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Abstract

Serverless computing is gaining momentum as the latest cloud deployment model

for applications, with many major global companies shifting towards a complete adop-

tion of this new computing paradigm. As the name implies, the burden of server man-

agement is non-existent to the end user under this model, with the cloud vendor taking

full responsibility of infrastructure management. The users simply deploy the logic of

their application in the form of code segments called ’functions’, with a rough estimate

on the resource requirements and the rest is taken care of by the serverless platform.

This greatly reduces the time-to-market and upfront costs for client products with no

expertise required in initial server configurations and subsequent operations. The rapid

auto-scalability feature allows customers to scale their businesses fast, without the need

for any prior infrastructure requirement planning. The pay-per-use billing model en-

ables a fair ground for applications with spontaneous fluctuations in traffic loads.

However, the ’serverless’ nature to the end user unequivocally leaves the entire set of

end to end server management responsibilities with the cloud vendor. In contrast to con-

ventional Infrastructure-as-a-Service (IaaS) cloud model, where the provider only han-

dles the physical infrastructure maintenance, now the complete virtual machine mainte-

nance is also part of the provider service offering. Moreover, unlike the users managing

their allocated resources for the execution of their own applications, the cloud provider

has to undertake the same set of tasks with far lesser knowledge available to them. Not

only do they have to successfully manage the infrastructure for an application belong-

ing to a separate party, but they need to accommodate the needs of thousands of user

applications on the same shared platform, considering the impact of their co-resident be-

haviors as well. Thus this is a tremendous feat for cloud vendors if accomplished to the

satisfaction of all the parties involved. Further, while auto-scaling and granular billing

features are vastly favorable to end users, the cloud vendors are at a grave disadvan-
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tage if measures are not taken to maintain high efficiency in their underlying resources.

Hence, having proper techniques for resource management in place which are capable

of meeting all of these challenges is of utmost importance. The existing commercial and

open-source serverless platforms mostly follow primitive resource management policies

at the moment, which have a vast potential to be optimized. Further, although there is a

huge interest in the research community in this area of study, most of the existing works

are limited in their generalizability to be adaptable to practical serverless computing en-

vironments, considering the multi-tenant and rapidly changing nature of these systems.

Moreover, a vast majority of these works are negligent on the service provider perspec-

tive of their offered solutions, which is a key factor determining the probable adoption

of the same in vendor platforms.

This thesis investigates novel techniques for the smooth running of all resource han-

dling operations including resource provisioning, resource scheduling and scaling, which

are dynamic and intelligent enough to handle the complexities of this computing en-

vironment. Proposed approaches strive to gain a thorough understanding on the be-

havior of the serverless computing infrastructure, along with the different application

workloads, in developing strategies beneficial for both end users and cloud vendors. In

essence, this thesis advances the state-of-the-art by making the following contributions:

1. A comprehensive taxonomy and literature review on the aspect of resource man-

agement in serverless computing environments, along with a discussion on iden-

tified research gaps, laying the ground work for future research work.

2. A dynamic resource management and a function request placement technique for

meeting user specific application requirements and maintaining high resource ef-

ficiency.

3. A Deep Reinforcement Learning (DRL) based workload and system aware tech-

nique for scheduling applications in resource-constrained, multi-tenant serverless

computing environments, along with flexibility in achieving a desirable level of

application performance and resource cost optimization.

4. A framework for horizontally and vertically scaling allocated resources to func-
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tion instances based on a multi-agent DRL model for elevating application perfor-

mance while maintaining provider resource cost efficiency.

5. A deployment and scheduling approach for applications in a hybrid serverless and

serverful environment based on DRL, with the aim of reducing application latency

and incurred user cost.

6. A detailed discussion outlining challenges and the potential for future work for

the efficient use of serverless computing environments.

v





Declaration

This is to certify that

1. the thesis comprises of only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Anupama Mampage, November 2023

vii





Preface

Main Contributions

This thesis research has been carried out in the Cloud Computing and Distributed Sys-

tems (CLOUDS) Laboratory, School of Computing and Information Systems, The Uni-

versity of Melbourne. The main contributions of the thesis are discussed in chapters 2-6

and are based on the following publications:

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”A Holistic

View on Resource Management in Serverless Computing Environments: Taxon-

omy and Future Directions”, ACM Computing Surveys (CSUR), Volume 54, Issue

11s, Article 222, 36 pages, September 2022.

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deadline-

aware dynamic resource management in serverless computing environments”, Pro-

ceedings of the 21st IEEE/ACM International Symposium on Cluster, Cloud and Internet

Computing (CCGrid), Pages: 483-492, Melbourne, Australia, May 10-13, 2021.

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deep rein-

forcement learning for application scheduling in resource-constrained, multi-tenant

serverless computing environments”, Future Generation Computer Systems (FGCS),

Volume 143, Pages 277-292, June 2023.

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”A Deep Re-

inforcement Learning based Algorithm for Time and Cost Optimized Scaling of

Serverless Applications”, Future Generation Computer Systems (FGCS) [Under Re-

ix



view, April 2024].

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deep Rein-

forcement Learning for Scheduling Applications in a Serverless and Serverful Hy-

brid Environment”, IEEE Transactions on Services Computing (TSC) [Under Review,

November 2023].

Supplementary Contributions

During the Ph.D. candidature, I have also completed the following work (this thesis

does not claim it as its contributions):

• Anupama Mampage and Rajkumar Buyya, ”CloudSimSC: A Toolkit for Mod-

eling and Simulation of Serverless Computing Environments”, Proceedings of the

25th IEEE International Conference High Performance Computing and Communications

(HPCC), Melbourne, Australia, Dec 13-15, 2023.

x



Acknowledgements

Ph.D. is a long and challenging journey, which would have been neither successful, nor
enjoyable, if not for the help and guidance of many, every step of the way. Upon reaching
almost the very end of this journey, I would like to take this opportunity to express my
heartfelt gratitude to all the wonderful people who truly made it possible.

First and foremost, I would like to thank my principal supervisor, Professor Rajku-
mar Buyya for giving me the opportunity to pursue my PhD at the University of Mel-
bourne under his guidance. His continuous guidance and encouragement on my re-
search work as well as his positive attitude on all aspects of life have helped me tremen-
dously throughout this journey. I would also like to extend sincere gratitude to my
co-supervisor Professor Shanika Karunasekera for her invaluable mentorship during all
these years. Her kindness and patience as a person as well as the constructive feedback
on all my works is highly appreciated. I also take this opportunity to thank my advi-
sory committee chair, Professor Lars Kulik for his constant guidance during progress
meetings for staying on track, and support towards the successful completion of this
study.

I would also like to thank all the past and current members of the CLOUDS Labo-
ratory at the University of Melbourne, whose companionship and support at times of
need have been invaluable. In particular, I thank Dr. Muhammed Tawfiqul Islam, Dr.
Mohammad Goudarzi, Dr. Shashikant Ilager, Dr. Redowan Mahmud, Dr. Samodha
Pallewatta, Dr. Maria Rodriguez, Dr. Muhammad Hilman, Dr. TianZhang He, Amanda
Jayanetti, Zhiheng Zhong, Jie Zhao, Ming Chen, Tharindu Bandara, Siddharth Agar-
wal, Thanh-Hoa Nguyen, Yulun Huang, Zhiyu Wang, Kalyani Pendyala, Duneesha Fer-
nando, Qifan Deng, and TianYu Qi for their support.

I am immensely grateful to the University of Melbourne for providing me with the
scholarship and resources to pursue my doctoral studies and I acknowledge the Aus-
tralian Federal Government and the Australian Research Council (ARC) for enabling
the funding and supporting my PhD research.

I would also like to thank the past and present admin staff of the School of Comput-
ing and Information Systems for their continued support in resolving queries through-
out my candidature.

I would like to extend my heartfelt gratitude to my parents Wasantha Mampage

xi



and Ramya Attanayake, and my parents-in-law Susil Samarasinghe and Sunethra Chan-
drakanthi for their unconditional love and support.

Last, but most importantly, I am extremely grateful to my husband Sayuru Samaras-
inghe, for being the closest to my heart, with endless love, without which this arduous
but amazing journey would not have been possible.

Anupama Mampage
Melbourne, Australia
November 2023

xii



Contents

List of Figures xvi

List of Tables xix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Serverless Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Key Characteristics of Serverless Platforms . . . . . . . . . . . . . . 6
1.1.3 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Challenges in Serverless Resource Management . . . . . . . . . . . . . . . 10
1.3 Research Questions and Objectives . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 A Taxonomy on Resource Management in Serverless Computing Environments 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Related Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 The Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Elements of Resource Management . . . . . . . . . . . . . . . . . . 26
2.3.2 Deployment Environment . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Workload Management . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.4 QoS Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Classification of Resource Management Techniques Using Taxonomy . . . 50
2.5 Industrial Serverless Computing Platforms and Frameworks . . . . . . . . 57
2.6 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6.1 System Design Characteristics . . . . . . . . . . . . . . . . . . . . . 62
2.6.2 Workload Management and QoS Goals . . . . . . . . . . . . . . . . 63
2.6.3 Resource Management Techniques . . . . . . . . . . . . . . . . . . . 64

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Deadline-aware Dynamic Resource Management in Serverless Computing 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . 73

xiii



3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Function Placement Algorithm . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Dynamic Resource Alteration (DRA) Algorithm . . . . . . . . . . . 81

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 DRL-based Application Scheduling for Multi-tenant Serverless Computing 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Serverless Function Scheduling . . . . . . . . . . . . . . . . . . . . . 97
4.2.2 Application of RL for Serverless Resource Management . . . . . . . 98

4.3 Time and Cost Optimized Function Scheduling . . . . . . . . . . . . . . . . 100
4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Deep Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . . . . 105
4.4.1 Application of RL for Function Scheduling . . . . . . . . . . . . . . 106
4.4.2 Proposed DRL Technique for Function Scheduling . . . . . . . . . . 109

4.5 DRL Agent training Environment Design and Implementation . . . . . . . 111
4.5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.2 DRL Agent’s Process Flow . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6.3 Baselines Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.4 Convergence of the DRL Model . . . . . . . . . . . . . . . . . . . . . 121
4.6.5 Analysis of Model Performance on the Evaluation Data Sets . . . . 124
4.6.6 DRL Model Training and Serving Overhead . . . . . . . . . . . . . 133

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Time and Cost Optimized Autonomous Scaling of Serverless Applications 135
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.1 Serverless Resource Scaling . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.2 RL Solutions for Serverless Resource Management . . . . . . . . . . 140

5.3 Adaptive Function Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.1 Learning Model for Function Scaling . . . . . . . . . . . . . . . . . 147

xiv



5.4.2 Actor-Critic based Multi-agent Scaling Framework . . . . . . . . . 150
5.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5.1 RL Environment Design and Implementation . . . . . . . . . . . . 155
5.5.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.5.4 Baseline Scaling Techniques . . . . . . . . . . . . . . . . . . . . . . . 160
5.5.5 Convergence of the DRL Model . . . . . . . . . . . . . . . . . . . . . 161
5.5.6 Analysis of Model Performance on the Evaluation Data Sets . . . . 164

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6 DRL-based Application Scheduling in Serverless and Serverful Hybrid Clouds171
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2.1 Serverless and Serverful hybrid scheduling . . . . . . . . . . . . . . 174
6.2.2 Serverless Resource Management with RL . . . . . . . . . . . . . . 175

6.3 Hybrid Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4 Deep Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . . . . 180
6.4.1 Learning Model for Hybrid Scheduling . . . . . . . . . . . . . . . . 180
6.4.2 Actor-critic based Hierarchical Scheduling Framework . . . . . . . 183

6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5.1 RL Environment Design and Implementation . . . . . . . . . . . . 185
6.5.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.4 Baseline Scaling Techniques . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.5 Convergence of the DRL Model . . . . . . . . . . . . . . . . . . . . . 189
6.5.6 Analysis of Model Performance on the Evaluation Data Sets . . . . 191

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7 Conclusions and Future Directions 197
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2.1 Multi-provider Serverless Support . . . . . . . . . . . . . . . . . . . 200
7.2.2 Hybrid Execution Models . . . . . . . . . . . . . . . . . . . . . . . . 200
7.2.3 Access to Specialized Hardware . . . . . . . . . . . . . . . . . . . . 201
7.2.4 Dynamic Pricing Models . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2.5 QoS Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2.6 Provider Centric Optimization . . . . . . . . . . . . . . . . . . . . . 202
7.2.7 Adaptation to the Edge . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.2.8 Intelligent Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.2.9 Support for Dynamism in Environments and Workloads . . . . . . 203

7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xv





List of Figures

1.1 Evolution of Cloud Service Models. . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Serverless Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 The Taxonomy of Resource Management in Serverless Computing Envi-
ronments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Existing Serverless Platforms and Frameworks. . . . . . . . . . . . . . . . . 57

3.1 System Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 VM uptime comparison for the different load balancing algorithms when

requests have tighter deadlines at both priority levels (a) dcheck at 65% and
85%, cpu-quota increment at 20% and 40% (b) dcheck at 55% and 75%, cpu-
quota increment at 40% and 60%. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 VM uptime comparison for the different load balancing algorithms when
requests have relaxed deadlines at both priority levels (a) dcheck at 65%
and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55% and 75%,
cpu-quota increment at 40% and 60%. . . . . . . . . . . . . . . . . . . . . . 87

3.4 VM uptime comparison for the different load balancing algorithms using
real-world traces (a) dcheck at 65% and 85%, cpu-quota increment at 20%
and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40% and 60%. . 88

3.5 Comparison of the percentage of requests meeting the deadline for the
different load balancing algorithms when requests have tighter deadlines
at both priority levels (a) dcheck at 65% and 85%, cpu-quota increment at
20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40% and
60%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Comparison of the percentage of requests meeting the deadline for the
different load balancing algorithms when requests have relaxed deadlines
at both priority levels (a) dcheck at 65% and 85%, cpu-quota increment at
20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40% and
60%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Comparison of the percentage of requests meeting the deadline for the
different load balancing algorithms using real-world traces (a) dcheck at
65% and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55% and
75%, cpu-quota increment at 40% and 60%. . . . . . . . . . . . . . . . . . . 90

xvii



3.8 Comparison of the percentage of requests meeting the deadline under dif-
ferent resource management methods. . . . . . . . . . . . . . . . . . . . . . 91

4.1 The system model of the serverless application scheduling environment. . 101
4.2 The proposed system architecture of the practical testbed for training and

evaluating the DRL agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3 The communication process flow of the DRL agent with the cluster during

the training phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4 Convergence process of the trained DRL models in the 10 VM cluster in

terms of reward, RART ratio, total VM cost, and the average node number. 122
4.5 Convergence process of the trained DRL models in the 20 VM cluster in

terms of reward, RART ratio, total VM cost, and the average node number. 123
4.6 Comparison of the RART ratio, throughput, total VM cost and the average

number of used nodes in the system during an episode, by the DRL model
and the baseline algorithms in the 10 VM cluster. . . . . . . . . . . . . . . . 125

4.7 Comparison of the RART ratio, throughput, total VM cost and the average
number of used nodes in the system during an episode, by the DRL model
and the baseline algorithms in the 20 VM cluster. . . . . . . . . . . . . . . . 128

4.8 The effect of the β parameter in optimizing dual objectives in DRL model
training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1 The system model of the serverless application execution environment. . . 142
5.2 Training progress of the 3 worker A3C models in terms of reward, average

RFRT, request failure rate, and the total VM cost. . . . . . . . . . . . . . . . 162
5.3 Training progress of the 5 worker A3C models in terms of reward, average

RFRT, request failure rate, and the total VM cost. . . . . . . . . . . . . . . . 163
5.4 Comparison of the Average RART, RFR and provider VM cost in the sys-

tem during an episode, by the 3 worker A3C models and the baseline
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Comparison of the Average RART, RFR and provider VM cost in the sys-
tem during an episode, by the 5 worker A3C models and the baseline
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1 The System Model of the Hybrid Application Execution Environment. . . 177
6.2 Training progress of the DRL agent in terms of the agent rewards, average

RRRT, and the average user cost per request. . . . . . . . . . . . . . . . . . 190
6.3 Comparison of the average RRRT and the total user cost incurred by dif-

ferent application workloads, achieved by the H-A2C model and the base-
line algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.4 Workload-1: Deployment switch between Serverless and IaaS clusters for
the three applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.5 Workload-2: Deployment switch between Serverless and IaaS clusters for
the three applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xviii



List of Tables

2.1 Classification of Resource Management Techniques. . . . . . . . . . . . . . 56

3.1 Summary of Literature Study. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Definition of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Summary of Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Definition of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Worker Cluster Resource Details. . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 Serverless Application Details. . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5 Hyper-parameters Used for DRL Model Training. . . . . . . . . . . . . . . 119

5.1 Summary of Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 Definition of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3 Worker Cluster Resource Details. . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4 Serverless Application Details. . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.5 Hyper-parameters Used for DRL Model Training. . . . . . . . . . . . . . . 159

6.1 Summary of Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.2 Definition of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3 VM-based Cluster Resource Details. . . . . . . . . . . . . . . . . . . . . . . 186
6.4 Application Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5 Hyper-parameters Used for DRL Model Training. . . . . . . . . . . . . . . 189

xix





Chapter 1

Introduction

Serverless computing is emerging as a novel and compelling paradigm for the deploy-

ment of cloud applications. This could partially be attributed to the recent shift of enter-

prise application architectures from monolithic structures to more fine-grained individ-

ual units i.e. microservices [1]. Although the first usage of the term ”serverless” seems

to have appeared around 2012, the concept gained more popularity in 2015, following

AWS’s serverless platform launch in 2014. Today it is gaining rapid popularity with a

Compound Annual Growth Rate (CAGR) of 21% and a market size of 9.3 billion in 2022

which is estimated to reach 28.9 billion by 2028 [2].

The concept of cloud computing has been around since the early 2000’s and along

with it came the three cloud execution models, Infrastructure as a Service (IaaS), Plat-

form as a Service (PaaS) and Software as a Service (SaaS). Although the pay-as-you-go

model in acquiring cloud computing resources allows customers to pay for only the

resources leased from the cloud providers, often times the users experience a signifi-

cant gap between the resources acquired and paid for and the actual resource utilization

(CPU, memory etc.) [3]. Further, under these execution models, the users are burdened

with the operational matters with regard to the provisioned cloud resources for their

applications.

Under the IaaS model, the developer has control over the application code, data and

provisioning of cloud resources. The PaaS model allows users to write customized code

but they no longer possess control over the execution environment. The serverless com-

puting model is a similar paradigm where, the developer has control over the code they

deploy, but provides only abstract details of application resource requirements to the

platform. The serverless provider is equipped to manage application resource require-

1
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ments automatically, including instance selection, resource scheduling, fault tolerance,

monitoring and resource scaling to suit demand surges. In addition, this computing

model offers many unique features such as rapid resource auto-scaling, strong isola-

tion, fine-grained billing options and access to a massive service eco-system. While

the computing model that uses functions as the deployment unit is called Function-

as-a-Service (FaaS), serverless architectures also provide Backend-as-a-Service (BaaS) –

client applications, such as database and authentication services [1]. As such, due to its

many advantages, serverless computing has currently been explored for use in many

application scenarios including big data analytics [4], [5], [6], machine learning [7], [8],

Internet of Things [9], [10], and large scale mathematical computations [11], to name a

few. Although initially adopted as an execution model for cloud environments, today

serverless computing model is being increasingly explored for usage in fog computing

environments as well, with a mix of cloud and edge resources [10], [12].

To date, major cloud providers including Amazon, Google, Microsoft and IBM have

launched commercial platforms with serverless capabilities, which are being used by

many companies in their production environments. (Ex: Netflix uses AWS Lambda

serverless platform for video file processing). In addition to the commercial platforms,

there are many open-source serverless frameworks such as IBM’s OpenWhisk, Fission,

Kubeless and OpenFaas [13].

Although serverless computing offers convenience to users in terms of reduced com-

plexity in infrastructure maintenance, easy scalability, and faster set up, many challenges

still exist, that may hinder achieving its intended performance objectives. An inherent

challenge in the serverless execution model is the lack of control the users have over the

resource management for their applications. On the other hand, the cloud vendors carry

the heavy burden of overseeing the successful execution of applications of a multitude

of users, with minimal prior understanding of their individual requirements. Moreover,

maintaining the distinguishing core features of this new model such as its fine-grained

auto-scaling properties in such a dynamic multi-tenant environment is quite a challenge.

With the novelty of the serverless concept, solutions addressing these challenges are still

at an evolving stage.

With the complete offload of the resource allocation and management decisions to
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the serverless provider from the developer, adoption of efficient resource management

techniques is imperative to achieving both the end user and provider objectives. Thus,

the main focus of this thesis is to study techniques for adaptive and autonomic manage-

ment of resources for applications deployed in serverless platforms, to the satisfaction

of all involved parties. This includes investigation into all related matters of resource al-

location, scheduling and resource scaling for serverless applications. We first conduct a

comprehensive survey reviewing the current status, identified problems and proposed

solutions along with their evident shortcomings, with regard to all aspects of server-

less resource management. We then proceed to propose efficient techniques for resource

provisioning, scheduling and scaling for serverless applications for the optimum use of

this computing environment. The superiority of the proposed solutions are proven by

evaluating them under both simulation and practical settings.

1.1 Background

In order to better understand the scope and breadth of the research problem addressed

in this thesis, this section presents a brief background on the concept of serverless com-

puting, its platform architecture, and the key characteristics of a serverless computing

environment. Further, we provide a short introduction to the main application domains

for serverless use cases.

1.1.1 Serverless Computing

Serverless computing is an application service model in which, the provider manages

the server and handles all the responsibilities related to the execution of the application

during its lifetime, with minimum involvement of the user.

Starting with bare-metal servers maintained on-premise with redundancy in order to

enable high availability, the way server infrastructure is managed for use by consumers

has evolved largely over the years. The biggest transformation in this regard was with

the advent of the concept of cloud computing around early 2000. Along with it came

the three cloud service models, IaaS, PaaS and SaaS (Figure 1.1). Under the IaaS model
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Figure 1.1: Evolution of Cloud Service Models.

(e.g., AWS EC2, Azure Virtual Machines (VMs), Google Cloud Platform), the provider

manages hardware resources at their data centers. The developer rents out required

virtualized cloud resources from a vendor and thus possesses the responsibilities of re-

source provisioning, runtime configurations and the management of application code

and data. While this pay-as-you-go model in acquiring cloud computing resources al-

lows customers to pay for only the resources leased from the cloud providers, studies

show a significant gap between the resources acquired and paid for by cloud users and

the actual resource utilization (CPU, memory etc.) [3]. Thus an inherent challenge with

the IaaS model is the resultant under utilization of resources in general, when resources

are acquired to match the peak demand of a system, and the resultant over utilization

and performance degradation when resources are acquired to cater to average demand

levels. The PaaS model (e.g., AWS Elastic Beanstalk, Azure app services, Google app en-

gine) provides a platform for users to develop, run and manage customized applications

while the execution environment is managed by the cloud provider. The serverless com-

puting model is a similar paradigm where, while the developers have control over the

code they deploy, they need to follow certain standards to suit the provider platforms.

In addition, this model offers far more granularity with regard to application scaling
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and billing schemes which differentiate it from other execution models and create new

opportunities. For example, under the serverless model, an application has the option to

scale to zero, with no instance of the application consuming any resources when there is

no traffic. This is in contrast to a PaaS model, where at least one instance of the applica-

tion will always be up and running, consuming some amount of resources, irrespective

of the traffic levels.

Serverless Computing Architecture

Serverless architecture is an event-driven architecture where users would initially de-

ploy code with the application logic, in the form of stateless functions. A serverless

platform defines a set of event sources which could trigger the invocation of these pre-

deployed functions as per the user requirement. A user defines rules, binding deployed

functions with corresponding event sources. The supported event sources depend on

the platform and these could be HTTP requests from a user interface, a change to a

database or an object storage, a notification from an Internet of Things (IoT) device etc.

Figure 1.2 illustrates the basic high-level execution flow of the serverless architecture.

Upon the occurrence of an event, a request(s) is sent to the API gateway in order

to invoke the relevant function(s) as per the defined set of rules. The scheduler along

with the load balancing logic, then determines which worker node is best suited to ac-

commodate the function execution and dispatches the execution request to the relevant

worker. A suitable isolated environment with the required resource configurations (e.g.,

a container) is created on the worker to accommodate the request, if a ready resource

is not available. Function execution commences once the required runtime and the as-

sociated application code from the application repository, are loaded on to the created

environment. Upon completion of execution, the response is sent to the user and the

environment created is usually destroyed, releasing the allocated resources. Interme-

diary data and state management is done via external storage services. The function

scaling decisions to meet the requirements of subsequent function execution requests,

are taken considering the data from monitoring metrics and the implemented function

scaling logic.
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Figure 1.2: Serverless Architecture.

1.1.2 Key Characteristics of Serverless Platforms

As per [1], below are some unique key features of existing serverless platforms.

• Auto-scaling – The platform is expected to be able to scale resources automatically

and instantly as per the demand. Serverless platforms are equipped with container

technologies which have minimal start-up delays, thus enabling the provision of

thousands of instances within a few seconds. Similarly, when there is no traffic

to an application, the function instances scale to zero maintaining minimum idle

resources.

• Billing – The usage is metered and users are only charged for the resources used

when serverless functions are in execution. This means that when a function scales

to zero and no node is running the user’s code, there is no cost to the user.

• Performance and limits – A variety of limits are set on the run time resource re-

quirements of a serverless code, including the number of concurrent requests,
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maximum memory and CPU resources available to a function invocation and an

upper bound in execution time before a function instance times out.

• Programming languages – Most platforms support function code written in multi-

ple programming languages which include Javascript, Java, Python, Go and Swift.

• Security and accounting – Serverless platforms are multi-tenant and thus providers

need to be considerate of isolating the function execution of different users. Linux

kernel features like namespaces and cgroups offered by container technologies

provide some level of resource isolation for individual function executions.

1.1.3 Application Domains

In general, bursty and compute-intensive workloads which are stateless and ephemeral

could benefit more from a serverless architecture. From a cost perspective, the auto-

scaling feature of the platforms proves useful, when traffic arrives in bursts (inconsis-

tent traffic levels), since the system can also scale to zero when there is no traffic [1].

During recent times, serverless computing has increasingly being explored for use in

many applications domains such as web and mobile, big data, internet of things, ma-

chine learning model training and large scale mathematical computations. The nature

of the serverless workload will vary depending on the different requirements of these

domains and their inherent characteristics. The focus of the resource management tech-

niques needs to be adapted accordingly. As discussed in the following sections, the core

design features of the existing platforms make the serverless model easily adaptable for

some domains while for others, an extra effort is needed to reap the full benefits of this

novel model.

Web Services

Serverless model is said to have been initially developed for lightweight use cases like

serving APIs or small backend services [14]. Even today, studies on serverless use cases

reveal that web services is the most common application domain utilizing this new com-

puting paradigm due to ease of adoption [15].
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Big Data Analytics

Due to high data volumes and computational requirements, big data processing is tra-

ditionally undertaken using clusters of machines with jobs consisting of multiple tasks

being executed across a set of machines. Advancement of technology in the field has ad-

dressed these performance and scalability needs through distributed computing frame-

works specialized for big data analytics [16], [17]. The costs and the knowledge required

for configuring, deploying and maintaining these systems is still a challenge. The lower

startup times, automated resource management, function level auto-scaling and gran-

ular billing features present an interesting opportunity in the serverless model for big

data processing [14]. The potential of serverless for big data analytics is being recog-

nized by the major cloud providers as well. AWS provides guidance on reaping benefits

of Lambda for streaming data analytics [18]. IBM introduces IBM-PyWren, a data an-

alytics platform using IBM Cloud Functions [19]. A number of research efforts too are

seen trying to adopt the serverless model for obtaining favorable results for big data ap-

plications [5], [20], [21]. However, many fundamental challenges still exist that impede

the performance of distributed data-driven applications on current serverless platforms.

Internet of Things

FaaS model could be beneficial for adoption in IoT applications in edge/fog comput-

ing networks owing to a number of factors. Deploying applications as a number of

lightweight functions go in line with resource limitations at the edge devices. State-

lessness of serverless functions add portability for parts of applications to be moved

across the edge/cloud computing network with lesser complications. As a result, today,

serverless computing has been exploited in many IoT domains including home automa-

tion and other custom-built IoT solutions. AWS offers AWS IoT Greengrass [22] which

is included as a service in the serverless ecosystem as well and this allows processing

data at the edge. Azure IoT edge [23], which could be used in conjunction with their

FaaS service Azure Functions, moves cloud analytics to the edge devices. A number of

researches focus on introducing frameworks and scheduling techniques for serverless

applications deployed in edge-cloud computing networks [24], [10], [25], [26], [9], [12].
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Machine Learning

Machine learning (ML) applications typically consist of three phases: model design,

model training and model inference (model serving). VM clusters were traditionally

used for the diverse tasks in ML model training. The distinct stages of a ML workflow

pipeline consist of varying computational requirements. As such the traditional ap-

proaches face several challenges such as the need for developers to provision, configure

and manage these resources and the over and under provisioning of these resources [27].

Serverless computing seems to be a promising approach for resource provisioning chal-

lenges for ML users, in terms of its simplified deployment opportunities, fine-grained

resource provisioning and billing models and the ability to auto-scale both computation

and storage resources. Many research works exist in this area that propose serverless

frameworks capable of accommodating these applications [8], [7].

Mathematical Computation

Large scale mathematical computations are traditionally deployed on supercomput-

ers or high-performance computing clusters connected by high-speed, low-latency net-

works [27]. Considering this, serverless seems a poor fit for such applications. However,

the ability to unburden non-computer scientists of having to manage infrastructure and

scalability to support varying needs of resource parallelism during a computation, high-

lights benefits of a FaaS model over managing a cluster with a fixed size. Shankar et al.

[28] present Numpywren, a serverless system for linear algebra computations. Werner et

al. [4] present a prototype for matrix multiplication using FaaS. These experiments show

that serverless computing could be a good fit for large scale linear algebra (e.g., matrix

multiplication, singular value decomposition) when computation time dominates com-

munication delays. But the high latency of external storage causes limitations for smaller

problem sizes.
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1.2 Challenges in Serverless Resource Management

Serverless computing is increasingly encouraged to be adopted by developers due to the

ease of program deployment, configuration and access to the automated process of re-

source provisioning, scheduling, monitoring and ensuring fault tolerance. However, the

more convenienced the user is in such environments, the more challenges the provider

will face in automating the said processes with minimal interruption to performance

and with certain QoS guarantees to the user as well. In order to be able to effectively

manage the resource allocation and life time management of resources for the applica-

tions, the provider needs to base its techniques on the knowledge derived on the state

of the system under different scenarios, and the requirements.

The initial task of resource management for serverless applications lies with the allo-

cation of the right amount of resources for an application. Next is deciding on a suitable

worker node (virtual machine) to direct the request for execution. Once a host node is

selected, the options are to either select an existing environment, or create a new secure

and isolated environment (e.g.: container) to commence function execution. The subse-

quent decisions for scaling resources as required for the current application as well as to

accommodate future requests are further operations to be handled.

Below we discuss the challenges associated with fulfilling these chain of responsibil-

ities from within this provider-centric cloud execution model:

• Blackbox architecture: One major challenge to overcome under this novel com-

puting model is its promoted lack of transparency of the platform operations to

end users. Although this helps to maintain minimal user involvement in the whole

process of application execution, it also elevates the level of responsibility for cloud

vendors. For example, at the point of application deployment to a serverless plat-

form, the user reveals only minimal application requirements and requests an ap-

proximate amount of resources. As such, guaranteeing any level of Quality of

Service (QoS) to users requires the provider to determine the appropriate level of

resource provisioning which is a massive challenge.

• Shared platform: Unlike leased virtual infrastructure under the IaaS model, which

are dedicated to the user (if needed), the underlying infrastructure of a server-
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less platform are to be shared by millions of users at a time. The co-location of

multiple applications with varying resource requirements could lead to resource

contentions which in turn could cause performance issues and denial of service.

Further, the complicated interference effects of various applications if not isolated

properly, could result in poor service reliability. Thus multi-tenancy is a crucial ele-

ment to be factored in to any resource scheduling or scaling techniques introduced

for these platforms.

• Auto-scaling: A highly regarded feature of serverless platforms is its ability to

attain just-in-time scaling for applications at function level. This means that the

platform needs to be capable of adhoc provisioning of resources to suit the demand

from multiple users in the scale required. At an extreme end, function resources

are to scale to zero when there is no traffic and scale back up when needed. The

creation of additional instances real time, adds latencies for request executions

(cold-start delay), while maintaining idle resource pools to mitigate its effect leads

to resource wastage. The commercial serverless platforms existing today employ

very simple techniques for managing the resource scaling problem, which do not

lead to optimal outcomes in terms of addressing all these challenges.

• Fine-grained billing model: As per the billing model used in commercial server-

less environments, the user is charged only for the resource-time actually con-

sumed by incoming traffic for an application with a milli-second granularity. How-

ever, in order to accommodate dynamic load levels, the underlying provider in-

frastructure would need to stay active for longer periods. This is in contrast to

rented infrastructure under the IaaS model, which are billed for the whole du-

ration regardless of whether they are actually used or not. Given this situation,

optimizing resource utilization is in the best interest of the provider at all times.

Nevertheless, packing requests on to a resource for increased utilization at one

point sacrifices the QoS guarantees to the user and thus arises a problem of con-

flicting objectives which needs careful investigation.

• Execution compatibility: Serverless computing is being increasingly explored for

adaptability in various application domains due its many favorable aspects. As
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such, designers of novel applications tend to follow architectures more synony-

mous with the serverless deployment model, for e.g.: micro-services architecture.

However even then, the nature of an application workload could determine the

actual user ability to reap the best benefits of the serverless execution model at

times. The cold start delays may not be tolerable by a latency critical workload

and the high per request cost could bring up the total cost for a regular predictable

workload beyond expectations. A conventional cloud execution style such as IaaS,

where the readiness of resources is guaranteed, with a much lower per request cost

could be the preferred solution in such an instance. On the other hand, bursty traf-

fic with lesser regard for response times, could perform well under the serverless

model. As such its worthwhile to draw attention in to filtering the best application

scenarios for harvesting the best out of this novel computing paradigm.

1.3 Research Questions and Objectives

The shift in the role of managing cloud resources from the user to the vendor could be

identified as the biggest challenge associated with a serverless computing environment.

Further, the complications of a shared computing space together with extreme auto-

scaling capability expectations have given rise to many unprecedented circumstances

with regard to managing the underlying infrastructure. The objective of this thesis is to

study and propose adaptive strategies for undertaking all serverless resource manage-

ment related processes to the satisfaction of both end users and cloud vendors. To meet

these objectives, we formulate and solve the following research questions:

• Q1. How to dynamically manage function resource allocations and request placements

to attain high resource efficiency and meet user requirements? With the lack of user in-

volvement in serverless application deployment and resource allocation, the cloud

vendor is exposed to only minimal information regarding application specific be-

havioral patterns and its requirements. Thus the initial resource allocations done

to a function may not always be ideal to fulfill its intended objectives. For exam-

ple, in a scenario where each function execution has a tightly coupled deadline/re-

sponse time requirement, the platform needs to ensure maintenance of the QoS at
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a sufficient level. This requires monitoring the application performance in runtime

and employing dynamic resource provisioning techniques so that host resources

are properly distributed among applications. Further, it is important to ensure

that the underlying cloud resources are managed efficiently, in order to compen-

sate for the novel pay-per-execute serverless billing model. The initial placement

of function instances also need to be in line with these objectives.

• Q2. How to leverage workload and system characteristics in function scheduling, towards

to minimizing resource contention among co-located functions while maintaining high re-

source efficiency? Serverless systems are occupied by a variety of user applications

at a time. These applications would have varying sensitivities towards different re-

source elements such as cpu and memory, that affect their performance. As such,

this multi-tenant nature of serverless platforms raises a concern regarding per-

formance limitations caused by resource contention from co-located applications.

Further, the cost efficiency of cloud resources for the provider is an equally im-

portant but conflicting factor of concern in these systems. Thus its important that

a platform develops awareness on the workload characteristics and requirements

along with the state and behavior of the system in each situation, in automating the

process of function scheduling on a shared resource. Balancing the dual objectives

of function performance and provider resource efficiency is an added challenge

requiring attention in this regard.

• Q3. How to manage scaling of system resources to minimize cold start latency and achieve

satisfactory resource efficiency? Auto-scaling is a much appreciated feature of the

serverless computing paradigm, which promotes resource efficiency. However,

a primary shortcoming of enabling auto-scaling is the application latency caused

by the cold start of resources, which tends to be significant when applications are

short-lived. One way to mitigate this challenge is to proactively scale application

resources in time to cater to invocation requests without further delays. Neverthe-

less, if not done with a comprehensive understanding on the multiple application

workloads and the resource cost implications, this could potentially lead to large

pools of idling function instances. While the user is not charged for these extra re-



14 Introduction

sources, their cost needs to be fully born by the cloud provider which renders the

solution unattractive. Thus any auto-scaling solution needs to be able to strike a

balance between targeting reduced cold starts while also incorporating techniques

for retaining good resource efficiency. Intelligent solutions with capability to cap-

ture full system state and derive solutions involving both horizontal and vertical

scaling have the potential to meet these expectations.

• Q4. How to schedule applications in a serverless and serverful hybrid environment in order

to achieve highest performance and cost-efficiency? The embrace of any new computing

model requires an analysis on the positive and negative aspects of its performance

under varying conditions. As such, the optimal use of the serverless computing

paradigm is largely dependent on the platform user’s ability to filter the applica-

tion workload scenarios that could leverage the best out of this deployment model.

While certain features such as auto-scaling, are beneficial for most use cases, the

resulting cold start delays may offset its advantage for time critical applications.

Also, while the pay-per-use billing model favors users with unpredictable work-

loads, the high per request charge reduces its desirability for an application with

regular load patterns. Thus, attention could be drawn to a potential hybrid execu-

tion model for a given workload, to explore the full potential of this environment.

1.4 Thesis Contributions

This thesis makes the following contributions to address the research problems men-

tioned above:

1. Presents a taxonomy covering the major aspects of serverless resource manage-

ment and their influencing factors, along with a detailed analysis of existing re-

lated works in literature using this taxonomy

2. Investigates policies for dynamic management of function resources and initial

placement of function requests, aimed at satisfying user specific application re-

quirements and minimizing resource wastage (addresses the Q1).
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• A deadline-sensitive placement algorithm for function requests, which effec-

tively enhances VM resource efficiency.

• A fine-grained approach to dynamically manage provisioned resources to

functions in the run time.

• Extension to the existing CloudSim [29] simulation environment to support

serverless function executions, for testing and evaluating various resource

management policies.

3. Proposes a Deep Reinforcement Learning (DRL) based, workload and system aware

application scheduling algorithm for resource constrained and multi-tenant server-

less computing environments, with flexibility in optimizing application response

time and provider cost (addresses the Q2).

• A RL model of the problem of function instance scheduling in a resource con-

strained, multi-tenant serverless computing environment.

• A workload and system aware scheduling framework for serverless functions

based on a multi-step Deep Q Learning (DQN) model.

• Flexibility to establish a trade-off between the two conflicting goals of ap-

plication response time latency and provider cost efficiency, based on user

requirement.

• A practical testbed environment with the open-source serverless platform

Kubeless [30] deployed on a Kubernetes [16] cluster composed of heteroge-

neous VMs, integrated with Tensorflow (TF)[31] and Keras [32] libraries for

training and evaluating the proposed DRL agent.

4. Proposes a framework for response time and provider cost optimized scaling of

serverless applications based on a multi-agent DRL model (addresses the Q3).

• A RL based model of the function auto-scaling problem in a multi-tenant

serverless computing environment.

• A novel multi-agent function scaling algorithm based on the policy gradi-

ent algorithm Asynchronous Advantage Actor Critic (A3C), modeled with a
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multi-discrete action space required in making horizontal and vertical scaling

decisions.

• A configurable reward model to attain a balance in optimizing application

performance and resource efficiency.

• An event based simulator environment for serverless function executions with

TF agents in the backend, for training and evaluating the proposed DRL

model.

