy MILP Deadline

[159] IoT single Cost ILP Deadline

[160] Hybrid Multiple
Maximize Served Requests,

Minimize Fog Number
MDP #

[93] IoT Single Time MIP, QCQP #

[161] IoT Multiple
Time, Energy,

Weighted Cost
MDP #

[74] IoT Multiple
Time, Energy,

Weighted Cost
MDP Deadline, Max Energy

[162] IoT Multiple Cost, Energy Not Defined Deadline

Cost: Monetary Cost, MDP: Markov Decision Process, ILP: Integer Linear Programming, MINLP: Mixed Integer

Non-Linear Programming, MIP: Mixed Integer Programming, MILP: Mixed Integer Linear Programming,#: No

2.6 Decision Engine Characteristics

The requirements of IoT applications in Fog computing can be satisfied if incoming IoT

requests can be accurately scheduled based on the characteristics of application struc-

ture, environmental architecture, and optimization problems by the decision engine.

The main responsibilities of the decision engine are organizing received IoT requests

and solving the optimization problem through a placement decision while considering

contextual information. Fig. 2.6 presents the main elements in decision engine, as de-

scribed in what follows:

2.6.1 Deployment Layer

Decision engines can be deployed on servers at different layers unless the servers do not

have sufficient resources to host them. Based on the deployment layer of the decision

engine, the current literature can be classified into:
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Figure 2.6: Decision engine taxonomy

IoT Layer

The IoT devices usually are considered as resource-limited and battery-constrained de-

vices. Hence, decision engines running on IoT devices should be very lightweight even

with compromising the accuracy. In the literature, several works such as [102, 103, 121,

130] deployed decision engines at the IoT layer.

Fog/Edge Layer

Distributed FSs with sufficient resources situated in the proximity of IoT devices are

the main deployment targets for the decision engines. They provide low-latency and

high-bandwidth access to decision engines for IoT devices. Majority of works such as

[69, 76, 111, 162] deployed the decision engines in Edge/Fog Layer.



62 A Taxonomy and Review on Scheduling IoT Applications

Cloud Layer

CSs are potential targets for the deployment of decision engines. Although the access

latency to CSs is higher, they provide high availability, making them a suitable de-

ployment target where FSs are not available or when IoT applications are insensitive

to higher startup time. Some works such as [129, 136] considered Cloud layer for the

deployment of decision engines.

2.6.2 Admission Control

The admission control presents the behavior of decision engines when new requests

arrive. It denotes how the new requests are queued and organized by the dispatching

module for placement.

Queuing

Decision engine may use different queuing policies when incoming IoT requests arrive.

Based on queuing policy, we classify works into 1) First-in-First-Out (FIFO) such as

[76, 103, 105] and 2) Priority-based where incoming requests are sorted based on their

priority (e.g., deadline) [88, 112, 153].

Dispatching Mode

The dispatching module forwards requests from input queue to the placement module.

Based on the selection policy of dispatching module, current literature can be classified

to 1) Single model where only one task at a time is dispatched for placement [82, 84, 144]

and 2) Batch model where a set of tasks are forwarded to placement module [3, 152, 158].

2.6.3 Placement Technique

Placement technique is the actual algorithm used to solve the optimization problem.

Each placement algorithm has its advantages and disadvantages. Hence, it should be
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carefully selected based on the properties and dynamics of applications, users, environ-

ment, and deployment layer. We classify placement techniques based on their approach

to find the solution into two broad categories:

Traditional

In this approach, the programmer/designer defines the required logic of policies for the

placement technique. The traditional placement technique can be further divided into

three subcategories:

1. Direct Optimization: In this category, the optimization problem will be solved using

classical optimization tools either using 1) Exact approach to find the optimal solution

such as [80, 96] or 2) Approximation approach to find a near optimal solution such as

[70, 107, 114].

2. Heuristics: These algorithms are a set of typically problem-dependent algorithmic

steps to find a feasible solution for the problem. Heuristics usually scale well as their

Time Complexity (TC) is low while they do not guarantee finding the optimal solution

of the problem [68, 77, 108, 148].

3. Meta-heuristics: Meta-heuristics are composed of several advanced heuristics and

typically are problem-independent, such as Genetic Algorithm (GA) and Simulated An-

nealing (SA). Although these algorithms usually perform better than heuristics, simi-

larly they cannot guarantee to find the optimal solution. Several works such as [3, 90,

113, 147] used meta-heuristics.

Machine Learning (ML)

ML is a family of algorithms that can learn the required policies for placement tech-

niques from historic data. ML algorithms scale reasonably well, however, they require

accurate and ideally large samples of historic data. The ML-based placement techniques

can be further divided into three subcategories:
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1. Supervised Learning: These algorithms learn by using labeled data as their input.

Type of problems are regression and classification, and some of the algorithms are linear

regression and logistic regression. Some works in the current literature used supervised

ML for the placement technique such as [100, 106, 124].

2. Unsupervised Learning: These algorithms are trained using unlabelled data, con-

trary to supervised ML, without any guidance. Some unsupervised algorithms are

K–Means and fuzzy C–Means. Some works in the current literature used unsupervised

ML for the placement technique such as [143, 144, 146].

3. Reinforcement Learning (RL): In these algorithms, agent/agents learn the required

policy for placement technique by interaction with an uncertain and potentially complex

environment. It does not require pre-defined data, and type of problems are exploitation

or exploration. The current RL-based literature in scheduling IoT applications can be

divided into 1) Multi-Armed Bandit (MAB) which are among the simplest RL problems

such as [98, 104], 2) Deep RL (DRL) where deep learning is used in RL such as [69, 72,

103], and 3) Distributed DRL where several agents work collaboratively in a distributed

manner for efficient learning such as [76, 84, 97].

2.6.4 Advanced Features

To fully utilize the potential of the Fog computing paradigm, several advanced features

can be augmented with decision engines to capture high dynamics of this paradigm,

described below:

Mobility Support

A significant number of IoT devices are moving entities (e.g., vehicles), requiring con-

nected service through their path. So, decision engines should manage the migration

process of application components and find suitable surrogate servers accordingly. Sev-

eral works such as [34, 87, 114, 147] address mobility and migration management chal-

lenges alongside scheduling IoT applications.
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Failure Recovery

In highly dynamic systems such as Fog computing, failure may happen due to software

or hardware-related issues. So, application components faced with failure should be re-

executed. Some works consider failure recovery mechanisms in their decision engines

such as [3, 34, 94].

High Scalability

As a large number of IoT devices and servers exist in the Fog environment, mecha-

nisms and algorithms used in the decision engine should be highly scalable and provide

well-suited performance when the system size grows. Several works have studied the

scalability feature of their techniques when the number of IoT applications and servers

increases or discuss how their distributed techniques work efficiently in large systems

such as [110, 118, 131].

High Adaptability

This feature ensures that the decision engine dynamically captures the contextual in-

formation (i.e., application, environment, etc), and updates the policies of placement

techniques accordingly. In Fog literature, several works such as [76, 83, 133, 159] offer

solutions with high adaptability.

2.6.5 Implementation

The implementation characteristics of decision engines are studied based on the follow-

ing criteria:

Language

Different programming languages are used for the implementation of decision engines,

while the majority have used Python [76, 117], Java [3, 136], and C++ [115, 127].
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Source Code

Open-source decision engines help researchers to understand the detailed implemen-

tation specifications of each work, and minimize the reproducibility effort of decision

engines, especially for comparison purposes. Some works such as [1, 120, 161] have

provided the source code repository of their decision engines.

Time Complexity (TC)

TC of each placement technique presents the required time to solve the optimization

problem in the worst-case scenario. It directly affects the service startup time and the

decision overhead of each technique. Based on the current literature, we classify the

TC into 1) Low the solution of optimization problem can be obtained in polynomial

time where the maximum power of variable is equal or less than two (i.e., O(n2)) [72,

76, 94], 2) Medium where the time complexity is polynomial and the maximum power

is less than or equal to 3 (i.e., O(n3)) [68, 75, 77], and 3) High for exponential TC and

polynomials with high maximum power [80, 96, 112].

2.6.6 Discussion

In this section, we describe the lessons that we have learned regarding identified ele-

ments in decision engine characteristics of the current literature. Besides, we identify

several research gaps accordingly. Table 2.5 provides a summary of decision engines-

related characteristics in Fog computing.

Lessons learned

Our findings regarding the decision engine characteristics in the surveyed works are

briefly described in what follows:

1. Almost 85% of surveyed works deployed the decision engine at the Edge layer in the

proximity of IoT devices. Since the Edge servers can be accessed with lower latency and

higher access bandwidth, deployment of decision engines at the Edge can reduce the
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startup of IoT applications. However, the Edge devices should have sufficient resources

to run the decision engine. Some proposals (about 10%) also deployed the decision en-

gine on IoT devices. Deployment of a decision engine on IoT devices provides more

control for IoT devices, especially mobile ones. It eliminates the extra overhead of com-

munication with surrogate servers for making a decision. However, IoT devices often

have very limited resources that are incapable of running powerful decision engines.

2. The queuing is an important element in the admission control that almost 80% of

the works have not studied. Since most of works have considered several IoT devices

in the environment, several IoT requests may arrive in each decision time-slot with a

high probability. Hence, different queuing models can dramatically affect the decision

engine performance and the QoS of end-users. FIFO and priority queue share the same

proportion of proposals among the works that mentioned their queuing policy. Also, in

priority-based queuing, almost all works have considered the deadline of applications

or tasks as their main priority metric. Moreover, for the policy of dispatching module,

about 75% of works selected single dispatching while 25% of works studied batch dis-

patching policy. Since different IoT requests may arrive in the same decision time-slot,

the batch dispatching policy helps study the mutual effects of IoT applications with di-

verse resource requirements in the placement decision.

3. The traditional placement techniques are used in almost 60% of the proposals, while

the ML-based placement techniques are studied in the rest of the works (almost 40%).

However, the number of ML-based placement techniques has significantly increased in

recent years. In traditional placement techniques, direct optimization, heuristics, and

meta-heuristics share the same proportion of proposals. Also, in meta-heuristics tech-

niques, the majority of works used population-based meta-heuristics, especially differ-

ent variations of the GA. In the ML-based techniques, the majority of proposals have

used RL-based techniques (almost 70%), specially DRL. Moreover, in the DRL tech-

niques, the larger number of works used centralized DRL techniques such as DQN.

However, the exploration and convergence rate of centralized DRL techniques are very

slow. Thus, several studies have recently been conducted to adapt distributed DRL (i.e.,
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DDRL) techniques for resource management in Edge/Fog computing environments,

such as [76, 110, 131], to improve the exploration cost and convergence rate of the DRL

techniques.

4. In advanced features, almost 25% of proposals embedded different mechanisms (i.e.,

traditional or ML-based) for the mobility management of IoT devices and migration of

applications’ constituent parts. Also, about 25% of studied works, mostly ML-based

techniques, offer high adaptability features in their decision engine. However, tradi-

tional works often neglect to provide different mechanisms to support high adaptabil-

ity. This is mainly because the scheduling policies are not statically defined in ML-based

techniques. Hence, as the environmental or application properties change, the poli-

cies can be learned and updated accordingly. However, in the traditional scheduling

techniques, updating the scheduling policies according to dynamic changes in environ-

mental or application properties is very costly and time-consuming. Almost 20% of

proposals studied different mechanisms to support high scalability feature, either us-

ing ML-based techniques or traditional approaches. In advanced features, the failure

recovery mechanisms and techniques in scheduling are not well-studied and only a few

works embedded these mechanisms in their scheduling techniques.

5. Considering the implementation of the techniques, almost 50% of the works men-

tioned their employed programming language. Java and python programming lan-

guage are the most-employed programming language and are almost equally used in

different proposals. However, Python is mainly used for ML-based techniques and di-

rect optimization techniques, while Java is mostly used to implement traditional deci-

sion engines. Moreover, only about 10% of proposals shared their open-source reposito-

ries with researchers and developers among the surveyed works. Finally, about 65% of

proposals discussed the TC of their works, among which almost 80% proposed decision

engines with low TC while some proposals (almost 10%) went for medium TC and few

works (almost 10%) proposed decision engines with high TC. The high TC proposals are

among the direct optimization category of traditional approaches. While these high TC

proposals cannot be currently adapted to large-scale Edge and Fog computing environ-
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ments, they can find the optimal solution in small-scale problems. Hence, they can be

used as a reference for the evaluation of other proposals.

Research Gaps

We have identified several open issues for further investigation that are discussed below:

1. The admission control concept in terms of different queuing, dispatching, and their

mutual effect is not well studied in the current literature. Also, the greater number

of works consider a single task dispatching model and overlook batch placement of

applications, especially for applications with dependent tasks.

2. While traditional placement techniques (e.g., heuristics, meta-heuristics) are studied

well in the literature, ML-based techniques are still in their infancy. Due to the lack of a

large number of datasets, supervised and unsupervised ML have not been thoroughly

considered. Also, the majority of employed RL techniques are centralized approaches,

neglecting collaborative learning of multiple distributed agents for better efficiency and

lower exploration costs.

3. Although all servers and devices are prone to failures, among advanced features,

failure recovery mechanisms, algorithms, and their integration with the placement tech-

nique is the least-studied concept. Even the best placement techniques cannot complete

their process in real-world scenarios unless a suitable failure recovery mechanism is em-

bedded.

4. In the surveyed works, there is no proposal to study all the four identified elements

in the advanced features (i.e., mobility, failure recovery, scalability, and adaptability) and

describe the behavior and mutual effects of these elements on each other and decision

engine.

5. Among the studied literature, none of the works has studied the privacy problem

from different perspectives, such as end-users’ data privacy, resource providers’ privacy,
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Figure 2.7: Performance evaluation taxonomy

and the decision engine’s mechanisms for improving privacy.

2.7 Performance Evaluation

Different approaches and metrics have been used by the research community to evaluate

the performance of their techniques. Identifying and studying these parameters helps to

select the best approach and metrics for the implementation of new proposals and fair

comparisons with other techniques in the literature. Fig. 2.7 presents a taxonomy and

the main elements of performance evaluation, described below:

2.7.1 Approaches

The performance evaluation approaches can be divided into four categories, namely

analytical, simulation, practical, and hybrid. There are different important aspects to

consider when selecting an approach for the evaluation of proposals, such as credibil-

ity, implementation time, monetary cost, reproducibility time, and scalability. Fig. 2.8

presents a qualitative comparison of different approaches used in performance evalua-

tion.
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Figure 2.8: Performance evaluation approaches

Analytical

One of the popular approaches for the evaluation of different proposals is analytical

tools. The implementation time, reproducibility time, and monetary cost of analytical

tools are low, and scalable experiments can be executed. However, the credibility of

such experiments is low since the dynamics of resources, applications, and environment

cannot be fully captured and tested. Matlab is among the most popular tools that are ei-

ther used directly [100, 100, 108] or integrated with some other libraries such as Sedumi1

[93]. Also, C++ based analytical tools have been used in the literature, such as [70, 115].

1https://github.com/sqlp/sedumi
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Table 2.5: Summary of existing works considering decision engine taxonomy

Ref

Decision Engine Characteristics

Deploy

Layer

Admission Control Placement

Technique

Advanced Features Implementation

Queuing Dispatch Mobility
Failure

Recovery

High

Scalability

High

Adaptability
Language

Source

Code

Time

Complexity

[72] Edge ND Single

ML, RL,

DRL,

(DQN)

# # #  ND #
Low

(MP 2)

[68] Edge ND ND
Tr, H,

Greedy
 # # # ND #

Medium

(MP 3)

[96] Edge ND ND
Tr, DO,

Exact
 # # # ND #

High

(Exp)

[80] Edge FIFO Single
Tr, DO,

Exact, (BB)
# # # # Java #

High

(Exp)

[76] Edge FIFO Single

ML, RL,

DDRL,

(IMPALA)

# #   Python #
Low

(MP 2)

[3] Edge FIFO Batch
Tr, MetaH,

(MA)
#   # Java #

Low

(MP 2)
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[70] Edge ND Batch
Tr, DO,

Approx
 # # # C++ # ND

[77] Edge FIFO Single Tr, H # # # # Java #
Medium

(MP 3)

[97] Edge ND ND

ML, RL,

DDRL,

(A3C)

 #   Java # Low

[98] Edge ND Batch
ML, RL,

MAB
# # #  ND # Low

[82] Edge ND Single
ML, RL,

DRL, (DQN)
# # #  ND # Low

[99] Edge ND ND
ML, RL,

DRL
# # #  ND  Low

[100] Edge ND Single
ML, Sup,

(DeepL)
# # # # ND # Low

[81] Edge ND Single
ML, RL,

(Q-Learning)
 # #  ND # Low

[101] Edge ND Single
ML, Sup,

(Imitation)
 # # # ND # Medium

[102] IoT ND Single ND # # # # Android/Java  ND
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[103] IoT FIFO Single

ML, RL,

DRL

(DoubleDQN)

# #   ND # Low

[104] IoT ND Single
ML, RL,

MAB
 #   ND # Low

[105] Edge FIFO Single Tr, H # # # # Android/Java # Low

[106] Edge ND Single
ML, Sup,

(Imitation)
# # # # ND # Low

[107] Edge ND Single
Tr, DO,

Approx
 # # # ND #

Low

(MP 2)

[108] Edge ND single
Tr, H,

Greedy
# # # # ND # High

[90] Edge ND Batch
Tr, MetaH,

(SA)
# # # # ND # ND

[87] Edge ND ND
Tr, DO,

Approx
 # # # ND # Medium

[91] Edge ND Single
Tr, MetaH,

(GA-PSO)
# # # # ND #

Low

(MP 2)

[88] Edge Priority single
Tr, DO,

Approx
# #  # ND # ND
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[109] Edge ND Single Tr, H # # #  ND # ND

[110] Edge ND Single
ML, RL,

DRL, DDRL
# #   ND # Low

[111] Edge ND Single
Tr, MetaH,

(NSGA2)
 # # # Java # ND

[112] Edge Priority Single Tr, H # # # # ND #
High

(MP 5)

[113] Edge ND Batch
Tr, MetaH,

(Ant Mating)
# # # # ND # ND

[89] Edge ND ND Tr, H # # # # ND # ND

[114] Edge ND Single

Tr, DO,

Approx,

(SAA)

 # # # ND # ND

[115] ND ND Batch Tr, H # # # # C++ # Low

[116] Edge ND Single
Tr, DO,

Approx
# # # # ND #

Low

(MP 2)

[117] Edge ND Batch
Tr, DO,

Approx
# # # # Python #

Low

(MP 2)

[118] Edge ND Single
Tr, DO,

Approx
# # #  Python # ND
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[95] Edge ND Single
Tr, DO,

Approx
# # # # ND # ND

[119] Edge ND Single
ML, RL,

DRL, (PPO)
# # #  Python # Low

[120] Hybrid ND Single
ML, RL,

DDRL
# #   Python  Low

[121] IoT ND Single
Tr, DO,

Approx
# # # # ND # ND

[122] Edge ND Single
Tr, Other,

(Min-cut)
# # # # Java  

Low

(MP 2)

[1] Edge FIFO Single
Tr, MetaH,

(GA)
# #   Python  Low

[92] Edge ND Single
Tr, DO,

Approx
# # # # ND ND ND

[123] Edge ND Batch
Tr, MetaH,

(NSGA3)
# # # # Java # ND

[124] IoT ND Single
ML, Sup,

DDeepL
# #  # Python  Low

[125] Edge ND Single
Tr, DO,

Exact
# # # # Java # high
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[126] Edge ND Single
Tr, DO,

Approx
# # # # Python # ND

[127] Edge ND Single Tr, H # # # # C++ # Low

[36] Edge ND Single Tr, H # # # # Java # ND

[128] Edge ND Single Tr, H # # # # Java # Low

[129] Cloud ND Single
Tr, DO,

Approx
# # # # ND # ND

[73] IoT ND Single
ML, Sup,

(DDeepL)
# #  # Python # Low

[69] Edge ND Single
ML, RL,

DRL, (DQN)
# # #  ND # Low

[71] Edge FIFO single

ML, RL,

DRL,

(DoubleDQN)

# # #  ND # Low

[130] IoT ND Batch
ML, RL,

DRL, (DQN)
# # #  ND # Low

[131] Edge ND Single

ML, RL,

DDRL,

(D3PG)

# #   ND # Low
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[132] Edge FIFO Single
ML, RL,

DRL, (DQN)
# # #  Python # Low

[133] Edge ND Single

ML, RL,

DRL,

(DoubleDQN)

# # #  Python # Low

[78] ND ND Single
ML, RL,

DRL, (DQN)
# # #  Java # Low

[34] Edge FIFO Single Tr, H   # # Java  
Low

(MP 2)

[134] Edge ND Single Tr, H  # # # ND # ND

[135] Edge ND Single
Tr, DO,

Approx
 # # # Java # ND

[136] Cloud ND Single

ML, Sup,

(Gradient Tree

Boosting)

 # # # Java  Low

[137] Edge ND Single
Tr, MetaH,

(GA)
 # # # ND #

Low

(MP 2)

[138] ND ND Batch
Tr, MetaH,

(GA)
 # # # ND # ND
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[139] IoT FIFO Batch
Tr, DO,

Approx
 #  # ND # Low

[140] IoT ND Batch
ML, RL,

DDRL, (A3C)
 #   ND # ND

[141] Edge ND Batch
Tr, DO,

Approx
 # # # ND # ND

[83] Edge ND Single
ML, RL,

DRL, (DQN)
 # #  Python # Low

[142] Edge ND Single

ML, Sup,

(Regression

Tree)

# # # # Java # ND

[143] ND ND Single
ML, Unsup,

(AHP)
# # # # ND # ND

[144] Edge ND Single

ML, Unsup,

(Baum-Welch

Algorithm)

 # # # ND # ND

[145] Edge ND Batch
ML, Unsup,

(K-means)
# # # # ND # ND

[146] ND ND Single
ML, Unsup,

(K-means)
# # # # ND # ND
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[147] Edge ND Single
Tr, MetaH,

(Tabu)
 # # # ND # ND

[148] Edge Priority Single

Tr, H,

(Spring

Algorithm)

# # # # ND # ND

[149] Edge ND Batch
Tr, MetaH,

(ACO)
# # # # ND # ND

[150] Edge ND Batch
Tr, MetaH,

(MA)
 # # # ND #

Low

(MP 2)

[151] Edge Priority Batch
Tr, MetaH,

(GA)
# # #  ND # ND

[94] Edge Priority Sibgle Tr, H #  # # Python #
Low

(MP 2)

[84] IoT ND Single

ML, RL,

DDRL,

(DDPG)

# #   Python # Low

[152] Edge ND Batch Tr, MetaH, (AEO) # # # # ND # ND

[153] Edge Priority Batch Tr, MetaH, (GA) # # # # ND # ND

[154] Edge ND Single Tr, H # # # # ND #
Low

(MP 2)
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[155] Edge Priority Batch

Tr, MetaH,

(PSO)
# # # # ND # Low

[85] Edge ND Single
Tr, MetaH,

(ACO)
# # # # ND # Low

[156] Edge ND Batch Tr, MetaH # # # # Python #
Low

(MP 2)

[86] Edge ND Batch
Tr, MetaH,

(GA)
# # # # Python # Low

[157] Edge ND Batch
Tr, MetaH,

(GA)
# # # # Python # Low

[32] Edge FIFO Single Tr, H # # # # Java #
Medium

(MP of 3)

[158] Edge ND Batch
Tr, MetaH,

(SSA)
# # # # Python  ND

[79] Edge Priority Single Tr, H # # # # Java # ND

[75] IoT ND Single
Tr, MetaH,

(GA)
# #  # ND #

Medium

(MP 3)

[159] Edge Priority Single
Tr, H,

Greedy
# #  # Go  Low
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[160] Edge Priority Single
ML, RL,

DRL, (DQN)
# # #  Python # Low

[93] IoT ND Batch
Tr, DO,

Approx
# #  # ND # Low

[161] IoT ND Single
ML, RL,

DRL
# #   Python  Low

[74] Edge ND Single
ML, RL,

DRL, DQN
# # #  Python # ND

[162] Edge ND Single
Tr, MetaH,

(SPEA)
# # # # ND #

Low

(MP 2)

ND: Not Defined, ML: Machine Learning, Tr: Traditional, RL, Reinforcement Learning, DRL: Deep Reinforcement Learning, DDRL: Distributed Deep

Reinforcement Learning, MP: Max Power, H: Heuristics, MetaH: Metaheuristics, DO: Direct Optimization, BB: Branch and Bound, MA: Memetic Algorithm,

FIFO: First-In-First-Out, Approx: Approximation, MAB: Multi-Arm Bandit, A3C: Asynchronous Actor-Critic Agents, DeepL: Deep Learning, DDeepL: Distributed

Deep Learning, Imitation: Imitation Learning, SA: Simulated Annealing, GA: Genetic Algorithm, SAA: Sample Average Approximation, PPO: Proximal

Policy Optimization, D3PG: Double-Dueling-Deterministic Policy Gradients, AHP: Analytic Hierarchy Process, Sup: Supervised, Unsup: Unsupervised,

ACO: Ant Colony Optimization, AEO: Artificial Ecosystem-based Optimization, Tabu: Tabu Search, PSO: Particle Swarm Optimization,

SSA: Sparrow Search Algorithm, SPEA: Strength Pareto Evolutionary Algorithms



2.7 Performance Evaluation 83

Simulation

Simulators keep the advantages of analytical tools while improving the credibility of

evaluations by simulating the dynamics of resources, applications, and environments. In

the literature, iFogSim [26, 27] is among the most popular simulators for Fog computing

[3, 78, 97, 111]. Besides, several researchers have used Cloudsim [165] such as [80, 123]

or SimPy2 such as [126, 133] to simulate their scenarios in Fog computing.

Practical

The most credible approach for the evaluation of proposals is practical implementation.

However, due to high monetary cost, implementation time, and reproducibility time, it

is not the most efficient approach for different scenarios, especially evaluations requiring

high scalability. In the literature, few works such as [105, 114, 136, 146] evaluated their

proposals using small-scale practical implementations.

Hybrid

In this approach, researchers evaluate their proposals using practical implementations

in small-scale and simulators or analytical tools in large-scale. Although implementa-

tion and reproducibility time of this approach is high, it provides high scalability and

credibility. In the literature, few works such as [76, 117, 120] follow the hybrid approach.

2.7.2 Metrics

The metrics used in performance evaluation in Fog computing are directly or indirectly

related to the optimization parameters and system properties. Based on the nature and

popularity of these metrics in the literature, we categorize them into 1) Time (e.g., dead-

line, response time, execution time, makespan) [1, 69, 77, 80], 2) Energy (e.g., battery

percentage, saved energy) [68, 71, 73, 73], 3) Monetary cost (e.g., service cost, switching

cost) [72, 126, 135, 147], and 4) Other metrics (e.g., number of interrupted tasks, resource

2https://simpy.readthedocs.io/en/latest/
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utilization, throughput, deadline miss ratio) [34, 92, 94, 148]. Also, we consider 5) De-

cision overhead as an important evaluation metric to study the overhead of proposals

(often in terms of time and energy), used in some works such as [76, 111, 122, 162].

2.7.3 Discussion

In this section, we describe the lessons that we have learned regarding identified ele-

ments in the performance evaluation of the current literature. Besides, we identify sev-

eral research gaps accordingly. Table 2.6 provides a summary of characteristics related

to performance evaluation in Fog computing.

Lessons learned

Our findings regarding the performance evaluation in the surveyed works are briefly

described in what follows:

1. More than half of the works used the simulation as their performance evaluation ap-

proach while 30% of the proposals used an analytical approach. The practical and hybrid

approaches equally share the rest of 20% of the works. For the analytical approach, the

most of works used Matlab or Python programming languages, while Java and Python

are mostly used for the simulation approach. In practical and hybrid approaches, Java

and Python are equally employed in proposals.

2. As the performance evaluation metric, time and its variations (e.g., response time,

makespan) are used in more than 80% of the works. The second-highest-used metric

is energy at 35%. However, the decision overhead and cost are only studied in 15%

of the works. Besides, less than 5% of the proposals studied the performance of their

scheduling technique using all the identified metrics.

Research Gaps

We have identified several open issues for further investigation that are discussed below:



2.7 Performance Evaluation 85

1. Although the monetary costs of sensors and edge devices (e.g., Rpi, Jetson Platform)

have reduced and they are highly available in different configurations, compared to a

few years ago, the majority of proposals still consider analytical tools and simulators

as their only approach for performance evaluation. While some works have considered

practical and hybrid approaches for the performance evaluation of their work, further

efforts are required to study the dynamics of the system, resource contention, and col-

laborative execution of the application in real environments, especially considering new

machine learning techniques such as DRL and DDRL [76, 120].

2. The decision overhead of proposals has direct effects on users and resources in terms

of the startup time of requested services and resource utilization. To illustrate, not only

do healthcare applications require low response time, but they also need low startup

time, especially for critical applications such as emergency-related applications (e.g.,

heart-attack prediction and detection). Also, the overhead of proposals can severely

affect the resource usage and energy consumption of servers, especially battery con-

strained ones. Among the techniques considered decision overhead as a metric, they

mostly focus on time while other metrics (e.g., energy, cost) need further investigation.

Table 2.6: Summary of existing works considering performance evaluation taxonomy

Ref
Performance Evaluation

Approach
Decision

Overhead
Time Energy Cost Other

[72] Simulation (OPNET) # # #  #

[68] ND # #  # #

[96] Analytical #    #

[80] Simulation (Cloudsim) #  #  #

[76] Hybrid (Simulation+Practical)    # Weighted Cost

[3] Simulation (iFogSim)    # Weighted Cost
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[70] Analytical #  # # Resource Utilization

[77] Simulation (Cloudsim) #  # # #

[97] Simulation (iFogSim)     #

[98] Simulation #  # # #

[82] Simulation #  # # #

[99] Simulation #  # # Computation ratio

[100] Analytical (Matlab) # # # # Weighted System Cost

[81] Analytical (Matlab) #  # # Migration cost

[101] Analytical #   # #

[102] Hybrid (Simulation+Practical)    # #

[103] Simulation #  # # Dropped Tasks

[104] Simulation   # # Swithing Cost

[105] Practical #   # Computation Throughput

[106] Simulation #  # # #

[107] Analytical # # # # Weighted Cost

[108] Analytical (Matlab) # # # # Satisfied Requests

[90] Hybrid (Simulation+Practical)   # # #

[87] Analytical (Matlab) #  # # #

[91] Analytical # #  # #

[88] Analytical #  # # #

[109] Simulation #  # # #

[110] Simulation #  # # Weighted Cost

[111] Hybrid (Simulation (iFogSim)+Practical)     #

[112] Analytical #  # # Average Offloaded Tasks

[113] Analytical (Matlab) #   # #

[89] Analytical # # # # System Utility

[114] Practical #  # # #

[115] Analytical #  #  #
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[116] Practical # # #  #

[117] Hybrid (Simulation +Practical) # # #  #

[118] Practical #  # # #

[95] Hybrid (Simulation +Practical) #  # # #

[119] Simulation #  # # #

[120] Hybrid (Simulation +Practical) # #  # #

[121] Hybrid (Simulation +Practical) #  # # #

[122] Analytic    # #

[1] Practical #  # # Startup Time, Ram Usage

[92] Analytical # # # # Performance Gain

[123] Simulation (Cloudsim) #   # #

[124] Analytical # # # # Weighted Reward

[125] Simulation (iFogSim)   # # Resource gain, QoS

[126] Simulation (SimPy) #  #  Application Loss

[127] Analytical # # #  Deadline Miss Ratio

[36] Simulation (iFogSim) #  # # Deadline Miss Ratio

[128] Hybrid (Simulation +Practical(iFogSim)) #  # # Resource Overhead

[129] Analytical # # # # Weighted Cost

[73] Simulation    # #

[69] Simulation #   # Task Drop Rate

[71] Simulation #   # Task Drop Rate

[130] Simulation # #  # #

[131] Simulation #   # Task Success Rate

[132] Simulation #  # # Resource Utilization

[133] Simulation (SimPy) #    #

[78] Simulation (iFogSim) #    
Network Usage,

weighted score
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[34] Simulation (iFogSim)    #

Weighted Cost,

Total Interrupted Tasks,

Number of Migrations

[134] simulation #  # # #

[135] Simulation (One Simulator)   #  #

[136] Practical #  # # #

[137] Simulation # # # # Weighted Cost

[138] Analytic # # # #

Weighted Cost,

Total Offloaded and

Migrated tasks

[139] Analytic #  # # #

[140] Simulation #  # # #

[141] Simulation # # # # #

[83] Simulation # # # # QoS

[142] Simulation (Cloudsim) #   # #

[143] Analytical (Matlab) #   #
Offloaded Tasks,

Failed Tasks, Server Load

[144] Simulation #  # # Amount of Finished Tasks

[145] Analytical (Matlab) #  # # #

[146] Practical #  # # Bandwidth

[147] Simulation   #  Resource Usage

[148] Analytical (Matlab) #   # Failed Transmission

[149] Analytical (Matlab) #  # # #

[150] Simulation (Mininet and Sumo) #  # # #

[151] Simulation #  # # #

[94] Simulation (EdgeSimDAG) #   # Success rate, Utilization

[84] Simulation #   # Weighted Cost

[152] Analytical (Matlab) #  # # Throughput
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[153] Analytical (Matlab) #   # Weighted Cost

[154] Analytical (Matlab) #   # #

[155] ND #  # # Missed Deadline

[85] Analytical (Matlab) #  # # #

[156] Analytical #  # # Resource Utilization

[86] simulation #  #  Availability

[157] Practical #    Utilization

[32] Simulation (iFogSim)   # # Network Usage

[158] Simulation # # # # Utility Function

[79] Simulation (iFogSim) #  # # Network Usage

[75] ND #   # System Gain

[159] Practical #  # # Deployed Instances

[160] simulation #  # # Weighted Cost

[93] Analytical (Matlab) #  # # Throughput

[161] Simulation #   # Weighted Cost

[74] Simulation #   # Weighted Cost

[162] Simulation (FogWorkflowSim)     #

2.8 Scheduling Technique: Important Design Options

In this section, we discuss the real-world characteristics of application structure and

environmental architecture and accordingly present several guidelines for designing a

scheduling technique.

1. The number of IoT applications is constantly increasing in different application do-

mains. The majority of these applications are defined as a set of dependent modules/ser-

vices [95]. Besides, sharing and reusing modules/services for faster development and

better management of applications is of paramount importance. Moreover, dependent

IoT applications are usually modeled as a graph of tasks and their respective invoca-
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tions. In this case, IoT applications with monolithic and independent design can also be

defined as an application graph with only one module and an application graph with

several modules where the size of invocations is zero, respectively. Hence, we consider

IoT applications with dependent modules/services (i.e., modular and loosely-coupled

categories) as the main architectural design choices in the application structure. Ac-

cordingly, the decision engine requires a component for identifying and satisfying the

constraint among modules/services.

2. Besides, in a real-world scenario, application modules have different characteristics

(e.g., computation size, input size, ram usage). Thus, the best assumption for application

modules is applications with heterogeneous granularity specifications. As the number

of contributing parameters and the dynamicity of the application elements increases,

capturing the application parameters with temporal patterns for efficient scheduling

decisions becomes more complex [76, 97]. Although traditional-based placement tech-

niques (e.g., heuristic, meta-heuristic) often work well in general scenarios, they fail to

adapt to continuous changes and dynamic contexts. ML-based decision engines, such

as RL, can more efficiently work in a dynamic context and provide higher adaptability.

3. In large-scale Fog computing environments, numerous IoT applications with differ-

ent workload models and hybrid CCR may exist. Hence, the decision engine requires

an admission control component with an appropriate queuing mechanism (based on

application requirements) to manage diverse incoming requests and prioritize them for

making the decision.

4. Regarding the environmental architecture, the most generalized scenario is when

the environment consists of several heterogeneous IoT devices, several heterogeneous

FSs, and multiple heterogeneous CSs. Also, the required mechanisms for intra-tier and

inter-tier cooperation among servers should be embedded to support diverse IoT appli-

cation scenarios, such as mobility. Besides, multiple distributed servers can collabora-

tively provide better performance for the execution of IoT applications. Moreover, dif-

ferent fault domains can be prepared to improve the availability of services. However,

as the number of IoT applications and available servers in the environment increase,
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the complexity of making decisions increases. Hence, the optimal scheduling decision

cannot be obtained in a timely manner. Consequently, other placement techniques such

as heuristics and ML-based techniques should be employed to obtain the scheduling

decision in a reasonable time.

5. The decision engine can be implemented as a set of distributed services/microser-

vices. A decision engine developed as a monolithic application may not be able to be

deployed on a single server, especially on resource-limited FSs. Hence, distributed de-

ployment of decision engine components on several distributed servers can provide sev-

eral benefits: 1) more efficient deployment of resource-limited devices, 2) provides better

fault tolerance 3) offers better scalability 4) support different deployment models (e.g.,

deployment of decision engine on FSs, CSs, or hybrid on both FSs and CSs). Hybrid de-

ployment of decision engine components on both FSs and CSs can lead to a better user

experience for end-users. To illustrate, applications requiring low latency and startup

time can be managed at the low-level FSs (i.e., at the Edge), and then be scheduled

based on the decision engine deployed at the Edge. However, application requests that

are insensitive to latency or startup time can be forwarded to CSs for scheduling.

6. Regardless of application and environmental characteristics, failure recovery mech-

anisms and policies should be integrated into any decision engine. Independent failures

and the non-deterministic nature of any components (either hardware or software) in

distributed systems cause the most impactful issues in distributed systems. If the deci-

sion engine, which manages the scheduling and execution of incoming IoT application

requests, does not have an appropriate failure recovery mechanism, the smooth execu-

tion of the whole system stalls.

2.9 Summary

In this chapter, we mainly focused on scheduling IoT applications in Fog computing

environments. We identified several main perspectives playing an important role in

scheduling IoT applications, namely application structure, environmental architecture,
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optimization characteristics, decision engines properties, and performance evaluation.

Next, we separately identified and discussed the main elements of each perspective and

provided a taxonomy and research gaps in the recent literature.



Chapter 3

Fog-Driven Network Resource
Allocation

Allocation of network resources in highly-dense Edge and Fog computing environment becomes

more crucial when ever-increasing IoT applications with different network resource requirements for-

ward their requests to Edge and Fog servers for processing and storage. In this chapter, a hierarchical

technique, consisting of a dynamic distributed clustering and a Fog-driven resource allocation, to

optimize the total throughput of the network while mitigating the interference is proposed. The fully

distributed clustering method is designed so that Edge and Fog servers adaptively form clusters with

dynamic size based on the current status of the network and end-users. Moreover, a policy-aware

resource allocation method is proposed to address the intra and inter-cluster interference, which are

two potential types of interference in clustering-based resource allocation techniques. The extensive

simulation results demonstrate that our proposed hierarchical technique significantly improves total

throughput, user satisfaction, and fairness compared to other proposed techniques by up to 21%,

97%, and 10%, respectively.

3.1 Introduction

A rapid growth in deployment and the use of IoT devices such as smartphones, tablets,

and sensors has resulted in rapid increase of data-streaming applications such as video

streaming, online games, health-care, and Voice over Internet Protocol (VoIP). This leads

to a significant amount of data to be transferred over cellular networks [2, 28, 29]. Con-

This chapter is derived from:

• Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”A Fog-driven Dynamic
Resource Allocation Technique in Ultra Dense Femtocell Networks”, Journal of Network and Com-
puter Applications (JNCA), Volume 145, ISSN: 1084-8045, Elsevier Press, Amsterdam, Netherlands,
November 2019.
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sidering that the number of cellular network resources is restricted, the requested QoS

can be satisfied for only a limited number of users. Besides, recent studies have revealed

that approximately 70 percent of the data is originated from indoor places where severe

wall penetration loss and longer transmission distance incur poor received signal qual-

ity [166]. To address these issues, Femtocell Base Stations (FBSs), which are low-power,

short-range, low-cost, and low-level Edge devices are deployed over macrocell network

to effectively improve the indoor received signal quality and overall network through-

put. This latter is obtained by reusing same frequency by several FBSs while the former

one is satisfied by decreasing the distance between transmitter and end-users [167].

However, in densely deployed femtocell networks, neighboring FBSs experience se-

vere co-tier interference (i.e., interference between adjacent femtocells [168]) due to fi-

nite domain of shared spectrum unless an efficient interference management technique

is used. The co-tier interference can be significantly reduced in downlink Orthogonal

Frequency Division Multiple Access (OFDMA)-based femtocell networks using an effi-

cient allocation of Resource Blocks (RBs) between interfering FBSs [169]. To achieve this,

researchers have proposed several Resource Allocation (RA) techniques, including cen-

tralized and clustering. However, due to the non-convex non-deterministic polynomial-

time (NP-hard) nature of this problem, centralized techniques are not efficiently practical

and result in high complexity, signaling overhead, and single point of failure, specifically

in dense and ultra-dense networks [167, 170]. To overcome this problem, the clustering-

based RA techniques, which are partially decentralized, are introduced by which the

complexity of the RA problem is significantly reduced. In the majority of these tech-

niques, each cluster has access to the entire set of RBs, while FBSs in one cluster cannot

use the same RBs simultaneously. This latter enables the RA technique to be performed

in each cluster independently of other clusters [28].

To effectively utilize the benefits of clustering in RA, several issues should be care-

fully addressed. Clusters can be formed either by the gateway (GW) centrally or by

FBSs in a distributed manner [171]. Moreover, the maximum size and number of clus-

ters can be statically determined or can be obtained dynamically by the GW or cluster

heads (CHs) at the runtime. In addition, the RA in each cluster can be performed by a

CH individually or all FBSs collaboratively. Besides, in the dense and ultra-dense fem-
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tocell networks, interference between clusters should be mitigated so that FBSs located

at the edge of clusters (Edge FBSs) do not suffer from decreased throughput, which re-

duces total throughput and end-users’ quality of experience. Last but not least, it is

worth mentioning that centralized and clustering-based RA techniques, in which GWs

and CHs respectively perform the majority of responsibilities, suffer from the scalability

issues in dense and ultra-dense networks, because the above-mentioned burdens are not

proportionally distributed.

Taking cognizance of these issues, we propose a Distributed Dynamic Clustering

(D2C)-FOg-driven Resource Allocation Technique (D2C-FORAT) to optimize the total

throughput of the downlink OFDMA-based Edge networks, specifically femtocells. The

proposed solution is divided into two methods, including distributed dynamic clus-

tering and RA, so that we proportionally distribute responsibilities over the network

entities, containing FBSs, CHs, GW, and local Fog servers. In the D2C-FORAT, FBSs

make clusters in a distributed dynamic manner so that FBSs with the highest co-tier in-

terference on each other can join the same cluster and select a CH. Afterward, the CH

monitors the available resources and users’ demands in its cluster and dynamically con-

trols the size of its cluster in the runtime. In addition, the Fog servers collect the Edge

FBSs’ information of each cluster which will be used to form the Edge FBSs’ interference

graph. Besides, the Fog servers employ a graph-coloring-based technique to assign a

set of policies for Edge FBSs in each cluster to reduce inter-cluster interference. These

policies are then forwarded to respective CHs, by which the RA can be performed more

efficiently, resulting in increased throughput and user satisfaction.

