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Abstract

CLOUD Computing, which allows users to acquire/release resources based on real-
time demand from large data centers in a pay-as-you-go model, has attracted con-

siderable attention from the ICT industry. Many web application providers have moved
or plan to move their applications to Cloud, as it enables them to focus on their core
business by freeing them from the task and the cost of managing their data center in-
frastructures, which are often over-provisioned or under-provisioned under a dynamic
workload.

Applications these days commonly serve customers from geographically dispersed
regions. Therefore, to meet the stringent Quality of Service (QoS) requirements, they have
to be deployed in multiple data centers close to the end customer locations. However, ef-
ficiently utilizing Cloud resources to reach high cost-efficiency, low network latency, and
high availability is a challenging task for web application providers, especially when the
service provider intends to deploy the application in multiple geographical distributed
Cloud data centers. The problems, including how to identify satisfactory Cloud offer-
ings, how to choose geographical locations of data centers so that the network latency
is minimized, how to provision the application with minimum cost incurred, and how
to guarantee high availability under failures and flash crowds, should be addressed to
enable QoS-aware and cost-efficient utilization of Cloud resources.

In this thesis, we investigated techniques and solutions for these questions to help
application providers to efficiently manage deployment and provision of their applica-
tions in distributed computing Clouds. It extended the state-of-the-art by making the
following contributions:

1. A hierarchical fuzzy inference approach for identifying satisfactory Cloud services
according to individual requirements.

2. Algorithms for selection of multi-Cloud data centers and deployment of applica-
tions on them to minimize Service Level Objective (SLO) violations for web appli-
cations requiring strong consistency.

3. An auto-scaler for web applications that achieves both high availability and signif-
icant cost saving by using heterogeneous spot instances.

4. An approach that mitigates the impact of short-term application overload caused
by either resource failures or flash crowds in any individual data center through
geographical load balancing.
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Chapter 1

Introduction

CLOUD Computing offers services from large data centers to end users. It adopts

a so-called pay-as-you-go model in which customers acquire services or resources

based on their demand and are only charged for their actual usage, which realizes the

long-held dream of making computing the fifth utility [28]. Due to economies of scale

and multiplexing, since its birth, Cloud computing has been creating substantial mone-

tary values for both Cloud providers and Cloud customers. From the users’ perspective,

it not only gives them an option to avoid investing in costly proprietary data center in-

frastructures and their maintenance to reduce the IT expenditure, but also allows them to

fully focus on their main business in this rapid-growing Internet era [120], in which more

than ever fast delivering and growth are essential to survive and prosperity.

Base on the services provided, NIST classified Cloud computing into three categories

[141] as shown in Figure 1.1 : 1) Infrastructure as a Service (IaaS) which leases computing

resources, such as processing, storage, and network, 2) Platform as a Service (PaaS) that

offers services to host and manage applications, and 3) Software as a Service (SaaS) which

directly provides applications to the end customers. This thesis focuses on IaaS, and in

the following content, the term Cloud refers to IaaS only.

As a general purpose computing platform, Clouds can host a broad spectrum of ap-

plications, such as scientific simulations, data analytics, and interactive web applications.

Web applications are traditionally hosted in either proprietary infrastructures or rented

server rooms. In addition to the high upfront investment cost, these approaches are diffi-

cult to scale, leaving applications either over-provisioned or under-provisioned under a

dynamic workload. The elasticity feature of Clouds that allows users to acquire/release

1
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IaaS

PaaS

SaaS

Figure 1.1: Cloud computing service model

a virtually unlimited amount of resources dynamically makes Cloud the ideal platform

to host web applications whose workload are fluctuant in nature. Due to its advantages

compared to traditional solutions, many organizations providing web applications, from

e-commerce business ebay [57] to US government [13], have shifted or been moving their

applications to Cloud.

As Cloud providers are building more data centers around the world increasingly,

it opens the opportunity for web application providers to utilize this globally available

Cloud infrastructure to boost the performance of their applications. In summary, de-

ploying web applications in multiple geographically distributed data centers brings the

following significant benefits: 1) it improves availability of applications even under un-

expected data center outages, 2) it provides balanced and satisfactory Quality of Service

(QoS) to geographically dispersed customers, 3) it helps to comply with data regulations,

4) it avoids vendor lock-in, and 5) it enables cost optimization among different vendors.

However, efficiently and effectively utilizing multiple Clouds to achieve the above bene-

fits remains a challenging task.

Figure 1.2 illustrates a typical scenario of a web application running on geographi-

cally distributed Clouds. Among all the available Cloud data centers, service providers
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Figure 1.2: A web application deployed on geographically distributed Clouds

deploy their applications on a subset of data centers chosen in consideration of user loca-

tions, interactions between the selected data centers, and other factors. The users of the

application always send requests to the closest data centers to obtain better QoS. To man-

age applications in this scenario, application provider needs to tackle many challenges

which we will discuss below.

1.1 Challenges in Managing Applications in Distributed Com-
puting Clouds

To manage application in an environment composed of geographically distributed Cloud

data centers, we consider two major aspects: 1) deployment, and 2) provision. We define

deployment as the process to choose the right data centers to host the application. While

provision involves acquiring resources from the selected providers during runtime to

ensure the application has enough resources to fulfill the task and achieve satisfactory

QoS. The significant challenges involved in these aspects are noted in Figure 1.3.

1.1.1 Challenges in Deployment

The deployment aspect faces the challenges of:

• Identifying Suitable Services: the application provider needs to discover services
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Figure 1.3: The challenges of managing web applications in multiple-Clouds

that can satisfy the functional and QoS requirements of the application among

many listed services.

• Selecting Data Centers: after suitable services have been identified, the application

provider selects a set of them to host the application in consideration of achievable

QoS according to their end user locations, cost-efficiency, regulation compliance,

and other factors.

• Optimizing Selection: during operation of the application, the application provider

may face changing workload pattern and business expansion. In these cases, the

selection of data centers should be optimized to cater for these changes. Such op-

timizations also need to take migration cost of the application into account when

making the decisions.

1.1.2 Challenges in Provision

The provision aspect involves the following challenges:

• Auto-scaling Applications: during running time, application provider should dy-

namically acquire/release resources to match the fluctuant incoming workload to

meet the QoS requirements with minimum cost.

• Handling Overloads: inevitably, sometimes the incoming workload may exceed

the capacity of available resources either because of resource failures or sudden
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surges of the workload. The application provider needs to prepare for these situa-

tions to minimize degradation of the application performance.

1.2 Research Problems and Objectives

The target of this thesis is to explore the deployment and provision aspects of web ap-

plication management across multiple Clouds. It can be summarized by the following

research question:

How to efficiently select Cloud services for hosting web applications across multiple geograph-

ically distributed Cloud data centers and provision resources under dynamic workload considering

requirements including:

• Infrastructure Requirement — the Cloud provider should satisfy the needs of the

application regarding its functional and infrastructure level Quality of Service (QoS)

requirements.

• Network Latency Requirement — deployment of the application should be dis-

persed to data centers that will minimize the perceived network latencies by end

users.

• Cost Requirement — minimum resources should be provisioned to the application

under a dynamic workload to ensure the latency threshold is met with as less fi-

nancial cost as possible.

• Violation-over Requirement — SLA violations should be timely detected and effec-

tively dealt with.

To explore these problems, we first need to have a technique that can identify satisfac-

tory Cloud services. It can work with general-purpose applications rather than catering

only for web applications. When implementing such method, it raises several questions:

• How to efficiently evaluate all the available services?

• How to make it easy to use without sacrificing accuracy?
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• How to comprehensively take all the involved QoS attributes into account?

• How to consider instability of performances when evaluating the services?

Secondly, we have to select a set of data centers to host the application, which needs

to address the following challenges:

• How to minimize network latencies perceived by end users that are geographically

dispersed?

• How to model latencies if strong consistency is required across data centers?

• How to efficiently find an acceptable solution for the often NP-hard QoS-aware data

center selection problem?

• How to reach a balance of resource cost and performance?

• How to optimize the selection considering migration cost under dynamic work-

load?

After deployment of the application, provision should be managed to ensure enough

resources are available to the application while incurring a minimum cost. To realize that,

the following issues need to be tackled:

• How to estimate resource consumption?

• How to predict incoming workload?

• How to self-adapt the provision in case of changing application and workload?

• How to reduce provision oscillation?

• How to determine resource combination and how to provision with minimum cost?

• How to timely detect and handle SLO violations?
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1.3 Evaluation Methodology

The approaches in this thesis were evaluated using traces from real applications [204]

or synthetic ones derived according to the study of their characteristics when no cor-

responding real trace is available. We used TPC-W [195], a transactional e-commerce

application, Twissandra [196], a Twitter-like NoSQL-backed social network application,

and Wikibench [203], an open source Wikipedia, as benchmark applications in different

chapters of the thesis. TPC-W and Twissandra are employed to create realistic simulation

scenarios for testing. Wikibench is deployed on Clouds to conduct real experiments of

the prototype implementations.

Simulations are adopted to evaluate our approaches when repeatable large-scale ex-

periments are not feasible or costly and difficult to conduct. In these cases, corresponding

simulation tools are developed or extended and realistic settings are used for experi-

ments.

Proof-of-concept experiments executed on real platforms are conducted to illustrate

the feasibility and efficacy of the proposed approaches in Chapter 5 and Chapter 6. We

have developed prototypes and automation scripts to enable repetition of our experi-

ments, which we release for the convenience of the community 1. Results of our proposed

approaches are compared with industry solutions. Baselines have also been implemented

and automated to facilitate duplication of experiments and results.

1.4 Thesis Contribution

The thesis has made the following contributions to answer the defined research question:

1. A taxonomy and survey of the state-of-the-art Cloud service selection and auto-

matic provisioning techniques for web applications.

2. A technique that evaluates and ranks the satisfiability of Cloud services against

user’s individual QoS requirements using hierarchical fuzzy inference system.

• Architecture definition of the framework regarding their interactions.
1https://github.com/quchenhao/
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• A hierarchical fuzzy inference approach that

– comprehensively evaluates a Cloud service in accordance to the hierarchi-

cal metrics of Cloud services;

– supports using linguistic terms to define users’ QoS requirements and

preferences of metrics;

– considers performance variations of the services using statistical metrics

when assessing their QoS.

3. An approach that selects Cloud data centers to host web applications requiring

strong consistency and dynamically optimizes the deployment to minimize viola-

tions of Service Level Objectives (SLO).

• Definition of the architecture and its components.

• A latency model for web applications.

• Consistency latency models for Cassandra and Galera Cluster.

• A genetic-based algorithm to select data centers for hosting web applications

to minimize SLO violations.

• A decision-making algorithm to optimize the selection of data centers under

dynamic workload considering both SLO violations and migration cost.

4. An auto-scaler for web applications using heterogeneous spot instances to reach

both high availability and low resource cost.

• A fault-tolerant model for auto-scaling using heterogeneous spot instances to

reach both high availability and superior cost-efficiency.

• Algorithms and optimizations that comply semantics of the fault-tolerant model

for scaling up and scaling down.

• Prototype implementations both on a real Cloud and a simulation platform.

5. A technique that handles short-term overload events in any data center through

geographical load balancing.
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Figure 1.4: Thesis organization

• A decentralized geographical load balancing architecture and interactions among

the components.

• An overload detection algorithm and an overload handling algorithm.

• A queuing model for deciding load redirection among data centers with avail-

able capacities to minimize overall latency increase.

• A prototype implementation of the proposed approach.

1.5 Thesis Organization

Figure 1.4 depicts the structure of the thesis and logic dependencies between the chap-

ters. Chapter 2 presents a taxonomy and survey of the related literature. Chapters 3 and

4 focus on deployment of web applications. Chapters 5 and 6 target the challenges in pro-

vision aspect of web application management in Clouds. More specifically, the remainder



10 Introduction

of the thesis are organized as follows:

• Chapter 2 presents a taxonomy and survey of selection Cloud services and provi-

sioning resources for web applications in Clouds. It is partially derived from:

– Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “A Taxonomy and

Survey of Auto-scaling Web Applications in Clouds”, ACM Computing Surveys

(Under Review), 2016.

• Chapter 3 proposes a technique that evaluates the satisfiability of Cloud services

against user’s individual QoS requirements. It is derived from:

– Chenhao Qu, and Rajkumar Buyya, “A Cloud Trust Evaluation System using

Hierarchical Fuzzy Inference System for Service Selection”, Proceedings of the

28th IEEE International Conference on Advanced Information Networking and Ap-

plications (AINA 2014, IEEE CS Press, USA), Victoria, Canada, May 13-16, 2014.

• Chapter 4 describes a mechanism that selects data centers according to end users’

locations to minimize SLO violations for web applications requiring strong consis-

tency and then optimizes the selection under a dynamic workload. It is derived

from:

– Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “SLO-aware De-

ployment of Web Applications Requiring Strong Consistency using Multiple

Clouds”, Proceedings of the 8th IEEE International Conference on Cloud Computing

(Cloud 2015, IEEE CS Press, USA), New York, USA, June 27 - July 2, 2015.

• Chapter 5 proposes an auto-scaler for web applications using heterogeneous spot

instances to achieve both high availability and superior cost-efficiency. It is derived

from:

– Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “ A Reliable and

Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous

Spot Instances”, Journal of Network and Computer Applications, issue 65, page 167

- 180, 2016.
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• Chapter 6 introduces an approach that detects short-term overload situations in any

participating data center and handles them through geographical load balancing.

It is derived from:

– Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “Mitigating Impact

of Short-term Overload on Multi-Cloud Web Applications through Geograph-

ical Load Balancing”, accepted by Concurrency and Computation Practice and

Experience, 2017.

• Chapter 7 concludes findings of the thesis and outlines potential future directions.

It is partially derived from:

– Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “A Taxonomy and

Survey of Auto-scaling Web Applications in Clouds”, ACM Computing Surveys

(Under Review), 2016.





Chapter 2

Literature Review

This chapter aims to identify the open challenges and understand the strengths and limitations of

the existing methods in auto-scaling and deployment of web applications in distributed computing

Clouds through a thorough literature review. It covers the areas of Clouds service discovery, Clouds

selection, and auto-scaling. We respectively survey existing proposals in these fields and compare

them to identify their characteristics.

2.1 Introduction

APPLICATION providers have been more than ever dependent on the infrastruc-

ture of Cloud providers all over the world to host and manage their applications.

In addition to the benefits brought by Cloud computing, utilizing resources from multi-

ple Cloud data centers opens the following opportunities:

• Better QoS: Cloud providers can deploy their applications close to the end users

that are geographically dispersed so that the network latencies experienced by dis-

tributed users are similarly acceptable.

• Always-on Availability: critical applications need to be available 24/7 without

downtime. Deploying them in geographical dispersed data centers can ensure their

survival even under disruptive disasters.

• Regulation Compliance: countries often limit application providers to store data

of their citizens in locations under their sovereignty. Therefore, it is impossible to

This chapter is partially derived from: Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. ”Auto-
scaling Web Applications in Clouds: A Taxonomy and Survey”, ACM Computing Surveys, 2016 (under re-
view).

13
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comply regulation requirements of different nations using a single data center.

• Vendor Lock-in Avoidance: it prevents the application providers only relying on

one Cloud service and thus falling into vendor lock-in.

• Cost-efficiency: it allows the application providers to explore different offerings

and pick the most cost-efficient one regarding their requirements.

Managing applications in multiple Clouds remain a challenging task. Appropri-

ate techniques to select suitable services and provision resources need to be developed.

Many researchers have been targeting these goals.

In this chapter, we aim to investigate, classify, and analyze the existing works that tar-

get these issues. Regarding each discussed issue, we first identify the related challenges,

and then explain and compare the proposed works to understand their strengths and

limitations to improve the state-of-the-art.

The rest of this chapter is organized as follows. Section 2.2 identifies challenges and

reviews the developments in QoS-aware discovery of suitable Cloud services. Then we

discuss the state-of-the-art of Clouds selection in Section 2.3. After that, we list the chal-

lenges of auto-scaling techniques for dynamically provisioning web applications and ex-

plain the existing approaches in Section 2.4. Finally, we summarize the findings in Section

2.5.

2.2 Clouds Service Discovery

Cloud service discovery is the procedure to find candidate Cloud services that can satisfy

the application provider’s requirements. It is an issue not unique to web applications.

Most of the existing techniques are designed for general purpose usage of the Cloud.

This process involves the following procedures:

• The client defines his functional and non-functional requirements about the Cloud

services.

• The discovery service, according to the client’s requirements, evaluate the public

services.
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• The discovery service returns a list (either ranked or unranked) to the client speci-

fying services that it thinks can meet the user requirements.

Regarding web application, the task of service discovery is to identify providers that

can offer satisfactory services for each component in the application regarding their in-

dividual functional and QoS requirements. The task can be achieved by respectively

finding adequate services for each component using existing general purpose techniques

and then intersecting the results to identify the service providers that can satisfy them all.

2.2.1 Challenges

The challenges involved in this process are summarized as follows:

Large Number of Services

Many providers operating their own Cloud services (as of 13 September 2016, CloudHar-

mony [84] lists 57 providers for computing services). Each provider owns several data

centers and provides tens of VM service offerings. A large number of available services

increases competition in the market and stimulates providers to provide better service

with less cost. On the other hand, it also creates difficulty for Cloud users to evaluate all

their choices to make the final decision efficiently.

Multiple Criteria

For each component or tier, application providers usually have multiple requirements

regarding QoS and provided functions. For example, at the front-tier, an application

provider might require the Cloud to offer firewall service and high network bandwidth

for VM hosting the load balancer. At the second tier, the provider might focus more on

CPU and memory performance. At the database tier, the throughput of disk I/O and

security mechanisms are more important. Besides, often application associates various

preferences to different requirements (e.g., CPU performance is more important than net-

work performance). It is challenging to evaluate each Cloud service regarding multiple
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Figure 2.1: A taxonomy of Cloud service discovery algorithms

criteria and application provider’s individual preferences of requirements.

Service Variation

Clouds are multi-tenant platforms, and thus their QoS is susceptible to workload changes

and other factors [169]. For web applications, the performance stability and robustness of

Cloud is important. Therefore, the discovery techniques that can quantify and compare

services’ stability according to their dynamic performances are more desirable.

2.2.2 State-of-the-art

Building a central repository with each Cloud services represented in a machine-understandable

format is of vital importance to automatic Cloud services discovery. With this reposi-

tory, the discovery engine can then automatically search satisfactory services according

to Cloud client’s requirements for each attribute he cares using various search algorithms.

The ontology-based approach originated from managing semantic web services has been

favored by the majority of the works, e.g., [51,111,130,178,189], because they can describe

the properties of Cloud services in a machine understandable way and automatically

match the semantics of Cloud clients’ requirements. One working approach of this type

is called Cloudy Metrics [178], which currently has a limited number of Cloud providers

in its repository and only supports functional attributes.

The specific search algorithms adopted can be classified into two categories, namely

service ranking and matchmaking. Figure 2.1 demonstrates our classification. Service



2.2 Clouds Service Discovery 17

ranking approaches provide ranked lists of services according to their qualities. Based

on how service is ranked, it can be further classified into cost-benefit analysis, trust eval-

uation and multi-criteria decision-making (MCDM) approaches. MCDM approaches can

be divided into two sub-groups, namely multi-attribute utility theory (MAUT), which

usually relies on utility functions to model an alternative’s capability, and outranking,

which tries to find domination relationships between alternatives through pairwise com-

parisons. Matchmaking approaches compare Cloud clients’ requirements to actual ser-

vice offerings to find satisfactory services. Some approaches in this category also pro-

vide ranking capability (e.g., distance-based approaches), while the others only support

coarse-grained matching (e.g., logic-based approaches).

Service Ranking

Cost-benefit Analysis: Cost-benefit analysis approaches aim to find the IaaS service

that can bring more profit and incur less risk for the business. These approaches should

be able to estimate potential cost and benefit for each service and identify services that

will incur an acceptable cost and promising benefits.

Calculating potential cost (including financial cost, reputation cost, security cost, etc.)

of using Cloud involves building complex risk assessment models for different aspects at

the Cloud clients side, especially when they have made legal commitments to their end

users through SLA. Saripalli et al. [168] proposed a manual framework, called QUIRC,

for organizations to assess the security risk on Clouds. Besides requiring human inter-

vention, it ignores risk resilient abilities of different Cloud services. Djemame et al. [117]

developed a promising risk assessment toolkit for OPTMIS project [64]. It uses risk in-

ventory and historical database to automate assessment, management, and mitigation of

the risks involved in the deployment.

To balance cost and benefit, Zeng et al. [221] calculated the simple weighted aver-

age of the total benefit and cost for using specific Cloud services. They are then ranked

according to the results.
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Trust Evaluation: Trust and reputation systems are commonly used for service discov-

ery and selection for distributed systems [106]. The major advantage of them is that

when applied to Cloud, their dynamic nature enables them to response to performance

variations quickly.

Most commonly, trust systems use clients’ ratings as the trust source. CloudHarmony

[84] used to offer a platform for clients to rate the Cloud providers by giving a score from

0 to 5 like Amazon and eBays reputation systems. Noor and Sheng [150] proposed an

improved system. It considers the credibility of the ratings when aggregating all the

trust feedback.

The previous approaches ignore the fact that Clouds have multiple aspects. To over-

come that, Habib et al. [80] designed an approach to evaluate the trustworthiness of

Cloud services regarding QoS attributes defined in the Service Measurement Index (SMI)

[48]. In their approach, each attribute in the SMI is rated from multiple sources, includ-

ing user ratings, provider statements, measurements, and certificates [81]. Then they

used CertainLogic [161] to combine trust values of different attributes to a single value.

Multi-criteria Decision Making (MCDM): MCDMs are systematic methodologies that

rank alternatives A1 to An regarding criteria C1 to Cn with respectively associated weights

W1 to Wn. For each criterion, it is rated by the set of experts and aggregated using some

algorithms. MCDM have been applied to solve ranking problems in many fields. When

used for Cloud service discovery, the inputs are weights of each criterion assigned by

the client. To facilitate automatic discovery, instead of using expert rating employed in

other fields, the QoS value of each attribute usually come from dynamic performance

measurements.

Analytical Hierarchy Process (AHP) is the most widely adopted MCDM method. Its

goal is to evaluate the relative importance of attributes that are modeled in a hierarchical

architecture, which well suits the attribute model of IaaS described in SMI [48]. At every

level, the human evaluator is asked to assign a value, ranging from 1 to 9, to each pair

of attributes regarding their relative importance. According to the pairwise scores, the

weights of attributes at each level can be systematically determined. Then the alternatives
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are evaluated by pairwise comparisons regarding each leaf attributes. Finally, the overall

scores are aggregated from bottom-up by weighted summation. There are many works

employ AHP to rank IaaS services. SMICloud [71] is the first attempt of AHP-based

Cloud ranking. Other important works, such as [130, 142, 184], also adopt AHP or its

variations.

Rehman et al. [198] compared seven different MCDM methods for ranking Cloud

services, including five MAUT approaches, Min-Max, Max-Min, Compromise Program-

ming, “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS), and

AHP, and two outranking approaches, “ELimination and Choice Expressing Reality”

(ELECTRE), and “Preference Ranking Organization Method for Enrichment Evaluations”

(PROMEHEE). Their experimental results showed that different approaches lead to vari-

ous decisions for the same sets of requirements, which indicates that the decision process

itself has a significant impact on the final result. However, they did not come out with

a judgment that which approach is better. To facilitate discovery in a dynamic environ-

ment, they further proposed an approach [199] considering the QoS variations in the

Cloud. Its basic idea is to give more weight to the time measurements close to current

time point instead of using a simple average so that the services perform better recently

are more likely to be chosen.

Matchmaking

Logic-based: The basic idea of logic-based approaches is to use logic reasoning to de-

termine whether the service is satisfactory to client’s requirements or not. Dastjerdi et

al. [51] proposed a matchmaking algorithm using description logic, in which user re-

quirements and characteristics of services are modeled as sets. The matchmaking pro-

cess involves calculating the overlapping degree of the two sets. Services are classified

into Exact Match, PlugIn Match, Subsumption Match, Intersection Match, and No Match

based on the overlapping degree. Liu et al. [130] used a hybrid approach that first iden-

tifies the functionally matched services using a reasoning algorithm and then ranks the

services using MCDM according to their QoS. Cloudy Metrics [178] uses simple logic

operators like ≥, <, AND, OR, etc. to search the satisfiable services. It only supports
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functional attributes.

Distance-based: Distance-based approaches measure gaps between user requirements

and service offerings and rank the services based on distances. Rehman et al. [197]

proposed a MCDM approach using exponential weighted difference, in which services

are evaluated as e−(ai,1−r1 )w1 + e−(ai,2−r2 )w2 + ... + e−(ai,n−rn )wn where ai,j represents the ith

provider’s capability of jth attribute, and rj and wj respectively represents the user re-

quirement and preference weight of the jth attribute. It can be viewed as a hybrid ap-

proach of MCDM and distance-based matchmaking.

Redl et al. [160] introduced an SLA matching approach for discovering Cloud ser-

vices. In their model, the matchmaking is conducted between the client specified private

SLA and provider defined public SLA. The matching has three phases. In the first step,

they employed character-based string similarity metric Levenshtein distance and past

cases to calculate the proximity of semantic element definitions (e.g., “Memory Con-

sumption” vs. “Memory Usage”). Then it checks whether the metrics of definitions

match. In the final stage, the probability of equality for every SLA element is evaluated

by Support Vector Machines technique.

Amato et al. [8] developed a broker also using SLA matching. Their approach ac-

cepts client’s requirements as hard constraints which the service must satisfy and soft

constraints which are target values assigned by clients. For services matching all hard

constraints, they are ranked by the aggregated utility calculated according to their dis-

tances to the soft constraints. In this process, clients can specify their preferences by

defining different utility functions.

Index-based: Sundareswaran et al. [185] first attempted to index Cloud services to ac-

celerate searching. They encoded attributes of Cloud services into search keys and stored

them in a B+ tree based index. In this way, services with similar capabilities are stored

closely and can be retrieved efficiently. When searching services, the k-nearest providers

are first retrieved according to the key generated from user requirements. After that, the

final ranking is conducted among the k candidates according to the client’s preferences.

Thanks to the indexing process, their algorithm is 100 times faster than exhaustive search
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for a large number of services.

2.3 Clouds Selection

With the set of candidate Cloud services discovered, web application providers still face

the problem of finally select a set of data centers offered by these services to deploy their

applications according to various aspects. The factors considered by different applica-

tions when making the decisions are often diverse. Some may focus on application per-

formance, some may pay more attention to cost, and some have to satisfy other con-

straints. In general, we summarize the challenges in this process as follows.

2.3.1 Challenges

Application Performance: One major motivation for using multiple distributed Cloud

data centers to host web applications is to minimize the end user perceived latencies.

Therefore, when selecting the hosting data centers, application providers should be aware

of end user locations. Besides, the performance model of the application becomes more

complicated when it has foreign dependencies to other services or applications.

In summary, with a set of users and their locations, finding a certain number of data

centers from a set of candidates with minimum performance cost falls in the category of

Facility Location Problems. They are NP-hard and notoriously difficult even to find good

approximations [174].

Operational Cost: Cloud services can be expensive to applications. However, to ac-

curately estimate the financial cost at the selection phase is difficult due to the dynamic

nature of web application workloads. It is important to limit the number of selected data

centers to keep the cost low, which involves finding the best balance between cost and

performance.

Geographical Constraints: Besides performance issues, there are other limitations re-

garding locations of the selected data centers for some applications. The first limitation
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comes from the fault-tolerant requirement. For some data-critical or availability-critical

applications, they need their application replicas to be placed in geographically dispersed

areas so that the data or application will survive even after catastrophic natural disasters.

The second one is the legislation constraint. Data regulations in some countries require

application providers to store the data of their citizens in particular domains.

Data Consistency: For applications utilizing multiple data centers, eventual consis-

tency across data centers is acceptable in many cases. However, some applications, such

as banking, and e-commerce applications, still need strong consistency even when data

are replicated in different data centers. Complying strong consistency semantics across

multiple data centers creates extra latency overhead, which cannot be ignored when se-

lecting the data center locations.

Redeployment: Web application providers will face the needs to redeploy their appli-

cations in various situations. The most common case is that the application becomes

increasingly attractive and the overall performance degrades under the current distribu-

tion of application instances. Other issues like pricing change, service level agreement

(SLA) revision, and legislation problems may also trigger the web application providers

to move their applications or deploy new instances.

Unfortunately, for most applications, migration to other data centers is costly and

challenging, because of the associated data volume. Therefore, web application providers

often tend to minimize such migrations. On the other hand, for some applications, effi-

cient dynamic migration of data and services is plausible for applications with light data

dependency, e.g., video transcoding and image rendering, and it can significantly im-

prove the performance and save the providers considerable amount of cost.

2.3.2 State-of-the-art

Because of the various factors and assumptions considered by different application providers,

it is hard to derive a clear classification of the existing research works in this field. There-

fore, we list the individual characteristics of some important works in a table (Table 2.1)
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Table 2.1: Characteristics of works related to Clouds selection.

Work Environment Goal Algorithm
Li et al. [126] CDN minimize overall latency dynamic programming

Qiu et al. [157] CDN minimize overall latency heuristics for k-media
Benoit et al. [22] CDN minimize replication cost heuristics
Tang et al. [190] CDN minimize network traffic dynamic programming
Kang et al. [113] Cloud min latency/max coverage local search/greedy
Kang et al. [112] Cloud minimize traffic of apps iterative optimization

Zhang et al. [224] Cloud minimize cost for servers model predictive control
Rodo. et al. [163] Cloud minimize cost for servers divide and conquer

Ta et al. [188] Cloud min latency/bandwidth heuristics
Ta et al. [187] Cloud minimize selected sites greedy algorithms

Wu et al. [212] Cloud minimize total cost model predictive control
He et al. [85] Cloud balance bandwidth & latency a two-stage algorithm

Lei et al. [101, 102] Cloud data placement meta-heuristic

and separately introduce them regarding their specific scenarios and solutions.

Before Cloud era, similar problems have been intensively studied in placing repli-

cas into CDN network. They usually assume the network follows certain topologies

[22, 126, 157] and then try to optimize the placements of objects regarding some objec-

tive functions, such as performance [126, 157], cost [22], and total network traffic [190].

Though these works are in a different context, they share commonalities with the prob-

lem of placing application replicas in Clouds.

Among them, Qiu et al.’s work [157] considered the closest optimization scenario to

the Cloud context. They viewed each potential resource site to have unlimited capacity,

which is an assumption commonly made in the Cloud context as well. Their objective

is to minimize total network latency between customers and the corresponding closest

replicas. They modeled it as a k-media problem. In Cloud context, Kang et al. [113]

considered a similar scenario. They modeled the problem in two different approaches.

Firstly, they also viewed it as a k-media problem. In the second method, they modeled

it as a max k-cover problem, which aims to maximize the number of customers situate

within the defined latency boundary of the closest application replica. They tested vari-

ous heuristics proposed for the two problems, such as local search and greedy algorithm.

Furthermore, they argued the placement of application replicas should be iteratively ad-
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justed according to the change of customer distribution. However, they ignored the cost

of migrating application replicas.

Kang et al. [112] investigated a scenario where Cloud applications are interdepen-

dent. Instead of just minimizing the traffic between applications and customers, they

tried to minimize the total traffic including traffic exchanged between different applica-

tions. Their solution is to deploy the related applications cooperatively. They proposed

an iterative optimization algorithm to solve the problem.

Zhang et al. [224] explored a holistic approach for server placement and auto-scaling.

They assume that each potential data center has limited capacity and dynamic pricing.

Their objective is to minimize the financial cost of the application provider by dynami-

cally allocating servers across geographically dispersed data centers under the constraint

of demand, capacity, and SLA. They employed the Model Predictive Control (MPC)

framework to dynamically adjust the resource allocation in each data center and request

routing from each user location. They further provided an analysis of the equilibrium

outcome of their approach when multiple application providers use their strategy to scale

their applications.

Rodolakis et al. [163] also investigated a holistic scenario. However, the difference

is that they assume the capacity of each data center is unlimited. They aim to decide

locations of servers, request routing of traffic, traffic routes in the network topology, and

many servers and their types in each site so that the latency bound is met and cost of

using resources is minimized. They decomposed the problem into three NP-hard sub-

problems: 1) find the route with the minimum cost that can satisfy the latency bound; 2)

find the optimal number of servers and their types given the load; 3) solve the holistic op-

timization problem using the results from 1) and 2). Pseudo-polynomial and polynomial

algorithms were respectively proposed for the three sub-problems.

