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ABSTRACT

As an important part of the new generation of information technology,
user-oriented cloud computing-related services offer many conveniences
to a wide range of users. The User-oriented microservices are typically
supported by distributed clusters of servers. The service users are highly
sensitive to server latency when using these services because server
processing latency is directly related to the QoS(quality of services) of
server cluster. The time delay within a microservice cluster is usually caused
by the competition for resources generated by the microservices within
the server cluster. To alleviate this problem, we propose a reinforcement
learning based algorithm that makes different decisions (including
horizontal scaling, vertical scaling, and brownout methods) to reallocate
resources within the machine under different server load scenarios. The aim
of the research project is to use this cluster load scheduling algorithm to
address the impact of chain latency of microservices present in cloud servers.

In general, we need to face the problem of how to find the maximum
critical chains and nodes of microservices and what scaling methods are
needed to solve the time delay of microservice nodes.

Keywords Cloud computing, Microservice, Machine learning, Kubernetes
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1 Introduction

As an important part of the new era of information technology, user-oriented cloud
computing-related services offer many conveniences to a wide range of users. Nowadays,
our lives are filled with user-oriented online services, such as the online shopping platform
Amazon1, the online chat platform Facebook2, the online search engine Google3, etc. These
large user-oriented platforms usually consist of several microservices, which are usually
supported by a distributed cluster of cloud servers and can be deployed in containers or
virtual machines.

Users are often highly sensitive to server chain latency when using these services (Gan
et al., 2019), as server chain latency, is directly related to the quality of service of the
server and thus affects the user experience. Chain latency within a microservice cluster is
caused by the microservices within the server cluster previously competing for each other’s
resources (Niu et al., 2018). The microservice scheduling algorithms for cloud server
clusters have become one of the most important metrics for measuring the load capacity of
cloud servers under highly variable workloads. A good microservice chain scheduling
algorithm can reduce the waste of server resources for cloud server providers, as well as
greatly improve the user experience of users, improve the stability of cloud servers, make
the resource allocation of microservices in cloud servers more reasonable (Dragoni et al.,
2017), and improve the robustness of microservices in the whole cloud server cluster.

The microservices are now typically deployed in virtual machines or containers in a
cloud server cluster. Compared to virtual machines, containers are faster to start and
the performance of the service is close to native, and a larger number of containers can
be deployed simultaneously on a single physical machine (Salah et al., 2017). These
advantages make container technology widely used in cloud computing and microservices.
The introduction of container technology has solved the problem of slow and long
interaction times caused by virtual machines, which affects the user experience (Barik
et al., 2016). At the same time, container technology has become the choice of many cloud
service providers because of its rapid deployment ability, scalability, and cross-platform
compatibility (Potdar et al., 2020).

1Amazon: A online shopping platforms with free shipping on millions of items. https://www.amazon.com/
2Facebook: Social Media. https://www.facebook.com/
3Google: Online search engine. https://www.google.com
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Kubernetes has become one of the most popular platforms for container-based microser-
vices (Bernstein, 2014), and the container orchestration technology provides is facilitation
to automate container management and scaling. It supports horizontal scaling based on
usage thresholds. Threshold-based container scheduling algorithms can perform scheduling
tasks pretty well in stable, less variable operating environments, but can only achieve the
sub-optimal solutions in more complex workload conditions, such as in large user-facing
online platforms, where the server load often rises or falls due to unexpected situations.
To address this pain point, many researchers have proposed several proven algorithms.
For example, Kubernetes default-based auto-scaling algorithms have been proposed, and
Autopilot from Google (Reiss et al., 2012) has proposed scheduling algorithms based on
threshold and historical load, based on the cluster trace record of the last few minutes.
However, most of these algorithms focus on a single type of resource, such as CPU,
memory, etc. In addition, many research groups propose algorithms that apply horizontal
scaling (Nguyen et al., 2020) and vertical scaling (Balla et al., 2020). There are also many
teams attempting to build on this by using a combination of horizontal and vertical scaling
for scheduling clusters (Rossi et al., 2019a) and received some great effects. Hyscal (Kwan
et al., 2019) is a hybrid scaling approach for microservices based on Kubernetes (Burns
et al., 2019). Apart from scaling CPU utilization, the HyScal algorithm also scales memory
resources.

To address the problem of high chain latency of microservices in cloud servers, this report
proposes an efficient scheduling algorithm based on reinforcement learning for online
adjustment in different cloud server load profiles, using methods including horizontal
scaling, vertical scaling, and brownout method to reallocate resources within the cluster.

Horizontal scaling adjusts resources by adding or removing replicates of microservices on
cloud servers within a cluster to improve resource usage and system availability. Usually
increasing the number of replicates for a server can effectively alleviate overload conditions
due to the pressure of transiently increasing server requests.

Vertical scaling adjusts the processing service capacity of the current cloud server by
regulating the amount of resource regulation such as CPU, memory, network resources, and
hard disk resources allocated to microservice instances. Cloud server clusters can achieve
dynamic scheduling and resource allocation by increasing the resources of a single cloud
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server or multiple cloud servers within the cluster.

The existing vertical and horizontal adjustment mechanisms can adjust the workload size
of the cloud server cluster to some extent, but both methods have a significant drawback
that it is difficult to cope with the high-dimensional, high-variability cloud server workload
change situation. Although based on the ability to give it some advance judgment, it is still
difficult to cope with many unexpected events caused by instantaneous changes in cloud
server workloads and other situations. To address the above drawbacks, this paper proposes
a cloud server cluster load scheduling strategy based on the Brownout method, which
dynamically turns on and off optional application components to alleviate the overload
situation and achieve the purpose of reducing the cloud server cluster load according to the
operation status of the system. The optional application components are usually some class
of formation that are distinct from the core components of the overall system, and shutting
them down in a short period does not affect the normal operation of the whole system.

Chain Latency-based Resources Provisioning for Cluster (CLRPC). CLRPC is a chain
latency-based microservice resource scheduling system consisting of machine learning and
reinforcement learning algorithms and scheduling policies, which covers a complete set of
architectures from simulating user behavior to performing scheduling on a cluster of cloud
servers. The three main contributions are summarized below:

• A cloud server load generation component based on Locust that simulates user
behavior.

• A decision tree based machine learning model for determining critical chains and
critical nodes for microservice chain latency.

• A reinforcement learning based cloud server scheduling algorithm for selecting the
optimal solution of a scheduling policy under different states.

• A number of comprehensive experiments to evaluate the effectiveness of our pro-
posed approach.

2 Background

Many of the existing mainstream microservice resource scheduling methods, while capable
of simple scheduling of microservices in resource-sufficient situations, have difficulty
handling resource contention in highly latency-sensitive cloud server clusters. According to
the resource allocation scheduling algorithm, there are often dozens of containers running on
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a single node at the same time in a cloud server cluster, which leads to resource contention
as the resources of these microservices are not allocated according to the pre-defined
resources. This scheduling algorithm is not applicable in the current cloud server cluster
architecture. According to the longest chain-based microservice scheduling algorithm, if
the critical node of a microservice is not on the longest chain, the resources are not correctly
allocated to the critical node, which results in microservice latency problems in the cloud
server not being resolved promptly.

