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Abstract

B IG data processing environments demand a considerable amounts of cloud re-

sources. With the variety of cloud resources and volatility of Big-data application

workloads, it is difficult to decide when and how to scale up and down to satisfy user

QoS requirements of budget and deadline. Therefore, in this project we propose a re-

source provisioning and scheduling approaches (which utilizes optimization algorithms)

that can supply sufficient resources to meet the users QoS requirements.
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Chapter 1

Introduction

Nowadays, every single minute a huge amount of data is created from different sources,

such as: scientific applications and sensors, GPS, social networks. For example, approx-

imately 600 million times per second, particles collide within the Large Hadron Collider

(LHC). Each collision generates particles that often decay in complex ways into even

more particles. Electronic circuits record the passage of each particle through a detector

as a series of electronic signals, and send the data to the CERN Data Centre (DC) for dig-

ital reconstruction. The digitized summary is recorded as a ”collision event”. Physicists

must sift through the 15 petabytes or so of data produced annually to determine if the

collisions have thrown up any interesting physics. The Data Centre processes about one

petabyte of data every day - the equivalent of around 210,000 DVDs. The centre hosts

10,000 servers with 90,000 processor cores. Some 6000 changes in the database are per-

formed every second. The Grid runs more than one million jobs per day. At peak rates,

10 gigabytes of data may be transferred from its servers every second[5].

Another example of this impressive data growth rate are social networks. where ev-

ery minute Twitter users send over 100.000 tweets, Facebook users share 684,478 pieces

of content, YouTube users upload 48 hours of new videos, and so on.

Big data not only focuses on large data (volume), but also on properties like variety

and velocity. Big data is coming from a greater variety of sources in structured, semi

structured or unstructured formats. In addition, big data can be defined in terms the

frequency of data generation. A good example is the stream of data coming off sensors

or social networks. [9][20].

Stream Processing System emerge as a solution[13][10] to enable real-time processing
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2 Introduction

of continuous data streams. The idea is to process all incoming data and transfer it to the

main memory. This is impossible with traditional batch processing because it requires

the data to be stored first. It starts capturing the data, storing it and finally processing it

to retrieve the results[25].

When we are dealing with the Big data processing applications, users (specifically for

time-critical applications) require to have the processing results by a deadline. However,

the velocity of data varies and that can significantly affects the processing time. One

possible solution is procure resource for data bursts and maximum demand which re-

quire considerable capital investment on infrastructure. This solution is not feasible for

SMEs and even for larger organizations comes with high cost of electricity and resource

wastage. Alternatively it is possible to utilize Cloud services and add more resources on-

demand via internet to satisfy deadline requirements. Cloud services include but limited

to computing, storage, network, and software services[21][16]. The cloud adoption is not

enough to solve the problem thoroughly. The reason is that, in addition to the deadline

requirement, users also have budget constraint and their objective is to minimize the cost.

Therefore, it is difficult to decide when and how to scale up and down to satisfy user QoS

requirements of budget and deadline together. We Investigate the aforementioned issue

in the thesis.

1.1 Contributions

As we mentioned earlier process all information available in real time comes at a cost

incurred by cloud providers. In majority of SMEs a common aim is to adopt the cut-

ting edge technology to accomplish objectives of the company more efficiently and at the

minimum cost and big data processing with Cloud is not an exception. Therefore the

main contribution of this thesis is proposing a resource provisioning and scheduling ap-

proaches (which utilizes optimization algorithms) that can supply just enough resources

for real-time processing of big data and also meet the users QoS requirements.
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1.2 Methodology

To demonstrate the effective of our optimization algorithm a real testbed has been devel-

oped with the following component.

• Twitter data collector: We are using Twitter data as stream data which is accessible

through APIs provided by Twitter via Twitter4j library. The library used to capture

data in JSON format for a period of 3 weeks and stored in a NO-SQL database for

experiment.

• Real-Time Twitter data analyzer: Although there are few tools available for stream

processing such as Apache S4 and Splunlk we decided to use Twitter Storm. The

reason is that it is open source, fast, and fault-tolerant. In addition it has been ben-

efited from a comprehensive documentation and an extensive community support.

• Auto-scaling Optimizer: This component first predict data growth rate first. It

then based on the trade-off between cost and performance of cloud resources pro-

vides just enough resources which satisfies users deadline and minimizes the cost

of processing.