Ta et al. [188] investigated how to place servers of Distributed Virtual Environment

(DVE) applications across geographically dispersed Clouds. DVEs are a class of appli-

cations that customers interact with each other in a simulated 3D environment, which

are highly sensitive to network latencies. DVEs are divided by zones, and a customer is

tied to a particular zone unless he explicitly moves to another area, e.g., online gaming.
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They also assume each server site has unlimited capacity. Their target is to select K sites

among N (K < N) potential sites to place DVE servers so that the total network latencies

or bandwidth consumption is minimized. They proposed several heuristic algorithms

which aim to put the servers on some critical nodes of the network topology.

In another work, Ta et al. [187] introduced a new deployment setting. Different from

their previous works, in this one, customers are associated with a contact server and a

target server, which are not necessarily the same. Customers always send requests to

their corresponding contact servers. If the target server and contact server are different,

the request is forwarded to the target server. Their goal is to minimize the number of sites

selected to satisfy the QoS requirements. They proposed two algorithms. One is based on

a greedy algorithm, which iteratively selects the site that will result in the largest number

of customers perceive acceptable QoS. The another algorithm operates in a similar greedy

way, but it assumes all the contact and target server are the same for all the customers.

For some applications, the cost of serving and storing data counts a majority of the

companies Cloud bills, e.g., video service and social network applications. When de-

ployed in multiple Clouds, the placement of these applications is driven by the distribu-

tion of data.

Wu et al. [212] proposed a predictive method to dynamically optimize the place-

ment and allocation of resources for social media streaming applications concerning op-

erational cost across multiple Cloud data centers under a fluctuant workload. Opera-

tional cost includes storage, bandwidth, application VM renting, and video migration

cost. Also in their optimization model, they wanted to guarantee the availability of each

video, satisfy network latency bound, and meet bandwidth constraints. They solved the

optimization problem by dual decomposition and the subgradient algorithm. To work

online, they adopted a time look-ahead approach, which predicts the workload in next t

time interval and then optimizes the resource allocation and data replication according

to the estimated workloads.

He et al. [85] wanted to find the best balance between bandwidth cost and total net-

work latency for serving video content to customers all over the world from geograph-

ically dispersed Clouds. They employed Nash Bargaining solution to ensure optimality
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and fairness simultaneously. They used dual decomposition and subgradient algorithm

to obtain the optimal bandwidth provisioning. Then they derived the video placement

according to the bandwidth provisioning using a greedy algorithm.

Lei et al. [101, 102] studied the data placement problem across multiple Clouds in

social network applications. In their setting, each user’s data is associated with a mas-

ter copy and a certain number of slave (read-only) copies. Their objective is to decide

the placement of master and slave copies of each user in the social network graph so

that some objective function is optimized. In [102], they assume all write requests are

directed to the master copies and the read requests are relayed to other copies if the data

are not stored in the contacting data center. Their objective function considers carbon

footprint, operation distance (total geographical distance traveled by read and write re-

quests), intra-Cloud traffic, and reconfiguration cost. They proposed a meta-heuristic

algorithm to obtain approximate solutions. It iteratively optimizes the deployment of

masters with the current placement of slaves and optimizes the deployment of slaves

given the deployment of masters alternately. In [101], they considered a different place-

ment strategy, in which they required a user’s master copy must be collocated with all his

friends’ copies (either master or slave). They tried to minimize the storage, traffic, and

redistribution cost under availability and QoS constraints. They proposed an algorithm

that randomly selects users to swap their master and slave copies to find cost reduction

opportunities online.

2.4 Auto-scaling

2.4.1 Challenges

The auto-scaling problem for web applications can be defined as how to autonomously

and dynamically provision and deprovision a set of resources to cater for fluctuant appli-

cation workloads so that resource cost is minimized and application service level agree-

ments (SLAs) or service level objectives (SLOs) are satisfied. Figure 2.2 illustrates typical

auto-scaling scenarios. In Figure 2.2a, due to increase in requests, the available resources

are in congestion, and thus, the auto-scaler decides to provision certain resources respec-
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Figure 2.2: Typical auto-scaling scenarios

tively to each application component. Adversely, in Figure 2.2b, the auto-scaler deprovi-

sions some resources from each component when the amount of requests has decreased.

This is a classic automatic control problem, which demands a system that dynamically

tunes the type of resources and the amount of resources allocated to reach certain perfor-

mance goals, reflected as the SLA. Specifically, it is commonly abstracted as a MAPE

(Monitoring, Analysis, Planning, and Execution) control loop [116]. The control cycle

continuously repeats itself as the time flows.

The biggest challenges of the problem lie in each phase of the loop as shown in Figure

2.3, which are listed and explained below.
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Figure 2.3: The challenges of auto-scaling web applications in each phase of the MAPE
loop

Monitoring: The system needs to monitor some performance indicators to determine

whether scaling operations are necessary and how they should be performed.

• Performance indicators: selection of the right performance indicators is vital to the

success of an auto-scaler. The decision is often affected by many factors, such as

application characteristics, monitoring cost, SLA, and the control algorithm itself.

• Monitoring interval: monitoring interval determines the sensitivity of an auto-

scaler. However, very short monitoring intervals result in high monitoring cost

both regarding computing resources and financial cost, and it is likely to cause os-

cillations in the auto-scaler. Therefore, it is important to tune this parameter to

achieve balanced performance.

Analysis: During the analysis phase, the system determines whether it is necessary to

perform scaling actions based on the monitored information.
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• Scaling timing: the system firstly needs to decide when to perform the scaling ac-

tions. It can either proactively provision/deprovision resources ahead of the work-

load changes if they are predictable since the provision/deprovision process takes

considerable time or it can perform actions reactively when workload change has

already happened.

• Workload prediction: if the system chooses to scale the application proactively, how

to accurately predict the future workload is a challenging task.

• Adaptivity to changes: sometimes the workload and the application may undergo

substantial changes. The auto-scaler should be aware of the changes and timely

adapt its model and settings to the new situation.

• Oscillation mitigation: scaling oscillation means the system frequently performs

contradictory actions within a short period (i.e., acquiring resources and then re-

leasing resources or vice versa). It should be prevented as it results in resource

wastage and more SLA violations.

Planning: The planning phase estimates how many resources in total should be provi-

sioned/deprovisioned in the next scaling action. It should also optimize the composition

of resources to minimize financial cost.

• Resource estimation: the planning phase should be able to estimate how many re-

sources are just enough to handle the current or incoming workload. This is a dif-

ficult task as auto-scaler has to figure out this information quickly without being

able to execute the scaling plan to observe the real application performance, and it

has to take the specific application deployment model into account in this process.

• Resource combination: to provision resources, auto-scaler can resort to both verti-

cal scaling and horizontal scaling. If horizontal scaling is employed, as the Cloud

providers offer various types of VMs, the system should determine to pick which

of them for hosting the application. Another important factor is the pricing model

of Cloud resources. Whether to utilize on-demand resources, reserved resources
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or rebated resources greatly affects the total resource cost. All these factors form a

huge optimization space, which is challenging to solve efficiently in short time.

Execution: The execution phase is responsible for actually executing the scaling plan to

provision/deprovision the resources. It is straightforward and can be implemented by

calling Cloud providers’ APIs. However, from an engineering point of view, being able

to support APIs of different providers is a challenging task.
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Figure 2.4: The taxonomy for auto-scaling web applications in Clouds
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2.4.2 Taxonomy

Figure 2.4 illustrates our proposed taxonomy for auto-scaling web applications. It clas-

sifies the existing works based on the identified challenges in each of the MAPE phase

in Section 2.4.1 and their targeted environment. Particularly, the taxonomy covers the

following aspects in auto-scaling:

• Application Architecture: the architecture of the web application that the auto-

scaler is managing.

• Session Stickiness: whether the auto-scaler supports sticky session.

• Adaptivity: whether and how the auto-scaler adjusts itself to adapt to workload

and application changes.

• Scaling Indicators: what metrics are monitored and measured to make scaling de-

cisions.

• Resource Estimation: how the auto-scaler estimates the amount of resources needed

to handle the workload.

• Oscillation Mitigation: how the auto-scaler reduces the chance of provision oscilla-

tion.

• Scaling Timing: whether the auto-scaler supports proactively scaling the applica-

tion and how it predicts future workload.

• Scaling Methods: how the auto-scaler decides what methods to use to provision

resources and what combination of resources are provisioned to the application.

Existing approach span across different subcategories and are discussed in each of

them (i.e., an auto-scaler is built for multi-tier applications, and employs proactive scal-

ing with machine learning resource estimation techniques). Note that this taxonomy is

based on features and thus does not reflect the relative performance of the discussed

approaches. Because the surveyed works target diverse workload patterns, application

architectures, and pricing models, there is no single answer to the question that which
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approach performs the best. Based on the taxonomy and explanation of the concepts,

we list characteristics of the surveyed works in Table 2.2. In the following Sections (from

Section 2.4.3 to Section 2.4.15), the existing auto-scalers are introduced and compared

according to this taxonomy.

2.4.3 Application Architecture

There are three types of web application architectures mentioned in the literature: namely

single tier, multi-tier, and service-oriented architecture.

Single Tier/Single Service

A tier represents the software function implemented and packaged as the minimum inter-

active module in a layered software stack. In a production deployment, a server usually

exclusively host a single software tier, and within a tier, a load balancer is used to balance

and dispatch load among the participating instances of the tier cluster. Single tier archi-

tecture by definition is the architecture in which application is composed of only one tier.

Relatively, the architecture with multiple connected software tiers is called multi-tier ar-

chitecture. Instead of calling single tier as an application architecture, it is more accurate

to think it as the smallest granularity that can be possibly managed by an auto-scaler,

since hardly any web application is composed of only one tier.

Nowadays web applications are becoming more and more complicated and deviate

from the traditional multi-tier architecture. In those cases, the fundamental scaling com-

ponent is often referred as a service. The majority of the existing auto-scalers separately

manage each single tier or service within an application instead of considering it as a

whole. This method is both simple and general. However, it often results in globally

suboptimal resource provision as it requires to divide the SLA requirements of the over-

all application into sub-requirements of each tier or service, which is often a challenging

and subjective task.
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Table 2.2: A Review of auto-scaling properties of key works for single Cloud

Work
Application

Architecture

Sticky

Session
Adaptivity

Scaling

Indicators
Resource Estimation

Oscillation

Mitigation
Proactive Scaling Methods

Dolye et al. [55] single-tier ! non-adaptive hybrid analytical model — # vertical

Kamra et al. [110] 3-tier ! self-adaptive high-level analytical model — # vertical

Tesauro [191] single-tier # self-adaptive high-level reinforcement learning — # hom. horizontal

Tesauro et al. [192] single-tier # self-adaptive high-level hybrid — # hom. horizontal

Jing et al. [103] single-tier ! self-adaptive high-level hybrid — # vertical

Villela et al. [206] single-tier # non-adaptive hybrid analytical model — # hom. horizontal

Zhang et al. [223] multi-tier — — hybrid hybrid — — —

Chen et al. [37] single-tier ! self-adaptive hybrid regression — ! hom. horizontal

Urgaonkar et al. [202] multi-tier # non-adaptive high-level analytical model — ! hybrid

Iqbal et al. [91] single-tier # non-adaptive high-level rule-based — # hetr. horizontal

Lim et al. [129] single-tier # self-adaptive low-level rule-based dynamic para. # hom. horizontal

Bodik et al. [26] single-tier # self-adaptive high-level regression dynamic para. ! hom. horizontal

Padala et al. [152] multi-tier ! self-adaptive hybrid regression dynamic para. # vertical

Kalyvianaki et al. [109] single-tier ! self-adaptive low-level rule-based — # vertical

Lama and Zhou [123] multi-tier # self-adaptive high-level fuzzy inference dynamic para. # hom. horizontal

Lim et al. [128] storage-tier # self-adaptive low-level rule-based dynamic para. # hom. horizontal

Dutreilh et al. [56] single-tier # self-adaptive high-level hybrid cooling time # hom. horizontal

Gong et al. [76] single-tier ! self-adaptive low-level hybrid — ! vertical

Islam et al. [93] single-tier # self-adaptive low-level neural net./regression — ! —

Lama and Zhou [122] multi-tier # self-adaptive high-level hybrid — # hom. horizontal

Bi et al. [23] multi-tier # non-adaptive high-level analytical model — # hom. horizontal

Singh et al. [177] multi-tier # non-adaptive high-level analytical model — # hom. horizontal

Jiang et al. [98] SOA # self-adaptive high-level analytical model — # hom. horizontal

Chieu et al. [39] single-tier ! non-adaptive high-level rule-based — # hom. horizontal

Continued on next page
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Table 2.2 – continued from previous page

Work
Application

Architecture

Sticky

Session
Adaptivity

Scaling

Indicators
Resource Estimation

Oscillation

Mitigation
Proactive Scaling Methods

Dutreilh et al. [57] single-tier # self-adaptive high-level reinforcement learning — # hom. horizontal

Li and Venugopal [127] single-tier # self-adaptive low-level reinforcement learning — # hom. horizontal

Caron et al. [32] single-tier # self-adaptive low-level string matching — ! —

Huber et al. [89] single-tier # non-adaptive hybrid rule-based — # hybrid

Iqbal et al. [92] multi-tier # self-adaptive hybrid hybrid — # hom. horizontal

Jiang et al. [99] multi-tier # non-adaptive hybrid online profiling — # hetr. horizontal

Malkowski et al. [137] multi-tier # self-adaptive hybrid hybrid — # hom. horizontal

Roy et al. [164] multi-tier # non-adaptive hybrid analytical model — ! hom. horizontal

Upendra et al. [200] multi-tier # non-adaptive high-level profiling — ! hetr. horizontal

Vasic et al. [205] single-tier # self-adaptive low-level online profiling — # hom. horizontal

Ali-Eldin et al. [4] single-tier # self-adaptive high-level analytical model — ! hom. horizontal

Dawoud et al. [52] single-tier # non-adaptive low-level rule-based — # compare ver. hor.

Fang et al. [62] single-tier # — — — — ! —

Yazdanov et al. [217] single-tier ! self-adaptive low-level regression — ! vertical

Ghanbari et al. [74] single-tier # non-adaptive high-level analytical model — # hetr. horizontal

Zhu and Agrawal [228] single-tier ! self-adaptive low-level reinforcement learning — # vertical

Dutta et al. [58] multi-tier # non-adaptive hybrid application profiling — # hybrid

Gandhi et al. [70] multi-tier # non-adaptive hybrid profiling — # hom. horizontal

Rui et al. [165] multi-tier # non-adaptive high-level rule-based — # hybrid

Jiang et al. [100] single-tier # non-adaptive high-level analytical model — ! hom. horizontal

Al-Haidari et al. [1] single-tier # non-adaptive high level rule-based — # hom. horizontal

Bu et al. [27] single-tier ! self-adaptive high level reinforcement learning — # vertical

Gambi et al. [67] single-tier # self-adaptive low-level Kriging regression — # hom. horizontal

Barrett et al. [21] single-tier # self-adaptive high-level reinforcement learning — # hetr. horizontal

Sedaghat et al. [170] single-tier # non-adaptive high-level — — # hetr. horizontal

Continued on next page
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Work
Application

Architecture

Sticky

Session
Adaptivity

Scaling

Indicators
Resource Estimation

Oscillation

Mitigation
Proactive Scaling Methods

Yazdanov et al. [216] single-tier # self-adaptive hybrid reinforcement learning — ! vertical

Ali-Eldin et al. [5] single-tier # switch — — — ! hom. horizontal

Almeida Morais et al. [6] single-tier # self-adaptive low-level various regressions — ! hom. horizontal

Nguyen et al. [146] multi-tier # non-adaptive hybrid online profiling — ! hom. horizontal

Herbst et al. [87] — # self-adaptive — — — ! —

Grozev and Buyya [78] single-tier ! non-adaptive low-level rule-based — # hom. horizontal

da Silva Dias et al. [50] single-tier # non-adaptive hybrid rule-based — ! hom. horizontal

Loff and Garcia [132] single-tier # non-adaptive low-level rule-based — ! hom. horizontal

Cunha et al. [49] single-tier # self-adaptive low-level rule-based theory # hom. horizontal

Netto et al. [145] single-tier # self-adaptive low-level rule-based theory # hom. horizontal

Aniello et al. [16] single-tier # non-adaptive high-level analytical model — ! hom. horizontal

Frey et al. [65] single-tier # non-adaptive hybrid fuzzy inference — ! hom. horizontal

Yang et al. [214] single-tier # non-adaptive hybrid rule-based — ! hetr. horizontal

Fernandez et al. [63] single-tier # non-adaptive high-level profiling — # hetr. horizontal

Srirama and Ostovar[182] single-tier # non-adaptive — — — # hetr. horizontal

Gandhi et al. [68] single-tier # self-adaptive high-level analytical model — # hybrid

Spinner et al. [181] single-tier ! self-adaptive hybrid analytical model — # vertical

Gergin et al. [72] multi-tier # non-adaptive high-level analytical model — # hom. horizontal

Han et al. [82] multi-tier # non-adaptive high-level analytical model — # hom. horizontal

Kaur and Chana [114] multi-tier # non-adaptive high-level analytical model — ! hom. horizontal

Gandhi et al. [69] multi-tier # self-adaptive hybrid analytical model — # hom. horizontal

Nikravesh et al. [147] — — — — — — ! —

Yanggratoke et al. [215] single-tier # self-adaptive high-level batch & online learning — # hom. horizontal

Grimaldi et al. [77] single-tier # self-adaptive low-level rule-based — # hom. horizontal

Gambi et al. [66] single-tier # self-adaptive high-level hybrid — # hom. horizontal

Continued on next page
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Table 2.2 – continued from previous page

Work
Application

Architecture

Sticky

Session
Adaptivity

Scaling

Indicators
Resource Estimation

Oscillation

Mitigation
Proactive Scaling Methods

Salah et al. [166] single-tier # non-adaptive high-level analytical model — # hom. horizontal

Iqbal et al. [90] multi-tier # self-adaptive high-level reinforcement learning — # hom. horizontal

Amazon [11] single-tier # non-adaptive high/low rule-based cooling time # hom. horizontal

RightScale [162] single-tier # non-adaptive high/low rule-based cooling time # hom. horizontal

Qu et al. [158] single-tier # non-adaptive low-level profiling — # hetr. horizontal

Jamshidi et al. [95] single-tier # self-adaptive high-level hybrid — # hom. horizontal

Grozev and Buyya [79] single-tier # self-adaptive hybrid rule-based — # hetr. horizontal
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Multi-tier

Multi-tier applications, as introduced in the previous section, are composed of sequen-

tially connected tiers. At each tier, the request either relies on the downstream tier to

complete its processing or it is returned to the upstream tier and finally to the user.

A widely-adopted architecture of this type usually consists three tiers: one frontend,

one application logic, and one database tier. The database tier is often considered dy-

namically unscalable and ignored by the auto-scalers.

Many works have targeted multi-tier applications. Some of them employ the divide

and conquer approach that breaks overall SLA into SLA of each tier, such as the works

conducted by Urgaonkar et al. [202], Singh et al. [177], Iqbal et al. [92], Malkowski et al.

[137], Upendra et al. [200], and Gergin et al. [72]. Others consider SLA of the whole ap-

plication and provision the resources to each tier holistically. This strategy requires more

efforts in modeling and estimating resource consumption using sophisticated queuing

networks and machine learning techniques as discussed in Section 2.4.11, and the re-

sulted auto-scalers are only applicable to multi-tier applications. Important works of this

kind include approaches proposed by Zhang et al. [223], Jung et al. [108], Padala et al.

[152], Lama and Zhou [122, 123], Han et al. [82], and Kaur and Chana [114].

Service-Oriented Architecture (Microservices)

Service-oriented architecture (SOA) or microservice architecture has now become the

dominant paradigm for large web applications, such as Amazon e-commerce website,

and Facebook. In this kind of architecture, applications are composed of standalone

services that interact with each other through pre-defined APIs. More importantly, the

services are not necessarily connected sequentially as in multi-tier applications. SOA

applications are commonly abstracted as directed graphs with each nodes representing

services and directed edges as their interactions.

Due to its complexity, it is hard to manage resource provision of all the services holis-

tically. Therefore, industry and most works employ the divide and conquer approach.

Differently, Jiang et al. [98] proposed a method that can satisfy SLA of the whole SOA
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application. It is based on a bottom-up approach with each service estimating its per-

formance after having one instance added or removed. Then it determines that scaling

which service can bring the greatest benefit regarding response time.

2.4.4 Session Stickiness

A session is a series interactions between a client and the application. After each opera-

tion, the client halts to read its feedback given by the application and then issues the next

move. To ensure a seamless experience, it is necessary to keep the intermediate statuses

of the clients during their sessions. Otherwise, the operations conducted by the clients

will be lost and they have to repeat the previous operations to proceed. Taking a social

network application as an example, a session can involve the following operations: the

client first accesses the home page and then logs into the application; after that, he per-

forms several actions such as viewing his and his friends’ timeline, uploading photos,

and updating his status, before he quits the application.

This session-based access pattern has caused issues on efficiently utilizing elastic re-

sources in Cloud because the stateful nature of session forces the user to be connected

to the same server each time he submits a request within the session if the session data

is stored in the server. Such sessions are considered sticky. They limit the ability of the

auto-scaler to terminate under-utilized instances when there are still unfinished sessions

handled by them. Therefore, it is regarded a prerequisite to transforming stateful servers

into stateless servers before an auto-scaler can manage them.

There are multiple ways to achieve this, and a complete introduction to them is out

of the scope of this chapter. The most adopted approach is to move the session data out

of the web servers and store them either at user side or in a shared Memcached cluster.

Though most auto-scalers require the scaling cluster to be stateless, there do exist

exception auto-scalers that can handle stateful instances. Chieu et al. [39, 40] proposed

an auto-scaler based on the number of active sessions in each server. They restricted a

server can be terminated only when there is no active session in it. Grozev and Buyya

[78] proposed a better approach by integrating a similar auto-scaler with a load balancing

algorithm that consolidates sessions into as few instances as possible.
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2.4.5 Adaptivity

Auto-scalers fall in the realm of control systems. As stated in the introduction, they in-

volve tuning the resources provisioned to the application to reach the target performance.

One major issue coupled with the design of a control system is its adaptivity to changes.

As in dynamic production environment, workload characteristic, and even the applica-

tion itself can change at any moment. Therefore, adaptivity is important to auto-scalers.

Based on the level of adaptivity, we classify the existing works into three categories.

2.4.6 Non-adaptive

In the non-adaptive approaches, the control model is predefined, and they make deci-

sions purely based on the current input. Examples are the rule-based approaches em-

ployed by the industry, such as Amazon Auto-Scaling service [11]. They require the user

to define a set of scaling up and scaling down conditions and actions offline. During pro-

duction time, the auto-scaler makes scaling decisions only when the conditions are met.

They do not allow automatic adjustment of the settings during production. When using

this type of auto-scalers, the users often need to spend reasonable effort in offline testing

to find the proper configuration.

2.4.7 Self-adaptive

Self-adaptive auto-scalers are superior to their non-adaptive counterparts. Though the

core control models in them are fixed as well, they are capable of autonomously tune

themselves according to the real-time quality of the control actions observed. In this

way, the designer only needs to determine the core control model, such as whether it

is linear or quadratic, and the auto-scaler will adjust and evolve itself to meet the tar-

get performance. This feature can be implemented through extending the pre-existing

self-adaptive control frameworks in control theory, such as Kamra et al. [110], Kaly-

vianaki et al. [109], and Grimaldi et al. [77]’s work. Self-adaptivity can also be realized

through dynamic measurement or correction of parameters in analytical models and ma-

chine learning approaches, such as reinforcement learning and regression. The detailed
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explanations of them are given in Section 2.4.11.

The benefit of introducing self-adaptivity is that it significantly reduces the amount

of offline preparation required to utilize an auto-scaler. Furthermore, once substantial

changes are detected, self-adaptive approaches can autonomously abort the current model

and retrain itself, thus, mitigating the maintenance effort as well. Their primary draw-

back is that it usually takes time for them to converge to a good model and the application

will suffer from bad performance during the early stage of training.

Self-adaptive Switching

Beyond utilizing a single self-adaptive module, some auto-scalers have employed a more

adaptive framework, which we call self-adaptive switching. In these approaches, they

simultaneously apply multiple non-adaptive or self-adaptive controllers and actively

switch control between controllers based on their observed performance on the appli-

cation. The included self-adaptive controllers continuously tune themselves in paral-

lel. However, at each moment, only the selected best controller can provision resources.

Patikirikorala et al. [153] employed this approach and Ali-Eldin et al. [5] proposed a

self-adaptive switching approach based on the classification of the application workload

characteristics, i.e., their periodicity and the burstiness.

2.4.8 Scaling Indicators

The actions of auto-scalers are based on performance indicators of the application ob-

tained through the monitoring phase. These indicators are produced and monitored at

different levels of the system hierarchy from low-level metrics at the physical/hypervisor

level to high-level metrics at the application level.

Low-Level Metrics

Low-level metrics, in the context of this chapter, are server information monitored at the

physical server/virtual machine layer by hypervisors, such as utilization of CPU, mem-

ory, and network resources, memory swap, and cache miss rate. These data can be ob-
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tained through monitoring platform of the Cloud provider or from monitoring tools for

operating systems. However, it is a non-trivial task to accurately infer the observed appli-

cation performance merely according to the low-level metrics, and therefore, makes it a

difficult task to make sure that the SLA can be met faithfully with the available resources.

Designing an auto-scaler which solely monitors low-level performance indicators is

possible. The simplest solution is to use the utilization of CPU and other physical re-

sources as indicators and scale up and scale down resources to maintain the overall uti-

lization within a predefined upper and lower bound. Industry systems widely adopt this

approach.

2.4.9 High-Level Metrics

High-level metrics are performance indicators observed at the application layer. Those

useful to auto-scaling include resource rate, average response time, session creation rate,

throughput, service time, and request mix.

Some metrics, like request rate, average response time, throughput, and session cre-

ation rate, are easy to measure. They alone enable operation of an auto-scaler. The easiest

method to construct one is to replace utilization metrics in the simple auto-scaler men-

tioned in the previous section with any of such high-level metric. However, auto-scalers

employing this approach are not able to accurately estimate the amount of resources

needed and often over or under provision resources.

Some approaches require obtaining the information about request service time and

request mix [114,177,223] to estimate how much resources needed. These metrics are not

straightforward to measure.

Service time is the time a server spent on processing the request, which is widely used

in the queuing models to approximate the average response time or sojourn time. Except

for a few works [72, 82] that assume this metric as known a priori, to accurately measure

it, either offline profiling [156] or support from the application [16] is required. There-

fore, instead of directly probing it, some works use other approaches to approximate

it. Kaur and Chana [114] mentioned the use of past server logs to infer the mean service

time. Gandhi et al. [69] employed Kalman filters to estimate service time during runtime.
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Zhang et al. [223] used a regression method to make the approximation. Jiang et al. [99]

resorted to profiling each server when it is first online using a small workload without

concurrency and then estimating service time through queuing theory. In another work,

Jiang et al. [98] utilized a feedback control loop to adjust the estimation of service time at

runtime.

Request mix is hard to measure because an understanding of the application is es-

sential to distinguish different types of requests. Designing a mechanism to accurately

classify various types of requests from outside of the application itself is an interesting

and challenging problem to be explored.

2.4.10 Hybrid Metrics

In some auto-scalers, both high-level and low-level metrics are monitored. A common

combination is to observe request rate, response time, and utilization of resources. Some

auto-scalers [69, 156] monitor them because the queueing models employed for resource

estimation require them as input. Some works [58,63,103,152,216] use these hybrid met-

rics to dynamically build a model relating specific application performance to physical

resource usage through online profiling, statistical, and machine learning approaches,

thus increasing the accuracy of resource estimation without constructing complex ana-

lytical models. Another important reason to monitor request rate along with low-level

metrics is to conduct future workload prediction [58, 164].

Besides low-level and high-level metrics from the platform and application, other

factors outside may also play a significant role. For example, Frey et al. [65], in their

fuzzy-based approach, utilize other related data, such as weather, and political events to

predict workload intensity.

2.4.11 Resource Estimation

Resource estimation lies in the core of auto-scaling as it determines the efficiency of re-

source provisioning. It aims to identify the minimum amount of computing resources

required to process the workload to determine whether and how to perform scaling op-
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erations. Accurate resource estimation allows the auto-scaler to quickly converge to the

optimal resource provision, while estimation errors either result in an insufficient pro-

vision, which leads to inevitable delay of the provisioning process and increased SLA

violations, or resource wastage that incurs more cost.

Various attempts have been made to develop resource estimation models from basic

approaches to methods with sophisticated models. We categorize them into six groups,

namely rule-based, fuzzy inference, application profiling, analytical modeling, machine

learning, and hybrid approaches. The existing methods in each cluster are explained and

compared afterward.

Rule-based Approaches

Rule-based approaches are widely adopted by industry auto-scalers, such as Amazon

Auto-Scaling Service [11]. Its kernel is a set of predefined rules consisting of trigger-

ing conditions and corresponding actions, such as “If CPU utilization reaches 70%, add

two instances”, and “If CPU utilization decreases below 40%, remove one instance”. As

stated in Section 2.4.8, users can use any metrics, low-level or high-level, to define the

triggering conditions, and the control target of the auto-scaler is usually to maintain the

concerned parameters within the predefined upper and lower threshold. Theoretically,

the simple rule-based approach involves no accurate resource estimation; only empirical

guessing hard coded in the action part of the rule as adding or removing certain amount

or percentage of instances. As the simplest version of auto-scaling, it commonly serves

as benchmark for comparison and is used as the basic scaling framework for works that

focus on other aspects of auto-scaling, such as Dawoud et al.’s work [52] which aims to

compare vertical scaling and horizontal scaling, and Rui et al.’s work [165] which consid-

ers all possible scaling methods, or prototyping works, like the one carried out by Iqbal

et al. [91].

Though simple rule-based auto-scaler is easy to implement, it has two significant

drawbacks. The first is that it requires an understanding of the application characteristics

and expert knowledge to determine the thresholds and proper actions. Al-Haidari et

al. [1] conducted a study to show that these parameters significantly affect auto-scaler’s
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performance. The second is that it cannot adapt itself when dynamic changes occur to

workload and application.

Hard coded number of instances to scale up and scale down, called step sizes, be-

comes inappropriate when the workload changes dramatically. For example, if the appli-

cation is provisioned by four instances at the start, adding one instance will boost 25% of

the capability. After a while, the cluster has increased to ten instances due to workload

surge, adding one instance in this case only increases 10% of capacity. Improvements

are made to the basic model using adaptive step sizes. Netto et al. [145] proposed an

approach that decides the step size holistically at runtime based on the upper threshold,

the lower threshold, and the current system utilization. It first deduces the upper and

lower bounds respectively for step sizes of scaling up and scaling down operations to

prevent oscillation and then scale the step sizes using a fixed parameter representing ag-

gressiveness of the auto-scaler determined by the user. They reported the adaptive strat-

egy performed best for bursty and peaky workload but lead to limited improvements for

other types of workloads. Cunha et al. [49] employed a similar approach. However, in

their approach, the aggressiveness parameter is also dynamically tunable according to

QoS requirements.

In addition to the step size, fixed thresholds also could cause inefficient resource uti-

lization. For instance, the thresholds of 70% and 40% may be suitable for a small number

of instances but are inefficient for large clusters as single instance has a subtle impact on

the overall utilization and a lot of instances actually can be removed before the overall

usage reaching the 40% lower bound. A solution to mitigate this problem is also to make

the thresholds dynamic. Lim et al. [128, 129] used this approach.

RightScale [162] proposes another important variation of the simple rule-based ap-

proach. Its core idea is to let each instance decide whether to shrink or expand the cluster

according to predefined rules and then utilize a majority voting approach to make the fi-

nal decision. Calcavecchia et al. [29] also proposed a decentralized rule-based auto-scaler.