2.1 Related Work

Resource allocation scheduling algorithm: The resource allocation scheduling algorithm
makes use of the pre-defined resource allocation to the microservice itself to make the
allocation. This can achieve better results when resources are sufficient. In this resource
allocation method, the competition for resources between microservices can be minimized
and the stability of the cloud server can be improved to a certain extent.

Pod level scheduling algorithm: The algorithm focuses on obtaining the resource
utilization of the dynamically changing containers and then ranking them in order and
allocating resources according to that order. This method of resource allocation, due to its
dynamic properties, allows for timely scheduling in response to changes in cloud server
workload. This algorithm is often used in edge computing because there is no need to do
much tuning, just to obtain the change in the number of containers/pods as a granularity
(Toka et al., 2021).

Autopilot scheduling algorithm: Autopilot scheduling algorithm is a container scheduling
algorithm based on Kubernetes (Rzadca et al., 2020b). This approach first requires
collecting historical data information about the servers and then choosing two feasible
methods to perform scheduling operations. One of them is a sliding window algorithm
based on historical data, and the other is a meta-algorithm based on ideas borrowed from
reinforcement learning, both of which aim to enable the scheduling of servers when the
predicted results of the algorithm exceed a threshold.

Longest chain-based microservice scheduling algorithm: The longest chain-based
microservice scheduling algorithm uses the chain relationship of microservices to allocate
resources. For microservices in a cluster, the longest chain or chains can be obtained by
analyzing their chain relationships, and resources are allocated based on this criterion. For
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all microservices on the microservice chains, the longest chain will be allocated resources
first, then in order from the longest chain to the shortest chain. This method of resource
allocation alleviates the competition for resources between microservices to a certain
extent and prioritizes more resources for longer chains to reduce the overall time delay of
microservices. The FIRM (Qiu et al., 2020a) uses this method and uses SVM(support vec-
tor machines) as their decision model, which receives great feedback from the scaled cluster.

2.2 Comparison with our approach

To overcome the above shortcomings, this project proposes a microservice scheduling
algorithm for cloud server clusters based on reinforcement learning and chain latency of
microservices, which uses the maximum latency chains in the microservice system to
determine the location of critical nodes.

Compared with the Resource allocation scheduling algorithm, benefiting from the
reinforcement learning model we use, the scheduling algorithm we use can make more
reasonable scheduling measures in response to high latitude and high variability load states.
Our algorithm also schedules the server when the load on the server is relatively stable,
ensuring that it does not consume/waste too many resources.

Compared with the Pod level scheduling algorithm, our approach is not to focus on all
Pods in a microservice system, but on those critical nodes on the critical path. In a highly
variable load state, it would be time-consuming and wasteful of computing resources
to monitor and schedule every microservice in real-time. Our approach cleverly solves
this problem by not only optimizing the speed of microservice selection but also by
preventing the high variability that causes too frequent scheduling from increasing the
server’s computational resource consumption.

Compared with the Autopilot scheduling algorithm, Autopilot’s approach is based on
historical data over a period, which is processed by a sliding window algorithm to get a
prediction for the next time slice, and a threshold-based scheduling mechanism is set. The
sliding window algorithm is difficult to cope with rapid changes in load conditions, as
the average of adjacent workload records may be stable but with a large variance. The
stable workload might not be detected by the threshold-based scheduling algorithm and
the corresponding scheduling policy will not be triggered. Our approach can avoid this
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situation, by using the Approximate Q-Learning which always makes similar decisions
in similar states (Kumar et al., 2019). This ensures that the decisions made in different
situations must be specific to that situation, e.g. the scheduling policy for an overloaded
server during training is similar to an overload situation in the real world.

Compared with the Longest chain-based microservice scheduling algorithm, the biggest
difference between the two is the approach to selecting critical chains and critical nodes.
Our approach is to select the chain with the highest latency by comparing the latency of
the microservices-based chain, whereas the Longest chain-based microservice scheduling
is to select the longest chain of all microservice chains, and if two of the same length
are encountered, to select the last traversed chain. Although the scheduling strategies of
these two algorithms are very similar, using both vertical and horizontal scaling, the actual
results can be slightly different. For example, when the total latency of the longest chain in
a microservice chain is relatively low, and the node with the highest latency is not on the
longest chain, the two policies may vary. Our approach would be based on the maximum
latency node on the maximum latency chain, i.e. the critical node, whereas the Longest
chain-based microservice scheduling would be based on the "critical node" on the longest
chain. Another feature is that our algorithm uses the Brownout method to schedule servers
under overload, in addition to vertical and horizontal scaling.

2.3 Critical Analysis

Kubernetes Burns et al. (2019) and Docker Swarm has become the dominant systems for
managing microservice. However, the scaling techniques in these systems are primarily
threshold-based or static policies. Kiss et al. Kiss et al. (2019) implemented a generic
microservice orchestration platform for heterogeneous cloud clusters, which can auto-scale
resources without binding to specific applications. Zhou et al. Zhou et al. (2018b) analyzed
and compared the interaction patterns of open-source microservice-based applications.
They found that the investigated open source applications are small-scale and provided
a medium-scale application called train ticket. Xu et al. Xu et al. (2021) proposed a
prototype system for managing co-located interactive and batch microservices based on the
brownout approach and workloads deferral to achieve an energy-efficient cloud data center.

In these prototype systems and tools, threshold-based heuristic algorithms are applied
popularly. However, heuristic algorithms can find a solution quickly, the performance needs
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Table 1: Comparison of related work

Approach
Scaling Techniques workload prediction Scheduling Policy

Vertical Horizontal Brownout Linear Non-Linear Heuristic Supervised Learning
Liu et al. Liu (2019)

p p p

Qiu et al. Qiu et al. (2020b)
p p p

Kannan et al. Kannan et al. (2019)
p p p

Yu et al. Yu et al. (2019)
p p p

Zhou et al. Zhou et al. (2018a)
p p p

Rzdaca et al. Rzadca et al. (2020a)
p p p p p

Kwan et al. Kwan et al. (2019)
p p p

Hou et al. Hou et al. (2020)
p p p

Zhang et al. Zhang et al. (2020)
p p p

Rossi et al. Rossi et al. (2019b)
p p p

Gias et al. Gias et al. (2019)
p p

Xu et al. Xu et al. (2021)
p p p p

CLRPC (Our Approach)
p p p p p

to manually tune various configurations, especially in an environment with high dynamics
Rossi et al. (2019b). Unlike these approaches, we utilize the RL-based approach with an
adaptive nature to learn and make good decisions via interactions with the environment.