5. Puts forward a DRL based approach for deploying and scheduling applications

in a serverless and a serverful hybrid environment for minimizing user cost and

elevating function performance (addresses the Q4).

• Problem model for scheduling an application request on a serverless and

serverful hybrid cluster environment, based on RL.

• An actor-critic architecture enhanced with the proximal policy optimization

(PPO) technique, and a hierarchical actor network capable of decision making

at two levels, namely on the mode/environment of deployment and the node

for scheduling within the selected cluster environment.

• A multi objective reward model for optimizing application performance and

user cost for a given workload.

• DRL agent modeled to capture application workload as well as the serverless

and serverful cluster resource details and behavioral patterns in order to gain

a comprehensive understanding on its action environment.

1.5 Thesis Organization

The structure of this thesis is shown in Figure 1.3. The remaining part of this thesis is

organized as follows:

• Chapter 2 presents a taxonomy and literature review on the aspects of resource

management in serverless computing environments. This chapter is derived from:
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- Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”A Holistic

View on Resource Management in Serverless Computing Environments: Taxon-

omy and Future Directions”, ACM Computing Surveys, Volume 54, Issue 11s, Arti-

cle 222, 36 pages, September 2022.

• Chapter 3 presents a dynamic resource management and a function placement

technique to satisfy user request deadlines and achieve high resource efficiency.

This chapter is derived from:

- Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deadline-

aware dynamic resource management in serverless computing environments”, Pro-

ceedings of the 21st IEEE/ACM International Symposium on Cluster, Cloud and Internet

Computing (CCGrid), Pages: 483-492, Melbourne, Australia, May 10-13, 2021.

• Chapter 4 presents a DRL based workload and system aware function instance

scheduling technique for resource constrained, multi-tenant serverless computing

environments. This chapter is derived from:

- Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deep re-

inforcement learning for application scheduling in resource-constrained, multi-

tenant serverless computing environments”, Future Generation Computer Systems

(FGCS), Volume 143, Pages 277-292, June 2023.

• Chapter 5 proposes a multi-agent DRL framework for horizontal and vertical scal-

ing of function resources in a multi-tenant serverless computing environment.

This chapter is derived from :

- Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”A Deep Re-

inforcement Learning based Algorithm for Time and Cost Optimized Scaling of

Serverless Applications”, Future Generation Computer Systems (FGCS) [Under Re-

view, April 2024].

• Chapter 6 presents a serverless and serverful hybrid scheduling framework for ap-

plications, based on a hierarchical actor-critic based DRL architecture. This chapter

is derived from:
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- Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deep Re-

inforcement Learning for Scheduling Applications in a Serverless and Serverful

Hybrid Environment”, IEEE Transactions on Services Computing (TSC) [Under Re-

view, November 2023].

• Chapter 7 concludes the thesis by summarizing the findings and highlighting the

potential for future research work.
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Figure 1.3: Thesis Structure.





Chapter 2

A Taxonomy on Resource
Management in Serverless Computing

Environments

This chapter investigates the major aspects covering the broader concept of resource management

in serverless computing environments and proposes a taxonomy of elements that influence these

aspects, encompassing characteristics of system design, workload attributes, and stakeholder expec-

tations. Here we take a holistic view on serverless computing environments deployed across edge,

fog, and cloud computing networks. Further, we analyse existing research works discussing aspects

of serverless resource management, and the commercially available serverless platforms, using this

taxonomy. Finally, we identify the gaps in literature and discuss them in detail for further improving

the capabilities of this computing model.

2.1 Introduction

The core differentiator of the serverless model from other computing models is the com-

plete shift of server management responsibilities to the vendor, thus rendering the model

’serverless’, from the perspective of the developer. A major, if not the primary aspect of

server management, lies in the process of proper management of server resources for

the execution of applications. Resource management in a serverless environment refers

to the overall aspect of managing the resource requirements of an application workload

This chapter is derived from:

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”A Holistic View on Resource
Management in Serverless Computing Environments: Taxonomy and Future Directions”,ACM Com-
puting Surveys, Volume 54, Issue 11s, Article 222, 36 pages, September 2022.
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and the available system resources efficiently, with minimal involvement of the user.

Due to the autonomic nature of the expected resource management process in these

environments, special focus is required on each step of this process for better perfor-

mance of the applications and the system. We identify three major aspects of resource

management, which need to be dealt with in a manner suitable for this new serverless

computing model.

• Workload characterization and performance prediction: Developers prefer min-

imal work in using a serverless deployment model. Having to specify a resource

configuration and other characteristics when deploying an application could be

cumbersome. Hence it is ideal for a serverless platform to be able to infer ap-

plication as well as workload characteristics using modelling and bench-marking

techniques, which could then be used for performance prediction. An effective

scheme for developing such an understanding, leads to better resource scheduling

and scaling decisions as well, which help in satisfying user QoS requirements.

• Resource scheduling: Mapping workloads to suitable host nodes based on their

resource requirements, while efficiently utilizing the available resources is an im-

portant challenge to both the developer and the cloud providers or system owners.

Scheduling also involves determining the order of execution of applications when

the resource demand exceeds the available resource capacity. While the developer

would expect certain QoS guarantees, it is essential for the provider to manage

resources efficiently, which is a primary goal of resource management.

• Resource scaling: Under the serverless model, environment creation and resource

allocations to applications happen in real time, as and when workloads arrive. This

ensures greater flexibility in resource allocations and higher resource efficiency. In

order to maintain required application performance while maintaining scaling at

such a granular level requires smart and dynamic resource scaling techniques.

Next we identify the challenges associated with resource management strategies

which are specifically significant in a serverless environment. We analyze the stated

challenges from the perspective of end users and the service providers.
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• Cold start delay: Due to the auto-scaling nature of these environments, resource

creation needs to happen on the go and setting up new resources for a function

execution results in a considerable start up time. Applications often face perfor-

mance degradations due to this initial delay, which becomes specially significant

for functions with very short execution times. On the other hand, maintaining

idle resource pools to alleviate this issue often results in wasted resources on the

provider side.

• Co-located application interference: Applications deployed on serverless platforms

run in multi-tenant environments, inside specially created isolated environments

such as containers. When several applications run on the same host node and com-

pete for the same set of resources, it is difficult to fully avoid resource interference

effects on the applications. In extreme cases, if resource interference is not han-

dled properly, dominant applications could consume all the resources. This would

lead to very poor performance for other user applications. Developing sandboxing

techniques which are light-weight enough to avoid large setup times and secure

enough to provide the required level of resource isolation is an associated chal-

lenge for cloud vendors.

• Resource efficiency: In contrast to a general cloud computing billing model, server-

less systems usually charge only for the resources allocated/consumed during the

application execution, with a millisecond accuracy. The provider on the other hand

may be maintaining the underlying infrastructure for longer periods. This creates

the need for special attention to have strategies for high resource efficiency on the

host nodes. On the user side, in order to avoid poor application performance, there

is a tendency to overbook resources for function executions. Frequent under uti-

lization of these resources could lead to poor value for money for the user and lack

of confidence on these services in the long run.

• Diverse workload management: With serverless systems, there is minimal user

involvement in the resource management process. Thus, these systems need to

develop an understanding on the application and workload characteristics on their

own, in order to deliver a favorable outcome. The diverse nature of applications
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that are being deployed on serverless platforms makes this a challenging task. The

lack of an understanding on the application requirements and characteristics could

result in delays in resource setup time, heightened resource interference effects,

etc. that lead to customer dissatisfaction.

• Runtime limitations: To alleviate the risk of loosing flexibility of the infrastructure,

serverless providers impose various runtime limitations on applications. These in-

clude limitations on the maximum allocated CPU, memory, disk, I/O resources as

well as maximum allowed execution time for a function instance. Platforms also

configure an upper limit on function concurrency levels which limits the num-

ber of parallel executions of the same function by a user. Although successful

in preserving flexibility of the system, these limitations often deem the serverless

platforms unsuitable for long-running applications with highly compute-intensive

workloads.

• Lack of QoS guarantees: The blackbox nature of the serverless systems means that

the operational aspects visible to end users is minimal. Although this is generally

convenient to most users, for certain high-precision, latency-sensitive applications,

these environments could be unusable without precise performance guarantees.

For the provider, guaranteeing performance to each and every user in a shared

environment is a very complex task requiring a lot of attention.

• State management: The fundamental building blocks of a serverless architecture

naturally leans more towards short-lived and stateless task executions. Although

currently some service providers offer solutions for orchestrating stateful work-

flows, generally developers are expected to work with external storage services for

intermediary state management. Having to frequently retrieve data to and from

these storage devices with added delays in the network poses many challenges for

the execution of latency critical data-intensive applications. On the other hand,

since flexibility in resource management is a distinguishing quality for a server-

less environment, addressing the issue of state management to the satisfaction of

all users is a highly challenging task for a provider.

The three aspects of resource management identified above need to be addressed
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considering the aforementioned associated challenges. Various approaches have been

experimented by researchers to overcome these challenges and devise better workload

characterization, resource scheduling and scaling techniques. In this chapter, we iden-

tify a classification of the factors which influence these decisions, by reviewing the ex-

isting related literature. In the classification, we discuss challenges inherent to this new

computing model, as well as the general concerns to resource management in the con-

text of serverless computing.

Successfully managing resources in any system is determined by the underlying sys-

tem design features as well as the understanding on the characteristics of the incoming

workloads. As such, our classification comprises of a reference to the key design as-

pects related to resource management in a serverless system, characteristics of the work-

loads submitted to these systems, and finally, the primary goals of resource manage-

ment in these environments. Further, we summarize existing research works related to

workload modelling and prediction, resource scheduling and scaling techniques in the

serverless domain, using our proposed taxonomy. Moreover, we provide a discussion

on the features of existing key commercial and open-source serverless platforms, in line

with this classification. We also propose ideas for future work in developing enhanced

techniques. Serverless system designers would benefit from our classification by gain-

ing an understanding on the key focus areas of a system design under this computing

model and also the existing approaches that have already been evaluated. Researchers

studying resource management techniques would be able to refer to existing approaches

which could subsequently form the basis for the design of novel and rigorous techniques

in the future. This classification would also assist application developers in the design

of their serverless applications, choosing the right infrastructure and in budgeting their

deployments.

The rest of this chapter is organized as follows. An overview on the existing surveys

and studies on resource management in serverless computing environments is provided

in section 2.2. Section 2.3 presents the proposed taxonomy of resource management.

Section 2.4 summarizes existing works on serverless resource management based on the

taxonomy. Section 2.5 provides a discussion on currently available serverless platforms.

Finally, section 2.6 discusses the identified gaps in literature, and section 2.7 concludes
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this chapter.

2.2 Related Surveys

A literature survey can provide a foundation to examine and understand an evolving

research area, in the context of existing work. Preliminary surveys on serverless com-

puting identify opportunities of this new computing model, inherent challenges with

the serverless concept and ideas for overcoming the said drawbacks [33], [27] [34], [35],

[36], [37]. Hellerstein et al. pinpoint specific challenges of the serverless model with

regard to applicability for data-driven distributed computing [38]. Garcia et al. analyse

and discuss trade-offs of today’s serverless platforms required for effective processing

of big data analytics applications [6]. Many studies focus on exploring performance of

existing commercial and open-source serverless platforms [39], [40], [13], [41], [42]. Eis-

mann et al. present a characterization of serverless use cases [15]. A comprehensive

study on the characterization of applications which have successfully adapted to the

serverless domain is done in [43]. None of these works are focused specifically on the

overall aspect of resource management under the serverless computing model and the

emerging body of related literature.

2.3 The Taxonomy

The top level of our taxonomy is comprised of: the key elements of resource manage-

ment, deployment environment, workload management and QoS goal. Figure 2.1 il-

lustrates the proposed taxonomy. We discuss each category in detail in the following

sections.

2.3.1 Elements of Resource Management

In this section we briefly discuss the techniques explored in literature so far, under the

three primary elements of resource management that we have identified. All the factors
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discussed in detail in the rest of the sections in the taxonomy drive the development of

techniques for these key areas.

Workload Characterization and Performance Prediction

Workload characterization refers to using empirical and theoretical approaches to un-

derstand and model, the varying resource requirements of different applications, work-

load arrival patterns and run time behavioral patterns. The knowledge gained in this

manner is subsequently used to derive latency and cost models for the system and the

applications, which is known as performance prediction. The whole process of devel-

oping performance models using the understanding on workload characteristics could

be referred to as workload modelling. In the existing literature, mathematical modelling

techniques are used in abundance in developing workload characterization techniques

and prediction models in serverless environments.

Singvi et al. use a method of exponentially weighted moving average over the mea-

sured request arrival rate to get a new estimate of the workload arrival rates [44]. Gu-

nasekaran et al. use a moving window Linear Regression (LR) model to predict the

average request rate in their VM/FaaS hybrid model, in order to provision the required

VMs in advance [45]. In [46], the authors characterize the entire production workload

of Azure Functions. They identify each function in terms of its trigger type, execution

time, resource usage and invocation frequency. This information is subsequently used

to develop a hybrid histogram and time-series model to reduce cold start invocations.

In addition to these research efforts, a number of works have also focused on compos-

ing benchmark suites for serverless workloads. Kim et al. present a suite of function

workloads which consume CPU, memory, disk I/O and network resources in varying

levels [47]. Their collection of applications consists of micro-benchmarks as well as data-

oriented realistic applications which would assist in realizing a multitude of application

scenarios for research works in the filed. Grambow et al. design an application-centric

benchmarking framework for serverless use cases [48]. It is built in a flexible manner to

accommodate a variety of applications and also to suit federated cloud and edge scenar-

ios.
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A mixture density network based model is used to predict function response time

in [49]. Based on the resultant model, a Monte-carlo simulation is used to do cost pre-

diction for serverless workflow executions. This approach takes into consideration, the

effects of input parameters to each function, on the execution times. Similarly, applica-

tion latencies parameterized by the function input data sizes and framework overheads,

are modeled using Regularized Ridge Regression in their work by Das et al. [50]. They

use training data obtained by running a substantial number of jobs in AWS Lambda, and

the OpenFaas platform deployed in the private cloud. Application specific performance

models are developed in [26] which are able to predict application latency and costs

for various container configurations under an edge/cloud environment. They consider

network transfer times, container start up times, function execution times and storage

latencies in building their models and use various techniques of regression over the

training data sets. For estimating application latency in the cloud, they identify Gradi-

ent Boosted Regression Trees to be the most robust. These performance and cost models

enable application developers to plan and budget their deployments in the most cost

effective manner. Lin et al. propose an analytical model to predict response time and

cost for workflow execution in serverless platforms [51]. They consider variations in re-

sponse time and cost with the allocated memory in building these models. Performance

and cost predictions under different resource configurations in serverless settings are

explored in [52] and [53]. Mahmoudi et al. also propose an analytical model to help

developers to extract performance metrics for their applications before the actual de-

ployment [54]. In particular, their model enables the calculation of the cold start prob-

ability, average response time and the required average number of function instances,

under stable conditions. Linear Regression is used in [55] for function execution time

prediction which is then used in a Least Slack First (LSF) algorithm to select a request

for execution from the queue. Zhang et al. use regression techniques to determine the

total latency of executing a batch of serverless tasks over the edge and cloud runtime en-

vironments, in order to determine the runtime with the least latency [56]. In their work,

median sliding window time series modelling technique is used to predict runtime de-

ployment time while Bayesian Ridge regression technique is used for processing time

estimation.
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Application performance is also largely affected by the characteristics and behavior

of the underlying serverless platform. Platform characterization and evaluation is thus

an important factor in application performance prediction process. Yu et al. present an

open-source benchmark suite for exploring a number of commercial and open-soruce

serverless platforms in terms of their function startup latency, performance isolation,

communication efficiency, CPU contention etc [57]. Benchmarking frameworks have

also been developed accommodating experiments on multiple existing serverless plat-

forms, for ease of comparing their runtime behaviors and performance levels [58], [59].

Mahmoudi et al. present a simulation framework for serverless application developers

to develop, test and optimize the performance and cost of their applications [60].

Resource Scheduling

Application scheduling in a serverless environment addresses the challenges of deci-

sion making with regard to resource provisioning, resource allocation and scheduling

of function invocation requests. A comprehensive resource scheduling scheme would

make use of performance prediction tools as identified above, for determining the op-

timal level of resource allocations and the scheduling policies to meet consumer and

provider expectations.

Constraint programming-based approaches (e.g., Integer Linear Programming (ILP),

Mixed Integer Linear Programming (MILP) try to minimize or maximize an objective by

satisfying the set of constraints for the function execution and the restrictions of avail-

able resources. Scheduling serverless functions over the underlying infrastructure of a

serverless platform based on user Service Level Agreement (SLA) is a NP-hard problem.

Therefore algorithms and approaches for obtaining optimal scheduling decisions may

not be feasible for these platforms considering the magnitude of the problem caused

by the scale of resources. In contrast, using heuristic approaches is faster and they are

scalable to large clusters. These approaches are able to provide acceptable performance

and near-optimal solutions. Schedulers in commercial and open-source serverless plat-

forms also seem to be using simple load balancing mechanisms such as round robin and

bin-packing approaches [39], [61]. A considerable set of works exist in literature which
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study the applicability of various heuristic based approaches for function scheduling

in serverless environments [62], [63], [64], [44]. In their work, Pinto et al. explore the

applicability of Bayesian Upper Confidence Bound (UCB) algorithms for deciding the

optimum location for the execution of functions in an edge/cloud network [25]. Elga-

mal et al. focus on the problem of finding the most cost effective way of fusing multiple

functions and placing them, either on the cloud or the edge [24]. The problem is for-

mulated into a Constrained Shortest Path (CSP) problem and they find the Lagrange

Relaxation-based Aggregated Cost (LARAC) algorithm to be the most efficient for solv-

ing the problem. Palma et al. present a novel idea of a declarative language which the

developers can use to state a scheduling policy and performance goals for their func-

tions [65]. Later, the scheduler uses this policy to choose the best fitting worker for the

execution. Although at very initial stages, learning based approaches such as machine

learning, and Deep Reinforcement Learning (DRL) methods are also being increasingly

explored for resource allocation and scheduling decision making in these environments

[66], [67].

Resource Scaling

The ability to scale resources automatically to meet time varying application demand

levels is a unique feature of paramount importance, under the serverless deployment

model. In order to achieve high resource efficiency, the underlying resources are ex-

pected to scale-out as required, when there is a rise of demand for an applications and

scale-in with diminishing demand. As such, an application would scale to zero with no

resource consumption, at times when there is no demand for application execution. This

ensures that the user is only billed for the exact resource consumption during applica-

tion execution. In turn, this relieves them of incurring costs for over provisioned idling

resources during demand drops, which is often a critical issue in traditional serverful

deployments. A good approach to scale resources also needs to ensure that the QoS

requirements of the user as well as the provider are sufficiently met.

Resource scaling or elasticity of resources in cloud, edge and fog environments, usu-

ally refers to two dimensions as horizontal and vertical scaling. Horizontal elasticity of
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resources allows to scale-out or scale-in the number of application instances, while ver-

tical elasticity allows to scale-up/down the amount of computing and other resources

assigned to each application instance [68].

• Horizontal scaling: The existing commercial serverless platforms host containerized

function instances in readily available VMs. Hence the horizontal scaling of serverless

applications is affected by the availability of VMs with required resources. Experimen-

tation done on AWS Lambda show that there is no significant change to cold start delay,

when a new function instance is launched on a new VM previously not used for execu-

tions, and an existing VM [39]. This indicates that the service providers usually maintain

a pool of ready VMs for function executions and thus VM start up time is not usually a

determining factor for function scheduling approaches. But recent interest in using the

serverless model for compute intensive workloads such as predictive analysis applica-

tions using pre-trained deep learning models, present situations where dynamic scaling

of VM resources is required to manage the dynamic workloads with varying resource

requirements [69].

Serverless platforms often utilize containers as the sandboxing mechanism for the

isolation of applications from each other. Each function instance is usually run on a

separate container with the required resource configurations. Thus, prior to application

execution, the required resource setup generally includes launching a new container,

setting up the runtime environment and application specific initialization. The time

taken for all these steps is collectively knows as the cold start latency. Generally the

cold start latency of containers, which are lightweight resource units, is in the order of

milliseconds. But studies have shown that in serverless executions, this delay is largely

dependent on each function’s runtime dependencies and at times could grow to be even

a few seconds [39], [63]. In order to attain the intended benefits of serverless auto-scaling

abilities, it is a necessity that the function cold start latencies are managed appropriately.

To alleviate the frequency of cold starts, serverless platforms often try to either reuse

warm containers or create pre-warmed containers. The reuse of warm containers avoids

any setup and initialization delays while pre-warmed containers avoid container launch-

ing delays. AWS, Azure and Google Cloud Functions maintain idle function instances

for a particular time period, before they are recycled, in order to increase chances of con-
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tainer reuse [39]. Apache OpenWhisk maintains pre-warmed containers and also uses

load balancing strategies to direct similar function executions to the same set of workers

as much as possible, thus enhancing chances of container reuse [61]. In existing research

work, many models are presented to predict the arrival rates of incoming function re-

quests and the demand for particular function executions and thereby proactively setup

and maintain a pool of warm containers across VMs [70], [44], [64], [71], [72], [73], [74].

Subsequently, load balancing algorithms are devised to benefit from these existing re-

source pools. In contrast to these works, Mohan et al. identify the processes of network

creation and connection to be the major bottlenecks in container startup and propose a

method for maintaining a pool of pre-created network elements which could be attached

to a new function container whenever needed [75]. This is done by using the concept of

pause containers, which are network-ready empty containers which could be attached

to other containers. Similarly in [76], Silva et al. try to reduce the container startup time

by implementing a checkpoint mechanism for restoring snapshots from recently created

function processes. Stein et al. propose a non-cooperative resource allocation heuristic

for serverless environments which aims to predict the number of function instances re-

quired to be kept in order to maintain request waiting time below a threshold level [70].

Somma et al. use a Q-Learning based approach to determine the ideal number of func-

tion containers to scale-up/down at each instance, to maintain high resource efficiency

and low application latency [77]. Gias et al. compare the idle time of a function instance

in a FaaS platform to the Time To Live (TTL) value of a TTL caching system [78]. They

present a model to decide on the most suitable idle time that each function instance is

to be maintained in the system so as to meet the function response time requirements of

the user. At times the reuse of warm containers may even cause additional latencies for

example, when already fetched data in a function instance is out-of-date and required

database connections have already reverted by the time a new request arrives at the

container. Mechanisms to freshen up the warm instances prior to use is of importance

in such instances [79].

The concurrency level, which determines the maximum number of requests that the

system could process in parallel for each different function, is also an important factor

in function scaling. Existing commercial platforms have set fixed limits on concurrency
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levels for a particular function [39]. Schuler et al. present a Q-learning based Rein-

forcement Learning (RL) approach to determine the best level of request concurrency, to

achieve better performance in terms of system throughput and mean function latency

[66].

• Vertical scaling: The core concept behind the serverless paradigm is to shift the com-

plexities of application resource management from the developer to the service provider.

Thus, the provider has the responsibility to autonomously manage application resource

allocations as required, in contrast to allocating resources as per a detailed resource re-

quest under a serverful model [27]. For instance, AWS Lambda requires the user to only

provide the amount of memory to be allocated per function instance and CPU power

is stated to be allocated linearly in proportion to the requested memory [18]. CPU is

known to be a source of contention in serverless environments [63], affecting applica-

tion latencies. Hence, resource allocations to applications need to be monitored during

runtime, to avoid potential SLA violations to the user. Further, the providers need to

carefully manage the CPU and memory resources allocated to applications in order to

achieve resource efficiency and avoid over/under provisioning of resources.

Adjusting CPU allocations to function instances in the runtime is a new research

area in serverles computing. Suresh et al. study the impact of dynamically adjusting

CPU-shares to containerized function instances in the runtime [63]. CPU-shares indi-

cates the relative weight given to a container in terms of the proportion of CPU time it is

given access to when CPU resources are limited [80]. As per their model, containers are

launched on VMs when spare memory capacity is available to accommodate the con-

tainer. Thus multiple containers co-located on a VM would share the same processor

core and thus the CPU time available to a container varies over time. This could hinder

satisfying user latency requirements to certain applications. Experiments show that fine-

tuned regulation of the CPU-shares allocations to containers dynamically could result in

better QoS satisfaction. In a previous work [62], we proposed a technique for dynamic

CPU resource management to containers running serverless functions by applying the

concept of cpu-quota and cpu-period enabled in Linux Kernel’s Completely Fair Sched-

uler (CFS) [81]. The cpu-quota value sets the number of microseconds per cpu-period

that the function instance’s access to CPU resources is limited to, before it is throttled
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[80]. Thus this acts as an effective ceiling and a hard limit for CPU resources allocated

to a function instance. This technique helps in allocating a guaranteed CPU time for a

function execution and also fine-grained management of underlying resources. Yu et

al. propose a DRL based technique to dynamically harvest CPU and memory resources

from idle functions and allocate them to under-provisioned functions [82]. As requests

arrive, the agent evaluates the cluster state and each function’s past cpu and memory

consumption, request arrival rates etc., and decide on a new resource configuration for

the existing containers.

2.3.2 Deployment Environment

The design of a serverless platform needs to address the inherent unique features offered

by this computing model and also the associated key challenges. We characterize these

factors in terms of the platform deployment model, resource isolation techniques, the

incorporated pricing models, the nature of imposed runtime resource limitations and

hardware heterogeneity. Identifying these influencing factors help in developing effec-

tive algorithms, system models and other techniques for the efficient management of

resources in serverless environments.

Deployment Model

Serverless platforms could be deployed on public cloud, private cloud or on edge re-

sources. The serverless model could also be used in conjunction with a serverful model,

i.e.: a VM based deployment. The deployment model is concerned with the nature

of infrastructure combination from each resource environment, the associated resource

capabilities, pricing models and subsequent resource management decisions suited for

each environment for better QoS. This section is focused on cloud and edge only deploy-

ments as well as hybrid deployment models with resources used interchangeably from

different environments for better performance and efficiency.

• Cloud: This is the most common as well as the basic deployment model targeted

by serverless computing when it first emerged. A cloud environment could be an on

premise, user managed, private environment or a vendor managed public environment
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with seemingly unlimited resources. A private cloud environment gives better flexibility

to the user to device scheduling techniques to achieve desired performance guarantees.

In addition, privacy is less of a concern. While these environments usually enable reap-

ing cost benefits in the long run for regular workload scenarios, the downside is the

inability to meet sudden demand surges if additional hardware is not maintained. With

a private/public hybrid cloud model, whenever the load goes beyond the capacity of lo-

cal infrastructure, some of the functions could be dispatched and processed in the public

cloud at a cost. In a hybrid model, one could use a commercial serverless provider’s ser-

vice together with an open source serverless framework deployed on a private network.

The serverless scheduling challenge then is to decide when and which functions are to

be off-loaded to the public cloud for better QoS guarantees and cost benefits. These de-

cisions need to consider the data transfer times across networks, resource setup times,

along with the load levels and required QoS guarantees. Das et al. [50] propose a hy-

brid cloud scheduling framework for multi-function serverless applications with AWS

Lambda as the public cloud and OpenFaaS [83] deployed in the private cloud. The

portable nature of the serverless workloads also makes it a viable candidate for adopt-

ing multi-cloud architectures to harness the benefits of different providers [84]. Liu et al.

present a JointCloud [85] platform for serverless computing, which is capable of coordi-

nating resources of multiple cloud vendors for request executions [86]. Service from high

performant clouds is requested for latency-sensitive applications while cheaper clouds

are used for jobs with lesser requirements. A primitive idea for a federated ecosystem

is proposed in [87] for a decentralized serverless architecture for balancing load traffic

at the edge. Further studies on the design of multi-cloud architectures in a serverless

setting are seen in [88], [89].

• Edge: Edge computing leverages computing power and storage facilities close to

the consumer in order to reduce application latencies and bandwidth usage. As dis-

cussed previously under serverless use cases, serverless computing seems to be a good

fit for the deployment of applications across resource constrained edge computing net-

works due to the ephemeral nature and portability of serverless functions. Gand et

al. propose an architecture for clustered container applications for the edge, based on

serverless computing [90]. Baresi et al. propose a serverless edge computing architecture
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for mobile applications with low latency and high throughput requirements [91]. They

use mobile devices and mobile edge computing servers as their main computational el-

ements and evaluate the feasibility of their approach via a mobile augmented reality use

case. Containers which are often used as the isolation mechanism for serverless func-

tions, are at times not viable for edge environments with limited resource capabilities

due to their inherent setup and runtime overheads. Hall et al. propose a novel run time

and an isolation mechanism for serverless functions called WebAssembly which reduces

resource startup times and the resource provisioning requirements [92].

• Edge/Cloud: A hybrid deployment model leveraging resource capabilities of both

the edge and the cloud is often times the most viable solution under many practical sce-

narios. But many challenges exist, for realizing the true benefit of such a setting. For

an application deployed in a serverless edge/cloud infrastructure, which functions are

to be deployed on the fog or cloud resources and which node containing the deployed

function is best suited for accommodating a new request is a scheduling decision. The

resource allocation and scheduling decisions for serverless applications in an edge/-

cloud computing network will depend on how compute intensive the function is, the

size of data involved and data transfer costs over different network paths, the cost and

the setup time of resources at each location, and the expected QoS levels [24], [25], [10].

• VM based/ FaaS: Traditionally VM based deployments were used to dynamically

scale resources as per the demand. However challenges exist such as higher costs due

to over-provisioning or SLA violations due to under-provisioning. Under the serverless

model, functions are auto-scaled within containers which have a low startup latency.

Further, user is billed per function invocation at a very granular level, thus avoiding

resource over-provisioning costs. However, it is observed that deploying an entire ap-

plication as serverless functions would not be cost effective at times. Lambda functions

are expensive (cost increases linearly) when there is a fixed load (constant request arrival

rate for a function) and a higher average request rate. Thus it is seen that functions are

more cost efficient with demand variations and lower average request rates while VM

based deployments serve better with higher arrival rates. Exploring hybrid models of

VM and FaaS deployments is an interesting dimension [45]. Li et al. present a serverless

architecture for dynamically switching the deployment of a microservice between FaaS
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and IaaS infrastructure [93]. The decision is taken in a contention-aware manner, based

on the predicted performance of the service on a FaaS platform.

Resource Isolation

Serverless systems are multi-tenant systems and thus techniques for isolating applica-

tions from each other is important for reasons of both application performance and se-

curity. Container technologies are used as the sandboxing mechanism for function exe-

cutions by many commercial serverless platforms. Studies show that co-located func-

tion instances show effects of resource contention with regard to CPU and network

bandwidth, raising concerns on the effectiveness of the isolation mechanisms [39]. By

design, components isolated by operating system (OS) level virtualization techniques

(e.g., containers), share hardware and the host’s OS kernel and thus are open to secu-

rity vulnerabilities. AWS uses MicroVMs which are hardware-isolated lightweight vir-

tual machines with their own mini-kernel [94]. They offer security and workload isola-

tion from hardware-virtualization as with VMs, and the resource efficiency and smaller

startup times of containers. Existing work in this area propose customized sandboxing

techniques for function execution. Arguments are laid suggesting that stronger isola-

tion mechanisms such as containers are needed only among different applications and

weaker mechanisms such as having separate processes is sufficient for isolation among

functions of the same application. Akkus et al. propose a new sandboxing method

where different applications run inside separate containers, but different functions of

the same application run inside the same container in parallel processes [95]. Concur-

rent calls to the same function are handled inside the same container by spawning new

processes by incrementing the memory allocation to the container. Since the memory

footprint of a process is smaller than that of a container, this results in higher resource

efficiency. Further, forking a new process inside a container only incurs a short startup

latency. Oakes et al. present a container system optimized for serverless workloads [96].

Bottlenecks of container cold starts are identified to be caused by limitations in Linux

isolation primitives and loading dependent packages.
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Billing Model

Billing model refers to how costs are calculated for function executions in serverless

environments. Since serverless offers a very fine-grained billing model, it is important

to understand the fine details of billing criteria for different resources. This helps to

make cost efficient resource allocation and scheduling decisions for both the provider

and end user.

Serverless platforms offer a pay-as-you-execute billing model usually based on the

CPU, memory and storage resource costs associated with each function execution. Ad-

ditional costs may also be involved based on the nature of the application scenario and

additional services consumed (e.g., state transitions costs of AWS Step Functions, Ama-

zon Simple Queue Service (SQS) costs etc.). Although the basic billing model on the ma-

jor commercial serverless platforms is the same, differences exist in finer details. Above

its monthly free tier, AWS Lambda charges function executions per GB-s (rounded up

to the nearest 1ms) of memory allocated and the number of execution requests [18]. The

billing scheme of Azure functions is similar to AWS except that billing is done per GB-

s of average memory consumed during an execution instead of the memory allocated.

Google functions charge users for both the GB-s of memory provisioned and GHz-s of

CPU provisioned.

Decisions on which functions of an application are suitable to be fused (combined)

and which are best placed in the cloud or on the edge, are affected by the billing model

[24]. Also, under a public/private hybrid cloud serverless model, function placement

decisions in the private and the public cloud are based on the serverless billing model in

the public cloud [50]. Gunasekaran et al. present a framework to use serverless functions

and VM based executions interchangeably for better cost efficiency [45]. Instead of the

static pricing schemes of the existing platforms, schedulers could also utilize dynamic

pricing schemes which enable users requiring higher QoS levels (e.g., faster response

time for applications with high delay sensitivity) to pay and acquire better services [97].
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Runtime Resource Limitations

Serverless platforms impose various limitations on the allowed resource configurations

for applications deployed on them. This is primarily aimed at improving flexibility

in managing the available resources among multiple users without locking in a set of

resources with a single user or application. These restrictions also prevent serverless

systems in the public cloud from being subject to denial-of-service (DoS) attacks by

malicious function requests flooding the resources attempting to overload the system

and preventing legitimate requests from being fulfilled. On commercial serverless plat-

forms, these limitations are primarily in the allowed memory, local disk space and cpu

resource configurations, maximum allowed time for a function execution and the max-

imum number of parallel executions for a function without compromising on latency.

AWS Lambda allows users to select the amount of memory available to a function dur-

ing execution, and allocates CPU power linearly in proportion to the configured mem-

ory. Concurrency is also allowed to be configured for each function with different op-

tions available which could be explored based on the workload [18]. AWS Lambda pro-

vides a non-persistent local disk of a standard size for all the functions [39] and imposes

a maximum function timeout duration. Azure functions on the other hand introduces

different hosting plans for function apps such as the consumption, premium and ded-

icated plan, based on which the resource and time out limitations will be determined

[98]. Google Cloud Functions too, limits the maximum allowable memory for a function

and imposes a cap on function duration [99]. Imposing limitations as discussed here,

have detrimental effects for some application domains such as long running, compute

intensive, data-driven applications [38]. For example, for a data analytics application,

an automatic timeout would mean loosing any data cached on the running instances,

and the addition of a significant latency for retrieval of the same from a slow external

storage. Limitations on the concurrent function executions could also affect adaptability

in a data processing scenario requiring a massive number of parallel computations.
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Hardware Heterogeneity

With the continuous expansion of the use of the serverless paradigm in different do-

mains, there is also an escalation of varying demands in order to fulfill SLAs for the ap-

plications. Computing platforms with heterogeneity in the hardware layer are being in-

creasingly sought after, especially for workloads requiring High Performance Comput-

ing (HPC) [100], [101]. Specifically, compute-intensive workloads such as deep learning,

complex data analytics, blockchain, genetics, require support from accelerated hardware

components, which even the latest generation of CPUs are unable to provide. Offer-

ings from IaaS providers today have evolved to address this emerging need, by provid-

ing instances with access to accelerators such as Graphical Processing Units (GPUs),

Tensor Processing Unit (TPUs), Field Programmable Gate Arrays (FPGAs) and even

access to quantum computers. Inferentia and Titanium chips from AWS [102], [103]

to train ML models, Amazon Elastic Inference service [104] to attach GPUs to VM in-

stances, GPU-enabled nodes on Azure Kubernetes Service (AKS) [105], FPGA support

in Azure [106], Google’s cloud and edge TPU [107], [108] are a few examples. In ad-

dition, quantum-based processing elements have rapidly emerged in recent times and

cloud service providers have started to offer such quantum processing capabilities as

part of their cloud services as well [109]. However, none of the serverless platforms

from these providers offer access to hardware accelerators at the moment [110]. As a re-

sult, research focus has been increasingly directed towards expanding the FaaS service

offerings by adding access to hardware accelerators. Naranjo et al. introduce a GPU

enabled serverless framework which links virtual GPUs with the OpenFaas serverless

framework via the rCUDA [111] remote GPU virtualization service [112]. Ringlein et

al. propose a system architecture involving disaggregated FPGAs within a FaaS offering

[113]. A distributed FPGA sharing system which realizes multi-tenancy for FPGAs in a

cloud serverless environment is presented in the works of Bacis et al. [114]. For certain

application scenarios, serving all the queries using expensive hardware accelerators may

not be economically viable (e.g., ML inference queries). For such scenarios, hybrid ap-

proaches to opportunistically serve the incoming requests using a mix of GPU-enabled

instances and traditional CPU-only instances, could be explored [115], [116]. Research

efforts are also directed towards highlighting the adaptability of quantum computing in
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the design of serverless systems [117], [118].

2.3.3 Workload Management

Since the serverless provider is responsible for the autonomic management of resources

for applications, it is imperative that the platform develops an understanding of the

nature, requirements and behavior of the incoming workloads. Three aspects in which

awareness of the incoming workload is important for making efficient resource manage-

ment decisions, are discussed below.

Application Model

Application model is the nature of the scheduling unit of an application that is deployed

on a serverless platform. An application could have a certain structure and also QoS

requirements that are independently specified for each task or for the application unit

as a whole.

• Structure: An application could be defined by a single task or a set of tasks com-

piled in the form of a Directed Acyclic Graph (DAG). A task would be denoted by a

single function. Thus in a DAG, each node is a function representing a fine-grained task

and each edge represents a dependency among two functions [119], [44], [120], [50]. A

developer would specify the QoS requirements for a DAG based application either as

a whole [44] or for each individual task. A serverless application could also be mono-

lithic, composed of a single function, representing a single task [121], [122], [61], [67],

[62], [123].

• Scheduling Granularity: Scheduling granularity refers to the way in which schedul-

ing algorithms handle the execution of an application submitted by a user. When an

application takes the form of a DAG, it could either be scheduled as a single unit or each

individual function could be scheduled separately. In addition, the scheduler could de-

cide to queue requests and schedule them in batches [124]. The scheduling granularity

could be specified as a requirement of the developer or decided by a serverless platform,

aiming for better resource efficiency.

AWS schedules each function independently, irrespective of whether it is part of a
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workflow or a single function application. Accordingly, a user request calling the first

function in a workflow application and a request calling one function from another dur-

ing a workflow execution, are treated in a similar manner. Both requests go through

the same scheduling policies [18]. Azure Cloud Functions uses the concept of ”function

app”, as the unit of scheduling and management of a serverless application. A func-

tion app is comprised of one or more functions with dependencies [98]. Studies suggest

that orchestrating functions of the same application on an individual basis at a global

system level could incur extra latency. Akkus et. al suggest a serverless architecture

utilizing a hierarchical message queuing mechanism with a local message bus on each

host which handles local interactions among functions of the same application and their

orchestration [95]. Developers could also find the optimal way to fuse or combine a

number of functions in a DAG for scheduling purposes, so as to reduce execution cost

and latency associated with state transitions and network delays. This would be appli-

cable to serverless deployments in the edge/fog environments as well due to enhanced

delays over the network caused by data transfers across functions and associated costs

[24]. When requests are less latency sensitive, the scheduler could decide to queue and

schedule requests in batches or as a collection, for better resource efficiency.

Workload Nature

Serverless platforms are multi-tenant infrastructures and thus applications of multiple

users compete for resources in a common shared environment. This could cause a lot

of contention on the platform and lead to poor application performance if the resources

are not properly managed as per the requirements of different applications.

By nature any generic application could be either CPU, memory or I/O intensive. In

some commercial serverless platforms, function placement on a VM is treated as a bin

packing problem to maximize memory utilization [39]. While this helps maximize re-

source utilization, it could also lead to CPU contentions if strict resource isolation strate-

gies among applications are not adopted. Having an understanding on the rate at which

requests arrive for applications too is an important factor.