The major contributions of this chapter are:

• Proposes a hierarchical RA technique, aiming at maximizing the total throughput

while mitigating the interference, to satisfy the ever-increasing users’ demands in

dense and ultra-dense Edge and Fog computing environments.

• Puts forward a distributed dynamic clustering algorithm by which CHs adaptively

control their cluster size based on the requested demands of their end-users. This

results in better scalability so that our technique can be effectively adapted to dense

and ultra-dense Edge and Fog computing environments.
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• Because sufficient resources are available in each cluster due to the proposed clus-

tering method, no intra-cluster interference occurs. To address the inter-cluster in-

terference problem, it develops a Fog-driven RA method by which the Fog servers

assign a set of policies to CHs to be considered in their RA. This latter leads to de-

creasing inter-cluster interference, which significantly improves the total through-

put and user satisfaction.

The rest of this chapter is organized as follows: after discussing related work in

Section 3.2, the system model and problem formulations are presented in Section 3.3.

Proposed distributed clustering and RA methods are presented in Section 3.4 and Sec-

tion 3.5, respectively. Section 3.6 evaluates the performance of the proposed policy in

respect to existing policies. Finally, Section 3.7 concludes the chapter.

3.2 Related Work

A significant number of studies has been focused on RA techniques in OFDMA-based

femtocell networks to address the co-tier interference, among which we study the cur-

rent literature in clustering-based RA. The proposed techniques are categorized into two

groups of centralized and distributed based on their clustering approach. Besides, the

main elements of each technique are identified, by which we can qualitatively compare

these techniques.

In the centralized clustering techniques, clustering is performed by the GW. The

authors in [172] proposed a centralized clustering technique for the RA in femtocell

networks, in which, after the formation of the interference graph, the GW obtains the

minimum-interfered clusters by Max k-Cut algorithm. Then, a heuristic algorithm is

used to assign available RBs to different clusters. Authors in [173] proposed a hierar-

chical RA technique, in which the GW collects the channel gain between each pair of

FBSs and builds the interference graph. The GW forms clusters based on the correla-

tion clustering concept. Afterward, due to the NP-hard nature of correlation clustering,

the problem is formulated as a semi-definite program (SDP) and solved by randomized

rounding. Authors in [174] proposed a cluster-based solution for the RA, in which the

FBSs are clustered together according to their geographical positions by the GW. Then,
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in each cluster, the FBS with the largest interference degree is selected as the CH, whose

main task is the RA in its cluster. This latter is performed by solving an optimization

problem via a sub-gradient iteration-based RA algorithm. In [167], the GW collects the

interference degree of each FBS and performs a predetermined clustering accordingly.

Then, for each cluster derived in the predetermined clustering, the GW specifies a set of

best candidate sub-clusters. This process is repeated until the GW recognizes the best

sub-clustering for each cluster. The authors in [175] proposed a RA technique in which

GW centrally clusters FBSs by a modified k-mean clustering algorithm. Afterward, a

greedy algorithm is used to distribute available resources to the FBSs.

Although the main goal of centralized clustering techniques is to find the best clus-

tering, this is a time-consuming process, specifically in the dense and ultra-dense fem-

tocell networks [171]. Moreover, considering the dynamic nature of femtocell networks,

the GW requires to re-cluster all the FBSs whenever any change occurs in the network

to find the best clustering solution.

In the distributed clustering techniques, FBSs collaboratively make clusters without

the participation of the GW. If any changes occur in the status of the network and end-

users, the change can be handled locally, and there is no need to repeat the clustering

algorithm for all FBSs. Authors of [176] proposed a graph-based RA technique in which

clusters of non-interfering FBSs are formed in a distributed manner by FBSs, and then,

the GW performs the RA for each cluster according to its average users’ demands. Since

the RA is performed centrally by the GW, this technique cannot be efficiently employed

in dense and ultra-dense networks. Moreover, RBs are not fairly allocated to end-users

because this technique only considers the average demand of each cluster. However,

each user’s demand can be more than the obtained cluster’s average demand, resulting

in less fairness and user satisfaction. In [177], the authors proposed a Quality-of-service-

based Femtocell Cluster-based RA (QFCRA). Initially, each FBS builds a neighboring

list containing its one-hop FBSs and sends it to all of its proximate neighbors. This

latter assists each FBS to obtain the interference degree of its one-hop neighbors. Af-

terward, the FBS with the largest interference degree among its neighbors announces

itself as the CH, and other FBSs connect themselves to it. Each CH has the responsi-

bility of RA, especially in the dense and ultra-dense femtocell networks. In [171], the
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authors proposed a learning-based scheme (LFCRA) to solve the inter-cluster interfer-

ence of the QFCRA. Although the proposed technique is more efficient than QFCRA in

handling inter-cluster interference, similar to QFCRA, its performance mainly depends

on its cluster size, which is not dynamically set.

3.2.1 A Qualitative Comparison

Table 3.1 identifies and compares key elements of current works in terms of architec-

tural parameters, clustering parameters, interference management, and evaluation pa-

rameters. The clustering parameters include an approach describing whether that pro-

posal is centralized or distributed, dynamicity showing whether that cluster updates

itself whenever a new FBS is added or removed, or even when the users’ demands are

changed. The cluster size can be set by GW or CHs in a predefined manner statically

or according to the current status of FBSs dynamically. The clustering criteria show the

main factors used for the creation of clusters, which can be interference degree, inter-

ference intensity, and users’ demands. The architectural parameters contain hierarchical

components which describe what entities participate in clustering and RA and intro-

duce specific roles of each entity. Furthermore, although all proposals consider intra-

cluster interference management, only some of them address the inter-cluster interfer-

ence which has a significant effect on network throughput, specifically in the densely

deployed edge networks, specifically femtocell. Finally, the evaluation parameters de-

pict the main parameters by which the performance of each proposal is evaluated.

To address the above-mentioned issues, we propose a hierarchical technique, called

D2C-FORAT, containing clustering and RA methods. The clustering is performed in

a distributed manner, where FBSs collaboratively form clusters based on interference

intensity, and cluster members (CMs) identify a CH for each cluster. Each CH dynam-

ically controls the size of its cluster in the runtime based on available resources and

interference intensity. Besides, CHs, based on a proposed routine, dynamically update

the cluster parameters whenever users’ demands change or an FBS sends a join/disjoin

message to the CHs. In addition, the RA method concurrently addresses the intra and

inter-cluster interference problem. Since each CH guarantees that there are always suffi-
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Table 3.1: A qualitative comparison of related works with ours

Techniques
Clustering Parameters Architectural Parameters

Interference

Management
Evaluation Parameters

Approach Dynamicity Size Criteria
Hierarchical

Components
GW Role CH Role CM Role

Intra

Cluster

Inter

Cluster
Throughput Interference Fairness Satisfaction

[172]

C
en

tr
al

iz
ed

D D Intf I
GW,

CM

Clustering,

RA
- - X × X × × ×

[173] S D Intf I

GW,

CH,

CM

Initial

Clustering,

CH Sel

RA,

Improve

Clustering

- X × X X × ×

[174] S S Intf D

GW,

CH,

CM

Clustering
RA,

PA

CH

Sel
X × X × × ×

[167] S S Intf D

GW,

CH,

CM

Initial

Clustering,

CH Sel

RA,

PA
- X X X × X ×

[175] S D Intf D

GW,

CH,

CM

Clustering,

CH Sel
RA - X × X × × X

[176]

D
is

tr
ib

ut
ed

S S Intf D
GW,

CM
RA - - X × × × X ×

[177] S S Intf D
CH,

CM
- RA

CH

Sel
X X × × X X

[171] S S Intf D
CH,

CM
-

RA,

Power

Adj

CH

Sel
X X X × X ×

D2C-FORAT D D

Intf I,

Intf D,

users’

demands

GW,

Fog Servers,

CH,

CM

Set Policies

for RA

RA,

Notify Fog

Server, Cluster

size Control

CH

Sel
X X X X X X

The abbreviated terms are as follows:Clustering Parameters (D:Dynamic, S:Static, Intf I=Interference Intensity, Intf D=Interference Degree), Architectural Parameters (GW:Gateway,

CH:Cluster Head, CM:Cluster Member, RA:Resource Allocation, CH Sel:CH Selection, PA:Power Allocation, Power Adj:Power Adjustment)

cient RBs for FBSs within a cluster, the intra-cluster interference never occurs. Moreover,

we employ local Fog servers that are aware of the location and demands of Edge FBSs

to run a graph-coloring-based algorithm to address the inter-cluster interference.

3.3 System Model and Problem Formulation

In this section, we describe the system model and formulate the RA as an optimization

problem to maximize the network throughput.
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3.3.1 System Model

We consider an OFDMA-based femtocell network in which FBSs are densely deployed.

In such networks, FBSs may face two types of interferences, including cross-tier inter-

ference (i.e., interference between femtocell and macrocells [168]) and co-tier interfer-

ence. This latter interference, which is significantly aggravated in dense and ultra-dense

networks, can be reduced by forming clusters of FBSs and coordinating among them

through their X2 interfaces [178]. Besides, the interference between macrocell and FBSs

can be regarded as Additive White Gaussian Noise (AWGN) [179].

We use the 3GPP dual-strip residential apartment model [180] to represent how FBSs

are deployed in our network. In this model, we have two strips of one-floor buildings,

so that strips are separated by a 10m-wide street, and each one contains 20 buildings

(10m × 10m). Each building comprises an FBS so that its location is set based on a

uniform distribution model. In addition, since the owners can turn on/off their FBSs

randomly, which change the network topology, we set the activation status of each FBS,

Sa ∈ {0, 1}, and FBS density, λ ∈ [0, 1]. This latter represents the ratio of active FBSs

to all FBSs in the network [181]. Each active FBS can support up to a maximum of four

end-users that are uniformly distributed in its proximity. Moreover, the user demand

of each FBS is defined as the number of requested RBs by that user. Fig. 3.1 represents

an example of FBSs’ deployment in the 3GPP dual-strip apartment model, where FBSs

are grouped into seven different clusters. Moreover, it demonstrates the concept of intra

and inter-cluster interference.

In our model, we use LTE specification for downlink, in which the available 5 MHz

bandwidth is divided into several RBs so that each RB contains 12 consecutive subcarri-

ers with 15 KHz of spacing between adjacent subcarriers and 7 OFDMA symbols with

the time duration of 0.5 ms [182].

Hierarchical Architecture

We propose a hierarchical architecture in which responsibilities are proportionally dis-

tributed over the network entities, including GW, Fog servers, CHs, and CMs, to meet

the requirements of dense and ultra-dense networks. Fig. 3.2 depicts an overview of
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Figure 3.1: The 3GPP dual-strip residential apartment model

our hierarchical architecture. In what follows, we briefly illustrate the responsibilities of

each entity and define how they collaborate.

The GW. The main responsibility of this entity is managing Operation and Mainte-

nance (OAM) information, including FBSs’ location, identification, authentication, ag-

gregating, and validating signaling traffic [172].

The Fog Server. This entity is located between the GW and CHs, and its main respon-

sibility is forwarding policies to its in-range CHs so that they can efficiently allocate RBs

to their FBSs. It receives the clusters’ configuration of FBSs and forms an Edge FBSs’

interference graph. Afterward, through its computing capacity, the Fog server attempts

to solve the inter-cluster interference and forward specific policies to CHs.
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Figure 3.2: An overview of proposed hierarchical architecture

The CH. The CH is placed between CMs and the Fog server, and its main duties in-

clude notifying the Fog server of its Edge FBSs’ configuration, and RA runtime. This

feature helps the clusters to dynamically change and adapt themselves to the current

state of the network. Furthermore, it periodically notifies the Fog server about its Edge

FBSs’ configuration. This latter configuration is mainly because each CH has a local

view of its CMs’ configuration and is not aware of other clusters’ configurations, which

results in less-precise RA. Finally, it allocates available resources to its CMs while consid-

ering the received policies from the Fog servers. This leads to more efficient RA, which

improves the total throughput and satisfaction of end-users.
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The FBS. The main responsibilities of FBSs in this architecture, alongside satisfying

their users, are cluster formation and CH selection which are obtained in a distributed

dynamic manner.

3.3.2 Problem Formulation

We define a set of FBSs asF = { f1, f2, f3, . . . , fM}, so that each FBS is a member of disjoint

cluster set C = {c1, c2, c3, . . . , cL}. Hence, each FBS fi ∈ cl can be represented by fi,l .

Moreover, we define the in-range neighbors of FBS fi as a set of FBSs shown byN fi . It is

important to note that N fi contains members that are not necessarily in the same cluster

as fi. Moreover, the set of end-users of fi are defined as U fi .

We denote the set of RBs as ∆, and hence, the received amount of signal to interfer-

ence plus noise (SINR) of each u ∈ U fi on the RB k ∈ ∆ is defined as follows [183, 184]:

γ
fi,l
u,k =

P fi,l
k × H fi,l

u,k

σ2 + ∑
f j,l′∈F ,j 6=i,l 6=l′

P
f j,l′

k × H
f j,l′

u,k

(3.1)

where P fi,l
k and H fi ,l

u,k are the transmission power of fi,l and the channel gain between u

and fi,l on RB k, respectively. Moreover, ∑
f j,l′∈F ,j 6=i,l 6=l′

P
f j,l′

k × H
f j,l′

u,k is the interference gener-

ated by other adjacent FBSs belonging to other clusters, called inter-cluster interference,

and σ2 is noise power density.

According to the amount of γ
fi,l
u,k on RB k, the user u can select an appropriate Modulation-

and-Coding Scheme (MCS) to achieve the highest possible data rate while guaranteeing

reliability. We represent the achievable data rate on the RB of this user by R fi,l
u,k so that

this should be always between the maximum and minimum achievable data rate, which

is calculated based on MCS and SINR threshold used in [185], as follows:

Rmax = (7symbol × 4.8bit/symbol)× 0.5ms× 12 = 806.4kbs (3.2)

Rmin = (7symbol × 0.66bit/symbol)× 0.5ms× 12 = 110.88kbs (3.3)
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To calculate Rmax and Rmin, the QAM-64 with code rate 4/5 and the QPSK with code rate

1/3 are used, respectively.

The principal goal of this work is to maximize the total throughput of the network

while mitigating the severe interference through allocating appropriate RBs to each FBS.

Thus, according to the above-mentioned goal, the clustering-based RA problem can be

formulated as follows:

maximize ∑
cl∈C

∑
fi∈cl

∑
u∈U fi

∑
k∈∆

a fi,l
u,k × R fi,l

u,k (3.4)

s.t.

C1 : a fi,l
u,k ∈ {0, 1}, ∀u ∈ U fi , ∀ fi ∈ cl ,

∀cl ∈ C, ∀k ∈ ∆

C2 : ∑
fi∈cl

∑
u∈U fi

∑
k∈∆

a fi,l
u,k ≤ |∆|, ∀cl ∈ C

C3 : ∑
fi∈cl

∑
u∈U fi

a fi,l
u,k ≤ 1, ∀cl ∈ C, ∀k ∈ ∆

C4 : ∑
k∈∆

a fi,l
u,k × R fi,l

u,k ≥ R̂ fi,l
u , ∀u ∈ U fi ,

∀ fi ∈ cl , ∀cl ∈ C, ∀k ∈ ∆

C5 : a fi,l
u,k × R fi,l

u,k ≥ a fi,l
u,k × Rmin, ∀u ∈ U fi ,

∀ fi ∈ cl , ∀cl ∈ C, ∀k ∈ ∆

C6 :
⋃

cl∈C
cl = F

C7 : cl
⋂

cl′ = ø, ∀cl , cl′ ∈ C, l 6= l′

In the optimization problem Eq. 3.4, the a fi,l
u,k is an exclusion factor to represent whether

the RB k is assigned to the user u of FBS fi,l or not, as depicted in the constraint C1. The

second constraint, C2, expresses that each cluster can use all available network’s RBs,
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while the C3 denotes that each RB k in each cluster can be assigned only to one user.

Thus, there is no intra-cluster interference in our problem. The C4 indicates that each

user u of FBS fi,l should at least receive its minimum requested data rate, depicted as

R̂ fi,l
u . The C5 expresses that the RB k should not be assigned by FBS fi to its end-users

whenever a severe interference exists on that RB. The C6 and C7 denote that each FBS fi

is a member of one cluster, and the set of clusters are disjoint. Table 3.2 summarizes the

parameters used in this chapter and their respective definitions.

Table 3.2: Parameters and respective definitions

Parameter Definition Parameter Definistion

Sa Activation status of each FBS λ FBSs’ density

F ,M Set of all FBSs, Number of all FBSs fi The ith FBS

fi,l The FBS fi in cluster cl C, L Set of clusters, Number of clusters

N fi Set of one hop neighbors of FBS fi U fi Set of end-users of FBS fi

γ
fi,l
u,k

The SINR that end user u receives from

FBS fi,l on RB k
R

fi,l
u,k

Data rate of end user u belongs to fi,l

on RB k

∆ Set of all RBs σ2 Noise power density

P
fi,l

k Transmission power of FBS fi,l on RB k R̂
fi,l
u Minimum data rate required by end user u

H
fi,l
u,k

Channel gain between the FBS fi,l and the

end user u on the RB k
I( fi , cl)

Relative sum interference of FBS

fi on cluster cl

Rmax Maximum throughput on each RB Rmin Minimum data rate on each RB

FCcl Free capacity of cluster cl f ?cl
The worst CM in the cluster cl

N ( fi , cl)
Set of one-hop neighbors of FBS fi

belonging to cluster cl

I( fi , f j) Interference between FBS fi and FBS f j

deg( fi , cl)
Relative interference degree of FBS fi

on cluster cl

Pcl Set of all possible partitions for cluster cl

policycl The set of policies enacted for the cluster cl range( fi,l) The set of authorized RBs for ( fi,l)

G The interference graph of Edge FBSs Kmax The maximum number of colors

a
fi,l
u,k

Exclusion factor indicating whether RB k is

assigned to end user u of FBS fi,l , or not
FC?

cl

Free capacity of cluster cl without

considering f ?cl

I?( fi , cl)
Relative sum interference of FBS fi

on cluster cl without considering the f ?cl

demandu
The demand of end user u in terms of

number of RBs
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3.4 Distributed Dynamic Clustering Method

In this section, we propose a Distributed Dynamic Clustering (D2C) method, in which

FBSs with the highest relative interference form different clusters. Moreover, FBSs in

each cluster select one FBS as their CH. The CH dynamically controls the cluster size

based on the requested demands of its end-users and makes the decision whether a

new FBS can join the cluster or not, accordingly. The D2C has three principal functions

including new FBS arrival (NFA), update clustering parameters (UCP), and cluster mi-

gration possibility (CMP).

3.4.1 New FBS Arrival (NFA)

Whenever a new FBS fi joins the network, it creates its neighbor list N fi , in which each

f j ∈ N fi is either a CM or CH. If N fi does not have any CH member, the fi creates the

cluster cl , set itself as the CH, and calculates the free capacity of the cluster as follows:

FCcl = |∆| − ∑
fi∈cl

∑
u∈U fi

demandu ∀cl ∈ C (3.5)

where demandu depicts the number of RBs requested by the user u ∈ U fi .

If the N fi contains CH members, the fi sends a message to those CHs and requests

their free capacities, FCs. Afterward, clusters whose FCs are greater than or equal to

∑u∈U fi
demandu are considered as candidate clusters by fi. To select the best candidate

cluster to join, the fi calculates the relative sum interference of itself on all members of

each candidate cluster as follows:

I( fi, cl) = ∑
f j∈cl ,i 6=j

I( fi, f j) (3.6)

where I( fi, f j) represents the interference between fi and f j as calculated in [186].

I( fi, f j) = P f j × H
f j
fi

(3.7)

To simplify the problem, we assume the mutual interference between two FBSs is sym-
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metric, as shown in the following:

I( fi, f j) = I( f j, fi) (3.8)

Among all candidate clusters, fi selects the candidate cluster by which it has the high-

est relative sum interference, I( fi, cl), and sends the soft-join request to that cluster’s

CH. The soft-join indicates that the candidate cluster has enough FC to accept the join-

request of fi while the CH guarantees to allocate sufficient requested RBs to its current

end-users.

If there is no candidate clusters with sufficient FCs to support the required demand

of fi, the hard-join is considered as a potential solution. In this latter, the candidate

cluster cl should substitute its worst FBS, called f ?cl
, for the fi. To identify the f ?cl

, each

f j,l creates theN ( f j, cl) ⊆ N f j whereN ( f j, cl) denotes one-hop neighbors of f j that are in

the cluster cl . Moreover, the FBS f j calculates its relative interference degree on cluster

cl as deg( f j, cl) = |N ( f j, cl)|. Hence, the CH selects the member with the lowest relative

interference degree as f ?cl
on its cluster. In a case that there are several members with the

lowest deg( f j, cl), the member whose interference with other members is the lowest, is

selected as the f ?cl
. Considering the fact that any cluster cl has its f ?cl

, the fi sends message

to each neighboring CH to obtain its free capacity while worst FBS f ?cl
is excluded, as

shown in the following:

FC?
cl
= FCcl + ∑

u∈U f ?cl

demandu, ∀cl ∈ C (3.9)

Afterward, each cluster whose FC?
cl

is greater than or equal to ∑u∈U fi
demandu is con-

sidered as candidate cluster for hard-join. Among these candidate clusters, the fi sends

the hard-join request to the CH of the cluster by which it has the highest relative sum

interference I?( fi, cl).

I?( fi, cl) = I( fi, cl)− I( fi, f ?cl
) (3.10)

In a case that there is no possibility to perform soft-join and hard-join, the fi acts exactly

the same as the condition that there are no CHs in itsN fi , as discussed earlier, and forms

a new cluster. Fig. 3.3 represents the process of NFA function.
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Figure 3.3: New FBS Arrival (NFA) flowchart

3.4.2 Update Clustering Parameters (UCP)

When the configuration of a cluster cl changes (e.g. joining or removing a member), its

CH requests all its members fx,l to calculate their deg( fx, cl) and I( fx, cl), and send them

back. Then, it makes a priority list of its members according to these parameters so that

members with the largest relative interference degree receive higher priority. If there are

several members with the same relative interference degree, those members are sorted

in terms of the relative sum interference. Finally, the member with the highest priority

is selected as the CH, and the member with the lowest priority is selected as the f ?cl
.
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3.4.3 Cluster Migration Possibility (CMP)

The main goal of this function is to check whether any CM can migrate to other clusters

so that the quality of clustering improves or not. This function is called by the CMs that

at least have one another CH in their neighbor lists belonging to another cluster. To il-

lustrate, we consider fi,l and f j,l′ , f j ∈ N fi and the fact that f j,l′ is the CH of cl′ . Then, the

fi,l should request the FCcl′ and periodically calculate the I( fi, cl′). If I( fi, cl) < I( fi, cl′),

then fi sends the soft-join request to the f j to join the cluster cl′ . This guarantees that

each FBS always attempts to join a cluster to which it has the highest relative interfer-

ence. This latter helps to improve clusters as the network configuration changes, and

consistently attempts to maintain FBSs with the highest relative sum interference as a

cluster, which finally leads to less inter-cluster interference.

3.5 A New Resource Allocation Method

In this section, we propose a RA method in which Fog servers and CHs collaborate to

mitigate the interference and improve the network throughput.

Each CH is responsible for allocating the RBs so that no intra-cluster interference

occurs in its cluster. Since each CH is unaware of adjacent clusters’ RAs, there is a high

probability of inter-cluster interference on Edge FBSs. This problem is aggravated in

dense and ultra-dense networks to the point that the network throughput is severely

dropped [171]. Hence, we concurrently consider both intra and inter-cluster interference

for the RA so that our method can be applied to femtocell networks ranging from sparse

to ultra-dense. In this method, the Fog servers are responsible to provide a set of policies

to CHs to minimize inter-cluster interference. CHs consider these policies and their

users’ demands, and aim at maximizing clusters’ throughput alongside decreasing the

interference by proper allocation of resources.

3.5.1 Policy Identification

We divide the FBSs of each cluster into two categories containing central and Edge FBSs.

The fi,l is considered as a central member wheneverN fi only contains neighbors from cl ,
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while it is considered as Edge member if the N fi contains any member from other clus-

ters, as noted in Eq. 3.11. Apparently, the central nodes never experience inter-cluster

interference.

fi,l is
{ Central, if N fi −N ( fi, cl) = ø

Edge, if N fi −N ( fi, cl) 6= ø

(3.11)

The Fog servers provide a set of policies for each cluster cl , in which each element

contains the specific FBS on which that policy should be applied, and a specific subset

of RBs, called range representing the RBs which can be assigned to that FBS, as shown

in the following.

policycl = {( fi,l , range( fi,l)) | fi,l is Edge, range( fi,l) ⊆ ∆} (3.12)

The policies to mitigate the inter-cluster interference are provided in three phases in-

cluding graph formation, graph coloring, and graph relaxation, as discussed in the fol-

lowing. The Algorithm 1 represents a general view of policy identification through these

phases.

Graph Formation

The main goal of this phase is to form an interference graph of Edge FBSs. To achieve

this, CHs send their neighbor lists of Edge FBSs and their respective demands to the Fog

servers. Afterward, the Fog servers create the weighted graph of Edge FBSs, G(V, E, Wv, We),

based on the information received from their corresponding CHs. V represents the set

of vertices so that each vertex denotes an Edge FBS. E explains the set of edges so that

each edge represents the interference between two Edge FBSs, as follows:

evi ,vj is
{ 1, if fi ∈ N f j

0, if fi 6∈ N f j

(3.13)
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Algorithm 1: General view of policy identification algorithm
%Graph Formation Phase:

1 create G(V, E, Wv, We)
/* The graph G is comprised of several connected graph gi

as G = {g1, g2, ..., gZ} */
%Graph Coloring Phase:

2 for z = 1 to Z do
3 calculate Kmax from Eq. 3.17

/* The Kmax is the maximum number of colors */
4 for k=2 to Kmax do
5 g?z = graph-simplification(gz, k)
6 if graph-coloring(g?z , k)==false then
7 if k + 1 ≤ Kmax then
8 continue
9 else

%Graph Relaxation Phase:
10 gz = graph-relaxation(gz)
11 go to line 3
12 end
13 else
14 send policies to CHs
15 break
16 end
17 end
18 end

It is important to note that based on the Eq. 3.13, Edge FBSs that are in the same cluster

and in range of each other are connected by an edge in the G. Moreover, the Wv and We

depict the set of weights for vertices and edges respectively. The weight of each vertex

vi is calculated as the total users’ demands of each Edge FBS as follows:

Wvi = ∑
u∈U fi

demandu (3.14)

In addition, the weight of each edge evi ,vj is the amount of interference between those

vertices, as depicted in the following:

i f evi ,vj ∈ E then wvi ,vj = I( fi, f j) (3.15)
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Finally, the weighted graph G is not necessarily a connected graph, and it can be com-

prised of several connected graphs G = {g1, g2, ..., gZ}, with the following condition:

gz
⋂

gz′ = ø, ∀gz, gz′ ∈ G, z 6= z′ (3.16)

Graph Coloring

In this phase, we address the inter-cluster interference by a graph coloring method for

every connected graph gz in the G, created in the graph formation phase. The main

goal of the graph coloring method is to find a set of different colors (so that each color

represents a set of RBs) for Edge FBSs and assign a set of respective policies to CHs for

the RA so that the inter-cluster interference reduces.

Because each assigned color to an Edge FBS should contain sufficient RBs to support

demands of all users belonging to that FBS, the maximum number of colors Kmax is

restricted and is calculated as follows:

Kmax = b ∆
Wx
c, x = arg max (Wvi), ∀vi ∈ Vgz

(3.17)

where the Wx represents the weight of the heaviest vertex x ∈ Vgz .

Thus, the graph coloring problem is changed to the k-coloring problem, so that we

should iterate from k = 2 to Kmax to find the least possible number of colors, which

is a time-consuming problem. In this phase, we also propose a greedy simplification

algorithm to simplify the connected graph gz, so that we can color this graph in a timely

manner. The Algorithm 2 demonstrates the graph simplification.

The simplification algorithm starts from the least possible number of colors k = 2,

and tries to combine the Edge FBSs of each cluster, if possible, and creates the g?z . We

can combine any two Edge FBSs vi, vj ∈ gz if they belong to same cluster, and an edge

evi ,vj ∈ Egz exists between them, and their aggregate vertices’ weights is not higher than

the capacity of colors ( |∆|k ). According to this latter, we can make a new vertex vij in the

g?z , whose weight is the aggregate weights of vi, vj, and vij connects to any vertices to
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Figure 3.4: An example demonstrating graph coloring phase based on FBS configura-
tion depicted in Fig. 3.1
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Algorithm 2: Graph simplification
input : gz: An instance of subgraph,

k: The number of colors
/* Pcl: Set of all possible partitions of cl, Π: The

partition with the lowest number of classes */
1 initialize g?z = gz
2 for l = 1 to find-size-cluster(gz) do

/* The method find-size-cluster(gz) determines the number
of clusters belongs to gz */

3 Pcl = make-partition (cl)
/* The make-partition (cl) method creates ascending

sorted list of all partitions, and its size is
obtained from Dobinsky Formula */

4 Π = find-partition(Pcl )
/* The find-partition(Pcl) method returns the partition

with the least number of classes, Π = {A1, A2, ..., At},
t=number of classes in Π */

5 for j = 1 to t do
6 if ∑

vi∈Aj

Wvi>
|∆|
k then

7 Pcl = Pcl −Π
8 go to line 4
9 end

10 end
11 for j = 1 to t do
12 combine(Aj)

/* The combine(Aj) method merges all vertices in Aj */

13 end
14 end

which vi or vj was connected previously.

i f vi, vj ∈ cl & evi ,vj ∈ Egz & wvi + wvj ≤
|∆|
k

then combine(vi, vj) as vij, ∀vi, vj ∈ Vgz , ∀cl ∈ C
(3.18)

It is crystal clear that if the number of Edge FBSs within the cl is equal to n, n > 2, several

configurations for the combination of any number of Edge FBSs in cl can be considered,
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which is obtained by the Dobinsky’s formula, as follows [187].

|P(cl)| =
n

∑
m=1

mn

m!

n−m

∑
j=0

(−1)j

j!
(3.19)

where we denote the set of all possible partitions of cluster cl as P(cl), in which each

partition is a set of classes {A1, A2, ..., At}. Each class Aj contains one or more Edge

FBSs of cluster cl that should be evaluated whether they can be considered as one vertex

or not. The make-partition() method creates an ascending sorted list of all partitions based

on the number of classes, t, of the partitions. In the next step, the find-partition() method

returns the partition with the least number of classes, defined as Π, from the partition set

P(cl). For each class Aj in Π, it is examined whether the aggregate weights of that class

is less than |∆|k or not. If there is even one class in the partition Π that does not satisfy

this condition, the partition is removed from the P(cl) and the algorithm searches for

the next candidate partition. However, if all classes satisfy the condition, FBSs of the

same class can be combined, and a new simplified graph g?z will be created.

If g?z is colored by k colors, the range of RBs for each color can be specified and re-

spective policies will be sent to the CHs. But, in a case that the g?z cannot be colored

by k colors, the k increases and the graph-simplification() method is invoked to simplify

the graph. Fig. 3.4 depicts an example of graph coloring phase. Fig. 3.4a represents the

graph of Edge FBSs derived from FBSs’ configuration of the Fig. 3.1. Fig. 3.4b demon-

strates a candidate simplified graph g?z , in which several nodes in each cluster are com-

bined. Afterward, the g?z is colored by three colors as it can be seen in Fig. 3.4c, and the

Fig. 3.4d denotes how these colors are represented in the gz.

In an ultra-dense network that even simplification cannot help to color the graph by

Kmax colors, we provide a backup plan as graph relaxation phase.

Graph Relaxation

This phase is the backup phase for the graph coloring and is invoked if graph coloring

cannot find any solution to color the gz up to Kmax colors. The graph relaxation phase

attempts to decrease the maximum vertex degree of sub-graph gz by ignoring the weak
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interferences leading to the creation of new gz with fewer constraints. The relaxation()

method receives the subgraph gz and finds the vertex or vertices with the largest interfer-

ence degree because they incur the strongest constraints on the problem. Afterward, the

lightest Edge of those vertices is omitted to reduce their interference degree, as shown

in the following:

i f deg(vx) = deg(gz) then Egz = Egz − evx ,vy ,

y = arg min(Wvx ,vk), ∀vk ∈ Vgz , evx ,vk ∈ Egz , ∀vx ∈ Vgz

(3.20)

The new subgraph gz is then created and sent to the graph coloring phase.

3.5.2 Policy Aware Resource Allocation

Because CHs receive policies for their Edge FBSs from Fog servers, they should apply

those policies in their RA. The Algorithm 3 indicates an overview of policy-aware RA.

To achieve the aforementioned goals, the FBSs that are not assigned any RBs, are divided

into two sets, including S1, S2 by each CH. The first set S1 belongs to FBSs for which the

Fog server sends some policies to their respective CHs, while the second set S2 contains

the FBSs for which no policies are assigned. Because more restrictions are applied on the

S1, it has higher priority compared to S2 whenever CH assigns resources. These lists are

sorted based on total users’ demands of FBSs so that FBSs with the highest required RBs

that are not satisfied yet are placed in front of the lists. In each iteration, each CH selects

an RB from the unallocated RBs, shown as ∆′, and assigns that RB to a FBS fi, existing in

S1, if that RB is in range( fi). In the case that there exists no FBS in the S1 or the range of

that FBS does not comply with the selected FBS, the CH searches the S2 to find a proper

FBS to which it can assign that RB. The algorithm is finished whenever there are no FBSs

in the sets S1, S2, demonstrating that all FBSs are satisfied.
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Algorithm 3: Policy aware resource allocation of each cluster cl

input : ∆: Set of RBs,
∆′: Set of unallocated RBs,
S1: Unsatisfied sorted list of FBSs with assigned policies,
S2: Unsatisfied sorted list of FBSs without assigned policies

1 initialize ∆′ = ∆
2 while S1 6= ø, S2 6= ø do
3 r = select RB from ∆′

4 if ∃ fi ∈ S1 so that r ∈ (∆′
⋂

range( fi,l)) then
5 assign RB r to fi
6 update set S1
7 sort set S1

8 end
9 if ∃ f j ∈ S2 then

10 assign RB r to f j

11 update set S2
12 sort set S2

13 end
14 ∆′ = ∆′ − r
15 end

3.6 Performance Evaluation

In this section, we evaluate the performance of our proposed solution through exten-

sive simulations under different scenarios and compare it with the state-of-the-art RA

techniques to understand its efficiency. We discuss system parameters and study the

obtained results in the performance study subsection.

3.6.1 System Setup and Parameters

With regard to the simulation study, all algorithms are implemented in the MATLAB

version R2018b on a machine with a 2.2 GHz Intel Core i7 CPU and 16 GB of RAM.

We assume an environment in which FBSs are located according to the dual-strip

model, discussed in Section 3.3, so that each FBS has two users in its proximity. The

channel model of [180] is used for the propagation environment so that the channel gain

includes path-loss and shadowing. The transmission power and range of each FBS is

supposed to be 13dBm and 30m, respectively. Besides, the FBS density is assumed to
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Table 3.3: Evaluation parameters

Evaluation Parameters Value

Carrier frequency 2 GHz

Bandwidth 5 MHz

No. of available RBs 25

No. of sub-carrier per RB 12

Bandwidth per sub-carrier 15 KHz

Bandwidth per RB 180 KHz

Path loss model 3GPP TR 36.814

FBS transmitted power 13dBm

Apartment dimension 10m× 10m

FBS radius 30m

Minimum separation between

end-users and FBS
2m

User demand 1-4 RBs

FBS density
λ = 0.5 (20 active FBS),

λ = 1 (40 active FBS)

Number of end-users per FBS 2

MCS

QPSK (1/3,1/2,2/3,3/4),

16-QAM (1/2,2/3,3/4,4/5),

64-QAM (2/3,3/4,4/5)

Variance of AWGN σ2 = -174 dBm/Hz

be λ = 0.5 and λ = 1, of which the first one represents a dense FBS network while

the second one illustrates an ultra-dense FBS network. Moreover, the total number of

available RBs in the network equals to 25, and the users’ demands for different experi-

ment scenarios vary between 1 to 4 RBs. We used the MCS table of [185], which has 12

different steps for three modulations including QPSK, 16-QAM, and 64-QAM. Table 3.3

summarizes evaluation parameters and their respective values.

3.6.2 Performance Study

We employed four quantitative parameters, including throughput, interference, fair-

ness, and throughput satisfaction, to comprehensively study the behavior of our pro-

posed solution, called D2C-FORAT, and to compare its efficiency with other solutions in

the literature. We implemented QFCRA [177] and LFCRA [171] which are distributed
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clustering proposals discussed in related work, and distributed random access (DRA)

proposal [188]. The DRA works based on a random selection of resources by each FBS

and re-selection of interfered RBs by the randomized hashing function. Each experiment

is conducted for two different values of λ, and the outcomes are the average of 200 runs.

Throughput Analysis

The total throughput of each technique is calculated based on Eq. 3.4 which represents

the total throughput of all users in the network. Fig. 3.5 illustrates the total throughput

of D2C-FORAT and its counterparts for different values of λ. As it can be seen from

Fig. 3.5a and Fig. 3.5b, the throughput of all techniques increases as the users’ demands

grow, while the growth rate decreases in higher demands due to increased interference.

Besides, the D2C-FORAT outperforms its counterparts by the maximum of 17% (λ = 0.5)

and 21% (λ = 1) compared to the second-best technique. This improvement is the result

of policies enacted for Edge FBSs and our dynamic cluster size, resulting in better RA.

The throughput of the QFCRA and the LFCRA heavily depends on their cluster size, to

the extent that their throughput falls below the DRA when their cluster size is 6.

Interference Analysis

The interference between FBSs occurs whenever the overlapping FBSs use the same RBs

simultaneously. Considering the SINR on the interfered RBs, the interference can be so

weak, by which the throughput on those RBs does not decrease, or it can be so high,

which results in unusable RBs. As the FBS density and users’ demands increase, this

problem occurs more often which has a significant negative impact on the total network

throughput. In this chapter, we consider RBs on which the throughput is less than Rmax

as interfered RBs. Based on the interference intensity, the interfered RBs can be divided

into three categories including strong, moderate, and weak, for which the QPSK, 16-

QAM, and 64-QAM are respectively selected as the MCS.

Fig. 3.6 represents obtained results for the number of interfered RBs with their corre-

sponding categories. The QFCRA follows a conservative approach, and if any interfer-

ence occurs between two FBSs, one of them will be prevented from using that RB, which
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Figure 3.5: Total throughput analysis using different FBS density λ and users’ demands

results in no interference whenever the system is converged. However, this brings about

several issues, such as less throughput due to smaller RB reuse, as shown in the through-

put analysis. As it can be seen from Fig. 3.6a and Fig. 3.6b, as the users’ demands and

FBS density increase, the number of interfered RBs increases. These results show that

the DRA, due to its intrinsic random behavior and lack of coordination between FBSs,

suffers from a high number of interfered RBs, so that number of RBs that experiences

strong interference is also more than its counterparts. The performance of LFCRA heav-

ily depends on its cluster size, so that smaller cluster size incurs more interference, and

larger cluster size results in a reduced number of interfered RBs. In contrary to LFCRA,

as long as unallocated RBs are available, the D2C-FORAT achieves the minimum num-

ber of interfered RBs compared to its counterparts (Fig. 3.6a: users’ demands 1 to 3

RB, and Fig. 3.6b: users’ demands: 1 to 2 RBs), while it accepts some interference if
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(a) FBS density λ = 0.5

(b) FBS density λ = 1

Figure 3.6: Interference analysis using different FBS density λ and users’ demands
with three different interference levels including Weak, Moderate, and Strong

throughput is satisfying. Besides, it is worth mentioning that the D2C-FORAT obtains

the minimum number of strong interference, which has the most negative effect on the

total throughput.

Throughput Satisfaction Analysis

The Throughput Satisfaction Rate (TSR) is a quantitative parameter demonstrating the

satisfaction degree of each user. The TSR is defined as the ratio of the actual data rate of

one user to its requested data rate, as depicted in the following.

TSR(u) =
∑

k∈∆
a

fi
u,k×R

fi
u,k

demandu×Rmax
, ∀u ∈ U fi , ∀ fi ∈ F (3.21)
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Figure 3.7: Throughput Satisfaction Rate (TSR) using different FBS density λ and users’
demands



3.6 Performance Evaluation 123

Fig. 3.7 represents the Cumulative Distributed Function (CDF) of the TSR for differ-

ent values of λ and users’ demands. As it can be observed, increasing users’ demands in

all techniques leads to less satisfaction, however, the D2C-FORAT still outperforms its

counterparts. This latter is because our technique dynamically controls cluster size, so

that requested RBs can be completely assigned to end-users. Also, it mitigates the inter-

ference on those RBs by the policy-aware RA technique. In scenarios in which the num-

ber of RBs is greater than users’ demands, the clustering techniques with larger cluster

size incur less interference and better performance, however, as the users’ demands in-

crease the CHs are obliged to distribute the RBs between more users, and hence, the

TSR significantly decreases. This latter can be observed in Fig. 3.7 when users’ demands

increase from 2 RB (Fig. 3.7a and Fig. 3.7b), in which techniques with larger cluster size

are more efficient in terms of the TSR, to 4 RB (Fig. 3.7c and Fig. 3.7d) in which tech-

niques with smaller cluster size can better satisfy the end-users. Fig. 3.7a denotes that

more than 95% of the end-users have their TSR greater than 0.95 for D2C-FORAT, which

achieves 51% improvement compared to the second-best technique. Fig. 3.7b represents

that 59% of end-users have the TSR greater than 0.95, which improves the second-best

technique by 96%. Fig. 3.7c and Fig. 3.7d depict the TSR results whenever users’ de-

mands are 4 RB, in which the D2C-FORAT achieves 0.8 user satisfaction for more than

55% and 18% of end-users, respectively. These results demonstrate that our technique

improves second-best techniques in Fig. 3.7c and Fig. 3.7d by 67% and 97%, respectively.

Fairness Analysis

The Jain fairness index [189] is used to evaluate how fairly RBs are allocated between

different end-users, as expressed in the following:

Fairness =
(

N
∑

u=1
TSR(u))2

N×
N
∑

u=1
TSR(u)2

(3.22)

where N represents the total number of end-users in the system, and the maximum

value for fairness is equal to 1 when all RBs are fairly allocated between end-users.