This paper contributes to the growing body of research related to the microservice area.
The Table 1 compares the proposed approach (CLRPC) with related works based on the
scaling techniques, workload prediction techniques, and type of scheduling algorithms.
Given the contribution of the existing works, it is important to highlight the key difference
between our work and the prior ones. To the best of our knowledge, the proposed work is
the first to provide a multi-faceted scaling approach based on vertical scaling, horizontal
scaling, and brownout. Prior works only applied included one or two techniques. We also
utilize gradient recurrent units (GRU) Chung et al. (2014) for accurate workload prediction
and apply an RL-based algorithm for resource management to offer flexible adaption for a
highly dynamic environment.

3 System model

In this section, we introduce our system model, which contains the dataset we use, the
platform we use to test our algorithm, and the architecture of our system.
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3.1 Dataset

The dataset we use is the workload dataset cluster-trace-v2018 4 from Alibaba, 2018, which
contains workload data for a span of 8 days, generated from 4,034 homogeneous servers
Chen et al. (2018). Each of these servers has 96 CPU cores and their memory size is the
same. We selected machine_usage.csv from this dataset and analysed it to obtain a mapping
between CPUs and the number of requests to be sent by training a deep learning model.

3.2 Microservices platforms

Figure 1: Sock shop dependency model

In this report, the microservices platform we use is the Sock Shop 5, which simulates the
user-facing part of an e-commerce website selling socks. Sock Shop’s microservices are
designed to have minimal expected resource allocation, i.e. the quota for each microservice
is as small as possible when it is initialized. The dependency model of Sock Shop shows
in Fig.1. The Sock Shop is designed to help developers use it for demonstrating and
testing microservices and cloud-native technologies. DNS is used between microservices
to find other related connected microservices. A load balancer or service router can be
inserted throughout the microservices framework depending on our needs when testing
the scheduling of cloud servers. The version of Sock Shop used in this patent is the
official Kubernetes-based version, which includes a Jaeger-based microservice monitoring

4Alibaba Cluster Trace Program: https://github.com/alibaba/clusterdata/tree/v2018
5Sock Shop: A Microservices Demo Application. https://microservices-demo.github.io/
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component in addition to the basic microservice components.

In the Sock Shop system model, a database per service architecture is used to ensure
that each microservice is loosely coupled, thus ensuring that each service does not
need to wait when using the database because other microservices are occupying
it, and making it easier for developers to schedule it. Each microservice chain in
Sock Shop, such as carts-cartsdb, catalog-catalogdb, etc., is directly connected to
the front-end microservice. These corresponding microservice nodes will exist work-
load when users visit the home page or access the corresponding shopping cart interface, etc.

3.3 Architecture of the system

Figure 2: MAPE-K model of the system

9
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The Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K) of the system
model is shown in Fig. 2, consists of three sections: Workload Generator, Workload
Analyser and Cluster Scaler.

3.3.1 Workload Generator

In our model, the Workload Generator is made up of a series of components, including
workloads and processors, a Locust-based request generator and a database that stores
historical workloads. These components coordinate to extract the required workload
data and characteristics from the historical database, preprocess workload dataset,
simulate real user usage through the Load Generator and translate them into requests
to the server cluster.

The workload database contains the historical workloads from a running cloud server
cluster. The workloads are regularly collected by specific servers or built-in programs
and include information such as timestamps, machine numbers, CPU utilization, internal
occupancy sizes, etc.

In order to generate different workloads for different parts of the microservices in the server
cluster based on user behaviour more accurately, we used workload distribution (Zeng et al.,
2019). The workload distribution is shown in the Table 2 . In addition to simulating user
behaviour for the front-end, we also simulated user behaviour for different pages of the site.
For example, we simulated users browsing an item screen, placing items in their shopping
basket, viewing their shopping basket, etc. To better simulate the usage of multiple users,
we used dynamic user generating rule, i.e. the user IDs were always different for the same
time period, which simulated tests conducted in a highly concurrent environment.

3.3.2 Workload Analyser

The main role of the Workload Analyser is to allocate the requests sent from the cloud
servers and to analyze the chain of the microservices to find out the critical nodes and
critical chains, after which a cluster scheduler with a deep learning/reinforcement learning
(RL) model is deployed to send scheduling requests to the cloud server cluster.

Decision tree-based chain analyzer : For the critical nodes, our project is judged and
results are obtained using a decision tree-based classifier. Training on the dynamically

10



COMP90055 RESEARCH PROJECT

Table 2: The workload distribution of microservices
Microservices Workload Distribution

Front-end 45.5%
Order 22.7%
Carts 22.7%

Catalog 5.7%
Random item 3.4%

Total 100%

changing chain relationships results in a decision tree model that accurately determines
whether a node is critical or not. The decision tree has three decision outcomes: critical
node, not a critical node, and potential critical node. Each of the three outcomes includes at
least one critical node in each critical chain, while non-critical nodes and potential critical
nodes may not exist in critical chains.

We first need to analyze the current microservice chain relationships of the cluster. This
involves analyzing the connection status and the latency of all the nodes in the existing
microservice chains and sorting out all the different chains that make up the service.
Finally, these different chains are sorted by the maximum latency of the pods it contains.
Then the decision tree model is used as a classifier to determine whether these pods in the
selected chains are critical pods or not.

In the first step, we should get a set of critical chains, consisting of at least one chain, and a
set of non-critical chains consisting of at least zero chains. Then analysis will be based on
pods in these chains.

The decision tree model we use is based on a dataset of parameters for the current chain.
The dataset we use includes the current CPU utilization, memory usage, and latency of the
pods. We will train a binary classification model based on these parameters to classify pods
into critical pods and non-critical pods. For example, if there is a pod with relatively high
latency in the chain, and high CPU and memory usage, then this pod is more likely to be
judged as a critical pod.

11
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Neural network-based pod workload predictor: The Workload Predictor module is
responsible for estimating the expected load on the next scheduling window, which guides
scaling methods to decide the number of resources the current pod needs to use. This
module can be constituted by different predictive models such as Multivariate Time series
Forecaster Abadi et al. (2016). The Multivariate Time Series Forecaster accepts the
pre-processed information of workloads from the Request Handler and predicts the future
workload of pods based on suitable predictive models.

Our approach is to use a GRU-based neural network to analyze the various information
metrics of pods. In the case of pods belonging to the same microservice, i.e., multiple pods
usually generated by the microservice through extensions, we analyze these pods as a
single microservice.

In general, our deep learning model can analyze the historical data of the microservice,
including historical CPU usage, memory usage, network throughput, and hard disk
read/write, to determine the load of the microservice. We will discuss further in Section 4,
including how to classify the load state.

RL-based cluster scaler: With the microservice chain information and microservice
latency information, we can determine the critical chains and critical nodes in the entire
microservice. With the overload status of each node, we can further determine the status of
the microservices in the whole cluster.