The nature of the workload could be adopted in resource management decisions ei-
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ther when scheduling functions on VMs initially or in the subsequent management of

limited resources. Mahmoudi et al. use a machine learning based approach to develop

a predictive performance model which tries to predict the normalized performance of

any workload when assigned to a specific VM[67]. Each time a new function is being de-

ployed on a platform, a profiling step identifies the memory and CPU utilization levels

of the function as well as the dependence on I/O features of the platform. Then predic-

tive models are used to identify the VM that gives the best system performance for the

function at that time slot. A good understanding of the nature of the applications is also

important when the execution happens in an edge/cloud environment. Compute inten-

sive functions are better served at the cloud which has seemingly unlimited resources

even with a higher latency due to network delays. Lightweight functions may be better

served at the edge with a lower response time. The placement decision of functions on

the edge/cloud devices requires a thorough understanding of the application behavior

in each of the environments [24], [25].

If a serverless platform does not impose hard upper limits on the level of resources

that a particular function instance could utilize, the co-location of many such func-

tions having the same resource needs, could lead to deterioration of performance over

time. Under such conditions, based on the state of the system and the resource needs

of each application, dynamic management of applied resource limits to containers is

an approach worth exploring more [62], [63]. Further, we could use Linux Kernerl’s

cgroups to control and isolate resource usage of a collection of processes based on the

requirements [81], [120]. These techniques could be adopted effectively with a better

understanding on the needs of different workloads. Further, in addition to the resource

requirements, modelling arrival rate of requests for different functions help in taking

proactive resource scaling decisions [44].

Data Locality and State Management

Data locality generally refers to the movement of computation to the nodes which con-

tain the data required for the task execution. For data intensive applications this could

improve the makespan drastically due to reduced network delays. Serverless platforms
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are known to decouple data management from function execution. Thus serverless is

said to be rather a data-shipping architecture (ships data to code) instead of shipping

code to data [38]. This is a defining property of the serverless paradigm since the dis-

aggregation of these two aspects allows serverless functions to scale in an independent

manner [6]. For example, ensuring locality among serverless functions may mean exe-

cuting functions which share data, in the same node or VM instance. While this would

improve performance with fast shared memory, this could also reduce the flexibility

of the provider to schedule functions and scale capacity [6]. Therefore scheduling and

resource management techniques under the serverless model traditionally have not in-

corporated data-locality awareness in making their decisions. However, a significant

repercussion of this dis-aggregated model is the challenge of managing the intermedi-

ary state for stateful applications. Generally applications are required to be executed as

stateless functions in commercial serverless platforms, and they share state through ex-

ternal storage services (e.g., Amazon S3) [27], [38]. As such, for latency and bandwidth

sensitive data-intensive applications such as machine learning, delays in network and

storage layers make this a less than an ideal environment. Today, this realization has

motivated research into the development of serverless frameworks that support stateful

executions. Azure Durable Functions allow to write and orchestrate stateful workflows

[125]. AWS Step Functions [18] and IBM composer [126] support the creation and co-

ordination of state transitions for complex workflows. Shillaker et al. introduce a new

abstraction for function isolation, which allows memory to be shared between functions

in the same address space [127]. They propose a two-tier architecture, where the local

tier allows sharing of state among functions in the same host and the global tier supports

state sharing across machines. A data transfer and state management approach is pre-

sented in [128] for a stateful function chain in an edge network. Jia et al. present a new

serverless runtime which exposes an API to a shared log service which enables server-

less functions to manage their state efficiently [129]. This mechanism of shared logs is

able to achieve state management with high durability, fault tolerance and consistency.

In addition to the above, many studies focus on achieving data locality via load bal-

ancing methods to direct new function requests to workers with pro-actively spawned

containers or containers that could be re-used [44], [64]. Research works have also fo-
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cused on attaining data locality among functions in terms of the runtime package depen-

dencies of functions, by routing functions requiring similar packages to the same node

for execution [122]. Lee et al. propose a greedy load balancing algorithm which tries to

maximize locality and improve the cache-hit ratio while also minimizing load imbalance

among nodes [130]. The new sandboxing method proposed by Akkus et al. [95] where

functions of the same application share the same container, is able to improve latency

by increased data locality, since the libraries shared by all the functions are needed to be

loaded from memory only once.

2.3.4 QoS Goal

The resource allocation, scheduling and scaling techniques are aimed at satisfying cer-

tain requirements upon the execution of applications. These could be constraints that

applications need to satisfy or an optimization goal that determines the performance of

the resource management techniques.

Latency

Latency refers to the delay between a user request submission and the serverless provider’s

response. The request queuing time, resource setup time and the function execution time

collectively result in the response time for a serverless application. The ability to main-

tain low latency for function executions is a key concern in serverless environments,

specially since a majority of individual functions have execution times less than a sec-

ond, or of a few seconds [44]. One main cause for high application latency in serverless

environments is the cold start delay in resource setup, which tends to become significant

compared to application execution times [62]. Scheduling algorithms along with differ-

ent container pool management techniques, customized sandboxing methods, and low-

overhead runtimes to reduce resource setup times are explored in literature to reduce

cold start delay [131], [122], [44], [64], [78], [95], [96]. Latency caused by CPU contention

is also studied and dynamic resource control methods are proposed for serverless appli-

cations [62], [63], [120], [121].
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Throughput

Throughput refers to the number of function requests processed by a serverless system

in unit time. This is a good metric to demonstrate efficiency of the overall system and

the ability to support high request arrival rates [67]. Throughput and mean latency of

a system usually show a negative correlation. Thus techniques to reduce latency also

improve throughput of a system. The allowed concurrency level for function instances

in serverless platforms is also a determining factor for system throughput [66].

Fault Tolerance

Fault tolerance in cloud computing refers to the ability of a system to function uninter-

rupted, at the sight of failure in one or more of its components. Serverless platforms

generally achieve fault tolerance by implementing retry based approaches. For exam-

ple, a platform would automatically resend the request in case of failure of a function

execution. Sreekanti et al. show that under certain circumstances, a retry based ap-

proach to fault tolerance may always not give accurate results, specially where state

management is involved via external storage services [132]. They emphasize that the

accuracy may be affected in case a parallel execution of a function, views results of a

partially executed failed attempt of the same execution. A low-overhead fault tolerance

scheme is proposed to guarantee read atomic isolation, which prevents parallel execu-

tions of functions from viewing partial outputs from any failed attempts. Zhang et al.

introduce a runtime system and a library, to help developers to write stateful and fault

tolerant serverless workflows [133]. Their approach encompasses a log-based request

re-execution approach to achieve fault tolerance. The developed framework could be

adapted to work with existing cloud providers in a federated environment.

User Cost

Function execution cost to the user is as per the billing model of serverless platforms

as described in the previous section. Since billing is mostly correlated with the func-

tion execution times, efforts to reduce execution latency result in optimized cost to the



48 A Taxonomy on Resource Management in Serverless Computing Environments

user. But for compute intensive applications, response time and cost could be inversely

related since the allocated CPU time would affect the response time and thus the execu-

tion cost. Experiments are done to observe the response time of functions for different

resource allocations and associated costs. Such models could help a user decide on a

suitable resource allocation scheme when there is a budget constraint, and also the cost

to achieve a certain performance level [51], [97]. The scheduling granularity in terms

of function fusion in serverless workflows could have an impact on the overall costs as

well due to associated state transition costs and effects on function response times [24].

Resource Efficiency

Resource efficiency refers to maintaining a high utilization level for the underlying ac-

tive resources of the provider at all times. The fine-grained serverless billing model

implies that the user is charged only for the resource-time actually consumed by the

application during its execution. Regardless of this, the provider has to maintain the

overall infrastructure and as such, consolidating as many serverless applications as pos-

sible into a single host is in provider’s best interest in order to yield better profits. On

the other hand, packing too many requests on a single resource subsequently leads to

poor performance. This reflects the typical conflicting objectives of the providers and

consumers: minimization of cost and maximization of performance [120]. Thus finding

an optimal resource consolidation strategy to the satisfaction of both parties is impor-

tant. HoseinyFarahabady et al. propose a QoS aware resource allocation controller for

serverless environments which tries to minimize QoS violations to users while maintain-

ing a healthy CPU utilization level of 60%-80% in each host in order to reach an ideal

balance between system performance and energy consumption [121]. Somma et al pro-

pose a function container auto-scaling technique to optimize throughput and resource

efficiency [77]. Resource efficiency is also important in serverless platforms deployed on

edge resources as well due to limited capacities at the edge.
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Energy Efficiency

Recently, attention has also been given to the aspect of energy efficiency of running

serverless systems, which is also connected to resource efficiency. Early surveys identify

serverless computing to be promoting green computing due to the on-demand creation

and release of resources used for function execution. Moreover, the model of billing

per execution time incentivizes programmers to improve resource usage and execution

time of their code [33]. On the other hand, breaking down an application into a set

of functions and the practice of setting up resources on-demand is deemed to cause

additional latency and an execution overhead, which affect function performance. Kansi

et al. define a measure for energy efficiency, based on the mean time between two calls

to the same function, mean time to setup resources and the mean time to execute the

function [134]. They show that the resource saving in serverless systems is generally

highest when function calls are irregular and have large time gaps in between, compared

to the resource setup and function execution times. Deriving from this idea, Poth et al.

present a further developed model, capturing the overheads of the components which

manage the serverless system during function invocation and execution, which is aimed

at helping design decisions of serverless applications and systems [135]. Gunasekaran

et al. present a resource management framework to efficiently manage function chains

on a serverless platform by improving container utilization and cluster wide energy

consumption [55].

Security

In addition to the security challenges that are common to any computing environment,

serverless systems are susceptible to certain threats that are unique to these environ-

ments. Shafiei et al. identify application-level and function-level authentication to be

one such specific challenge [? ]. Application-level authentication refers to a mecha-

nism which determines which users are allowed to access a certain application, while

function-level authentication refers to the allowed invocations of one function from

another. They also highlight the possible chance of replay attacks, where an intruder

would capture a function execution request and execute it repeatedly, constraining the
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system resources and blocking legitimate users from accessing the service. In general,

runtime limitations are in place, in terms of limited execution times and maximum al-

lowed CPU and memory allocations for a function, in order to minimize the effect of

such attacks. Function isolation mechanism too plays an important role in enabling data

privacy among tenants on the same host. Container namespaces are commonly used by

current serverless systems for providing isolation among functions [136].

2.4 Classification of Resource Management Techniques Using
Taxonomy

In Table 2.1, we review existing key works on serverless resource management, that

identify most with the proposed taxonomy. In essence, we present here, the works which

explore novel techniques for one or more of the primary aspects of resource management

that we have identified.
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Single

Function
- -

Latency,

User Cost
- Heuristic -

[64] Cloud Container - Task
Single

Function
✓ ✓

Latency,

Through-

put

- Greedy -

[67] Cloud Container - Task
Single

Function
✓ -

Latency,

Through-

put

ML Modelling Heuristic Heuristic

[52] Cloud - ✓ DAG
Single

Function
✓ -

Latency,

User Cost

Mathematical

Modelling
- -

[10] Edge/Cloud - ✓ Task
Single

Function
- ✓

Resource

Efficiency
- Heuristic -
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Work

Deployment Environment Workload Management

QoS Goal
Resource Management Technique

Deployment

Model

Application

Isolation

Pricing

Model

Aware-

ness

Application Model
Workload

Nature

Aware-

ness

Data

Locality

Aware-

ness
Structure

Scheduling

Granular-

ity

Workload

Modelling

Resource

Schedul-

ing

Resource

Scaling

[53] Cloud
Container/

MicroVM
✓ Task

Single

Function
✓ -

Latency,

User Cost
ML Modelling - -

[26] Edge/Cloud Container ✓ Task
Single

Function
✓ -

Latency,

User Cost

Mathematical

Modelling
Heuristic -

[50] Cloud Container ✓ DAG
Single

Function
✓ -

Latency,

User Cost

Mathematical

Modelling
Greedy -

[49] Cloud - ✓ DAG
Single

Function
✓ -

Latency,

User Cost

ML Mod-

elling, Math-

ematical

Modelling

- -

[55] Cloud Container - DAG
Single

Function
✓ ✓

Latency,

Resource

Efficiency,

Through-

put

ML Mod-

elling, Math-

ematical

Modelling

Heuristic Heuristic

[97] Cloud - ✓ DAG
Single

Function
- - Latency - MILP -
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Deployment

Model

Application

Isolation

Pricing

Model

Aware-

ness

Application Model
Workload

Nature

Aware-

ness

Data

Locality

Aware-

ness
Structure

Scheduling

Granular-

ity

Workload

Modelling

Resource

Schedul-

ing

Resource

Scaling

[120] Cloud Process -
Task/

DAG

Single

Function
- -

Latency,

Resource

Efficiency

Feedback con-

trol system

Feedback

control

system,

Heuristic

-

[51] Cloud - ✓ DAG
Single

Function
✓ -

Latency,

User Cost

Mathematical

Modelling
- -

[93]
VM/FaaS

based
Container - Task

Single

Function
✓ -

Latency,

Resource

Efficiency

Mathematical

Modelling
Heuristic Heuristic

[54] Cloud - ✓ Task
Single

Function
✓ -

Latency,

User Cost

Mathematical

Modelling
Heuristic Heuristic

[135] Cloud Container - Task
Single

Function
✓ -

Energy Ef-

ficiency

Mathematical

Modelling
- -

[72] Cloud Container - Task
Single

Function
- ✓ Latency - Heuristic Heuristic
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Deployment

Model

Application

Isolation

Pricing

Model

Aware-

ness

Application Model
Workload

Nature

Aware-

ness

Data

Locality

Aware-

ness
Structure

Scheduling

Granular-

ity

Workload

Modelling

Resource

Schedul-

ing

Resource

Scaling

[77] Cloud Container - Task
Single

Function
- -

Latency,

Resource

Efficiency,

Through-

put

- Heuristic RL

[63] Cloud Container - Task
Single

Function
✓ -

Latency,

Resource

Efficiency

- Greedy Heuristic

[137] Cloud Container -
Task/

DAG

Function

Fusion,

Single

Function

- -

Throughput,

Resource

Efficiency

- Heuristic -

[56] Edge/Cloud Container - Task Collection ✓ - Latency
Mathematical

Modelling
Heuristic -

[138] Cloud Container - DAG
Single

Function
✓ -

Latency,

Resource

Efficiency

Mathematical

Modelling
Heuristic Heuristic

[130] Cloud Container - Task
Single

Function
- ✓ Latency - Greedy Heuristic
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Data
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Aware-

ness
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ity

Workload

Modelling
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Schedul-

ing

Resource

Scaling

[62] Cloud Container - Task
Single

Function
✓ -

Resource

Efficiency,

Latency

- Greedy Heuristic

[139] Edge/Cloud Container ✓ Task
Single

Function
✓ ✓

Latency,

User Cost
- Greedy -

[66] Cloud Container - Task
Single

Function
- -

Latency,

Through-

put

- Heuristic RL

[44] Cloud Container - DAG

Function

Fusion,

Single

Function

✓ ✓ Latency
Mathematical

Modelling
Heuristic Heuristic

[82] Cloud Container - Task
Single

Function
- - Latency - DRL Heuristic

Table 2.1: Classification of Resource Management Techniques.
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2.5 Industrial Serverless Computing Platforms and Frameworks

Currently, all the major cloud service providers have launched commercial serverless

platforms, namely Amazon Web Services (AWS) Lambda, Google Cloud Functions, Azure

Functions and IBM Cloud Functions. While they provide additional complementary ser-

vices as well for serverless application executions, they require the function code to be

composed in certain ways resulting in vendor lock-in in the long term. To overcome

these limitations, several open source serverless frameworks have emerged over the

years. These frameworks could be deployed on private cloud resources as well as on

devices at the edge/fog, thus bringing the serverless computing capabilities on-premise

with better flexibility. Figure 2.2 presents the existing commercial serverless platforms

and some of the open source frameworks.

Figure 2.2: Existing Serverless Platforms and Frameworks.

AWS Lambda

Function as a service (FaaS) offering from AWS is done via the AWS Lambda serverless

platform launched in 2014. AWS Lambda currently holds the leading position in the
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market for serverless computing with a wide range of services available. Lambda sup-

ports code written in Node.js, Python, Java, C# and Golang languages [40]. The platform

identifies changes to data in an Amazon Simple Storage Service (Amazon S3) bucket or

an Amazon DynamoDB table, HTTP requests using Amazon API Gateway and API calls

made using AWS SDKs, as event triggers. At the time of writing this article, AWS offers

a free-tier of 1 million requests and 400,000 GB-Seconds (GB-s) of computing time per

month. Beyond this limit, function executions are charged per GB-s of memory allo-

cated and the number of execution requests. Lambda allows the developer to specify a

maximum memory limit that the function will have access to, at the deployment stage,

and allocates CPU power proportionate to the allowed memory limit [18]. AWS en-

ables applications to be executed as composed of a single function or multiple functions.

AWS Step Functions [18] facilitates developers to define workflows with a sequence of

Lambda functions and create a state machine that orchestrates the set of functions in

the application. AWS uses a new virtualization technology called Firecracker, to execute

function requests [94]. These are lightweight micro-virtual machines (microVMs). AWS

Lambda treats instance placmeent in VMs as a bin packing problem to maximize VM

memory utilization. AWS has set a concurrency limit for scaling a single function and

experiments show that idle instance recycling is done based on a pre-defined inactive

period [39].

Azure Functions

Microsoft launched its serverless services in 2016 as Azure functions. Azure supports a

number of runtime languages such as C#, Node.js, PHP, Bash, Power Shell. The billing

scheme is similar to that of AWS except that billing is done per GB-s of average memory

consumed during an execution instead of the memory allocated. Azure uses the concept

of function app as the unit of deployment and management of a serverless application.

A function app is comprised of one or more functions which are deployed, managed

and scaled together. All the functions in a function app share the same pricing plan and

runtime configurations [98]. Azure Functions seems to try not to co-locate concurrent

instances of the same function on the same VM, which indicates a spread placement
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approach [39]. Azure currently supports the execution of stateful functions as well in a

serverless computing environment with Azure Durable Functions, which is an extension

of Azure Functions [125].

Google Cloud Functions (GCF)

Google released its serverless solution in 2017. GCF supports code written in Node.js,

Python, Go, Java, .NET, Ruby and PHP. Google has a free tier of 2 million requests with

400,000 GB-s of computing time per month, as of now. Their pricing scheme is different

to AWS Lambda and Azure Functions pricing mechanism since the user is charged for

both GB-s of memory provisioned and GHz-s of CPU provisioned [140]. GCF supports

a set of primary triggers and additional triggers and the user application is allowed to

be integrated with any Google service, supporting cloud Pub/Sub or HTTP callbacks.

Apache OpenWhisk

OpenWhisk is an open source serverless platform developed by IBM and later incorpo-

rated as an Apache incubator project. It represents the underlying technology used in

IBM Cloud Functions. OpenWhisk combines technologies such as Nginx, Kafka, Docker

and CouchDB in forming its serverless platform. OpenWhisk supports many deploy-

ment options and could be deployed both locally and within a cloud environment. The

OpenWhisk programming model is based on the three primary concepts, actions, trig-

gers and rules. Actions are functions that execute deployed code. Triggers are a set of

events created from different sources. Rules bind actions with triggers. OpenWhisk sup-

ports a number of runtimes including, .Net, Go, Java, JavaScript, PHP and Python [141].

In selecting a VM instance for a function execution, OpenWhisk follows a hash-based

first-fit heuristic where the function name’s hash value is used to identify a preferred

host in order to improve reusing warm containers [61]. Multiple functions, which may

even be implemented in different languages, could be composed together to create a

function pipeline called a sequence. A sequence could be considered a single action in

terms of its creation and invocation. In executing a function sequence, the output from

one action becomes the input to the next action in the sequence [141]. In addition, func-
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tion sequences could be extended to create custom workflows with conditional branch-

ing, with support for error handling, retries and loops by means of the OpenWhisk

Composer [126]. OpenWhisk makes use of pre-warmed containers and warm contain-

ers (container re-use) to manage unwanted container startup delays.

Kubeless

Kubeless is a Kubernetes-native open-source serverless framework developed by Bit-

nami [142]. Kubeless creates functions as a custom Kubernetes resource using a Cus-

tom Resource Definition (CRD). An in-cluster controller is used to watch these custom

resources and execute functions on-demand by dynamically launching runtimes as re-

quired. Kubeless supports runtimes of Golang, Python, NodeJS, Ruby, PHP, .NET and

Ballerina and allows to use HTTP or event triggers to invoke functions. The Kube-

less framework uses core Kubernetes functionalities such as Deployments, ConfigMaps

and Services as it is. It also leverages the native Kubernetes components for function

scheduling, auto-scaling and monitoring as well.

OpenFaas

OpenFaas started as an independent project by Alex Ellis in 2016 [83]. Initially, it was

developed in collaboration with VMWare and now it involves a large community of

users and developers. OpenFaas framework is built on Docker and Kubernetes, and

could be deployed on a private or public cloud environment, and even on a resource

constrained edge device such as a Raspberry Pi, due its lightweight nature. OpenFaas

provides an API gateway for invoking functions, which can be accessed via its REST

API, Command Line Interface (CLI) or the User Interface (UI). The gateway acts as an

external route to the functions, collects cloud native metrics through Prometheus [143],

and also takes function scaling decisions with the help of Prometheus and an AlertMan-

ager component. AlertManager works by reading the requests per second metric from

Prometheus and alerting the gateway to scale functions based on the min/max replica

count set at function deployment. Alternatively users could use the built-in Horizon-

tal Pod Autoscaler (HPA) of Kubernetes. OpenFaas offers runtimes of Node.js, Python,
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and Go for function deployment. OpenFaas also supports the orchestration of multi-

function workflow applications with synchronous and asynchronous function chains

and parallel branching.
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2.6 Research Gaps

This detailed review on resource management under the emerging serverless computing

model on edge, fog and cloud resources highlights open problems with great potential

for exploration in future work. Here we discuss these areas in detail along the broader

categories we have identified in this article, laying the groundwork for both research

and development work in the coming years.

2.6.1 System Design Characteristics

Serverless computing model has been explored under different deployment environ-

ments with hybrid infrastructures with geographical as well as performance distribu-

tion. These include a mix of edge, fog and cloud infrastructures along both private and

public domains. However, one notable challenge for developers across all these do-

mains, in adapting to the serverless model is the concern over the vendor lock-in effect

due to the unique function signatures, naming conventions and other compatibilities re-

quired by each provider. An application designed to suit one vendor platform may not

necessarily be readily deployable on another. This imposes an unnecessary burden on

potential users.

Another prominent challenge for a majority of users in embracing this new paradigm

is its lack of efficiency in accommodating certain application workloads, even if the ap-

plication itself is designed to suit a serverless architecture. For example, a latency sen-

sitive application workload with a high regular traffic pattern could benefit less from a

serverless deployment. While it may not be able to tolerate the cold start delays of a

serverless system, the high per request charge under the associated billing model may

render it less viable cost-wise as well. In contrast, a burst of traffic received by an appli-

cation with little or no sensitivity to response time would find the features of a serverless

system to be ideal.

In the current commercial serverless platforms users are not allowed to specify the

runtime hardware environment for their function executions. In terms of processing ca-

pabilities, they only offer access to CPU processing for the deployed applications. With

increased exploitation of this cloud model for different application domains, there has
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been a rise in demand for access to specialized hardware, which still remains unfulfilled.

The serverless model is built on the premise that the provider is at liberty to control

the underlying infrastructure as they wish. Although not currently explored extensively,

this opens up interesting opportunities for them to seek maximum resource efficiency

by leveraging idling resources from other running services as well as less attractive ma-

chines not conducive for leasing out to IaaS customers [27].

To date, the billing models in existing serverless platforms offer only fixed pricing

schemes to all consumers. Customers having different requirements may be willing to

pay more or less for enhanced or standard levels of service. For example, a generalized

level of service may not be sufficient for time-sensitive critical applications requiring a

reliable performance level, such as in the medical domain.

2.6.2 Workload Management and QoS Goals

Serverless platforms still face many challenges when being explored for some appli-

cations with complex data flow dependencies [138]. Lack of an efficient function to

function communication mechanism complicates the process of orchestrating complex

workflow structures. Most of the real-world applications would generally have complex

workflow structures and orchestrating such applications is still an open challenge.

Current commercial serverless platforms offer little to no QoS guarantees (latency,

reliability etc.) for applications of its multitude of users. Allowing too many specific

demands from users could also lead to poor resource efficiency for the provider and thus

this requires thorough investigation. For example, the maintenance of large resource

pools for mitigating application latency deterioration would have very low attraction to

a provider if it leads to a large resource wastage.

Further, many resource scheduling models proposed for the serverless model focus

on meeting the latency and budget constraints of consumers and rarely on the efficient

resource usage at the provider. With the provider centric resource management model

introduced by this new pradigm, studying techniques favorable for serverless vendors

in maximizing their gains is critical for the progress of this concept.

With the increased use of this model under various infrastructure domains specially
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in largely distributed and resource constrained edge environments, the aspect of energy

efficiency seems to have a high significance. But this area of research still remains mostly

unexplored.

2.6.3 Resource Management Techniques

Increased level of abstraction in specifying resource usage by developers leaves the

serverless provider with the need to infer resource requirements and code dependency

requirements in making appropriate resource allocation and scheduling decisions. Server-

less platforms cater to needs of diverse applications with vastly differing characteris-

tics and requirements. Understanding and profiling of workloads as per their resource

needs and arrival patterns is a massive challenge. Nevertheless, this largely assists in

resource scheduling and scaling decisions that could benefit both the consumers and

providers. Although existing research directed towards modelling application perfor-

mance and cost help in taking static scheduling decisions such as deciding on initial re-

source configurations and placement decisions, most of these approaches do not address

dynamic factors that would affect performance in the runtime. Applications may not

perform as required due to co-located application interference, machine performance

variations and degradation due to over-utilization. Moreover, dynamic variations in

workload patterns need to be taken into account when taking these high impact deci-

sions.

Although initial efforts are made in extending serverless model across the edge and

fog computing networks, much further investigation is required in this area for taking

effective resource management decisions. Given the involved delays across networks,

transporting data and code to the edge for individual function executions as per the

cloud serverless model would be ineffective specially for latency sensitive applications.

Limitations caused by heterogeneity of edge and fog devices, on handling compute in-

tensive function executions need to be considered more in scheduling and scaling de-

cisions. Data locality concerns inherent with the serverless model may be even more

relevant for geographically distributed edge/fog computing networks.

Cold starts arising from the unique auto-scaling capability is a growing research
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area. Numerous solutions ranging from proactive resource scaling to reduce coldstart

frequencies, to designing optimized sandbox solutions are proposed. The need to cater

to a variety of concurrent applications of a multitude of users in designing these solu-

tions, is yet quite an unresolved challenge.

2.7 Summary

In this chapter we presented a comprehensive review on the aspect of resource man-

agement, referring to unique characteristics of this new serverless computing model.

We proposed a taxonomy covering the broader concept of resource management in

edge, fog and cloud infrastructures, along the categories of system design decisions,

approaches for incoming workload identification and management, and the QoS goals

of involved parties. We also discussed three key aspects of resource management tech-

niques and analysed the existing works using the proposed taxonomy. This taxonomy

presents a clear view for serverless system designers on the essential features for con-

sideration for a fully-fledged effective system. Further this provides a learning platform

for researchers studying resource allocation, scheduling and scaling techniques in the

serverless domain, based on which their work could demonstrate progress in the field.

Finally, we provided a gap analysis referring to identified and addressed challenges,

emphasizing on the vast potential for further research work.

This thesis investigates and addresses some of these research gaps and presents the

potential for new research directions in the last chapter.





Chapter 3

Deadline-aware Dynamic Resource
Management in Serverless Computing

The total shift in operational responsibility from the user, challenges the cloud provider to main-

tain acceptable performance while having minimal knowledge of the application requirements. In

addition, the serverless billing model favors users by charging only for resource time during function

executions, while the provider maintains underlying infrastructure for longer periods. This chap-

ter focuses on both the provider and user’s perspectives and proposes a function placement policy

and a dynamic resource management policy for applications deployed in serverless computing envi-

ronments. The policies aim to meet the user’s specific performance requirements, while minimizing

the resource consumption cost for the service provider. We implement and evaluate our approach

through simulation using ContainerCloudSim toolkit. The proposed function placement policy when

compared with baseline scheduling techniques can reduce resource consumption by up to three times.

The dynamic resource allocation policy when evaluated with a fixed resource allocation policy and a

proportional CPU-shares policy shows improvements of up to 25% in meeting the required function

deadlines.

3.1 Introduction

The many attractions of the serverless computing paradigm include rapid auto-scaling,

strong isolation for applications, a fine-grained billing mechanism and more impor-

tantly, the access to a service ecosystem, which automatically handles instance selection,

This chapter is derived from:

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deadline-aware dynamic re-
source management in serverless computing environments”, Proceedings of the 21st IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Internet Computing (CCGrid), Pages: 483-492, Melbourne,
Australia, May 10-13, 2021.

67



68 Deadline-aware Dynamic Resource Management in Serverless Computing

resource management, fault tolerance, monitoring, and security [27].

The core concept behind the serverless execution model is to shift the complexities of

application resource management from the developer to the cloud provider. The server-

less model requires the provider to autonomously manage resource allocations to func-

tions in real time, in contrast to a service placement scenario under a serverful model

(e.g. Infrastructure as a Service), where the user configures the environment with re-

quired resources prior to application execution [27]. Serverless platforms have minimal

knowledge on the resource requirements of different functions, at the time of initial re-

source allocation. For instance, AWS Lambda allows the user to specify the amount of

memory available to the function during execution and allocates the CPU power lin-

early in proportion to the configured memory [18]. Google Cloud Functions seems to

adopt the same strategy for resource allocations [144]. Studies show that CPU is often a

cause for contention in serverless environments, specially when compute intensive ap-

plications are involved [63], leading to high application latencies. Thus, any arbitrary

resource allocation policy could lead to subsequent resource contentions for the applica-

tions during runtime, leading to Service Level Agreement (SLA) violations to the user.

Thus arises the need for dynamic resource management techniques.

As per the serverless deployment model, the user is charged only for the resource-

time actually consumed by the application during its execution. Regardless of this fact,

the cloud provider maintains the underlying Virtual Machine (VM) resources during its

entire active life time. The resource-time covered by a VM during its life time comprises

of its set up time and its entire active time when one or more functions are using the

VM resources either fully or partially. As the serverless model is being increasingly

experimented for longer running tasks such as massively parallel task executions as in

[11], [145], such partial resource usages is more prevalent. Hence its imperative, that

the cloud provider maximizes the utilization of the set of active VMs at any given time,

thus reducing the cost of maintaining too many underutilized VMs. On the other hand,

when an application has a deadline target on execution as part of the SLA, the placement

decision of a function instance on an available VM needs to consider optimizing the

resource usage of VMs, without compromising on the stated execution time limitations.

Many existing serverless platforms follow different strategies to manage their under-
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lying infrastructure. Experimentation done on AWS Lambda platform indicate that the

function placement decision is currently treated as a bin packing problem to maximize

VM memory utilization [39]. Azure Functions seems to try not to co-locate concurrent

instances of the same function on the same VM, which indicates a spread placement

approach [39]. IBM OpenWhisk uses a hash-based first-fit heuristic which aggregates

application executions by function type, aimed at improving instance re-use and cache

hit rate [61]. Docker Swarm employs a spread placement algorithm which tries to evenly

spread tasks across the nodes in a cluster [146].

While some of the above approaches try to maximize resource utilization in function

executions, they do not consider application specific details and hence could result in

SLA violations, while not achieving optimal resource usages. In the literature, many

works exist, which address the problem of reducing function response time to users and

optimizing resource cost for the end user [70], [122], [147], [50]. However, the impor-

tance of dynamic management of allocated resources to function instances in the run-

time, considering user requirements, and also the problem space of efficient resource

management on the provider side have not been studied extensively.

Thus, a major challenge for the service provider under this model is to choose a suit-

able compute node for the function request placement and allocate sufficient resources

to the containerized function instance, such that the desired user requirements are met,

and the cost of resources is maintained at an optimum level.

In this work, we present a deadline-sensitive heuristic algorithm for selecting a VM

for function execution, which tries to manage the VM resources efficiently in order to

minimize the provider cost of maintaining the cloud infrastructure. Further, we present

an approach to dynamically monitor and manage the allocated CPU resources to func-

tion instances in the runtime, targeted at meeting the user deadlines, irrespective of

the initial assignment of resources. We implement our proposed policies in Container-

CloudSim [148] simulation environment and conduct experiments using real-world and

synthetic traces. The experimental results show that our policies increase the efficiency

of VM resources and also perform better in terms of meeting the function deadlines, as

compared to baseline techniques.

The key contributions of our work are as follows:
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1. An efficient placement algorithm for function requests, which aims to enhance

VM resource efficiency.

2. A fine-grained approach to dynamically manage resource allocations to functions.

3. Implementation of our proposed policies in a simulation environment and con-

ducting extensive experiments using both real-world and synthetic workloads.

4. Evaluation of the efficiency of our proposed solution in comparison with baseline

load balancing algorithms and two resource allocation policies, namely, a fixed resource

allocation policy and a cpu-shares policy in terms of VM resource usage and meeting

the function deadlines.

The rest of the chapter is organized as follows. Section 3.2 highlights related research.

In section 3.3, we show the system model and formulate the scheduling problem. Section

3.4, presents our proposed approach. In section 3.5, we discuss the experimental set-up

and present the performance evaluation of our proposed method. Section 3.6 concludes

the chapter and highlights future research directions.

3.2 Related Work

Serverless computing as a cloud application deployment model, is still at an early stage

of being widely adopted and explored in different application domains. As such, re-

search work referring to efficient resource management in serverless platforms are still

growing and also refer to many diverse aspects. Here we focus on key research work

related to application resource management in serverless platforms.

HoseinyFarahabady et al. present a QoS-aware resource allocation controller for

serverless platforms [121]. The scheduler aims to dynamically scale resources by pre-

dicting the future rate of incoming events using a closed-loop model predictive mecha-

nism. Although the controller tries to maintain a healthy CPU utilization level at each

host, specific focus is not given to using application level details to minimize provider

cost. Overall this work addresses the challenge of the initial placement of functions, but

the handling of sub-optimum resource allocations is not discussed.

A package-aware scheduler is proposed by Abad et al. [122] for serverless functions.

The objective is to reduce the cold start latency by assigning functions requiring similar
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packages to the same node. The efficiency of this model could be affected by functions

having multiple, large package dependencies. Further, this model ignores workload

characteristics other than the package requirements and does not focus on optimizing

cloud resource usage.

Stein et al. [70] present a non-cooperative resource allocation heuristic which tries

to predict the number of function instances required to keep the request waiting time

below a chosen threshold. This work considers container re-use and pre-warming of

containers to reduce response times. Meeting any function specific user requirements

has not been focused on, in the proposed approach.

Mahmoudi et al. [67] present a function placement algorithm which uses a machine

learning based approach for selecting the VM for a new function invocation, so as to

reduce operational cost to the user. They explore a predictive performance model which

tries to predict the normalized performance for any workload when deployed to a spe-

cific VM. Their approach takes in to account the nature of the workload such as CPU,

disk or memory intensiveness in making its decision. The model requires a profiling

step each time a new function is deployed in the platform.

A latency-aware function scheduler is presented by Suresh et al. [63]. Their model

is focused on dynamically adjusting cpu-shares [149] of containers based on the latency

degradation to each application type as a whole. The greedy algorithm presented for

VM scaling results in reduced number of VMs being used compared to spread place-

ment approaches, but there is no specific focus on reducing partial VM usages. They

achieve reduced latency degradation to applications via adjusting cpu-shares of con-

tainers. Since cpu-shares is a relative allocation of CPU to each container, the application

performance largely depends on the co-located functions in a VM.

A core-granular scheduler for serverless environments is introduced by Kaffes et

al. [123]. In this model, the scheduler assigns functions directly to individual cores

aiming to eliminate overloading of cores and reducing co-located function interference.

Consideration for any workload specific requirements is not observed in the proposed

approach.

Singhvi et al. implement a low-latency serverless platform for DAG based applica-

tions [147]. The design entails a set of node clusters with semi-global schedulers, which
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Table 3.1: Summary of Literature Study.

Work Application Model Deadline Awareness Efficient VM usage Dynamic Re-sizing Dynamic Re-scheduling

Task(Single Function) DAG(Multiple functions)

HoseinyFarahabady et al. (2017) ✓ ✓ ✓

Abad et al. (2018) ✓

Stein et al. (2018) ✓

Mahmoudi et al.(2019) ✓

Suresh et al. (2019) ✓ ✓ ✓ ✓

Kaffes et al. (2019) ✓

Singhvi et al. (2019) ✓ ✓

Das et al. (2020) ✓ ✓

Kim et al. (2020) ✓ ✓ ✓ ✓

Our proposed work ✓ ✓ ✓ ✓ ✓

follow deadline-aware function scheduling. Although a deadline is considered for ini-

tial function placement, the subsequent management of allocated resources to functions

is not discussed.

Das et al. [50] propose a hybrid cloud scheduling framework for multi-function

serverless applications. They suggest a greedy algorithm to decide the order and place-

ment of each function in either the private or the public cloud. The objective is to min-

imize the cost of public cloud use for the consumer and to complete the execution of a

batch of jobs within a specified deadline.

Kim et al. [120] propose a technique for CPU resource management for serverless

worker processes based on the throttled time and the number of unprocessed functions

in the queue of each worker. They try to reduce the function response time and increase

the CPU utilization of the worker processes. They do not consider application level

details or requirements in their load balancing policy and thus may not be responsive to

specific user execution time limitations and achieving optimal resource usage levels.

A summary of the reviewed related works is presented in Table 3.1, comparing them

in terms of the focus on efficient VM resource usage, application deadline awareness,

dynamic resource re-sizing and re-scheduling, and the application model. Although a

few works discuss increasing the VM resource utilization levels in general, they are not

specifically focused on reducing provider cost by making use of application level details

and requirements. Further, while many works present strategies to optimally place the

functions initially, they rarely discuss the performance during its full life cycle.

In our work we present a comprehensive function placement algorithm which aims
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to manage VM resources efficiently and thereby reduce the underutilization of VMs by

considering the function deadlines, in making the placement decision. We also propose

an algorithm for the dynamic management of resource allocations to functions instances,

in order to meet the application deadlines.

3.3 System Model and Problem Formulation

We present the serverless system model used in our work and formulate the problem of

scheduling functions in VMs.

Figure 3.1: System Model.
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3.3.1 System Model

We follow a similar approach to Apache OpenWhisk serverless platform [150]and also

many commercial serverless platforms, while designing the system model for evaluating

our proposed approach to address the challenges mentioned above. Figure 3.1 illustrates

the high-level system components involved in our model.

Function invocation requests created from user initiated events are received at the

system controller. The controller contains the function placement logic which handles

the load balancing responsibility in choosing a compute node for function execution.

The VM monitor module constantly updates and retains meta data on the expected re-

maining VM runtimes and the functions in execution in each VM. This information is

used by the load balancer in its decision making. Once a suitable node is selected, the

requests are dispatched to the destination nodes.

A compute node represents an active VM available for task execution. An active VM

would contain multiple concurrent functions in execution inside containers. A container

with the required resource configurations is spawned for a new request execution. The

VM loads the required runtime and the associated application code from the application

repository, on to the launched container. As per our proposed approach, the Dynamic

Resource Manager (DRM) module which is deployed on each VM, is responsible for

monitoring the functions in runtime and handling dynamic resource re-provisioning to

containers as applications approach their deadlines. It causes a dynamic update to a

container’s CPU resource limits until the task completes its execution. This module also

enables eviction and re-scheduling of low priority task executions to avoid performance

degradation in VMs due to resource contentions. Functions which were evicted are

re-scheduled on a different node, by sending a new function invocation request to the

controller where the function placement logic is called again to find a suitable compute

node.