The plan is to compare our auto-scaling policy with the one offered by Amazon EC2

which only uses virtual machine utilization for making scaling up and down decision.

The objective is to test whether we can decrease the cost while we are adhering to the

deadline constraint.

In this work we focus on static storage support for data streaming. The paper starts

with an introduction to the terms we will use during this whole document. Next, we

present the design of the scenario for the experiment and its architecture, tools and soft-

ware. Then the results obtained during the experiment are presented. Finally, the con-

clusions and future work related to this research are discussed.





Chapter 2

Literature Review

Evolution of computing started in the early 1950’s when mainframes appeared in uni-

versities and corporations to supply the processing capabilities using terminals, which

did not have internal processing capabilities to perform tasks. Later, in the 1990’s, com-

puting became popular with the evolution of point-to-point data circuits called Virtual

Private Networks (VPN). At this point it was defined exactly what provider and users

are responsible for and that was the beginning of cloud computing.

Cloud computing is a new computing model, where an application runs , at the same

time, on interconnected computers. Those computers would be Physical or Virtual Ma-

chines (VM). Both applications and computers would be shared by many applications

of different organizations as a service in either private or public mode. Their consump-

tion defines one of the main characteristics of cloud computing, the on-demand model.

For these reasons, it is possible to classify different kinds of services in cloud computing:

Infrastructure as a service, Platform as a service and Software as a service.

In the age of Big Data it is important to understand how invaluable it is to manipulate

this data in order to use that information to for example, predicting building fires, antici-

pating the best moment to buy a plane ticket, seeing inflation in real time and monitoring

social media in order to identify tendencies or needs in order to provide accurately either

products or services to customers.

Every second it is generated a high volume of data that has to be analyzed. Processing

that amount of data involves a high consumption of computing resources to get results

as faster as possible without exceeding budget. This is where cloud computing can help

to provide powerful computing services on-demand.

5



6 Literature Review

This chapter provides an overview of all the terms this work involve for a better un-

derstanding of their definition, characteristics, taxonomy and their practical application

.

2.1 Cloud Computing

Cloud Computing is an on-demand model where all computer resources are config-

ured into a shared pool and available when it is necessary with minimal or no effort

at all. Those resources include servers, storage space, network, applications and ser-

vices[21][16].

Also, it is possible to define cloud computing as a type of parallel and distributed

system where a set of interconnected computers, either virtualized or not, are presented

as a unique resource, based on SLA, over the network [4].

Resources available can serve multiple customers using a multi-tenant model. In

other words, based on the usage rate that each customer has it is possible to provide more

or less resources, such as, storage, processing, bandwidth, in order to, perform tasks on

time.

Cloud Computing delivers services over the internet starting from infrastructure pass-

ing by platforms until applications or services solve tasks. These three kinds of services

are called: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as

a Service (SaaS) [21][15].

All those services would be deployed in several environments: a private cloud. It

means infrastructure is managed by a single company. It could be the company itself

or a third party organization. A Community cloud is shared by some companies with

security policies to guarantee the safety of the information. A Public cloud is provided

and managed by a specialized company that provides these services not just to a single

organization. Finally, with a hybrid cloud, the cloud components consists of two or more

different environments each contributed by different organization. [14]

In the following sections are described in detail all those characteristics and services.
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2.1.1 Services

In Cloud Computing it is possible to identify three different kinds of services based on

the computing resources they provide. They would be network infrastructure, servers

and clustering platforms or applications.

Those services use pay-as-you-go (PAYG) as a business system. It means they can be

rented from the cloud provider, and be accessed over the Internet, in order to create or

use applications. It is similar to paying for the consumption of services such as electricity

or gas.

For cloud service management, providers offer a friendly graphical interface (Using

Web 2.0) to have complete control of computing resources. However, they also provide a

customer service which would be by phone, email or chat. The three services are shown

in Figure 2.1 and described in the next subsections.

SaaS

Gmail

Salesforce

Social network
Apps

PaaS

Operating System

DBMS

APaaS

Organizations

People

User

IaaS

Network

Servers

Virtual 
Machines

Figure 2.1: Services provided in Cloud Computing. Customers rent those computing
resources and manage those resources by themselves using applications provided



8 Literature Review

Infrastructure as a service (IaaS)

Infrastructure as a Service refers to the computer resources such as storage, servers, vir-

tual server space, network connections, bandwidth, IP addresses and load balancers.