In their approach, instances are connected as a P2P network. Each instance contacts its

neighbors for their statuses and decides whether to remove itself or start a new instance

in a particular probability derived from their statuses.
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Fuzzy Inference

Fuzzy-based auto-scalers can be considered as advanced rule-based auto-scalers as they

rely on fuzzy inference, the core of which is a set of pre-defined If-Else rules, to make

provision decisions. The major advantage of fuzzy inference compared to simple rule-

based reasoning is that it allows users to use linguistic terms like “high, medium, low”,

instead of accurate numbers to define the conditions and actions, which makes it easier

for human beings to effectively represent their knowledge (human expertise) about the

target. Fuzzy inference works as follows: the inputs are first fuzzifized using defined

membership functions; then the fuzzified inputs are used to trigger the action parts in

all the rules in parallel; the results of the rules are then combined and finally defuzzified

as the output for control decisions. Representative approaches of this kind include the

one proposed by Frey et al. [65] and the work conducted by Lama and Zhou [123]. Due

to the complexity of manually designing the rule set and possible changes happening

during runtime, fuzzy-based auto-scalers are commonly coupled with machine learning

techniques to automatically and dynamically learn the rule set [95,103,122]. Their details

are introduced in Section 2.4.11.

Application Profiling

We define profiling as a process to test the saturating point of resources when running

the specific application using synthetic or recorded real workload. Application profiling

is the simplest way to accurately acquire the knowledge of how many resources are just

enough to handle the given amount of workload concurrently. Tests need to be conducted

either offline or on the fly to profile an application.

Offline profiling can produce the complete spectrum of resource consumption under

different levels of workload. With the obtained model, the auto-scaler can more precisely

supervise the resource provisioning process. Upendra et al. [200], Gandhi et al. [70],

Fernandez et al. [63], and Qu et al. [158] employed this approach. The drawback of this

approach is that the profiling needs to be reconducted manually every time the applica-

tion is updated.
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Profiling can be carried out online to overcome this issue. However, the online envi-

ronment prohibits the auto-scaler to fine-grainedly profile the application as a VM should

be put into service as soon as possible to cater the increasing workload. Vasić et al. [205]

proposed an approach that first profiles the application, then classifies the application

signatures into different workload classes (number of machines needed). When changes

happen to the application, the profiled new application characteristics are fed into the

trained decision tree to carry out quick resource provisioning by finding the closest re-

source allocation plan stored before. Nguyen et al. [146] relied on online profiling to

derive a resource estimation model for each application tier. When profiling each tier,

other tiers are provisioned with ample resources. In this way, one by one, models for all

the tiers are obtained. Jiang et al. [99] proposed a quick online profiling technique for

multi-tier applications by studying the correlation of resource requirements that differ-

ent tiers pose on the same type of VM and the profile of a particular tier on that type of

VM. This approach allows them to roughly deduce performance of the VM on each tier

without actually running each tier on it. Thus, the newly acquired VM can be put into

service in relatively quicker speed.

Analytical Modeling

Analytical modeling is a process of constructing mathematical models based on theory

and analysis. For resource estimation problems in auto-scaling, dominant models are

built upon queuing theory [75].

In the generalized form, a queue can be represented as A/S/C, where A is the distri-

bution of time interval between arrivals to the queue, S is the distribution of time required

to process the job, and C stands for the number of servers. Common choices for A in the

existing works are M (Markov) which means that arrivals follow the Poisson process,

and G (General) which stands the inter-arrival time has a general distribution. For S, the

prominent alternatives are M (Markov) which represents exponentially distributed ser-

vice time, D (Deterministic) which means the service time is fixed, and G (General) which

stands the service time has a general distribution. Detailed introduction of different types

of queues is out of the scope of this chapter.
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For a single application, tier, or service, if the underlying servers are homogeneous, it

is more convenient to abstract the whole application/tier/service as a single queue with

one server. Kamra et al. [110], Villela et al. [206], Gandhi et al. [68, 69], and Gergin et

al. [72] employed this method. Some described the cluster using a queue with multiple

servers, like Ali-Eldin et al. [4], Jiang et al. [100], Aniello et al. [16], and Han et al.

[82]. Other works modeled each server as a separate queue, such as the ones proposed

by Doyle et al. [55], Urgaonkar et al. [202], Roy et al. [164], Ghanbari et al. [74], Kaur

and Chana [114], Spinner et al. [181], and Jiang et al. [98]. Bi et al. [23] proposed a

hybrid model, in which the first tier is modeled as an M/M/c queue while other tiers are

modeled as M/M/1 queues. Different from the traditional queuing theory, Salah et al.

[166] used an embedded Markov chain method to model the queuing system.

When the application involves multiple tiers or is composed of many services, single

layer queuing models are insufficient. Instead, a network of queues is needed to describe

the components and their relations. These models are known as queuing networks. As

introduced in Section 2.4.3, to decide a number of resources in each component, there

are two strategies. One is to divide the SLA into separate time portions and distribute

them to each component. By this method, the queuing model for each component can

be easily solved. However, it usually results in suboptimal solutions globally. Another

method is to holistically provision resources to all the components to satisfy the SLA.

Such method is more challenging as it is difficult and computationally heavy to find the

optimal resource provision plan regarding a complex queuing network model.

Some models and methods have been proposed to tackle the challenge. Villela et al.

[206] described the model as an optimization problem and used three different approxi-

mations to simplify it. Bi et al. [23] as well employed an optimization approach. Roy et

al. [164] and Zhang et al. [223] utilized MVA (Mean Value Analysis), a widely adopted

technique for computing expected queue lengths, waiting time at queuing nodes, and

throughput in equilibrium for a closed queuing network, to anticipate the utilization at

each tier under the particular provision. Han et al. [82] adopted a greedy approach that

continuously adds/removes one server to the most/least utilized tier until the estimated

capacity is just enough to serve the current load.
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As mentioned in Section 2.4.9, some parameters in the queuing models are hard to

measure directly, like service time. Therefore, the proposed auto-scalers should prop-

erly handle this issue as well. The detailed techniques have already been introduced in

Section 2.4.9.

Machine Learning

Machine learning techniques in resource estimation are applied to dynamically construct

the model of resource consumption under a specific amount of workload (online learn-

ing). In this way, different applications can utilize the auto-scalers without customized

settings and preparations. They are also more robust to changes during production as

the learning algorithm can self-adaptively adjust the model on the fly regarding any no-

table events. The online machine learning algorithms are often implemented as feedback

controllers to realize self-adaptive evolution. Though offline learning can also be used

to fulfill the task, it inevitably involves human intervention and thus loses the benefit of

using machine learning. For works that are using offline learning — if there exists any,

we would prefer to classify them into the application profiling category.

Despite their easiness of usage and flexibility, machine learning approaches do suffer

a major drawback. It takes time for them to converge to a stable model and thus causes

the auto-scaler to perform poorly during the active learning period. Certainly, the ap-

plication performance is affected in this process. Furthermore, the time that is taken to

converge is hard to predict and varies case by case and algorithm by algorithm.

Online learning used by existing auto-scalers can be divided into two types: rein-

forcement learning and regression.

Reinforcement Learning: Reinforcement learning aims to let the software system learn

how to react adaptively in a particular environment to maximize its gain or reward. It

is suitable to tackle automatic control problems like auto-scaling [21, 27, 56, 57, 61, 90, 127,

191, 216, 228]. For the auto-scaling problem, the learning algorithm’s target is to generate

a table specifying the best provision or deprovision action under each state. The learning

process is similar to a trial-and-error approach. The learning algorithm chooses an indi-
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vidual operation and then observes the result. If the result is positive, the auto-scaler will

be more likely to take the same action next time when it faces a similar situation.

The most used reinforcement learning algorithm in the auto-scaling literature is Q-

learning. A detailed description of the Q-learning algorithm and their variations in auto-

scaling can be found in Section 5.2 of the survey by Lorido-Botran et al. [133].

Regression: Regression estimates the relationship among variables. It produces a func-

tion based on the observed data and then uses it to make predictions. Under the context

of resource estimation, the auto-scaler can record system utilization, application perfor-

mance, and the workload for regression. As the training proceeds and more data are

available, the predicted results also become more accurate. Although regression requires

the user to determine the function type first, for example, whether the relationship is lin-

ear or quadratic, in the case of auto-scaling web applications, it is usually safe to assume

a linear function.

Chen et al. [37] used regression to dynamically build the CPU utilization model of

Live Messenger given some active connections and the login rate. The model is then used

for resource provision. Bodik et al. [23] employed smoothing splines nonlinear regres-

sion to predict mean performance under a certain amount of resources. Then they calcu-

lated the variance based on the estimated mean. After that they used a local polynomial

(LOESS) regression to map mean performance to variance. Through this method, they

found out that higher workload results in both mean and variance of the response time to

increase. To detect sudden changes, they rely on conducting a statistical hypothesis test

of the residual distribution in two different time frames with probably different sizes.

Suppose the test result is statistically significant, the model needs to be retrained. Padala

et al. [152] utilized auto-regressive-moving-average (ARMA) to dynamically learn the

relationship between resource allocation and application performance considering all re-

source types in all tiers. Gambi et al. [67] proposed an auto-scaler using a Kriging model.

Kriging models are spatial data interpolators akin to radial basis functions. These models

extend traditional regression with stochastic Gaussian processes. The major advantage

of them is that they can converge quickly using fewer data samples. Grimaldi et al. [77]
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proposed a Proportional-Integral-Derivative (PID) controller that automatically tunes pa-

rameters to minimize integral squared error (ISE) based on a sequential quadratic pro-

gramming model.

Yanggratoke et al. [215] proposed a hybrid approach using both offline learning and

online learning. They first used a random forest model and traces from a testbed to train

the baseline. Then they applied regression-based online learning to train the model for

real-time resource estimation.

Hybrid Approaches

All the previous listed approaches have their advantages and limitations. Therefore,

some works have integrated multiple methods together to perform resource estimation.

We classify them as hybrid approaches and individually introduce them and the ratio-

nales behind such integration.

Rule-based approaches are inflexible when significant changes occur to applications

and often require expert knowledge to design and test. However, if the rules can be

constructed dynamically and adaptively by some learning techniques, such concern van-

ishes. Jing et al. [103] and Jamshidi et al. [95] proposed approaches that combine machine

learning and fuzzy rule-based inference. They utilized machine learning to dynamically

construct and adjust the rules in their fuzzy inference engine. Lama and Zhou [123] first

proposed a fixed fuzzy-based auto-scaler with a self-adaptive component that dynami-

cally tunes the output scaling factor. After that, they proposed another fuzzy inference

approach as a four-layer neural network [122] in which the membership functions and

rules can self-evolve as the time passes.

Some analytical queuing models require the observation of volatile metrics that are

hard to measure directly. In these cases, a widely-adopted solution is to use machine

learning approaches to estimate the concealed metrics dynamically. Gandhi et al. [69]

adopted Kalman filter to assess the average service time, background utilization, and

end-to-end network latency. Zhang et al. [223] employed application profiling and re-

gression to learn the relationship of average CPU utilization and average service time

at each tier under given request mix to solve their queuing network model using Mean
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Value Analysis.

To mitigate the drawback of machine learning approaches, which are slow to con-

verge and may cause plenty of SLA violations, another model can be used to substitute

the learning model temporarily and then shift it back after the learning process has con-

verged. Tesauro et al. [192] and Gambi et al. [66] proposed this type of auto-scalers. Both

of them utilized an analytical queuing model for temporary resource estimation during

the training period. Tesauro et al. [192] employed reinforcement learning while Gambi

et al. [66] adopted a Kriging-based controller for training.

2.4.12 Oscillation Mitigation

Oscillation is the situation that auto-scaler continuously performs inverse scaling opera-

tions back and forth, such as provisioning 2 VMs and then in short time deprovisioning

2 VMs. It happens when monitoring and scaling operations are too frequent, or the auto-

scaler is poorly configured. Such concerns are magnified when dealing with rule-based

auto-scalers whose resource estimations are relatively empirical and coarse-grained. If

the scaling thresholds are poorly configured, oscillation is likely to happen. For example,

suppose the scale-up threshold is set to 70%, the scale-down threshold is set to 50%, and

the current utilization is 71% with only one instance running, the auto-scaler will add

one more instance to the cluster to reduce the utilization. It then quickly drops to 35%,

which is below the scale-down threshold, thus causing oscillation.

Cooling Time

One common solution adopted by industries [11] to mitigate oscillation is to coercively

wait a fixed minimum amount of time between each scaling operations. The time is set

by users and is widely called as the cooling time. It should be set to at least the time taken

to acquire, boot up, and configure the VM. Such method is simple but effective to avoid

frequent scaling operations. However, setting a long cooling time will also result in more

SLA violations as the application cannot be scaled up as quickly as before. Besides, it

cannot handle the situation that the auto-scaler is poorly configured.
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Another way of setting the cooling time is to confine the scaling condition further.

Suppose the monitoring interval of the auto-scaler is 1 minute, we can achieve a pro-

longed scaling interval by setting the scaling trigger to how many times the monitored

value exceeds the defined threshold consecutively.

Dynamic Parameters

Besides cooling time, researchers have proposed approaches that dynamically adjust

some parameters to reduce the possibility of causing oscillation.

Lim et al. [128,129] described an approach through dynamically tuning the triggering

thresholds for scale-down operations. The core idea is to increase the scale-down thresh-

old when more resources are allocated to decrease the target utilization range and vice

versa when resources are deallocated, which can effectively mitigate oscillation if the ap-

plication resource requirement varies significantly during peak time and non-peak time.

Usually, during the non-peak time, a large target range is desirable to avoid the situa-

tion described in the poorly configured example, while during peak hours, a small target

range is preferred to keep the utilization as close to the scale-up threshold as possible.

Bodik et al. [26] introduced a mechanism that they call “hysteresis parameters” to

reduce oscillation. These parameters control how quickly the controller provisions and

deprovisions resources. They are determined by simulations using Pegasus, an algo-

rithm that compares different control settings to search the suitable one. Pralada at al.

[152] used a stability factor to adjust the aggressiveness of the auto-scaler. As the factor

increases, the control objective will be more affected by the previous allocation. As a re-

sult, the auto-scaler responds more slowly to the produced errors caused by the previous

actions in the following resource scaling windows and thus reduces oscillations. Lama

and Zhou [123] employed a similar approach on their fuzzy-based auto-scaler. Their

approach is more advanced and flexible as the factor is self-tunable during runtime ac-

cording to the resulted errors.
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2.4.13 Theory

The above methods are only capable of mitigating the possibility of oscillations. If in

theory, we can identify the settings that might cause oscillations and thus pose restric-

tions on such settings, the risk of oscillation will be eliminated. Cunha et al. [49] and

Netto et al. [145] adopted this approach and proposed models that identify the potential

oscillation conditions in their rule-based auto-scalers.

2.4.14 Scaling Timing

When to scale the application is a critical question needed to be answered by auto-scalers.

However, there is no perfect solution for this issue as different applications have diverse

workload characteristics, and preference of cost and QoS. Auto-scalers can be classified

into two groups based on this criterion: auto-scalers that reactively scale the application

only when necessary according to the current status of the application and the workload,

and auto-scalers that support proactively provision or deprovision resources considering

the future needs of the application.

For applications with gradual and smooth workload changes, reactive auto-scalers

are usually preferred because they can save more resources without causing a signifi-

cant amount of SLA violations. In contrast, applications with drastic workload changes

or strict SLA requirements often require proactive scaling before the workload increases

to avoid incurring a significant amount of SLA violations during the provisioning time.

Such strategy relies on prediction techniques to timely foresee incoming workload changes.

Prediction is the process of learning relevant knowledge from the history and then ap-

ply it to predict the future behaviors of some object. The assumption that behaviors are

predictable lies that they are not completely random and follow some rules. Therefore,

workload prediction is only viable for the workloads with patterns and thus, cannot han-

dle the random bursts of requests, which is common in some applications, like news feed

and social network. For these bursty workload scenarios, currently there is no effective

solution, and we can only deal with them reactively in the best effort. Hence, regardless

the existence of support for proactive scaling, a qualified auto-scaler should always be
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able to scale reactively.

Proactive Scaling

As the accuracy of the prediction algorithm determines the capability of the auto-scaler to

scale applications proactively, in this section, we survey prediction algorithms that have

been employed by state-of-the-art works.

Workload Prediction Data Source: It is necessary to study the past workload history

to understand workload characteristics, including the workload intensity and workload

mix during each time frame, to predict the workload. General purpose workload predic-

tors usually only utilize past workload information to make predictions.

Besides workload history, individual applications can rely on available information

from other aspects to predict request bursts that are impossible to be derived from past

workload data alone, such as weather information for an outdoor application, and politi-

cal events for a news feed application. However, the relevant parameters are application

specific and thus this feature is hard to be integrated into a general purpose auto-scaler.

Besides, it is also challenging to devise a prediction algorithm with real-time accuracy for

resource provisioning, because there are too many parameters in the model and errors

can quickly accumulate. The work by Frey et al. [65] considers multiple outside param-

eters in an auto-scaler. Their approach integrates all the prediction information into a

fuzzy controller.

Though it is challenging to predict the right amount of workload with outside infor-

mation, it is viable to timely detect events that may affect incoming workload intensity

through social media and other channels [219]. Since this is a broad topic itself, we focus

on prediction algorithms only based on workload history.

Prediction Horizon and Control: Typically, a prediction algorithm loops in a specified

interval to predict the average or maximum workloads arriving at the application during

each of the next few intervals, which form the prediction horizon. It determines how far

in the future the auto-scaler aims to predict.



56 Literature Review

There are two approaches that auto-scalers can apply the prediction results in re-

source provision. The first way, which is adopted by the majority of works, takes the

prediction horizon as the control interval and scales the application only based on the pre-

dicted workload of the next horizon. The weakness of this approach is that the auto-scaler

is likely to make short-sighted scaling decisions if the horizon is too short or the volatil-

ity of workload is high. The other strategy is called Model Predictive Control (MPC).

It sets the control interval the same to the prediction interval. When making decisions,

it considers all the intervals within the horizon and determines the scaling operations

at each interval using optimization. However, when executing the scaling operations,

it only performs the action for the next interval and discards operations for the rest in-

tervals in the horizon. This method mitigates the problem of provision for short-term

benefits, but it requires solving complex optimization models, and thus, consumes much

more computing power. Ghanbari et al. [73, 74], and Zhang et al. [224] employed this

approach.

To tune the length of the horizon, users can either adjust the duration of each interval

or number of intervals in the horizon. The size of the interval is critical to prediction pre-

cision. A large interval can significantly degrade the prediction accuracy and is useless

for real-time control if the interval is greater than the control interval of the auto-scaler.

The number of intervals in the horizon is also a crucial parameter, especially for the MPC

approach. A balanced number should be chosen for the auto-scaler to reach good per-

formance. If it is too small, MPC cannot fully realize its potential to make decisions for

the long-term benefit. A large number, on the other hand, may mislead the auto-scaler as

predictions for the intervals far in the future, become increasingly inaccurate.

Workload Prediction Algorithms: Regarding workload prediction algorithms, they can

be coarsely classified into two types: prediction according to recent trends and prediction

based on regular patterns.

Prediction according to recent trends aims to use the workload data monitored in

the near past to determine whether the workload is increasing or decreasing and how

much it will change. In this case, only a few data is stored for prediction purpose. Time
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series analysis algorithms are commonly applied to this type of prediction tasks, such as

linear regression [26], various autoregressive models (AR) [37,62,164,214,216], and neural

network-based approaches [16,147,156]. Besides using time-series analysis, Nguyen et al.

[146] proposed another method, which considers each time interval as a wavelet-based

signal and then applies signal prediction techniques.

Prediction algorithms based on regular patterns assume the workload is periodic,

which is valid for many applications as they tend to be more accessed during the day-

time, weekdays, or the particular days in a year (tax report period, Christmas holidays).

By finding these patterns, predictions can be easily made. Different from prediction al-

gorithms based on recent trends, this type of algorithm requires a large workload archive

across an extended period. Various approaches have been explored to identify work-

load patterns when building auto-scalers. Fang et al. [62] employed signal processing

techniques to discover the lowest dominating frequency — the longest repeating pattern.

Silva Dias et al. [50] utilized Holt-Winter model, which aims to identify seasonality in the

workload for prediction. Jiang et al. [100] devised an approach by first identifying the top

K most relevant monitored data using an auto-correlation function and then employing

linear regression on the selected data for prediction. Urgaonkar et al. [202] adopted an

algorithm based on the histogram for the workload with daily patterns.

Herbst et al. [87] integrated many predictors into one auto-scaler. They presented

an approach to dynamically select appropriate prediction methods according to the ex-

tracted workload intensity behavior (WIB, simply the workload characteristics) and user’s

objectives. The mappings of prediction methods to WIBs are stored in a decision tree and

are updated during runtime based on the recent accuracy of each algorithm.

Resource Usage Prediction: Instead of predicting workload, it is also possible to di-

rectly predict resulted resource usage according to the historical usage data. This strategy

is commonly used by auto-scalers only support vertical scaling, as for a single machine,

resource usage can substitute workload intensity. Some proposals [32,93] that target hor-

izontal scaling also follows this strategy to accomplish both workload prediction and

resource estimation together.
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Gong et al. [76] used signal processing to discover the longest repeating pattern of

resource usage and then relied on dynamic time warping (DTW) algorithm to make the

prediction. For applications without repeating patterns, they referred to a discrete-time

Markov chain with finite states to derive a near prediction of future values. Islam et

al. [93] explored the use of linear regression and neural network to predict CPU usage.

Caron et al. [32] adopted a pattern matching approach which abstracts it as a string

matching problem and solved it using the Knuth-Morris-Pratt (KMP) algorithm. Yaz-

danov et al. [217] utilized an auto-regressive (AR) method to predict short-term CPU us-

age. Almeida Morais et al. [6] employed multiple time series algorithms to predict CPU

usage, and based on their runtime accuracy, the best prediction algorithm is selected.

[132] also used various prediction algorithms. However, instead of selecting the best

one, their approach combine the results of different predictors using weighted k-Nearest

Neighbors algorithm. The weight of each predictor is dynamically adjusted according to

their recent accuracy.

2.4.15 Scaling Methods

Depending on the particular Cloud environment, elastic scaling can be performed ver-

tically, horizontally, or in a hybrid. Each of them has their advantages and limitations.

In this section, we discuss the key factors that need to be considered when making the

provisioning plan [88].

Vertical Scaling — VM Resizing

Vertical scaling means removing or adding resources, including CPU, memory, I/O, and

network, to or from existing VMs. To dynamically perform these operations, modern hy-

pervisors utilize mechanisms such as CPU sharing and memory ballooning, to support

CPU and memory hot-plug. However, major Cloud providers, such as Amazon, Google,

and Microsoft, do not support adjusting resources during runtime. In these platforms, it

is essential to shut down the instance first to add resources. Some providers like Centu-
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rylink1 allow users to scale CPU cores without downtime vertically. Profitbricks2 permits

to add both CPU and memory to the VMs dynamically.

Vertical scaling is considered not suitable for highly scalable applications due to its

limitations. Ideally, the maximum capacity a VM can scale to is the size of the phys-

ical host. However, multiple VMs are usually residing on the same physical machine

competing for resources, which further confines the potential scaling capability. Though

limited, dynamic vertical scaling outperforms horizontal scaling in provision time as it

can be in effect instantaneously. Besides, some services or components that are difficult

to replicate during runtime, such as database server, and stateful application server, can

be benefited by vertical scaling. Dawoud et al. [52] conducted an experimental study of

vertical scaling using RUBBOS benchmark on both its application server and database,

which highlights the advantages of vertical scaling mentioned above.

Many auto-scalers have been developed using solely vertical scaling to manage VMs

on the same physical host. Some of them only considered scaling CPU resources [109,

173,181,217], and others targeted both CPU and memory [52,76,216,228]. Jing et al. [103]

focused on CPU and claimed their method could be extended to other resources. Bu et

al. [27] proposed an approach that adjusts not only CPU and memory allocation but also

application parameters. Padala et al. [152] scaled both CPU and disk. These auto-scalers

are mostly deployed in private Clouds or by Cloud providers.

Horizontal Scaling — Launching New VMs

Horizontal scaling is the core of the elasticity feature of Cloud. Most Cloud providers

offer standardized VMs of various sizes for customers to choose. Others allow users to

customize their VMs with a specific amount of cores, memory, and network bandwidth.

Besides, multiple pricing models are co-existing in the current Cloud market, which fur-

ther increases the complexity of the provisioning problem.

1https://www.ctl.io/autoscale/
2https://www.profitbricks.com/help/Live Vertical Scaling
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Heterogeneity: Regarding a single tier/service within a web application, if the billing

is constant, the use of homogeneous VMs is well acceptable as it is easy to manage. The

auto-scaling services offered by Cloud providers only allow the use of homogeneous

VMs. Selecting which type of VM is considered the responsibility of users in commercial

auto-scalers. The optimal solution depends on the resource profile of the tier/service,

e.g., whether it is CPU or memory intensive, and the workload characteristic. If the

workload is always large enough, different sizes of instances make little difference. While

for a small and fluctuant workload, smaller instances are preferred as scaling can be

conducted in finer granularity and thus save more cost.

Cost-efficiency of VM is highly co-related to the application and workload. If changes

happen to them, the choice of VM type should also be reconfigured. Grozev and Buyya

[79] proposed a method that detects changes online using the Hierarchical Temporal

Memory (HTM) model and a dynamically trained artificial neural network (ANN) and

then reselects the most cost-efficient VM type.

The use of heterogeneous VMs to scale web applications has been explored in the liter-

ature. Under conventional billing, where price grows linearly with VM’s capability, het-

erogeneity can bring some extra cost-saving but not significant. Furthermore, it is often

computing-intensive to search the provision plan with a combination of heterogeneous

VMs. Srirama and Ostovar [182] employed linear programming to solve the provision

problem, yet only achieved limited cost saving against AWS auto-scaling. Fernandez et

al. [63] abstracted the provision combinations as a tree and searched the proper provision

by traversing the tree according to different SLAs. In a different scenario in which the ca-

pability of VMs increases exponentially to their prices, heterogeneity has the potential to

save significant cost, which is shown in works done by Sedaghat et al. [170] and Upen-

dra et al. [200]. They employed a similar approach by considering the transition cost (the

time and money spent to convert from the current provision to the target provision) and

the cost of resource combination in the optimization problem.

Pricing Models: The current Cloud pricing models can be classified into three types by

pricing model: on-demand, reserved, and rebated. In on-demand mode, the provider
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sets a fixed unit price for each type of VM or unit of particular resource and charges

the user by units of consumption. Users submit requests for resources and obtain the

required resources with agreed performance. The resources are released only when the

users terminate them, which most auto-scalers assume the target application is adopting.

The reserved mode requires the user to pay an upfront fee for cheaper use of a certain

amount of resources within an agreed period. If highly utilized, users can save a consid-

erable sum of money than acquiring resources in on-demand mode. Providers create the

rebated mode aiming to sell their spare capacity. They are usually significantly cheaper

than on-demand resources. There are several ways to offer rebated resources. Amazon

employed an auction mechanism to sell instances, called spot instances. In this mode,

the user is required to submit a bid on the resources. Suppose the bid exceeds the cur-

rent market price, the bid is fulfilled and the user is only charged for the current market

price. The acquired spot instances are guaranteed to have the same performance of their

on-demand counterparts. However, they are reclaimed whenever the market price goes

beyond user’s bidding price. Google offer their spare capacity as preemptible VMs. Dif-

ferent from Amazon, they set a fixed price to the VM, which is 30% of the regular price,

and the VM is available at most for 24 hours. Rebated instances are considered not suit-

able to host web applications that are availability-critical. ClusterK3 and our proposed

approach in Chapter 5 however have demonstrated that it is feasible to build an auto-

scaler utilizing spot instances by exploiting various market behaviors of different spot

markets to achieve both high availability and considerable cost saving.

Pricing models also can be classified according to billing period, which is the mini-

mum unit consumption. Providers have set their billing period to every minute, hour,

day, week, month, or year. The length of the billing period has a significant impact on the

cost-efficiency for elasticity. Obviously, the shorter the billing period, the more flexible

and cost-efficient it is for auto-scaling.

3http://www.geekwire.com/2015/amazon-buys-clusterk-a-startup-that-lets-developers-run-aws-
workloads-more-cheaply/ acquired by AWS in 2015
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Hybrid

As mentioned, horizontal scaling is slow in the provision and vertical scaling is confined

by the resources available in the host. It is natural to employ vertical scaling and horizon-

tal scaling together to mitigate these issues. The idea is to utilize vertical scaling when

possible to quickly adapt to changes and only conduct horizontal scaling when vertical

scaling reaches its limit. Urgaonkar et al. [202], Huber et al. [89], Rui et al. [165], and

Yang et al. [214] followed this strategy.

Mixing vertical scaling and horizontal scaling can also bring cost benefit. Dutta et al.

[58], and Gandhi et al. [68] explored optimization techniques to search for the scaling

plan that incurs the least cost with a hybrid of vertical and horizontal scaling.

Vertical scaling and horizontal scaling can be separately applied to different compo-

nents of the application as well since some parts such as database servers are difficult to

be horizontally scaled. Nisar et al. [148] demonstrated this approach in a case study.

2.5 Summary

In this chapter, we reviewed the challenges and developments in both selection and pro-

vision aspects of managing web applications in multiple Clouds. Particularly, we focused

on discovery and selection of Cloud services according to QoS requirements and auto-

scaling techniques. Our proposal aims to enhance the state-of-the-art by addressing some

tackled challenges or improving the previous solutions.

Regarding Cloud service discovery algorithms, we classify them into two broad groups:

service ranking and matchmaking. We compared methods used in earlier works and

identified their shortcomings. In the proposed solution (Chapter 3), we integrated hier-

archical fuzzy inference into multi-criteria Cloud discovery to ease the representation of

user requirements and preferences. It also considers performance variations by utilizing

various statistical metrics.

For selecting data centers to host web applications, we listed major factors that are

considered in the process. After that, we introduced existing works based on their spe-

cific goals and models. Different from the previous works, we take extra latencies caused
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by complying data consistency semantics and data center migration cost into account in

the proposed solution (Chapter 4).

About auto-scaling techniques, we abstracted them as a MAPE (Monitoring, Analysis,

Planning, and Execution) loop. We identified challenges in each phase of the loop and

presented a taxonomy of the existing works based on their solutions to the challenges.

Upon that, we explained and compared the existing approaches. To further improve

their cost-efficiency, we propose to utilize unreliable rebated resources to auto-scale web

applications. Our approach is not only capable of saving significant cost, but also ensures

high availability under current Cloud market (Chapter 5). In addition to auto-scaling, we

further propose a solution that handles short-term resource overloads which are com-

plicated to be dealt timely and effectively by current auto-scaling approaches, through

geographical load balancing among multiple data centers (Chapter 6).

In the next chapter, we introduce the proposed technique for discovering satisfactory

Cloud services.





Chapter 3

A Cloud Trust Evaluation Approach
using Hierarchical Fuzzy Inference

System for Service Selection

To realize the benefits of using Clouds, users need fist to select the proper Cloud services that can

satisfy their applications’ functional and non-functional requirements. However, this is a challenging

task due to a large number of available services, users’ unclear requirements, and performance vari-

ations in Cloud. Trust management systems can help users to identify adequate services in unstable

environments. But existing trust evaluation approaches cannot be directly applied to the Cloud be-

cause of their limitations. In this chapter, we propose a new method that evaluates satisfiability of

Clouds as trust according to users’ fuzzy Quality of Service (QoS) requirements to facilitate service

selection. We demonstrate the effectiveness and efficiency of our approach through simulations and

show how our approach can be applied through case studies.

3.1 Introduction

TO realize the benefits of using Cloud, users need to ensure the trading service

providers can fully satisfy their applications’ functional and non-functional re-

quirements. However, there are a plenty of Cloud providers offering similar services

with different pricings and performances, which creates difficulty for users to find the

most suitable service. Therefore, it is essential to develop automatic mechanisms to iden-

tify satisfactory services according to different application requirements.