3.3.2 Problem Formulation

Based on the system model, we now formulate the function scheduling problem to min-

imize the provider cost of VM resources usage, and to meet execution deadlines of the
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functions. For the scope of this work we consider an application to be composed of a

single function and hence the terms ”function” and ”application” are used interchange-

ably. Table 3.2 summarizes the important notations and descriptions presented in this

chapter.

Given an instance of a serverless platform, let V = {v1, v2, ...., vN} be the set of VMs

or compute nodes available for function execution, where N is the total number of VMs

and vj, 1 ≤ j ≤ N is the jth VM. Each VM has available resource capacities defined

by a two-dimensional vector: CPU and memory, represented as vc
j and vm

j respectively.

Hence we have, vj =< vc
j , vm

j >. The total CPU capacity in a VM is determined as

the product of the number of cores and the processing power of each core, denoted in

Million Instructions Per Second (MIPS). The available free CPU and memory resources

in VM, vj at time t is denoted by, vac
j (t) and vam

j (t) respectively.

Let R = {r1, r2, ...., rM} be the sequence of function invocation requests received at

the scheduler where M is the total number of requests and ri, 1 ≤ i ≤ M is the ith re-

quest. Each request carries five attributes, i.e., ri =< rtype
i , rpriority

i , rta
i , rd

i , rm
i > where rtype

i

represents the application ID of the function to be invoked, rpriority
i denotes the user re-

quested priority level for the request i, and rta
i , rd

i and rm
i are the time of arrival, specified

deadline and the memory requirement of request i respectively. We assume the initial

CPU allocation rc
i , to the containerized function instance, to be done in proportion to the

requested memory, adopting AWS Lambda’s initial resource allocation policy [18] (i.e.

if rm
i is the requested memory and vm

j and vc
j are the total memory and CPU capacities of

the VM, the allocated CPU capacity is (rm
i /vm

j ) ∗ vc
j ). Since we dynamically update CPU

allocations to the function instances in the runtime, we use the notation ruc
i (t) to denote

the updated CPU allocation to request ri subsequently in time t.

Now the challenge at hand is to decide the mapping of a request execution to an

available VM where the application would start its execution inside a container with

access to assigned resources, and to manage resource allocations to its containerized

instance throughout the life time.

Schedule = {ri −→ vj} (3.1)

Function scheduling and resource allocation would be subject to the following con-
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Table 3.2: Definition of Symbols.

Symbol Definition

v A VM or compute node available for function execution

N The total number of available VMs

δ The index set of all the available VMs, δ = {1, 2, 3, ..., N}

M The total number of function invocation requests

r Function invocation request

rtype
i Type of the function to be invoked by ithrequest, ri

rpriority
i Requested priority level for the execution of ithrequest, ri

rta
i Time of arrival of ithrequest, ri

rd
i Deadline for ithrequest, ri

rm
i Memory requirement for ithrequest, ri

rc
i Initial CPU allocation for ithrequest, ri

ruc
i (t) The CPU allocation for ithrequest, ri at time t

rw
i The waiting time for scheduling ithrequest, ri

rp
i Total processing time of ithrequest, ri

vm
j Total memory capacity of jth VM, vj

vc
j Total CPU capacity of jth VM, vj

vam
j (t) Available free memory in jth VM, vj at time t

vac
j (t) Available free CPU capacity in jth VM, vj at time t

straints.

VM resource capacity constraints: A VM is chosen for function execution only if the

requested memory and the initial CPU allocation requirements for a function execution

do not exceed the available free memory and CPU capacities of the VM at time t, i.e.,

rm
i ≤ vam

j (t) (3.2)

rc
i ≤ vac

j (t) (3.3)
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We identify the VM’s available memory and CPU resource levels as follows:

vam
j (t) = vm

j −
M

∑
i=1

uij(t)rm
i (t) (3.4)

vac
j (t) = vc

j −
M

∑
i=1

uij(t)ruc
i (t) (3.5)

where we define a binary variable uij to indicate whether request i is currently placed

in vj or not, i.e., ∀j ∈ δ, we have;

uij(t) =

1, if request i is being executed in vj at time t

0, otherwise
(3.6)

The time t in the above expressions: (3.2), (3.3), (3.4), (3.5) and (3.6) refers to the

request arrival time i.e., rta
i .

Overall, the primary focus of this study is to minimize the provider expenses of run-

ning serverless applications by efficiently utilizing resources in VMs, while also mini-

mizing the violation of user requirements of function execution.

In our work, we assume all the compute nodes to be homogeneous, and thereby the

combined uptimes of all the VMs is representative of the provider’s opportunity cost of

utilizing the same resources for revenue generation from other services. Thus, we for-

mulate the optimization problem for resource-efficient function scheduling as follows:

Minimize : T =
N

∑
j=1

tj

s.t. : (2), (3)

(3.7)

where tj is the sum of the active periods of jth VM over the course of the experiment

and T is the summation of the active periods of all the VMs used in the experiment. A

VM is considered to be active when at least one container is running in it. We assume

that VMs are available on-demand without additional start-up delays. Primarily, our

proposed function placement logic contributes towards realizing this objective.
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We also formulate the objective of minimizing user deadline violations as follows:

Minimize : Z =
M

∑
i=1

xi

s.t. : (2), (3)

(3.8)

where we define a binary variable xi to indicate whether request ri violates its dead-

line or not, i.e., ∀i ∈ M, we have;

xi =

1, if rw
i + rp

i > rd
i

0, otherwise
(3.9)

where rw
i is the waiting time for function scheduling, rp

i is the processing time, rd
i is

the user specified deadline and Z is the total number of deadline violations. The dead-

line for a function indicates the expected maximum time to finish execution from the re-

quest arrival time. Our approach of dynamic resource management mainly contributes

towards meeting the objective of deadline satisfaction.

3.4 Proposed Algorithms

We propose a heuristic algorithm for the resource efficient placement of functions, and

a dynamic resource alteration algorithm to solve resource contentions in VMs in the

runtime and to meet user specified deadline constraints.

3.4.1 Function Placement Algorithm

The proposed heuristic function placement algorithm (Algorithm 1) follows a deadline

sensitive function aggregation policy. The algorithm aims to align the runtimes of func-

tions executing in a particular VM, such that the underutilization of VM resources is

minimized, allowing the instance to be released after experiencing high utilization dur-

ing its active life time.
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We maintain a list of the existing active VMs (VMList) in the ascending order of the

remaining time each of them are expected to run, depending on the functions already in

execution and their stated deadlines. The remaining time to deadline r∆t
i (t), for request

Algorithm 1 Deadline Based Function Placement (DBP)

Input: The function invocation request ri,
ri =< rtype

i , rpriority
i , rta

i , rd
i , rm

i >
Input: The list of active VMs sorted in the ascending order of the expected remaining
runtimes, VMList
Output: VM selected for function execution, vs

1: procedure PROCESSVMSELECTION(ri)
2: r∆t

i (t)← Time to deadline for ri
3: CPUmax ← 0
4: for each VM vj in VMList do
5: if ri is a request for re-scheduling then
6: if vj = ri.GetOldVm then
7: continue
8: v∆t

j (t)← vj.GetRemainingRunTime
9: vutil

j (t)← vj.GetCPUUtilization
10: if Placement of ri in vj satisfies resource capacity constraint and vutil

j (t) <

vutilT then
11: vtemp ← vj

12: if v∆t
j (t) ≥ r∆t

i (t) then

13: if rpriority
i = Low then

14: vs ← vj
15: break
16: else
17: if vac

j (t) > CPUmax then
18: CPUmax ← vac

j
19: vs ← vj

20: if vs = null then
21: if vtemp! = null then
22: vs ← vtemp
23: return vs
24: else
25: Add a new VM, vmNew to the active pool
26: vs ← vmNew
27: return vs

28: else
29: return vs
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ri at time t is expressed as follows:

r∆t
i (t) = rta

i + rd
i − t (3.10)

where rta
i is the arrival time and rd

i is the deadline, of request ri respectively. We

assume, that the longest of the remaining times to deadlines of the current functions

running in a VM to be an approximation of its expected remaining runtime. The VMList

is updated whenever a new request is allocated to a VM or a function completes its

execution.

When a new function invocation request (ri) arrives at the controller, its time to dead-

line is calculated (line 2). Next the algorithm starts its iteration over the sorted list of

active VMs. While we aim to maintain high VM utilization levels with the provider, for

the set of active VMs at all times, we also try to avoid potential performance degradation

caused by CPU contentions arising with resource overloading. Therefore, apart from the

availability of sufficient free resources, a VM, vj is considered for function placement

only if its current CPU utilization, vutil
j (t) is below a defined CPU utilization thresh-

old vutilT (line 10). If these requirements are met, this VM is chosen for execution if the

expected remaining time of the VM is greater than the time to deadline of the request

and the request bears a low level of priority (line 12-15). In case ri is a high priority

request, we choose the VM with the highest free CPU resources out of the VMs having

higher remaining runtime than the time to deadline for ri (line 17-19). We assume each

request to be accompanied with either a high or low priority level and the high priority

requests to have a tighter deadline than requests with low priority. Assigning a high

priority request to a relatively less congested VM gives a better opportunity to dynami-

cally monitor and increment the allocated CPU resources to the request in the runtime,

if needed. It could be that none of the active VMs with sufficient free resources have the

required remaining active time. In that case we choose the VM with the highest remain-

ing active time. This ensures that the increase to the expected runtime of the chosen

VM by the new function execution will be minimum (line 21-23). In case ri is a request

for re-scheduling, we avoid assigning the request to the same node it was previously

being executed in (line 5-7). If none of the active VMs have sufficient free capacity for

the function execution, a new free VM is added to the pool (line 25-27).
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Algorithm 2 Dynamic Resource Alteration (DRA)

Input: The function invocation request ri
Input: Current VM, vj and current container, cij of ri
Input: The list of requests in execution in vj sorted by time to deadline in descending
order, rlist

1: procedure PROCESSRESOURCEALTERATION(ri)
2: vutil

j (t)← vj.GetCPUUtilization
3: if vutil

j (t) ≥ vutilT or cij has reached its max CPU allocation then
4: return Failure
5: else
6: cij.UpdateResources (CPU)
7: vutil

j ← vj.GetUpdatedUtilization

8: if vutil
j ≥ vutilT

j then
9: for each request r in rlist do

10: if r satisfies re-scheduling criteria (3.12) then
11: cr ← r.container
12: Re-schedule request r
13: Destroy cr
14: vutil

j ← vj.GetUpdatedUtilization
15: if vutil

j < vutilT then
16: break

Once a VM is selected, the request ri is forwarded to the selected compute node vs

for execution, where a new container with the requested resources is created and the

function execution is initiated. Assuming the total number of VMs to be n, the worst

case time complexity of Algorithm 1 for selecting a worker node, is O(n).

3.4.2 Dynamic Resource Alteration (DRA) Algorithm

The proposed Dynamic Resource Alteration (DRA) algorithm (Algorithm 2) aims to alter

the resource allocations to function instances approaching the deadline during runtime.

The algorithm also efficiently manages resource contentions in the VMs by evicting suit-

able recently started tasks from constrained nodes to nodes with sufficient free resources.

The algorithm is executed by the VMs each time a task reaches a certain percentage of

the task’s time to deadline from the arrival time, denoted by dcheck. We decide this check-

point based on the level of priority requested by each request on arrival (for example,
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a high priority request would have a better opportunity of meeting the deadline from a

lower dcheck value). At this point, if the function is still in execution, the initially allocated

upper limit of CPU processing power to the container is incremented, provided that the

underlying VM’s CPU utilization level is below vutilT and the container has not reached

its maximum CPU allocation (line 3-6). We assume the maximum CPU power allocated

to a container to be equal to that of one full vCPU core. Here we use the concept of

cpu-quota and cpu-period enabled in Linux Kernel’s Completely Fair Scheduler (CFS)

[81], in setting and updating the CPU upper limits of the container. The cpu-quota value

sets the number of microseconds per cpu-period that the container’s access to CPU re-

sources is limited to, before it is throttled [149]. Thus this acts as an effective ceiling and

a hard limit for CPU resources allocated to a container. This is in contrast to the concept

of cpu-shares used in [63], which adjusts the relative weight of CPU resources accessi-

ble to a container when co-located with other containers [149]. Container orchestration

technologies allow updating the container resource configurations in the runtime [151].

During the evaluation of this approach, we conduct experiments while varying the dcheck

value and the cpu-quota increment values with the request priority levels.

After each resource update, the VM is checked for resource overloading (line 8). In

the presence of resource overloading and performance interference as a result, the algo-

rithm proceeds to efficiently evict some of the most recently scheduled tasks, scheduling

them on another suitable node with sufficient free resources (line 9-12). Task eviction is

undertaken only if the re-scheduling cost satisfies criteria (12) below. The re-scheduling

cost rcost
i at time t for the ith request is defined by the time spent from arrival of ri and

the waiting time for function re-scheduling rw
i , i.e.,

rcost
i (t) = t− rta

i + rw
i (3.11)

rcost
i (t) ≤ rd

i × revictT (3.12)

where rd
i is the task deadline and revictT is a defined threshold for function eviction.

This eviction policy ensures that the task execution loss is minimized and the evicted

task has sufficient re-scheduling time until its deadline. Once a task is chosen for evic-

tion, its running container is destroyed, freeing up resources in the constrained node. Re-
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scheduling of a task follows the function placement algorithm (Algorithm 1), by sending

a function placement request to the controller. A node continuously monitors each func-

tion and employs the DRA algorithm, each time the time to deadline approaches the

defined checkpoint. The process continues until the function finishes its execution or

its container occupies a full vCPU core, which is assumed to be the maximum allocated

CPU capacity for a function instance.

If vj, the current VM of ri, has r number of requests already in execution, under the

worst case scenario, Algorithm 2 has a linear time complexity of O(r).

3.5 Performance Evaluation

To evaluate the performance of our algorithms, we simulate a serverless computing en-

vironment using ContainerCloudSim [148] simulator. It is a simulation toolkit devel-

oped for modeling containerized cloud infrastructures. ContainerCloudSim is built on

top of CloudSim [29] simulator which is widely used in evaluating resource manage-

ment and scheduling techniques in cloud environments. We extended the simulator by

implementing the Dynamic Resource Manager and VM Monitor modules as described

in section 3.3, to include our scheduling and dynamic resource management policies.

3.5.1 Baselines

We compare our function placement policy with the following baseline scheduling poli-

cies:

Round Robin (RR): This method tries to equally balance the load among the VMs by

sending successive function requests to different VMs in a cyclic manner

Random Placement (RP): Function requests are randomly distributed among the VMs

Bin packing First-Fit (BPFF): Each request is directed to the first VM which satisfies the

resource requirements of the request out of the active VMs, similar to AWS Lambda’s

function placement policy [39], packing the requests within a fewer VMs as possible.

Further, we compare our Dynamic Resource Alteration (DRA) technique with the

following techniques:
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Fixed Resource Allocation (FRA): The cpu-quota allocation to each container is done in

proportion to the requested container memory and this CPU upper limit is maintained

throughout the application lifetime, similar to the policy used in AWS Lambda server-

less platform [39],[18].

OpenWhisk Resource Allocation (OW): OpenWhisk [150] sets the cpu-shares for each

container proportional to the requested memory for each function, as mentioned in [63].

Cpu-shares indicates the relative weight given to a container in terms of the proportion

of CPU time it is given access to when CPU resources are limited [149].

3.5.2 Experimental Set-up

We simulate a serverless computing environment with a cluster of VMs, each with four

vCPU cores and 3 GB of memory. We follow the CPU configuration of Intel E5-2666

(2.9 GHZ), identified as one of the machine configurations seen in AWS Lambda infras-

tructure [39]. Since ContainerCloudSim identifies processor capacity in terms of MIPS

(Million Instructions Per Second), we refer to CISCO’s industry benchmark [152] in con-

verting GHz values to MIPS (2.9 GHz −→ 11600 MIPS). We design experiments using

cluster sizes of 12, 25 and 40 VMs each for three load levels of 4x, 8x and 16x requests

per second, respectively. We use fixed time durations of 500 ms and 20 ms respectively

as the container set-up delay and function scheduling delay in all the simulations. Vari-

ations and the impact of container start-up delay is not considered a part of this study.

The VM CPU utilization threshold (vutilT ) is kept at 85% referring [153] and the threshold

for function eviction (revictT ) is maintained at 20% in our experiments.

Experimental Workloads: We employ a number of synthetic and real-world traces to

evaluate our proposed algorithms. The synthetic workloads enable us to observe the

behavior of the system, while maintaining a constant request arrival rate at a time, and

varying the rates across workloads. Under both the real and synthetic workloads, a re-

quest received at the controller consists of the id of the application to be invoked, the

level of priority requested for the application execution, the requested container mem-

ory size and a user specified deadline parameter associated with each priority level.

The deadline is the incremental value derived by increasing the average execution time
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of each application by a certain percentage. We use two levels of priority as high and

low in our experiments, where the high priority requests are associated with a tighter

deadline and the low priority requests with a more relaxed deadline.

We create a workload with real-world arrival patterns using trace snippets from

Wikipedia [154] and Azure function traces [46]. We extract the set of single function

applications from the Azure data set, and refer to the attributes of average container

memory size and average execution times (we only consider applications with execu-

tion times exceeding 1 second in this study), coupled with the fluctuation of request

arrival patterns from Wikipedia traces. We used the arrival patterns from Wikipedia

traces since the Azure data set does not contain details of request arrival times. These

traces drive the load for 140 application types with a peak load of 16x requests per sec-

ond, and we run the experiments spanning for a period of one hour, using a cluster of

25 VMs.

Each synthetic workload consists of four synthetic traces which are created with re-

quests arriving for four application types and run in parallel. Average application exe-

cution times and requested container memory sizes are generated randomly to be in the

range of 1-50 seconds and between 128 - 512 MB in 64 MB increments, respectively. We

conduct a series of experiments with multiple synthetic workloads created by varying

the request deadline percentages for each priority level, and the arrival rates. In each

workload, the inter arrival time of the function invocation requests is modeled using

Poisson distribution as in [147], adjusting the Poisson mean to demonstrate different ap-

plication load levels. A set of experiments are carried out for each workload, adjusting

the different system parameters of the task deadline checkpoints (dcheck) and cpu-quota

increment values. At each experiment, we run the workload for a period of approxi-

mately 5 minutes in the simulation environment described above.

Performance Metrics: In all the experiments, we observe the performance metrics men-

tioned below.

1. Total VM uptime during the simulation time. Since we are considering a homo-

geneous resource environment in our experiments, VM uptime is used as a proxy for

the function execution cost efficiency to the provider - we measure the intermittent VM

uptimes and add them for all the VMs in the cluster.
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(a) (b)

Figure 3.2: VM uptime comparison for the different load balancing algorithms when
requests have tighter deadlines at both priority levels (a) dcheck at 65% and 85%, cpu-
quota increment at 20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40%
and 60%.

2. Percentage of requests meeting the deadline - The number of requests finishing on

or before the specified deadline as a percentage of the total number of requests.

3.5.3 Results and Analysis

We carry out performance evaluation in two steps for each of the experimental scenarios.

1. We run the experiments with our DBP algorithm (Algorithm 1) for the initial

placement of functions and the DRA algorithm (Algorithm 2) for dynamically managing

CPU resource allocations. The results are compared with the baseline schedulers: RR,

RP and BPFF for load balancing, also coupled with the DRA algorithm for dynamic

resource management.

2. The performance of our DBP algorithm for load balancing accompanied with the

fine-grained DRA policy is evaluated with a Fixed Resource Allocation (FRA) policy and

a cpu-shares policy similar to that adopted by OpenWhisk (OW).

We now discuss the results, primarily in terms of the efficiency in consuming the

cloud resources and the level of satisfying the SLA requirements (meeting the function

deadlines in this case) of the user.

Evaluation of resource efficiency: The efficient use of cloud resources is evaluated in

terms of the total uptime of all the VMs used in each of the scenarios with different load
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(a) (b)

Figure 3.3: VM uptime comparison for the different load balancing algorithms when
requests have relaxed deadlines at both priority levels (a) dcheck at 65% and 85%, cpu-
quota increment at 20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40%
and 60%.

levels of the incoming requests. The total time a cloud provider dedicates its resources

for serverless function scheduling could be directly related to the cost incurred by the

provider as means of the revenue lost during the same period by rendering other ser-

vices using those resources. Figure 3.2 and Figure 3.3 present results of the resource

efficiency study done using the synthetic workloads. Here we compare the VM upti-

mes using the DBP algorithm with the baseline schedulers under different scenarios,

with dynamic provisioning of CPU resources and re-scheduling. Figure 3.2 depicts re-

sults under different load conditions when the incoming function execution requests

have tighter deadlines (an increment of 5% and 15% over the average execution time

for high and low priority requests respectively), while Figure 3.3 shows results for the

same workload with relatively relaxed deadlines (an increment of 10% and 20% over

the average execution time for high and low priority requests respectively). The results

show that the DBP method is able to achieve a high resource efficiency similar to the

BPFF heuristic, while the RP and RR schedulers show significantly higher resource us-

age levels and hence, lesser efficiency. We do experiments varying the time point of

CPU re-provisioning (dcheck) for the high and low priority requests, from 65% and 85%

of remaining time to deadline (Figure 3.2(a) ) to 55% and 75% (Figure 3.2(b) ). We also in-

corporate two levels of CPU re-provisioning, changing the incremental cpu-quota/cpu-
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(a) (b)

Figure 3.4: VM uptime comparison for the different load balancing algorithms using
real-world traces (a) dcheck at 65% and 85%, cpu-quota increment at 20% and 40% (b)
dcheck at 55% and 75%, cpu-quota increment at 40% and 60%.

period value for each of the priority levels from 20% and 40% to 40% and 60% of CPU

time of a vCPU core, for the same two scenarios. Results show that as we vary these

system parameters to identify resource contentions faster and resort to better resource

alterations (earlier checks for CPU re-provisioning and higher CPU quota increments),

the overall VM uptimes decrease slightly, yielding better results. It is noticeable that the

longer a varying load level prevails, the higher the distinction of resource efficiency be-

tween a random or a spread placement method, as compared to an efficient bin-packing

method. This is further emphasized by the experimental results from real-world traces,

shown in Figure 3.4, where the VM uptimes recorded when using RR and RP algorithms

are approximately 3 times that from DBP and BPFF algorithms.

Evaluation of deadline requirements: Evaluation of application/user SLA require-

ments is done by taking the percentage of functions meeting the set deadline. The

results discussed here are from the same set of experiments described in the above sec-

tion, for both the synthetic and real-world traces. As shown in Figure 3.5 and Figure

3.6, in all the scenarios with dynamic resource provisioning and re-scheduling, it is ev-

ident that the RP and RR load balancing algorithms are able to show higher levels of

meeting deadlines. This is because they have a better opportunity of dynamically pro-

visioning CPU resources to functions approaching their deadlines as required, since the

initial function placement tends to happen in VMs with more free resources. Despite
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(a) (b)

Figure 3.5: Comparison of the percentage of requests meeting the deadline for the dif-
ferent load balancing algorithms when requests have tighter deadlines at both priority
levels (a) dcheck at 65% and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55%
and 75%, cpu-quota increment at 40% and 60%.

having relatively lower deadline met percentages, the DBP method is able to maintain

a low level of deadline violations while also reducing the provider cost by the efficient

use of cloud resources as discussed in the previous section. This is because the DBP

algorithm considers the deadline priority level of the request in choosing a VM with ei-

ther higher or lower free CPU quota levels. In general, the BPFF heuristic shows poor

performance with higher deadline violations since it always tries to pack the function

executions to a minimum number of VMs and hence show lesser flexibility in the ability

to face resource contentions in the runtime. When compared with BPFF, DBP performs

better, when function deadlines are tighter as well. As the load level increases to 16 re-

quests/second, a slight increase in deadline violations is seen in all the scenarios. The

results also show that dynamic resource provisioning and re-scheduling is better able to

improve SLA violations when the VM CPU contentions are addressed early and with

higher CPU quota increments (Figure 3.5(a) Vs. 3.5(b) and Figure 3.6(a) Vs. 3.6(b)). Fig-

ure 3.7 shows results from the workload created from real-world traces. The ability of

DBP algorithm to maintain a higher level of deadline satisfaction compared to the BPFF

algorithm, when the load level varies, is clearly observed here.

Figure 3.8 shows the performance of our load balancing approach of DBP with dy-

namic resource alteration (DRA), compared with a fixed CPU allocation policy (FRA)

and a proportional cpu-shares policy (OW), both using BPFF as the load balancing
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(a) (b)

Figure 3.6: Comparison of the percentage of requests meeting the deadline for the dif-
ferent load balancing algorithms when requests have relaxed deadlines at both priority
levels (a) dcheck at 65% and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55%
and 75%, cpu-quota increment at 40% and 60%.

(a) (b)

Figure 3.7: Comparison of the percentage of requests meeting the deadline for the dif-
ferent load balancing algorithms using real-world traces (a) dcheck at 65% and 85%, cpu-
quota increment at 20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40%
and 60%.

method. It is seen that sub-optimal initial resource allocations and CPU performance

variations in the runtime result in higher deadline violations under the fixed CPU al-

location method. Under the cpu-shares policy, the cpu-shares determine the relative

weight of CPU power available to each function instance in the presence of CPU con-

tentions [149]. Hence the functions co-located in a VM would largely affect each other’s

performance and the presence of a function instance with a larger cpu-share could cause

a function instance with a relatively smaller share to perform poorly. In comparison,
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Figure 3.8: Comparison of the percentage of requests meeting the deadline under differ-
ent resource management methods.

our policy of SLA-aware dynamic handling of the CPU time available to each function,

is able to result in better performance under all the load levels.

Performance and cost trade-off: The above experimental results demonstrate that the

users are able to meet their required targets of application performance and infrastruc-

ture cost by applying the proposed techniques suitably. While the best overall results

in both cost and performance is achieved by utilizing the dual techniques of deadline

based function placement (DBP) and dynamic resource alteration (DRA), these can be

flexibly adopted depending on the most critical requirement. For example, coupling

a simple placement algorithm such as RR or RP with DRA would yield the best out-

come for a latency critical function, if cost is not a crucial factor. Similarly, for non time

sensitive functions, a fixed resource allocation policy with DBP would lead to high re-

source efficiency and thus lower resource cost. Further, for any function with varying

resource requirements with time, the DRA policy could be applied during any point in

application execution. The dcheck parameter and the cpu-quota increment levels are to be

adjusted to suit different application scenarios in order to meet target execution times.

3.6 Summary

In this chapter, we explored how dynamic monitoring and managing of resource al-

locations to function instances and the careful scheduling of function requests on VMs

could enable higher opportunities for meeting SLA requirements of the cloud user, while
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also resulting in high provider resource efficiency. To this end, we proposed a tech-

nique for finer-grained control of provisioned resources to function instances during

run time, which could mitigate effects of sub-optimal initial resource provisioning. Fur-

ther, we presented a function placement algorithm which aggregates running requests

on provider infrastructure so as to minimize resource wastage, while also being sensitive

to a specific application requirement.

We conducted simulation based experiments on the extended ContainerCloudSim

serverless simulation environment to validate the usability of our proposed solution. In

the experiments, we compared our function placement approach with baseline schedul-

ing policies and our dynamic resource alteration algorithm with standard resource pro-

visioning techniques. As evidenced by our experiments, the proposed overall solution

considerably outperformed existing techniques in terms of application specific SLA sat-

isfaction and resource efficiency.

This chapter presented a technique for dynamically managing the allocated resources

to a function request, enabling the satisfaction of application deadline requirements, de-

spite any initial sub-optimal resource allocations. Further we focused on a policy for re-

quest scheduling on VMs, resulting in high resource efficiency while also fulfilling user

requirements. Serverless systems are multi-tenant systems where applications of multi-

ple users are co-located on the same infrastructure. Moreover, in contrast to the system

architecture considered in this chapter, the majority of open-source serverless platforms

operate under a system where a single function instance serves multiple concurrent re-

quests. Dynamic workload patterns of multiple users in such an environment could

cause significant resource contentions among applications. Thus in the next chapter, we

explore techniques for workload and system aware scheduling of function instances in a

multi-tenant environment, considering the dual objectives of function performance and

provider resource cost efficiency.



Chapter 4

DRL-based Application Scheduling
for Multi-tenant Serverless

Computing

The dynamic and multi-tenant nature of the serverless workloads and systems, complicates the

process of achieving the often conflicting, dual objectives of resource efficiency and function perfor-

mance. In this chapter we study how a comprehensive understanding on the resource contention

among applications along with knowledge on workload and system dynamism, could potentially

reach a favorable outcome for both the end users and cloud service providers, during serverless appli-

cation scheduling. We propose a novel technique incorporating Deep Reinforcement Learning (DRL)

to overcome the aforementioned challenges for function scheduling in a highly dynamic serverless

computing environment with heterogeneous computing resources. We train and evaluate multiple

variations of our DRL model depending on the targeted optimization objective, in a practical setting

incorporating Kubeless, an open-source serverless framework, deployed on a 23-node Kubernetes

cluster setup. Extensive experiments done on this testbed environment show promising results with

improvements of up to 24% and 34% in terms of application response time and resource usage cost

respectively, compared to baseline techniques.

4.1 Introduction

The paradigm shift in cloud computing caused by the serverless computing concept im-

plies that the provider handles all the operational tasks related to application resource

This chapter is derived from:

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deep reinforcement learn-
ing for application scheduling in resource-constrained, multi-tenant serverless computing environ-
ments”, Future Generation Computer Systems (FGCS), Volume 143, Pages 277-292, June 2023.
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management. This include instance selection, resource allocation and scaling of cloud re-

sources for multiple applications belonging to multiple end users. Further, in contrast to

managing resources for long-running applications in traditional cloud computing envi-

ronments, the ephemeral nature of serverless functions poses a unique set of challenges

to the providers. Function instances need to be created and scaled up and down in an

adhoc manner based on request arrivals, where a majority of function requests would

only last a maximum execution duration of one second, which creates complex system

dynamics.

Serverless systems are also multi-tenant environments where multiple applications

of different users could reside on the same server or more specifically on the same Virtual

Machine (VM). Thus, resource contention among these applications, when competing

for the same set of resources, is quite a prevalent issue. Moreover, the majority of open-

source serverless platforms [155], [156], [157], consist of a system architecture where a

single function instance serves multiple concurrent requests, which is the serverless en-

vironment in consideration for our work. Under such a system model, the situation is

further aggravated when rapid changes in request rates cause the resource consump-

tion of individual function instances to fluctuate over time. Regardless of these factors,

each end user expects the cloud provider to guarantee satisfactory performance for their

applications.

Early research works in this area, highlight performance limitations caused by con-

tention among co-resident function instances on the same VM on commercial serverless

platforms [39]. In subsequent research works, a few have studied resource congestion

which is a major barrier on achieving the desired performance objectives in serverless

systems [63], [62]. On the other hand, an often disregarded factor when focusing on

application performance on serverless systems is the cost efficiency of the underlying

resources on the provider side. The serverless billing model charges the user only for

the resource-time consumed during function execution with a millisecond level granu-

larity. Regardless of that, cloud vendors maintain their infrastructure throughout, even

with partial utilization. Thus, this billing model necessitates the cloud vendors to focus

heavily on the optimum utilization of their resources [121], [120].

Existing commercial serverless platforms mostly follow simple heuristics in function
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scheduling. AWS Lambda treats the function placement decision as a bin packing prob-

lem which maximizes VM memory utilization [39]. Azure Functions follow a spread

placement policy to avoid co-location of concurrent instances of the same function on

the same VM [39]. A hash-based first-fit heuristic is employed by IBM OpenWhisk,

aimed at a better cache hit rate and instance re-use [61]. In research literature many have

attempted at presenting techniques for function scheduling. Most of the existing works

focus primarily on satisfying application latency requirements of users and managing

the resource cost for the end user [122], [50], but not on optimizing cloud provider in-

frastructure costs. Further, their efforts are mostly directed towards articulating heuristic

solutions for the simpler problem of individual request scheduling, based on a system

model which serves only a single concurrent request per function instance. Many works

also fail to attain overall workload and system awareness, which is detrimental to the

effectiveness of the provided solutions in a highly dynamic serverless system. In con-

trast, our work addresses the complex problem of scheduling function instances which

serve multiple concurrent requests, in a cost efficient manner with complete awareness

of workload patterns and system dynamics, so that application performance is not hin-

dered by resource contention.

Reinforcement Learning (RL) techniques are increasingly being used for solving prob-

lems related to serverless resource management as seen from a few contemporary re-

search works [66], [82]. The approach of learning through experience suits well, the

unpredictable nature of serverless workloads and systems where an individual function

request would have a millisecond level duration [44] and the co-residency of different

applications on a VM would change swiftly over time with changing request arrival

rates for deployed functions. Further, although RL techniques have been extensively

explored for general cloud scheduling problems in literature, almost all these works in-

corporate simulator environments for training and testing their models, which have only

a limited capability in capturing the actual resource congestion situation in a practical

setting. Thus in this work we design an actual test-bed to train and evaluate our DRL

models, which capture the fine details of application resource characteristics, workload

patterns and the environment. Our model evaluations show promising results which

outperform other baseline techniques. The key contributions of our work are as fol-
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lows:

1. We formulate and present a RL oriented model of the problem of function instance

scheduling in a resource constrained, multi-tenant serverless computing environ-

ment.

2. We propose a multi-step Deep Q Learning (DQN) model for developing a work-

load and system aware scheduling framework for serverless functions, aimed at

optimizing application response time latency and provider cost efficiency. Since

these two are conflicting goals, we add flexibility to the model to establish a trade-

off between these goals as desired by the users.

3. We design a practical training environment for the DRL agent, integrated with the

open-source serverless platform Kubeless [30], which is deployed on a Kubernetes

[158] cluster composed of heterogeneous VMs.

4. We conduct extensive experiments using real world single and multi-function server-

less applications [47], [159] and function traces captured from Microsoft Azure

Functions [46], to evaluate the performance and scalability of the proposed DRL

model and compare it with baseline schedulers.

The rest of the chapter is organized as follows: Section 4.2 reviews existing related

works. Section 4.3 presents the system model and the mathematical formulation of the

problem. Section 4.4 introduces the DRL oriented framework for function scheduling,

followed by the design details of the agent training environment in section 4.5. Sec-

tions 4.6 and 4.7 discuss the performance evaluation of the proposed technique and the

potential for future work, respectively.

4.2 Related Work

We focus our discussion on related works under two key areas as, serverless function

scheduling and the application of RL techniques for resource management in serverless

computing environments.
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4.2.1 Serverless Function Scheduling

The problem space of serverless function scheduling has emerged as a new research

area in recent times. Various solutions are presented in existing literature for the prob-

lem of finding a suitable host node for scheduling a function instance, which may ac-

commodate either a single request or multiple concurrent requests, based on the system

architecture.

A package-aware scheduler for serverless functions is proposed in [122]. They try to

bundle function requests requiring similar packages to the same node, with a focus on

reducing function cold start latency. Other than the package dependencies, they do not

consider any other workload characteristics in the scheduling decision. [160] presents

a locality-aware scheduler to reduce function latencies. A preliminary design for a cen-

tralized scheduler is presented in [123], which assigns each function execution to an

individual CPU core. They aim to reduce overloading of cores and co-located function

interference. A similar scheduling policy coupled with request queuing is evaluated in

[161]. [64] uses a first-fit heuristic for request load balancing in their serverless setup.

A supervised Machine Learning (ML) based approach is presented in [67], for selecting

a VM for scheduling single function applications. Their objectives are to reduce func-

tion execution time and user cost by improving function throughput. The presented

approach requires the platform to possess a comprehensive prior understanding of the

behavior of an application and thus will not have the flexibility to adapt to dynamic

workloads. [55] also explores a greedy scheduling approach to improve cluster utiliza-

tion. A heuristic based on function latency in each VM is used in [63] to schedule func-

tion requests. A request priority and a deadline based greedy heuristic is proposed in

[62] to choose a VM. [44] studies an architecture with semi-global schedulers in a server-

less system using a spread-placement approach for function instance placement. A cost,

function load, and locality-aware heuristic solution for function scheduling is proposed

in [162], where the solution lacks overall system awareness. Another heuristic solution

which includes an excessively time consuming manual profiling of function co-location

patterns based on their resource usages is discussed in [163]. An input sensitive con-

tainer allocation and request scheduling policy is presented in [164], where their focus

is mostly on request batching and reordering to minimize SLO (Service Level Objective)
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violations.

A hybrid scheduling framework is presented in [50], which uses a greedy algorithm

to determine the order and placement of functions in either the private or the public

cloud. [165] presents a heuristic approach for scheduling function workflows in a fed-

erated serverless environment. Their focus is limited to improving the makespan of

function executions.

4.2.2 Application of RL for Serverless Resource Management

A number of works have explored RL techniques for task scheduling in traditional cloud

computing environments. [166], [167], [168], [169], [170]. All of these existing works

present experimentation done solely based on simulator environments. As opposed to

experiments designed on a practical setting, training a model on a simulator environ-

ment often times incorporates assumptions such as fixed execution times for tasks on

a given machine irrespective of resource pressure, uniform resource consumption by

applications throughout the experiment etc. These assumptions pose limitations in cre-

ating a realistic image of the actual behavior of a cloud environment, specially under

resource constrained scenarios which is the focus of our work. Further, unlike the tradi-

tional long running monolithic application workloads in the cloud, serverless functions

are designed to have very short run times which result in the level of resource contention

among applications to change rapidly within seconds. Thus, solutions presented for

generic cloud applications have little or no usability in serverless computing environ-

ments in achieving satisfactory results [55]. For these reasons, here we extensively focus

on reviewing existing works utilizing RL solutions in the context of serverless comput-

ing environments. A few recent research works have demonstrated the applicability of

RL techniques for serverless resource management as discussed below.

In [66] the authors present a Q-learning based RL approach to determine the best

level of function request concurrency per container in order to achieve better perfor-

mance in terms of system throughput and mean function latency. A Proximal Policy

Optimization (PPO) algorithm is leveraged in [82] to dynamically manage resource con-

figurations of each function container. CPU and memory resources from idle functions
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Table 4.1: Summary of Literature Review.

Work Application Model Scheduling Technique Decision Parameters Request Concurrency VM

Single Function Optimization Objective Workload Overall System Single Multiple Heterogeneity

Function Chain Response Time Provider Cost Efficiency Awareness Awareness Request Requests

[122] ✓ Heuristic ✓ ✓

[123] ✓ Heuristic ✓ ✓

[64] ✓ Heuristic ✓ ✓

[67] ✓ ML ✓ ✓ ✓

[50] ✓ Heuristic ✓ ✓ ✓

[55] ✓ Heuristic ✓ ✓

[63] ✓ Heuristic ✓ ✓ ✓

[62] ✓ Heuristic ✓ ✓ ✓

[44] ✓ Heuristic ✓ ✓

[173] ✓ DRL ✓ ✓ ✓

[161] ✓ Heuristic ✓ ✓

[160] ✓ Heuristic ✓ ✓ ✓ ✓

[162] ✓ Heuristic ✓ ✓ ✓ ✓

[165] ✓ Heuristic ✓ ✓ ✓ ✓

[163] ✓ Heuristic ✓ ✓ ✓ ✓

Our proposed work ✓ ✓ DRL ✓ ✓ ✓ ✓ ✓ ✓

are harvested and allocated to under-provisioned functions, after assessing the cluster

state with each function request arrival. A Q-learning based approach is used in [171] to

minimize serverless function cold start frequency. A multi-agent Proximal Policy Opti-

mization (PPO) approach is studied in [172] for horizontal and vertical scaling of server-

less functions. In [173], a policy gradient algorithm is used to calculate a score function

for each server, in order to determine a suitable node for scheduling an individual func-

tion request. They focus only on reducing the completion time for each function and also

does not pay attention to workload dynamics. Except for this work, all other existing

works exploring RL techniques for serverless resource management focus on resource

scaling and not function scheduling.

Table 4.1 summarizes the reviewed works related specifically to serverless function

scheduling, in terms of the application model, technique used, optimization objective,

workload-awareness (awareness on request arrival patterns), overall system awareness

(complete awareness on the cluster VM resource usage metrics related to CPU, mem-

ory, network and disk I/O), request concurrency (ability to serve multiple concurrent

requests by a function instance) and VM heterogeneity.