The cluster scaler is the core component in this module which makes decisions on
scaling strategies based on the RL framework. Compared with static performance models
and heuristic-based approaches that suffer from model reconstructions and retraining
problems, the RL-based approach is well suited for learning resource scaling policies to
address dynamic system status Cao et al. (2020). The Resource Scaler receives the user
requests from Request Handler and information like predicted workloads from Workloads
Predictor in our system. Unlike existing solutions, the CLRPC jointly applies three scaling
techniques, including vertical scaling, horizontal scaling, and brownout. The techniques
can be used separately or jointly based on the system status and workload characteristics.
After executing the scaling techniques, the CLRPC scaler collects the performance metrics,
such as resource utilization and response time, and sends the data back to the users.

12
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In the RL-based Resource Scaler module, the supported techniques work in different
manners. The Vertical scaling is applied to the local machine with multiple resources,
e.g., CPU, memory, and network capacity. The vertical scaling is faster compared with
other techniques, it can be leveraged initially. The brownout technique is also applied to
the local machine, where the optional microservices can be dynamically deactivated to
relieve the overloaded situation that vertical scaling cannot handle alone. The Horizontal
scaling is applied at the node level by adding or removing additional nodes into the system.
Considering the costs of horizontal scaling, this technique can be applied when vertical
scaling and brownout cannot handle the workload level and keep the system in a normal
state.

If vertical scaling functions well and the system is working into the normal states again, the
other techniques are not required to be executed.

3.3.3 Cluster Scaler

The Cluster Scheduler works on a cluster of cloud servers and accepts scheduling
requests from the Workload Analyser to schedule microservices in the correspond-
ing cloud servers. There are three main types of scheduling: Vertical, Horizontal, and
Brownout. The implementation of these three scheduling policies will be described in more
detail in Section 4.

4 CLRPC: A Chain Latency-based Resources Provisioning for Cluster

In this section we present the model and implementation of the algorithms used in CLRPC.
It contains the transformation of the original dataset, deep learning based model analysis and
reinforcement learning based approaches, and an automatic scheduler based on thresholds.

4.1 Performance Profiling

To estimate the approximate resource usage corresponding to a different amount of
workloads with the Workload Analyzer module in Fig.2, we use a deep neural network
model to profile the performance of machines. To simulate the resource utilization in a
realistic environment, we use the data derived from Alibaba traces, including workload
traces of 4000 machines’ containing resource usage data for 8 days Chen et al. (2018). The
Fig. 3 shows the trace from the Alibaba dataset. We have divided them into per-day and
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Figure 3: Alibaba (a) per-day workload (b) per-minute workload fluctuations

per-minute workload fluctuations of machines so that we can see the fluctuations of CPU
usage more clearly over time. We can notice that both the datasets show high variance and
random features.

The detailed profiling procedures are as follows: we consider the scheduling interval as 5
minutes. Firstly, we apply a stress test by gradually increasing the number of requests over
5 minutes with 200 requests in each test case and sending these requests to the host. As the
number of requests increases, the host’s resource utilization also increases. Then we use the
nmon Mendoza (2008) performance monitoring toolkit to record the change of utilization
in the host as per the number of requests sent. In this way, a detailed mapping relationship
between resource utilization and the number of requests is obtained. Based on the profiled
data, we apply a Multi-Layer Perceptron (MLP) with three layers to establish a model to
represent the relationship efficiently. Finally, we can convert the host utilization into the
number of requests dispatching to our system for any utilization level with the trained model.

As shown in Fig. 4, we demonstrate the results between CPU utilization and the number of
requests based on the tested host. We can observe the CPU utilization change under the
different number of requests. The host consumes about 25% CPU utilization when it does
not handle any requests. This is due to the resource consumption by the operating system
and deployed applications. The CPU utilization increases gradually with the increased
number of requests. In this experiment, a host can accept at most 900 requests per seconds.
We can also obtain the relationship between other resource types and the number of
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requests. Based on our experiments for the Sock Shop application, the CPU is a dominant
resource type indicating that the deployed application is mainly compute-intensive.

Figure 4: CPU utilization and the corresponding number of requests based on tested host

4.2 Neural Network-based Workload Prediction

To address the prediction of resource usage levels in the Workload Predictor module in
Fig. 2, we realize a neural network-based workload prediction approach. To reduce the
state space of the RL model, we consider dividing the workloads into several levels (the
exact number of levels configured) representing different levels of pod resources utilization.
Moreover, this also helps to apply similar scaling techniques for pod workloads at the
same level. This helps to significantly reduce the state-action space in the RL-based
approach.Here, we use pods to describe the smallest unit that can be scheduled in
Kubernetes. But the difference is that we specify that each individual microservice is
measured separately as a pod, i.e., our scheduling algorithm is based on the microservice
hierarchy for analysis, based on the smallest unit that can be scheduled, pod, for scheduling.
We divide the pod workloads into five levels that can represent the degree of overloads, as
shown below:

Level 0: No loads are allocated to the pod, and the hosts can be switched into the low-power
mode or turned off, i.e., the resource utilization is 0.

Level 1: The pod is under light load, with low latency and low CPU and memory usage,
i.e., the resource utilization ranges from 0% to 25%.
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Level 2: The pod is at a medium load level, the delay is low, and the QoS is not significantly
affected, i.e., utilization is between 25% and 50%.

Level 3: The pod is potentially under heavy load, the CPU or memory usage is high,
and QoS may have affected; thus, the scaling techniques may be triggered if needed, i.e.,
utilization is between 50% to 75%.

Level 4: The pod is overloaded, the QoS will be significantly impacted, and the effective
scaling approaches should be performed, i.e., utilization is between 75% to 100%.

To accurately predict the pod load status in the next time interval, we apply the multivariate
time series forecasting (MTFS) method, which converts multivariate time series forecasting
into supervised learning. The MTFS algorithm can be applied to any time-related dataset,
and it is highly correlated to temporal aspects and contains all the data from the previous
time intervals. The MTFS makes each generated supervised learning sequence to have
sample labeled datasets in the algorithm.

The Algorithm 1 shows the pseudocode of the MTFS algorithm, which generates labeled
time series data for supervised learning. With the original time series dataset E, the
algorithm first generates an empty matrix S to store the supervised learning sequence (line
1). To convert the time series into a supervised learning sequence, the algorithm needs to
arrange the time series ordered by time and then store the data of the previous time slot
L(t� 1) and the current time slot C(t) into the corresponding places in the matrix (lines
2-11). After this, the predicted data F (t+ 1) are also included in the matrix (lines 12-13).
Then, the algorithm combines these data to form a new supervised learning data sequence,
where the data of the previous and the current time slots are labeled as a sample, and the
data of the next time slot is used as labels (lines 14-17). Finally, the empty data must be
detected and removed to improve prediction accuracy (lines 19-22).