This chapter is derived from: Chenhao Qu, and Rajkumar Buyya, “A Cloud Trust Evaluation System
using Hierarchical Fuzzy Inference System for Service Selection”, Proceedings of the 28th IEEE International
Conference on Advanced Information Networking and Applications (AINA 2014, IEEE CS Press, USA), Victoria,
Canada, May 13-16, 2014.
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Observed by experiments [169], VM performances within the same Cloud are far from

stable. Schad et al. [169] pointed out that one influencing cause is the hardware hetero-

geneity in the underlying physical infrastructure, e.g., different types of CPU, memory,

and disk used on the physical hosts. Besides that, the interference from collocated VMs

also affects performance significantly [119]. Thus, the surge of VM requests in peak hours

often causes performance degradation. Some other providers, e.g., eApps [59], dynam-

ically allocate CPU to VMs on the same host according to their priorities, which makes

VM performances even more unstable. Since the aggregated inherent variability is non-

negligible [169], it is necessary to take it into account in the selection phase to improve

the cost-efficiency of using Clouds.

Trust management systems have successfully helped users to select competent and

trustworthy services in different dynamic environments [106]. However, existing trust

evaluation approaches cannot be directly applied to the Cloud. The major obstacle is

that Cloud users have different expectations on service when deploying various applica-

tions. Therefore, Cloud trust evaluation systems should be able to capture personalized

requirements and preferences to provide customized service.

Many state-of-art Cloud service discovery approaches [71, 142, 197–199, 209] need

users to submit static weights to model preferences for attributes, which requires expert

knowledge and is time-consuming. To let users smoothly adopt Cloud, a more user-

friendly way is to let them represent their vague preferences in linguistic phrases. Be-

sides, sometimes it is also difficult for users to define QoS requirements in actual values,

e.g., users need to conduct sophisticated tests to determine the exact CPU power required

to process 50 transactions in parallel. Similarly, by using approximate linguistic descrip-

tors, users can define requirements easily and quickly.

In this chapter, we propose a new method that evaluates and ranks the satisfiability

of Cloud services to user’s personalized requirements to support Cloud service selection.

In particular, we measure trust of Clouds as their satisfactory degree to specific user re-

quirements based on their past performances. We employ membership functions and

fuzzy hedges to capture users’ personal requirements and preferences for different QoS

attributes and then use a hierarchical fuzzy inference system to derive trust levels. By
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analyzing past benchmark results, our approach can identify services that are likely to

meet all QoS requirements in the whole application life cycle. Not that, like other Cloud

service discovery approaches, our approach is general-purpose and can be applied to

various kinds of applications apart from web applications. Through simulations experi-

ments, we demonstrate the effectiveness of our approach, and by case studies, we show

how our approach can be applied.

The remainder of this chapter is organized as follows. We introduce relevant back-

ground about trust management and fuzzy inference in the next section. Then we discuss

related works and their limitations. After that, we present our trust evaluation method,

followed by the performance evaluation. In Section 3.6, we illustrate the usage of our ap-

proach with two case studies. Then we discuss the limitations of our approach in Section

3.7. Finally, we summarize the chapter.

3.2 Background

3.2.1 Trust Management System

Trust has different definitions under particular contexts. In distributed system, trust is

usually defined as the subjective belief that the system the user intending to interact with

will behave as expected [106]. Such belief should be derived from substantial evidence,

such as past performance, peer recommendations, and certificates. Trust management

systems are designed to aggregate trust from above evidence in real time and provide

trust query services to parties in concern. They have played important roles in helping

users to identify adequate services in different environments. However, since state-of-

the-art trust management systems are usually developed for specific platforms, they are

unsuitable for Cloud where users run diverse applications for various purposes. Besides,

they often use user ratings as evidence, which is also inappropriate for Clouds because

users’ different expectations for services are likely to affect their ratings. For existing trust

management systems and trust evaluation techniques, interested readers can find more

details in the survey done by Jøsang et al. [106]. Different from previous methods in other

environments, our trust evaluation approach can provide customized service according
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Figure 3.1: A Typical Fuzzy Inference System

to users’ individual expectations.

3.2.2 Hierarchical Fuzzy Inference System

Fuzzy inference systems have been widely used to solve control and reasoning problems

in uncertain environments due to its ability to handle inaccurate inputs. Figure 3.1 shows

a typical fuzzy inference system. It has three main elements:

1) Inference Engine: It defines the fuzzy logic operators and defuzzifier used in the

inference process.

2) Membership Functions: A membership function determines to what degree the fuzzy

element belongs to the corresponding fuzzy set. It maps crisp values to membership

levels between 0 and 1. In fuzzy inference system, each input and output variable

have its individual set of membership functions.

3) Rulebase: It is a set of “If-Then” rules that define the inference model. The rule

structure is like: “If antecedent Then consequent”, where antecedent and consequent

are fuzzy propositions connected by “AND” or “OR” operators.

The inference process usually involves five major steps:

1) Fuzzification: input crisp values into the membership functions to obtain correspond-

ing membership degrees of each input variable regarding specific fuzzy set.

2) Applying Fuzzy Operations: obtain the membership degree of the antecedent using

“AND” and “OR” operators.
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3) Implication: obtain the fuzzy set of each rule using the defined implication operator.

4) Aggregation: aggregate output fuzzy sets of all rules using the defined aggregation

operator.

5) Defuzzification: transform the aggregated fuzzy set into a crisp value using the de-

fined defuzzification algorithm.

A hierarchical fuzzy inference system is connected by multiple atomic fuzzy infer-

ence modules with outputs of the low-level modules serving as inputs to the high-level

modules. It brings two main advantages comparing to a non-hierarchical one. The first is

that it can reduce the number of “If-Then” rules, which greatly simplifies its design. The

second benefit is that it enables the system to compute partial solutions when the task

can be clearly partitioned or there are functional dependencies in the system. For further

information on these systems, readers can refer to Torra’s survey [194].

3.3 Related Work

For service ranking approaches to discover Cloud services, many teams [71, 142, 197–

199,209] have investigated using Multi-criteria Decision Making (MCDM) methodologies

to rank Clouds. These approaches depend on static weight assessment for preference

modeling, which is time-consuming. Furthermore, except the work by Rehman et al.

[199] and Wang et al. [209], none of them considered performance variations. Alabool et

al. [2] developed a fuzzy based MCDM approach that uses linguistic descriptors to model

preferences. Still, they did not address the performance variation problem. Noor et al.

[150] and Habib et al. [80] evaluated trust of Clouds according to user feedbacks, but

they ignored users’ diverse requirements. Supriya et al. [186] also employed hierarchical

fuzzy inference system to evaluate trust of providers. However, they required users to

manually tune the inference system for each query regarding their expectations.

Dastjerdi et al [51] proposed the first influential Cloud service matchmaking approach.

They adopted description logic to match user’s QoS goal and services’ self-advertised

Service Level Agreement (SLA) contracts. Sundareswaren et al. [185] proposed a time-



70 A Cloud Trust Evaluation Approach using Hierarchical Fuzzy Inference System

efficient selection algorithm for Cloud brokers based on B+ tree indexing. Redl et al. [160]

employed Support Vector Machine algorithms to find the closest Cloud service to user re-

quirements. None of them considered performance variations, and only the approach by

Sundareswaren et al. [185] can model user preferences.

Different from previous works, our approach uses fuzzy linguistic descriptors and

hedges to help users to quickly and easily define their requirements and preferences, and

it considers performance variations in Clouds when evaluating trust, which improves

cost-efficiency for Cloud users.

Apart from our work, fuzzy logic has been applied to address other service discovery

problems. Nepal et al. [144] employed fuzzy set operations and fuzzy hedges for prefer-

ence modeling in their web service discovery approach. Wang [208] used a fuzzy based

MCDM algorithm to rank web services. Song et al. [179][180] utilized fuzzy inference

system to evaluate trust in Grid and P2P systems for resource selection.

3.4 Proposed Approach

3.4.1 Architecture

Figure 3.2 illustrates the general architecture of our proposed approach. There are two

major steps involved in it. The first step, which is shown in dashed lines, captures

users’ subjective perceptions of different QoS attributes through tuning fuzzy member-

ship functions. The second step, which is shown in solid lines, involves the whole process

to evaluate Cloud services.

The components of the architecture are explained below:

Web Interface

This layer provides users or Cloud brokers with the entrance to the service. Users can

submit their functional and non-functional requirements, and change their perceptions

through graphical interfaces.
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Figure 3.2: Architecture of the Proposed Trust Evaluation Approach

Functional Matching

This component retrieves services that can meet users’ functional requirements (i.e., the

number of cores, memory amount, storage volume, budget and geographical location)

and some static QoS requirements (e.g., security and privacy) from the service reposi-

tory. Another important function of it is to check the compatibility of services. It filters

services that cannot satisfy users’ business policies or are incompatible to software plat-

forms required by their applications. Several tools and techniques have been developed

for these purposes, such as the approaches proposed by Dastjerdi et al [51] and Chen et

al. [36].

QoS Trust Evaluation

It is the core of our approach that evaluates the trust levels of functionally matched ser-

vices. It takes user requirements and the services’ past benchmark results as input and

then outputs a list of services with their trust values regarding each attribute. Users or

Cloud brokers can then select the most suitable services based on the obtained trust val-
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ues along with other objectives (e.g., cost and location).

Cloud Benchmark Service

These services continuously monitor the performances of Clouds by running benchmark

applications on some dynamically launched VMs in a particular time interval and pub-

lishing the results to the public. They provide strong data traces regarding low-level

metrics that are required to compare Cloud services’ QoS reasonably. An example of

such service is Cloud Harmony [84]. By the time of this work, it was monitoring 63

Cloud data centers all over the world.

3.4.2 Modelling Requirements and Preferences

Requirement Types

Our approach requires users to submit requirements for attributes that are relevant to

them. It supports two types of requirements, namely, numerical requirement and lin-

guistic requirement. Submission of mixed types of requirements in the same query is

valid in our approach. Section 3.6 illustrates how different types of requirements can

help users to define their expectations in the discovery process with two case studies.

Numerical Requirements: Numerical requirements are numerical values with corre-

sponding units. When submitting these requirements, users expect the services to have

higher performances than the provided values. The numerical requirements for some

attributes, e.g., availability, can be easily extracted from the application’s Service Level

Objectives (SLOs). While for other attributes, e.g., CPU and network speed, they cannot

be effortlessly determined because performance SLOs are usually defined in high-level

metrics, e.g., response time and throughput. This requires users to perform tests to trans-

form high-level SLOs to low-level requirements.

Linguistic Requirements: Linguistic requirements are submitted as fuzzy linguistic de-

scriptors (e.g., High, Medium, and Low) which are semantic approximations of the nu-
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merical requirements. Since human beings are accustomed to using these linguistic de-

scriptors to make rough estimations, they can quickly submit approximate requirements

in this form according to application nature or preliminary results obtained through sim-

ple tests or simulations.

QoS Attributes

Table 3.1 shows an example of a hierarchy of Cloud QoS attributes, which we use in the

prototype. We choose the attributes and their metrics according to the SMI framework

[48] and the work by Garg et al. [71]. One can easily add extra attributes to the example

model or use different metrics to measure existing attributes, e.g., IOPS (Input/Output

Operations Per Second) for memory and disk performances. Furthermore, our approach

allows users to selectively submit requirements for the attributes they concern. In such

cases, it implicitly recognizes performances of the overlooked attributes to be entirely

satisfactory for all services in the evaluation.

In general, we classify all leaf attributes in the hierarchy into two categories, namely,

dynamic attributes and static attributes. Dynamic attributes suffer from performance

variations. Therefore, their performances need to be quantified by benchmark traces.

Compared with these attributes, performances of other attributes can be considered static,

i.e., security attributes, as their variations are negligible and immeasurable. Our ap-

proach quantifies the performances of security attributes in the form of single values

instead of series of traces. They can be evaluated by Cloud security benchmarks, e.g.,

the framework proposed by Garcia et al. [135], or expert ratings. We only allow users to

submit linguistic requirements for static attributes, as for them, services can be binarily

filtered with given numerical thresholds.

Besides QoS, the cost is also an important factor. Our approach provides three differ-

ent ways to balance users’ QoS and cost objectives. The first way is to specify a budget

at functional matching phase. In this way, users can identify the most satisfactory service

within an acceptable budget. For the second method, users can select the most econom-

ical Cloud service among those that have acceptable trust levels. The third way is to

submit linguistic requirements for cost during the trust evaluation phase if users only
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have vague objectives for the cost.

QoS Input and Membership Functions

As the first step of trust evaluation, our approach retrieves corresponding benchmark

results from Cloud benchmark services and then analyzes the traces to derive the QoS in-

put of the hierarchical fuzzy inference system according to user requirements. Regarding

the two types of requirements, we respectively introduce how our approach calculates

QoS inputs from benchmark traces and their associated input membership functions.

Retrieving Benchmark Traces: The benchmark traces used are key to the quality of

trust evaluation. To retrieve representative traces, the evaluation process should consider

multiple factors. Our approach selects traces according to the variability of attributes and

expected running time of VMs.

Different attributes have various levels of variability. According to Schad et al. [169],

VM startup time has very high variability in short time. For such attributes, it should

retrieve traces within a short time window, e.g., 10 minutes.

The expected running time is also important when retrieving traces. Suppose a user

wants to deploy a VM on Wednesday from 7:00 am to 2:00 pm, we should refer to traces

that were benchmarked on nearest Wednesdays or weekdays during the same range of

time. This is because Clouds are likely to suffer more variations at working hours on

weekdays in their local time. Furthermore, if the user plans to deploy VMs for a long

term, it is also better to consider the traces within a relatively larger time window to

ensure the selected service is likely to be satisfactory in the whole life cycle of the appli-

cation.

Numerical Requirements: For numerical requirements, our approach calculates the

QoS inputs of the ith service regarding the jth attribute as follow:

pi,j =
nsatis f y

i,j

ntotal
i,j

(3.1)
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(a) Numerical Requirements (b) Linguistic Requirements

Figure 3.3: Membership Functions for Hierarchical Fuzzy Inference System

where for the performance of ith service regarding the jth attribute, the numerator and

denominator of the equation respectively stand for the number of benchmark traces that

can satisfy the numerical requirement and the total number of traces retrieved. In fuzzy

inference process, the membership functions associated with QoS inputs of numerical

requirements are shown in Figure 3.3a.

Linguistic Requirements: For linguistic requirements, our approach calculates statisti-

cal indicators of the benchmark traces as the QoS inputs. In Section 3.5, we test it with

different indicators, i.e., median, mean, first quartile, and five percentile.

We use triangular membership functions to model linguistic requirements in fuzzy

inference. Figure 3.3b shows an example of the membership functions. They represent

users’ personal perceptions that how quantitative performance data are mapped to qual-

itative linguistic descriptors for each attribute. Since perceptions are subjective, we allow

users to individually adjust the functions based on the default ones defined by experts.

Modelling Preferences

In our approach, users can express their preferences by selecting one of the importance

levels in Table 3.2 for each requirement, which allows users to make trade-offs among

their requirements. For example, suppose a user wants to deploy a security sensitive

application on Cloud, he might prefer to select the services that can satisfy his security

requirements even at the cost of enduring more performance degradation for other at-

tributes within an acceptable level. In this case, he can submit Very Important for security
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Table 3.2: Importance Levels and Importance Coefficients

Importance Level Importance Coefficient
Very Important 0.5

Important 0.66
Neutral 1

Unimportant 1.5
Very Unimportant 2

requirement. To increase the room for the trade-off, he can provide negative importance

levels, e.g., Unimportant, for requirements that he is willing to tolerate low performance.

We implement this mechanism using linguistic hedges, which are adapter functions that

change the shapes of original membership functions. Following equations show the for-

mal definitions of importance levels for the two types of requirements:

Numerical : d =


satis f actory(x)ai

unsatis f actory(x)
1
ai

(3.2)

Linguistic : d =


f (x)ai if x ≤ peak

f (x)
1
ai if x > peak

(3.3)

where satis f actory(x) and unsatis f actory(x) respectively represent satis f actory and unsatis f actory

membership functions shown in Figure 3.3a. f (x) is a triangular membership function

shown in Figure 3.3b, and peak is the x value of its maximum membership point. ai is

the importance coefficient of the ith importance level. By applying positive importance

hedges, e.g, Important, it further penalizes services that cannot fully satisfy the require-

ments in trust evaluation according to the amounts of performance deficiency. Oppo-

sitely, if negative hedges, e.g, Unimportant, are applied, it decreases the penalties. Table

3.2 shows the default importance levels and coefficients used in our prototype.
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Figure 3.4: Example of Hierarchical Fuzzy Inference System for Trust Evaluation

3.4.3 Proposed Hierarchical Fuzzy Inference System

Overview

Our approach dynamically constructs the hierarchical fuzzy inference system for each

query in agreement with the generated hierarchy of attributes. Figure 3.4 shows an ex-

ample of it. There are three types of inference modules in the fuzzy system. For non-leaf

attributes, their trust values are evaluated by higher level inference modules, which take

outputs of corresponding sub-inference modules as inputs. At leaf level, it generates

inference modules according to the types of requirements, namely, numerical inference

modules and linguistic inference modules.

Higher level inference modules use functions shown in Figure 3.3a as input mem-

bership functions. The input membership functions for leaf level modules have been

introduced in Subsection 3.4.2. All modules use the functions defined in Figure 3.3a as

output membership functions. Rulebases for each module are generated according to

user requirements, the details of which is introduced in the following part.

All inference modules share the same inference engine. Our prototype employs Prod-

uct for “AND” operator, MAX for “OR” and Aggregation operator, and Center of Max-

imum (COM) defuzzifier. For each output variable with n membership functions, COM

calculates the crisp trust value t as follow:
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t =

n
∑

i=1
xiµi

n
∑

i=1
µi

(3.4)

where xi is the x value of ith membership function’s maximum membership point and

µi is the membership degree aggregated for the ith membership function. The reason we

choose COM is that it is both intrinsically plausible and timely efficient.

Generating “If-Then” Rules

Our approach dynamically generates the fuzzy rules for each module according to user

requirements and employed rule generation strategy. In our prototype, we adopt a pes-

simistic strategy where output trust level is satisfactory only if all input variables are

satisfactory, as we suppose users expect all submitted requirements should be individu-

ally satisfied. In the following subsections, we describe it in detail.

Higher Level Inference Modules: The inputs of these modules are trust levels of their

corresponding sub-attributes. Suppose attribute A has sub-attributes B and C, the gener-

ated rule set is shown as follows:

Rule 1 If B trust is satis f actory AND C trust is satis f actory then A trust is satis f actory

Rule 2 If B trust is not satis f actory OR C trust is not satis f actory then A trust is not satis f actory

Leaf Level Inference Modules: For each leaf level inference module, the input is a sin-

gle value obtained through the analysis of benchmark traces. If user submits numerical

requirement for attribute A, the generated rules are as follows:

Rule 1 If A is (importance level) satis f actory then A trust is statis f actory

Rule 2 If A is (importance level) not satis f actory then A trust is not satis f actory

Otherwise, suppose user submits linguistic requirement Medium for attribute A, the re-

sulted rule set is as follows:
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Rule 1 If A is at least (importance level) Medium then A trust is satis f actory

Rule 2 If A is at most (importance level) Low then A trust is not satis f actory

Low is the closest inferior linguistic descriptor to Medium. at least is the linguistic hedge

that transforms the membership function of Medium into function “≥ Medium”. Simi-

larly, at most transforms function of Low into “≤ Low”. The following equations show

their formal definitions regarding triangular membership function f (x):

dat least =


f (x) if x ≤ peak

1 if x > peak
(3.5)

dat most =


1 if x ≤ peak

f (x) if x > peak
(3.6)

where peak is the x value of the maximum membership point of the triangular member-

ship function.

3.5 Performance Evaluation

3.5.1 Generating Benchmark Traces for Simulations

Schad et al. [169] ran performance benchmark applications (e.g., Ubench and Bonnie++)

on newly launched VMs every hour in a month on Amazon EC2. They did not only

quantify the performance variations regarding multiple attributes in a Cloud but also

successfully identified their performance distributions. From the analysis of data, they

found that the performance instability in Amazon is mainly caused by hardware hetero-

geneity and workload increase in peak time. Since these are common problems faced by

all Cloud providers, we assume the performance distributions of other services also gen-

erally follow the same pattern as the one observed in Amazon but with different levels

of variability and averages.

We test our approach through simulations using synthetic benchmark traces. Each

service trace consists of 50 to 200 benchmark results for each of the 11 dynamic attributes
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defined in Table 3.1. Some benchmark results are generated according to the known dis-

tribution patterns mentioned by Schad et al. [169]; others are generated using the normal

distribution. In total, we created 3000 services with similar comprehensive performances

but different performances regarding each attribute, which avoids our approach always

returning the same set of omnipotent services and enables us to study how it performs

with diverse user requirements.

3.5.2 Linguistic Requirements vs Numerical Requirements

In the first experiment, we test the validity and accuracy of using linguistic descriptors

to approximate numerical requirements. To compare the results obtained by the two, we

dynamically convert some numerical requirements in 25 numerical queries into linguistic

requirements. This is conducted by selecting the linguistic descriptor that produces the

highest membership degree with given numerical values and predefined membership

functions. By doing so, we assume users can intuitively submit the closest linguistic

descriptors to numerical requirements, which is the ideal situation.

We use average Normalized Discount Accumulative Gain (NDCG) at position 10 to

measure whether our approach still can rank most satisfactory services at the top when

some requirements are submitted in linguistic descriptors. The relevance scores used

to calculate NDCG are trust levels derived from original numerical queries. Also, we

measure absolute differences of trust levels obtained by the paired queries to gauge eval-

uation accuracy. Apart from the number of linguistic requirements, we also consider

other factors that may influence accuracy, i.e., statistical indicators used to calculate the

QoS inputs and number of linguistic descriptors (Low, High or Low, Media, High).

For each number of linguistic requirements, we run 55 tests with different combina-

tions of attributes submitted in linguistic requirements. We use five linguistic descriptors

for tests using different statistical indicators, and five percentile for tests using various

numbers of linguistic descriptors. Figure 3.5 reports the average results of the tests.

According to the results, both the quality of ranking and evaluation accuracy de-

crease when the number of linguistic requirements grows, since they bring additional

uncertainties. Also, the decreases are linear, which indicates limiting the number of lin-
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Figure 3.5: (a) NDCG mean and (b) absolute difference mean using different numbers
of linguistic requirements and different statistical indicators. (c) NDCG mean and (d)
absolute difference mean using different numbers of linguistic requirements and different
numbers of linguistic descriptors.

guistic requirements can significantly improve the chance of finding the most satisfactory

service. Comparing different statistical indicators, it shows that conservative indicators,

i.e., five percentile and first quartile, produce better results, because they are more sensi-

tive to variability and hence increase the differentiability. Besides, the simulations reveal

that growing number of linguistic descriptors can improve both quality of ranking and

evaluation accuracy. However, on the other hand, it is harder for users to make precise

judgments when the number of descriptors is larger.
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Figure 3.6: Effect of different importance levels on the ranking of services

3.5.3 Effectiveness of Preference Modelling

In the second experiment, we demonstrate the effectiveness of our preference modeling

approach. For a query where all its requirements are submitted with Neutral importance

level, we select one requirement a time and change its importance level to construct new

queries. We also use NDCG at position ten as metric, but the relevance scores utilized in

this experiment are the trust values of the selected requirement with Neutral importance

level. In this way, we show whether our approach ranks services that have lower perfor-

mance deficiencies to the selected requirement higher when the importance level of the

requirement increases.

According to the results shown in Figure 3.6, average NDCG remains unchanged for

some requirements when their importance level goes up, and the scale of NDCG increase

for other requirements also varies, because the space for trade-off is limited. For example,

though one Cloud can fully satisfy requirement A, as long as its performance deficiencies

to other requirements are unacceptable, our approach considers it unsatisfactory no mat-

ter how the user increases A’s importance level, which ensures trade-offs are only made

within an acceptable level and returned services can reasonably satisfy all requirements.
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Figure 3.7: Mean execution time with different numbers of services and attributes

Table 3.3: Cloud Services

Service CPU Core Memory(Gb) Disk(Gb)
A 1 1.7 20
B 1 2.0 18
C 1 1.8 25

3.5.4 Scalability

The third experiment tests the scalability of our approach. We first measure the mean

execution time of 25 queries each with requirements for 11 attributes with the number of

services increasing from 500 to 3000. After that, we test the average time spent to evaluate

25 queries for 3000 services with the number of leaf attributes considered increasing from

2 to 9. We run 55 tests for each number of services and attributes on a PC with Intel i7-

2600 CPU and 4 Gb RAM using a single thread.

As observed in Figure 3.7, our approach is timely efficient and linearly scalable. The

execution time can be further reduced if we parallelize the evaluation process.

3.6 Case Studies

In this section, we demonstrate how users can make use of our approach. Table 3.3 shows

the basic information of the three example Cloud services involved in the illustrations.
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3.6.1 Case 1

As mentioned, apart from web applications, our approach can help other types of ap-

plications to identify satisfactory Cloud services, including scientific simulations. In this

example, a user who works for a pharmaceutical company wants to run a Monte Carlo

simulation in Cloud. For functional requirements, he requires the service to have one

core, more than 1.5 Gb RAM, and 18 Gb secondary storage. Though he possesses limited

knowledge about computer science, he knows the program is CPU and data-intensive

but requires little network communication. Hence he submits High requirements for the

attributes related to CPU, memory and disk performances and Low for the network at-

tributes.

Our method filters service B at discovery phase as it can not provide enough storage.

Then it retrieves benchmark traces of A and B for the past few hours to evaluate trust of

their current performances. The trust values obtained are 0.85 for A and 0.91 for B, which

are all acceptable to the user.

3.6.2 Case 2

A company develops an e-commerce website and plans to deploy it on Cloud. They re-

quire their service availability to be at least 99.999%. Through preliminary experiments,

they estimate the application requires 7 MIPS CPU and 0.8Mb/s inbound and outbound

data transfer speed for a single instance to support 50 requests in parallel. They also

identified the network as the bottleneck to their application performance; therefore they

raised the importance level of the network to Very Important. Their application is un-

demanding for the disk as it depends on the database deployed on local servers, so they

ignore disk I/O attributes. However, they lack the tool to determine the thresholds of

memory I/O accurately. Therefore, they choose to submit linguistic requirements for

memory I/O. They are aware that there are many sequential memory read and write

operations in their program. Thus, they submitted High requirements for both memory

read and write speed.

Our approach retrieves traces regarding A, B,and C. The traces, in this case, contains
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benchmark results conducted on A, B, and C in the previous month as the application is

supposed to run for a long time. The returned trust levels are 0.41 for A, 0.92 for B, and

0.9 for C. Both B and C are considered satisfactory to the user requirements.

3.7 Limitations

Like any other service discovery approaches, our method aims to guide users to choose

the services that have higher satisfaction possibility, but it is not possible to guarantee

the user would receive the services as expected. The accuracy further decreases when the

user submit vague linguistic requirements, which is the cost of improving usability.

3.8 Summary

In this chapter, we proposed an efficient trust evaluation approach using hierarchical

fuzzy inference system for service selection. The contributions of our method are: 1)

it enables trust evaluation of Clouds according to diverse user requirements, 2) it eases

the discovery process for both inexperienced and expert users by modeling their vague

requirements and uncertain preferences with linguistic descriptors and hedges, and 3) it

considers performance variations in the Cloud service discovery phase.

The discovered Cloud services that are satisfactory to user requirements become the

candidates for hosting the applications. In the next chapter, we propose a technique that

selects a set of Cloud services among the identified candidates considering the applica-

tion’s Service Level Objective (SLO) and operational cost.



Chapter 4

SLO-Aware Deployment of Web
Applications Requiring Strong

Consistency using Multiple Clouds

To allow web applications requiring strong consistency to be deployed in multiple Clouds, industry

and academia have developed various scalable database systems that can guarantee strong inter-data

center consistency with reduced network overhead. For applications using these database systems, it

is essential to take both network latencies to end users and communication overhead caused by main-

taining database consistency into account when selecting the hosting data centers. In this chapter,

we propose a technique that identifies satisfactory deployment plan (hosting data centers and request

routing), which balances Service Level Objective (SLO) violations, migration cost, and operational

cost, for applications requiring strong inter-data center consistency under dynamic workloads. We

illustrate how our approach works for applications respectively using two different databases (Cassan-

dra and Galera Cluster), and demonstrate the effectiveness of our approach through simulation studies

using settings of two example applications (TPC-W and Twissandra).

4.1 Introduction

WHEN web applications are deployed in geographically dispersed Cloud data

centers, application providers need to handle data consistency across data cen-

ters (inter-data center consistency), which is challenging for some applications request-

ing strong consistency, e.g., e-commerce and banking. To make things worse, traditional

This chapter is derived from: Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “SLO-aware
Deployment of Web Applications Requiring Strong Consistency using Multiple Clouds”, Proceedings of the
8th IEEE International Conference on Cloud Computing (Cloud 2015, IEEE CS Press, USA), New York, USA, June
27 - July 2, 2015.
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inter-data center commit (two-phase commit) involves high network cost. Therefore,

applications often have to adopt eventual consistency (asynchronous replication) to min-

imize user perceived latencies, which complicates application logic and forces applica-

tion developers to handle the conflicts and errors caused by inconsistent data [175], even

though such cases are rare in production as data synchronization usually completes in a

short time in eventual-consistent databases [19].

After realizing that lack of strong consistency has impaired developing productivity,

industry and academia shift to developing new databases that can guarantee strong inter-

data center consistency [17, 20, 45, 46, 121, 136, 175, 193] to help relieve the programmers’

coding burden. Though inter-data center consistency protocols of these new databases

are often optimized regarding network overhead, the resulted network delays are still

significant and cannot be ignored. Thus, to minimize user perceived response time, it

is essential to take the database network delay into account when selecting hosting data

centers and when routing requests submitted by different users to the chosen data cen-

ters.

In this chapter, we aim to minimize the total excess response time users may perceive

beyond the Service Level Objective (SLO) for applications with various inter-data center

consistency requirements. The proposed approach benefits application providers so that

they can ease their development by adopting these new databases, and in the meantime

keep the performance penalties as low as possible.

The contributions of the chapter are two folds. Firstly, we propose a genetic algo-

rithm (GA) that searches a deployment plan (set of data centers and request routing)

with a minimum amount of SLO violations when the application is initially migrated to

the Cloud. After the initial deployment, the application performance may degrade as

time passes due to changes in workload distribution. Secondly, to react to these changes,

we propose a decision-making algorithm that continuously optimizes the deployment

to balance application performance, redeployment cost, and operational cost. We exem-

plify how our approach can be applied to two widely used databases (Cassandra [17]

and Galera Cluster [45]). To demonstrate the effectiveness of our approach, we conduct

simulation studies using settings of two real applications (TPC-W [195], an e-commerce
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website, and Twissandra [196], a Twitter-like social network application).

The rest of the chapter is organized as follows. Section 4.2 briefly surveys the ex-

isting protocols and databases with strong inter-data center consistency support. Then

we describe the target applications and their deployment model in Section 4.3. Section

4.4 explains our approach followed by the performance evaluation in Section 4.5. After

that, we discuss some key issues and pitfalls when extending and using our approach in

Section 4.6. Finally, we present the related work and summarize the chapter.

4.2 Background

4.2.1 Consistency Protocols

Two-phase Commit

Two-phase commit is the simplest protocol that implements inter-data center transaction

commit. Its basic idea is to use one message round to reach a consensus on whether

to commit or rollback among all the participating processes and use another round trip

to confirm the action with a central coordinator. It is implemented in many distributed

databases, such as Google Spanner [46].

Quorum-based Protocols

Quorum-based protocols are used to manage data replication. When writing an object,

the system writes to a set of object replicas, called a write quorum. When reading the

object, the system fetches it from possibly another set of replicas, called a read quorum.

Strong consistency of an object can be guaranteed if the summation of its read and write

quorum is larger than the total number of replicas. Some quorum databases [17] also

allow users to sacrifice consistency for availability and performance by setting a weaker

quorum [19]. However, quorum-based protocols alone are not able to support ACID

(Atomicity, Consistency, Isolation, Durability) transactions involving multiple objects.
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Figure 4.1: Certification-based Commit in Galera [44]

Paxos-based Protocols

Paxos [124] is a family of protocols for reaching consensus in an unreliable distributed

environment. In database systems, the most common configuration for the protocol is

multi-Paxos [34] with each process act as proposer, acceptor, and learner. The Paxos

protocol proceeds in rounds. Its basic implementation also involves two steps, a prepare

phase and an accept phase, in the successful case.