As it can be seen from Fig. 3.8, as the users’ demands and the FBS density increase,
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Figure 3.8: Fairness analysis using different FBS density λ and users’ demands

the fairness decreases due to the increased number of interfered RBs. However, the

D2C-FORAT outperforms other techniques due to the policies enacted for Edge FBSs

and dynamic clustering that considers users’ demands for controlling cluster size. Be-

sides, the LFCRA obtains better results compared to the QFCRA because it improves the

management of inter-cluster interference, which results in less interference for the Edge

FBSs. Furthermore, the DRA outperforms the QFCRA, because all end-users in the DRA

receive RBs either interfered or non-interfered ones, while the QFCRA attempts to assign

only non-interfered RBs to end-users which results in unsatisfied end-users, specifically

end-users of the Edge FBSs.
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3.7 Summary

In this chapter, we proposed a distributed dynamic clustering-Fog driven RA technique,

called D2C-FORAT, to address the interference problem of Edge devices, and to increase

the total network throughput. Moreover, we used a hierarchical architecture, including

the GW, Fog servers, CHs, and CMs, among which the clustering and RA responsibili-

ties are distributed. This latter results in better scalability, helping our technique to be

efficiently run in sparse, dense, and ultra-dense networks. We proposed a distributed

dynamic clustering method, in which FBSs select CHs, which are responsible to manage

their corresponding cluster size based on the total demands of their CMs and available

RBs. Moreover, each CH is responsible for allocating the cluster RBs and notifying its

corresponding Fog server of the cluster’s parameters. Because inter-cluster interference

is a big issue in clustering techniques, which decreases the total throughput of the net-

work, we proposed a policy-aware Fog-driven RA method to reduce such interferences.

This method has three phases including graph formation, simplification, and relaxation

which are performed on the Fog servers located at the proximity of clusters. The out-

come of these phases is a set of policies for Edge FBSs of each cluster, by which the CH

can assign the RBs more efficiently and prevent severe inter-cluster interference. The ef-

fectiveness of the D2C-FORAT is analyzed through extensive experiments and compari-

son by state-of-the-art techniques in the literature. The obtained results demonstrate that

our proposed solution outperforms other existing techniques in terms of total network

throughput, user satisfaction, and fairness by up to 21%, 97%, and 10%, respectively.

This chapter presented a Fog-driven technique to improve the total throughput and

interference of the computing environment. In the next chapter, we study scheduling of

concurrent IoT applications to improve their execution cost.





Chapter 4

Batch Application Placement
Technique for Concurrent IoT

Applications

The placement of IoT applications in the Fog computing environment, in which several distributed

and heterogeneous Fog servers and centralized Cloud servers are available, is a challenging issue. In

this chapter, we propose a weighted cost model to minimize the execution time of IoT applications and

energy consumption of IoT devices in a computing environment with multiple IoT devices, multiple

Edge and Fog servers, and hybrid Cloud servers. Besides, a new application placement technique

based on the Memetic Algorithm is proposed to make batch application placement decisions for con-

current IoT applications. Due to the heterogeneity of IoT applications, we also propose a lightweight

pre-scheduling algorithm to maximize the number of parallel tasks for concurrent execution. Results

demonstrate that our technique significantly improves the weighted cost of executing IoT applications

compared to its counterparts by up to 65%.

4.1 Introduction

The number of IoT applications such as smart transportation, smart health-care, aug-

mented reality, and smart buildings requiring large amounts of computing and network

resources has dramatically increased [52]. Moreover, execution of such resource-hungry

applications requires a considerable amount of energy to be consumed, which signifi-

This chapter is derived from:

• Mohammad Goudarzi, Huaming Wu, Marimuthu Palaniswami, and Rajkumar Buyya, ”An Ap-
plication Placement Technique for Concurrent IoT Applications in Edge and Fog Computing Envi-
ronments”, IEEE Transactions on Mobile Computing (TMC), Volume 20, Number 4, Pages: 1298-1311,
ISSN: 1536-1233, IEEE Press, New York, USA, January 2020.

127



128 Batch Application Placement Technique for Concurrent IoT Applications

cantly affects the performance of IoT devices such as mobile devices and sensors, due to

their limited battery lifetime.

Since the Edge and Fog computing environments are replete with heterogeneous

computing resources, optimized placement of IoT applications with diverse resource re-

quirements on a set of suitable computing resources is an important and yet challenging

problem. There are several works that address the placement of a single IoT application

at a time in Edge and Fog computing Environments. However, placement of one IoT ap-

plication can affect the placement of other IoT applications as the amount of resources

dynamically change in Edge and Fog computing environments.

Therefore, in this chapter, we propose an efficient batch application placement tech-

nique to jointly optimize the execution time of IoT applications and energy consumption

of IoT devices in an environment with multiple heterogeneous computing resources (i.e.,

Edge, Fog, and Cloud servers).

The main contributions of this chapter are:

• Proposes a weighted cost model for application placement of multiple IoT devices

to minimize the execution time of IoT applications and energy consumption of IoT

devices.

• Puts forward a dynamic and lightweight pre-scheduling technique to maximize

the number of parallel tasks for execution. Considering the NP-Complete nature

of application placement in Fog computing environments, we propose an opti-

mized version of the Memetic Algorithm (MA) to achieve a well-suited solution in

a reasonable decision time.

• Proposes a fast failure recovery method to assign failed tasks to appropriate servers

in a timely manner.

The rest of the chapter is organized as follows. Relevant works of application placement

techniques in Edge and Fog computing environments are discussed in Section 4.2. Sec-

tion 4.3 presents the system model and problem formulation. Section 4.4 presents our

proposed applications placement technique. Section 4.5 reflects the simulation environ-

ment and the performance evaluation. Finally, Section 4.6 concludes the chapter.
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4.2 Related Work

In this section, related works for application placement techniques in Edge and Fog com-

puting environments are discussed, where Cloud and Fog servers work collaboratively

to satisfy the requirements of IoT applications. They are divided into independent and

dependent categories based on the dependency model of their IoT applications’ con-

stituent parts (e.g., tasks, modules). Each IoT application can be modeled as a set of

independent or dependent tasks. The dependent one refers to applications consisted of

several dependent tasks so that each new task runs only when its predecessor tasks are

completely performed. However, in the independent one, the applications’ tasks do not

have such constraints for execution.

4.2.1 Independent Tasks

Huang et al. [124] proposed a task placement algorithm where multiple mobile de-

vices offload their independent tasks to multiple Edge servers and one Cloud server.

In this technique, each mobile device decides whether each task should be offloaded or

not, and in case of offloading, which Edge or Cloud server is suited for the execution

of each task. An energy-aware cloudlet selection technique was proposed in [190] to

meet the latency requirement of incoming tasks from one IoT device. Haber et al. [129]

proposed an offloading algorithm deployed in the Cloud layer, aiming at minimizing

the energy consumption of several mobile devices while satisfying the latency require-

ments of mobile applications. It is obtained by optimizing mobile devices’ transmis-

sion power and the assigned server computation. An offloading algorithm based on

the Lyapunov optimization was proposed in [126] to reduce the execution time of IoT

applications by offloading the task to either the single Fog server or one Cloud server.

Mahmud et. al. [125] proposed a Quality of Experience (QoE)-aware application place-

ment technique in which independent tasks of IoT devices are placed in the Fog or Cloud

servers. Chen et al. [191] considered a multi-user environment with a single computing

access point and a remote Cloud server, in which the independent tasks of mobile users

can be processed locally, at the computing access point, or the Cloud server. Hong et

al. [92] proposed a game-theoretic approach for computation offloading, and a multi-
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hop cooperative-messaging mechanism for IoT devices. It considers that each IoT de-

vice decides either to forward its single task to the Fog or Cloud server if it has access to

wireless networks or to collaborate with other IoT devices that have access to wireless

networks for forwarding its task.

4.2.2 Dependent Tasks

In the dependent category, related works modeled their applications by Directed Acyclic

Graph (DAG), in which each vertex represents one task of the IoT application, and each

edge shows data flow (i.e., dependency) between two tasks.

Neto et al. [102] and Wu et al. [122] proposed a partitioning algorithm for a single

mobile device to offload their computation-intensive tasks to a single Edge or Cloud

server. The placement engine of these proposals is placed at the mobile device aiming

at finding a group of tasks for offloading, by which the execution time of mobile ap-

plication and energy consumption of mobile device become reduced. The main goal of

[192, 193] is to minimize the execution time of IoT applications in an environment in

which multiple Fog servers and a Cloud server are accessible for the application place-

ment. Lin et al. [192] considered only one mobile device in its system model for offload-

ing while Stavrinides et al. [193] attempted to place tasks of multiple users requiring

low communication overhead at the Cloud server and those tasks that have more com-

munication overhead at the Edge layer. Mahmud et al. [36] proposed a latency-aware

application placement policy in an environment with multiple Fog servers and a sin-

gle Cloud server. Although the above-mentioned techniques consider task placement

as their principal objective, Bi et al. [194] proposed a solution for joint optimization of

service caching placement and computation offloading.

The proposed placement engines in the above works made application placement

decisions for different users at different time-slots, or only consider a fraction of a whole

of each user’s tasks at each time slot. However, Xu et al. [123] proposed a batch task

placement based on a Genetic Algorithm (GA), in which mobile applications of multiple

users are forwarded to the single central Edge server for application placement decision.
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Table 4.1: A qualitative comparison of related works with ours

Techniques

IoT Application Properties Architectural Properties Placement Engine Properties

Model
Task

Number
Hetero

IoT Device Edge Layer Cloud Layer
Position

Batch
Placement

Decision
Parameters

Number
Request
Number

Fog
Number

Coop Hetero
Cloud

Number
Coop Hetero Time Energy Weighted

[124]

In
de

pe
nd

en
t

Multiple X Multiple Different Multiple × × Single × × IoT
device

No

X X X

[190] Single X Single Same Multiple × X Single × × Edge
Layer

X X ×

[129] Single X Multiple Same Multiple × × Single × × Cloud
Layer

X X X

[126] Single X Multiple Single × × Single × × Edge
Layer

X × ×

[125] Single X Multiple Same Multiple × X Single × × Edge
Layer

X × ×

[191] Multiple X Multiple Same Single × × Single × × Edge
Layer

X X X

[92] Single X Multiple Same Multiple X X Single × × Edge
Layer

X X X

[102]

D
ep

en
de

nt

Multiple X Single Same Single × Single × × IoT
Device

X X X

[122] Multiple X Single Same Single × Single × × IoT
Device

X X X

[193] Multiple X Single Same Multiple X X Single × × Edge
Layer

X × ×

[194] Multiple X Single Same Single × × × × X X X

[192] Multiple X Multiple Multiple × × Single × × Edge
Layer

X × ×

[36] Multiple X Multiple Different Multiple X X Single × × Edge
Layer

X × ×

[123] Multiple × Multiple Different Single × × Single × × Edge
Layer

Yes
X X X

Our
Technique

Multiple X Multiple Different Multiple X X Multiple X X
Edge
Layer

X X X

The abbreviated terms are as follows: Hetero: Heterogeneity, Coop: Cooperation

4.2.3 A Qualitative Comparison

Table 4.1 identifies and compares key elements of related works with ours in terms of

their IoT application, architectural, and placement engine properties. In the IoT appli-

cation section, the dependency model of each proposal is studied, which can be either

independent or dependent. Moreover, we study how each proposal modeled IoT appli-

cation in terms of the number of tasks and heterogeneity. This latter study demonstrates

whether IoT applications consist of homogeneous or heterogeneous tasks in terms of

their computation and data flow. In the architectural section, the attributes of IoT de-

vices, Fog/Edge servers, and Cloud servers are studied. For IoT devices, the overall

number of devices and their type of requests are identified. The different request num-

ber shows that each device has a different number of requests compared to other IoT

devices. In the Fog and Cloud layers, the number of Fog and Cloud servers, the coop-
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eration between different Fog/Cloud servers, and the heterogeneity in terms of servers’

specifications are identified, respectively. The position of the placement engine, the ca-

pability of batch placement, and decision parameters are also studied in the placement

engine section.

Considering application placement techniques proposed for Fog computing envi-

ronments, this chapter proposes a batch application placement technique for an envi-

ronment consisting of multiple devices in the IoT layer, multiple Fog/Edge servers in

the Edge layer, and multiple Cloud servers in the Cloud layer. To the best of our knowl-

edge, this is the only work that considers the aforementioned Fog computing environ-

ment and proposes a weighted cost model to jointly minimize the execution time of IoT

applications and energy consumption of IoT devices. Our weighted cost model not only

can be applied for our general Fog computing environment, but it also can be used for

simpler Fog computing environments with a single IoT device, single Fog server, single

Cloud server, or any combination thereof. In addition, it is important to note that the

IoT applications are considered as heterogeneous DAGs (i.e., workflows) with a differ-

ent number of tasks and data flows. Hence, we propose a lightweight pre-scheduling

algorithm to organize incoming tasks of different DAGs, so that the number of tasks

for parallel execution becomes maximized. Then, an optimized version of the MA is

proposed to perform application placement in a timely manner.

4.3 System Model and Problem Formulation

We consider a framework consisting of multiple IoT devices, multiple Fog (i.e., Edge)

servers, multiple Cloud servers, and brokers, in which IoT devices can locally exe-

cute their workflows (i.e., DAGs) or completely/partially place them on Cloud servers

and/or Fog servers for execution. Fig. 4.1 represents an overview of our system model.

In this system framework, each broker supports up to N IoT devices, which are dis-

tributed in its proximity. The broker (which can be a Fog server) receives workflows

from different IoT devices, and periodically makes task placement decisions based on

the requirements of IoT applications and the current status of the network. According

to the result of application placement decisions, each IoT device understands to which
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Figure 4.1: An overview of our system model

server each constituent part of its workflow should be sent, or it should be executed

locally on the IoT device.

4.3.1 Application Workflow

Each IoT application can be partitioned based on different levels of granularity such

as class and task, just to mention a few [195]. Without loss of generality, we represent

the application running on the nth IoT device as a DAG (i.e., workflow) of its tasks

Gn = (Vn, En), ∀n ∈ {1, 2, · · · , N}, where Vn = {vn,i|1 ≤ i ≤ |Vn|} denotes the set of

tasks running on the nth IoT device, and En = {en,i,j|vn,i, vn,j ∈ Vn, i 6= j} illustrates

the set of data flows between tasks. As an illustration, en,i,j represents the dependency
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between vn,i and vn,j of the application running on the nth IoT device.

Considering the number of instructions for each task vn,i, its corresponding weight is

represented as vw
n,i. Besides, the associated weight of each edge ew

n,i,j shows the amount of

data that the task vn,j receives as an input from vn,i. Since IoT applications are modeled

as DAGs, each task vn,i cannot be executed unless all its predecessor tasks, denoted as

P(vn,i) finish their execution.

4.3.2 Problem Formulation

We formulate task placement problem as an optimization problem aiming at minimizing

the overall execution time of IoT applications and energy consumption of IoT devices.

Since different servers are available to run each task vn,i, the set of all available

servers is represented as S with |S| = M. The Sy,z represents one server, in which y

represents the type of server (the IoT device (y = 0), Fog servers (y = 1), Cloud servers

(y = 2)) and z denotes that server’s index. The offloading configuration of the workflow

belonging to the nth IoT device is represented as Xn, and xn,i denotes the offloading

configuration for each task vn,i, which is obtained from the following criteria:

xn,i =



0, sy,z = s0,n,

1, sy,z ∈ {s1,1, s1,2, · · · , s1, f } |z| = f

2, sy,z ∈ {s2,1, s2,2, · · · , s2,c}, |z| = c

(4.1)

where xn,i = 0 depicts that the ith task is assigned to the nth IoT device (s0,n) for local

execution, and xn,i = 1 and xn,i = 2 denote that the ith task is assigned to one of the

Fog servers and Cloud servers, respectively, for the remote execution. Moreover, f and

c show the number of available Fog servers and Cloud servers respectively.

Weighted cost model

The goal of the task placement technique is to find the best possible configuration of

available servers for each IoT application so that the weighted cost of execution for each
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IoT device becomes minimized, as depicted in the following:

min
ψγ,ψθ∈[0,1]

Ψ(Xn), ∀n ∈ {1, 2, · · · , N} (4.2)

where

Ψ(Xn) = ψγ ×
Γ(Xn)

ΓLocn

+ ψθ ×
Θ(Xn)

ΘLocn

(4.3)

s.t.

C1 : VM f og,i ≤ C f og,i, ∀i ∈ {S1,1, · · · ,S1, f }

C2 : |xn,i| = 1, ∀n ∈ {1, 2, · · · , N}, 1 ≤ i ≤ |Vn|

C3 : Ψ(P(vn,i)) ≤ Ψ(P(vn,i) + vn,i)

where Γ(Xn), Θ(Xn), ΓLocn , and ΘLocn demonstrate the execution time, energy consump-

tion, local execution time and local energy consumption of the nth IoT device’s work-

flow, respectively. Besides, ψγ and ψθ are control parameters for execution time and

energy consumption, by which the weighted cost model can be tuned according to the

users’ requirements. Moreover, we assume that each task can be exactly assigned to one

Virtual Machine (VM) of one Fog or Cloud server. C1 denotes that the number of in-

stantiated VMs of the ith Fog server VM f og,i is less or equal to the maximum capacity

of that Fog server C f og,i. C2 represents that each task i belonging to the workflow of nth

IoT device can only be assigned to one server in each time slot. In addition, C3 indicates

that the predecessor tasks of vn,i should be executed before the execution of the task vn,i.

Execution time model

Considering the Eq. 4.3, the weighted cost optimization is equal to the execution time

model when ψγ = 1 and ψθ = 0.

The goal of execution time optimization model is to find the optimal configuration

of the application running on the nth IoT device so that the execution time of that ap-

plication decreases. The overall execution time of each candidate configuration can be

defined as the sum of latency in task offloading (Γlat
Xn

), the computing time of workflow’s
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tasks based on their assigned servers (Γexe
Xn

) and the data transmission time between each

pair of dependent tasks in each workflow (Γtra
Xn

), as depicted in the following:

Γ(Xn) = Γexe
Xn

+ Γlat
Xn

+ Γtra
Xn

(4.4)

The computing execution time that corresponds to the application running on the nth

IoT device is calculated by:

Γexe
Xn

= ∑
xn,i∈Xn

γexe
xn,i

(4.5)

where γexe
xn,i

shows the computing time of task vn,i, and is calculated based on its corre-

sponding assigned server from the following equation:

γexe
xn,i

=



vw
n,i

loccpu , xn,i = 0

vw
n,i

SF f×loccpu , xn,i = 1

vw
n,i

SFc×loccpu , xn,i = 2

(4.6)

where loccpu demonstrates the computing power of the IoT device, and SF f and SFc

denote the speedup factor of Fog servers and Cloud servers, respectively. The offloading

latency Γlat
Xn

of tasks corresponding to the nth IoT device is calculated based on tasks’

assigned servers:

Γlat
Xn

= ∑
xn,i∈Xn

γlat
xn,i

(4.7)

where γlat
xn,i

illustrates the offloading latency of task vn,i, and is calculated according to its

corresponding assigned server from the following equation:

γlat
xn,i

=



0, xn,i = 0

LLAN , xn,i = 1

LWAN , xn,i = 2

(4.8)

where LLAN and LWAN correspond to the latency of LAN and WAN respectively. The
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tasks’ transmission time of the workflow corresponding to the nth IoT device is calcu-

lated by:

Γtra
Xn

= ∑
en,i,j∈En

γtra
en,i,j

(4.9)

where the transmission time of each pair of dependent tasks vn,i and vn,j is calculated as

follows:

γtra
en,i,j

=



ew
n,i,j

BLAN
, CTi = CT1, CT3

ew
n,i,j

BWAN
, CTi = CT2, CT4

0, CTi = CT5

(4.10)

where BLAN and BWAN stand for the bandwidth (i.e., data rate) of LAN and WAN re-

spectively. The CTi represents possible transmission configuration for each edge en,i,j

according to the assigned servers of its tasks vn,i and vn,j to calculate transmission time.
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The possible transmission configurations are defined as:

CTi(ew
n,i,j) =



xn,i � xn,j = 0

& xn,i = 1 i = 1

& SI(vn,i)� SI(vn,j) 6= 0

xn,i � xn,j = 0

& xn,i = 2 i = 2

& SI(vn,i)� SI(vn,j) 6= 0

xn,i � xn,j = 1, i = 3

xn,i � xn,j > 1, i = 4

xn,i � xn,j = 0

& SI(vn,i)� SI(vn,j) = 0, i = 5

(4.11)

where � is XOR binary operation and SI(vn,i) is a function that returns the assigned

server’s index (i.e., z) of ith task belonging to the nth workflow. CT1 denotes that the in-

vocation is between two tasks vn,i and vn,j that are assigned to two different Fog servers,

and CT2 represents the configuration in which the two tasks run on two different Cloud

servers. The invocation between two tasks assigned to the IoT device and one of Fog

server is depicted in CT3. CT4 is used to show two different configurations. The first one

is whenever the two tasks are assigned to the IoT device and one of the Cloud servers,

while the second one illustrates that one task is assigned to one of the Cloud servers and
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the second task is assigned to one of the Fog servers. Finally, CT5 refers to the condition

that two tasks are assigned exactly to the same server, for which the transmission time

is equal to zero.

Energy consumption model

According to Eq. 4.2, the weighted cost optimization is equal to the energy consumption

model when ψγ = 0 and ψθ = 1. The energy consumption model aims at finding the

best-possible configuration of the application’s tasks to minimize the energy consump-

tion of the nth IoT device. The overall energy consumption of each candidate configura-

tion can be defined as the sum of energy consumed in task offloading (Θlat
Xn

), the energy

consumption for the computing of tasks (Θexe
Xn

), and the energy consumed for the data

transmission between each pair of dependent tasks (Θtra
Xn

) of that application, as depicted

in the following:

Θ(Xn) = Θexe
Xn

+ Θlat
Xn

+ Θtra
Xn

(4.12)

The amount of energy consumed to compute the application belonging to the nth IoT

device is defined as follows:

Θexe
Xn

= ∑
xn,i∈Xn

θexe
xn,i

(4.13)

where θexe
xn,i

represents the energy consumption required to compute the task vn,i, as cal-

culated in the following:

θexe
xn,i

=


γexe

xn,i
× Pcpu, xn,i = 0

γidle
xn,i
× Pidle, xn,i = 1, 2

(4.14)

where Pcpu is the CPU power of the IoT device on which the task vn,i runs. Since we only

consider the energy consumption from IoT device perspective, whenever each task is

offloaded to the Fog servers (xn,i = 1) or Cloud servers (xn,i = 2), the respective energy

consumption is equal to the idle time of the IoT device γidle
xn,i

multiplied to the power

consumption of that device in its idle mode Pidle.

The energy consumed to offload applications’ tasks belonging to the nth IoT device
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Θlat
Xn

is calculated by:

Θlat
Xn

= ∑
xn,i∈Xn

θlat
xn,i

(4.15)

where θlat
xn,i

stands for the offloading energy consumption of the task vn,i and is obtained

from:

θlat
xn,i

=


0, xn,i = 0

γlat
xn,i
× Pidle, xn,i = 1, 2

(4.16)

The transmission energy consumption Θtra
Xn

corresponding to the nth IoT device is ob-

tained from:

Θtra
Xn

= ∑
xn,i∈Xn

θtra
xn,i

(4.17)

where the transmission energy between each pair of dependent tasks vn,i and vn,j is

calculated as follows:

θtra
en,i,j

=



ew
n,i,j

BLAN
× Ptrans f er, CEi = CE1

ew
n,i,j

BWAN
× Ptrans f er, CEi = CE2

0, CEi = CE3

(4.18)

where the transmission power of the IoT device is denoted as Ptrans f er, and the CEi shows

transmission configuration for each edge en,i,j based on the assigned servers of its tasks

to calculate the transmission energy, which is calculated from:

CEi(ew
n,i,j) =



xn,i � xn,j = 1, i = 1

xn,i � xn,j = 2, i = 2

otherwise, i = 3

(4.19)

where CE1 denotes that the data flow is between two tasks vn,i and vn,j that are assigned

to the IoT device and Fog servers. Moreover, CE2 is used to represent the invocation
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between two tasks that are assigned to IoT device and Cloud servers. Because the energy

consumption is considered from the IoT device perspective, the transmission energy

consumption is equal to zero whenever one of the participating tasks in each edge ew
n,i,j

is not assigned to the IoT device, as represented in CE3.

4.4 Proposed Application Placement Technique

Our application placement technique is divided into three phases: pre-scheduling, batch

application placement, and failure recovery. In the pre-scheduling phase, an algorithm is

proposed by which brokers can organize the concurrent IoT devices’ workflows. Next,

we propose an optimized version of Memetic Algorithm (MA) for batch application

placement to minimize the weighted cost of each IoT device. Beside, to overcome any

potential failures in the runtime, we embed a lightweight failure recovery method in our

technique.

4.4.1 Pre-scheduling Phase

The broker receives concurrent workflows from IoT devices in its decision time-slot and

organizes them based on their respective dependencies. Also, it calculates the local exe-

cution time and energy consumption of IoT devices based on their respective workflows.

Workflows of IoT devices are heterogeneous in terms of the number and weight of

tasks, dependencies, and the amount of dataflow between each pair of dependent tasks.

Moreover, the order of execution of tasks in each workflow should be sorted so that a

new task vn,i cannot be executed unless all tasks in its P(vn,i) finish their execution.

Algorithmic process

Algorithm 4 depicts how the pre-scheduling phase organizes tasks of each workflow

and accordingly creates a list of schedules of concurrent workflows. In Algorithm 4,

for each workflow, the local execution time and energy consumption are calculated and

stored in LocTime and LocEnergy, respectively (lines 3 and 4). Since DAGs can have sev-

eral root vertices (i.e., source nodes), the RootFinder method finds all the root vertices of
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each DAG and stores them in Sourcen (line 5). This method checks whether the P(vn,i)

is equal to null or not for each task i in the nth workflow, and if it equals to null returns

that task as one source root. The SingleRootTrans f ormer method receives the WFn and

Sourcen and creates a new DAG, called DAG?
n, in which the workflow has only a sin-

gle source root (line 6). To obtain this, we create a dummy vertex (called DummyRootn)

and connect this vertex to all source vertices of Sourcen obtained from the original DAG.

This enables us to run Breadth-First-Search (BFS) algorithm over DAG?
n starting from the

DummyRoot, by which we can specify scheduling number for each vertex (i.e., BFS level

of each vertex) (line 7). The main outcome of the first loop (lines 2-8) of the algorithm is

providing a schedule number for tasks of each workflow by which the concurrent tasks

of each workflow are specified. Because our proposed batch application placement al-

gorithm concurrently decides for several workflows at each time slot, it is required to

combine these workflows based on their respective schedule number. To achieve this,

the algorithm iterates over all workflows so that tasks with same schedule number (ei-

ther from same or different workflows) are stored in the respective row of a 2D Arraylist

called FinalOrderedList. The get(x) and add(vn,i) methods are used to access a row in

the 2D Arraylist (i.e., one schedule), and to add a new entry to a list, respectively (line

12).

Example

Fig. 4.2 demonstrates how this pre-scheduling phase works. Fig. 4.2a represents two

workflows with five and eight vertices. The first workflow has one source vertex while

the second workflow has three source vertices (represented by gray color). After identi-

fying the source vertices, the SingleRootTrans f ormer method creates a DAG?
n with single

source vertex, as depicted in Fig. 4.2b. Next, the BFS algorithm is applied on the DAG?
n

to specify the schedule number for each task as depicted in Fig. 4.2c. This latter tech-

nique helps to identify how many tasks can be executed in parallel in each schedule.

When the schedule number of all tasks in all workflows are identified, the tasks with the

same schedule numbers are placed together in a 2D Arraylist (called FinalOrderedList)

as depicted in Fig. 4.2d.
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Figure 4.2: An example demonstrating the pre-scheduling phase
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Algorithm 4: Pre-scheduling phase
Input : WF: List of all workflows
Output : FinalOrderedList, LocTime, LocEnergy
/* N: Number of workflows, WFn: The nth workflow in the

WF, LocTime & LocEnergy: Lists storing local execution
time and energy consumption of workflows, FinalOrderedList:
A 2D Arraylist in which tasks in each row can be
executed in parallel */

1 N = |WF|
2 for n = 1 to N do
3 LocTime.add(CalLocalExeTime(WFn))
4 LocEnergy.add(CalLocalExeEnergy(WFn))
5 Sourcen = RootFinder(WFn)
6 DAG?

n = SingleRootTransformer(WFn, Sourcen)
7 BFS(DAG?

n, DummyRootn)
8 end
9 for n = 1 to N do

10 for i = 1 to |WFn| do
11 integer x = CheckOrderNumber(vn,i)
12 FinalOrderedList.get(x).add(vn,i)
13 end
14 end

4.4.2 Batch Application Placement Phase

We propose a batch application placement algorithm in which the MA is employed to

make placement decisions for tasks of each schedule. Because tasks in each schedule are

either independent tasks in one workflow or tasks from different workflows (which do

not have any dependency), they can be executed in parallel. An overview of the batch

application placement phase is presented in Algorithm 5. This phase receives the list of

all workflows WF and schedules FinalOrderedList as an input, and outputs the work-

flows’ configuration f inalCon f igs and the execution cost of all workflows f inalCost.

Considering the number of schedules, the Application Placement Memetic Algorithm

(APMA) is invoked to decide for tasks of the current schedule while considering the

server assignments of previous schedules (line 3). Since tasks in each schedule are

from one or several workflows, the ResultProcessor(MAResultList) method receives

tasks assignments of all schedules MAResultList, organize tasks assignments of each
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Algorithm 5: Batch task placement phase
Input : WF: The list of all workflows ,FinalOrderedList: The 2D Arraylist

containing all schedules
Output : f inalCon f igs, f inalCost
/* N: Number of workflows, WFn: The nth workflow, Q:

Number of all schedules, MAResultList: A global 2D list
container in which each row stores the offloading
configuration of one schedule, f inalCon f igs: A 2D
Arraylist container storing obtained severs’
configuration of each workflow, f inalCost: An array to
store the execution cost of each workflow */

1 MAResultList = null
2 for i = 1 to Q do
3 MAResult.get(i) = APMA(FinalOrderedList.get(i))
4 f inalCon f igs = ResultProcessor(MAResultList.get(i))
5 end
6 for n = 1 to N do
7 f inalCost[n] = CostCalculator( f inalCon f igs)
8 end

workflow, and stores them in a 2D Arraylist called f inalCon f igs so that each row rep-

resents one workflow (line 4). When task assignment of all schedules is finished, the

CostCalculator( f inalCon f igs) method calculates the execution cost of each workflow

based on the respective obtained configuration. As the main function of this phase is the

APMA, we illustrate how this algorithm works in detail in what follows.

Application Placement Memetic Algorithm (APMA)

The MA is algorithmic pairing of evolutionary-based search methods such as GA with

one or more refinement methods (i.e, local search, individual learning), used for differ-

ent types of optimization problems such as routing and scheduling [196]. In the MA,

each candidate solution is represented by an individual and the solution is extracted

from a set of candidate individuals called population.

We propose the APMA based on the GA functions, in which local search is ap-

plied to the selected individuals of each iteration. This approach helps the APMA con-

verge faster to the best-possible solution. In the APMA, each candidate configuration of
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Figure 4.3: An individual representing a sample server configuration for second sched-
ule of Fig. 4.2d

servers assigned to tasks of one schedule is encoded as an individual. The atomic part of

each individual is a gene which represents a task in a schedule and carries a tuple (x, y)

illustrating the type of assigned server x and the index of that server y. The values for

each tuple is derived from the Eq. 4.1 in which values for type and index of servers are

defined. Moreover, the length of individuals in each schedule depends on the number of

genes (i.e., tasks) on that schedule. A sample individual in our technique is depicted in

Fig. 4.3 representing a sample configuration for tasks in the second schedule of Fig. 4.2d.

The APMA is made up of five main steps called initialization, selection, crossover,

mutation, and local search. The first four steps are among population-based operations

used in GA while the local search step is used as the refinement method. Besides, the

utility of each candidate individual is evaluated by a fitness function enabling the APMA

to select the best individuals in each iteration. An overview of the APMA is presented

in Algorithm 6.

Initialization step

In this step, required parameters for the APMA including the maximum number of it-

erations I, population size PopSize, and individuals in the population are initialized.

Moreover, alongside with Original Population (OP), a new population is defined to en-

hance the diversity of solutions, called Diversity Population (DP). Since the main goal

of the APMA is to find the best-possible configuration of servers by which the local ex-
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Algorithm 6: An overview of APMA
Input : scheduleTasks: A set of tasks for one schedule
Output : selectedListop.get(0)
/* I:Maximum iteration number, selectedList: The best

individuals of respective population found in the in
each iteration */

1 selectedListop=null; selectedListdp=null
2 Initialization(scheduleTasks)
3 selectedListop=Selection(OP)
4 selectedListdp=Selection(DP)
5 for i=1 to I do
6 Crossover(selectedListop,selectedListdp)
7 Mutation(selectedListop,selectedListdp)
8 LocalSearch(selectedListop,selectedListdp)
9 selectedListop = selection(OP)

10 selectedListdp = selection(DP)
11 end

ecution cost decreases, a pre-defined individual is produced for the OP, in which tuple

values of all genes are set to their respective local servers (i.e., IoT devices). This reduces

the number of low utility individuals because those whose fitness values are worse than

the pre-defined individual are not selected in the subsequent iterations. The rest of the

individuals in the OP and individuals in the DP are generated randomly in the initial-

ization step.

Fitness function

The APMA uses two global and local fitness functions for OP, which are used to evaluate

the utility of each individual Fop
g (indv) (representing the utility of a servers’ configura-

tion for tasks of one schedule indv), and each task of one workflow on that schedule

Fop
l (vn,i) (representing the cumulative utility of the given task plus the utility of other

tasks in that workflow), respectively. The Fop
l (vn,i) receives a task vn,i and calculates the

local fitness value based on Eq. 4.2 with the assumption that the execution cost of unas-

signed tasks in one workflow is equal to zero. Moreover, Algorithm 7 demonstrates

how the global fitness of each individual Fop
g (indv) is calculated. The Fop

g (indv) is the
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sum of local fitness Fop
l (vn,i) of tasks on that schedule. However, due to the parallel exe-

cution of multiple tasks of one workflow in each schedule, the maximum of local fitness

Fop
l (vn,i) values of tasks belonging to the same workflow MaxLoc are first calculated

(line 1-11). The responsibility of finding tasks of the same workflow in one schedule is

handled by the ParallelTaskCheck method that stores parallel tasks of one workflow in

the parallelSet (line 3). Then, the local fitness of each task in the parallelSet is calculated

and the maximum local fitness of tasks belonging to that workflow is stored in MaxLoc

(line 4-10). Finally, the global fitness value gBest can be obtained by summation on all

values of MaxLoc, which stores the maximum local fitness of each workflow up to that

schedule (line 12-14). The principal goal of the diversity population (DP) is to diversify

Algorithm 7: Global fitness function of OP: Fop
g

Input : indv: An individual showing tasks of one schedule
Output : gBest
/* WF: Set of all workflows , parallelSet = A container to

store parallel tasks of one workflow, MaxLoc: A
container to store the maximum local fitness of each
workflow in the schedule, gBest: The global best fitness
value, N = |WF| */

1 for n=1 to N do
2 parallelSet = null
3 parallelSet = ParallelTaskCheck(indv, WFn)

4 MaxLoc[n] = Fop
l (parallelSet.get(1))

5 for i=1 to |parallelSet| do
6 tempMax = Fop

l (parallelSeti)
7 if tempMax >MaxLoc[n] then
8 MaxLoc[n] = tempMax
9 end

10 end
11 end
12 for i=1 to MaxLoc do
13 gBest = gBest + MaxLoc.get(i)
14 end

the individuals in the APMA so that the probability of getting stuck in local optimum

decreases. Hence, the fitness function of DP, Fdp
g (indv), is different from the OP and is
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calculated in what follows:

Fdp
g (indvdp

r ) =
PopSize

∑
i=1

H(indvop
i , indvdp

r ) (4.20)

where PopSize represents the population size of OP and DP in the APMA. Individual of

OP and DP are displayed by indvop
i and indvdp

r , respectively. Besides, H(indvop
i , indvdp

r )

is the Hamming distance function that calculates the difference between individuals

received as its arguments in terms of assigned servers to their tasks, and is defined as:

H(indvop
i , indvdp

r ) =
f

∑
k=1

d f (4.21)

where f displays the size of that individual (i.e., schedule). In Eqs. 4.20 and 4.21, to

calculate the fitness of one individual of DP, we calculate its difference by all individuals

in the OP, and the individual with a higher difference receives better fitness value. This

helps to maintain individuals with a higher difference in the DP that better diversify the

individuals in the APMA. Since different type of servers (i.e., IoT, Fog, and Cloud) with

different number of servers in each type (i.e., server index) are considered in the system

model, a diversity factor d f is defined which describes the fitness of each task according

to the type and index of its assigned server. d f is obtained from what follows:

d f =



2, sgn(|ST(indvop
i,k)− ST(indvdp

r,k)|) = 1

sgn(|ST(indvop
i,k)− ST(indvdp

r,k)|) = 0

1, &

sgn(|SI(indvop
i,k)− SI(indvdp

r,k)|) = 1

sgn(|ST(indvop
i,k)− ST(indvdp

r,k)|) = 0

0, &

sgn(|SI(indvop
i,k)− SI(indvdp

r,k)|) = 0

(4.22)
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where the kth task (i.e., gene) on those individuals are depicted as indvop
i,k and indvdp

r,k,

respectively. sgn is the symbolic function, which is defined as:

sgn(|x− y|) =
{ 0, x = y

1, x 6= y

(4.23)

According to Eq. 4.22, if the server type of each task in the DP (i.e., ST(indvdp
r,k)) is differ-

ent from the server type of corresponding task in an individual of OP (i.e., ST(indvop
i,k)),

it receives higher fitness value. However, in condition that the server types of these tasks

are equal, the d f is set to 1. Moreover, if the two tasks are assigned to exactly one server

(i.e., same server type and server index), the fitness value for that task in the DP is equal

to zero.

Selection step

The goal of selection is to choose the high utility individuals from both OP and DP based

on their respective fitness functions for next iterations. To achieve this, the individuals

of OP and DP are sorted based on their respective fitness functions and the top three of

individuals plus one random individual from each population are selected and stored

in the selectedListop and selectedListdp, respectively.

Crossover and Mutation steps

The goal of crossover step is to generate new individuals (called offspring) by a combi-

nation of individuals selected in the selection step (called parents). The APMA applies a

two-point crossover operation to each pair of selected parents and creates two offspring

from them. In each iteration, the total number of new offspring for each population is

calculated based on the following equation:

o f f springNumber =
n!

(n− k)!
, k = 2 (4.24)
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In the two-point crossover, two crossover points are randomly selected from the par-

ents. Then, genes in between the two crossover points are exchanged between the par-

ent individuals while the rest remain unchanged. Since the APMA uses two populations

OP and DP, the crossover between individuals of each population is called inbreeding,

while the crossover between individuals of different populations is called crossbreed-

ing. The crossbreeding provides diversity in individuals which helps to avoid local op-

timal values with higher probability. Besides, the outcomes of crossbreeding are stored

in selected list of both populations selectedListop, selectedListdp, while the results of in-

breedings are only stored in the selected list of respective populations.

In the APMA, the mutation function, based on the pre-defined probability, modifies

several genes of offspring in hope of generating individuals with higher utility.

Local search step

Considering the fact that crossover points and genes for the mutation are selected ran-

domly, a new function called local search is defined which works based on the local fit-

ness function of the OP (Fop
l (vn,i)). It is worth mentioning that the randomness provided

by the crossover function and mutation is essential since it provides the opportunity to

jump out from local optimal points with a higher probability. The local search function,

alongside with those random functions, leads to faster convergence to the global opti-

mal solution. Algorithm 8 demonstrates the process of local search step. Although the

local search function increases the probability to converge faster to the global optimal

solutions, two problems may occur. First, if the local search functions are used solely,

the probability of getting stuck in the local optimal points increases. Second, for prob-

lems with a large solution space, the local search function requires a significant amount

of time to visit the search space. Hence, these two factors should be considered while

designing a local search function in the APMA. To address the first issue, the crossover

and mutation functions which provide randomness are kept in the APMA. Moreover,

the diversity population DP is created which ensures diversity in each iteration. To ben-

efit from the local search function while decreasing its searching time, we reduce the

search space for local search by only considering the individuals in the selected list of
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Algorithm 8: Local search step

Input : selectedListop: Selected list of the OP, selectedListdp: Selected list of
the DP

/* tempList: A temporary list container storing the
best-found tuple values for each gene in the individual

*/
1 size=|selectedListop|
2 tempList=setList(MAXINT)
3 for i=1 to |indv| do
4 for j=1 to size do

% j iterates over |selectedListop|
5 if Fop

l (indvop
j,i ) < tempList.get(i) then

6 tempList[i]=Fop
l (indvop

j,i )

7 end
8 end
9 end

10 selectedListop.add(CreateNewIndv(tempList.get(i)))
11 UpdatePop(OP,selectedListop)
12 UpdatePop(DP,selectedListdp)

OP (i.e., selectedListop) (line 1). The setList(MAXINT) initializes the tempList with in-

finite value for all its indexes. Considering individuals in the selectedListop, genes with

the same index number are evaluated in terms of their local fitness values Fop
l (indvop

j,i )

and best genes are selected and stored in the respective index number of tempList (line

3-9). Since the fitness function is defined according to the execution cost, the less fit-

ness value means better assignment (line 5). Afterward, a new individual is created and

stored in the selectedListop (line 10). Finally, the updated selectedListop in the local search

step and the selectedListdp are then combined with the OP and DP respectively, and top

individuals of each population (up to the PopSize) are selected for the populations of the

next iteration (line 11-12).

Whenever the APMA reaches its stopping criteria, the best individual of the OP

stored in selectedListop.get(0) is returned as the result of the APMA.
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4.4.3 Failure Recovery Phase

Failures can happen in any systems, and hence, providing an efficient failure recovery

method is of paramount importance. In our system, brokers always keep records of free

servers and check whether they are planned to perform a task in the near future or not.

Besides, considering the assigned server to each task, they estimate the completion cost

of each task based on its local fitness value Fop
l (vn,i). So, if the execution of any tasks

fails, the failure recovery method is called to select a surrogate server for that task. The

failure recovery method receives the list of current free servers (including IoT devices)

and failed task as inputs. Then, it calculates the local fitness value Fop
l (vn,i) of those tasks

for free servers. Finally, tasks will be forwarded to the server with the least Fop
l (vn,i) for

the execution.

4.4.4 Complexity Analysis

The Time Complexity (TC) of our technique depends on its three phases. We consider

the number of incoming workflows to the broker as N and the maximum number of

tasks for all workflows as L. The most time-consuming part in the pre-scheduling phase

(Algorithm 4) is the BFS which requires O(L+ |E|) time to visit all tasks of one workflow

in which |E| represents the number of data flows. In the dense DAG, the |E| = O(L2).

Hence, the TC of the pre-scheduling phase at the worst case is of O(N× L2). In addition,

in the best-case scenario, if we assume N = 1, and |E| = O(L) for sparse DAGs, the TC

is of O(L).

The batch task placement phase (Algorithm 5) calls the APMA (Algorithm 6) Q

times where Q represents the number of schedules. To calculate the TC of the sec-

ond phase, we ignore the iteration size I and the population size popSize of the APMA

since they are constant values. In the APMA, the local fitness function Fop
l (vn,i) and

ParallelTaskCheck which are invoked from the global fitness function (Algorithm 7)

are the most repeated functions, defining the TC of the batch application placement

phase. The TC of ParallelTaskCheck depends on the size of indv which at most can be

N × (L − 1) in the case that each workflow has L − 1 parallel tasks in one schedule.