Most of the existing works focus only on a specific aspect of the application or the

system, in the scheduling decision making. For example, some works consider the appli-

cation resource sensitivities in their scheduling decisions, but not the resource pressure

on the serverless platform. Also many existing researches follow simplified models of

single function applications and homogeneous VM clusters. Our work in contrast is fo-
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cused on gaining a comprehensive understanding on the status of the system and the

dynamic function workload parameters at any given time. This knowledge is then used

in determining the VM node most capable of hosting a function instance. We also strive

to achieve a balance between the two conflicting objectives of application performance

in terms of function response time, and provider side cost efficiency, which was gener-

ally seen to be ignored in prior works.

4.3 Time and Cost Optimized Function Scheduling

This section discusses the system model and formulate the problem of application schedul-

ing in a serverless computing environment with a flexible trade-off between response

time and provider cost optimization.

4.3.1 System Model

We formulate our system model around the system architecture of majority of the exist-

ing open-source serverless frameworks serving many enterprise users [155], [156], [157].

In this work, we consider a serverless application to be composed of either a single

or multiple functions. Multi function applications are composed of chained functions

whose execution sequences are determined by user input.

Figure 4.1 illustrates the high level system model used in this work. We consider a

cluster made up of heterogeneous VMs with varying compute and memory capacities

as the set of worker nodes. An instance of a single function is the smallest resource

unit of computing, that could be scheduled and managed, also referred to as a pod. A

pod consists of a single container holding the function code and its dependencies. We

consider at least a single instance of a function to be always present in the system. A

function instance can handle multiple concurrent requests received from end users.

Additional instances of the same function (replicas) are deployed to the cluster de-

pending on the request demand. This process is called function auto-scaling and is

handled by the function auto-scaler. Auto-scaling of a particular function is triggered

whenever the average CPU utilization level across all of its instances goes above a par-
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ticular set utilization threshold. The number of new replicas to be created is decided

based on the current and the desired CPU utilization levels. Each new function replica

needs to be scheduled on a suitable VM for meeting the request load for that function.

This is handled by the function scheduler, which is the focus of our work.

The load balancer is responsible for distributing the incoming function requests among

the existing function replicas. We consider that these requests are forwarded to the rel-

evant deployed function instances in a round robin manner. An instance of a particular

function could receive requests originating from multiple user applications, depending

on the nature of function chaining. Arrival times of user requests for each application

are stochastic and the cluster will have no prior knowledge of the workload arrival pat-

terns. This means that the request arrival rate for each function can vary randomly

within short periods of time. Depending on the nature of its operation, each function

instance would compete for different levels of resources in terms of CPU, memory, net-

work and disk I/O bandwidth. The actual resource consumption of a function instance

Figure 4.1: The system model of the serverless application scheduling environment.
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at a given time is determined by the total arrival rate of dependent requests and also

on the number of instances of the function present in the system at the time. Based on

this actual level of resource consumption of each function instance running on a node at

a time, the performance of user requests will vary depending on the extent of resource

pressure. Thus the placement decision of a scaled function needs to incorporate the

workload and the system resource usage dynamics, while also focusing on the resource

cost efficiency of the worker nodes in the cluster. The cluster controller coordinates the

actions of the function auto-scaler, scheduler, and the load balancer, whilst maintaining

communication with the worker pool.

4.3.2 Problem Formulation

Consider a set V = {v1, v2, ...., vN}, to be the set of available VMs in a serverless cluster

environment, where N is the total number of VMs and vi, 1 ≤ i ≤ N is the ith VM. Each

VM is defined by a two-dimensional vector representing the resource capacities in terms

of CPU and memory denoted as vc
i and vm

i respectively. Hence we have, vi =< vc
i , vm

i >.

The total CPU capacity in a VM is determined by the number of virtual cores (vCPUs)

and the memory capacity is measured in Mega Bytes (MBs). The available free CPU and

memory resources in VM, vi at time t is denoted by, vC
i (t) and vM

i (t) respectively.

Consider ε = {1, 2, 3, ..., Q} to be the index set of all the different functions deployed

in the cluster. Let Pk = {pk
1, pk

2, ...., pk
Mk
} be the sequence of pod (function instance)

scheduling requests received at the scheduler for the kth function, where 1 ≤ k ≤ Q

and Mk is the total number of scheduling requests. Also pk
j , 1 ≤ j ≤ Mk is the jth

request. Each pod request carries four attributes, i.e., pk
j =< pkc

j , pkm
j , pkt

j , rk
0 >. pkc

j and

pkm
j denote the requested minimum CPU and memory resources for the pod. pkt

j refers

to the pod request arrival time and rk
0 is the standard response time for a request of the

function k. Note that here pkc
j and pkm

j are set as soft resource requests which denote

the minimum guaranteed resources a pod of a particular function needs to be allocated

with, in order to handle a defined number of function requests at a time. In line with

the Docker CPU shares [149] policy for resource allocation to containers, these values

determine the proportion of CPU and memory each pod would get when faced with
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resource contention in a node. But when at ease without resource pressure, a pod is free

to use as much CPU and memory of the nodes, as it requires. The standard response

time for a function request, rk
0 is the average request response time obtained by running

a function pod in isolation on a dedicated VM.

When scheduling a function instance on a worker node, the following CPU and

memory resource demand and capacity constraints have to be considered.

pkc
j ≤ vC

i (t) (4.1)

pkm
j ≤ vM

i (t) (4.2)

i.e., the CPU and memory request of pod pk
j should not exceed the available (unal-

located) CPU and memory of the VM at time t. We identify a VM’s available CPU and

memory resource levels as follows:

vC
i (t) = vc

i −
Q

∑
k=1

Mk

∑
j=1

ukji(t)pkc
j (t) (4.3)

vM
i (t) = vm

i −
Q

∑
k=1

Mk

∑
j=1

ukji(t)pkm
j (t) (4.4)

where we define a binary variable ukji to indicate whether pod pk
j is currently placed

in vi or not, i.e., ∀i ∈ δ, we have;

ukji(t) =

1, if pod pk
j is deployed on vi at time t

0, otherwise
(4.5)

Even though pkc
j and pkm

j represent the resource constraints to be met when assigning

a pod to a host node, the actual resource consumption of a single function instance at

time t will depend on the number of concurrent requests that it accommodates at the

time. Request concurrency on a pod belonging to the kth function, pk
Con(t) is determined

by the request arrival rate kr(t) and the deployed number of replicas kn(t) at time t.

This value of request concurrency is an important parameter for modeling the level of
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resource contention on host nodes. Due to the round robin nature of request distribution

among replicas, we derive pk
Con(t) as follows:

pk
Con(t) =

kr(t)
kn(t)

(4.6)

Note that kr(t) above is a resultant of the cumulative arrival rate of requests of all

user applications consuming the kth function. The time t in the above expressions: 4.1,

4.2, 4.3, 4.4, 4.5 and 4.6 refers to the time that a pod is taken in for scheduling.

A primary objective of this work is to minimize the performance degradation of the

execution of user requests, caused by resource contention in multi-tenant host nodes.

We consider the overall application response time latency to be the metric most reflec-

tive of the performance of an application workload. Consider γ = {1, 2, 3, ..., A} to be

the index set of all the different applications receiving user requests and Lb, 1 ≤ b ≤ A

be the number of requests received by bth application. Rb
q is the total response time of the

constituent functions of the qth request of application b, 1 ≤ q ≤ Lb. Rb
q0 is the total stan-

dard response time of the constituent functions of the same. Thus we define the ratio of

these two values averaged over the total requests for a particular application as the rel-

ative application response time (RART). For a given workload, our target is to minimize

the sum of the RART across all the user applications over the duration of the work-

load. Considering RART instead of the response time itself, removes any bias in our

target objective due to varying execution times of serverless functions when working

in a multi-tenant environment. Accordingly we formulate the application performance

optimization objective as follows:

Minimize : Sum RART =
A

∑
b=1

1
Lb

Lb

∑
q=1

Rb
q

Rb
q0

(4.7)

When calculating Rb
q and Rb

q0 we consider only the sum of response times of the in-

dividual functions involved with the particular execution sequence of the application.

This is possible since chained functions simply act as triggers for the next function in se-

quence, and hence this process does not involve any communication delay. Note that we
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denote the total standard response time for an application’s request (Rb
q0) as a function

of q, since the relevant constituent functions will depend on the request input.

Further, we aim to minimize the provider expenses incurred for the execution of

serverless workloads. Since our deployed cluster is formed of heterogeneous VMs with

varying CPU and memory capacities, the cost incurred depends on the VM instance

pricing. Thus, the provider cost optimization objective could be expressed as follows:

Minimize : CostTotal =
N

∑
i=1

pricei × ti (4.8)

where pricei is the unit price of VM vi and ti is the total active time of the ith VM over

the duration of workload executions. A VM is considered to be in active mode when

it is serving requests of at least a single function. Thus our target is to release cluster

infrastructure after experiencing high utilization levels during their active life time. In

the rest of the chapter at times, we use the term resource efficiency to refer to the cost

optimization objective.

Overall, the focus of this study is to minimize both the performance degradation of

functions and to enable efficient utilization of VMs. These two are generally known to

be conflicting objectives. Therefore, we introduce a system parameter β ∈ [0, 1], which

is adjustable by users to prioritize each optimization objective as required. Accordingly,

we present our target objectives as follows:

Minimize : β× Sum RART + (1− β)× CostTotal (4.9)

Table 4.2 summarizes the important notations and descriptions presented in this sec-

tion.

4.4 Deep Reinforcement Learning Model

In this section we first introduce the RL paradigm and discuss the application of RL in

the context of the serverless function scheduling problem discussed above. Then we
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Table 4.2: Definition of Symbols.

Symbol Definition
v A VM or compute node available for function execution
N Total number of available VMs
δ Index set of all the available VMs, δ = {1, 2, ..., N}
vc

i Total CPU capacity of a VM, i ∈ δ
vm

i Total memory capacity of a VM, i ∈ δ

vC
i Available CPU in a VM, i ∈ δ

vM
i Available memory in a VM, i ∈ δ

ε Index set of different functions, ε = {1, 2, ..., Q}
Mk Total number of instance scheduling requests for a

function, k ∈ ε

pk
j jth instance scheduling request of function pk, k ∈ ε

pkc
j Requested minimum CPU for the function instance, pk

j
pkm

j Requested minimum memory for the function instance, pk
j

pkt
j Arrival time of the function instance, pk

j for scheduling
pk

Con Request concurrency on a pod belonging to function
pk, k ∈ ε

kr Request arrival rate for a function, k ∈ ε
kn Deployed number of replicas for a function, k ∈ ε

rk
0 Standard response time for a function request, k ∈ ε

γ Index set of different applications, γ = {1, 2, ..., A}
Lb Number of user requests received by an application, b ∈ γ

Rb
q Total response time of the constituent functions of the

qth request of an application, b ∈ γ

Rb
q0 Total standard response time of the constituent functions

of the qth request of an application, b ∈ γ
pricei Unit price of VM, vi
ti Total active time of VM, vi

elaborate on the specific RL techniques we have incorporated in this work.

4.4.1 Application of RL for Function Scheduling

RL is a form of machine learning, which is quite distinct from the traditional machine

learning techniques identified as supervised and unsupervised learning. The primary

goal of supervised and unsupervised learning is to find and comprehend patterns or a

hidden structure in collections of labeled or unlabeled training data. In contrast, a RL

agent learns to map actions in the action space, to different states from the environment,

in the best way possible in order to maximize a reward signal over time. During the

learning process, the agent interacts with the environment and at each time step, takes

an action based on the current policy π(at|st) and in turn receives a reward rt+1. st is the
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current state of the environment and at is the action taken.

In this chapter, we apply the concepts of RL to solve the problem of scheduling func-

tion instances in a serverless computing environment with dynamic incoming work-

loads. In the context of our problem, the function scheduler acts as the RL agent and

each time-step of our agent training model corresponds to scheduling a function in-

stance from the function scheduling request queue. The cluster environment composed

of the worker nodes form the environment with which the agent interacts. The state is

a combination of all the resource usage statistics of each worker node in the cluster and

the workload nature of the function instance to be scheduled. The set of VMs form the

action space from which the agent chooses a suitable action. The reward that the agent

receives for each action is based on the scheduling objectives of application performance

and provider cost optimization. The task assigned to the scheduling agent is to choose

the best VM to schedule a function instance while satisfying the basic resource demand

and capacity constraints of the system. Below we define the key components of our RL

model.

State Space: The state metrics that are considered in the formation of the state space

st at time t with function instance pk
j waiting to be scheduled, are as follows:

1. The actual CPU, memory, network (sum of network bytes received and transmit-

ted) and disk I/O (sum of disk read and write bytes) bandwidth utilization of each of

the nodes in the cluster at time t

2. The CPU and memory capacities of each of the nodes in the cluster

3. Unit price of each cluster node

4. The total of minimum CPU and memory requested by function instances running

in each node at time t

5. The active status of each node. A node is considered to be active at time t if it

contains instances of functions for which user requests are received at the cluster at the

time

6. The number of replicas of function of type pk already deployed on each node at

time t

7. The minimum CPU and memory requested by the function instance, pk
j

8. Sum of network bytes received and transmitted during a single request execution
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of kth function on average

9. Sum of disk read and write bytes during a single request execution of kth function

on average

10. Request concurrency on each function instance of type pk calculated using Equa-

tion 4.6

11. Relative function response time (RFRT) of function of type pk in the cluster at time

t. This is the ratio between the actual and standard response time (rk
0) for the function

12. The request arrival rates for each different function deployed in the cluster at

time t

Action space: The action space represents the index set of the VMs available for

scheduling the function instance.

Reward: As per the optimization objectives discussed in section 4.3, we define the

reward rt+1 for each action at as follows:

1. R1: The sum of RFRT calculated across all the deployed functions in the cluster,

just before implementation of the next action, at+1. This is a good measure of our perfor-

mance optimization objective of RART in Equation 4.7, since application response time

is directly dependent on that of its constituent functions. Also, it presents a reward more

identifiable with each function scheduling action of the DRL agent.

2. R2: The difference in the cumulative cost of cluster VM usage just before the

implementation of the action, at and just before the implementation of the next action,

at+1, calculated as in Equation 4.8.

For training purposes we take normalized values of both these rewards at each time

step so that the scale of each parameter does not bias the training process. The minimum

and maximum values for normalizing are arrived at by observing samples across time

steps in multiple episodes. Accordingly, the reward awarded to the agent after each

scheduling decision is:

Reward = −(β× (
R1 − R1min

R1max − R1min
) + (1− β)× (

R2 − R2min

R2max − Rmin
)) (4.10)

The negative sign is required to encourage minimization of both the function re-

sponse time and VM usage cost.
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4.4.2 Proposed DRL Technique for Function Scheduling

We adapt a variation of the DRL based algorithm, DQN to solve the problem of schedul-

ing function instances in the proposed RL environment.

Background: The objective of a reinforcement learning agent is to find the optimal

policy, which is the policy that maximizes the expected cumulative reward over time.

E[
∞

∑
t=0

γtrt] = E[r0 + γr1 + γ2r2 + γ3r3 + ...] (4.11)

Here, γ is the discounting factor, which determines the significance of future re-

wards. r is the reward received at each step by following the policy π(at|st).

Q-Learning: Q-Learning is a temporary difference algorithm in RL, and it works by

assessing the ’Quality’, or how good a particular action is, with regard to gaining future

rewards. This is represented by means of the Q-function for a state-action pair, Q(s, a).

The optimal Q-function, Q∗(s, a) denotes the maximum reward that can be obtained

by following the optimal policy at each step. The Bellman optimality equation for the

optimal Q-function is defined as follows:

Q∗(s, a) = E[r + γ max
a′

Q∗(s′, a′)] (4.12)

Deep Q Learning (DQN): Due to the high-dimensional nature of the environment

modelled in our work, it is infeasible to incorporate tabular Q-learning solutions. This

is owing to the computational and space restrictions associated with maintaining the

data and also the difficulty in exploring all the state-action pairs by the agent during

the training process. We can overcome these shortcomings by training a neural network

and using it as a function approximator to determine the Q values.

Accordingly, we parameterize our Q function by an adjustable parameter θ, i.e.,

Q(s, a; θ) ≈ Q∗(s, a). We then feed the environmental state to the neural network, which

in turn returns the Q value of all the possible actions for that state. Subsequently, the

action with the maximum Q-value is selected by the agent.

Thus in DQN, the objective is to predict the Q value, which is basically a regression

task. Mean Squared Error (MSE) is generally used as the loss function for performing

regression.
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Algorithm 3 DQN Based Function Scheduling Algorithm

1: Initialize the main network parameter θ with random weights
2: Initialize the target network parameter θ′ by copying the weights from the main

network
3: Initialize the N-step buffer D′ and replay buffer D
4: Initialize the training parameters ϵ, α, γ
5: for episode = 1 to E do
6: Reset the environment
7: for step = 1 to T do
8: Observe the state s
9: Select an action a using the ϵ-greedy policy

10: Execute the action a, move to the next state s′ and observe the reward r
11: Store the transition (s, a, r, s′) in the buffer D′

12: if size of D′ = N then
13: Translate and move the N-step transition data to D
14: Randomly sample a mini-batch of K transitions from D
15: Compute the loss L(θ)
16: Update the main network:
17: θ = θ − α∇θ L(θ)
18: Update the target network every P steps

return

L(θ) =
1
K

K

∑
i=1

(yi − ŷi)
2 (4.13)

where y is the target value, ŷ is the predicted value and K is the number of training

samples involved. The target value is the optimum Q value. Accordingly,

y = r + γ max
a′

Q∗(s′, a′)

ŷ = Qθ(s′, a′)

As per the dynamic nature of our function scheduling environment and unprece-

dented delays in action executions at each time step in a practical training environment,

we observed that the straightforward application of vanilla DQN algorithm did not

work well for our problem. Hence we used its variant, multi-step DQN to train the

agent. This involves a multi-step buffer which considers longer trajectories in storing
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the state transitions in memory, resulting in a more effective and efficient learning pro-

cess for the agent. In contrast to a single step buffer, a multi-step buffer is known to

give the agent a better view of the future rewards and also helps to propagate newly

observed rewards to earlier visited states faster [174]. This technique is summarized in

Algorithm 3.

The scheduling environment is reset at the beginning of each episode (line 6). Each

time step corresponds to scheduling a function instance from the pod queue. At the start

of each step, the environmental state is retrieved and the agent selects an action (line 9).

After performing the selected action and receiving the reward, we store the agent’s ex-

perience in memory. Due to the multi-step nature, every transition is first stored in a

temporary buffer D’ and then the most recent N transitions are summarized and moved

to the replay buffer D (lines 11-13). Once the experiences are stored, we randomly sam-

ple a mini-batch of transitions from the buffer and train the network. The neural network

training is done by finding the optimal network parameter θ which minimizes the loss

function. Accordingly, we compute the gradient of our loss function∇θ L(θ) and update

our network parameter θ (lines 14-18).

If we use the same neural network to calculate the target Q value of the next state-

action pair, and also the predicted Q values, this causes instability in the loss function

and the network learns poorly. To avoid this issue, we use a separate neural network for

calculating the target values, keep its network parameter static for a while and periodi-

cally update its value referring to the main network.

Algorithm 4 presents the specific steps of the agent’s behavior during online schedul-

ing of function instances in the context of our modelled environment.

4.5 DRL Agent training Environment Design and Implementa-
tion

We investigate the problem space of time and cost optimized scheduling of serverless

functions by designing and implementing an experimental framework using the server-

less framework Kubeless, deployed on a Kubernetes cluster. From among the many

existing open-source frameworks, we chose Kubeless for our work since it works with
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Algorithm 4 Online Scheduling

1: upon event Submission of a new poddo
2: Enqueue pod in pod-waiting queue
3: while P dood-waiting queue is not empty
4: Dequeue a pod from queue
5: Retrieve current cluster state info
6: Retrieve function resource requirements and behavioral status
7: Compose the state space
8: Action a = Agent(state)
9: Create pod in the selected worker node

return

minimal changes to the underlying Kubernetes core components, and thus makes our

entire setup compatible for easy resuse with any other framework utilizing Kubernetes

for container orchestration, such as OpenFaas [155], Knative [156], Fission [157]. In this

section we discuss the fundamental architectural setup of the designed system.

4.5.1 System Architecture

Figure 4.2 presents the overall architecture of our system. We have deployed this frame-

work using 23 VM nodes on the Melbourne Research Cloud [175] which is part of the

ARDC Nectar Research Cloud, the national research cloud of Australia [176]. Kuber-

netes is initially deployed on the cluster nodes, on top of which we deploy the serverless

framework, Kubeless. As illustrated in the figure, our setup consists primarily of a con-

trol cluster, a worker cluster and the DRL agent which communicates with the control

cluster.

The control cluster is made up of two nodes, each with 4 vCPUs and 16GB of mem-

ory. One control cluster node contains all the core components of the Kubernetes control

plane, which are responsible for the creation, management and auto-scaling of pods in a

basic Kubernetes cluster. The controller component of the Kubeless framework resides

on the second control plane node. It communicates with the Kubernetes controller man-

ager in order to handle the function deployment, scheduling and auto-scaling processes.

It also acts as the gateway for new application deployments and incoming function re-

quests. Kubeless uses a Kubernetes Custom Resource Definition (CRD) to be able to
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Figure 4.2: The proposed system architecture of the practical testbed for training and
evaluating the DRL agent.

create functions as custom Kubernetes resources. Given the application logic of a func-

tion via the CLI, the Kubeless controller coordinates with Kubernetes’ components and

automatically manages the deployment of an instance of the function in the cluster, as a

pod.

We have also deployed Apache CouchDB [177] database as a cluster on the control

plane nodes for persisting function data as required. CouchDB is an open source NoSQL

database with fast querying and scaling capabilities which suit the requirements of a

serverless environment. The database consumes the disk space (30GB each) of the con-

trol plane nodes. The Prometheus metrics monitoring tool [178] is installed in our cluster

setup, and the Prometheus server is deployed on the second node along with the Kube-
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less components. Prometheus periodically scrapes the configured set of metrics from the

cluster and aggregates them on the Prometheus server. We have configured it to scrape

system metrics associated with resource usage levels of each node and pod. We also

gather metrics related to the incoming function request workloads such as the request

arrival rates and request execution times, by observing the Kubeless controller gateway

and the Kubernetes core components. We have also installed Apache JMeter [179], a

load testing tool, in order to simulate a large number of user requests to functions as re-

quired. This tool too resides on the control cluster and is able to generate HTTP requests

to multiple destinations simultaneously, at a given rate for a given time duration. At

the start of each episode, a function request workload is created and sent to the worker

cluster using this tool.

The worker cluster consists of 20 VM instances, each with varying number of vC-

PUs and memory capacities, described further under experimental settings. As per the

nodes selected by the agent, function instances are deployed on worker nodes. Incom-

ing requests for a function are forwarded to the relevant deployed function instances

in a round robin manner as discussed under the system model. The response for each

request is received at the control cluster. Each worker node also exposes scraped metrics

to the Prometheus server.

The DRL agent which executes Algorithm 3 in our framework, is implemented in

Python using Keras [32] and Tensorflow2 [31], on a VM with 8 vCPUs and 32 GB of

memory. We have replaced the default Kubernetes pod scheduler with our custom

scheduler which is incorporated into the agent’s implementation. The custom sched-

uler uses a python client for the Kubernetes API, which watches for new pod requests.

During each time step, the agent retrieves the state and reward metrics composed of the

system and workload characteristics from the Prometheus server via HTTP APIs. The

agent’s selected action is communicated to the control cluster for implementation. The

agent’s process flow is explained in detail in the next section.
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Figure 4.3: The communication process flow of the DRL agent with the cluster during
the training phase.

4.5.2 DRL Agent’s Process Flow

At the start of an episode, a concurrent request workload to multiple applications is

created and sent to the worker cluster using the JMeter tool. These requests are served

by the existing instances of the function in a round-robin manner. Once the auto-scaler

triggers scaling up of function instances, the agent’s process flow commences. Figure

4.3 illustrates the sequence of actions that takes place at each subsequent time step. A

new time step for the agent is triggered once a new pod scheduling request is seen by

the Kubernetes watch API. The monitoring tool periodically scrapes and stores cluster

metrics. At each new time step, the agent crawls the state metrics from the Prometheus

server via HTTP APIs. Next a node is selected for scheduling the pod as per the agent’s

logic, and the control cluster is notified of the decision. Once the pod is scheduled on

the selected node, we wait for a few seconds for the environment to react to the imple-

mentation done. Next the agent retrieves the reward metrics and moves on to the next

pod scheduling request.
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Table 4.3: Worker Cluster Resource Details.

Instance Type vCPU cores Memory(GB) Quantity Price(AUD/hr)

t4g.large 2 8 6 0.086

t4g.xlarge 4 16 10 0.172

t4g.2xlarge 8 32 4 0.344

4.6 Performance Evaluation

In this section we discuss the evaluation process of our proposed DRL framework for

scheduling serverless function instances. We compare our solution with several state-

of-the-art baseline algorithms under different scenarios.

4.6.1 Experimental Settings

Cluster Setup

We use the cluster setup described in section 5 for both the training and evaluation ex-

periments of our DRL model. As the set of worker nodes, we have used 20 VM instances

with various pricing models, in line with the AWS EC2 instance pricing (in Australia)

[180]. This enables us to recreate a real-life public cloud setting in order to train our

agents to optimize provider cost. We conduct experiments under two cluster sizes of

10 VMs and 20 VMs in order to test model scalability. Table 4.3 summarizes the over-

all resource details of the worker cluster. The 10 VM cluster is composed of 2, 6 and 2

VMs with 2, 4 and 8 vCPUs respectively. We maintain the scrape interval of monitoring

metrics at two seconds, in order to maintain the accuracy and relevance of the stored

metrics.
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Workload Specifications

Serverless Applications: We refer to the ServiBench [159] and FunctionBench [47] bench-

marking suites and choose 12 different single and multi-function real-world serverless

applications and use them in all our experiments. The selected applications have a vary-

ing demand on CPU, memory, network and disk I/O bandwidth resources and thus dif-

ferent sensitivities to contention on node resources. After the deployment of an instance

of each new function of an application in the cluster for the first time, we send multiple

requests to the function in isolation on a VM to determine the average response time

for a single request when not subject to resource pressure. This is used as the standard

response time r0, for the function in model training and for application performance

evaluation. Further, we obtain approximate values for pkc
j , pkm

j introduced in section

3 and the network and disk I/O bandwidth consumed by a single request using this

profiling step, to be used as reference values in deriving state parameters during agent

training. Table 4.4 presents details on the nature of these applications.

Workload Creation: In addition to the inherent resource sensitivities of these appli-

cations, we also use function inputs to create additional variations of resource usage by

them. Further, applications with chained functions would have varied execution paths

based on the input values. We leverage the publicly available function traces from Mi-

crosoft Azure’s serverless platform [46] to derive average function response times and

request arrival rates when formulating the workloads for both training and evaluation

of the model. Since Azure functions are already grouped in to applications, for multi-

function applications we filter and use traces of matching applications.

The input parameters to individual functions are varied as required to attain the ex-

ecution times extracted from these traces. For the 10 and 20 VM cluster scenarios, we

maintain the request arrival rates at 5-20 and 5-60 requests per second and the maximum

pod replicas for scaling at 4 and 6 respectively, for each function. Further, we configure

the standard response time r0 for a function request to be below one second, pod CPU re-

quirements between 0.05-0.5 vCPUs and pod memory requirements within 50-500 MBs.

These parameters were chosen so as to create enough request traffic in each of the VM

cluster scenarios, while not overloading the system. We combine Azure Function traces

spanning over two days and filter function traces that fall within these specified ranges
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of the function response time and request arrival rate parameters. We use the average

function execution times from the traces as the function response times for our experi-

ments. This could be done without causing any inaccuracy, since we have observed that

the instance creation time for all our applications is quite similar and thus the evaluation

of relative application performance is not affected by this delay. The request arrival rates

are obtained by translating the per day total invocations for a function in the data set to

a per second value. Accordingly, multiple variations of the selected benchmark applica-

tions are created by adjusting their function input values and request loads are created.

A single episode consists of a set of different applications receiving simultaneous re-

quests at a time for a particular duration, and each application would have requests

arriving at different arrival rates.

The request load is generated in real time by the JMeter HTTP load generator. The

R1min, R1max, R2min and R2max values for training the DRL models, are determined after

Table 4.4: Serverless Application Details.

Name Resource Sensitivity # of Functions

CPU Memory Disk I/O Network

Primary High High - - 1

Float High High - - 1

Matrix Multiplication High High - - 1

Linpack High High - - 1

Load low low - High 1

Dd High Medium High - 1

Gzip-compression High Medium High - 1

Thumbnail Generator Low Medium Low Low 2

Facial Recognition Medium Medium Low Low 5

Todo API Low Low Low Low 5

Image Processing Medium Medium Low Low 2

Video Processing High High Medium High 2
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running the created workloads multiple times and recording the calculated R1 and R2

values at each time step.

Hyper-parameter Configurations

Table 4.5 highlights the hyper-parameters used in training the DRL agents. All the pa-

rameters for both the cluster scenarios were decided on a trial and error basis. The size

of the N-step buffer was chosen so as to improve the agent’s convergence speed without

breaking the training progress. We use 600 function traces in total, derived from Azure

Functions data set, in creating the workloads required for model training. The number

of neurons in each hidden layer in the neural network for the 10 VM and 20 VM cluster

scenarios are 100 and 200 respectively.

4.6.2 Performance Metrics

We use the below metrics to evaluate the performance of our model.

Relative Application Response Time ratio: The sum of the relative response times of

all the user applications during the span of the experiment, calculated using Equation

Table 4.5: Hyper-parameters Used for DRL Model Training.

Parameter Value
General
Discount factor (γ) 0.95
Mini-batch size 64
Replay buffer size 2000
N-step buffer size 5
Target network update rate 100
Replay memory size to start training 100
Epsilon max (ϵmax) 1
Epsilon min (ϵmin) 0.04
Epsilon decay factor at each time step 0.999
Neural network parameters
Learning rate (α) 0.001
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 100/200
Optimizer Adam
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4.7. At the end of a workload execution, we use the request response times recorded in

the JMeter test report for each function, to arrive at this value.

Average Number of Nodes: The average number of VMs actively involved in request

execution during a single episode. This is calculated by retrieving the number of active

VMs in the cluster every two seconds and taking the average over the total duration of

the workload.

VM Usage Cost: The total cost incurred for keeping the VMs active during a scheduling

episode. This is calculated as shown in Equation 4.8. We use the active nodes parameter

together with the instance pricing given in table 3 to arrive at this value.

Throughput: The average number of successfully served requests per second during an

episode.

4.6.3 Baselines Schedulers

We compare the performance of our DRL based scheduling framework with six baseline

algorithms.

Round Robin (RR): Each incoming function instance is scheduled in a different VM

with sufficient resources, in a cyclic manner.

Bin packing First-Fit (BPFF): This is a greedy scheduler similar to AWS Lambda’s strat-

egy of packing function invocations to improve VM resource utilization [39]. Nodes are

numbered from 1-12 and pod requests are directed to the first VM which satisfies the

minimum resource requirements.

Static Time Cost Aware (STCA): A scheduler which uses state parameters derived by

the DRL agent in a static manner to select a VM. A separate rank and accordingly a

score is given to each VM based on each parameter. Then the node with the highest

or lowest overall score would be selected for function placement, based on the target

objective. The state parameters taken into consideration are, CPU, memory, network

and disk I/O utilization of each node, ratio of CPU and memory requests of running

functions against their capacity in each node and the active status of the nodes. Based

on the nature of these parameters choosing a VM with lower overall score (STCA-L)

resembles better function performance while a higher score (STCA-H) promotes higher
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resource efficiency. This is an approach often followed in cluster scheduling scenarios to

help resolve congestion [181].

Dynamic Time Cost Aware (DTCA): A scheduler similar to STCA but uses state pa-

rameters derived by the DRL agent in a dynamic manner to select a VM. Ranking and

scoring of VMs is done as in STCA but the decision of choosing the highest or lowest

overall score is taken based on the Relative Function Response Time (RFRT) and pk
con

calculated using Equation 4.6, at the time of scheduling the function instance. If either

RFRT or pk
con is higher than the average value of all the deployed functions, we choose

the VM with the lowest overall score (DTCA-L) and else, the highest one (DTCA-H).

LZ-based: We adapt ENSURE’s [63] latency zone based request scheduling policy for

our instance scheduling problem. Accordingly, if RFRT of the function in consideration

is lower than a given latency threshold (we consider a value of 1.25), the cluster is con-

sidered to be in a safe/prewarning zone (with regard to that function) and the maximum

number of replicas of that function scheduled on a VM is limited to the number of vCPU

cores it has. If RFRT is higher than that, the cluster is pushed to a warning zone and only

a maximum of a single replica of that function is scheduled on each VM.

KC: We use the K-means ++ unsupervised machine learning algorithm [182] to derive a

cluster interpretation of function instances based on their resource consumption. Dur-

ing scheduling, we avoid co-locating those belonging to the same cluster on a VM. We

collect the CPU, memory, network and disk I/O resource utilization metrics of func-

tion instances of the selected applications under varying request arrival rates and input

parameters, normalize them and use this data to perform clustering. The number of

clusters is determined using the elbow method.

4.6.4 Convergence of the DRL Model

For each cluster size, we train the DRL model under five scenarios defined by the pa-

rameter β (as given in Equation 4.9), which identifies the level of trade-off between the

two optimization objectives. A higher value of β indicates that the agent is incentivized

more for improving the function response time, while a lower value indicates increased

reward for the agent for optimizing VM usage cost. Accordingly, β = 1 implies that
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(a) Reward Convergence. (b) RART Ratio.

(c) Total VM Cost. (d) Average Number of Nodes.

Figure 4.4: Convergence process of the trained DRL models in the 10 VM cluster in terms
of reward, RART ratio, total VM cost, and the average node number.

the awarded reward is solely dependent on function response time while the focus is

only on improving VM cost efficiency when β = 0. Figures 4.4 and 4.5 illustrate the

step by step progress achieved by the DRL agents under each scenario, in the process of

learning to take actions which lead to the accomplishment of the desired objectives. The

training progress is demonstrated in terms of episodic reward, sum of relative applica-

tion response time ratio, VM usage cost and the average number of nodes used during

an episode. Note that in each of these graphs we have plotted the average value over

20 iterations for ease of observation of the training progress. We train the model for five

times under each scenario using the hyper-parameters stated in Table 5 and select the

model that gives the best results for conducting the evaluation experiments.
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(a) Reward Convergence. (b) RART Ratio.

(c) Total VM Cost. (d) Average Number of Nodes.

Figure 4.5: Convergence process of the trained DRL models in the 20 VM cluster in terms
of reward, RART ratio, total VM cost, and the average node number.

Figures 4.4(a) and 4.5(a) show how the total reward captured during an episode im-

proves and gradually converges under varying β parameters. In the 10 VM cluster, when

β = 1, the model converged around the 600th episode, and the training took about 60

hours. In the 20 VM cluster, the same model converged around the 800th episode, requir-

ing approximately 80 hours of training due to the expanded state space. Since here the

full focus is on improving the function response time, we see a steady decrease in RART

in the corresponding graphs in 4.4(b) and 4.5(b) as training progresses. In contrast, in the

corresponding graphs in 4.4(c), 4.5(c) and 4.4(d), 4.5(d) we see a gradual increase in the

VM usage cost and the average number of nodes used. This is because the agent learns

through experience that using more nodes with higher resource availability to host dif-
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ferent function instances leads to lesser resource congestion. This results in higher VM

costs with the partial usage of nodes with higher resource capacities and hourly charges.

Similarly, in the β = 0 scenario we observe a steady reduction in VM usage costs and

the number of nodes (Figures 4.4(c), 4.5(c) and 4.4(d)),4.5(d)) while the RART deterio-

rates visibly (Figures 4.4(b) and 4.5(b)). It is also seen that during this scenario in the

10 VM cluster, the model convergence is relatively faster, with reward getting stabilized

around the 300th episode which required about 30 hours of training. This is because, the

cost efficiency objective is easily achieved by primarily learning to use already active

nodes more frequently. In comparison, finding the best policy to improve application

performance requires the agent to learn the different congestion levels created by the

co-location of different functions with dynamic workload patterns, and also the effects

of various environmental parameters. The three models focused on improving both the

target objectives (β = 0.75, β = 0.5, β = 0.25) too converge around the 600th episode

for the 10 VM scenario while the 20 VM cluster requires training for approximately 800

iterations for the same models. Since these two are conflicting objectives, giving a higher

significance to one, impedes the training progress of the other as seen in the convergence

graphs for these scenarios in 4.4(b), 4.4(c), 4.4(d) and 4.5(b), 4.5(c), 4.5(d). When β = 0.75,

a significant improvement is seen in RART at convergence, while the improvement in

VM cost is marginal. In contrast, the β = 0.25 scenarios record a notable improvement in

VM cost, while the corresponding optimization of response time is minimal. The models

converge with average improvements in both the parameters when β = 0.5.

4.6.5 Analysis of Model Performance on the Evaluation Data Sets

The performance evaluation of the trained models under the two clusters of VMs, is con-

ducted across different request traffic levels. We create dynamic workloads for model

evaluation by using 900 function traces from Azure Functions data set, extracted using

the same mechanism as described in section 4.6.1. These traces are used to create 150

different workloads in total with 50 workloads each having request arrival rates ranging

between 5-20, 20-40 and 40-60 requests per second respectively. The 10 VM cluster is

evaluated using the set of workloads with arrival rates between 5-20, while the 20 VM
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(a) Sum of Relative Application Response Time
(RART) Ratio.

(b) Throughput.

(c) Total VM Cost. (d) Average Number of Nodes.

Figure 4.6: Comparison of the RART ratio, throughput, total VM cost and the average
number of used nodes in the system during an episode, by the DRL model and the
baseline algorithms in the 10 VM cluster.

cluster is tested with all three sets of workloads. Each individual workload comprises of

concurrent requests arriving for multiple applications (comprising of single or multiple

functions), at varying arrival rates (ranging between 5-60 requests/second overall), for a

duration of 5 minutes. All the evaluation parameters in Figures 4.6 and 4.7 represent av-

eraged values over runs of the 50 different workloads under each scenario. The separate
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analyses of model performance under the two cluster setups demonstrate the scalability

and robustness of the proposed model across expanded state parameters. Overall, the

performance of our proposed model in comparison with the baseline algorithms, is dis-

cussed under the two optimization objectives of application response time and resource

cost efficiency.

Evaluation of application response time

We discuss application response time performance in association with the RART ratio

and system throughput.

10 VM Cluster: Figure 4.6(a) demonstrates the comparison of the performance of our

trained models with the baselines in terms of the total RART ratio. The DQN (β = 1)

model shows the best performance in terms of application performance among all the

algorithms, with a 24% improvement in RART ratio over the next best performing algo-

rithm STCA-L. This is also reflected in the corresponding throughput graphs in Figure

4.6(b). Under the β = 1 scenario, the agent is constantly incentivized to avoid perfor-

mance degradation caused by resource pressure. Thus it has developed a superior un-

derstanding of the congestion levels caused by each function instance on the host node

at different request traffic levels and various node resource conditions. This has led to

establishing the best policy to choose the host node with minimum contention.

As expected, our DQN (β = 0) model performs worst in terms of response time

since the agent is trained to fully focus on improving resource cost efficiency and thus

largely compromises on application performance. This is demonstrated by the RART

ratio in Figure 4.6(a) and the throughput graph in Figure 4.6(b). BPFF and STCA-H al-

gorithms too show poor performance in terms of response time and STCA-H has the

lowest system throughput next to DQN (β = 0). Both these methods tend to place new

function instances on VMs that are most congested, causing increased competition for

node resources. RR algorithm performs relatively better as each consecutive function

instance is spread among the cluster VMs. But since this only leads to randomly balanc-

ing the load among the nodes without an understanding on specific function or system
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characteristics, the achieved results are sub-optimal. KC shows similar performance to

RR. At lower load levels, we observed that most data points in the K-means clustered

data based on resource usage, belonged to the same cluster, thus resulting in a RR like

function scheduling pattern. The STCA-L algorithm depends on static state parameters

of the system in taking scheduling decisions. Although the decisions made under this

method leads to relatively good results, this technique is not competitive enough to find

the most optimum solution since it possesses no overall understanding on the complex

system dynamics. The performance of DTCA and LZ-based strategies are mostly com-

parable with that of DQN(β = 0.75, β = 0.5, β = 0.25) models since they try to balance

both the objectives. Out of these DQN(β = 0.75) outperforms the rest but is closely fol-

lowed by DTCA and LZ-based since the response time delays still get priority in their

scheduling decisions whereas DQN(β = 0.5) is incentivized to optimize both equally.