Physically, it is the pool of hardware resource of servers and networks usually distributed

across numerous data centers in different locations. This infrastructure scales on-demand;

it is an advantage for large organizations with workloads that fluctuate rapidly. Even

though all those sources are available to be rented, it is possible to use current compa-

nies’ infrastructure (private clouds) together with the purpose of shared responsibility in

cloud management and also to save money.

There are many companies providing these services, such as: Amazon Elastic Com-

pute Cloud (EC2) [1] 1, Google Cloud Storage 2, Microsoft Azure 3. Although it is possible

for any organization to contract these services, SME (Small and Medium Business) and

start-ups highly take advantage of the benefits because they do not need to invest in their

own infrastructure; saving money, space and people working to keep that infrastructure

operational.

Platform as a service (PaaS)

Platform as a Service represents a middleware, and is called also Application Run-time

Environment (ARE), that allows user to build, deploy, test and run applications with-

out the challenge of maintaining the hardware and software infrastructures. In other

words, it is a faster and more effective model for application development and delivery.

It includes operating systems, DBMS, Server software, application platforms, integration

and business process management which have to fulfil the typical requirements such as

scalability, reliability and security [2].

As a platform it is available online from everywhere as well as all data being safe

due to security policies, backup and recovery services. Moreover, it is possible to have

developers working together spread across various locations.

1https://aws.amazon.com/ec2/
2https://cloud.google.com/products/cloud-storage/
3http://azure.microsoft.com
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Although all those services are provided in PaaS, Application platform as a service

(aPaaS) stands out because it offers development and deployment environments for ap-

plication services together. This helps supplying frameworks to implement scalable ap-

plications. Some examples are: Aneka [11] 4, Hadoop 5, Salesforce 6, Google App Engine
7. Another aPaaS feature is a rich set of API’s to develop extensions also called add-ons

for the software company’s core application in order to include more functionality.

Software as a service (SaaS)

Customers make use of any software hosted by a service provider and at the end cus-

tomers only pay for the time using that particular software. There are plenty of examples

of this kind, namely: Google, Facebook, Twitter, Dropbox, among others. SaaS has many

characteristics and benefits that are described as follows.

• Those applications are accessed over the Internet from any device such as PCs,

mobile phones, tablets. For these reasons no additional hardware is required.

• It does not need an initial setup payment because applications are ready to down-

load / access to use.

• Every application is rented instead of purchased. It means that you only pay for

the time you use it. This is usually on monthly payment basis and also depends on

the number of users.

• Applications are updated automatically. Users do not have to do anything if their

devices to access latest versions of any application.

2.1.2 Cloud Computing Environments

As mentioned in Section 2.1.1 there are many companies that provides IaaS and PaaS

services. For this project, following cloud environment is used:

4http://www.manjrasoft.com/products.html
5http://hadoop.apache.org/
6http://www.salesforce.com/au/platform/overview/
7https://developers.google.com/appengine/



10 Literature Review

Amazon EC2

Amazon provides IaaS and PaaS services. The name of the product is Amazon Elastic

Compute Cloud (Amazon EC2), which is a web service that provides resizeable compute

capacity in the cloud. It is designed to make web-scale computing easier for developers

[1].

Using web service interfaces, it is possible to launch instances (Virtual Machines) with

a variety of operating systems, load them with custom application environment, manage

network access permissions, and run images using as many or few systems as desire.

Those VM Templates, are called also Amazon Machine Image (AMI). Security settings

are available to control access to any instance as well.

Instances would run in multiple locations. Those locations are organized in regions

and availability zones. You can deploy your applications in any location you want in

order to avoid failures of single location.

Cloud watch is the service that provides monitoring for Amazon resources. It shows

usage, operational performance and overall demand patterns of AWS resources and ap-

plications.

Distribute incoming request among the cloud (EC2 load balancing). It decrease sig-

nificantly the chance of fault because it detects if an instance is either busy or not healthy

and redirect all the traffic to another instance.