Hence, the TC of parallelTaskCheck at the worst case is of O(Q × N2 × L). The maxi-
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mum length of parallelSet (line 5 of Algorithm 7) is L − 1, and hence, the local fitness

function Fop
l (vn,i) is called Q × N × (L − 1) times. Moreover, the instructions in the

Fop
l (vn,i) at most can be executed L times since the local fitness function only considers

tasks of one workflow which are at most L. Finally, the TC of the batch task placement

phase (Algorithm 5) at the worst case is of O(Q× (N × L2 + N2 × L)). In addition, in

the best-case scenario, if we assume N = 1, the TC is of O(Q× L2).

The TC of the failure recovery phase depends on the TC of local fitness function

Fop
l (vn,i) which is of O(L), and the number of free servers which at most is equal to all

available servers in the system M. Hence the TC of this phase at the worst case is of

O(M× L). In addition, in the best-case scenario, no failure happens in the system.

Considering that in all cases 2 ≤ Q, the TC of our technique at the worst case is

polynomial and is represented as O(Q(NL2 + N2L) + ML). Besides, in the best-case

scenario, where N = 1, Q = 2, and no failures occur in the system, the TC is of O(L2).

4.5 Performance Evaluation

In this section, the system setup and parameters, and detailed performance analysis of

our technique in comparison to its counterparts (especially [123]) are provided.

4.5.1 System Setup and Parameters

In our experiments, all techniques are implemented and evaluated using iFogSim sim-

ulator [26]. We used two types of workflows, namely, real workflows of applications

and synthetic workflows. For the real workflows, we used the DAGs extracted from the

face recognition application [122] (Work f low1) and the QR code recognition application

[197] (Work f low2). Moreover, to consider other possible forms of workflows, several

synthetic workflows are generated (Work f low3 to Work f low6). We consider an envi-

ronment in which six IoT devices are available and each IoT device has one specific

workflow from Work f low1 to Work f low6. Each group of six IoT devices is connected to

one Fog broker, and Fog brokers have access to six Fog servers and three Cloud servers.

In this setup, each Fog server has three VMs while each Cloud server is assumed to
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have 16 VMs. The computing power of IoT devices is considered as 500 MIPS [123] and

their power consumption in processing and idle states are 0.9W and 0.3W respectively.

Besides, the transmission power consumption of IoT devices is 1.3W [198]. We also as-

sume that the computing power of each VM of Fog servers is 6 or 8 times more than IoT

devices [123, 199] while the computing power of each VM of Cloud servers are 10 or 12

times more than IoT devices [123]. The summary of our evaluation parameters and their

respective values is presented in Table 4.2.

Table 4.2: Evaluation parameters

Evaluation Parameters Value
Number of IoT devices 6
Number of Fog/Edge servers 6
Number of Cloud servers 3
Bandwidth of LAN (2000,4000) KB/s
Bandwidth of WAN (500,1000) KB/s
Delay of LAN 0.5 ms
Delay of WAN 30 ms
Computing power of IoT devices 500 MIPS
Speedup Factor of Fog/Edge Servers’ VMs (6, 8)
Speedup Factor of Cloud Servers’ VMs (10, 12)
Idle Power Consumption of IoT device 0.3 W
CPU power of IoT devices 0.9 W
Transmission Power of IoT devices 1.3 W

4.5.2 Performance Study

We employed three quantitative parameters including execution time, energy consump-

tion, and weighted cost to comprehensively study the behavior of our technique in dif-

ferent experiments. Five experiments are conducted to analyze the efficiency of tech-

niques in terms of various bandwidths, different iteration sizes, techniques’ decision

times, failure recovery, and system size analysis. Both ψγ and ψθ are set to 0.5 meaning

that the importance of execution time and energy consumption is equal in the results.

However, these parameters can be adjusted based on the users’ requirements and net-

work conditions. To analyze the efficiency of our technique, the following methods are

implemented for comparisons:
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• Local: In this method, all tasks of workflows are executed locally on their respec-

tive IoT devices, and hence, no parallel execution of tasks can be performed for

workflows. The results of this method can be used as a reference point to analyze

the gain of application placement techniques.

• Only Edge: In this method, all tasks of workflows are offloaded to the Fog/Edge

servers in the Edge layer for the execution. If the VMs of all servers are full and

there is no free VMs, the remaining tasks have to wait until free computing re-

sources become available.

• Only Cloud: In this method, all tasks of workflows are executed on the Cloud

servers.

• COM2019: To the best of our knowledge, there is no work considering batch appli-

cation placement in a scenario with multiple IoT devices, multiple Fog servers, and

multiple Cloud servers. Therefore, we updated the fitness function and chromo-

some structure of the [123], which only consider single Fog server and single Cloud

server, to become compatible with our system model. Afterward, the efficiency of

its heuristics and searching methods are compared with the other techniques.

• ULOOF: This is the extended version of user level online offloading technique

[102], so that it can consider scenarios with multiples Cloud and Fog/Edge server

for task placement.

The obtained results of each workflow are the average of 10,000 runs with a 95% confi-

dence interval.

Bandwidth Analysis

In this experiment, we study the behavior of techniques in various bandwidth values

as depicted in Fig. 4.4 and Fig. 4.5. The maximum iteration size I and population size

PopSize are set to 100 and 20, respectively.

Fig. 4.4 and Fig. 4.5 show that as the bandwidth increases, the execution time, en-

ergy consumption, and weighted cost of workflows decrease, meaning better applica-

tion placement gain in comparison to local execution of workflows. Moreover, in most
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Figure 4.4: Execution cost of workflows when bandwidth values are (LAN:2000 KB/s,
WAN:500 KB/s)

of cases, the only Edge method outperforms the only Cloud because the Fog servers are

distributed at the proximity of IoT devices and can be accessed by higher Bandwidth
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Figure 4.5: Execution cost of workflows when bandwidth values are (LAN: 4000 KB/s,
WAN: 1000 KB/s)

and less latency. However, since the resources of Fog servers are limited compared to

Cloud servers, it cannot obtain the best-possible outcome. This is why the COM2019
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and the ULOOF obtain better results in most scenarios than only Cloud and only Edge

methods. They use the resources of Cloud and Fog servers simultaneously, resulting in

the parallelization of more tasks. As it can be seen, our proposed technique is superior to

all other methods due to two important reasons. First, similar to the COM2019 and the

ULOOF, it utilizes the resources of Fog and Cloud servers simultaneously. Second, due

to its local fitness function, local search, and the diversity provided by the DP, it stays

away from local optimal values with higher probability, converges faster to the optimal

solution, and hence, outperforms the COM2019 and the ULOOF.

It is worth mentioning that in some cases such as Work f low5 in Fig. 4.5b, the weighted

cost of the only Cloud method is less than the local execution, however, its execution

time in Fig. 4.4a is far more than the local execution. This is because the ψγ and ψθ

are set to 0.5, which give equal importance to execution time and energy consumption.

Therefore, due to lower value for the energy consumption in this workflow compared

to its obtained execution time, the weighted cost shows low gain for the task placement.

Maximum iteration number analysis

One of the important parameters for comparing evolutionary application placement

techniques is the maximum iteration number, through which their convergence speed to

the optimal solution can be evaluated. In this experiment, the performance of COM2019

and our technique are studied. Since the solution of the local execution, only Edge, only

Cloud, and ULOOF methods do not change in different iterations, the obtained results of

these methods are just depicted to better understand the efficiency of other techniques.

For this experiment, the PopSize, the LAN, and WAN bandwidths are set to 20, 2000

KB/s and 500 KB/s, respectively.

It can be seen from Fig. 4.6 that the increase in maximum number of iterations I

leads to better solutions for both our technique and the COM2019 for all workflows in

comparison to the ULOOF, local, only Edge, and only Cloud methods. However, our

technique converges to the better solution in a smaller number of iteration compared to

the COM2019. The Fig. 4.6a shows that the obtained results of our technique in I = 50

for all workflows outperform the obtained results of the COM2019 even at I = 200. This
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Table 4.3: Decision time analysis

Decision

Time
Technique

Workflow Execution Time Result

WF1 WF2 WF3 WF4 WF5 WF6

100 ms
Proposed 2.412 2.467 2.758 3.638 3.837 1.649

COM2019 4.333 2.917 3.422 6.276 6.526 3.09

200 ms
Proposed 2.345 2.397 2.610 3.430 3.384 1.446

COM2019 4.073 2.707 2.984 5.344 5.109 2.529

300 ms
Proposed 2.288 2.302 2.455 2.869 3.362 1.344

COM2019 3.656 2.494 2.868 4.388 4.709 2.746

400 ms
Proposed 2.229 2.204 2.403 2.587 2.870 1.304

COM2019 3.623 2.445 2.753 3.663 4.295 2.523

trend can also be seen in Fig. 4.6c for weighted cost of execution, while in Fig. 4.6b the

obtained results of the COM2019 and our technique are closer to each other. It is im-

portant to note that although better solutions can be found by increasing the maximum

number of iterations (if the techniques do not get stuck in the local optimal points), the

decision time of algorithms also increases that can be critical for some of workflows,

especially for latency-sensitive ones.

Decision time analysis

This experiment analyzes the efficiency of each technique based on the decision time

required to obtain a well-suited solution. Although application placement algorithms

offer server configurations by which the execution time and energy consumption of IoT

applications can be reduced, the time that they spend to reach that solution is also impor-

tant. This is mainly because obtaining good server configurations for IoT applications

in a long period of time can negatively affect the execution time requirements of IoT

applications. Another important reason elaborating the importance of the decision time

analysis, especially for evolutionary algorithms, is that only iteration size analysis can-

not solely judge the efficiency of one application placement technique. This is because

one technique can reach to better solutions in a small number of iterations compared to

its counterparts, however, the time spent on each iteration may be far more than other

techniques resulting in longer decision time. Hence, although the maximum iteration
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Figure 4.6: Execution cost of workflows with different maximum iteration number val-
ues when (LAN: 2000 KB/s, WAN: 500 KB/s)

size analysis is required, the decision time analysis acts as a supplementary analysis to

ensure the efficiency of one technique. In this experiment, the population size PopSize is
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set to 20, and the LAN and WAN bandwidths are 2000 KB/s and 500 KB/s, respectively.

Table 4.3 represents obtained execution times of our proposed solution and COM2019

for four different decision times. Since the execution time result of the ULOOF does not

change in different decision times, its respective results are not presented in Table 4.3,

however, its average decision time is roughly 30 ms. As the decision time of techniques

increases from 100 ms to 400 ms, the execution time of techniques decreases meaning

that the higher utility results are obtained. The obtained results of our solution grad-

ually decrease from 100 ms to 400 ms, while the results of COM2019 has a significant

decreasing trend in the range of 100-200 ms and 200-300 ms, and gradually decrease be-

tween 300-400 ms, which means that the results of COM2019 approximately converged

at 400 ms. It can be clearly seen that our technique not only provides better values com-

pared to the COM2019 in the equivalent decision time, but its results at 100 ms also

outperform the results of the COM2019 at 400 ms. This demonstrates that, regardless of

number of iterations, our technique converges faster to the optimal solutions.

Failure recovery analysis

This experiment analyzes the effect of failure recovery method in application placement

techniques. Since the COM2019 and ULOOF do not have any failure recovery method,

we present results of our technique with failure recovery mode (FR Mode) when the

probability of failure occurrence is 5% in comparison to the local execution, as depicted

in Table 4.4. In this experiment, the maximum iteration size I is equal to 100 and values

of the rest of parameters are set as same as parameters in decision time analysis.

Table 4.4 shows that obtained results of our technique with FR mode still outperform

results of local execution for all workflows and achieve offloading gain. In techniques ig-

noring failure recovery in their consideration, failed tasks result in incomplete execution

of workflows due to dependencies among tasks of one workflow. However, our tech-

nique, by accepting a small overhead of failure recovery phase, can achieve a reasonable

gain in comparison to local execution.
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Table 4.4: Failure recovery analysis

Technique
Workflow Execution Time Results

WF1 WF2 WF3 WF4 WF5 WF6
Proposed

(FR Mode)
2.7132 2.6243 2.8642 3.4125 3.6321 1.4685

Local 6.4354 10.031 5.5194 8.9654 6.0520 8.0180

System size analysis

In this experiment, we analyze the effect of system size on different application place-

ment techniques. In our system, each Fog broker makes application placement decisions

for its respective IoT devices. Hence, to analyze the performance of our proposed tech-

nique, we increase the number of IoT devices and Fog servers per each Fog broker from

6 to 24 by the step of 6. Moreover, in this experiment, we use the same workflows as

the previous experiments. In addition, the LAN, and WAN bandwidths are set to 2000

KB/s and 500 KB/s, respectively, and the rest of parameters are as the same as values of

Table 4.2.

The Fig. 4.7 shows the result of Cumulative Execution Time (CET), Cumulative En-

ergy Consumption (CEC), and Cumulative Weighted Cost (CWC) when different num-

bers of IoT devices are connected to one Fog broker. The term cumulative refers to the

aggregate execution cost of all IoT devices (e.g., the CET shows the aggregate execution

time of all IoT devices in scenarios with different number of IoT devices). In Fig. 4.7, the

CET, CEC, and CWC increase as the number of IoT devices increases. In all scenarios,

the CET, CEC, and CWC of all methods are lower than the local execution cost, however,

our proposed technique outperforms other methods in all scenarios and results in lower

cost. In addition, the performance of the ULOOF and COM2019 is roughly the same in

scenarios with six IoT devices, however the ULOOF shows better performance for the

rest of scenarios. This is because ULOOF is independent of maximum number of itera-

tion while the performance of the COM2019 largely depends on the maximum number

of iterations.
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Figure 4.7: System size analysis with different number of IoT devices per Fog broker
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4.6 Summary

We proposed a weighted cost model for optimizing the execution time and energy con-

sumption of IoT devices in a heterogeneous computing environment, in which multiple

IoT devices, multiple Fog servers, and multiple Cloud servers are available. We also

proposed a batch application placement technique based on the Memetic Algorithm to

efficiently place tasks of different workflows on appropriate servers in a timely manner.

Besides, a light-weight failure recovery technique is proposed to overcome the poten-

tial failures in the execution of tasks in runtime. The effectiveness of our technique is

analyzed through extensive experiments and comparisons by the state-of-the-art tech-

niques in the literature. The obtained results demonstrate that our technique improves

its counterparts by 65% and 51% in terms of weighted cost in bandwidth analysis and

execution time in decision time analysis, respectively. The performance results demon-

strate that our technique achieves up to 65% improvement over existing counterparts in

terms of the weighted cost.

This chapter proposed a technique for batch placement of IoT applications. In the

next chapter, we investigate the scheduling and migration of real-time IoT applications

to support their smooth execution for moving IoT devices.





Chapter 5

Real-time Application Placement and
Migration Management Techniques

The execution of real-time IoT applications exclusively on one Fog/Edge server may not be always

feasible due to limited resources, while the execution of IoT applications on different servers requires

further collaboration and management among servers. Moreover, considering user mobility, some

modules of each IoT application may require migration to other servers for execution, leading to

service interruption and extra execution costs. In this chapter, a new weighted cost model for hierar-

chical Fog computing environments is proposed to minimize the cost of running IoT applications and

potential migrations. Besides, this chapter puts forward a dynamic distributed clustering technique

to enable the collaborative execution of application modules. Moreover, application placement and

migration management techniques are proposed to minimize the overall cost of executing IoT appli-

cations. The performance results show that our technique significantly improves its counterparts in

placement deployment time, average execution cost, and the total number of migrations.

5.1 Introduction

Real-time IoT applications can be modeled as a set of lightweight and interdependent

application modules in Fog computing environments so that such application modules

alongside their allocated resources form the data processing elements of various IoT ap-

plications [36, 200]. When the number of IoT applications increases, more requests are

This chapter is derived from:

• Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”A Distributed Application
Placement and Migration Management Techniques for Edge and Fog Computing Environments”,
Proceedings of the 16th Conference on Computer Science and Intelligent Systems (FedCSIS), IEEE Press,
Pages: 37-56, Online, Poland, September 2-5, 2021.
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forwarded to Fog Servers (FSs) that may overload them. Hence, a dynamic applica-

tion placement technique is required to efficiently place interdependent modules of IoT

applications on remote servers while meeting their requirements.

Alongside the importance of suitable application placement techniques, there are yet

several issues to be addressed. The coverage ranges of lower-level FSs are limited, and

IoT users have different mobility patterns. Besides, interdependent modules of each IoT

application may be deployed on several FSs. Hence, as the IoT user moves towards its

destination, the application response time and IoT device energy consumption can be

negatively affected [81]. Therefore, the migration of interdependent modules of each

application among FSs, which incurs service interruption and additional cost, is an im-

portant and yet a challenging issue. Several migration techniques decide when, how,

and where application modules can migrate when IoT users change their location in

the Fog/Edge computing environments, such as [1, 135, 201, 202]. However, these tech-

niques either focus on the migration of a single application module without considering

other deployed modules [81] or consider an IoT application as a set of independent ap-

plication modules. An IoT application may consist of several interdependent modules,

and the migration technique should consider the configuration of all interdependent

modules when an IoT user moves towards its destination. Hence, the migration of IoT

applications, consisting of several interdependent modules, is an important challenge to

be addressed, especially in hierarchical Fog computing environments in which modules

may be placed on different hierarchical levels.

Also, in Fog computing, there are several studies that assume the application place-

ment and migration management engines (i.e., decision engines) have a global view

about topology and resources of all FSs and CSs [136, 203], while there are other stud-

ies that assume decision engines only have a local view about resources and topology

of servers in their proximity [26, 32, 199]. In these latter techniques, the decision en-

gines act in a distributed manner so that each FS that receives an application placement

and/or migration request try to use the available resources in its proximity (which can

be accessed with lower latency) to place/migrate the application modules as much as

possible. However, if there are no available resources, the rest of the placement and

migration will be handled by higher-level FSs in the hierarchy. Considering communi-
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cation with higher-level FSs incurs higher latency compared to communication among

FSs at the same hierarchical level, the clustering of FSs (if it is possible) at the same

hierarchical level can provide sufficient resources (with less latency in comparison to

higher-level FSs) to serve real-time IoT applications and reduce the amount of interac-

tions with higher-level FSs.

In this chapter, we address these issues and propose distributed application place-

ment and migration management techniques to satisfy the requirements of real-time IoT

applications while users move. The main contributions of this chapter are:

• Proposes a new weighted cost model based on IoT applications’ response time

and IoT devices’ energy consumption for application placement and migration of

IoT devices in hierarchical Fog/Edge computing environments to minimize cost

of running real-time IoT applications.

• Puts forward a dynamic and distributed clustering technique to form clusters of

FSs at the same hierarchical levels so that such servers can collaboratively handle

IoT application requirements with less execution cost.

• Considering the NP-Complete nature of application placement and migration prob-

lems in Fog/Edge computing environments, distributed application placement

and migration management techniques are proposed to place/migrate modules

of real-time applications on different levels of hierarchical architecture based on

their requirements.

The rest of the chapter is organized as follows. In Section 5.2, related researches are

reviewed. The system model and problem formulations are presented in Section 5.3.

Section 5.4 presents the proposed distributed clustering, application placement, and mi-

gration management techniques. The performance of our technique is evaluated in Sec-

tion 5.5. Finally, Section 5.6 concludes the chapter.

5.2 Related work

In this section, related works that address both application placement and mobility is-

sues at the same time as their main challenges, in the context of Edge/Fog computing,
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are studied. These works are categorized into independent and dependent categories

based on the dependency mode of their applications’ granularity (e.g., modules). In the

dependent category, constituent parts of IoT applications (i.e., modules) can be executed

only when their predecessor modules complete their execution, while IoT applications

that are modeled as a set of independent modules do not have this constraint.

5.2.1 Edge Computing

In the independent category, Wang et al. [87] formulated service migration as a distance-

based Markov Decision Process (MDP), which considers the distance between an IoT

user and service provider as its main parameter. Then, they proposed a numerical tech-

nique to minimize the migration cost of users. Wang et al. [134] and Yang et al [139] con-

sidered deterministic mobility conditions, in which the potential paths between source

and destination are priori-known, and proposed placement techniques to minimize the

application delay. Since paths and available Edge devices are priori-known, as the IoT

user moves, the current in-contact Edge device can send the required information to the

next Edge device. Ouyang et al. [135] proposed an Edge-centric application placement

and mobility management technique that are executed on the network operator and

one-hop Edge devices respectively. They proposed a distributed approximation scheme

based on the best response update technique to optimize the mobile Edge service perfor-

mance. Liu et al. [138] proposed a mobility-aware offloading and migration technique

to maximize the total revenue of IoT devices by reducing the probability of migration.

Zhu et al. [141] proposed a mobility-aware application placement in vehicular scenarios

with constraints on service latency and quality loss. In this technique, some of the vehi-

cles generate tasks while other vehicles provide computing services as remote servers.

Zhang et al. [83] proposed a deep reinforcement technique to minimize the delay of

IoT tasks. Yu et al. [204] proposed a technique to minimize the delay of tasks while

satisfying the energy consumption of a single IoT user moving among Edge servers.

In the dependent category, Sun et al. [205] and Qi et al. [140] proposed a mobility-

aware application placement technique in which placement decision engines run on

IoT devices. The authors of [205] considered a single IoT device and proposed an IoT-
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centric energy-aware mobility management technique to minimize the application delay

while authors of [140] proposed an Edge-centric and knowledge-driven online learning

method to adapt to the environmental changes as vehicles move.

5.2.2 Fog Computing

In the independent category, Wang et al.[202] proposed a solution to place a single ser-

vice instance of each IoT user on a remote server when multiple IoT users exist in the

system. They proposed both offline and online approximation algorithms, performed on

the Cloud, to find the optimal and near-optimal solutions respectively. Wang et al. [137]

and Wang et al. [81] proposed Edge-centric application placement and mobility manage-

ment technique when multiple IoT users with a single module exist in the system. The

main goal of [137] is maximizing IoT users’ gain through offloading and reducing the

number of migrations, while the main goal of authors of [81] is minimizing the service

delay.

In the dependent category, Shekhar et al. [136] and Bittencourt et al. [199] proposed

mobility-aware application placement techniques for IoT application, consisting of mul-

tiple interdependent modules while considering prior mobility information. The au-

thors in [136] proposed a Cloud-centric technique, called URMILA, in which the central-

ized controller makes the placement decision for all IoT applications to satisfy their la-

tency requirements. Besides, whenever the decision is made, even in case the user leaves

the range of its immediate server, there is no migration algorithm to migrate modules to

new servers, which incurs a higher cost for the users. The authors in [199] proposed an

Edge-centric solution based on the edgeward-placement technique [26] for placement

of IoT applications while considering their targeted destination. In this work, however,

the potential of clustering is not considered. So, whenever the immediate server cannot

serve the application modules, the modules are forwarded to the next hierarchical layer

for possible placement and migration.
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Table 5.1: A qualitative comparison of related works with ours

Techniques Category

Application Properties Architectural Properties Placement and Mobility Management Engines

Dependency

Model

Module

Number
Hetero

IoT Device

Number
Hierarchical

Clustering

Technique

Placement

Engine

Mobility

Management

Engine

Failure

Recovery

Decision Parameters

Time Energy Weighted

[87]

Ed
ge

C
om

pu
ti

ng

Independent

Single X Single × × Edge Edge × X × ×

[134] Multiple X Multiple × × IoT Edge × X × ×

[135] Single X Multiple × × Edge Edge × X × ×

[138] Single X Multiple × × Edge Edge × X X X

[139] Multiple X Multiple × × IoT Edge × X × ×

[141] Multiple X Single × × Edge Edge × X × ×

[83] Single × Single × × Edge Edge × X × ×

[204] Multiple X Single × × Edge Edge × X X ×

[205]
Dependent

Multiple X Single × × IoT IoT × X X ×

[140] Multiple X Multiple × × IoT Edge × X × ×

[202]

Fo
g

C
om

pu
ti

ng

Independent

Single X Multiple × × Cloud
Cloud

Edge
× X × ×

[137] Single X Multiple × × Edge Edge × X X X

[81] Single X Multiple × × Edge Edge × X × ×

[136]

Dependent

Multiple × Single × × Cloud Cloud × X × ×

[199] Multiple X Multiple X × Edge Edge × X × ×

Proposed

Solution
Multiple X Multiple X X Edge Edge X X X X

The abbreviated terms are as follows: Hetero: Heterogeneity

5.2.3 A Qualitative Comparison

Key elements of related works are identified and presented in Table 5.1 and compared

with ours in terms of the main category, IoT application, architectural, and placement

and mobility management engines’ properties. The IoT application properties identify

and compare dependency model mode (either independent or dependent) of IoT appli-

cations, modules’ number (either single or multiple modules per application), and het-

erogeneity (whether the specification of modules is same (i.e., homogeneous) or different

(i.e., heterogeneous)). Architectural properties contain the number of IoT devices (either

single or multiple), whether hierarchical Fog architecture is considered or not, and clus-

tering technique (whether a clustering technique is applied on Edge/Fog servers or not).

Placement and mobility management engines contain positions of placement and mobil-

ity management engines, failure recovery capability, and the decision parameters used

in each work.

Our work proposes an Edge-centric application placement and mobility manage-



5.3 System Overview 173

ment technique for an environment consisting of multiple IoT devices with heteroge-

neous applications (consisting of several dependent modules with heterogeneous re-

quirements) and multiple remote servers (either CSs or FSs) deployed in a hierarchical

architecture. Considering the potential of the clustering of FSs in the hierarchical Fog

computing environment, we propose a weighted cost model of response time and en-

ergy consumption for the application placement and migration techniques. The pro-

posed weighted cost model considers the dependency among modules of IoT appli-

cations which plays an important role in application placement and migration manage-

ment. Second, we put forward a distributed and dynamic clustering technique by which

FSs of the same hierarchical level can form a cluster and collaboratively provide faster

and more efficient service for IoT applications. This latter is because the communication

overhead between FSs of the same hierarchical level is usually less than communication

with higher-level FSs [36]. Although resources of each lower-level FS is less than each

higher-level FS, aggregated resources of lower-level FSs, obtained through clustering,

can be used to manage IoT applications modules in lower-level FSs with less response

time and energy consumption. Third, we propose a distributed application placement

and migration techniques for hierarchical Fog computing environments to minimize the

weighted cost of running real-time IoT applications. Finally, due to the highly dynamic

nature of such systems, there is a high chance of failures in the system, for which we

propose light-weight failure recovery methods in the clustering, application placement,

and migration management techniques.

5.3 System Overview

We consider a system consisting of N mobile IoT users (so that each user has one IoT

device), F heterogeneous FSs distributed in the proximity of IoT users, and a centralized

Cloud. FSs follow a hierarchical topology, in which lower-level FSs can be accessed with

lower latency while providing fewer resources in comparison to higher-level FSs that

provide more resources but can be accessed with higher latency [32, 36]. Besides, we

assume that each IoT device is connected to one FS in the lowest hierarchical level, so

that this FS is responsible for the application placement and mobility management of
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Figure 5.1: A view of our system model

that IoT device. The set of all available servers is represented as S with |S| = M and

M > F. The 2-tuple (h, i) ∈ S (0 ≤ h, 1 ≤ i) represents one server, in which h represents

the hierarchical level of the server and i denotes the server’s index at that hierarchical

level. If we assume there are L hierarchical Fog layers, (L + 1, 1) demonstrates the cen-

tralized Cloud data-center placed at the top-most level. Moreover, the (0, n) denotes the

nth IoT device. Fig. 5.1 represents a view of our system model and how IoT devices

move among different FSs. Also, it shows the in-cluster communications (in case clus-

tering is applied) and communications between FSs at different hierarchical levels in this

environment.

Each FS can form a cluster either by other nearby FSs at the same hierarchical level

or by itself. Moreover, each FS in lth hierarchical level may belong to different clusters in
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that hierarchical layer. The cluster member (CM) list of each FS is defined as Listcl(h, i),

which is empty if the FS (h, i) does not have any CMs. Besides, for each FS, we define a

children list, Listch(h, i), containing server specification of immediate lower-level FSs, to

which it has direct hierarchical communication links. The sole parent server of each FS is

defined as par(h, i) = (h′, i′) which refers to the immediate higher-level FS. We assume

that in-cluster communications are faster than hierarchical communications [36]. Hence,

clustering FSs, while incurs additional cost due to running clustering algorithm, can

improve the quality of service for IoT users. Moreover, each FS has a list, called Ω(h, i),

containing server specification of itself, its children, and all FSs belonging to the Ω of

its children. To illustrate, considering Fig. 5.1, the Ω(2, 1) = {(2, 1), (1, 1), (1, 2), (1, 3)}
and Listch(2, 1) = {(1, 1), (1, 2), (1, 3)}, and Ω(2, 2) = {(2, 2)} and Listch(2, 2) = {}. If

we assume the maximum number of Fog layers is three (i.e., L = 3) in this example,

then Ω(3, 1) = {(3, 1), (2, 1), (2, 2), (2, 3), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}, and the

Listch(3, 1) = {(2, 1), (2, 2), (2, 3)}.

We consider that FSs and CSs use container technology to run IoT applications’ mod-

ules [81, 150]. So, we assume that FSs have access to images of all containers (Cnts) while

such Cnts may be active if they are running on the server or inactive (i.e., the container

images are accessible, but the containers are not running) otherwise [81]. Moreover, for

each container, according to the application module that it serves, an amount of ram

size at the runtime is assigned to keep the state Cntram
vn,j

[206]. Table 5.2 summarizes the

parameters used in this chapter and their respective definitions.

5.3.1 Application Model

We consider real-time IoT applications working based on the Sense-Process-Actuate

model, in which sensors transmit tasks periodically according to their sample rate [26,

36]. The emitted sensors’ tasks should be forwarded to different modules of the IoT

applications for processing based on dependency model among constituent modules.

When each module receives tasks from predecessor modules as input, it processes tasks

and produces respective tasks as its output to be forwarded to next modules [36]. Fi-

nally, results will be forwarded to the actuator as the last module. In this work, we
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Table 5.2: Parameters and respective definitions

Parameter Definition Parameter Definition

CSs Cloud Servers FSs, FS Fog Servers, Fog Server

CNTs, CNT Containers, Container N Number of mobile IoT devices

F Number of heterogeneous Fog servers (FSs) S The set of all available servers

M Number of available servers (h, i)
The 2-tuple showing one server in which h represents the hierarchical level of the

server and i denotes the server’s index at that hierarchical level

Listch(h, i) The list containing server specification of children for the server (h, i) par(h, i) The sole parent of the server (h, i) in the hierarchical system

Ω(h, i)
The set containing server specification of server (h, i), its children, and

all FSs belonging to the Ω of its children
CM Cluster Member

Listcl(h, i) The list containing server specification of cluster members for the server (h, i) Gn Directed Acyclic Graph (DAG) of the nth IoT application

Vn The set of modules belonging to the nth IoT application En The set of data flows between modules belonging to the nth IoT application

vn,i, vn,j The ith and/or jth module belonging to the nth IoT application en,i,j The data flow from module vn,i to module vn,j of the nth IoT device

P(vn,j) The set of predecessor modules of the module vn,j TOn,i = t The topological order of ith module of the nth IoT application is equalt to t

SchSn
The schedule set of the nth IoT application consisting of subsets of

modules with the same TO value t
SchSn, t

A subset of SchSn showing modules with the same TO value t (i.e., modules

that can be executed in parallel)

eins
n,i,j

The amount of instructions in terms of Million Instruction that the module

vn,j receives from vn,i for processing
edsize

n,i,j
The size of data that the module vn,i generates as an output to be sent to

module vn,j

vmtd
n,i The maximum tolerable delay for the module vn,i Xn The placement configuration of the nth IoT application

xn,i
The placement configuration for each module vn,i of the nth IoT

application in the Xn

Ψ(Xn, t)
The weighted cost of modules in the tth schedule while considering the placement

configuration Xn.

|SchSn| The number of schedules for the nth IoT application Txn,j The overall delay of each module (i.e., vn,j) based on its assigned server

Cnts(h,i) The number of instantiated Cnts on the server (h, i) Cap(h,i) The maximum capacity of server (h, i) to instantiate Cnts.

Γ(Xn, t)
The weighted cost of modules in the tth schedule while considering the

placement configuration Xn

Θ(Xn, t)
The energy consumption of modules in the tth schedule while considering the placement

configuration Xn

Tlat
xn,j

The inter-nodal latency between the servers on which module vn,j

and its predecessors P(vn,j) are placed
Texe

xn,j

The computing execution time of tasks, emitted from the vn,i to be

executed on the vn,j

Ttra
xn,j

The transmission time between between the module vn,j and its

predecessors P(vn,j)
cpu(xn,j)

The computing power of the assigned server (in terms of MIPS) for the

module vn,j

γtra The transmission time between source and destination servers Bup, Bdown, Bcluster
The bandwidth of the one server to the parent server, to the child server,

and to its CMs, respectively

NSTi(H), NSEi(H) They define the next intermediate server to reach the destination server chRule
It identifies whether any children of the current server has a route to the

destination server or not

chRule
It identifies whether any CMs of the current server has a route to the

destination server or not
Υ((Ω(h, i)), (h′, i′))

It shows whether Ω(h, i) contains (h′, i′) or not

(i.e., meaning that there is one hierarchical path from (h, i) to the (h′, i′))

γlat The inter-nodal latency between source and destination servers lat(up), lat(down), lat(cluster)
The inter-nodal latency of one server to the parent server, to the child server,

and to its CMs, respectively

Ψmig((Xn, X′n, ts)
The weighted migration cost of nth IoT application from the current

configuration Xn to the new configuration X′n
γmig(xn,i, x′n,i)

The migration cost of one module from current configuration xn,i to

the new configuration x′n,i

γlat
mig((h, i), (h′, i′)) The migration latency between current and new servers dsizemig The size of dump data and states that should be transferred between current

and new servers

eins,r
n,i,j

The amount of remaining instructions of task eins,r
n,i,j

to be executed on the new server after migration
E(xn,j) The overall energy consumption of each module (i.e., vn,j) based on its assigned server

Eexe
xn,j

The computing energy consumption of tasks, emitted from the vn,ito be

executed on the vn,j

Elat
xn,j

The energy consumption incurred due to inter-nodal latency between the servers on which

module vn,jand its predecessors P(vn,j) are placed

Etra
xn,j

The transmission energy consumption between between the module vn,j

and its predecessors P(vn,j)
Pcpu, Pi, Pt

The CPU power of the IoT device, the idle power of IoT device, and transmission power of

the IoT device

ϑtra The transmission energy consumption between source and destination servers ϑlat The energy consumption incurred due to inter-nodal latency between servers

Γmig((Xn, X′n), t)
The migration time of nth IoT application from the current configuration

Xn to the new configuration X′n considering schedule t
Θmig((Xn, X′n), t)

The migration energy consumption of nth IoT application from the current configuration

Xn to the new configuration X′n considering schedule t

assume that both sensor and actuator modules of IoT applications reside in IoT devices

[199].

Real-time IoT application belonging to the nth IoT device is represented as a Di-

rected Acyclic Graph (DAG) of its modules Gn = (Vn, En), ∀n ∈ {1, 2, · · · , N}, where

Vn = {vn,i|1 ≤ i ≤ |Vn|} denotes the set of modules belonging to the nth IoT device,

and En = {en,i,j|vn,i, vn,j ∈ Vn, vn,i ∈ P(vn,j), i 6= j} shows the set of data flows between
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modules. Since IoT applications are modeled as DAGs, each module vn,j cannot be ex-

ecuted unless all its predecessor modules, denoted as P(vn,j), finish their execution. To

illustrate, e1,1,2 represents that execution of module v1,2 depends on the execution of the

module v1,1. Moreover, we define a Topological Order value t for each module i of the

nth IoT application as TOn,i = t. We define a schedule set for the nth IoT application,

called SchSn, consisting of modules with the same TO value t as its subsets. The SchSn,t

specify modules with the same TO value t (i.e., modules that can be executed in par-

allel). In addition, the set of successor modules of module vn,j is defined as Succ(vn,j).

Fig 5.2a shows an IoT application, the TO value for each module, and the schedule set

SchSn based on the TO values of its modules.
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Figure 5.2: An example of IoT application, its schedules and a candidate configuration

Besides, we define the output of each module vn,i as a task consisting of two values

to be forwarded to next modules based on data flows of the IoT application. The first
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value is the amount of instructions in terms of Million Instruction (MI) that the module

vn,j receives from vn,i for processing, shown as eins
n,i,j, and the second value is the size of

data edsize
n,i,j the module vn,i generates as its output to be forwarded to module vn,j [26].

5.3.2 Problem Formulation

The placement configuration of the application belonging to the nth IoT application is

shown as Xn. Also, xn,i = (h, i) denotes the placement configuration for each module vn,i

of the nth IoT application in the Xn based on the specification of the server. To illustrate,

xn,i = (1, 3) shows that the ith module of nth IoT device is assigned to a server in the

first hierarchical level where the server index is 3. Moreover, if the ith module of the nth

IoT device is assigned to run locally on itself, xn,i = (0, n). Fig 5.2b presents a sample

DAG of an IoT application and a candidate placement configuration.

Placement weighted cost model

The goal of application placement is to find a suitable configuration for modules of each

real-time IoT application to minimize the weighted cost Ψ(Xn, t) of running applications

in terms of the response time of tasks and energy consumption of IoT devices:

min
w1,w2∈[0,1]

|SchSn|

∑
t=1

Ψ(Xn, t), ∀n ∈ {1, 2, · · · , N} (5.1)

where

Ψ(Xn, t) = w1 × Γ(Xn, t) + w2 ×Θ(Xn, t) (5.2)

s.t. C1 : Size(xn,j) = 1, ∀xn,j ∈ Xn , n ∈ {1, 2, · · · , N}, 1 ≤ i ≤ |Vn|

C2 : Cnts(h, i) ≤ Cap(h, i), ∀ (h, i) ∈ S

C3 : Ψ(xn,i, t) ≤ Ψ(xn,j, t), ∀vn,i ∈ P(vn,j)

where |SchSn| represents the number of schedules, and Γ(Xn, t) and Θ(Xn, t) show the

response time model and energy consumption model, respectively, of modules in the
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tth schedule while considering the placement configuration Xn. Moreover, w1 and w2

are control parameters to tune the weighted cost model according to user requirements.

We assume the number of available servers M is more than or equal to the maximum

number of modules in the tth schedule for parallel execution (i.e., |SchSn,t| ≤ M). We

suppose that each module of an IoT application can be exactly assigned to one Cnt of

one remote server. C1 indicates that each module i of the nth IoT application can only

be assigned to one server at a time, and hence the size of xn,j is equal to 1 [3, 123]. C2

denotes that the number of instantiated Cnts on the server (h, i) is less or equal to the

maximum capacity of that server Cap(h, i). Besides, C3 guarantees that the predecessor

modules of vn,j (i.e., P(vn,j)) are executed before the execution of module vn,j [123].

Response time model. The goal of this model is to find the best possible configuration

of servers for each IoT application so that the overall response time for each IoT appli-

cation becomes minimized. In order to only consider response time model as the main

objective, the control parameters of weighted cost model (Eq. 5.2) can be set to w1 = 1

and w2 = 0.

Γ(Xn, t) =



T(xn,j), if |SchSn,t| = 1 (a)

max(T(xn,j)), otherwise

(b)

∀xn,j ∈ Xn|vn,j ∈ SchSn,t

(5.3)

The Eq. 5.3.a represents the condition in which the number of modules in the tth sched-

ule is one (i.e, |SchSn,t| = 1), and hence, the time of that schedule is equal to the time of

that module based on its assigned server T(xn,j). Besides, the Eq. 5.3.b refers to the con-

dition in which the number of modules in the tth schedule is more than one (i.e., several

modules can be executed in parallel). In this latter case, the time of the tth schedule is

equal to the maximum time of all modules that can be executed in parallel.

The overall delay of each module (i.e., vn,j) based on its candidate configuration (i.e.,

xn,j) is defined as the sum of inter-nodal latency between servers (Tlat
xn,j

), the computing
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time per module (Texe
xn,j

), and the data transmission time between vn,j and all of its prede-

cessor modules (Ttra
xn,j

). It is formulated as:

T(xn,j) = Texe
xn,j

+ Tlat
xn,j

+ Ttra
xn,j

(5.4)

The computing execution time of module vn,j depends on tasks emitted from its pre-

decessors (i.e., P(vn,j)) for processing by vn,j. The computing time of vn,j is estimated

as:

Texe
xn,j

= ∑
eins

n,i,j

cpu(xn,j)
, ∀en,i,j ∈ En|vn,i ∈ P(vn,j) (5.5)

where cpu(xn,j) shows the computing power of the assigned server (in terms of Mil-

lion Instruction per Second (MIPS)) for the module vn,j. Moreover, the eins
n,i,j shows the

amount of instructions in terms of MI that the module vn,j receives from vn,i for the pro-

cessing. The transmission time between module vn,j and its predecessors P(vn,j) of the

application belonging to the nth IoT device is calculated as:

Ttra
xn,j

= max(γtra(edsize
n,i,j , (h, i), (h′, i′))), (5.6)

∀en,i,j ∈ En|vn,i ∈ P(vn,j), xn,i = (h, i), xn,j = (h′, i′)

Due to the hierarchical nature of Fog computing, the transmission time of one task (γtra)

between each pair of dependent modules vn,i and vn,j is recursively obtained based on

visited servers between source and destination. The (h, i) and (h′, i′) show server specifi-

cations of source and destination servers on which modules vn,i and vn,j are assigned, re-

spectively. By visiting each intermediate server between source and destination servers,

the value of source server (h, i) is updated while the value of destination server remains
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unchanged. To reduce the length of equations, we consider (edsize
n,i,j , (h, i), (h′, i′)) = H.

γtra(H) =



edsize
n,i,j
Bup

+ γtra(H′), NSTi(H) = NST1|NST4|NST6

edsize
n,i,j

Bdown
+ γtra(H′), NSTi(H) = NST2

edsize
n,i,j

Bcluster
+ γtra(H′), NSTi(H) = NST3|NST5

0, NSTi(H) = NST7

(5.7)

where Bup, Bdown, and Bcluster refer to the bandwidth of current server to parent server, to

child server, and to cluster server, respectively. Besides, H′ is defined as what follows:

H′ = (edsize
n,i,j , (h

′′
, i
′′
), (h′, i′)) (5.8)

(h
′′
, i
′′
) = NSTi(H) (5.9)

The Eq. 5.8 shows the data size and destination server of H′ is exactly the same as H,
and the only difference is the specification of the source server (h

′′
, i
′′
) which is obtained

from the output of NSTi(H) (i.e., (h
′′
, i
′′
) = NSTi(H). The NSTi(H) defines the next
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intermediate server to reach the destination server for each edge en,i,j.