In database systems, optimized Paxos protocols are commonly combined with two-

phase commit to achieve inter-data center transaction commit. A number of inter-data

center transaction commit protocols are built upon Paxos, e.g., MegaStore [20], Spanner

[46], MDCC [121], Calvin [193], and Replicated Commit [136].

Certification-based Commit

Certification-based commit [44] is a synchronous replication protocol developed based

on the works by Pedone [154], and Kemme and Alonso [115]. Figure 4.1 shows its se-

quence diagram. The protocol needs the help of an underlying group communication

system to deliver the commit requests originated from distributed processes in total and

causal order to each process. When doing write transaction, the request is optimistically

executed until commit point. After that, the process sends the write change to the whole

communication group. The group then returns a global transaction ID to every process.
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Since all requests are delivered in the same order, each process can deterministically and

independently check potential conflicts in its commit queue using a certification test. The

request that passes the test can return immediately.

4.2.2 Databases Supporting Strong Inter-data Center Consistency

Google’s Systems

Google have been developing distributed databases that are both highly scalable and

strongly consistent. Their first achievement is MegaStore [20]. It implements ACID se-

mantics within each entity group (objects stored together) using synchronous replication

based on optimized Paxos, and transaction across entity groups using two-phase com-

mit. The second outcome is Spanner [46], which further supports external consistency

(linearizability) with the help of physically synchronized clocks (GPS and atomic clock).

Upon Spanner, Google built F1 [175], a distributed relational database system for their

critical AdWords platform. It provides more enriched transaction semantics with high

availability and scalability. All Google’s systems remain proprietary.

Open Source Databases

Cassandra [17] is a shared nothing NoSQL database using quorum-based protocol for its

consistency model. It allows users to set individual read and write quorums at the gran-

ularity of query. It also provides limited transaction support (lightweight-transaction)

starting from version 2.0 using a heavy-weight Paxos consensus protocol, which requires

four round-trip messages to complete.

Galera cluster [45] is an open source scalable synchronous replication solution devel-

oped and maintained by Codership for MySql. Galera’s replication is based on certification-

based commit [44] shown in Figure 4.1. Since replication is synchronous, read-only

queries in Galera are always processed locally.
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Figure 4.2: Deployment using 2 data centers

4.3 Application and Deployment Model

4.3.1 Target Applications

We target session-based web applications. We assume the delay of the application is

dominated by the round-trip time (RTT) between different parties, as the processing time

of the request can be considered constant provided that enough computing resources

are provisioned. In this case, whether the SLOs can be met is largely determined by the

involved network latencies.

To benefit from our work, the application should also be deployed in geographically

dispersed data centers, and some of its requests should require strong consistency, e.g.,

a group working application that always reflects the newest updates to its end-users, a

social-network application that consistently and timely shows people’s posts and com-

ments, or a distributed banking application that needs to satisfy ACID semantics.

4.3.2 Deployment Model

We assume the whole software stack of the application (including application servers

and underneath databases) is deployed in multiple geographically dispersed data cen-

ters and each application replica can autonomously scale up and down according to the

changing workloads, as shown in the example in Figure 4.2. We assume all chosen data

centers have the full copy of data. Companies, like Facebook [149], commonly adopt

this approach. Furthermore, the databases studied in this chapter, Cassandra and Galera
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Figure 4.3: The Proposed Approach

Cluster, support only full replication for multi-data center deployment within the same

keyspace or namespace. The target applications should also use shared-nothing multi-

master database clusters, which means all database queries originated from any server

can be served by database nodes collocated in the same data center. Depending on the

database and different queries’ consistency requirements, we also consider the network

delays caused by communications among database cluster nodes located in different data

centers into the problem model. All inner-data center communications, otherwise, are

omitted.

We classify users into groups according to their geographic locations. All requests

from the same location are routed to the same data center using DNS routing services

similar to Amazon Route 53’s Geo Routing [14].

4.4 Proposed Approach

4.4.1 Overview

Our approach requires application administrator to provide SLO and consistency config-

uration for each type of request as illustrated in Figure 4.3. Besides, it needs the informa-

tion of request number coming from each location. These data can be recorded during

production. Furthermore, it requires the network latency data between each data center

and each location and latency data between each data center. Since it is hard to collect

all the real-time RTT latencies between each site and data center given the large number
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of them, we can either rely on network predictors, like the one employed by Grozev and

Buyya [78], to estimate unknown latencies, or trusted third parties like NetMetrics [151],

which is a global Internet performance database, to provide the latency information.

The objective of our work is to select and manage a subset of data centers to host the

application replicas, and in the meantime, find the optimal request routing according to

the chosen data centers, so that the total amount of estimated SLO1 violations is as small

as possible. The approach involves two steps:

Initial Deployment: When the application is initially migrated to the Clouds, our ap-

proach aims to select the hosting data centers and route requests to chosen data centers

with minimum amount of total estimated SLO violations according to the current geo-

graphical distribution of requests2.

Deployment Optimization: In the second step, our approach continuously attempts to

maintain high performance of the application by contracting, optimizing, or expanding

the deployment with acceptable migration3 efforts in response to changes in the requests

distribution.

In this chapter, we use the term expand and contract respectively for increasing and

decreasing the number of chosen data centers. We focus on the geographical distribution

of resources instead of the total resource amount, for which the term commonly used is

scaling up and down.

4.4.2 SLO Violation Model

We first propose a model to estimate the amounts of SLO violations incurred by spe-

cific deployment plans. It is composed of the general model, which views database net-

work latencies as a black box and extracts commonalities of the target applications, and

1As we assume the request processing time is constant, the SLO hereafter is referred to as the desirable
total network latency.

2Distribution of requests refers to the ratio of requests coming from each geographical location.
3In this chapter, migration means deployment change that requires moving data to another data center,

including moving an existing replica to another data center and deploying a new replica in a data center, but
excluding removing an existing replica from a data center.
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Table 4.1: Symbols of the General Model

Term Meaning
M Set of available data centers
G Set of geographical locations
I Set of request types
X Set of the chosen data centers to host application replicas
H Number of chosen data centers
Nl

i Number of type l requests from location i
Tl Latency SLO of type l request
Rij RTT latency between location i and data center j
si Total estimated SLO violations at location i given X

ltl
ij Estimated network latency of type l request at location i if that request is

served by the application replica placed in data center j
dltl

j Database network latency for type l request served in data center j given X
pl Protocol overhead of type l request (number of RTTs)

the database model, which allows providers to plug different databases into the general

model.

The General Model

For clarity, we introduce a metric Average Violation Per Request (AVPR), calculated

as the total estimated excess waiting time beyond defined SLOs (SLO violations) for all

requests divided by the total number of requests, as the optimization target. Using the

symbols in Table 4.14, the general model then is defined as:

minimize fAVPR(X) =
∑i si

∑i ∑l Nl
i
∀i ∈ G, l ∈ I

subject to X ⊂M, |X| = H

where si is the amount of total SLO violations at location i. Nl
i is the number of type l

requests coming from location i. X and M respectively represents the set of selected data

centers, and the set of available data centers. H is the number of chosen data centers. G

is the set of geographical locations. I is the set of request types.

4The symbols representing sets are shown in bold in the following tables and text.
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When calculating si, we first need to determine the routing of requests from each

location i according to the chosen X. The data center within X that incurs the least amount

of SLO violations is selected to serve users at location i. The amount of SLO violations

incurred by each data center for serving users at location i is computed as the sum of all

the excessive latencies that the users are estimated to perceive beyond SLO. Thus, si, in

formula, can be represented as:

si = min
j∈X

(∑l Nl
i (lt

l
ij − Tl)) ∀ltl

ij > Tl , l ∈ I

where Tl is the SLO of type l request. ltl
ij is the latency of type l request perceived by

users at location i, if it is served by the replica in data center j. ltl
ij can be estimated using

the following formula:

ltl
ij = pl Rij + dltl

j j ∈ X, l ∈ I

ltl
ij is calculated as the sum of two parts. The first part is the network latency between

the user location i and the corresponding serving data center j (pl Rij). pl is the overhead

(number of RTTs) of the communication protocol used by the type l request. Rij is the

RTT latency between location i and data center j. The second part is the database network

latency overhead (dltl
j) introduced below.

The Database Model

Modeling of database network latency overhead is database-specific. In this section, we

illustrate how to model the overhead of two widely-used databases. One is Cassandra

[17], a NoSQL database; the other is Galera Cluster [45], a replication solution for MySql

relational database.

The Cassandra Model: The widely-adopted replication strategy for Cassandra involv-

ing multiple data centers in production is symmetric replication, where each data center

stores the same number of replicas [17]. Cassandra uses quorum-based protocol to im-

plement consistent read/write operations across replicas, and it supports various consis-

tency configurations at the granularity of query. Given the set of selected data centers
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Table 4.2: Symbols of the Cassandra Model

Term Meaning
Rl Set of read queries in type l request
Wl Set of write queries in type l request
Qrl

k Read quorum of the kth read query in request type l
Qwl

m Write quorum of the mth write query in request type l
r The replication factor of data centers

α(j, k, X) The function finds the kth shortest RTT latency among all
latencies between each data center within X and data center j

(X), using the symbols in Table 4.2, its database network overhead dltl
j can be modelled

as:

dltl
j = ∑k α(j, d

Qrl
k

r
e, X) + ∑m α(j, dQwl

m
r
e, X) ∀k ∈ Rl , m ∈Wl

j ∈ X, l ∈ I

where Rl (Wl) is the set of read (write) queries in type l request, and Qrl
k (Qwl

m) is the read

(write) quorum of the kth (mth) read (write) query in type l request. r is the replication

factor in a data center. The function α(j, k, X) returns the kth shortest RTT latency among

all latencies between each data center within X and data center j. Following the work

by Shankaranarayanan et al. [171], we model the delay of the read/write query as the

slowest replica’s response time in the quorum. For example, if the read quorum is 3 and

each data center holds 1 data replica, Cassandra will wait to receive replies from the 2

replicas located in other data centers as the network delay to the local copy is orders of

magnitude smaller. Hence, the resulted delay will normally be the second shortest RTT

latency from the local data center j to the other selected data centers.

In Cassandra, the remote replica only replies digest of the objects. If the local copy

is stale, it will send another request to fetch the complete data and update all the stale

replicas. Similar to Shankaranarayanan et al. [171], we ignore this overhead as such case

is rare and, thus, only impose a little impact on the average delay of all the requests.

The administrator is responsible for deciding the quorum settings of each query, as,

besides consistency and performance, other concerns in this process may complicate the

decision, such as availability (Qr = 1, Qw = H maximizes the performance for read-
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Table 4.3: Symbols of the Galera Model

Term Meaning
β(j, X) The function finds the largest RTT latency among all latencies between

each data center within X and data center j
V l Number of transactions that have write operations in request type l

intensive applications but is susceptible to failures). For query requiring strong consis-

tency, application administrator should specify its read/write quorum so that the object’s

Qr and Qw satisfy Qr + Qw > H. Certainly, it is also possible to set a weaker configura-

tion [19] if strong consistency is unnecessary.

In Cassandra, the legitimate quorum settings are currently limited to “ONE, TWO,

THREE, ALL, and QUORUM (simple majority)”. Some configurations are invalid, e.g.,

(H = 5, Qr = 2, and Qw = 4), as Qw = 4 is not allowed. However, we also include

these configurations in our evaluations as we suppose they will be supported by future

versions.

The Galera Model: In Galera cluster, all read-only transactions are executed locally

while transactions with write operations synchronously replicated to all remote replicas

using certification-based commit [44]. As shown in Figure 4.1, there is no further group

communication involved in the protocol [44] after the transaction ID is determined, the

network latency is dominated by the data center that has the largest RTT latency to the

request originator. Based on symbols in Table 4.3, dltl
j, in this case, can be simply formu-

lated as:

dltl
j = V l β(j, X) j ∈ X, l ∈ I

where V l is the number of database transactions that have write operations in type l

request, and the function β(j, X) returns the largest RTT latency among all latencies be-

tween each data center within X and data center j.

Galera nodes may queue the messages before delivering them due to the group com-

munication overhead. We neglect this delay because we believe it is unpredictable, application-

specific, and also insignificant compared to the network transfer delay. To build a more
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precise model, application administrators can profile their applications to obtain the av-

erage queuing time and add this value to the model.

4.4.3 Solution for Initial Deployment

Hardness of the problem

The problem of moving several application replicas to the Cloud falls in the category of

Facility Location Problems [174], which are usually NP-hard to solve.

Proving by restriction, which aims to demonstrate the target problem contains an

already-known NP-hard problem as a special case, is a common method to prove a prob-

lem is NP-hard. Hereafter, we prove our problem is NP-hard by showing that the NP-

hard k-median problem is a special case of it.

Proof: Suppose eventual consistency is used by all the request types, then dltl
j equals 0 for

all j, l. Therefore, ltl
ij = minj∈X(pl Rij), which is constant. With fixed amount of estimated

SLO violations between any location i and any candidate data center j, selecting H data

centers from a set of candidate data centers M to serve customers at a set of locations G

with minimum amount of SLO violations is exactly the k-median problem.

Since our problem is NP-hard, we refer to heuristic approximation algorithms that

can find good enough solutions in polynomial time.

Genetic Algorithm Overview

Our solution is based on genetic algorithm (GA). Compared with other approaches, it

has three advantages. The first is that meta-heuristics like GA are more flexible. For

each database, the administrator only needs to substitute the representation of dltl
j to let

the algorithm work. While for other heuristics, such as greedy algorithms, we find that

they are often tightly coupled with the database models. The second is that GA produces

satisfactory results in our context. We demonstrate that in our experiments. The last

but not least is that it is easy for meta-heuristic algorithms like GA to incorporate other

selection criteria into the existing model, e.g., the number of migrations.
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Figure 4.4: An Example of the Chromosome with 3 chosen data centers

Genetic Algorithm in Detail

Our GA generates a set of random solutions at the beginning and then iteratively per-

forms crossover, mutation, and selection according to a predefined fitness function. It

returns not only the set of chosen data centers but also the optimal request routing re-

garding the selected data centers. Before calculating fitness value, it respectively picks

the optimal data center among the chosen data centers X to process the requests from

each user location. The fitness function of the algorithm is defined as the fAVPR function

in the SLO violation model.

GA requires programmers to encode the solutions using a particular data structure,

called chromosome. In our GA, we number all the available data centers and encode the

solution as a non-repetitive ascending array, as illustrated in Figure 4.4. The number of

genes in a chromosome equals the total number of data centers the provider wants to

choose H. Thus, repetitive genes are not allowed in the chromosome. Besides, we sort

the genes in ascending order for the convenience of programming.

We wrote our initial population generator, crossover, and mutation operators. For

mutation operation, it first randomly picks one gene in the chromosome. Then it mutates

value of the gene. The mutated gene should be unique to all the genes in the previous

chromosome. Finally, the new chromosome is sorted to preserve the ascending property.

The initial population is generated randomly. The genes in an initial chromosome are

generated stochastically one by one unique to the previously created genes on the same

chromosome. After that, the genes are sorted by the ascending order. For crossover

operation, we randomly swap some genes of the two randomly chosen chromosomes. If

the resulted new chromosomes have repetitive genes, we perform additional mutations

to eliminate repetitions. Then the resulted new genes are sorted to the ascending order.

The algorithm terminates if not enough progress has been made for some time.
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Table 4.4: Symbols of Deployment Optimization

Term Meaning
n migration The function calculates the number of required migrations

t Redeployment interval
U Upper bound of AVPR
L Lower bound of AVPR
W Unit AVPR gain threshold for migration if AVPR of the current

deployment is below U
C Cooling period for contracting the application

4.4.4 Solution for Deployment Optimization

Decision-making Algorithm

In this step, we aim to optimize the deployment according to the given workload and

the current deployment. We propose a decision-making algorithm (Algorithm 1) to de-

cide whether and how to adjust the deployment so that satisfactory enough AVPR can

be achieved with acceptable migration efforts and operational cost. In our solution, we

require the administrator to specify the upper threshold of the acceptable AVPR, repre-

sented as U, and the lower threshold of the AVPR, which is shown as L.

The algorithm uses redeployment heuristics to find the satisfactory redeployment

plan. Their objective is to let providers gain more AVPR improvement from unit mi-

gration effort, which is defined as:

max
U − fAVPR(new)

n migration(new, current)
fAVPR(current) ≥ U ||

new.size < old.size

max
fAVPR(current)− fAVPR(new)

n migration(new, current)
otherwise

where n migration(new, current) returns the number of migrations required to change

the current deployment to the new deployment. The above function means when cur-

rent deployment cannot meet the upper bound of AVPR, or the algorithm is trying to

contract the application, the optimization target is to maximize the AVPR reduction from

unit migration effort against the upper bound. Otherwise, it is to maximize the AVPR
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Algorithm 1: Redeployment Decision-making Algorithm

Input: initial dc num, and t
1 dc num = initial dc num;
2 current plan = f irst step deployment(dc num);
3 for every t do

/* try to contract the application */

4 if fAVPR(current plan) < L f or consecutively more than C rounds then
5 new plan;
6 for each dc ∈ current plan do
7 contracted plan = current plan.remove(dc);
8 tmp plan = redeployHeuristic(dc num− 1, contracted plan);
9 if tmp plan.isFitter(new plan) then

10 new plan = tmp plan;
11 end

12 end
13 if fAVPR(new plan) < U then
14 current plan = new plan;
15 dc num−−;
16 continue;

17 end

18 end
/* try to optimize the deployment with the same number of

chosen data centers */

19 new plan = redeployHeuristic(dc num, current plan);
20 if worthwhile(current plan, new plan) then
21 current plan = new plan;
22 continue;

23 end
/* expand the application */

24 if fAVPR(new plan) ≥ U then
25 new plan = redeployHeuristic(+ + dc num, current plan);
26 current plan = new plan;

27 end

28 end

reduction against the AVPR of the current deployment.

As noted in Algorithm 1, our approach first searches if there is a chance to contract

the application when AVPR has been below the lower bound L for a time longer than the
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Algorithm 2: Worthwhile Method

Input: current plan, and new plan
1 if fAVPR(current plan) < U && w(new plan) > W then
2 return true;
3 end
4 if fAVPR(current plan) ≥ U && fAVPR(new plan) < U then
5 return true;
6 end
7 return f alse;

cooling period C (Line 4-18). We introduce the cooling time here to alleviate oscillation

that would cause frequent contraction and expansion of the application. As removing one

data center is not counted in the migration effort, when contracting the application, the

algorithm iterates all the possible choices and tries to find the best redeployment plan. If

no contraction is performed, it then endeavors to find a better deployment with the same

number of chosen data centers (Line 19-23). Redeployment will only be conducted if

AVPR reduction from unit migration effort is beyond the administrator-defined thresh-

old W or the new deployment can reduce the AVPR to the acceptable level (Algorithm

2). Suppose no deployment plan that will reduce the AVPR into the acceptable level is

found, the algorithm then expands the application (Line 24-28).

Administrators can reset constants U, L, C, and W at any time according to their

needs.

Redeployment Heuristics

We developed two redeployment heuristics:

Migration-aware Genetic: It replaces the fitness function of the GA used in the initial

deployment phase with the migration-aware optimization target.

k-Brute Force: Brute-forcedly search the best plan that is reachable using at most k

migrations (feasible for small k if H, |G|, and |M| are large). In our experiments, we set k

to 2.
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4.5 Performance Evaluation

We evaluate our approach using simulations. Settings of the data centers and networks

are described in the next sub-section. Workloads and baselines used are explained within

each experiment. As GA is stochastic, we run each test 5 times and report the best result

which is chosen to guide the deployment. For parameters of the GA, we set the popula-

tion size to 1000, the crossover rate to 50%, and the mutation rate to 2%. We select half of

the best chromosomes for reproduction after each iteration.

4.5.1 Data Centers and User Settings

We use the data collected by Zhu et al. [227] for our experiments due to lack availability

of latency data from real Cloud data centers. The dataset uses 307 PlanetLab nodes as

the candidate data centers and 1881 web services discovered by a crawler as the user

locations. Zhu et al. let the PlatetLab nodes ping the web services and each other to

obtain the real RTT latency data. Though PlanetLab nodes are not commercial Cloud

data centers, we believe the dataset is still representative of our problems as they are

geographically distributed and can be viewed as mimics of Cloud data centers in which

application replicas interact with each other and end users through the Internet.

4.5.2 Evaluation of Initial Deployment

Workload

We studied two real-world applications and specified the consistency requirements of all

their request types according to our judgement. The first application is the TPC-W work-

load [195] which mimics an e-business website. The TPC-W implementation we studied

uses MySql database, which is compatible to the Galera cluster. The second application

is called Twissandra [196], which is an open source copy of Twitter built upon Cassandra.

We generated two different workloads for both applications from each geographical

location using the normal distribution. The request mix of TPC-W was defined by the

browsing and ordering workload included in its benchmark suite. Roughly, in browsing
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workload, 75% of the requests could be served without inter-data center communication;

while in ordering workload, the number decreased to about 38%. For Twissandra, the re-

quest mix is the ratio of timeline view and tweet operations. For read-intensive workload,

the timeline view/tweet ratio was set to 9:1; for write-intensive workload, it was 7:3. We

assumed strong consistency is required for both operations, which means Qr(timeline

view)+Qw(tweet)> H. We set Qr = 2, Qw = H − 1 for all Twissandra tests using multi-

ple Clouds, as Twissandra is relatively read-intensive, and Qr = 2 can tolerate one data

center down when Qw > 1 for Qr + Qw− 1 data centers.

SLO

We specified different latency SLOs as well. The latency constraint for each request type

was set according to the total network round-trips it requires. Each request type was

respectively given 50ms and 100ms to perform one network round-trip for Gold and

Silver SLO.

Necessity of Considering Database Network Latencies

First, we show that it is important to consider database network latencies when deploy-

ing applications requiring strong inter-data center consistency. We fixed the number of

chosen data centers to 3 in the experiment, and run our consistency-aware GA algorithm

with different levels of SLO and workloads. Results are compared with a baseline GA

algorithm that only considers network communications between data centers and end

users, which is similar to the setting used in Kang et al.’s work [111]. We run the baseline

and then evaluated the found solutions using the database latency-aware model.

From Figure 4.5, it is evident that by omitting database network latencies, the found

solutions resulted in significantly higher AVPR compared to the database consistency

overhead-aware approach, except cases of TPC-W application under the browsing work-

load. The produced differences of the two algorithms for TPC-W under browsing work-

load are much smaller because the majority of requests (75%) in browsing workload are

served without inter-data center communication. From the results, we can conclude that
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(a) AVPR for Twissandra using various SLOs and
workloads

(b) AVPR for TPC-W using different SLOs and work-
loads

Figure 4.5: Comparing performances of different algorithms using 3 data centers

it is important to take database network latencies into account if the inter-data center

communication rate is relatively high in the request mix.

Efficacy of our GA

We compared the results of our GA with the optimal results. Optimal solutions were de-

rived by traversing all the possible solutions in the search space. In our settings, finding

optimal results using 3 data centers was the limit on our desktop testbed, which took

more than 16 hours to finish. As shown in figure 4.6, our GA found the exact optimal

deployment plan for all eight settings but using only around 4 minutes.

Efficacy of Deploying Applications in Multiple Data Centers

Regarding AVPR, we discuss whether it is worth to deploy applications requiring strong

inter-data center consistencies in multiple data centers. In this experiment, we fixed the

SLO to Silver and ran our GA algorithms with different numbers of data centers and
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(a) AVPR for Twissandra read-intensive workload

(b) AVPR for Twissandra write-intensive workload

(c) AVPR for TPC-W browsing workload

(d) AVPR for TPC-W ordering workload

Figure 4.6: Comparing deployments using multiple data centers and optimal deploy-
ments using 1 data center

workloads. The results are compared with the optimal deployments using one data cen-

ter only.

The results presented in Figure 4.6 indicate that, purely from the performance per-

spective, deploying applications requiring strong consistency in multiple data centers is

still beneficial. Using 3 data centers can reduce the amount of SLO violations to half of

that using optimal single data center deployment. However, the performance gain from

increased number of data centers becomes negligible when the number of data centers
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Figure 4.7: Results using fixed deployments and Silver SLO

exceeds 4. This phenomenon justifies our motivation to keep the number of chosen data

centers as small as possible in the deployment optimization phase to save operational

cost. Even though the performance gain is small, the providers may still want to deploy

their applications in a larger number of data centers for other benefits, such as availability

and fault-tolerance, which is out of the scope of this chapter.

4.5.3 Evaluation of Deployment Optimization

Workload

We generated a series of workloads for Twissandra to simulate the expansion of busi-

ness and workload increase for the test of our redeployment decision-making algorithm.

We classified the user locations into 11 geographic categories based on their latencies

to all the 307 data centers using K-means, and we added one category of locations into

the workload per redeployment round. The numbers of requests at the added locations

continuously grew in the following rounds in our settings to mimic workload increase.

Necessity of Deployment Optimization

To illustrate the necessity of deployment optimization along with the business expansion

and workload increase, we ran experiments using 2, and 3 data centers according to the

initial workloads and observed how the performances of the fixed deployments changed

in the later times under varied workload distributions.

As Figure 4.7 shows, the fixed deployments incurred unacceptably high AVPR when

the workload has been expanded and increased, which indicates that redeployment is
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(a) AVPR of Deployments

(b) Number of Migrations

(c) Number of Chosen Data Centers

Figure 4.8: Results with initial dc = 2, U = 5, L = 3, W = 0.5, C = 1, and Silver SLO

essential to maintain acceptable QoS under changing workloads.

Our Approach

We tested our decision-making algorithm using the two proposed redeployment heuris-

tics. We compared the results with one baseline algorithm.

Similar to Algorithm 1, the baseline algorithm tries to contract the application when

AVPR has been below the lower bound L for the time longer than the cooling period and

expands the application when U cannot be met. However, it performs migrations as long

as it finds a better deployment plan, no matter whether the improvement is significant
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or not compared to the current deployment. The redeployment heuristic used in the

baseline is called Migration-unaware Genetic. Its target is always to find the deployment

with minimum AVPR, which is the same GA utilized in the initial deployment phase.

We ran the test with initial dc = 2, U = 5, L = 3, W = 0.5, C = 1, and Silver

SLO. Figure 4.8 shows the comparison of AVPR, number of migrations, and number of

chosen data centers in each redeployment round using the proposed and the baseline ap-

proaches. Except for round 3-5, the baseline algorithm found the deployment plans with

the smallest AVPR. On the other hand, it incurred the largest number of migrations.

Our approaches, though resulted in a little more AVPR, managed to maintain the perfor-

mance under the upper bound using significantly fewer numbers of migrations (9:10:24),

which shows the effectiveness of our decision-making algorithm in balancing AVPR and

the migration cost.

The 2-brute force heuristic failed to find a redeployment plan using three data centers

due to its limitation that, within each round, maximum two migrations can be conducted,

comparing to the migration-aware GA heuristic, at the 3rd round. Though it significantly

outperforms other approaches in AVPR during round 3 to round 5, it uses one more data

center, which increased the operational cost. The 2-brute force approach finally took the

chance to contract the application at round 6 after long passing the cooling period due

to its limitation which caused it not being able to find a redeployment plan with AVPR

below the upper bound using three data centers during round 4 to round 5.

Choosing the right redeployment heuristic is always context specific. If the workload

distribution does not change abruptly, k-brute force is the better choice, as it provides a

higher chance for the providers to find the redeployment plan with optimal AVPR reduc-

tion from unit migration. For application providers that have tight operational budget

or providers that are expanding quickly, then migration-aware GA is possibly the right

choice.
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4.6 Discussions

Our approach can be applied to applications using other database systems, as long as

they adopt shared-nothing architecture, store full copy of data at each site, and employ a

known inter-data center consistency protocol. Though, currently, not many commercial

databases support inter-data center consistency, some emerging ones satisfy the prereq-

uisites and are compatible with our approach, such as MDCC [121], Calvin [193], and

Replicated Commit [136].

Furthermore, it is difficult to build an accurate database latency model that takes all

the cases into consideration. Like what we have done with the Cassandra and Galera

model, we believe a close approximation is enough to meet the purpose as the rare cases

only have a small influence on the aggregated results.

Our approach aims to provide a performance boost in long-term. Handling perfor-

mance issues caused by short-term network instability is out of our scope, and there is

no solution can realize that if application cannot be migrated in short time. The network

data used should be representative of their usual performance to obtain satisfactory de-

ployment.

Providers can either use the current workload or the predicted workload to generate

the redeployment plan. If predictions can be made accurately, using predicted workload

can further improve the performance by preparing for the workload changes during the

redeployment intervals in advance.

4.7 Related Work

Previous works about inter-data center consistency mostly focus on the database layer.

Besides developing databases that are capable of supporting strong inter-data center con-

sistency [17, 20, 45, 46, 121, 136, 175, 193], some works have also explored optimizing the

placement of data replicas and their consistency configurations to reduce the response

time and cost in the database layer. These works usually target quorum-based systems,

as they are more flexible in adjusting consistency configurations. SPANStore [213] is a

multi-data center key-value store with quorum consistency. It can transparently place
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data replicas across geo-distributed data centers so that total cost of storage and I/O op-

erations is minimized, and meanwhile, it still can meet its latency, fault-tolerance, and

consistency goals. Shankaranarayanan et al. [171] proposed an approach to find the op-

timal configuration of quorum-based data across multiple data centers (number of repli-

cas, replica placement, Qr, and Qw) so that read/write latency is minimized in common

cases and bounded when one data center is down. Our work is different to theirs as we

aim to optimize the performance of the whole application by selecting a set of hosting

data centers instead of optimizing placements of data among a set of already selected

data centers. Besides, we aim to build a general approach that is extensible to support

multiple databases.

Many works have studied the application placement problem in multi-data center

context. However, none of them have considered inter-data center consistency. Kang et

al. [113] explored how to deploy and redeploy standalone application replicas to mini-

mize total response time or maximize user satisfaction in changing workload. Zhang et

al. [224] proposed an approach to dynamically place applications in geographically dis-

tributed Cloud data centers with limited capacities and volatile costs using control and

game theory. Wu et al. [212] targeted the deployment of social media applications using

multiple Clouds. Their approach employed a social influence model to predict the future

demand, and then judiciously place the media files and servers in Cloud data centers to

achieve minimum cost under latency, bandwidth, and availability constraints.

4.8 Summary

We proposed an approach to help web application providers deploy their applications

with various inter-data center consistency requirements across multiple Cloud data cen-

ters. It generates deployment plan with a minimum amount of SLO violations when the

application is first moved to the Cloud using our genetic algorithm (initial deployment

phase), and then it continuously optimizes the deployment considering SLO satisfaction,

migration cost, and operational cost along with the change of workload distribution (de-

ployment optimization phase). We proposed an extensible SLO violation model so that
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besides the illustrated database systems (Cassandra and Galera Cluster), other databases

that satisfy certain requirements can be easily adapted to our approach. To demonstrate

the effectiveness of our approach, we conducted simulation experiments using settings

of two applications (TPC-W and Twissandra).

After the application is deployed in the Clouds, it comes to the task to ensure just

enough resources are provisioned to the application during its life cycle so that the QoS

requirements can be met with the minimum cost incurred. In the next chapter, we shift

our focus to the provisioning aspect of web application management and propose an

auto-scaler for web applications using heterogeneous spot instances.





Chapter 5

A Reliable and Cost-Efficient
Auto-Scaling System for Web

Applications Using Heterogeneous
Spot Instances

Spot instances sold through an auction-like mechanism are usually 90% cheaper than on-demand

instances. However, they can be terminated by providers when market prices exceed prices that users

bid. Thus, they are considered unreliable and are widely used to provision fault-tolerant applications

only. However, in this chapter, we propose a novel auto-scaler using heterogeneous spot instances,

which achieves both high availability and significant cost saving. We implemented two prototype

systems respectively on a simulation testbed and Amazon EC2. The experiments on both platforms

prove the efficacy of our approach.

5.1 Introduction

THERE are three common pricing models in current Infrastructure-as-a-service (IaaS)

Cloud providers, namely on-demand, in which acquired virtual machines (VMs) are

charged periodically with fixed rates, reservation, where users pay an amount of up-front

fee for each VM to allow cheaper use of the VM within a certain contract period, and

rebated.