After the labelled data is generated for supervised learning, to achieve the accurate
prediction for workloads, we apply the Gated Recurrent Unit (GRU) Chung et al. (2014)
derived from Recurrent Neural Network (RNN) Mikolov et al. (2011), which has been
validated to have better performance in time series related prediction than traditional RNNs.
Although RNN can use its memory to process a set of inputs sequentially, it is inefficient
to learn long-term memory dependencies due to gradient vanishing, while GRU can
overcome this limitation by merging the data processing elements (gates). The structure of
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Algorithm 1: CLRPC: pod level workload preprocessing
Input :Multivariate time series dataset E, time intervals T , k time-related variables, and a dataset F needs to be

forecast

Output :Supervised learning dataset S, each row of it has 2k + 3 data

1 Initialize an empty matrix S to record supervised time series data

2 for t from 1 to T do
3 Record data in current time interval: C(t) E(t)

4 if t = 1 then
5 Record NONE

6 else
7 Record data in last time interval: L(t� 1) E(t� 1)

8 end
9 if t = n� 1 then

10 Record NONE

11 else
12 Record data in next time interval: F (t+ 1) E(t+ 1)

13 end
14 Merge L(t� 1), C(t) and F (t+ 1) together into S(t):

15 S(t) {L(t� 1), C(t), F (t+ 1)}
16 L(t� 1), C(t) are marked as samples in supervised learning

17 F (t+ 1) are marked as labels in supervised learning

18 if S(t) contains NONE then
19 Remove S(t)

20 Update S

21 end

GRU is demonstrated in Fig. 5. The parameters in the GRU include the reset gate rt, the
update gate zt, the candidate hidden layer y0t and the output gate yt. The updates of these
parameters are shown as follows:

Figure 5: The structure of GRU
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Table 3: MSE of our workload prediction algorithm
Time (minutes) 100 200 300 400 500

MSE (10�3) 3.3 2.8 4.2 4.8 6.2

zt = � (Wz · [ht�1, xt]) , (1)

rt = � (Wr · [ht�1, xt]) , (2)

y0t = tanh (W · [rt ⇤ ht�1, xt]) , (3)

yt = (1� zt) ⇤ ht�1 + zt ⇤ y0t, (4)

where xt is the input data, ht is output data, Yt is predicted data after processed by the gates
in GRU, � is the sigmoid function and W are the parameters of neural network.

The Table 3 shows the mean square errors (MSE) of actual utilization and predicted
utilization for Alibaba workloads during different periods. The MSE has lower values
about 3⇥ 10�3 to 7⇥ 10�3, which demonstrates that our workload prediction algorithm
has a good performance in utilization prediction.

4.3 RL-based Resource Scaling

The RL-based approach solves sequential decision-making problems by modeling the
problem as Markov Decision Process Wang et al. (2021). At each time interval t, the
system is at a state st 2 S, and performs an action at 2 A based on policy ⇡✓, where ✓

are parameters configured in model. The state-space S is mapped with action space A.
In the following time intervals, the current system state can reach another state by taking
actions and obtaining reward rt 2 R, calculated via reward function r(st, at). The rewards
represent the benefits that can be achieved by transiting the state from st to st+1. When
transferring states, there is also a transition probability of presenting the possibility to take
different actions. The objective of RL is to maximize the expected cumulative reward by
optimizing policy. Q-learning Yin et al. (2008) is a typical type of RL to maximize the
value function Q⇡✓

(s, a). The value function estimates the expected cumulative reward of
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state s with action a under policy ⇡✓. Consider action at is selected at time interval t, and at
time interval t+ 1 with reward r(st, at), the value of Q function can be can be updated as:

Q(st, at) = Q(st, at) + ↵[r(st, at)] + �maxa0Q(st+1, a
0)�Q(st, at)] (5)

where ↵ 2 (0, 1] is the learning rate and � 2 [0, 1] is the discount factor. The Equation
defines a mapping table containing states with actions and their expected value. The
learning process happens in the form of S ⇤A� > R over time to achieve optimized results
via iterative trials. However, updating the Q Table can have the curse of dimension due to
the large solution space and size of the Q Table (S ⇤ A). Therefore, it is promising to train
the model offline with historical data. The network parameters can be trained offline to
minimize the loss function and reduce the training time significantly. Then the model can
be deployed in a system for online decisions and update the actions with rewards via online
training. In addition, as introduced in Section 4.2, we also use representative load levels to
reduce the state space.

Classical Q-Learning models often encounter problems such as too large Q-table and slow
Q-value parameter transfer due to too many input states for decision making. Moreover,
as the dimension of the input becomes larger, the state space of the model will grow
exponentially, which is not what we want for a good model. A good reinforcement learning
model must balance the training accuracy and pre-training speed.

To solve the above problem, we use Approximate Q-Learning. To reduce the size of the
incoming state space, we use the information of the current pod as parameters to pass into
the model, such as the current load state, e.g. level 1, and the current position of the pod in
the chain, the current latency of the microservice, etc. We limit the size of the state space
by reducing the incoming information We limit the size of the state space by narrowing
down the incoming information and ignoring some irrelevant parameters. In the model
input of our reinforcement learning, the state st 2 S represents the current microservice
chain that contains the information of each microservice. And action at 2 A consists of
three scheduling policies.

To illustrate our RL-based multi-faceted scaling framework (CLRPC), let us assume
that we have a set of physical machines P = (pm1, pm2, . . . , pmK) as infrastructure
to provision resources for microservices. Each pmk can be represented with a tuple
Uk = (u1

k, u
2
k, . . . , u

I
k), where ui

k represents resource utilization of type i with total I types
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on physical machine pmk. For each pmk, the actions can be performed on it are denoted
as aik = {hk, vik, bk}, where hk 2 [�n, n] presents the n 2 Z number of replicates in
horizontal scaling, vik 2 [�m,m] represents the amount of m 2 R resources via vertical
scaling for resource type i, and bk 2 {0, 1} represents the whether brownout is triggered
(bk = 1) or not (bk = 0). The positive values of hk and vik represent more resources are
added, negative values mean that resources are removed, and 0 represents no change will
be performed. Considering the total number of physical machines is K, the final set of
actions of as the Cartesian product of the sub-action sets as: A =

QK
k=1

QI
i=1 a

i
k.

The objective of our technique is to find the suitable configuration of resources by
dynamically adjusting the provisioned resources to adapt to changes in the environments,
e.g., the load fluctuations. However, the amount of scaled resources is limited by the
available resources on physical machine pmk and the minimum resources allocated to
microservices. To avoid unnecessary vertical scaling, we consider adding an action ag to
make decisions from the global view. Let us consider the scenario that when the system
with P = {pm1, pm2} is running at the normal states that vertical scaling is sufficient for
adjusting resources. However, when unpredictable workloads arrive, the physical machines
are overloaded. To handle such bursts, horizontal scaling must be performed on the system.
If both pm1 and pm2 are completed with vertical scaling, two more physical machines are
added. However, the system may only need one more physical machine to keep the system
at its normal state. Therefore, to optimize resource usage, the action ag is required to make
scaling decisions based on a global view.