NSTi(H) =



Par(h, i), if h < h′ i = 1

chRule, if h > h′ i = 2

& chRule 6= ∅

if h � h′ = 0

clRule, & i � i′ 6= 0 i = 3

& clRule 6= ∅

if h � h′ = 0

Par(h, i), & i � i′ 6= 0 i = 4

& clRule = ∅

clRule, if h > h′, i = 5

& clRule 6= ∅

if h > h′

Par(h, i), & chRule = ∅ i = 6

& clRule = ∅

(0, 0), if h � h′ = 0 i = 7

& i � i′ = 0

(5.10)

chRule = if ∃(h′′ , i
′′
) ∈ Listch(h, i)|

Υ((Ω(h
′′
, i
′′
), (h′, i′)) = 1, return (h

′′
, i
′′
), (5.11)

else return ∅
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clRule = if ∃(h′′ , i
′′
) ∈ Listcl(h, i)|

Υ((Ω(h
′′
, i
′′
), (h′, i′)) = 1, return (h

′′
, i
′′
), (5.12)

else return ∅

The Υ((Ω(h
′′
, i
′′
)), (h′, i′)) is equal to 1 if Ω(h

′′
, i
′′
) contains (h′, i′) (i.e., meaning that

there is one hierarchical path from (h
′′
, i
′′
) to the (h′, i′)) and is equal to 0 if (h′, i′) does

not exist. Moreover, the � is XOR binary operation. The chRule (Eq. 5.11) says that

if the server (h, i) has a children (h
′′
, i
′′
) in its Listch which has a hierarchical path to

the destination server (h
′
, i
′
), the specification of this server (h

′′
, i
′′
) should be returned.

The clRule (Eq. 5.12) presents that if the server (h, i) has a CM (h
′′
, i
′′
) in its Listcl(h, i)

which has a hierarchical path to the destination server (h
′
, i
′
), the specification of this

server (h
′′
, i
′′
) should be returned. Based on the aforementioned rules, NST(H) finds

the next server to which the data should be sent and calculates the transmission cost.

The NST1 of Eq. 5.10 states that if the hierarchical level of the current server is less than

destination server, the Par(h, i) should be checked in the next step. The NST2 represents

the case that the hierarchical level of the current server is higher than the destination

server and the current server has a child through which the destination server can be

reached. The NST3 states the condition that the current and destination servers are in

the same hierarchical level, and one of the CMs has a route to the destination server. The

NST4 indicates that if the current and the destination servers are in the same level, and

there is no route to destination using CMs, the parent should be checked in the next step.

The NST5 states that if the level of the current server is higher than the destination server,

and a CM has a path to the destination server, the cluster server should be selected in the

next step. The NST6 states that if the level of current server is higher than the destination

server, and there exists no route from children nor from CMs, the parent server should be

traversed. Finally, the NST7 is the ending condition for this recursive process and states

that if the current and destination server is same, the cost is zero. Fig 5.3 represents an

example of obtaining transmission time between source and destination servers. Inter-

nodal latency Tlat
xn,j

between servers on which module vn,j and its predecessors P(vn,j)
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Figure 5.3: An example of calculating transmission time
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are placed is calculated as:

Γlat
Xn,j

= max(γlat((h, i), (h′, i′))), (5.13)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

where γlat shows the inter-nodal latency between source and destination servers (i.e.,
(h, i) and (h′, i′) respectively) on which vn,i and vn,j are placed. It is calculated similar to
the transmission time. To reduce the equation size, we consider ((h, i), (h′, i′)) = A.

γlat(A) =



latup + γlat(A′), NSTi(A) = NST1|NST4|NST6

latdown + γlat(A′), NSTi(A) = NST2

latcluster + γlat(A′), NSTi(A) = NST3|NST5

0, NSTi(A) = NST7

(5.14)

where latup, latdown, and latcluster correspond to up-link, down-link, and cluster-link

inter-nodal latency respectively, and depends on the hierarchical level of servers. Be-

sides, A′ is defined as what follows:

A′ = ((h
′′
, i
′′
), (h′, i′)) (5.15)

The Eq. 5.15 shows the destination server (i.e., (h′, i′)) of A′ is exactly the same as A,

and the only difference is the specification of the source server (h
′′
, i
′′
) which is obtained

from the output of NST(A). The NST(A) performs exactly the same as NST(H) (i.e.,

Eq. 5.10) to find the next intermediate server, and all equation from Eq. 5.10 to Eq. 5.12

are valid here.

Energy consumption model. The goal of this model is to find a suitable placement
configuration of application modules to minimize the energy consumption of the nth IoT
device. To only consider energy consumption model as the main objective, the control
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parameters of weighted cost model (Eq. 5.2) can be set to w1 = 0 and w2 = 1.

Θ(Xn, t) =



E(xn,j), if |SchSn,t| = 1 (a)

max(E(xn,j)), otherwise

(b)

∀xn,j ∈ Xn|vn,j ∈ SchSn,t

(5.16)

where |SchSn| shows the number of schedules, and Θ(Xn, t) represents the energy con-

sumption of modules in the tth schedule while considering the placement configuration

Xn.

The overall energy consumption of each module (i.e., vn,j) based on its candidate

configuration (i.e., xn,j) is defined as the sum of energy consumed for inter-nodal latency

between servers (Elat
xn,j

), the computing of each module (Eexe
xn,j

), and the data transmission

between vn,j and all of its predecessor modules (Etra
xn,j

). It is formulated as:

E(xn,j) = Eexe
xn,j

+ Elat
xn,j

+ Etra
xn,j

(5.17)

The computing energy consumption for module vn,j depends on its assigned server and

can be derived from:

Eexe
xn,j

=


Texe

xn,j
× Pcpu, if xn,j = (h, i) & h = 0

Tidle
xn,j
× Pi, if xn,j = (h, i) & h 6= 0

(5.18)

Because only the energy consumption of IoT devices is considered in this work, when-

ever application modules run on remote servers, the energy consumption of each IoT

device is equal to the idle time Tidle
xn,j

multiplied to the power consumption of IoT device

in its idle mode Pi. Besides, Pcpu is the CPU power of the IoT device on which module

vn,j runs.

The energy consumption for data transmission between module vn,j and its prede-
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cessors P(vn,j) of the application belonging to the nth IoT device is calculated as follows:

Etra
xn,j

= max(ϑtra(edsize
n,i,j , (h, i), (h′, i′))), (5.19)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

where, to reduce the length of equations, we consider H = (edsize
n,i,j , (h, i), (h′, i′)). Similar

to response time model, (h, i) and (h′, i′) show the specifications of source and destina-
tion servers on which modules vn,i and vn,j run. The transmission energy consumption
between each pair of dependent modules (ϑtra(H)) is calculated as follows:

ϑtra(H) =



(
edsize

n,i,j
Bup
× Pt) + (γtra(H′)× Pi), NSEi(H) = NSE1

(
edsize

n,i,j
Bdown

× Pt) + (γtra(H′)× Pi), NSEi(H) = NSE2

γtra(H′)× Pi, NSEi(H) = NSE3

(5.20)

where Pt presents the transmission power of the IoT device, and the NSEi shows trans-

mission configuration based on H.

NSEi(H) =



H′ = (edsize
n,i,j , Par(h, i), (h′, i′)), if h < h′ & i = 1

h = 0,

H′ = (edsize
n,i,j , (h, i), Par(h′, i′)), if h > h′ & i = 2

h′ = 0,

H′ = H, otherwise, i = 3

(5.21)

NSE1 states the data flow is starting from an IoT device as the source server to remote

servers as destination. Hence, the respective transmission energy consumption is equal

to the required time to send the data to the parent server of IoT device multiplied by

Pt, plus the IoT device’s idle time (in which the data is transmitted from parent server

to the destination) multiplied by Pi. Moreover, NSE2 represents the invocation starting
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from remote servers as the source to the IoT device as the destination. It is important

to note that the transmission power of IoT device Pt is active only if one of the modules

is assigned to the IoT device and another module run on the remote servers, because

we only consider the energy consumption from the IoT device’s perspective. In other

conditions, the transmission energy consumption is equal to the transmission time γtra

(obtained from Eq. 5.7), in which the IoT device is in idle mode, multiplied by Pi (NSE3).

The inter-nodal energy consumption Elat
xn,j

between servers on which module vn,j and

its predecessors P(vn,j) are placed is calculated as:

Elat
Xn,j

= max(ϑlat((h, i), (h′, i′))), (5.22)

∀en,i,j ∈ En|vn,i ∈ P(vn,j),

xn,i = (h, i), xn,j = (h′, i′)

where ϑlat shows the energy consumption incurred due to inter-nodal delay between

source and destination servers on which vn,i and vn,j are placed. This latter is calculated

similar to transmission energy consumption based on the NSEi(A) [3, 123]. To reduce

the equation size, ((h, i), (h′, i′)) = A.

ϑlat(A) = γlat(A)× Pi (5.23)

where the γlat(A) is obtained from Eq. 5.14.

Migration weighted cost model

We assume that the migration of modules belonging to the nth IoT device from current
servers to new servers only happens due to the mobility of IoT devices. We consider
pre-copy memory migration in which the current servers still running while transferring
pre-dump to the new servers [81, 206]. The goal of migration cost model is to minimize
the downtime plus the required cost of executing remaining instructions on the new
servers. The migration weighted cost model is defined as:

min
w1,w2∈[0,1]

Ψmig((Xn, X′n), t), ∀t ∈ |SchSn|, ∀n ∈ {1, 2, · · · , N} (5.24)



5.3 System Overview 189

where

Ψmig((Xn, X′n), t) = w1 × Γmig((Xn, X′n), t) + w2 ×Θmig((Xn, X′n), t) (5.25)

s.t. C1 :
|SchSn|

∑
t=1

Ψ(X′n, t) ≤
|SchSn|

∑
t=1

Ψ(Xn, t) + ε

where Γmig((Xn, X′n), t) and Θmig((Xn, X′n), t) represent the additional time and energy

consumption incurred by the migration of modules of tth schedule in the downtime

(when the service is interrupted). The C1 states the service cost for tasks emitted from

modules of nth IoT device in the new configuration X′n should be less or roughly the

same while considering the previous configuration Xn. The ε shows an acceptable ad-

ditional service cost in the migration. Moreover, constraints C1, C2, and C3 from Eq. 5.1

are valid here as well.

Migration time model. The migration time is considered as the execution time re-

quired to finish remaining instructions on the new servers plus the downtime. This

latter includes the time for suspending the Cnts in current servers, transmission of the

dump and states, and Cnts’ resuming time on the new servers. Since, in the downtime,

a specific amount of dump data and states should also be transferred between servers

(dsizemig), the migration latency γlat
mig((h, i), (h′, i′)) and migration transmission time be-

tween current and new servers γtra
mig(dsizemig, (h, i), (h′, i′)) to transfer this data are also

important [206]. Besides, the Cnts’ stopping time plus its resuming time are considered

as a constant Imig. The migration time is defined as:

Γmig((Xn, X′n), t) = Max(γmig(xn,i, x′n,i)), (5.26)

∀xn,i ∈ Xn, ∀x′n,i ∈ X′n|vn,i ∈ SchSn,t, , xn,i = (h, i), x
′
n,i = (h′, i′)

where

γmig(xn,i, x′n,i) = γlat
mig((h, i), (h′, i′)) + Imig (5.27)

+γtra
mig(dsizemig, (h, i), (h′, i′)) +

eins,r
n,i,j

cpu(x′n,i)
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where γmig(xn,i, x′n,i) represents the migration cost of module vn,i from its current server

xn,i to its new server x′n,i. The γtra
mig and γlat

mig are calculated based on Eq. 5.7 and Eq. 5.14,

respectively. Also,
eins,r

n,i,j
cpu(x′n,i)

shows the execution time of remaining instructions of task

eins,r
n,i,j on the new server (h′, i′).

Migration energy consumption model. The additional energy consumption of IoT de-

vice, incurred by the migration, depends on the execution of remaining instructions and

the downtime.

Θmig((Xn, X′n), t) = Max(ϑmig(xn,i, x′n,i)), (5.28)

∀xn,i ∈ Xn, ∀x′n,i ∈ X′n|vn,i ∈ SchSn,t,

xn,i = (h, i), x
′
n,i = (h′, i′)

where

ϑmig(xn,i, x′n,i) = ϑlat
mig((h, i), (h′, i′)) + Imig (5.29)

+ϑtra
mig(dsizemig, (h, i), (h′, i′)) + ϑexe

mig(x′n,i)

where ϑmig(xn,i, x′n,i) represents the amount of energy consumed by the IoT device in the
migration of each module of application from its current server xn,i to its new server x

′
n,i.

The ϑtra
mig and ϑlat

mig represent the energy consumption incurred due to the transmission
and migration latency between current and new servers. They are calculated based on
Eq. 5.20 and Eq. 5.23, respectively. Also, the ϑexe

mig(x′n,j) shows the energy consumption

required for the execution of remaining instructions of task eins,r
n,i,j on the new server (h′, i′).

ϑexe
mig(x′n,i) =


eins,r

n,i,j

cpu(x′n,i)
× Pcpu, if x′n,i = (h′, i′) & h′ = 0

eins,r
n,i,j

cpu(x′n,i)
× Pi, if x′n,i = (h′, i′) & h′ 6= 0

(5.30)

5.3.3 Optimal Decision Time Complexity

We assume M servers exist in the hierarchical Fog/Edge computing environment, and

the maximum number of modules in each IoT application is K. Each module of an IoT
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Figure 5.4: A view of Fog server architecture

application can be placed on one of the M servers at a time. Hence, for an IoT application

with K modules, the Time Complexity (TC) of finding the global optimal solution for

the application placement and migration is O(MK). This cost is prohibitively high and

prevents us from obtaining the global optimal solution in real-time [207]. Thus, we

propose distributed algorithms to find an acceptable solution in a polynomial time for

application placement and migration techniques.

5.4 Proposed Technique

In this section, we present a Fog server architecture to support distributed application

placement, migration management, and clustering (as depicted in Fig. 5.4) by extend-

ing the Fog server architecture proposed in [36]. Each FS in [36] is composed of three

main components: controller, computational, and communication. We extend this ar-

chitecture to support clustering and mobility management of IoT users in a distributed

manner.

In our FS architecture, the Controller Component monitors and manages the Com-

munication and Computational Components. It consists of three decision engine blocks

and several meta-data blocks to store important information. The Clustering Engine is
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responsible for forming a distributed cluster with its in-range FSs and updating CMs’

information in the Cluster Info and Routing Info meta-data. The Application Placement En-

gine is responsible for placement of IoT applications’ modules to minimize the overall

cost of running real-time IoT applications. It checks Cluster Info, Resource Info, and Rout-

ing Info meta-data for making placement decision, and updates the Placement Info and

Resource Info meta-data blocks to store the configuration of application modules and

available resources in this FS, respectively. The Migration Management Engine of each FS

controls migration process of applications’ modules when IoT users move. This module

considers all meta-data blocks including the current mobility information of the users

(i.,e Mobility Info), and decides the migration destination of application modules. Based

on its decision, Placement Info and Resource Info will be updated to store last changes in

the configuration of application modules.

The Computational Component provides resources for the execution of application

modules that are assigned to this FS based on the container technology. Besides, the

Communication Component is responsible for network functionalities such as routing

and packet forwarding, just to mention a few [36].

5.4.1 Dynamic Distributed Clustering

Since FSs usually have fewer resources in comparison to CSs, one FS may not be able to

provide service for all modules of one application. Moreover, in some scenarios, several

IoT devices are connected to the same FS, and hence, the FS may not be able to serve

all application modules of different IoT devices due to its limited resources. Thus, other

modules of one application should be placed on either CSs or higher-level FSs for the ex-

ecution. However, in a hierarchical Fog computing environment, in which the potential

clustering of FSs is considered, application modules can be placed or migrated to other

FSs in the same cluster. It can reduce the placement and migration cost of application

modules.

We consider that FSs belonging to the same hierarchical layer can form a cluster by

any in-range FSs at the same hierarchical level and swiftly communicate together using

the Constrained Application Protocol (CoAP), Simple Network Management Protocol
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(SNMP), and so forth. Therefore, the communication delay within a cluster is lower than

communication using up-link and down-link [36]. Besides, in a reliable IoT-enabled sys-

tem, it is expected that the Fog infrastructure providers have applied efficient network-

ing techniques to ensure steady communication among the FSs through less variable

inter-nodal latency [36]. Algorithm 9 provides an overview of the dynamic distributed

clustering technique.

When an FS joins the network, it receives and stores CandidParent control messages

from FSs residing in the immediate upper layer. The new FS finds coordinates of its posi-

tion and estimates the average latency to all candidate parents. It selects the FS with the

minimum distance as its parent and sends an acknowledgment to it using ParentSelection

method. Moreover, the new FS broadcasts a FogJoining control message, containing its

position and coverage range, to its one-hop neighbors (lines 2-7). FSs receiving this mes-

sage send back a replyNewFog control message with their list of active and inactive Cnts,

positions’ specifications, and their coverage range to the new FS. Besides, they update

their CM list Listcl with specifications of this new FS (lines 8-14). As the new FS receives

replyNewFog message, it builds its CM list Listcl with specifications of FSs residing in the

same hierarchical layer. Alongside storing lists of active and inactive Cnts of its CMs,

positions, and their coverage range (lines 15-21). This distributed mechanism helps FSs

to dynamically update their CM lists when a new FS joins the network.

We consider that each FS can leave the network in normal conditions (e.g., when the

low-level FS is switched off by its user) or due to a failure (such as hardware or software

failures). Before an FS leaves the network in normal conditions either permanently or

temporarily, we assume that all of its assigned tasks should be finished. Hence, it only

needs to send StartFogLeaving control message to its CMs to update the Listcl of them-

selves, to its parent server, and to its children to find a new parent (lines 22-25). All FSs

that receive FogLeaving control message remove all information related to this FS from

their entries. Also, the children of the leaving FS that receive this control message call

the ParentSelection method to update their parent (lines 26-32). In case of a fatal error, in

which the leaving FS cannot send a control message to the parent, CMs, and children,

the immediate parent runs the StartFogFailureRecovery and sends FogFailureRecovery con-

trol message to its children list Listch so that they can remove entries related to the failed
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FS (lines 33-39). It is important to note that this latter process takes more time in compar-

ison to the FogLeaving process in normal conditions due to the higher latency of uplink

and downlink communications. Besides, if any FS children loose their connection to

their parent, they can run the ParentSelection method to choose a new parent.

In addition, each FS sends the latest information about its Listch to its parent FS if

any changes happen. This helps higher-level FSs to update their Ω.

5.4.2 Application Placement

Due to the time consuming nature of finding the optimal solution (Section 5.3.3) for the

application placement problem, a Distributed application placement technique (DAPT)

is proposed to find a well-suited solution in a distributed manner (Algorithm 10). The

DAPT starts whenever an application placement request arrives, and the serving FS

tries to place application modules on appropriate servers so that real-time tasks, emitted

from modules, can be processed with the minimum cost. Considering the weighted cost

(Eq. 5.1), DAPT attempts to place modules of IoT applications in one/several FSs on the

lowest-possible layer while considering the potential of clustering. However, if available

resources in that/those FSs are not sufficient, it considers upper layer FSs or/and CSs

to place the rest of modules. In this way, DAPT reduces the search space of Eq. 5.1 for

each FS by only considering itself, its parent FS, and its CMs, and aims at reducing the

overall weighted cost. Moreover, a distributed failure recovery method is embedded in

DAPT to recover from possible failures.

The immediate FS that receives the placement request from an IoT device is con-

sidered as the application placement controller (controller) for that IoT device. If the

controller is performing the placement of a set of modules or a parent FS receives place-

ment request from its children and the failure recovery mode is not active (lines 3-28),

the ClusterCheck method returns the list of CMs and their available resources (line 4).

Then, the list of ready servers SR containing parent FS, current FS, and available CMs is

created (line 5). This list contains all servers that current FS considers for the placement

of modules in that hierarchical layer. Next, the FindOrder method checks either execu-

tion order of modules (TOn) are available or not. If it is available, it loads the execution
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Algorithm 9: Dynamic distributed clustering
Input : RCM: Received Control Message

1 switch RCM do
2 case CandidParent do
3 ParentSelection()
4 message.add(getPosition(),coverRange)
5 message.type(FogJoining)
6 Broadcast(message)
7 end
8 case FogJoining do
9 message.add(getPosition(),coverRange)

10 message.add(getActiveCnts(),getInactiveCnts())
11 message.type(ReplyNewFog)
12 send(RCM.getSourceAddr(), message)
13 Listcl .update(RCM.getData())
14 end
15 case ReplyNewFog do
16 Listcl .update(RCM.getData())
17 MapActiveCntcl .put(RCM.getSourceAddr(),
18 message.getListActiveCnts())
19 MapInActiveCntcl .put(RCM.getSourceAddr(),
20 message.getListInActiveCnts())
21 end
22 case StartFogLeaving do
23 message.type(FogLeaving)
24 Broadcast(message)
25 end
26 case FogLeaving do
27 Listcl .remove(RCM.getSourceAddr())
28 Listch.remove(RCM.getSourceAddr())
29 if RCM.getSourceAddr() == this.Parent) then
30 ParentSelection()
31 end
32 end
33 case StartFogFailureRecovery do
34 for i = 1 to Listch.size() do
35 message.type(FogFailureRecovery)
36 message.setFailedFog(failedFog.getAddr())
37 send(Listch.get(i).getSourceAddr(),message)
38 end
39 end
40 case FogFailureRecovery do
41 Listcl .remove(RCM.getFailedFogAddr())
42 end
43 end
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Algorithm 10: An overview of DAPT
Input : Gn: The DAG of nth IoT device, UGn : A subset of unassigned modules from Gn, Xn:

The configuration of assigned modules, controllerID: ID of the placement controller
Output : Xn

1 sID: this.ID
2 Listcl : this.getClusterMembers()
3 if (controller(n) || ReqFromChild) & !DAPTFailureRecovery(n) then
4 ListA

cl =ClusterCheck(Listcl)
5 SR=ReadyServers(ListA

cl ,this.parent,sID)
6 SchSn=FindOrder(Gn)
7 U(Gn)=Sort(U(Gn), SchSn, SR)
8 if SR − Par(sI D) 6= ∅ then
9 for i = 1 to UGn .size() do

10 v=U(Gn),i
11 IDmin=FindMinCost(SR,Gn,Xn,v)
12 if IDmin == sID then
13 resv=CalService(v)
14 if this.Cnts.contains(v) & then
15 ScaleCnts(v,resv)
16 else
17 StartCnt(v)
18 end
19 UpdateConfig(Xn,v,sID)
20 end
21 else
22 ReqList.update(v,IDmin)
23 end
24 end
25 PlaceReqToServers(ReqList,Gn,Xn,SR,TOn,SchSn)
26 else
27 PlacePar(Gn,UGn ,Xn,TOn,SchSn)
28 end
29 else if !controller(n) & !DAPTFailureRecovery(n) then
30 for i = 1 to UGn .size() do
31 v=U(Gn),i
32 resv=CalService(v)
33 if this.Cnts.contains(v) & resv ≤ this.Resource then
34 ScaleCnts(v,resv)
35 UpdateConfig(Xn,v,sID)
36 NotifyController(v, sID,controllerID)
37 else
38 if resv ≤ this.Resource then
39 StartCnt(v)
40 UpdateConfig(Xn,v,sID)
41 NotifyController(v, sID,controllerID)
42 else
43 SendDAPTFailureRecovery(n,v,controllerID,sID)
44 end
45 end
46 end
47 else
48 DAPTFailureRecovery(n,v,SR,Xn)
49 end
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order and and records it in SchSn (line 6). Then, Sort method defines priority value for

modules based on non-increasing order of their rank value, if it is currently not available

(line 7). The rank of each module is defined as:

Rank(vn,j) =



Cexe
n,j + max(Ctra

n,j,z + Rank(vn,z)) if vn,j 6= exit

∀vn,z ∈ Succ(vn,j),

Cexe
n,j , if vn,j = exit

(5.31)

where Cexe
n,j shows the average weighted execution cost of module vn,j, and Ctra

n,j,z depicts

the transmission cost of module vn,j and vn,z, which are calculated as:

Cexe
n,j = w1 × ˜Texe

xn,j
(SR) + w2 × ˜Eexe

xn,j
(SR) (5.32)

Ctra
n,j,z = w1 × ˜γtra

n,j,z(SR) + w2 × ˜ϑtra
n,j,z(SR) (5.33)

where ˜Texe
xn,j

(SR) and ˜Eexe
xn,j

(SR) show the average execution time and energy consumption

of each module considering available servers in the SR. The execution time Texe
xn,j

and en-

ergy consumption Eexe
xn,j

of each module per server are obtained from Eq. 5.5 and Eq. 5.18

respectively. Besides, ˜γtra
n,j,z(SR) and ˜ϑtra

n,j,z(SR) shows the average transmission time and

energy consumption between modules vn,j and vn,z considering available servers in the

SR. The transmission time γtra
n,j,z and transmission energy consumption ϑtra

n,j,z between

each pair of servers in the SR can be obtained from Eq. 5.7 and Eq. 5.20, respectively.

Moreover, w1 and w2 are control parameters to tune the weighted cost. The rank is cal-

culated recursively by traversing the DAG of application, starting from the exit module.

The Sort method can find the critical path of the DAG and gives higher priority to the

modules that incur higher execution cost among modules that can be executed in paral-

lel. Hence, the probability of placement of these modules on lower-level FSs increases.

This latter is important since the resources of lower-level FSs are limited compared to

higher-level FSs, but they can be accessed with less communication cost. Hence, if mod-
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ules are more communication and latency-sensitive, they can be placed on lower-level

FSs with higher priority while if they are computation-intensive modules, that cannot

be efficiently executed on the lower-level FSs, they can be forwarded to higher-level

FSs with higher priority. If SR contains any candidate server except its parent, for each

module v of UGn , the FindMinCost receives the SR, Gn, and configuration Xn, as its in-

put and finds the minimum cost for the execution of the module v based on current

solution configuration Xn (i.e., based on the assigned servers’ configuration to the pre-

decessors of this module). Although in Fog computing environments, a large number of

FSs are deployed as candidate servers, the DAPT only considers FSs in the SR, to which

the serving FS can communicate with the lowest possible transmission and inter-nodal

cost. Moreover, we assume that FSs do not have a global view of all FSs in the environ-

ment. Therefore, the search space in each hierarchical layer is reduced while the suitable

candidate servers for real-time and latency-sensitive IoT applications are kept. After pri-

oritizing modules, the execution cost of each module based on the available servers in

SR is calculated using FindMinCost method. This method checks the available resources

required to run or scale the Cnts to run these modules on available servers. Then, among

the servers that meet these requirements, it returns the ID of the selected FS, IDmin, that

can execute module v while minimizing the overall application cost using Eq. 5.1 (line

11). If the current FS is selected, and it has active Cnt, the ScaleCnt method scales the

resources so that it can serve this module (line 15). If there is no active Cnt in this FS, it

should run a new Cnt, which incurs a Cnt startup cost (line 17). The candidate solution

configuration Xn is updated accordingly so that the new configuration can be consid-

ered for the placement of the rest of the modules (line 19). If the selected FS is among

the CMs or parent FS, the module v and its corresponding assigned server are stored in

the request list ReqList (line 22) so that it can be forwarded to their destination using the

PlaceReqToServers (line 25). This method sends modules to assigned serves along with

the topological order of this IoT application TOn, schedules SchSn, and current solution

configuration Xn. Finally, in a case that the SR is empty, meaning that the current con-

troller does not have any resources and also it does not have any candidate servers with

sufficient resources, it sends all modules to the parent FS so that the placement can be

started in the higher hierarchical levels by means of the PlacePar method (line 27). If the
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parent FS receives the placement request from its children, it checks the possibility of

placement of received modules on its SR. The background reason is if one FS receives

some modules for placement from its children FSs, it means that those modules are ei-

ther more computation-intensive rather than latency/communication-intensive, or the

children FSs did not have sufficient resources for these modules. However, if one FS

receives a placement request from its CMs, it starts the deployment of modules on the

condition that the available resources meet the modules’ requirements.

If serving FS is not the controller FS and the failure recovery mode is not active (i.e,

the placement request is forwarded to CMs), it iterates over the received modules (i.e.,

UGn ) and calculates the required amount of resources for each module CalService(v). If

it has enough resources, it starts the module, and using NotifyController method sends

an acknowledgment for the controller FS. However, if due to any problem this FS can-

not place this module, it runs SendDAPTFailureRecovery method, which sends a failure

message to the controller FS so that the controller can make a new decision (lines 29-47).

If failure recovery mode is active, it means that one or several servers cannot prop-

erly execute assigned modules. Hence, the DAPT algorithm calls DAPTFailureRecovery

method. This method receives failed modules of nth IoT application and finds corre-

sponding FSs from the solution configuration Xn. If it has several candidate servers in

SR, it removes specification of the failed FS from SR. Then, it iterates over the rest of

available servers to finds FSs for these modules that minimize the execution cost. How-

ever, if the current FS only has its parent sever in the SR, DAPTFailureRecovery sends

a control message to activate DAPTFailureRecovery method of the parent FS. (line 48).

It helps to check the possibility of placement of these modules in higher hierarchical

layers.

5.4.3 Migration Management Technique (MMT)

As the user of nth IoT device is moving away from its current low-level FS (i.e., its con-

troller FS) to a new low-level FS, the current controller FS should initiate the migration

process to find a new controller FS, and migrate the current data and states of running

Cnts to new FSs. We suppose IoT devices can detect distributed low-level FSs (eg., using
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beacons, GPS, etc) and update their list of sensed FSs Listn
SFog periodically. Whenever

the controller FS realizes that the IoT device n is about to leave (e.g., through the re-

ceived signal to noise ratio), it receives Listn
SFog from the IoT device and initiates the

migration process. The goals of the migration management technique (MMT) is to 1)

find a new controller FS with the maximum sojourn time for the IoT device and 2) find

a set of substitute servers for processing of IoT application’s modules while minimizing

the migration cost (Eq. 5.24). The Algorithm 11 shows an overview of the distributed

migration process.

Whenever a controller FS realizes the nth IoT device is about to leave its coverage

range, it initiates MigrationInitiate to find a new controller FS for the IoT device. The cur-

rent controller FS receives the list of sensed low-level FSs Listn
SFog from nth IoT device

and removes its sID from this list so that it cannot be selected as a new controller FS (line

4). The mobility information of each user mobInfo(n) contains its average speed and its

direction. Moreover, in the clustering technique, each FS learns the position and cov-

erage ranges of its CMs. Considering the aforementioned values, the controller FS can

estimate the sojourn time of this IoT device for each CM. The MobilityAnalyzer method

(line 5) receives mobInfo(n) and Listn
SFog and checks whether the Listn

SFog contains any

CMs of the current FS controller. Moreover, it finds specifications of other FSs belonging

to Listn
SFog through its CMs, if possible. The MobilityAnalyzer then creates two separate

lists for reachable FSs (Listreach) and unreachable FSs (Listunreach) from Listn
SFog. The for-

mer one contains any FSs of Listn
SFog which are among CMs of the current controller FS

or those that can be accessed through its CMs, while the latter one refers to FSs to which

the controller FS does not have access either directly or through its CMs. The MobilityAn-

alyzer method gives higher priority to FSs of Listreach because the required information

for the new controller to start its procedures can be more efficiently transferred to these

FSs compared to those FSs to which it does not have direct access. The MMT consid-

ers resources of FSs belonging to Listreach, and if they have enough resources to serve

modules that are currently assigned to the current controller FS, it estimates the sojourn

time of nth IoT device for those candidate FSs. Then, it returns the ID of the FS with

sufficient resources and the maximum estimated sojourn time. It is important to note

that assigning the controller role to a new FS with maximum sojourn time can reduce
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the number of possible future migrations, which leads to fewer service interruptions

due to migration downtime. On the condition that no FSs of Listreach contains enough

resources, it returns the ID of FS with the maximum sojourn time. However, if Listreach

is empty, this method returns the ID of one of the FSs from Listunreach randomly. Then,

current controller FS sends a NewControllerReq message to destID, containing the DAG of

nth IoT device application Gn, mobilityInfo(n), and the current configuration of assigned

servers Xn (lines 7-9).

When an FS receives NewControllerReq message, it adds the IoT device n to its con-

trollerList to serve this IoT device as its new controller FS (lines 11-12). This new con-

troller FS is responsible for the rest of migration management. It retrieves the current

configuration Xn and the previous controller ID, IDPreCon, from the received message

RCM (lines 13-14). The SortCntsSize method descendingly sorts Cnts based on their al-

located runtime Ram Cntsram (line 15). The background reason is the amount of dump

and state to be transferred in the downtime is directly related to Cntsram [206]. The mi-

gration of Cnts with larger Cntsram incurs higher cost in terms of migration time and

energy (Eq. 5.24). Hence, to reduce the total migration cost, MMT gives higher prior-

ity to modules with heavier Cntsram so that the migration decision can be made sooner,

and they can be migrated before other modules. Next, FindPreServersConfig method re-

trieves assigned servers’ specifications for all application modules and stores them in

MapServerpre (line 16). The migration cost (Eq. 5.24) is defined as the maximum migra-

tion cost for each application module while considering Xn and its new configuration

X′n. The goal is to minimize this migration cost while it is subject to the condition that

the new configuration X′n provides better application execution cost or roughly the same

with previous configuration Xn (Eq.5.26). So, the MMT retrieves modules of each sched-

ule based on SchSn and send their corresponding information alongside MapServerpre

and Listsorted
Cnts to sendMigReqToServers method. It creates a list of modules based on the

hierarchical layer on which modules are previously assigned. Modules of each hierar-

chical layer are also sorted based on allocated Ram size, obtained from Listsorted
Cnts . This

method sends MigrationReq messages alongside respective modules’ information to FSs

that are responsible for making the migration decision. As MMT acts in a distributed

manner and FSs at each layer only has information about their parent, children, and
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Algorithm 11: Migration management technique
Input : RCM: Received Control Message, Gn: The DAG of nth IoT device, mobIn f o(n): The mobility data

of the IoT device n, Xn: The configuration of assigned modules, controllerID : ID of the controller,
Listn

SFog: Sensed Fog devices’ List of IoT device n
1 switch RCM do
2 case MigrationInitiate do
3 Listn

SFog=Listn
SFog.remove(sID)

4 destId=MobilityAnalyzer(n,mobIn f o,Listcl ,Listn
SFog)

5 message.add(Gn,mobIn f o(n),Xn,TOn,SchSn)
6 message.type(NewControllerReq)
7 send(destID ,message)
8 controllerpre(n)=true
9 end

10 case NewControllerReq do
11 n=RCM.getIoTDevice
12 getcontrollerList().add(n)
13 Xn=RCM.getConfig(n)
14 IDPreCon=RCM.getSourceAddr()
15 Listsorted

Cnts =SortCntsSize(Gn, Cntsram)
16 MapServerpre=FindPreServersConfig(Xn)
17 for t = 1 to |SchSn| do
18 sendMigReqToServers(MapServerpre,Listsorted

Cnts ,SchSn.t)
19 WaitForServersNotifications()
20 end
21 end
22 case MigrationReq do
23 ReqIn f o=RCM.getInfo()
24 Modules= ReqIn f o.getModules()
25 SR=ReadyServers(this.getCMs(),this.getID(),this.getChildren())
26 if !SR.isEmpty() then
27 for i = 1 to Modules.size() do
28 SortedCostList=∅
29 for j = 1 to SR.size() do
30 MigCostTemp=CalMigCost(Modulesi ,SR,j)
31 CostList.update(SR,j,MigCostTemp)
32 end
33 SortedCostList=Sort(CostList)
34 ServerID=FindMigrationDestination(SortedCostList)
35 sendMigrationDestination(Modulesi ,Xn,ServerID)
36 end
37 end
38 else
39 SendMigReqToServers(this.Parent(),ReqIn f o)
40 end
41 end
42 case MigrationDestination do
43 v=RCM.getModule()
44 resv=calService(v)
45 if resv ≤ this.resources then
46 sendMigrationStart(v,FSv

pre,FSv
new)

47 UpdateConfig(Xn,v,sID)
48 NotifyController(v,sID ,controllerID)
49 else
50 SendMMTFailureRecovery(n,v,controllerID ,sID)
51 end
52 end
53 case StartMigration do
54 Migrate(v,RCM.FSv

new)
55 UpdateResoure(v)
56 if controllerpre(n) & MigrationFinish(n) then
57 controllerpre(n)=false
58 getControllerList().remove(n)
59 end
60 end
61 case MMTFailureRecovey do
62 MMTFailureRecovery(n,v,controllerID ,sID)
63 end
64 end
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CMs, migration decisions for modules of each layer are made by the new controller, its

parent, or ancestors in the hierarchy. To illustrate, considering Fig. 5.1, we assume an IoT

application has three modules in one of its schedules and two of them were previously

assigned on FS (1,3) (prior controller), and one on FS (2,1). If we assume that the new

controller is FS (1,4), it makes migration decision for modules that previously assigned

on FS (1,3) while par(1, 4) (i.e., FS (2,3)) makes migration decision for the module that

previously assigned on FS (2,1). After sending migration requests migrationReq, FS (1,4)

waits to receive notifications and new configuration of modules for that schedule and

then iterates over next schedules (lines 17-20).

When an FS receives MigrationReq message, the FS retrieves the information and for-

warded modules from the received message (lines 23-24). Then, the list of ready servers

SR is created based on CMs, and children. If the SR does not contain any available

servers, all the modules are forwarded to the parent FS for making migration decision

(line 39), while if it contains servers, it tries to minimize the migration cost based on the

specification of available servers (line 26-37). This FS considers a list of modules, sorted

descendingly based on Cntsram, for making migration decision. Hence, the migration

of modules that incur higher migration costs in each schedule is performed with higher

priority, leading to less overall migration costs in that schedule. Then, for each selected

module, the migration cost is estimated and stored in the CostList (line 29-32). The Sort

method sorts the migration costs ascendingly so that servers with lower migration cost

receives higher priority (line 33). Then, the FindMigrationDestination method selects

a new server for the module, considering SortedCostList, which minimizes the migra-

tion cost while it does not negatively affect the application’s running cost. Hence, this

method iterates over SortedCostList, sorted ascendingly based on the migration costs,

and selects the server that satisfies the constraints of Eq. 5.24 (line 34). Finally, the send-

MigrationDestination method sends a MigrationDestination message to the selected FS

to check its resources and start the migration of the respective module.

The FS receiving MigrationDestination checks whether it has enough resources to

serve the module v or not (lines 42-44). If this FS can serve the module v, it sends a

StartMigration message to the FSv
pre so that it can start the migration. Then, it updates

the Xn with its sID and notifies the controller (lines 45-48). If it cannot serve this module
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due to any reason, it runs the SendMMTFailureRecovery method to send a failure message

to the controller FS (lines 49-51).

The MMTFailureRecovey is working as the same as DAPTFailureRecovey. The only

difference is that the migration cost in the MMT is obtained from Eq. 5.24 (lines 59-61).

Whenever an FS receives a StartMigration message, it starts the migration and then

frees the previously assigned resources (lines 53-55). Moreover, if the FS was previously

the controller for the nth IoT device, and it finishes the migration of all assigned modules

belonging to that IoT device, the FS removes the nth IoT device from its controllerList

(lines 56-59).

5.4.4 Complexity Analysis

The TC of the clustering phase (Algorithm 9) depends on the size of Listcl , Listch, and

immediate upper-level candidate parent of each FS. In the worst-case scenario, we as-

sume that all FSs reside in one cluster and/or they have only one parent. Hence, the TC

of remove method belonging to the FogLeaving and FogFailureRecovery is O(F), and the

TC of the StartFogFailureRecovery is O(F). Moreover, the TC of ParentSelection method of

CandidParent is O(F) in the worst-case scenario if we assume one FS has F− 1 candidate

parent. Hence, the TC of the clustering step in the worst-case scenario is O(F). More-

over, in the best-case scenario, the number of FSs in Listcl and/or the size of the Listch is

one, and the TC of the best-case is O(1).

To find the TC of DAPT (Algorithm 10), we suppose that the size of the largest IoT ap-

plication is K. So, in the worst-case scenario, the size of UGn is K. The FindOrder method

finds the topological order of the DAG using BFS algorithm with the TC of O(K + |E |),
in which |E | represents the number of data flows. In the dense DAG, the |E | is of O(K2).

Moreover, the TC of Sort algorithm is O(FK2) in the worst-case scenario. In the worst-

case scenario, all FSs reside in one cluster and have enough resources for any requests.

Hence, the worst-case TCs of ClusterCheck, ReadyServers, FindMinCost, and DAPTFailur-

eRecovery are of O(F), O(F), O(FK), and O(FK), respectively. Hence, the worst-case TC

of DAPT Algorithm is O(FK2 + FK). In the best-case scenario, the DAG of the appli-

cation can be sparse so that the TC of FindOrder and Sort algorithms become O(K) and
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O(1), respectively. Moreover, in the best-case scenario, the number of available servers

in one cluster is one, and hence, TCs of ClusterCheck, ReadyServers, FindMinCost, and

DAPTFailureRecovery are of O(1), O(1), O(K), and O(K), respectively. So, TC of DAPT

in the best-case scenario is O(K).

The TC of the MigrationInitiate from Algorithm 11 depends on the TC of MobilityAn-

alyzer. In the worst-case scenario, all the FSs reside in one cluster and the IoT device can

sense all of them. So, the size of the list of sensed FSs Listn
SFog is equal to F. Hence, in the

worst-case, the TC of creating Listreach and Listunreach is of O(F2) while in the best-case

scenario, it is of O(F) when there is only one FS in the cluster. Moreover, the worst-

case TC of finding maximum sojourn time is O(F). So, the TC of MigrationInitiate in the

worst-case is O(F2) while in the best-case, it is of O(F). The TC of the NewControllerReq

in the worst-case is O(KLogK + FK) while TC of NewControllerReq in the best-case sce-

nario is O(KLogK) when there is only one FS in each cluster. The TC of MigrationReq in

the worst-case scenario depends on the TCs of CalMigCost and Sort which are O(FK)

and O(FKLogF) while in the best-case scenario they are O(K). The TC of MigrationDes-

tination depends on the TC of MMTFailureRecoverymig and is of O(F) at the worst-case

and O(1) in the best-case scenario. Therefore, the TC of the MMT in the worst-case

scenario is O(F2 + FK + KLogK + FKLogF) while in the best-case scenario is O(KLogK).

Considering TCs of all methods, the TC of our technique in the worst-case scenario

is O(F2 + FK2 + FKLogF) while in the best-case scenario, it is O(F + KLogK).

5.5 Performance evaluation

In this section, the system setup and parameters, and detailed performance analysis of

our technique, in comparison to its counterparts, are provided.

5.5.1 System Setup and Parameters

We extended the iFogSim simulator [26] for the implementation and evaluation of dis-

tributed mobility management, clustering, and failure recovery techniques. We used

DAGs of two real-time applications, namely the Electroencephalography tractor beam
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game (EEGTBG) [26, 199] and ECG Monitoring for Health-care applications (ECGMH)

[32] to create our DAGs. Both applications consist of a sensor and display modules

that are placed in the IoT device (e.g., smartphone, wearable devices, etc). Other mod-

ules can be placed either on distributed FSs or CSs based on the distributed application

placement decisions and/or the migration technique. Data transmission intervals for

ECG and EEG sensors are 10ms and 15ms, respectively [26, 36]. Besides, we assume

the amount of RAM allocated to each container at the runtime for state size is randomly

selected from 50-75 MBytes [206]. The total amount of data to be transferred in the

downtime (i.e., dsizemig) is just a few MBytes [206], which is randomly selected from

5-10% of each container’s allocated RAM in the runtime.