20 VM Cluster: Figure 4.7 exhibits the relative performance of our trained models on

the 20 VM cluster in comparison to baseline algorithms. On this cluster we conduct

experiments under three levels of request arrival rates to applications as shown. As the

user request rates increase, an overall increase in resource congestion and as a result, a

degradation of application response times is seen (Figure 4.7(a)).

At the lowest request traffic level of 5-20 req/sec, the cluster is able to serve all the

requests with minimum pressure on its resources. In this situation when the cluster is

relatively relaxed, a complex understanding on the underlying application characteris-

tics seem to provide only minimal added benefits. As a result, the STCA-L algorithm

gives the best performance in terms of RART, while the DQN (β = 1) model closely

follows. DTCA and RR algorithms show similar performance to DQN (β = 0.75) and

DQN (β = 0.5) models, followed by KC. LZ-based algorithm shows poor performance

since a fixed latency threshold for applications regardless of the request arrival rates, is

not able to make good decisions under dynamic load conditions. DQN (β = 0) model

shows worst performance since it only focuses on resource cost efficiency. The through-

put graph for the 5-20 request range too reflect the RART performance, but since the

request arrivals are sparse, the difference seen among the scheduling algorithms is less

significant.
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With the increase in the load level at 20-40 req/sec, DQN (β = 1) model shows a

17% improvement in RART over the next best performing algorithm STCA-L. Since the

DQN agent is trained to identify application resource characteristics at a given load level

and the cluster status, it is able to avoid resource contention on host nodes in the most

optimum way. STCA-L algorithm performs well due to its inherent tendency to choose

host nodes with least request traffic. LZ-based algorithm too performs fairly well in this

scenario since with the increased load level, the considered latency threshold has been

able to make comparatively better decisions. Results indicate that scheduling functions

(a) Sum of Relative Application Response Time
(RART) Ratio.

(b) Throughput.

(c) Total VM Cost. (d) Average Number of Nodes.

Figure 4.7: Comparison of the RART ratio, throughput, total VM cost and the average
number of used nodes in the system during an episode, by the DRL model and the
baseline algorithms in the 20 VM cluster.

based on identified cluster patterns in the KC algorithm is not granular or robust

enough to understand system reactions to resource pressure well, and hence is not able
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to manage the resulting impact on application performance. DTCA algorithm suffers

from poor decision making when the overall cluster resource pressure increases, due to

its dependency on average cluster RFRT and request concurrency. It is also observed

that with increased traffic levels, DQN (β = 0.75), (β = 0.5) and DQN (β = 0.25) models

which aim at balancing the dual objectives, show relatively distinct performances with

regard to application performance. Throughput graphs for this scenario too show more

significant improvements in line with the response time performance, compared to the

previously discussed low load level scenario.

At the highest level of request rates, DQN (β = 1) model demonstrates a 20% im-

provement in RFRT compared to STCA-L. The response time behavior of the other base-

line scheduling algorithms under this scenario is mostly similar to that of the 20-40 load

level.

Evaluation of resource cost efficiency

The efficiency in resource usage is primarily measured in terms of the total VM usage

cost.

10 VM Cluster: Figure 4.6(c) illustrates the performance of our trained models when

compared with the baseline solutions in terms of resource cost. When β = 0, the DQN

agent is encouraged solely to use low cost resources and maintain higher utilization

levels of the used resources, which results in overall lower VM usage cost. The derived

policy from training the agent, tries to strategically place new functions to already used,

low cost VMs as much as possible. The results from DQN (β = 0.25) model too closely

resonates with that of DQN (β = 0), and together they show the best performance. DQN

(β = 0) model results in a 11% and 15% lesser VM usage cost compared to the next best

performing non-DRL techniques of STCA-H and BPFF. The lower resource consumption

is also reflected in the average number of used VMs as shown in Figure 4.6(d), where

the average number of used VMs for DQN (β = 0) is among the lowest.

STCA-L algorithm shows the highest VM usage cost and also rank high in terms

of the average number of nodes used, which reflect worst performance. That is be-
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cause its strategy is to use the system parameters to determine high capacity nodes with

least number of running functions and minimum resource utilization, and use them for

function scheduling. This leads to more cluster nodes often operating drastically below

their capacities. The next highest resource cost is seen in RR, KC and in DQN (β = 1)

algorithms. RR algorithm understandably results in low resource efficiency since it is

not sensitive to any variations in incoming workloads or cluster resource conditions.

It simply schedules functions on VMs cyclically, and this inadvertently results in most

VMs being active throughout the experiment. KC algorithm behaves mostly in a similar

manner due to irregularities in cluster formations at low load levels. DQN (β = 1) on

the other hand is trained to focus fully on avoiding resource contention among func-

tions and thus consumes more resources in the process. BPFF naturally tries to pack as

many functions as possible to one VM before moving on to the next one, while STCA-H

manoeuvres system parameters to find low cost VMs that already have a high utiliza-

tion. The result is lower VM usage cost overall since this minimizes under-utilization

of VMs, specially with high capacities. STCA-H and BPFF also result in the lowest av-

erage number of VMs being used, even lower than that of DQN (β = 0). Even though

in comparison to DQN (β = 0), these techniques incur a higher resource cost, this could

still occur because the lower number of used nodes could be having higher unit time

cost. DQN (β = 0.75) is high in VM cost due to being biased towards response time

improvement, while DQN (β = 0.5) is the best at balancing both the objectives, per-

forming better than the other non-DRL dual objective oriented techniques of DTCA and

LZ-based algorithms in terms of cost efficiency.

20 VM Cluster: The resource cost efficiency of the 20 VM cluster under varying load

levels is illustrated in Figure 4.7(c). In the first scenario with request rates ranging from

5-20, DQN (β = 0) model demonstrates a 34% reduction in VM usage costs, outperform-

ing the best among the baseline algorithms, BPFF. In contrast to minimal improvements

to application response time by the DQN agents at lower traffic levels as discussed ear-

lier, the high cost savings is due to increased opportunity to keep high cost VMs from

running since the cluster has plenty of other resources to accommodate the incoming

requests. STCA-H, LZ-based and DTCA algorithms incur slightly higher VM costs com-

pared to BPFF. At lower traffic levels, these baselines are not able achieve optimum
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resource efficiency without the combined knowledge of application workload charac-

teristics and cluster resource levels. DQN (β = 1) agent shows the highest resource

cost since it uses its workload and system awareness on spreading function instances

on VMs with the highest free resource capacities (high cost VMs). The average number

of VMs used in a scheduling episode under this scenario (Figure 4.7(d)) mostly reflect

a behavioral pattern comparable with VM costs, although there are deviations since the

used VM count will not move directly in line with the objective of cost reductions in a

heterogeneous cluster.

At 20-40 req/sec, DQN (β = 0) still achieves the best performance with a 25% re-

duction in VM costs compared to the next best performing baseline algorithms of BPFF,

STCA-H and LZ-based. An interesting observation is that as the load levels grows, even

the DQN (β = 0.25) and DQN (β = 0.5) agents achieve noticeably high cost bene-

fits, compared to baselines. This is because, as these DQN agents try to optimize dual

objectives, the achieved response time improvements too contribute to lowering the in-

frastructure costs, as the applications require lesser time for their executions. RR and

STCA-L algorithms result in high node costs due their inherent quality of spreading

function instances among VMs without an elaborate understanding on workload and

system interactions. KC scheudling policy is focused only on avoiding VM resource

pressure and thus performs poorly in terms of resource efficiency.

At the highest level of request traffic under the 3rd scenario, surprisingly the DQN

(β = 0.25) model outperforms its counterpart DQN (β = 0) agent which is solely focused

on cost improvements. As discussed previously, this is further evidence that under high

pressure on node resources, taking both objectives into consideration leads to training a

policy which is better at optimizing cost more effectively in the long run. The relatively

poor performance of BPFF and STCA-H algorithms which are generally good at packing

function instances to save costs, also demonstrate the underlying indirect effect of ap-

plication performance on cost performance in an overloaded cluster. Further, compared

to baselines such as BPFF and STCA-H, the DQN (β = 0) and DQN (β = 0.25) agents

show only a marginal difference in the average number of VMs in usage. This further

establishes the fact that during high load levels, the achieved cost efficiencies are largely

due to the intelligent placing of different application instances on suitably low cost host
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(a) 10 VM Cluster. (b) 20 VM Cluster.

Figure 4.8: The effect of the β parameter in optimizing dual objectives in DRL model
training.

nodes, since simply packing them on to fewer VMs has only a limited ability to improve

costs.

Evaluation of multiple reward maximization

Figures 4.8(a) and 4.8(b) illustrate the movement of the optimized objectives with the

change in the β parameter in the 2 cluster scenarios. The blue lines exhibit the effects

on application response time while the orange lines present the effects on resource cost.

On the 20 VM graph, the solid lines, dashed lines and the dotted lines represent the

obtained results with regard to 5-20, 20-40 and 40-60 request load levels. As seen, the

DQN agents are able to achieve stable results while optimizing one or more objectives

as desired. Higher the β value, the trained agents are better at improving application

response time, while lower β value indicates better ability to control VM usage costs. In

each scenario, at β = 0.5, the agents display a balanced policy which is able to optimize

both the objectives to a satisfactory level.
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4.6.6 DRL Model Training and Serving Overhead

In this work all our DRL models are trained on a practical testbed. Unlike in a simulator

where the time steps will generally be determined by an event based clock, in our practi-

cal set up, the time consumed is equivalent to the actual resource creation and execution

times of the applications. Accordingly, the model training time is composed of these

actual environmental set up and function run times, coupled with the overhead of using

a neural network for deep learning, for each training episode until model convergence.

The neural network overhead for model training is dependent on the modeled environ-

ment’s state size, action space and the complexity of the agent’s reward structure. Thus,

as described under section 6.4, we observe varying model training times with changing

cluster sizes and the β parameter, which determines the reward structure. For the 10 VM

cluster, the β = 1, β = 0.75, β = 0.5 and β = 0.25 scenarios all require approximately

60 hours of training while the β = 0 scenario experiences faster convergence at half that

time owing to having a simpler reward structure. Due to increased state exploration

costs, the model requires 80 hours of training on average to reach convergence for the 20

VM cluster.

In order to observe optimum scheduling results under more diverse function re-

source requirements, request arrival rates, expanded cluster sizes and changed opti-

mization objectives, the model could be easily retrained by providing the required ex-

ploration data to the agent. Model scalability in this manner is largely demonstrated in

our experiments which analyse its adaptability under cluster size and reward structure

variations.

Model serving for the proposed DRL agent refers to mapping of the current environ-

mental state to an action, which is derived based on the state-action values of the avail-

able actions in the trained model. Since model training takes place offline, we observe

that this mapping consumes an insignificant time of about 33 ms on average, which

is the scheduling overhead imposed. The model evaluation experiments show that this

value is similar to the time spent on scheduling decisions of the other non-DRL baselines

as well.
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4.7 Summary

The serverless computing model gives rise to flexibility in resource management for both

the cloud provider and the end users. However, the multi-tenant nature of these com-

puting environments could cause complex variations in function performance, when

application demand levels are subject to rapid changes over time, due to resource con-

straints. At the same time, efficient usage of the underlying infrastructure has become

increasingly important for the cloud providers with the advent of the ”pay as you exe-

cute” billing modes. In this work we proposed a DRL based technique, which is trained

and evaluated on a practical cloud setup, for efficiently understanding how the various

system parameters of a VM cluster and the highly dynamic parameters of an incoming

serverless workload interact with each other and affect application performance. We

also strived to achieve a second objective of maintaining high resource cost efficiency,

where the users are at liberty to set a desired level of significance to each of these often

conflicting objectives. As evidenced by our experiments, we see that such granular ap-

proaches to understanding the system dynamics could immensely help both users and

cloud providers to achieve their end goals.

This chapter proposed an effective technique for scheduling of applications in a

multi-tenant serverless environment considering the existing resource contentions and

also allowing for a user desired level of optimization between function performance

and provider resource cost. In the next chapter, we focus on the autonomic scaling of

these deployed applications of multiple users, so as to achieve the same objectives, to

the satisfaction of all the parties.



Chapter 5

Time and Cost Optimized
Autonomous Scaling of Serverless

Applications

Among the many benefits of the serverless computing model, the rapid auto-scaling capability

of user applications takes prominence. However, the adhoc scaling of user deployments at function

level adds cold start delays and failures in function request executions due to the time consumed for

dynamically creating new resources. Existing solutions to address this limitation mostly focus on

predicting and understanding function load levels in order to proactively create required resources.

Although they improve function performance, the lack of understanding on the overall system char-

acteristics in making these scaling decisions often leads to the sub-optimal usage of system resources.

Further, the multi-tenant nature of serverless systems requires a scalable solution adaptable for multi-

ple co-existing applications, a limitation seen in most current solutions. In this chapter, we introduce

a novel multi-agent Deep Reinforcement Learning based intelligent solution for both horizontal and

vertical scaling of function resources, based on a comprehensive understanding on both function and

system requirements. Our solution elevates function performance reducing cold starts, while also of-

fering the flexibility for optimizing resource maintenance cost to the service providers. Experiments

conducted considering varying workload scenarios show improvements of up to 23% and 34% in

terms of application latency and request failures, while also saving up to 45% in infrastructure cost

for the service providers.

This chapter is derived from:

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”A Deep Reinforcement Learn-
ing based Algorithm for Time and Cost Optimized Scaling of Serverless Applications”, Future Gen-
eration Computer Systems (FGCS) [Under Review, April 2024].

135
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5.1 Introduction

The provider centric resource management model has succeeded in attaining the ”server-

less” nature of operations for the end user, in this novel cloud computing model. How-

ever, the cloud provider is tasked with numerous added responsibilities as never be-

fore in achieving this seemingly ”serverless” behavior of cloud systems. Rapid auto-

scalability of user applications in line with load variations, is among the highly valued

distinguishing properties of a serverless computing platform, which has proven use-

ful under many application scenarios. The very fine-grained auto-scaling capabilities

in serverless platforms require deployed functions to scale their resources just-in-time,

as user demand varies. As such, function resources would scale to zero, when there

is no request traffic and scale back up when needed, ensuring high resource efficiency.

Setting up new resources in this manner on the go, results in a considerable start up

time, widely known as the problem of the ’cold start delay’ in functions which hinders

its performance. Cold start delay in essence, is a combination of the function runtime

environment set up time and the time spent on application specific code initialization.

This initial delay becomes specially significant for serverless functions with very low

execution times, which is the majority. The situation is further complicated by the exis-

tence of multiple user applications deployed on the same infrastructure, which require

individual attention in their scaling decisions.

A number of existing works have studied the auto-scaling techniques employed by

both the commercial and open source serverless computing platforms, and how they

affect application performance [183], [184]. [39] compares AWS Lambda, Google Cloud

Functions and Microsoft Azure in terms of their function cold start delay. These plat-

forms maintain idle function instances from previous executions for a particular time

duration before recycling, in order to have more ready-to-serve warm instances for new

executions. AWS and Google seem to have relatively stable cold start delays while Azure

platform showed more varying values at the time of their experimentation. Relation-

ships also exist between factors such as the programming language used and the mem-

ory size of a function instance and the resulting resource start up delays. The majority

of open source serverless frameworks including Fission [157], Kubeless [30], OpenFaas
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[155] and Knative [156] are built utilizing Kubernetes [158] as the function orchestrator

[185]. The auto-scaling functionality of these frameworks is usually based on a set re-

source utilization threshold of the existing function instances or the number of requests

per second, which determines the required number of function replicas required to meet

the current load.

Research works which address the issues related to serverless auto-scaling delays are

identified under two categories. One set of solutions is directed towards reducing the

frequency of the occurrence of cold start delays, while the other is focused on reducing

the measured cold start delay of an individual function instance [184]. In order to reduce

the delay itself, various techniques are presented to improve sandbox creation times, in-

cluding the creation of the required network elements beforehand, utilizing snapshots

of previously used containers and designing and developing customized sandbox envi-

ronments [75], [76], [96]. On the other hand, minimizing the frequency of cold starts is

achieved by employing techniques for creating pre-warmed containers, reusing warm

containers and adjusting the level of concurrently served requests by a function instance.

These approaches often times try to predict the arrival rates and demand levels for in-

dividual functions in order to proactively create the required resources [70], [44], [64].

The techniques used for such predictions mostly incorporate the resource consumption

characteristics of the serverless functions in order to determine the size of the resource

pool to be maintained. They rarely consider the resource availability status or the cost

of maintaining such idle resource pools to the serverless resource provider. The distin-

guished billing model in serverless platforms favours its end users by charging them

only when the resources are actively being used with a millisecond level accuracy. This

means that even though additional resource pools are maintained to meet Quality of

Service (QoS) requirements of the user, the provider is able to recover the costs of such

resources only to the extent of them being used, calculated at a very fine level. As such,

careful calculations are required considering the status of the platform resources along

with function characteristics, in order to make these scaling decisions. Moreover, the

majority of solutions are limited in their capability of handling multi-tenancy in the

function scaling process.

Considering the above highlighted challenges, our work is focused on carrying out
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the scaling of function resources of multiple user applications in a way that would en-

hance application performance, while at the same time, preserving the optimum usage

of cloud provider resources. Further, while existing solutions are designed to support

only horizontal scaling of function instances, i.e., scaling in or out the number of func-

tion replicas, our solution approach encapsulates both horizontal and vertical scaling,

for better optimizing our target objectives. Vertical scaling handles scaling up and down

of the cpu and memory capacities of the function resources. In addition to varying the

number of function instances to meet changing user request rates, adapting the resource

configuration of existing function instances to handle the incoming traffic in this man-

ner helps in balancing our dual objectives of function performance and provider cost

optimization.

Deep Reinforcement Learning (DRL) techniques are being extensively explored for

cloud resource management work from recent times. Experience based learning encour-

aged in the RL paradigm makes it a good candidate as a method of learning the behavior

of dynamic serverless workloads with very short execution durations. In this work, we

propose a DRL based solution which employs multiple learning agents to determine the

optimum level of function scaling to suit changing demand levels. The key contribu-

tions of our work are as follows:

1. We formulate and present a RL based model of the function auto-scaling problem

in a multi-tenant serverless computing environment.

2. We propose a novel multi-agent function scaling framework based on the policy

gradient algorithm Asynchronous Advantage Actor Critic (A3C), which aims to at-

tain a balance in optimizing application performance and provider resource cost.

We adapt the A3C algorithm to suit a multi-discrete action space required in mak-

ing the horizontal and vertical scaling decisions for a multitude of user applica-

tions residing in the platform at a time.

3. We train and evaluate our DRL model in a python based simulator environment.

We also design a practical testbed based on the open-source serverless platform

Kubeless which is deployed on a Kubernetes cluster. The simulator replicates the

characteristics and behavior of the practical testbed and utilizes function profiling
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data derived from the same, in all its experiments.

4. We evaluate and compare our approach with baseline scaling techniques using

real world serverless applications, together with function traces captured from Mi-

crosoft Azure Functions.

The rest of the chapter is organized as follows: Section 5.2 reviews relevant literature.

Section 5.3 presents the system model and formulates the function scaling problem

mathematically. Section 5.4 introduces the proposed DRL oriented scaling framework.

Sections 5.5 and 5.6 discuss the design and implementation details of the DRL agent

training environment, evaluation of the proposed technique and the scope for future

work.

5.2 Related work

5.2.1 Serverless Resource Scaling

Scaling of serverless functions could be discussed in terms of the horizontal and ver-

tical scaling aspects. Horizontal scaling refers to varying the number of instances of a

particular function that is available for request execution. As demand levels vary for

an application with time, determining the optimum level of replica scaling required to

meet the target objectives is a challenging task. [70] try to predict the required number

of function instances in order to keep the new request waiting time below a set thresh-

old, by using a heuristic technique. [44] use an exponentially weighted moving average

model to estimate request arrival rates. Proactive allocation of sandboxes is done using

this estimate. An oversubscribed static resource pool with pre-warmed containers of

all resource sizes is proposed in [64]. [71] implement a lightweight middleware which

uses the knowledge of function compositions to trigger cold starts, leading to provision-

ing of new containers before they are required. A container management system with

three queues containing cold and warm containers based on their features is introduced

in [72]. [74], [186], [187] and [73] propose maintaining a pool of function instances to

face request demands. A heuristic solution is given in [188] to adjust the replica num-



140 Time and Cost Optimized Autonomous Scaling of Serverless Applications

ber without compromising on user budget. Time-series forecasting is used in [189] to

determine the request workload to support the scaling decisions.

Q-Learning based approaches are used in [77], [171] and [190] to determine the num-

ber of function containers to scale-up/down at each point in time in order to maintain

low application latency and failure rates. [191] use Q-Learning to decide the optimum

level of maximum cpu usage in a function instance to trigger scaling. In [192] the DRL

algorithm A2C is used to determine the idle time window for a used function instance

and further a time series model is used to predict future invocations and thereby, create

warm containers.

Vertical scaling deals with the up/down scale of the resource capacities of a function

instance. This is seen as an alternative or used in conjunction with horizontal scaling in

order to meet intended targets, in the face of changing traffic levels. An actor critic archi-

tecture with Proximal Policy Optimization (PPO) is used in [82] to harvest idle resources

from functions and direct them to under-provisioned instances. A Q-Learning based so-

lution is given in [66] to identify the level of concurrency, i.e the number of concurrent

requests served per instance, to optimize function latency and system throughput. A

DRL based multi-agent (MA) solution is analysed against a single agent implementa-

tion in [172] for the horizontal and vertical scaling of functions. They focus on function

latency and resource efficiency for users and thereby lack focus on the overall platform

resource utilization. A preliminary study is done in [193] on using Q-Learning for hori-

zontal scaling decisions and a heuristic approach for vertical scaling.

5.2.2 RL Solutions for Serverless Resource Management

As also discussed above in section II(A), a number of recent works employ RL tech-

niques for enhancing resource management in serverless environments. The target areas

of improvement in this manner include resource scheduling, scaling and modelling of

optimum resource configurations for functions.

A policy gradient algorithm is proposed in [173], to identify the best node for schedul-

ing a function request. [194] uses a DRL approach to determine the percentage of user

requests to be processed by the cloud and offloaded to the fog layer. A distributed
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Table 5.1: Summary of Literature Review.

Work Application Model Scaling Scaling Type Decision Parameters Multi VM

Single Function Technique Horizontal Vertical Optimization Objective Workload Overall System Tenancy Heterogeneity

Function Chain Response Time Provider Cost Efficiency Awareness Awareness

[70] ✓ Heuristic ✓ ✓ ✓ ✓ ✓

[64] ✓ Heuristic ✓ ✓

[186] ✓ Heuristic ✓ ✓

[73] ✓ ML ✓ ✓ ✓ ✓

[71] ✓ Heuristic ✓ ✓ ✓ ✓

[72] ✓ Heuristic ✓ ✓ ✓ ✓

[74] ✓ Heuristic ✓ ✓ ✓ ✓

[77] ✓ Q-Learning ✓ ✓

[171] ✓ Q-Learning ✓ ✓

[44] ✓ ✓ Mathematical modelling ✓ ✓ ✓

[187] ✓ Mathematical modelling ✓ ✓ ✓ ✓

[82] ✓ PPO ✓ ✓ ✓ ✓

[66] ✓ Q-Learning ✓ ✓

[188] ✓ Heuristic ✓ ✓ ✓ ✓

[189] ✓ Mathematical Modelling ✓ ✓ ✓

[190] ✓ Q-Learning/DQN ✓ ✓

[191] ✓ Q-Learning ✓ ✓ ✓ ✓

[192] ✓ A2C/Mathematical Modelling ✓ ✓ ✓

[172] ✓ MA-PPO ✓ ✓ ✓ ✓ ✓

[193] ✓ Q-Learning/Heuristic ✓ ✓ ✓ ✓

Our proposed work ✓ ✓ MA-A3C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

task scheduling approach is presented in [195] for serverless edge computing networks.

They explore a multi-agent dueling Deep Q Learning (DQN) architecture to assist the

edge network in making resource allocation and scheduling decisions. A distributed,

experience-sharing, function offloading framework for the edge is proposed in [196].

They suggest an improved actor critic algorithm for deciding whether to execute func-

tions on the IoT device or on an edge device. [197] introduce a multi-agent DRL solution

for caching packages required for running serverless functions at edge nodes, based on

their importance and popularity. They aim to improve per function response time while

managing resources consumed while caching. A multi-step DQN based solution is pro-

posed in [198] for function scheduling, in a multi-tenant serverless environment, which

aims to optimize application performance as well as provider resource cost.

We summarize the reviewed works specifically in the area of serverless resource scal-

ing in Table 5.1. This comparison considers the aspects of application model, used tech-

nique, type of scaling, optimization objective, workload-awareness (consideration for

request arrival rate fluctuations), system awareness (knowledge on individual cluster

VM resource usage metrics), multi-tenancy (adaptability to suit multiple concurrent ap-

plications) and VM heterogeneity.

Majority of existing works propose solutions based on only one aspect of scaling, ei-

ther horizontal or vertical, which is not ideal for optimizing resource cost. Thus such so-

lutions lack the motivation to be used in their serverless platforms by service providers.
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Further, many solutions lack overall system status awareness, and also are not scal-

able for decision making under a multi-tenant scenario. In contrast, our work captures

the dynamic function workload as well as system parameters, with adaptability to suit

multi-tenant clusters, and targets optimizing dual objectives concerning both the user

and the provider.

5.3 Adaptive Function Scaling

5.3.1 System Model

Our system model represents the common serverless system architecture in use across a

majority of open-source serverless frameworks [155], [156], [157]. The main components

of this architecture include, a cluster of Virtual Machines (VMs), a load balancer acting

as the entry point for user requests, a function auto-scaler, a function scheduler and a

controller which coordinates the communication between all the other functional units.

Figure 5.1: The system model of the serverless application execution environment.
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The highlevel system model is illustrated in Figure 5.1.

We consider our worker pool to be composed of a set of heterogeneous VMs with

varying compute and memory capacities. An instance of a function is deployed in a

container and managed as a single resource unit called a pod. A pod is able to serve

multiple concurrent function requests depending on its resource capacity. Creation of

replicas of the same function type and adjusting the resource configuration of an existing

instance is triggered by the auto-scalar depending on the implemented technique of

scaling, which is the focus of this work. Subsequently, the function scheduler selects a

suitable node and schedules the created instance.

User requests enter the system via the load balancer, which queues them and directs

them to existing function replicas. In the absence of suitable resources, the requests are

dropped after the passage of a certain time duration after arrival. The load balancer

is considered to be distributing the incoming requests among the existing replicas in a

round-robin manner. Serverless applications are formed of either a single or multiple

functions. Multi function applications are composed of chained functions which are ex-

ecuted sequentially. Thus, an instance of a function may serve requests of multiple user

applications. Requests are received at the deployed functions in a stochastic manner, and

thus the demand levels for a function instance could vary rapidly in a very short time.

Performance degradation caused by cold start delays are imminent, if the auto-scaling

mechanism is not capable of pro-actively determining the scale up of resources required

on time. At the same time, gross over-estimation of resources and over-provisioning of

the same, lead to massive inefficiencies in resource maintenance cost for the provider.

Thus at a given time, the auto-scaler needs to decide the ideal number of replicas and

the resource configuration of each replica of a particular function, that would help reach

a satisfactory balance in function performance and provider cost.

5.3.2 Problem Formulation

Suppose N is the total number of VMs in a serverless cluster. Each VM is of varying

size in terms of its CPU (number of vCPU cores) and memory (MB) capacity. Q is the

total number of different function types deployed in the cluster. Let pk and reqk denote



144 Time and Cost Optimized Autonomous Scaling of Serverless Applications

a pod/instance and a single request of the kth (k ∈ [1, Q]) function respectively, while

Mk(t) is the number of existing pods of the same at time t. Each function instance of type

k has four attributes at time t, i.e., allocated pod CPU (pkc(t)), pod memory (pkm(t)), CPU

and memory consumption of a single request (reqkc and reqkm), standard response time

(rk
0) and the arrival rate of requests of the type. The standard response time for a request

refers to the average request response time for a function when executed in a pre-created

pod without any resource creation delays.

Compute power is often identified to be a main source of resource pressure in server-

less functions, leading to poor application performance [63]. Based on this logic, the de-

fault horizontal auto-scaler in our system model triggers a new pod creation and scaling

down of existing pods based on a target average CPU utilization of a pod of that type,

Tk
cpu.util(t). i.e., if the number of new pods of type k to be created is Nk

∆ and the maximum

allowed number of pods of any type at any time is Mmax,

Nk
∆(t) = min[Mk(t)×

Ck
cpu.util(t)

Tk
cpu.util(t)

, Mmax]−Mk(t) (5.1)

where Ck
cpu.util(t) refers to the current average pod CPU utilization. Our task in terms

of horizontal scaling is to determine the ideal Tk
cpu.util(t) value at a given time. Pods

which are not currently being used are scaled down as required where Nk
∆(t) is a nega-

tive value.

Along with the action of the horizontal scaler, the vertical auto-scaler needs to deter-

mine the best suited levels of CPU and memory configurations for a function of type k at

a given time t. The incremental/decremental CPU value cpuk
∆(t) and the memory value

memk
∆(t) which form the vertical scaling decision, need to meet a few constraints, i.e,

(1) the resulting resource allocation levels after action execution need to be within

the upper and lower boundaries of applicable CPU and memory resource limits to a

function instance,

pc
min < pkc(t) + cpuk

∆(t) < pc
max

pm
min < pkm(t) + memk

∆(t) < pm
max

(5.2)
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We consider these allocated resources for a function instance to be hard limits, i.e.,

these mark upper limits of resource consumption by a single pod, irrespective of the

traffic levels.

(2) The chosen resource increments need to be compatible with the available resource

levels of VMs holding the existing function replicas,

[pkc(t) + cpuk
∆(t)]×Mk

vi
(t) < vC

i (t) ∀i ∈ [1, N] (5.3)

[pkm(t) + memk
∆(t)]×Mk

vi
(t) < vM

i (t) ∀i ∈ [1, N] (5.4)

where Mk
vi
(t) is the number of replicas of kth function residing in vi, while vC

i (t) and

vM
i (t) is the available CPU and memory of the same at time t.

(3) The resource configuration change in an instance should not affect the function

requests already in execution. Thus the new resource allocation should not go below the

current resource utilization levels of any pod of the type.

pkj
cpu.util(t) < [pkc(t) + cpuk

∆(t)] ∀j ∈ [1, Mk(t)] (5.5)

pkj
mem.util(t) < [pkm(t) + cpuk

∆(t)] ∀j ∈ [1, Mk(t)] (5.6)

where pkj
cpu.util and pkj

mem.util are the cpu and memory utilization levels of the jth pod

of function k. The time t in the above expressions: (5.1), (5.2), (5.3), (5.4), (5.5), and (5.6)

indicates the time steps in which scaling decisions are taken.

One target objective of this work is to minimize sub-optimal application performance

caused by the lack of a proper resource scaling strategy. As mentioned previously, the

resources allocated to function instances are set as hard limits, which prevents them from

causing resource contention in the host node, with increased traffic levels. Thus, we

could consider that the performance degradation of applications under such a system

model is a direct effect of the absence of enough ready resources to face request demand

levels. Cold start delays introduced by new resource creation affect request response

times and may also cause request failures. Hence we consider application response time
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latency and request failure rates to be metrics which directly reflect the effects of the

platform scaling decisions.

Let A be the total number of user applications deployed in the platform. Consider

Vb, 1 ≤ b ≤ A to be the total request traffic to bth application. The sum of response

times of the constituent functions corresponding to the qth request of application b (1 ≤
q ≤ Vb) is Rb

q. Also, the estimated total standard response time of the same is denoted

by Rb
q0. The ratio of Rb

q and Rb
q0 averaged over the total number of requests received by

an application, is called the average Relative Application Response Time (RART). We

aim to minimize the average RART, calculated across all the deployed applications over

the duration of a workload. Here we define RART instead of the response time itself, to

eliminate any bias in our optimization objective arising from execution time variations

in serverless functions.

Average RART =
1
A

A

∑
b=1

1
Vb

Vb

∑
q=1

Rb
q

Rb
q0

(5.7)

The sum of response times of each function which form the considered execution

sequence of an application, is used for calculating Rb
q and Rb

q0. The preceding function

in a chained application simply evokes the next function in the sequence. Hence this

calculation is possible as this process is devoid of any data communication delay. The

total standard response time for an application’s request (Rb
q0) is expressed as a function

of q, since the relevant function sequence is dependent on the request input.

Further, as part of performance optimization, we aim to minimize Request Failure

Rates (RFR), i.e., the number of dropped function requests as a ratio of the total requests

received. Accordingly we express our performance optimization objective as follows:

Minimize : [Average RART, RFR] (5.8)

In this work we also plan to optimize the infrastructure cost of the provider. In the

calculation of the resource costs we incorporate VM instance pricing, as we consider a
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heterogeneous serverless cluster composed of VMs of different CPU and memory sizes.

The provider cost optimization objective is formulated as follows:

Minimize : CostTotal =
N

∑
i=1

pricei × ti (5.9)

pricei is the unit price of VM vi and ti is the total time that the ith VM was active

during workload executions. A VM is considered to be active, when it is serving requests

of at least one function. Thus resource efficiency is achieved when active VMs have high

utilization levels.

Our primary objectives of minimizing function performance degradation and en-

abling high resource efficiency tend to be conflicting objectives. Therefore, we utilize a

system parameter β ∈ [0, 1], so that users can achieve a sufficient trade-off between the

two. Accordingly, our overall target objective is as follows:

Minimize : β× Sum (Average RART + RFR)+

(1− β)× CostTotal

(5.10)

Table 5.2 summarizes the various symbols introduced in this section.

5.4 Reinforcement Learning Model

5.4.1 Learning Model for Function Scaling

RL is a branch of machine learning that encourages an experience based learning style.

A RL agent interacts with its environment and at each time step takes an action at, based

on the current policy π(at|st), where st is the current state of the environment. A reward

rt+1 is received in turn based on the ’goodness’ of the action. The RL agent’s final ob-

jective is to learn a policy which maximizes the cumulative reward over a sequence of

actions.

In this work we explore the applicability of the concept of RL in developing an adap-
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Table 5.2: Definition of Symbols.

Symbol Definition
N Total number of available VMs
Q Total number of deployed functions
pkc Allocated CPU for a pod of the kth function, k ∈ [1, Q]
pkm Allocated memory for a pod of the kth function, k ∈ [1, Q]
Mk

vi
Number of existing pods of the kth function residing in vi

Mmax Maximum allowed number of pods of any single function type
pkj

cpu.util Cpu utilization of the jth pod of function k, j ∈ [1, Mk]

pkj
mem.util Memory utilization of the jth pod of function k, j ∈ [1, Mk]

Tk
cpu.util Target average CPU utilization of a pod of type k

Ck
cpu.util Current average CPU utilization of a pod of type k

Nk
∆ Number of new pods of type k to be created

cpuk
∆ Change in allocated CPU to a pod of type k

memk
∆ Change in allocated memory to a pod of type k

vC
i Available cpu in vmi

vM
i Available memory in vmi

A Total number of user applications deployed
Vb Number of user requests received by application b, b ∈ [1, A]
Rb

q The sum of response times of each function relevant to the
qth request of an application, q ∈ [1, Vb]

Rb
q0 Total standard response time of the constituent functions

of the qth request of an application
pricei Unit price of VM, vi
ti Total active time of VM, vi

tive scaling policy for applications in a multi-tenant serverless computing environment.

The RL agent takes the role of forming the basis of scaling each function, either horizon-

tally or vertically, with variations in user demand levels. The serverless platform forms

the environment with which the agent communicates and derives state information at

each time step. Time steps in which these scaling configuration changes are executed,

are considered to happen at regular intervals. The received reward after each scaling

action implementation is dependent on the target level of optimization of each of the

dual objectives discussed above. The key aspects of the RL model in the context of our

problem are discussed below.

State space: The state information needs to encapsulate both the resource metrics of

the serverless platform infrastructure as well as the resource requirements, traffic lev-

els and the current performance of the function to be scaled. Accordingly, the state

in our environment could be presented as a 1-dimensional vector, where the first part

describes the cluster VM specifications: [vcpu.util
i , vmem.util

i , vcpu.alloc
i , vmem.alloc

i , vcpu.cap
i ,
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vmem.cap
i , vreplicas

i ]. vcpu.util
i and vmem.util

i refer to the actual cpu and memory utilization

levels of the VMs, vcpu.alloc
i and vmem.alloc

i refer to the percentage of cpu and memory that

is allocated to pods, vcpu.cap
i and vmem.cap

i denote the cpu and memory capacities (this is

representative of the VM unit prices), while vreplicas
i represent the number of replicas of

the scaling function, that is currently present in the VM. These VM resource metrics are

gathered for all the cluster VMs to form the state space. Note that the resource utiliza-

tion and allocation levels identify as two separate metrics since although resources are

allocated to function pods, the VM resources actually utilized depend on the function

requests in execution in those pods. The second part of the state vector is composed of

the function specifications: [pkc, pkm, reqkc, reqkm, pk
rate, pk

RFRT, pk
RFR, Ck

cpu.util , Ck
mem.util].

pkc and pkm represent the requested cpu and memory by a function instance, reqkc and

reqkm represent the resource consumption of a single request of the type, pk
rate represents

the current request rate, pk
RFRT represent the Relative Function Response Time (RFRT),

which is the ratio of the actual function response time to the standard response time,

pk
RFR represent the function request failure rate, while Ck

cpu.util and Ck
mem.util represent

the average cpu and memory utilization of all the pods of type k. These metrics when

consolidated, give the RL agent a comprehensive understanding on the current system

status, in order to reach the best scaling policy with time. At the start of each time step,

the agent gathers the required data and forms this state vector before determining the

scaling action.

Action space: We model the action space in our environment as a novel multi-

discrete action space where we need to determine three decision parameters namely,

the target average cpu utilization value for triggering horizontal function scaling (a1),

the change in allocated cpu (a2), and memory (a3) values for pods of the considered

function type. Since combining the three actions to formulate an action space with all

possible combinations leads to an explosion in the action space size, we consider the

three to be independent decision variables. Further we discretize each variable to suit

the scale of our modelled environment, where each action would reflect either an in-

crease, decrease or maintaining the same level in the particular variable. Accordingly, a

complete action generated by the DRL agent could be presented as [a1, a2, a3].

Reward: The reward assigned to the agent at each step immediately after an action,
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needs to resonate with the target objectives of optimization. Since the considered objec-

tives of performance and provider cost optimization in this work usually compete with

each other and thus could be conflicting, we define two separate reward structures for

the two. Accordingly, the reward for action at is:

1. R1: The sum of the average RFRT and RFR of all the deployed functions in the

cluster a set time interval after the implementation of action at. Since application re-

sponse time is a function of that of its constituent functions, RFRT acts as a proxy to

measure our performance optimization objective of RART in Equation (5.7). In addition,

it is more closely identifiable with each function scaling decision of the DRL agent.

2. R2: The difference in the total cluster VM up time cost (Equation (5.9)) just before

and a set time interval after the implementation of action at.