Huge workloads require many cloud resources to accomplish objectives. High perfor-

mance computing (HPS) clusters present in Amazon EC2 allows, benefiting of elasticity,

flexibility and cost characteristics, to handle big amount of transactions at the same time

taking advantage of Cluster Compute, Cluster GPU, and High Memory Cluster instances

which are designed to increase throughput.

2.2 Big Data

These days, growth of data and data variety produce an effect that makes impossible to

process and analyze information with traditional tools and procedures. It represents a

real challenge to be addressed.This phenomenon is known as ”Big Data”.[9]
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Integrated circuits are becoming cheaper. It helps to add intelligence to almost every-

thing. Every day any kinds of devices are more and more interconnected. For example:

cars, rails, health sensors, mobile phones. All those devices store information related

with their functions. This is the main reason of increase in data volume. Even though it

is possible to store anything companies want, For example, GPS, weather sensor, even

social network and so on. It is challenging to access all information in real-time, due to

variety of semi structured and unstructured format. In addition, from business perspec-

tive, time it takes to analyse the data streams with different velocity is also important [20].

It means that no matter what process the information has to go through, results should

be immediately available for people.[25]

2.2.1 Characteristics

Big Data consists in three characteristics (Figure 2.2): Volume which refers to the amount

of data. Variety of data formats such as structured and unstructured. Finally, Velocity at

which data is processed . More details are shown in following sections.

Terabyte
Yottabyte

Structured
Unstructured

Streaming Data
Batch

Volume

Variety

Velocity

Big Data

Figure 2.2: Big Data. The Three Vs

Volume of Data

Today we store all kind of data: environmental, financial data, medical, surveillance,

and the list goes on and on. This data comes from any kind of devices: Computers,
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sensors, mobile phones, tablets, etc. It generates a big amount of data every minute.

Such increment make us that we passed from terabyte to petabytes. However, soon we

will need more prefixes to represent the amount of data we will use.

For this reason, International System of Units (SI), organization that defines prefixes

names and prefix symbols of the decimal multiples and submultiples of SI units [18],

until 1990 the larger number represented was in the order of Exabytes. However, with

resolution 4 of the CGPM (1991) [17] were introduced prefixes for values up to 1024 as it

is shown in Table 2.1.

Factor Name Symbol
103 Kilobyte KB
106 Megabyte MB
109 Gigabyte GB
1012 Terabyte TB
1015 Petabyte PB
1018 Exabyte EB
1021 Zettabyte ZB
1024 Yottabyte YB

Table 2.1: Orders of magnitude of data

Variety

As information comes from different sources. Each one saved it in different formats. It

includes not only traditional relational data, but also raw, semi structured, and unstruc-

tured data from web pages, web log files (including click-stream data), search indexes,

social media forums, e-mail, documents, sensor data from active and passive systems.

In fact, majority of data is unstructured or semi structured. That is why is really

important for organizations to take advantage of the information being able to analyze

both structured and unstructured data.

Velocity

It refers to the speed rate of data arriving, flowing, being saved and its associated rates

of retrieval. Organizations must be able to handle variety (Section 2.2.1) and volume
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(Section 2.2.1) of data as closer to real time as possible, in order to find insights in this

data while it is still in motion, not just when it is stored.

There are two approaches that should have to be consider in this point: Batch Process-

ing, which consists in take incoming data and save it before start processing it. Stream

Data Processing, where incoming data is processed at the time it arrives, before it will be

save. More details of this approaches are shown in Section 2.3.

2.2.2 Importance of Big Data

Big Data solutions importance lies on the following aspects: To analyze different type

of Data from a wide variety of devices (Section 2.2.1). Also, this analysis is perfect for

iterative and exploratory when business measures on data are not predetermined.

Another scenario for applying Big Data solutions is when it is required to analyze

all, or most, the data available instead of sampling the data. In the same way, there are

scenarios where taking a sample of the data is possible to get valuable results.

To conclude it is possible to say that any analysis, investigation, study or calculation

that cannot be fitted in a relational database approach, it is possible to be handle with Big

Data approach.

2.3 Big Data Processing

In the age of Big Data it is important to understand how invaluable it is to manipulate

this data in order to use that information to, for example, predict building fires, anticipate

the best moment to buy a plane ticket, see inflation in real time and monitor social media

in order to identify tendencies or needs in order to accurately provide either products or

services to customers.

Every second high volume of data are generated that has to be analyzed. Processing

that amount of data involves a high consumption of computing resources to get results

in real-time without exceeding budgets.