We simulate a 2km × 1km area, in which the coverage range of FSs situated in

the first and second layers is assumed to be 200m and 400m, respectively. The sys-

tem consists of one layer of IoT devices, three layers of heterogeneous FSs, and a layer

[32, 36, 200]. The IoT device layer consists of 80 IoT devices, while the number of FSs in

level 1, level 2, and level 3 are 30, 5, and 1, respectively. The computing power (CPU)

of IoT devices is considered as 500 MIPS [123], while the computing power of level 1

FSs is randomly selected from [3000-4000] MIPS [123, 199]. Besides, the total computing

power of level 2 FSs, level 3 FSs, and CS are considered as 8000 MIPS, 10000 MIPS, and

80000 MIPS, respectively [32, 200]. Besides, the latency between IoT devices to level 1

FSs, level 1 FSs to level 2 FSs, level 2 FSs to level 3 FSs, and level 3 FSs to Cloud servers

are 5ms, 25ms, 50ms, and 150ms, respectively [32, 36, 200]. The upstream and down-

stream network capacity of IoT devices are 100 Mbps and 200 Mbps, respectively. The

upstream, downstream, and clusterlink network capacity for FSs and the CSs are also

considered to be 10 Gbps [32, 200]. Moreover, clusters can be formed among the level 1

and level 2 FSs with their in-range FSs of the same hierarchical layer. The communica-

tion latency among the FSs residing in level 1 clusters and FSs residing in level 2 clusters

are [3-5] ms and [20-25] ms, respectively [32, 36]. The processing power consumption,

idle power consumption, and transmission power consumption of IoT devices are 0.9W,

0.3W, and 1.3W, respectively [3, 198]. User trajectories are generated by a variation of the

random walk mobility model [87, 205], in which each user selects a direction, chooses

a destination anywhere toward that direction, and moves towards it with a uniformly
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random speed. The user arriving at the destination can choose a new random direction.

Table 5.3 present the evaluation parameters used in experiments.

Table 5.3: Evaluation parameters

Parameter Value
Simulation Time 100,200,300,400 (S)
Area 2km × 1km
Users’ Speed [0.5-4] m/s

Latency (ms)

ECG Sensor Data Transmission Interval 10

EEG Sensor Data Transmission Interval 15

ECG and EEG Sensor↔ IoT Device 2

IoT Device↔ Level 1 FS 5
Level 1 FS↔ Level 2 FS 25
Level 2 FS↔ Level 3 FS 50
Level 3 FS↔ Cloud 150
L1 Clusters [3-5]
L2 Clusters [20-25]

5.5.2 Performance Study

We conducted seven experiments evaluating system size analysis, average execution

cost of tasks, cumulative migration cost, the total number of migrations, Total number of

Interrupted Tasks (TIT) due to the migration, Failure recovery analysis, and optimality

analysis. In the experiments, to obtain the weighted cost of placement and migration,

the w1 and w2 are set to 0.5. To analyze the efficiency of our technique, we extended two

other counterparts in the dependent category of Fog computing proposals as follows:

• MAAS: This is the extended version of the technique called Mobility-Aware Ap-

plication Scheduling (MAAS) [199] working based on edgeward-placement tech-

nique. The main concern of this Edge-centric technique is to place dependent mod-

ules of IoT applications on remote servers based on their pre-known mobility pat-

tern (i.e., source, destination, and the potential paths between them are known in
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advance) of users. In MAAS, if an FS cannot place modules on itself, the mod-

ules should be forwarded to the parent server for placement. We extended this

technique to support the migration as the users move among remote servers in

the runtime while considering the destination and potential paths are not priori-

known.

• Urmila: This is the extended version of Ubiquitous Resource Management for In-

terference and Latency-Aware services (Urmila) [136] which proposes a mobility-

aware technique for placement of dependent modules of IoT applications while

mobility pattern of users are priori-known. In this technique, the central controller

is placed in the highest level FS, and makes placement decisions for IoT applica-

tions consisting of dependent modules. We extended this technique so that the

central controller helps remote servers to migrate dependent modules of applica-

tions as the IoT users move.

System size analysis

In this experiment, we study the effect of number of IoT devices on the Placement De-

ployment Time (PDT). The PDT shows the period between the start of sending place-

ment requests from IoT devices up to the time the deployment of application modules

on FSs are finished. Obviously, the PDT includes the decision time in which FSs make

placement decisions and the container startup cost on the servers. Regardless of the

quality of solutions that each technique provides, the PDT helps to understand how

long the IoT devices should wait until the service can start. In this experiment, the num-

ber of IoT devices is increased from 10 to 160 by multiplication of two. Although the

number of IoT devices increases, we fixed the number of FSs so that we can analyze

how different techniques work when the number of placement requests increases signif-

icantly. Besides, it is clear that our technique, due to its distributed manner, can easily

manage the increased number of placement requests when the number of FSs increases.

In Fig. 5.5, the PDTs of our proposed solution and MAAS are significantly lower than

Urmila, specifically in the presence of larger number of IoT devices. This latter is mainly
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Figure 5.5: Placement Deployment Time (PDT)

because our solution and MAAS use a distributed placement engine while Urmila uses

a centralized approach. When the placement decision engine receives incoming place-

ment requests, it should make placement decisions and then manage the deployments

of application modules in different servers according to solutions’ configuration. In Ur-

mila, all of the placement requests should be forwarded to the centralized entity, mean-

ing that the number of arriving placement requests in the decision engine is larger than

the distributed placement techniques. Hence, the processing of these requests on the

centralized controller takes more time compared to the distributed placement engines,

especially when the number of IoT devices increases. Moreover, our solution outper-

forms the MAAS since it tries to place more application modules in the lowest hierarchi-

cal layer, compared to MAAS, which incurs less deployment time.

Average execution cost of tasks

This experiment shows the average execution cost of tasks emitted from a sensor module

until they arrive at actuator in 400 seconds of simulation.

As it can be seen from Fig 5.6, our proposed solution outperforms the MAAS and

Urmila in terms of Average Response Time of Tasks (ARTT), Average Energy Consump-

tion of Tasks (AECT), and Average Weighted Cost of Tasks (AWCT). In the MAAS, each

FS, from the lowest to the highest hierarchical level, attempts to place modules on itself

or forwards them to its parent server for the placement or handling of the migration
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(a) Average Response Time of Tasks (ARTT)
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(b) Average Energy Consumption of Tasks (AECT)
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Figure 5.6: Average execution cost of tasks

process. Therefore, it does not consider other potential servers at the same hierarchi-

cal level, which incurs higher transmission and inter-nodal costs. The pure Urmila, on

the other hand, does not migrate the application modules to servers that are closer to
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Figure 5.7: Total number of migrations

the moving IoT devices, and hence, the average execution cost of tasks, emitted from

IoT devices, increases significantly. In our distributed technique, however, each FS con-

siders potential servers at the same hierarchical level (for placement and migration) if

those servers are among its CMs. In this way, we decrease the large search space of

centralized techniques, while we use the benefits that servers at the same hierarchical

level can provide. Also, since modules with higher costs have higher placement prior-

ity, the possibility of their placement on more suitable servers are higher compared to

other modules. This latter leads to better placement decisions that minimize the cost of

executing tasks. It is important to note that the average execution cost of the EEGTBG is

lower than the ECGMH. It is because tasks’ instruction number in the EEGTBG is lower

than of ECGMH ones.

Total number of migrations

This experiment studies the total number of migrations that occurred during 400 sec-

onds due to the IoT users’ movement.

It can be seen from Fig. 5.7 that our technique leads to a smaller number of migrations

in comparison to its counterparts. This is because our solution considers the current mo-

bility information of IoT devices such as current speed and direction. Since the controller

FS has coordinates of its CMs and current mobility information of leaving IoT devices

(e.g., their average speed and their direction while in the range of the current controller
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FS), the serving FS can estimate a sojourn time for all candidate remote servers for the

migration. Hence, by the migration of modules to the remote server with the highest so-

journ time (in case sufficient resources are available), the number of possible migrations

decreases. The extended MAAS and Urmila only try to reduce the migration cost by

migrating modules to new remote servers, while they do not consider current mobility

information of IoT devices and their sojourn time in remote servers. Hence, they may

select remote servers in which the IoT devices stay only for a short period.

Cumulative migration cost

This experiment analyzes the Cumulative Migration Cost (CMC) of IoT devices for

ECGMH and EEGTBG in different simulation times. The term cumulative refers to the

aggregate migration cost of all IoT devices.

As Fig 5.8 shows, our solution outperforms its counterparts in terms of Cumula-

tive Migration Time (CMT), Cumulative Migration Energy Consumption (CMEC), and

Cumulative Migration Weighted Cost (CMWC) for both ECGMH and EEGTBG appli-

cations. As the simulation time increases, the cost of all techniques grows, however, Ur-

mila experiences a faster increase in comparison to our solution and MAAS. This latter is

because the Urmila’s controller is placed at the highest hierarchical layer, which incurs

significant inter-nodal and transmission cost when the controller manages migrations

between the old and new remote servers in the downtime. Besides, the migration cost of

MAAS is more than our solution, since whenever the resources of controller finishes, the

MAAS migrates the application modules to higher layers, and hence, the emitted tasks

to/from those modules experience higher cost. Also, the total number of migrations in

Urmila and MAAS are higher than ours, which apparently increases their cumulative

migration costs. The slight difference between cost of ECGMH and EEGTBG is because

the tasks generated from the ECGMH’s modules are heavier than EEGTBG’s ones in

terms of their MI. So, the processing time of remaining instructions of tasks (i.e., eins,r
n,i,j )

that migrated from old server to new server is higher for the ECGMH compared to the

EEGTBG (in case the computing powers of old and new servers are roughly the same).
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(a) Cumulative Migration Time (CMT)
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(b) Cumulative Migration Energy Consumption (CMEC)
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Figure 5.8: Cumulative Migration Cost

Total number of interrupted tasks (TIT)

This experiment analyzes the Total number of Interrupted Tasks (TIT) in the downtime.

During migration downtime, there is no active service provider for incoming tasks from
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Figure 5.9: Total number of interrupted tasks

the modules deployed on the IoT device for a while. Hence, service interruptions hap-

pen in the downtime, in which the generated tasks experience higher delays or even they

can be discarded, compared to the tasks that are generated when there is no migration.

The IoT users receive smoother results with lower TIT.

Fig. 5.9 presents the TIT of techniques for ECGMH and EEGTBG in different simu-

lation times. It can be seen that our solution outperforms its counterparts in different

simulation times for the ECGMH and EEGTBG. The migration time has a direct impact

on the TIT, and the techniques with higher migration time lead to larger TIT. This latter

is because as the migration time increases, the number of delayed (or even dropped)

tasks grows faster. It can be seen from Fig. 5.9 that the Urmila results in larger TIT

than two other techniques because of its higher migration time. Moreover, due to our

smaller migration time, the TIT of our solution is smaller than other techniques for both

ECGMH and EEGTBG applications. It is worth mentioning that the TIT of techniques

for EEGTBG applications is smaller than of ECGMH ones. This latter is due to a higher

data transmission interval for the EEG sensor in EEGTBG compared to the ECG sensor

of ECGMH, which means that the number of emitted tasks per second for the EEGTBG

application is smaller than the ECGMH application. Hence, applications with shorter

task emission interval (here, the ECGMH application) suffer more from higher migra-

tion time.
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Table 5.4: Failure recovery analysis

Applications Experiment
Techniques

Proposed Solution
(FR Mode)

MAAS
(No FR)

Urmila
(No FR)

ECGMH
Total Number of Migrations 177 234 234

Total Number of Interrupted Tasks 2095 4152 12302

EEGTBG
Total Number of Migrations 169 227 227

Total Number of Interrupted Tasks 1228 2504 8361

Failure recovery analysis

In this experiment, we study the effect of the failure recovery method in the migration

process. The MAAS and Urmila do not have any failure recovery methods and their

results are just presented here for comparison purposes. The results of our technique

with a failure recovery method (FR Mode) are presented in Table 5.4 when there is a 5%

probability of failure in the migration process.

Table 5.4 illustrates that our technique with the failure recovery method (FR Mode)

can recover from failures while it still outperforms its counterparts in terms of the to-

tal number of migrations and TIT. The obtained results of the average execution cost

of tasks and cumulative migration cost in the FR Mode are roughly the same with the

Non-FR Mode and they are not provided here. Since the Urmila and MAAS do not have

any failure recovery methods, in case of any failures, their placement and/or migration

process remains incomplete. However, in our technique, we embedded the failure re-

covery method for which it accepts a small overhead while it does not stop working if

any failures occur.

Optimality analysis

In this experiment, we compare the performance of our solution with the optimal values.

To obtain the optimal results, we used an optimized version of the Branch-and-Bound

algorithm to search all possible candidate configurations for application placement, in

which the bounding function helps to faster prune the search space [29]. Since find-

ing the optimal solution is very time consuming, we only consider 20 IoT devices in a
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hierarchical Fog computing environment, consisting of 15 candidate servers.
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(b) Average Energy Consumption of Tasks (AECT)
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Figure 5.10: Optimality analysis results

Fig. 5.10 shows the results of optimality analysis in terms of Average Response Time
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of Tasks (ARTT), Average Energy Consumption of Tasks (AECT), and Average Weighted

Cost of Tasks (AWCT). The results show that our solution has an average of 12% differ-

ence with the optimal results. However, considering the large number of FSs distributed

in the proximity of IoT users, obtaining the optimal solutions, due to their large search

spaces, is not practically possible, especially for real-time IoT applications.

5.6 Summary

In this chapter, we proposed a new weighted cost model for minimizing the overall

response time and energy consumption of IoT devices in a hierarchical Fog comput-

ing environment, in which heterogeneous FSs and CSs provide services for IoT de-

vices. In order to enable collaboration among remote servers and provide better ser-

vices for IoT applications, we proposed a dynamic and distributed clustering technique

among FSs of the same hierarchical level. Considering the heterogeneous resources of

remote servers and the dynamic nature of such computing environments, we also pro-

posed a distributed application placement technique to place interdependent modules of

IoT applications on appropriate remote servers while satisfying their resource require-

ments. Also, to manage potential migrations of IoT applications’ modules among re-

mote servers, due to IoT users’ mobility, a distributed migration management technique

is proposed. The main goal of this latter is to reduce the migration cost of IoT applica-

tions. Finally, we embedded light-weight failure recovery methods to handle possible

unpredicted failures that may happen in such dynamic computing environments. The

effectiveness of our technique is analyzed through extensive experiments and compar-

isons by the state-of-the-art techniques in the literature. The obtained results demon-

strate that our technique improves its counterparts in terms of placement deployment

time, average execution cost of tasks, the total number of migrations, cumulative migra-

tion cost of all IoT devices, and the total number of interrupted tasks due to migration.

While this chapter presented heuristic-based algorithms for fast placement and mi-

gration of IoT applications, in the next chapter, we explore building a complete dis-

tributed learning-based scheduling model using the RL framework.





Chapter 6

Deep Reinforcement Learning-based
Application Placement Technique

Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in

Fog/Edge computing environments, which are only suitable for centralized setups. The training of

well-performed DRL agents requires manifold training data while obtaining training data is costly.

Thus, these DRL-based techniques lack generalizability and quick adaptability, hence failing to ef-

ficiently tackle placement problems. Also, many IoT applications are modeled as Directed Acyclic

Graphs (DAGs) with diverse topologies. Satisfying dependencies of DAG-based IoT applications in-

cur additional constraints and increase the complexity of placement problem. To overcome these chal-

lenges, we propose an actor-critic-based distributed application placement technique, working based

on the IMPortance weighted Actor-Learner Architectures (IMPALA) known for efficient distributed

experience trajectory generation that significantly reduces exploration costs of agents. Besides, it

uses an adaptive off-policy correction method for faster convergence to optimal solutions. The perfor-

mance results show that our technique significantly improves execution cost of IoT applications up

to 30% compared to its counterparts.

6.1 Introduction

In real-world scenarios, many IoT applications (e.g., face recognition [208], smart health-

care [209],and augmented reality [210]) are modeled as a Directed Acyclic Graph (DAG),

in which nodes and edges represent tasks and data communication among dependent

This chapter is derived from:

• Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya, ”A Distributed Deep Re-
inforcement Learning Technique for Application Placement in Edge and Fog Computing Environ-
ments”, IEEE Transactions on Mobile Computing (TMC), (in press, DOI: 10.1109/TMC.2021.3123165,
accepted on 23 October, 2021).
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tasks, respectively. These DAG-based IoT applications incur higher complexity and con-

straints when making placement decisions. Hence, placement/offloading of IoT appli-

cations, comprised of dependent tasks, on/to suitable servers with the minimum execu-

tion time and energy consumption is an important and yet challenging problem in Fog

computing. Many heuristics, approximation, and rule-based solutions are proposed for

this NP-hard problem [11, 199, 211]. Although these techniques work well in general

cases, they heavily rely on comprehensive knowledge about the IoT applications and re-

source providers (e.g., CSs or FSs). The Fog computing environment is stochastic in sev-

eral aspects, such as arrival rate of application placement requests, dependency among

tasks, number of tasks per IoT application, resource requirements of applications, and

available remote resources, just to mention a few. Therefore, heuristic-based techniques

cannot efficiently adapt to constant changes in the Fog computing environments [212].

Deep Reinforcement Learning (DRL) provides a promising solution by combining

Reinforcement Learning (RL) with Deep Neural Network (DNN). Since DRL agents can

accurately learn the optimal policy and long-term rewards without prior knowledge

of the system [119, 213], they help solve complex problems in dynamic and stochas-

tic environments such as Fog computing, especially when the state space is so large

[212, 214]. Although the effectiveness of DRL techniques is shown in several works

[71, 99, 130, 131, 215], there are yet several challenges for practical realizations of these

techniques in Fog computing environments. In DRL, the agent interacts with the en-

vironment using trial and error (i.e., exploration) and records the trajectories of expe-

riences (i.e., sequences of states, actions, and rewards) in large quantities with high di-

versity. These experience trajectories are used to learn the optimal policy in the training

phase. In complex environments, such as Fog computing, DRL agents require a large

number of interactions with the environment to obtain sufficient trajectories of experi-

ence to capture the properties of the environment. Therefore, the exploration cost of

agents increases. Obviously, it negatively affects the user experience in the Fog comput-

ing environment, because the training of the DRL agents in such complex environments

is a time-consuming process. The centralized DRL agents used in Fog computing envi-

ronments are not suitable for the highly distributed and stochastic environments [97].

Hence, a key problem is how to adapt distributed DRL techniques to efficiently perform
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in Fog computing environments. Considering the distributed nature of Fog computing

environments, the application placement engines can be placed on different FSs, that

work in parallel and efficiently produce diverse experience trajectories with less explo-

ration costs. However, other challenges may arise such as how these trajectories can be

efficiently and practically used to learn the optimal policy.

To address the aforementioned challenges, we propose an EXperience-sharing Dis-

tributed Deep Reinforcement Learning-based application placement technique, called

X-DDRL, to efficiently capture complex dynamics of DAG-based IoT applications and

FSs’ resources. The X-DDRL uses IMPortance weighted Actor-Learner Architectures

(IMPALA), proposed by Espeholt et al. [216], which is a distributed DRL agent that uses

an actor-learner framework to learn the optimal policy. In IMPALA, several actors in-

teract with the environments in parallel and produce diverse experience trajectories in

a timely manner. Then, these experience trajectories are periodically forwarded to the

learner for the training and learning of the optimal policy. After each policy update

of the learner, actors reset their parameters with the learner’s one and independently

continue their explorations. As a result of this distributed and collaborative experience-

sharing between actors and learners, the exploration costs reduce significantly, and the

experience trajectories are efficiently reused. However, due to decoupled acting and

learning, a policy gap between actors and learners arises, which can be corrected by V-

trace off-policy correction method [216]. Moreover, we use Recurrent Neural Networks

(RNN) to accurately identify the temporal patterns across different features of the in-

put. Finally, the X-DDRL uses experience replay to break the strong correlation between

generated experience trajectories and improve sample efficiency.

The main contributions of this chapter are:

• A weighted cost model for application placement of DAG-based IoT applications

is proposed to minimize the execution time of IoT applications and energy con-

sumption of IoT devices. Then, this weighted cost model is adapted to be used in

DRL-based techniques.

• A pre-scheduling technique is put forward to define an execution order for depen-

dent tasks within each DAG-based IoT application.
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• A dynamic and distributed DRL-based application placement technique is pro-

posed for complex and stochastic Fog computing environments, working based

on the IMPALA framework. Our technique uses RNN to capture complex pat-

terns across different features of the input. Moreover, it uses an experience replay

buffer which remarkably helps sampling efficiency and breaks the strong correla-

tion between experience trajectories.

• Simulation and testbed experiments are conducted using a wide range of synthetic

DAGs, derived from the real-world IoT applications, to cover diverse application

dependency models, task numbers, and execution costs.

The rest of the chapter is organized as follows. Relevant DRL-based application

placement techniques in Edge and Fog computing environments are discussed in Sec-

tion 6.2. The system model and problem formulations are presented in Section 6.3. Sec-

tion 6.4 describes the DRL-based model and its main concepts. Section 6.5 presents our

proposed distributed DRL-based application placement framework. We evaluate the

performance of our technique and compare it with state-of-the-art techniques in Sec-

tion 6.6. Finally, Section 6.7 concludes the chapter.

6.2 Related Work

Considering the large number of works in application placement techniques, in this sec-

tion, related works for DRL-based application placement techniques in Fog/Edge com-

puting environments are studied. However, detailed related works for the non-learning-

based application placement techniques and frameworks are available in [1, 3, 76].

DRL-based works are first divided into Edge computing and Fog computing. Edge

computing works only consider the resources in the proximity of IoT users while Fog

computing ones take advantage of both Edge resources and remote Cloud resources.

Hence, the heterogeneity of resources is higher in the Fog computing works, which

leads to higher complexity for DRL-based application placement techniques to iden-

tify the features of the environments. Besides, works are further categorized into in-

dependent and dependent categories based on the dependency model of their IoT ap-
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plications’ granularity (e.g., tasks, modules). In IoT applications with dependent tasks

(i.e., DAGs), each task can be executed only when its parent tasks finish their execution,

while tasks of independent IoT applications do not have such constraints for execution.

Therefore, works in the dependent category have more constraints, and hence the DRL

agent requires specific considerations compared to works in the independent category

to efficiently learn the optimal policy.

6.2.1 Edge Computing

In the independent category, Huang et al. [73] proposed a DRL-based offloading al-

gorithm to minimize the system cost, in which parallel computing is used to speed

up the computation of a single Edge server. Min et al. [69] proposed a fast deep Q-

network (DQN) based offloading scheme, combining the deep learning and hotbooting

techniques to improve the learning speed of Q-learning. Huang et al. [99] proposed

a quantized-based DRL method to optimize the system energy consumption for faster

processing of IoT devices’ requests. Chen et al. [71] proposed a double DQN-based algo-

rithm to minimize the energy consumption and execution time of independent tasks of

IoT applications. Huang et al. [130] also proposed a DRL-based offloading framework

based on DQN that jointly considers offloading decisions and resource allocations. Chen

et al. [217] proposed a joint offloading framework with DRL to make an offloading deci-

sion based on the information of applications’ tasks and network conditions where the

training data is generated from the searching process of the Monte Carlo tree search al-

gorithm. Lu et al. [131] proposed a Deep Deterministic Policy Gradients (DDPG)-based

algorithm for computation offloading of multiple IoT users to a single Edge server to

improve the quality of experience of users. To improve the convergence of the DQN al-

gorithm in an Edge computing environment, Xiong et al. [132] proposed a DQN-based

algorithm combined with multiple replay memories to minimize the execution time of

one IoT application. Qiu et al. [120] studied the distributed DRL in an Edge comput-

ing environment with a single Edge server to minimize the energy cost of running IoT

applications, consisted of independent tasks. To obtain this goal, they combined deep

neuro-evolution and policy gradient to improve the convergence results.
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In the dependent category, Wang et al. [119] proposed a meta reinforcement learn-

ing algorithm based on the Proximal Policy Optimization (PPO). The main goal of this

work is to minimize the execution time of dependent IoT applications, situated in the

proximity of a single Edge server.

6.2.2 Fog Computing

In the independent category, Gazori et al. [133] targeted task scheduling of indepen-

dent IoT applications to minimize long-term service delay and system cost. To ob-

tain this, they used a double DQN-based scheduling algorithm combined with an ex-

perience replay buffer. Tuli et al. [97] proposed Asynchronous-Advantage-Actor-Critic

(A3C) learning-based technique combined with Recurrent Neural Network (RNN) for

the scheduling of independent IoT applications to minimize total system cost.

In the dependent category, Lu et al. [78] proposed a DQN-based algorithm to mini-

mize the overall system cost. Although they consider dependencies among constituent

parts of each IoT application, they only consider the sequential dependency model among

tasks of an IoT application, where there are no tasks for parallel execution.

6.2.3 A Qualitative Comparison

Table 6.1 identifies and compares the main elements of related works with ours in terms

of their IoT application, architectural, and application placement engine properties. In

the IoT application section, the dependency model of each proposal is studied, which

can be either independent or dependent. Moreover, we study how each proposal models

IoT applications in terms of the number of tasks and heterogeneity. This demonstrates

whether IoT applications consist of homogeneous or heterogeneous tasks in terms of

their computation and data flow. In the architectural properties, the attributes of IoT

devices, Fog/Edge servers, and Cloud servers are studied. For IoT devices, the overall

number of devices and their type of requests are identified. The heterogeneous request

type shows that each device has a different number of requests with various require-

ments compared to other IoT devices. For Edge/Fog servers, the number of deployed

servers between IoT devices and Cloud servers and the heterogeneity of their resources
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Table 6.1: A qualitative comparison of related works with ours

Techniques Category

Application Properties Architectural Properties Application Placement Engine Properties

Dependency

Model

Task

Number
Hetero

Main

Method

Task

Priority

Decision Parameters

IoT Device Layer Edge/ Layer
Multi

Cloud
Time Energy Weighted

Number
Request

Type
Number Hetero

[73]

Ed
ge

C
om

pu
ti

ng Independent

Multiple X Multiple × Single × × × × × X

[69] Single × Multiple X Single × × × × X ×

[99] Single × Single × Multiple X × DQN × × X ×

[71] Single X Multiple X Single × ×
Double

DQN
× X X ×

[130] Multiple X Multiple X Single × × DQN × X X X

[217] Single X Multiple X Multiple X × MCTS × X X ×

[131] Multiple X Multiple X Single × × DDPG × X X X

[132] Multiple X Multiple × Single × × DQN × X × ×

[120] Multiple X Multiple X Single × ×
Deep

Neuro

evolution

× × X ×

[119] Dependent Multiple X Multiple X Single × × PPO X X × ×

[133]

Fo
g

C
om

pu
ti

ng

Independent
Multiple X Multiple X Multiple X ×

Double

DQN
× X × ×

[97] Multiple X Multiple X Multiple X × A3C × X X X

[78]
Dependent

Multiple X Multiple × Multiple X × DQN × × X ×

X-DDRL Multiple X Multiple X Multiple X X IMPALA X X X X

The abbreviated terms are as follows: Hetero: Heterogeneity

are studied. Moreover, the multi-Cloud shows either these works consider different

Cloud service providers with heterogeneous resources or not. In the application place-

ment engine, the main employed DRL methods are identified. Besides, it is studied ei-

ther these works consider any mechanism to provide priority for the execution of tasks

or not. Finally, the decision parameters of these DRL-based techniques are identified.

Considering DRL-based application placement techniques in Edge and Fog comput-

ing and their identified properties, the environment with multiple heterogeneous IoT

devices, heterogeneous FSs, and heterogeneous multi CSs has the highest number of

features. Moreover, DAG-based IoT applications incur more constraints on DRL agents

as they need to consider the dependency among tasks within each IoT application. The

exploration cost of DRL agents increases as the number of features and complexity of

the environment increases. It negatively affects the training and convergence time of

DRL techniques, and accordingly users’ experience. To address these issues, we pro-
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pose a distributed DRL technique based on the IMPALA architecture, called X-DDRL,

in which several actors independently interact with Fog computing environments and

create experience trajectories in parallel. Then, these distributed experience trajectories

are forwarded to the learner for training and policy updates. This significantly reduces

the exploration and training costs of centralized DRL techniques. Furthermore, since the

learner directly uses the batches of experience trajectories of distributed actors, rather

than gradients with respect to the parameters of the policy (similar to how the A3C

algorithm works), it can more efficiently learn and identify the features of input data

[216]. Also, the transmission of gradients among actors and learners is more expensive

in terms of data exchange size and time (similar to how A3C works) in comparison to

sharing trajectories of experience. Hence, experience-sharing DRL techniques such as

IMPALA are more practical and data-efficient in highly distributed and stochastic envi-

ronments [216], such as Fog computing. Since the policy used to generate the trajectories

of experiences in distributed actors can lag behind the policy of the learner in the time

of gradient calculations, a V-trace off-policy actor-critic algorithm is used to correct this

discrepancy. Besides, to capture the temporal behavior of input data, we embed RNN

layers in the network of actors and learners. Moreover, X-DDRL uses a replay buffer to

improve the sample efficiency for training.

6.3 System Model and Problem Formulation

Fig. 6.1 represents an overview of our system model in Fog computing. IoT devices send

their application placement requests to brokers, situated at the edge of the network to be

accessed with less latency and higher bandwidth [3, 218]. For each arriving application

request, the broker makes a placement decision based on the corresponding DAG of

the IoT application, its constraints, and the system status. Accordingly, each task of

an IoT application may be assigned to the IoT device for the local execution or one of

heterogeneous FSs or CSs for the execution.
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Figure 6.1: An overview of our system model

6.3.1 IoT Application

Each IoT applications is modeled as a DAG G = (V , E) of its tasks, where V = {vi|1 ≤
i ≤ |V|}, |V| = L depicts vertex set of one application, in which vi denotes the ith task.

Moreover, E = {ei,j|vi, vj ∈ V , i 6= j} represents edge set, in which ei,j denotes there is a

data flow between vi (i.e., parent), vj (i.e., child) and hence, vj cannot be executed before

vi. Accordingly, for each task vj, a predecessor task set P(vj) is defined, containing

all tasks that should be executed before vj. Moreover, for each DAG G, exit tasks are

referred to tasks without any children.

The amount of CPU cycles, required for the processing of each task, is represented

as vw
j , while the required amount of RAM for processing of each task is vram

j . Moreover,
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the weight on each edge ew
i,j illustrates the amount of data that task vi sends as its output

to task vj as its input.

6.3.2 Problem Formulation

Each task of an IoT application can either be executed locally on the IoT device or on one

of the FSs or CSs. We define the set of all available servers asM where |M| = M. Each

server is represented as my,z ∈ M where y shows the type of server (IoT device (y = 0),

FSs (y = 1), CSs (y = 2)) and z denotes the server index. Therefore, the placement

configuration of task vj, belonging to an IoT application, can be defined as:

xvj = my,z (6.1)

and accordingly, the placement configuration of an IoT application X is defined as the

set of placement configurations for all of its tasks:

X = {xvj |vj ∈ V , 1 ≤ j ≤ |V|} (6.2)

We consider that tasks of an IoT application are sorted in a sequence so that all parent

tasks are scheduled for the execution before their children. Hence, the dependencies

among tasks are satisfied. Besides, among tasks that can be executed in parallel (i.e.,

tasks that all of their dependencies are satisfied), the CP(vi) is an indicator function to

demonstrate whether the task is on the critical path of the IoT application or not [140]

(i.e., a path containing vertices and edges that incurs the highest execution cost).

Execution time model

The execution time of each task vj depends on the availability time of required input

data for that task ψ
input
xvj

and its processing time on the assigned server ψ
proc
xvj

:

ψxvj
= ψ

proc
xvj

+ ψ
input
xvj

(6.3)
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where ψ
proc
xvj

depends on the required CPU cycles for that task vw
j and the processing

speed of the corresponding assigned server f s
xvj

, calculated as follows:

ψ
proc
xvj

=
vw

j

f s
xvj

(6.4)

The ψ
input
xvj

is calculated as the maximum time that the required input data for the execu-

tion of task vj becomes available on the corresponding assigned server (i.e., xvj ) from its

parent tasks:

ψ
input
xvj

= max((
ew

i,j

bxvi ,xvj

+ lxvi ,xvj
)× SS(xvi , xvj)), ∀vi ∈ P(vj) (6.5)

where bxvi ,xvj
shows the current bandwidth (i.e., data rate) between the servers to which

vi and vj are assigned, respectively. Moreover, lxvi ,xvj
demonstrates the communication

latency between two servers. The SS(xvi , xvj) is equal to 0 if xvi = xvj (i.e., same assigned

servers) or 1, otherwise. Since Fog computing environments are heterogeneous and

stochastic, the f s
xvj

, bxvi ,xvj
, and lxvi ,xvj

may be different among IoT devices, FSs, and CSs.

The main goal of the execution time model is to find the best-possible placement

configuration for the IoT application so that its execution time becomes minimized. As-

suming an IoT application consists of L tasks, the execution time model is defined as:

Ψ(X ) = min(
L

∑
j=1

CP(vj)× ψxvj
) (6.6)

where CP(vj) is 1 if task vj is on the critical path and 0 otherwise. Due to the parallel

execution of some tasks, only the execution time of tasks on the critical path is consid-

ered, which incurs the highest execution time and involves the execution time of other

parallel tasks as well.

Energy consumption model

We only consider the energy consumption of IoT devices in this work since FSs and

CSs are usually connected to constant power supplies [123]. From the IoT devices’ per-
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spective, the energy consumption that execution of each task vj incurs depends on the

amount of energy the IoT device consumes until the required input data for that task

ω
input
xvj

becomes ready plus the required energy for the processing of that task ω
proc
xvj

:

ωxvj
= ω

proc
xvj

+ ω
input
xvj

(6.7)

where ω
proc
xvj

depends on whether the task is assigned to the IoT device for local execution

or not. Hence, we define an IoT Server identifier IS(xvj) to show whether the xvj refers

to an IoT device (IS(xvj) = 1) or other servers (IS(xvj) = 0). Accordingly, the ω
proc
xvj

is

calculated as follows:

ω
proc
xvj

=

{
ψ

proc
xvj
× Pcpu, IS(xvj) = 1

ψ
proc
xvj
× Pidle, IS(xvj) = 0

(6.8)

If the task is assigned to the IoT device (i.e., IS(xvj) = 1), the energy consumption of
the IoT device is equal to the amount of time that it processes the task multiplied by
the CPU power of IoT device Pcpu. However, if the task is assigned to the other servers
for processing (i.e., IS(xvj) = 0), the energy consumption of the IoT device depends on

its idle time and corresponding idle power Pidle. The ω
input
xvj

depends on the assigned
servers to current task (i.e., xvj ) and its predecessors, and is calculated as what follows:

ω
input
xvj

=



ψ
input
xvj

× Ptra, IS(xvj ) = 1

max(IS(xvi )× (
ew

i,j
bxvi ,xvj

+ lxvi ,xvj
) IS(xvj ) = 0

×SS(xvi , xvj ))× Ptra + (ψidle × Pidle),

∀vi ∈ P(vj),

(6.9)

where IS(xvj) and IS(xvi) demonstrates whether the current task vj and/or its parent

task vi ∈ P(vj) in each edge are assigned to the IoT device or not, respectively. It is

important to note that the transmission energy consumption for each edge in DAG is

only considered when one of the tasks is placed on the IoT device. Hence, if the current

task is assigned to the IoT device (i.e., IS(xvj) = 1), the ω
input
xvj

depends on the ψ
input
xvj

.
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However, if the current task is not assigned to the IoT device (i.e., IS(xvj) = 0), it is

possible that the predecessor tasks of the current task (i.e., ∀vi ∈ P(vj)) are previously

assigned to the IoT device, and hence the IoT device should forward the data to the

server on which the current task is assigned (which incurs energy consumption). If

none of the tasks are assigned to the IoT device for local execution, the IoT device is in

its idle state. Besides, Ptra, ψidle represent the transmission power of the IoT device and

its idle time, respectively. Similar to [122, 123, 219], we used constant values for Ptra,

ψidle, however, these parameters also can be dynamically configured.

The main goal of the energy consumption model is to find the best-possible place-

ment configuration for the IoT application so that its energy consumption becomes min-

imized. Assuming an IoT application consists of L tasks, the energy consumption model

is defined as:

Ω(X ) = min(
L

∑
j=1

CP(vj)×ωxvj
) (6.10)

Weighted cost model

The weighted execution cost of task vj is defined based on its assigned server xvj :

φxvj
= (w1 × ψxvj

) + (w2 ×ωxvj
) (6.11)

where ψxvj
and ωxvj

refer to the execution time and energy consumption for the execution

of task vj. Moreover, the w1 and w2 are control parameters to represent the importance

of decision parameters in weighted execution cost of each task. Also, the weighted cost

of each task can be changed to execution time or energy consumption cost of each task

by assigning w1 = 1, w2 = 0 or w1 = 0, w2 = 1, respectively.

Finally, the goal of weighted cost model is to find the best placement configuration

for tasks of an IoT application while minimizing the weighted cost of parameters. In

this work, we consider execution time of IoT applications and energy consumption of

IoT devices as decision parameters, however, this weighted cost can be extended using

other decision parameters. The weighted cost model is defined as:

min Φ(X ) = min w1 ×Ψ(X ) + w2 ×Ω(X ) (6.12)
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s.t.

C1 : Size(xvj) = 1, ∀xvj ∈ X

C2 : Φ(vi) ≤ Φ(vi + vj), ∀vi ∈ P(vj)

C3 : vram
j ≤ RAM(xvj), ∀vj ∈ V

C4 : w1 + w2 = 1

where Ψ(X ), Ω(X ) are obtained from Eq. 6.6 and Eq. 6.10, respectively. Besides, w1 and

w2 are control parameters for execution time and energy consumption, by which the

weighted cost model can be tuned. C1 denotes that each task can only be assigned to one

server at a time for processing. Moreover, C2 states that the task vj can only be executed

after the execution of its predecessors, and hence the cumulative execution cost of vj

is always larger or equal to execution cost of its predecessors’ tasks [123]. Besides, C3

states that the assigned server to the task vj should have sufficient amount of available

RAM RAM(xvj) for the processing. Also, C4 defines a constraint on the values of control

parameters. These constraints are also valid for execution time and energy consumption

models. Moreover, the weighted cost model can be changed to execution time or energy

consumption model by assigning w1 = 1, w2 = 0 or w1 = 0, w2 = 1, respectively.

Since the application placement problem in heterogeneous environments is an NP-

hard problem [120], the problem’s complexity grows exponentially as the number of

heterogeneous servers and/or the number of tasks within an IoT application increases.

Thus, the optimal policy of the application placement problem cannot be obtained in

polynomial time by iterative approaches. The existing application placement techniques

are mostly based on heuristics, rule-based policies, and approximation algorithms [97,

119]. Such techniques work well in general cases, however, they cannot fully adapt

to dynamic computing environments where the effective parameters of workloads and

computational resources continuously change [119, 220]. To address these issues, DRL-

based scheduling/placement algorithms are promising avenues for dynamic optimiza-

tions of the system [97, 212].
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6.4 Deep Reinforcement Learning Model

The DRL is a general framework that incorporates deep learning to solve decision-

making problems with high-dimensional inputs. Formally, learning problems in DRL

can be modeled as Markov Decision Processes (MDP), which is extensively used in se-

quential stochastic decision making problems. A learning problem can be defined by a

tuple < S, A, P, R, γ >, in which S and A denote the state and action spaces, respec-

tively. P illustrates the state transition probability, and R is a reward function. Finally,

γ ∈ [0, 1] is a discount factor, determining the importance of future rewards. We suppose

that the time horizon is separated into multiple time periods, called time steps t ∈ T.

The DRL agent interacts with the environment, and in each time step t, it perceives the

current state of the environment st, and selects an action at based on its policy π(at|st),

mapping states to actions. Considering the selected action at, the agent receives a re-

ward rt from the environment, and it can perceive the next state st+1. The main goal of

the agent is to find a policy in order to maximize the expected total of future discounted

reward [216]:

Vπ(st) = Eπ[∑
t∈T

γtrt] (6.13)

where rt = R(st, at) is the reward at time step t, and at ∼ π(.|st) is the generated action

at time step t by following the policy π. Moreover, when DNN is used to approximate

the function, the parameters are denoted as θ.

Considering the application placement in Fog computing environments, we define

the main concept of the DRL for our problem as what follows:

• State space S: In our application placement problem, the state is the observations

of the agent from the heterogeneous Fog computing environment. Thus, the state

at time step t (st) consists of information about all heterogeneous servers (such

as processing speed of CPU, number of CPU cores, CPU utilization, access Band-

width (i.e., data rate) of servers, access latency of servers, and CPU, transmission,

and idle power consumption values of IoT device). For the rest of the servers, their

power consumption values are ignored as we only consider energy consumption

from IoT devices’ perspective [123]. If for each server we have n features to repre-

sent its information, the feature vector of all M servers at time step t (FVMt ) can be
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presented as:

FVMt = { f my,z

i |∀my,z ∈ M, 1 ≤ i ≤ n} (6.14)

where f my,z

i shows the ith feature of the server my,z. Moreover, st contains the infor-

mation about the current task to be processed within a DAG of an IoT application

(such as computation requirements of the task, required RAM, amount of out-

put data per parent task, and current placement configuration of all tasks). Since

we consider that tasks are sorted and their dependencies are satisfied before their

execution, the current placement configuration of tasks contains the information

regarding assigned servers to all previous tasks. The values of unprocessed tasks

are set to −1. If we assume that each task has b features, the feature vector of task

vj (FV
vj
t ) can be represented as:

FV
vj
t = { f

vj
i |vj ∈ V , ∀i 1 ≤ i ≤ b} (6.15)

where f
vj
i shows the ith feature of the task vj. Thus, the system space can be de-

fined as:

S = {st|st = (FVMt , FV
vj
t ), ∀t ∈ T} (6.16)

• Action space A: Actions are assignments of available servers to tasks of an IoT

application. Therefore, the action at time step t (at) is equal to assigning a server

my,z to the current task vj. Considering the placement configuration of each task

xv,j in section 6.3.2, at can be defined as:

at = xvj = my,z (6.17)

Thus, the action space A can be defined as the set of all available servers, presented

as follows:

A =M (6.18)

• Reward function R: The goal is to minimize the weighted cost model, defined in
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Eq. 6.12. To obtain this, we consider Eq. 6.11 as the weighted cost of each task and

define the R as the negative value of Eq. 6.11 if the task can be executed (done =

1). Moreover, we define a constant penalty value, which is usually a very large

negative number [120]. Furthermore, the penalty value can be dynamically set

based on the goal of the optimization problem and environmental variables. If the

selected action by the agent (i.e., server assignment for the current task) cannot be

performed due to any reason (done = 0), the reward becomes equal to penalty.