CLRPC incorporates the offline training and online training approach together to achieve op-
timized actions. Once the load change is identified, CLRPC can select an action in response
to the QoS or performance degradation of deployed applications. Given st as the observed
state, a policy exploits the knowledge of previous decisions (offline). It evaluates the perfor-
mance of new selected actions (online), improving the mapping relationship between states
and actions. We apply the ✏-greedy policy, Kardani-Moghaddam et al. (2021) a standard
policy to balance offline and online training. In ✏-greedy policy, a random action with
probability equals ✏ is selected. Otherwise, it chooses the action with the maximum Q value.

The final objective of CLRPC is to improve the QoS of services and utilization of physical
machines. The reward is modeled based on this objective which composes of two parts.
For the QoS, we choose to use response time as the metric, representing the latency from
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submitting the request to completion. We model the reward of response time Rqos(rt)

based on the maximum acceptable response time with RTmax. As shown in Equation (6),
when the system is working at the normal status, the reward is 1. However, when the
system performance violates the RTmax, the reward converges to 0, punishing the actions
that lead to overloaded situations.

Rqos(rt) =

8
<

:
e�( rt�RTmax

RTmax
)2 , rt > RTmax

1 , rt  RTmax

(6)

As for the reward of resource utilization, we model it as shown in Equation (7). Here, Umax
k

defines the maximum utilization threshold of pmk, which is also the highest utilization of
all resource types (CPU and memory utilization are both considered). uk is the current
utilization of pmk. Higher utilization without violating the threshold can contribute
positively to the reward, while utilization above the threshold can undermine the reward.

Rutil(uk) =

8
<

:

PK
k=1 U

max
k �uk

K + 1 , uk  Umax
k

PK
k=1 uk�Umax

k
K + 1 , uk > Umax

k

(7)

Equation (8) shows the final reward value based on response time and resource utilization,
in which the higher values of RTqos and lower values of RTutil can increase the total reward.

r(st, at) =
Rqos(rt)

Rutil(ut)
(8)

The Algorithm 2 shows the general procedure of CLRPC. The algorithm initializes the
monitoring model to collect system status for the RL process (line 1), including workloads
level, utilization, and relevant metrics at each time interval (lines 4-5). These observations
constitute a state in the RL framework.

If the workload level changes (line 6), scaling approaches should be applied to ensure
QoS or optimize resource utilization. Thus, the Q-learning process will be started by
choosing actions from the experience pool and transiting the current system state to
another one (line 7). The actions are executed based on the Algorithm 3 (line 8). CLRPC
also supports online training, after CLRPC transits the state st to st+1, firstly stores the
transition (st, at, rt, st+1) into the experience pool. The reward rt is applied to evaluate the
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Algorithm 2: CLRPC: General Procedure
Input :Table Q(s, a) contains all state/action pairs from experience pool by offline training, time intervals T ,

probability of random action ✏, learning rate ↵, discount factor �

1 Initialize system status, monitoring model; for t from 1 to T do
2 Wt�1 Workloads level at time interval t� 1;

3 W p
t  Predicted workload level according to Algorithm 1;

4 U t
k  Resource utilization of pmk at time interval t;

5 if W p
t �Wt�1 6= 0 then

6 Choose a action from action set A with ✏ probability, or select an action with the max(Q(st, at));

7 Execute at according to Algorithm 3;

8 if online training is triggered then
9 st+1 system state at time interval t+ 1;

10 rt reward calculation by Equation (8);

11 Update Q value: Q(st, at) = Q(st, at) + ↵[r(st, at)] + �maxa0Q(st+1, a
0)�Q(st, at)];

12 end
13 Store transition (st, atrt, st+1)in experience pool;

14 end

15 end

goodness of (st, at) (lines 9-14).

The Algorithm 3 shows the action execution process of CLRPC. The system states and
corresponding actions are provided by the Algorithm 2, which includes the decisions
of horizontal scaling, vertical scaling, and brownout. The algorithm will first check
the decision for vertical scaling. If the vertical scaling should be performed, then
resources of the specific type will be added or removed (lines 1-10). After that, the
horizontal scaling will be examined. If the horizontal scaling is triggered, the optional
microservices are deactivated in this time interval (lines 11-16). And finally, the horizontal
scaling will be checked and executed by increasing or decreasing the number of replications.

4.4 Workload and microservice chain analysis

After the request has been generated and sent to the Request Handler, we send the request
to the target cluster on the one hand and collect the workload from the cloud server cluster
on the other. These workload profiles include information such as the latency of the
microservice itself, the resource consumption of the cloud server, the request latency of
the microservice, and the success rate of the request. By passing this information to the
Workload Analyzer, the critical chain analysis of the microservices, the chain relationship
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Algorithm 3: CLRPC: Action Execution
Input :Time interval t, action sets at = {ai

k(t)|i 2 {0, 1, . . . , I}, k 2 {1, 2, . . . ,K}},
ai
k(t) = {hk(t), v

i
k(t), bk(t)}, selected action at time t with horizontal scaling operation hk(t) = n,

vertical scaling operation vik(t) = m, and brownout operation bk(t) 2 {0, 1}
1 for k from 1 to K do
2 /*Vertical scaling*/

3 for i from 1 to I do
4 if m > 0 then
5 Add m resources of type i on local machine;

6 else
7 Remove m resources of type i on local machine;

8 end

9 end

10 end
11 /*Horizontal scaling*/

12 if n > 0 then
13 Add n microservices replicates ;

14 else
15 Remove n microservices replicates;

16 end
17 /*Brownout control*/

18 if bk(t) > 0 then
19 Deactivate microservices via brownout;

20 else
21 Brownout will not be triggered;

22 end

of the microservices in the current state can be obtained.

4.5 Cluster Scaler Scheduling Policy

Following critical chain and node determination and model-based scheduling decisions,
we use three algorithms to schedule the cloud server cluster: Horizontal scaling, Vertical
scaling, and Brownout.

Horizontal scaling adjusts resources by adding or removing copies (replicates) of
microservices on cloud servers within the cluster to improve resource usage and system
availability. A cloud server cluster can achieve a reduced workload on the cloud server
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cluster by adding copies of microservices.

Vertical scaling adjusts the processing service capacity of the current cloud server by
adjusting the amount of CPU, memory, or network resources allocated to microservice
instances. Cloud server clustering can reduce the workload of a cloud server cluster by
increasing the resources of a single cloud server or multiple cloud servers within the cluster
to a single or multiple microservices.

Figure 6: Three scheduling policies in the system

The three scheduling policies are shown in Fig. 6.

4.6 Auto-adapter for unpredictable workloads change

Although our workload prediction algorithm can achieve high accuracy, sudden fluctuations
of cloud workloads during the stable period (workloads remain unchanged) are usually
unpredictable.

Microservices are more sensitive to resource fluctuations than traditional applications
Qiu et al. (2020b). Therefore, bursts can cause QoS violation, resource wastage, and
system overload. To address this challenge and complement the prediction algorithm,
we introduce a component named auto-adapter that detects and adapts to these sudden
changes. Auto-adapter collects the information at the first minute of each time interval and
examines whether the actual workload level (collected via performance counters) equals
the predicted one (via workload predictor module). If not equal, auto-adapter applies
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vertical scaling to optimize resource usage by adding or removing resources according to
the predicted and actual workload difference.