Spot instances, a rebated pricing model, were introduced by Amazon to sell their

This chapter is derived from: Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “ A
Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous Spot In-
stances”, Journal of Network and Computer Applications, issue 65, page 167 - 180, 2016. Code Available:
https://github.com/quchenhao/spot-auto-scaling
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Figure 5.1: One week spot price history from March 2nd 2015 18:00:00 GMT in Amazon
EC2’s us-east-1d Availability Zone

spare capacity in the open market through an auction-like mechanism. The provider

dynamically sets the market price of each VM type according to real-time demand and

supply. To participate in the market, a Cloud user needs to give a bid that specifies

the number of instances for the type of VM he wants to acquire and the maximum unit

price he is willing to pay. If the bidding price exceeds the current market price, the bid

is fulfilled. After getting the required spot VMs, the user only pays the current market

prices no matter how much he bids, which results in significant cost saving compared

to VMs billed at on-demand prices (usually only 10% to 20% of the latter) [9]. However,

obtained spot VMs will be terminated by Cloud provider whenever their market prices

rise beyond the bidding prices.

Such model is ideal for fault-tolerant and non-time-critical applications such as sci-

entific computing, big data analytics, and media processing applications. On the other

hand, it is believed that availability- and time-critical applications, like web applications,

are not suitable to be deployed on spot instances.

Adversely in this chapter, we illustrate that, with the effective fault-tolerant mecha-

nism and carefully designed policies that comply with the fault-tolerant semantics, it is

also possible to reliably scale web applications using spot instances to reach both high

QoS and significant cost saving.

The spot market is similar to a stock exchange that, though possibly following the

general trends, each listed item has its unique market behavior according to its supply

and demand. In this kind of market, often price differences appear with some types of
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instances sold at high prices due to strong demand, while some remaining underutilized

leading to attractive deals. Figure 5.1 depicts a period of Amazon EC2’s spot market

history. Within this time frame, there were always some spot types sold at discounted

prices. By exploiting the diversity in this market, Cloud users can utilize spot instances

as long as possible to reduce their cost further. Recently, Amazon introduced the Spot

Fleet API [12], which allows users to bid for a pool of resources at once. The provision of

resources is automatically managed by Amazon using a combination of spot instances.

However, it still lacks the fault-tolerant capability to avoid availability and performance

impact caused by the sudden termination of spot instances, and thus, is not suitable to

provision web applications.

To fill in this gap, we aim to build a solution to cater this need. We proposed a reliable

auto-scaling system for web applications using heterogeneous spot instances along with

on-demand instances. Our approach not only significantly reduces the financial cost of

using Cloud resources but also ensures high availability and low response time, even

when some types of spot VMs are early terminated by Cloud provider simultaneously or

consecutively within a short period.

The contributions of this chapter are:

• a fault-tolerant model for web applications provisioned by spot instances;

• cost-efficient auto-scaling policies that comply with the defined fault-tolerant se-

mantics using heterogeneous spot instances;

• event-driven prototype implementations of the proposed auto-scaling system on

CloudSim [30] and Amazon EC2 platform;

• performance evaluations through both repeatable simulation studies based on his-

torical data and real experiments on Amazon EC2.

The remainder of the chapter is organized as follows. We first model our problem

in Section 5.2. In Section 5.3, we propose the base auto-scaling policies using heteroge-

neous spot instances under hourly billed context. Section 5.4 explains the optimizations

we proposed on the initial policies. Section 5.5 briefly introduces our prototype imple-
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On Demand m3.medium m3.large m1.small ......
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Figure 5.2: Proposed Auto-scaling system architecture

mentations. We present and analyze the results of the performance evaluations in Section

5.6 and discuss the related works in Section 5.7. Finally, we summarize the chapter.

5.2 System Model

For reader’s convenience, the symbols used in this chapter are listed in Table 5.1.

5.2.1 Auto-scaling System Architecture

As illustrated in Figure 5.2, our auto-scaling system provisions a single-tier (usually the

application server tier) of an application using a mixture of on-demand instances and

spot instances. The provisioned on-demand instances are homogeneous instances that

are most cost-efficient to run the application, while spot instances are heterogeneous.

Like other auto-scalers, our system is composed of the monitoring module, the decision-

making module, and the load balancer. The monitoring module consists of multiple inde-

pendent monitors that are responsible for fetching newest corresponding system infor-

mation such as resource utilizations, request rates, spot market prices, and VMs’ statuses.

The decision-making module then makes scaling decisions according to the obtained in-

formation based on the predefined strategies and policies when necessary. Since in our
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Table 5.1: List of Symbols

Symbol Meaning
T The set of spot types

Mmin The minimum allowed resource margin of an instance
Mde f The default resource margin of an instance

Q The quota for each spot group
R The required resource capacity for the current load

Fmax The maximum allowed fault-tolerant level
f The specified fault-tolerant level

O The minimum percentage of on-demand resources
in the provision

S The maximum number of selected spot groups
in the provision

ro The resource capacity provisioned by on-demand
instances

s The number of chosen spot groups
vm The VM type
vmo The on-demand VM type
cvm The hourly on-demand cost of the vm type instance

num(c, vm) The function returns the number of vm type
instances required to satisfy resource capacity c

Co The hourly cost of provision in on-demand mode
tbvm The truthful bidding price of vm spot group

m The dynamic resource margin of an instance



120 An Auto-scaling System using Heterogeneous Spot Instances

m3.medium 
x 40

(a)

m3.medium 
x 30

m3.large      
x 5

(b)

m3.medium 
x 20

m3.large      
x 10

(c)

Figure 5.3: Naive provisioning using spot instances1

proposed approach, the provisioned virtual cluster is heterogeneous, the load balancer

should be able to distribute requests according to the capability of each attached VM. The

algorithm we use in this case is weighted round robin.

The application managed by the proposed auto-scaler should be stateless. This re-

striction does not reduce the applicability of our approach as modern Cloud applications

should be developed in a stateless framework to realize high scalability and availabil-

ity [210]. Besides, stateful applications can be quickly transformed into stateless services

using various means, e.g., storing the session data in a separate Memcached cluster.

5.2.2 Fault-Tolerant Mechanism

Suppose there are sufficient temporal gaps between price variation events of various

types of spot VMs, increasing spot heterogeneity in provision can improve robustness.

As illustrated in Figure 5.3a, the application is fully provisioned using 40 m3.medium spot

VMs only, which may lead it to lose 100% of its capacity when m3.medium’s market price

go beyond the bidding price. By respectively provisioning 75% and 25% of the total re-

quired capacity using 30 m3.medium and 52 m3.large spot VMs in Figure 5.3b, it will lose at

most 75% of its processing capacity when the price of either chosen type rises above the

bidding price. Furthermore, if it is provisioned with equal capacity using the two types

1The red rectangles in Figure 5.3, 5.4, 5.5, and 5.6 stand for the minimum amount of capacity required
to process the current workload. Its value is dynamic and proportional to the changing workload so as the
amount of redundancy for fault-tolerance.

2According to Amazon’s specification, the capacity of 1 m3.large instance is equal to the capacity of 2
m3.medium instances.
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Figure 5.4: Provisioning for different fault-tolerant levels

of spot VMs, like in Figure 5.3c, termination of the either type of VMs will only cause it

to lose 50% of its capacity.

It is still unsatisfactory as we demand application performance to be intact even when

early termination happens. The solution is to further over-provision the same amount of

capacity using another spot type, as the example illustrated in Figure 5.4b, it can be 50%

of the required capacity provisioned using nine c3.large instances. In this way, the appli-

cation is now able to tolerate the terminations of any utilized type of VMs and remain

fully provisioned. After detection of the terminations, our auto-scaler can either provi-

sion the application using another kind of spot VMs or switch to on-demand instances.

Application performance is unlikely to be affected if no other termination happens before

the scaling operation that repairs the provision fully completes.

However, it takes considerable time to acquire and boot a VM (around 2 minutes for

on-demand instances and 12 minutes for spot instances [138]). Hence, there is a substan-

tial possibility that another type of spot VMs could be terminated within this time win-

dow. To counter such situation, it requires to over-provision the application using more

spot types. We define the fault-tolerant level of our auto-scaler as the maximum num-

ber of spot types that can be early terminated without affecting application performance

before its provision can be fully recovered. Figure 5.4 respectively shows the provision

examples that comply with fault-tolerant level zero, one, two, and three in our definition

with each spot type provisioning 50% of the required capacity.

Note that setting fault-tolerant level to zero is usually not recommended. Though

using multiple types of spot instances confines amount of resource loss when failures
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Figure 5.5: Provisioning for different fault-tolerant levels using 2 more spot types

happen, with no over-provision to compensate resource loss, it may frequently cause

performance degradation as failure probability becomes higher when more types of spot

instances are involved.

5.2.3 Reliability and Cost Efficiency

Although the provisions shown in Figure 5.4b, 5.4c, and 5.4d successfully increase reli-

ability of the application, they are not cost-efficient. The three provisions respectively

over-provision 50%, 100%, and 150% of resources required by the application, which

greatly diminishes the cost saving of using spot instances.

One possible improvement is to provision the application using more number of spot

types. The illustrative provisions in Figure 5.5 employ two more spot types than that are

used in Figure 5.4 to reach the corresponding fault-tolerant levels. As a result, total over-

provisioned capacities for the three cases are reduced to 25%, 50%, and 75%. Though the

provisions now might become more volatile with more types of spot VMs involved, the

increased risk is manageable by the fault-tolerant mechanism with over-provision.

Another choice is to provision the application with a mixture of on-demand instances

and spot instances to reduce over-provision . Like the demonstrations shown in Figure

5.6, there are now only 20%, 40%, and 60% over-provisioned capacities if on-demand

instances provision 20% of the required resource capacity. Moreover, using on-demand

resources also further confines amount of capabilities that could lose unexpectedly, thus,

improving robustness. On the other hand, this method incurs a more financial cost.
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Figure 5.6: Provisioning for different fault-tolerant levels using mixture of on-demand
and spot instances

We define total capacity that is provisioned by the same type of spot VMs as a Spot

Group. In addition to that, we give definition to Quota (Q), which is the capacity each

spot group needs to provision given the capacity provisioned by on-demand resources

(ro) and the fault-tolerant level ( f ). It is calculated as:

Q =
R− ro

s− f
(5.1)

where R represents the required capacity for the current load and s denotes the number

of chosen spot types. The minimum amount of capacity that is required to over-provision

then can be calculated as Q ∗ f .

We call a provision is safe if the provisioned capacity of each spot group is larger

than Q. Hence, the problem of scaling web applications using heterogeneous spot VMs

is transformed to dynamically selecting spot VM types and provisioning corresponding

spot and on-demand VMs to keep the provision in the safe state with minimum cost

when the application workload increases, and timely deprovisioning various types of

VMs when they are no longer needed.

5.3 Scaling Policies

Based on the previous fault-tolerant model, we propose cost-efficient auto-scaling poli-

cies that comply with the defined fault-tolerant semantics for hourly billed Cloud market
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like Amazon EC2.

5.3.1 Capacity Estimation and Load Balancing

Our auto-scaler is aware of multiple resource dimensions (such as CPU, Memory, Net-

work, and Disk I/O). It needs the profile of the target application regarding its average

resource consumption for all the considered dimensions. Currently, the profiling needs

to be performed offline, but our approach is open to integrate dynamic online profiling

into it.

With the profile, the auto-scaler can estimate the processing capability of each spot

type under the context of the scaling application. Based on that, it can quickly determine

how to distribute incoming requests to the heterogeneous VMs to balance their loads.

Besides, the estimated capabilities are used in the calculation of scaling plans as well.

5.3.2 Spot Mode and On-Demand Mode

Our auto-scaler runs interchangeably in Spot Mode and On-Demand Mode. Spot Mode

provisions application in the way explained in Section 5.2.3. In Spot Mode, the user needs

to specify the minimum percentage of required resources provisioned by on-demand in-

stances, symbolized as O. He can also set a limit on the number of selected spot groups

in the provision, denoted as S. To define these parameters, users can utilize the simula-

tion tool implemented by us (described in Section 5.5) to find the optimal configurations

according to the recent spot market history without running real tests on the Cloud. Fur-

thermore, these parameters can be dynamically adjusted using machine learning tech-

niques. In On-Demand Mode, the application is fully provisioned by on-demand in-

stances without over-provision. Switches between modes are dynamically triggered by

the scaling policies detailed in the below sections.

5.3.3 Truthful Bidding Prices

Bidding truthfully means that participants in an auction always bids the maximum price

they are willing to pay. Truthful bidding price for each VM type in our policies is cal-
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Algorithm 3: Find new provision when the system needs to scale up

Input: R : the current workload
Input: nc : the number of on-demand VMs in current provision
Input: vmo : the on-demand vm type
Input: O : the minimum percentage of on-demand resources
Output: target provision

1 min vmo ← max(nc, num(R ∗O, vmo));
2 max vmo ← num(R, vmo);
3 candidate set← call Algorithm 4 for each integer n in [min vmo, max vmo];
4 return on-demand provision if candidate set is empty
5 otherwise the provision with minimum cost in candidate set;

culated dynamically according to real-time workload and provision. Before computing

them, we first calculate the hourly baseline cost if the application is provisioned in On-

Demand Mode, which can be represented as:

Co = num(R, vmo) ∗ cvmo (5.2)

where the function num(R, vmo) returns the minimum number of instances of on-demand

VM type required to process the current workload. cvmo is the on-demand hourly price of

the on-demand instance type. Then truthful bidding price of spot type vm is determined

as follow:

tbvm =
Co − num(ro, vmo) ∗ cvmo

s ∗ num(Q, vm)
(5.3)

where num(ro, vmo) and num(Q, vm) are interpreted similarly to num(R, vmo) in Equa-

tion (5.2).

It ensures that even in the worst situation that all chosen spot types’ market prices are

equal to their corresponding truthful bidding prices, the total hourly cost of the provision

will not exceed that in On-Demand Mode.
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Algorithm 4: Find provision given the number of on-demand instances

Input: n : the number of on-demand VMs
Input: gc : the set of spot groups in current provision
Input: vmo : the on-demand vm type
Input: f : the fault-tolerant level
Input: T : the set of spot types
Input: S : the maximum number of chosen spot groups
Output: new provision

1 min groups← max(|gc|, f + 1);
2 max groups← min(|T|, S);
3 if max groups < min groups then
4 provision not found;
5 end
6 else
7 for s from min groups to max groups do
8 p← p ∪ (vmo, n);
9 compute Q using Equation (5.1);

10 compute tbvm for each vm in T;
11 p← p ∪ gc;
12 groups← each group not in go and whose tbvm is higher than market price;
13 k← s− |gc|;
14 if |groups| ≥ k then
15 p← p ∪ top k cheapest groups in groups;
16 provisions← provisions ∪ p;

17 end

18 end

19 end
20 return the cheapest provision in provisions;

5.3.4 Scaling Up Policy

Scaling up policy is called when some instances are early terminated, or the current pro-

vision cannot satisfy resource requirement of the application. By resource requirement,

in Spot Mode, it means the provision should be safe under the current workload, which

is defined in Section 5.2.3. While in On-Demand Mode, it requires the resource capacity

of the provision to exceed the resource needs of the current workload.

Algorithm 3 is used to find the ideal new provision when the system needs to scale up.
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The algorithm only provisions VMs incrementally to avoid frequent drastic changes. As

shown by line 1 in Algorithm 3, it limits the number of provisioned on-demand instances

to be at least its current number. For each valid number of on-demand instances, it calls

Algorithm 4 to find the corresponding best provision among provisions with various

combinations of spot groups. Similarly, in Algorithm 4 (line 11), it retains the spot groups

chosen by the current provision and only incrementally adds new groups according to

their cost-efficiency (line 15). If there is no valid provision found, the auto-scaler switches

to on-demand mode.

After the target provision is found, the auto-scaler compares it with the current provi-

sion and then contacts the Cloud provider through its API to provision the corresponding

types of VMs that are in short.

In the worst case, the time complexity of the scaling up policy is O(N ∗ S ∗ |T|)) where

N is the number of on-demand instances required to provision the current workload in

on-demand mode, S denotes the maximum number of chosen spot groups, and |T| is the

number of spot types considered. Since the parameters are all small integers, the compu-

tation overhead of the algorithm is acceptable in an online decision-making scenario.

5.3.5 Scaling Down Policy

Since each instance is billed hourly, it is unwise to shut down one instance before its

current billing hour matures. We, therefore, put the decision of whether each instance

should be terminated or not at the end of their billing hours. The particular decision

algorithms are different for on-demand instances and spot instances.

Policy for On-Demand Instances

When one on-demand instance is at the end of its billing hour, we not only need to de-

cide whether the instance should be shut down but also have to make changes to the

spot groups if necessary. The summarized policy is abstracted in Algorithm 5. The al-

gorithm first checks whether enough on-demand instances are provisioned to satisfy the

on-demand capacity limit (line 1 and line 2). If there are sufficient on-demand instances,
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Algorithm 5: Find target provision when the billing hour of one on-demand in-
stance is about to end

Input: R : the current workload
Input: nc : the number of on-demand instances in current provision
Input: vmo : the on-demand vm type
Input: O : the minimum percentage of on-demand resources
Output: target provision

1 if nc ≤ num(R ∗O, vmo) then
2 provision not found;

3 end
4 else
5 p1 ← call Algorithm 4 with nc;
6 p2 ← call Algorithm 4 with nc − 1;
7 return on-demand provision if neither p1 nor p2 is found otherwise either

provision that is cheaper;

8 end

it endeavours to find the most cost-efficient provisions with and without the on-demand

instance by calling Algorithm 4 (line 5 and line 6). Suppose the current provision is in

On-Demand Mode and no provision is found without the on-demand instance, the pro-

vision will remain in On-Demand Mode. Otherwise, if a new provision is found without

the current instance, the policy switches the provision to Spot Mode. In the case that

the current provision is already in Spot Mode, it picks whichever provision that incurs a

lower hourly cost.

Policy for Spot Instances

When dealing with a spot instance whose billing period is ending, in the base policy, we

simply shut down the instance when the corresponding spot quota Q can be satisfied

without it. The base policy will evolve with the introduced optimizations in Section 5.4

5.3.6 Spot Groups Removal Policy

Note that in both scaling up and down policies; we forbid removing selected spot groups

from the provision. Instead, we evict a chosen spot group when the provider terminates
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any spot instances of such type. Since bidding price of each instance is calculated dy-

namically, instances within the same spot group may be bid at different prices, which

could cause some instances to remain alive even after the corresponding spot groups are

removed from the provision. We call the instances that are running but do not belong

to any group orphans. Though orphan instances are still in production, they are not

considered a part of the provision according to the fault-tolerant semantics when mak-

ing scaling decisions. In the base policies, although they will not be shut down until

their billing hour ends, new instances still need to be launched to comply with the fault-

tolerant semantics, which causes resource waste. The introduced optimizations address

this drawback in the following section.

5.4 Optimizations

We have made several optimizations on the above base policies to improve cost-efficiency

and reliability of our auto-scaler further.

5.4.1 Bidding Strategy

In our scaling policies, spot groups are bid at truthful bidding prices calculated by Equa-

tion (5.3) due to cost-efficiency concern. While focusing on robustness, the system can

employ a different strategy to bid higher to retain spot instances as long as possible.

Actual Bidding Strategies

There are two bidding strategies, namely truthful bidding strategy and on-demand price

bidding strategy embedded in the system.

• Truthful Bidding Strategy: the system always bids the truthful bidding price calcu-

lated by Equation (5.3) when new spot instances are launched. Since partial billing

hours ended by Cloud provider are free of charge, Cloud users can save money by

letting Cloud provider terminate their spot instances once their market prices ex-
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ceed the corresponding truthful bidding prices. On the other hand, it leads to more

early terminations.

• On-Demand Price Bidding Strategy: the system always bids the on-demand price

of the corresponding spot type whenever trying to obtain new spot instances. This

strategy will cost Cloud users more money but provides a higher level of protection

against early terminations.

Revised Spot Groups Removal Policy

In the base policies, less cost-efficient spot groups could remain in the provision for a

long time unless provider terminates some of their instances. When the actual bids are

higher than the truthful bidding prices, the situation could become worse. Instead of

just relying on the provider terminating uneconomical spot groups, the revised policy

actively inspects whether market prices of some spot groups have exceeded their corre-

sponding truthful bidding prices and remove them from the provision. In the meantime,

for spot groups whose market prices are still below their truthful bidding prices, it looks

for the chance to replace them by more economical spot groups that have not been se-

lected. Such operations should be conducted in a long interval, such as every 30 minutes

in our implementation, to minimize disturbance to provision. Members of removed or

replaced spot groups become orphans.

5.4.2 Utilizing Orphans

After removing or replacing some spot groups, if the system simply lets members of

these spot groups become orphans and immediately start instances of newly chosen spot

groups, the stability of provision will be affected. Furthermore, as orphans are not consid-

ered as valid capacity in the base policies, during the transition period, it has to provision

more resources than necessary, which results in monetary waste.

To alleviate this problem, we aim to utilize as many orphans in the provision as pos-

sible to deter the time to provision new VMs. As a result, resource waste can be reduced,

and cost-efficiency is improved.
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Figure 5.7: Provisioning with orphans under fault-tolerant level one
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We modify the proposed fault-tolerant model to allow a spot group temporarily ac-

cept instances that are heterogeneous to the spot group type under certain conditions.

Figure 5.7 illustrates such provision. In Figure 5.7a, the m1.small group does not have

sufficient instances to satisfy its quota. Instead of launching 2 new m1.small spot in-

stances, the policy now temporarily move the available orphan, one m1.medium instance,

to the m1.small group to compensate the deficiency of its quota. Even though m1.small

group becomes heterogeneous in this case, it does not violate the fault-tolerant seman-

tics as losing any type of spot instances will not influence the application performance.

However, in some situations, heterogeneity in spot groups could cause violation of the

fault-tolerant semantics, for example, there might be case that three m1.medium orphans

are spread across three spot groups, and the total capacity of the three instances exceeds

the spot quota. Then losing the three m1.medium instances will violate the fault-tolerant

semantics. Fortunately, such cases are very rare as orphans are usually small in numbers

and are expected to be shut down soon.

With this relaxation of the fault-tolerant model, the previous scaling up and scaling

down policies need to be revised to utilize the capacities of orphans efficiently.

Revised Scaling Up Policy

The new scaling up policy uses the same algorithm (Algorithm 3) to find the target pro-

vision. However, instead of launching instances to reach the objective provision, the new

policy calculates whether it can utilize existing orphans to meet the quota requirements

in the target provision.

The new policy first checks whether the destination provision chooses new spot groups.

If there are orphans whose types are the same to any newly selected groups, lying either

within the orphan queue or other spot groups, they are immediately moved to the cor-

responding new spot groups. After that, the policies endeavor to insert non-utilized

orphans from the orphan queue into spot groups that have not met their quota require-

ments. If all the orphans have been utilized and some groups still cannot satisfy their

quota, new spot instances of the corresponding types are launched.
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Revised Scaling Down Policy

Regarding policy for on-demand instances that are close to their billing hour, the new

policy utilizes the same mechanism in the revised scaling up policy to provision any

changes between the current provision and the target one.

For the spot scaling down policy, if the spot instance is in the orphan queue, it is

immediately shut down. Suppose it is within the spot group of the same type, it is shut

down when the spot quota can be satisfied without it. In the case that the instance is an

orphan within another spot group, the new policy shuts down the instance and in the

meantime starts a certain number of spot instances of the spot group type to compensate

the capacity loss.

5.4.3 Reducing Resource Margin

For applications running on a traditional auto-scaling platform, administrator usually

leaves a margin for each instance to handle short-term workload surge to buy time for

booting up new instances. This margin empirically ranges from 20 to 25% of the in-

stance’s capacity.

With over-provision already in place, this margin can be reduced under Spot Mode

provision. We devise a mechanism that dynamically changes the margin according to the

current fault-tolerant level. Since higher fault-tolerant level leads to more over-provision,

we can be more aggressive in reducing the margin of each instance. In detail, the dynamic

margin is determined by the formula:

m =
Mde f −Mmin

Fmax
∗ f + Mmin (5.4)

where Mmin means the minimum allowed margin, e.g., 10%, Mde f is the default margin

used without dynamic margin reduction, e.g., 25%, and Fmax is the maximum allowed

fault-tolerant level.
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Figure 5.8: Components of the Implemented Auto-scaling System

5.5 Implementation

We implemented a prototype of the proposed auto-scaling system on Amazon EC2 plat-

form using Java, the components of which are illustrated in Figure 5.8. It employs an

event-driven architecture with the monitoring modules continuously generating events

according to newly obtained information, and the central processor consuming events

one by one. Monitoring modules produce and insert corresponding events with various

critical levels into the central priority event queue. They include the resource utilization

monitors that watch all dimensions of resource consumption of running instances, the

billing monitor that gazes billing hour of each requested VM, the VM status monitor that

reminds the system when some instances are online or offline, the spot price monitor that

records newest spot market prices for each considered spot type, and the spot request

monitor that watches for early spot termination. On the other side, the central event pro-

cessor fetches events from the event queue and assigns them to the corresponding event

handlers that realize the proposed policies to make scaling decisions or perform scaling

actions.

The prototype implementation provides a general interface for users to plug different

load balancer solutions into the auto-scaler. In our case, we use HAProxy with weighted

round robin algorithm. It also offers the interface to allow users to automatically cus-

tomize configurations of VMs according to their available resources after they have been

booted.
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Figure 5.9: The English Wikipedia workload from Sep 19th 2009 to Sep 26th 2009

For quick concept validation and repeatable evaluation of the proposed auto-scaling

policies, we created a simulation version of the system. The same code base is trans-

planted onto CloudSim [30] toolkit which provides the underlying simulated Cloud en-

vironment. The simulation tool can provide quick and economic validation of the pro-

posed policies using historical data of the application and the spot market as input if bids

from a single user impose negligible influence on market prices.

5.6 Performance Evaluation

5.6.1 Simulation Experiments

As stated in Section 5.5, to allow repeatable evaluation, we developed a simulation ver-

sion of the system that allows us to compare the performances of different configurations

and policies using traces from real applications and spot markets.

Simulation Settings

We use one week trace of 10% English Wikipedia requests from Sep 19th 2007 to Sep 26th

2007 as the workload [201, 204], which is depicted in Figure 5.9. Note that our approach

is general purpose and can be applied to any workload, as the proposed system does

not make assumptions on the workload and is fully reactive. We adopt the Wikipedia
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workload in experiments because it reveals significant variations that can trigger frequent

scaling operations to let us observe the behavior of our system. We believe one week trace

is enough for the purpose of our experiments, as it gives the system ample opportunities

to exercise the scaling policies. Besides, as reported by Eldin et al. [60], the Wikipedia

workload revealed strong weekly pattern with only gradual changes in amplitude, level,

and shapes.

We consider 13 spot types in Amazon EC2. Their spot prices are simulated according

to one week Amazon’s spot prices history from March 2nd, 2015 18:00:00 GMT in the

relatively busy us-east region. The involving spot types and their corresponding history

market prices are illustrated in Figure 5.1.

We set request timeout at 30 seconds. In addition, we respectively set minimum al-

lowed resource margin (Mmin) and default resource margin (Mde f ) at 10% and 25%. We

found out that the c3.large is the most cost-efficient type to run Wikipedia application

according to a small-scale resource profiling test of the Wikibench application [203] on

Amazon EC2 and the resource specifications of each instance type released by Amazon.

It is selected to provision all the on-demand resources in the experiments. All simulation

experiments start with 5 c3.large on-demand instances. The length of simulated requests

is generated following a pseudo-Gaussian distribution3 with a mean of 0.07 ECU4 and

standard deviation of 0.005 ECU so that different tests using the same random seed are

receiving the same workload. VM startup, shut down, and spot requesting delays are

generated in the same way using pseudo-Gaussian distribution. The mean values of the

above three distributions are respectively 100, 100, 550 seconds, and the standard devia-

tions are set at 20, 20, 50 seconds. The test results are deterministic and repeatable on the

same machine.

We tested our scaling policies with various fault-tolerant levels and different least

amounts of on-demand resources, which are represented respectively as “ f − x” and “y%

on-demand” in the results. We also tested the policies using the two embedded bidding

3Since Wikipedia is serving mostly the same type of requests - page view, the time taken to process each
request is also likely to fall in a particular interval. To coarsely model such behavior, we utilize Gaussian
distribution. Other distributions with small head and tail can serve the same purpose as well.

4It means the request takes 70ms to finish if it is computed by the VM equipped with vCPU as powerful
as 1 Elastic Computing Unit (ECU)
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Figure 5.10: Response time for on-demand auto-scaling

strategies and static/dynamic resource margins.

We recorded two metrics, real-time response time of requests (average response time

per second reported) and total cost of instances, in all the experiments.

Benchmarks

We compared our scaling policies with two benchmarks:

• On-Demand Auto-scaling: This benchmark only utilizes on-demand instances. It

is implemented by restricting the auto-scaler always in On-Demand Mode.

• One Spot Type Auto-scaling: The auto-scaling policies used in this benchmark,

like the proposed policies, provision a mixture of on-demand resources and spot

resources. The benchmark also has a limit on minimum amount of on-demand

resources provisioned. However, for spot instances, it only provisions one spot

group that is the most cost-efficient at the moment without over-provision. If the

provisioned spot instances are terminated, a new spot group then is selected and

provisioned. Suppose a more economic spot group is found, the old spot group is

gradually replaced by the new one. It is implemented by setting the fault-tolerant

level to zero and limiting at most one spot group can be provisioned.
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 5.11: Response time of one spot type auto-scaling with various percentage of on-
demand resources and truthful bidding strategy
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 5.12: Response time of f − 0 with various percentage of on-demand resources,
truthful bidding strategy, and dynamic resource margin
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 5.13: Response time of f − 1 with various percentage of on-demand resources,
truthful bidding strategy, and dynamic resource margin
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 5.14: Response time of one spot type auto-scaling with various percentage of on-
demand resources and on-demand bidding strategy
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Response Time

Figures 5.10, 5.11, 5.12, and 5.13 respectively depict real-time average response time of

requests using on-demand, one spot, and our approach with truthful bidding strategy

and dynamic resource margin. From the results, the on-demand auto-scaling produced

smooth response time all along the experimental duration except for a peak that was

caused by the corresponding peak in the workload. All experiments employing one spot

type auto-scaling experienced periods of request timeouts caused by the terminations

of spot instances, and only increasing the amount of on-demand resources could not

improve the situation. In contrast, our approach significantly reduced such unavailability

of service even using f − 0 with no over-provision of resources. By using f − 1, we could

eliminate the timeouts with the recorded spot market traces as input. We omit the results

for tests using f − 2 and f − 3 as they reveal similar results as Figure 5.13.

To show the effect of different bidding strategies, we compare the response time re-

sults of one spot type auto-scaling using the two proposed bidding strategies as they

reveal the most significant differences. As Figure 5.11 and Figure 5.14 present, it can be

concluded that service availability can be much improved with higher bidding prices us-

ing one spot type auto-scaling. On the other hand, the remaining timeouts also indicate

that increasing the bidding prices alone is not enough to guarantee high availability.

Cost

Table 5.2 lists the total costs produced by all the experiments. Comparing to the cost

of on-demand auto-scaling, we managed to gain significant cost saving using all other

configurations. Tests using one spot type auto-scaling with 0% on-demand resources

enabled the most cost saving up to 80.87% regardless of its availability issue.

Results show the amount of on-demand resources has a significant influence on cost

saving. It also can be noted that higher fault-tolerant level incurs extra cost. Though op-

timal configuration of the fault-tolerant level is always application-specific, according to

our results, the configuration using f − 1 with 0% on-demand resource is the best choice

for the current market situation regarding both financial cost and service availability.
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The resulted cost differences caused by different bidding strategies are small. There-

fore, it is better to bid higher to improve availability if user’s bidding has a negligible

impact on the market price.

As dynamic resource margin is only applicable when the application is over-provisioned,

we present results for tests using dynamic resource margin when the fault-tolerant level

is higher than zero. According to the results, dynamic resource margin can bring extra

cost saving and the amount of cost saving increases when more over-provision is neces-

sary (i.e., higher fault-tolerant level). Though the resulted cost saving is not significant, it

is safely achieved without sacrificing availability and performance of the application.

5.6.2 Real Experiments

We conducted two real tests on Amazon EC2 respectively using on-demand auto-scaling

policies and the proposed auto-scaling policies with a configuration of f − 1 and 0% on-

demand. Other parameters are defined the same to the simulation tests.