Accordingly, rt is defined as:

rt =


−φxvj

done = 1

penalty done = 0

(6.19)

6.5 Proposed Distributed DRL-based Framework

To address the challenges of DAG-based application placement in the heterogeneous

Fog computing environment, the X-DDRL works based on an actor-critic framework,

aiming at taking advantage of both value-based and policy-based techniques while min-

imizing their drawbacks [140].

Actor-critic framework In an actor-critic framework, the policy is directly parameter-

ized, denoted as π(at|st; θ), and the θ is updated by calculating the gradient ascent on the

variance of the expected total future discounted reward (i.e,
∞
∑

k=0
γkrt+k) and the learned

state-value function under policy π (i.e., Vπ(st)) [140]. The actor interacts with the en-

vironment and receives state st, outputs the action at based on π(at|st; θ), and receives

the reward rt and next state st+1. The critic, on the other hand, uses rewards to evaluate

the current policy based on the Temporal Difference (TD) error between current reward

and the estimation of the value function V(st; θ). Both actor and critic use DNNs as their

function approximators, which are trained separately. To improve the selection probabil-

ity of better actions by the actor, the parameters of the actor network are updated using

the feedback of the TD-error, while the network parameters of the critic network are up-
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dated to achieve better value estimation. While the actor-critic frameworks work very

well in long-term performance optimizations, their learning speeds are slow and they

incur huge exploration costs, especially in problems with high dimensional-state space

[120]. The distributed learning techniques in which diverse trajectories are generated

in parallel can greatly improve the exploration costs and learning speed of actor-critic

frameworks.

The X-DDRL works based on an actor-learner framework, in which the process of

generating experience trajectories is separated from learning the parameters of π and

Vπ. Fig 6.2a demonstrates a high-level overview of learner and actors. The distributed

actors in Fog computing environments, which can be multiple CPUs within a broker

(i.e., FS) or different brokers, interact with their Fog computing environments. Arriving

application placement requests to each broker are queued in the appsQ based on the

FIFO policy. As Fig 6.2b depicts, brokers performs pre-scheduling phase for each IoT

application. Then, based on features of available servers and current task of selected

IoT application, each broker pre-processes the current state and makes an application

placement decision. Each broker periodically sends its local experience trajectories to the

learner. Besides, the learner updates the target policy π based on collection of received

trajectories from different brokers and past trajectories stored in the replay buffer. After

each policy update of the learner, brokers update their local policy µ with the policy of

the learner π.

The X-DDRL is divided into two phases: pre-scheduling and application placement

technique. In the pre-scheduling, tasks of the received IoT application are ranked and

sorted in a sequence for the execution. Afterward, for each task of an IoT application, X-

DDRL makes a placement decision to minimize the execution cost of the IoT application.

6.5.1 X-DDRL: Pre-scheduling phase

IoT applications are heterogeneous in terms of the number of tasks per application, the

dependency model, and corresponding weights of vertices and edges. Considering the

dependency model of an IoT application, tasks should be sorted for execution, so that

task vj cannot be executed before any task vi ∈ P(vj). Furthermore, there are several
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Figure 6.2: An overview of X-DDRL framework

tasks that can be executed in parallel, and the order of execution of such parallel tasks

are also important and may affect the execution cost of an IoT application. Fig. 6.3 shows

a sample IoT application, dependencies among tasks, and parallel tasks with the same

colors in each row.

Whenever a broker receives a DAG-based IoT application request from a user, it
creates a sequence of tasks for the execution while considering above-mentioned chal-
lenges. Tasks within the IoT application are ranked based on the non-increasing order
of their rank value. The rank value of a task is defined as:

Rank(vj) =


φ̃xvj

+ max(φ̃xvi
), ∀vi ∈ P(vj) if vn,j 6= exit

φ̃xvj
, if vn,j = exit

(6.20)

where φ̃xvj
shows the average weighted execution cost of task vn,j on considering differ-

ent servers. The rank is calculated recursively by traversing the DAG of the application,

starting from the exit module. Using the rank function, the tasks on the critical path
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Figure 6.3: A sample IoT application (parallel tasks have same colors in each row)

of DAG (i.e., CP) can also be identified. Hence, not only does the rank function satisfy

the dependency among tasks, but it also defines an execution order for tasks that can be

executed in parallel. To achieve this, it gives higher priority to tasks that incur higher

total execution costs among parallel tasks.

6.5.2 X-DDRL: Application Placement Phase

If we assume that each broker makes placement decisions for tasks of IoT applications,

using their local policy µ, for N steps in the time horizon starting at time i = t, Al-

gorithm 12 shows how brokers perform application placement decisions and generate

experience trajectories. Each broker performs the following steps: At the beginning

of each trajectory, the broker updates its policy µ with the policy of the learner (line 3).

When broker starts making placement decisions for tasks of a new IoT application G (i.e.,

when the flag-init=True), it receives the current IoT application from the appsQ (contains

all received application requests to this broker) (line 6). Then, the broker performs the

pre-scheduling to obtain the sorted list of application’ tasks based on the Eq. 6.20 (line

7). Next, the system state is generated using the initial state of the IoT application G

and available servers M (line 8). Moreover, the broker changes the flag-init to False,

indicating that in the subsequent steps there is no need to re-calculate the ranking and

initial state of the G (line 9), and the broker only requires to obtain the current state of
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Algorithm 12: The role of each broker/actor
Input : π: The learner policy
/* N: number of steps, µ: the actor’s local policy, EBB:

expeience batch buffer, appsQ: Queue of all received
IoT applications, G: current IoT application */

1 flag-init=True
2 for t = 0 to ∞ do
3 µ=UpdateLocalPolicy(µ, π)
4 for i = t to N + t− 1 do
5 if flag-init=True then
6 G=appsQ.dequeue()
7 sortedG = Pre-scheduling (G) % based on Eq. 6.20
8 si=ReceiveInitialState(G,M, sortedG)
9 flag-init=False

10 else
11 si=ReceiveCurrentState()
12 end
13 si=Pre-processor(si)
14 ai=PlacementEngine(si, µ) % calculates the action

%The environment then executes this action
15 ri=TaskCostCalculator(si, ai) % baed on Eq. 6.19
16 si+1 = BuildNextState(si, ai)
17 EBB.update(si, ai, ri, si+1)
18 if Finish(G) then
19 CalculateTotalCost(G) % based on Eq. 6.12
20 flag-init=True
21 end
22 end
23 if size(EBB)==N then
24 SendExpeienceToLearner(EBB)
25 end
26 end

the environment based on Eq. 6.16 (line 11). The current state of the broker’s environ-

ment si consists of feature vectors of servers FVMt and the current task of IoT application

FV
vj
t . The current task of each IoT application is obtained from the ordered sequence of

tasks sortedG. Then, the broker pre-processes and normalizes values of the current state

(line 13). Considering si and current policy µ, an application placement decision (i.e.,

the assignment of a server for the processing of the current task) is made (line 14). The

current task is then forwarded to the assigned server (based on ai) for processing. After

the execution of the task, the broker receives the reward of this action, which is the neg-
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ative value of the weighted execution cost of this task Eq. 6.19 (line 15). The next state

of the environment is then created using the BuildNextState function (line 16). Then,

the broker creates an experience tuple (si,ai,ri,si+1) and stores it in its local experience

batch buffer (line 17). When the broker finishes assignment of servers to all tasks of the

current IoT application G, meaning the application placement is done for the current IoT

application, the total weighted execution cost of this IoT application is calculated using

Eq. 6.12 (line 19). Moreover, the broker sets flag-init to False so that the next IoT applica-

tion in the queue of this broker appsQ can be served (line 20). After N steps, each broker

forwards its experience batch buffer to the learner (lines 23-25). The learner periodically

updates its policy (i.e., π) on batches of experience trajectories, collected from several

brokers.

Since policies of brokers µ are updated based on the learner’s policy (trained on

trajectories of different brokers), each broker gets the benefit of trajectories generated

by other brokers. It significantly reduces the exploration cost of each broker, and also

provides brokers with a more accurate local policy µ. Furthermore, the X-DDRL uses

an experience-sharing approach, which significantly reduces communication overhead

between brokers and learners, in comparison to gradient-sharing techniques such as

A3C [216].

Due to the gap between the policy of broker µ (when generating new decisions) and

the policy of the learner π in the training time (when the learner estimates the gradients),

the learner in the X-DDRL uses the off-policy correction method, called V-trace [216], to

correct this discrepancy.

• V-trace off-policy correction method: We assume that each broker generates an

experience trajectory for N steps while following its local policy µ as (st, at, rt)
i+N
t=i .

The value approximation of state si, defined as N-step V-trace target for V(si), is

as follows:

Vi = V(si) +
i+N−1

∑
t=i

γt−i(
t−1

∏
j=i

cj)δtV (6.21)

where δtV is a TD for V, defined as:

δtV = ρt(rt + γV(st+1)−V(st)) (6.22)
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where ρt = min(ρ, π(at|st)
µ(at|st)

) and cj = min(c, π(aj|sj)

µ(aj|sj)
) are truncated Importance Sam-

pling (IS) weights, while c ≤ ρ. The c and ρ play different roles in the V-trace. The

ρ has a direct effect on the value function Vπ toward which we converge, while c

has a direct effect on speed of the convergence. Considering ρ, the target policy of

the learner π can be defined as:

πρ(a|s) = min(ρµ(a|s), π(a|s))
∑b∈A min(ρµ(b|s), π(b|s))) (6.23)

We consider: (1) the brokers generate trajectories while following policy µ, (2) the

parameterized state-value function under θ as Vθ , (3) the current policy of learner is πu,

and (4) the V-trace target Vi is defined based on Eq. 6.21. The learner updates value

parameters θ, at time step i, in the direction of:

(Vi −Vθ(si))∇θVθ(si) (6.24)

Moreover, the policy parameters u are updated in the direction of the policy gradient

using Adam optimization algorithm [221]:

ρi∇u log(πu(ai|si))(ri + γVi+1 −Vθ(si)) (6.25)

Algorithm 13 summarizes the learners’ role in the X-DDRL. The learner continu-

ously receives and stores experience batches of brokers EBbroker and updates the master

Buffer MB until the training batch TB becomes full (line 4-10). Then, the learner opti-

mizes the current target policy π based on Eq. 6.24 and 6.25 (line 11). After policy update

of the learner, brokers update their local policies µ with the latest policy of the learner

π (i.e., brokers set their policies to the new learner policy), and hence, new application

placement decisions are made using the updated policy µ in the brokers. The learner in

the X-DDRL uses the replay buffer RB, which remarkably improves sample efficiency.

The X-DDRL can easily scale as the number of servers, IoT application requests, and

brokers increases, which is a principal factor in highly distributed environments such

as Fog computing. If a new broker joins the environment, the broker updates its local

policy with the latest policy of the learner, and hence it takes advantage of all trajecto-
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Algorithm 13: The role of each learner
Input : EBbroker: Experience batch of different brokers
/* listbrokers: list of brokers, π: the learner’s policy, MB:

master buffer, MBS: master buffer size, RB: replay
buffer, RBS: replay buffer size, TB: training batch,
TBS: training batch size */

1 while True do
2 flag-training=False
3 MB=∅
4 while flag-training==False do
5 MB.update(EBbroker)
6 if TBS ≤ MBS + RBS then
7 TB=BuildTrainBatch(MB, RB)
8 flag-training==True
9 end

10 end
11 OptimizeModel(TB) % based on Eq. 6.24, 6.25
12 UpdateBrokers(listbrokers, π)
13 end

ries that were previously generated by other brokers. Besides, it generates new sets of

trajectories which help better diversify the trajectories of the learner. If the number of

servers in the environment increases, distributed brokers quickly generate new sets of

trajectories, and accordingly, the learner can update its target policy promptly. Such a

collaborative distributed broker-learner architecture not only significantly improves the

exploration costs but also improves the convergence speed. The other improvement in

the X-DDRL is using RNN layers since they can accurately identify highly non-linear

patterns among different input features, resulting in significant speedup in the learner

[97, 222].

6.6 Performance Evaluation

This section first describes the experimental setup, used to evaluate our technique and

baseline algorithms. Next, the hyperparameters of our proposed technique X-DDR are

discussed. Finally, we study the performance of X-DDRL and its counterparts in detail.
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6.6.1 Experimental Setup

To evaluate the performance of the X-DDRL, we use both simulation environment and

testbed, which their specification are provided in what follows.

Simulation setup

We developed an event-driven simulation environment in Python using the OpenAI

Gym [25] for the application placement in heterogeneous Fog computing environments,

similar to [119]. For each of the two learners, we set the number of brokers to 8, which

have access to a set of servers, and make application placement decisions accordingly.

Hence, we vectorized the Fog computing environment, generated using OpenAI Gym,

so that distributed brokers can interact with their Fog computing environments and

make application placement decisions in parallel. Unlike prior work [78, 119, 120, 133],

we consider a heterogeneous Fog computing environment consisting of IoT devices,

resource-constrained FSs, and resource-rich CSs. In Fog computing environment, we

used the following server setup, unless it is stated in the experiments: two Raspberry

pi 3B (Broadcom BCM2837 4 cores @1.2GHz, 1GB RAM)1, one Raspberrypi 4B (ARM

Cortex-A72 4 cores @1.5GHz, 4GB RAM)2, and one Jetson Nano (ARM Cortex-A57 4

cores @1.43GHz, 4GB RAM, 128-core Maxwell GPU)3 as heterogeneous FSs. Besides,

to simulate a heterogeneous multi-Cloud environment, we used specifications of six

m3.large instances of Nectar Cloud infrastructure (AMD 8 cores @2GHz, 16GB RAM)4

and two instances of the University of Melbourne Horizon Cloud (Intel Xeon 8 cores

@2.4GHz, 24GB RAM, NVIDIA P40 3GB RAM GPU)5. For IoT devices, the server type is

a single core @1GHz device embedded with 512MB RAM [119]. Besides, the power con-

sumption of each IoT device in processing, idle, and transmission state is 0.5W, 0.002W,

and 0.2W, respectively [123]. The bandwidth (i.e., data rate) and latency among different

servers and IoT devices are also obtained based on average profiled values from testbed,

similar to [97]. Hence, the latency of FSs and CSs are considered as 1ms and 10ms re-

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b
2https://www.raspberrypi.org/products/raspberry-pi-4-model-b
3https://developer.nvidia.com/embedded/jetson-nano-developer-kit
4https://nectar.org.au/
5https://people.eng.unimelb.edu.au/lucasjb/horizon/
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spectively, similar to [97]. The bandwidth between IoT devices and FSs is randomly

selected between 10-12MB/s, while the bandwidth between IoT devices and FSs to the

CSs is randomly selected between 4-8 MB/s, similar to [122]. Although we obtained

these values based on testbed experiments, they are referred to some similar works as

well to show the credibility of these values. Also, both w1 and w2 are set to 0.5, meaning

that the importance of execution time and the energy consumption is equal in the re-

sults. However, these parameters can be adjusted based on the users’ requirements and

network conditions.

Many real-world IoT applications can be modeled by DAGs with a different num-

ber of tasks and dependency models. Hence, we generated several synthetic DAG

sets with a different number of tasks and dependency models to represent scenarios

where IoT devices generate heterogeneous DAGs with different preferences, similar to

[119, 223]. The dependency model of each DAG can be identified using three parame-

ters: number of tasks within an application L, f at that controls the width and heights of

a DAG, and density that identifies the number of edges between different levels of the

DAG. Accordingly, we generated different DAG datasets, where each dataset contains

100 DAGs with a similar number of tasks, fat, and density while the weights are ran-

domly selected to represent heterogeneous task requirements in IoT applications with

the same DAG structure. To generate heterogeneous DAG datasets, we set task num-

bers L ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}, f at ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, and density ∈
{0.4, 0.5, 0.6, 0.7, 0.8}. To illustrate, one dataset of DAGs is L = 10, f at = 0.4, and

density = 0.4, containing 100 DAGs. Accordingly, for each task number L, we have 25

different combinations of f at and density, resulting in 25 different topologies and 2500

DAGs. Finally, the simulation experiments are all performed on an instance of Horizon

Cloud with the above-mentioned specifications.

Testbed setup

To evaluate the performance of X-DDRL in a real-world scenario, we created a testbed,

similar to [37, 120]. The type of servers are the same as simulation setup while the

number of servers of each type is as follows: two Raspberry pi 3B, one Raspberry pi 4B,
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one Jetson Nano, one instance of Horizon Cloud, and six m3.large instances of Nectar

Cloud infrastructure. As IoT devices, we created several single-core VMs within a PC

(HP Elitebook 840 G5 with Intel Core i7-8550U 8 cores @2GHz and 16GB RAM). These

VMs are used to send application placement requests, using described DAG datasets,

to the brokers. Moreover, to estimate the energy consumption of IoT devices, we used

computing power, transmission power, and idle power as discussed in section 6.6.1,

similar to the approach in [120]. For the connectivity, we set up a virtual network using

VPN among IoT devices, FSs, and CSs, as described in [1, 164]. Due to the limited CPU

and RAM of the IoT devices’ VMs, they can send application placement requests, using a

message-passing protocol (implemented using HTTP requests), to the broker that is the

Jetson Nano in this testbed. The broker runs a multi-threaded server application that

receives application placement requests from different IoT devices and puts them in the

queue based on the FIFO policy. The broker dequeues requests and makes placement

decisions for tasks according to its policy µ. According to the placement configuration

for each IoT application, each server that receives a task for processing assigns that task

to one of its threads for processing. The thread is kept busy according to the weight

of task and processing speed of the server. After the execution of each task, the size of

output results that should be forwarded to the children tasks is obtained based on the

weights of the task’s outgoing edges in each DAG. Since weights of edges in each DAG

(i.e., data to be transferred between tasks) are different, we generate files with different

sizes to represent the weights on edges. Finally, the broker logs the execution cost of each

IoT application and all of its constituent tasks in terms of selected evaluation metrics.

Baseline algorithms

We evaluate the performance of the X-DDRL with a greedy heuristic algorithm, and two

DRL-based techniques from the literature that proposed DRL-based solutions for DAG-

based IoT applications. In what follows, we briefly describe how these techniques are

implemented, while their detailed specifications are provided in section 6.2.
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• PPO-RNN: It is the extended and adapted version of the technique proposed in

[119]6. We extended this technique so that it can be used in multi-objective scenar-

ios to minimize the weighted cost of execution. Besides, this technique is extended

to be used in heterogeneous Fog computing environments where several IoT de-

vices, FSs, and CSs are available. This technique uses PPO as its DRL framework

while the networks of the agent are wrapped by the RNN. Besides, we used the

same hyperparameters as [119].

• PPO-No-RNN: This technique is the same as PPO-RNN, while the networks are

not wrapped by the RNNs.

• Double-DQN: Many works in the literature uses standard Deep Q-Learning (DQN)

based RL approach such as [78, 99, 132, 133]. We implemented the optimized

Double-DQN technique with an adaptive exploration for application placement in

heterogeneous Fog computing environments7. The hyperparameters of this tech-

nique are set based on [78], which is a DQN-based application placement tech-

nique for DAG-based IoT applications.

• Greedy: In this technique, tasks are greedily assigned to the servers if their execu-

tion cost is less than the estimated local execution cost, similar to [119].

6.6.2 X-DDRL Hyperparameters

In the implementation of X-DRRL, where the standard implementation of IMPALA is

used8, the DNN structure of all agents is similar, consisting of two fully connected layers

followed by two LSTM layers as recurrent layers. Moreover, we performed a grid search

to tune hyperparameters. According to tuning experiments, we set the learning rate lr to

0.01, the discount factor γ to 0.99. Besides, values of ρ and c, controlling the performance

of V-trace are set to 1 [216] to obtain the best result. Table 6.2 summarizes the setting of

hyperparameters.

6https://github.com/linkpark/metarl-offloading
7https://docs.ray.io/en/master/
8https://docs.ray.io/en/master/
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Table 6.2: The DNN and training hyperparameters

Parameter Value Parameter Value
Fully Connected layers 2 Learning Rate lr 0.01

LSTM Layers 2 Discount Factor γ 0.99
Optimization Method Adam V-trace ρ 1
Activation Function Tanh V-trace c 1

6.6.3 Performance Study

In this section, four experiments are conducted to evaluate and compare the perfor-

mance of X-DDRL with other techniques in terms of weighted execution cost, execution

time of IoT applications, and energy consumption of IoT devices.

Execution cost vs policy update analysis

In this experiment, we study the performance of application placement techniques in

different iterations of the policy updates. We consider two scenarios for datasets of IoT

applications to analyze how efficiently these techniques can extract features of different

datasets of IoT applications and optimize their target policy. In the first scenario, we

consider the number of tasks within IoT applications L = 30. Hence, 25 datasets of IoT

applications with the same task number and different f at and density are used, among

which 20 datasets are used for the training and 5 datasets are used for the evaluation.

In the second scenario, for the training L ∈ {10, 15, 25, 30} while for the evaluation L =

20. Therefore, the training and evaluation are performed on datasets with a different

number of tasks. Fig 6.4 and Fig 6.5 show the obtained results of this study in terms of

the average execution time of IoT applications, the energy consumption of IoT devices,

and weighted cost for the above-mentioned two scenarios.

As Fig. 6.4 and Fig. 6.5 show, the average execution cost of all techniques, except

the greedy, decreases in different scenarios as the iteration number increases. However,

the X-DDRL converges faster and to better placement solutions in comparison to other

techniques. This is mainly because the V-trace function embedded in the X-DDRL uses

n-step state-value approximation rather than 1-step state-value approximation [216], im-
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Figure 6.4: Execution cost vs policy update analysis: Scenario 1, training and evalua-
tions are performed on datasets where L = 30

proving convergence speed of X-DDRL to better solutions. Moreover, trajectories gener-

ated by distributed brokers are diverse, leading to a more efficient learning process. The
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Figure 6.5: Execution cost vs policy update analysis: Scenario 2, training is performed
on datasets where L ∈ {10, 15, 25, 30} and the evaluation is performed on datasets
where L = 20.
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execution cost of the greedy technique is fixed and does not change with different itera-

tion numbers, but it can be used as a baseline technique to compare the performance

of DRL-based techniques. The convergence speed of PPO-RNN and PPO-NO-RNN

techniques is slower than the Double-DQN technique however, they finally converge

to better placement solutions. In addition, the obtained results of the second scenario

(Fig. 6.5a, 6.5b, 6.5c) shows that all DRL-based techniques has lower convergence speed

in comparison to the obtained results of first scenario (Fig. 6.4a, 6.4b, 6.4c). However,

still X-DDRL outperforms other techniques in terms of execution time, energy consump-

tion, and weighted cost. This proves that the X-DDRL can more efficiently adapt itself

with different DAG structures (i.e., task numbers, and dependency model), and hence it

makes better application placement decisions in unforeseen scenarios.

System size analysis

In this experiment, the effect of different numbers of servers on application placement

techniques is studied. The number of candidate servers has a direct effect on the com-

plexity of application placement problems because the larger number of servers leads

to a bigger search space. Hence, to analyze the performance of X-DDRL, the default

number of servers in this experiment is multiplied by two and four; i.e, we have 24

and 48 servers respectively. Moreover, in this experiment, the training and evaluation

datasets are specified as the same as the first scenario in Section 6.6.3; i.e., a total of 25

datasets where L = 30 and different f at and density values. Due to the space limit and

the fact that patterns for execution time, energy consumption, and weighted cost were

roughly the same, only the obtained results from the weighted cost are provided in this

experiment.

Fig. 6.6 shows the weighted cost of different techniques, where brokers in the sys-

tem have access to 24 and 48 candidate servers when making application placement

decisions. It is crystal clear that the weighted cost of the greedy technique is steady

for 24 and 48 servers as the number of iterations increases. All DRL-based techniques

perform better than greedy technique either when the number of servers is 24 or 48.

Also, it can be seen that the weighted execution costs of techniques are higher when
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Figure 6.6: System size analysis

the number of servers is 48 than weighted costs when the servers’ number is 24. As

the number of iterations increases, the DRL-based techniques can more accurately make

placement decisions, leading to less weighted execution cost. However, the X-DDRL al-

ways outperforms other techniques and converges faster to better solutions. It shows

that the X-DDRL has better scalability when the system size grows. This helps X-

DDRL to make better application placement decisions in a fewer number of iterations.

Among other DRL-based techniques, PPO-RNN performs better than PPO-No-RNN

and Double-DQN and makes better placement decisions as the iteration numbers in-

creases.

Speedup and placement time overhead analysis

In this section, we study the speedup and placement time overhead of different DRL-

based techniques. We follow the same experimental setup as the first scenario in Sec-

tion 6.6.3. We define the average Placement Time Overhead (PTO) as the average re-

quired amount of time for each technique to make an application placement decision

divided by the average local execution time of IoT applications on IoT devices. To ob-

tain the local execution time of IoT applications on IoT devices, we assume that tasks
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Figure 6.7: Placement time overhead and speedup analysis

within an IoT application are executed sequentially, similar to [123]. Besides, we define

the time taken by the X-DDRL technique with one broker to reach the value 1.1 from

the weighted execution cost as TimeR. The reason why 1.1 is considered as the reference

weighted execution cost is that this value is the minimum weighted execution cost that

all DRL-based techniques can obtain. Moreover, the time taken by each technique to

reach the reference weighted execution cost is defined as TimeT. Accordingly, similar to

[97], the Speedup value of each technique (SP) is defined as SP = TimeR
TimeT

.

Fig 6.7 shows results of PTO and SP for all DRL-based techniques. The placement

time overhead of techniques using RNN (i.e., X-DDRL and PPO-RNN) is usually higher

than techniques that do not use RNN (i.e., Double-DQN, and PPO-No-RNN). The PTO

of the X-DDRL is higher than other DRL-based techniques by less than 1% in the worst-

case scenario, which is not significantly large. However, the obtained results of SP show

that X-DDRL performs 8 to 16 times faster than other techniques. Hence, considering

the speedup performance and execution cost results of the X-DDRL, its placement time

overhead is negligible, and X-DDRL can more efficiently perform application place-

ment decisions compared to other techniques for heterogeneous Fog computing envi-

ronments.
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Evaluation on Testbed

To evaluate the performance of X-DDRL in real-world scenarios, we conducted exper-

iments on the testbed whose configuration is discussed earlier in Section 6.6.1. In this

experiment, for the training L ∈ {30, 35, 45, 50} while for the evaluation L = 40.

Fig 6.8 shows the execution cost of different techniques in terms of execution time,

energy consumption, and weighted cost by 95% confidence interval. It can be observed

that, similar to the simulation results, X-DDRL can outperform other techniques in

terms of execution time, energy consumption, and weighted cost. Moreover, even af-

ter 100 iterations, where all techniques converged, there are no techniques that obtain

better results in comparison to X-DDRL. It demonstrates that not only does X-DDRL

converge faster, and its training time is significantly less than other techniques, but it

also provides better results. As the results depict, the optimized Double-DQN technique

converges faster than PPO-RNN and PPO-No-RNN, but it cannot obtain results as well

as them. Overall, compared to converged results of other DRL-techniques, achieved re-

sults of X-DDRL show an average performance gain up to 30%, 11%, and 24% in terms

of execution time, energy consumption, and weighted cost, respectively.

6.7 Summary

In this chapter, a distributed DRL-based technique, called X-DDRL, is proposed to ef-

ficiently solve the application placement problem of DAG-based IoT applications in

heterogeneous Fog computing environments, where Edge and Cloud servers are col-

laboratively used. First, a weighted cost model for optimizing the execution time and

energy consumption of IoT devices with DAG-based applications in heterogeneous Fog

computing environments is proposed. Besides, a pre-scheduling phase is used in the

X-DDRL, by which dependent tasks of each IoT application are prioritized for execu-

tion based on the dependency model of the DAG and their estimated execution cost.

Moreover, we proposed an application placement phase, working based on the IMPALA

framework for the training of distributed brokers, to efficiently make application place-

ment decisions in a timely manner. Distinguished from existing works, the X-DDRL
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Figure 6.8: Evaluation on testbed

can rapidly converge well-suited solutions in heterogeneous Fog computing environ-

ments with a large number of servers and users. The effectiveness of X-DDRL is ana-

lyzed through extensive simulation and testbed experiments while comparing with the
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state-of-the-art techniques in the literature. The obtained results indicate that X-DDRL

performs 8 to 16 times faster than other DRL-based techniques. Besides, compared to

other DRL-based techniques, it achieves a performance gain up to 30%, 11%, and 24% in

terms of execution time, energy consumption, and weighted cost, respectively.

This chapter proposed a machine learning-based scheduling technique based on

DDRL for the dynamic placement of IoT applications. In the next chapter, we inves-

tigate building a software system for the scheduling of real-time IoT applications.





Chapter 7

A Software System for Scheduling IoT
Applications

Chapter 5 introduced a scheduling technique to minimize the execution cost of real-time DAG-

based IoT applications. This chapter presents the implementation of the proposed ranking-based

scheduling technique using our FogBus2 framework in an environment consisting of multiple Cloud

datacenters and Fog servers. We also extend the FogBus2 framework to integrate new scheduling

techniques and implement several new containerized applications to be integrated with the FogBus2

framework. The design and implementation of the framework and IoT applications in this environ-

ment followed by evaluation and validation are described in detail in this chapter.

7.1 Introduction

There are different Cloud Service Providers (CSPs) with a wide variety of services, where

each CSP provides a particular set of services such as computing, database, and data

analysis in an optimized way. Hence, no CSP can satisfy the full functional requirements

of different IoT applications in an optimized manner [224]. As a result, each IoT applica-

tion can be particularly serviced by a specific CSP or simultaneously by different CSPs,

which is often called hybrid Cloud computing [224]. Although a hybrid Cloud comput-

ing platform provides IoT devices with unlimited and diverse computing and storage

resources, CSs are residing multi-hops away from IoT devices, which incurs high prop-

This chapter is derived from:

• Mohammad Goudarzi, Qifan Deng, and Rajkumar Buyya, ”Resource Management in Edge and
Fog Computing using FogBus2 Framework”, Managing Internet of Things Applications across Edge and
Cloud Data Centres, Rajiv Ranjan, Karan Mitra, Prem Prakash Jayaraman, Albert Y. Zomaya (eds),
ISBN: 978-1785617799, IET Press, Hertfordshire, UK, June 2022.
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Figure 7.1: Heterogeneous computing environment containing multiple Cloud servers,
Fog servers, and IoT devices

agation and queuing latency. Thus, CSs cannot solely provide the best possible services

for latency-critical and real-time IoT applications (e.g., intelligent transportation, smart

healthcare, emergency, and real-time control systems) [3, 225]. Besides, forwarding the

huge amount of data generated by distributed IoT devices to CSs for processing and

storage may overload the CSs [30].

In Fog computing environments, the geographically distributed and heterogeneous

Fog servers (FSs) (e.g., access points, smartphones, Raspberry pis (Rpi)), situated in the

vicinity of IoT devices, can be used for processing and storage of IoT devices’ data.

These FSs can be accessed with lower latency, which makes them a potential candidate

for latency-critical IoT applications, and reduce the traffic of the network’s backbone

[163]. However, the computing and storage resources of FSs are limited compared to

CSs, so they cannot efficiently execute computation-intensive tasks. Therefore, to satisfy

the resource and Quality of Service (QoS) requirements of diverse IoT-enabled systems,

a seamlessly integrated computing environment with heterogeneous Fog and different

Cloud infrastructures is required, as depicted in Fig. 7.1.

The computing and storage resources in such an integrated environment are highly
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heterogeneous in terms of their architecture, processing speed, RAM capacity, commu-

nication protocols, access bandwidth, and latency, just to mention a few. Furthermore,

there are a wide variety of IoT-enabled systems with various QoS and resource require-

ments. Accordingly, to satisfy the requirements of IoT applications in such an integrated

environment, scheduling and resource management techniques are required to dynam-

ically place incoming requests of IoT applications on appropriate servers for processing

and storage [226]. In order to develop, test, deploy, and analyze different IoT appli-

cations and scheduling and resource management techniques in real-world scenarios,

lightweight and easy-to-use frameworks are required for both researchers and devel-

opers. There are some existing frameworks for integrating IoT-enabled systems with

Edge and Fog computing such as [226–232]. However, they only focus on one aspect of

IoT-enabled systems in Edge and Fog computing and often do not support distributed

containerized applications.

In this chapter, we extend our FogBus2 framework [1], an open-source python-based,

distributed, and containerized framework supporting distributed execution of container-

ized IoT applications. We extend this framework with a new scheduling technique. Be-

sides, we design and implement new DAG-based and containerized IoT applications

and integrate them with the FogBus2 framework. Also, we follow best practices to de-

sign a heterogeneous computing environment, consisting of multi-Cloud, multiple FSs,

and IoT devices, to evaluate the extended framework.

The remainder of this chapter is organized as follows: Section 7.2 presents the details

of framework’s design and its implementation, where we describe main components of

FogBus2 framework, communication protocol, extensions to scheduling policies, and

several containerized IoT applications in subsections 7.2.1, 7.2.2, 7.2.3, and 7.2.4, respec-

tively. Section 7.3 presents the design of our integrated computing environment. Eval-

uation and validation of the system are conducted in Section 7.4. Finally, Section 7.5

concludes this chapter.
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7.2 Extended Framework’s Design and Implementation

FogBus21 [1] is a container-based framework based on docker containers, developed in

Python. To enable the integration of various IoT application scenarios in highly het-

erogeneous computing environments, FogBus2’s components can be simultaneously

executed on one or multiple distributed servers in any computing layer. This feature

significantly helps researchers and developers in the development and testing phases

because they can develop, test, and debug their desired IoT applications, scheduling,

and resource management policies on one or a small number of servers. Furthermore,

in the deployment phase, they can run and test their IoT applications, scheduling, and

resource management techniques on an unlimited number of servers.

7.2.1 Main Components

FogBus2 consists of five containerized components, namely User, Master, Actor, Task Ex-

ecutor, and Remote Logger. Among these components, the User should run on IoT de-

vices or any servers that directly interact with users’ sensory or input data. The rest of

the components can run on any server with sufficient resources. Each of the container-

ized components contains several sub-components (sub-C) with specific functionalities.

Fig. 7.2 presents FogBus2’s main components and their respective sub-Cs. Since the

components of the FogBus2 can run on geographically distributed servers, a message

handler Sub-C is embedded in each component to handle sending and receiving of mes-

sages. In what follows, we briefly describe the main functionalities and sub-Cs of each

component.

• User: This component controls the IoT device’s requests for surrogate resources

and contains two main sub-Cs, namely sensor and actuator, alongside with message

handler. The sensor is responsible for capturing and management of raw sensory

data and configuring sensing intervals based on IoT application scenarios. Be-

sides, the actuator’s main function is collecting the incoming processed data and

executing a respective action. The actuator can be configured by its users to per-

form real-time actions based on incoming processed data or periodic actions based
1https://github.com/Cloudslab/FogBus2
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Figure 7.2: FogBus2 main components, sub-components, and their interactions [1]

on a batch of processed data. Researchers and developers can configure the sensor

and actuator to implement different application scenarios.

• Remote Logger: The main functionality of this component is to collect and store

the contextual information of servers, IoT devices, IoT applications, and network-

ing. It contains the logger manager sub-C that can connect to different databases, re-

ceives logs of other components, and stores logs in persistent storage. By default,

the Remote Logger connects to databases to store logs, which is easier to manage

and maintain. However, logs can be stored in files as well.

• Master: In a real-world computing environment, one or multiple Master compo-

nents may exist. This component contains four main sub-Cs, called profiler, sched-

uler & scaler, registry, and resource discovery, alongside with the message handler.

When the Master starts, the resource discovery sub-C periodically search the network

to find available Remote Logger, Master, and Actor components in the network. If
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new components can be found in the network, the resource discovery advertise it-

self to those components, so that they can send a request and register themselves

in this Master. If the Master receives any requests for registration or placement re-

quests from IoT devices (i.e., User components), the registry sub-C will be called.

This sub-C records the information of IoT devices and other components and as-

signs them a unique identifier. Besides, when the incoming message is a place-

ment request from User components, it initiates the scheduler & scaler sub-C. The

scheduler & scaler sub-C receives the placement request from the registry sub-C,

the contextual profiling information of all available servers, and networking infor-

mation from the profiler sub-C. Next, if it has enough resources to run the schedul-

ing technique and its placement queue is not very large (configurable queue size),

it runs one of the scheduling policies implemented in the FogBus2 framework to

assign tasks/containers of the IoT application on different servers for the execu-

tion. According to the outcome of the scheduling technique, the Master component

forwards required information to the selected Actors to execute tasks/containers

of the IoT application. If due to any reason the Master component cannot run its

scheduling technique, it runs the scalability mechanism to forward the placement

request to other available Master components, or it initiates a new Master compo-

nent on of the available servers.

• Actor: The main responsibility of this component is to start different Task Executor

components on the server on which it is running. To illustrate, available surrogate

servers in the environment should run Actor component. Then, these Actor com-

ponents will be automatically discovered and registered by one or several Mas-

ter components in the environment. The Actor component profiles the hardware

and networking condition of the server on which it is running using the profiler

sub-C. Besides, when a Master component assigns a task of an IoT application to

an Actor for the execution, it calls the task executor initiator sub-C which initiates

different Task Executor components on the server according to different IoT appli-

cations. This sub-C also defines the destination to which the result of each Task

Executor should be forwarded based on the dependency model of the IoT applica-

tion. Finally, in order to scale Master components in the environment, each Actor is
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embedded with a master initiator sub-C. When an Actor receives a scaling message

from one of the available Master components in the environment, the master initia-

tor sub-C will be called. This sub-C starts a Master component on the server, which

can independently serve incoming IoT application requests. In addition, it can be

seen that each server simultaneously can run different components (e.g., Master,

Actor, Task Executor, etc) and play different roles.

• Task Executor: IoT applications can be represented as a set of dependent or inde-

pendent tasks or services. In the rest of this chapter, tasks and services are used

interchangeably. In the dependent model, the execution of tasks has constraints

and each task can be executed when its predecessor tasks are properly executed.

In FogBus2, each Task Executor component is responsible for the execution of a

specific task; i.e., each task or service can be containerized as a Task Executor. To

illustrate, an IoT application with three decoupled tasks should have three sepa-

rate Task Executor components, so that each Task Executor corresponds to one IoT

application’s task. Considering the granularity level (e.g., task, service) of IoT ap-

plications in FogBus2, an application can be deployed on distributed servers for

execution. The Task Executor consists of two sub-Cs, called executor and local logger.

The former Sub-C initiates the execution of one task and forwards the results to

the next Task Executor components if the IoT application is developed using the

dependent model. It is crystal clear that in the independent model, the results will

be forwarded to the Master component for the aggregation or directly to the cor-

responding User component. Besides, the local logger sub-C records the contextual

information of this task, such as its execution time.

7.2.2 Communication Protocol

Different components of the FogBus2 framework can communicate together by passing

messages. Therefore, understanding the communication protocol of this framework is

important. The communication protocol of FogBus2 is implemented in JSON format

and messages contain eight main elements, as depicted in Fig. 7.3.

The source and destination are JSON objects containing the metadata of source and



264 A Software System for Scheduling IoT Applications

Message Main

Elements

source

destination

sentAtSourceTimestamp

receivedAtLocalTimestamp

data

subType

type

subSubType

placement

profiling

registration

scaling

resourceDiscovery

data

log

termination

experimental

acknowledgement

Figure 7.3: FogBus2 communication protocol format

destination of one message, respectively. The sentAtSourceTimestamp and receivedAtLo-

calTimestamp elements are embedded to calculate the networking delay. Furthermore,

each message can carry any types of information, stored in data. Besides there are

three other elements, namely type, subType, and subSubType, which are used to cate-

gorize messages. There are 10 types of messages in the current version of FogBus2

framework, shown in Fig. 7.3, where each type can be further divided into 41 subType

and 5 subSubType. Hence, type, subType, and subSubType elements logically provides

a hierarchical structure for the categorization of the messages. Due to the page limit

we cannot describe all the messages here, however, the most important messages and

their respective description are provided in Table 7.1. Also, code snippet 7.1 presents a

sample message used for sending the log information (type = log) of server resources

(type = hostResources) from an Actor component (source role = Actor) to the Remote Log-

ger component (destination role = RemoteLogger). Accordingly, the message contains the

resources information in the data element.
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Table 7.1: Important communication messages

Sender Receiver Type SubType SubSubType Description

Master Actor placement runTaskExecutor -
Master has finished the scheduling and sends

this message in a no-reuse scenario

TaskExecutor Master placement lookup -
Task Executor requests the address of its children

Task Executors (in the dependent model)

Master TaskExecutor placement lookup -
Master responds to the lookup message of

Task Executors

TaskExecutor Master acknowledgement ready -

Task Executor has received its children’s information,

and use this message to acknowledge the Master

that it is ready

Master User acknowledgement serviceReady -
When the service is ready and User can start sending

sensory data

User Master data sensoryData - sensoryData forwarded from the User

Master TaskExecutor data intermediateData -
Master sends sensory data to Task Executor(s) for

processing

TaskExecutor TaskExecutor data intermediateData -
Task Executor finishes its execution and send

intermediate data to other Task Executor(s)

TaskExecutor Master acknowledgement waiting -
Task Executor asks Master whether it can go

into the cool off period

Master TaskExecutor acknowledgement wait -
Master asks Task Executor to start its cool off

period immediately

Master TaskExecutor placement reuse -
Master has finished the scheduling and sends

this message in reuse scenario

TaskExecutor Master data finalResult - Task Executor sends final results to Master

Master User data finalResult - Master sends final results to User

Master A Master B scaling getProfiles -
Master A send request to get profiles from the

Master B

Master B Master A scaling profilesInfo - Master B sends profiles to Master B

Master Actor scaling initNewMaster - Master asks Actor to initiate a new Master

RemoteLogger Master log allResourcesProfiles -
This message is sent in response to requestProfiles

message of the Master

Master A Master B resourcesDiscovery requestActorsInfo -
Master A asks Master B the information of Actors

registered at Master B for further advertisement

Master B Master A resourcesDiscovery actorsInfo -
Master B sends its registered Actors’ information

to Master A

Master Actor resourcesDiscovery advertiseMaster - Master advertises itself to Actor

Any Components Any Components resourcesDiscovery probe try

Any component receiving probe message should

provide its component role, such as Master, Actor,

etc to the sender

Any Components Any Components resourcesDiscovery probe result
The response to the probe message received from

one component

1 {’data’: {’resources’: {’cpu’: {’cores’: 8, // Message type is log, subtype

is hostResources. Thus, data contains resources

2 ’frequency’: 2400.0,

3 ’utilization’: 0.052,
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4 ’utilizationPeak’: 1.0},

5 ’memory’: {’maximum’: 17179869184,

6 ’utilization’: 0.075,

7 ’utilizationPeak’: 1.0}}},

8 ’destination’: {’addr’: [’127.0.0.1’, 5000],

9 ’componentID’: ’?’,

10 ’hostID’: ’HostID’,

11 ’name’: ’RemoteLogger-?_127.0.0.1-5000’,

12 ’nameConsistent’: ’RemoteLogger_HostID’,

13 ’nameLogPrinting’: ’RemoteLogger-?_127.0.0.1-5000’,

14 ’role’: ’RemoteLogger’},

15 ’receivedAtLocalTimestamp’: 0.0,

16 ’sentAtSourceTimestamp’: 1625572932123.89,

17 ’source’: {’addr’: [’127.0.0.1’, 50000],

18 ’componentID’: ’2’,

19 ’hostID’: ’127.0.0.1’,

20 ’name’: ’Actor’,

21 ’nameConsistent’: ’Actor_127.0.0.1’,

22 ’nameLogPrinting’: ’Actor-2_127.0.0.1-50000_Master-?_127

.0.0.1-5001’,

23 ’role’: ’Actor’},

24 ’subSubType’: ’’,

25 ’subType’: ’hostResources’,

26 ’type’: ’log’}

Code Snippet 7.1: An Example of FogBus2 Message Format

7.2.3 Implementation of New Scheduling Technique

One of the most important challenges for resource management in Edge/Fog and CSPs

is the proper scheduling of incoming IoT application requests. FogBus2 provides a

straightforward mechanism for the scheduling of various types of IoT applications. In

this section, we implement the ranking-based scheduling technique discussed in chap-

ter 5 by extending the FogBus2 framework.