The structure of a system that performs big data processing on the cloud should have

subsystems for decision making, analysis and data aggregation and storage with the ca-
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pacity of managing, provisioning and scheduling many servers to control massive event

streams.

decision making means that it should be able to handle a bunch of events per second

and make an immediate judgment without crashing when an unexpected variation of

requests appear. For such analysis, it is required to have as many servers as necessary

to process all data to do all statistical calculations in real time. Finally, all generated data

has to be saved in a flexible infrastructure which allows for expanding of its capacity

according to the amount of data that has to be saved. Distributed Data Store is a technique

that could be used to handle a big amount of write and read requests. An example of this

technique is distributed Key Value Store (KVS). It is a data structure which contains keys

and its respective values; both stored in some servers in a distributed way. As all data

are not stored in a unique server it helps to ensure a high performance even if there are

many requests at the same time [9].

2.3.1 Batch Processing

Batch processing is a store-and-process model, where data are collected, entered, processed

and then the batch results are produced. There are two kinds of this model. First, when

results are produced by a scheduled task it is called traditional batch processing. On the

other hand, there is the Service-Oriented Architecture or simply SOA Batch processing. In

this model tasks are performed when a user requires the results of an specific batch. It is

widely used in relational data. Both models are shown in Figure 2.3 over.

Batching processing is used in environments where it is required to process all the

data at a time [13]. However, processing all information at a time presents disadvantages.

First, it has turnaround time. This means the time taken between submitting the job and

getting the output, which includes the information, related to the jobs are included in the

job. For this reason it is a highly time consuming model when there exists huge amount

of data.

Also, it is a time-varying process, as was described before. All processes would pro-

duce a nonlinear behavior and that is what produces uncertainty about the execution

time.
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For these reasons batch processing is commonly used in scenarios where there is a

large amount of data processed and saved. Also, when a real time response is not re-

quired.

Traditional Batch Processing

SOA Batch Processing

Step 1 Step 2

Batch Process

Step 1 Step 2

Batch Process

S
ervices

Figure 2.3: Batch Processing. Two kinds: Traditional (scheduled task) and SOA (Perform
task under request)

Hadoop

The Apache Hadoop 8 software library is a framework that allows distributed processing

of large data sets across clusters of computers using simple programming models. It is

designed to scale up from single servers to thousands of machines, each offering compu-

tation and storage. Also, it includes error detection and handling. It consists of two main

components described as follows.

First, a Hadoop Distributed File System (HDFS). It is the storage component. It provides

high throughput access to application data and it works better for large data sets. To do

so, it handles large block sizes and data location reducing transfer speeds on networks.

8http://hadoop.apache.org/
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Also, it is fault tolerant and applies data replication in order to have scalability and avail-

ability.

The other component refers to a framework called MapReduce [6] which allows par-

allel execution of data processing tasks. It takes a dataset and divides it in some smaller

pieces to be processed over multiple nodes. Some characteristics are scalability in which

it is possible to add worker nodes across the cluster, high throughput to run on many

nodes at low cost, fault-tolerant to handle situations where any nodes crash it has proce-

dures for recovery of information that is why is is used in many DBMS.

Finally, there are two kind of nodes present in Hadoop. Master node is the one in

charge of data division, work distribution and results collection. And, Worker nodes are

the ones executing process and sending results to the master node. Both working passing

messages to know the status of each node as well as process completion to guarantee

cluster integrity.

2.3.2 Stream Processing

Data stream processing is one of the ways to support real-time response processing of

big data, present in systems such as financial data analysis and sensor networks. Even

though it helps managing big amounts of information, it requires an optimization at the

moment of using cloud resources. Dynamic management of cloud resources helps us

to reach objectives in terms of time and budget, using required resources to insure low

latency and using them just in the time needed. This helps to reduce the cost of operation

of the task being executed [8].

It consists of a continual input, process and output of data. This is useful when data

has to be processed in a small stipulated time. For example, to analyze incoming informa-

tion to detect attacks such as DoS(Denial-of-Service), synchronous concurrent algorithms

also data flow, reactive, signal processing [23]. Figure 2.4 shows how real time processing

works.
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Figure 2.4: Stream Processing. Information is processed before it is saved on database

Storm

Storm is a distributed real-time computation system. It provides a set of general prim-

itives for doing realtime computation. Storm is simple and can be used with any pro-

gramming language [12].