The auto-adapter is integrated into the Cluster Scaler module in Fig. 2. The auto-adapter
needs to be lightweight to avoid excessive resource usage incurred by the auto-adapter.
We measure the resource usage in one hour caused by auto-adapter as shown in Fig. 7,
which shows that auto-adapter only costs about a maximum of 3% extra CPU and 1% extra
memory resources. This additional limited resource usage is acceptable considering its
optimization effects on resource usage.

Figure 7: Resource consumption of auto-adapter

5 Performance Evaluation

To evaluate the performance of our system and the algorithms in the real environment,
we used a Kubernetes-based cluster and some servers to complete this experiment. The
comparative algorithms of our experiments and the analysis of the results will be presented
in this section.
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5.1 Experimental environment

We built a cluster of the homogeneous cluster for the microservices-based application
deployment, which means that all machines within this cluster are configured identically.
The cluster consists of five physical machines, all configured with Intel Xeon E5-2660
processors and 64 GB of RAM, with one physical machine as the master of the cluster
and the remaining as a worker. we used the Kubernetes-based version of Sock Shop for
the deployment. The list of environments for deep learning and reinforcement learning is
as follows: Python (version 3.9) and TensorFlow (version 2.2.0), Sklearn (version 1.1)
(Pedregosa et al., 2011), Locust (version 2.8.0).

The dataset we use is from the Section. 4.1, where we use the preprocess method and get
the 8 days of requests based on our cluster. We selected 5000 minutes from the dataset to
analyze. The Locust platform we used uses five minutes as a period and the number of
requests in each period is modeled as the sum of all requests in that period corresponding
to the number of users.

5.2 Baseline

KuScal: KuScal has been used in Kubernetes, which is mainly based on horizontal scaling
that can dynamically increase or decrease the number of replicates Burns et al. (2019).
The KuScal decides on how many replicates should be added or removed based on the
resource fluctuations, e.g., CPU and memory, on the current servers. In KuScal, if the
server’s CPU utilization is larger than the pre-configured threshold, KuScal will create
more microservice replicates and vice versa. To obtain the real-time resource utilization of
the server, KuScal periodically collects the resource utilization data from each node in the
cluster. The algorithm formulas of Kubernetes scaling are as follows:

Uavg =
Utotal

Rtotal
, (9)

Uavg

Tr
� 1 > 0.1, (10)

where Uavg is the average CPU utilization in the cluster, Tr is a CPU threshold predefined
by Kubernetes, Utotal is the sum of resource usage values of all microservice nodes, and
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Rtotal is the total number of replicates.

Auto: Auto is an abbreviation for Auto pilot scale algorithm from Google (Reiss et al.,
2012), and in the following Auto refers to Auto pilot scale algorithm. When we perform
this scheduling algorithm, we collect information about the current liabilities of the server
at certain intervals and save it in a specific file. When we need to schedule a server, we first
read the last 5 recorded data from this file and process this data using the sliding window
algorithm. We average the server load information over the previous five sampling points,
and if this average is greater than the threshold we have set, we schedule the server, for
example, by increasing or decreasing the server’s resources (replicates).

FIRM (Qiu et al., 2020a): FIRM is implemented based on the Longest chain-based
microservice scheduling algorithm. Its approach consists of the following steps. First,
we need to obtain basic information about all the microservices in the system, and then
we arrange these microservices in terms of length, i.e. we analyze them by counting the
longest one among the microservice chains. If there are multiple chains of the same length
in the same microservice chain, we only analyze the last microservice chain obtained.
After this, we need to schedule the information for the whole cluster, which involves using
horizontal versus vertical scaling for scheduling. To ensure consistency of the experiment,
the size of the total available resources in this algorithm is kept consistent with the other
methods.

5.3 Experiment Analysis

Requests per second: The Fig. 8 shows the requests per second of four algorithms.
As direct analysis of the 5000-minute results was a little too difficult to observe trends,
we divided the 5000 minutes of the experimental results into 5 slices, each time slice
representing the average of the results over the current period. After this point, the results
were sliced in this method to facilitate reading and analysis.

We can determine the load and QoS of the four algorithms to a certain extent by looking
at their requests per second, and when analyzing the parameter requests per second. we
generally consider that the larger the requests per second, the better the QoS of the server
and the better the control of the load state of the server. It is because the higher the RPS
of the server, the better the QoS of the server. A larger server RPS means that the server
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Figure 8: Comparison of requests per second

can handle more requests per second. From the user’s point of view, the server is more
responsive to its requests, and from the cloud service provider’s point of view, a larger RPS
also means better service results.

The KuScal is not very good at scheduling the next time slice based on the available data
when dealing with highly variable load situations, and the threshold-based algorithm does
not provide a good solution in this case. In contrast, Auto uses a processing step based on
historical data information, which is used as a reference under high variability conditions.
If the load on the server rises or falls continuously over a certain period, then Auto’s
algorithm can accurately determine the change in load and give a response strategy. As a
result, the performance of the Auto algorithm is somewhat better than KuScal over the
five-time periods but still worse than CLRPC and FIRM.

We observed that at each of the five time slice, FIRM had a higher RPS relative to CLRPC
in the first two time periods, but CLRPC was higher in the next three time periods.
Moreover, the gap between CLPRC and FIRM becomes smaller and smaller over the first
two time periods until it overtakes FIRM. FIRM held first place for just two of the earliest
time slices but was slightly worse than Auto in the next three time periods. The effect of
CLRPC’s scheduling strategy will be better over time better and better with RPS as the
reference variable, with CLRPC having a more stable RPS over a longer period.
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Regarding the gap between CLRPC and FIRM, it is reasonable to conclude that the
scheduling algorithm relying solely on the scheduling with the longest chain becomes more
difficult to cope with the scheduling of server clusters in the case of high variability over
time. This is because the longest chain usually implies a higher load at the beginning of
the experiment where there is less variation in the chains. But over time and as the load
changes, the real targets for optimization are the chains with high load, which may not
be the longest chain. At the same time, it is becoming increasingly difficult for FIRM to
cope with this more complex chain variation due to possible chain variations with the
appearance of chains of the same length. The CLRPC algorithm, on the other hand, solves
the problem of scheduling decisions due to chain variation. CLRPC is also optimized
to a certain extent compared to the relatively static approach of KuScal and Auto. As a
result, CLRPC performs better in short periods than FIRM’s scheduling performance but is
effective in scheduling cloud server clusters for long periods of time under load. overall,
CLRPC optimized the requests per second from 1.2% to 8.1% compared to baselines.

Figure 9: Comparison of failure count

Failure count: The image of Failure Count is shown in Fig. 9. The failure count represents
the number of error requests in a given time slice, where the Failure Count in this figure is
obtained by calculating the average of the error rate over a period of time.