To integrate a new scheduling technique, a BaseScheduler class is provided in contain-

ers/master/sources/utils/master/scheduler/base.py. We inherit from BaseScheduler class and
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override the schedule function. Besides, if the utilization of the current Master compo-

nent, which is responsible for the scheduling of IoT applications, goes beyond a thresh-

old, the new request should be forwarded to another Master component. The getBest-

Master function handles this process and can be overridden with different policies for

the selection of another Master. Finally, scaling technique uses the prepareScaler function.

The following steps describe how to define and integrate the new scheduling technique:

1. Navigating to containers/master/sources/utils/master/scheduler/policies, and create a

new file named schedulerRankingBased.py:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/master/sources/utils/master/scheduler/

policies

3 $ > schedulerRankingBased.py

2. Implementing the ranking based scheduling technique based on the Algorithm 10

schedulerRankingBased.py. The schedule function contains the logic of scheduling

policy.

1 $ cat schedulerRankingBased.py

2

3 from random import randint

4 from time import time

5 from typing import List

6 from typing import Union

7

8 from ..base import BaseScheduler as SchedulerPolicy

9 from ..baseScaler.base import Scaler

10 from ..baseScaler.policies.scalerRandomPolicy import ScalerRandomPolicy

11 from ..types import Decision

12 from ...registry.roles.actor import Actor

13 from ...registry.roles.user import User

14 from ....types import Component

15

16

17 class SchedulerRankingBased(SchedulerPolicy):

18 def __init__(

19 self,
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20 isContainerMode: bool,

21 *args,

22 **kwargs):

23 """

24 :param isContainerMode: Whether this component is running in

container

25 :param args:

26 :param kwargs:

27 """

28 super().__init__(’RankingBased’, isContainerMode, *args, **kwargs

)

29

30 def _schedule(self, *args, **kwargs) -> Decision:

31 """

32 :param args:

33 :param kwargs:

34 :return: A decision object

35 """

36 user: User = kwargs[’user’]

37 allActors: List[Actor] = kwargs[’allActors’]

38 # Get what tasks are required

39 taskNameList = user.application.taskNameList

40

41 startTime = time()

42 indexSequence = [’’ for _ in range(len(taskNameList))]

43 indexToHostID = {}

44

45 # Ranking of tasks belonging to an application

46 rankedTasksList = self.rankApplicationTasks(

47 indexSequence, **kwargs)

48 indexToHostID = self.tasksAssignment(

49 rankedTasksList, allActors, **kwargs)

50

51 schedulingTime = (time() - startTime) * 1000

52

53 # Create a decision object

54 decision = Decision(

55 user=user,
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56 indexSequence=rankedTasksList,

57 indexToHostID=indexToHostID,

58 schedulingTime=schedulingTime

59 )

60 # A simple example of cost estimation

61 decision.cost = self.estimateCost(decision, **kwargs)

62 return decision

63

64 @staticmethod

65 def estimateCost(decision: Decision, **kwargs) -> float:

66 # You may develop your own with the following used values

67 from ..estimator.estimator import Estimator

68 # Get necessary params from the key args

69 user = kwargs[’user’]

70 master = kwargs[’master’]

71 systemPerformance = kwargs[’systemPerformance’]

72 allActors = kwargs[’allActors’]

73 isContainerMode = kwargs[’isContainerMode’]

74 # Init the estimator

75 estimator = Estimator(

76 user=user,

77 master=master,

78 systemPerformance=systemPerformance,

79 allActors=allActors,

80 isContainerMode=isContainerMode)

81 indexSequence = [int(i) for i in decision.indexSequence]

82 # Estimate the cost

83 estimatedCost = estimator.estimateCost(indexSequence)

84 return estimatedCost

85

86 def getBestMaster(self, *args, **kwargs) -> Union[Component, None]:

87 """

88

89 :param args:

90 :param kwargs:

91 :return: A Master used to ask the user to request when this

Master is busy

92 """



270 A Software System for Scheduling IoT Applications

93 user: User = kwargs[’user’]

94 knownMasters: List[Component] = kwargs[’knownMasters’]

95 mastersNum = len(knownMasters)

96 if mastersNum == 0:

97 return None

98 return knownMasters[randint(0, mastersNum - 1)]

99

100 def prepareScaler(self, *args, **kwargs) -> Scaler:

101 # Create a scaler object and return

102 scaler = ScalerRandomPolicy(*args, **kwargs)

103 return scaler

First, the information of user and all available actors allActors are retrieved (lines

36-37). Then, the tasks corresponding to the requested application are retrieved

and stored in taskNameList (line 39). The rankApplicationTasks considers the de-

pendency model of tasks (if any) and satisfies the dependency among tasks while

defining an order for the tasks that can be executed in parallel. Different ranking

policies can be defined in this function. We consider the average execution time of

tasks on different servers as criteria for the ranking. Hence, among tasks that can

be executed in parallel, the tasks with higher execution time receive higher prior-

ity. This eventually helps to reduce the overall response time of the application

(lines 46-47). Next, tasksAssignment function receives the ordered rankedTasksList

and assigns a proper actor to each task to minimize its execution time (line 48-49).

According to the scheduling decision, a decision object will be created, storing the

ordered list of the application’s tasks, the list of server/host mapping, scheduling

time, and the cost of scheduling, to be returned (lines 54-59). To illustrate how the

execution cost of each task and overall response time of an application can be es-

timated, a estimateCost function is defined (lines 65-84). As mentioned above, the

getBestMaster and prepareScaler also can be defined in schedulerRankingBased.py. To

reduce the complexity, these functions are working based on random policy.

3. The new scheduling technique is then added to the schedulerName options by con-

figuring the initSchedulerByName function of the containers/master/sources/utils/mas-

ter/scheduler/tools/initSchedulerByName.py.
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1 $ pwd

2 /home/ubuntu/fogbus2/containers/master/sources/utils/master/scheduler/

tools

3 $ nano initSchedulerByName.py

4

5 def initSchedulerByName(

6 .

7 .

8 .

9 # New Added Block

10 elif schedulerName == ’RankingBased’:

11 from ..policies.schedulerRankingBased import \

12 RankingBasedPolicy

13 scheduler = SchedulerRankingBased(isContainerMode=isContainerMode

)

14 return scheduler

15

16 return None

4. The Master component can be executed using the following command while the

schedulerName option shows the name of the selected scheduling technique:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/master

3 $ docker-compose run --rm --name TempContainerName fogbus2-master --

containerName TempContainerName --bindIP 192.0.0.8 --schedulerName

RankingBased

7.2.4 Implementation of New IoT Applications

Every containerized IoT application can be implemented and integrated with the Fog-

Bus2 framework. Alongside the implementation of new IoT applications, there are sev-

eral required steps to follow in order to implement and integrate the new IoT applica-

tions with the FogBus2 framework, such as building docker images and defining depen-

dencies between different tasks.

Overall, we implement four new IoT applications with different dependency mod-

els, namely FaceDetection, FaceAndEyeDetection and NaiveFormulaParallelized, and Naive-
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FormulaSerialized. Table 7.2 presents the list of new IoT applications, their descriptions,

dependency model, and the logical tasks of applications. In the application logic’s

tasks, only the specific tasks of each application are mentioned. The FogBus2 frame-

work manages the rest of the steps, such as receiving input data using User compo-

nent and communication with the database using RemoteLogger component. As the re-

quired steps for the integration of these applications are the same, we only describe one

of these applications, called NaiveFormulaParallelized as it has a larger number of tasks.

As Table 7.2 shows, this mathematical application contains three different tasks, called

naive formula0, naive formula1, and naive formula2, that can be executed in parallel. The

corresponding equation of each task is described in Eq. 7.1.

naive f ormula0 a + b + c

naive f ormula1 a2

b2+c2

naive f ormula2 1
a +

2
b +

3
c

(7.1)

To integrate this application into the FogBus2 framework, these tasks should be dock-

erized and prepared to be integrated as Task Executor components. Besides, we need

a User component to receive inputs (using Sensor sub-C) and show outputs (using Ac-

tuator sub-C). The input will be forwarded to the Master component of the framework,

and this component forwards inputs to corresponding Task Executor components based

on the outcome of the scheduling algorithm. The following steps demonstrate how to

implement and integrate the new application with the FogBus2 framework:

1. Create three python files as three different tasks with the desired naming con-

vention. We name these files as naiveFormula0.py, naiveFormula1.py, and naiveFor-

mula2.py which contain the logic of tasks.

1 $ pwd

2 /home/ubuntu/fogbus2

3 $ cd containers/taskExecutor/sources/utils/taskExecutor/tasks

4 $ > naiveFormula0.py

5 $ > naiveFormula1.py

6 $ > naiveFormula2.py
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Table 7.2: List of applications

Application Description
Dependency

Model

Application

Logic’s Tasks

FaceDetection
Detecting human face from video stream, either realtime

or from recorded files
Sequential face detection

FaceAndEyeDetection
Detecting human face and Eyes from video stream, either realtime

or from recorded files
Sequential

face detection,

eye detection

NaiveFormulaParallelized Tasks process different parts of an equation in parallel Parallel

naive formula0,

naive formula1,

naive formula2

NaiveFormulaSerialized Tasks process different parts of an equation sequentially Sequential

naive formula0,

naive formula1,

naive formula2

2. Edit the corresponding python files of each task and insert the required logic. For

each task, a unique identifier taskID is required.

(a) The logic of task naiveFormula0.py:

1 $ nano naiveFormula0.py

2 from .base import BaseTask

3

4 class NaiveFormula0(BaseTask):

5 def __init__(self):

6 super().__init__(taskID=108, taskName=’NaiveFormula0’)

7

8 def exec(self, inputData):

9 a = inputData[’a’]

10 b = inputData[’b’]

11 c = inputData[’c’]

12

13 result = a + b + c

14 inputData[’resultPart0’] = result

15

16 return inputData

(b) The logic of task naiveFormula1.py:

1 $ nano naiveFormula1.py

2 from .base import BaseTask
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3

4 class NaiveFormula1(BaseTask):

5 def __init__(self):

6 super().__init__(taskID=109, taskName=’NaiveFormula1’)

7

8 def exec(self, inputData):

9 a = inputData[’a’]

10 b = inputData[’b’]

11 c = inputData[’c’]

12

13 result = a * a / (b * b + c * c)

14 inputData[’resultPart1’] = result

15

16 return inputData

(c) The logic of task naiveFormula2.py:

1 $ nano naiveFormula2.py

2 from .base import BaseTask

3

4 class NaiveFormula2(BaseTask):

5 def __init__(self):

6 super().__init__(taskID=110, taskName=’NaiveFormula2’)

7

8 def exec(self, inputData):

9 a = inputData[’a’]

10 b = inputData[’b’]

11 c = inputData[’c’]

12

13 result = 1 / a + 2 / b + 3 / c

14 inputData[’resultPart2’] = result

15 return inputData

(d) The return value of exec functions in the above mentioned tasks will be man-

aged by Task Executor. If it is none, the return value will be ignored, otherwise,

it will be forwarded to next Task Executor components based on the specified

dependencies among tasks.

3. Configure arguments:
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(a) Configure init .py:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/taskExecutor/sources/utils/

taskExecutor/tasks

3 $ nano containers/taskExecutor/sources/utils/taskExecutor/tasks/

__init__.py

4

5 from .base import BaseTask

6 ...

7 from .naiveFormula0 import NaiveFormula0

8 from .naiveFormula1 import NaiveFormula1

9 from .naiveFormula2 import NaiveFormula2

10 ...

(b) Configure initTask.py:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/taskExecutor/sources/utils/

taskExecutor/tools/initTask.py

3 $ nano containers/taskExecutor/sources/utils/taskExecutor/tasks/

__init__.py

4

5 from typing import Union

6 from ..tasks import *

7

8 def initTask(taskName: str) -> Union[BaseTask, None]:

9 task = None

10 if taskName == ’FaceDetection’:

11 task = FaceDetection()

12 ...

13 elif taskName == ’NaiveFormula0’:

14 task = NaiveFormula0()

15 elif taskName == ’NaiveFormula1’:

16 task = NaiveFormula1()

17 elif taskName == ’NaiveFormula2’:

18 task = NaiveFormula2()

19

20 return task
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4. Prepare docker images:

(a) Prepare the required libraries:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/taskExecutor/sources

3 $ cat requirements.txt

4

5 psutil

6 docker

7 python-dotenv

8 pytesseract

9 editdistance

10 six

(b) Create dockerfiles: For each task, a docker file should be created. Considering

NaiveFormula0:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/taskExecutor/dockerFiles/

NaiveFormula0

3

4 $ nano Dockerfile

5

6 # Base

7 FROM python:3.9-alpine3.14 as base

8 FROM base as builder

9

10 ## Dependencies

11 RUN apk update

12 RUN apk add --no-cache \

13 build-base clang clang-dev ninja cmake ffmpeg-dev \

14 freetype-dev g++ jpeg-dev lcms2-dev libffi-dev \

15 libgcc libxml2-dev libxslt-dev linux-headers \

16 make musl musl-dev openjpeg-dev openssl-dev \

17 zlib-dev curl freetype gcc6 jpeg libjpeg \

18 openjpeg tesseract-ocr zlib unzip openjpeg-tools

19

20 RUN python -m pip install --retries 100 --default-timeout=600 --no-

cache-dir --upgrade pip
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21 RUN python -m pip install --retries 100 --default-timeout=600 numpy

--no-cache-dir

22

23 ## OpenCV Source Code

24 WORKDIR /workplace

25 RUN cd /workplace/ \

26 && curl -L "https://github.com/opencv/opencv/archive/4.5.1.zip"

-o opencv.zip \

27 && curl -L "https://github.com/opencv/opencv_contrib/archive

/4.5.1.zip" -o opencv_contrib.zip \

28 && unzip opencv.zip \

29 && unzip opencv_contrib.zip \

30 && rm opencv.zip opencv_contrib.zip

31

32 ## Configure

33 RUN cd /workplace/opencv-4.5.1 \

34 && mkdir -p build && cd build \

35 && cmake \

36 -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.5.1/

modules \

37 -DBUILD_NEW_PYTHON_SUPPORT=ON \

38 -DBUILD_opencv_python3=ON \

39 -DHAVE_opencv_python3=ON \

40 -DPYTHON_DEFAULT_EXECUTABLE=$(which python) \

41 -DBUILD_TESTS=OFF \

42 -DWITH_FFMPEG=ON \

43 ../

44

45 ## Compile

46

47 RUN cd /workplace/opencv-4.5.1/build && make -j $(nproc)

48 RUN cd /workplace/opencv-4.5.1/build && make install

49

50 ## Python libraries

51 COPY ./sources/requirements.txt /install/requirements.txt

52 RUN python -m pip install --retries 100 --default-timeout=600 \

53 --prefix=/install \

54 --no-cache-dir \
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55 -r /install/requirements.txt

56

57 ## Copy files

58 FROM base

59 COPY --from=builder /install /usr/local

60 COPY ./sources/ /workplace

61

62 ## Install OpenCV

63 COPY --from=builder /usr/local/ /usr/local/

64 COPY --from=builder /usr/lib/ /usr/lib/

65

66 # Hostname

67 RUN echo "NaiveFormula0" > /etc/hostname

68

69 # Run NaiveFormula0

70 WORKDIR /workplace

71 ENTRYPOINT ["python", "taskExecutor.py"]

(c) Create docker files for NaiveFormula1 and NaiveFormula2 similar to NaiveFor-

mula0, as described in step (b).

(d) Create docker-compose files: For each task, a docker-compose file should be

created. Considering NaiveFormula0:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/taskExecutor/dockerFiles/

NaiveFormula0

3 $ nano docker-compose.yml

4

5 version: ’3’

6

7 services:

8

9 fogbus2-naive_formula0:

10 image: fogbus2-naive_formula0

11 build:

12 context: ../../

13 dockerfile: dockerFiles/NaiveFormula0/Dockerfile

14 environment:
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15 PUID: 1000

16 PGID: 1000

17 TZ: Australia/Melbourne

18 network_mode:

19 host

(e) Create docker-compose files for NaiveFormula1 and NaiveFormula2 similar to

NaiveFormula0, as described in step (d).

(f) Build docker images: The docker images corresponding to the tasks of new

application can be built using the provided automated script (demo.py).

1 $ pwd

2 /home/ubuntu/fogbus2/demo

3 $ python3.9 demo.py --buildAll

(g) Verify new docker images:

1 $ docker images

2

3 REPOSITORY TAG IMAGE ID CREATED

SIZE

4 ...

5 fogbus2-naive_formula1 latest 5e9ad6999801 2 minutes ago

xxx

6 fogbus2-naive_formula0 latest 74cfbb128699 2 minutes ago

xxx

7 fogbus2-naive_formula2 latest 924d6bc0f281 3 minutes ago

xxx

8 ...

5. Prepare User side code:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/user/sources/utils/user/applications

3 $ nano naiveFormulaParallelized.py

4

5 from time import time

6 from pprint import pformat

7 from .base import ApplicationUserSide
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8 from ...component.basic import BasicComponent

9

10

11 class NaiveFormulaParallelized(ApplicationUserSide):

12

13 def __init__(

14 self,

15 videoPath: str,

16 targetHeight: int,

17 showWindow: bool,

18 basicComponent: BasicComponent):

19 super().__init__(

20 appName=’NaiveFormulaParallelized’,

21 videoPath=videoPath,

22 targetHeight=targetHeight,

23 showWindow=showWindow,

24 basicComponent=basicComponent)

25

26 def prepare(self):

27 pass

28

29 def _run(self):

30 self.basicComponent.debugLogger.info(

31 ’Application is running: %s’, self.appName)

32

33 # get user input of a, b, and c

34 print(’a = ’, end=’’)

35 a = int(input())

36 print(’b = ’, end=’’)

37 b = int(input())

38 print(’c = ’, end=’’)

39 c = int(input())

40

41 inputData = {

42 ’a’: a,

43 ’b’: b,

44 ’c’: c

45 }
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46

47 # put it in to data uploading queue

48 self.dataToSubmit.put(inputData)

49 lastDataSentTime = time()

50 self.basicComponent.debugLogger.info(

51 ’Data has sent (a, b, c): %.2f, %.2f, %.2f’, a, b, c)

52

53 # wait for all the 4 results

54 while True:

55 result = self.resultForActuator.get()

56

57 responseTime = (time() - lastDataSentTime) * 1000

58 self.responseTime.update(responseTime)

59 self.responseTimeCount += 1

60

61 if ’finalResult’ in result:

62 break

63

64 for key, value in result.items():

65 result[key] = ’%.4f’ % value

66 self.basicComponent.debugLogger.info(

67 ’Received all the 4 results: \r\n%s’, pformat(result))

6. Define dependencies among tasks of a new application in the database. Consider-

ing MariaDB is running on 192.0.0.1 as an example:

(a) Connect to the database:

1 $ mysql -h 192.0.0.1 -uroot -p

2 Enter password:

(b) The EntryTasks contains the root tasks of this application, where the sensory

data should be forwarded.

1 mysql> SELECT entryTasks FROM FogBus2_Applications.applications

WHERE name=’NaiveFormulaParallelized’;

2

3 [

4 "NaiveFormula0",
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5 "NaiveFormula1",

6 "NaiveFormula2"

7 ]

(c) The TaskWithDependency contains the dependencies among tasks. For each

task, we define an array of parents and children, representing predecessor and

successor tasks.

1 mysql> SELECT tasksWithDependency FROM FogBus2_Applications.

applications WHERE name=’NaiveFormulaParallelized’;

2

3 {

4 "NaiveFormula0": {

5 "parents": [

6 "Sensor"

7 ],

8 "children": [

9 "Actuator"

10 ]

11 },

12 "NaiveFormula1": {

13 "parents": [

14 "Sensor"

15 ],

16 "children": [

17 "Actuator"

18 ]

19 },

20 "NaiveFormula2": {

21 "parents": [

22 "Sensor"

23 ],

24 "children": [

25 "Actuator"

26 ]

27 }

28 }

(d) Considering the FogBus2 framework is running, the NaiveFormulaParallelized
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can be executed using the following command:

1 $ pwd

2 /home/ubuntu/fogbus2/containers/user/sources

3

4 $ python user.py --bindIP 192.0.0.9 --masterIP 192.0.0.2 --

masterPort 5001 --remoteLoggerIP 192.0.0.1 --remoteLoggerPort

5000 --applicationName NaiveFormulaParallelized

7.3 Design of Computing Environment

In this section, we describe the integrated computing environment designed for this

work. Overall, we consider three tiers, namely, IoT, Edge/Fog, and multi-Cloud. Fig. 7.4

presents an overview of our computing environment, consisting of heterogeneous servers.

7.3.1 IoT Tier

This tier consists of heterogeneous types of resource-limited IoT devices (such as smart-

phones, laptops, surveillance cameras, and any types of sensors such as ECG) that inter-

act with the environment to collect data and perform some actions. Using the FogBus2

framework, IoT devices are able to connect and forward their requests to distributed

servers in the environments. Hence, the IoT data can be processed and stored on re-

sourceful surrogate servers, which significantly helps to reduce the processing time of

data generated from IoT devices.

7.3.2 Fog Tier

In the Fog tier, we consider two clusters consisting of heterogeneous servers at the prox-

imity of IoT devices. These servers include different Rpis (Rpi) models (such as Rpi4B,

Rpi3B) and Nvidia Jetson platform (such as Jetson Nano) that are placed on-premises in

the private subnet. Besides, these servers can communicate together and collaboratively

handle incoming IoT requests.
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Also, The Fog tier contains local databases (e.g., MariaDB), to persist the required local

information and for faster access to required data for resource management. The local

data can also be transferred periodically to the centralized database which is placed in

the Cloud.

7.3.3 Multi-Cloud Tier

The computing and storage resources of IoT devices can be expanded by supporting

CSPs in different geo-location areas, bringing location independency for IoT applica-

tions. In this chapter, we design a multi-Cloud environment by exploiting the resources

from Oracle Cloud Infrastructure (OCI) and Nectar Cloud Infrastructure (NCI) 2.

In the design of the multi-Cloud environment, the following design criteria are con-

sidered.

• Multiple Virtual Cloud Networks (VCN): Two different VCNs are considered for

OCI and NCI, as depicted in Fig. 7.4. The resources and services of each Cloud

service provider are defined within the respective VCN.

• Public and Private subnets: Within each VCN, the resources can be categorized

and created in multiple public and private subnets. A public subnet has an out-

bound route that sends all traffic through Internet Gateway. The resources in the

public subnets can also receive inbound traffic through Internet Gateway. The re-

sources in the private subnet do not have direct access to the Internet, and they

require Network Address Translation (NAT) Gateway to forward data to the In-

ternet. Besides, the resources within each subnet can be protected using a set of

Security Groups/Lists/Rules that act as a virtual firewall to control the inbound

and outbound traffic.

• Bastion Host/Service: To further increase the security level and protection mech-

anism of resources in the private subnets, the bastion Host/Service can be used as

a controlled entry point to access the resources. The topology has a single, known

entry point that you can monitor and audit regularly. So, you can avoid exposing

2https://nectar.org.au/
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the more sensitive components of the topology without compromising access to

them.

• Heterogeneous Virtual Machines (VMs): In the computing environment, we have

used computing instances with different architectures (i.e., x86 and ARM) in OCI

and NCI.

• Fault Domain (FD): To increase the availability of the framework, we use several

FDs when deploying the resources, so that in case of any failure in one FD, the

framework can continue working without any issues.

• Database: Alongside the local databases at the Fog tier, we use a centralized

database in the Cloud to store all the detailed data of the IoT devices, users, frame-

work, and resources. The local databases also periodically forward their batch of

data to the database. Hence, for the long-term analysis of the system, the central-

ized database can be used to find anomalies, data trends, and behavior of users

and resources using different analysis techniques and tools.

7.4 Evaluation and Validation

To evaluate the performance of the extended FogBus2 framework, an integrated com-

puting environment consisting of multiple Cloud instances and Fog servers is prepared.

Table 7.3 depicts the full configuration of servers and corresponding running compo-

nents. All the tests are performed using the new scheduling technique and new IoT

applications, described in the previous sections.

Fig. 7.5 represents the average docker size of components in compressed and un-

compressed formats. The compressed docker image size is obtained from the average

size of docker images stored in the docker hub for multiple architectures, while uncom-

pressed docker image size is obtained from the average size of extracted docker images

on different instances. The size of the compressed docker image shows that extended

FogBus2 components are lightweight to be downloaded on different platforms, rang-

ing from a few megabytes to roughly 100 MB at maximum. Besides, the uncompressed

docker image size proves that extended FogBus2 components are not resource-hungry
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Table 7.3: Configuration of resources

Server

Tag

Server

Name

Computing

Layer

Public IP

Address

Private IP

Address
Port

Component

Role

Environment

Preparation

A Oracle1 Cloud 168.138.9.91 192.0.0.1 5000
RemoteLogger,

Actor 1

docker and

docker-compose

B Oracle2 Cloud 168.138.10.94 192.0.0.2
automatically

assign
Actor 2

docker and

docker-compose

C Oracle3 Cloud 168.138.15.110 192.0.0.3
automatically

assign
Actor 3

docker and

docker-compose

D Oracle4 Cloud 168.138.15.111 192.0.0.4
automatically

assign
Actor 4

docker and

docker-compose

E Oracle5 Cloud 168.138.15.118 192.0.0.5
automatically

assign
Actor 5

docker and

docker-compose

F Nectar1 Cloud 45.113.235.222 192.0.0.6
automatically

assign
Actor 6

docker and

docker-compose

G Nectar2 Cloud 45.113.232.187 192.0.0.7
automatically

assign
Actor 7

docker and

docker-compose

H Nectar3 Cloud 45.113.232.245 192.0.0.8
automatically

assign
Actor 8

docker and

docker-compose

I
Rpi 4B

4GB
Fog - 192.0.0.9 5000

RemoteLogger,

Actor 9

docker and

docker-compose

J
Rpi 4B

4GB
Fog - 192.0.0.10

automatically

assign
Actor 10

docker and

docker-compose

K
Rpi 3B

1GB
Fog - 192.0.0.11

automatically

assign
Actor 11

docker and

docker-compose

L
Jetson Nano

4GB
Fog - 192.0.0.12 5001 Master

docker and

docker-compose

M
VM on a

Laptop
IoT - 192.0.0.13

automatically

assign
User Python3.9

and do not occupy the storage. The reason why the image sizes of User and Task Executor

components are not provided is that the docker image sizes of these components heavily

depend on the logic of IoT applications.

Fig. 7.6 represents the average runtime RAM usage of the extended FogBus2 com-

ponents on servers with different architectures. It illustrates that the average resource

usage of the FogBus2 components on different architectures is low, ranging from 25 MB

to 45 MB.
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Fig. 7.7 demonstrates the average startup time of FogBus2 components on different

architectures (i.e., x86 and different ARM architectures). It contains the amount of time

required to start containers until they become in a completely functional state for serving

incoming requests. Therefore, the extended FogBus2 framework only requires a few

seconds to enter into its fully functional state. It significantly helps IoT developers in

the development and testing phase as they require to re-initiate the framework several

times to test and debug their applications.
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Fig. 7.8 depicts the average response time of NaiveFormulaParallelized, NaiveFormu-

laSerialized, FaceAndEyeDetection and FaceDetection application with different resolutions

based on the server configuration derived from ranking-based scheduling technique. It

also validates the correct implementation and integration of new scheduling technique

and IoT applications with the FogBus2 framework.
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7.5 Summary

In this chapter, key components of the FogBus2 framework and its communication pro-

tocol are described. Besides, we extended this framework with a new scheduling tech-

nique for real-time IoT applications. Also, we implemented and integrated new IoT ap-

plications with this framework. Next, an integrated computing environment, containing

multiple Cloud service providers and Fog devices is designed. Finally, we studied the

performance of the extended FogBus2 framework in the designed computing environ-

ment.



Chapter 8

Conclusions and Future Directions

This chapter concludes the thesis and describes a summary of works and key contributions. Next, it

identifies and discusses several future research directions for further improvement of Fog computing

concepts.

8.1 Summary of Contributions

The Internet of Things (IoT) paradigm has become an integral part of our daily life,

thanks to the continuous advancements of hardware and software technologies and

ubiquitous access to the Internet. IoT spans across various application scenarios with

heterogeneous resource requirements, ranging from computation-intensive to latency-

sensitive. Fog computing has been emerged as a distributed computing paradigm, con-

taining not only servers at the proximity of IoT devices but also distant remote servers.

Hence, it provides heterogeneous resources to support a wide variety of applications. It

has already drawn significant attention from both industry and academia. However, the

number of resources is limited compared to the ever-increasing demand for numerous

IoT devices. Also, the execution of one IoT application on some resources may affect the

execution of other applications and degrade users’ QoE and overall system performance.

Hence, the smooth execution of different IoT applications in this highly heterogeneous

and dynamic environment is not quite simple. In Fog computing environments, these

issues can be addressed by identifying appropriate scheduling techniques for IoT ap-

plications. In this thesis, we investigated scheduling techniques of IoT applications in

highly distributed, heterogeneous, and dynamic Fog computing environments.

Chapter 1 presented the basic concepts of Edge and Fog computing and discussed

291
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their main difference from our perspective. Next, important challenges of Fog comput-

ing environments are identified and described. This chapter also presented the research

questions addressed in this thesis.

Chapter 2 investigated the existing scheduling techniques for IoT applications in

Fog computing from different perspectives, namely IoT application structure, environ-

mental architecture, optimization characteristics, decision engines’ characteristics, and

performance evaluation. Then, considering each perspective, a taxonomy and survey

of the recent literature are provided. Finally, the research gaps of each perspective are

described.

Chapter 3 investigated efficient distributed scheduling policies for network resources

to optimize the total throughput of the network while mitigating the interference in

dense and ultra-dense Edge and Fog computing environments. Firstly, the throughput

model of hierarchical Edge and Fog computing environments is formulated. Secondly,

a distributed dynamic clustering algorithm is proposed to solve the intra-cluster inter-

ference. Afterward, the inter-cluster interference is modeled using a Fog-driven graph

formation strategy. Then, a graph coloring technique is proposed to distribute network

resources while decreasing inter-cluster interference. Finally, a policy-aware scheduling

technique is proposed to distribute network resources to Edge servers.

Chapter 4 Puts forward a distributed batch placement scheduling technique for con-

current DAG-based IoT applications to optimize the execution cost of IoT applications.

At first, the weighted cost of running concurrent IoT applications in terms of the execu-

tion time of IoT applications and the energy consumption of IoT devices is formulated.

Then, different tasks of concurrent IoT applications are prepared as several batches for

the scheduling while the dependency of tasks within each application is considered.

Afterward, an optimized meta-heuristic technique based on the Memetic Algorithm is

proposed for the batch scheduling to solve the minimization problem. Also, to solve

the stochastic failures, a fast failure recovery mechanism is embedded in the scheduling

technique to assign failed tasks to appropriate servers in a timely manner

Chapter 5 proposed distributed techniques for scheduling and migration manage-

ment of real-time IoT applications in hierarchical Edge and Fog computing environ-

ments. Firstly, mathematical models to minimize the weighted cost of running and mi-
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gration of real-time applications in terms of the execution time of IoT applications and

the energy consumption of IoT devices in hierarchical Edge and Fog computing envi-

ronments are proposed. Next, a fast ranking-based distributed scheduling policy for

heterogeneous IoT applications is proposed to reduce the weighted cost. Afterward, to

address the mobility of users, a distributed migration management technique is pro-

posed to minimize downtime and service interruption in the pre-copy migration model.

Also, failure recovery techniques for clustering of resources, scheduling, and migration

of IoT applications are embedded to solve random failures.

Chapter 6 presented a distributed DRL-based scheduling framework to learn and

optimize complex scheduling of DAG-based IoT applications in highly dynamic Edge

and Fog computing environments. At first, the weighted cost of running IoT applica-

tions in terms of the execution time of IoT applications and the energy consumption

of IoT devices is formulated as a minimization problem. Next, a DRL model for the

scheduling of DAG-based IoT applications is proposed. Then, action, reward, and state

management methods for our DRL framework are defined. Afterward, a distributed

actor-critic DRL-based model for off-policy learning of optimal policy for Edge and Fog

computing environments is put forward to improve exploration costs and convergence

rate. Finally, the proposed technique is evaluated and validated using simulation and

testbed experiments, consisting of heterogeneous Fog and Cloud servers.

Chapter 7 investigated a software system for scheduling IoT applications in Edge

and Fog computing environments. Firstly, the system configuration, consisting of mul-

tiple Cloud datacenters, multiple Edge/Fog servers, and different IoT applications, was

described. Next, the important modules of our software system for scheduling have

been described. Afterward, we implemented and integrated several containerized DAG-

based IoT applications, such as face and eye detection. Then, the implementation and

integration of the scheduling algorithm in this environment were presented. Finally,

evaluation and validation of scheduling algorithm’s performance in real Fog computing

environments were described.

The chapters mentioned above collectively present multiple scheduling techniques

in highly heterogeneous Edge and Fog computing environments, which is a timely con-

tribution to the state-of-the-art.
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Figure 8.1: Summary of future directions

8.2 Future Research Directions

This thesis addressed several challenges of scheduling IoT applications in Edge and Fog

computing environments. However, Edge and Fog computing paradigms can be further

improved by addressing several key issues requiring further investigation. An overview

of future directions discussed in this section is presented in Fig. 8.1 and described in the

following.

8.2.1 Microservices-based applications

The popularity of microservices for the deployment of IoT applications is due to their

loosely-coupled design, modularity, and the capability of microservices to be shared

among multiple IoT applications. But, it may incur data consistency and data privacy

challenges. To overcome these challenges, the placement techniques should consider the

context of applications and data before sharing microservices. Also, the loosely-coupled

and lightweight design of microservices enables the efficient migration of microservice-
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based applications. Hence, considering the type and structure of IoT applications rang-

ing from strictly latency-sensitive to strictly computation-intensive, different migration

models (e.g., pre-copy, post-copy, hybrid) should be completely investigated in real Edge

and Fog computing environments for a smooth migration.

8.2.2 Practical container orchestration in Fog computing

Orchestrating container-based IoT applications is well studied in the cloud computing

paradigm. However, in Fog computing, in which CSs and FSs collaborate to run an

application, several deployment models of orchestration techniques are available. To

illustrate, the master node can either be deployed on a FS or CS. When the master node

runs on a FS, the communication overhead and latency for end-users will be reduced.

However, the master node will use the most of resources on the FS for the cluster man-

agement, especially for resource-limited FSs. Also, when the master runs on a CS, the

startup time and application latency will be negatively affected. Thus, based on the

application structure and its goal, different container orchestration models should be

studied to find the best deployment model according the application scenario. Several

practical studies can be conducted to find which deployment model is suitable for each

IoT application scenario in terms of communication overhead, the startup time of ser-

vices, memory footprint, failure management, load balancing, and scheduling.

8.2.3 Hybrid scheduling decision engines

Usually, decision engines only use one placement technique for different IoT applica-

tions. However, the requirements of IoT applications are heterogeneous, where one ap-

plication is sensitive to startup time while the extremely high accuracy is not important,

or vice versa. Besides, decision engines should be adapted to work with either single

or batch placement approaches. Hence, context-aware decision engines with a suite

of placement techniques can be implemented to address the requirements of different

IoT applications. Moreover, current scheduling techniques solely use heuristic, meta-

heuristic, or ML-based algorithms for making the decision. However, these algorithms

can be integrated for the efficient scheduling of applications. To illustrate, the training
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of DRL models is costly and time-consuming, while after training the inference time is

very low. Hence, heuristics or meta-heuristics algorithms can be used in the training

phase of DRL algorithms for more efficient training of DRL models.

8.2.4 Systems for ML

Due to advancements in ML techniques and their rapid adoptions across many IoT

applications, it creates new demand for specialized hardware resources and software

frameworks (e.g., Nvidia GPU-powered Jetson, Google Coral Edge Tensor Processing

Unit (Edge TPU)) for Fog computing. New systems and software frameworks should be

built to support the massive computational requirement of these AI workloads. Besides,

these systems can be a potential target for the deployment of decision engines due to

their high computational capacity.

8.2.5 ML for systems

While ML systems themselves are becoming mature and adopted into many critical ap-

plication domains, it is equally important to use these ML techniques to design and

operate large-scale systems. Adopting the ML techniques to solve different resource

management problems in Edge/Fog and Cloud is crucial to managing these complex

infrastructures and workloads. Moreover, majority of ML techniques are not optimized

to run on resource-constrained devices. To illustrate, consider an efficient ML model

trained for resource management. Many resource-constrained devices require full inte-

ger quantization to run the trained model. However, post quantization of trained mod-

els is not always possible and in some cases they cannot be efficiently converted. As a

result, a study on requirements for the efficient execution of resource management ML

models on resource-limited FSs should be conducted.

8.2.6 Thermal management

The temperature of FSs (e.g., racks of Rpi or Nvidia Jetson platform), especially those ex-

ecuting large workloads, increases significantly. So, the cooling systems should be em-
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bedded to avoid system breakdown. Hence, a study on the temperature of these devices

based on their main processing and communication modules can be conducted to find

the respective temperature dynamics in different application scenarios and workloads.

Moreover, lightweight thermal management software systems for FSs can be designed

to control the temperature dynamics of devices. Also, the thermal index can be added

as an important optimization/decision parameter alongside other currently available

parameters (e.g., time, energy, cost) for the placement techniques.

8.2.7 Execution cost trade-off

The goal of scheduling algorithms is to minimize the execution cost of applications ei-

ther from IoT or resource providers’ perspectives. However, some parameters such as

energy consumption or carbon footprint should be considered from both perspectives.

Hence, not only is minimizing these parameters from either perspective critical to re-

ducing total energy consumption, but a trade-off parameter between the execution cost

of IoT devices and resource providers can be designed, aiming at total energy or carbon

footprint minimization.

8.2.8 Privacy aware and adaptive decision engines

Data-driven and distributed scheduling approaches are gaining popularity due to their

high adaptability and scalability. However, sharing raw data of users or systems incurs

privacy issues. To illustrate, in DDRL-based scheduling techniques, sharing experiences

of multiple agents significantly reduce the exploration costs and improve convergence

time of DDRL agents while incurring privacy concerns when raw agents’ experiences

are shared. Accordingly, privacy-aware mechanisms for sharing such data (e.g., agents’

experiences) can be integrated with these highly adaptive distributed scheduling tech-

niques.
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8.2.9 Lightweight security mechanisms

Due to the highly distributed nature of Edge and Fog computing paradigms, FSs are

situated at different geo-locations. Besides, FSs are highly exposed to users. Hence,

the process of protecting FSs under the global security umbrella is challenging. More-

over, security mechanisms usually add overhead either for initiating IoT-enabled sys-

tems in Fog computing or the execution of applications in these environments. Hence,

lightweight and distributed security mechanisms should be designed for Edge and Fog

computing environments. Blockchain technology, due to its distributed approach, is

recently regarded as one of the main security enablers for Edge and Fog computing

paradigms. However, it has considerable computation overhead for FSs, especially the

resource-constrained ones. Hence, different approaches for the deployment of Blockchain

technology in Edge and Fog computing environments should be studied. Besides, de-

veloping a lightweight Blockchain technique for these environments is required.

8.2.10 Single-Sign-On mechanism

Single-Sign-On (SSO) is a property of access control of multiple related but indepen-

dent software systems. It offers users the ability to securely access and use a variety of

distributed resources without the need for multiple usernames/passwords or authen-

tication challenges/responses. In the Grid computing world, this is typically obtained

using the trust of the certification authority that issued the certificate and local policy on

whether that individual with that certificate is allowed access. In many Grid computing

environments, this can be achieved by mapping of the distinguished name associated

with the certificate to a local system account. Grid Computing has many overlaps with

Edge and Fog computing environments. Hence, different mechanisms such as SSO,

which is not currently available for Edge, Fog, and Cloud computing environments, can

be implemented in these novel large-scale distributed systems.
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8.2.11 Software Systems for Resource Management

Resource management software systems help the smooth execution of IoT applications

in a real-world environment. We have developed the FogBus2 framework as a dis-

tributed and container-based software system for resource management in large-scale

distributed systems. Currently, the communication module of FogBus2 works based

on TCP sockets. However, other messaging platforms and libraries such as Apache

Kafka, ZeroMQ, and RabbitMQ can be integrated with the communication module of

this framework to support diverse communication methods for different IoT applica-

tions. Besides, FogBus2 can be further extended to act as a broker for other commer-

cial technologies and services for linking IoT and computing resources, such as AWS

Lambda functions (as a serverless service) and Amazon IoT Greengrass ( which enables

local execution of AWS Lambda functions, Docker containers, native OS processes, or

custom runtimes), just to mention a few.

8.3 Final Remarks

The Fog computing paradigm has become the backbone of today’s digital world, en-

abling IoT-driven solutions to be deployed for different use cases such as healthcare,

transportation, science, and entertainment, just to mention a few. To fully utilize the

potential of Fog computing, efficient and dynamic scheduling of IoT applications is a

major concern, affecting the execution cost of IoT applications, users’ QoE, and opera-

tional costs. In this thesis, we investigated how to efficiently schedule networking and

computing resources for the smooth execution of heterogeneous IoT applications over

resource-constrained distributed FSs and resourceful CSs. The algorithms, mathemati-

cal models, and system architectures proposed in this thesis optimize the execution time

of IoT applications, the service start time of IoT applications, the energy consumption

of IoT devices, the overhead of scheduling techniques, and enhance users’ QoE of users.

Research on scheduling IoT applications, such as presented in this thesis, will enable

Edge and Fog service providers to successfully and efficiently perform scheduling in

highly heterogeneous, dynamic, and complex Edge and Fog computing environments
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at scale. Moreover, these research outcomes can further advance innovations and devel-

opments of IoT, Edge, and Fog computing systems.
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