We set up the experimental environment to run the Wikibench [203] benchmark tool.

The major advantage of this tool compared to other tools such as TPC-W, RUBiS, and

CloudStone is that it is stateless, which is characteristic of modern highly scalable Cloud

services [210]. The tool is composed of three components:

• a client driver that mimics clients by continuously sending requests to the applica-

tion server according to the workload trace;

• a stateless application server installed with the Mediawiki application;

• a MySQL database loaded with the English Wikipedia data by the date of Jan 3rd,

2008.

Our aim is to scale the application-tier. Thus, we inserted an HAProxy load balancer

layer into the original architecture to let the client driver talk to a cluster of servers. The

architecture of the testbed is illustrated in Figure 5.15. We picked the first three days of

the Wikipedia workload [201, 204] (Figure 5.9) and scaled it down to half of its original



5.6 Performance Evaluation 145

The Client Driver HAProxy Load Balancer

MediaWiki Servers

English Wikipedia Database

Auto-scaling System

Figure 5.15: The Testbed Architecture
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Figure 5.16: Response time for on-demand auto-scaling on Amazon

rate as the workload for testing because Amazon limits the number of instances each

account can launch.

The testing environment resided in Amazon us-east-1d zone which is in a relatively

busy region with higher degree and frequency of price fluctuations. Regarding each

component, we launched one c4.large instance acting as the client driver, one m3.medium

instance running the HAProxy load balancer, and one c4.2xlarge5 instance serving the

MySQL database requests. The auto-scaling system itself is running on a local desktop

computer remotely in Melbourne. Before the tests, we profiled each component to make

sure none of them become the bottleneck of the system.

The test using the proposed approach started at 3:30 am September 9, 2015, Wednes-

day, US Eastern time. The testing period spanned across three busy weekdays from

Wednesday to Friday.

5The 4th generation instances were introduced between the time we performed the simulations and the
real experiments. To be consistent, we only consider the 13 spot types listed in Figure 5.1 for both the
simulations and the real experiments
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Figure 5.17: Response time for spot auto-scaling on Amazon

Table 5.3: Cost of the Experiments

Policies Cost(USD$)
on-demand 19.01

f t− 1 and 0% on-demand 5.69

Figure 5.16 and 5.17 presents real-time response time results of the two experiments.

Both show peaks of high response time. By studying the recorded log, we confirmed

shortage of resources did not cause them as resource utilizations of all the involving

VMs were never beyond safe threshold during both tests and thus are not caused by

our approach. We encountered three early terminations during the test of our approach.

Thanks to the fault-tolerant mechanism and policies, we managed to avoid service inter-

ruption and performance degradation during those periods. Besides, because resources

are tighter in on-demand auto-scaling, it performs worse in response time compared to

the proposed approach.

Regarding cost, we calculated the total cost of application servers in both experiments.

Table 5.3 presents the results. The proposed approach reaches 70.07% cost saving.

5.6.3 Discussion

Even with high fault-tolerant level, the proposed method cannot guarantee 100% avail-

ability, and no solution can ever manage to assure absolute service continuity due to the

nature of spot market. What our system offers is the best effort to counter large-scale
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surges of market prices of the selected spot types in a short time, which is highly unlikely

under current market condition. In fact, we have not encountered any case that more

than one spot group fail simultaneously during simulations, real experiments, and test-

ing phases. However, the market condition could change. Hence, application providers

should adjust the configuration of the auto-scaling system dynamically according to the

real-time volatility of the spot market. Besides, the nature of the application also affects

the decision. If the application is availability-critical, a higher fault-tolerant level is al-

ways desirable. Adversely, for some applications, such as analytical jobs, even one spot

type auto-scaling is acceptable.

The presented results in Section 5.6 indicates the cost saving potential of an individual

application considering a selected set of spot types under the recorded spot market prices

and workload traces. Thanks to the dynamic truthful bidding price mechanism, even

in competitive market condition, we can ensure that the cost reduction gained by our

approach will not vanish but only diminish. To achieve more cost saving, the application

provider can take into account a broader set of spot types, which is available in Amazon’s

offering.

To save cost and time for testing, application providers can tune the parameters of the

auto-scaler by first utilizing simulation for fast validation and then test the system in the

production environment.

There are also differences in price among the same spot types across different avail-

ability zones. It is trivial to extend the current fault-tolerant model to utilize spot groups

from multiple availability zones. Currently, the auto-scaling system limits the selection

of spot groups within the same availability zone due to charges for traffic across avail-

ability zones. If the application provider has already adopted a multi-availability-zone

deployment, such extension can realize more cost saving.

The overhead of the auto-scaling system is negligible. As presented in Section 5.3,

the time complexity of the scaling policies is not significant. The frequency that the scal-

ing policies are called depending on the monitoring interval and the frequency of price

changes, which are at least on the scale of seconds.
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5.7 Related Work

5.7.1 Horizontally Auto-scaling Web Applications

Horizontally auto-scaling web applications have been extensively studied and applied

[133]. In Chapter 2, we have provided a thorough taxonomy of the existing auto-scaling

techniques.

Most industry auto-scaling systems are reactive-based. Among them, the most fre-

quently used service is Amazon’s Auto Scaling Service [11]. It requires user first to create

an auto-scaling group, which specifies the type of VMs and image to use when launch-

ing new instances. Then the user should define his scaling policies as rules like “add two

instances when CPU utilization is larger than 75%”. RightScale offers Another popular

service. Their service is based on a voting mechanism that lets each running instance

decide whether it is necessary to grow or shrink the size of the cluster based on their

condition [162].

Other than just using simple rules to make scaling decisions, researchers have devel-

oped scaling systems based on formal models. These models aim to answer the ques-

tion that how many resources are required to serve a certain amount of incoming work-

load under QoS constraints. Such model can be obtained using profiling techniques as

we did in this chapter. Other commonly adopted approaches include queuing models

[68, 69, 82, 100, 166, 202] that either abstract the application as a set of parallel queues

or a network of queues, and online learning approaches such as reinforcement learning

[21, 27, 57].

Proactive auto-scaling is desirable because the time taken to start and configure newly

started VMs creates a resource gap when workload suddenly surges to the level beyond

the capability of the available resources. To satisfy strict SLA, sometimes it is necessary

to provision enough resources before workload rises. As workloads of web applications

usually reveal temporal patterns, accurate prediction of future workload is feasible using

state-of-the-art time-series analysis and pattern recognition techniques. Many of them

have been applied to auto-scaling of web applications [32, 58, 62, 87, 94, 100, 104, 164].

Most auto-scaling systems only utilize homogeneous resources, while some, includ-
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ing our system, have explored the use of heterogeneous resources to provision web ap-

plications. Upendra et al. [200], and Srirama and Ostavar [182] adopt integer linear

programming (ILP) to model the optimal heterogeneous resource configuration problem

under SLA constraints. Fernandez et al. [63] utilizes tree paths to represent different com-

binations of heterogeneous resources and then searches the tree to find the most suitable

scaling plan according to user’s SLA requirements.

Distinct from the above works, our objective goes beyond using minimum resources

to provision the application. Instead, we want to devise a fault-tolerant mechanism and

auto-scaling policies that comply with the fault-tolerant semantics to reliably scale web

applications on cheap spot instances. We believe the reviewed auto-scaling techniques

are complementary to our approach. The proposed method can incorporate their re-

source estimation models, and workload prediction methods as well.

5.7.2 Application of Spot Instances

There have been many attempts to use spot instances to cut resource cost under vari-

ous application context. Resource provisioning problems using spot instances have been

studied for fault-tolerant applications [24,35,42,43,47,134,155,183,207,220] such as high

performance computing, data analytics, MapReduce, and scientific workflow.

For these applications, the fault-tolerant mechanism is often based on checkpointing,

replication, and migration. Multiple innovative checkpointing mechanisms [96, 107, 167]

have been developed to allow these applications to harness the power of spot instances.

SpotOn [183] combines multiple fault-tolerant mechanisms to increase the cost-efficiency

and performance of batch processing applications running on spot instances.

Regarding web applications, Zhao et al. [226] proposed a stochastic algorithm to plan

future resource usage with a mixture of on-demand and spot instances. Besides the fact

that they only use homogeneous resources, their object is also different to ours as they

aim to plan the resource usage with the knowledge of the future while we provision re-

sources dynamically. Mazzucco and Dumas [139] also explored the use of a mixture of

homogeneous on-demand instances and spot instances to provision web applications.

Instead of building a reliable auto-scaling system, their target is to maximize web ap-
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plication provider’s profit by using an admission control mechanism at the front end to

dynamically adapt to sudden changes of available resources.

Sharma at al. proposed a derivative IaaS Cloud platform based on spot instances

called SpotCheck [172, 176]. To transparently provide high availability on spot instances

to end users, they incorporated technologies such as nested virtualization, live VM mi-

gration, and time-bounded VM migration with memory checkpointing, to dynamically

move users’ VMs when underlying spot instances are available or revoked. Because of its

transparency to end users, it is ideal for Cloud brokers and large organizations with high

resource demands, while our approach is lightweight and thus more suitable for small or-

ganizations who want to harness the power of spot instances by themselves. He et al. [86]

from the same group evaluated the ability of the approach to reliably run web applica-

tions on spot instances. Though they do not provision redundant capacity as we do, they

reported non-negligible overhead incurred by nested virtualization. Their proposed sys-

tem [86,172,176] can preserve the memory state of the revoked spot VMs, which enables

it to host stateful applications seamlessly. Though our approach requires applications to

be stateless, this does not reduce its generality as highly scalable Cloud applications are

expected to be stateless [210], and stateful applications can be transformed into stateless

ones by storing session information in a memory cache cluster [210]. Their system relies

on the termination warnings issued by existing providers [10] to be able to conduct mi-

grations in time. Our approach is capable of operating in possible future spot markets

that do not provide termination warnings.

Recently, Amazon EC2 introduced a new feature, called Spot Fleet API [12]. It allows

a user to bid for a fixed amount of capacity, possibly constituted by instances of different

spot types. It continuously and automatically provisions the capacity using the combina-

tion of instances. However, as its provision decision ignores reliability, it is not suitable

to provision web applications.
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5.8 Summary

In this chapter, we explored how to reliably and cost-efficiently auto-scale web applica-

tions using a mixture of on-demand and heterogeneous spot instances. We first proposed

a fault-tolerant mechanism that can handle early spot terminations using heterogeneous

spot instances and over-provision. We then devised novel cost-efficient auto-scaling poli-

cies that comply with the defined fault-tolerant semantics for hourly-billed Cloud mar-

ket. We implemented a prototype of the proposed auto-scaling system on Amazon EC2

and a simulation version on CloudSim [30] for repeatable validation. We conducted both

simulations and real experiments to demonstrate the efficacy of our approach by com-

paring the results with the benchmark approaches.

Though our proposed approach enhances the reliability of the application when fac-

ing terminated spot instances, short-term overload may still happen when many spot

types are terminated simultaneously. In the next chapter, we present a technique that

aims to reduce the performance impact caused by failures, like spot terminations, and

flash crowds using geographical load balancing.





Chapter 6

Mitigating Impact of Overload on Web
Applications through Geographical

Load Balancing

Managed by an auto-scaler in the clouds, applications may still be overloaded by sudden flash

crowds or resource failures as the auto-scaler takes time to make scaling decisions and provision re-

sources. For applications deployed in multiple data centers, instead of sufficiently over-provisioning

each data center to prepare for occasional overloads, it is more cost-efficient to over-provision each data

center a small amount of capacity and to balance the extra load among them when resources in any

data center are suddenly saturated. In this chapter, we present an approach that supplements and

enhances current auto-scalers for applications deployed across multiple Clouds. It can timely detect

overload situations and then autonomously handle them using the proposed geographical load balanc-

ing algorithm and admission control mechanism to minimize the resulted performance degradation.

We developed a prototype and evaluated it on Amazon Web Services. The results show that our ap-

proach can maintain acceptable QoS while significantly increase the number of requests served during

overloading periods.

6.1 Introduction

AUTO-SCALING is the mechanism that dynamically provisions resources to appli-

cations to cope the change of workloads or resource failures. However, it takes

considerable time for auto-scalers to boot VMs and configure them for production. Mao

and Humphrey [138] conducted an experimental study on the VM startup time of var-

This chapter is derived from: Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya, “Mitigating
Impact of Short-term Overload on Multi-Cloud Web Applications through Geographical Load Balancing”,
accepted by Concurrency and Computation Practice and Experience, 2017.
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ious types of instances in Amazon AWS, Microsoft Azure, and Rackspace. They found

that the booting time ranges from about 50s to more than 900s depending on the sizes,

cost models, and operating systems. This delay in resource provisioning will result in

performance degradation and even unavailability of service during this period.

In web applications, it is common to observe rapid surges in requests once in a while.

This situation is called flash crowd, and it can occur any moment with little or no warn-

ing. The Cloud auto-scaler, in these cases, cannot timely provision enough resources to

deal with these situations. Application providers now deploy web applications on cheap

cost but unreliable Cloud resources, such as spot instances [12], which makes the appli-

cations more prone to resource failures. Therefore, solely relying on auto-scaling is not

enough to ensure high performance all the times and a certain level of over-provisioning

is necessary for production environments in preparation for these events.

Cloud providers have established their data centers all over the world, which enables

their customers to deploy their applications in multiple geographically dispersed regions

to better serve the worldwide population. As deployment of applications on multiple

distributed computing Clouds is becoming increasingly popular, we argue that in this

type of deployment, when failures happen, or a flash crowd arrives at a data center, it

is better to utilize the unused capacities already provisioned in other data centers1 to

process as many exceeding requests as possible through geographical load balancing,

instead of processing all the requests locally and degrading the performance of all the

clients served by the regional data center, or rejecting the exceeding requests directly.

This approach is viable as failures are unlikely to happen simultaneously in multiple

data centers and flash crowds also seldom take place on a global scale at the same time

due to culture and time differences.

A widely-adopted approach to implement geographical load balancing is through

DNS resolution. However, it takes some time to populate the DNS settings across layered

DNS servers, which makes it impossible to react to overload situations timely. Further-

more, it is also difficult to accurately control the load directed to each data center using

1Because load is balanced among all the servers provisioned in a data center, the unused capacities come
from the spare processing capabilities in each server instead of from completely idle servers that are standing
by.
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this technique. Another popular way is to utilize a centralized load balancer to distribute

load among data centers. Though it allows fine-grained control over traffic, it introduces

extra latencies to all the requests, which reduces the benefit of deploying the application

in multiple Clouds.

In this chapter, we present an approach that supplements and enhances state-of-the-

art auto-scalers for applications deployed across multiple data centers. It aims to quickly

detect and adapt to short-term overloads caused by resource failures and flash crowds in

each data center through geographical load balancing and admission control before the

auto-scaler finishes provisioning new resources. Different from previous geographical

load balancing solutions, our approach relies on decentralized agents deployed in each

data center to implement fast and accurate geographical load balancing. During the over-

load situations, the agent deployed in the overloaded data center temporarily forwards

certain amounts of excessive requests to other data centers to keep the predefined SLA

satisfied. Within our approach lies the proposed overload handling algorithm that opti-

mally distributes excessive load among data centers that have available capacities caus-

ing a minimum overall increase of latencies. In this way, our approach only incurs little

performance overhead to the forwarded requests and requests served by the receiving

data centers during the short overloading periods, and thus preserves the benefit of de-

ploying the application on multiple geographically distributed Clouds. We implemented

a prototype and evaluated it on Amazon Web Services, who offers IaaS infrastructure in

multiple geographically dispersed regions. Results show that our approach can timely

detect short-term overload events and effectively improve the application performance

during resource contention periods.

The contributions of the chapter are:

• a decentralized load balancing approach across multiple Clouds that detects and

handles short-term overload events;

• an overload detection and handling algorithm;

• a queuing model for deciding load redirection among data centers with spare ca-

pacities to minimize its impact on the overall application performance; and
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• a prototype implementation of the proposed approach evaluated in Amazon’s in-

frastructure located in North Virginia, Ireland, and Tokyo.

The remainder of the chapter is organized as follows. In Section 6.2, we illustrate the

use case scenarios of our approach. We then describe the deployment model and some

assumptions in Section 6.3. We explain the proposed approach and its implementation in

detail in Section 6.4. Finally, we compare our approach with related works and summa-

rize the chapter in Section 6.7.

6.2 Use Case Scenarios

Our approach aims to mitigate performance degradation caused by short-term overloads

that cannot be timely addressed by the Cloud auto-scalers. It is not designed to replace

state-of-the-art auto-scalers; instead, it is complementary to them, and it should work

cooperatively with them.

6.2.1 Resource Failures

Resource failures can happen at any time, and the failed resources will become inac-

cessible immediately, which leaves the auto-scaler no time to provision new resources

without causing performance degradation during the provision time if the amount of

resource loss is beyond the locally unused capacity. Such failures can frequently hap-

pen and in large scale if the application is deployed on unreliable resources, such as spot

instances (a problem that is addressed in Chapter 5), which makes things worse. Spot in-

stances are resources sold by Cloud providers through an auction-like mechanism. They

are significantly cheaper than the corresponding on-demand instances, but they will be

terminated by the provider when the market price exceeds the user bid, thus, causing

failures. Besides infrastructure level, failures can also happen in software level, includ-

ing the operating system, the application server, and the application itself. Our approach

makes no assumption to the underlying failure types and can deal with them all.

If any failure is detected, the local agent in the overload handling framework and the
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auto-scaler will intervene at the same time. During the failures, the agent temporarily

forwards some requests to other data centers and enforces admission control if necessary

to protect the application from crashing and maintain acceptable performance; mean-

while, the auto-scaler restarts the faulty resources or provisions new resources. When

the provision process completes, and there are enough local resources, the agent then

stops geographical load balancing and admission control.

6.2.2 Flash Crowds

Flash crowds might arrive anytime at any data center. They are difficult to be managed

by auto-scalers alone due to their unpredictability and bursty nature. In the case of a flash

crowd, widely used commercial auto-scalers, such as Amazon Auto-scaling Service [11],

launch new VMs only after the application has experienced high load for a consecutive

period set by the user, instead of provisioning new resources right after the detection of

application overload. This mechanism is useful to reduce resource wastage and prevent

scaling oscillations [133], as when the provision completes, the flash crowd might have

already passed. Our approach can be an ideal partner of these commercial auto-scalers

as it can help to reduce resource contentions not only during provision times but during

waiting times as well.

6.3 Deployment Model and Application Requirements

6.3.1 Deployment Model

We assume the target application, including each of its composing services/components,

is deployed in geographically dispersed data centers. Furthermore, the application in-

stance in a data center should be able to communicate with instances located in other

data centers through network for request forwarding purpose, which will be explained

afterward.
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Figure 6.1: A service-oriented social network application

6.3.2 Application Requirements

Our approach requires that requests can be processed by application replicas deployed

in other data centers, which involves two important factors: session continuity and data

locality.

Session continuity means that the end user should be able to seamlessly interact with

the application without losing any internal state even if different data centers process

his requests. Stateless applications, such as public knowledge services like Wikipedia

and search engine, implicitly satisfy this requirement. For stateful applications, there are

ways to make them geographically stateless, such as pushing the states into client side,

and session replication across sites [3]. Besides, applications can be divided into multiple

stateful and stateless services following the Service-oriented Architecture (SOA) [211].

Figure 6.1 shows an example of a service-oriented social network application. The ap-

plication first loads the session data of the user and then relays the corresponding data

to the underlying stateless services for further processing. The local data center should
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Figure 6.2: Proposed architecture with three data centers involved

always serve the requests for the stateful services. Thus, stateful services cannot be man-

aged by our approach. For these services, they should be sufficiently over-provisioned in

preparation for failures and flash crowds. Nevertheless, the majority of the underlying

stateless services, which consume the most resources, are eligible to be administrated by

our approach.

The second requirement is that persistent data should also be replicated across mul-

tiple data centers either partially or entirely as requests can only be forwarded to data

centers that have the essential data available. Fortunately, data replication is commonly

adopted by applications deployed in multiple data centers nowadays [54, 149], which

enhances the applicability of our approach in many scenarios.
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6.4 The Proposed Approach

6.4.1 Architecture

Our approach employs a decentralized architecture as shown in Figure 6.2. The load bal-

ancing agent is co-located with the application/service load balancer in the correspond-

ing data center to realize fast detection of overload events and perform quick adaptations.

They are fully connected with each other through the network to work cooperatively.

Each agent comprises the monitoring module (which constantly monitors the incoming

requests and the status of the available resources to detect application overload), the

communication module (which is in charge of broadcasting its status to other agents and

receiving other agents’ statuses), and the control module (which quickly adapts the ap-

plication/service to the detected overload events).

6.4.2 Overload Detection

Choosing the right performance indicator is critical for the detection algorithm. There

are several potential indicators we can utilize, such as request rate (request arrival per

second), session creation rate (newly created sessions per second), and average response

time. In some cases, some indicators cannot truthfully reflect the actual load. For exam-

ple, the downstream service in an SOA application is usually called by its upstream ser-

vice using a persistent session, therefore, in this case, session creation rate is not suitable

to serve as the overload indicator. In our prototype implementation, we adopt request

rate as the indicator since it is more general purpose than other indicators. In addition

to the incoming load, the agent also needs to monitor the availability of resources, which

can be carried out by periodic health checks.

Another important task is to determine the monitoring frequency. A small monitoring

interval enables our approach to timely detect the changes even in the spikiest workload.

However, frequent monitoring not only consumes a lot of physical resources, but also

causes more false positives. Such behavior can be observed in our experiments results

shown in Figure 6.10 and Figure 6.13 with a small amount of requests being rejected by
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the admission control approach in the one server down and 245 reqs/s flash crowd set-

tings. Because by using our approach, false positives only result in some of the requests

being unnecessarily forwarded to other data centers, instead of being rejected, we choose

to favor sensitivity over accuracy and employ a high monitoring rate of every 2 seconds.

With the indicator chosen, we developed a detection mechanism. In the first stage,

we profile the machine to determine averagely how many requests per second (c) it can

safely handle under the predefined SLA, such as 90% of requests should be served within

1 second. Suppose the requests arrival is a Poisson process and the data center has n

machines available for serving requests, the data center is considered overloaded when

the incoming workload λ is larger than n ∗ c +
√

n ∗ c or between n ∗ c and n ∗ c +
√

n ∗ c

for a few consecutive monitoring intervals. The rationality under this approach is that

the probability of the result of a Poisson process deviates beyond its standard deviation
√

λ is relatively small, and overload situations often cause much higher load. In this

way, we can reduce the amount of false positives caused by highly fluctuant workloads.

Note that our framework can employ other detection algorithms as well, such as the one

proposed by Kamra et al. [110].

6.4.3 Overload Handling Algorithm

When the overload is detected, the system needs to distribute as many excessive requests

as possible to other data centers that have available capacities. Though the response times

of the requests that are initially served by the receiving data centers will be negatively

affected by the forwarded requests, the SLAs of the receiving data centers can still be

ensured as the amount of requests forwarded by our approach should never exceed the

remaining capacities available. Our software framework is modularized and can utilize

various request distribution algorithms, such as random and greedy algorithms. To get

optimal overall performance, we propose a new distribution algorithm that minimizes

the increase of latencies caused by request forwarding. We define the observed latency

increase as follows:



162 Mitigating Impact of Overload on Web Applications through GLB

I(X) =
n

∑
i=0

Rw f
i (xi)−

n

∑
i=0

Rb f
i +

n

∑
i=0

F(xi) (6.1)

where xi is the average amount of requests per second forwarded to the ith data center,

Rw f
i (xi) is the latencies observed by all the users initially served by the ith data center

with extra xi requests per second forwarded to it, Rb f
i is the total latencies experienced

by all the users originally served by the ith data center without extra requests forwarded

to it, and F(xi) is the total latencies felt by the users whose requests are forwarded to

the ith data center. Since Rb f
i is constant, the latency increase minimization problem is

equivalent to:

minimize
n

∑
i=0

Rw f
i (xi) +

n

∑
i=0

F(xi)

subject to ∑ xi = N

0 ≤ xi < Si

(6.2)

where N is the average amount of excessive requests per second to be distributed, and

Si is the maximum average amount of requests per second the ith data center can handle

without violating the local SLA.

We model each remote data center as an M/M/1 — processing sharing queue. Ac-

cording to Little’s Law, the average response time of the ith data center can be represented

as:

ri =
1

µi − λi
(6.3)

where µi is the service rates of the ith data center, and λi is the average incoming load

to the ithe data center. Based on Equation 6.3, Rw f
i (xi) and F(xi) can be respectively

modeled as:

Rw f
i (xi) =

λi

µi − λi − xi
(6.4)

F(xi) = Lixi +
xi

µi − λi − xi
(6.5)
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where Li is the RTT latency between the ith data center and the data center sending the

forwarding requests. The optimization function then can be formatted as:

minimize
n

∑
i=0

(
µi

µi − λi − xi
+ Lixi − 1) (6.6)

By removing the constant −1, the optimization problem is transformed to:

minimize
n

∑
i=0

(
µi

µi − λi − xi
+ Lixi)

subject to ∑ xi = N

0 ≤ xi < Si

(6.7)

Since Si is smaller than µi− xi as SLA is always stricter than latency at maximum through-

put, the optimization function is strictly convex in the feasible space. Besides, the con-

straints are also convex. Therefore, the optimization problem is strictly convex and can be

efficiently and optimally solved using existing convex solvers. According to our experi-

ment results and analysis presented in Section 6.5.8, this problem can be solved quickly

enough within milliseconds scale to support instant online decisions. Besides, as long

as N < ∑n
i Si, the feasible set is non-empty, and thus, the problem has a unique global

optimal solution since it is strictly convex.

The overall flow of the overload handling algorithm is shown in Algorithm 6. It firstly

checks whether the aggregated available capacities of remote data centers can cater all

the excessive load (Line 1) and rejects the exceeding requests (Line 2) accordingly. After

that, it solves the optimization problem defined in Equation 6.7 and distributes excessive

requests among remote data centers (Line 5 and Line 6).

Though rare in probability, simultaneous overloads in multiple data centers can hap-

pen. In this case, if the remaining capacities in the rest data centers still can cope all

the excessive requests, our approach will serve all the requests. Otherwise, all the data

centers will be saturated and our approach will apply admission control to reject the

excessive requests in the overloaded data centers.

We treat the network latencies as constants in the optimization problem. However,

they often vary dynamically during runtime. Therefore, they need to be dynamically
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Algorithm 6: Overload Handling Algorithm

Input: r : the average excessive requests per second
Input: Si : the maximum average requests per second the ith data center can

handle without violating the local SLA
Input: Li : the latency to the ith data center from the forwarding data center

1 if r > ∑n
i Si then

2 reject r−∑n
i Si requests per second;

3 r ← ∑n
i Si;

4 end
5 obtain the request distribution plan X by solving the problem defined by Equation

6.7;
6 respectively forward xi requests per second to the ith data center;
7 Return;

monitored and updated. Sometimes, some data centers can even become disconnected

from the network. In this case, they are temporarily removed from the candidate set for

request forwarding during the downtime.

6.4.4 Communication Protocol

Load balancing agents in each participating data center communicate among themselves

to update their real-time statuses, including their service rates, current loads, and avail-

able capacities for offloading. In our prototype, this is implemented through a broadcast-

ing protocol. It makes each agent broadcast its status when its service rate has changed,

when its load has varied beyond a predefined percentage, or when some time has elapsed

since the last broadcast. Compared to a strategy that broadcasts only in a particular time

interval, it not only confines the data error but also makes the application more robust

when overload events happen simultaneously in multiple data centers, though such case

is expected to be rare. Considering the situation that one agent detects the local appli-

cation is in an overload condition, according to the protocol, it will immediately inform

other agents that there is no available unused capacity offered by it, instead of waiting

until the scheduled broadcasting time. This method minimize the chance the agent in an-

other data center happens to be overloaded as well to forward requests to the overloaded
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data center, leading it to more severe resource congestion or triggering cascading request

forwarding which will incur unnecessary extra latencies.

It is inevitable that sometimes data are not updated timely and causes requests being

forwarded to an already saturated data center. In this case, instead of directly rejecting

excessive requests in the receiving data center, a cascading request forwarding will be

triggered, if it believes there are extra capacities available in other data centers. Because

the data center does not distinguish whether a request is originally submitted to it or is

forwarded to it by another data center, the forwarded requests this time are formed by

a mixture of requests submitted originally to it and requests that have been forwarded

once. However, because it is unlikely that more than one data center fall into overloaded

situations nearly at the same time, such scenarios will cause limited impact.

6.4.5 Prototype Implementation and Deployment

Since the target of the proposed approach is to detect and handle application overload as

soon as possible, it is preferable to develop it as a part of the load balancer so that it can

react instantaneously after the detection of the overload events. However, state-of-the-

art load balancers, such as HAProxy 1.6 [83], do not support to program such complex

configuration. Therefore, we implemented the agent as a separate program. Fortunately,

as some of the load balancers already have built-in monitoring and health check tools,

we still can utilize them to ease the implementation and deployment of our approach.

The implementation follows the architecture shown in Figure 6.2. In the implementa-

tion, we use HAProxy 1.6 as the load balancer and rely on it to monitor the performance

indicators and check the machines’ health. The agent is written as a separate Java ap-

plication. Its monitoring module periodically fetches the monitored information through

HAProxy’s stats console in CSV format. Then it extracts the required performance indica-

tors and health statuses of the attached servers and passes them to the overload detector.

The overload detector then uses the overload detection algorithm to judge whether the

application is overloaded. In the case that application overload is detected, the control

module configures the load balancer to adapt to the load based on the proposed overload

handling algorithm. The Java agent program should be collocated with the HAProxy
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Figure 6.3: An example of the dynamically generated HAProxy configuration

load balancer to minimize network latency.

Both request forwarding and admission control are implemented by dynamically

changing the configuration of the HAProxy load balancer. In detail, the control mod-

ule dynamically generates a new configuration file for the HAProxy when it is necessary

to perform changes during runtime. The configuration change is performed through a

script which automatically reloads the new configuration to the running HAProxy pro-

cess.

The request forwarding mechanism is implemented by dynamically adding the IP

addresses of the load balancers located in the remote data centers to the local load bal-

ancer’s configuration file as normal servers. The number of forwarded requests is dy-

namically adjusted by assigning relative weights to the servers and remote data centers

using the weighted round robin algorithm supported by HAProxy. The relative weights

are obtained by solving the load distribution problem defined in Equation 6.7 using the

Primal-Dual Interior-Point method built in the JOptimizer solver [105].

We take advantage of the Access Control List (ACL) mechanism in HAProxy to im-

plement admission control. It is traditionally used to define the white list and black list

of IP addresses to prevent abusing. Our agent utilizes it in a different manner. We define

an ACL as a Bernoulli trial instead of a fixed list. In this way, the incoming request will
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be served if the random test result is successful; otherwise, it will be rejected by the load

balancer. Note that in a production environment, instead of directly rejecting requests; a

better approach is to allow the load balancer to reply a customized error page or a default

page, which is already supported by HAProxy.

Figure 6.3 shows an example of the dynamically generated HAProxy configuration

by our approach. In line 31, it defines an ACL called monitoring, which is used to pre-

vent monitoring requests issued by the Java agent co-located in the same machine to be

rejected by the admission control mechanism. Lines 32 and 33 specify the admission con-

trol configuration in which the load balancer will randomly drop 33 out of 250 incoming

requests. The servers starting with “local” locate in the current data center. They are

health checked every 2000ms as shown in the configuration, and the load balancer talks

to these servers through their internal IPs. The last two lines specify the request for-

warding settings to the remote data centers located in Ireland and Tokyo. They receive

forwarded requests through the public IPs of their load balancers.

The communication module and its protocol are implemented using Java sockets over

persistent TCP connections. Each Java agent constantly maintains a connection to all the

other known agents and continually listens to the updates sent by them.

6.5 Performance Evaluation

We evaluated our prototype implementation on Amazon Web Services IaaS infrastruc-

ture located in North Virginia, Ireland, and Tokyo. We first introduce the benchmark

application and the experimental testbed. After that, we describe the workloads we used

for experiments. Finally, we explain each experiment and present the results.