Since the cumulative of both these reward values at the end of an episode needs to

be minimized in order to reach our target improvements, we insert a negative sign to

motivate reduction in latency and cost over time. Further, at each step we normalize

the three values of RFRT, RFR, and VM cost which are in different scales in order to

remove any notion of being biased towards one value, in the process of DRL model

training. We derive the minimum and maximum values for each of these step rewards

after running and observing these values over many workload scenarios. As such, the

awarded reward to the agent after each scaling decision is as follows:

Reward = −((β× R1normalized) + ((1− β)× R2normalized)) (5.11)

5.4.2 Actor-Critic based Multi-agent Scaling Framework

The objective of a RL algorithm is to find the optimal policy to take actions, which maxi-

mizes the cumulative reward over time. The two fundamental methods in RL to find the

optimal policy are the value based and policy based methods. The value based meth-

ods work by observing the ’Quality’ or how good a particular state-action pair is, i.e.,

by using the Q function. In policy based methods, we find the optimal policy without

calculating the Q function. Actor-critic methods take advantage of both the value and

policy based methods in finding the optimal policy. In fact, they are proven to be able
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to overcome many shortcomings of vanilla policy gradient methods. Thus we form the

basis of our scaling framework using the actor-critic algorithm.

Actor-critic technique makes use of two neural networks, the actor network and the

critic network. The actor helps find the optimal policy πθ(at|st), which leads to taking

the best action in each state in order to achieve the desired objectives. The critic works

in a feedback loop evaluating the policy generated by the actor, leading it to finding

the best policy. In essence, the actor network is a policy network which uses a policy

gradient method to find the optimal policy, while the critic network is a value network

which is trained to estimate the state-value function, vπ(st|ϕ). θ and ϕ are the adjustable

parameters of the actor and critic networks respectively.

Actor and critic networks learn by either maximizing their objective functions or by

minimizing the loss functions. Accordingly, the actor learns the optimal policy by cal-

culating the policy gradient, i.e., the gradient of the network and periodically updating

the network parameter θ using gradient ascent (Equation (5.12)).

∇θ J(θ) = ∇θ logπθ(at|st)A(s, a)

θ = θ + α∇θ J(θ)
(5.12)

where J(θ) is the objective function which aims to increase the probability of occur-

rence of the actions which maximize the expected return of a given trajectory. As seen

in Equation (5.12) above, we calculate the policy gradient in the actor-critic methods

using A(s, a), the advantage function, hence the name Advantage Actor Critic (A2C).

Expanding the advantage function;

∇θ J(θ) = ∇θ logπθ(at|st)(r + γVϕ(s′t)−Vϕ(st))
(5.13)

Thus, the advantage function reveals how good action a is compared to the average

actions in state s. This essentially helps actor-critic methods to overcome inefficiencies

of vanilla policy gradient algorithms by reducing the high variance of policy networks
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and stabilizing the model. Similarly, the critic learns by minimizing the loss of the critic

network, i.e., the Temporary Difference (TD) error, which is the difference between the

target value of the state (r+γVϕ(s′t)) and the value of the state predicted by the network.

During the course of training, the gradient of the critic network is calculated and the

network parameter is updated using gradient descent (Equation (5.14)), thus allowing

the critic to learn the actual state-value function.

J(ϕ) = r + γVϕ(s′t)−Vϕ(st)

ϕ = ϕ− α∇ϕ J(ϕ)
(5.14)

DRL techniques trained with a single agent have proven to be able to provide effec-

tive solutions for many single function scaling scenarios [193], [77], [171]. But serverless

platforms are usually multi-tenant environments with a number of deployed functions

with various resource characteristics co-existing with each other. Further, these different

functions have dynamically changing workload patterns, lowering the sample efficiency

of many single agent RL solutions in the context of the multi-tenant scaling problem

considered in our work. Thus in this work, we explore the applicability of the DRL tech-

nique A3C [199], which employs several DRL agents who engage in learning in parallel,

and aggregate the overall experience. The process of parallel learning helps explore the

combination of state and action spaces much faster.

In A3C we work with two types of networks, the global network and the local or

worker networks. Each worker agent interacts independently with its own copy of the

environment, and shares the gathered experiences with the global agent asynchronously.

Both the worker agents and the global agent follow an actor-critic architecture. Under

A3C, in order to encourage sufficient exploration and reaching a global optimum, we

add the term ’entropy’ to the previously discussed (Equation (5.13)) actor loss, i.e.;

J(θ) = logπθ(at|st)(r + γVϕ(s′t)−Vϕ(st)) + βH(π(s)) (5.15)

where H(π) refers to the entropy of the policy while β controls the significance of
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the entropy. As discussed under section 5.4.1, we express our action space for scaling as

a novel multi-dimensional discrete action space. We then adapt the technique described

for discretized multi-dimensional action spaces in [200], to design our actor network

architecture.

We assume our normalized initial action space to be A = [−1, 1]M, where M rep-

resents the number of action dimensions. If we discretize each of these dimensions

into K equally spaced actions, the set of atomic actions we get for each dimension i

is, Ai = { 2j
K−1 − 1}K−1

j=0 . Then we present the distribution of action space as factorized

across dimensions, in order to tackle the curse of dimensionality. As such, we consider

a marginal distribution πθi(ai|s) for each dimension i, over the set of actions ai ∈ Ai,

where θi is the parameter of the distribution. Accordingly we get a joint discrete policy

πθ(a|s) = ∏M
i=1 πθi(ai|s), where θ represents the parameter of the actor network which

takes state s as input. After layers of transformation, the network outputs the log prob-

ability Lij for the jth action in the ith dimension, where i ∈ [1, M] and j ∈ [1, K]. Finally,

for each dimension i, the K logits are combined with soft-max to derive the probability

of choosing action j, i.e., pij = so f tmax(Lij). Note that as per the scaling problem space

defined in our work, M = 3 and K is chosen suitably for each action dimension. Each

actor in our multi-agent framework follows this network architecture.

Algorithm 5 presents the pseudo-code for the multi-agent scaling framework train-

ing process flow. We first initialize the global actor and critic network parameters which

would be shared among and updated by the worker agents during the training process.

Each worker would have its own copy of the environment and separate actor and critic

networks (lines 3-6). At the start of each episode, workers reset their local environment.

At each time step, the agent retrieves the state information with regard to the platform

and the function to be scaled, and feed it to the local actor network. Next, the marginal

probability distribution for each action dimension is used to determine the combined

action for the current step (lines 11-12). Upon execution of the generated action, the en-

vironment transitions to a new state, and the agent receives a reward. All the transition

information which includes the environmental state, executed action, awarded reward,

and the next state are stored in memory (line 14). If the network update frequency or the

maximum step count for an episode is reached, the agent starts the network parameter
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Algorithm 5 Actor-Critic based Multi-agent Scaling Algorithm

1: Initialize the global shared actor and critic network parameters θ and ϕ
2: for worker = 1 to N do
3: Initialize the local actor and critic network parameters θ′ and ϕ′

4: Initialize the local step counter t = 0
5: Initialize the training parameters α, γ and network update frequency f
6: Initialize the local training environment for the worker agent
7: for episode = 1 to E do
8: Reset the environment
9: for step = 1 to T do

10: Input the state s of the environment to actor network πθ′(a|s)
11: for i = 1 to 3 do
12: Select action ai using the marginal distribution πθ′ i(a|s)
13: Execute the combined action (a = a1, a2, a3), move to the next state s′ and

observe the reward r
14: Store the transition (s, a, r, s′) in memory D
15: if t% f == 0 or step = T then
16: for j = 1 to K do
17: Compute the advantage estimates Â1 to ÂK
18: Compute the loss and the gradients of the loss of actor∇θ′ J(θ′) and

critic ∇ϕ′ J(ϕ′) networks

19: Perform asynchronous update of global actor and critic network pa-
rameters θ and ϕ

20: Synchronize the local actor and critic network parameters θ′ and ϕ′

with θ and ϕ
21: Clear memory D
22: t← t + 1

return

sharing and update process. First the advantage estimates, the loss and the network

gradients are calculated for each transition stored in memory (lines 16-18). Then each

worker agent asynchronously updates the global actor and critic network parameters us-

ing the calculated gradients. Finally, the local networks are updated with new weights

pulled from the global model. After each network update, the local memory is cleared

(lines 19-21).



5.5 Performance evaluation 155

5.5 Performance evaluation

5.5.1 RL Environment Design and Implementation

We implement a practical experimental serverless framework on the Melbourne Re-

search Cloud [175] for preliminary data collection related to profiling serverless func-

tions and also for deriving realistic system parameters exhibited during function exe-

cutions. The testbed comprises of the Kubeless [30] open source serverless framework

deployed on a 20 node Kubernetes [158] cluster on top of which the Prometheus [178]

monitoring tool is installed for monitoring cluster metrics.

Following the architecture of this practical testbed, we have developed a simulation

environment for serverless function execution in Python, which also represents the sys-

tem model presented in section III(A). This environment is integrated with Tensorflow-

agents in the backend, which are developed using Keras and Tensorflow(TF) libraries.

The key features of our developed simulator environment and the agent training process

flow are summarized below:

1. Requests arriving at deployed function instances are loaded to an event queue in

the order of arrival at the start of the simulation.

2. In the event that a suitable function instance is unavailable to accommodate an

incoming request, the request is queued and subsequently dropped, after multiple

scheduling retries at set time intervals.

3. Time steps for scaling decision making for each agent are scheduled at regular

time intervals so that the agent’s learned policy is capable of supporting proactive

scaling of function resources independent of any workload specifics.

4. At each time step of the DRL agent, the serverless environment exposes the cluster

state metrics which include the VM resource usage statistics and the workload

nature of the function to be scaled.

5. After the execution of each of the combined horizontal and vertical scaling actions,

the agent waits for a set time duration for the environment to reflect the action

consequences, before deriving the step reward.



156 Time and Cost Optimized Autonomous Scaling of Serverless Applications

6. Each agent in the implemented multi-agent model, follows these steps in parallel,

on copies of the same cluster environment.

Although our implemented TF-agents are tasked with optimizing function perfor-

mance and cluster resource cost, the developed simulation environment is capable of

exposing monitoring metrics required for any other extended objectives and facilitat-

ing training for continuous action spaces or modified DRL agent architectures. Our RL

based serverless environment implementation with TF agents as the back end called

’Serverless DRL’, is available as an opensource software 1.

5.5.2 Experimental Settings

Cluster Setup

Our simulated VM cluster comprises of 20 heterogeneous VMs of 4 different vCPU and

memory configurations. The clock speeds of the CPU cores were set to be similar to that

of VMs in AWS Lambda serverless platform as identified in [39]. We use the AWS in-

stance pricing of EC2 VMs (in Australia) [180] closely matching the clock speed, vCPU

and RAM configurations, as our pricing model. These cluster resource details are sum-

marized in Table 5.3. Our practical testbed too follows these VM cpu and memory con-

figurations. We conduct our experiments under two scenarios, letting the multi-agent

model to be comprised of 3 and 5 parallel actor-learners (agents) under each scenario,

in order to observe the training time and data efficiency in state and action space ex-

ploration with more agents. Each individual agent works in a cluster environment of

similar configuration as above during training.

Workload Specifications

Serverless Applications: We choose 12 benchmark applications from ServiBench

[159] and FunctionBench [47] benchmark suites, which are formed of either a single or

a chain of functions. Each of these applications have varying demands on CPU and

1https://github.com/Cloudslab/Serverless DRL



5.5 Performance evaluation 157

Table 5.3: Worker Cluster Resource Details.

Instance Type vCPU cores Memory(GB) Quantity Price($/hr)

m6g.medium 1 4 5 0.048

t4g.large 2 8 5 0.0848

t4g.xlarge 4 16 5 0.1696

t4g.2xlarge 8 32 5 0.3392

memory resources based on their constituent functions. Thus their diverse sensitivities

to different horizontal and vertical actions in the action space provide a good learning

experience for the DRL agents. We use our practical setup for conducting function profil-

ing for all the selected applications. An instance of each individual function is deployed

on a VM in isolation and the JMeter [179] load generation tool is used for sending a se-

ries of user requests to this instance. The results obtained from this tool and the cluster

data recorded by Prometheus are averaged across multiple such workload executions to

determine the resource consumption of a single function request (reqkc(t)andreqkm(t)),

standard response time (rk
0) of a request and the instance creation time. pkc and pkm for

each function is initially set as the resources required to handle a defined number of

requests. Table 5.4 captures the nature of these benchmark applications.

Workload Creation: We leverage function traces from the publicly available data set

from Microsoft Azure’s Serverless Platform [46] in order to derive request arrival pat-

terns when creating the function workloads for both training and evaluating the DRL

agents. In all the experiments, we maintain request arrival rates at 10-60 requests per

second, maximum compute power and memory allocated to a single function instance

at 1 vCPU core and 3GB respectively and the execution time of a request below 10 sec-

onds. Accordingly, we analyse the Azure function data collected over a 24 hour period

and filter a set of multi and single function applications with these characteristics and

extract their request arrival patterns in the workload creation. For each function the per

minute request arrival rates recorded in Azure traces for a given function is considered
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as a per second rate. In a given workload, the function arrival rates for a single func-

tion is fluctuated over time using these traces. Multiple such function request loads are

combined to form a single workload. A workload consumed by a single agent is in-

corporated with traffic from no more than 4 functions at a time in order to maintain a

sufficient load in the cluster for the training process. During each time step, the func-

tion subjected to scaling configuration changes is decided arbitrarily during the training

process while the function with the highest RFRT is chosen during model evaluation, in

order to attain optimum application performance.

Table 5.4: Serverless Application Details.

Name Resource Sensitivity # of Functions

CPU Memory

Primary High High 1

Float High High 1

Matrix Multiplication High High 1

Linpack High High 1

Load low low 1

Dd High Medium 1

Gzip-compression High Medium 1

Thumbnail Generator Low Medium 2

Facial Recognition Medium Medium 5

Todo API Low Low 5

Image Processing Medium Medium 2

Video Processing High High 2
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Table 5.5: Hyper-parameters Used for DRL Model Training.

Parameter Value
General
Optimization parameter (β) [0.0, 0.25, 0.50, 0.75, 1.00]
Maximum number of concurrent replicas of a function 80
Maximum pod CPU utilization for horizontal scaling 90%
Neural network parameters
Discount factor (γ) 0.6
Learning rate (α) 0.0001
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 150
Optimizer Adam
Network update frequency 30
Action space size for each dimension 11

Hyper-parameter Configurations

Hyper-parameters for the actor critic networks of each worker agent are decided on a

trial and error basis. The discount factor is maintained at a lower value since the rapidly

fluctuating nature of serverless workloads reduce the relevance of distant rewards to-

wards current actions and thus a higher discount factor would force irrelevant informa-

tion on the agent hindering the learning process. The learning rate for the actor and

critic networks is maintained low enough so as not to cause a gradient blowup or lead

to a sub-optimal solution too fast, and high enough so as the model converges with suf-

ficient training. Each action dimension is discretized in to 11 actions as described under

section 5.4.2. This was arrived at after a series of initial experiments in order to maintain

action space exploration costs at a manageable level while reaching good optimization

levels for the target metrics. The maximum number of replicas for a single function at a

time was restricted in order to suit the capacity of a 20 VM cluster while an upper limit

of CPU scaling threshold was also set to ensure proactive scaling for all functions even

at very low traffic levels. The hyper-parameter settings for the A3C agents along with

these environmental parameters in use for all the experiments are listed in Table 5.5.
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5.5.3 Performance Metrics

We use three metrics to evaluate the effectiveness of our solution noted below:

1. Average Relative Application Response Time ratio (RART): The sum of the av-

erage, relative response times of all the applications in a workload during an

episode, divided by the number of applications, calculated using Equation (5.7).

2. Request Failure Rate (RFT): The ratio of the number of dropped function requests

to the total number of requests received in an episode.

3. VM Usage Cost: The cost of maintaining the VMs active during an episode. The

calculation of this metric is as in Equation (5.9).

5.5.4 Baseline Scaling Techniques

We use four baseline scaling techniques to compare the performance of our proposed

solution.

DQN: We use the value based DRL algorithm Deep Q Learning to arrive at a solution

for the function scaling problem. Here we consider each combination of the actions

from the three discretized action spaces for horizontal scaling, CPU and memory verti-

cal scaling as a compound action that the agent chooses. Due to the state action space

explosion that results from combining actions in this way, we limit the granularity of

action discretization to four actions per dimension resulting in 64 compound actions in

total.

Knative: The opensource serverless platform Knative [201] allows users to set a target

pod concurrency value, limiting the number of concurrent requests handled by a func-

tion instance. Further a target utilization value is set determining the actual percentage

of the target that we should meet. Horizontal scaling of functions is triggered in order

to maintain the set level of request concurrency and the target utilization (we set these

at 4 and 75%).

Kube-cpu: Kubernetes default horizontal pod auto-scaler scales function instances based

on a set threshold on function level resource usage metrics. Here we consider scaling
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function replicas in order to maintain the average CPU utilization across all instances of

a function at or below the set value (we set the CPU utilization threshold at 50%).

OpenFaaS: The opensource serverless platform OpenFaas [202] offers a mix of three

modes of scaling to be used based on the function requirements. For long-running func-

tions which can handle only a limited number of requests at a time, the ’capacity’ mode

triggers scaling based on the number of in-flight requests (we consider a threshold set

at 4). For functions which execute quickly and have a high throughput, the ’rps’ mode

enables scaling based on the number of requests per second completed by a function

replica (threshold set at 8). All the other workloads which do not support the ’capac-

ity’ and ’rps’ scaling profiles use the ’cpu’ mode which triggers scaling based on the

average CPU utilization (set at 50%) across pods, similar to Kube-cpu. We dynamically

decide on the scaling mode used for each function type based on their execution times

and request rates. Accordingly, functions with execution times greater than 2 seconds

are scaled using the ’capacity’ mode, functions with less than 2 seconds execution time

and request rate higher than 20 requests per second at the time, use ’rps’ mode and the

rest are scaled using the ’cpu’ mode.

5.5.5 Convergence of the DRL Model

Under each of the multi-agent model scenarios comprising of different number of par-

allel workers, we train 5 variations of the A3C model considering the significance given

to each optimization objective. We use the β parameter to signify the priority assigned

to each objective in the agent reward structure. Accordingly, β = 1 refers to a 100%

focus on improving function performance while β = 0 indicates model training leading

to infrastructure cost optimization only. The graphs in Figures 5.2 and 5.3 display the

training progress achieved over time as the agents gradually learn to optimize the cu-

mulative reward over an episode. The progress is demonstrated in terms of the episodic

reward and the target optimization metrics themselves, i.e: average relative function re-

sponse time (RFRT), request failure rate (RFR) and the VM cost over each episode. Note

that the marked values on the graphs are averaged values over 10 episodes for clarity in

presentation.
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(a) Reward Convergence. (b) Average Relative Function Response Time
(RFRT).

(c) Request Failure Rate (RFR). (d) Provider VM Cost.

Figure 5.2: Training progress of the 3 worker A3C models in terms of reward, average
RFRT, request failure rate, and the total VM cost.

In the first scenario with 3 actor-learners working in parallel, we train the model

with 9 different functions, deployed in the cluster in total. These are chosen to be a

mix of functions that are common to multiple applications from Table 5.4. In the next

scenario, we employee 5 actor-learners in the learning process, in order to analyse the

achieved efficiency in state space exploration with more worker agents. In this second

set of experiments, we deploy 15 different functions altogether in the cluster and observe

the agent behavior leading to model convergence.

Figures 5.2(a) and 5.3(a) show the convergence of the episodic reward under each

scenario with varying β parameters. As seen from the graphs, all of the models achieve

convergence around the 300th iteration, despite the considerably expanded state space

size in the second scenario. This is due to the speed-up in data exploration achieved

by having more workers learning in parallel, which results in the global model reach-

ing its maximum optimization levels faster, effectively improving both time and data

efficiency. Figure 5.2(a) also shows that when β = 0, the model convergence happens
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(a) Reward Convergence. (b) Average Relative Function Response Time
(RFRT).

(c) Request Failure Rate (RFR). (d) Provider VM Cost.

Figure 5.3: Training progress of the 5 worker A3C models in terms of reward, average
RFRT, request failure rate, and the total VM cost.

relatively faster compared to other scenarios in the set of 3 worker models. Since β = 0

only incentivizes reducing the VM cost, the agent seems to easily learn to take actions

that lead to maintaining the lowest number of replicas possible in the cluster while also

limiting their CPU and memory capacities. On the other hand, improving function per-

formance is not as straightforward for the agent to learn, since expanding the pool of

function replicas or vertically scaling pod resources would not always lead to the op-

timum solution. This is because while horizontal scaling creates new resources for re-

quest execution, it also adds a resource set up delay which causes increased latency and

request failures. Thus a more intelligent strategy needs to be learned depending on the

cluster state at each scaling step.

Figures 5.2(b), 5.2(c), 5.2(d) and 5.3(b), 5.3(c), 5.3(d) represent the average function la-

tency, failure rates and the VM costs incurred over the corresponding training episodes.

The β = 1 graphs in both 5.2(b) and 5.3(b) maintain a steady decrease in RFRT with

each iteration. The β = 0.75, β = 0.5, β = 0.25 graphs too show a gradual decrease in
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function response time latency since they too are partially motivated to improve func-

tion performance in the reward. But understandably, they converge at a higher latency

level than when solely focused on optimizing this feature alone. The β = 0 models on

the other hand display a completely opposite trend of increasing latency with each it-

eration as they simply target resource efficiency only, and this easily compromises the

performance parameter. The RFR graphs too display a similar trend in all the scenar-

ios. The VM cost graphs show a clear decrease in VM cost over time when β = 0. The

β = 0.25, β = 0.5, and β = 0.75 graphs too show a moderate decline in overall cost

for the provider with time. The β = 1 model converges at a high VM cost as expected,

but here we observe considerably lesser prominence than the decline in function perfor-

mance we earlier saw with the β = 0 model. A probable cause for this behavior is likely

to be the indirect effect that actions leading to improved performance seem to have on

enhancing resource efficiency too.

5.5.6 Analysis of Model Performance on the Evaluation Data Sets

The performance of our trained multi-agent models is evaluated and discussed mainly

in terms of our target optimization objectives of serverless application performance and

resource cost efficiency. We extract 1800 function traces in total from Azure function

traces using the procedure described in section 5.5.2 in creating the evaluation data set.

Our model evaluation is conducted under three request traffic levels as 5-20, 20-40 and

40-60 requests per second, for both the 3 and 5 parallel agent scenarios. Accordingly, for

both these scenarios, we create 60 workloads each for the 3 load levels, i.e. a total of 360

workloads. When creating each workload for evaluating the variations of the models

trained with 3 agents, we include simultaneous user requests from 5 different serverless

applications (single and multi-function) created using the 9 functions used during the

training process. Similarly workloads are created for the 5 agent models incorporating

requests from applications created using 15 different functions. Further, the request

arrival rates for a single application are varied over time in a given workload, each of

which spans over five minutes.

Figures 5.4 and 5.5 demonstrate the performance of our A3C models against the
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(a) Average Relative Application Response Time
(RART).

(b) Request Failure Rate (RFR).

(c) Provider VM Cost.

Figure 5.4: Comparison of the Average RART, RFR and provider VM cost in the system
during an episode, by the 3 worker A3C models and the baseline algorithms.

baseline scaling techniques under the two agent scenarios. Each bar graph corresponds

to the achieved performance metric derived by averaging over the 60 workload runs

under each load level.

Evaluation of application performance

Application performance is evaluated in terms of RFRT and RFR performance as shown

in graphs 5.4(a), 5.5(a) and 5.4(b), 5.5(b). Overall we can see that the latency and request

failure rates increase gradually with the rise in request rates due to increased wait times

for request executions arising from resource limitations in the cluster. Also, it is evident
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from the plotted graphs that the behavior of the models trained using both 3 and 5 actor-

learner architectures, is similar in most aspects and thus our discussion below would

entail a common analysis for both scenarios for the most part.

At the lowest traffic level of 5-20 req/sec, we do not observe a significant improve-

ment from the A3C(β = 1) model compared to the rest, where the DQN(β = 1) and

Kube-cpu models exhibit almost similar or better performance. This is because, at lower

traffic levels, the cluster is less congested and thus an intelligent function scaling strat-

egy adds less value to overall performance. However, at high β values, the A3C as well

as the DQN models show better function performance as their learned policy favors

performance more than cost.

As request rates increase to 20-40 req/sec, a more distinct performance upgrade is

seen to be achieved by the trained models. In both the graphs for RFRT, 5.4(a) and 5.5(a)

and for RFR, 5.4(b), 5.5(b), we observe the best performance from the A3C(β = 1) model.

The A3C model outperforms the next best performing baseline by up to 23% in RFRT

and 24% in RFR. Since our models in this case are purely rewarded for better function

performance during the training process, they learn to maintain lower cpu thresholds for

function scaling, leading to more proactive instance creation. Further, when an existing

instance is reaching its maximum utilization levels, the agent learns to vertically scale

its capacity after which it could immediately accommodate more requests without any

additional wait times. In this process, the agent also learns to weigh between horizontal

and vertical scaling as although vertical scaling expands capacity immediately, it limits

future resource expansions. Thus if the current cluster load could sustain some delays

in resource creation without excessive request failures, horizontal scaling could lead to

long term performance benefits. The DQN(β = 1) model exhibits next best performance

as it too follows an intelligent scaling policy in contrast to other baselines. However, the

DQN model lacks the fine grained learning capability of the A3C model for many rea-

sons. As a single agent model, it lacks the state space exploration capability even when

trained for longer periods of time as we observed during model training. Also, since

we had to create compound actions out of the 3 action dimensions with high level dis-

cretization, the extensiveness of action space exploration too was far weaker compared

to the A3C model. The Knative, Kube-cpu and OpenFaas techniques which follow fixed
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(a) Average Relative Application Response Time
(RART).

(b) Request Failure Rate (RFR).

(c) Provider VM Cost.

Figure 5.5: Comparison of the Average RART, RFR and provider VM cost in the system
during an episode, by the 5 worker A3C models and the baseline algorithms.

threshold base scaling, do not perform well in a congested resource constrained cluster.

They apply a blanket threshold for all the application functions facing varying request

rates, which lead to increasingly poor performance as the cluster load rises.

At 40-60 req/sec we see even more distinguished performance improvements in the

A3C models with high β values, with up to 34% reduction in request failures when

β = 1. We also note that at times, the A3C(β = 0.5) model shows slightly better latency

performance than the A3C(β = 0.75) model under high traffic levels. When the agent is

rewarded equally to improve both latency and cost (β = 0.5), it has indirectly resulted

in better function latency than when focused more on latency itself. This is because,
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scaling actions which lead to efficient cluster resource usage could also result in reduced

request wait times and thus latency, which is an added advantage. The DQN model

too shows similar behavior in the latency and request failure graphs for DQN(β = 1)

and DQN(β = 0.75). The A3C(β = 0) models show worst performance in terms of

application performance.

Evaluation of resource cost efficiency

Resource cost efficiency is evaluated in terms of the cost incurred by the provider to

maintain the VMs while they contain running function instances. The overall cost of

infrastructure increases as the load levels rise.

In contrast to our observations for latency performance at lower traffic levels, we see

clear cost improvements of upto 45% in the A3C(β = 0) models trained for that pur-

pose. This is because with lesser load, if cost is not a concern (i.e. at higher β values),

horizontal scaling is encouraged and the cluster could maintain a lot of idling instances.

This leads to high VM maintenance costs. On other hand, where resource efficiency is

rewarded, the agent learns to take vertical scaling actions more, which leads to higher

utilization levels for the active VMs. Subsequently, any idling VMs could be switched

off, which saves resource costs. Although not as efficient, the DQN models too show a

decreasing trend in cost with β at low load levels, in the second scenario (Figure 5.5(c)),

which has higher multi-tenancy in the cluster with more applications. Kube-cpu scal-

ing style triggers proactive horizontal scaling without a deeper understanding on the

workload patterns, thus leading to large resource inefficiencies.

At 20-40 and 40-60 load levels too we observe a significant improvement in our

A3C(β = 0) model, although the opportunity for gaining a huge resource efficiency

level reduces as the cluster utilization levels increase. As expected , the next best perfor-

mance is seen in the DQN(β = 0) model, as it closely follows the reward structure of the

A3C model, falling only short of the state and action space exploration capabilities of

the actor-critic architecture. A3C(β = 1), DQN(β = 1) agents exhibit worst performance

in terms of cost, closely followed by the Knative, Kube-cpu and OpenFaas techniques

which are unable to handle complex load scenarios to achieve a particular target.
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5.6 Summary

The abstract form of application resource management in serverless computing com-

pletely relieves the end users from operational responsibilities. However, cloud providers

are still in the process of developing the best strategies to fulfill this new set of responsi-

bilities. As such, attaining an optimum level of scaling for function resources of different

applications is still a challenge requiring attention.

In this chapter, we proposed a DRL based adaptive solution using the actor-critic

architecture, for taking the horizontal and vertical resource scaling decisions for appli-

cations in a multi-tenant serverless environment. A successfully scaled application satis-

fies both the application owner and the infrastructure provider. Accordingly, application

performance and the infrastructure maintenance cost for the provider, were considered

as our target optimization objectives for DRL model training. Our solution offers flexi-

bility for prioritizing either of these objectives, depending on the user requirements. We

conducted and presented details of two sets of experiments in order to observe data and

time efficiency improvements achieved, when using different numbers of parallel actor-

learners in training our A3C model. Our trained DRL agents were able to take effective

scaling decisions for functions deployed in serverless platforms, which led to reduced

application latency, request failures and provider side resource wastage. We employed a

trained DQN model, along with other baselines to evaluate our presented solution. The

results obtained show that our presented intelligent scaling solution vastly benefits all

user categories in meeting their objectives.

While in the previous chapters we explored techniques for efficiently managing the

computing resources in serverless computing environments, in the next chapter, we

study how we could navigate the deployment of user application workloads in order

to reap the highest benefits from serverless platforms.





Chapter 6

DRL-based Application Scheduling in
Serverless and Serverful Hybrid

Clouds

The serverless eco-system is able to accommodate many application domains successfully. How-

ever, some of its inherent properties such as cold start delays and relatively high per unit charges

appear as a shortcoming for certain application workloads, when compared to a traditional VM based

execution scenario. A few research works exist, that study how serverless computing could be used

to mitigate the challenges faced by certain applications traditionally executed in a Virtual Machine

(VM) based cluster environment. In contrast, this chapter proposes a generalized framework for

determining which workloads are best able to reap benefits of a serverless computing environment.

In essence we present a potential hybrid scheduling solution for exploiting the benefits of both a

serverless as well as a VM based serverful computing cluster environment. Our proposed framework

leverages the actor-critic based deep reinforcement learning architecture coupled with the proximal

policy optimization technique, in determining the best scheduling decision for workload executions.

Extensive experiments conducted using various application scenarios demonstrate the effectiveness

of such a fine-grained hybrid scheduling approach both in terms of the incurred user cost and achieved

application performance, with improvements of up to 44% and 11% respectively. .

6.1 Introduction

This chapter is derived from:

• Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya, ”Deep Reinforcement Learning
for Scheduling Applications in Serverless and Serverful Hybrid Computing Environments”, IEEE
Transactions on Services Computing (TSC) [Under Review, November 2023].
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Due to the attractive nature of its eco-system, many new applications nowadays are

designed to suit the stateless, short running nature of serverless functions, for easy tran-

sition in to this novel computing paradigm. Nevertheless, even when an application in

its design is fully compatible with a serverless architecture, the nature of the application

workload may render it unsuitable for execution in this environment. A key feature

of any serverless platform is its ability to auto-scale the deployed application at a very

granular level, with scaling to zero at its extreme. This distinct function level auto-

scaling property is established by closely following the demand patterns and scaling

up and down function resources just-in-time as required. With such an adhoc scaling

policy, the occurrence of certain delays in user request executions due to time taken for

resource creation known as cold start delays, is unavoidable. While for some applica-

tions, this occasional and rather small delay could be deemed insignificant, a latency

sensitive application with a very short runtime could face detrimental effects from such

unprecedented delays.

Serverless platforms charge their users only for the resources consumed for appli-

cation execution, calculated with a millisecond accuracy. To the service provider this

may incur a loss at times when load levels tend to be irregular, since their infrastructure

would need to stay alive throughout, including the idling periods. In order to compen-

sate for this potential unrecoverable cost, it is observed that the per unit billing rates for

serverless services are considerably higher compared to traditional VMs [45]. Thus, if an

application sustains a constant high level of traffic, the feasibility of using a serverless

deployment need to be studied. However, if the load levels are irregular with sudden

bursts of traffic, using serverless functions and paying for only the resource consumed

time would be understandably cheaper.

On the other hand, a VM when rented out, could be used for a longer period without

facing adhoc resource creation times. As long as the application is having a regular high

traffic level to keep the resources busy, the usage of a VM based set up could prove

to be much more cost effective compared to a serverless execution. In contrast, if load

fluctuations are high with long periods of little or no traffic, maintaining a VM resource

would not be as meaningful cost-wise. An on-off mechanism for VMs is also not viable

considering the relatively high start up times.
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In addition to the initial decision on determining the execution platform, the subse-

quent decision on choosing a host node on the selected platform too has implications on

both time and cost factors for the users. While on the serverless platforms, choosing a

host node with warm function instances saves up on request waiting times, careful load

balancing on Infrastructure-as-a-Service (IaaS) clusters is directly related to maximizing

rented resource utilization and in turn earning cost savings.

Considering the aforementioned facts, it is useful to be able to understand the work-

load patterns for an application and come up with a suitable schedule for executing user

requests, targeting both time and cost effectiveness. A few existing research works have

initiated the first steps in this regard, mostly by exploring how serveress computing can

be used as an add-on to mitigate various shortcomings of a VM based serverful deploy-

ment [203], [93], [45]. The majority of these works target specific application scenarios

such as web-services and High Performance Computing (HPC) workloads and try to

determine at which point, a switch to a serverless execution would be useful. In our

work, we aim to provide a fully generalized intelligent solution for request scheduling,

which extracts the best in both a serverless and a serverful infrastructure. Our pro-

posed framework is capable of determining not only the deployment environment, but

also the specific resource in that environment that is ideal for running a particular user

request considering both application performance and user cost. A fully automated hy-

brid framework such as this could be a potential offering by cloud service providers

which would have many use cases.

Deep Reinforcement Learning (DRL) is very popular among researchers nowadays

for solving cloud resource management related problems due to its experience based

learning strategy which is proven to be effective in exploring dynamic cloud computing

scenarios. Our proposed solution employs an actor-critic architecture enhanced with a

hierarchical action space which first determines the ideal deployment environment after

which the most suitable cluster node is selected. The key contributions of our work are

as follows:

1. We formulate the problem of scheduling an application request on a serverless and

serverful hybrid cluster environment, based on RL.
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2. We propose a novel actor-critic architecture with a hierarchical action space which

is capable of decision making at two levels. The mode of deployment is decided in

the first level while the node for scheduling within the selected cluster is decided

in the second. The DRL agent is trained to reach the best optimization levels in

terms of application performance and user cost for a given workload.

3. The DRL agent is modeled to capture application workload as well as the server-

less and serverful cluster resource details and behavioral patterns in order to gain

a comprehensive understanding on its action environment.

4. We evaluate and compare our approach with baseline scaling techniques using real

world applications, together with function traces captured from Microsoft Azure

Functions.

The rest of the chapter is organized as follows: Section 6.2 highlights existing relevant

literature. Section 6.3 describes our system model and presents the mathematical for-

mulation of our problem. Followed by this, section 6.4 describes the DRL based hybrid

scheduling framework. Section 6.5 presents the details of the DRL agent training envi-

ronment and discusses the performance of our proposed solution. Finally, section 6.6

explains plans for future work.

6.2 Related Work

6.2.1 Serverless and Serverful hybrid scheduling

The concept of utilizing a hybrid serverless and VM based environment for application

execution is still at its inception. A few works exist in literature which have attempted

to explore this hybrid approach for various use cases.

[45] study how a serverless deployment could help alleviate shortcomings of VM

auto-scaling for Machine Learning (ML) inference services. They propose a framework

which uses serverless functions whenever VMs with free resources are not available.

The required VM instances are then spawned based on either a reactive or predictive

scaling policy. Load balancing on VMs is done using a bin-packing method. However,
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Table 6.1: Summary of Literature Review.

Work Decision Level Technique Decision Parameters Generalizability VM

Deployment Scheduling Optimization Objective Container & VM Cold Start Workload Overall System Heterogeneity

Mode Node Response Time User Cost Awareness Awareness Awareness

[45] ✓ Heuristic/Linear Regression ✓ ✓ ✓ ✓ ✓

[204] ✓ Heuristic ✓ ✓ ✓ ✓

[93] ✓ Queueing Theory/Heuristic ✓ ✓ ✓ ✓ ✓

[205] ✓ ML ✓ ✓ ✓

[203] ✓ Heuristic ✓ ✓ ✓ ✓

Our proposed work ✓ ✓ DRL(A2C-PPO) ✓ ✓ ✓ ✓ ✓ ✓ ✓

they use dedicated VM clusters for serving different ML models and the heuristics used

for execution node selection are not ideal for optimizing user cost. Another approach of

using cloud functions for interim processing while VMs are being launched is discussed

in [204]. [93] present a system to dynamically switch a micro-service deployment be-

tween functions and VMs. They mainly focus on resource contention that could occur

among serverless functions and use input from a contention monitor when taking a de-

cision to switch an application load from IaaS based deployment. They handle resource

scaling by always directing traffic to one deployment mode and reactively creating the

required resources on the other. With highly dynamic workload patterns, this may not

result in the ideal usage of resources in both platforms. A time series analysis and a

classification algorithm is used in [205] for deciding the best deployment environment

for a given time range. An initial study on determining for which workload scenarios, a

hybrid deployment approach would be beneficial is conducted in [206]. A solution for

leveraging serverless computing for executing HPC workflows is presented in [203]. In

order to determine which environment is ideal for running each task, they run every-

thing on VMs and then on a serverless platform. The I/O overhead and the execution

time on each platform are taken in to consideration for decision making. Cost efficiency

is not included in the scope of their work. They suggest a heuristic for mitigating con-

tainer cold-start delay, but do not account for VM start up delays.

6.2.2 Serverless Resource Management with RL

RL has been used successfully in a number of research works in recent times for en-

hancing resource management in serverless computing environments. The provided

solutions mostly address function scheduling, scaling problems or used for determining

optimum resources allocations for a function.
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A multi-step DQN solution and a policy gradient algorithm are discussed in [198]

and [173] for determining the ideal cloud based host node for running a serverless func-

tion. A number of DRL based frameworks are presented in [194], [196], [195], and [197]

for serverless cloud-edge computing environments. Q-Learning solutions are presented

in [77], [190] and [192] for horizontally scaling serverless functions. Further, DRL and

RL implementations are also proposed for combined horizontal and vertical scaling de-

cision frameworks in [172] and [193].

A summary of related works in literature, which explore the space of serverless and

IaaS cluster hybrid scheduling, is provided in Table 6.1. The existing studies are com-

pared in terms of their provided solution scope, used technique, the objectives of op-

timization, awareness on various system parameters, generalizability (adaptability for

multiple application workloads) and consideration for VM heterogeneity in the server-

ful cluster. While many works discuss the switch between the two deployment modes,

their scheduling decisions do not extend to the final place of execution of a function,

which could have a considerable impact on overall application and system performance.

Existing researches in this area are also confined in their applicability to specific applica-

tion types. In our proposed solution, we try to overcome these limitations by providing

a complete scheduling decision for applications irrespective of their specific resource

requirements.

6.3 Hybrid Scheduling

6.3.1 System Model

Our system model is primarily composed of two service clusters, one for serverless

deployments and one for a serverful (IaaS) deployment. A global load balancer and

a resource manager component handles the forwarding of user requests to one of the

clusters for execution. Figure 6.1 illustrates the system model of our proposed hybrid

execution engine.

User requests are received at the hybrid load balancer as shown in the diagram. This

global load balancer is the decision making body which outputs the best deployment
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Figure 6.1: The System Model of the Hybrid Application Execution Environment.

mode/environment and also the specific scheduling node for an application request.

Articulating the functionality of this novel functional component is the focus of this

work. The hybrid resource manager is a database server which periodically derives and

updates the resource as well as behavioral metrics of both the service clusters.