Therefore, the larger the value of Failure Count, the higher the number of error requests
occurring in the same period, and the worse the quality of service and the higher load
on the server. Because when the error rate in the same period is high, the failure rate of
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requests in the current period will increase accordingly, and the direct feedback to the user
is that the server cannot connect.

We can first see that KuScal’s Failure Count is the highest in all five time periods, which
is consistent with the result in the previous analysis of Requests per second, i.e., KuScal
has difficulty coping with high-dimensional and high-variability load states, and has
difficulty responding promptly, which leads to frequent server overloads and greatly
affects the QoS of the server, resulting in the Failure The number of Failure Count increases.

In contrast, the Auto method greatly alleviates this problem because Auto introduces
a scheduling policy based on historical data, and Auto can respond effectively com-
pared to KuScal when there is an upward or downward trend in historical data. Auto is
very effective in controlling the value of Failure Count and keeping it in an acceptable range.

However, the Failure Count of the Auto method is still higher than that of CLRPC and
FIRM. In the Failure Count comparison, both CLRPC and FIRM have a good performance,
but it is still difficult to analyze further in this picture because their values are at a very
low level compared to KuScal. We will discuss this issue further in the next Section 5.4.
Overall, CLRPC reduces 8.3% of failure count compared to FIRM.

Figure 10: Comparison of the average response time

Average response time: The Fig. 10 shows the average response timeof four algorithms.
The average response time is also one of the most important indicators of QoS, and the
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lower the average response time, the better the QoS of the server.

The average response time of KuScal is at the highest value in all five time periods,
and we consider it as a benchmark test to analyze the performance of the other three
algorithms. The Autopliot method is optimized compared to the KuScal, and it stays at the
second-highest in all five time periods. The results of CLRPC and FIRM are similar to the
result of RPS analyzed before, in that in the starting two time periods, FIRM outperforms
CLRPC. But over time, CLRPC outperforms FIRM and maintains its optimization in the
last three time periods. It shows that CLRPC outperforms FIRM from 3000 minutes to
5000 minutes. Overall, CLRPC optimized from 1.4% to 26.6% compared with baselines.

Although we can see the difference over the five time periods, it is difficult to see the actual
distribution of algorithm optimization. For example, in the average delay time, we can see
the optimization of each algorithm over the five time periods, but it is difficult to get the
data distribution over the whole period, so we introduce the CDF in the next Section 5.4.

5.4 CDF Analysis

To better demonstrate the differences between CLRPC and FIRM, we use the Cumulative
Distribution Function (CDF) as the metric which is the integral of the probability density
function representing the sum of the probability of occurrence of all values less than or
equal to x. The formula of the CDF function is FX(x) = P(X  x). We still used the
three metrics from the previous analysis and transformed them into CDF curves for further
analysis. Overall, CLRPC optimized the average response time by 1.4% compared to FIRM.

Requests per second: The Fig. 11 shows the requests per second figure of CLRPC
and FIRM. In the CDF curve for requests per second, the FIRM and CLRPC curves
are very close to each other. For the same number of requests per second, the vertical
coordinate of the curve represents the distribution of all values less than or equal to the
current number of requests per second. For values between 400 and 800 requests per
second, the CDF curve for FIRM stays above that of CLRPC, but the difference between
the two is not very large. In the dense area of the requests per second CDF distribution,
where the slope of the CDF curve is larger, this means the optimization effect of CLRPC
and FIRM on the cluster is very close. However, we observe a clear difference be-
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Figure 11: CDF of requests per second

tween the CLRPC and FIRM curves when requests per second reach the range of 800 to 100.

As the requests per second increase, CLRPC is the first to reach where CDF value equal to
1.00, while FIRM reaches where CDF value equal to 1.00 for larger requests per second.
In this case, a higher request per second means a higher risk of error rate with the same
resources.

Figure 12: CDF of failure count

Failure count: The Fig. 12 shows the failure count of CLRPC and FIRM. We can see that
as the number of Failure counts rises, the CDF curve also increases, while the CLRPC
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curve is the first to reach where CDF value equal to 1.00.

The characteristic of the CDF curve in this figure is that the higher the CDF value
corresponding to the same failure count, the more percentage of the failure count is within
the corresponding failure count. Since the metric of failure count is a measure of the
number of errors that occur in the whole cluster, the lower the number of corresponding
errors, the better the performance of the algorithm.

In the whole CDF curve, the CDF curve of CLRPC is basically above the FIRM curve for
all the failure counts, i.e., the horizontal coordinate. This indicates that for the distribution
of the number of error rates, CLRPC will have fewer errors than FIRM most of the time.
At the same time, the FIRM curve reaches where CDF value equal to 1.00 with a higher
failure count than CLRPC, which also indicates that the cluster under FIRM scheduling has
a higher error rate, which does not happen in CLRPC.

Figure 13: CDF of the average response time

Average response time The Fig. 13 shows the average response time of CLRPC and
FIRM. The CDF curves for FIRM and CLRPC are also very close in average response time.
However, we can see that CLRPC’s CDF curve appears slightly higher than FIRM’s CDF
curve when the average response time lies in the interval from 0 to 100. For the average
response time, this suggests that CLRPC has more of its average response time spread in
the lower range, which means that throughout the tests of the experiment (5000 minutes of
testing), CLRPC was more effective in optimizing the cluster overall, as a lower average
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response time means a higher QoS.

6 Conclusions and Future Work

The microservice-based applications have been widely adopted in cloud computing environ-
ments, converting monolithic applications into lightweight, flexible, and loosely-coupled
application components. Such a modular design of the application helps achieve CI/CD
(continuous integration, continuous delivery, and continuous deployment) of the application
life cycle in cloud environments. However, efficient algorithms for resource scaling in
cloud infrastructure are required to ensure the sustainable development of microservice
technology. In this paper, we proposed a deep learning and reinforcement learning based
scaling approach, named CLRPC, for scaling resources for microservices that combine the
three techniques, including horizontal scaling, vertical scaling, and brownout. It ensures
cloud service providers increase their resource utilization while guaranteeing the QoS.
CLRPC utilizes deep learning approaches for workload prediction to predict pod level
workload more accurately compared to traditional regression-based prediction approaches.
Furthermore, leveraging the Reinforcement Learning framework takes decisions on scaling
strategies, adapting to the load changes, and allocating the appropriate resources. To
evaluate the performance of CLRPC, we deployed our algorithms on a prototype system
with representative microservices application. The results are compared with popular
state-of-the-art algorithms from research and industry domains. The experimental results
have demonstrated that CLRPC can outperform the baseline algorithms in different
performance metrics, including RPS (requests per second), failure count, and average
response time.

As for future work, we would like to investigate the scaling of network resources and the
improvement of scheduling algorithms. We also intend to consider the energy-efficient
scaling of microservices and to apply the proposed approach in large-scale environments as
well as in larger clusters of cloud servers.
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