It is very similar to Hadoop and has the same functionality but for batch processing

(Previous section).

Components

The main component is the Topology; it is a process that runs forever or at least until the

process is killed. This main process consists of many worker processes spread across the

cluster [12].

Storm uses two kinds of nodes: Master nodes which execute a daemon called Nim-

bus. A Master node is in charge of code distribution around the cluster; also, monitor-

ing any problem during execution and, finally it assigns tasks to Worker nodes. Those

worker nodes listen for work assigned from the Nimbus node. Also, the Worker node

is responsible for starting and stopping worker processes to execute a part of a topology

depending on a Nimbus request. In worker nodes runs a daemon called Supervisor.

To work together Master and Workers nodes run on Zookepper 9 [7], which makes

9http://zookeeper.apache.org/
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the coordination of all the work across the cluster. Zookepper is a centralized service for

maintaining configuration information, naming, providing distributed synchronization,

and providing group services. All of these kinds of services are used in some form or

another by distributed applications.

Figure 2.5 shows all components described before.

Nimbus

ZooKeeper ZooKeeper ZooKeeper

Workers

Cluster

Master

Supervisor Supervisor Supervisor Supervisor Supervisor

Figure 2.5: Storm Components. Master Node (Nimbus) send request of execution of task
to Worker nodes (Supervisor) through Zookeeper cluster

Streams

Stream is the main abstraction in Storm. It is a set of unbounded tuples and allows to

transform a set of those tuples or some of them into a new stream. To do so, it implements

two basic primitives: spouts, which are a source of streams; for example, a queue of tweets

to be sent as a new stream. Also, bolts are implemented that consume any amount of

streams and do some processing and can emit other streams or not.

A topology can group spouts and bolts. It is a high-level abstraction to be sent to the

cluster. In a topology every node is a spout or bolt. Also, all nodes run in parallel
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2.4 Big Data processing Systems

There are many systems for big data processing. Among them we can mention:

ElasticStream is a system that uses cloud environment and dynamically adjust the

number of nodes in the cloud, either private or public. For this purpose, it uses a pre-

diction algorithm called Sequentially Discounting AutoRegression (SDAR) and it is used

to predict load for every period of time called TimeSlot. Which can be from few minutes

to few hours. ElasticStream receives incoming data stream, then splitting the data up for

multiple computational nodes, and finally processing them in parallel. Although Elastic-

Stream optimizes latency, it [8] does not consider a deadline constraint to complete task

execution.

Fujitsu Laboratories has developed a distributed data store and parallelization of

complex event processing (CEP). CEP refers to technology that processes and analyzes

real time complicated and large amount of data. They have developed a fast allocation

resource system, that add or remove resources without interruption in service. Also, it

benefits from a language and programming model that process big data. It is an efficient

system that focused in geological and seismology system [24].

ESC (pronounced Escape) is a distributed stream processing platform for data mining

in real-time. It defines a simple programming model in which programs are specified by

directed acyclic graphs (DAGs). In addition, it is distributed and fault tolerant which is

hidden to users. The engine dynamically adapts to different workloads. Furthermore,

in the cloud, ESC is able to add and remove machines to adjust according to the current

requirements. Finally it is focus on latency and it does not take consideration of deadline

constraint [22].

Although all those systems support big data processing in cloud; they do not consider

customer constraints of deadline or budget. The aforementioned systems focused on

latency. It means that they aim at improving throughput by adding instances with the

purpose of finishing the task as faster as possible. In our architecture along with latency,

we try to minimize the cost of execution by choosing the best combinations of resources

in the cloud at the right moment.





Chapter 3

Big Data Processing Architecture

The main objective of the architecture presented in this chapter is using least number of

cloud resources as possible to process real-time data before deadline approaches. Figure

3.1 shows a representation of this architecture and next sections will explain in detail

every component of it.