The serverless cluster is comprised of a set of invokers which host the containers for

function execution. These could be servers or VMs, and referred to as ’nodes’ from here

onwards in the chapter. The cluster controller acts as the governing body which coor-

dinates the communication and overlooks the actions of all the other functional com-

ponents. It is also the entry point to the cluster. Any new request that is decided to

be deployed in a serverless environment, is received at the controller along with the

selected node information for scheduling the same. The resource monitor is a monitor-

ing tool which scrapes cluster metrics including resource details of nodes and function

containers and also the performance data of the requests in execution and passes on to

the global resource manager. Upon receipt of a new request, the controller checks if

the selected node contains warm function instances for the request type. If so, the re-

quest is forwarded to an existing ready container. In case such idling instances are not

available, the function scaler spawns a new container in the preferred node and deploys
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the function code along with any dependencies. Then the request is forwarded to the

new instance. This results in a ’cold start’ delay for the request. To have more warm

instances in order to minimize this delay, the scale-in process allows a set idle time for

the resource, once a request finishes its execution. The function executions are charged

as per the billing model in commercial serverless platforms, i.e. at a GB-second rate with

a millisecond (ms) granularity in addition to a per request rate.

The IaaS cluster is composed of rented VM resources with varying cpu and memory

capacities, from a cloud provider under the IaaS model. We consider resources similar

to on-demand EC2 VMs from Amazon [207], which are recommended for short term,

unpredictable workloads that cannot be interrupted. Users are charged per second of

usage derived from the hourly rate. The resource monitor gathers cluster metrics similar

to that in the serverless cluster. The VM scaler is equipped with a cpu-threshold based

scaling policy following Amazon EC2 auto scaling [208]. Accordingly, VMs are scaled

out in order to maintain the average cpu utilization at the given threshold. Once a VM is

freed after all the executions, it is scaled-in only after staying idle for a set time duration,

so that the frequency of cold starting instances is minimized. We define a maximum

cluster size, and maintain a record of the VMs that are active, stopped, and pending

creation at a given time. Once a request arrives at the controller with an associated VM

id, if the particular resource is already running, the request is forwarded to it. If it is

pending creation, the request is queued until the resource comes alive.

6.3.2 Problem Formulation

Consider N = {n1, n2, ...., nQ} to be the set of nodes in a serverless computing environ-

ment. Each node has a cpu and memory capacity measured in terms of vCPU cores

and Mega Bytes (MBs). The unallocated, available cpu and memory values of node ni,

1 ≤ i ≤ Q at time t is nc
i(t) and nm

i(t) respectively. Cj is the container running the jth

(1 ≤ j ≤ B, B being the total number of requests for the function) request of an ap-

plication/function deployed in the cluster. Following resource demand and capacity

constraints need to be satisfied for Cj to be deployed on node ni at time t.
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Cc
j ≤ nc

i (t), Cm
j ≤ nm

i (t) (6.1)

where Cc
j and Cm

j identify the requested resources by the container. Similarly, sup-

pose V = {v1, v2, ...., vM} represent the cluster of VMs in the IaaS cluster. Any request to

be executed in a VM needs to meet its resource availability. Going by the above notation,

if Rj is the jth request of an application and 1 ≤ l ≤ M,

Rc
j ≤ vc

l (t), Rm
j ≤ vm

l (t) (6.2)

A key metric that we target to improve in this work is application performance in

terms of execution time latency. In order to not allow request processing time varia-

tions in different applications to hinder the overall performance tracking, we consider

a relative response time parameter of a request when measuring performance. Relative

Request Response Time (RRRT) is defined as the ratio between the standard (Rr0
j ) and

the actual response time (Rr
j ) of a request. Standard response time is the time to response

when the request is run in an isolated environment on a readily available resource. Ac-

cordingly, over the course of an application request workload, we target to minimize the

average Relative Request Response Time (RRRT) ratio, i.e.,

Minimize : Average RRRT =
1
B

B

∑
j=1

Rr
j

Rr0
j

(6.3)

In addition to the performance goal, an equally important parameters for end users

in any cloud service offering is the cost. Thus optimizing the overall infrastructure cost

of running an application workload is our second key target. The cloud service provider

cost model is different under a serverless and a serverful deployment model.

Existing commercial serverless platforms charge users based on the memory allo-

cated (in MB) to the function instance (Cm
j ), the execution time (in ms) of a request (Ej),

and the number of requests received by the application (B). Thus if the charge per MB

for 1 ms is W, and the charge per request is L, the total cost of executing an application

workload on the serverless platform is,
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Costs =
B

∑
j=1

(Cm
j × Ej ×W) + L (6.4)

An IaaS platform on the other hand charges users for the whole period that the in-

frastructure is rented out. If tl is the time period (in seconds) that vl was rented and pl

is the price per second for the same,

CostVM =
M

∑
i=1

pl × tl (6.5)

Thus the infrastructure cost optimization objective could be stated as below:

Minimize : CostTotal = Costs + CostVM (6.6)

Accordingly our overall target objective is summarized below:

Minimize : Average RRRT + CostTotal (6.7)

Table 6.2 summarizes the various symbols introduced in this section.

6.4 Deep Reinforcement Learning Model

This section introduces the application of the DRL concepts to our hybrid scheduling

model, followed by a detailed discussion on our proposed actor-critic based framework.

6.4.1 Learning Model for Hybrid Scheduling

RL is a form of machine learning which predominantly works by learning through ex-

perience gathered by actively interacting with the problem environment. Based on the

preferred outcome, the learning agent is rewarded whenever a ’better’ action is taken.

With enough experience, the agent ultimately learns to take actions leading to maximiz-
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Table 6.2: Definition of Symbols.

Symbol Definition
N Set of nodes in the serverless cluster
V Set of VMs in the serverful cluster
Q Total number of deployed functions
nc

i(t) Available CPU in ith node, i ∈ [1, Q]

nm
i(t) Available memory in ith node, i ∈ [1, Q]

vc
l(t) Available CPU in lth VM, l ∈ [1, M]

vm
l(t) Available memory in lth VM, l ∈ [1, M]

Rj The jth request of an application, j ∈ [1, B]
Cj Container running the jth request of an application
Cc

j Requested CPU by the jth container
Cjm Requested memory by the jth container
Rr0

j Standard response time of the jth request
Rr

j Actual response time of the jth request
Ej Execution time of request, Ej
W Per MB/s charge for serverless executions
L Charge per request for serverless executions
pi Unit price of VM, vl
tl Total active time of VM, vl

ing the cumulative reward along experience trajectories.

In this work, the RL agent is tasked with traversing a serverless and VM based hybrid

computing environment, in order to determine a request scheduling policy for applica-

tion workloads. Each time step of the agent corresponds to the event of receiving a user

request at the hybrid load balancer discussed under the system model. The policy to be

developed is aimed at achieving our objectives of time and cost. The key elements of the

RL model are discussed below.

State space: The state space captures the important metrics in both the serverless

and VM based environments in addition to the workload characteristics. Accordingly,

the first part of the state vector carries the serverless cluster node specifications: [nc
i , nm

i ,

nidle
i ], which identify the free cpu, memory capacities and the number of idle (warm)

containers in each node. The second part includes the request details: [Rc
j , Rm

j , Rrate
j , Rd

j ],

representing the requested cpu, memory, moving average arrival rate and the deploy-

ment mode of the previous request, respectively. The moving average rate of arrival is

calculated over a time frame which captures the total of the set up and the set idle time

of a VM in the serverful cluster, which helps the model to gain an understanding on the

historical load level as well as its duration. The mode of deployment in the preceding
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step gives an indication of the availability of warm/active instances, and thus is helpful

in decision making. The final portion of the state vector is composed of details of the

IaaS cluster: [vc
l , vm

l , vs
l , vt

l], referring to cpu, memory capacities, VM live status and the

request waiting time for scheduling if selected. The last metric identifies how long it

takes for the VM to come to ’ready’ status and is calculated by the average time taken

for a VM to start up and the remaining time since initializing the ’start’ process.

Action space: Our action space takes a hierarchical form with two levels of decision

making. The first level determines the deployment environment for the request while

level two specifies the node of execution within the selected cluster. Accordingly, a

complete action A can be represented as below:

A = [a1, a2]

a1 ∈ {serverless, server f ul}

a2 ∈ {n1, n2, ...., nQ}/{v1, v2, ...., vM}
(6.8)

Compared to a combinatorial action space which does not distinguish between the

two deployment modes, the RL agent is able to explore and learn the behavior of the

hybrid environment faster with this formulation.

Reward: The step reward awarded to the agent after each action is aligned with the

performance and cost objectives. We device two reward elements as below for action At:

R1: The waiting time for the request to be scheduled. This is the resource creation

time relevant as per the selected combined action. For a request directed to a node in

the serverless platform, this would be equal to zero if there is any ready instance or one

if a new container is to be created. If the VM cluster is selected for execution, this would

either be zero or one for active or stopped VMs, else the remaining time for initializing

as a fraction of the total, for a VM pending creation.

R2: An approximation of the effective cost of running the request in the selected

infrastructure. In the serverless cluster, this is the charge per request calculated as per

Equation (6.4). For the VM based cluster, we use an approximate value calculated as

the cost of keeping the selected VM active during the execution time of the request,

multiplied by the percentage of free resources in the VM at the time.

The total reward is the aggregate of both R1 and R2 above. Since we need to minimize

the cumulative of these rewards in order to reach our targets, we insert a negative sign
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for this reward value when training the agent. Further, since R1 and R1 are in two

different scales, we normalize them at each step.

6.4.2 Actor-critic based Hierarchical Scheduling Framework

Actor-critic methods in reinforcement learning make use of both the basic techniques of

value based and policy based methods of finding the optimal policy for a given problem.

Its fundamental architecture is designed with the use of two neural networks, the actor

and the critic network. The actor is a policy network which uses an optimization method

to train the network in the direction of the desired policy. Critic is driven by a value

network which evaluates the policy generated by the actor.

Traditionally, actor-critic algorithms are implemented with one actor and one critic

network. For our proposed hierarchical action space described above in section IV(A),

we design a network architecture with two actor networks and one critic network adapt-

ing the hybrid actor-critic architecture presented in [209] for parameterized action spaces.

The two parallel actors work together to generate a complete action. The first actor per-

forms the first level of action selection by learning a stochastic policy πθ1 , while the

second actor learns a policy πθ2 in order to select the second action.

The policy optimization in the actor networks could utilize any policy gradient algo-

rithm which works with discrete environments and suits the basic actor-critic architec-

ture, such as Trust Region Policy Optimization (TRPO) and Proximal Policy Optimiza-

tion (PPO). Since TRPO is computationally intensive, we choose PPO for policy opti-

mization in both the actor networks. It is proven to be an improved version of TRPO in

terms of generalizability and its simplicity. PPO learns a stochastic policy πθ by includ-

ing a clipping function in its objective function and minimizing it.

LCLIP(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At] (6.9)

where rt(θ) identifies the probability ratio between the old policy and the new policy

while ϵ is a hyper-parameter used to clip the objective function. The clipped function in

PPO helps to keep the divergence of the old policy and the new policy within the trust

region without having to use a constraint like in TRPO. In our proposed architecture, the
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Algorithm 6 Actor-Critic based Hierarchical Scheduling Algorithm

1: Initialize the two actor network and critic network parameters θ1, θ2 and ϕ
2: Initialize the training parameters α, β, and γ
3: for episode = 1 to E do
4: Reset the environment
5: for step = 1 to T do
6: Input the state s of the environment to actor networks πθ1(a|s) and πθ2(a|s)
7: Select action a1 and a2 using using the first and second actor networks
8: Execute the combined action A = (a1, a2), move to the next state s′ and ob-

serve the reward r
9: Store the transition (s, a, r, s′) in memory D

10: for j = 1 to S do
11: Randomly sample a mini-batch of samples of size K from memory D
12: for sample i = 1 to K do
13: Compute the loss and the gradients of the loss of the two actor ∇θ1 J(θ1),
∇θ2 J(θ2) and critic ∇ϕ J(ϕ) networks

14: Update actor and critic network parameters θ1, θ2 and ϕ

15: Clear memory D
return

two discrete policies πθ1 and πθ2 are updated separately by minimizing their respective

clipped objectives during training.

The single critic network estimates the state-value function, vπ(st|ϕ) and learns by

minimizing the difference between the target (r + γVϕ(s′t)) and predicted values of the

state, also known as the advantage function A(s, a) as shown below.

J(ϕ) = r + γVϕ(s′t)−Vϕ(st)

ϕ = ϕ− α∇ϕ J(ϕ)
(6.10)

where ϕ is the critic network parameter and ∇ϕ J(ϕ) is the gradient of the network

which is updated using gradient descent.

Algorithm 6 illustrates the pseudocode of the learning process of the proposed actor-

critic based hierarchical scheduling framework. First we initialize the actor networks

and the critic network with random weights and set the hyperparameters for model

training (lines 1-2). At the start of each scheduling episode, the environment is reset.

At each time step, the agent retrieves the state of the environment and feeds it to the
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first and second actor networks. The first actor maps the request to either the serverless

or VM based environment, after which the second actor determines a scheduling node

in that environment. Once the request is forwarded for execution, the agent receives a

reward and the environment transitions to the next state. The transition data are stored

in a memory buffer (lines 5-9). When an episode comes to an end, we train the networks

S times by sampling a batch of step data from the memory, computing the network losses

for each step and by updating the network parameters (lines 10-14). Finally the memory

is cleared before the start of the next episode.

6.5 Performance Evaluation

6.5.1 RL Environment Design and Implementation

We build a serverless testbed with the Kubeless [30] open source serverless framework

deployed on a Kubernetes [158] cluster, set up on the Melbourne Research Cloud [175].

This prototype environment is used to do initial resource profiling for the applications

used in our experiments in addition to gathering various system behavioral parameters

such as container creation (cold start) times etc.

Following the system architecture in our serverless prototype described above and

the overall system model presented under section 6.3.1, we have developed a simulation

environment for serverless and serverful hybrid scheduling of applications. The server-

ful/VM based functionalities in the simulator are based on Amazon EC2 VM instances.

Further, this event-based simulator written in python is integrated with Keras [32] and

Tensorflow(TF) [31] libraries in order to support our DRL model training. Although in

this work we explore only scheduling techniques, our simulator is capable of evaluat-

ing novel RL-based solutions for many resource management related tasks including

resource provisioning, scheduling, and scaling etc. As mentioned above, it supports ap-

plications deployed in a serverless, VM based or a hybrid environment and the source

code is publicly available as an open-source software, ’Hybrid DRL1’.

1https://github.com/Cloudslab/Hybrid DRL
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6.5.2 Experimental Settings

Cluster Setup

Our experiments are designed to include 20 nodes in the simulated serverless cluster.

The processing power of each of these node vCPUs is considered to follow the clock

speeds of the AWS Lambda invokers identified in [39], with 4 different vCPU count and

memory configurations. The simulated serverful cluster is also composed of 20 VMs

and their configurations are derived from the Amazon EC2 VMs (in Australia) closely

matching the clock speed, vCPU and RAM configurations of the serverless nodes. The

pricing model of these VMs are set as per the instance pricing model of the EC2 VMs,

while AWS Lambda GB-second and per request rates are utilized for the serverless clus-

ter cost calculations. The VM-based cluster resource details are summarized in Table

6.3.

Workload Specifications

Serverless Applications: We select 10 applications from ServiBench [159] and Func-

tionBench [47] benchmark suites which are formed of a single function. These appli-

cations were chosen so that they have varying execution times which determine their

sensitivity to cold start latencies. Further, each of them have different resource require-

ments and thus provides a diverse learning experience to the DRL agent, specially in

Table 6.3: VM-based Cluster Resource Details.

Instance Type vCPU cores Memory(GB) Quantity Price($/hr)

m6a.large 2 8 5 0.108

t4g.xlarge 4 16 5 0.1696

m5.2xlarge 8 32 5 0.48

m5a.4xlarge 16 64 5 0.864
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terms of managing idling resources in the VM cluster. Our practical testbed is initially

utilized for deriving resource metrics for the selected applications. A series of requests is

sent to a ready instance of each application deployed in isolation, using the JMeter [179]

load generation tool. The results from these tests collected by monitoring tools and aver-

aged over multiple iterations are used to determine the resource consumption of a single

function request (Rc
j , Rm

j ) and its standard response time (Rr0
j ). Table 6.4 summarizes the

nature of the selected benchmark applications.

Workload Creation: We utilize metrics from function traces exposed by Azure Func-

tions [46] for a set of single function applications, when creating the training workloads.

The per hour arrival rates for a particular function are extracted as the request rates, and

a poisson distribution is followed when determining the inter arrival times of requests.

Each workload is created with a single application receiving requests at fluctuating ar-

rival rates, with each rate prevailing for different time durations. The DRL agent is

Table 6.4: Application Details.

Name Resource Sensitivity

CPU Memory

Primary High High

Float High High

Matrix Multiplication High High

Linpack High High

Load low low

Dd High Medium

Gzip-compression High Medium

Thumbnail Generator Low Medium

Image Processing Medium Medium

Video Processing High High
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trained with workloads of multiple applications with high and low request rates lasting

for both short and long durations. In all the experiments, we maintain request arrival

rates at 5-60 requests per second.

Hyper-parameter Configurations

Neural network training parameters for both the actor networks and also the critic net-

work are decided on a trial and error basis. The discount factor is maintained at a high

value since the scheduling decisions made over a period of time affect the success of the

agent’s decision making in terms of both the mode of deployment as well as the execu-

tion nodes. The second actor initially has a higher learning rate, so that the agent learns

to take better node selection decisions during initial iterations, without which the first

level decision of environment selection too will have no value. A decay factor is used

to gradually bring down this learning rate to match that of the first actor subsequently.

The critic constantly maintains a relatively higher discount rate since in the actor-critic

architecture, the actors largely rely on the feedback and guidance of the critic network.

These neural network parameters, and the other settings for training the DRL agent are

listed in Table 6.5.

6.5.3 Performance Metrics

We use two metrics to evaluate the effectiveness of our solution noted below:

1. Average Relative Request Response Time (RRRT): The average, relative request

response time of an application workload during an episode, calculated using

equation (6.3).

2. User Cost: The total cost of running an application workload in the hybrid cluster

environment. The calculation of this metric is as in equation (6.6).

6.5.4 Baseline Scaling Techniques

We use three baseline techniques to compare the performance of our proposed solution.
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Table 6.5: Hyper-parameters Used for DRL Model Training.

Parameter Value
General
Discount factor (γ) 0.99
Mini-batch size (K) 128
No. of training iterations per episode (S) 50
Optimizer Adam
First Actor network parameters
Learning rate (α1) 1.00E-06
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 150
Second Actor network parameters
Learning rate (α2) 1.00E-05
No. of input layers 2
No. of output layers 2
No. of hidden layers 4
No. of neurons in each hidden layer 150
Critic network parameters
Learning rate (β) 5.00E-06
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 150

VM-only: The entire workload execution takes place on a VM-based cluster.

S-Only: The entire workload execution takes place on a serverless cluster.

Std-A2C: DRL model trained with the standard actor-critic network architecture with a

single actor network. The two levels of decision making are accommodated by compos-

ing a combinatorial action space where each action has two decision elements.

6.5.5 Convergence of the DRL Model

The graphs in Figure 6.2 illustrate the step-by-step training progress achieved by the

hierarchical actor-critic agent, H-A2C across iterations. We demonstrate the progress in

terms of the cumulative reward over an episode, the average RRRT experienced and

the average user cost incurred for executing a request during an episode. Note that

each marked value in the graphs corresponds to the average over 10 episodes for better

readability and ease of understanding.
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(a) Average Rewards. (b) Average Relative Request Response Time
(RRRT).

(c) Average User Cost per request ($).

Figure 6.2: Training progress of the DRL agent in terms of the agent rewards, average
RRRT, and the average user cost per request.

It is clear that the model reaches convergence around the 900th iteration, after which

the achieved progress is maintained. Figure 6.2(a) shows how the episodic reward grad-

ually improves and reaches convergence, as the agent learns a policy that is able to

take decisions that optimize the constituents of the reward metric at each scheduling

step. Figures 6.2(b) and 6.2(c) illustrate the gradual reduction in overall RRRT and the

incurred cost for requests with convergence, respectively. The logic behind this achieve-

ment is two-fold, since the agent has a hierarchical decision structure. The first actor

network learns to select a deployment environment that leads to lower relative response

times by targeting lesser frequency in cold starts, considering the nature of the appli-

cation specially in terms of its execution time. The cold starts refer to the container

creation time in a serverless execution as well as the time for setting up new resources in

a VM setting if all active resources are exhausted. While aiming for a reduced RRRT, the

model also learns to aim for an environment where the marginal cost for each request
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would be minimal. This could be based on the availability of warm function instances

in a serverless setting or active VMs with free resources in a VM setting. Subsequent to

the first actor’s decision, the second actor uses its learned policy to select an execution

node in the selected environment, that further elevates the target metrics. A node with

ready instances could be the better choice in a serverless setting, while an active VM

with higher utilization levels which leads to lesser idling times, could be selected in a

VM-based setting.

6.5.6 Analysis of Model Performance on the Evaluation Data Sets

The trained model is evaluated in terms of the response time and user cost performance

achieved over the evaluation workloads. The workloads for these experiments are cre-

ated by following trace snippets from Wikipedia [154] to simulate request arrival times.

The Figures 6.3(a) and (b) show the results averaged over five different workloads, run

for each of the applications float, load and image processing, which have been selected

out of the ten applications used in the experiments, due to space limitations. These three

applications were specifically chosen for demonstration of model performance due to

their distinction in resource consumption and execution times. Further, Figs. 6.4 and 6.5

(a) Average Relative Request Response Time
(RRRT).

(b) Total User Cost ($).

Figure 6.3: Comparison of the average RRRT and the total user cost incurred by different
application workloads, achieved by the H-A2C model and the baseline algorithms.
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illustrate the behavior of the agent decision model for two of the evaluation workloads,

with the points of switching deployments between the serverless and IaaS clusters.

Evaluation of application performance

Application performance is evaluated in terms of the achieved average RRRT (Figure 6.3

(a)) for each application by following the trained policy of our hierarchical A2C (H-A2C)

model and the other baseline algorithms, for scheduling workload requests.

Our H-A2C model is able to demonstrate the best performance for all three applica-

tions, with overall relative response time improvements of up to 11%. This is achieved

by carefully directing each request to the execution environment that is more likely to

have ready resources for the upcoming request traffic as shown in Figures 6.4 and 6.5.

Once the deployment mode is decided, the trained agent is also able to choose the best

out of the available cluster nodes. Both these decisions are taken to suit each phase of the

workload considering the prevailing traffic patterns. The trained S-A2C model shows

the next best performance, but fails to capture the fine details of each cluster environ-

ment, that is enabled by the hierarchical nature of the H-A2C model.

The float application has the highest CPU and memory consumption and the longest

execution time out of the three. Thus when the requests are scheduled solely on a VM

cluster, it is able to maintain a relatively high utilization level in the rented resources

even at low load levels, in the long term. This triggers auto-scaling of VM resources in

the cluster, leading to lesser request latency effects arising from new VM initialization.

(a) Float. (b) Image Processing. (c) Load.

Figure 6.4: Workload-1: Deployment switch between Serverless and IaaS clusters for the
three applications.



6.5 Performance Evaluation 193

(a) Float. (b) Image Processing. (c) Load.

Figure 6.5: Workload-2: Deployment switch between Serverless and IaaS clusters for the
three applications.

However, when the entire workload is executed as serverless functions, due to the high

application response time, the availability of warm idling containers is often limited.

Thus the s-only execution shows the worst performance resulting from frequent cold

start of instances (first graph of Fig. 6.3 (a)). To overcome the shortcomings of both these

scenarios, our H-A2C model resorts to serverless deployments during periods of very

low and fluctuating traffic levels, and switches to the VM cluster as the load starts to

increase and then stabilizes, as seen in the graphs 6.4(a) and 6.5(a).

In contrast, the load application results in the need for frequent startup of new VMs

in the IaaS cluster to accommodate new requests. This is due to its very low execution

time and resource requirements. For the same reasons, the effect of these added latencies

on the relative response time too is high for the load application. This situation escalates

during periods of low and irregular traffic patterns, when VMs are switched on and off

often due to idling. On the other hand, the s-only execution performance is not much

different from the float application scenario since the increase in latency is mostly only

due to the higher relative effect of the cold start delays, arising from the low application

response time. In comparison to these two strategies, we can see that the H-A2c model

leverages both these clusters by executing the application requests as functions for the

majority of the workload, while utilizing the VM cluster only during periods of lasting

high traffic levels (Figures 6.4(c) and 6.5(c)). During these traffic bursts, the load level

seems to be sufficient to maintain a set of ready VMs, thus compensating for the cold

start latencies that the serverless execution would otherwise entail.
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The image processing application possesses a median response time and resource

needs. Thus its relative latency effects are less evident and more prominent compared

to that of the load and float applications respectively.

Evaluation of incurred user cost

The cost charged to the user is measured as the total billed amount for the rented VM re-

sources and function executions, by each application over the duration of the workload.

Figure 6.3(b) shows that the scheduling decisions made using the H-A2C model result

in the least cost charged to the user for all three applications, with the load application

attaining a cost reduction of approximately 44%. The trained policy is equipped with

knowledge on the workload and system behavioural patterns, so as to make informed

decisions on when to switch deployments to each cluster environment, that are cost effi-

cient. The reduction in VM idling time and maximizing the usage of the serverful cluster

by maintaining just the right amount of resources active, is the key enabler for overall

user cost minimization. Since the per request charge for a serverless function execution

is quite high, the scheduler chooses to use it only during periods of fluctuating and low

load levels, during which the use of rented VMs results in cost inefficiencies. The lowest

overall cost under the H-A2C model is incurred by the image processing application due

to its better use of both the environments compared to the load application, in addition

to the lower actual resource consumption than the float application. The Std-A2c model

too follows this cost pattern.

The VM-only deployment results in worst performance for the load application due

to high VM idling times, with the highest incurred cost for the workload execution out

of all the applications. The S-only execution cost difference for the three applications is

only dependent on the consumed level of resources and the workload execution times,

as per the serverless billing model.
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6.6 Summary

With the increased adoption of the serverless cloud model for different application do-

mains, studies have shown that limitations also exist in these environments that hinder

the achievement of the best possible performance for certain workloads.

In this chapter, we presented a DRL based hybrid execution model for application

workloads, which utilizes both a serverless and a serverful cluster environment. The

proposed scheduling framework involves a hierarchical decision model, where the DRL

agent first learns to choose the best mode of execution for an application request. There-

after, it proceeds to decide the node that is most suitable for the request execution within

the selected cluster environment. The DRL agent follows an actor-critic architecture

and the reward model is set targeting relative application latency and the resource cost

charged to the user as the optimization objectives. The model evaluation experiments

show that the users are able to avoid application latencies arising from frequent con-

tainer cold starts in a serverless environment, as well as the problem of over/under

utilization of rented infrastructure in a VM setting, by adopting a carefully designed

hybrid system architecture.





Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis and summarizes our work highlighting its key contributions. It

also proposes several potential future research directions that support the progress of the serverless

computing eco-system.

7.1 Summary of Contributions

Serverless computing could be considered the latest step in the evolution of cloud com-

puting technologies which has caused a vast transformation in the cloud deployment

model. Its increasing popularity among industry giants is largely due to the conve-

nience it brings to the end users in executing their applications in the cloud. Under the

serverless model, the end users are only expected to provide their business logic in a

modular form called ’functions’, and thereafter the cloud vendor takes the full respon-

sibility of the successful execution of the application. This results in reduced cost to the

users in terms of any upfront infrastructure costs, expertise in server management as

well as maintaining any redundant bare-metal servers or virtual resources when there

is no application traffic. Seamless scale up/down of allocated resources and the exclu-

sive pay-per-use billing model have further elevated the growing interest in this cloud

model.

However, the serverless computing model does require the cloud vendor to under-

take all of the tasks that the end users are now relieved of. This is a highly challenging

situation since cloud service providers have to serve numerous users at a time with

each having their own requirements. Minimal involvement of the application owners in

the execution process essentially means that the vendors have access to only very little

197
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information on the applications being deployed. Further, the highly anticipated auto-

scalability feature and the granular billing model complicate the resource management

process for the providers. Thus, the successful undertaking of the end-to-end resource

management operations in a serverless system requires the platform operators to follow

thoroughly tested solid techniques at each step. In this thesis, we investigated dynamic

techniques for handling several key resource management processes including resource

provisioning, scheduling and scaling, to the satisfaction of both the cloud vendor and

their clients.

Chapter 1 introduced the serverless computing paradigm with a discussion on the

evolution of various cloud deployment models over time. Next, the architecture of this

novel paradigm is presented along with its distinguishing features. Then the existing

serverless platforms are analyzed followed by a discussion on few popular use-cases

for adopting this model. Further this chapter presented challenges in serverless re-

source management, forming the basis of our research. Finally the research questions

addressed in this thesis are highlighted and the thesis contributions are summarized.

Chapter 2 identified the major aspects of resource management in a serverless com-

puting environment, namely, workload characterization and performance prediction,

resource scheduling and resource scaling. This is followed by an analysis on the chal-

lenges associated with these key decisions, which are specially significant in serverless

computing environments. Next, a detailed taxonomy of the factors which need to be

considered when developing successful resource management strategies overcoming

these challenges, is presented. Further, existing related works are analysed in detail

using the taxonomy, followed by a discussion on the identified research gaps with great

potential for future studies.

Chapter 3 presented a dynamic resource provisioning and a function request place-

ment technique, for overcoming inefficiencies of initial resource allocations to requests

and under-utilization of provider cloud infrastructure. The deadline-sensitive place-

ment algorithm is aimed at reducing provider resource wastage, while the allocated

resources to functions are analysed in the run-time to ensure the satisfaction of appli-

cation requirements. This work also entailed a novel addition to the existing CloudSim

simulation environment which supports serverless function executions.
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Chapter 4 proposed a DRL-based technique for function scheduling, focusing on

the resource constrained and multi-tenant nature of serverless systems. The multi-step

DQN algorithm adapted in this work formulates a comprehensive understanding on the

workloads that they handle along with the corresponding system behavior patterns in

reaching its solution. Further, our solution offers flexibility to its users for balancing the

objectives of application response time latency and provider cost efficiency, as desired. A

fully fledged practical serverless test-bed environment was also designed, on which all

the experiments for training and evaluating multiple variations of the proposed model

were conducted.

Chapter 5 presented a framework for response time and cloud provider resource

cost optimized scaling of serverless applications. The proposed multi-agent DRL model

for the function scaling problem is adapted from the policy gradient algorithm Asyn-

chronous Advantage Actor Critic (A3C). The scaling solution is formulated to include

both horizontal and vertical scaling decisions, by incorporating a novel multi-discrete

action space. Moreover, the solution includes a configurable reward model for care-

fully balancing the two conflicting objectives of performance and resource efficiency.

An event-based simulator environment integrated with TF agents in the back-end and

following the architecture of our existing practical test-bed, was also designed as part of

this work, for effective evaluation of the proposed scaling solution.

Chapter 6 introduced a serverless and VM-based hybrid solution for scheduling ap-

plications in order to leverage the optimum benefits of this novel computing model. The

proposed solution utilizes the actor-critic architecture in DRL, along with the proximal

policy optimization (PPO) technique. The model decision structure takes a hierarchical

form with multiple actors working on deciding the environment of deployment and the

scheduling node in the selected environment. The multi-objective reward model is capa-

ble of enhancing both application performance and user cost in the trained policy. This

is achieved by capturing the application workload as well as the serverless and serverful

cluster status and behavioral patterns in the decision model.

The chapters described above collectively presented elaborate techniques for the au-

tonomous handling of various resource management aspects under the provider-centric

serverless computing model, which is a timely contribution to the state-of-the-art. The



200 Conclusions and Future Directions

outcomes of these studies provide solid proof of the value of handling serverless re-

source management with a deep understanding on the whole eco-system, for the benefit

of all stakeholders.

7.2 Future Research Directions

Based on the research presented in this thesis, here we present ideas with great potential

for future investigation in to the aspect of resource management in serverless comput-

ing.

7.2.1 Multi-provider Serverless Support

With the advent of many cloud vendors in to the market with serverless computing of-

ferings, there exist a variety of features in each platform that the users could benefit from.

However, due to the lack of a common set of standards binding each of these products,

users are easily subject to a state of vendor lock-in as soon as they start adopting one ser-

vice. Thus today, interest is building up on studies on multi-provider serverless support

with reduced provider lock-in effect for users. This is also in line with the concept of

adopting multi-cloud infrastructure solutions by organizations looking out for the most

cost effective model. Accordingly, users would be able to dynamically enjoy various

offerings of multiple serverless vendors potentially via a brokering mechanism which

would determine the best execution path for user traffic based on the desired objectives.

7.2.2 Hybrid Execution Models

In chapter 6 we studied the use of a hybrid execution model for applications for realizing

benefits of both serverless and traditional serverful models. Our results provided an

insight into how a single task application workload could be analyzed for identifying

the most suitable load levels for deployment in each environment. This research could

be further expanded to explore the most efficient mode of deployment for a variety of

other applications, e.g., a DAG (Directed Acyclic Graph) based workflow application



7.2 Future Research Directions 201

with a complex structure. A product offering with such customized, hybrid deployment

options, from a cloud vendor would have great future prospects.

7.2.3 Access to Specialized Hardware

Many diverse application domains are increasingly adopting the serverless computing

model nowadays. Understandably, different user applications have varying resource

requirements and there could even be the need to access specialized hardware resources

for their successful execution. With the penetration of artificial intelligence in to almost

all aspects of life today, deep learning model training has become a potential candidate

for serverless computing, with a vast number of use-cases. However these applications

commonly use GPUs or TPUs as an accelerator for processing compute-intensive tasks,

which the current serverless platforms do not provide. Thus, availability of flexible

hardware options along with techniques for managing applications tasks efficiently on

them could reduce the barrier to entry for such prominent use-cases.

7.2.4 Dynamic Pricing Models

Current serverless platforms charge users based on a common pay-as-you-use billing

model. However, depending on the criticality of their requirements, certain users may

be willing to pay more or less for an enhanced/diminished level of service. Such flex-

ible pricing models which address the money-to-performance trade-off would enhance

the meaning of the term “Function-as-a-service,” while luring in more diversified user

pools.

7.2.5 QoS Guarantees

A major challenge for serverless system users is the lack of any QoS guarantees for their

applications by the vendors. Specially for mission critical applications which require

high availability and reliability guarantees, this shared platform architecture may not

seem a viable option unless a guaranteed level of service could be agreed upon. Never-

theless, providing custom service level offerings to its users on multi-tenant infrastruc-
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ture adds unnecessary complications to the system which may affect the maintenance of

the distinguished characteristics of the serverless model such as auto-scalability. Thus,

thorough investigation is required in this regard for designing possible solutions with-

out compromising on the system fundamentals.

7.2.6 Provider Centric Optimization

With the many advantages it offers, serverless computing is cited as a lucrative mode of

application deployment among the general cloud user. Auto-scalability, efficient billing

models and complete omission of any upfront costs are just some of its many character-

istics that benefit the end users. Moreover, many research works are constantly under-

taken in order to study techniques for further optimizing the user experience in these

systems. However, this being a provider-centric cloud model, where the control of all

operations lies with the vendor, any such techniques would only be admitted to their

systems if they benefit the provider as well. For example, the maintenance of large

resource pools for mitigating application latency deterioration would have very low at-

tractiveness to a provider if it leads to a large resource wastage. Thus in chapters 4, 5

and 6, we have largely directed our research focus on resource management techniques

which are capable of achieving cost efficiency to the cloud provider. In line with the

cost metric, another parameter of great interest to a service provider would be the as-

pect of energy efficiency of their infrastructure. In our work, we have incorporated the

opportunity cost of running the physical machines, to arrive at provider cost. Potential

next steps for research would be determining the energy consumption of the underlying

resources, which is a direct contributor to service provider cost. Thus, critically analyz-

ing the QoS requirements from a service provider’s point of view too needs to be a key

research goal.

7.2.7 Adaptation to the Edge

A lot of effort is seen today in the area of adapting the serverless model across the edge

and fog computing networks. Internet of Things (IoT) applications running on resource

constrained edge nodes could benefit a lot by following the modular application ar-
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chitecture in serverless, where the consolidation of several functions would form one

application. However in contrast to cloud deployed functions, edge deployments need

to consider additional parameters such as network delays, resource limitations and vast

heterogeneity of edge devices. For example, the data shipping architecture in server-

less which essentially transports data to the processing element for each function execu-

tion could cause excessive latencies, where an intermediary storage or caching services

could be possible solutions. Although several researches exist which focus on creating

novel resource isolation mechanisms and architectures to overcome the constraints of

the edge environment, currently there is an evident lack of specific focus to improve

resource management in these network architectures. The techniques presented in this

thesis could be easily adapted to suit these heterogeneous environments. Hence, the

consolidation of the two concepts of edge and serverless computing paves the path to

many new research topics.

7.2.8 Intelligent Solutions

The shared nature of serverless platforms creates a very complex environment for func-

tion execution, with many dependent factors influencing its performance. Further, func-

tions being naturally short-lived code segments with no state maintenance, and the auto-

scaling of resources elevates the dynamism in these systems where the environment is

subject to constant and rapid changes. As such, any resource management technique

proposed for this cloud model need to be adaptable to these dynamic circumstances.

Thus, employing intelligent methods for capturing these complex details is of high rele-

vance. In this thesis, we have employed many such learning techniques for identifying

and rectifying shortcomings in serverless resource allocation decisions, which have a

massive potential for further studies.

7.2.9 Support for Dynamism in Environments and Workloads

Our thesis proposed strategies for resource management in serverless environments

considering the nature of majority of workloads utilizing this architecture in existing

commercial platforms. We have designed our experimental testbeds to closely resonate
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with the underlying infrastructure of these systems in order to validate the practical

adaptation of our solutions. However, there is further potential to examine the applica-

bility of our findings under less common application workload scenarios (e.g.: big data

applications) and diverse environmental settings (e.g.: varying cluster sizes and hard-

ware setups). Studying the behaviour of these techniques under such diverse conditions,

would be of great value to this area of research.

7.3 Final Remarks

Serverless computing has gained a lot of popularity over recent years among individual

as well as industry cloud users due to its versatility in accommodating requirements of

applications belonging to diverse domains. The unmatchable convenience that it deliv-

ers to the end users by seamlessly undertaking all the application execution operations

with minimal user involvement, greatly elevates the efficiency of business processes.

Fine-grained auto-scaling of application resources and favorable billing models have

further heightened the interest in this new computing model among prospective users.

However, maintaining the seemingly ’serverless’ nature of operations from the end user

perspective comes with increased levels of responsibility to the cloud vendors. From

the moment an application is deployed, all end-to-end operations for its successful ex-

ecution need to be handled by the platform itself, with little to no knowledge on the

particulars of application characteristics. In addition, since all serverless platforms are

multi-tenant shared environments, the demands of numerous users need to be met si-

multaneously. In this thesis, we investigated and designed techniques for autonomously

and dynamically managing application resources in serverless systems to the satisfac-

tion of both the cloud users and service providers equally. These include strategies and

architectures for resource provisioning, scheduling and scaling which work towards

harvesting the full potential of this computing model. The research outcomes of this

thesis lay the groundwork and pave the way for further innovation and evolution in

this novel cloud computing paradigm.

204



Conclusions and Future Directions BIBLIOGRAPHY

Bibliography

[1] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,

V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, “Serverless computing:

Current trends and open problems,” in Research Advances in Cloud Computing.

Springer, 2017, pp. 1–20.

[2] “Serverless computing market size 2023 with a cagr of 20.8% : Latest growth

rate, new development, market segment, sales & revenue, global demand and

regional outlook till forecast year 2030 research report,” https://au.finance.

yahoo.com/news/serverless-computing-market-size-2023-111100932.html, (Ac-

cessed on 08/10/2023).

[3] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of serverless

computing,” Communications of the ACM, vol. 62, no. 12, pp. 44–54, 2019.

[4] S. Werner, J. Kuhlenkamp, M. Klems, J. Müller, and S. Tai, “Serverless big data

processing using matrix multiplication as example,” in Proceedings of the IEEE

International Conference on Big Data (Big Data). IEEE, 2018, pp. 358–365.

[5] Y. Kim and J. Lin, “Serverless data analytics with flint,” in Proceedings of the IEEE

11th International Conference on Cloud Computing (CLOUD). IEEE, 2018, pp.

451–455.
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