6.5.1 Benchmark Application

We used the Wikibench benchmark tool [203] as the testing application. The benchmark

tool consists of three components:

• a stateless web application server installed with the MediaWiki application [140] —
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The Client Driver HAProxy Load Balancer

MediaWiki Servers

English Wikipedia Database

Auto-scaling System

The Client Driver
HAProxy Load Balancer

and Our System

MediaWiki Servers

English Wikipedia Database

Figure 6.4: The architecture of the benchmark application

an open source version of Wikipedia.

• a MySQL database loaded with the English Wikipedia pages by January 2008.

• a client driver that mimics the behavior of users by sending requests to the Medi-

aWiki server according to the given workload.

The reason we chose this benchmark is that it is stateless, which fits our prerequisite.

Because our focus is on the application tier, to allow deploying a cluster of application

servers, we put an HAProxy load balancer before the servers and changed the frontend

configuration of the MediaWiki application servers to the IP address of the load balancer.

As stated before, the load balancing agent is deployed along with the HAProxy load

balancer on the same machine. Figure 6.4 demonstrates the architecture of the benchmark

application.

6.5.2 Experimental Testbed

We set up the experimental testbed in three data centers owned by Amazon Web Services:

US-east1 North Virginia, EU-West1 Ireland, and AP-Northeast1 Tokyo. Table 6.1 lists the

RTT latencies between North Virginia and the other two data centers tested using ping.

In the experiments, we needed to emulate resource failures and flash crowds in one data

center. We chose North Virginia data center as the data center that experienced failures



6.5 Performance Evaluation 169

m3.medium 
x 40

N.VirginiaTokyo

HAProxy            
LB Agent

m4.large

m4.xlarge

Client Driver

MediaWiki

m3.medium x 7

MediaWiki

m1.small

MediaWiki

m1.small

MediaWiki

m1.small

MediaWiki

m1.small

Database

m4.4xlarge x2

HAProxy            
LB Agent

m4.large

MediaWiki

m3.medium x 8

Database

m4.4xlarge x2

Ireland

HAProxy            
LB Agent

m4.large

MediaWiki

m3.medium x 4

Database

m4.4xlarge

Client Driver 

m4.xlarge m4.xlarge

Client Driver

Figure 6.5: The experimental testbed

Table 6.1: Latencies between data centers in milliseconds

Ireland Tokyo
North Virginia 76.3 167.2

and flash crowds. Besides serving their loads, the other two data centers accepted loads

directed from North Virginia data center when overload occurred to it.

The detailed experimental testbed is illustrated in Figure 6.5. In each data center, we

deployed one client driver using the m4.xlarge instance, and one HAProxy server along

with the load balancing agent running on an m4.large instance. We respectively launched

eight and four m3.medium instances in Tokyo and Ireland acting as application servers.

The North Virginia data center, in the meantime, is equipped with seven application in-

stances. Besides, to ensure that the data layer did not become the bottleneck, we launched

different numbers of database instances to cope the load in each data center.
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Figure 6.6: CDFs of the profiling tests with different average workload rates

6.5.3 Workload

We used synthetic workloads generated according to real requests submitted to the English-

language edition of Wikipedia in September 2007 [204] to test our approach. We first

performed profiling tests to determine on average how many requests one m3.medium

application server can handle without violating the SLA and its service rate. We defined

the SLA as 90% requests should be replied within one second. We assume the workload

arrival is a Poisson process and follows the exponential distribution, which is indicated

by the literature [41]. This can be justified by the fact that each request is submitted in-

dependently and occurrence of each request does not affect the probability that a second

request will occur. Base on this assumption, we respectively created three workloads

with an average rate of 30, 35, and 40 requests/s.

Figure 6.6 depicts the cumulative distribution functions (CDF) of the response times

obtained from the profiling tests. It shows that 35 requests/s is the largest amount of

workload an m3.medium instance can handle without violating the SLA. Furthermore,

we respectively calculated the service rates of the three tests according to Equation 6.3.

Then we averaged them to obtain the estimated service rate for one instance, which is 41

requests/s.

In the following experiments, we assigned 35 requests/s unused capacities in Virginia

and Ireland, and 70 requests/s unused capacities in Tokyo. According to the profiling

results and the capacity setting, we generated synthetic workloads for the following ex-
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Figure 6.7: The workloads with flash crowds range from 117% to 183% of the normal load

periments. We first generated the background workloads for the Ireland and Tokyo data

centers respectively with average incoming rates of 105 requests/s and 210 requests/s.

To test the performance of the approach during resource failures in North Virginia data

center, we generated a workload with average request rate of 210 requests/s. For flash

crowds cases, we created four workloads with different levels of flash crowds as shown

in Figure 6.7. Each workload experiences a total five minutes of flash crowd. The peaks

of the flash crowds range from 117% to 183% of the normal load. All the workloads last

for 15 minutes and suffer either server failures or flash crowds starting from the 300s time

point for 300 seconds. We particularly chose the length of 300 seconds because it is the

default value of the waiting time for server booting in Amazon Auto-scaling Service. In

this way, we can emulate the situations that a commercial auto-scaler solely manages the

application and demonstrate its resulted application performances during the overload-

ing periods.

6.5.4 Benchmarks

To test the performance of our prototype, we compare our approach with the following

two benchmarks:

• Request queueing: the first benchmark queues up all the requests in the local

servers and imposes no admission control when the application is overloaded. It
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mimics the situation that the auto-scaler is booting new servers while the requests

are queued up in the local servers.

• Admission control: the second benchmark directly imposes admission control when

the application is overloaded. It emulates the case that the auto-scaler asks the load

balancer to reject excessive requests while it is booting new servers.

To test the performance of the request forwarding algorithm, we compare with the

following two greedy algorithms:

• Greedy: it always forwards possibly maximum amount of excessive requests to the

data center with largest available capacity one by one.

6.5.5 Performance under Resource Failures

In the first set of experiments, we performed tests using our approach and the bench-

marks in resource failure situations. In the experiments, we purposely removed some

machines from the load balancer at 300s time point to create failures and then added

them back to the load balancer after 5 minutes to mimic recovery from failures.

We ran our approach with two configurations. In the first configuration, we only

utilized the unused capacity in the Ireland data center. In the second configuration, we

considered unused capacity in both Ireland and Tokyo data centers. Figure 6.8 shows the

CDFs of our approach and the two benchmark approaches respectively during the failing

periods under different numbers of server failures2.

Without proper overload handling mechanisms, the application in the North Virginia

data center suffered severe performance degradation when requests were queued up,

and it became completely unresponsive in the case of five server failures. If we added

simple admission control mechanism, the application performance was able to be main-

tained within acceptable level at the cost of rejecting plenty incoming requests. As shown

in Figure 6.8, we can observe one and two shoulders in the CDFs of the two settings.

This phenomenon was caused by the increased network latencies incurred by the request

2In the reported results, rejected requests are not counted in the CDF graphs.
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Figure 6.8: CDFs of the North Virginia data center during the failing periods with differ-
ent approaches
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Figure 6.9: CDFs of the data centers receiving forwarded requests during failing periods
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Figure 6.10: Percentage of admitted requests during failing periods

forwarding mechanism. In our experiments, though request forwarding increased the

latencies of some requests, it did not result in the SLAs being violated. Comparing to the

queuing delays when no overload handling mechanism is in place, the additional net-

work latencies incurred by request forwarding are still acceptable as long as the latencies

between data centers are moderate. Our overload handling algorithm is encouraged to

forward requests to data centers that are close to the originating data center as it aims to

minimize the overall latency increase.

In addition to the failing data center, we also evaluated the performances of data cen-

ters that received the forwarded requests. Figure 6.9 presents the CDFs of the data centers

receiving the forwarded requests when failures were happening in North Virginia data

center. In all cases, the SLA was strictly honored because of the constraints on the amount

of forwarded requests the remote data centers can serve in the optimization problem.

Furthermore, comparing to just using admission control, our approach was able to

increase the number of served requests. Figure 6.10 lists the proportions of the admit-

ted requests during the failing periods in the corresponding experiments. It shows that

the power of request forwarding depends on the amount of unused capacity available

in other data centers. As shown in Figure 6.10, the configuration utilizing the capacity

of both Ireland and Tokyo data centers can serve more requests than the configuration
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that used capacity only in Ireland data center. When applying admission control only, a

small portion of requests was rejected when one server was down even though the lo-

cal capacity should be able to handle it, which was caused by false alarms generated by

the overloading detector. While using our approach, these requests were still served by

remote data centers.

6.5.6 Performance under Flash Crowds

We tested our approach under flash crowd situations using the workloads depicted in

Figure 6.7. We utilized the same settings of Section 6.5.5. The resulted CDFs for the

baselines and our approach for North Virginia data center that was under flash crowds

are delineated in Figure 6.11. The corresponding CDFs for the receiving data centers are

presented in Figure 6.12. The percentages of admitted requests during the flash crowd

periods are compared in Figure 6.13.

The experiments show similar trends as the experiments in resource failure situations.

Nevertheless, the impact of short-term overload on the application performance in the

flash crowd experiments was not as severe because the extra load can be directed to

more servers. For the same reason, more percentages of requests were served by the

application.

6.5.7 Performance of the Request Forwarding Algorithm

We utilized the same testing platform to evaluate our request forwarding algorithm (spec-

ified as Min Latency Increase in the results), except we employed a workload with 70

requests/s for the North Virginia data center and considered all those requests were ex-

cessive requests need to be forwarded. In this way, we can eliminate the impact of the

requests served by the North Virginia data center, which is not in our optimization target,

to the results.

Figure 6.14 shows the results of our algorithm compared to the Greedy algorithm for

the aggregated requests of the forwarded requests and the requests originally served by

the remote data centers. Our algorithm is able to outperform the Greedy algorithm in
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(c) 315 reqs/s flash crowd
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(d) 350 reqs/s flash crowd
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Figure 6.11: CDFs of the North Virginia data center during the flash crowds with different
approaches
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(d) 350 reqs/s flash crowd
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Figure 6.12: CDFs of the data centers receiving forwarded requests during flash crowds
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Figure 6.13: Percentage of admitted requests during flash crowd periods
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Figure 6.14: The performance of algorithms on the aggregated requests

our experimental setting, because the Greedy approach overlooks the longer network

distance traveled by the forwarded requests.

6.5.8 Algorithm Scalability

Our approach requires an efficient solution for the workload distribution problem during

runtime. In this experiment, we demonstrate that this problem can be tackled very fast

by a convex solver even when a large number of data centers are involved.

Since the input to the problem consists of the statuses of the data centers, the latencies

to the data centers, and the amount of the excessive load, the algorithm complexity is

dominated by the number of involved data centers. We randomly generated 100 prob-
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Figure 6.15: Measured running time for solving the workload distribution problem

lems with specific numbers of data centers ranging from 10 to 50 and measured their

running time on a desktop equipped with 8 core CPUs and 16 GB of RAM. Results are

presented in Figure 6.15. Even in the worst case with 50 data centers, the runtime was be-

low 35ms, which is acceptable for making real-time decisions. In reality, the deployment

usually involves less than a handful data centers, and the algorithm imposes negligible

overhead in these cases.

6.6 Related Work

6.6.1 Overload Management

There have been plenty of works that aims to tackle overloads caused by failures and

flash crowds using Cloud resources. However, all of them differ from our work in their

target or approaches.

The approach that is commonly adopted by the industry and is intensively researched

is auto-scaling [133]. It relies on dynamically provisioning new resources to meet the re-

source scarcity. Some of the auto-scaling works have been focusing on how to predict the

future workloads and provision enough resources in advance [58, 62, 87, 94, 100, 104, 125,

164]. Other approaches provision resources reactively either after detecting the overload

events [53, 69] or when the utilization has reached a certain threshold.

As stated before, resource failures and some flash crowds are often unpredictable, and

it takes the auto-scaler considerable time [138] to provision new resources. Therefore, an
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auto-scaler alone cannot adequately deal with these situations. Our work can fill in this

gap for applications deployed in multiple data centers by supplementing and enhancing

state-of-the-art auto-scaling solutions.

In the previous chapter, we proposed an auto-scaler using unreliable spot instances

for web applications. It relies on sufficiently over-provision the application to counter the

terminations of spot instances. The proposed approach can be an ideal partner for it. By

working cooperatively with it, the spot-based auto-scaler can either reduce the amount of

over-provisioned resources to reach the same level of protection or elevate the reliability

of the application using the same amount of over-provisioned resources.

Cloud burst is a term often used in hybrid Cloud settings referring to dynamically

provisioning resources in Cloud either to accelerate execution or to handle flash crowds

when the local facility is saturated. Many approaches have been proposed to realize this

vision [25, 97, 218, 222]. In a sense, they are similar to our work as they also forward

requests to remote data centers. Except that, they are more close to the auto-scaling ap-

proaches as their major focus is on how to provision and deprovision resources in Clouds

to meet the workload demand while our approach aims to manage short-term workload

distribution.

Another possible method to reduce the impact of overload is to enforce admission

control. Chen et al. [38] proposed a flash crowd detection and mitigation approach based

on application-level measurements and admission control. In addition to protecting the

application server from crashing, their target also covers protecting the network from be-

ing congested. However, in Clouds, since the provider offers strong data center network

and high incoming and outgoing bandwidth, this is not a concern. Different to their sys-

tem, our approach uses both request forwarding and admission control as the last line of

defense to protect the application from performance degradation and crashing.

Chandra and Shenoy [33] researched using dynamic resource allocation among differ-

ent applications in a data center to cope with flash crowds. Different to them, our work

addresses the overload management problem from an application provider’s perspec-

tive instead of from an infrastructure provider’s angle. Regarding applications that are

composed of multiple components, Gandhi et al. [70] and Klein et al. [118] explored bor-
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rowing resources from components that have the available capacity or can be terminated

temporarily to support the core services under flash crowds.

6.6.2 Geographical Load Balancing

Geographical load balancing has been applied to tackle different challenges. Commercial

DNS Load Balancer, such as Amazon Route 53 [14] enables application providers to direct

their customers to different data centers according to their location and other factors,

such as energy consumption and carbon footprint [131]. However, such technique is not

suitable to our needs as it takes some time to populate the DNS settings across the layered

DNS servers and it is impossible to realize fine-grained control over the traffic flow.

Centralized geographical load balancing solutions gather all the user requests and

then distribute them among data centers. They are widely developed for saving energy

and carbon footprint [143, 225]. This architecture is also not applicable to reach our goal

as it incurs extra network latency to every request and reduces the benefit of deploying

the application on multiple geographically distributed Clouds.

Grozev and Buyya [78] proposed an approach that dispatches users to the underlying

data centers at the entry point of the application framework according to the regulation

requirements and the available resources in each data center. As the client only talks to

the entry point at the start of the session, its impact on user experience is minimized com-

pared to the centralized solutions. On the other side, this approach limits its capability to

control the load on each data center accurately.

Cardellini et al. [31] explored using DNS as the first layer of request distribution

and centralized or decentralized request forwarding as the second layer to balance the

workload among web nodes.

Our solution is different to the methods as mentioned earlier. We adopt a decentral-

ized architecture composed of individual load balancing agents deployed in each par-

ticipating data center to balance the extra load. The agent is only activated temporarily

when an overload occurs; hence, requests under normal situations can always be served

by the closest data centers, and no extra network latency is introduced. Andreolini et

al. [15] also proposed a decentralized autonomic system to handle the overload situa-
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tions. However, their target is to reduce the performance variability instead of serving

as many requests as possible under SLA requirements. Ardagna et al. [18] utilized both

request redirection and resource allocation to manage resources. Their aim is to minimize

resource cost under SLA constraints.

In other domains, Ranjan [159] and Alzoubi et al. [7] employed request redirection

techniques, such as anycast, to improve the performance of content delivery networks.

6.7 Summary

In this chapter, we proposed an approach that supplements and enhances state-of-the-

art auto-scalers for applications deployed in multiple Clouds. It is capable of quickly

react to short-term overloads occurred to any participating data center by temporarily

forwarding the excessive requests to data centers with available capacities according to

our proposed optimal workload distribution algorithm, and enforcing admission con-

trol as the last line of defense. Our approach adopts a decentralized architecture that

deploys a load balancing agent within each data center. The agent monitors the local

application, detects overload events, and quickly adapts to them according to real-time

resource availability in other data centers to minimize their impact on the application

performance. We implemented a prototype and evaluated it across AWS’s US, Europe,

and Asia data centers. The obtained results show that our approach can quickly detect

overload situations caused by either resource failures or flash crowds and is effective in

improving application performance during resource contention periods.

From Chapter 3 until this Chapter, we have introduces the contributions proposed in

this thesis. In the next chapter, we summary them and propose some future directions.





Chapter 7

Conclusions and Future Directions

In this chapter, we summarize the research works proposed in this thesis about the areas of deploy-

ment and provision of web applications in distributed computing Clouds. It sums up the contributions

and identifies some future research directions to pursue in these fields.

7.1 Summary and Conclusions

CLOUD Computing allows users to acquire resources according to their real-time

demand from Cloud data centers in a pay-as-you-go manner, which eliminates the

needs for users to maintain local infrastructures and enables them to focus on their core

business. Due to its appealing features, it has been attracting web application providers

to migrate and develop their systems onto it.

Many application providers have deployed their applications across multiple geo-

graphically distributed Cloud data centers. In addition to utilizing a single data center,

it brings extra advantages like 1) better QoS, 2) higher availability, 3) regulation com-

pliance, 4) avoidance of vendor lock-in, and 5) cost-efficiency. However, managing web

applications in a multi-Cloud environment face some remaining challenges.

In this thesis, we divided the challenges into two primary aspects: 1) deployment

of applications on distributed computing Clouds, and 2) provision resources to meet

the QoS requirements. We have conducted a thorough literature review, proposed so-

lutions, and implemented prototype systems to improve the current state-of-the-art in

these fields. In particular, Chapter 1 described this thesis’ objectives in more details and

This chapter is partially derived from: Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. ”Auto-
scaling Web Applications in Clouds: A Taxonomy and Survey”, ACM Computing Surveys, 2016 (under re-
view).
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highlighted its main contributions. It also presents the motivation and structure of the

thesis.

In Chapter 2, we performed a literature review of previous researches regarding three

major problems that are tackled in this thesis. Firstly, we surveyed and classified works

that aim to identify satisfactory Cloud services according to users QoS requirements.

Then we discussed proposed approaches to select geographically dispersed data centers

among candidates to host web applications. In the last part, we focused on the auto-

scaling problem for web applications in Clouds. We presented a comprehensive taxon-

omy of auto-scaling techniques and compared existing systems based on that. For each

problem, we also defined its scope and identified the significant challenges need to be

addressed.

Chapter 3 and Chapter 4 focused on the deployment aspect of managing web appli-

cations in distributed computing Clouds.

To realize Cloud service discovery regarding users’ individual QoS requirements,

Chapter 3 presented a technique that uses hierarchical fuzzy inference system to evaluate

and rank the satisfactory degree of the Cloud services to users’ individual requirements.

It is compatible with the hierarchical Service Metric Index of Cloud services [48] defined

by the Cloud Service Measurement Initiative Consortium (CSMIC). It also allows users

to flexibly specify their requirements using either numerical values or vague linguistic

terms. Furthermore, users can describe their preferences among metrics with fuzzy lin-

guistic hedges. We demonstrated its efficacy through simulation experiments and case

studies.

Chapter 4 proposed approaches that select the data centers to host web applications

with strong inter-data center consistency requirement to minimize violations of the Ser-

vice Level Objectives (SLO), and optimizes the selection under a dynamic workload. We

modeled response latency observed by the end users. Within the model, we proposed

sub-models to estimate the latency caused by consistency protocols of Cassandra and

Galera Cluster databases. A genetic-based algorithm was devised to efficiently solve the

proven NP-hard problem to select the best data centers. Based on that, two heuristic algo-

rithms that consider both SLO violations and migration cost were proposed to optimize
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the selection when workload has changed. We have conducted simulation experiments to

demonstrate that it is beneficial to deploy applications in geographically dispersed data

centers even it requires strong inter-data center consistency, and it is essential to take the

extra latencies caused by the database consistency mechanism into account when select-

ing the data centers. We have also illustrated through experiments that our approach

is more effective compared to the greedy algorithm and much more efficient than the

exhaustive algorithm.

Chapter 5 and Chapter 6 targeted to solve the issues in resource provision of web

applications in Clouds.

To improve the cost-efficiency of resource provisioning for web applications in Clouds,

we proposed an auto-scaler in Chapter 5. In addition to the previous approaches, it is

not only capable of provisioning and deprovisioning resources dynamically according to

real-time workload but also can achieve significantly more cost saving. It utilizes a mix-

ture of homogeneous on-demand VMs and heterogeneous unreliable spot instances to

achieve both high availability and considerable cost saving. We proposed a fault-tolerant

model to handle the sudden termination of spot instances. We also designed scaling

algorithms that are compatible with the fault-tolerant semantics. We implemented a pro-

totype for Amazon AWS and a simulation tool based on CloudSim [30] for determining

the proper configurations and enabling repeatable evaluations. The intensive simulation

studies and experiments on Amazon AWS confirmed the efficacy of our approach.

Chapter 6 presented a decentralized geographical load balancing technique to handle

short-term overloads that are complicated to be dealt with auto-scaling technology alone

for applications deployed in multiple data centers. The proposed approach deploys a

load balancing agent in each data center, which monitors the incoming workload and the

status of available resources to detect overload timely. In case overload is detected, it for-

wards part of the workload to other data centers that have unused capacities and enforces

admission control as the last line of defense when there is no more capacity available. We

also proposed a convex model to quantify the overall latency increase caused by request

forwarding and used a convex solver to efficiently and optimally determine how much

workload should be forwarded to each remote data center when overload happens. We
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Figure 7.1: Future Directions

implemented a prototype and evaluated it on Amazon’s global infrastructure across US,

Europe, and Asia. The obtained results compared with a queuing approach and an ad-

mission control approach demonstrated its effectiveness and feasibility.
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7.2 Future Directions

The thesis spans across the deployment and provision aspects of managing web appli-

cations in distributed computing Clouds. In each subfield, there are promising future

directions that can be explored. Figure 7.1 presents an overview of the future directions

we propose.

7.2.1 Cloud Services Discovery

Regarding Cloud services discovery, the following paths can be pursued.

Services Discovery for Complex Applications

Currently, the Cloud service discovery tools only evaluate satisfiability of services for

single VM requests. For applications that are composed of multiple components, appli-

cation providers need to individually find the suitable services for each component and

intersect them to identify a list of providers that can provide satisfactory services for each

component. Besides inconvenience, this also could cause suboptimal selection decisions

as this approach puts too much weight on satisfiability of individual component and fails

to consider the application as a whole. Therefore, methods that can comprehensively

evaluate the satisfiability of the entire application is desirable.

Services Discovery with Quantified Variability

In our approach, we used statistical indicators like mean, median, and first quartile as the

values for performance. In addition to that, metrics like standard deviation, and square

root errors can be used to quantify the variance of performance and be considered in the

evaluation process. New methods need to be proposed to suitably balance the weights

of these metrics according to user requirements.
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7.2.2 Clouds Selection and Optimization

In the area of selecting Cloud data centers, the following directions have not been ex-

plored.

Selection and Optimization for Applications with Strong Consistency and Partial Repli-
cation

The technique proposed in Chapter 4 assumes that data are replicated in each data center.

Though it is commonly adopted, it is certainly cost-inefficient. Approaches are in need

to support the deployment of applications with both strong inter-data center consistency

requirements and partial data replication, which calls for not only new latency models

but also efficient algorithms that holistically determine the locations of data centers and

the placement of data.

Optimization with Fine-Grained Migration Cost Model

We used the number of migrations needed to be conducted as the metric for migration

cost, which is coarse-grained, as the cost of migration is affected by many factors, such

as application itself, data volume, bandwidth cost, and labor cost. A fine-grained model

of migration cost can help application providers to determine better whether to adjust

the deployment or not and how the changes should be conducted based on quantitative

analysis.

Reliability and Disaster-Aware Selection

One significant advantage of utilizing multiple data centers is that it provides high avail-

ability in case of data center outages. However, if the chosen data centers are not distant

enough, massive catastrophic natural disasters or blackouts caused by complete grid fail-

ures still may disrupt the service altogether. Therefore, the selection algorithms should

take reliability factors into account to ensure the applications are available even under

extreme situations. For example, the algorithm should not select data centers that share
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the same power source and Internet service provider, or data centers may be affected by

the same storm and earthquake.

7.2.3 Auto-scaling

In regards of auto-scaling, we list the potential future directions as follows.

Holistic Auto-scaling for Service-Oriented Applications

The research on scaling complex service-oriented applications are still at early stage and

limited literature can be found in this area. Moreover, due to lack of accurate resource

estimation models, only a simple approach that tentatively and recursively provision

resources to a selected service is proposed [98], which takes a long time to reach the

overall target performance. If accurate resource estimation model is available for SOA

applications, the auto-scaler can provision resources in one shot to every service with

minimum provision time. Models using queuing networks can be explored to fulfill the

gap. It also calls for efficient online optimization algorithms to decide how each service

should be provisioned in real-time to minimize cost.

Provision using Rebated Pricing Models

Besides Amazon’s spot Cloud, providers like Google and Microsoft have introduced their

rebated pricing models. However, researchers have only concentrated on exploring how

to utilize Amazon’s spot market while have been oblivious to other providers offerings.

New works can aim to use cost models from other providers to provision resources. It is

also interesting to research the use of rebated resources in a multiple Cloud environment

with resources from multiple data centers of the same provider or multiple providers to

minimize cost under QoS constraints. Besides, the proposed approach only co-utilizes on

demand resources and rebated resources. Techniques that are provisioned with a mixture

of on-demand, reserved, and rebated resources would be welcomed by industry and can

be another potential future research direction.
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Event-based Workload Prediction

Existing auto-scalers mostly rely on past workload history to predict future workload.

With the growing popularity of social media and other real-time information channels, it

is interesting to investigate the use of these sources of information to predict workload

burst accurately. Although it is difficult to design a general-purpose predictor of this

kind for various applications, there is potential to integrate the predictors catered for a

particular type of applications into the auto-scalers, such as news applications whose

workloads are boosted by events in the physical world, and outdoor applications whose

workloads are subject to weather conditions.

Energy and Carbon-Aware Auto-scaling

The existing works only focus on financial cost and QoS aspects. As another primary

concern of the ICT sector, energy and carbon footprint should also be considered in the

auto-scaling systems. Nowadays, many data centers have been equipped with on-site

generators utilizing renewable energy. However, these sources of energy, such as wind

and solar, are unstable. Auto-scalers can preferentially provision resources in data cen-

ters that have renewable energy available to maximize use of on-site renewable energy.

Within a single data center, auto-scalers can utilize vertical scaling as much as possible to

avoid starting new physical machines to save energy.

Container-based Applications

The emergence of containers, especially the container-supported micro-services and ser-

vice pods, has aroused a new revolution in web application resource management. How-

ever, dedicated auto-scaling solutions that cater for specific characteristics of the con-

tainer era are still left to be explored. Though this thesis focuses on deployment based

on VMs, we believe some notions and techniques mentioned in this thesis can inspire

research of container-based auto-scalers since the core requirements of them are similar.

However, they do are different in some aspects, e.g., containers are more flexible in sizes,

and quicker and more lightweight to provision.
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7.2.4 Overload Handling

For overload handling, we present the following research directions.

Capacity Plan for Over-Provisioning

By using our proposed approach in Chapter 6, application providers are required to over-

provision some resources to prepare for the sudden shortages of resources. However,

to over-provision how much and how to over-provision the resources are not explored.

It is essential to have a global capacity planning algorithm to make these decisions to

minimize cost overhead while our approach is functioning.

Integrated Overload Handling

The proposed approach uses geographical load balancing and admission control to han-

dle resource overload. Other methods, such as brownout, which temporarily terminate

some optional functions to ensure the execution of critical services, and approximation

which reduces the precision of results to speed up processing when resources are not

enough, can also be considered and integrated together to build a stronger overload han-

dling technique. New policies and algorithms should be developed to make proper deci-

sions using combinations of available overload handling methods to maximize QoS and

minimize lost.

7.3 Final Remarks

Cloud computing has revealed a great potential for web application providers to save

cost and grow fast in this ever competitive market. Besides, utilizing multiple Cloud

data centers opens up more opportunities to solve the challenges in management and

deployment of web applications. In this thesis, we explored problems that hinder ap-

plication providers to effectively and cost-efficiently use Cloud resources in geographi-

cal dispersed data centers. The proposed approaches in this thesis are instrumental in
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the building of next generation multi-Cloud middleware tools, which will enable cost-

efficient, QoS-satisfied, and user-friendly management of web applications in Clouds.
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rales, N. Forgó, T. Sharif, and C. Sheridan, “OPTIMIS: A holistic approach to cloud

service provisioning,” Future Generation Computer Systems, vol. 28, no. 1, pp. 66 –

77, 2012.



BIBLIOGRAPHY 203

[65] S. Frey, C. Luthje, C. Reich, and N. Clarke, “Cloud QoS scaling by fuzzy logic,” in

Proceedings of 2014 IEEE International Conference on Cloud Engineering (IC2E), 2014,

Conference Proceedings, pp. 343–348.

[66] A. Gambi, M. Pezze, and G. Toffetti, “Kriging-based self-adaptive cloud con-

trollers,” IEEE Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2015.

[67] A. Gambi, G. Toffetti, C. Pautasso, and M. Pezz, “Kriging controllers for cloud

applications,” IEEE Internet Computing, vol. 17, no. 4, pp. 40–47, July 2013.

[68] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Modeling the impact of

workload on cloud resource scaling,” in Computer Architecture and High Performance

Computing (SBAC-PAD), 2014 IEEE 26th International Symposium on, Oct 2014, pp.

310–317.

[69] ——, “Adaptive, model-driven autoscaling for cloud applications,” in Proceedings

of the 11th International Conference on Autonomic Computing (ICAC 14). Philadelphia,

PA: USENIX Association, Jun. 2014, pp. 57–64.

[70] A. Gandhi, T. Zhu, M. Harchol-Balter, and M. A. Kozuch, SOFTScale: Stealing Op-

portunistically for Transient Scaling. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 142–163.

[71] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud comput-

ing services,” Future Generation Computer Systems, vol. 29, no. 4, pp. 1012 – 1023,

2013, special Section: Utility and Cloud Computing.

[72] I. Gergin, B. Simmons, and M. Litoiu, “A decentralized autonomic architecture for

performance control in the cloud,” in Proceedings of 2014 IEEE International Confer-

ence on Cloud Engineering (IC2E), 2014, Conference Proceedings, pp. 574–579.

[73] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna, “Replica placement in cloud

through simple stochastic model predictive control,” in 2014 IEEE 7th International

Conference on Cloud Computing, June 2014, pp. 80–87.



204 BIBLIOGRAPHY

[74] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai, “Optimal autoscal-

ing in a IaaS cloud,” in Proceedings of the 9th International Conference on Autonomic

Computing, ser. ICAC ’12. New York, NY, USA: ACM, 2012, pp. 173–178.

[75] B. V. Gnedenko and I. N. Kovalenko, Introduction to queueing theory. Birkhauser

Boston Inc., 1989.

[76] Z. Gong, X. Gu, and J. Wilkes, “PRESS: Predictive elastic resource scaling for cloud

systems,” in Proceedings of 2010 International Conference on Network and Service Man-

agement, Oct 2010, pp. 9–16.

[77] D. Grimaldi, V. Persico, A. Pescape, A. Salvi, and S. Santini, “A feedback-control

approach for resource management in public clouds,” in 2015 IEEE Global Commu-

nications Conference (GLOBECOM), Dec 2015, pp. 1–7.

[78] N. Grozev and R. Buyya, “Multi-cloud provisioning and load distribution for three-

tier applications,” ACM Transactions on Autonomous and Adaptive Systems, vol. 9,

no. 3, pp. 13:1–13:21, 2014.

[79] ——, “Dynamic selection of virtual machines for application servers in cloud envi-

ronments,” CoRR, vol. abs/1602.02339, 2016.

[80] S. M. Habib, S. Ries, and M. Muhlhauser, “Towards a trust management system for

cloud computing,” in Proceedings of 2011 IEEE 10th International Conference on Trust,

Security and Privacy in Computing and Communications, Nov 2011, pp. 933–939.

[81] S. M. Habib, V. Varadharajan, and M. Mühlhäuser, “A framework for evaluating
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