Prediction

Profiling

IaaS Provider

D
eadline C

onstraint

Users Inputs Processing

Provisioning

Execution

Analytics

Resources

T I M E

Figure 3.1: Big Data Processing Architecture. Data streams are required to be processed
in cloud environment. Before that an estimation and assignment of resources are done in
order to reach uses satisfaction
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3.1 Big Data Processing System

For this project a data stream processing toolkit is required in order to accomplish ex-

pected goals of real-time processing. As was mentioned in Section 2.3.2, Storm is a

scalable, fault-tolerant distributed computing system. It provides a distributed stream

processing system, based on a architecture composed of bolts and spouts, that together

form a topology. What this system does for real-time processing, Hadoop does for batch

processing (Section 2.3.1).

3.2 Prediction Engine

As shown in the Architecture, our cloud resources provisioning consists in a time-series

forecasting engine which is predicting the rate of generated data (Bid-data velocity). The

prediction helps us to estimate how many cloud resources are required for the next time-

slot to process the data before the dead-line .

prediction is accomplished through Weka1 version 3.7.3, which has a dedicated time

series analysis environment that allows forecasting models to be developed, evaluated

and visualized.

Weka uses a machine learning / data mining approach to model time series by con-

verting the data into a form that standard propositional learning algorithms can process.

Weka accomplishes via replacing time-dependent feature with other fields that are au-

tomatically calculated and added. Once the data has been transformed, any of Weka’s

regression algorithms can be applied to learn a model. It is possible to apply multiple

linear regressions, powerful non-linear methods such as support vector machines for re-

gression and model trees or any method capable of predicting a continuous target.

Figure 3.2 shows the workload fluctuation in collected days. Also, it is possible to

identify the highest peak of 1000 tweets; that information is useful at the moment that we

will be looking for the most suitable resource.

In Figure 3.3, forecasting number of tweets for the last thirteen hours represented with

blue line. On the other hand, the red line represents the real workload for the same period

1http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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Figure 3.2: Data collection flow behavior

of time. According to that information it is possible to say that our prediction component

works accurately; obtaining closer results in order to accomplish our objectives.

3.3 Profiling

Profiling is the process which helps us to identify the most suitable resource according

our requirements. Key points are the performance and time execution of tasks in different

instances. In this step, it is important to collect sample information regarding processing

time of different number of tweets on different number of instances. This information is

later used to train our machine learning engine which is used for resource selection.

Once, we have accurate predictions about workload; it is time to determine the re-

sources we will need to process those predicted workloads. First, it is important to know

the features of existing instances in Amazon EC2. Table 3.1 contains some information

about each instance.

Sets of different data streams were generated each one with different amounts of data

with the purpose of obtaining processing times in Amazon EC2 instances. Those data

streams were defined in sets of 200 to 1000 tweets. For Small instances it takes about

60 seconds to process a peak of tweets. For Medium instances it takes about 40 seconds.

Finally, for Large instances it would be 14 seconds. As we can see, it exists a big difference
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Figure 3.3: Workload prediction. Blue line represents forecasted workload and red line
represents the real workload.

Instance vCPU Memory Storage Networking Processor Clock
(GiB) (GB) Performance Speed

Small 1 1.7 1 x 160 Low Intel Xeon Family -
Medium 1 3.75 1x4 SSD Moderate Intel Xeon E5-2670 2.6
Large 2 7.5 1x32 SSD Moderate Intel Xeon E5-2670 2.6

Table 3.1: Amazon EC2 Instances characteristics 2

in processing times. Those execution times of those different sizes of data streams are

shown in Figures 3.4, 3.5 and 3.6.

3.4 Resource Selection

3.4.1 Training Sets and Query

As mentioned earlier the information collected in the profiling step is used to build neces-

sary training set. In this section we describe this process in details. A training set consists

of an input vector and an answer vector, and is used together with a supervised learning
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Figure 3.4: Execution time in small instances

method to train a knowledge database.

Our training set consists in three main components:

1. Number of tweets which come from our prediction engine described before.

2. Execution time that represents the time required to complete data analysis.

3. Instance type which is a Cloud computing resource used to process the tweets.

3.4.2 Prediction Engine

If we collect enough data to build a proper training set, then we can use our prediction

engine to predict which instance type is required to finish the task for a give deadline and

give number of tweets. For this purpose we utilize a decision tree classifier called J48 in

WEKA.
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Figure 3.5: Execution time in medium instances

J48 is one of the most popular and powerful decision tree classifiers. J48 is an opti-

mized implementation of C4.5. C4.5 can produce both decision tree and rule-sets; and

construct a tree. C4.5 models are easy to understand as the rules that are derived from

the straightforward technique [19].

J48 first creates the tree based oh following criteria. Identify if every class belong to

the same class. Then, for each attribute it calculates information gain. Finally, look for

the better attribute to be splitted. Once, tree is ready it calculates the measure of disorder

of data, also called entropy. To complete the process it is important to pruning the tree,

which allows to discard subsets of data that are not well defined [3].
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Figure 3.6: Execution time in large instances

3.4.3 Resource Selection

Once we have constructed our training set we can make a query that identifies which

resource can process given number of tweets before deadline. In the next step when we

have a list of resources which have aforementioned capacity, resources that minimize the

cost are getting selected. In each time slot with the information provided by prediction

engine the provisioning component add or remove resources from the cloud to satisfy

user requirements with give constraints.





Chapter 4

Performance Evaluation

Tn order to realize how effective is the proposed architecture it is required to test it in

several scenarios; For this purpose and for our experiment, we have make an environ-

ment which we can use to reproduce the experiments. To achieve this as a first step, a

workload generator application that reproduce real data streams based on real collected

tweets.

4.1 Experiment Setup

We aim at comparing our strategy with a strategy which is statically provision resources

based on pick load. First, we define provisioning for peak. This approach takes identify the

time slot that has highest number of tweets and provision an instance that can handle it.

The instance then uses to process the whole workload until a new pick is detected. We

can identify the pick in Figure 3.3, which is of 1000 tweets.

On the other hand, we have our strategy which uses times series prediction for load

estimation and machine learning for resource selection. In other words, it will allocate

resources according to prediction in an hourly basis and dynamically.

To complete the experiment we need to define deadline constraint. In this scenario we

will use a deadline constraint of 10 seconds. This means that all data should be processed

up to 10 seconds regardless of its volume.

For our evaluation we have to include costs of each instance. Table 4.1 shows costs

obtained from Amazon web site.

Forecast period is of 13 hours. Which is the time we predicted using prediction engine

29
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Instance Cost per hour
Medium 0.098 AUD
Large 0.196 AUD
X-Large 0.293 AUD

Table 4.1: Cost per hour of Amazon EC2 instances 1

Strategy Cost (13 hours)
Peak 5.096 AUD
Proposed 1.862 AUD
Difference (Cost Saved) 3.234 AUD

Table 4.2: Results of experiment

described in Section 3.2.

4.2 Experiment Result

With all inputs defined in Section 4.1 the results we obtain are shown in Table 4.2

As we can see our proposed strategy processed the stream data spending 36.54% less

money (3.234 AUD) than provisioning for peak strategy in 13 hours. With those results

it is possible to estimate a the money saved in certain periods of time. For example, in

a day, it would be possible to save 5.97 AUD, in a week 41.79 AUD, in a month 177.87

AUD and yearly 2134.44 AUD. It represents a high profit for companies that wants to

accomplish its tasks spending a specific budget as well as by a defined deadline.

To conclude we can mention that the proposed architecture provides us of enough

tools to accomplish our tasks both on time and within budget. However, it is important

to notice that the correct implementation of prediction engines used in our architecture

is very important to guarantee those results.



Chapter 5

Conclusion

Big Data refers to information that cannot be processed and analyzed with traditional

process and tools effectively. With the new requirements of processing data from all

types of devices, stored in various formats, real-time, we require novel techniques which

we have discussed in this thesis.

At this point, stream processing emerged as a solution providing tools required to

perform tasks in real-time. Using those tools in a Cloud environment it is possible to

reach objectives of processing Big Data in real-time by scaling up and down and without

capital investment. This environment allows us to process any tasks we want just paying

the for the period which the resources have been utilized. However, we have to consider

that users require to minimize their cost as well. Here relies the importance of our project.

Our proposed architecture minimizes the cost by dynamically allocate resources which

are just enough to process the load we receive in the next time slot. To achieve this, it im-

plements a machine learning approaches in order to both forecast the load and find the

most suitable resources for our task at a specific point of time.

The effectiveness of our architecture was tested and compared with a provisioning

for peak approach which provides resources to complete tasks based on peak workload.

Based on experimental results we realize that our approach allows dynamic scale of re-

sources while processing latency remains within desired levels which keeps the cost min-

imum.
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